
Peer-to-Peer with VB .NET
by Matthew MacDonald ISBN:1590591054

Apress © 2003 (456 pages)

This text takes a look at peer-to-peer programming with VB .NET, and provides complete
examples demonstrating instant messaging, file sharing, and how distributed computing
and peer-to-peer work together.

Table of Contents

Peer-to-Peer with VB .NET
Introduction
Part One - Introducing Peer-to-Peer
Chapter 1 - The Evolution of Peer-to-Peer
Chapter 2 - Peer-to-Peer Architecture
Part Two - Peer-to-Peer with a Coordination Server
Chapter 3 - Remoting Essentials
Chapter 4 - Building a Simple Messenger
Chapter 5 - Threading the Coordination Server
Chapter 6 - Building a Distributed Task Manager
Part Three - Peer-to-Peer with a Discovery Server
Chapter 7 - Networking Essentials
Chapter 8 - Building a Discovery Web Service
Chapter 9 - Building a File Sharer
Chapter 10 - Using a Discovery Service with Remoting
Part Four - Advanced Peer-to-Peer
Chapter 11 - Security and Cryptography
Chapter 12 - Working with Messenger and Groove
Chapter 13 - The Intel Peer-to-Peer Accelerator Kit
Index
List of Figures

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Back Cover
Peer-to-peer proponents claim that their technology holds the keys to building virtual supercomputers,
sharing vast pools of knowledge, and creating self-sufficient communities on the Internet. Peer-to-Peer
with VB .NET explores how these design ideas can be integrated into existing .NET applications.

This book is an honest assessment of P2P and .NET. It doesn’t just explain how to create P2P applications—
it examines the tradeoffs that professional developers will encounter with .NET and P2P. It also considers
several different approaches (Remoting, .NET networking, etc.) rather than adopting one fixed technology,
and includes detailed examples of several popular P2P application types (messenger, file sharer, and
distributed task manager).

About the Author

Matthew MacDonald is an author, educator, and MCSD developer who has a passion for emerging
technologies. He is a regular writer for developer journals such as Inside Visual Basic, ASPToday, and
Hardcore Visual Studio .NET, and he's the author of several books about programming with .NET, including
User Interfaces in VB .NET: Windows Forms and Custom Controls, The Book of VB .NET, and .NET
Distributed Applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Peer-to-Peer with VB .NET
Matthew MacDonald

Apress™

Copyright © 2003 Matthew MacDonald

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the
copyright owner and the publisher.
1-59059-105-4

12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked
name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

Technical Reviewer: Ron Miller
Editorial Board: Dan Appleman, Craig Berry, Gary Cornell, Tony Davis, Steven Rycroft, Julian Skinner, Martin Streicher, Jim
Sumser, Karen Watterson, Gavin Wright, John Zukowski
Assistant Publisher: Grace Wong
Project Manager: Beth Christmas
Copy Editor: Mark Nigara
Production Manager: Kari Brooks
Production Editor: Lori Bring
Compositor and Proofreader: Kinetic Publishing Services, LLC
Indexer: Kevin Broccoli
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY, 10010 and
outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, email orders@springer-ny.com, or visit http://www.springer-ny.com. Outside the
United States: fax +49 6221 345229, email orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA 94710. Phone 510-
549-5930, fax 510-549-5939, email info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an "as is" basis, without warranty. Although every precaution has been taken in the
preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or
damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads section.

For my loving wife, Faria

About the Author

Matthew MacDonald is an author, educator, and MCSD developer. He's a regular contributor to programming journals such as
Inside Visual Basic and Hardcore Visual Basic, and the author of several books about .NET programming, including The Book of
VB .NET (No Starch), ASP.NET: The Complete Reference (Osborne/McGraw-Hill), and Microsoft .NET Distributed Applications
(Microsoft Press). In a dimly remembered past life, he studied English literature and theoretical physics.

About the Technical Reviewer

Ron Miller works as a Senior Engineer at Pitney Bowes developing new shipping systems. He has been in the IT industry for over
20 years and has developed a variety of solutions from Distributed Asset Management systems to those providing daily sales
figures to handhelds. Ron can be found searching for that "better solution" to the problem at hand. In his spare time, Ron takes
pleasure in restoring older Lancias and BMWs.

Acknowledgments

No author could complete a book without a small army of helpful individuals. I'm deeply indebted to the whole Apress team,
including Beth Christmas and Lori Bring, who helped everything move swiftly and smoothly; Ron Miller, who performed the tech
review; Mark Nigara, who performed the copy edit (and discussed the countless ways to capitalize "web services"); and many
other individuals who worked behind the scenes indexing pages, drawing figures, and proofreading the final copy. I owe a special
thanks to Gary Cornell, who always offers invaluable advice about projects and the publishing world. He's helped to build a truly
unique company with Apress.

In writing the code for this book, I've had the help of articles, sample code, and in-depth presentations from the best .NET
developers. In particular, I should thank Lance Olson, whose sample formed the basis for the pinging code used to test peer
connectivity, and Jason Thomas (the creator of the Gnutella client Swapper.NET—see http://www.revolutionarystuff.com/swapper
for more information). Peer-to-peer is still evolving and changing crazily, and I hope to have the chance to update this book
sometime in the future with the next round of developer tools and technologies.

Finally, I'd never write any book without the support of my wife and these special individuals: Nora, Razia, Paul, and Hamid.
Thanks everyone!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
Like all new development models, peer-to-peer programming has been praised, denounced, and often confused in the
programming community. Peer-to-peer proponents claim that their technology holds the key to building virtual supercomputers
that can share vast pools of knowledge and create self-sufficient communities on the Internet. Peer-to-peer critics claim it's little
more than an interesting novelty—suitable for some applications, but useless in the business world.

This book takes a practical look at peer-to-peer programming, without the hype. You'll explore how peer-to-peer designs work,
learn fundamental peer-to-peer concepts, and master the .NET technologies you'll need to implement them. You'll also see that
while some aspects of .NET are ideally suited for the peer-to-peer world, other high-level features haven't materialized yet. The
emphasis in this book is on integrating peer-to-peer designs into your applications. This means that you'll focus on "hybrid" peer-
to-peer designs that combine traditional solutions and peer-to-peer concepts to create new features such as instant messaging,
resource sharing, and distributed computing.

This book is organized into four parts. The first part explores peer-to-peer design concepts and architecture. The second and third
parts lead you through the process of creating several hybrid peer-to-peer applications that are most at home on local area
networks and in the enterprise environment. The fourth part introduces advanced peer-to-peer issues, including security and
decentralized designs. In this part you'll explore how to use third-party platforms to meet challenges such as firewalls and network
address translation and take your peer-to-peer designs to the Internet.

About This Book
This book is designed for experienced programmers who are familiar with the .NET platform and the VB .NET language and want
to extend their skills to peer-to-peer programming. It doesn't assume any knowledge of peer-to-peer concepts, or of the distributed
technologies that you can use to build a peer-to-peer solution (such as .NET networking or Remoting).

What This Book Teaches You

This book provides the following information:

A detailed description of the .NET technologies that can be used for peer-to-peer programming, including
Remoting, networking, web services, and encryption.

A thorough explanation of peer-to-peer conceptions such as peer discovery, communication, and the role of a
central lookup or coordination server.

Examples of common peer-to-peer applications such as chat servers, file-sharing services, and distributed work
managers.

An explanation of some third-party tools that can help simplify peer-to-peer programming in .NET, such as Groove
and the Intel Peer-to-Peer Accelerator Kit.

What This Book Doesn't Teach You

Of course, it's just as important to point out what this book doesn't contain:

A description of core .NET concepts such as namespaces, assemblies, exception handling, and types.

A primer on object-oriented design. No .NET programmer can progress very far without a solid understanding of
classes, interfaces, and other .NET types. In this book, many examples will rely on these basics, using objects to
encapsulate, organize, and transfer information.

The "everything from scratch" decentralized peer-to-peer application. Some parts of peer-to-peer technology (such
as firewall traversal and adaptive bandwidth management) are quite complex and extremely difficult to implement
correctly. This book assumes that you don't want to code this infrastructure from scratch. Instead, you'll look at
hybrid peer-to-peer designs and the emerging third-party technologies that can handle the lower-level plumbing for
you.

If you haven't learned the .NET fundamentals, you probably won't be able to work through this book. Start with a more general
book about the .NET Framework and the VB .NET language.

Peer-to-Peer and .NET

In the past, Microsoft programmers have been left behind in the peer-to-peer debate. While they were struggling with COM and
multitier design, a new type of software architecture appeared, one that seems more at home in open-source languages and the
world of the Internet. The .NET platform presents a platform that embraces the Internet.

That said, it's important to note that .NET still lacks some higher-level tools that will be needed to standardize and extend large-
scale peer-to-peer applications. Some other programming platforms, such as JXTA (a Sun-led initiative for peer-to-peer
programming that focuses on Java), currently offer more than .NET in this respect. However, as the .NET platform matures,
support for peer-to-peer networking will only improve, either through .NET Framework updates or optional add-ons.

There's already one promising toolkit that abstracts away some of the work in building a peer-to-peer infrastructure in .NET: Intel's
freely downloadable Peer-to-Peer Accelerator Kit. The final part of this book examines the Intel toolkit, considers its advantages,
and shows how it extends the .NET Framework. At the same time, you'll look at the Groove platform, which provides the
infrastructure for peer-to-peer collaborative applications as well as an easier way to control Microsoft's own Windows Messenger
network.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note In short, Microsoft has identified peer-to-peer as a promising new area where they must provide cutting-edge
development tools. .NET moves toward this vision, but there are likely many more revolutions ahead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Code Samples
It's a good idea to use the online site to download the most recent, up-to-date code samples. In addition, many of the samples
presented in this book are quite lengthy, and the full code is not listed in these pages. To test them on your own system, you'll
need to download the complete projects. To download the source code, go to http://www.prosetech.com. You can also download
the source code from the Downloads section of the Apress website (http://www.apress.com).

All the code in this book is supported by versions 1.0 and 1.1 of the .NET Framework. For best results, compile the code on your
system before executing it. Projects are provided in Visual Studio .NET 2002 format, which means that you must "upgrade" the
project before using it in Visual Studio .NET 2003. This upgrading process is easy and automatic. No code changes are required.

Variable Naming

It seems that variable naming is about to become another religious issue for which there is no clear standard, even though
developers take heated, uncompromising attitudes about it. Hungarian notation, the preferred standard for C++ and VB (in a
slightly modified form), is showing its age. In the world of .NET, where memory management is handled automatically, it seems a
little backward to refer to a variable by its data type, especially when that data type may change without any serious
consequences and when the majority of variables store references to full-fledged objects.

To complicate matters, Microsoft recommends that objects use simple names for properties and methods, such as COM
components and controls. This system makes a good deal of sense, as data-type considerations are becoming more and more
transparent. Visual Studio .NET now takes care of some of the work of spotting the invalid use of data types, and its built-in
IntelliSense automatically displays information about the data types used by a method.

In this book, data-type prefixes are not used for variables. The only significant exception is with control variables, for which it's still
a useful trick to distinguish between types of controls (such as txtUserName and lstUserCountry) and some data objects. Of
course, when you create your programs you're free to follow whatever variable naming convention you prefer, provided you make
the effort to adopt complete consistency across all your projects (and ideally across all the projects in your organization).

Note This book uses an underscore to denote private variables that are linked to a property procedure. For example, if a
class provides a property called Name, the data for that property will be stored in a private variable called _Name.
Underscores are not used for any other variable names.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Feedback
You can send complaints, adulation, and everything in between directly to p2p@prosetech.com. I can't solve your .NET problems
or critique your own code, but I'll know what I did right and wrong (and what I may have done in an utterly confusing way) with this
book from your feedback. You can also send comments about the website support.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter Overview
It's easiest to read the book from start to finish because later chapters discuss alternate approaches to some of the earlier
applications. However, if you're already familiar with peer-to-peer concepts, you may find it easier to skip to the chapters that
interest you.

The book follows this four-part structure.

Part One: Introducing Peer-to-Peer

The first part of this book explores peer-to-peer fundamentals. Chapter 1 takes a high-level look at the peer-to-peer world. It
presents the key characteristics of peer-to-peer applications, a brief history of peer-to-peer development, and the place of peer-to-
peer designs in the enterprise world.

Chapter 2 tackles peer-to-peer architecture and dissects several different peer-to-peer models. In this chapter, you'll learn about
the basic challenges and design decisions that face any peer-to-peer project as well as the .NET technologies that are available to
meet them. By the end of the chapter, you'll be able to decide when you should (and shouldn't) use peer-to-peer designs in your
own solutions.

Part Two: Peer-to-Peer with a Coordination Server

This part introduces "brokered" peer-to-peer designs, in which a central server plays an important role in helping peers
communicate. This design can be easily implemented with .NET's high-level Remoting Framework, which you'll encounter in
Chapter 3 in detail. Next, Chapter 4 and Chapter 5 show how Remoting can be used to build an instant-messaging application that
routes messages over a network, tracks multiple clients, and uses multiple threads and locking to handle simultaneous requests
seamlessly.

Finally, Chapter 6 takes a different approach by developing a model for distributed computing in which multiple clients can work
together to solve a single CPU-intensive problem. You'll learn how to create a dedicated client to work with a fixed problem type,
or how you can use .NET reflection and dynamic assembly loading to create task-independent peers. You'll also see the code-
access security measures you'll need to make to ensure that the second approach won't become an express highway for
spreading malicious worms across the Internet.

Part Three: Peer-to-Peer with a Discovery Server

Some of the most common and powerful peer-to-peer designs combine a decentralized application with a centralized repository of
peer information. The second part of this book explores this model of peer-to-peer design. Chapter 7 introduces the lower level of
.NET networking support that you'll need to create direct connections between peers. Chapter 8 shows you how to build a
discovery server as an ASP.NET web service, and Chapter 9 brings it all together with a complete sample application for sharing
files between peers.

Chapter 10 revisits the discovery service and considers how you can adapt your design for a system that uses .NET Remoting for
peer-to-peer interaction. In the process, you'll develop a discovery service that you can use with the Talk .NET instant-messaging
code sample presented in Chapter 4 and Chapter 5.

Part Four: Advanced Peer-to-Peer

The last part of this book tackles a few advanced topics in peer-to-peer application programming. Chapter 11 considers security
and how you can use .NET's native support for cryptography to protect sensitive data and verify peer identity. Chapter 12 explores
third-party toolkits for collaborative peer-to-peer applications with Windows Messenger and Groove. Finally, Chapter 13 introduces
Intel's freely downloadable Peer-to-Peer Accelerator Kit, which extends .NET Remoting with valuable networking and peer
connectivity features.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part One: Introducing Peer-to-Peer
Chapter List

Chapter 1: The Evolution of Peer-to-Peer

Chapter 2: Peer-to-Peer Architecture

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1: The Evolution of Peer-to-Peer
Peer-to-peer is an almost magical term that's often used, rarely explained, and frequently misunderstood. In the popular media,
peer-to-peer is often described as a copyright-violating technology that underlies song-swapping and file-sharing systems such as
Napster and Gnutella. In the world of high-tech business, peer-to-peer networking is a revolution that promises to harness the
combined computing power of ordinary personal computers and revolutionize the way we communicate. And to Internet pioneers,
peer-to-peer is as much a philosophy as it is a model of development, one that contains the keys needed to defeat censorship and
create global communities. All of these descriptions contain part of the answer, but none will help you build your own peer-to-peer
systems, or explain why you should.

In this chapter, you'll learn what distinguishes peer-to-peer applications from traditional enterprise systems, how peer-to-peer
technology evolved in the early Internet, and what advantages and disadvantages the peer-to-peer model offers. You'll also
preview the .NET technologies you'll need to build peer-to-peer software, and the challenges you'll face along the way. By the end
of the chapter, you'll be able to decide when you should (and shouldn't) use peer-to-peer designs in your own solutions.

A Brief History of Programming
The easiest way to understand peer-to-peer applications is by comparing them to other models of programming architecture. To
understand peer-to-peer programming, you need to realize that it's part revolution, part evolution. On the one hand, peer-to-peer
programming is the latest in a long line of schisms that have shaken up the programming world. Like them, it promises to change
the face of software development forever. On the other hand, peer-to-peer programming borrows heavily from the past. It's likely
that peer-to-peer concepts may end up enhancing existing systems, rather than replacing them.

The Birth of Client-Server

In a traditional business environment, software is centralized around a server. In the not-so-distant past, this role was played by a
mainframe. The mainframe performed all the work, processing information, accessing data stores, and so on. The clients were
marginalized and computationally unimportant: "dumb terminals." They were nothing more than an interface to the mainframe.

As Windows development gained in popularity, servers replaced the mainframe, and dumb terminals were upgraded to low-cost
Windows stations that assumed a more important role. This was the start of the era of client-server development. In client-server
development, the server hosts shared resources such as the program files and back-end databases, but the application actually
executed on the client (see Figure 1-1).

Figure 1-1: Client-server computing

This approach is far from ideal because the clients can't work together. They often need to compete for limited server resources
(such as database connections), and that competition creates frequent bottlenecks. These limitations appear most often in large-
scale environments and specialized systems in which client communication becomes important. In mid-scale systems, clientserver
development has proved enormously successful because it allows costly mainframes to be replaced by more affordable servers.
In fact, though many programming books talk about the end of client-server development, this model represents the most
successful programming paradigm ever applied to the business world, and it's still alive and well in countless corporations.

Distributed Computing

The more popular the Windows PC became in the business world and the more it became involved in ambitious enterprise
systems, the more the limitations of client-server programming began to show. A new model was required to deal with the massive
transactional systems that were being created in the business world. This new model was distributed computing. Distributed
computing tackles the core problem of client-server programming—its lack of scalability—with a component-based model that can
spread the execution of an application over multiple machines.

In a distributed system, the client doesn't need to directly process the business and data-access logic or connect directly to the
database. Instead, the client interacts with a set of components running on a server computer, which in turn communicates with a
data store or another set of components (see Figure 1-2). Thus, unlike a client-server system, a significant part of the business
code executes on the server computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-2: Distributed computing

By dividing an application into multiple layers, it becomes possible for several computers to contribute in the processing of a single
request. This distribution of logic typically slows down individual client requests (because of the additional overhead required for
network communication), but it improves the overall throughput for the entire system. Thus, distributed systems are much more
scalable than client-server systems and can handle larger client loads.

Here are some of the key innovations associated with distributed computing:

If more computing power is needed, you can simply move components to additional servers instead of providing a
costly server upgrade.

If good stateless programming practices are followed, you can replace individual servers with a clustered group of
servers, thereby improving scalability.

The server-side components have the ability to use limited resources much more effectively by pooling database
connections and multiplexing a large number of requests to a finite number of objects. This guarantees that the
system won't collapse under its own weight. Instead, it will simply refuse clients when it reaches its absolute
processing limit.

Distributed computing is associated with a number of good architecture practices, which make it easier to debug,
reuse, and extend pieces of an application.[1]

Distributed programming is the only way to approach a large-scale enterprise-programming project. However, the classic
distributed design shown in Figure 1-2 isn't suited for all scenarios. It shares some of the same problems as client-server models:
namely, the overwhelming dependence on a central server or cluster of server-like computers. These high-powered machines are
the core of the application—the 1 percent of the system where 99 percent of the work is performed. The resources of the clients
are mostly ignored.

Peer-to-Peer Appears

The dependency on a central set of servers isn't necessarily a problem. In fact, in some environments it's unavoidable. The
reliability, availability, and manageability of a distributed system such as the one shown in Figure 1-2 are hard to beat. In all
honesty, you aren't likely to use peer-to-peer technology to build a transaction-processing backbone for an e-commerce website.
However, there are other situations that a server-based system can't deal with nearly as well. You'll see some of these examples
at the end of this section.

Peer-to-peer technology aims to free applications of their dependence on a central server or group of servers, and it gives them
the ability to create global communities, harness wasted CPU cycles, share isolated resources, and operate independently from
central authorities. In peer-to-peer design, computers communicate directly with each other. Instead of a sharp distinction between
servers that provide resources and clients that consume them, every computer becomes an equal peer that can exhibit clientlike
behavior (making a request) and server-like behavior (filling a request). This increases the value of each computer on the network.
No longer is it restricted to being a passive client consumer—a peer-to-peer node can participate in shared work or provide
resources to other peers.

Peer-to-peer is most often defined as a technology that takes advantage of resources "at the edges of the network" because it
bypasses the central server for direct interaction. As you can see in Figure 1-3, this approach actually complicates the overall
system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-3: Peer-to-peer computing

Peer-to-peer programming is regarded by some as a new generation of programming design, and by others as a subset of
distributed computing. In a sense, distributed architecture overlaps with peer-to-peer architecture because many of the
technologies used to create distributed enterprise applications can be used to create peer-to-peer systems as well. However,
peer-to-peer applications represent a dramatic shift toward a decentralized design philosophy that is quite different from what
most programmers expect in an enterprise application.

Here are some of the hallmarks that distinguish a peer-to-peer application:

The processing is performed on the peers, not farmed out to another computer (such as a high-powered server).

The peers interact by establishing direct connections, rather than passing messages through a central authority.

The system can deal with inconsistent connectivity (for example, peers who disappear and reappear on the
network).

The system uses a proprietary peer naming and discovery system that operates outside the Internet's Domain
Name Service (DNS) registry.

[1]Distributed computing is sometimes described as multitier or n-tier programming, but this is not strictly correct. Distributed
computing is a physical model that splits execution over multiple computers. Multitier programming is a logical model that divides
an application into distinct layers. Think of it this way: A program with a multitier design has the option of graduating into a
distributed application. However, multitier design and component-based programming can still be used in a traditional client-server
application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Evaluating the Peer-to-Peer Model
The inevitable question is this: Can a peer-to-peer application perform better than a client-server application? Unfortunately, this
question is not easily answered. It not only depends on the type of application, but on the type of peer-to-peer design, the number
of users, and the overall traffic patterns. The most honest answer is probably this: There are some development niches in which
peer-to-peer applications will perform better and require fewer resources. However, a peer-to-peer application can easily introduce
new headaches and scalability challenges, which can't be dismissed easily. In order to create a successful peer-to-peer
application, you must understand both the advantages and drawbacks of a peer-to-peer design.

Benefits and Challenges

Peer-to-peer applications hold a great deal of promise. Some of the unique properties of a peer-to-peer system are as follows:

A large network of peers will almost always have more computing resources at hand than a powerful central server.

A completely decentralized peer-to-peer application should have improved reliability because the server won't be a
single point of failure for the system.

A peer-to-peer application should also have improved performance because there is no central server to act as a
bottleneck.

Enterprise programmers have met some of these challenges by introducing server farms and clustering technologies. However,
these solutions are expensive, and minor server-side problems can still derail an entire enterprise application.

On the other hand, the advantages of peer-to-peer applications are qualified by a few significant drawbacks:

As a peer-to-peer design becomes more decentralized, the code becomes more complex and the required network
bandwidth to manage the peer discovery process increases. This might not be a problem if the bandwidth is spread
out equitably over the network, but it often does become a problem in an intranet where the network must also be
used for a critical client-server business application.

Although peer-to-peer systems don't rely on a central server, they do rely on the cooperation of multiple peers. This
cooperating can be damaged by the variable connectivity of the Internet, where peers might abruptly disappear,
even in the middle of serving a request. Similarly, in fully decentralized peer-to-peer systems, low-bandwidth clients
can become "mini-bottlenecks" for their part of the network.

Peer-to-peer programming introduces significant challenges with network addressing due to the way the Internet
works with dynamic IP addresses, proxy servers, network address translation (NAT), and firewalls.

It's also difficult to predict how a decentralized peer-to-peer solution will scale as the user community grows. Like all complex
systems, a peer-to-peer network can display a dramatically different behavior at a certain "critical mass" of peers. Gnutella, a
peer-to-peer protocol used for popular file-sharing applications, is in some respects an enormous in-progress experiment. As the
network has grown wildly beyond what was originally expected, connectivity has suffered—frequently. At times, entire islands of
peers have broken off from the main pool, able to communicate within their community, but unable to access other parts of the
Gnutella network.

Ingenious techniques such as smart caching and optimized routing have been developed to meet the challenges of large peer-to-
peer networks. However, it's still hard to predict how these solutions will play out on a large scale over a loosely connected
network that might include hundreds of thousands of peers. These emergent behaviors are impossible to plan for. The only way to
solve them is with an iterative process of development that involves frequent testing and updates. Ultimately, a peer-to-peer
system may become more robust and perform better than a classic enterprise application, but it will take ongoing development
work.

Peer-to-Peer and Security

Security is a concern with any type of application, and peer-to-peer systems are no exception. The key difference is that with
server-based programming, the server is in complete control. If the server adopts rigorous privacy standards and security
safeguards, your information is safe, and you're in a "benevolent dictator" situation. However, if the server falls short of its
commitment in any way, you'll have no protection.

In a decentralized peer-to-peer application, peers lack the protection of the server. On the one hand, they're also free from
monitoring and have control of their private information. It's difficult to track an individual peer's actions, which remain publicly
exposed, but lost in a sea of information. Nevertheless, malicious peers can connect directly to other peers to steal information or
cause other types of problems.

Doing away with a central authority is both liberating and dangerous. For example, a malicious user can easily place a virus in a
file-swapping peer-to-peer application disguised as another popular type of application and infect countless users, without being
subject to any type of punishment or even being removed from the system. In addition, the decentralized nature of peer discovery
makes it difficult for an organization to enforce any kind of access control (short of blocking Internet access on certain ports). For
these reasons, peer-to-peer application programmers need to consider security from the initial design stage. Some peer-to-peer
applications handle security issues by allowing users to assign different levels of trust to certain peers. Other peer-to-peer systems
rely on encryption to mask communication and certificates to validate peer identities. These topics are explored in Chapter 11,
with cryptography, and Chapter 6, with code access security.

The Peer-to-Peer Niche

Peer-to-peer applications may not displace enterprise development, but they do tackle some increasingly difficult enterprise
problems. Some of the scenarios for which a peer-to-peer design is well suited are presented in the next few sections.

Systems with Which Clients Need to Interact

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The server-based model emphasizes one-way communication from the client to the server. That means that the client must
initiate every interaction. This poses difficulty if you want to create a collaborative application such as a real-time chat, a
multiplayer game, or a groupware application. With the introduction of a little peer-to-peer code, the problem becomes much more
manageable.

Systems with Which Clients Need to Share Content
In the server-based system, everything needs to be routed through the central server. This taxes the computing power and
network bandwidth of a small section of the overall network. Thus, you'll need a disproportionately powerful server to handle a
relatively small volume of requests. If, however, the central server is used simply to locate other peers, it can become a "jumping
off" point for a true peer-to-peer interaction, which is much more efficient. This is the infamous Napster model.

In some cases, you might use the file-sharing abilities of a peer-to-peer application to support other features. For example, some
virus-scanning software packages use a form of file sharing to distribute virus catalog updates. In this model, an individual
computer in an enterprise will download an updated virus catalog as needed. Other peers will then retrieve the update from the
nearest local user, rather than the remote servers, thereby minimizing network traffic and the load placed on the central servers.
Similar forms of resource sharing can support a variety of services, and in doing so they prove that peer-to-peer applications are
about more than just swapping digital music.

Systems for Which a Central Server Would Be a Liability
This is generally the case if an application operated outside the bounds of local law (or in an area that could be subjected to future
prosecution). For example, Napster, despite being partly peer-to-peer, required a central server for content lookup and for
resolving peer addresses, and was thus subjected to legal intervention. Gnutella, a more radically "pure" peer-to-peer application,
isn't vulnerable in the same way. Similarly, consider the case of the legendary remailer anon.penet.fi, which was forced to close in
1996 because the anonymity of users could not be guaranteed against court orders that might have forced it to reveal account
identities. Pure peer-to-peer systems, because they have no central server, are impervious to censorship and other forms of
control.

Systems That Would Otherwise Be Prohibitively Expensive
You could build many peer-to-peer applications as server-based applications, but you'd require a significant hardware investment
and ongoing work from a network support team to manage them. Depending on the type of application, this might not be realistic.
For example, SETI@Home could not afford a supercomputer to chew through astronomical data in its search for unusual signals.
However, by harnessing individual chunks of CPU time on a large network of peers, the same task could be completed in a
sustainable, affordable way. Another example is a virtual file system that can provide terabytes of storage by combining small
portions of an individual peer hard drive. In many ways, these applications represent the ideal peer-to-peer niche.

Thus, peer-to-peer applications don't always provide new features, but sometimes provide a more economical way to perform the
same tasks as other application types. They allow specialized applications to flourish where the support would otherwise not exist.
This includes every type of peer-to-peer application, from those that promote collaboration and content sharing, to those that work
together to complete CPU-intensive tasks.

A New Class of Application
Of course, new technologies always lead to a few new and radical applications that could not exist with earlier technologies.
These applications may not grow and flourish right away—in fact, it's impossible to predict what next-generation software will be
facilitated by peer-to-peer technology.

One possibility is real-time searching technology that allows peers to share any type of resources. The immense diversity of this
content, and the variety of ways it can be described, make it impossible for a central server to catalogue it effectively. However, if
a peer-to-peer application that uses an effective content-description query language could be designed, it could pass a specific,
highly sophisticated request out to a wide audience of peers, who would then respond according to the highly specific information
they have on hand. The way we share information on networks would be revolutionized overnight.

Another example of a new sort of application that might become possible with peer-to-peer is real-time collaboration software.
Currently, collaborative applications allow for relatively simple tasks, such as exchanging text messages or sketching ideas on a
primitive whiteboard. In the future, we could see peer-to-peer software tailored for a specific industry or activity. There could be a
collaborative application that allows groups of users to work together on complex projects such as creating an architectural model,
reviewing experimental data, or teaching a virtual lesson.[2]

[2]Microsoft's Windows Messenger includes a feature called Application Sharing, which allows users to collaborate in any ordinary
application. However, a collaboration "killer app" would doubtlessly include some more insightful, specialized interfaces that would
coordinate multiple users.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Evolution of the Internet
So far we've considered peer-to-peer as it relates to the dominant architecture in enterprise applications. There's another way to
look at the evolution of peer-to-peer technology: in relation to the development of the early Internet.

The Early Internet

The Internet was first envisioned in the late 1960s as a global peer-to-peer system in which all computers could participate as
equals. It was assumed that computers in the early Internet would always be on and always be connected. Thus, they were
assigned permanent IP addresses that were recorded in a global registry called the Domain Name Service (DNS).

Note An IP address is a 32-bit number that uniquely identifies a computer on a network or the Internet. An IP address is
typically written as four numbers from 0-255 separated by periods (as in 168.212.226.204). IP addresses can be tied to
website names (such as http://www.amazon.com) using the DNS registry, but they don't need to be. In any case, the IP
address is the key to finding and communicating with another computer on a conventional network.

Unlike today's Internet, the early Internet was much more open. Any computer could send a packet to another. Usenet allowed
message-board postings to be propagated across the Internet in a manner not unlike the way today's peer-to-peer applications
route their own proprietary messages. Client-server applications such as FTP and Telnet existed, but any computer could morph
into a server and host the application. On the whole, the usage patterns of the early Internet were peer-to-peer.

The Client-Server Internet

Two trends conspired to shift the Internet into a predominantly client-server system. The first was the invention of Mosaic, the first
web browser. It was at this point that a larger community of casual users began to take interest in the content that was available
on the World Wide Web, and another model began to spread.

To access the Internet, a PC user needed to use a temporary dial-up connection via an Internet service provider (ISP). These PC
users became second-class citizens of the Internet, interacting as clients to download information from established web servers.
Because these users weren't permanently connected to the Internet, it made less sense to assign them an entry in the DNS. And
because there weren't enough IP addresses available to handle the sudden onslaught of new users, ISPs began assigning IP
addresses dynamically so that each user had a different IP address for every session.[3] The DNS system was never designed for
this sort of environment. The creators of the Internet assumed that changing an IP address would be a rare occurrence, and as a
result, it could take days for a modification to make its way through the DNS system.

The end result was that the PC user became an invisible client on the Internet, able to receive data but not able to contribute any.
With the commercialization of the Internet, this one-way pattern became the norm, and the Internet became the computer-based
counterpart of newspaper and television media. Early visions of the Internet as the great equalizer of communication faded.

At the same time, the cooperative model of the Internet began to break down. Network administrators reacted to the threat of
malicious users by using firewalls and network address translation (NAT). Both of these changes furthered the transformation to a
client-server Internet. Computers could no longer contact each other as peers. Instead, communication could only succeed if the
client inside the firewall (or behind the NAT) initiated it. Even the network infrastructure of the Internet became more and more
optimized for client-server communication. Internet providers built up their networks with asymmetric bandwidth with which
download times are always faster than upload times.

Interestingly, much of the underlying technology that supports the Internet is still based on peer-to-peer concepts. For example,
the DNS registry is not a central repository stored at a single location but a system for sharing information among peer DNS
servers. Similarly, a network of mail-server peers routes e-mail. On a hardware level, the physical routers that route network traffic
follow some peer-to-peer patterns: They communicate together and cooperate to optimize a path for data transmission. However,
the infrastructure that's developed on top of this substrate is primarily client-server. In order for peer-to-peer to succeed,
applications will need to reintroduce some of the ideas pioneered by the early Internet.

The Return of Peer-to-Peer

Recently, there's been a resurgence of peer-to-peer activity on the Internet—this time in the form of a few revolutionary
applications such as Napster, SETI@Home, ICQ, and Gnutella. Not all of these are pure peer-to-peer applications. In fact, all but
Gnutella rely on a central server for some tasks. Nevertheless, they all include a framework that allows significant peer interaction.

Part of the reason behind this latest change is the increasing value of the ordinary PC. When they first appeared on the Internet,
PCs were primitive enough that it seemed appropriate to treat them as dumb terminals that did little more than download and
display HTML pages. Today, PCs offer much more CPU power and contain more disk space (and thereby host more potentially
valuable content). PCs have also swelled to be the largest single part of the Internet. What they can't offer in quality, they can
offer through sheer numbers.

Note Even a conservative estimate of 100 million PCs on the Internet, each with only a 100 MHz chip and a 100 MB hard
drive, arrives at a staggering total of 10 billion MHz of processing power and 10,000 TBs of storage. The real total is
almost certainly much larger.

There is one disheartening fact about all of the examples of current peer-to-peer applications. Without exception, each one has
developed a proprietary system for peer discovery and communication. Some of these systems are complementary, and a few are
based on more-or-less open standards. However, the next wave of peer-to-peer development will probably appear when broader
standards emerge and technology companies such as Microsoft and Sun develop high-level tools that specifically address (and
solve) the severe networking demands of peer-to-peer programming.

Instant Messaging

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first wave of peer-to-peer applications included instant-messaging software, which allows users to carry out real-time
conversations. The key insight behind applications such as ICQ is that users would require a new kind of registry to allow them to
find each other on the Internet. Or to put it another way: Communicating over the Internet is easy; locating a friend is not, because
of the unreliable nature of dynamic IP addresses. ICQ solved this problem by introducing a dynamic registry that associates each
user with a unique number. Later instant-messaging systems bind a user to an e-mail address or, in the case of Windows
Messenger, a .NET passport. With a dynamic registry, the user's connection information (the IP address) can be changed
instantly.

However, most messaging applications are not strictly peer-to-peer because they use a central server to route messages. This
allows the server to store messages for offline users and route messages through a firewall. Some messaging systems provide
the option of establishing direct client-to-client connections when possible and only using the server as a fallback (ICQ), while
others use direct client-to-client communication when large amounts of information must be transferred (such as sending a file in
Windows Messenger). There are advantages and drawbacks to both approaches, and you'll explore them in the second part of
this book when you develop an instant-messaging example.

Jabber and Groove
Instant-messaging applications require their own proprietary infrastructure. However, there are at least two tools that are evolving
to supply some of this infrastructure for you. One is Jabber, an open-source instant-messaging platform that began as a switching
system between incompatible instant-messaging protocols. Today, you can use Jabber as an XML routing system that allows peer
communication. See http://www.jabber.org and http://www.jabbercentral.com for more information.

Groove is a more ambitious platform for collaborative applications that was developed by Ray Ozzie, the creator of Lotus Notes.
Groove is not an open-source project, but it's of interest to Microsoft developers because it's COM-based and includes .NET tools,
which make it easy to build collaborative applications that include automatic support for routing and encryption. Essentially,
Groove provides a peer-to-peer infrastructure that you can use in your own peer-to-peer applications. You will find out more about
Groove in Chapter 12.

SETI@Home
SETI@Home is an innovative project that exploits the idle time on the average personal computer. SETI@Home masquerades as
an ordinary screen saver. When it runs, it processes a chunk of astronomical radio data downloaded from the SETI@Home site
and scans for unusual patterns. When it's finished, it uploads the results and requests another block.

The idea of using multiple ordinary computers to do the work of one supercomputer is far from new. In the early days of the
Internet, distributed-computing projects were used to test encryption codes. Math hobbyists and researchers sometimes did
similar independent work to generate potential prime numbers or test a theory, although the efforts were never as well integrated.
SETI@Home was the first to create an effective vehicle for distributing the code (a screen saver) and combine it with a problem
that could easily be factored into smaller parts. Several other companies have tried, without success, to create similar projects in
the commercial arena.

In some ways, SETI@Home deviates from a true peer-to-peer system because it relies on a central server that ultimately controls
the entire system. However, in another respect SETI@Home represents the ideal of peer-to-peer design:

Every computer participates in performing the heavy lifting. In Chapter 6, you'll learn how to design a peer-to-peer .NET
application for distributed computing. Best of all, unlike SETI@Home, you'll learn how to make this program generic enough to
handle a dynamically defined task.

For more information about SETI@Home, see http://setiathome.berkeley.edu.

Napster and Gnutella
Napster and Gnutella are examples of peer-to-peer applications designed for content sharing—specifically, for sharing MP3 music
files.

Napster's genius was to combine peer-to-peer technology with a centralized peer directory. This created a hybrid system that
performed and scaled extremely well. The central server never became a bottleneck because it was used for comparatively low-
bandwidth activities while the actual file transfers were performed between peers on the edges of the network. Napster also
exploited a niche that was particularly well suited for peer-to-peer applications: popular music. Any large group of users with music
collections is certain to have a significant redundancy in catalogued songs. This redundancy allowed the overall system to work
reliably, even though it was composed of thousands of unreliable clients. In other words, the chance that a given song could be
found was quite high, though the chance that a given user was online was low.

Gnutella is a decentralized, pure peer-to-peer model that almost disappeared before being discovered by open-source
developers. Unlike Napster, Gnutella doesn't use a central server, but relies on a message-based system in which peers forward
communication to small groups. However, though all peers are given equal opportunity by the Gnutella software, they aren't all
equal. When a computer is discovered with a higher bandwidth, it morphs into a super-node and is given a higher share of
responsibility.

The Gnutella design has several well-known limitations. It does not provide any security to disguise user actions, or any anonymity
for peers, or any way to verify the content of files. It also lacks the optimized routing and caching that allow more sophisticated
peer-to-peer applications to dynamically correct load imbalances as they occur.

In Part Three, you'll use .NET's networking support to create a hybrid file-sharing application like Napster's.

Freenet
Freenet is a peer-to-peer model for a virtual pooled hard drive—with one significant difference. Freenet's goal is to ensure free
and uncensored communication over the Internet. Every Freenet peer surrenders a small portion of space on their hard drive, on
which encrypted data is stored. The actual content stored on a given peer changes regularly so that the most requested content is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

which encrypted data is stored. The actual content stored on a given peer changes regularly so that the most requested content is
replicated while the least requested content gradually disappears. Because of its design, Freenet is quite efficient for transferring
large amounts of information. It also allows any user to freely publish information to the Internet, without requiring a website.
However, there is no way for a Freenet peer to determine what's being stored on the local drive. Overall, Freenet is a niche use of
peer-to-peer technology, but it's an example of an elegant, completely decentralized model. For more information about Freenet,
see http://freenetproject.org.

JXTA Search
One peer-to-peer application type that hasn't yet materialized is distributed searching. Currently, web search engines such as
AltaVista and Google use spiders that continuously crawl through an unlimited series of websites, following links and cataloguing
everything they find. When you perform a search with Google, you're searching the most recent results from the spider's search.
Unfortunately, this doesn't necessarily reflect the content on the Web at that moment. Some of the results you retrieve may be
months old, and may point to nonexisting links while omitting much more important current data. And the data stored on internal
networks but not published on a website will always be beyond the reach of the search.

One idea is to supplement the current generation of searching technology with real-time searches over a peer network.
Unfortunately, before a peer-searching technology can work, it needs a large network of like-minded peers with valuable content,
and a content-description language that can be used to advertise resources and create queries. One early attempt to standardize
such a system was Infrasearch. The technology behind Infrasearch was recently purchased by Sun and incorporated into their
new JXTA platform. It's not yet ready for prime time, but it promises to change the way we find information on the Internet.

For information about JXTA, go to http://search.jxta.org.

.NET Terrarium

.NET Terrarium is a learning game for the Microsoft .NET platform. It allows developers to create virtual "creature" classes and
insert them into a virtual ecosystem hosted by a group of peers. Like Napster and SETI@Home, .NET Terrarium is a hybrid peer-
to-peer application that makes use of a central discovery server. Currently, the source code for .NET Terrarium is not available,
although it's expected that some pieces will gradually appear, accompanied by helpful commentary from Microsoft's architects.
You can download Terrarium at http://www.gotdotnet.com/terrarium.

The "Death" of Peer-to-Peer

Peer-to-peer applications are still in their infancy, and already some reports are predicting their demise. Most of these claims
center around the inability of most peer-to-peer venture projects to make money, particularly such high-profile failures as Napster.
However, peer-to-peer is not just a business model. It's also a framework that deals with current problems with distributed
computer systems—problems that can't be resolved in any other way.

There are two schools of thought on the future of peer-to-peer. Some believe that pure peer-to-peer applications are the ultimate
future of computing, and that the current trend of combining peer-to-peer concepts with more traditional client-server components
is transitional. Others believe that peer-to-peer technology will be integrated into the current generation of applications, thereby
adding new capabilities.

One interesting example is the .NET learning game Terrarium, which was initially envisioned as a straight peer-to-peer application.
When the resulting network traffic became difficult to manage, the team switched to a hybrid system with sever-based peer
discovery. The final solution incorporates .NET web services (primarily a client-server technology) with peer-to-peer networking.
Lance Olson, Terrarium's lead program manager, describes it this way:

I think that the peer-to-peer hype was sold as a new application model and an entirely new world around which
we would build applications. And I think that the truth of the matter is that it's much more evolutionary… . Peer-
to-peer is certainly not dead. However, the hype and the notion of peer-to-peer as just a stand-alone concept is
probably … more of an evolutionary step than something that is just an entirely new model. And so the peer-to-
peer world as I see it in the future is more one of applications that are more fault tolerant or are more interactive
and have a better ability to contact other resources that are available on the network. So they're just like the
applications today, only better in those senses.[4]

Recently, more and more developers have been speaking out in favor of hybrid peer-to-peer designs. Quite simply, enterprise
companies are unwilling to give up their servers. They need to be able to access a central component they can control, support,
back up, and protect. Enterprise companies are much more interested in systems that centralize some core services but still allow
for client interactions using peer-to-peer protocols.

Note This book focuses on the hybridization of peer-to-peer concepts. In other words, you'll learn how to create solutions
that incorporate peer-to-peer design, but the book may make use of server components that aren't necessarily pure
peer-to-peer systems. Pure peer-to-peer implementations require a significant amount of messy network coding, and
.NET does not yet provide high-level ways to deal with these problems. (Other platforms, such as JXTA, are also
evolving to tackle these problems.) Peer-to-peer—like .NET—is a compromise. It's your challenge to integrate it the
best way you can for your development.

[3]The IPv6 protocol promises to solve this problem and prevent the Internet from running out of IP addresses. IPv6 uses 128-bit
IP addresses with values represented as hexadecimal numbers separated by colons (as in 0528:a165:ff00:50bf:7708:0dc9:4d76).
IPv6 will support an incredible one trillion machines, and one billion networks. However, it's uncertain when IPv6 will be widely
implemented.

[4]From Episode 21, "‘Terrarium’ and Peer-to-Peer," of "The .NET Show" (see http://msdn.microsoft.com/theshow/).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Peer-to-Peer Technologies in .NET
The .NET class library provides multiple technologies for communicating between computers. Some of these are layered on top of
one another. You choose a high-level or low-level technology based on how much control you need and how much simplicity you
would like.

Some of these technologies include

The low-level networking classes in the System.Net.Sockets namespace, which wrap the Windows Sockets
(Winsock) interface and allow you to create and access TCP channels directly. These classes are the heart of most
peer-to-peer applications.

The networking classes in the System.Net namespace, which allow you to use a request or response access
pattern with a URI over (HTTP).

The higher-level Remoting infrastructure, which allows you to interact with (or create) objects in other application
domains using pluggable channels including TCP and HTTP and formats including binary encoding or SOAP.
These classes can also be used in a peer-to-peer application, with some adaptation.

The higher-level web services infrastructure, which provides fixed services as static class methods. This model is
not suited for peer-to-peer communication, but is useful when creating a discovery service.

In addition, there are several .NET technologies that you'll need to use and understand as part of any peer-to-peer application that
isn't trivially simple. This includes threading, serialization, code access security, and encryption. You'll get a taste of all of these in
this book.

Finally, it's worth mentioning a few third-party tools that you'll see in Part Four of this book.

Windows Messenger is Microsoft's instant-messaging product. There is some published information available on
the Windows Messenger protocol, and even a .NET library that allows you to harness it in your own software. See
Chapter 12 for more information.

Groove is a platform for collaborative applications that manages the synchronization of a shared space. It's not free,
but it's powerful, and Chapter 12 shows how it can help your applications.

Intel provides a free .NET Peer-to-Peer Accelerator Kit, which extends .NET's Remoting infrastructure with support
for security, discovery, and limited firewall traversal. It's still an early product, but it promises to eliminate some of
the connectivity headaches with peer-to-peer on the Web. You'll consider Intel's toolkit in Chapter 13.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
Peer-to-peer applications represent a fundamental shift from most other types of enterprise development and a return to some of
the concepts that shaped the early Internet. They provide the key to collaboration and distributed computing, but require a new
programming model that offers additional complexity and isn't yet built into development platforms such as .NET. You'll explore
some of the new considerations required for peer-to-peer programming and take a closer look at different peer-to-peer models in
the next chapter.

Perhaps the most interesting thing about a peer-to-peer system is that the work it performs is often more than the sum of its parts.
Peers in a peer-to-peer application are a bit like ants in a colony. Each individual peer contributes relatively little at any one
moment, but the sum of the work performed by all peers is surprisingly powerful.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2: Peer-to-Peer Architecture
Before you dive into a full-fledged peer-to-peer application, you need to understand some of the design issues that affect every
peer-to-peer project. These are questions about peer identity, discovery, communication, and interaction. In this chapter, you'll
investigate these issues and dissect different types of peer-to-peer architecture.

You'll notice that this is a fairly short chapter. There's a reason for that. Although peer-to-peer architecture is important, it's often
more helpful to see live examples than volumes of theory. This chapter is only meant to introduce the basics that you need to
understand the peer-to-peer examples developed throughout the book.

Peer-to-Peer Characteristics
One characteristic you won't find in the peer-to-peer world is consistency. The more you learn about different peer-to-peer
applications, the more you'll see the same problems solved in different ways. This is typical of any relatively new programming
model in which different ideas and techniques will compete in the field. In the future, peer-to-peer applications will probably settle
on more common approaches. But even today, most of these techniques incorporate a few core ingredients, which are discussed
in the following sections.

Peer Identity

In a peer-to-peer system, a peer's identity is separated into two pieces: a unique identifier, and a set of information specifying how
to contact the peer. This separation is important—it allows users in a chat application to communicate based on user names, not
IP addresses, and it allows peers to be tracked for a long period of time, even as their connection information changes.

The connectivity information that you need depends on the way you are connecting with the peer, although it typically includes
information such as a port number and IP address. (We'll examine this information in detail in Chapter 7, which explains core
networking concepts.) The peer ID is a little trickier. How can you guarantee that each peer's identifier is unique on a large
network that changes frequently?

There are actually two answers. One approach is to create a central component that stores a master list of user information. This
is the model that chat applications such as Windows Messenger use. In this case, the central database needs to store
authentication information as well, in order to ensure that peers are who they claim to be. It's an effective compromise, but a
departure from pure peer-to-peer programming.

A more flexible approach is to let the application create a peer identifier dynamically. The best choice is to use a globally unique
identifier (GUID). GUIDs are 128-bit integers that are represented in hexadecimal notation (for example, 382c74c3-721d-4f34-
80e5-57657b6cbc27). The range of GUID values is such that a dynamically generated GUID is statistically unique—in other
words, the chance of two randomly generated GUIDs having the same value is so astonishingly small that it can be ignored
entirely.

In .NET, you can create GUIDs using the System.Guid structure. A peer can be associated with a new GUID every time it joins the
network, or a GUID value can be generated once and stored on the peer's local hard drive if you need a more permanent identity.
Best of all, GUIDs aren't limited to identifying peers. They can also track tasks in a distributed-computing application (such as the
one in Chapter 6) or files in a file-sharing application (as shown in Chapter 9). GUIDs can also be used to uniquely identify
messages as they are routed around a decentralized peer-to-peer network, thereby ensuring that duplicate copies of the same
message are ignored.

Regardless of the approach you take, creating a peer-to-peer application involves creating a virtual namespace that maps peers
to some type of peer identifier. Before you begin to code, you need to determine the type of peer identifier and the required peer
connection information.

Peer Discovery

Another challenge in peer-to-peer programming is determining how peers find each other on a network. Because the community
of peers always changes, joining the network is not as straightforward as connecting to a well-known server to launch a client-
server application.

The most common method of peer discovery in .NET applications is to use a central discovery server, which will provide a list of
peers that are currently online. In order for this approach to work, peers must contact the discovery server regularly and update
their connectivity information. If no communication is received from a peer within a set amount of time, the peer is considered to
be no longer active, and the peer record is removed from the server.

When a peer wants to communicate with another peer, it first contacts the discovery server to learn about other active peers. It
might ask for a list of nearby peers, or supply a peer identifier and request the corresponding connectivity information it needs to
connect to the peer. The peer-to-peer examples presented in the second and third part of this book all use some form of
centralized server.

The discovery-server approach is the easiest way to quickly implement are liable peer-to-peer network, but it isn't suitable for all
scenarios. In some cases, there is no fixed server or group of servers that can play the discovery role. In this case, peers need to
use another form of discovery. Some options include

Sending a network broadcast message to find any nearby peers. This technique is limited because broadcast
messages cannot cross routers from one network to another.

Sending a multicast broadcast message to find nearby peers. This technique can cross networks, but it only works
if the network supports multicasting.

Reading a list of super-peers from some location (typically a text file or a web page), and trying to contact them
directly. This requires a fixed location to post the peer information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last approach is not perfect, but it's the one most commonly used in decentralized peer-to-peer applications such as Gnutella.
You'll learn about broadcasting in Chapter 9.

The Server-Mode/Client-Mode Model

Peer to peer applications often play two roles, and act both as a client and server. For example, in a file-sharing application every
interaction is really a client-server interaction in which a client requests a file and a server provides it. The difference with peer-to-
peer applications is every peer can play both roles, usually with the help of threading code that performs each task
simultaneously. This is known as the server-mode/client-mode (SM/CM) model, as shown in Figure 2-1.

Figure 2-1: The server-mode/client-mode model

The dual roles in a file-sharing application are fairly obvious, but there are some types of applications that require more server
work. For example, in a distributed-computing application, a work manager typically divides a task into multiple task segments,
assigns it to a group of workers, and assembles their responses into a final solution. In some respects, this kind of application
doesn't appear to be a true peer-to-peer application at all, because it centralizes functionality in a dedicated server module.
However, you can make this application into more of a peer-to-peer solution by applying the SM/CM model. For example, you
might create a peer that has the ability to request work and perform work for other requesters, as you will in our example in
Chapter 6.

Remember, in a single interaction, the parts of a peer-to-peer system are not equivalent. One peer will take the role of a server,
while the other acts as a client. However, over a longer time frame, each peer has the capability to play different roles.

Network Addressing Challenges

Firewalls and network address translation (NAT) devices are the bane of all peer-to-peer applications and can make it all but
impossible for peers to interact.

Firewalls act as gatekeepers separating the public Internet and an internal network (or individual computer). Firewalls typically
work as a kind of one-way gate, allowing outgoing traffic, but preventing arbitrary outside computers from sending information to a
computer inside the Internet. In some cases, firewalls can be configured to allow or deny connections on specific ports, thereby
authorizing some channels for peer-to-peer communication, although it's becoming increasingly common for firewalls to lock down
almost everything. Further complicating life is NAT, which hides a client's IP address so it's not publicly accessible. The NAT is
intelligent enough to be able to route a response from a server to the original client, but other peers can't communicate with the
hidden computer. Thus, a peer could work in client-mode, but not server-mode, which would cripple the functionality of the
system.

The peer-to-peer working group (http://peer-to-peerwg.org) identifies some of the most common approaches for interacting over a
firewall or NAT. Two basic techniques include

Reversing the connection. If PeerA can't contact PeerB due to a firewall, have PeerA contact PeerC, which will then
notify PeerB. PeerB can then initiate the connection to PeerA. This won't work if both PeerA and PeerB are behind
firewalls.

Using a relay peer. If PeerA and PeerB need to communicate but are separated by a firewall, have them route all
communication through some PeerC that is visible to both. JXTA and Gnutella use variations of this approach.

Coding this sort of low-level networking logic is a chore at best. If you need to create peer-to-peer applications over a wide
network that can tunnel through firewalls, your best choice may be a third-party tool such as the ones we'll explore in Part Four of
this book. Or, you may want to incorporate some centralized components. For example, a typical chat application such as
Windows Messenger avoids firewall problems because all clients connect directly to the server, rather than to each other.
However, some features (for example, file transfer) use direct connections and are consequently not supported by all peers. You
may want to take this approach in your own applications to guarantee basic functionality, while giving peers the option of using
direct connections for some features whenever possible.

Tip You can often tell whether the current computer is behind a NAT by examining its IP address. RFC 1918 spells out
common NAT addresses: 10.0.0.0–10.255.255.255, 172.16.0.0–172.31.255.255,192.168.0.0–192.168.255.255. If your
IP address falls within one of these ranges, you'll be able to create outgoing connections, but won't be able to accept
incoming ones.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Peer-to-Peer Topology
Peer-to-peer applications don't necessarily abolish the central server completely. In fact, there are a variety of peer-to-peer
designs. Some are considered "pure" peer-to-peer, and don't include any central components, while others are hybrid designs.

Peer-to-Peer with a Discovery Server

One of the most common peer-to-peer compromises involves a discovery server, which is a repository that lists all the connected
peers. Often, a discovery server maps user names to peer connectivity information such as an IP address. When users start the
application, they're logged in and added to the registry. After this point, they must periodically contact the discovery server to
confirm that they're logged in and that their connection information hasn't changed.

There is more than one way for peers to use the information in a discovery server. In a simple application, peers may simply
download a list of nearby users and contact them directly with future requests. However, it's also possible that the peer will need
to communicate with a specific user (for example, in the case of a chat application). In this scenario, the discovery server can be
structured to allow peer lookups by name, e-mail address, or some other fixed unique identifier. The peer interaction works like
this:

1. The peer contacts the discovery server with a request to find the contact information for a specific user (for
example, someone@somewhere.com).

2. The discovery server returns the user's IP address and port information.

3. The peer contacts the desired user directly.

This approach is also known as brokered or mediated peer-to-peer because the discovery server plays a central role in facilitating
user interaction.

Note This approach is much easier to scale than a pure peer-to-peer model. Although pure peer-to-peer models can be
made efficient and scalable, the "plumbing" code is significantly more difficult. If you can rely on a discovery server in
your applications, it will greatly simplify most solutions.

Peer-to-Peer with a Coordination Server

Some peer-to-peer applications benefit from a little more help on the server side. These applications combine peer-to-peer
interaction with a central component that not only contains peer lookup information, but also includes some application-specific
logic.

One example is Napster, which uses a central discovery and lookup server. In this system, peers register their available resources
at periodic intervals. If a user needs to find a specific resource, the user queries the lookup server, which will then return a list of
peers that have the desired resource. This helps to reduce network traffic and ensures that the peers don't waste time
communicating if they have nothing to offer each other. The file-transfer itself is still peer-to-peer. This blend of peer-to-peer and
traditional application design can greatly improve performance. By using a centralized server intelligently for a few critical tasks,
network traffic can be reduced dramatically.

One question that arises with this sort of design is exactly how much responsibility the central server should assume. For
example, you might create a messaging application in which communication is routed through the centralized server so that it can
be analyzed or even logged. Similarly, you might design a content-sharing application that caches files on the server. These
designs will add simplicity, but they can also lead to massive server bottlenecks for large peer-to-peer systems. As you'll discover
in this book, a key part of the art of peer-to-peer programming with .NET is choosing the right blend between pure peer-to-peer
design and more traditional enterprise programming.

Pure Peer-to-Peer

A pure peer-to-peer application has no central server of any kind. A typical user only communicates with a small group of nearby
peers. In this scenario, even basic message routing and caching becomes a challenge. Typically, every message is automatically
given several pieces of information, including the following:

A unique GUID

A field that records the "number of hops"—in other words, how many peers have already forwarded this copy of the
message

A setting that determines the maximum number of hops the message will be allowed to live for

The sender's identifier (a GUID), and optionally, its connectivity information

To make a request, a peer creates a new message and sends it to its local group of peers. When a peer receives a message, it
performs the following steps:

1. The peer checks that the message hasn't been recently received (probably by comparing it with a collection that
caches the last 50 messages). If it has been received, the message is discarded.

2. The peer increments the number-of-hops field.

3. The peer checks the number of hops against the maximum number of hops allowed. If the number of hops
exceeds the allowed lifetime, the message is discarded. This helps to prevent the same message from being
continuously rerouted to the same peers over the network.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. The peer forwards the message along to all the peers it knows about in a decentralized system such as
Gnutella. The peers themselves will decide if they can satisfy the request. In a decentralized system such as
Overnet, the peer now examines the message to determine the requested resource and compares that with a
collection of information compiled by other peers. This information will probably be a hashtable that maps
resource names to peers. When it finds a peer that can fulfill the request, it forwards the message to that peer
only.

5. All the peers that have received the message start the same process at step 1.

This branching-out process is shown in Figure 2-2.

Figure 2-2: A pure peer-to-peer search

When a peer is found that can satisfy the request, it sends back a response. Typically, this response is sent back over the network
in the same patch it took to arrive, thereby increasing the likelihood that it will be able to traverse the network. Alternatively, the
peer could attempt to open a direct connection to the requesting peer to notify it that it has the requested resource.

Using this technique, a computer can indirectly contact a large network in a short time. There is no central server, and hence no
single point of failure, and no possibility for out-of-date information. However, there are other drawbacks. The network traffic is
likely to be high and the coding is complicated because each peer needs to maintain two things: a cache of peer-discovery data
(which maps peer identifiers to peer connectivity information) and a cache of recently processed messages (which prevents a
message from being rerouted to peers that have already processed it). It's also possible for some peer groups to become
disconnected from the rest of the network, leading to multiple peer pockets instead of one large global network. This is most
common when the number of peers is small.

One problem with pure peer-to-peer applications is the initial connection to the peer network. To find other peers, the application
can use network-broadcasting techniques (such as IP multicast), but these can exert a significant overhead and won't work in all
network environments. These approaches are most useful in an intranet in which the infrastructure required for multicast is known
to exist.

Another approach is for the peer to use a list of well-known nodes to become connected at startup. This list might be retrieved
from a configuration file (which can be updated every time the application is used successfully), or a fixed location on a network.
An example of a pure peer-to-peer application that uses this approach is Gnutella.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
The challenges that face peer-to-peer applications are far from trivial. Some challenges, such as the connectivity hurdles set in
place by firewalls, proxy servers, and NAT, are quite difficult to overcome (and won't be fully resolved in this book). That said,
hybrid designs, such as those pioneered by Napster and instant-messaging applications, have met with wild popularity, and are
much easier to implement in .NET. In this book, you'll focus on these hybrid designs and consider the design decisions (and the
trade-offs) you'll face when building such a system. This book also looks forward to the future of peer-to-peer and introduces
some of the tools and add-ons that may eventually evolve into a richer peer-to-peer programming framework.

In the next chapter, you'll be introduced to Remoting, which will provide the framework for a peer-to-peer messaging application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part Two: Peer-to-Peer with a Coordination Server
Chapter List

Chapter 3: Remoting Essentials

Chapter 4: Building a Simple Messenger

Chapter 5: Threading the Coordination Server

Chapter 6: Building a Distributed Task Manager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3: Remoting Essentials

Overview
In a peer-to-peer application, clients communicate over a network (or the network of networks, the Internet). You can select the
protocol used for communication and the encoding used for messages. Most other models for distributed applications aren't nearly
as flexible.

One approach for peer-to-peer communication in the .NET world is Remoting, a high-level abstraction that wraps networking code.
Remoting is an attractive choice for communication in a peer-to-peer system because it's flexible, reliable, and easy to configure.
With Remoting, the common language runtime (CLR) takes care of basic infrastructure chores such as releasing unneeded
objects, creating and closing connections, and managing simultaneous requests with a pool of threads. Remoting also has some
limitations—namely, because of the way it's designed, it works better for brokered communication with a coordination server than
for decentralized peer-to-peer applications.

In this chapter, you'll learn all the Remoting basics that you need to create a peer-to-peer application such as the Messenger
program presented in the next two chapters. You'll learn how objects communicate out-of-process, how to serialize data that must
be sent across the network, and how to handle concurrent access. You'll also learn the ins and outs of some trickier aspects of
Remoting, such as bidirectional communication, callbacks and events, and object lifetime. You'll also see why Remoting code is
used differently in a peer-to-peer application than in a typical .NET enterprise system.

But before we begin, it helps to take a broad look at what Remoting is, how it fits into the grand scheme of distributed application
technologies, and what its advantages and shortcomings are.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Inter-Process Communication
Every .NET program consists of one or more threads inside an application domain. Application domains are isolated logical
processes that can't communicate directly. To bridge the gap between more than one application domain, you can use .NET
Remoting.

Remoting is often described as the way that programs communicate with each other in .NET. This description is accurate, but it
ignores the fact that there are literally dozens of different ways for applications to communicate on any platform. Some of the
options for inter-process communication include

Serializing information to a data store that both applications can access (such as a database or a file)

Sending a custom message to a Microsoft Message Queuing queue

Calling an ASP.NET web service with a SOAP message

Creating a connection by directly using .NET's networking support, which provides classes that wrap Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP) channels, or raw sockets

Using an operating system service such as named pipes or COM/DCOM (or see Microsoft Knowledge Base Article
Q95900 for some other legacy choices)

All of these approaches have dramatically different characteristics, and different niches in the programming world. For example,
the first choice (serializing information to a data store) is never workable if you need to provide instantaneous communication. In
order to receive new messages regularly, multiple applications would need to poll the data source continuously, thereby creating
an unbearable burden on your system. I've seen examples of chat applications that rely on this sort of continuous polling and, as a
result, cannot scale beyond a small set of users without crippling the server.

On the other hand, the second option (using a message queue) is extremely scalable because it uses a disconnected message-
based architecture. Every machine has its own queue that it monitors for received messages. To send a message, you simply
need to know the queue name of the recipient. However, this approach is rarely used for peer-to-peer applications because it ties
each client to a specific machine (the one on which the queue exists). It also requires aWindows PC with Microsoft Message
Queuing installed and properly configured. Finally, message queuing only allows one-way "fire-and-forget" communication. To
respond to a message, a new message must be created and sent to the original sender's queue. This means that a complex
interaction (such as querying a computer for a list of files and initiating a download) could require several back-and-forth
messages, thereby increasing the complexity and possibility for error. As a result, it's much more likely to find message queuing at
work in the enterprise world (for example, as the backbone of an internal order processing system).

The third option, web services, excels at no-nonsense cross-platform communication. Unfortunately, it's too feature-limited for a
peer-to-peer application. The problem is that web services are essentially a client-server technology. To use a web service, a
client contacts the web server, makes a request, and waits for a response. There's no way for the server to contact the client at a
later time, and there's no way for multiple clients to interact (unless they too are configured as web servers running ASP.NET and
providing their own web services). Web services are the ticket when you wish to provide server-side functionality to all kinds of
clients. They aren't any help if you want to build a system of equal peers that work together.

The final two options suggest some more useful ways to create a peer-to-peer application. Direct networking in .NET is an
important technique, and you'll look into it in the third part of this book. However, direct networking can be complicated, and it will
dramatically inflate the amount of code you need to write. To simplify your life, you can make use of one of the higher-level
abstractions provided by Microsoft. In the past, this was the quirky technology of COM/DCOM. Today, DCOM is replaced by a
newer and more flexible standard: .NET Remoting.

Introducing Remoting

Remoting is a generic method of inter-process and remote communication in.NET. It allows applications in different processes
and different computers to communicate seamlessly. Like DCOM, Remoting is designed to let you use the objects in another
application in the same way that you use local objects. The heavy lifting takes place behind the scenes and requires little
programmer intervention.

The real strength of Remoting, however, is the fact that it abstracts the way you use remote objects from the way you
communicate with them. When you use Remoting, you have the choice of different activation types, transport protocols,
serialization formats, and object-lifetime policies. You can change these options with a few lines of code or a configuration file, but
the code for using the remote object remains unchanged, and your application stays blissfully unaware of how the communication
takes place.

Remoting Advantages

Remoting is a boon for any sort of distributed application developer. Some of its advantages include the following:

Remoting can be used with different protocols and even in cross-platform projects. Because Remoting supports the
ability to send SOAP-formatted messages, you can bring a Java client into the mix, although it won't be quite as
easy as it is with web services.

Remoting handles state management and object lifetime, ensuring that objects time out when the client isn't using
them (thereby preventing potential memory leaks).

Remoting is extensible. You can create building blocks for other transport channels or formats that will plug in to the
Remoting infrastructure.

Remoting is scalable. Remote requests are handled by a pool of listener threads provided by the CLR. If too many
concurrent requests are sent to the same object, the excess requests will be politely queued and may time out
without damaging the performance of the overall system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When used in conjunction with Internet Information Server (IIS), Remoting allows you to use Secure Sockets Layer
(SSL) security to encrypt messages.

Even though Remoting hides some infrastructure details, it's inherently trickier than programming a local application. You'll need to
perform extra work to make events, custom structures, and object creation work the way you expect with remote objects. You'll
also need to accept some significant trade-offs.

Remoting supports several types of objects, including client-activated, SingleCall, and Singleton objects. For reasons you'll
discover shortly, a peer-to-peer application requires Singleton objects. Singleton objects are, generally speaking, the most
complex types of objects because they need to deal with the reality that multiple clients may use them at once. (In other words, a
single computer in your peer-to-peer system may be simultaneously contacted by several peers, each of which will call methods
on the same object.) In order to handle this possibility, you'll need to introduce threading code at some point, as explained in
Chapter 5.

Remoting Drawbacks

Programming with Remoting means that you're programming at a higher level than with raw sockets and channels. Although this
means you're insulated from a number of costly errors, it can also restrict some of the things that you can do. Here are a few
examples:

Remoting imposes some rules about how objects are exposed. For example, you can't tie objects in the same
application domain to separate channels.

Remoting is inextricably tied up with objects. Clients interact with a remotable object by calling any of its public
methods. Typically, this means you need to create a dedicated Remoting "front end" for any application that
requires remote communication.

Remoting is not designed for on-the-fly configuration. Although it's possible to create an application that dynamically
unregisters Remoting channels and creates new ones, you would need to do more work to implement it. Usually,
Remoting applications are designed with the assumption that it's acceptable to restart the hosting application if the
configuration information changes.

Remoting sends objects in all-or-nothing chunks. If you need to stream large files across the network, this may not
be the best approach. It's for this reason that we'll use a different approach in the third part of this book to build a
file-sharing application.

You have no control of the thread pool used to handle Remoting requests. That means you can't fine-tune details
such as the number of maximum requests.

For the most part, Remoting is a perfect compromise between flexibility and safety. For example, the fact that you can't configure
how the CLR allocates its thread pool is usually a benefit. The CLR handles requests very efficiently, and by performing its work
automatically, it ensures that you won't unwittingly choose an ill-suited setting that would harm the scalability of your system. (It's
for a similar reason that you can't configure how frequently the garbage collector runs or how much memory is initially allocated to
an application.)

The next two chapters will discuss some of these issues in more detail as they develop a messaging application using Remoting.
The remainder of this chapter introduces the basics of the Remoting infrastructure.

Note In this chapter, you'll look at Remoting in terms of objects, and consider how these objects interact across application
domain boundaries. We won't consider how remotable objects are used for communication in a peer-to-peer
application yet—those design decisions will be considered in the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Remoting Architecture
For the purposes of Remoting, you can divide all .NET classes into three types:

Remotable classes. Any class that derives directly or indirectly from MarshalByRefObject automatically gains the
ability to be exposed remotely and invoked by .NET peers in other application domains.

Serializable classes. Any class that is marked with the <Serializable> attribute can be copied across application
boundaries. Serializable types must be used for the parameters or return values of methods in a remotable class.

Ordinary classes. These classes can't be used to send information across application boundaries, and they can't be
invoked remotely. This type of class can still be used in a remotable application, even though it doesn't play a part
in Remoting communication.

Figure 3-1 shows both remotable and serializable types in action. Incidentally, it's possible for a class to be both serializable and
remotable, but it's not recommended. (In this case, you could interact with a remote instance of the object or send a copy of it
across the network.)

Figure 3-1: Remotable and serializable types

Figure 3-1 shows a good conceptual model of what takes place with Remoting, but it omits the work that takes place behind the
scenes. For example, serializable types are not moved, but rather copied by converting them into a stream of bytes. Similarly,
remotable types aren't accessed directly, but through a proxy mechanism provided by the CLR (see Figure 3-2). This is similar to
the way that many high-level distributed technologies work, including web services and COM/DCOM.

Figure 3-2: The Remoting proxy mechanism

With proxy communication, you interact with a remote object by using a local proxy that provides all the same methods. You call a
method on the proxy class in exactly the same way that you would call a method on a local class in your application. Behind the
scenes, the proxy class opens the required networking channel (with the help of the CLR), calls the corresponding method of the
remote object, waits for the response, deserializes any returned information, and then returns it to your code. This entire process
is transparent to your .NET code. The proxy object behaves just like the original object would if it were instantiated locally.

In the next two examples, we'll consider serializable and remotable types in more detail, and show you how to make your own.

Serializable Types

A serializable type is one that .NET can convert to a stream of bytes and reconstruct later, potentially in another application
domain. Serializable classes are a basic feature of .NET programming and are used to persist objects to any type of stream,
including a file. (In this case, you use the methods of the BinaryFormatter in the System.Runtime.Serialization.Formatters.Binary
namespace or the SoapFormatter in the System.Runtime.Serialization.Formatters.Soap namespace to perform manual
serialization.) Serialized classes are also used with Remoting to copy objects from one application domain to another.

All basic .NET types are automatically serializable. That means that you can send integers, floating point numbers, bytes, strings,
and date structures to other .NET clients without worry. Some other serializable types include the following:

Arrays and collection classes (such as the ArrayList). However, the content or the array or collection must also be
serializable. In other words, an array of serializable objects can be serialized, but an array of non-serializable
objects cannot.

The ADO.NET data containers, such as the DataTable, DataRow, and DataSet.

All .NET exceptions. This allows you to fire an exception in a remotable object that an object in another application
domain can catch.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All EventArgs classes. This allows you to fire an event from a remotable object and catch it in another application
domain.

Many, but not all .NET types are serializable. To determine if a given type is serializable, look it up in the class library reference
and check if the type definition is preceded with the <Serializable> attribute.

You can also make your own serializable classes. Here's an example:
<Serializable> _
Public Class Message

 Public Text As String
 Public Sender As String

End Class

A serializable class must follow several rules:

You must indicate to .NET that the class can be serialized by adding the <Serializable> attribute just before the
class declaration.

Every member variable and property must also be serializable. The previous example works because the Message
class encapsulates two strings, and strings are serializable.

If you derive from a parent class, this class must also be serializable.

Both the client and recipient must understand the object. If you try to transmit an unrecognized object, the recipient
will simply end up with a stream of uninterpretable bytes. Similar problems can occur if you change the version of
the object on one end.

Remember, when you send a serializable object you're in fact copying it. Thus, if you send a Message object to another peer,
there will be two copies of the message: one in the application domain of the sender (which will probably be released because it's
no longer important) and one in the application domain of the recipient.

When a class is serialized, every object it references is also serialized. This can lead to transmitting more information than you
realize. For example, consider this revised version of the Message class that stores a reference to a previous message:
<Serializable> _
Public Class Message

 Public Text As String
 Public Sender As String
 Public PreviousMessage As Message
End Class

When serializing this object, the Message referred to by the PreviousMessage member variable is also serialized and transmitted.
If this message refers to a third message, it will also be serialized, and so on. This is a dangerous situation for data integrity
because it can lead to duplicate copies of the same object in the remote application domain.

Finally, if there's any information you don't want to serialize, add the <NonSerialized> attribute just before it. The variable will be
reinitialized to an empty value when the object is copied, as follows:
<Serializable> _
Public Class Message

 Public Text As String
 Public Sender As String
 <NonSerialized> Public PreviousMessage As Message
End Class

This technique is useful if you need to omit information for security reasons (for example, a password), or leave out a reference
that may not be valid in another application domain (for example, file handles).

Tip You may be familiar with web-service serialization. However, the serialization mechanism used in Remoting has little in
common with the one used in web services, even if you're using SOAP-formatted messages. This difference is
necessary because web services place a greater emphasis on cross-platform compatibility and restrict many types that
would have no meaning to non-.NET clients. As a result, there are serializable classes that you use with Remoting that
can't be sent to a web service.

Remotable Types

A remotable type is one that can be accessed from another application domain. Following is an example of a simple remotable
object. It's identical to any other .NET class, except for the fact that it derives from the System.MarshalByRefObject class.
Public Class RemoteObject
 Inherits MarshalByRefObject

 Public Sub ReceiveMessage(ByVal message As Message)
 Console.WriteLine("Received message: " & message.Text)
 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

Every public property, method, and member variable in a remotable class is automatically accessible to any other application. In
the previous example, this means that any .NET application can call RemoteObject.ReceiveMessage(), as long as it knows the
URL where it can find the object. All the ByVal parameters used by ReceiveMessage() must be serializable. ByRef parameters, on
the other hand, must be remotable. (In this case, the ByRef parameter would pass a proxy reference to the original object in the
sender's application domain.)

In this example, RemoteObject represents the complete, viable code for a remote object that writes a message to a console
window. With the aid of configuration files, we'll develop this into a working example.

Tip Like any public method, the ReceiveMessage() method could also be called by another class in the same application.
However, to prevent confusion, it's best to only include methods that are designed exclusively for remote communication
in a MarshalByRefObject.

Remoting Hosts

MarshalByRefObject instances have the ability to be invoked remotely. However, simply creating a MarshalByRefObject doesn't
make it available to other applications. Instead, you need a server application (also called a component host) that listens for
requests, and provides the remotable objects as needed. The component host also determines the URL the client must use to
locate or create the remote object, and configures how the remote object is activated and how long it should live. This information
is generally set in the component host's configuration file. Any executable .NET application can function as a component host,
including a Windows application, console application, or Windows service.

A component host requires very little code because the Remoting infrastructure handles most of the work. For example, if you
place your configuration information into a single file, you can configure and initialize your component host with a single line of
code, as follows:
RemotingConfiguration.Configure(ConfigFileName)

In this case, ConfigFileName is a string that identifies a configuration file that defines the application name, the protocol used to
send messages, and the remote objects that should be made available. We'll consider these settings in the next section.

Once you have called the RemotingConfiguration.Configure() method, the CLR will maintain a pool of threads to listen for
incoming requests, as long as the component host application is running. If it receives a request that requires the creation of a
new remotable object, this object will be created in the component host's application domain. However, these tasks take place on
separate threads. The component host can remain blissfully unaware of them and continue with other tasks, or—more commonly
—remain idle (see Figure 3-3).

Figure 3-3: The component host in an enterprise system

This model is all well and good for a distributed enterprise application, but it's less useful in a peer-to-peer scenario. In an
enterprise application, a component host exposes useful server-side functionality to a client. Typically, each client will create a
separate object, work with it, and then release it. By using Remoting, the object is allowed to execute on the server, where it can
reap a number of benefits including database connection pooling and the use of higher-powered server hardware.

In a peer-to-peer application, however, the component host and the remote component are tied together as one application that
supports remote communication. This means that every peer in a peer-to-peer application consists of a remotable interface that's
exposed to the world and a component host that contains the rest of the application. Figure 3-4 diagrams this approach.

Figure 3-4: The component host in a peer-to-peer system

These two models are dramatically different. Enterprise systems use a stateless approach. Communication is usually initiated by
the client and all functionality is held at the server (much like the client-server model). Peer-to-peer applications use a stateful
model in which independent peers converse through Remoting front-ends.

This difference between enterprise development and peer-to-peer applications becomes evident when you need to choose an
activation type for a remote object. Remotable types can be configured with one of three activation types, depending on the
configuration file settings:

SingleCall. This defines a stateless object that is automatically created at the start of every method invocation and
destroyed at the end. This is similar to how web services work.

Client-activated. This defines a stateful object that is created by the client and lives until its set lifetime expires, as
defined by client usage and configuration settings. Client-activated objects are the most similar to local.NET
objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Singleton. This defines a stateful object that is accessible to the remote client, but has a lifetime controlled by the
server.

Generally, SingleCall objects are perfect for enterprise applications that simply want to expose server resources. They can't be
used in a peer-to-peer application as the basis for bidirectional communication between long-running applications. In a peer-to-
peer application, you need to use the Singleton type, which associates an endpoint with a single object instance. No matter how
many clients connect, there's only ever one remote object created. Or, to put it another way, a Singleton object points to a place
where a specific object exists. SingleCall and client-activated addresses point to a place where a client can create its own instance
of a remotable object. In this book, we'll focus on the Singleton activation type.

There is one other twist to developing with Remoting. In order for another application to call a method on a remote object, it needs
to know some basic information about the object. This information takes the form of .NET metadata. Without it, the CLR can't
verify your remote network calls (checking, for example, that you have supplied the correct number of parameters and the correct
data types). Thus, in order to successfully use Remoting to communicate, you need to distribute the assembly for the remote
object to the client and add a reference to it.

There are some ways of minimizing this inconvenience, either by pre-generating a proxy class or by using interfaces. We'll use the
latter method in the next chapter when we develop a real Remoting example.

Note It may seem counterintuitive that you need to distribute the assembly for remote objects to all clients. This is one of the
quirks of using an object-based model for remote communication (such as Remoting or web services). This problem
won't appear when we use a lower-level networking approach in the third part of this book.

Configuration Files

The configuration files use an XML format to define the channels and ports that should be used for communication, the type of
formatting for messages, and the objects that should be exposed. In addition, they can specify additional information such as a
lifetime policy for remotable objects. Here's the basic framework for a configuration file with Remoting:
<configuration>
 <system.runtime.remoting>
 <application>
 <service>
 <!-- Information about the supported (remotable) objects. -->
 </service>

 <channels>
 <!-- Information about the channels used for communication. -->
 </channels>

 <!-- Optional information about the lifetime policy (tag below). -->
 <lifetime />

 </application>
 </system.runtime.remoting>
</configuration>

You can create this configuration file outside of Visual Studio .NET, provided you place it in the bin directory where the compiled
application will be executed. A simpler approach is to add your configuration file to the Visual Studio .NET project. Simply right-
click on the project in the Solution Explorer and select Add → New Item. Then, choose Application Configuration File under the
Utility node (see Figure 3-5).

Figure 3-5: Adding a configuration file to a project

The application configuration file is automatically given the name app.config. When Visual Studio .NET compiles your project, it
will copy the app.config file to the appropriate directory and give it the full name (the name of the application executable, plus the
.config extension). To see this automatically generated configuration file for yourself, select Project Show All Files from the
menu. Once you compile your project, you'll see the appropriate file appear in the bin directory (see Figure 3-6).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-6: An automatically generated configuration file

Configuration files are required for every application that needs to communicate using Remoting. This includes a component host
and any client that wants to interact with a remote object. The next section shows specific configuration file examples.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Basic Remoting Example
To make all this clear, we'll consider a stripped-down Remoting example. To start, we'll create two console applications: a client
and a server. The client will send a message to the server, which will display it in a console window.

Tip There's a reason we're beginning with a simple console example rather than a Windows Form application. The Console
object is guaranteed to be thread-safe, meaning that there's no possibility for error if multiple clients call the same
remote object at once.With a Windows Form, life isn't always as easy.

We'll also need to create a class library project that contains the remote object. That way, you can easily add a reference to the
remote object from the client. Without this extra step, the client would lack the metadata that tells the CLR how it should verify
method invocations, and communication wouldn't be possible.

If you coded the remote object directly in the server application, you would face the same problem in a different way. Because the
server application is an executable assembly, you can't add a reference to it in your client. It's possible to circumvent this
restriction using interfaces, as you'll see in the next chapter. Without them you must separate the remotable parts of an
application into a separate assembly.

The Remote Object

You can begin by creating the remote object for the server. If you're using Visual Studio .NET, you'll begin by creating a new class
library (DLL) project. This example reuses the RemoteObject class presented earlier, but replaces the custom Message object
with a simple string for simplicity's sake.
Public Class RemoteObject
 Inherits MarshalByRefObject

 Public Sub ReceiveMessage(ByVal message As String)
 Console.WriteLine("Received message: " & message)
 End Sub
End Class

Because this object will be created in the server's application domain, it can use the Console object to display a message. A
similar interaction would be possible if the server were a Windows Form application, but you would need a little extra threading
code to prevent glitches when interacting with user-interface controls. The Console object, however, is always guaranteed to be
thread-safe.

The Server

The server (or component host) is the main console application. If you're using Visual Studio .NET, you'll begin by creating a new
console application. This application registers the Remoting settings defined in the Server.exe.config file, displays a message, and
waits for the user to press Enter, at which point it will end.

Imports System.Runtime.Remoting

Public Module ServerApplication

 Public Sub Main()

 Console.WriteLine("Configuring remotable objects....")
 RemotingConfiguration.Configure("Server.exe.config")

 Console.WriteLine("Waiting for a request.")
 Console.WriteLine("Press any key to exit the application.")

 ' The CLR will monitor for requests as long as this application
 ' is running. When the user presses Enter, it will end.
 Console.ReadLine()

 End Sub

End Module

Tip The name Server.exe.config is used because the application executable file is Server.exe. According to .NET
conventions, settings for an executable application should always be stored in a configuration file that has the same
name as the executable, and adds the .config extension. In some cases, .NET will read and apply these settings
automatically, although this is not the case for Remoting settings (and so it's technically possible to use any file name
you like).

The Server Configuration File

The server configuration file defines the object it will expose and the channel it will open for client requests. Remember, if you're
using Visual Studio .NET, you should always give the application configuration file the name app.config. When Visual Studio .NET
compiles your project, it will copy the app.config file to the appropriate directory, and give it the correct name.

Here's a sample configuration file for a component host:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 <configuration>
2 <system.runtime.remoting>
3 <application name="Server">
4 <service>
5 <wellknown mode="Singleton"
6 type="RemoteLibrary.RemoteObject, RemoteLibrary"
7 objectUri="RemoteObject" />
8 </service>
9 <channels>
10 <channel ref="tcp server" port="8000" />
11 </channels>
12 </application>
13 </system.runtime.remoting>
14 </configuration>

It contains several important pieces of information:

The application is assigned the name "Server" (line 3).

The Singleton mode is used (line 5), ensuring that only a single instance of the object will be created on the server.

The remotable object has the fully qualified class name of RemoteLibrary.RemoteObject (first part of line 6). The
remotable object can be found in the DLL assembly RemoteLibrary.dll (second part of line 6). Both of these pieces
of information must match exactly. Note that the assembly name does not include the extension .dll. This is simply
a matter of convention.

The remoteable object is given the URI "RemoteObject" (line 7). Together with the computer name and port
number, this specifies the URL the client needs to use to access the object.

A TCP/IP server channel is defined on port 8000 (line 10). This channel can receive messages and respond to
them. By default, this channel will use binary encoding for all messages, although you'll see how to tweak this later
on.

In this case, the port number isn't terribly important. The next chapter discusses port numbers in more detail.

Note Ports are generally divided into three groups: well-known ports (0–1023), registered ports (1024–49151), and dynamic
ports (49152–65535). Historically, well-known ports have been used for server-based applications such as web servers
(80), FTP (20), and POP3 mail transfer (110). In your application, you would probably do best to use a registered or
dynamic port that's not frequently used. These are less likely to cause a conflict (although more likely to be blocked by
a firewall). For example, 6346 is most commonly used by Gnutella. For a list of frequently registered ports, refer to the
C:\{WinDir]\System32\Drivers\Etc\Services file, or the http://www.iana.org/assignments/port-numbers site.

The Client

The client is also created as a console application. It performs a continuous loop asking the user for an input string, and only exits
if the user enters the keyword "exit." Every time a message is entered, the client sends this object to the remote application
domain simply by calling the remote object's ReceiveMessage() method.
Imports System.Runtime.Remoting

Public Module ClientApplication

 Public Sub Main()

 Console.WriteLine("Configuring remote objects....")
 RemotingConfiguration.Configure("Client.exe.config")

 Do
 Console.WriteLine()
 Console.WriteLine("Enter the message you would like to send.")
 Console.WriteLine("Or type 'exit' to exit the application.")
 Console.Write(">")
 Dim Message As String = Console.ReadLine()
 If Message.ToUpper() = "EXIT" Then Exit Do

 ' Create the remote object.
 Dim TestObject As New RemoteLibrary.RemoteObject()

 ' Send the message to the remote object.
 TestObject.ReceiveMessage(Message)
 Console.WriteLine()
 Console.WriteLine("Message sent.")
 Loop

 End Sub

End Module

In order for the client to be able to use the RemoteObject class, you must add a reference to the class library assembly that
contains this type.

When the client creates the TestObject, it's actually creating a proxy class that mimics the remote object. When the client calls
TestObject.ReceiveMessage(), the TestObject proxy class makes a call over the network and transmits the information needed to
the real remote object instance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This proxy layer has a couple of other side effects. For example, when the client creates the proxy class, it doesn't create the
server-side object. If the remote object doesn't yet exist, it will be created the first time the ReceiveMessage() method is called.
Similarly, the .NET Framework will not destroy the object if it goes out of scope or if the proxy reference is set to Nothing. Instead,
the remote object behaves according to a specific lifetime lease. In this case, because the lifetime lease has not been explicitly
configured, the default settings will prevail. That means that the object will have an initial lifetime of about five minutes, after which
it will be destroyed if it experiences two minutes of inactivity. Thus, if the client sends multiple messages within a two-minute time
period, it will reuse the same remote object instance, even though the proxy class is re-created with each iteration of the loop.
We'll look at more advanced leasing options later in this chapter.

The Client Configuration File

The client configuration file loosely resembles the server configuration. It defines what channel to use to send communication,
what URL to contact, and what object to communicate with.
1 <configuration>
2 <system.runtime.remoting>
3 <application name="Client">
4 <client>
5 <wellknown url="tcp://localhost:8000/RemoteObject"
6 type="RemoteLibrary.RemoteObject, RemoteLibrary"/>
7 </client>
8 <channels>
9 <channel ref="tcp client"/>
10 </channels>
11 </application>
12 </system.runtime.remoting>
13 </configuration>

The file contains several pieces of information:

The application is assigned the name "Client" (line 3). This designation has no particular significance because the
client will not be contacted by URL.

The URL for the remote object is specified (line 5). This URL consists of the computer name, port, and object URI.
(In this example, the machine name is identified only as "localhost," which is a loopback alias that always points to
the current computer.) The full object URL takes the following form:
 <client url="[Protocol]://[MachineName]:[Port]/[ObjectURI]">

The remotable object has the fully qualified class name of RemoteLibrary.RemoteObject (first part of line 6). The
remotable object can be found in the DLL assembly RemoteLibrary.dll (second part of line 6). Both of these pieces
of information must match exactly. Note that the assembly name does not include the extension .dll. This is simply
a matter of convention.

A TCP/IP client channel is defined without a port number (line 9). This means that .NET will dynamically choose the
most suitable port to open the connection on the client. This port does not need to be hard-coded, because no
other application is trying to contact this client by URL.

The Application in Action

All the parts of this application are provided with the online samples for this chapter, in the OneWayRemoting directory. To test
this solution, you can configure Visual Studio .NET to launch both the client and the server at the same time (just make sure the
server is initialized before you enter any messages in the client). To do so, simply set Visual Studio .NET to launch multiple
projects, as shown in Figure 3-7.

Figure 3-7: Launching multiple projects for debugging

Next, type a message into the client (Figure 3-8). After a brief delay, while the server-side object is created, the message will
appear in the server's console window (Figure 3-9).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-8: Entering a message in the client

Figure 3-9: Receiving the message with the remote object

To confirm that the application is working as expected, you can perform a simple test. Modify the client by omitting the
RemotingConfiguration.Configure() method call. Now, when you create the RemoteObject, a local object will be instantiated in the
client's application domain. When you call the ReceiveMessage() method, the message will be processed in the client's
application domain and will be output in the client's console window.

Clearly, this is a trivial example of Remoting at work. But it gives you an important overview of the following key fundamentals:

Remoting is based on objects. While an experienced network programmer will refer to "sending a message" across
the network (the terminology often used in this book), in Remoting you send this message by invoking a method on
a remote object.

Remote objects are not necessarily tied to the server that hosts them. In fact, if you do want to allow communication
between the remote object and the hosting "container" (as you probably will in a peer-to-peer application), you'll
need to use synchronization code because these parts of the application execute on different threads.

Remoting uses configuration files to register available objects and define the channel that will be used. That makes
it easy to change settings without recompiling. These settings are passed to the Remoting infrastructure provided
by the CLR, which automatically creates channels, opens ports, and provides requested objects as needed without
requiring any additional code.

Remote Object Lifetime

One of the problems with the previous generation of distributed object technology (for example, COM/DCOM) is the fact that it
lacked a reliable way to handle object lifetime. In DCOM, the solution was to use keep-alive pinging messages, which increased
network traffic unnecessarily and allowed greedy clients to keep objects alive indefinitely, wasting server memory. Remoting
introduces a new lease-based system for handling object lifetimes that allows them to be automatically destroyed after a fixed
amount of time (or a fixed period of idleness). You can set lifetime properties in several ways:

The application domain can configure default settings for all the objects it creates by using the <lifetime>
configuration section in its configuration file.

The client using the object can manually retrieve the remote object's lease from the GetLifetimeService() method
(which all MarshalByRefObject instances inherit). The client can then modify the lease settings.

The object itself can override its InitializeLifetimeService() method (which all MarshalByRefObject instances inherit)
and add code to ignore lease settings and configure its own lease properties.

You can implement a custom lease sponsor that monitors an object and determines if its lifetime should be
extended when it expires.

The lifetime leasing system plays a minor role in peer-to-peer programming, in which you typically want an object's network
interface to remain as long as the application domain exists. For that reason, you'll usually want to configure an infinite lease time.
The easiest way is to simply override the InitializeLifetimeService() to return a null reference:
' Ensures that this object will not be prematurely released.
Public Overrides Function InitializeLifetimeService() As Object
 Return Nothing
End Function

This works because it specifies a null reference in the place of the lease object. Alternatively, you could retrieve the ILease object
and modify it to apply new settings, as shown here:
Public Overrides Function InitializeLifetimeService() As Object
 Dim Lease As ILease = MyBase.InitializeLifetimeService()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim Lease As ILease = MyBase.InitializeLifetimeService()
 ' Lease can only be configured if it's in an initial state.
 If Lease.CurrentState = LeaseState.Initial Then
 Lease.InitialLeaseTime = TimeSpan.FromMinutes(10)
 Lease.RenewOnCallTime = TimeSpan.FromMinutes(5)
 End If

 Return Lease

End Function

This will set a lease-lifetime policy in which the object lives at least ten minutes, and is removed after not being used for a five-
minute period. As discussed previously, this technique would rarely be used in a peer-to-peer application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Bidirectional Remoting Example
In the One-Way Remoting example, the client always contacts the server. The server can respond to the client through the
method return value, but once the method call is finished, the client closes the connection and the server can no longer contact
the client. This is not appropriate for a peer-to-peer system, which requires bidirectional communication.

In order to support bidirectional communication, the client must meet three criteria:

It must provide a remotable type (a class that derives from MarshalByRefObject) that the server can call.

It must open a bidirectional Remoting channel, which it will use to listen for calls initiated from the server.

There must be some way to transfer the received information from the remotable client type to the main client
application. This can be accomplished in a loosely coupled way by using a local event.

Once these criteria are met, there are several choices for the actual method of communication:

The server can fire an event, which will be delivered by Remoting to the client's remotable object.

The client can create a delegate that points to one of the methods in its remotable object, and then submit this
delegate to the server. The server can then trigger the method by invoking the delegate.

The client can create a reference to its local remotable object and pass this reference to the server. The server can
then call a method on the local object directly. Alternatively, you could pass the reference as an interface
implemented by the remotable object. In either case, the server must know enough about the remotable client
object or its interface to be able to call one of its methods.

The first option—using events—requires the least amount of work. Multiple clients can attach event handlers to the same event,
and the server doesn't need to worry about who is being contacted when it fires the event. The only consideration is making sure
that the EventArgs object is serializable, so that it can leap across application domain boundaries. However, the event-based
approach is less practical because it doesn't allow the flexibility for the server to call a specific client. It can also lead to problems if
clients disconnect from the network without unregistering their event handlers properly.

The delegate or interface approaches are more flexible. In both cases, the server is in charge of tracking clients (typically by using
some sort of collection object), and removing them from the collection when they can no longer be contacted. The instant-
messaging example in the next chapter uses an interface-based approach.

The following example uses a similar, yet slightly different approach: a delegate that both the server and client recognize. This
project can be found in the TwoWayRemoting directory with the samples for this chapter. This example uses a Windows client.
The server (component host) is unchanged.

The Remote Objects

The first step is to modify the server-side remotable object so that it will attempt to contact the client after a short delay through a
callback. It works like this:

1. The client calls a method in the remote object.

2. The method sets up a timer and returns.

3. When the timer ticks, a new message is sent to the client. This requires opening a new connection because the
original connection has been closed. This time, the server is acting as a client because it's opening the
connection.

Here's the code for our simple example:

Public Delegate Sub ConfirmationCallback(ByVal message As String)

Public Class RemoteObject

 Inherits MarshalByRefObject

 Private WithEvents tmrCallback As New System.Timers.Timer()
 Private Callback As ConfirmationCallback
 Private Message As String

 Public Sub ReceiveMessage(ByVal message As String, _
 ByVal callback As ConfirmationCallback)
 Me.Callback = callback
 Me.Message = "Received message: " & message
 tmrCallback.Interval = 5000
 tmrCallback.Start()
 End Sub

 Private Sub tmrCallback_Elapsed(ByVal sender As System.Object, _
 ByVal e As System.Timers.ElapsedEventArgs) _
 Handles tmrCallback.Elapsed
 tmrCallback.Stop()
 Callback.Invoke(Message)
 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

Note This simple design isn't suitable for a system that experiences multiple calls in close succession because the
ConfirmationCallback and Message values will be overwritten with each new call. Don't worry too much about this
limitation now—the next two chapters will explore these limitations in detail and resolve them.

The RemoteLibrary project also contains the remotable portion of the client, which is a dedicated listener object. This object is
created in the client's application domain for the sole purpose of receiving the callback. It raises a local event so the client
application can become notified of the callback. This is a common pattern in peer-to-peer systems with Remoting, and you'll see it
again in the next chapter.

Public Class Listener

 Inherits MarshalByRefObject

 Public Event CallbackReceived(ByVal sender As Object, _
 ByVal e As MessageEventArgs)

 Public Sub ConfirmationCallback(ByVal message As String)
 RaiseEvent CallbackReceived(Me, New MessageEventArgs(message))
 End Sub

 ' Ensures that this object will not be prematurely released.
 Public Overrides Function InitializeLifetimeService() As Object
 Return Nothing
 End Function

End Class

Public Class MessageEventArgs
 Inherits EventArgs

 Public Message As String

 Public Sub New(ByVal message As String)
 Me.Message = message
 End Sub

End Class

The Configuration Files

The configuration files require only a single change from the previous example. In the simple One-Way Remoting example, the
client declared a client-only channel (TCP client), while the server declared a server-only channel (TCP server). To remedy this
design, you must configure a bidirectional channel that can create new outgoing connections and receive incoming connections.

The changed line looks like this in the server:
<channel ref="tcp" port="8000" />

The client configuration file requires a similar change. It doesn't define a port number because the .NET Framework will
dynamically choose the first available dynamic port.
<channel ref="tcp"/>

The Client

The client is modeled after the One-Way Remoting example. It allows any message to be dispatched to the client. The message is
then returned through a callback and handled in a local event, which displays the message box shown in Figure 3-10.

Figure 3-10: Receiving a callback at the client

The client code is encapsulated in a single form, as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Imports System.Runtime.Remoting

Public Class Client
 Inherits System.Windows.Forms.Form

 ' Create the local remotable object that can receive the callback.
 Private ListenerObject As New RemoteLibrary.Listener()

 ' Create the remote object.
 Private TestObject As New RemoteLibrary.RemoteObject()

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 RemotingConfiguration.Configure("Client.exe.config")

 End Sub

 Private Sub cmdSend_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdSend.Click

 ' Create the delegate that points to the client object.
 Dim Callback As New RemoteLibrary.ConfirmationCallback(_
 AddressOf ListenerObject.ConfirmationCallback)
 ' Connect the event handler to the local listener class.
 AddHandler ListenerObject.CallbackReceived, _
 AddressOf ListenerObject_CallbackReceived

 ' Send the message to the remote object.
 TestObject.ReceiveMessage(txtMessage.Text, Callback)

 End Sub

 Private Sub ListenerObject_CallbackReceived(ByVal sender As Object, _
 ByVal e As RemoteLibrary.MessageEventArgs)

 MessageBox.Show(e.Message)

 End Sub

End Class

Note You might assume that server callbacks and events work using the channel established by the client. However, due to
the way that Remoting works, this isn't possible. Instead, the server opens a new channel to deliver its message, which
has significant implications if the client is behind a firewall or network address translation (NAT) device. Ingo Rammer
has created a proof-of-concept bidirectional TCP channel that solves this issue and allows the server to use the client-
created channel (it's available at http://www.dotnetremoting.cc/projects/modules/BidirectionalTcpChannel.asp).
Unfortunately, this sample isn't yet ready for a production environment. Your best bet may be to wait for future .NET
platform releases, since Microsoft Remoting architects are actively considering this issue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Configuring Remoting
Remoting uses a multilayered architecture that allows developers to "snap-in" custom modules for different types of formatting,
different communication channels, or additional services (such as logging or encryption). In many cases, this layered design
means that you can switch the entire communication protocol of an application simply by modifying a single setting in the XML
configuration file. This is a unique advantage of Remoting, and none of the lower-level approaches considered later in this book
can provide anything like it.

The Remoting model shown in Figure 2-2 simplifies a few details and collapses the Remoting infrastructure down to a single layer.
In reality, a Remoting call is routed through several channel sinks in a set order, each of which performs an important task. By
default, the first channel sink is the formatter, which encodes the message in SOAP or binary representation. The final channel
sink is always the transport channel, which routes the message using the appropriate transport protocol. This model is
diagrammed in Figure 3-11.

Figure 3-11: The many layers of Remoting

Formatters and Channels

The examples so far have used TCP communication and binary encoding. This is generally the most performance-optimal form of
communication, although it can run into trouble in an Internet scenario, particularly when a firewall is involved. Firewalls are often
configured to reject incoming TCP connections.

To switch to a more Internet-friendly HTTP channel, simply replace this line in the configuration file:
<channel ref="tcp"/>

with this one:
<channel ref="http"/>

You'll need to perform this change for both the client and server. An error will occur if the two parts of the system try to
communicate using different formatters or protocols.

As with the TCP channel, there are three versions of the HTTP channel that you can use: http client, http server, and bidirectional
http. These are all aliases to specific channel classes that are defined in your computer's machine.config file:
<channels>
 <channel id="http"
 type="System.Runtime.Remoting.Channels.Http.HttpChannel,
 System.Runtime.Remoting, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089"/>
 <channel id="http client"
 type="System.Runtime.Remoting.Channels.Http.HttpClientChannel,
 System.Runtime.Remoting, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089"/>
 <channel id="http server"
 type="System.Runtime.Remoting.Channels.Http.HttpServerChannel,
 System.Runtime.Remoting, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089"/>
 <channel id="tcp"
 type="System.Runtime.Remoting.Channels.Tcp.TcpChannel,
 System.Runtime.Remoting, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089"/>
 <channel id="tcp client"
 type="System.Runtime.Remoting.Channels.Tcp.TcpClientChannel,
 System.Runtime.Remoting, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089"/>
 <channel id="tcp server"
 type="System.Runtime.Remoting.Channels.Tcp.TcpServerChannel,
 System.Runtime.Remoting, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089"/>
</channels>

You'll also need to change the URL used to request the object over the HTTP channel, by replacing the "tcp" prefix with "http," as
shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<wellknown url="http://localhost:8000/RemoteObject"
 type="RemoteLibrary.RemoteObject, RemoteLibrary"/>

The port number can be used in the same manner. Any available port can be used for TCP or HTTP communication.

By default, the TCP channel uses binary encoding. The HTTP channel, on the other hand, always defaults to SOAP (XML-based
text) communication. These defaults can be changed. For example, you could use binary communication over an HTTP channel
to allow .NET programs to communicate efficiently over the Internet and through a firewall. This would reduce the size of the
message because binary encoding is much more compact than XML encoding, but it wouldn't sacrifice any of the connectivity.
Similarly, you could use SOAP over a TCP channel. This is an unlikely choice, but might have some uses if you were creating a
Remoting client using a non-.NET language such as Java.

In order to specify a formatter other than the default, you must add a <serverProviders> tag inside the <channel> tag, and a
<formatter> tag inside the <serverProviders> tag. You then set the ref attribute of the <formatter> tag to "soap" or "binary." You
must repeat this on both the client and server configuration file.

Here's a sample configuration file that combines HTTP transport with .NET's proprietary binary encoding:
<configuration>
 <system.runtime.remoting>
 <application name="Server">
 <service>
 <wellknown mode="Singleton"
 type="RemoteLibrary.RemoteObject, RemoteLibrary"
 objectUri="RemoteObject" />
 </service>

 <channels>
 <channel ref="http server" port="8080" >
 <serverProviders>
 <formatter ref="binary" >
 </serverProviders>
 </channel>
 </channels>

 </application>
</system.runtime.remoting>

Dynamic Registration

The last topic this chapter considers is dynamic registration with Remoting. In the examples presented so far, all the Remoting
settings have been centralized in a configuration file. The server defines the channel type and registers an available object in one
step, using the RemotingConfiguration.Configure() method.

However, it's also possible to perform these tasks exclusively through .NET code. The disadvantage of this approach is that it
intermingles configuration details with the application code, and it may force you to recompile your code when you change the
distribution of your system. However, dynamic registration also has a number of advantages:

It allows you to read and apply configuration information from another source, such as a database or a web service.

It allows you to change the objects that are available or the channels that are used during the lifetime of your
application.

It allows you to make a conditional decision about what channels to use and which objects to expose.

It allows you to use interface-based programming, as shown in the next chapter.

Dynamic registration is easy. All you need to do is create at least one instance of one of the HTTP or TCP channel classes,
register it using the shared ChannelServices.RegisterChannel() method, and register an object type that you want to make
available using the shared RemotingConfiguration. RegisterWellKnownServiceType() method. This method also allows you to
specify the activation type of the object.
RemotingConfiguration.ApplicationName = "Server"

' Define the channel.
Dim Channel As New TcpServerChannel(8000)

' Register the channel.
ChannelServices.RegisterChannel(Channel)

' Register the remote object type.
RemotingConfiguration.RegisterWellKnownServiceType(_
 GetType(RemoteLibrary.RemoteObject), _
 "RemoteLibrary.RemoteObject", _
 WellKnownObjectMode.Singleton)

The process on the client is much the same. The only difference is that you use the RegisterWellKnownServiceType() method,
instead of the RegisterWellKnownClientType() method.
RemotingConfiguration.RegisterWellKnownClientType(_
 GetType(RemoteLibrary.RemoteObject), _
 "tcp://localhost:8000/RemoteObject ")

Note The channel classes are located in three namespaces: System.Runtime.Remoting.Channels,
System.Runtime.Remoting.Channels.Tcp, and System.Runtime.Remoting.Channels.Http. Depending on the type of
channel class you need to create, you'll have to import some of these name-spaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
In this chapter you've been presented with a condensed (but thorough) primer on Remoting. While Remoting is extremely flexible,
most of its assumptions are tailored to stateless enterprise applications that are squarely focused on a small group of powerful
server computers. To use Remoting in a peer-to-peer application is an entirely different matter. It will force you to master
threading, understand SingleCall activation, and use a central coordinator component. The rewards are a flexible, extensible
system that saves you from building key parts of the peer-to-peer infrastructure from scratch.

Depending on your needs, you may even want to extend and customize the Remoting infrastructure. In this case, you'll probably
want to consult a dedicated book about Remoting, such as Ingo Rammer's Advanced .NET Remoting (Apress 2002). In the final
part of this book, you'll look at one example of a component that extends Remoting with features that are ideal for the peer-to-peer
domain: the Intel Peer-to-Peer Accelerator Kit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4: Building a Simple Messenger

Overview
The last chapter conducted a whirlwind tour of Remoting, .NET's object-based model for communication between applications and
across a network. Remoting is a surprisingly flexible technology. By default, it's tailored for traditional enterprise computing, in
which all the work is performed by a central group of powerful server computers. But with a little more effort, you can use
Remoting as the basis for a peer-to-peer system that uses brokered communication. In this chapter, we'll explore one such
example with an instant-messaging application that relies on a central coordinator. Along the way, you'll learn the advantages and
drawbacks involved with using Remoting in a peer-to-peer project.

Though Remoting is fairly easy to use, there can be a fair bit of subtlety involved in using it correctly. In the example presented in
this chapter, it's easy to ignore threading and concurrency problems, scalability considerations, and security. These details are
explored in more detail in the next chapter. In this chapter, however, we'll concentrate on creating a basic, reliable framework for a
messaging application based on Remoting.

Because the code is quite lengthy, it won't be presented in this chapter all at once. Instead, it's broken down and dissected in
detail throughout the chapter. But before we consider a single line of code, we need to plan the overall architecture of the system,
which we'll call Talk .NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Envisioning Talk .NET
Every Internet user is familiar with the basic model for an instant-messaging application. Users log on to some sort of central
authority, retrieve a list that indicates who else is currently online, and exchange simple text messages. Some messaging
platforms include additional enhancements, such as file-transfer features and group conversations that can include more than two
parties.

All current-day instant-messaging applications rely on some sort of central component that stores a list of who is currently online
as well as the information needed to contact them. Depending on the way the system is set up, peers may retrieve this information
and contact a chosen user directly, or they may route all activity through the central coordinator. This chapter will consider both
alternatives. We'll use the central coordinator approach first.

Conceptually, there are two types of applications in Talk .NET: the single server and the clients (or peers). Both applications must
be divided into two parts: a remotable MarshalByRefObject that's exposed to the rest of the world and used for communication
over the network, and a private portion, which manages the user interface and local user interaction. The server runs continuously
at a fixed, well-known location, while the clients are free to appear and disappear on the network. Figure 4-1 diagrams these
components.

Figure 4-1: Components of the Talk .NET system

In order for the server to contact the client, the client must maintain an open bidirectional channel. When a message arrives, the
server notifies the client. This notification can take place in several ways—it might use a callback or event, or the server could just
call a method on the client object or interface, which is the approach taken in Talk .NET. Communication between these
components uses TCP channels and binary formatting in our example, although these details are easy enough to change through
the configuration files.

One of the most important aspects of the Talk .NET design is the fact that it uses interfaces to manage the communication
process. Interfaces help to standardize how any two objects interact in a distributed system. Talk .NET includes two interfaces:
ITalkServer, which defines the methods that a client can call on the server, and ITalkClient, which defines the methods that the
server (or another client) can call on a client. Before actually writing the code for the Talk .NET components, we'll define the
functionality by creating these interfaces.

Note You can examine the full code for Talk .NET with the online samples for this chapter. There are a total of four projects
that make up this solution; each is contained in a separate directory under the Talk .NET directory.

Defining the Interfaces

The first step in creating the system is to lock down the methods that will be used for communication between the server and
client components. These interfaces must be created in a separate DLL assembly so that they can be used by both the TalkClient
and TalkServer applications. In the sample code, this class library project is called TalkComponent. It contains the following code:
Public Interface ITalkServer

 ' These methods allow users to be registered and unregistered
 ' with the server.
 Sub AddUser(ByVal [alias] As String, ByVal callback As ITalkClient)
 Sub RemoveUser(ByVal [alias] As String)

 ' This returns a collection of user names that are currently logged in.
 Function GetUsers() As ICollection

 ' The client calls this to send a message to the server.
 Sub SendMessage(ByVal senderAlias As String, _
 ByVal recipientAlias As String, ByVal message As String)

End Interface

Public Interface ITalkClient

 ' The server calls this to forward a message to the appropriate client.
 Sub ReceiveMessage(ByVal message As String, ByVal senderAlias As String)

End Interface

' This delegate is primarily for convenience on some server-side code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

' This delegate is primarily for convenience on some server-side code.
Public Delegate Sub ReceiveMessageCallback(ByVal message As String, _
 ByVal senderAlias As String)

Tip Remember to consider security when designing the interfaces. The interfaces define the methods that will be exposed
publicly to other application domains. Don't include any methods that you don't want a user at another computer to be
able to trigger.

ITalkServer defines the basic AddUser() and RemoveUser() methods for registering and unregistering users. It also provides a
GetUsers() method that allows peers to retrieve a complete list of online users, and a SendMessage() method that actually routes
a message from one peer to another. When SendMessage()is invoked, the server calls the ReceiveMessage() method of the
ITalkClient interface to deliver the information to the appropriate peer.

Finally, the ReceiveMessageCallback delegate represents the method signature for the ITalkClient.ReceiveMessage() method.
Strictly speaking, this detail isn't required. However, it makes it easier for the server to call the client asynchronously, as you'll see
later.

One design decision has already been made in creating the interfaces. The information that's being transferred—the sender's
user name and the message text—is represented by separate method parameters. Another approach would be to create a
custom serializable Message object, which would be added to the TalkComponent project. Both approaches are perfectly
reasonable.

Creating the TraceComponent

In Figure 4-1, both the client and the server are depicted as Windows applications. For the client, this design decision makes
sense. For the server, however, it's less appropriate because it makes the design less flexible. For example, it might make more
sense to implement the server component as a Windows service instead of a stand-alone application (as demonstrated in the next
chapter).

A more loosely coupled option is possible. The server doesn't need to include any user-interface code. Instead, it can output
messages to another source, such as the Windows event log. The Talk .NET server will actually output diagnostic messages
using tracing code. These messages can then be dealt with in a variety of ways. They can be captured and recorded in a file, sent
to an event log, shown in a console window, and so on. In the Talk .NET system, these messages will be caught by a custom
trace listener, which will then display the trace messages in aWindows form. This approach is useful, flexible, and simple to code.

In .NET, any class can intercept, trace, and debug messages, provided it inherits from TraceListener in the System.Diagnostics
namespace. This abstract class is the basis for DefaultTraceListener (which echoes messages to the Visual Studio .NET
debugger), TextWriterTraceListener (which sends messages to a TextWriter or Stream, including a FileStream) and
EventLogTraceListener (which records messages in the Windows event log).

All custom trace listeners work by overriding the Write() and WriteLine() methods. The entire process works like this:
1. The program calls a method such as Debug.Write() or Trace.Write().

2. The common language runtime (CLR) iterates through the current collection of debug listeners
(Debug.Listeners) or trace listeners (Trace.Listeners).

3. Each time it finds a listener object, it calls its Write() or WriteLine() method with the message.

The solution used in this example creates a generic listener that forwards trace messages to a form, which then handles them
appropriately. This arrangement is diagrammed in Figure 4-2.

Figure 4-2: Forwarding trace messages to a form

The following is the outline for a FormTraceListener. This class is implemented in a separate class library project named
TraceComponent.
' The form listener is a TraceListener object that
' maps trace messages to an ITraceForm instance, which
' will then display them in a window.
Public Class FormTraceListener
 Inherits TraceListener

 Public TraceForm As ITraceForm

 ' Use the default trace form.
 Public Sub New()
 MyBase.New()
 Me.TraceForm = New SimpleTraceForm()
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub
 ' Use a custom trace form.
 Public Sub New(ByVal traceForm As ITraceForm)
 MyBase.New()

 If Not TypeOf traceForm Is Form Then
 Throw New InvalidCastException(_
 "ITraceForm must be used on a Form instance.")
 End If

 Me.TraceForm = traceForm
 End Sub

 Public Overloads Overrides Sub Write(ByVal value As String)
 TraceForm.LogToForm(value)
 End Sub

 Public Overloads Overrides Sub WriteLine(ByVal message As String)
 ' WriteLine() and Write() are equivalent in this simple example.
 Me.Write(message)

 End Sub

End Class

The FormTraceListener can send messages to any form that implements an ITraceForm interface, as shown here:
' Any custom form can be a "trace form" as long as it
' implements this interface.
Public Interface ITraceForm

 ' Determines how trace messages will be displayed.
 Sub LogToForm(ByVal message As String)

End Interface

Finally, the TraceComponent assembly also includes a sample form that can be used for debugging. It simply displays received
messages in a list box and automatically scrolls to the end of the list each time a message is received.
Public Class SimpleTraceForm
 Inherits System.Windows.Forms.Form
 Implements ITraceForm

 ' (Designer code omitted.)
 Public Sub LogToForm(ByVal message As String) Implements ITraceForm.LogToForm
 ' Add the log message.
 lstMessages.Items.Add(message)

 ' Scroll to the bottom of the list.
 lstMessages.SelectedIndex = lstMessages.Items.Count - 1
 End Sub

End Class

This approach is useful for the Talk .NET server, but because it's implemented as a separate component, it can easily be reused
in other projects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Coordination Server
Now that we've defined the basic building blocks for the Talk .NET system, it's time to move ahead and build the server. The
TalkServer application has the task of tracking clients and routing messages from one user to another. The core of the application
is implemented in the remotable ServerProcess class, which is provided to clients as a Singleton object. A separate module,
called Startup, is used to start the TalkServer application. It initializes the Remoting configuration settings, creates and initializes
an instance of the FormTraceListener, and displays the trace form modally. When the trace form is closed, the application ends,
and the ServerProcess object is destroyed.

The startup code is shown here:
Imports System.Runtime.Remoting

Public Module Startup

 Public Sub Main()
 ' Create the server-side form (which displays diagnostic information).
 ' This form is implemented as a diagnostic logger.
 Dim frmLog As New TraceComponent.FormTraceListener()
 Trace.Listeners.Add(frmLog)

 ' Configure the connection and register the well-known object
 ' (ServerProcess), which will accept client requests.
 RemotingConfiguration.Configure("TalkServer.exe.config")
 ' From this point on, messages can be received by the ServerProcess
 ' object. The object will be created for the first request,
 ' although you could create it explicitly if desired.

 ' Show the trace listener form. By using ShowDialog(), we set up a
 ' message loop on this thread. The application will automatically end
 ' when the form is closed.
 Dim frm As Form = frmLog.TraceForm
 frm.Text = "Talk .NET Server (Trace Display)"
 frm.ShowDialog()
 End Sub

End Module

When you start the server, the ServerProcess Singleton object isn't created. Instead, it's created the first time a client invokes one
of its methods. This will typically mean that the first application request will experience a slight delay, while the Singleton object is
created.

The server configuration file is shown here. It includes three lines that are required if you want to run the Talk .NET applications
under .NET 1.1 (the version of .NET included with Visual Studio .NET 2003). These lines enable full serialization, which allows the
TalkServer to use the ITalkClient reference. If you are using .NET 1.0, these lines must remain commented out, because they will
not be recognized. .NET 1.0 uses a slightly looser security model and allows full serialization support by default.
<configuration>
 <system.runtime.remoting>
 <application name="TalkNET">
 <service>
 <wellknown
 mode="Singleton"
 type="TalkServer.ServerProcess, TalkServer"
 objectUri="TalkServer" />
 </service>
 <channels>
 <channel port="8000" ref="tcp" >
 <!-- If you are using .NET 1.1, uncomment the lines below. -->
 <!--
 <serverProviders>
 <formatter ref="binary" typeFilterLevel="Full" />
 </serverProviders>
 -->
 </channel>
 </channels>
 </application>
 </system.runtime.remoting>
</configuration>

Most of the code for the ServerProcess class is contained in the methods implemented from the ITalkServer interface. The basic
outline is shown here:
Public Class ServerProcess
 Inherits MarshalByRefObject
 Implements ITalkServer

 ' Tracks all the user aliases, and the "network pointer" needed
 ' to communicate with them.
 Private ActiveUsers As New Hashtable()

 Public Sub AddUser(ByVal [alias] As String, ByVal client As ITalkClient) _
 Implements TalkComponent.ITalkServer.AddUser
 ' (Code omitted.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' (Code omitted.)
 End Sub

 Public Sub RemoveUser(ByVal [alias] As String) _
 Implements TalkComponent.ITalkServer.RemoveUser
 ' (Code omitted.)
 End Sub

 Public Function GetUsers() As System.Collections.ICollection _
 Implements TalkComponent.ITalkServer.GetUsers
 ' (Code omitted.)
 End Function

 <System.Runtime.Remoting.Messaging.OneWay()> _
 Public Sub SendMessage(ByVal senderAlias As String, _
 ByVal recipientAlias As String, ByVal message As String) _
 Implements TalkComponent.ITalkServer.SendMessage
 ' (Code omitted.)
 End Sub

End Class

You'll see each method in more detail in the next few sections.

Tracking Clients

The Talk .NET server tracks clients using a Hashtable collection. The Hashtable provides several benefits compared to arrays or
other types of collections:

The Hashtable is a key/value collection (unlike some collections, which do not require keys). This allows you to
associate two pieces of information: the user name and a network reference to the client.

The Hashtable is optimized for quick key-based lookup. This is ideal, because users send messages based on the
user's name. The server can speedily retrieve the client's location information.

The Hashtable allows easy synchronization for thread-safe programming. We'll look at these features in the next
chapter.

The collection stores ITalkClient references, indexed by user name. Technically, the ITalkClient reference really represents an
instance of the System.Runtime.Remoting.ObjRef class. This class is a kind of network pointer—it contains all the information
needed to generate a proxy object to communicate with the client, including the client channel, the object type, and the computer
name. This ObjRef can be passed around the network, thus allowing any other user to locate and communicate with the client.

Following are the three collection-related methods that manage user registration. They're provided by the server.
Public Sub AddUser(ByVal [alias] As String, ByVal client As ITalkClient) _
 Implements TalkComponent.ITalkServer.AddUser
 Trace.Write("Added user '" & [alias] & "'")
 ActiveUsers([alias]) = client
End Sub

Public Sub RemoveUser(ByVal [alias] As String) _
 Implements TalkComponent.ITalkServer.RemoveUser
 Trace.Write("Removed user '" & [alias] & "'")
 ActiveUsers.Remove([alias])
End Sub

Public Function GetUsers() As System.Collections.ICollection _
 Implements TalkComponent.ITalkServer.GetUsers
 Return ActiveUsers.Keys
End Function

The AddUser() method doesn't check for duplicates. If the specified user name doesn't exist, a new entry is created. Otherwise,
any entry with the same key is overwritten. The next chapter introduces some other ways to handle this behavior, but in a
production application, you would probably want to authenticate users against a database with password information. This allows
you to ensure that each user has a unique user name. If a user were to log in twice in a row, only the most recent connection
information would be retained.

Note that only one part of the collection is returned to the client through the GetUsers() method: the user names. This prevents a
malicious client from using the connection information to launch attacks against the peers on the system. Of course, this approach
isn't possible in a decentralized peer-to-peer situation (wherein peers need to interact directly), but in this case, it's a realistic level
of protection to add.

Sending Messages

The process of sending a message requires slightly more work. The server performs most of the heavy lifting in the
SendMessage() method, which looks up the appropriate client and invokes its ReceiveMessage() method to deliver the message.
If the recipient cannot be found (probably because the client has recently disconnected from the network), an error message is
sent to the message sender by invoking its ReceiveMessage() method. If neither client can be found, the problem is harmlessly
ignored.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub SendMessage(ByVal senderAlias As String, _
 ByVal recipientAlias As String, ByVal message As String) _
 Implements TalkComponent.ITalkServer.SendMessage

 ' Deliver the message.
 Dim Recipient As ITalkClient
 If ActiveUsers.ContainsKey(recipientAlias) Then
 Trace.Write("Recipient '" & recipientAlias & "' found")
 Recipient = CType(ActiveUsers(recipientAlias), ITalkClient)
 Else
 ' User wasn't found. Try to find the sender.
 If ActiveUsers.ContainsKey(senderAlias) Then
 Trace.Write("Recipient '" & recipientAlias & "' not found")
 Recipient = CType(ActiveUsers(senderAlias), ITalkClient)
 message = "'" & message & "' could not be delivered."
 senderAlias = "Talk .NET"
 Else
 Trace.Write("Recipient '" & recipientAlias & "' and sender '" & _
 senderAlias & "' not found")
 ' Both sender and recipient weren't found.
 ' Ignore this message.
 End If
 End If

 Trace.Write("Delivering message to '" & recipientAlias & "' from '" & _
 senderAlias & "'")
 If Not Recipient Is Nothing Then
 Dim callback As New ReceiveMessageCallback(_
 AddressOf Recipient.ReceiveMessage)
 callback.BeginInvoke(message, senderAlias, Nothing, Nothing)
 End If

End Sub

You'll see that the server doesn't directly call the ClientProcess.ReceiveMessage() method because this would stall the thread and
prevent it from continuing other tasks. Instead, it makes the call on a new thread by using the BeginInvoke() method provided by
all delegates. It's possible to use a server-side callback to determine when this call completes, but in this case, it's not necessary.

This completes the basic framework for the TalkServer application. The next step is to build a client that can work with the server
to send instant messages around the network.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The TalkClient
The client portion of Talk .NET is called TalkClient. It's designed as a Windows application (much like Microsoft's Windows
Messenger). It has exactly two responsibilities: to allow the user to send a message to any other online user and to display a log of
sent and received messages.

When the TalkClient application first loads, it executes a startup procedure, which presents a login form and requests the name of
the user that it should register. If one isn't provided, the application terminates. Otherwise, it continues by taking two steps:

It creates an instance of the ClientProcess class and supplies the user name. The ClientProcess class mediates all
communication between the remote server and the client user interface.

It creates and shows the main chat form, named Talk, around which most of the application revolves.

The startup code is shown here:
Public Class Startup

 Public Shared Sub Main()
 ' Create the login window (which retrieves the user identifier).
 Dim frmLogin As New Login()

 ' Only continue if the user successfully exits by clicking OK
 ' (not the Cancel or Exit button).
 If frmLogin.ShowDialog() = DialogResult.OK Then
 ' Create the new remotable client object.
 Dim Client As New ClientProcess(frmLogin.UserName)

 ' Create the client form.
 Dim frm As New Talk()
 frm.TalkClient = Client

 ' Show the form.
 frm.ShowDialog()
 End If
 End Sub

End Class

On startup, the ClientProcess object registers the user with the coordination server. Because ClientProcess is a remotable type, it
will remain accessible to the server for callbacks throughout the lifetime of the application. These call-backs will, in turn, be raised
to the user interface through local events. We'll dive into this code shortly.

The login form (shown in Figure 4-3) is quite straightforward. It exposes a public UserName property, which allows the Startup
routine to retrieve the user name without violating encapsulation. This property could also be used to pre-fill the txtUser textbox by
retrieving the previously used name, which could be stored in a configuration file or the Windows registry on the current computer.

Figure 4-3: The login form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Class Login
 Inherits System.Windows.Forms.Form

 ' (Designer code omitted.)

 Private Sub cmdExit_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdExit.Click
 Me.Close()
 End Sub

 Public Property UserName()
 Get
 Return txtUser.Text
 End Get
 Set(ByVal Value)
 txtUser.Text = UserName
 End Set
 End Property

End Class

The Remotable ClientProcess Class

The ClientProcess class does double duty. It allows the TalkClient to interact with the TalkServer to register and unregister the
user or send a message destined for another user. The ClientProcess also receives callbacks from the TalkServer and forwards
these to the TalkClient through an event. In the Talk .NET system, the only time the TalkServer will call the ClientProcess is to
deliver a message sent from another user. At this point, the ClientProcess will forward the message along to the user interface by
raising an event. Because the server needs to be able to call ClientProcess.ReceiveMessage() across the network, the
ClientProcess class must inherit from MarshalByRefObject. ClientProcess also implements ITalkClient.

Here's the basic outline for the ClientProcess class. Note that the user name is stored as a member variable named _Alias, and
exposed through the public property Alias. Because alias is a reserved keyword in VB .NET, you will have to put this word in
square brackets in the code.
Imports System.Runtime.Remoting
Imports TalkComponent

Public Class ClientProcess
 Inherits MarshalByRefObject
 Implements ITalkClient

 ' This event occurs when a message is received.
 ' It's used to transfer the message from the remotable
 ' ClientProcess object to the Talk form.
 Event MessageReceived(ByVal sender As Object, _
 ByVal e As MessageReceivedEventArgs)

 ' The reference to the server object.
 ' (Technically, this really holds a proxy class.)
 Private Server As ITalkServer

 ' The user ID for this instance.
 Private _Alias As String
 Public Property [Alias]() As String
 Get
 Return _Alias
 End Get
 Set(ByVal Value As String)
 _Alias = Value
 End Set
 End Property

 Public Sub New(ByVal [alias] As String)
 _Alias = [alias]
 End Sub
 ' This override ensures that if the object is idle for an extended
 ' period, waiting for messages, it won't lose its lease and
 ' be garbage collected.
 Public Overrides Function InitializeLifetimeService() As Object
 Return Nothing
 End Function

 Public Sub Login()
 ' (Code omitted.)
 End Sub

 Public Sub LogOut()
 ' (Code omitted.)
 End Sub

 Public Sub SendMessage(ByVal recipientAlias As String, _
 ByVal message As String)
 ' (Code omitted.)
 End Sub

 Private Sub ReceiveMessage(ByVal message As String, _
 ByVal senderAlias As String) Implements ITalkClient.ReceiveMessage
 ' (Code omitted.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' (Code omitted.)
 End Sub

 Public Function GetUsers() As ICollection
 ' (Code omitted.)
 End Function

End Class

The InitializeLifetimeService() method must be overridden to preserve the life of all ClientProcess objects. Even though the startup
routine holds a reference to a ClientProcess object, the ClientProcess object will still disappear from the network after its lifetime
lease expires, unless you explicitly configure an infinite lifetime. Alternatively, you can use configuration file settings instead of
overriding the InitializeLifetimeService() method, as described in the previous chapter.

One other interesting detail is found in the ReceiveMessage() method. This method is accessible remotely to the server because it
implements ITalkClient.ReceiveMessage. However, this method is also marked with the Private keyword, which means that other
classes in the TalkClient application won't accidentally attempt to use it.

The Login() method configures the client channel, creates a proxy to the server object, and then calls the
ServerProcess.AddUser() method to register the client. The Logout() method simply unregisters the user, but it doesn't tear down
the Remoting channels—that will be performed automatically when the application exits. Finally, the GetUsers() method retrieves
the user names of all the users currently registered with the coordination server.
Public Sub Login()

 ' Configure the client channel for sending messages and receiving
 ' the server callback.
 RemotingConfiguration.Configure("TalkClient.exe.config")

 ' You could accomplish the same thing in code by uncommenting
 ' the following two lines:
 ' Dim Channel As New System.Runtime.Remoting.Channels.Tcp.TcpChannel(0) and
 ' ChannelServices.RegisterChannel(Channel).

 ' Create the proxy that references the server object.
 Server = CType(Activator.GetObject(GetType(ITalkServer), _
 "tcp://localhost:8000/TalkNET/TalkServer"), ITalkServer)
 ' Register the current user with the server.
 ' If the server isn't running, or the URL or class information is
 ' incorrect, an error will most likely occur here.
 Server.AddUser(_Alias, Me)

End Sub

Public Sub LogOut()

 Server.RemoveUser(_Alias)
End Sub

Public Function GetUsers() As ICollection
 Return Server.GetUsers()
End Function

Following is the client configuration, which only specified channel information. The client port isn't specified and will be chosen
dynamically from the available ports at runtime. As with the server configuration file, you must enable full serialization if you are
running the Talk .NET system with .NET 1.1. Otherwise, the TalkClient will not be allowed to transmit the ITalkClient reference
over the network to the server.

<configuration>
 <system.runtime.remoting>
 <application>
 <channels>
 <channel port="0" ref="tcp" >
 <!-- If you are using .NET 1.1, uncomment the lines below. -->
 <!--
 <serverProviders>
 <formatter ref="binary" typeFilterLevel="Full" />
 </serverProviders>
 -->
 </channel>
 </channels>
 </application>
 </system.runtime.remoting>
</configuration>

You'll notice that the Login() method mingles some dynamic Remoting code (used to create the TalkServer instance) along with a
configuration file (used to create the client channel). Unfortunately, it isn't possible to rely exclusively on a configuration file when
you use interface-based programming with Remoting. The problem is that the client doesn't have any information about the
server, only an interface it supports. The client thus cannot register the appropriate object type and create it directly because
there's no way to instantiate an interface. The previous solution, which uses the Activator.GetObject() method, forces you to
include several distribution details in your code. This means that if the object is moved to another computer or exposed through
another port, you'll need to recompile the code.

You can resolve this problem in several ways. One option is simply to add a custom configuration setting with the full object URI.
This will be an application setting, not a Remoting setting, so it will need to be entered in the <appSettings> section of the client
configuration file, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<configuration>

<appSettings>
 <add key="TalkServerURL"
 value="tcp://localhost:8000/TalkNET/TalkServer" />
 </appSettings><
 <system.runtime.remoting>
 <application>
 <channels>
 <channel port="0" ref="tcp" >
 <!-- If you are using .NET 1.1, uncomment the lines below. -->
 <!--
 <serverProviders>
 <formatter ref="binary" typeFilterLevel="Full" />
 </serverProviders>
 -->
 </channel>
 </channels>
 </application>
 </system.runtime.remoting>

</configuration>

You can then retrieve this setting using the ConfigurationSettings.AppSettings collection:
Server = CType(Activator.GetObject(GetType(ITalkServer), _
 ConfigurationSettings.AppSettings("TalkServer")), ITalkServer)

Note that in this example, we use the loopback alias localhost, indicating that the server is running on the same computer. You
should replace this value with the name of the computer (if it's on your local network), the domain name, or the IP address where
the server component is running.

The last ingredient is the ClientProcess methods for sending and receiving messages. The following code shows the
SendMessage() and ReceiveMessage() methods. The SendMessage() simply executes the call on the server and the
ReceiveMessage() raises a local event for the client, which will be handled by the Talk form.
Public Sub SendMessage(ByVal recipientAlias As String, ByVal message As String)
 Server.SendMessage(_Alias, recipientAlias, message)
End Sub

Private Sub ReceiveMessage(ByVal message As String, _
 ByVal senderAlias As String) Implements ITalkClient.ReceiveMessage
 RaiseEvent MessageReceived(Me, New MessageReceivedEventArgs(message, _
 senderAlias))
End Sub

The MessageReceived event makes use of the following custom EventArgs class, which adds the message-specific information:
Public Class MessageReceivedEventArgs
 Inherits EventArgs

 Public Message As String
 Public SenderAlias As String

 Public Sub New(ByVal message As String, ByVal senderAlias As String)
 Me.Message = message
 Me.SenderAlias = senderAlias
 End Sub

End Class

The Talk Form

The Talk form is the front-end that the user interacts with. It has four key tasks:

Log the user in when the form loads and log the user out when the form closes.

Periodically refresh the list of active users by calling ClientProcess.GetUsers(). This is performed using a timer.

Invoke ClientProcess.SendMessage() when the user sends a message.

Handle the MessageReceived event and display the corresponding information on the form.

The form is shown in Figure 4-4. Messages are recorded in a RichTextBox, which allows the application of formatting, if desired.
The list of clients is maintained in a ListBox.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-4: The Talk form

The full form code is shown here:
Public Class Talk
 Inherits System.Windows.Forms.Form

 ' (Designer code omitted.)
 ' The remotable intermediary for all client-to-server communication.
 Public WithEvents TalkClient As ClientProcess

 Private Sub Talk_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Me.Text &= " - " & TalkClient.Alias

 ' Attempt to register with the server.
 TalkClient.Login()

 ' Ordinarily, a user list is periodically fetched from the
 ' server. In this case, the code enables the timer and calls it
 ' once (immediately) to initially populate the list box.
 tmrRefreshUsers_Tick(Me, EventArgs.Empty)
 tmrRefreshUsers.Enabled = True
 lstUsers.SelectedIndex = 0
 End Sub
 Private Sub TalkClient_MessageReceived(ByVal sender As Object, _
 ByVal e As MessageReceivedEventArgs) Handles TalkClient.MessageReceived

 txtReceived.Text &= "Message From: " & e.SenderAlias
 txtReceived.Text &= " delivered at " & DateTime.Now.ToShortTimeString()
 txtReceived.Text &= Environment.NewLine & e.Message
 txtReceived.Text &= Environment.NewLine & Environment.NewLine

 End Sub

 Private Sub cmdSend_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdSend.Click

 ' Display a record of the message you're sending.
 txtReceived.Text &= "Sent Message To: " & lstUsers.Text
 txtReceived.Text &= Environment.NewLine & txtMessage.Text
 txtReceived.Text &= Environment.NewLine & Environment.NewLine

 ' Send the message through the ClientProcess object.
 Try
 TalkClient.SendMessage(lstUsers.Text, txtMessage.Text)
 txtMessage.Text = ""
 Catch Err As Exception
 MessageBox.Show(Err.Message, "Send Failed", _
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation)
 End Try

 End Sub

 ' Checks every 30 seconds.
 Private Sub tmrRefreshUsers_Tick(ByVal sender As System.Object, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub tmrRefreshUsers_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles tmrRefreshUsers.Tick

 ' Prepare list of logged-in users.
 ' The code must copy the ICollection entries into
 ' an ordinary array before they can be added.
 Dim UserArray() As String
 Dim UserCollection As ICollection = TalkClient.GetUsers
 ReDim UserArray(UserCollection.Count - 1)
 UserCollection.CopyTo(UserArray, 0)
 ' Replace the list entries. At the same time,
 ' the code will track the previous selection and try
 ' to restore it, so the update won't be noticeable.
 Dim CurrentSelection As String = lstUsers.Text
 lstUsers.Items.Clear()
 lstUsers.Items.AddRange(UserArray)
 lstUsers.Text = CurrentSelection

 End Sub

 Private Sub Talk_Closed(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Closed
 TalkClient.LogOut()
 End Sub

End Class

The timer fires and refreshes the list of user names seamlessly every 30 seconds. In a large system, you would lower this value to
ease the burden on the coordinator. For a very large system with low user turnover, it might be more efficient to have the server
broadcast user-added and user-removed messages. To support this infrastructure, you would add methods such as
ITalkClient.NotifyUserAdded() and ITalkClient.NotifyUserRemoved(). Or you might just use a method such as
ITalkClient.NotifyListChanged(), which tells the client that it must contact the server at some point to update its information.

The ideal approach isn't always easy to identify. The goal is to minimize the network chatter as much as possible. In a system with
100 users who query the server every 60 seconds, approximately 100 request messages and 100 response messages will be sent
every minute. If the same system adopts user-added and user-removed broadcasting instead, and approximately 5 users join or
leave the system in a minute, the server will likely need to send 5 messages to each of 100 users, for a much larger total of 500
messages per minute. The messages themselves would be smaller (because they would not contain the full user list), but the
network overhead would probably be great enough that this option would work less efficiently.

In a large system, you might use "buddy lists" so that clients only receive a user list with a subset of the total number of users. In
this case, the server broadcast approach would be more efficient because a network exchange would only be required for those
users who are on the same list as the entering or departing peer. This reduces the total number of calls dramatically. Overall, this
is probably the most sustainable option if you want to continue to develop the Talk .NET application to serve a larger audience.

Because the client chooses a channel dynamically, it's possible to run several instances of the TalkClient on the same computer.
After starting the new instances, the user list of the original clients will quickly be refreshed to represent the full user list. You can
then send messages back and forth, as shown in Figure 4-5. Clients can also send messages to themselves.

Figure 4-5: Multiple client interaction

In each case, the coordination server brokers the communication. The trace output for a sample interaction on the server
computer is shown in Figure 4-6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-6: The server trace display

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enhancing Talk .NET
Talk .NET presents a straightforward way to reinvent the popular instant-messaging application in .NET code. However, as it
currently stands, it's best suited for small groups of users and heavily reliant on a central coordination server. In fact, in many
respects it's hard to call this a true peer-to-peer application at all.

Fortunately, Talk .NET is just a foundation that you can build on. This section considers possible enhancements, stumbling
blocks, and a minor redesign that allows true peer-to-peer communication.

Cleaning Up After Clients

Currently, the system assumes that all clients will log out politely when they've finished using the system. Due to network
problems, program error, or some other uncontrollable factor, this may not be the case. Remember, one of the defining
characteristics of any peer-to-peer system is that it must take into account the varying, fragile connectivity of users on the Internet.
For this reason, Talk .NET needs to adopt a more defensive approach.

Currently, the SendMessage() method raises an unhandled exception if it can't contact the specified user. This exception will
propagate back to the user-interface code, where it will be handled and will result in a user error message. The problem with this
approach is that the user remains in the server's collection and continues to "appear" online. If another user attempts to send a
message to this user, valuable server seconds will be wasted attempting to contact the offline user, thereby raising the exception.
This problem will persist until the missing user logs back in to the system.

To account for this problem, users should be removed from the collection if they cannot be contacted. Here's the important portion
of the SendMessage() code, revised accordingly:
If Not Recipient Is Nothing Then

 Dim callback As New ReceiveMessageCallback(_
 AddressOf Recipient.ReceiveMessage)

 Try
 callback.BeginInvoke(message, senderAlias, Nothing, Nothing)
 Catch Err As Exception
 ' Client could not be contacted.
 Trace.Write("Message delivery failed")
 ActiveUsers.Remove(recipientAlias)
 End Try
End If

You may also want to send a message explaining the problem to the user. However, you also need to protect yourself in case the
user who sent the message can't be contacted or found. To prevent the code from becoming too fragmented, you can rewrite it
using recursion, as shown here:
Public Sub SendMessage(ByVal senderAlias As String, _
 ByVal recipientAlias As String, ByVal message As String) _
 Implements TalkComponent.ITalkServer.SendMessage

 Dim Recipient As ITalkClient
 If ActiveUsers.ContainsKey(recipientAlias) Then
 Trace.Write("Recipient '" & recipientAlias & "' found")
 Recipient = CType(ActiveUsers(recipientAlias), ITalkClient)

 If Not Recipient Is Nothing Then

 Trace.Write("Delivering message to '" & recipientAlias & "' from _
 '" & senderAlias & "'")
 Dim callback As New ReceiveMessageCallback(_
 AddressOf Recipient.ReceiveMessage)

 ' Deliver the message.
 Try
 callback.BeginInvoke(message, senderAlias, Nothing, Nothing)

 Catch Err As Exception
 ' Client could not be contacted.
 ActiveUsers.Remove(recipientAlias)
 If senderAlias <> "Talk .NET"
 ' Try to send a warning message.
 message = "'" & message & "' could not be delivered."
 SendMessage("Talk .NET", senderAlias, message)

 End Try
 End If

 Else
 ' User was not found. Try to find the sender.
 Trace.Write("Recipient '" & recipientAlias & "' not found")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Trace.Write("Recipient '" & recipientAlias & "' not found")
 If senderAlias <> "Talk .NET"
 ' Try to send a warning message.
 message = "'" & message & "' could not be delivered."
 SendMessage("Talk .NET", senderAlias, message)
 End If

 End If

End Sub

Of course, in order for this approach to work, you'll need to ensure that no other user can take the user name "Talk .NET." You
could add this restriction in your logon or authentication code.

Toward Decentralization

Talk .NET will always requires some sort of centralized server component in order to store information about logged-on users and
their locations. However, it's not necessary to route all communication through the server. In fact, Remoting allows clients to
communicate directly—with a few quirks.

Remoting is designed as an object-based networking technology. In order for clients to communicate directly, they need to have a
reference to each other's remotable ClientProcess object. As you've already learned, you can create this reference through a
configuration file or .NET Remoting code, if you know the appropriate URL. This is how the client contacts the coordination server
in the Talk .NET system—by knowing the computer and port where it's located. But there's also another approach: by passing an
object reference. The server calls the client back by using one of its stored ITalkClient references.

The ITalkClient reference isn't limited to exchanges between the server and client. In fact, this reference can be passed to any
computer on the network. Because ITalkClient references a remotable object (in this case, ClientProcess), whenever the
reference travels to another application domain, it actually takes the form of an ObjRef: a network pointer that encapsulates all the
information needed to describe the object and its location on the network. With this information, any .NET application can
dynamically construct a proxy and communicate with the client it references. You can use the ObjRef as the basis for
decentralized communication.

To see this in action, modify the ITalkServer interface to expose an additional method that returns an ITalkClient reference for a
specific user:

Public Interface ITalkServer

 ' (Other code omitted.)
 Function GetUser(ByVal [alias] As String) As ITalkClient

End Interface

Now, implement the GetUser() method in the ServerProcess class:
Public Function GetUser(ByVal [alias] As String) As TalkComponent.ITalkClient _
 Implements TalkComponent.ITalkServer.GetUser

 Return ActiveUsers([alias])

End Function

Now the ClientProcess class can call GetUser() to retrieve the ITalkUser reference of the peer it wants to communicate with; it can
then call the ITalkClient.ReceiveMessage() method directly:
Public Sub SendMessage(ByVal recipientAlias As String, ByVal message As String)

 Dim Peer As ITalkClient = Server.GetUser(recipientAlias)
 Peer.ReceiveMessage(message, Me.Alias)

End Sub

With this change in place, the system will work exactly the same. However, the coordination server is now simply being used as a
repository of connection information. Once the lookup is performed, it's no longer required.

Note You can find this version of the application in the Talk .NET Decentralized directory with the online samples for this
chapter.

Which approach is best? There's little doubt that the second choice is more authentically peer-to-peer. But the best choice for
your system depends on your needs. Some of the benefits of the server-focused approach include the following:

The server can track system activity, which could be useful, depending on your reporting needs. If you run the
second version of this application, you'll see that the server trace log reflects when users are added or removed, but
it doesn't contain any information when messages are sent.

The connectivity is likely to be better. Typically, if a client can contact the server, the server will be able to call the
client. However, two arbitrary clients may not be able to interact, depending on firewalls and other aspects of
network topology.

The server can offer some special features that wouldn't be possible in a decentralized system, such as multiuser
broadcasts that involve thousands of users.

On the other hand, the benefits of the decentralized approach include the following:

The server has no ability to monitor conversations. This translates into better security (assuming peers don't fully
trust the behavior of the server).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The possibility for a server bottleneck decreases. This is because the server isn't called on to deal with messages,
but rather, only to provide client lookup, thereby reducing its burden and moving network traffic out to the edges of
the network.

Most peer-to-peer supporters would prefer the decentralized approach. However, the current generation of instant-messaging
applications avoid it for connectivity reasons. Instead, they use systems that more closely resemble the client-server model.

In some cases you might want to adopt a blended approach that makes use of both of these techniques. One option is to allow
the client to specify the behavior through a configuration setting. Another option would be to use peer-to-peer communication only
when large amounts of data need to be transmitted. This is the approach used in the next section to provide a file transfer service
for Talk .NET.

In any case, if you adopt the decentralized approach, you can further reduce the burden on the central coordinator by performing
the client lookup once, and then reusing the connection information for all subsequent messages. For example, you could cache
the retrieved client reference in a local ActiveUsers collection, and update it from the server if an error is encountered while
sending a message. Or, you might modify the system so that the GetUsers() method returns the entire collection, complete with
user names and ITalkClient network pointers. The central coordinator would then simply need to support continuous requests to
three methods: AddUser(), RemoveUser(), and GetUsers(). This type of design works well if you use "buddy lists" to determine
who a user can communicate with. That way, users will only retrieve information about a small subset of the total number of users
when they call GetUsers().

Adding a File Transfer Feature

Using the decentralized approach, it's easy to implement a file transfer feature that's similar to the one provided by Microsoft's
Windows Messenger. This feature wouldn't be practical with the centralized approach because it encourages the server to
become a bottleneck. Although transferring files isn't a complex task, it can take time, and the CLR only provides a limited number
of threads to handle server requests. If all the threads are tied up with sending data across the network (or waiting as data is
transferred over a low-bandwidth connection), subsequent requests will have to wait—and could even time out.

The file transfer operation can be broken down into four steps:
1. Peer A offers a file to Peer B.

2. Peer B accepts the file offer and initiates the transfer.

3. Peer A sends the file to Peer B.

4. Peer B saves the file locally in a predetermined directory.

These steps require several separate method calls. Typically, in step 2, the user will be presented with some sort of dialog box
asking whether the file should be transferred. It's impractical to leave the connection open while this message is being displayed
because there's no guarantee the user will reply promptly, and the connection could time out while waiting. Instead, the peer-to-
peer model requires a looser, disconnected architecture that completely separates the file offer and file transfer.

The first step needed to implement the file transfer is to redefine the ITalkClient interface. It's at this point that most of the coding
and design decisions are made.
Public Interface ITalkClient

 ' (Other code omitted.)
 Sub ReceiveFileOffer(ByVal filename As String, _
 ByVal fileIdentifier As Guid, ByVal senderAlias As String)
 Function TransferFile(ByVal fileIdentifier As Guid, _
 ByVal senderAlias As String) As Byte()

End Interface

You'll notice that both methods use a globally unique identifier (GUID) to identify the file. There are several reasons for this
approach, all of which revolve around security. If the TransferFile() method accepted a full file name, it would be possible for the
client to initiate a transfer even if the file had not been offered, thereby compromising data security. To circumvent this problem, all
files are identified uniquely. The identifier used is a GUID, which guarantees that a client won't be able to guess the identifier for a
file offered to another user. Also, because GUIDs are guaranteed to be unique, a peer can offer multiple files to different users
without confusion. More elaborate security approaches are possible, but this approach is a quick and easy way to prevent users
from getting ahold of the wrong files.

The file itself is transferred as a large byte array. While this will be sufficient in most cases, if you want to control how the data is
streamed over the network, you'll need to use a lower-level networking class, such as the ones described in the second part of this
book.

Once the ITalkClient interface is updated, you can begin to revise the ClientProcess class. The first step is to define a Hashtable
collection that can track all the outstanding file offers since the application was started:
Private OfferedFiles As New Hashtable()

To offer a file, the TalkClient calls the public SendFileOffer() method. This method looks up the client reference, generates a new
GUID to identify the file, stores the information, and sends the offer.
Public Function SendFileOffer(ByVal recipientAlias As String, _
 ByVal sourcePath As String)

 ' Retrieve the reference to the other user.
 Dim peer As ITalkClient = Server.GetUser(recipientAlias)

 ' Create a GUID to identify the file, and add it to the collection.
 Dim fileIdentifier As Guid = Guid.NewGuid()
 OfferedFiles(fileIdentifier) = sourcePath

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 OfferedFiles(fileIdentifier) = sourcePath
 ' Offer the file.
 peer.ReceiveFileOffer(Path.GetFileName(sourcePath), fileIdentifier, Me.Alias)

End Function

Notice that only the file name is transmitted, not the full file path. The full file path is stored for future reference in the Hashtable
collection, but it's snipped out of the offer using the Path class from the System.IO namespace. This extra step is designed to
prevent the recipient from knowing where the offered file is stored on the offering peer.

Tip Currently, the TalkClient doesn't go to any extra work to "expire" an offered file and remove its information from the
collection if it isn't transferred within a set period of time. This task could be accomplished using a separate thread that
would periodically examine the collection. However, because the in-memory size of the OfferedFiles collection will
always remain relatively small, this isn't a concern, even after making a few hundred unclaimed file offers.

The file offer is received by the destination peer with the ReceiveFileOffer() method. When this method is triggered, the
ClientProcess class raises a local event to alert the user:
Event FileOfferReceived(ByVal sender As Object, _
 ByVal e As FileOfferReceivedEventArgs)

Private Sub ReceiveFileOffer(ByVal filename As String, _
 ByVal fileIdentifier As System.Guid, ByVal senderAlias As String) _
 Implements TalkComponent.ITalkClient.ReceiveFileOffer

 RaiseEvent FileOfferReceived(Me, _
 New FileOfferReceivedEventArgs(filename, fileIdentifier, senderAlias))

End Sub

The FileOfferReceivedEventArgs class simply provides the file name, file identifier, and sender's name:
Public Class FileOfferReceivedEventArgs
 Inherits EventArgs
 Public Filename As String
 Public FileIdentifier As Guid
 Public SenderAlias As String

 Public Sub New(ByVal filename As String, ByVal fileIdentifier As Guid, _
 ByVal senderAlias As String)
 Me.Filename = filename
 Me.FileIdentifier = fileIdentifier
 Me.SenderAlias = senderAlias
 End Sub

End Class

The event is handled in the form code, which will then ask the user whether the transfer should be accepted. If it is, the next step
is to call the ClientProcess.AcceptFile() method, which initiates the transfer.
Public Sub AcceptFile(ByVal recipientAlias As String, _
 ByVal fileIdentifier As Guid, ByVal destinationPath As String)

 ' Retrieve the reference to the other user.
 Dim peer As ITalkClient = Server.GetUser(recipientAlias)

 ' Create an array to store the data.
 Dim FileData As Byte()

 ' Request the file.
 FileData = peer.TransferFile(fileIdentifier, Me.Alias)
 Dim fs As FileStream

 ' Create the local copy of the file in the desired location.
 ' Warning: This method doesn't bother to check if it's overwriting
 ' a file with the same name.
 fs = File.Create(destinationPath)
 fs.Write(FileData, 0, FileData.Length)

 ' Clean up.
 fs.Close()

End Sub

There are several interesting details in this code:

It doesn't specify the destination file path and file name. This information is supplied to the AcceptFile() method
through the destinationPath parameter. This allows the form code to stay in control, perhaps using a default
directory or prompting the user for a destination path.

It includes no exception-handling code. The assumption is that the form code will handle any errors that occur and
inform the user accordingly.

It doesn't worry about overwriting any file that may already exist at the specified directory with the same name.
Once again, this is for the form code to check. It will prompt the user before starting the file transfer.

The peer offering the file sends it over the network in its TransferFile() method, which is in many ways a mirror image of
AcceptFile().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Function TransferFile(ByVal fileIdentifier As System.Guid, _
 ByVal senderAlias As String) As Byte() _
 Implements TalkComponent.ITalkClient.TransferFile

 ' Ensure that the GUID corresponds to a valid file offer.
 If Not OfferedFiles.Contains(fileIdentifier) Then
 Throw New ApplicationException(_
 "This file is no longer available from the client.")
 End If

 ' Look up the file path from the OfferedFiles collection and open it.
 Dim fs As FileStream
 fs = File.Open(OfferedFiles(fileIdentifier), FileMode.Open)

 ' Fill the FileData byte array with the data from the file.
 Dim FileData As Byte()
 ReDim FileData(fs.Length)
 fs.Read(FileData, 0, FileData.Length)

 ' Remove the offered file from the collection.
 OfferedFiles.Remove(fileIdentifier)

 ' Clean up.
 fs.Close()
 ' Transmit the file data.
 Return FileData

End Function

The only detail we haven't explored is the layer of user-interface code in the Talk form. The first step is to add an "Offer File"
button that allows the user to choose a file to send. The file is chosen using the OpenFileDialog class.
Private Sub cmdOffer_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdOffer.Click

 ' Prompt the user for a file to offer.
 Dim dlgOpen As New OpenFileDialog()
 dlgOpen.Title = "Choose a File to Transmit"

 If dlgOpen.ShowDialog() = DialogResult.OK Then
 Try

 ' Send the offer.
 TalkClient.SendFileOffer(lstUsers.Text, dlgOpen.FileName)
 Catch Err As Exception
 MessageBox.Show(Err.Message, "Send Failed", _
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation)
 End Try
 End If

End Sub

The Talk form code also handles the FileOfferReceived event, prompts the user, and initiates the transfer if accepted (see Figure
4-7).

Figure 4-7: Offering a file transfer

Private Sub TalkClient_FileOfferReceived(ByVal sender As Object, _
 ByVal e As TalkClient.FileOfferReceivedEventArgs) _
 Handles TalkClient.FileOfferReceived

 ' Create the user message describing the file offer.
 Dim Message As String
 Message = e.SenderAlias & " has offered to transmit the file named: "
 Message &= e.Filename & Environment.NewLine
 Message &= Environment.NewLine & "Do You Accept?"

 ' Prompt the user.
 Dim Result As DialogResult = MessageBox.Show(Message, _
 "File Transfer Offered", MessageBoxButtons.YesNo, MessageBoxIcon.Question)

 If Result = DialogResult.Yes Then

 Try
 ' The code defaults to the TEMP directory, although a more
 ' likely option would be to read information from a registry or
 ' configuration file setting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' configuration file setting.
 Dim DestinationPath As String = "C:\TEMP\" & e.Filename

 ' Receive the file.
 TalkClient.AcceptFile(e.SenderAlias, e.FileIdentifier, _
 DestinationPath)

 ' Assuming no error occurred, display information about it
 ' in the chat window.
 txtReceived.Text &= "File From: " & e.SenderAlias
 txtReceived.Text &= " transferred at "
 txtReceived.Text &= DateTime.Now.ToShortTimeString()
 txtReceived.Text &= Environment.NewLine & DestinationPath
 txtReceived.Text &= Environment.NewLine & Environment.NewLine

 Catch Err As Exception
 MessageBox.Show(Err.Message, "Transfer Failed", _
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation)
 End Try

 End If

End Sub

Figure 4-8: A completed file transfer

Note Adding a file transfer feature such as this one is a notorious security risk. Because the communication is direct, there's
no way to authenticate the recipient. (A central server, on the other hand, could verify that users are who they claim to
be.) That means that a file could be offered to the wrong user or a malicious user who is impersonating another user.
To reduce the risk, the server component could require user ID and password information before returning any
information from the GetUsers() collection.We'll deal with security more closely in Chapter 11.

Scalability Challenges with the Simple Implementation

In its current form, the Talk .NET application is hard pressed to scale in order to serve a large audience. The key problem is the
server component, which could become a critical bottleneck as the traffic increases. To reduce this problem, you can switch to the
decentralized approach described earlier, although this is only a partial solution. It won't deal with the possible problems that can
occur if the number of users grows so large that storing them in an in-memory hashtable is no longer effective.

Databases and a Stateless Server

To combat this problem, you would need to store the list of logged-on users and their connection information in an external data
store such as a database. This would reduce the performance for individual calls (because they would require database lookups),
but it would increase the overall scalability of the system (because the memory overhead would be lessened).

This approach also allows you to create a completely stateless coordination server. In this case, you could replace your
coordination server by a web farm of computers, each of which would access the same database. Each client request could be
routed to the computer with the least traffic, guaranteeing performance. Much of the threading code presented in the next chapter
would not be needed anymore, because all of the information would be shared in a common database that would provide its own
concurrency control. In order to create the cluster farm and expose it under a single IP, you would need to use hardware
clustering or a software load-balancing solution such as Microsoft's Application Center. All in all, this is a fairly good idea of how a
system such as Microsoft's Windows Messenger works. It's also similar to the approach followed in the third part of this book,
where you'll learn how to create a discovery server using a web service.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OneWay Methods

There is also a minor messaging enhancement you can implement using the OneWay attribute from the
System.Runtime.Remoting.Messaging namespace. When you apply this attribute to a method, you indicate that, when this
method is called remotely, the caller will disconnect immediately without waiting for the call to complete. This means that the
method cannot return a result or modify a ByVal parameter. It also means that any exception thrown in the method will not be
detected by the caller. The advantage of this approach is that it eliminates waiting. In the Talk .NET system, the coordination
server automatically calls a client if a message cannot be delivered. Thus, there's no reason for the client to wait while the
message is actually being delivered.

There are currently two methods that could benefit from the OneWay attribute: ClientProcess.ReceiveMessage() and
ServerProcess.SendMessage(). Here's an example:
<System.Runtime.Remoting.Messaging.OneWay()> _
Private Sub ReceiveMessage(ByVal message As String, _
 ByVal senderAlias As String) Implements ITalkClient.ReceiveMessage
 ' (Code omitted.)
End Sub

Note that there's one reason you might not want to apply the OneWay attribute to ServerProcess.SendMessage(). If you do, you
won't be able to detect an error that might result if the user has disconnected without logging off correctly. Without catching this
error, it's impossible to detect the problem, notify the sender, and remove the user from the client collection. This error-handling
approach is implemented in the next chapter.

Optional Features

Finally, there are a number of optional features that you can add to Talk .NET. These include variable user status, user
authentication with a password, and buddy lists. The last of these is probably the most useful, because it allows you to limit the
user list information. With buddy lists, users only see the names of the users that they want to contact. However, buddy lists must
be stored on the server permanently, and so can't be held in memory. Instead, this information would probably need to be stored
in a server-side database.

Another option would be to store a list on the local computer, which would then be submitted with the login request. This would
help keep the system decentralized, but it would also allow the information to be easily lost, and make it difficult for users to obtain
location transparency and use the same buddy list from multiple computers. As you'll see, users aren't always prepared to accept
the limitations of decentralized peer-to-peer applications.

Firewalls, Ports, and Other Issues

Remoting does not provide any way to overcome some of the difficulties that are inherent with networking on the Internet. For
example, firewalls, depending on their settings, can prevent communication between the clients and the coordination server. On a
local network, this won't pose a problem. On the Internet, you can lessen the possibility of problems by following several steps:

Use the centralized design in which all communication is routed through the coordination server.

Make sure the coordination server is not behind a firewall (in a company network, you would place the coordination
server in the demilitarized zone, or DMZ). This helps connectivity because often communication will succeed when
the client is behind a firewall, but not when both the client and server are behind firewalls.

Change the configuration files so that HTTP channels are used instead. They're typically more reliable over the
Internet and low-bandwidth connections. You should still use binary formatting, however, unless you're trying to
interoperate with non-.NET clients.

It often seems that developers and network administrators are locked in an endless battle, with developers trying to extend the
scope of their applications while network administrators try to protect the integrity of their network. This battle has escalated to
such a high point that developers tout new features such as .NET web services because they use HTTP and can communicate
through a firewall. All this ignores the fact that, typically, the firewall is there to prevent exactly this type of communication.
Thwarting this protection just means that firewall vendors will need to go to greater lengths building intelligence into their firewall
products. They'll need to perform more intensive network analysis that might reject SOAP messages or deny web-service
communication based on other recognizable factors. These changes, in turn, raise the cost of the required servers and impose
additional overhead.

In short, it's best to deal with firewall problems by configuring the firewall. If your application needs to use a special port, convince
the network administrators to open it. Similarly, using port 80 for a peer-to-peer application is sure to win the contempt of system
administrators everywhere. If you can't ensure that your clients can use another port, you may need to resort to this sleight-of-
hand, but it's best to avoid the escalating war of Internet connectivity altogether.

Note Ports are generally divided into three groups: well-known ports (0–1023), registered ports (1024–49151), and dynamic
ports (49152–65535). Historically, well-known ports have been used for server-based applications such as web servers
(80), FTP (20), and POP3 mail transfer (110). In your application, you would probably do best to use a registered or
dynamic port that isn't frequently used. These are less likely to cause a conflict (although more likely to be blocked by a
firewall). For example, 6346 is most commonly used by Gnutella. For a list of frequently registered ports, refer to the
C:\{WinDir]\System32\Drivers\Etc\Services file or the http://www.iana.org/assignments/port-numbers site.

Remoting and Network Address Translation

.NET Remoting, like many types of distributed communication, is challenged by firewalls, proxy servers, and network address
translation (NAT). Many programmers (and programming authors) assume that using an HTTP channel will solve these problems.
It may—if the intervening firewall restricts packets solely based on whether they contain binary information. However, this won't
solve a much more significant problem: Most firewalls allow outgoing connections but prevent all incoming ones. Proxy servers
and NAT devices work in the same way. This is a significant limitation. It means that a Talk .NET peer can contact the server (and
the server can respond), but the server cannot call back to the client to deliver a message.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There's more than one way to solve this problem, but none is easy (or ideal). You could implement a polling mechanism, whereby
every client periodically connects to the server and asks for any unsent messages. The drawback of this approach is that the
message latency will be increased, and the load on the server will rise dramatically with the number of clients.

Another approach is to use some sort of bidirectional communication method. For example, you might want to maintain a
connection and allow the server to fire its event or callback at any time using the existing connection. This also reduces the
number of simultaneous clients the server can handle, and it requires a specially modified type of Remoting channel. Ingo
Rammer has developed one such channel, and it's available at
http://www.dotnetremoting.cc/projects/modules/BidirectionalTcpChannel.asp. However, this bidirectional channel isn't yet
optimized for a production environment, so enterprise developers will need to wait.

Unfortunately, neither of these two proposed solutions will work if you want to use decentralized communication in which peers
contact each other directly. In this case, you'll either need to write a significant amount of painful low-level networking code (which
is beyond the scope of this book), or use a third-party platform such as those discussed in Part Three.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
In this chapter, we developed an instant-messaging application using Remoting and showed how it could be modified into a peer-
to-peer system with a central lookup service. However, the current version of the Talk .NET system still suffers from some notable
shortcomings, which will become particularly apparent under high user loads. If different users attempt to register, unregister, or
send messages at the same time, the user collection may be updated incorrectly, and information could be lost. To guard against
these problems, which are almost impossible to replicate under modest loads, you'll need to add multithreading, as described in
the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5: Threading the Coordination Server

Overview
In the previous chapter, we developed an instant-messaging application that relies on a central coordinator. As it stands, the
central coordinator isn't equipped to handle concurrent requests, which could lead to subtle problems when registering and
removing users. There are two approaches that can handle these problems.

The first option is to move the user registry into a database. This approach has a cost. Though a database will ensure scalability
and eliminate the possibility of concurrency problems, it will also slow down individual client requests. Using a database makes the
most sense if you intend to scale the system to an extremely large audience (with hundreds of simultaneous users). The database
approach is demonstrated with the discovery service in Chapter 7.

The second option is to revise the central coordinator and add the .NET threading code needed to safely handle access to the
user collection. This approach is ideal when creating a peer-to-peer system for a smaller community (for example, inside the
private network of a single organization). This is the approach we'll develop in this chapter.

This chapter also introduces a few additional enhancements to the Talk.NET system. These include the following:

Mechanisms to handle users who supply duplicate user names and users who disconnect from the system without
properly logging out.

Client-side threading code to properly handle user-interface refreshes, particularly when multiple messages are
received at once.

A modified TalkService component recast as a Windows service, so it can load automatically and run in the
background without user intervention.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Threading Essentials
The common language runtime (CLR) uses a thread pool to listen for requests for remotable objects. That means that if more
than one user attempts to call a method at the same time, the tasks will complete simultaneously on different threads. With a
sufficiently high number of simultaneous requests, every thread in the pool will be busy, and some users will have to wait for a
thread to become free before their task can be completed (or, in extreme cases, until a time-out occurs and an error is raised on
the client). With thread pools, threads are kept alive indefinitely and reused as long as there's outstanding work to complete.

Generally, thread pools ensure optimum performance. For the most part, clients won't need to wait (as they probably would if the
server provided only one thread). On the other hand, no matter how heavy the traffic, the CLR will never create so many threads
that the server computer becomes swamped and unable to complete any of the work before a time-out occurs (which could occur
if a new thread was created to serve each and every request).

Multithreaded systems always add a few new wrinkles for the application programmer to worry about. These mainly come in the
form of concurrency errors. If these problems aren't anticipated, they can be fiendishly difficult to diagnose and resolve once the
application is deployed in the field.

Concurrency errors occur when more than one thread modifies the same piece of memory. The problem is that the last update
always takes precedence, even if it doesn't take into account the work performed by other threads. The canonical example of a
concurrency error is a global counter that's being incremented by several threads. A concurrency error can occur if all threads
attempt to increment the counter at once.

For example, consider the case in which the global counter is currently at 5 and there are two threads at work. Here's how it might
unfold for the worse:

1. Thread A reads the value 5.

2. Thread B reads the value 5.

3. Thread A increments the value of the counter to 6.

4. Thread B increments the value of the counter to 6.

In this case, the last update wins and the counter stands at 6, even though it should really be set to 7 to represent both of the
increment operations. This is just one example of a concurrency problem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Threading and the Coordination Server
The ServerProcess class contains only a single piece of shared data: the collection of client information. Unfortunately, this is
enough to cause trouble because the collection object is not intrinsically thread-safe. If more than one thread attempts to perform
work with the collection at the same time, it's possible that the collection won't be properly updated. For example, if two users are
registered at the same time, only one update might persist, leading to an unregistered user. Even worse, iterating through a
collection isn't a thread-safe operation, which means that trying to register a new user and look up an existing user for a message
delivery at the same time could conceivably cause a problem. These errors could be rare, but they're never worth the risk because
they tend to grow increasingly more significant and frequent as an application becomes more successful and is used by a larger
and larger user base.

Resolving concurrency problems is fairly easy. The Hashtable collection provides a thread-safe wrapper that you can use with a
minimum of fuss, or you can take control of the situation yourself with Visual Basic's SyncLock statement. Both of these
techniques ensure that only one client can access the collection at a time. However, these approaches can reduce performance.
Every time you use locking, you force some code to execute synchronously, meaning that other clients attempting the same task
or requiring access to the same resource could be stalled. If your locks are too coarse, held too long, and applied too often, the
overall performance of your application may be unacceptable for a large number of users. This is the key compromise with
multithreaded programming, and it requires an experienced developer to strike the right balance.

The next few sections show how you can add locking to the ServerProcess class, and how you can do so to minimize the
performance overhead.

Synchronizing Collection Access

The easiest methods to deal with are the AddUser() and RemoveUser() methods, which manage the user registration process.
There are three ways you could apply a lock, and we'll consider the trade-offs and advantages of each one.

First, you can create what's known as a critical section by locking the entire ServiceProcess object. It looks like this:
Public Sub AddUser(ByVal [alias] As String, ByVal client As ITalkClient) _
 Implements TalkComponent.ITalkServer.AddUser

 SyncLock Me
 Trace.Write("Added user '" & [alias] & "'")
 ActiveUsers([alias]) = client
 End SyncLock
End Sub

When a thread hits this patch of code, the SyncLock statement is used to lock the entire ServiceProcess object. That means that
no other thread will be able to use ServiceProcess until the first thread completes its task. This is true even if the other thread is
calling an innocent, unrelated method that wouldn't pose any threat. Clearly, this coarse lock can create frequent bottlenecks.

A more fine-tuned option is shown in the next example. In this case, only the ActiveUsers collection itself is locked. Other threads
can continue working with ServiceProcess, until they hit a line of code that requires the ActiveUsers collection, at which point
they'll be stalled:
Public Sub AddUser(ByVal [alias] As String, ByVal client As ITalkClient) _
 Implements TalkComponent.ITalkServer.AddUser

 Trace.Write("Added user '" & [alias] & "'")
 SyncLock ActiveUsers
 ActiveUsers([alias]) = client
 End SyncLock
End Sub

Tip SyncLock can only be used with objects, not simple value types such as integers. Because ActiveUsers is a Hashtable
object, this technique works perfectly. If an unhandled error occurs inside the SyncLock block, the lock is automatically
released.

Note that the lock is only used around the single statement that interacts with the collection. The Trace.Write() method call is not
included in the block. This ensures that the lock is held for the shortest possible time, and helps to wring every possible degree of
concurrency out of this solution.

Finally, you can accomplish exactly the same thing by using the synchronized wrapper provided by the Hashtable collection as
shown here:
Public Sub AddUser(ByVal [alias] As String, ByVal client As ITalkClient) _
 Implements TalkComponent.ITalkServer.AddUser

 Trace.Write("Added user '" & [alias] & "'")
 Dim SynchronizedCollection As Hashtable
 SynchronizedCollection = Hashtable.Synchronized(ActiveUsers)
 SynchronizedCollection([alias]) = client

End Sub

The synchronized wrapper returned by the Hashtable.Synchronized() method is identical to the original Hashtable in every respect
except for the fact that it wraps all its methods with locking statements to prevent concurrency problems. Thus, the previous code
sample is equivalent to manually locking the collection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tip In some cases, it's better to manually lock the collection yourself rather than use the synchronized wrapper. This is
primarily the case if you need to perform several tasks with the collection, one after the other. In this case, it will be better
to lock the object once and perform the work, rather than use the synchronized wrapper, which will obtain and release
the lock with each individual method call.

Either one of these approaches provides a good solution for the AddUser() and RemoveUser() methods, because they typically
execute quite quickly and hold the lock for mere fractions of a second. However, it's still possible to coax a little more performance
from your locking code by using the System.Threading.ReaderWriterLock class. This class allows you to create a lock that permits
only one user to write to the collection at a time, but allows multiple users to read from it. By implementing this design, you could
protect the AddUser() and RemoveUser() methods without locking out the harmless GetUsers() method.

To implement reader and writing locking, you must first create a member variable in the ServerProcess class that represents the
lock:
Private ActiveUsersLock As New ReaderWriterLock()

In the GetUsers() method, you would acquire a reader lock by using the AcquireReaderLock() method. This method accepts a
TimeSpan object that represents the interval of time to wait while attempting to acquire the lock before giving up. You can use –1
to specify an infinite wait, meaning the code won't time out (although the network connection eventually will, if the lock is never
obtained). In this case, we specify a more reasonable maximum of one minute. If the lock is not acquired within this time period,
an exception will be thrown.
Public Function GetUsers() As System.Collections.ICollection _
 Implements TalkComponent.ITalkServer.GetUsers

 ActiveUsersLock.AcquireReaderLock(TimeSpan.FromMinutes(1))
 Return ActiveUsers.Keys
 ActiveUsersLock.ReleaseReaderLock()
End Function

The AddUser() and RemoveUser() methods use the AcquireWriterLock() method, as shown in the following code snippet.
Public Sub AddUser(ByVal [alias] As String, ByVal client As ITalkClient) _
 Implements TalkComponent.ITalkServer.AddUser

 Trace.Write("Added user '" & [alias] & "'")
 ActiveUsersLock.AcquireWriterLock(TimeSpan.FromMinutes(1))
 ActiveUsers[alias] = client
 ActiveUsersLock.ReleaseWriterLock()
End Sub

Now multiple users can call the GetUsers() method and read from the collection at the same time without causing an error.
However, if the AddUser() or RemoveUser() method is executed, an exclusive lock will be required, which will temporarily prevent
any other read or write operation.

Remember, when using the ReaderWriterLock class, you should make sure to explicitly release the lock if an exception occurs
after you acquire it.

Creating a Delivery Service

Synchronizing the collection access with AddUser() and RemoveUser() is straightforward, once you understand a few threading
concepts. Doing the same with the message delivery isn't quite as easy. In an average system, the number of messages will be
quite high. It's not practical to lock the user collection each time you need to search for a message recipient, because the entire
system could shudder to a standstill.

Another option is to use a dedicated delivery service that runs on a separate thread, routing messages as needed. This delivery
service wouldn't use the ActiveUsers collection but rather a recent copy of the collection. This reduces thread contention, which
occurs when multiple clients try to grab the same resource, and some are left waiting. Best of all, the delivery service will operate
on a different thread from the pool of threads used to handle incoming requests. This ensures that the server won't become a
bottleneck, even if there's a measurable delay required in order to contact a remote client and transmit a message.

The delivery service should have the following basic skeleton:
Public Class DeliveryService
 ' Stores a copy of the ActiveUsers collection.
 Private RegisteredUsers As New Hashtable()
 ' Stores messages that haven't been delivered yet.
 Private Messages As New Queue()

 ' Adds a message to the queue.
 Public Sub RegisterMessage(ByVal message As Message)
 ' (Code omitted.)
 End Sub

 ' Updates the user list.
 Public Sub UpdateUsers(ByVal users As Hashtable)
 ' (Code omitted.)
 End Sub

 ' Keep the thread active as long as there are messages.
 ' After that, suspend it.
 Public Sub Deliver()
 ' (Code omitted.)
 End Sub

 ' Look up the remote client and send the message.
 Private Sub DeliverMessages()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub DeliverMessages()
 ' (Code omitted.)
 End Sub

End Class

In this example, messages are stored in a Queue object. Queues are first-in-first-out (FIFO) collections. Using a queue ensures
that messages are dealt with in the order that they're received, and none are delayed unreasonably.

The RegisterMessage() and UpdateUsers() methods are quite straightforward and need simple locking code to ensure that no
concurrency errors will occur as messages are registered or the user list is updated:
Public Sub RegisterMessage(ByVal message As Message)
 SyncLock Messages
 Messages.Enqueue(message)
 End SyncLock
End Sub

Public Sub UpdateUsers(ByVal users As Hashtable)
 SyncLock (RegisteredUsers)
 RegisteredUsers = users
 End SyncLock
End Sub

Messages are submitted as instances of the Message class, which encapsulates all the relevant information, including the sender,
recipient, and message text. Here's the class you'll need:
Public Class Message
 Private _SenderAlias As String
 Private _RecipientAlias As String
 Private _MessageBody As String

 Public Property SenderAlias() As String
 Get
 Return _SenderAlias
 End Get Set(ByVal Value As String)
 _SenderAlias = Value
 End Set
 End Property

 Public Property RecipientAlias() As String
 Get
 Return _RecipientAlias
 End Get
 Set(ByVal Value As String)
 _RecipientAlias = Value
 End Set
 End Property

 Public Property MessageBody() As String
 Get
 Return _MessageBody
 End Get
 Set(ByVal Value As String)
 _MessageBody = Value
 End Set
 End Property

 Public Sub New(ByVal sender As String, ByVal recipient As String, _
 ByVal body As String)
 Me.SenderAlias = sender
 Me.RecipientAlias = recipient
 Me.MessageBody = body
 End Sub
End Class

Message Delivery with the Delivery Service
The message delivery is performed in the DeliverMessages() method, while the Deliver() method keeps the thread alive, looping
continuously, and calling DeliverMessages() if there are items in the Messages queue. Remember, once a thread completes, it
cannot be resurrected. The only way to keep the message delivery thread alive is to use a loop in the Deliver() method and
explicitly suspend the thread when there's no work to do.
Public Sub Deliver()

 Do
 Trace.Write("Starting message delivery")
 DeliverMessages()

 ' Processing is complete. The thread can be put on hold.
 Trace.Write("Suspending thread")
 Thread.CurrentThread.Suspend()
 Loop

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

Another option would be to use some sort of timer to periodically scan the Messages queue and deliver messages. However, this
could lead to latency when delivering messages. If your timer fires every five seconds, for example, messages may take over five
seconds to be transmitted to their destination. Also, you would need to manually disable the timer while a message deliver was in
process, and re-enable it afterwards. Similar logic can be accomplished more efficiently using threads.

The majority of the work takes place in the DeliverMessages() method. The Messages collection is locked only to retrieve the next
message object, by calling Dequeue(). Calling this method retrieves the Message object and removes it from the queue. The
RegisteredUsers collection is locked during the lookup operation.
Private Sub DeliverMessages()

 Do While Messages.Count > 0
 Trace.Write("Retrieving next message")

 Dim NextMessage As Message
 SyncLock Messages
 NextMessage = CType(Messages.Dequeue(), Message)
 End SyncLock
 Dim Recipient As ITalkClient
 Dim MessageBody As String
 Dim Sender As String

 ' Look up the recipient.
 SyncLock RegisteredUsers

 If RegisteredUsers.ContainsKey(NextMessage.RecipientAlias) Then
 Recipient = CType(RegisteredUsers(NextMessage.RecipientAlias), _
 ITalkClient)
 MessageBody = NextMessage.MessageBody
 Sender = NextMessage.SenderAlias
 Else
 ' User wasn't found. Try to find the sender.
 If RegisteredUsers.ContainsKey(NextMessage.SenderAlias) Then
 Recipient = CType(RegisteredUsers(NextMessage.SenderAlias), _
 ITalkClient)
 MessageBody = "'" & NextMessage.MessageBody & _
 "' could not be delivered."
 Sender = "Talk .NET"
 Else
 ' Both sender and recipient were not found.
 ' Ignore this message.
 End If
 End If

 End SyncLock

 ' Deliver the message.
 If Not Recipient Is Nothing Then
 Trace.Write("Performing message delivery callback")
 Dim callback As New ReceiveMessageCallback(AddressOf _
 Recipient.ReceiveMessage)
 Try
 callback.BeginInvoke(MessageBody, Sender, Nothing, Nothing)
 Catch Err As Exception
 Trace.Write("Message delivery failed")
 End Try
 End If
 Loop

End Sub

Note Error handling is mandatory in the DeliverMessages() method. Because this method isn't directly called by the client,
exceptions will not propagate to the user-interface level. Any problems will simply derail the delivery thread, halting all
message delivery.

The threading used here is quite efficient. Because the RegisteredUsers collection is only updated periodically, and because
there's only ever one delivery operation running at a time on this thread, there's little likelihood of thread contention (when one
thread needs to wait for another one to finish using a resource and release its lock). The same is true of the Messages collection,
which is only locked briefly to retrieve or add a message.

Using the Delivery Service
To start using the new delivery service, you'll need to modify the server code. The first step is to create two additional member
variables in the ServerProcess class: MessageDelivery and DeliveryThread. MessageDelivery stores a reference to an instance of
the DeliveryService class, and DeliveryThread references the System.Threading.Thread object where it executes.
Public Class ServerProcess
 Inherits MarshalByRefObject
 Implements ITalkServer

 ' The object used for delivering messages.
 Private MessageDelivery As New DeliveryService()

 ' The thread where the message delivery takes place.
 Private DeliveryThread As New Thread(AddressOf MessageDelivery.Deliver)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private DeliveryThread As New Thread(AddressOf MessageDelivery.Deliver)

 Public Sub New()
 MyBase.New()
 DeliveryThread.IsBackground = True
 End Sub

 ' (Other code omitted.)

End Class

When the ServerProcess is first created, the delivery thread is configured to run in the background. This means that it will
automatically be aborted when the ServerProcess thread is destroyed. You could also use the ServerProcess constructor to
configure the priority of the delivery thread.

ServerProcess also needs to update the DeliveryService.RegisteredUsers collection periodically. One possibility is to update this
copy of the collection only when a user is added to the collection. At this point the server clones a new copy of the user collection,
and submits it to the delivery service. This ensures that the delivery service can always locate message recipients. It also doesn't
use much additional memory, because the duplicate collection actually references the same set of ITalkClient objects. It's only the
memory references that are actually duplicated.
Public Sub AddUser(ByVal [alias] As String, ByVal client As ITalkClient) _
 Implements TalkComponent.ITalkServer.AddUser

 Trace.Write("Added user '" & [alias] & "'")
 SyncLock ActiveUsers
 ActiveUsers([alias]) = client
 MessageDelivery.UpdateUsers(ActiveUsers.Clone())
 End SyncLock

End Sub

There's not much point to refresh the collection when users are removed because this won't help the delivery service, and it will
increase the potential for thread contention. Note that it's not necessary to lock the DeliveryService.Registered Users collection
because the DeliveryService.UpdateUsers() method performs this step on its own.

The ServerProcess.SendMessage() method also needs to change. It will no longer send the message directly. Instead, it will just
submit the message to the delivery service.
Public Sub SendMessage(ByVal senderAlias As String, _
 ByVal recipientAlias As String, ByVal message As String) _
 Implements TalkComponent.ITalkServer.SendMessage

 ' Register the message.
 Trace.Write("Queuing message to '" & recipientAlias & "_
 ' from '" & senderAlias & "'")
 Dim NewMessage As New Message(senderAlias, recipientAlias, message)
 MessageDelivery.RegisterMessage(NewMessage)

 ' Resume the thread if needed.

 If (DeliveryThread.ThreadState And ThreadState.Unstarted) = _
 ThreadState.Unstarted Then
 Trace.Write("Start delivery thread")
 DeliveryThread.Start()
 ElseIf (DeliveryThread.ThreadState And ThreadState.Suspended) = _
 ThreadState.Suspended Then
 Trace.Write("Resuming delivery thread")
 DeliveryThread.Resume()

 End If

End Sub

Once the message is queued, the status of the thread is checked. It's then started for this first time, if needed, or unsuspended. If
the thread is already actively delivering messages, it will not suspend itself. Instead, it will pick up the new message as soon as it
finishes delivering all the others.

Figure 5-1 and Figure 5-2 show two different views of this process. Figure 5-1 shows the interaction of the DeliveryService and the
ServiceProcess objects. Figure 5-2 shows the threading picture (where the code is executed). As you can see, when
ServiceProcess calls DeliveryService the code executes on the same thread. This is why synchronization code is needed: to
prevent the Remoting threads from conflicting with the delivery process.

Figure 5-1: Interaction with the DeliveryService

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-2: The threaded message delivery

Finally, Figure 5-3 shows the typical trace output after sending messages between clients.

Figure 5-3: Trace output for the threaded Talk .NET

Deadlocks and Other Threading Nightmares

We've haven't discussed some of the other potential hurdles of multithreaded programming, including deadlocking and thread
starvation. That's because these problems are unlikely to occur in Talk .NET. Deadlocks only appear when you're attempting to
acquire locks on multiple objects at the same time or when objects are trying to obtain locks on each other. The end result is a
stand-off where multiple segments of code wait for each other to surrender the lock they desire. Contrary to what some
programmers may have told you, deadlocks aren't always that difficult to avoid. The best advice is to never hold more than one
lock at a time, and to use fine-grained locks instead of coarse-grained critical sections. If you really must obtain multiple locks at
once, always make sure that you obtain them in the same order. Finally, if you're writing some really intricate threading code, you
would do well to master some of the more advanced classes in the System.Threading namespace. For example, using the
Monitor class, you can write intelligent threading code that prevents deadlocks by releasing all locks if it can't complete its task.

A more realistic danger is thread starvation, the condition that occurs when you have too many threads competing for the CPU,
and some threads never have the processor's attention for long enough to complete some reasonable work. This problem most
often occurs when you create too many threads, so that the operating system wastes a large amount of time tracking, scheduling,
and splicing from one thread to another. In the current delivery service, this isn't a problem because only one additional thread is
created and this thread is reused for all message delivery operations. In the next section, however, you'll learn about an alternate
design in which thread starvation is a real possibility and you'll see how the ThreadPool class can reduce the risk dramatically.

Using the ThreadPool

The delivery service design presented here will typically work very well, but it isn't the only option. Another solution is to create
multiple threads to handle the message delivery. This design is possible because each message delivery is a separate operation.
Using multiple threads allows the delivery of multiple messages to be performed asynchronously, potentially increasing delivery
times if the system is large and networking delays are significant. But it also requires more memory, because each thread will
have its own copy of the collection of registered users. In a real-world application, you would probably test both approaches with a
scaled-down, automated version of the application before you begin coding the full solution.

The basic operation of the system is shown in Figure 5-4. The idea is that a thread is created every time a message needs to be
delivered.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-4: Multiple thread message delivery

If you implemented this design by using the System.Threading.Thread class, you would quickly run into a few terrible headaches.
The overhead of creating and destroying threads would waste valuable server resources, and the system would perform poorly
under heavy user loads because it would create far too many threads for the CPU to track and manage effectively. Instead, most
of the computer's resources would be dedicated to tracking and scheduling threads, and the system would collapse under its own
weight.

Luckily, there's a better approach: using a thread pool. A thread pool is a dedicated group of threads that are reused indefinitely
(in much the same way the Remoting infrastructure uses threads to handle user requests). The advantages of thread pools
include the following:

Threads are only created once, so the overhead of creating and destroying threads is negligible.

Several operations can complete at the same time. With Remoting, this means that other messages won't be
stalled while the delivery service attempts to contact a disconnected client.

Thread pools multiplex a large number of requests to a small number of threads (typically about 25). This ensures
that the system never creates more threads than it can handle.

You can create a thread pool system on your own, but you'll need significant code to monitor the threads and distribute the work
appropriately. Thankfully,.NET provides a simple thread pool through the System.Thread.ThreadPool class. Using the ThreadPool
class is easy—the only disadvantages are threefold: you lack any way to configure how many threads it uses; you can't set
relative priorities; and you can't cancel tasks after they have been submitted. By default, the ThreadPool allocates about 25
threads per CPU.

To perform a task asynchronously with the ThreadPool, simply use the static QueueUserWorkItem() method with a delegate that
points to the method that should be executed.
ThreadPool.QueueUserWorkItem(AddressOf WorkMethod)

This schedules the task. When there is a free thread, the CLR will use it to execute the specified code.

To use the ThreadPool class with Talk .NET, you would first simplify the DeliveryService class:
Public Class DeliveryService

 Private RegisteredUsers As Hashtable
 Private NextMessage As Message

 Public Sub New (ByVal users As Hashtable, ByVal nextMessage As Message)
 RegisteredUsers = users
 NextMessage = nextMessage
 End Sub

 Public Sub DeliverMessage(state As Object)
 ' Deliver the message.
 Dim Recipient As ITalkClient
 Dim MessageBody As String
 Dim Sender As String

 ' There's no need to lock anything, because no other part of the
 ' application will communicate with this class once it is started.
 If RegisteredUsers.ContainsKey(NextMessage.RecipientAlias) Then
 Recipient = CType(RegisteredUsers(NextMessage.RecipientAlias), _
 ITalkClient)
 MessageBody = NextMessage.MessageBody
 Sender = NextMessage.SenderAlias

 Else
 ' User wasn't found. Try to find the sender.
 If RegisteredUsers.ContainsKey(NextMessage.SenderAlias) Then
 Recipient = CType(RegisteredUsers(NextMessage.SenderAlias), _
 ITalkClient)
 MessageBody = "'" & NextMessage.MessageBody & _
 "' could not be delivered."
 Sender = "Talk .NET"
 Else
 ' Both sender and recipient were not found.
 ' Ignore this message.
 End If
 End If

 ' Deliver the message.
 If Not Recipient Is Nothing Then
 Trace.Write("Performing message delivery callback")
 Dim callback As New ReceiveMessageCallback(AddressOf _
 Recipient.ReceiveMessage)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Recipient.ReceiveMessage)
 Try
 SyncLock Recipient
 callback.BeginInvoke(MessageBody, Sender, Nothing, Nothing)
 End SyncLock
 Catch Err As Exception
 Trace.Write("Message delivery failed")
 End Try
 End If

 End Sub
End Class

There's no longer any need to provide a form-level reference to the delivery object and thread in the ServerProcess class
(although you could store this information in a collection, if needed). The ServerProcess.SendMessage() method creates a new
DeliveryService object and queues it with the thread pool.
Public Sub SendMessage(ByVal senderAlias As String, _
 ByVal recipientAlias As String, ByVal message As String) _
 Implements TalkComponent.ITalkServer.SendMessage

 Dim NewMessage As New Message(senderAlias, recipientAlias, message)
 Dim NewDelivery As New DeliveryService(ActiveUsers.Clone(), NewMessage)

 Trace.Write("Queuing message to '" & recipientAlias & "_
 ' from '" & senderAlias & "'")
 ThreadPool.QueueUserWorkItem(NewDelivery.DeliverMessage)

End Sub

Note In this example, each thread is given a separate copy of the user collection. However, you must still lock the ITalkClient
object before you attempt to send a message, to prevent a problem that could occur if more than one delivery thread
tries to send a message to the same user at the same time. Remember, when you clone a collection, it still contains
the same objects.

There's only one such ThreadPool per application domain, so if you use it in more than one part of your application, all work items
will be constrained to the set number of threads.

Cleaning Up Disconnected Clients

Currently, neither of these examples go the extra length to remove a client when message delivery fails. In these multithreaded
examples, this step isn't as easy as it was in the nonthreaded version of Talk .NET. The problem is that it's not enough to remove
the user from the DeliveryService copy of the collection—if you do, it will simply reappear the next time the collection is copied
over, and it won't affect the contact list downloaded by the clients. Instead, the DeliveryService class needs to call the
ServerProcess.RemoveUser() method to make sure the central collection is modified.

In order to add this functionality, you need to create a DeliveryService class that stores a reference to the ServerProcess.

Public Class DeliveryService

 Public Server As ServerProcess

 ' (Other code omitted)

End Class

You could set this reference in the DeliveryService constructor. Then, you can use this reference to call RemoveUser() as needed:
Try
 callback.BeginInvoke(MessageBody, Sender, Nothing, Nothing)
Catch Err As Exception
 Trace.Write("Message delivery failed")
 Server.RemoveUser(Recipient)
End Try

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Threading and the Client
The most important place for threading code is at the coordination server, because it will regularly deal with simultaneous client
requests. That's why the last few sections have dealt exhaustively with server-side threading issues. However, the peers in the
system also expose an object through Remoting (called ClientProcess). That means that each client also has a pool of threads—
provided by the CLR—listening for remote method calls. The ClientProcess object will be invoked on a different thread from the
rest of the application, and multiple requests from different peers could be received at once.

What's worse, the code commits one of the cardinal sins of Windows programming: manipulating the user interface from a thread
that doesn't own it. To deal with this reality and prevent another level of subtle, maddening bugs, you need to fortify the client and
add some synchronization code.

Tip To verify that the event handlers for events such as MessageReceived and FileOfferReceived don't execute on the user-
interface thread, you can perform a simple test. Display the unique numeric identifier for the current thread
(Thread.CurrentThread.Hashcode), either by showing a MessageBox or writing a debug statement.You'll see that the
identifier for it isn't the same in the event handler as it is in other form methods.

Unfortunately, you can't lock user interface elements (such as controls). Instead, you need to ensure that code that interacts with
the user interface executes on the user-interface thread. The base .NET Control class provides an Invoke() method designed for
exactly this purpose. In order to execute a method on the user-interface thread, pass a reference to this method to the Invoke()
method, using the MethodInvoker delegate.
MyControl.Invoke(New MethodInvoker(AddressOf MyMethod))

The MethodInvoker delegate can point to any method that takes no parameters. This means you need to perform a little bit more
work if you want the method to have access to one or more variables. For example, in TalkClient, the method must have access to
a string variable with the message text in it. The easy way to allow this is to create a dedicated class that combines the method
with the required information. Here's the class used in the revised TalkClient:
Public Class UpdateControlText

 Private NewText As String

 ' The reference is retained as a generic control,
 ' allowing this helper class to be reused in other scenarios.
 Private ControlToUpdate As Control

 Public Sub New(ByVal newText As String, ByVal controlToUpdate As Control)
 Me.NewText = newText
 Me.ControlToUpdate = controlToUpdate
 End Sub

 ' This method must execute on the user-interface thread.
 Public Sub Update()
 Me.ControlToUpdate.Text &= NewText
 End Sub

End Class

As you can see, some effort has been made to ensure that this class is as generic as possible. It can be used to update the Text
property of any control in a thread-safe manner. Here's how you'll put it to work when receiving a message:
Private Sub TalkClient_MessageReceived(ByVal sender As Object, _
 ByVal e As MessageReceivedEventArgs) Handles TalkClient.MessageReceived
 ' Define the text.
 Dim NewText As String
 NewText = "Message From: " & e.SenderAlias
 NewText &= " delivered at " & DateTime.Now.ToShortTimeString()
 NewText &= Environment.NewLine & e.Message
 NewText &= Environment.NewLine & Environment.NewLine

 ' Create the object.
 Dim ThreadsafeUpdate As New UpdateControlText(NewText, txtReceived)

 ' Invoke the update on the user-interface thread.
 Me.Invoke(New MethodInvoker(AddressOf ThreadsafeUpdate.Update))

End Sub

Ideally, all methods that access the user interface should be performed on the user-interface thread. That means you'll need to
update the code that prompts the user to accept a file transfer in response to the FileOfferReceived method. Here's one option:
Private Sub TalkClient_FileOfferReceived(ByVal sender As Object, _
 ByVal e As TalkClient.FileOfferReceivedEventArgs) _
 Handles TalkClient.FileOfferReceived

 ' Create the user message describing the file offer.
 Dim Message As String
 Message = e.SenderAlias & " has offered to transmit the file named: "
 Message &= e.Filename & Environment.NewLine
 Message &= Environment.NewLine & "Do You Accept?"

 'Fortunately the MessageBox.Show method is thread-safe,
 'saving some work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'saving some work.
 Dim Result As DialogResult = MessageBox.Show(Message, _
 "File Transfer Offered", MessageBoxButtons.YesNo, MessageBoxIcon.Question)

 If Result = DialogResult.Yes Then

 Try
 Dim DestinationPath As String = "C:\TEMP\" & e.Filename

 ' Receive the file.
 TalkClient.AcceptFile(e.SenderAlias, e.FileIdentifier, _
 DestinationPath)
 ' Display information about it in the chat window.
 Dim NewText As String
 NewText = "File From: " & e.SenderAlias
 NewText &= " transferred at " & DateTime.Now.ToShortTimeString()
 NewText &= Environment.NewLine & DestinationPath
 NewText &= Environment.NewLine & Environment.NewLine
 Dim ThreadsafeUpdate As New UpdateControlText(NewText, txtReceived)
 Me.Invoke(New MethodInvoker(AddressOf ThreadsafeUpdate.Update))
 Catch err As Exception
 MessageBox.Show(err.Message, "Transfer Failed", _
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation)
 End Try
 End If

End Sub

You won't need to take any extra steps when updating the user list—this call is performed on the user-interface thread thanks to a
UI-friendly timer. This is the key difference between the System.Windows.Forms.Timer class and other classes in the
System.Timers namespace.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Refining Talk .NET
So far this chapter has investigated threading intricacies and rewritten all the parts of the Talk. NET system that are vulnerable to
threading problems. At this point, it's worth considering a few additional enhancements that you can make to round out Talk .NET.

Client Lifetime

Currently, there are only two ways that a client is removed from the user list: if the client logs out or if an error occurs when
sending that client a message. To improve the system and ensure it more accurately reflects the clients that are currently
connected, you can add an expiry time to the client login information. This expiry date should be fairly generous (perhaps 15
minutes) to prevent the system from being swamped by frequent network messages. Unfortunately, there will always be a trade-
off between ensuring the up-to-date accuracy of the system, and ensuring the optimal performance of the system.

In order to use an expiry policy, the ActiveUsers collection will need to store expiry dates (or last update times) and client
references. You handle this by creating a new class that aggregates these two pieces of information, such as the ClientInfo class
shown here:
Public Class ClientInfo

 Public ProxyRef As ITalkClient
 Public LastUpdated As DateTime

End Class

The ActiveUsers collection will then only store ClientInfo objects. Once the expiry dates are in place, there are two ways to
implement an expiry policy:

You could give the server the responsibility for calling a "dummy" method in the client that simply returns True. If
this method can be called without a networking error, the client's expiry date will be updated accordingly.

You can give the client the responsibility of contacting the server and logging in periodically before the expiry date is
reached.

Both methods are used in the current generation of peer-to-peer applications. The latter is generally preferred, because it
simplifies the server-side coding. It also ensures that the server won't have to wait for a communication error to detect an
improperly disconnected client. Instead, it will just inspect the expiry date. Because the server is a critical component in the
system, you should reduce its work as much as possible.

In either case, the server needs to periodically examine the list of logged-in users and remove invalid entries. This could be
performed on a separate thread or in response to a timer. The separate thread would probably create a copy of the collection
before examining it for expired users, in order to minimize locking possibilities. It would then double-check the live collection and
call the RemoveUser() method.

In Talk .NET, there's another, potentially more efficient approach. The client expiry date could be refreshed every time the client
calls the GetUsers() method. This reduces network traffic because the client is already calling GetUsers() as long as it's active in
order to keep its list of contacts up to date. To accommodate this design, you would need to modify the GetUsers() signature so
that it accepts the client name (or, in a secure application, a security token of some kind). Here's an example:

Public Sub GetUsers(requestingUser As String)

 SyncLock ActiveUsers
 ' Refresh the client last update time.
 CType(ActiveUsers(requestingUser), ClientInfo).LastUpdated = DateTime.Now
 ' Return the client list.
 Return ActiveUsers.Keys
 End SyncLock
End Sub

Note We will deal with expiry dates again in more detail when we create a discovery service in the third part of this book.

Duplicate Users

The current TalkServer makes no effort to prevent duplicate users. This is a problem because if there's more than one user that
logs on with the same name, only the most recent user will be entered in the collection (and will be able to receive messages).

To overcome this problem, you simply need to modify the ServerProcess.AddUser() method so that it refuses attempts to create
an already existing user.
Public Function AddUser(ByVal [alias] As String, ByVal client As ITalkClient) _
 As Boolean Implements TalkComponent.ITalkServer.AddUser
 SyncLock Me
 If ActiveUsers.Contains([alias])
 Return False
 Else
 ActiveUsers[alias] = client
 Return True
 End SyncLock
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

Similarly, TalkClient should be modified so that it will refuse to continue until it receives acceptance from the server:

Public Shared Sub Main()
 Dim frmLogin As New Login()

 Do
 If frmLogin.ShowDialog() = DialogResult.OK Then
 ' Create the new remotable client object.
 Dim Client As New ClientProcess(frmLogin.UserName)

 If frm.TalkClient.Login() Then
 ' Create the client form.
 Dim frm As New Talk()
 frm.TalkClient = Client

 ' Show the form.
 frm.ShowDialog()
 Else
 ' Login attempt failed. The loop will try it again.
 End If
 Else
 ' User chose to exit the application.
 Exit Do
 End If
 Loop

End Sub

Unfortunately this approach is still a little too restrictive. What happens in the legitimate case that a user wants to log in again after
the application disconnected due to network problems? The user could use a new alias or wait for the old information to expire,
but this is still far from ideal. One option is to add a "dummy" method to the ClientProcess. When faced with a duplicate login
request, the server could then call this dummy method and, if it receives an error, it would determine that the current client is
invalid and allow the new login request.

If you implement an authentication system, this code may change. In the case of an authentication system, it's safe to assume
that if a user who already exists logs in again, the old information should be replaced without asking any questions, provided the
user's identity is confirmed (typically by comparing the supplied password against a database).

Using a Windows Service

Remoting and Windows services make a great match. Currently, the TalkServer component host uses a Windows Form interface.
This imposes some limits— namely, it requires someone to launch the application, or at least log on to a server computer so it can
be loaded automatically. Windows services, on the other hand, require no user intervention other than starting the computer. The
TalkServer, if implemented as a Windows service, will run quietly in the background, logged in under a preset account, even if the
computer isn't currently in use, or is still at the Windows Login screen. Administrators using the computer can interact with
Windows Services through the Service Control Manager (SCM), which allows services to be started, stopped, paused, and
resumed.

This book won't explore Windows services in much detail, as they're already covered in many introductory .NET books, and they
aren't specific to peer-to-peer development. However, it's surprisingly easy to create a simple Windows service to host the Talk
.NET peer-to-peer system, and it's worth a quick digression.

The first requirement is to understand a few basics about programming aWindows service in .NET. Here's a quick summary of the
most important ones:

Windows services use the classes in the System.ServiceProcess namespace. These include ServiceBase (from
which every Windows service class must derive), and ServiceInstaller and ServiceProcessInstaller (which are used
to install a service).

Windows services cannot be tested in the Visual Studio .NET environment. Instead, you must install the service
and start it using the SCM.

When you start a Windows service, the corresponding OnStart() method is called in the service class. This method
only has 30 seconds to set up the service, usually by enabling a timer or starting a new thread. The OnStart()
method does not actually perform the required task.

When the service is stopped, the OnStop() method is called. This tears down whatever resources the OnStart()
method sets up.

To create a Windows service, Visual Studio .NET programmers can start by creating a Windows service project. The project will
contain a single class that inherits from ServiceBase as well as the installation classes that you'll generate later.

In Talk .NET, the Windows service plays a simple role. It configures the .NET Remoting channels in the OnStart() method and
unregisters them in the OnStop() method. Once these channels are in existence, the Talk .Net ServiceProcess object will be
created with the first client requests, and preserved until the service is stopped.

Following is a simple service that does exactly that. The code sample includes a portion of the hidden designer code, so you can
better see how it works.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Imports System.ServiceProcess
Imports System.Runtime.Remoting
Imports System.Runtime.Remoting.Channels

Public Class TalkNetService
 Inherits System.ServiceProcess.ServiceBase
 Public Sub New()

 MyBase.New()
 InitializeComponent()
 End Sub

 Private Sub InitializeComponent()
 ' (The code for all design-time property configuration appears here.)
 Me.ServiceName = "Talk .NET Service"
 End Sub

 <MTAThread()> _
 Shared Sub Main()
 ServiceBase.Run(New TalkNetService())
 End Sub

 ' Register the listening channels.
 Protected Overrides Sub OnStart(ByVal args() As String)
 RemotingConfiguration.Configure("SimpleServer.exe.config")
 End Sub

 ' Remove all the listening channels.
 Protected Overrides Sub OnStop()
 Dim Channel As IChannel
 For Each Channel In ChannelServices.RegisteredChannels()
 ChannelServices.UnregisterChannel(Channel)
 Next
 End Sub

End Class

The lifetime of a service runs something like this:
1. When the service is installed or when the computer is started, the Main() method is invoked. The Main() method

creates a new instance of the service and passes it to the base ServiceBase.Run() method. This loads the
service into memory and provides it to the SCM, but does actually start it.

2. The next step depends on the service configuration—it may be started automatically, or the user may have to
manually start it by selecting it with a tool such as the Computer Management utility.

3. When the service is started, the SCM calls the OnStart() method of your class. However, this method doesn't
actually perform the work, it just prepares it (starting a new thread, creating a timer, or something else). If
OnStart() doesn't return after approximately 30 seconds, the start attempt will be aborted and the service will be
terminated.

4. Afterward, the service does its actual work. This may be performed continuously on a separate thread, in
response to a timer tick or another event, or (as in this example) in response to client requests through the
Remoting infrastructure.

Installing the Windows Service

Windows service applications cannot be executed from inside Visual Studio .NET. To test your service, you need to create an
installer. Visual Studio .NET will perform this step automatically: Just click on your service code file, switch to the design
(component) view, and click the Add Installer link that appears in the Properties window (see Figure 5-5). A new ProjectInstaller.vb
file will be added to your project, which contains all the code required to install the service.

Figure 5-5: Creating a service installer in Visual Studio .NET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tip You can configure some of the default service settings before you install the service by configuring the properties of the
ServiceProcessInstaller and ServiceInstaller classes. Set the ServiceProcessInstaller.Account property to LocalService if
you want the service to run under a system account, rather than the account of the currently logged-in user. Set the
ServiceInstaller.StartType property to Automatic if you want the service to be configured to start automatically when the
computer boots up. Both of these details can be configured manually using the Computer Management utility.

At this point, you can either use the generated installation components in a custom setup application, or you can use the
InstallUtil.exe utility included with .NET. First, build the project. Then, browse to the directory where the executable was created
(typically the bin directory) and type in the following instruction:
InstallUtil TalkNetService.exe
The output for a successful install operation is shown in Figure 5-6.

Figure 5-6: Installing a service with InstallUtil.exe

You can now find and start the service using the Computer Management administrative tool. In the Control Panel, select
Computer Management from the Administrative Tools group, and right-click the Talk .NET Service (see Figure 5-7).

Figure 5-7: Starting the service through the SCM

To update the service, you need to recompile the executable, uninstall the existing service, and then reinstall the new service. To
uninstall a service, simply use the /u parameter with InstallUtil:
InstallUtil TalkNetService.exe /u

Debugging the Windows Service

This implementation works exactly the same as before, except trace messages will no longer be captured by the
TraceFormListener. Also, the only way to end the service will be through the SCM, not by closing the trace form.

What happens if you want to capture the trace messages and inspect them later? As discussed in Chapter 4, you can use another
type of TraceListener and write messages to a text file or an event log. If you don't want to create a permanent record of
messages, but you want to watch the messages "live," and possibly debug the service source code, you can still use the Visual
Studio .NET debugger. You simply need to attach the debugger to the service manually.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's how it works. First you start Visual Studio .NET. Then, you open the TalkService project. This step isn't required, but it
allows you to set breakpoints and single-step through the code easily. Finally, assuming the Talk .NET Service is running, select
Tools Debug Processes from the Visual Studio .NET menu. The Processes window will appear, as shown in Figure 5-8.

Figure 5-8: Finding the service

If you're running the service under a system account, you must select the "Show system processes" check box, or the service
won't appear in the list. When you find the TalkService, select it and click Attach. Finally, in the Attach to Process window (Figure
5-9), select the Common Language Runtime check box to debug the code as a CLR application, and click OK.

Figure 5-9: Attaching the Visual Studio .NET debugger to a service

Trace messages will now appear in the Debug window (as shown in Figure 5-10), and Visual Studio .NET will be able to work its
usual debugging magic with breakpoints, single-stepping, and variable watches.

Figure 5-10: The trace output in Visual Studio .NET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
This chapter dove into threading intricacies and the heavy lifting you need to manage concurrent access with the coordination
server. Many of these concepts are important for any type of application, but this chapter placed a special focus on the trade-offs
and design decisions of Talk .NET so that you can develop a better idea of how to structure a peer-to-peer system. Of course,
though we've taken Talk .NET through several stages in evolution, it probably isn't production-ready. To actually deploy it in the
real world, you would need to spend much more time profiling and tweaking the code.

In the next chapter, we'll take peer-to-peer systems with Remoting in an entirely new direction and consider how to build a task
manager for distributed computing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6: Building a Distributed Task Manager

Overview
The Remoting Framework developed over the last few chapters isn't limited to messenger-style applications. In fact, it may be
better suited for an entirely different type of application: a distributed supercomputer.

One of the best-known examples of this type of application is SETI@Home, which harnesses the power of idle personal
computers to digest large amounts of astronomical data in search of unusual signals. SETI@Home, like the messenger
application we've created, isn't a pure peer-to-peer application—it depends on a central server that plays a key role in coordinating
the entire system, and it doesn't make use of any peer interaction. Nevertheless, the bulk of the actual work is performed at the
edges of the network, by ordinary peers.

This type of distributed processing works well with the Remoting architecture because it doesn't require frequent interaction across
the network. Typically, peers will run independently to perform their work, and messages will only be exchanged when starting or
completing a task. Thus, the higher-level object abstraction that Remoting uses is perfectly suitable. In fact, inventing a proprietary
messaging format and communication protocol for this sort of system might just be overkill.

In this chapter you'll look at how to build your own peer-to-peer task processor system for specific tasks and how to extend the
system to handle dynamically defined task types. Along the way, you'll also consider how .NET code-access security allows you to
build a better sandbox and execute user-supplied code without risking the threat of Trojans, viruses, and worms.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Distributed Computing Issues
Distributed computing (also described as grid computing, parallelism, and clustering) isn't suitable for all tasks. For example, an
operation that takes a relatively short amount of time may actually be lengthened by the overhead needed to send network
messages to other peers—not to mention the additional work needed to divide the problem into multiple chunks and reassemble
the answer.

Most significantly, distributed computing increases the overall complexity of the system and often makes it more fragile. That's
because distributed computing raises other issues that aren't encountered if a single process is doing the same work. These
problems include

How to handle communication errors.

How to track free workers and in-progress tasks.

How to deal with a worker that doesn't respond in a timely fashion.

How to allocate work intelligently, depending on the perceived complexity of the problem and the computing
resources (or communication speed) of the worker.

Most developers think of distributed computing as a way to break a single problem down into multiple pieces that can be worked
on, independently, by multiple machines. This is the ideal scenario, but not the only case. In some instances, you might use a
distributed-computing framework just to remove a bottleneck for a highly computational task on a server. For example, a web
service that receives task requests could deliver these requests to a task manager. The task manager would then send each task
to a separate computer. The overall throughput of the system would increase, but each individual task wouldn't be broken down or
reassembled. We'll examine this pattern, which is often easier to manage in the enterprise world, toward the end of this chapter.

If you want to shorten the time taken to complete individual tasks, rather than simply improve the overall throughput of an
application, you'll need to take advantage of parallelism by dividing each task into multiple pieces. Some problems are much more
suitable for this approach than others. For example, in the next section you'll consider a work manager that calculates prime
number lists. In this case, the problem (searching a range of values for prime numbers) is one that can easily be subdivided into
smaller pieces, like many search and analysis tasks. However, some tasks can only be performed with all the data. One example
is the encryption of a large amount of information with cipher-block streaming. In this case, each block of data is encrypted using
information from the preceding block, and it's impossible to encrypt the data separately (although distributed computing is used
with other cryptography problems, such as cracking unbreakable ciphers).

Parallelism also introduces a new kind of fragility because the overall process is only as successful as its weakest link. If you have
a worker that goes offline in the middle of a task, or operates very slowly, the whole task will be held back. To avoid this problem,
you can store statistics about peers and use the most reliable ones wherever possible. You might also want to regularly poll a
worker to retrieve its progress so you can cancel a slow-running task and reschedule it elsewhere. Or you may want to simply
assign a task multiple times (if you have a large pool of workers) and use the first received task results. This approach might seem
wasteful, but in a large environment, it provides increased robustness through redundancy.

Finally, note that some tasks aren't well suited for any type of distributed computing. These include operations that perform simple
tasks with large amounts of data, in which case the overhead required to transmit the information might not be worth the relatively
minor benefits of parallelism. Generally, tasks that make heavy use of computation (for example, CPU-intensive calculations) are
the best choices for distributed computing.

Note For more information about new initiatives in distributed computing, you may be interested in visiting
http://www.globus.org, which is a research project aimed at developing tools for grid computing on a large scale. They
currently provide a toolkit for Java and are considering the promise of .NET. Another worthwhile site is
http://www.gridforum.org, which is a community of researchers and developers working on emerging issues in grid
computing.

In the next few sections, we'll create a distributed work system that's designed to solve a single problem: finding prime numbers.
For maximum speed, it uses multiple workers in a single operation and assembles their results with a work manager.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Defining the Task Interface
The first step, as with the messaging application in Chapter 4, is to define the objects used to transmit messages and the common
interfaces that are exposed through Remoting. In this example, we'll need three interfaces: a task worker, a work manager, and a
task requester. In the actual implementation, the task worker and task requester interfaces will be implemented by the same
application so that all peers can perform and request work, but this isn't a requirement.

Figure 6-1 shows how messages will be processed in our system.

Figure 6-1: The work request process

Figure 6-2 shows a slightly simplified view of steps that would occur with a request and a single worker. It works like this:
1. The work manager receives a TaskRequest object.

2. The work manager stores a Task object internally in a collection.

3. The work manager divides the work into segments and sends available workers a TaskSegment object with a
part of the work.

4. When the workers finish, they send back the TaskSegment with the result information added.

5. When all task segments have been received, the work manager compiles the information into a TaskResults
object and sends it to the client.

Figure 6-2: The order of work request steps

The TaskComponent Interfaces

The ITaskServer interface defines methods for registering and unregistering peers, for receiving a task request, and for receiving
a task-completed notification. Optionally, you might want to add a method such as ReceiveTaskCancel(), which would allow a
worker to signal that it's unable to finish processing the assigned task (possibly because it's shutting down).
Public Interface ITaskServer

 ' These methods allow workers to register and unregister with the server.
 Function AddWorker(ByVal callback As ITaskWorker) As Guid
 Sub RemoveWorker(ByVal workerID As Guid)

 ' This method is called to send a task-complete notification.
 Sub ReceiveTaskComplete(ByVal taskSegment As TaskSegment, _
 ByVal workerID As Guid)

 ' This method is used to register a task.
 Function SubmitTask(ByVal taskRequest As TaskRequest) As Guid

End Interface

The ITaskWorker interface defines a single method for receiving a task assignment. In addition, you might want to add a
CancelTask() method, which allows the server to cancel a task (perhaps if the worker is taking too long and another peer is
faster), and a CheckTaskRunning() method, which would allow the server to regularly poll the worker to verify that work is still
underway.
Public Interface ITaskWorker
 ' The server calls this to submit a task to a client.
 Sub ReceiveTask(ByVal task As TaskSegment)

End Interface

Finally, the ITaskRequester defines a single method for receiving the final task results. You could add an additional method here
to send a failure notification if a problem occurs midway through the process (for example, a worker application disconnects
without finishing its work and there are no other available workers to assign the segment to).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Interface ITaskRequester

 Sub ReceiveResults(ByVal results As TaskResults)

End Interface

These interfaces are all coded in a separate DLL, called the TaskComponent. In addition, two delegates are defined, which are
used on the server side to easily launch certain methods asynchronously:
Public Delegate Sub ReceiveTaskDelegate(ByVal taskSegment As TaskSegment)
Public Delegate Sub ReceiveResultsDelegate(ByVal results As TaskResults)

Message Objects

The next step is to define the objects that route task information around the network. These include the following:

TaskRequest, which identifies the initial task parameters.

TaskSegment, which identifies the task parameters for a portion of the task, and the task results for that segment
once it's complete.

TaskResults, which contain the aggregated results from all task segments, which are delivered to the client who
made the initial request.

All of these classes are task-specific. In other words, you must customize them with different properties depending on the type of
task your system is designed to tackle. In addition, the server uses a Task object to store information about requested and in-
progress tasks.

The TaskRequest, TaskSegment, and TaskResults classes are all defined in the TaskComponent assembly because they're a
necessary part of the interface between the remote components. The Task class, however, is not defined here, because it's only
used by the server, and it can be modified without affecting other parts of the system.

The message objects are serializable, include default constructors, and use public variables. This allows them to be adapted for
use with a web service, if needed.

The TaskRequest defines a range of numbers (between FromNumber and ToNumber). This is the range of values that will be
searched for prime numbers. In addition, the TaskRequest indicates the ITaskRequester client that should be notified when the
prime number list has been calculated.
<Serializable()> _
Public Class TaskRequest

 Public Client As ITaskRequester
 Public FromNumber As Integer
 Public ToNumber As Integer
 Public Sub New(ByVal client As ITaskRequester, ByVal fromNumber As Integer, _
 ByVal toNumber As Integer)
 Me.Client = client
 Me.FromNumber = fromNumber
 Me.ToNumber = toNumber
 End Sub

 Public Sub New()
 ' Default constructor.
 End Sub

End Class

The TaskSegment class resembles TaskRequest, with a few additions. It now stores a TaskID and SequenceNumber. The
SequenceNumber is used when reassembling segments to ensure that the answers are ordered properly. The TaskSegment
class also identifies the GUID of the worker who has been assigned this task, and a Primes integer array that will hold the results
when the TaskSegment is sent back to the server.
<Serializable()> _
Public Class TaskSegment

 Public TaskID As Guid
 Public SequenceNumber As Integer
 Public FromNumber As Integer
 Public ToNumber As Integer
 Public WorkerID As Guid

 ' This holds the task results.
 Public Primes() As Integer

 Public Sub New(ByVal taskID As Guid, ByVal fromNumber As Integer, _
 ByVal toNumber As Integer, ByVal sequenceNumber As Integer)
 Me.TaskID = taskID
 Me.FromNumber = fromNumber
 Me.ToNumber = toNumber
 Me.SequenceNumber = sequenceNumber
 Me.WorkerID = WorkerID
 End Sub

 Public Sub New()
 ' Default constructor.
 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

The TaskResults class stores information about the full range of numbers (the same information used in the TaskRequest) as well
as the list of prime numbers (as an array of integers named Primes).
<Serializable()> _
Public Class TaskResults

 Public Primes() As Integer
 Public FromNumber As Integer
 Public ToNumber As Integer

 Public Sub New(ByVal fromNumber As Integer, ByVal toNumber As Integer, _
 ByVal results() As Integer)
 Me.Primes = results
 Me.FromNumber = fromNumber
 Me.ToNumber = toNumber
 End Sub

 Public Sub New()
 ' Default constructor.
 End Sub

End Class

The Task Logic

It also makes sense to define the task processing logic in a separate component. For convenience, we'll add this logic to the
TaskComponent.

There are many different mathematical methods for finding primes in a range of numbers (as well as methods for testing probable
primes). One historical method that's often cited for finding small primes (those less than 10,000,000) is the sieve of Eratosthenes,
invented by Eratosthenes in about 240 B.C. In this method, you begin by making a list of all the integers in a range of numbers.
You then strike out the multiples of all primes less than or equal to the square root of the maximum number. The numbers that are
left are the primes.

In this chapter, we won't go into the theory that proves the sieve of Eratosthenes works or show the fairly trivial code that performs
it. However, the full code is presented with the online examples for this chapter, and it takes this form:
Public Class Eratosthenes

 Public Shared Function FindPrimes(ByVal fromNumber As Integer, _
 ByVal toNumber As Integer) As Integer()
 ' (Code omitted.)
 End Function

End Class

The sieve of Eratosthenes is an excellent test for the distributed work manager because it can take quite a long amount of time,
and it depends solely on the CPU speed of the computer. Calculating a list of primes between 1,000,000 and 5,000,000 might
take about ten minutes on an average computer.

Tip For more information about the sieve of Eratosthenes, see http://primes.utm.edu/links/programs/sieves/Eratosthenes,
which contains a wealth of resources about prime-number searching and the math involved.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating the Work Manager
The work manager follows a similar pattern to the coordination server developed for the Talk .NET system over the last two
chapters. Perhaps the most important detail is the information that the work manager stores in its memory, which includes the
collections shown here:
Private Workers As New Hashtable()
Private Tasks As New Hashtable()

The Workers collection tracks information about the registered peers and how to reach them using WorkerRecord objects. These
objects are indexed by the WorkerID. The Tasks collection holds a collection of Task objects, which represent the ongoing,
currently scheduled tasks. Objects in the Tasks collection are indexed by TaskID. To write more error-proof code, you could
replace the worker and task hashtables with custom dictionary collections that can only hold WorkerRecord and Task objects
respectively. These custom dictionary collections would derive from System.Collections.DictionaryBase.

The work manager can also use private variables to store global preferences. In this fairly simple example, we'll only use one
custom setting: an integer that sets the maximum number of workers that can be assigned to a task. This helps to ensure that
other workers will be free to serve new requests. It also prevents a task from being broken into so many separate pieces that the
communication time begins to become a factor.
Private MaxWorkers As Integer

The MaxWorkers settings is read from a configuration file when the server object is created:
Public Sub New()
 MyBase.New()

 ' Retrieve configuration settings.
 MaxWorkers = Int32.Parse(ConfigurationSettings.AppSettings("MaxWorkers"))
End Sub

For our test, we'll allow three maximum workers:
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="MaxWorkers" value="3" />
 </appSettings>

 <system.runtime.remoting>
 <!-- Remoting settings omitted. -->
 </system.runtime.remoting>
</configuration>

The work manager also uses the trace component used in the messenger application, which shows a window with trace
messages that indicate what actions the server has performed.

Tracking Workers

The server provides an AddWorker() method that allows peers to register themselves in the Workers collection, and a
RemoveWorker() method that allows peers to remove themselves. The following is the code for these methods:

Public Function AddWorker(ByVal callback As TaskComponent.ITaskWorker) _
 As System.Guid Implements TaskComponent.ITaskServer.AddWorker

 Dim Worker As New WorkerRecord(callback)
 SyncLock Workers
 Workers(Worker.WorkerID) = Worker
 End SyncLock
 Trace.Write("Added worker " & Worker.WorkerID.ToString())
 Return Worker.WorkerID

End Function

Public Sub RemoveWorker(ByVal workerID As System.Guid) _
 Implements TaskComponent.ITaskServer.RemoveWorker

 SyncLock Workers
 Workers.Remove(workerID)
 End SyncLock
 Trace.Write("Removed worker " & workerID.ToString())

End Sub

Note that the RemoveWorker() method assumes that the worker has finished all its tasks before exiting. Clearly, it would make
sense to add a check to this code that looks for outstanding TaskSegments registered to this worker and tries to reassign them.

Workers are stored as WorkerRecord objects, as shown in the following example. Each worker has a globally unique identifier
(GUID), which is generated automatically when the WorkerRecord class is instantiated. This allows workers to be identified
uniquely on a network, without needing to assign them preexisting names (like a user alias). It's a technique you'll use again in
later peer-to-peer examples in this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Class WorkerRecord

 Private _WorkerID As Guid = Guid.NewGuid()
 Private _WorkerReference As ITaskWorker
 Private _TaskAssigned As Boolean = False

 Public ReadOnly Property WorkerID() As Guid
 Get
 Return _WorkerID
 End Get
 End Property

 Public ReadOnly Property ITaskWorker() As ITaskWorker
 Get
 Return _WorkerReference
 End Get
 End Property

 Public Property TaskAssigned() As Boolean
 Get
 Return _TaskAssigned
 End Get
 Set(ByVal Value As Boolean)
 _TaskAssigned = Value
 End Set
 End Property

 Public Sub New(ByVal worker As ITaskWorker)
 _WorkerReference = worker
 End Sub

End Class

The WorkerRecord also provides a TaskAssigned property, which is initially set to False. In our simple example, a worker can be
assigned at most one task. A more sophisticated worker might be able to hold a queue of task requests and deal with them one by
one. In this case, you would replace the TaskAssigned Boolean variable with a TasksAssigned integer count. When assigning a
task, the server would look for peers that have the lowest number of assigned tasks first.

Tasks

When the server receives a TaskRequest, it creates a new Task object. The Task object stores the original Task data, along with
additional information, including

The GUID, which the Task class generates automatically.

A collection that contains WorkerRecords for the workers that are processing the segments of this task.

A hashtable with an entry for each TaskSegment result. These entries are indexed by sequence number.

The Task class code is shown here:

Public Class Task

 Private _TaskID As Guid = Guid.NewGuid()

 ' The original task information.
 Private _Request As TaskRequest

 ' Holds WorkerRecord objects.
 Private _WorkersInProgress As New ArrayList()

 ' Holds partial prime lists, indexed by sequence number.
 Private _TaskResults As New Hashtable()

 Public ReadOnly Property TaskID() As Guid
 Get
 Return _TaskID
 End Get
 End Property

 Public ReadOnly Property Request() As TaskRequest
 Get
 Return _Request
 End Get
 End Property

 Public Property Workers() As ArrayList
 Get
 Return _WorkersInProgress
 End Get
 Set(ByVal Value As ArrayList)
 _WorkersInProgress = Value
 End Set
 End Property

 Public Property Results() As Hashtable
 Get
 Return _TaskResults

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Return _TaskResults
 End Get
 Set(ByVal Value As Hashtable)
 _TaskResults = Value
 End Set
 End Property

 Public Function GetJoinedResults() As Integer()
 ' (Code omitted.)

 End Function

 Public Sub New(ByVal taskRequest As TaskRequest)
 _Request = taskRequest
 End Sub

End Class

The Task class also contains a GetJoinedResults() method that steps through the hashtable or results and combines all values
into a large array, which can then be returned to the client. Each entry in the hashtable is an array of primes that represents the
solution for part of the original requested range. The code uses the fact that the entries in the results hashtable are indexed by
their sequence number. Thus, as long as all the segments are present, they can be reassembled in order by starting with
sequence number 0, regardless of the actual order in which the results were received.
Public Function GetJoinedResults() As Integer()

 ' Count the number of primes.
 Dim NumberOfPrimes As Integer
 Dim SegmentResults() As Integer
 Dim i As Integer For i = 0 To _TaskResults.Count - 1
 SegmentResults = CType(_TaskResults(i), Integer())
 NumberOfPrimes += SegmentResults.Length
 Next

 ' Create the whole array.
 Dim Results(NumberOfPrimes - 1) As Integer

 ' Combine the partial results, in order.
 Dim Pos As Integer
 For i = 0 To _TaskResults.Count - 1

 SegmentResults = CType(_TaskResults(i), Integer())
 SegmentResults.CopyTo(Results, Pos)
 Pos += SegmentResults.Length
 Next

 Return Results
End Function

Dispatching Tasks

The bulk of the work manager logic takes place in the SubmitTask() method, which receives a task request, breaks it into
segments, and assigns it. The first step is to examine the request information and verify that it's valid.
' Validate task request.
If taskRequest.FromNumber > taskRequest.ToNumber Then
 Throw New ArgumentException("First number must be smaller than the second.")
End If

Note that the error condition leads to an exception. That means that SubmitTask() shouldn't be implemented as a one-way
method, or the client will not receive this information.

Next, the code judges the range of numbers. If the range is very small, it decides to only send the request to one worker.
Otherwise, it uses the full number of maximum workers allowed by MaxWorkers.
' Calculate if the task can benefit from parallelism.
Dim TotalRange As Integer = taskRequest.ToNumber - taskRequest.FromNumber
Dim MaxWorkersForTask As Integer
If TotalRange < 10000 Then
 MaxWorkersForTask = 1
Else
 MaxWorkersForTask = MaxWorkers
End If

Tip Depending on your design, it might make most sense to encapsulate the logic for validating a task and evaluating the
Task range with dedicated methods in the Task class. This would be particularly useful if you wanted the work manager
to manage more than one type of task. In this case, you would create a generic interface (possibly named ITask) that
you would implement in all your Task classes.

Assuming these two steps succeed, a new Task object is created.
' Create the task.
Dim Task As New Task(taskRequest)

Next, the code searches for free workers. It attempts to use as many workers as there are available (up to the specified
maximum), and it takes the first available workers it finds. This may include the worker making the request, which is perfectly
reasonable. The workers are added to the Tasks.Workers collections and immediately marked as assigned.
Dim Worker As WorkerRecord

' This lock ensures that the server won't try to allocate two different

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

' This lock ensures that the server won't try to allocate two different
' tasks to the same worker if the requests arrive simultaneously.
SyncLock Workers
 ' Try to find workers for this task.
 Dim Item As DictionaryEntry
 For Each Item In Workers
 Worker = CType(Item.Value, WorkerRecord)
 If Not Worker.TaskAssigned Then
 Worker.TaskAssigned = True
 Task.Workers.Add(Worker)
 End If
 If Task.Workers.Count >= MaxWorkersForTask Then Exit For
 Next

End SyncLock

Next, a quick check is made to ensure that there's at least one worker, or an exception will be thrown.
If Task.Workers.Count = 0 Then
 Throw New ApplicationException("No free workers. Try again later.")
End If

The work of dividing the task into segments begins next. First, a calculation is made to determine an average range for numbers.
For example, if there's a total range of 100,000 and three workers to handle it, the average range is 33,333. The first two workers
will receive this range of numbers, while the last will receive everything that remains (in this case 33,334 items). Once the
segment is constructed, it's sent asynchronously to the worker by calling the worker's ReceiveTask() method.
Trace.Write("Trying to assign " & Task.Workers.Count.ToString() & _
 " worker(s) for task " & Task.TaskID.ToString())

' Calculate segment sizes.
Dim Segment As TaskSegment
Dim LowerBound As Integer = taskRequest.FromNumber
Dim AverageRange As Integer = Math.Floor(TotalRange / Task.Workers.Count)
Dim i As Integer

' Divide the task into segments, and dispatch each segment.
' This code will be skipped if there's only one segment because
' (WorkersToUse.Count - 2) will equal 0.
Dim ReceiveTask As ReceiveTaskDelegate
For i = 0 To Task.Workers.Count - 2
 Segment = New TaskSegment(Task.TaskID, LowerBound, _
 LowerBound + AverageRange, i)
 LowerBound += AverageRange + 1
 Worker = CType(Task.Workers(i), WorkerRecord)
 Segment.WorkerID = Worker.WorkerID
 ReceiveTask = New ReceiveTaskDelegate(AddressOf _
 Worker.ITaskWorker.ReceiveTask)
 ReceiveTask.BeginInvoke(Segment, Nothing, Nothing)
Next

' Create the last segment to get the remaining numbers.
Segment = New TaskSegment(Task.TaskID, LowerBound, taskRequest.ToNumber, i)
Worker = CType(Task.Workers(Task.Workers.Count - 1), WorkerRecord)
Segment.WorkerID = Worker.WorkerID

ReceiveTask = New ReceiveTaskDelegate(AddressOf Worker.ITaskWorker.ReceiveTask)
ReceiveTask.BeginInvoke(Segment, Nothing, Nothing)

Finally, the Task object is stored in the Tasks collection.
' Store the Task object.
SyncLock Tasks
 Tasks.Add(Task.TaskID, Task)
End SyncLock

Trace.Write("Created and assigned task " & Task.TaskID.ToString() & ".")

Completing Tasks

The work manager's ReceiveTaskComplete() method is the last part of the ITaskServer interface. It receives completed
TaskSegment objects, adds them to the corresponding Task (from the in-memory Tasks collection), and then marks the worker as
available. If the number of received results equals the number of task segments, the task is declared complete. A notification
message is sent to the original task requester with the list of primes, and the task is removed from memory.

Public Sub ReceiveTaskComplete(ByVal taskSegment As TaskSegment, _
 ByVal workerID As System.Guid) _
 Implements TaskComponent.ITaskServer.ReceiveTaskComplete

 Trace.Write("Received result sequence #" & _
 taskSegment.SequenceNumber.ToString() & " for task " & _
 taskSegment.TaskID.ToString() & ".")

 Dim Task As Task = CType(Tasks(taskSegment.TaskID), Task)
 Task.Results.Add(taskSegment.SequenceNumber, taskSegment.Primes)

 ' Free up worker.
 Dim Worker As WorkerRecord = CType(Workers(taskSegment.WorkerID), _
 WorkerRecord)
 Worker.TaskAssigned = False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Check if this is the final submission.
 If Task.Results.Count = Task.Workers.Count Then

 SyncLock Tasks
 Trace.Write("Task " & Task.TaskID.ToString() & " completed.")
 Dim Primes() As Integer = Task.GetJoinedResults()
 Dim Results As New TaskResults(Task.Request.FromNumber, _
 Task.Request.ToNumber, Primes)
 Dim ReceiveResults As New ReceiveResultsDelegate(_
 AddressOf Task.Request.Client.ReceiveResults)
 ReceiveResults.BeginInvoke(Results, Nothing, Nothing)

 ' Remove task.
 Tasks.Remove(Task.TaskID)
 End SyncLock

 End If

End Sub

You might choose to implement the ReceiveTaskComplete() method as a one-way method for maximum performance because
the worker doesn't need to receive any information or exceptions that might be raised on the server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating the Task Worker
The peer application performs two functions: It allows a user to submit task requests, and it performs prime number calculations
when instructed to by the server.

To encourage users to run the worker component continuously, it uses a system tray interface. When the application is first
started, it loads a system tray icon. Users can right-click the system tray icon to receive a menu with options for exiting the
application or submitting new tasks, as shown in Figure 6-3. Another option would be to implement the worker as a Windows
service that starts automatically when the computer boots up.

Figure 6-3: The worker in the system tray

The System Tray Interface

Creating a system tray application is quite easy. First, we create a Component class that holds the logic for the ContextMenu and
NotifyIcon controls. All component classes have a design-time surface where you can create and store these objects, much like
the component tray when designing a form. This allows you to configure the menu properties quickly using designers, rather than
code it all manually in your startup class.

The skeleton for this class is shown here:
Public Class Startup
 Inherits System.ComponentModel.Component
 Friend WithEvents mnuContext As System.Windows.Forms.ContextMenu
 Friend WithEvents mnuShowStatus As System.Windows.Forms.MenuItem
 Friend WithEvents mnuSeparator As System.Windows.Forms.MenuItem
 Friend WithEvents mnuExit As System.Windows.Forms.MenuItem

 Friend WithEvents TrayIcon As System.Windows.Forms.NotifyIcon

 ' This is the object that provides the client-side remotable interface.
 Private Client As New ClientProcess()

 ' This is the main status form. We create it here to ensure that there's
 ' ever only one instance.
 Private frm As New MainForm()

 Public Sub New()
 frm.Client = Client
 InitializeComponent()
 End Sub

 Private Sub InitializeComponent()
 ' (Designer code omitted.)
 End Sub

 ' (Event handlers go here.)
End Class

On startup, the code creates our component, ensures the NotifyIcon is visible, and logs in to the server through the remotable
ClientProcess.
Public Shared Sub Main()

 Dim Startup As New Startup()
 Startup.TrayIcon.Visible = True

 ' Create the new remotable client object.
 Startup.Client.Login()

 ' Prevent the application from exiting prematurely.
 System.Windows.Forms.Application.Run()

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

The NotifyIcon has an attached context menu, which is immediately available. The menu items allow the user to exit the
application or access the main window:
Private Sub mnuShowStatus_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles mnuShowStatus.Click

 frm.Show()

End Sub

Private Sub mnuExit_Click(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles mnuExit.Click

 If Client.Status = BackgroundStatus.Processing Then
 MessageBox.Show("A background task is still in progress.", "Cannot Exit")
 Else
 Try
 Client.LogOut()
 Catch
 ' Ignore error that might occur if server no longer exists.
 End Try

 ' Clear the system tray icon manually.
 ' Otherwise, it may linger until the user moves the mouse over it.
 TrayIcon.Visible = False

 System.Windows.Forms.Application.Exit()
 End If

End Sub

The ClientProcess

The ClientProcess class follows a similar model to the chat client in our earlier Talk .NET example. It calls server methods to
request a new task and receives task-complete notifications or task requests. If it receives information that the main form needs to
access, it raises an event. In addition, it includes two readonly properties, which provide the server-generated GUID and the
current status (which indicates if the worker is currently carrying out a prime number search). The possible status values are
provided in an enumeration:
Public Enum BackgroundStatus
 Processing
 Idle
End Enum

Note that the ClientProcess class works both as a task worker (by implementing ITaskWorker) and as a TaskRequester (by
implementing ITaskRequester). Here's the essential code, without the remotable methods:
Public Class ClientProcess
 Inherits MarshalByRefObject
 Implements ITaskWorker, ITaskRequester
 ' This event occurs when work begins or ends on the background thread.
 Public Event BackgroundStatusChanged(ByVal sender As Object, _
 ByVal e As BackgroundStatusChanged)

 ' This event occurs when the prime number series is received
 ' (answer to a query).
 Public Event ResultsReceived(ByVal sender As Object, _
 ByVal e As ResultsReceivedEventArgs)

 ' The reference to the server object.
 Private Server As ITaskServer

 ' The server-assigned ID.
 Private _ID As Guid
 Public ReadOnly Property ID() As Guid
 Get
 Return _ID
 End Get
 End Property

 ' Indicates whether prime number work is being carried out.
 Private _Status As BackgroundStatus = BackgroundStatus.Idle
 Public ReadOnly Property Status() As BackgroundStatus
 Get
 Return _Status
 End Get
 End Property

 Public Sub New()

 ' Configure the client channel for sending messages and receiving
 ' the server callback.
 RemotingConfiguration.Configure("TaskWorker.exe.config")

 ' Create the proxy that references the server object.
 Server = CType(Activator.GetObject(GetType(ITaskServer), _
 "tcp://localhost:8000/WorkManager/TaskServer"), ITaskServer)

 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

 Public Sub Login()
 ' Register the current worker with the server.
 _ID = Server.AddWorker(Me)
 End Sub

 Public Sub LogOut()
 Server.RemoveWorker(ID)
 End Sub

 ' This override ensures that if the object is idle for an extended
 ' period, it won't lose its lease and be garbage collected.
 Public Overrides Function InitializeLifetimeService() As Object
 Return Nothing
 End Function

 ' Submits client's request to the server.
 Public Sub FindPrimes(ByVal fromNumber As Integer, ByVal toNumber As Integer)
 Server.SubmitTask(New TaskRequest(Me, fromNumber, toNumber))
 End Sub

 <System.Runtime.Remoting.Messaging.OneWay()> _
 Public Sub ReceiveTask(ByVal task As TaskComponent.TaskSegment) _
 Implements TaskComponent.ITaskWorker.ReceiveTask
 ' (Code omitted.)
 End Sub

 <System.Runtime.Remoting.Messaging.OneWay()> _
 Public Sub ReceiveResults(ByVal results As TaskComponent.TaskResults) _
 Implements TaskComponent.ITaskRequester.ReceiveResults
 ' (Code omitted.)
 End Sub

End Class

The remotable ReceiveTask() and ReceiveResults() methods are both implemented as one-way methods so that the server won't
be put on hold while the client deals with the information. The ReceiveTask() method performs all of its work directly in the method
body, and then returns the completed segment to the server. An event is fired to notify the client form when the processing status
changes.
_Status = BackgroundStatus.Processing
' Raise an event to alert the form that the background thread is processing.
RaiseEvent BackgroundStatusChanged(Me, _
 New BackgroundStatusChanged(BackgroundStatus.Processing))

' Find the prime numbers and submit the list to the server.
task.Primes = Erastothenes.FindPrimes(task.FromNumber, task.ToNumber)
Server.ReceiveTaskComplete(task, ID)
' Raise an event to alert the form that the background thread is finished.
_Status = BackgroundStatus.Idle
RaiseEvent BackgroundStatusChanged(Me, _
 New BackgroundStatusChanged(BackgroundStatus.Idle))

Alternatively, you could implement a separate thread to do this work, which would then call ReceiveTaskComplete() when
finished. This would give the client the ability to cancel, prioritize, or otherwise monitor the thread as needed.

The ReceiveResults() method simply raises an event to the client with the list of primes:
' Raise an event to notify the form.
RaiseEvent ResultsReceived(Me, New ResultsReceivedEventArgs(results.Primes))

Here's the code detailing the two custom EventArgs objects used by the ClientProcess:
Public Class ResultsReceivedEventArgs
 Inherits EventArgs

 Private _Primes() As Integer
 Public Property Primes() As Integer()
 Get
 Return _Primes
 End Get
 Set(ByVal Value As Integer())
 _Primes = Value
 End Set
 End Property

 Public Sub New(ByVal primes() As Integer)
 _Primes = primes
 End Sub

End Class

Public Class BackgroundStatusChanged
 Inherits EventArgs

 Private _Status As BackgroundStatus
 Public Property Status() As BackgroundStatus
 Get
 Return _Status
 End Get

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Get
 Set(ByVal Value As BackgroundStatus)
 _Status = Value
 End Set
 End Property

 Public Sub New(ByVal status As BackgroundStatus)
 Me.Status = status
 End Sub
End Class

The Main Form

The main form allows the user to submit new tasks and see if the local worker is currently occupied with a task segment. The form
is shown in Figure 6-4.

Figure 6-4: The main form

The form code is quite straightforward. When the user clicks the Find Primes button, the start time is recorded and the
ClientProcess.FindPrimes() method is called, which will forward the request to the server. If there's an error (for example, the
server can't find any available workers), it will appear in the interface immediately.
Private StartTime As DateTime

Private Sub cmdFind_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdFind.Click

 txtResults.Text = ""
 lblTimeTaken.Text = ""

 Try
 StartTime = DateTime.Now
 Client.FindPrimes(txtFrom.Text, txtTo.Text)
 Catch Err As Exception
 MessageBox.Show(Err.ToString())
 End Try

End Sub

The form handles both the BackgroundStatusChanged and the ResultsReceived events, and updates the interface accordingly.
However, before the update is performed, the code must be marshaled to the correct userinterface thread. To accomplish this
goal, we reuse the UpdateControlText object introduced in the last chapter.
Public Class UpdateControlText

 Private NewText As String

 ' The reference is retained as a generic control,
 ' allowing this helper class to be reused in other scenarios.
 Private ControlToUpdate As Control

 Public Sub New(ByVal newText As String, ByVal controlToUpdate As Control)
 Me.NewText = newText
 Me.ControlToUpdate = controlToUpdate
 End Sub

 ' This method must execute on the user-interface thread.
 Public Sub Update()
 Me.ControlToUpdate.Text = NewText

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Me.ControlToUpdate.Text = NewText
 End Sub

End Class

When the background status changes, a label control is modified accordingly:
Private Sub Client_BackgroundStatusChanged(ByVal sender As Object, _
 ByVal e As TaskWorker.BackgroundStatusChanged) _
 Handles Client.BackgroundStatusChanged

 Dim NewText As String
 If e.Status = BackgroundStatus.Idle Then
 NewText = "The background thread has finished processing its " & _
 "prime number query, and is now idle."
 ElseIf e.Status = BackgroundStatus.Processing Then
 NewText = "The background thread has received a new " & _
 "prime number query, and is now processing it."
 End If

 Dim ThreadsafeUpdate As New UpdateControlText(NewText, lblBackgroundInfo)

 ' Invoke the update on the user-interface thread.
 Me.Invoke(New MethodInvoker(AddressOf ThreadsafeUpdate.Update))

End Sub

When results are received, the array of prime numbers is converted to a long string, which is used to fill a text box. A StringBuilder
object is used to quickly build up the string. This operation is much faster than string concatenation, and the difference is dramatic.
If you run the same code without using a StringBuilder, you'll notice that the Time Taken label is updated long before the prime
number list appears.
Private Sub Client_ResultsReceived(ByVal sender As Object, _
 ByVal e As TaskWorker.ResultsReceivedEventArgs) Handles Client.ResultsReceived

 Dim NewText As String
 NewText = DateTime.Now.Subtract(StartTime).ToString()
 Dim ThreadsafeUpdate As New UpdateControlText(NewText, lblTimeTaken)

 ' Invoke the update on the user-interface thread.
 Me.Invoke(New MethodInvoker(AddressOf ThreadsafeUpdate.Update))

 Dim Builder As New System.Text.StringBuilder()
 Dim Prime As Integer
 For Each Prime In e.Primes
 Builder.Append(Prime.ToString() & " ")
 Next
 NewText = Builder.ToString()
 ThreadsafeUpdate = New UpdateControlText(NewText, txtResults)

 ' Invoke the update on the user-interface thread.
 Me.Invoke(New MethodInvoker(AddressOf ThreadsafeUpdate.Update))

End Sub

There are a couple of additional form details that aren't shown here. For example, if the user attempts to close the form, you need
to make sure that it isn't disposed, only hidden. You can see all the details in the code download provided for this chapter.

Figure 6-5 shows a prime number query that was satisfied by multiple clients.

Figure 6-5: A completed prime number query

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-6 shows the server log for the operation.

Figure 6-6: The server trace transcript

Tip If you run multiple instances of the TaskWorker on the same computer, you'll be able to test the system, but the
processing speed won't increase. That's because all workers are still competing for the resources of the same computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enhancing the Work Manager
Distributed computing is easy with .NET Remoting, but it's difficult to do well. In order to manage the system, you need a
dedicated work manager that must be coded very carefully, or it could weaken the entire system.

Many potential enhancements to the work-manager system deal with improving the work manager itself. The next few sections
describe several possibilities.

Queuing

Currently, tasks are allocated as soon as they are received, much as messages were immediately sent with the first version of the
Talk .NET coordination server. With a queued work manager, new task requests would be stored in memory. A dedicated work
manager thread would periodically scan the queued tasks and allocate them to workers. One advantage of this approach is that it
would allow the work manager to hold on to submitted tasks that can't be fulfilled right away (because there are no available
workers). This approach would also allow you to deal with worker cancellations.

Fortunately, this design is easy to implement. In fact, you've already seen it, in Chapter 5 with an asynchronous message delivery!
This design can be adapted almost exactly to the work manager coordinator.

You might also want to use the worker manager queuing thread to monitor currently assigned tasks. In this case, you could
remove an assigned task if a peer doesn't respond after a long amount of time, and assign it to a different worker. If the task is
extremely important and the system is working over a fast network, you might even want to add a GetProgress() method in the
worker, which the server could call periodically to verify that a task is properly underway.

Queuing could also be applied in the worker itself. In this scenario, work segments would be added to a collection in memory. A
separate thread would perform the actual work and would retrieve a new task segment as soon as the current one is finished.

Note For a demonstration of queuing in action, refer to the revamped coordination server in Chapter 5, or the file transfer
application that we'll develop in Chapter 9.

Performance Scoring

Currently, the work manager assigns work to the first available workers. This means that in a system with lots of extra capacity,
the workers registered near the top of the collection will serve the most requests.

If you have peers of widely different abilities or connection speeds, you might want to assign work more intelligently. In this case,
the server needs to track information about each worker. This information would probably be stored in the WorkerRecord object,
although you could create another class and store it in a different hashtable (indexed by a worker ID) to reduce tread contention.

There are several questions you need to answer with performance scoring:

What statistics will you measure?

How often will you retrieve the statistics?

How will you combine the statistics to arrive at a single performance metric?

How will the performance metric influence the work assignment or worker choice?

For example, you might decide to track the peer's uptime, the number of task segments the peer has processed, the average
response time for completing a task segment, and so on. Then, you need to provide a property that combines these details to
arrive at a single number. There's no magic formula here—you may need to tweak this calculation based on experience. Here's an
example that combines this information with different weighting
Performance Score = Total Uptime In Minutes - (Average Task Time In Minutes) * 50

In this case, the higher the performance score, the better. The average task time is weighted by a factor of 50 representing its
importance relative to the total uptime.

Finally, now that you have this information, you need to optimize your work-assignment algorithm. There are two basic choices
here:

Sort the collection of available workers by performance score. Then, take the workers with the best performance
score, and use only them.

Use the workers as normal, but adjust the amount of work given to them so that the best performing workers
receive the greatest share of the work. For example, in the prime number example, a better performing worker
would receive a larger range of numbers.

The first approach is best suited to the prime number example. The second approach works well when you have a problem with a
high degree of parallelism (for example, a task that's being divided into dozens of task segments).

Writing Directly to a Result Store

In the distributed prime number example, all communication flows through the central work manager. In some cases, you may be
able to reduce the amount of communication by using peers that store their results directly. This technique is primarily useful when
you're using a distributed-computing framework to remove a processing bottleneck but aren't dividing individual tasks into multiple
segments.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, consider a web service that allows clients to upload graphic projects that will be rendered on the server and stored
on a hard drive. This task is extremely CPU-intensive, so you're unlikely to perform it inside the web-service method itself. Instead,
the web service might forward the request to a back-end work manager. The client would check for the completed file at a later
date.

In this scenario, the work manager doesn't necessarily need to receive the results from the peers because it doesn't need to
contact the client directly or reassemble multiple task segments. The workers will still send back a task-complete
acknowledgement to the work manager in order to confirm that the work was completed and that it doesn't need to be
resubmitted. However, the workers can store the results directly in a database, file, or some other sort of permanent storage.

To support this design, the task request message would need to contain information about how the task results should be
serialized. To ensure maximum flexibility, you could define an abstract class to use like this:
<Serializable()> _
Public MustInherit Class ResultStore
End Class

Following is an example result store that contains the information needed to store results in a database:
<Serializable()> _
Public Class DatabaseStore
 Inherits ResultStore

 Public DatabaseConnection As String
 Public Table As String
 Public TaskIDFieldName As String
 Public ClientIDFieldName As String
 Public ResultFieldName As String

End Class

Now the work manager would create a DatabaseStore method and send it to the appropriate worker with the task request. The
worker would complete the task and then store it directly in the specified location.

A Generic Task Client

In the prime number work manager, the work manager system is tightly bound to the type of problem (in this case, calculating
prime numbers). The message formats are hard-coded to use certain properties that only make sense in this context. Then the
task-submission logic implements the task-specific code needed to divide the range of prime numbers into shorter lists, and so on.
This limits the flexibility of the system.

You might be able to create a more flexible system by creating a work manager that supports multiple types of tasks, defining a
generic interface for all task objects, and moving some of the code into the task object itself. However, the task server and
workers would still need to reference the assemblies for all the types of tasks.

What if there were a way for a requester to define a new type of task with a request? This would allow you to create a distributed
computer that could tackle any client-defined problem, without needing to modify and redeploy the software. In fact, this is
possible with .NET, but it isn't suitable in all situations.

The basic concept is for the task requester to submit a .NET assembly (as an array of bytes) with the task. The worker would then
save this file to disk, and load the task processor using reflection. The worker only needs to know the name of the class, which it
uses to instantiate the task-specific object. It could call methods in a generic task interface (for example, IGenericTask.DoTask())
to perform its work. The data would be returned as a variable-sized byte array, which only the client would be able to interpret.

Here's a snippet of code that creates an object in an assembly, knowing only its name and an interface that it supports:
' Load an assembly from a file.
Dim TaskAssembly As System.Reflection.Assembly
TaskAssembly = System.Reflection.Assembly.LoadFrom("PrimeNumberTest.dll")

' Instantiate a class from the assembly.
Dim TaskProcess As IGenericTask
TaskProcess = CType(TaskAssembly.CreateInstance("TaskProcessor"), IGenericTask)

' (You can now call TaskProcess.DoTask() to perform the task.)

Tip The Assembly.LoadFrom() method provides several useful overloaded versions. One version takes a URI that points to
a remote assembly (possibly an assembly, which can include a Universal Naming Convention (UNC) path to an
assembly on another computer, or a URL to an assembly on a web server). This version is particularly useful because
the assembly is transparently copied to the local GAC, where it's cached. If you use LoadFrom() in this way to instantiate
an assembly that already exists in the GAC, the local copy is used, thereby saving time.

To make this example even more generic, the DoTask() method uses a byte array for all input parameters and the return value,
which allows you to store any type and length of data.
<Serializable()> _
Public Class TaskRequest
 Public Client As ITaskRequester
 Public InputData() As Byte
 Public OutputData() As Byte

End Class

The easiest way to convert the real input and output values into a byte array is to use a memory stream and a BinaryWriter.
Here's the code you would use to call the prime number test component generically. It's included with the online examples for this
chapter in the DynamicAssemblyLoad project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim ms As New MemoryStream()
Dim w As New BinaryWriter(ms)

' Write the parameters to the memory stream.
w.Write(FromValue)
w.Write(ToValue)

' Convert the memory stream to a byte array.
Dim InputData() As Byte = ms.ToArray()

' Call the task, generically.
Dim OutputData() As Byte = TaskProcess.DoTask(InputData)

' Convert the returned values (the list of primes) using a BinaryReader,
' and display them.
ms = New MemoryStream(OutputData)
Dim r As New BinaryReader(ms)
Do Until ms.Position = ms.Length
 Console.WriteLine(r.ReadInt32())
Loop

Of course, this approach sacrifices some error-checking ability for the sake of being generic. If the caller doesn't encode
parameters in the same way that the task processor decodes them, an error will occur.

A Configurable Sandbox

As it stands, the generic task client is a perfect tool for distributing a malicious virus on a broad scale. Once an assembly is saved
to a user's local hard drive, it has full privileges and can take any action from calculating prime numbers to deleting operating
system files. In other words, an attacker could define a malicious task, and your system would set to work executing it
automatically!

Fortunately, there's a solution. You need to build your own code sandbox and carefully restrict what the assembly can do. This is
the approach taken by the peer-to-peer .NET Terrarium learning game. It allows you to restrict a dynamically loaded assembly so
that it can't perform any actions other than the ones you allow. The code for this task is somewhat lengthy, but it works remarkably
well. We'll examine the code you need piece by piece.

All the changes are implemented in the worker application. The goal is to create a way that the worker can identify user-supplied
assemblies, and assign them less permissions before executing them. In order to create this design, you'll need to create a
custom-evidence class, a membership condition, and a policy level.

First of all, you need to create a serializable Evidence class that will be used to identify assemblies that should be granted lesser
permission. This class doesn't require any functionality because it acts as a simple marker.
<Serializable()> _
Public NotInheritable Class SandboxEvidence
End Class

Next, you need to create a MembershipCondition class that implements IMembershipCondition. This class is responsible for
implementing a Check() method that scans a collection of evidence and returns True, provided it finds an instance of
SandboxEvidence. (In other words, the SandboxMembership Condition class checks whether an assembly should be sandboxed.)

The abbreviated code is shown here. It leaves out some of the methods you must include for XML serialization. However,
because you don't need to store this membership condition (it is implemented programmatically), these methods simply throw a
NotImplementedException.
<Serializable()> _
Public NotInheritable Class SandboxMembershipCondition
 Implements IMembershipCondition

 Public Function Check(ByVal ev As Evidence) As Boolean _
 Implements IMembershipCondition.Check

 Dim Evidence As Object
 For Each Evidence In ev
 If TypeOf Evidence Is SandboxEvidence Then
 Return True
 End If
 Next
 Return False
 End Function

 ' (Other methods omitted.)

End Class

Now you have the required ingredients to create a safe sandbox. The first step is to determine what permissions sandboxed code
should be granted. In this case, we'll only allow it the Execute permission. This allows it to perform calculations, allocate memory,
and so on, but doesn't allow it to access the file system, a database, or any other system resource.
' Create a permission set with the permissions the dynamically loaded assembly
' should have.
Dim SandBoxPerms As New NamedPermissionSet("Sandbox", PermissionState.None)
SandBoxPerms.AddPermission(New SecurityPermission(SecurityPermissionFlag.Execution))

Now that you've defined the permissions, you need to create a policy that will apply them. A policy level is essentially a tree of
code groups. At runtime, the .NET security infrastructure will examine each code group. When it finds a code group with a
membership condition that matches the evidence provided with the assembly, it takes the permission set from the code group and
uses it for all the code that executes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this case, you need a policy tree with two groups:

A group that matches the SandboxEvidence and grants the limited SandBoxPerms permission set.

A group that matches all other code and grants full privileges.

In addition, you need a root group that contains both these groups and defines a "first match" rule. This organization is shown in
Figure 6-7 and Figure 6-8.

Figure 6-7: Granting all permissions to the worker assembly

Figure 6-8: Granting reduced permissions to the task assembly

The code you need is shown here:
Dim Policy As PolicyLevel = PolicyLevel.CreateAppDomainLevel()
Policy.AddNamedPermissionSet(SandBoxPerms)

' The policy collection automatically includes an "everything" and
' a "nothing" permission set. We need to use these.
Dim None As NamedPermissionSet = Policy.GetNamedPermissionSet("Nothing")
Dim All As NamedPermissionSet = Policy.GetNamedPermissionSet("Everything")

Dim SandboxCondition As New SandboxMembershipCondition()
Dim AllCondition As New AllMembershipCondition()

' The default group grants nothing.
Dim RootCodeGroup As New FirstMatchCodeGroup(AllCondition, _
 New PolicyStatement(None))

' Code with the SandboxEvidence is given execute permission only.
Dim SandboxCodeGroup As New UnionCodeGroup(SandboxCondition, _
 New PolicyStatement(SandBoxPerms))

' All other code will be given full permission.
Dim AllCodeGroup As New UnionCodeGroup(AllCondition, New PolicyStatement(All))

' Add these membership conditions.
RootCodeGroup.AddChild(SandboxCodeGroup)
RootCodeGroup.AddChild(AllCodeGroup)
Policy.RootCodeGroup = RootCodeGroup

Finally, you set the policy to the current application domain using the SetAppDomainPolicy() method. This method can only be
called once.
' Set this policy into action for the current application.
AppDomain.CurrentDomain.SetAppDomainPolicy(Policy)

You can then load the task assembly—but with a twist. When you load it, you'll specify a SandboxEvidence object that will identify
the assembly as one that needs to run with reduced permissions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

' Create the evidence that identifies assemblies that should be sandboxed.
Dim Evidence As New Evidence()
Evidence.AddHost(New SandboxEvidence())

' Load an assembly from a file.
' We specify the evidence to use as an extra parameter.
Dim TaskAssembly As System.Reflection.Assembly
TaskAssembly = System.Reflection.Assembly.LoadFrom("PrimeNumberTest.dll", _
 Evidence)

' (Instantiate the class as before.)

Note You can test this code using the DynamicAssemblyLoad project included with the samples for this chapter. If you add
any restricted code to the task processor (for example, an attempt to access the file system), a security exception will
be thrown when you execute it.

Toward a Pure Peer-to-Peer Task Manager

The distributed computing example in this chapter relied on a central component to coordinate work. However, this isn't
incompatible with the peer-to-peer programming philosophy. That's because a peer in the prime number system can act both as a
worker and a task requester. The next step is to allow a peer to play all three roles: worker, requester, and coordinator, for its own
tasks.

One way to implement this is to reduce the role of the central component, as you'll see in the third part of this book. For example,
you could replace the work manager with a basic discovery server. A peer that wants to request a task would then query the
server, which could return a list containing a subset of available workers. The peer would then contact these peers to begin a new
task. In this scenario, you would need to use a two-stage commit protocol. First, the peer would contact workers and ask if they
were available. If the worker is available, it would respond "yes" and make itself unavailable for any other requests for a brief time
period while it waits for an assignment from the requester (possibly five minutes). Next, the requester peer would deliver task
segments to all the workers it had reserved. (See Figure 6-9.)

Figure 6-9: The two-stage request process with a decentralized work manager

Of course, decentralization has its sacrifices, and a fully decentralized task processor might not be what you want at all. Without a
central authority, it's easy for a malicious (or just plain greedy) peer to monopolize network resources. Also, it's difficult to modify
the rules for prioritizing tasks and determine how to subdivide them into task segments, because every peer would need to be
updated. For those reasons, a hybrid design such as the one developed in this chapter may be the most effective and practical.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
In this chapter, we considered the design of a distributed work manager. This type of application promises vastly improved
performance, but introduces new complications and requires much more work than a stand-alone application. However, the
benefits increase as the pool of available workers increases and the task load mounts. SETI@Home, the largest public-distributed
computing project in terms of computing power, reached a record 71 teraflops per second on September 26, 2001. By
comparison, the fastest individual computer in the world, IBM's ASCI White, runs at 12.3 teraflops per second. ASCI White costs
over $100 million, while SETI@Home cost an estimated $500,000 to develop.

Distributed computing is highly dependent on the problem domain. Some approaches work well for certain types of problems, and
some tasks are inherently more suited to distributed computing than others. Most distributed supercomputers have their own
individual approaches, which are customized based on the task and type of data. In the future, it's likely that broader standards
and a consistent framework will emerge from communities such as the Global Grid Forum (http://www.gridforum.org) and Globus
(http://www.globus.org). For a list of some current large-scale distributed applications with their performance information, visit
http://www.aspenleaf.com/distributed/distrib-projects.html.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part Three: Peer-to-Peer with a Discovery Server
Chapter List

Chapter 7: Networking Essentials

Chapter 8: Building a discovery Web Service

Chapter 9: Building a File Sharer

Chapter 10: Using a Discovery Service with Remoting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7: Networking Essentials
So far, we've used the Remoting infrastructure to communicate between applications. However, peer-to-peer applications often
need to work at a lower level and take networking, sockets, and broadcasts into their own hands.

In this chapter, we'll cover the essentials of network programming with .NET. We'll start by reviewing the basics of physical
networks and network protocols such as the Internet Protocol (IP), Transmission Control Protocol (TCP), and User Datagram
Protocol (UDP), and then consider the support that's built into the System.Net namespace. We'll also present sample applications
that demonstrate how you can stream data across a network with a TCP or UDP connection. All of this is in preparation for the
peer-to-peer file-sharing application we'll develop over the next two chapters.

Network Basics
A network is defined simply as a group of devices connected by communication links. A traditional local area network (LAN)
connects devices over a limited area, such as a company website or an individual's house. Multiple local area networks are
connected into a wide area network (WAN) using a variety of technologies. In fact, the Internet is nothing more than a high-speed
backbone that joins together millions of LAN networks.

Networks are made up of four key physical components (not including the cabling), as described here:

A network interface card (NIC) is the adapter that connects a device to a LAN. In a personal computer, all traffic
flows through the network card.

A hub connects multiple devices in a LAN. Essentially, traffic received by the hub is forwarded to every device
connected to the hub.

A switch connects multiple hubs or devices. It works like a hub, but with intelligence. Traffic received by a hub is
forwarded to a destination node based on a lookup table stored in the switch. In the past, switches were most often
used to connect hubs, but the low cost of switches and their superior performance means that many modern
networks connect devices directly to switches.

A router connects multiple subnets. Each subnet may consist of connected devices, hubs, and switches.

Figure 7-1 shows a sample network diagram that puts these parts into perspective.

Figure 7-1: The network hierarchy

Programming tasks rarely require any understanding of the physical makeup of a network. What's much more important are the
protocols used to encode information sent over a network link. Understanding the technology used to transfer information around
a network can be difficult, because there are layers upon layers of different protocols that work in conjunction. At the transport
level, most of the computers or devices connected to the network use the Ethernet Protocol. Ethernet defines the electrical signals
that devices use to communicate on the wire. Other layers are built on top of the transport protocol, as shown in Figure 7-2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-2: The network protocol stack

This diagram simplifies life slightly by concentrating on the protocols with which you'll need to work when programming a peer-to-
peer application. For example, it doesn't mention other network-level technologies for data linking, such as frame relay, or
Internet-layer protocols such as the Internet Control Message Protocol (ICMP), which is used to manage and report errors
between devices on a network and the Internet Group Management Protocol (IGMP), which is used to join multicast groups.

Each of the layers in Figure 7-2 plays a critical role in networking; you'll be introduced to them over the next few sections.

Internet Protocol

The Internet Protocol (IP) is an addressing protocol that's one of the cornerstones of the modern Internet. With IP, every device on
a network is assigned a unique 32-bit (four bytes) numeric address, called the IP address. Usually, the address is represented in a
dotted quad notation, as in 192.145.0.1. Each of these four values represents one byte of the IP address, and can thus be a
number from 0 to 255.

According to IP, nodes on a network must send information using IP datagrams. Each datagram contains the actual data that's
being sent and an IP header. The IP header is the important part—it allows the maze of switches and routers in between the
source and the destination to direct the message appropriately. The IP header contains quite a bit of information, but the most
important details are as follows:

The time to live (in hops). For example, if a message only has five hops to live, it can only cross five routers before
it will be discarded. Of course, the IP packet might take several independent paths, each one of which will be limited
to five hops.

The IP address of the device that sent the message.

The IP address of the device that should receive the message.

Of course, you'll never need to create an IP header or break your data into separate IP packets on your own because the .NET
and Windows infrastructure will handle these lower-level tasks for you. In this book, we won't analyze the IP header in detail or
explain how routers and subnets route and filter messages. There are numerous books dedicated to networking technology.

IP Addresses

One less obvious fact about IP is that the IP address itself reveals some information about the device. Every IP address is made
up of two pieces: a portion that identifies the network (and possibly the subnet of the network), and a portion that identifies the
device in the network. The number of bytes allocated to each part depends on the type of network that's being used. Here's how it
works:

If the first value in the IP address is from 1–126, it's a class A network address.

If the first value in the IP address is from 128–191, it's a class B network address.

If the first value in the IP address is from 192–223, it's a class C network address.

The difference between these types of networks is the number of nodes they can accommodate. Class A addresses are used for
extremely large networks that can accommodate over 16 million nodes. With a class A network, the first byte in the IP address is
used to define the network and the remaining three bytes identify the host. It's only possible to have 126 class A networks
worldwide, so only extremely large companies such as AT&T, IBM, and HP have class A networks. Thus, in the IP address
120.24.0.10, the number 120 identifies the network and the remaining values identify the device.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Class B addresses use the first two bytes to describe the network. There can be about 16,000 class B networks worldwide, each
with a maximum of 65,534 devices. Thus, in the IP address 150.24.0.10, the value 150.24 identifies the network, and the 0.10
identifies the device.

Finally, class C networks use the first three bytes to describe a network. That leaves only one byte to identity the device. As a
result, class C networks can hold only 254 devices. Most companies that request an IP address will be assigned a class C IP
address. If more devices are required, multiple class C networks can be used.

Note that this list leaves out some valid IP addresses because they have special meanings. Here's a summary of special IP
addresses:

127.0.0.0 is a loopback address that always refers to the local network.

127.0.0.1 is a loopback address that refers to the current device.

IP addresses that start with a number from 224–239 are used for multicasting.

IP addresses that start with 240–255 are reserved for testing purposes.

Chapter 1 introduced the problem that the world is running out of IP addresses. In fact, there are already more devices connected
to the Internet than there are available IP addresses. To compensate for this problem, devices that aren't connected to the
Internet (or access the Internet through a gateway computer) can be given private IP addresses. Private IP addresses aren't
globally unique. They're just unique within a network. All classes of networks reserve some values for private IP addresses, as
follows:

In a class A network, any address beginning with 10 is private.

In a class B network, any address beginning with 172.16–172.31 is private.

In a class C network, any address beginning with 192.168.0–192.168.255 is private.

Of course, a computer that's sheltered from the Internet doesn't need to use a private IP address—just about any IP address
would do. Unfortunately, computers without an IP address can be difficult or impossible to contact from another network. This is
one of the headaches of peer-to-peer programming.

Note The current version of the Internet Protocol is known as IPv4. At some point, IPv6 will replace IPv4. Among other
improvements, IPv6 will enlarge the pool of available addresses, because every address will use 128 bits (16 bytes)
instead of 32 bits.

Tracing, Pinging, and More

For a behind-the-scenes look at networking, you can use some of the commandline utilities that are included with the Windows
operating system. One well-known utility is ping.exe, which contacts a device at a specified IP address using the ICMP protocol,
and sends four test packets requesting a response. If the remote device receives the ping request, it will normally echo the
packets back. Each packet is 32 bytes in size and is given 128 hops to live.

For example entering this at the command line:
ping 127.0.0.1

might elicit this response:
Pinging 127.0.0.1 with 32 bytes of data:

Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128

Ping statistics for 127.0.0.1:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms

The ping utility can be used to test if a remote host is online, although it may not succeed, depending on the firewall. For example,
many heavily trafficked sites ignore ping requests because they're wary of being swamped by a flood of simultaneous pings that
will tie up the server, thereby creating a denial-of-service attack.

To study the low-level communication in more detail, you can use an interesting utility called tracert.exe. It attempts to contact the
host specified in the IP address, and indicates the route that was taken.

This tracert request simply uses the local loopback alias:
tracert 127.0.0.1

It receives the following unremarkable response:

Tracing route to localhost [127.0.0.1]
over a maximum of 30 hops:
 1 <1 ms <1 ms <1 ms localhost [127.0.0.1]
Trace complete.

The following tracert request, however, contacts a Microsoft web server. Note that we've used a domain name instead of the IP
address. You can use either interchangeably with all of the command-line utilities discussed in this section. However, many IP
addresses will not have a DNS entry (particularly if the computer isn't a web server).
tracert www.yahoo.com

Here's the result:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tracing route to www.yahoo.akadns.net [64.58.76.177]
over a maximum of 30 hops:

 1 26 ms 23 ms 23 ms tlgw11.bloor.phub.net.cable.rogers.com
[24.114.131.1]
 2 23 ms 23 ms 24 ms 10.1.67.1
 3 26 ms 23 ms 23 ms gw02.bloor.phub.net.cable.rogers.com
[66.185.83.157]
 4 25 ms 23 ms 23 ms gw01.wlfdle.phub.net.cable.rogers.com
[66.185.80.6]
 5 28 ms 23 ms 24 ms gw02.wlfdle.phub.net.cable.rogers.com
[66.185.80.142]
 6 48 ms 47 ms 47 ms dcr1-so-3-1-0.NewYork.cw.net [206.24.207.85]
 7 51 ms 53 ms 53 ms dcr1-loopback.Washington.cw.net [206.24.226.99]
 8 52 ms 52 ms 53 ms bhr1-pos-0-0.Sterling1dc2.cw.net [206.24.238.34]
 9 51 ms 53 ms 52 ms csr03-ve242.stng01.exodus.net [216.33.98.219]
 10 57 ms 54 ms 52 ms 216.35.210.122
 11 55 ms 53 ms 53 ms www8.dcx.yahoo.com [64.58.76.177]

Trace complete.

In this case, 11 routers are crossed en route to the Yahoo! web server, which isn't bad! As with the ping test, a tracecert can fail if
a firewall prevents it.

Another interesting utility is arp.exe, which can display the media access control (MAC) address and IP address of the current
computer. (The MAC address is a unique hexadecimal value hard-coded in the network card.)

Here's a sample arp request:
arp -a

And here's the command-line response:
Interface: 24.114.131.60 —- 0x10003
 Internet Address Physical Address Type
 24.114.131.1 00-00-77-95-5d-5b dynamic

Alternatively, you can use ipconfig.exe to retrieve just IP information for the current computer.

Finally, you can use route.exe to determine how outgoing requests are routed from your computer. Enter the following at the
command line to see a list of address ranges and where the request will be forwarded:
route print

In the display below, requests for the local computer (IP address 24.114.131.0) are routed to the loopback alias 127.0.0.1. All
other requests are dispatched to the gateway at 24.114.131.60.
===
Active Routes:
Network Destination Netmask Gateway Interface Metric
 0.0.0.0 0.0.0.0 24.114.131.1 24.114.131.60 30
 24.114.131.0 255.255.255.128 24.114.131.60 24.114.131.60 30
 24.114.131.60 255.255.255.255 127.0.0.1 127.0.0.1 30
 24.255.255.255 255.255.255.255 24.114.131.60 24.114.131.60 30
 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
 224.0.0.0 240.0.0.0 24.114.131.60 24.114.131.60 30
 255.255.255.255 255.255.255.255 24.114.131.60 24.114.131.60 1
Default Gateway: 24.114.131.1
===
Persistent Routes:
 None

Transmission Control Protocol and User Datagram Protocol

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are two higher-level protocols that depend on IP. When
you program an application, you won't create IP datagrams directly. Instead, you'll send information using TCP or UDP.

TCP is a connection-oriented protocol that has built-in flow control, error correction, and sequencing. Thanks to these features,
you won't need to worry about resending information if a data collision occurs. You also won't have to worry about resolving any
one of the numerous possible network problems that could occur as information is segmented into packets and then transported
and reassembled in its proper sequence at another computer. As a result, TCP is a fairly complex protocol with a certain amount
of overhead built-in. However, it's also the favorite of most network programmers, and it's the protocol we'll use to transfer files
with the application developed in the next two chapters.

Tip If an unrecoverable error occurs with TCP and retransmission cannot solve it, an error will be propagated up the stack
until it appears in your code as a .NET exception.You can catch and respond to this exception accordingly.

UDP is a connectionless protocol for transferring data. It doesn't guarantee that messages will be received in sequence, that
messages won't be lost, or that only one copy of a given message will be received. As a result, UDP is quite fast, but it requires a
significant amount of work from the application programmer if you need to send important data. One reason UDP might be used in
a peer-to-peer application is to support peer discovery. This is because UDP allows you to send messages to multiple nodes on
the network at once, without necessarily knowing their IP address. This is possible through broadcasting and multicasting, two
technologies introduced later in this chapter.

Ports

Both TCP and UDP introduce the concept of ports. Port numbers don't correspond to anything physical—they're simply a method
for differentiating different application endpoints on the same computer. For example, if you're running a web server, your
computer will respond to requests on port 80. Another application might use port 8000. Ports map connections to applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Port numbers are divided into three categories:

Ports from 0–1023 are well-known system ports. They should only be used by a privileged system process (for
example, part of the Windows operating system), not your application code.

Ports from 1024–49151 are registered user ports. Your server applications can use one of these ports, although
you may want to check that your choice doesn't conflict with a registered port number for an application that could
be used on your server.

Ports from 49152–65525 are dynamic ports. They're often used for ports that are allocated at runtime (for example,
a local port a client might use when contacting a server).

The Internet Assigned Numbers Authority (IANA) assigns registered ports. For a list of defined port numbers, refer to
http://www.iana.org/assignments/port-numbers.

Remember, every transmission over TCP or UDP involves two port numbers: one at the server end and one at the client end. The
server port is generally the more important one. It's fixed in advance, and the server usually listens to it continuously. The client
port is used to receive data sent from the server, and it can be chosen dynamically when the connection is initiated. A combination
of port number and IP address makes an endpoint, or socket, as shown in Figure 7-3.

Figure 7-3: A TCP or UDP connection

Finally, it's worth noting that although only one application can use a port at a time, an application can serve multiple clients
through the same port—in fact, with .NET, it's easy.

Note An endpoint in a TCP connection is called a stream socket. An endpoint in a UDP connection is called a datagram
socket. There's one other type of socket that we won't use in this book, which is the lower-level raw socket, which
bypasses both TCP and UDP.

Application-Level Protocols

Several higher-level protocols are common in the Internet world. These are called application protocols, and the interesting fact is
that they're built on top of TCP or UDP.

For example, the File Transfer Protocol (FTP), Hypertext Transfer Protocol (HTTP), and e-mail protocols (SMTP, POP3, and
IMAP) all use TCP to establish connections and send messages. They simply define a grammar of recognized messages. For
example, FTP defines commands such as STOR (upload a file) and QUIT (close the connection). These commands, however, are
nothing special— they're really just ASCII-formatted strings that are sent over a TCP connection. You could easily create your own
FTP-like protocol by defining some string constants and relying on the TCP to perform all the heavy lifting.

Similarly, some application-level protocols are based on UDP. They include Trivial File Transfer Protocol (TFTP), Lightweight
Directory Access Protocol (LDAP), and DNS (the protocol used to transfer domain name information). In this case, the low-
bandwidth features of UDP are preferred to the connection-centric ones of TCP.

This brings our exploration of core networking concepts to a close. In the next section, you'll consider how these protocols are
used in .NET code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Networking in .NET
The .NET Framework includes two namespaces designed for network programming: System.Net and System.Net.Sockets. The
System.Net namespace includes several classes that won't interest peer-to-peer programmers, including abstract base classes
and types used to set Windows authentication credentials. However, there are also several noteworthy types:

IPAddress represents a numeric IP address.

IPEndPoint represents a combination of an IPAddress and port number. Taken together, these constitute a socket
endpoint.

Dns provides shared helper methods that allow you to resolve domain names (for example, you can convert a
domain name into a number IP address, and vice versa).

IPHostEntry associates a DNS host name with an array of IPAddress objects. Usually, you'll only be interested in
retrieving the first IP address (in fact, in most cases there will only be one associated IP address).

The FileWebRequest and FileWebResponse classes are useful when downloading a file from a URI (such as
file://ComputerName/ShareName/FileName). However, we won't use these classes in this book.

The HttpWebRequest and HttpWebResponse classes are useful when downloading a web page from a web server.
However, we won't use these classes in this book.

The System.Net.Sockets class includes the types you'll need for socket programming with TCP or UDP. This namespace holds
the most important functionality for the peer-to-peer programmer, including the following class types:

TcpListener is used on the server side to listen for connections.

TcpClient is used on the server and client side to transfer information over a TCP connection. Usually, you'll
transmit data by reading and writing to the stream returned from TcpClient.GetStream().

UdpClient is used on the server and client to transfer information over a UDP connection, using methods such as
Send() and Receive().

Socket represents the Berkeley socket used by both TCP and UDP. You can communicate using this socket
directly, but it's usually easier to use the higher-level TcpClient and UdpClient classes.

SocketException represents any error that occurs at the operating system level when attempting to establish a
socket connection or send a message.

NetworkStream is used with TCP connections. It allows you to send and receive data using a convention .NET
stream, which is quite handy.

In the remainder of this chapter, we'll consider some of these essential types and create a few sample programs that show
networking in action.

The Dns Class

On the Internet, publicly accessible IP addresses can be mapped to host names. For example, the IP address 207.46.134.222
maps to http://www.microsoft.com, and you can use either the domain name or the IP address when accessing the site in a
browser.

In some cases, you'll need to retrieve the IP address for a domain name, or vice versa. This task is performed seamlessly in a
web browser, and it can also be accomplished using the nslookup.exe command-line utility. In order to retrieve this information,
your computer must access a DNS server. If the DNS server you contact cannot resolve the name by examining the values in its
cache, it will forward the request to a DNS root server.

In .NET, you can perform this task quite easily using the Dns class, which provides a small set of shared methods. For example,
the following code snippet retrieves an IPHostEntry for a specific domain name and then displays the first linked IP address.
Dim IP As IPHostEntry
IP = Dns.GetHostByName("www.microsoft.com")

' Displays "207.46.249.27".
Console.WriteLine(IP.AddressList(0).ToString())

The following code performs the reverse task:
Dim IP As IPHostEntry
IP = Dns.GetHostByAddress("207.46.249.27")

' Displays "microsoft.com".
Console.WriteLine(IP.HostName)

Finally, you can use the Dns.GetHostName() method to retrieve the host name of the current computer, which you can then
convert into the local numeric IP address.
Dim IP As IPHostEntry
IP = Dns.GetHostByName(Dns.GetHostName())

' Displays the IP address for the current computer.
Console.WriteLine(IP.AddressList(0).ToString())

Network Streams

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In .NET, you can send data over a TCP connection using the NetworkStream class, which follows the standard .NET streaming
model. That means that you can write data to a NetworkStream in the same way that you would write bytes to a file. (It also
means you can chain a CryptoStream onto your network stream for automatic encryption.)

The NetworkStream class differs slightly from other .NET streams because it represents a buffer of data that's just about to be
sent or has just been received. On the sender's side, the buffer is emptied as data is sent across the network. On the recipient's
side, the buffer is emptied as data is read into the application.

Because of this behavior, the NetworkStream class is not seekable, which means you cannot use the Seek() method or access
the Length or Position properties.

In addition, the NetworkStream class adds a few useful properties:

Writeable and Readable indicate whether the NetworkStream supports write and read operations, respectively.

Socket contains a reference to the underlying socket that's being used for data transmission.

DataAvailable is a Boolean flag that's set to True when there's incoming data in the stream that you have not yet
read.

The Write() and Read() methods allow you to copy byte arrays to and from the NetworkStream, but to simplify life you'll probably
use the BinaryWriter and BinaryReader classes that are defined in the System.IO namespace. These classes can wrap any
stream, and automatically convert common .NET types (such as strings, integers, and dates) into an array of bytes.

One good rule of thumb is to use the same approach for writing to a file as you do when reading it. For example, if you use the
BinaryWriter to write data, use the BinaryReader to retrieve it, instead of the NetworkStream.Read() methods. This prevents you
from introducing problems if you don't decode data the same way you encode it. For example, by default the BinaryWriter
encodes data to binary using UTF-8 encoding. If you use Unicode to decode it, a problem could occur.

Tip Keep in mind that when you read more than one byte at a time, the method will not return until all the data is read. For
example, if you use BinaryReader.ReadString(), the method will not return until it reaches the end of the string.

The BinaryReader class also helps to add type safety to the NetworkStream. For example, if you use BinaryReader.ReadString()
and the data in the stream doesn't correspond to a string, an exception will be thrown immediately.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Communicating with TCP
TCP connections require a three-stage handshaking mechanism:

1. First, the server must enter listening mode by performing a passive open. At this point, the server will be idle,
waiting for an incoming request.

2. A client can then use the IP address and port number to perform an active open. The server will respond with an
acknowledgment message in a predetermined format that incorporates the client sequence number.

3. Finally, the client will respond to the acknowledgment. At this point, the connection is ready to transmit data in
either direction.

In .NET, you perform the passive open with the server by using the TcpListener.Start() method. This method initializes the port,
sets up the underlying socket, and begins listening, although it doesn't block your code. After this point, you can call the Pending()
method to determine if any connection requests have been received. Pending() examines the underlying socket and returns True
if there's a connection request. You can also call AcceptTcpClient() at any point to retrieve the connection request, or block the
application until a connection request is received.

When AcceptTcpClient() returns, it provides a TcpClient object that can be used to retrieve and send data. The easiest approach
is to create a NetworkStream by calling the TcpClient.GetStream() method. After this, communication is simply a matter of reading
and writing to a stream, and it can be performed in more or less the same way you would access a file on your computer's hard
drive.

The following example shows a console server that waits for a TCP connection request on port 11000. When a connection
request is received, it accepts it automatically and starts a new thread to listen for data received from the client. When a message
is received, a BinaryReader is used to retrieve it, and the message is displayed in the console window. At the same time, the main
application thread loops continuously, prompting the user for input, and sends input strings to the client using a BinaryWriter.
Imports System.Net
Imports System.Net.Sockets
Imports System.IO
Imports System.Threading

Module TcpServerConsole

 Private Stream As NetworkStream

 Public Sub Main()
 ' Create a new listener on port 11000.
 Dim Listener As New TcpListener(11000)
 ' Initialize the port and start listening.
 Listener.Start()

 Console.WriteLine("* TCP Server *")
 Console.WriteLine("Waiting for a connection...")

 Try
 ' Wait for a connection request
 ' and return a TcpClient initialized for communication.
 Dim Client As TcpClient = Listener.AcceptTcpClient()
 Console.WriteLine("Connection accepted.")
 Console.WriteLine(New String("-", 40))
 Console.WriteLine()

 ' Retrieve the network stream.
 Stream = Client.GetStream()

 ' Create a new thread for receiving incoming messages.
 Dim ReceiveThread As New Thread(AddressOf ReceiveData)
 ReceiveThread.IsBackground = True
 ReceiveThread.Start()

 ' Create a BinaryWriter for writing to the stream.
 Dim w As New BinaryWriter(Stream)

 ' Loop until the word QUIT is entered.
 Dim Text As String
 Do
 Text = Console.ReadLine()

 ' Send the text to the remote client.
 If Text <> "QUIT" Then w.Write(Text)

 Loop Until Text = "QUIT"

 ' Terminate the receiving thread.
 ReceiveThread.Abort()

 ' Close the connection socket.
 Client.Close()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Client.Close()
 ' Close the underlying socket (stop listening for new requests).
 Listener.Stop()

 Catch Err As Exception
 Console.WriteLine(Err.ToString())
 End Try

 End Sub

 Private Sub ReceiveData()
 ' Create a BinaryReader for the stream.
 Dim r As New BinaryReader(Stream)

 Do
 ' Display any received text.
 Try
 If Stream.DataAvailable Then
 Console.WriteLine(("*** RECEIVED: " + r.ReadString()))
 End If

 Catch Err As Exception
 Console.WriteLine(Err.ToString())
 End Try

 Loop
 End Sub
End Module

This demonstrates one important aspect of socket programming with .NET—you can write and read data asynchronously.

The client code uses the TcpClient.Connect() method to initiate the connection. After that point, the stream is retrieved from the
GetStream() method, and the code is almost identical.
Imports System.Net
Imports System.Net.Sockets
Imports System.IO
Imports System.Threading

Module TcpClientConsole

 Private Stream As NetworkStream
 Public Sub Main()

 Dim Client As New TcpClient()

 Try
 ' Try to connect to the server on port 11000.
 Client.Connect(IPAddress.Parse("127.0.0.1"), 11000)
 Console.WriteLine("* TCP Client *")
 Console.WriteLine("Connection established.")
 Console.WriteLine(New String("-", 40))
 Console.WriteLine()

 ' Retrieve the network stream.
 Stream = Client.GetStream()

 ' Create a new thread for receiving incoming messages.
 Dim ReceiveThread As New Thread(AddressOf ReceiveData)
 ReceiveThread.IsBackground =
 True ReceiveThread.Start()

 ' Create a BinaryWriter for writing to the stream.
 Dim w As New BinaryWriter(Stream)

 ' Loop until the word QUIT is entered.
 Dim Text As String
 Do
 Text = Console.ReadLine()

 ' Send the text to the remote client.
 If Text <> "QUIT" Then w.Write(Text)

 Loop Until Text = "QUIT"

 ' Close the connection socket.
 Client.Close()

 Catch Err As Exception
 Console.WriteLine(Err.ToString())
 End Try

 End Sub

 Private Sub ReceiveData()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub ReceiveData()
 ' Create a BinaryReader for the stream.
 Dim r As New BinaryReader(Stream)

 Do
 ' Display any received text.
 Try
 If Stream.DataAvailable Then
 Console.WriteLine(("*** RECEIVED: " + r.ReadString()))
 End If

 Catch Err As Exception
 Console.WriteLine(Err.ToString())
 End Try
 Loop
 End Sub
End Module

Figure 7-4 shows both parts of the applications as they interact.

Figure 7-4: Sending data over TCP

Handling Multiple Connections

Newcomers to network programming often wonder how they can handle more than one simultaneous request, and they
sometimes assume that multiple server reports are required. This isn't the case—if it were, a small set of applications could
quickly exhaust the available ports.

Instead, server applications handle multiple requests with the same port. This process is almost completely transparent because
the underlying TCP architecture in Windows automatically identifies messages and routes them to the appropriate object in your
code. Connections are uniquely identified based on four pieces of information: the IP address and server port, and the IP address
and client port. For example, Figure 7-5 shows a server with connections to two different clients. The server endpoint is the same,
but the connections are uniquely identified at the operating system level based on the client's IP address and port number.

Figure 7-5: Multiple TCP connections

Remember, unless you specify otherwise, the client's port is chosen dynamically from the set of available ports when the
connection is created. That means that you could create a client that opens multiple connections to the same server. On the
server side, each connection would be dealt with uniquely, because each connection would have a different client port number.

Of course, to handle simultaneous connections you'll need to use multi-threading. Here's an outline of the basic pattern you would
use on the server:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim Listener As New TcpListener(11000)
Dim Client As TcpClient
' Initialize the port and start listening.
Listener.Start()

Do
 ' Wait for a connection request
 ' and return a TcpClient initialized for communication.
 Client = Listener.AcceptTcpClient()

 ' Create a new object to handle this connection.
 Dim Handler As New MyTcpClientHandler(Client)

 ' Start this object working on another thread.
 Dim HandlerThread As New Thread(AddressOf Handler.Process())
 HandlerThread.Start()
Loop
' Close the underlying socket (stop listening for new requests).
Listener.Stop()

In addition, the main listener thread would probably use some sort of collection to track in-progress connections. Chapter 9
presents a complete example of a multithreaded server and client, with a file-sharing application that uses TCP connections to
transfer file data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Communicating with UDP
In UDP, no connection needs to be created. As a result, there's no differentiation between client and server, and no listener class.
Data can be sent immediately once the UdpClient object is created. However, you cannot use the NetworkStream to send
messages with UDP. Instead, you must write binary data directly using the Send() and Receive() methods of the UdpClient class.
Every time you use the Send() method, you specify three parameters: a byte array, the length of the byte array, and the
IPEndPoint for the remote computer where the message will be sent.

The following example rewrites the earlier TCP demonstration to use UDP. Because UDP does not make any distinction between
client and server, we only need one application: a generic client that can both send and receive messages. When the console
application is started, it prompts you for the IP address and remote port where messages should be sent, and the local port that
will be polled for incoming messages. Here's the complete code:
Imports System.Net
Imports System.Net.Sockets
Imports System.IO
Imports System.Threading
Imports System.Text

Module UdpClientConsole
 ' The port used to listen for incoming messages.
 Private LocalPort As Integer

 Public Sub Main()

 ' Set up ports.
 Console.Write("Remote IP: ")
 Dim IP As String = Console.ReadLine()

 Console.Write("Remote port: ")
 Dim Port As String = Console.ReadLine()

 ' Define the IP and port where messages are sent.
 Dim RemoteEndPoint As New IPEndPoint(IPAddress.Parse(IP), _
 Int32.Parse(Port))

 Console.Write("Local port: ")
 LocalPort = Int32.Parse(Console.ReadLine())
 Console.WriteLine(New String("-", 40))
 Console.WriteLine()

 ' Create a new thread for receiving incoming messages.
 Dim ReceiveThread As New Thread(AddressOf ReceiveData)
 ReceiveThread.IsBackground = True
 ReceiveThread.Start()

 Dim Client As New UdpClient()

 Try
 ' Loop until the word QUIT is entered.
 Dim Text As String
 Dim Data() As Byte
 Do
 Text = Console.ReadLine()

 ' Send the text to the remote client.
 If Text <> "QUIT" Then
 ' Encode the data to binary manually using UTF8 encoding.
 Data = Encoding.UTF8.GetBytes(Text)

 ' Send the text to the remote client.
 Client.Send(Data, Data.Length, RemoteEndPoint)
 End If

 Loop Until Text = "QUIT"
 Catch Err As Exception
 Console.WriteLine(Err.ToString())
 End Try

End Sub

Private Sub ReceiveData()

 Dim Client As New UdpClient(LocalPort)

 Dim Data() As Byte
 Dim Text As String

 Do
 Try
 ' Receive bytes.
 Data = Client.Receive(Nothing)

 ' Try to convert bytes into a message using UTF8 encoding.
 Text = Encoding.UTF8.GetString(Data)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Text = Encoding.UTF8.GetString(Data)

 ' Display the retrieved text.
 Console.WriteLine("*** RECEIVED: " & Text)
 Catch Err As Exception
 Console.WriteLine(Err.ToString())
 End Try
 Loop
 End Sub
End Module

Note that the code passes a null reference (Nothing) to the UdpClient.Receive() method. This instructs it to retrieve any message
that has been received on the listening port. Alternatively, you could supply an IPEndPoint representing a remote client. In this
case, the Receive() method would only retrieve data sent by that client.

If you start two instances of the UDP test application, you might have an exchange such as the one shown in Figure 7-6. In this
example, both instances are on the local computer. They differ only in the port that they're using.

Figure 7-6: Sending data over UDP

Broadcasts and Multicasts

UDP provides one feature that TCP doesn't: the ability to send broadcasts and multicasts.

Broadcasts are network messages that are sent to all devices on the local subnet. When a client receives a broadcast, it decides
whether the message is of interest or should be discarded. The architecture of broadcast messages makes them quite bandwidth-
intensive, because a separate copy of the message is sent to each device. For this reason, routers always block broadcast
messages, and they can never reach outside their own portion of the network.

To send a broadcast message, you use an IP address that identifies the network and has all host bits set to 1. In other words, if
the network is identified by the first three bytes (142.128.0), you would send a broadcast to all machines on this network by
sending a UDP message to the IP address (142.128.0.255). Even without knowing the network portion of an IP address, you can
set all bits to 1, and use the broadcast address 255.255.255.255, which will attempt to contact every reachable computer (but,
once again, it will be blocked by all routers).

Here's a snippet of code for use in sending a simple broadcast message:
Dim IP As String = "255.255.255.255"
Dim Port As String = 8800

Dim RemoteEndPoint As New IPEndPoint(IPAddress.Parse(IP), _
 Int32.Parse(Port))

Dim Client As New UdpClient()
Dim Data() As Byte = System.Text.Encoding.UTF8.GetBytes("Broadcast Message")

' Send the broadcast message.
Client.Send(Data, Data.Length, RemoteEndPoint)

Broadcasting would be highly inefficient if it were implemented with TCP, because the broadcaster would be flooded with
acknowledgment messages from every recipient. As it is, broadcast messages with UDP still aren't that bandwidth-friendly. A
much more efficient protocol is multicasting. Multicasting provides a way to define "groups" of computers with a multicasting IP
address. Devices can join this group, in which case they'll receive all multicast messages, or leave it at will. Even better, multicast
messages can cross router boundaries and flow freely across the Internet. Unfortunately, multicasting still isn't supported by all
network hardware.

Multicast addresses range from 224.0.0.0 to 239.255.255.255. However, not all of these addresses are available (some have
special meanings, and others are scope-relative, which means they cannot cross a router). You can register a multicast port for
your application from the IANA, which is responsible for assigning all multicast ports. See
http://www.iana.org/assignments/multicast-addresses for current assignments. Alternatively, you can use the predefined multicast
address 224.0.0.1 to access all computers on a subnet. (You can also use a machine and device capabilities (MADCAP) server to
request a dynamically assigned multicast address that will be used for a limited period of time, although this technique is beyond
the scope of this book.)

Here's the code you would use to send a multicast message on the local subnet of the network:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim IP As String = "224.0.0.1"
Dim Port As String = 8800

Dim RemoteEndPoint As New IPEndPoint(IPAddress.Parse(IP), _
 Int32.Parse(Port))
Dim Client As New UdpClient()
Dim Data() As Byte = System.Text.Encoding.UTF8.GetBytes("Multicast Message")

' Send the broadcast message.
Client.Send(Data, Data.Length, RemoteEndPoint)

In .NET, a client can join a multicast group using the UdpClient.JoinMulticastGroup() method, and unsubscribe using the
DropMultiCastGroup() method. Thus, before you can receive the multicast message shown earlier, you would need to use this
code:
Dim Client As New UdpClient(LocalPort)
Client.JoinMulticastGroup(IPAddress.Parse("224.0.0.1"))

Both broadcasting and multicasting could be used to support peer-to-peer discovery, although they have several weaknesses.
Broadcasting is bandwidth-intensive, and can't propagate beyond a local network. Multicasting is much more efficient, but isn't
supported by all ISPs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
The technology that allows communication to flow from device to device over the Internet is quite complex, with multiple layers
that work together to ensure reliability and scalability. Fortunately, the .NET Framework makes networking programming fairly
easy, by encapsulating DNS lookup in a Dns class and providing a .NET implementation of Windows sockets through the
TcpListener, TcpClient, and UdpClient. Armed with these techniques, you're ready to create the file-sharing application in Chapter
9. First, though, you need to consider a new method of peer-to-peer discovery: using a web service.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8: Building a Discovery Web Service

Overview
In the client-server world, applications are deployed in a static, well-known environment. Database connection strings, server
paths, and other location-specific details rarely change, and can often be hard-coded in configuration files (or even application
code). Developers and network administrators work in close contact, and the system runs smoothly, day in and day out.

In a peer-to-peer application, you can't take anything about the environment for granted. The first consideration for any peer-to-
peer application is how peers will discover one another on the network and retrieve the information they need to communicate.
One approach is to create a complex "switchboard" of messages that routes peer requests around the network in a constant low
babble. However, there's another approach that's easier to implement (and easier to make reliable). This approach is to use a
hybrid design, with a central component that acts as a repository for peer information.

You've already tackled one such design in the second part of this book, where a central coordinator served stored information
about peers in a chat system. However, this approach was tied to the Remoting network pointer (the ObjRef), and required a
continuously running server application. This chapter presents an approach that's often more robust and scalable, thus replacing
the central coordination component with a stateless web service and a back-end database. We'll use this approach to create a
discovery service that will support the file-sharing application described in the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Discovery Service
A discovery service has one key task: to map peer identifiers to peer connectivity information (see Figure 8-1). The peer identifier
might be a unique user name or a dynamically generated identifier such as a globally unique identifier (GUID). The connectivity
information includes all the details needed for another peer to create a direct connection. Typically, this includes an IP address
and port number, although this information could be wrapped up in a higher-level construct. For example, the coordination server
that we used in the Remoting chat application stores a proxy (technically, an ObjRef) that encapsulates the IP address and port
number as well as other details such as the remote class type and version.

Figure 8-1: The discovery pattern

In addition, a discovery service might provide information about the resources a peer provides. For example, in the file-sharing
application demonstrated in the next chapter, a peer creates a query based on a file name or keyword. The server then responds
with a list of peers that can satisfy that request. In order to provide this higher-level service, the discovery service needs to store a
catalog of peer information, as shown in Figure 8-2. This makes the system more dependent on its central component, and it
limits the ways that you can search, because the central component must expect the types of searches and have all the required
catalogs. However, if your searches are easy to categorize, this approach greatly improves performance and reduces network
bandwidth.

Figure 8-2: The effect of indexing content with a discovery service

Stateful and Stateless Discovery Services

Discovery services can be divided into two categories: stateful and stateless. The coordination component in Part Two was a
stateful server; in other words, it runs continuously and stores all information directly in memory. This approach is fast for an off-
the-cuff solution, but it presents a few shortcomings, including the following:

Long-running applications sometimes fail.

If the server needs to be restarted, all the information about active peers will be lost. This may be a minor issue if
the peers are able to dynamically log back in, or it may be a more severe disruption.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It's not efficient to store a large amount of information in memory. As the amount of information increases (for large
systems, or for systems in which other resources need to be centrally indexed), the performance of the central
server worsens.

Stateful applications can be called simultaneously by multiple clients. As you saw in Chapter 5, you can deal with
this by using threading code, but the issues are sometimes subtle and mistakes can lead to errors that are difficult
to diagnose.

In this chapter we'll use a stateless server, which retains no in-memory information. Instead, information is serialized into a back-
end database. This has the advantage of allowing more complex searches and reducing concurrency problems because
databases are extremely efficient at handling large volumes of data and large numbers of simultaneous users. The discovery logic
is coded using a .NET web service, which springs to life when called and is destroyed immediately after it returns the requested
information.

Overall, you'll find that the discovery service is more efficient for large systems. However, it does impose some additional
requirements. The central server will need to run a reliable database engine (in our example, SQL Server), and Internet
Information Server (IIS), which hosts all web services. Fortunately, IIS is built-in to Windows 2000, Windows XP, and Windows
Server 2003.

Tip If you don't have an instance of SQL Server, you can use a scaled-down version for free. It's called Microsoft Data
Engine (MSDE), and it's included with all versions of Visual Studio .NET. The key limitations are that it will only support
five simultaneous connections, and it doesn't include graphical tools for designing a database. For more information,
refer to the Visual Studio .NET Help files.

In the next few sections, we'll present a whirlwind review of web services and then dive directly into a full-scale example by
developing the discovery service we'll need to use with the file-sharing application described in the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Web Service Essentials
As a .NET programmer, you've probably already heard more than a little about Microsoft's favorite new innovation, the hotly hyped
web services. Web services play much the same role as components exposed through Remoting: They're packages for business
code that you want to execute on another computer. Unlike Remoting, web services use the ASP.NET engine, require IIS, and
stress interoperability with other platforms through open standards such as SOAP, which is used to communicate with a web
service, and Web Services Description Language (WSDL), which is used to describe the functionality provided by a web service.

Here's a short list of the key differences between Microsoft's two new distributed technologies, Remoting and web services:

Remoting has the option of using faster communication through TCP/IP connections and the BinaryFormatter. Web
services only support SOAP message formatting, which uses larger XML text messages.

Web services support open standards that target cross-platform use, such as SOAP and WSDL. This allows third-
party clients (such as a Java application) to interact with them.

Web services only support a small set of .NET types for parameters or return values. You can use your own custom
classes, but they can only include data members. Property procedures, constructor logic, methods, and so on,
cannot be used.

Web services don't require a component host application. Instead, this functionality is provided by the ASP.NET
engine and IIS.

Web services are requested much like a web page over an HTTP channel. This allows web-service requests to
cross most firewalls. Of course, the same is possible with Remoting, as long as you configure your component
accordingly.

Web services are always stateless. That means they can't run asynchronously in the background or perform tasks
continuously. Instead, they're created to serve a single client request and are destroyed immediately when the
request ends. Remoting components don't have this limitation, as long as they're client-activated or Singleton
objects (such as the Talk .NET coordination server in Chapter 4).

Web services can use some powerful ASP.NET features, such as caching, process recycling, web-farm server
clustering, and application state.

It's sometime said that Remoting always performs better than web services, because it can use binary formatting and the TCP/IP
protocol, rather than larger SOAP messages and the HTTP protocol. This is true to a point, but this minor advantage can be
countered by some of the built-in ASP.NET services, such as caching. It's also true that the restricted nature of web services
simplifies design issues. It's generally easier to create a high-performance stateless object such as a web service than a stateful
coordination object that needs to make heavy use of threads and synchronization codes.

Most .NET programmers have already heard more than enough about the promise of .NET web services. In this chapter, we'll
cover the most important essentials in an abbreviated form, so that we can get back to peer-to-peer programming as quickly as
possible. You won't learn about background information such as the SOAP and WSDL standards. If you're interested in a more
detailed exploration of web services, there are many excellent books available. And if you've already mastered web services, feel
free to skip ahead.

The Anatomy of a Web-Service Request

The ASP.NET engine handles a web-service request in much the same way as aweb-page request. The only difference is that
web-service results are usually formatted in an XML grammar called SOAP, not ordinary HTML.

Here's an overview of the process (shown in Figure 8-3):

Figure 8-3: Serving a web-service request with ASP.NET

1. A client sends a SOAP-formatted request to a web service.

2. IIS receives the request, determines that it's for ASP.NET, and invokes the ASP.NET engine.

3. ASP.NET creates the web-services object.

4. ASP.NET runs the requested method with the supplied information.

5. ASP.NET destroys the web-services object.

6. ASP.NET returns the web-services result in a SOAP-formatted message over HTTP.

ASP.NET uses a pool of worker threads to handle multiple concurrent requests efficiently. A new, distinct web-service object is
created for each request, ensuring that you don't need to worry about creating your own custom threading code.

The Least You Need to Know About IIS

IIS is the software a computer needs to serve web requests, whether they're for ordinary HTML pages or ASP.NET web pages
and web services. IIS performs two key functions:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It exposes directories on your hard drive as virtual web directories over HTTP. For example, you might map the
path C:\MyWeb to http://[ComputerName]/PublicWeb. Now, the web services and web pages in C:\MyWeb
can be accessed through HTTP in a web browser, using addresses that start with
http://[ComputerName]/PublicWeb.

Using file extensions, IIS maps web requests to the application that can handle them. For example, ASP.NET
pages (.aspx files) and web services (.asmx files) are registered to the ASP.NET worker process. When IIS
receives a web request for one of these file types, it invokes the ASP.NET engine, which handles the rest of the
work.

IIS also imposes its own security controls, which you can customize. For example, by default, IIS will not allow a client to browse
the list of files contained in a virtual directory. You can also use IIS to authenticate the user by demanding Windows authentication
credentials, although this technique is of little use in a peer-to-peer application because the clients won't have Windows user
accounts on the server.

IIS is included with the Windows 2000, Windows XP, and Windows Server 2003 operating systems, but isn't automatically
installed. To install it, follow these steps:

1. Click the Start button, and select Settings Control Panel.

2. Choose Add or Remove Programs, and click Add/Remove Windows Components.

3. Find Internet Information Server in the list, select it, and click Next to install the appropriate files.

You can test if IIS is installed by requesting the page http://localhost/localstart.asp in your web browser.
Localstart.asp is an ordinary ASP file that's stored in the root directory of your computer's website. Localhost is an alias that
always refers to the IP address 127.0.0.1. This is known as the loopback address, because it always refers to the current
computer. If your request works and you see the IIS Help page in your browser, IIS is installed correctly.

Typically, the root website http://localhost is mapped to the directory c:\intepub\wwwroot. You can create new virtual
directories using the IIS Manager administrative utility. Just select Internet Information Server from the Administrative Tools
section of the Control Panel, and follow these steps:

1. Right-click the Default Web Site item (under your computer in the tree), and choose New Virtual Directory to
start the Virtual Directory wizard. Click Next.

2. Enter the alias, which is the name of the new virtual directory you want to create, and click Next.

3. Choose the physical directory that will be exposed. Click Next to continue.

4. The next window allows you to adjust the permissions granted to the virtual directory. The default settings allow
clients to run ASP.NET pages and web services, but they can't make any modifications or upload files. This is
the recommended configuration.

5. Click Next, and then Finish to end the wizard. You will see the virtual directory appear in the IIS Manager tree.

It's always a good idea to create a dedicated virtual directory before creating a project in Visual Studio .NET. Otherwise, your
project will automatically be placed in a subdirectory of c:\inetpub\wwwroot. The discovery service presented in this chapter uses
the virtual directory http://[ComputerName]/Discovery, which is mapped to the physical directory
C:\Code\P2P\Chapter08\Discovery.

Tip Any computer on your network can access a web service using the computer name or IP address of the computer where
the web service is hosted. However, if you want to expose a web service on the Internet, you'll probably need to invest in
a fixed IP address or enlist the services of a dedicated Internet hosting company.With a fixed IP address, it also
becomes possible to register a domain name (for example, http://www.mysite.com).

The Web-Service Class

Like a Remoting component, a web service is, at its simplest, just a collection of methods organized in a class. To expose a
method over the Internet, you need to add a <WebMethod> attribute to the method. In addition, it's a common convention to
derive from the WebService class, although this isn't required. Both the WebMethod attribute and the WebService class are found
in the System.Web.Services namespace.

Here's a sample web service with one method:
Public Class MyService

 <WebMethod()> _
 Public Sub MyMethod()
 ' (Code goes here.)
 End Sub
End Class

Although web services can include any .NET code, they only support a limited set of .NET types for use as method parameters or
return values. Supported types include

Basic data types such as integers, floating point numbers, Boolean variables, dates and times, strings, and
enumerations.

Arrays of any supported type.

The ADO.NET DataSet (although this type will probably not be understood by non-.NET clients).

The XmlNode object, which represents an arbitrary portion of an XML document.

A custom class or structure. However, only data members will be preserved. All code will be ignored.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There's one nice side to this limitation. It means that you never need to distribute a custom assembly to clients that need to use a
web service. Instead, they can download all the information they need about the service.

Remember, all web services are stateless. That means that if you create any member variables, they'll be initialized to default
empty values every time a web method is invoked. Similarly, if you create a constructor, it will be called before every method call.

In order to deploy a web service on a website, you need to follow three simple steps:
1. Compile the web service into a .dll assembly.

2. Copy the assembly into the bin directory of a virtual directory on your server.

3. Add an .asmx file extension that will allow you to identify the web service in the virtual directory.

The .asmx file is the web-service endpoint. The client cannot access your web-service .dll directly—instead, it makes a request for
the .asmx file, along with information about the method it wants to invoke and the data it's sending. The .asmx file simply indicates
the class and assembly name for the corresponding web service in a single line of text:
<%@ WebService Language="vb" Class="MyService" %>

The ASP.NET engine will then instantiate the corresponding class from the bin subdirectory and run the requested method.

Note Visual Studio .NET automates this process when you create a web-service project, compiling the web service into an
assembly and generating the corresponding .asmx file. These are the only two files you need to deploy.

The Web-Service Client

As with Remoting, a web-service client communicates with a web service using a proxy. With Remoting, the proxy is generated
dynamically at runtime. With web services, the proxy is generated by some tool at design time. In Visual Studio .NET, the proxy is
created in a process called "adding a web reference." It's at this point that you specify the location of the web service, and then
Visual Studio .NET generates a proxy class that can communicate with it and adds the proxy class to your project.

The proxy class has the same interface as the web service it communicates with. To use a web method, you create an instance of
the proxy class and invoke the method of the proxy class. To your code, it seems like using an ordinary local object, but behind
the scenes the proxy class creates and sends a SOAP request, waits for a response, and converts the return value into the
expected .NET type. If you haven't already used web-service references in your own projects, you'll see how to add one in the
next chapter.

Now that we've covered the groundwork, we're ready to begin coding a real-world application. The next section begins by creating
a registration database, which we'll expose through a simple .NET web service.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Registration Database
The registration database stores a list of all the peers that are currently available and the information needed to connect to them.
It also uses a basic cataloging system, whereby each peer uploads a catalog of available resources shortly after logging in. When
a peer needs a specific resource, it calls a web-service method. The web service attempts to find peers that can provide the
resource and returns a list of search matches with the required peer-connectivity information.

In this case, the resources are files that a peer is willing to exchange. The catalog stores file names, but that isn't enough. File
names can be changed arbitrarily and have little consistency among users, so searching based on file names isn't a desirable
option. Instead, file names are indexed using multiple content descriptors. In the case of an MP3 file, these content descriptors
might include information such as the artist name, song title, and so on. The file-sharing application can use more than one
possible method to retrieve this information, but the most likely choice is to retrieve it from the file. For example, MP3 files include
a header that stores song data. A file-sharing application could use this information to create a list of keywords for a file, and
submit that to the server. This is the approach taken in our sample registration database.

Note In order to index a file, a peer must understand the file format and know how to extract the required information. The
server does not deal with the file data, and can't perform this task.

Creating the Database

The registration database consists of three tables, as shown in Figure 8-4. These tables include the following:

Figure 8-4: The registration database

1. The Peers table lists currently connected peers, each of which is assigned a unique GUID. The peer-connectivity
information includes the numeric IP address (stored as a string in dotted notation) and port number. The Peers
table also includes a LastUpdate time, which allows an expiration policy to be used to remove old peer
registration records.

2. The Files table lists shared files, the peer that's sharing them, and the date stamp on the file. Each file has a
unique GUID, thereby ensuring that they can be tracked individually.

3. The Keywords table lists a single-word descriptor for a file. You'll notice that the Keywords table is linked to both
the Files table and the Peers table. This makes it easier to delete the keywords related to a peer if the peer
registration expires, without having to retrieve a list of shared files.

Figure 8-5 shows the sample data that you would expect in the registration database after a single client has connected and
registered two shared files (in this case, recordings of two classical compositions by Debussy).

Figure 8-5: Sample registration data

All GUID values are generated by the peer and submitted to the server. This allows the peer to keep track of its shared files and
quickly validate download requests, as you'll see in the next chapter.

Tip If you want to test this database on your own system, you can use the SQL script that's included with the samples for this
chapter. It automatically creates the database and the stored procedures described in the next section, provided you are
using SQL Server 2000.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stored Procedures

The next step is to define a set of stored procedures that encapsulate some of the most common database tasks.

The AddPeer stored procedure inserts a new peer registration record in the database. RefreshPeer updates the LastUpdated field
in the peer record. Every peer must call this method periodically to prevent their registration record from expiring.

CREATE Procedure AddPeer
(
 @ID uniqueidentifier,
 @IP nvarchar(15),
 @Port smallint
)
AS
INSERT INTO Peers
(
 ID, IP, Port, LastUpdate
)
VALUES
(
 @ID, @IP, @Port, GETDATE()
)
GO

CREATE Procedure RefreshPeer
(
 @ID uniqueidentifier
)
AS
UPDATE Peers SET LastUpdate=GETDATE() WHERE ID=@ID
GO

Two more stored procedures, AddFile and AddKeyword, allow new catalog information to be added to the database.
CREATE Procedure AddFile
(
@ID uniqueidentifier,
@PeerID uniqueidentifier,
@FileName nvarchar(50),
@FileCreated datetime
)
AS
INSERT INTO Files
(
 ID, PeerID, FileName, FileCreated
)
VALUES
(
 @ID, @PeerID, @FileName, @FileCreated
)
GO

CREATE Procedure AddKeyword
(
 @FileID uniqueidentifier,
 @PeerID uniqueidentifier,
 @Keyword nvarchar(50)
)
AS
INSERT INTO Keywords
(
 FileID, PeerID, Keyword
)
VALUES
(
 @FileID, @PeerID, @Keyword
)
GO

Finally, a DeletePeersAndFiles stored procedure handles the unregistration process, removing related records from the Files,
Peers, and Keywords tables. The DeleteFiles stored procedure provides a similar function, but leaves the peer record intact. Its
primary use is when updating the catalog.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE Procedure DeletePeerAndFiles
(
 @ID uniqueidentifier
)
AS
DELETE FROM Files WHERE PeerID = @ID
DELETE FROM Peers WHERE ID = @ID
DELETE FROM Keywords WHERE PeerID = @ID
GO

CREATE Procedure DeleteFiles
(
 @ID uniqueidentifier
)
AS
DELETE FROM Files WHERE PeerID = @ID
DELETE FROM Keywords WHERE PeerID = @ID
GO

The database doesn't include a stored procedure for performing queries, because this step is easier to accomplish with a
dynamically generated SQL statement that uses a variable number of WHERE clauses.

Creating the Database Class

The next step is to create a class that encapsulates all the data-access logic. The web service will then make use of this class to
perform database tasks, rather than connect with the database directly. This separation makes it easier to debug, enhance, and
optimize the data-access logic.

For maximum reusability, the data-access code could be implemented as a separate assembly. In our example, however, it's a
part of the web service project.

The database code includes a Peer and SharedFile class, which models a row from the Peers and Files tables, respectively. The
SharedFile class also includes information about the related peer.
Public Class Peer
 Public Guid As Guid
 Public IP As String
 Public Port As Integer
End Class

Public Class SharedFile
 Public Guid As Guid
 Public FileName As String
 Public FileCreated As Date
 Public Peer As New Peer()
 Public Keywords() As String
End Class

Neither of these classes uses full property procedures, because they aren't fully supported in a web service. If you were to add
property procedure code, it might be used on the server side. However, it would be ignored on the client side, thus limiting its
usefulness.

The database code could be separated into multiple classes (for example, a PeersDB, FilesDB, and KeywordsDB database).
However, because there's a relatively small set of tasks that will be performed with the registration database, you can implement
all methods in a single class without any confusion. Here's the basic framework for the class:
Public Class P2PDatabase

 Private ConnectionString As String

 Public Sub New()
 ConnectionString = ConfigurationSettings.AppSettings("DBConnection")
 End Sub

 Public Sub AddPeer(ByVal peer As Peer)
 ' (Code omitted.)
 End Sub

 Public Sub RefreshPeer(ByVal peer As Peer)
 ' (Code omitted.)
 End Sub

 Public Sub DeletePeerAndFiles(ByVal peer As Peer)
 ' (Code omitted.)
 End Sub

 Public Sub AddFileInfo(ByVal files() As SharedFile, ByVal peer As Peer)
 ' (Code omitted.)
 End Sub

 Public Function GetFileInfo(ByVal keywords() As String) As SharedFile()
 ' (Code omitted.)
 End Function
End Class

When a P2PDatabase instance is created, the connection string is retrieved from a configuration file. This will be the configuration
associated with the application that's using the P2PDatabase class. In our example, this is the web.config file used by the web

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

associated with the application that's using the P2PDatabase class. In our example, this is the web.config file used by the web
service.
<?xml version="1.0" encoding="utf-8" ?>

<configuration>
 <appSettings>
 <add key="DBConnection"
 value="Data Source=localhost;Initial Catalog=P2P;user ID=sa" />
 </appSettings>
 <system.web>
 <!-- Other settings omitted. -->
 </system.web>
</configuration>

The actual database code is quite straightforward. The basic pattern is to create a command for the corresponding stored
procedure, add the required information as parameters, and execute the command directly. For example, here's the code used to
register, update, and remove peer information:
Public Sub AddPeer(ByVal peer As Peer)

 ' Define command and connection.
 Dim con As New SqlConnection(ConnectionString)
 Dim cmd As New SqlCommand("AddPeer", con)
 cmd.CommandType = CommandType.StoredProcedure

 ' Add parameters.
 Dim param As SqlParameter
 param = cmd.Parameters.Add("@ID", SqlDbType.UniqueIdentifier)
 param.Value = peer.Guid
 param = cmd.Parameters.Add("@IP", SqlDbType.NVarChar, 15)
 param.Value = peer.IP
 param = cmd.Parameters.Add("@Port", SqlDbType.SmallInt)
 param.Value = peer.Port

 Try
 con.Open()
 cmd.ExecuteNonQuery()
 Finally
 con.Close()
 End Try

End Sub

Public Sub RefreshPeer(ByVal peer As Peer)

 ' Define command and connection.
 Dim con As New SqlConnection(ConnectionString)
 Dim cmd As New SqlCommand("RefreshPeer", con)
 cmd.CommandType = CommandType.StoredProcedure
 ' Add parameters.
 Dim param As SqlParameter
 param = cmd.Parameters.Add("@ID", SqlDbType.UniqueIdentifier)
 param.Value = peer.Guid

 Try
 con.Open()
 cmd.ExecuteNonQuery()
 Finally
 con.Close()
 End Try

End Sub

Public Sub DeletePeerAndFiles(ByVal peer As Peer)

 ' Define command and connection.
 Dim con As New SqlConnection(ConnectionString)
 Dim cmd As New SqlCommand("DeletePeerAndFiles", con)
 cmd.CommandType = CommandType.StoredProcedure

 ' Add parameters.
 Dim param As SqlParameter
 param = cmd.Parameters.Add("@ID", SqlDbType.UniqueIdentifier)
 param.Value = peer.Guid

 Try
 con.Open()
 cmd.ExecuteNonQuery()
 Finally
 con.Close()
 End Try

End Sub

Note Even if you're new to ADO.NET coding, the previous code sample is fairly self-explanatory. There are numerous books
dedicated to the basics of ADO.NET programming, including several titles from Apress.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that if an error occurs, the connection is closed, but the error isn't handled. Instead, it's allowed to propagate back to the
caller (in this case, the web service), which will handle it accordingly. Another option would be to catch all errors and throw a
higher-level exception, such as an ApplicationException, with the original exception wrapped inside.

The code for the AddFileInfo() method is lengthier because it adds multiple records: one new file record, and one keyword record
for each keyword string in the File.Keywords array. All the work is performed with the same open connection, thereby reducing the
overhead required for the whole process. The AddFileInfo() method also clears the current registration information before it begins
by calling the DeleteFiles stored procedure. This ensures that the same peer can't accidentally register the same file twice.
Public Sub AddFileInfo(ByVal files() As SharedFile, ByVal peer As Peer)

 ' Define commands and connection.
 Dim con As New SqlConnection(ConnectionString)
 Dim cmdDelete As New SqlCommand("DeleteFiles", con)
 cmdDelete.CommandType = CommandType.StoredProcedure

 Dim cmdFile As New SqlCommand("AddFile", con)
 cmdFile.CommandType = CommandType.StoredProcedure

 Dim cmdKeyword As New SqlCommand("AddKeyword", con)
 cmdKeyword.CommandType = CommandType.StoredProcedure

 Dim param As SqlParameter

 Try
 con.Open()

 ' Delete current registration information.
 param = cmdDelete.Parameters.Add("@ID", SqlDbType.UniqueIdentifier)
 param.Value = peer.Guid
 cmdDelete.ExecuteNonQuery()

 Dim File As SharedFile
 For Each File In files

 ' Add parameters.
 cmdFile.Parameters.Clear()
 param = cmdFile.Parameters.Add("@ID", SqlDbType.UniqueIdentifier)
 param.Value = File.Guid
 param = cmdFile.Parameters.Add("@PeerID", SqlDbType.UniqueIdentifier)
 param.Value = peer.Guid
 param = cmdFile.Parameters.Add("@FileName", SqlDbType.NVarChar, 50)
 param.Value = File.FileName
 param = cmdFile.Parameters.Add("@FileCreated", SqlDbType.DateTime)
 param.Value = File.FileCreated

 cmdFile.ExecuteNonQuery()

 ' Add keywords for this file.
 ' Note that the lack of any keywords isn't considered
 ' to be an error condition (although it could be).
 Dim Keyword As String
 For Each Keyword In File.Keywords
 cmdKeyword.Parameters.Clear()
 param = cmdKeyword.Parameters.Add("@FileID", _
 SqlDbType.UniqueIdentifier)
 param.Value = File.Guid
 param = cmdKeyword.Parameters.Add("@PeerID", _
 SqlDbType.UniqueIdentifier)
 param.Value = peer.Guid
 param = cmdKeyword.Parameters.Add("@Keyword", _
 SqlDbType.NVarChar, 50)
 param.Value = Keyword
 cmdKeyword.ExecuteNonQuery()
 Next
 Next

 Finally
 con.Close()
 End Try

End Sub

Finally, the GetFileInfo() method creates a dynamic SQL query based on a list of search keywords. The query joins the Files,
Peers, and Keywords tables in order to retrieve all the required peer-connectivity and file information. For each keyword, a
WHERE clause is appended to the SQL expression. For maximum performance, this process is performed with a StringBuilder
object instead of through ordinary string concatenation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Function GetFileInfo(ByVal keywords() As String) As SharedFile()

 ' Build dynamic query string.
 Dim DynamicSQL As New System.Text.StringBuilder(_
 "SELECT DISTINCT Files.ID AS FileID, Peers.ID AS PeerID, " & _
 "FileName, FileCreated, IP, Port " & _
 "FROM Files, Keywords, Peers " & _
 "WHERE Files.ID = keywords.FileID AND Files.PeerID = Peers.ID AND ")

 Dim i As Integer
 For i = 1 To keywords.Length
 DynamicSQL.Append("Keyword LIKE '%" + keywords(i - 1) + "%' ")
 If Not (i = keywords.Length) Then DynamicSQL.Append("OR ")
 Next

 ' Define command and connection.
 Dim con As New SqlConnection(ConnectionString)
 Dim cmd As New SqlCommand(DynamicSQL.ToString(), con)
 Dim r As SqlDataReader
 Dim Files As New ArrayList()

 Try
 con.Open()
 r = cmd.ExecuteReader()
 Do While (r.Read())
 Dim File As New SharedFile()
 File.Guid = r("FileID")
 File.FileName = r("FileName")
 File.FileCreated = r("FileCreated")
 File.Peer.IP = r("IP")
 File.Peer.Port = r("Port")
 File.Peer.Guid = r("PeerID")
 Files.Add(File)
 Loop
 Finally
 con.Close()
 End Try

 ' Convert the generic ArrayList to an array of SharedFile objects.
 Return CType(Files.ToArray(GetType(SharedFile)), SharedFile())

End Function

Results from the query are retrieved using a DataReader. Each time a matching file is found, a new SharedFile object is created
and added to an ArrayList. Once all the matching files are found, the ArrayList is converted to a strongly typed SharedFile array,
and returned.

Tip You might want to use the SQL statement SET ROWCOUNT before you execute the query. This way, you can limit the
total number of requests and ensure that the discovery service won't be swamped by returning tens of thousands of
results to a poorly worded query. For example, the SQL statement SET ROWCOUNT 100 caps search results to the first
100 rows that match the query.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Discovery Service
Now that the actual data-access logic has been written, the actual discovery web service will need very little code. For the most
part, its methods simply wrap the P2PDatabase component. All exceptions are caught, logged, and suppressed, so that sensitive
information will not be returned to the client, who is in no position to correct low-level database errors anyway.

A typical interaction with the discovery service goes as follows:
1. The client generates a new GUID to identify itself, records its current IP address and port, and calls Register()

with this information.

2. The client inspects the files that it's sharing, creates the keywords lists, and calls PublishFiles() to submit the
catalog.

3. After this point, the client calls RefreshRegistration() periodically, to prevent its login information from expiring.

4. Optionally, the client calls SearchForFile() with any queries.

5. The client ends the session by calling Unregister().

The complete web-service code is shown here:
Public Class DiscoveryService
 Inherits System.Web.Services.WebService
 ' This object will be created with each new method request.
 ' (This isn't a problem because P2PDatabase is stateless.)
 Private DB As New P2PDatabase()

 <WebMethod()> _
 Public Function Register(ByVal peer As Peer) As Boolean

 Try
 DB.AddPeer(peer)
 Return True
 Catch
 Return False
 End Try

 End Function

 <WebMethod()> _
 Public Function RefreshRegistration(ByVal peer As Peer) As Boolean

 Try
 DB.RefreshPeer(peer)
 Return True
 Catch err As Exception
 Trace.Write(err.ToString)
 Return False
 End Try

 End Function

 <WebMethod()> _
 Public Sub Unregister(ByVal peer As Peer)

 Try
 DB.DeletePeerAndFiles(peer)
 Catch err As Exception
 Trace.Write(err.ToString)
 End Try

 End Sub

 <WebMethod()> _
 Public Function PublishFiles(ByVal files() As SharedFile, _
 ByVal peer As Peer) As Boolean

 Try
 DB.AddFileInfo(files, peer)
 Return True
 Catch err As Exception
 Trace.Write(err.ToString)
 Return False
 End Try

 End Function

 <WebMethod()> _
 Public Function SearchForFile(ByVal keywords() As String) As SharedFile()

 Try
 Return DB.GetFileInfo(keywords)
 Catch err As Exception
 Trace.Write(err.ToString)
 Dim EmptyArray() As SharedFile = {}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim EmptyArray() As SharedFile = {}
 Return EmptyArray
 End Try

 End Function

End Class

To improve performance, you might consider using ASP.NET caching. However, as queries are likely to differ quite a bit, and the
list of keywords stored in the database can grow dramatically, it's difficult to implement an effective caching strategy.

There's one function that the web service doesn't provide: removing expired peer information. In Chapter 5, you saw how this type
of work can be performed on a dedicated thread. However, as web services are stateless, it's not easy to run other code
asynchronously. Instead, you would need to create a separate component that runs on the server (perhaps a Windows service),
and periodically scans the database for Peer records beyond a certain age limit. It would then remove these records using the
DeletePeerAndFiles stored procedure. This logic is easy to implement and could be added to the P2PDatabase class.

Testing the Discovery Service

Once you've completed the service, you can load the corresponding .asmx page into Internet Explorer to see an automatically
generated test page that lists the web methods exposed by this web service (see Figure 8-6). However, you won't be able to test
them directly because they require a client that can create and configure the custom Peer and SharedFile objects.

Figure 8-6: Viewing web-service methods in Internet Explorer

To put the directory service to a real test, you need to build a dedicated client application, such as the one presented in the next
chapter. In this case, you'll probably want to debug your web service and client application at the same time. To do so, right-click
the project name in the Solution Explorer, and select Properties. Then, navigate to the Configuration Properties → Debugging
node, and choose "Wait for an external process to connect" (as shown in Figure 8-7). Now, when you run your web-service
project, Visual Studio .NET will load the debugging symbols and wait for a client request. You can use the full set of debugging
tools to watch the web service as it reacts, including breakpoints, variable watches, and the command window.

Figure 8-7: Configuring web-service debugging

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
This chapter laid the groundwork for the ambitious file-sharing application that we'll develop in the next chapter. Here you learned
how to use the .NET web-service functionality and a back-end database to create a highly scalable registry service. Best of all, the
code is carefully separated into multiple layers through stored procedures and a dedicated database component, thereby ensuring
that it can be easily altered and extended in the future.

It's important to realize that the discovery process isn't standardized in peer-to-peer applications. There are many other ways you
can organize or customize a registration database. For example, the registration database used in this example stores enough
data for peers to make direct TCP/IP connections. However, if you wanted to use some other type of communication protocol, you
might store different information. Chapter 10 develops a discovery service that uses Remoting. It simply serializes ObjRef objects
to a binary database field. A peer can then read this information, reconstruct a proxy object, and use it directly through the .NET
Remoting platform services.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9: Building a File Sharer
In the last chapter, you learned how to catalog peers and resources with a discovery web service. In this chapter, we'll develop a
sophisticated file-sharing application that uses the discovery service.

The file-sharing client is a lengthy example, and it will take the entire chapter to dissect the code. This complexity is a result of the
multiple roles that a peer-to-peer application must play. A peer-to-peer client needs to periodically submit registration information
to a central web service, serve files to hordes of eager peers, and retrieve more files from a different set of peers on the network—
potentially all at once. The only way to handle these issues is with careful, disciplined threading code.

An Overview of FileSwapper
The FileSwapper application is built around a single form (see Figure 9-1). This form uses multiple tables and allows users to
initiate searches, configure settings, and monitor uploads and downloads.

Figure 9-1: The FileSwapper display

FileSwapper divides its functionality into a small army of classes, including the following:

SwapperClient, which is the main form class. It delegates as much work as possible to other classes and uses a
timer to periodically update its login information with the discovery service.

Global, which includes the data that's required application-wide (for example, registry settings).

App, which includes shared methods for some of the core application tasks such as Login(), Logout(), and
PublishFiles(), and also provides access to the various application threads.

KeywordUtil and MP3Util, which provide a few shared helper methods for analyzing MP3 files and parsing the
keywords that describe them.

RegistrySettings, which provides access to the application's configuration settings, along with methods for saving
and loading them.

ListViewItemWrapper, which performs thread-safe updating of a ListViewItem.

Search, which contacts the discovery service with a search request on a separate thread (allowing long-running
searches to be easily interrupted).

FileServer and FileUpload, which manage the incoming connections and transfer shared files to interested peers.

FileDownloadQueue and FileDownloadClient, which manage in-progress downloads from other peers.

Messages, which defines constants used for peer-to-peer communication.

The file-transfer process is fairly easy. Once a peer locates another peer that has an interesting file, it opens a direct TCP/IP
connection and sends a download request. Conceptually, this code is quite similar to some of the examples shown in Chapter 7.
However, the application is still fairly complex because it needs to handle several tasks that require multithreading at once.
Because every peer acts as both a client and a server, every application needs to simultaneously monitor for new incoming
connections that are requesting files. In addition, the application must potentially initiate new outgoing connections to download
other files. Not only does the client need to perform uploading and downloading at the same time, but it also needs to be able to
perform multiple uploads or downloads at once (within reason). In order to accommodate this design, a separate thread needs to
work continuously to schedule new uploads or downloads as required.

Figure 9-2 shows a simplified view of threads in the FileSwapper application. Note that for the most part, independent threads run
code in separate objects to prevent confusion. However, this isn't a requirement, and a single object could be executed on
multiple threads or a single thread could run the code from multiple objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-2: Threads in FileSwapper

The full FileSwapper application can be downloaded with the code for this chapter. In this chapter, we'll walk through all the
threading and networking code, but omit more trivial details such as namespace imports and the automatically generated
Windows designer code. We'll begin by examining some of the building blocks such as the classes used to register the peer, to
read configuration information, and to process MP3 files. Next, you'll look at the code for searching available peers. Finally, you'll
see the multithreaded code for handling simultaneous uploads and downloads over the network.

The Discovery Service Web Reference

The FileSwapper requires a web reference to the discovery service in order to work. To add this, right-click the project name in the
Solution Explorer, and choose Add Web Reference. Type the full path to the virtual directory and web service .asmx file in the
Address field of the Add Web Reference window. When you press Enter, the list of web-service methods from the Internet
Explorer test page will appear, as shown in Figure 9-3.

Figure 9-3: Adding a web reference

Click Add Reference to generate the proxy class and add it to your project. The proxy class should not be manually modified once
it's created, and so it isn't shown in the Solution Explorer. However, you can examine it by choosing Project Show All Files
from the Visual Studio .NET window. The proxy class is always named Reference.vb, as shown in Figure 9-4. We won't consider
the proxy class code in this book, although it makes interesting study if you'd like to understand a little more about how web
services convert .NET objects into SOAP messages and back.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-4: The hidden proxy class

If you need to change a web service, you must recompile it and then update the client's web reference. To do so, right-click the
web-service reference in the Solution Explorer, and choose Update Web Reference.

In the remainder of this chapter, we'll walk through the FileSwapper code class-by-class, and discuss the key design decisions.

Tip If you click on a web reference in the Solution Explorer, you can find a property called Url Behavior in the Properties
window. This property is set to static by default, in which case a fixed URL is set for the discovery service and added to
the generated proxy class code. If you change the Url Behavior property to dynamic, an application setting will be added
to the client application's configuration file with the web-service URL. This way, if you move the web service to another
server you only need to change the configuration file, rather than recompile the client application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Global Data and Tasks
The FileSwapper application uses two classes that consist of shared members: Global and App. These classes act like global
modules and are available from any location in the FileSwapper code. That means that you don't need to create an instance of
these classes—instead, their properties and methods are always available and you can access them through the class name.

The Global class stores data that's required by multiple objects in the application. As with any application, it's always best to keep
the amount of global data to a minimum. A large number of global variables usually indicates a poor structure that really isn't
object-oriented. All the data in the Global class is held using public shared variables, making it widely available. For example, any
code in the application can use the Global.Identity property to access information about the current computer's IP address and
port number settings.

Here's the full code for the Global class:
Public Class Global

 ' Contains information about the current peer.
 Public Shared LoggedIn As Boolean = False
 Public Shared Identity As New Peer()

 ' Lists files that are available for other peers.
 Public Shared SharedFiles() As SharedFile

 ' Provides access to configuration settings that are stored in the registry.
 Public Shared Settings As New RegistrySettings()

End Class

Though these variables are always available, some of them still need to be set at startup before they contain any useful
information. For example, the Identity, SharedFiles, and Settings variables all begin in a default, empty state.

The App class also relies on shared variables to store a common set of information. It actually stores references to three separate
objects, each of which will be executed on an independent thread. Using the App class, your startup code can easily initialize the
threads on startup and abort them when the application is about to end. The App class also includes a private shared variable that
references the web-service proxy. This ensures that no other part of the application can access the discovery service directly—
instead, the application must call one of the App class methods.

Here's the outline for the App class, with all its public and private member variables:
Public Class App

 ' Holds a reference to the web-service proxy.
 Private Shared Discovery As New DiscoveryService()
 Public Shared SearchThread As Search
 Public Shared DownwnloadThread As FileDownloadQueue
 Public Shared UploadThread As FileServer

 ' (Code omitted.)

End Class

The App class also defines five higher-level methods that deal with registration. First, the App.Login() method retrieves the IP
address of the current computer, configures the Global.Identity property accordingly, and logs in to the discovery web service.
Public Shared Sub Login()
 Global.Identity.Guid = Guid.NewGuid
 Global.Identity.IP = _
 Dns.GetHostByName(Dns.GetHostName).AddressList(0).ToString()

 Global.LoggedIn = Discovery.Register(Global.Identity)
End Sub

The App.Logout() method uses the Global.Identity information to unregister the peer, provided the peer is currently logged in.
Similarly, the App.Refresh Login() method resubmits the Global.Identity information to prevent the peer from expiring from the
discovery service.
Public Shared Sub Logout()
 If Global.LoggedIn Then Discovery.Unregister(Global.Identity)
End Sub

Public Shared Sub RefreshLogin()
 If Global.LoggedIn Then
 Discovery.RefreshRegistration(Global.Identity)
 End If
End Sub

The App.PublishFiles() method (shown next) examines files in the local share path and creates a catalog, which it assigns to the
Global.SharedFiles variable. The PublishFiles() method retrieves the share path from the directory specified in the registry and
examines the file extension to determine the type of file. Depending on the application settings, non-MP3 files may be ignored.
Temporary files (files with the extension .tmp) are always ignored because they most likely correspond to an in-progress
download. Here's the code for the PublishFiles() method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Shared Function PublishFiles() As Boolean
 Try
 Dim Dir As New DirectoryInfo(Global.Settings.SharePath)
 Dim Files() As FileInfo = Dir.GetFiles()
 Dim FileList As New ArrayList()
 Dim File As FileInfo
 Dim IsMP3 As Boolean

 For Each File In Files
 IsMP3 = Path.GetExtension(File.Name).ToLower() = ".mp3"

 If Path.GetExtension(File.Name).ToLower() = ".tmp" Then
 ' Ignore all temporary files.
 ElseIf (Not IsMP3) And Global.Settings.ShareMP3Only Then
 ' Ignore non-MP3 files depending on setting.
 Else
 Dim SharedFile As New SharedFile()
 SharedFile.Guid = Guid.NewGuid()
 SharedFile.FileName = File.Name
 SharedFile.FileCreated = File.CreationTime

 If IsMP3 Then
 SharedFile.Keywords = MP3Util.GetMP3Keywords(File.FullName)
 Else
 ' Determine some other way to set keywords,
 ' perhaps by file name or file
 ' type.
 ' The default (no keywords) will prevent the
 ' file from appearing in a search.
 End If

 FileList.Add(SharedFile)
 End If
 Next

 Global.SharedFiles = CType(FileList.ToArray(GetType(SharedFile)), _
 SharedFile())
 Return Discovery.PublishFiles(Global.SharedFiles, Global.Identity)

 Catch Err As Exception
 MessageBox.Show(Err.ToString())
 End Try
End Function

If you're using non-MP3 files, you'll need to add code to determine a set of valid keywords. This code might parse the file name or
look for data inside the file. In the case of MP3 files, the code retrieves the tag data using the utility methods shown in the next
section.

Finally, the App.SearchForFile() method simply wraps the web method of the same name:
Public Shared Function SearchForFile(ByVal keywords() As String) As SharedFile()
 Return Discovery.SearchForFile(keywords)
End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Utility Functions
There are three utility classes in the FileSwapper: RegistrySettings, MP3Util, and KeywordUtil. All of them use shared methods to
provide helper functions.

The first class, RegistrySettings, wraps access to the Windows registry. It allows the application to store and retrieve machine-
specific information. You could replace this class with code that reads and writes settings in an application configuration file, but
the drawback would be that multiple users couldn't load the same client application file from a network (as they would end up
sharing the same configuration file).

The RegistrySettings class provides five settings as public variables and two methods. The Load() method retrieves the values
from the specified key and configures the public variables. The Save() method stores the current values in the appropriate
locations. The RegistrySettings class also hard-codes several pieces of information, including the first-run defaults (which are
used if no preexisting registry information is found), and the path used for storing registry settings
(HKEY_LOCAL_MACHINE\Software\FileSwapper\Settings). This information could also be drawn from an application
configuration file.
Public Class RegistrySettings

 Public SharePath As String
 Public ShareMP3Only As Boolean
 Public MaxUploadThreads As Integer
 Public MaxDownloadThreads As Integer
 Public Port As Integer

 Public Sub Load()
 Dim Key As RegistryKey
 Key = Microsoft.Win32.Registry.LocalMachine.CreateSubKey(_
 "Software\FilesSwapper\Settings")
 SharePath = Key.GetValue("SharePath", Application.StartupPath)
 Port = CType(Key.GetValue("LocalPort", "8000"), Integer)
 ShareMP3Only = CType(Key.GetValue("OnlyShareMP3", "True"), Boolean)
 MaxUploadThreads = CType(Key.GetValue("MaxUploadThreads", "2"), Integer)
 MaxDownloadThreads = CType(Key.GetValue("MaxDownloadThreads", "2"), _
 Integer)
 End Sub

 Public Sub Save()
 Dim Key As RegistryKey
 Key = Microsoft.Win32.Registry.LocalMachine.CreateSubKey(_
 "Software\FilesSwapper\Settings")

 Key.SetValue("SharePath", SharePath)
 Key.SetValue("LocalPort", Port.ToString())
 Key.SetValue("OnlyShareMP3", ShareMP3Only.ToString())
 Key.SetValue("MaxUploadThreads", MaxUploadThreads.ToString())
 Key.SetValue("MaxDownloadThreads", MaxDownloadThreads.ToString())
 End Sub

End Class

Tip Instead of including a Load() and Save() method, you could create property procedures for the RegistrySettings class
that perform this work. Then, whenever you set a property, the value will be committed, and whenever you access a
value, it will be retrieved from the registry. This adds additional overhead, but it's minor.

The MP3Util class provides the functionality for retrieving MP3 tag data from a file. The class provides two shared functions. The
first, GetMP3Keywords(), opens a file, looks for the 128-byte ID3v2 tag that should be found at the end of the file, and verifies that
it starts with the word "TAG". If so, individual values for the artist, album, and song title are retrieved using the second method,
GetTagData(), which converts the binary data to a string using ASCII encoding information. All the retrieved data is delimited with
spaces and combined into along string using a StringBuilder. This string is then parsed into a list of keywords.

Public Class MP3Util

 Public Shared Function GetMP3Keywords(ByVal filename As String) As String()
 Dim fs As New FileStream(filename, FileMode.Open)

 ' Read the MP3 tag.
 fs.Seek(0 - 128, SeekOrigin.End)
 Dim Tag(2) As Byte
 fs.Read(Tag, 0, 3)

 If Encoding.ASCII.GetString(Tag).Trim() = "TAG" Then

 Dim KeywordString As New StringBuilder()
 ' Title.
 KeywordString.Append(GetTagData(fs, 30))
 ' Artist.
 KeywordString.Append(" ")
 KeywordString.Append(GetTagData(fs, 30))
 ' Album.
 KeywordString.Append(" ")
 KeywordString.Append(GetTagData(fs, 30))
 ' Year.
 KeywordString.Append(" ")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 KeywordString.Append(" ")
 KeywordString.Append(GetTagData(fs, 4))

 fs.Close()
 Return KeywordUtil.ParseKeywords(KeywordString.ToString())

 Else
 fs.Close()
 Dim EmptyArray() As String = {}
 Return EmptyArray
 End If
 End Function

 Public Shared Function GetTagData(ByVal stream As Stream, _
 ByVal length As Integer) As String
 Dim Bytes(length - 1) As Byte
 stream.Read(Bytes, 0, length)

 Dim TagData As String = Encoding.ASCII.GetString(Bytes)
 ' Trim nulls.
 Dim TrimChars() As Char = {" ", vbNullChar}
 TagData = TagData.Trim(TrimChars)
 Return TagData
 End Function

End Class

Note The GetTagData() includes a very important final step, which removes all null characters from the string.Without this
step, the string will contain embedded nulls. If you try to submit this data to the discovery web service, the proxy class
will throw an exception, because it won't be able to format the strings into a SOAP message.

The final utility class is KeywordUtil. It includes a single shared method— ParseKeywords()—that takes a string which contains a
list of keywords, and splits it into words wherever a space, comma, or period is found. This step is performed using the built-in
String.Split() method. Thus, if you index an MP3 file that has the artist "Claude Debussy," the keyword list will include two entries:
"Claude" and "Debussy". This allows a peer to search with both or only one of these terms.

At the same time that ParseKeywords() splits the keyword list, it also removes extraneous strings, such as noise words ("the",
"for", "and", and so on). You may want to add additional noise words to improve its indexing. In addition, strings that include only a
delimiter are removed (for example, a string containing a single blank space). This is necessary because the String.Split() method
doesn't deal well with multiple spaces in a row. To make the processing logic easy, keywords are added into an ArrayList on the
fly and converted into a strongly typed string array when the process is complete.
Public Class KeywordUtil

 Private Shared NoiseWords() As String = {"the", "for", "and", "or"}
 Public Shared Function ParseKeywords(ByVal keywordString As String) _
 As String()
 ' Split the list of words into an array.
 Dim Keywords() As String
 Dim Delimeters() As Char = {" ", ",", "."}
 Keywords = keywordString.Split(Delimeters)
 ' Add each valid word into an ArrayList.
 Dim FilteredWords As New ArrayList()
 Dim Word As String
 For Each Word In Keywords
 If Word.Trim() <> "" And Word.Length > 1 Then
 If Array.IndexOf(NoiseWords, Word.ToLower()) = -1 Then
 FilteredWords.Add(Word)
 End If
 End If
 Next

 ' Convert the ArrayList into a normal string array.
 Return FilteredWords.ToArray(GetType(String))
 End Function

End Class

Thread-Safe ListViewItem Updates

The FileSwapper is a highly asynchronous application that provides real-time status information for many tasks. In several places
in code, a user-interface operation needs to be marshaled to the user-interface thread in order to prevent potential errors. This is
usually the case when updating one of the three main ListView controls in the FileSwapper: the upload status display, the
download status display, and the search-result listing.

For the first two cases, there's a direct mapping between threads and ListView items. For example, every concurrent upload
requires exactly one ListViewItem to display ongoing status information. To simplify the task of creating and updating the
ListViewItem, FileSwapper includes a wrapper class called ListViewItemWrapper. ListViewItemWrapper performs two tasks.
When it's first instantiated, it creates and adds a ListViewItem on the correct thread using the private AddListViewItem()
procedure. Second, when a user calls the ChangeStatus() method, it updates the status column of a ListViewItem on the correct
thread using the private RefreshListViewItem() procedure. In order to use these subroutines with the Control.Invoke() method,
they cannot take any parameters. Thus, the information required to create or update the ListViewItem must be stored in temporary
private variables, such as RowName and RowStatus.

Here's the complete code for the ListViewItemWrapper:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Class ListViewItemWrapper

 Private ListView As ListView
 Private ListViewItem As ListViewItem

 ' These variables are used to store temporary information required when a call
 ' is marshaled to the user-interface thread.
 Private RowName As String
 Private RowStatus As String

 Public Sub New(ByVal listView As ListView, ByVal rowName As String, _
 ByVal rowStatus As String)
 Me.ListView = listView
 Me.RowName = rowName
 Me.RowStatus = rowStatus

 ' Marshal the operation to the user-interface thread.
 listView.Invoke(New MethodInvoker(AddressOf AddListViewItem))
 End Sub

 ' This code executes on the user-interface thread.
 Private Sub AddListViewItem()
 ' Create new ListView item.
 ListViewItem = New ListViewItem(RowName)
 ListViewItem.SubItems.Add(RowStatus)
 ListView.Items.Add(ListViewItem)
 End Sub

 Public Sub ChangeStatus(ByVal rowStatus As String)
 Me.RowStatus = rowStatus

 ' Marshal the operation to the user-interface thread.
 ListView.Invoke(New MethodInvoker(AddressOf RefreshListViewItem))
 End Sub

 ' This code executes on the user-interface thread.
 Private Sub RefreshListViewItem()
 ListViewItem.SubItems(1).Text = RowStatus
 End Sub

End Class

The ListViewItemWrapper is a necessity in our peer-to-peer application, because the downloading and uploading operations won't
be performed on the main application threads. However, you'll find that this class is useful in many Windows applications. Any
time you need to create a highly asynchronous interface, it makes sense to use this control wrapper design pattern.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Main Form
We've now covered enough of the FileSwapper code to examine the main form, which acts as the hub of the application.

When the main form first loads, it reads the registry, updates the configuration window with the retrieved settings, starts the other
threads, and then logs in, as shown here:
Private Sub SwapperClient_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Me.Show()
 Me.Refresh()

 ' Read the registry.
 Global.Settings.Load()
 txtSharePath.Text = Global.Settings.SharePath
 txtPort.Text = Global.Settings.Port
 chkMP3Only.Checked = Global.Settings.ShareMP3Only
 txtUploads.Text = Global.Settings.MaxUploadThreads
 txtDownloads.Text = Global.Settings.MaxDownloadThreads

 ' Create the search, download, and upload objects.
 ' They will create their own threads.
 App.SearchThread = New Search(lstSearchResults)
 App.DownwnloadThread = New FileDownloadQueue(lstDownloads)
 App.UploadThread = New FileServer(lstUploads)
 App.UploadThread.StartWaitForRequest()

 ' Start the login process.
 Global.Identity.Port = Global.Settings.Port
 DoLogin()

End Sub

The login is actually a multiple step procedure. First, the peer information is submitted with the App.Login() method. Next, the file
catalog is created and submitted with the App.PublishFiles() method. Finally, the timer is enabled to automatically update the login
information as required.

While the peer is sending data to the discovery web service, the mouse pointer is changed to an hourglass, and the text in the
status bar panel is updated to reflect what's taking place.
Private Sub DoLogin()

 Me.Cursor = Cursors.WaitCursor

 ' Log in.
 pnlState.Text = "Trying to log in."
 App.Login()
 If Not Global.LoggedIn Then
 pnlState.Text = "Not logged in."
 Return
 End If

 ' Submit list of files.
 pnlState.Text = "Sending file information..."
 If App.PublishFiles() Then
 pnlState.Text = "File list published to server."
 Else
 pnlState.Text = "Could not publish file list."
 End If

 ' Refresh login information every five minutes.
 tmrRefreshRegistration.Start()

 Me.Cursor = Cursors.Default

End Sub

The timer fires every 300,000 milliseconds (every five minutes) to update the login information:
Private Sub tmRefreshRegistration_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles tmrRefreshRegistration.Tick

 App.RefreshLogin()

End Sub

Currently, no steps are taken to refresh the published file list, although you can add this functionality easily using a timer, or by
monitoring the file system for changes.

When the form closes, the client is automatically logged out, and the threads are terminated:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub SwapperClient_Closed(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Closed

 App.Logout()
 App.DownwnloadThread.Abort()
 App.SearchThread.Abort()
 App.UploadThread.Abort()

End Sub

In this case, the code is actually not aborting the thread directly. Instead, it's calling a custom Abort() method that's provided in
each of the threaded classes. The code in this method then terminates processing in the most reasonable manner, as you'll see
later in this chapter.

To be even more cautious, the FileSwapper also traps the Application.UnhandledException event. This event fires if an exception
is about to terminate your application (typically because it isn't handled with a Catch block). You won't be able to stop the
application from ending, but you'll be able to perform some last minute cleanup such as attempting to log out of the discovery
service, or logging information about the error.
Public Sub UnhandledException(ByVal sender As Object, _
 ByVal e As UnhandledExceptionEventArgs)

 ' Log the error.
 Trace.Write(e.ExceptionObject.ToString())

 ' Log out of the discovery service.
 App.Logout()

End Sub

This event handler is coded inside the main form and attached shortly after a login:

Private Sub SwapperClient_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ' (Other code omitted.)
 DoLogin()

 AddHandler AppDomain.CurrentDomain.UnhandledException, _
 AddressOf UnhandledException
End Sub

FileSwapper Configuration

The FileSwapper application includes a configuration window (see Figure 9-5) that allows the registry settings to be configured by
the user. This window doesn't perform any validation, although you could add this code easily.

Figure 9-5: FileSwapper configuration settings

When the user clicks the Update() button, these settings are saved in the registry. The peer then logs out and logs back in to the
discovery service.
Private Sub cmdUpdate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdUpdate.Click

 Global.Settings.Port = Val(txtPort.Text)
 Global.Settings.SharePath = txtSharePath.Text
 Global.Settings.ShareMP3Only = chkMP3Only.Checked
 Global.Settings.MaxDownloadThreads = Val(txtDownloads.Text)
 Global.Settings.MaxUploadThreads = Val(txtUploads.Text)

 Global.Settings.Save()

 ' Log back in.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Log back in.
 App.Logout()
 Global.Identity.Port = Global.Settings.Port
 DoLogin()

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Searches
The Search class is the first of three custom-threaded objects used by FileSwapper. As part of any search, FileSwapper attempts
to contact each peer with a network ping (the equivalent of asking "are you there?"). FileSwapper measures the time it takes for a
response and any errors that occur, and then displays this information in the search results. This allows the user to decide where
to send a download request, depending on which peer is fastest.

The drawback of this approach is that pinging each peer could take a long time, especially if some peers are unreachable. This in
itself isn't a problem, provided the user has some way to cancel a long-running search and start a new one. To implement this
approach, the Search class uses custom threading code.

Threading the Search class may seem easy, but it runs into the classic userinterface problem. In order to display the results in the
ListView, the user-interface code must be marshaled to the main application thread using the Control.Invoke() method. This isn't
difficult, but it is an added complication.

The Search class needs to track several pieces of information:

The thread it's using to execute the search.

Its current state (searching, not searching).

The search keywords.

The ListView where it should write search results.

The SearchResults it retrieves.

The ping times it calculates.

Here's a basic skeleton that shows the private variables used by the Search class:
Public Class Search

 ' The thread in which the search is executed.
 Private SearchThread As System.Threading.Thread

 ' The ListView in which results must be displayed.
 Private ListView As ListView

 Private Keywords() As String

 ' The current state.
 Private _Searching As Boolean = False
 Public ReadOnly Property Searching() As Boolean
 Get
 Return _Searching
 End Get
 End Property

 ' The search results and ping times.
 Private SearchResults() As SharedFile
 Private PingTimes As New Hashtable()

 Public Function GetSearchResults() As SharedFile()
 If _Searching = False Then
 Return SearchResults
 Else
 Return Nothing
 End If
 End Function

 Public Sub New(ByVal linkedControl As ListView)
 ListView = linkedControl
 End Sub

 ' (Other code omitted.)

End Class

The Search class code uses a thread-wrapping pattern that allows it to manage all the intricate threading details. Essentially, the
Search class tracks the thread it's using and performs thread management so the rest of the application doesn't need to. The
Search class provides methods such as StartSearch(), which creates and launches the thread, and Abort(), which stops the
thread. This is a pattern we'll use again for the file download and upload objects.
Public Sub StartSearch(ByVal keywordString As String)
 If _Searching Then
 Throw New ApplicationException("Cancel current search first.")
 Else
 _Searching = True
 SearchResults = Nothing

 ' Parse the keywords using the same logic used when indexing files.
 Keywords = KeywordUtil.ParseKeywords(keywordString)

 ' Create the search thread, which will run the private Search() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Create the search thread, which will run the private Search() method.
 SearchThread = New Threading.Thread(AddressOf Search)
 SearchThread.Start()
 End If
End Sub

Public Sub Abort()
 If _Searching Then
 SearchThread.Abort()
 _Searching = False
 End If
End Sub

The actual searching code is contained in the private Search() method. The search results are downloaded using the shared
App.SearchForFile() method, which passes the request to the discovery web service. The individual peers are pinged using a
private PingRecipients() method, which makes use of a separate component. This component isn't shown here, because it
requires raw socket code that's quite lengthy.
Private Sub Search()
 SearchResults = App.SearchForFile(Me.Keywords)
 _Searching = False

 PingRecipients()
 Try
 ListView.Invoke(New MethodInvoker(AddressOf UpdateInterface))
 Catch
 ' An error could occur here if the search is canceled and the
 ' class is destroyed before the invoke finishes.
 End Try
End Sub

Private Sub PingRecipients()
 PingTimes.Clear()
 Dim File As SharedFile
 For Each File In SearchResults
 Dim PingTime As Integer = PingUtility.Pinger.GetPingTime(File.Peer.IP)
 If PingTime = -1 Then
 PingTimes.Add(File.Guid, "Error")
 Else
 PingTimes.Add(File.Guid, PingTime.ToString() & " ms")
 End If
 Next
End Sub

Note The PingUtility uses the Internet Control Message Protocol (ICMP). As you saw in Chapter 8, not all networks allow
ping requests. If a ping attempt fails, the peer's ping time will show an error, but the peer may still be reachable for a
file transfer.

When the results have been retrieved and the ping times compiled, the final results are written to the ListView and the call is
marshaled to the correct thread using the Control.Invoke() method.
Private Sub UpdateInterface()

 ListView.Items.Clear()
 If SearchResults.Length = 0 Then
 MessageBox.Show("No matches found.", "Error", MessageBoxButtons.OK, _
 MessageBoxIcon.Information)
 Else
 Dim File As SharedFile
 For Each File In SearchResults
 Dim Item As ListViewItem = ListView.Items.Add(File.FileName)
 Item.SubItems.Add(PingTimes(File.Guid).ToString())
 Item.SubItems.Add(File.FileCreated)
 Item.SubItems.Add(File.Peer.IP)
 Item.SubItems.Add(File.Peer.Port)
 Item.SubItems.Add(File.Guid.ToString())
 Item.SubItems.Add(File.Peer.Guid.ToString())

 ' Store the SharedFile object for easy access later.
 Item.Tag = File
 Next
 End If

End Sub

Note that the matching SharedFile object is embedded in each ListViewItem, so that it can be retrieved easily if the user chooses
to download the file. This saves you from the work of creating a custom ListViewItem or parsing the text information in the
ListViewItem to determine the appropriate settings.

Only one search can run at a time, because the App object provides a single Search variable. When the user clicks the Search
button on the SwapperClient form, the current search is aborted immediately, regardless of its state, and a new search is
launched based on the current keywords.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub cmdSearch_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdSearch.Click

 If App.SearchThread.Searching Then
 App.SearchThread.Abort()
 End If

 App.SearchThread.StartSearch(txtKeywords.Text)

End Sub

Figure 9-6 shows sample search results for a query with the single word "Debussy".

Figure 9-6: A FileSwapper search

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Uploads
The file uploading and downloading logic represents the heart of the FileSwapper application. The user needs the ability not only
to perform both of these operations at the same time, but also to serve multiple upload requests or download multiple files in
parallel. To accommodate this requirement, we must use a two-stage design, in which one class is responsible for creating new
upload or download objects as needed. In the case of an upload, this is the FileServer class. The FileServer waits for requests
and creates a FileUpload object for each new file upload. The diagrams in Figure 9-7 show how the FileServer and FileUpload
classes interact.

Figure 9-7: The uploading process

The FileServer Class

The FileServer class listens for connection requests on the defined port using a TcpListener. It follows the same pattern as the
asynchronous Search class:

The thread used to monitor the port is stored in a private member variable.

The thread is created with a call to StartWaitForRequest(), and aborted with a call to Abort(). The actual monitoring
code exists in the WaitForRequest() method.

The ListView that tracks uploads is stored in a private member variable.

This framework is shown in the following code listing. One of the differences you'll notice is that an additional member variable is
used to track individual upload threads. The Abort() method doesn't just stop the thread that's waiting for connection requests—it
also aborts all the threads that are currently transferring files.
Public Class FileServer

 ' The thread where the port is being monitored.
 Private WaitForRequestThread As System.Threading.Thread

 ' The TcpListener used to monitor the port.
 Private Listener As TcpListener

 ' The ListView that tracks current uploads.
 Private ListView As ListView

 ' The current state.
 Private _Working As Boolean
 Public ReadOnly Property Working() As Boolean
 Get
 Return _Working
 End Get
 End Property

 ' The threads that are allocated to transfer files.
 Private UploadThreads As New ArrayList()

 Public Sub New(ByVal linkedControl As ListView)
 ListView = linkedControl
 End Sub

 Public Sub StartWaitForRequest()
 If _Working Then
 Throw New ApplicationException("Already in progress.")
 Else
 _Working = True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 _Working = True

 WaitForRequestThread = New Threading.Thread(AddressOf WaitForRequest)
 WaitForRequestThread.Start()
 End If
 End Sub

 Public Sub Abort()
 If _Working Then
 Listener.Stop()

 WaitForRequestThread.Abort()

 ' Abort all upload threads.
 Dim UploadThread As FileUpload
 For Each UploadThread In UploadThreads
 UploadThread.Abort()
 Next

 _Working = False
 End If
 End Sub

 Public Sub WaitForRequest()
 ' (Code omitted.)
 End Sub

End Class

The WaitForRequest() method contains some more interesting code. First, it instantiates a TcpListener object and invokes the
AcceptTcpClient() method, blocking the thread until it receives a connection request. Once a connection request is received, the
code creates a new FileUpload object, starts it, and adds the FileUpload object to the UploadThreads collection.

The WaitForRequest() code doesn't create threads indiscriminately, however. Instead, it examines the Global.MaxUploadThreads
setting to determine how many upload threads can exist at any one time. If there's already that number of items in the
UploadThreads collection, new requests will receive a busy message instructing them to try again later. The connection will be
closed and no new FileUpload object will be created. To ensure that the server is always ready to serve new clients, it
automatically scans the UploadThreads collection for objects that have finished processing every time it receives a request. Once
it removes these, it decides whether the new request can be accommodated.

Tip .NET is quite efficient when destroying and creating new threads. However, you could optimize performance even further
by reusing upload and download threads and maintaining a thread pool, rather than by creating new threads. One way to
do this is to use the ThreadPool class that was introduced in Chapter 5.

Public Sub WaitForRequest()

 Listener = New TcpListener(Global.Settings.Port)
 Listener.Start()
 Do

 ' Block until connection received.
 Dim Client As TcpClient = Listener.AcceptTcpClient()

 ' Check for completed requests.
 ' This will free up space for new requests.
 Dim UploadThread As FileUpload
 Dim i As Integer
 For i = (UploadThreads.Count - 1) To 0 Step -1

 UploadThread = CType(UploadThreads(i), FileUpload)
 If UploadThread.Working = False Then
 UploadThreads.Remove(UploadThread)
 End If
 Next
 Try
 Dim s As NetworkStream = Client.GetStream()
 Dim w As New BinaryWriter(s)
 If UploadThreads.Count > Global.Settings.MaxUploadThreads Then
 w.Write(Messages.Busy)
 s.Close()
 Else
 w.Write(Messages.Ok)
 Dim Upload As New FileUpload(s, ListView)
 UploadThreads.Add(Upload)
 Upload.StartUpload()
 End If
 Catch Err As Exception
 ' Errors are logged for future reference, but ignored, so that the
 ' peer can continue serving clients.
 Trace.Write(Err.ToString())
 End Try

 Loop

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

FileSwapper peers communicate using simple string messages. A peer requests a file for downloading by submitting its GUID.
The server responds with a string "OK" or "BUSY" depending on its state. These values are written to the stream using the
BinaryWriter. To ensure that the correct values are always used, they aren't hard-coded in the WaitForRequest() method, but
defined as constants in a class named Messages. As you can see from the following code listing, FileSwapper peers only support
a very limited vocabulary.
Public Class Messages

 ' The server will respond to the request.
 Public Const Ok = "OK"

 ' The server has reached its upload limit. Try again later.
 Public Const Busy = "BUSY"

 ' The requested file isn't in the shared collection.
 Public Const FileNotFound = -1

End Class

The FileUpload Class

The FileUpload class uses the same thread-wrapping design as the FileServer and Search classes. The actual file transfer is
performed by the Upload() method. This method is launched asynchronously when the FileServer calls the StartUpload() method
and canceled if the FileServer calls Abort(). A reference is maintained to the ListView control with the upload listings in order to
provide real-time progress information.
Public Class FileUpload

 ' The thread where the file transfer takes place.
 Private UploadThread As System.Threading.Thread

 ' The underlying network stream.
 Private Stream As NetworkStream

 ' The current state.
 Private _Working As Boolean
 Public ReadOnly Property Working() As Boolean
 Get
 Return _Working
 End Get
 End Property

 ' The ListView where results are recorded.
 Private ListView As ListView

 Public Sub New(ByVal stream As NetworkStream, ByVal listView As ListView)
 Me.Stream = stream
 Me.ListView = listView
 End Sub

 Public Sub StartUpload()
 If _Working Then
 Throw New ApplicationException("Already in progress.")
 Else
 _Working = True
 UploadThread = New Threading.Thread(AddressOf Upload)
 UploadThread.Start()
 End If
 End Sub
 Public Sub Abort()
 If _Working Then
 UploadThread.Abort()
 _Working = False
 End If
 End Sub

 Private Sub Upload()
 ' (Code omitted)
 End Sub

End Class

We'll dissect the code in the Upload() method piece by piece. The first task the Upload() method undertakes is to create a
BinaryWriter and BinaryReader for the stream, and then it reads the GUID of the requested file into a string.
' Connect.
Dim w As New BinaryWriter(Stream)
Dim r As New BinaryReader(Stream)

' Read file request.
Dim FileRequest As String = r.ReadString()

It then walks through the collection of shared files, until it finds the matching GUID.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim File As SharedFile
Dim Filename
For Each File In Global.SharedFiles
 If File.Guid.ToString() = FileRequest Then
 Filename = File.FileName
 Exit For
 End If
Next

Tip Download requests use a GUID instead of a file name. This design allows you to enhance the FileSwapper program to
allow sharing in multiple directories, in which case the file name may no longer be unique. The GUID approach also
makes it easy to validate a user request before starting a transfer. This is a key step, which prevents a malicious client
from trying to trick a FileSwapper peer into downloading a sensitive file that it isn't sharing.

If the file isn't found in the collection of shared files, the message constant for file not found (-1) is written to the network stream,
and no further action is taken.
' Check file is shared.
If Filename = "" Then
 w.Write(Messages.FileNotFound)

If the file is found, a new ListViewItem is added to the upload display, using a helper class named ListViewItemWrapper. The
ListViewItemWrapper handles the logic needed to create the ListViewItem and change the status text in a thread-safe manner, by
marshaling these operations to the correct thread.
Else
 ' Create ListView.
 Dim ListViewItem As New ListViewItemWrapper(ListView, Filename, _
 "Initializing")

The next step is to open the file and write the file size (in bytes) to the network stream. This information allows the remote peer to
determine progress information while downloading the file.
 Try
 ' Open file.
 Dim Upload As New FileInfo(Path.Combine(Global.Settings.SharePath, _
 Filename))

 ' Read file.
 Dim TotalBytes As Integer = Upload.Length
 w.Write(TotalBytes)

Next, the file is opened, and the data is written to the network stream 1KB at a time. The ListViewItem.ChangeStatus method is
used to update the status display in the loop, but a time limit is used to ensure that no more than one update is made every
second. This reduces on-screen flicker for fast downloads.
 Dim TotalBytesRead, BytesRead As Integer

 Dim fs As FileStream = Upload.OpenRead()
 Dim Buffer(1024) As Byte
 Dim Percent As Single
 Dim LastWrite As DateTime = DateTime.MinValue
 Do
 ' Write a chunk of bytes.
 BytesRead = fs.Read(Buffer, 0, Buffer.Length)
 w.Write(Buffer, 0, BytesRead)
 TotalBytesRead += BytesRead

 ' Update the display once every second.
 If DateTime.Now.Subtract(LastWrite).TotalSeconds > 1 Then
 Percent = Math.Round((TotalBytesRead / TotalBytes) * 100, 0)
 LastWrite = DateTime.Now
 ListViewItem.ChangeStatus(Percent.ToString() & "% transferred")
 End If
 Loop While BytesRead > 0

 fs.Close()
 ListViewItem.ChangeStatus("Completed")

 Catch Err As Exception
 Trace.Write(Err.ToString)
 ListViewItem.ChangeStatus("Error")
 End Try

End If

Stream.Close()
_Working = False

In this case, the client simply disconnects when it stops receiving data and notices that the connection has been severed.
Alternatively, you could use a special signal (such as a specific byte sequence) to indicate that the file is complete or, more
practically, you could precede every 1KB chunk with an additional byte describing the status (last chunk, more to come, and so
on). The client would have to remove this byte before writing the data to the file.

Figure 9-8 shows the upload status list with three entries. Two uploads have completed, while one is in progress.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-8: FileSwapper uploads

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Downloads
The file-downloading process is similar to the file-uploading process. A FileDownloadQueue class creates FileDownloadClient
instances to serve new user requests, provided the maximum number of simultaneous downloads hasn't been reached. Download
progress information is written directly to the download ListView display, using the thread-safe ListViewItemWrapper. The whole
process is diagrammed in Figure 9-9.

Figure 9-9: The downloading process

A download operation begins when a user double-clicks an item in the ListView search results, thereby triggering the ItemActivate
event. The form code handles the event, checks that the requested file hasn't already been submitted to the FileDownloadQueue,
and then adds it. This code demonstrates another advantage of using GUIDs to uniquely identify all files on the peer-to-peer
network: it allows each peer to maintain a history of downloaded files.

The complete code for the ItemActivate event handler is shown here:
Private Sub lstSearchResults_ItemActivate(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles lstSearchResults.ItemActivate

 ' Retrieve information about the requested file.
 Dim File As SharedFile
 File = CType(CType(sender, ListView).SelectedItems(0).Tag, SharedFile)

 ' Check if the file is already downloaded, or in the process of being
 ' downloaded.
 If App.DownwnloadThread.CheckForFile(File) Then
 MessageBox.Show("You are already downloading this file.", "Error", _
 MessageBoxButtons.OK, MessageBoxIcon.Information)

 ' If you comment-out the following lines, you'll be able to test
 ' FileSwapper with a single active instance and download files
 ' from your own computer.
 ElseIf File.Peer.Guid.ToString() = Global.Identity.Guid.ToString() Then
 MessageBox.Show("This is a local file.", "Error", _
 MessageBoxButtons.OK, MessageBoxIcon.Information)

 Else
 ' Add the file to the download queue.
 App.DownwnloadThread.AddFile(File)

 ' Start the download queue thread if necessary (this is only performed
 ' once, the first time you download a file).
 If Not App.DownwnloadThread.Working Then
 App.DownwnloadThread.StartAllocateWork()
 End If

 ' Switch to the Downloads tab to see progress information.
 tbPages.SelectedTab = tbPages.TabPages(1)
 End If

End Sub

The FileDownloadQueue Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The FileDownloadQueue tracks and schedules ongoing downloads. When the user requests a file, it's added to the QueuedFiles
collection. If the maximum download thread count hasn't yet been reached, the file is removed from this collection and a new
FileDownloadClient object is created to serve the request. All active FileDownloadClient objects are tracked in the
DownloadThreads collection.

The FileDownloadQueue class creates new FileDownloadClient objects as needed in its private AllocateWork() method, which it
executes on a separate thread. The application requests a new download by calling the StartAllocate Work() method, which
creates the thread and invokes the AllocateWork() method asynchronously. The Abort() method stops the work allocation. This is
the same design you saw with the FileServer class.
Public Class FileDownloadQueue

 ' The thread where downloads are scheduled.
 Private AllocateWorkThread As System.Threading.Thread

 ' The ListView where downloads are tracked.
 Private ListView As ListView

 ' The current state.
 Private _Working As Boolean
 Public ReadOnly Property Working() As Boolean
 Get
 Return _Working
 End Get
 End Property

 ' The collection of files that are waiting to be downloaded.
 Private QueuedFiles As New ArrayList()

 ' The threaded objects that are currently downloading files.
 Private DownloadThreads As New ArrayList()

 Public Sub New(ByVal linkedControl As ListView)
 ListView = linkedControl
 End Sub
 Public Sub StartAllocateWork()
 If _Working Then
 Throw New ApplicationException("Already in progress.")
 Else
 _Working = True

 AllocateWorkThread = New Threading.Thread(AddressOf AllocateWork)
 AllocateWorkThread.Start()
 End If
 End Sub

 Public Sub Abort()
 If _Working Then
 AllocateWorkThread.Abort()

 ' Abort all download threads.
 Dim DownloadThread As FileDownloadClient
 For Each DownloadThread In DownloadThreads
 DownloadThread.Abort()
 Next

 _Working = False
 End If
 End Sub

 Private Sub AllocateWork()
 ' (Code omitted.)
 End Sub
 Public Function CheckForFile(ByVal file As SharedFile) As Boolean
 ' (Code omitted.)
 End Function

 Public Sub AddFile(ByVal file As SharedFile)
 ' (Code omitted.)
 End Sub

End Class

The CheckForFile() method allows the application to verify that a file hasn't been downloaded before and isn't currently being
downloaded. The code scans for the QueuedFiles and DownloadThreads collections to be sure.

Public Function CheckForFile(ByVal file As SharedFile) As Boolean

 ' Check the queued files.
 Dim Item As DisplayFile
 For Each Item In QueuedFiles
 If Item.File.Guid.ToString() = file.Guid.ToString() Then Return True
 Next

 ' Check the in-progress downloads.
 Dim DownloadThread As FileDownloadClient
 For Each DownloadThread In DownloadThreads
 If DownloadThread.File.Guid.ToString() = file.Guid.ToString() Then _
 Return True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Return True
 Next

 Return False

End Function

If this check succeeds, the AddFile() method is used to queue the file. Locking is used to ensure that no problem occurs if the
FileDownloadClient is about to modify the QueuedFiles collection.
Public Sub AddFile(ByVal file As SharedFile)

 ' Add shared file.
 SyncLock QueuedFiles
 QueuedFiles.Add(New DisplayFile(file, ListView))
 End SyncLock

End Sub

The QueuedFile collection stores DisplayFile objects, not SharedFile objects. The DisplayFile object is a simple package that
combines a SharedFile instance and a ListViewItemWrapper. The ListViewItemWrapper is used to update the status of the
download on screen.
Public Class DisplayFile

 Private _ListViewItem As ListViewItemWrapper
 Private _File As SharedFile
 Public ReadOnly Property File() As SharedFile
 Get
 Return _File
 End Get
 End Property

 Public ReadOnly Property ListViewItem() As ListViewItemWrapper
 Get
 Return _ListViewItem
 End Get
 End Property

 Public Sub New(ByVal file As SharedFile, ByVal linkedControl As ListView)

 _ListViewItem = New ListViewItemWrapper(linkedControl, file.FileName, _
 "Queued")
 _File = file

 End Sub

End Class

As soon as the DisplayFile object is created, the underlying ListViewItem is created and added to the download list. That means
that as soon as a download request is selected, it appears in the download status display, with the status "Queued." This differs
from the approach used with file uploading, in which the ListViewItem is only created once the connection has been accepted.

The AllocateWork() method performs the real work for the FileDownloadQueue. It begins by scanning the collection for completed
items and removing them for the collection. This is a key step, because the FileDownloadQueue relies on the Count property of
the DownloadThreads collection to determine how many downloads are currently in progress. When scanning the collection, the
code counts backward, which allows it to delete items without changing the index numbering for the remaining items.
Do

 ' Remove completed.
 Dim i As Integer
 For i = DownloadThreads.Count - 1 To 0 Step -1
 Dim DownloadThread As FileDownloadClient
 DownloadThread = CType(DownloadThreads(i), FileDownloadClient)
 If Not DownloadThread.Working Then
 SyncLock DownloadThreads
 DownloadThreads.Remove(DownloadThread)
 End SyncLock
 End If
Next

Next, new FileDownloadClient objects are created while threads are available.
Do While QueuedFiles.Count > 0 And _
DownloadThreads.Count < Global.Settings.MaxDownloadThreads

 ' Create a new FileDownloadClient.
 Dim DownloadThread As New FileDownloadClient(QueuedFiles(0))
 SyncLock DownloadThreads
 DownloadThreads.Add(DownloadThread)
 End SyncLock

 ' Remove the corresponding queued file.

 SyncLock QueuedFiles
 QueuedFiles.RemoveAt(0)
 End SyncLock

 ' Start the download (on a new thread).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Start the download (on a new thread).
 DownloadThread.StartDownload()

Loop

Finally, the thread doing the work allocation is put to sleep for a brief ten seconds, after which it continues through another
iteration of the loop.
 Thread.Sleep(TimeSpan.FromSeconds(10))
Loop

The FileDownloadClient Class

The FileDownloadClient uses the same thread-wrapping design as the FileUpload class. The actual file transfer is performed by
the Download() method. This method is launched asynchronously when the FileDownloadQueue calls the StartDownload()
method, and canceled if the FileDownloadQueue calls Abort(). The current SharedFile and ListViewItem information is tracked
using a private DisplayFile property.

Here's the basic structure:
Public Class FileDownloadClient

 ' The thread where the file download is performed.
 Private DownloadThread As System.Threading.Thread

 ' The current state.
 Private _Working As Boolean
 Public ReadOnly Property Working() As Boolean
 Get
 Return _Working
 End Get
 End Property

 ' The SharedFile and ListViewItem used for this download.
 Private DisplayFile As DisplayFile
 Public ReadOnly Property File() As SharedFile
 Get
 Return DisplayFile.File
 End Get
 End Property

 Public Sub New(ByVal file As DisplayFile)
 Me.DisplayFile = file
 End Sub

 ' The TCP/IP connection used to make the request.
 Private Client As TcpClient

 Public Sub StartDownload()
 If _Working Then
 Throw New ApplicationException("Already in progress.")
 Else
 _Working = True
 DownloadThread = New Threading.Thread(AddressOf Download)
 DownloadThread.Start()
 End If
 End Sub
 Public Sub Abort()
 If _Working Then
 Client.Close()
 DownloadThread.Abort()
 _Working = False
 End If
 End Sub

 Private Sub Download()
 ' (Code omitted.)
 End Sub

End Class

The Download() method code is lengthy, but straightforward. At first, the client attempts to connect with the remote peer by
opening a TCP/IP connection to the indicated port and IP address. To simplify the code, no error handling is shown (although it is
included with the online code).
DisplayFile.ListViewItem.ChangeStatus("Connecting...")

' Connect.
Dim Completed As Boolean = False

Do
 Client = New TcpClient()
 Dim Host As IPHostEntry = Dns.GetHostByAddress(DisplayFile.File.Peer.IP)
 Client.Connect(Host.AddressList(0), Val(DisplayFile.File.Peer.Port))

The next step is to define a new BinaryReader and BinaryWriter for the stream and check if the connection succeeded. If the
connection doesn't succeed, the thread will sleep for ten seconds and the connection will be reattempted in a loop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim r As New BinaryReader(Client.GetStream())
 Dim w As New BinaryWriter(Client.GetStream())

 Dim Response As String = r.ReadString()
 If Response = Messages.Busy Then
 DisplayFile.ListViewItem.ChangeStatus("Busy - Will Retry")
 Client.Close()
 ElseIf Response = Messages.Ok Then
 DisplayFile.ListViewItem.ChangeStatus("Connected")

 ' (Download file here.)

 Else
 DisplayFile.ListViewItem.ChangeStatus("Error - Will Retry")
 Client.Close()

 End If

 If Not Completed Then Thread.Sleep(TimeSpan.FromSeconds(10))
Loop Until Completed

_Working = False

The actual file download is a multiple step affair. The first task is to request the file using its GUID.
' Request file.
w.Write(DisplayFile.File.Guid.ToString())

The server will then respond with the number of bytes for the file, or an error code if the file isn't found. Assuming no error is
encountered, the FileSwapper will create a temporary file. Its name will be the GUID plus the extension .tmp.
Dim TotalBytes As Integer = r.ReadInt32()
If TotalBytes = Messages.FileNotFound Then
 DisplayFile.ListViewItem.ChangeStatus("File Not Found")

Else
 ' Write temporary file.
 Dim FullPath As String = Path.Combine(Global.Settings.SharePath, _
 File.Guid.ToString() & ".tmp")
 Dim Download As New FileInfo(FullPath)

The file transfer takes place 1KB at a time. The status for the in-progress download will be updated using the ListViewItem
wrapper, no more than once per second.

 Dim TotalBytesRead, BytesRead As Integer

 Dim fs As FileStream = Download.Create()
 Dim Buffer(1024) As Byte
 Dim Percent As Single
 Dim LastWrite As DateTime = DateTime.Now
 Do
 ' Read a chunk of bytes.
 BytesRead = r.Read(Buffer, 0, Buffer.Length)
 fs.Write(Buffer, 0, BytesRead)
 TotalBytesRead += BytesRead

 ' Update the display once every second.
 If DateTime.Now.Subtract(LastWrite).TotalSeconds > 1 Then
 Percent = Math.Round((TotalBytesRead / TotalBytes) * 100, 0)
 LastWrite = DateTime.Now
 DisplayFile.ListViewItem.ChangeStatus(_
 Percent.ToString() & "% transferred")
 End If
 Loop While BytesRead > 0

When the file transfer is complete, the file must be renamed. The new name will be the same as the file name on the remote peer.
However, special care is needed to handle duplicate file names. Before attempting the rename, the code checks for a name
collision and adds a number (1, 2, 3, 4, and so on) to the file name to ensure uniqueness.
 fs.Close()

 ' Ensure that a unique name is chosen.
 Dim FileNames() As String = Directory.GetFiles(Global.Settings.SharePath)
 Dim FinalPath As String = Path.Combine(Global.Settings.SharePath, _
 File.FileName)

 Dim i As Integer
 Do While Array.IndexOf(FileNames, FinalPath) <> -1
 i += 1
 FinalPath = Path.Combine(Global.Settings.SharePath, _
 Path.GetFileNameWithoutExtension(File.FileName) & i.ToString() & _
 Path.GetExtension(File.FileName))
 Loop

 ' Rename file.
 System.IO.File.Move(FullPath, FinalPath)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 System.IO.File.Move(FullPath, FinalPath)
 DisplayFile.ListViewItem.ChangeStatus("Completed")
End If

Client.Close()
Completed = True

Currently, the code doesn't add the newly downloaded file to the App.Shared Files collection, and it doesn't contact the discovery
service to add it to the published catalog of files. However, you could easily add this code.

Figure 9-10 shows the upload status list with six entries. Two downloads are in progress while four are queued, because the
maximum download thread count has been reached.

Figure 9-10: FileSwapper downloads

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Possible Enhancements
FileSwapper contains the minimum amount of code needed to show a complete, well-designed framework for peer-to-peer
request handling. It still lacks a number of niceties that you'd want to add in a production-level application. Some of these possible
enhancements are listed here:

Currently, new files that are downloaded to the shared directory are ignored. That means that any files you
download will not be shared with other users unless you restart the application. To solve this problem, you could
add a timer that periodically refreshes the catalog with the server, or you could use a FileSystemWatcher to monitor
the directory. You might even want to add discovery-service methods to publish individual files and reduce the
bandwidth and database effort required when single files are added.

Currently, there's no ability for the user to cancel in-progress downloads. This would be easy to add, because each
FileDownloadClient object stores the related ListViewItem. If a user selects a download to cancel from the ListView,
you would simply have to look up the FileDownloadClient that references the corresponding ListViewItem and call
its Abort() method.

You could enhance the communication used between peers. For example, the uploading peer could send a status
message before every chunk of data. Similarly, after every chunk of data, the downloading peer could send a single
byte indicating whether it was ready to receive more data, about to cancel the download, or in some other state.

You could improve the shutdown code by adding some sort of flag that can be set to instruct the download and
upload threads to shut down, so that the application would not need to abort them forcefully. You might also want to
poll for connection requests in the FileServer class using the TcpClient.Pending() method, and only call
TcpClient.AcceptTcpClient() once a connection request has been received. This way, the thread will remain
responsive and can be shut down more easily. Fortunately, .NET networking is very friendly—although these
touches would improve the application, they aren't at all necessary.

Currently, the error handling is quite rudimentary. You could add more sophisticated exception handlers to log
problems, inform the user, and protect the application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
File-sharing applications are one of the best-known niches of peer-to-peer programming. In this chapter, you've learned that the
greatest challenge with a peer-to-peer file sharer may not be networking, but using threads to handle the application's many
responsibilities.

FileSwapper is only one example of a simple client, but it provides a solid, extensible framework that you can use when designing
your own resource-sharing peer-to-peer applications. However, there are still a number of additional challenges to face, including
firewalls and other network-connectivity issues (the bane of any peer-to-peer application), and security. We'll consider some of
these issues in the following chapters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10: Using a Discovery Service with Remoting

Overview
Chapter 8 presented the basics of discovery services and showed how you could use a discovery service to facilitate peer
discovery and index peer content. To support this design, the registration database stored information about each peer and the
TCP/IP endpoint it uses to listen for connections.

But what if you want to apply the same approach—using a stateless discovery web service—but allow your peers to interact using
.NET Remoting? This simpler approach is less suitable for situations in which you need to stream large amounts of data over the
wire (such as the file-sharer application), but it could be useful if you're building a distributed task processor or messaging
application. Fortunately, the changes are easy to implement. You simply need to serialize Remoting's network pointer, the ObjRef.

In this chapter, we'll use this technique to develop a discovery web service that can support the Talk .NET application developed
in Part Two. We'll use the decentralized version presented at the end of Chapter 4, because it allows peers to interact directly and
only requires the server for peer discovery. Best of all, you'll see that you can implement these changes with minimal coding
changes to the Talk .NET peer application—a fact that makes this the shortest chapter in this book!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Registration Database
The first step is to design the back-end database. This database contains two tables (as shown in Figure 10-1):

The Peers table stores a list of users, each of which has a unique e-mail address.

The Sessions table stores a list of currently active users, with the information needed to connect to them.

Figure 10-1: The Talk .NET registration database

Strictly speaking, you only require one table to store the list of currently connected peers. However, by creating two tables you
gain the ability to define a list of allowed users, and validate them at the server before allowing them to join the peer community. In
addition, you might want to add more tables to define "buddy lists"—groups of contacts that determine who a peer can see online
and interact with.

The Sessions table doesn't directly store an IP address and port number— instead, it stores a serialized ObjRef, which is
Remoting's network pointer. When serialized, the ObjRef typically takes about 1,008 bytes. The Sessions table provides space for
up to 1,500 bytes to be safe, and the code verifies that this constraint is met when serializing the ObjRef.

Stored Procedures

The database includes six stored procedures, as described here:

AddPeer creates a peer record for a newly registered user.

CreateSession inserts a new session record when an existing user logs in.

DeleteSession removes a session record.

GetPeers retrieves a list of all the peers who are currently logged in. In a large system, this would be adapted so
that it retrieved a list of logged-in users according to a contact list.

GetPeerAndSessionInfo retrieves information about the peer, and the current contact information if the peer is
logged in. This could be split into two stored procedures, but for simplicity's sake it's handled in one.

RefreshSession updates the expiration date on the current session record. Peer sessions that haven't been
updated within three minutes will be ignored (and optionally, can be removed).

The stored procedure code is similar to what you saw in Chapter 8. For example, AddPeer wraps a simple SQL Insert statement:
CREATE Procedure AddPeer
(
 @EmailAddress nvarchar(50)
)
AS

INSERT INTO Peers (EmailAddress) VALUES (@EmailAddress)
GO

The CreateSession stored procedure is more sophisticated. Before adding the session record, it removes any existing session
records with the same e-mail address. It also performs a lookup to map the supplied peer e-mail address to the unique identity
number the database uses in the Sessions table.
CREATE Procedure CreateSession
(
 @ID uniqueidentifier,
 @EmailAddress nvarchar(50),
 @ObjRef varbinary(1500)
)
AS

DECLARE @PeerID int
SELECT @PeerID = ID FROM Peers WHERE EmailAddress = @EmailAddress

DELETE FROM Sessions WHERE PeerID=@PeerID

INSERT INTO Sessions (ID, PeerID, LastUpdate, ObjRef)

 VALUES (@ID, @PeerID, GETDATE(), @ObjRef)
GO

Note that the unique identifier is generated by the server rather than the database engine, and as such it doesn't need to be
returned using a parameter.

The RefreshSession stored procedure simply updates the LastUpdate field.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE Procedure RefreshSession
(
 @ID uniqueidentifier
)
AS
UPDATE Sessions SET LastUpdate=GETDATE() WHERE [ID]=@ID
GO

The DeleteSession stored procedure removes the session based on its unique identifier.
CREATE Procedure DeleteSession
(
 @ID uniqueidentifier
)
AS

DELETE FROM Sessions WHERE ID = @ID
GO

The GetPeers method returns the e-mail addresses for all the currently logged-on users by joining the Sessions and Peers tables.
At the same time, any entry that hasn't been updated in more than three minutes is ignored.
CREATE PROCEDURE GetPeers AS

SELECT EmailAddress FROM Sessions INNER JOIN Peers ON Peers.ID = PeerID
 WHERE DATEDIFF(MINUTE, LastUpdate, GETDATE()) < 3
GO

Optionally, you could remove old sessions records, either by using a separate long-running application that periodically scans the
database, or by adding the necessary code to a frequently invoked stored procedure such as CreateSession or DeleteSession.
However, this additional step probably isn't necessary. The CreateSession stored procedure code already ensures that all of a
user's old records are removed every time the user logs in.

Finally, the GetPeerAndSessionInfo stored procedure returns peer and session information. A left join is used to ensure that peer
information is returned, even if the user isn't currently logged in and doesn't have a session record.
CREATE PROCEDURE GetPeerAndSessionInfo
(
 @EmailAddress nvarchar(50)
)
AS
SELECT TOP 1 * FROM Peers Left JOIN Sessions ON PeerID = Peers.ID
 WHERE EmailAddress = @EmailAddress ORDER BY LastUpdate DESC
GO

If the system is working correctly, this will return only a single record. But just to be defensive, this stored procedure returns only
the first record that was most recently updated by using the TOP 1 and ORDER BY clauses.

The Database Class

As in Chapter 8, a class named P2PDatabase is used to wrap the stored procedure code with the required ADO.NET commands.
Information about a peer and its current session can be packaged into a PeerInfo object, as shown here:
Public Class PeerInfo

 Public ID As Integer
 Public EmailAddress As String
 Public PublicKeyXml As String
 Public ObjRef() As Byte

End Class

The P2PDatabase includes a method for each stored procedure. You won't see the full code here, but it's provided online with the
Chapter 11 examples, and it's quite straightforward. However, there are two fine points worth identifying.

First of all, note how the CreateSession() method takes special care to validate that the ObjRef is less than the 1,500 bytes
allocated for storage in the database. Because it's presumably impossible for an ObjRef to be larger, the code makes this check
using a debug assertion. Alternatively, you might want to throw a custom error indicating the problem if the byte array is too large.
Public Function CreateSession(ByVal emailAddress As String, _
 ByVal objRef() As Byte) As Guid

 ' Define command and connection.
 Dim SessionID As Guid = Guid.NewGuid()

 Dim con As New SqlConnection(ConnectionString)
 Dim cmd As New SqlCommand("CreateSession", con)
 cmd.CommandType = CommandType.StoredProcedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cmd.CommandType = CommandType.StoredProcedure
 ' Add parameters.
 Dim param As SqlParameter
 param = cmd.Parameters.Add("@ID", SqlDbType.UniqueIdentifier)
 param.Value = SessionID
 param = cmd.Parameters.Add("@EmailAddress", SqlDbType.NVarChar, 300)
 param.Value = emailAddress

 Debug.Assert(objRef.Length < 1500)

 param = cmd.Parameters.Add("@ObjRef", SqlDbType.VarBinary, 1500)
 param.Value = objRef

 Try
 con.Open()
 cmd.ExecuteNonQuery()
 Finally
 con.Close()
 End Try

 Return SessionID

End Function

The GetPeerInfo() method also requires special care. It calls the GetPeerAnd SessionInfo stored procedure, which may or may
not return session information. To prevent a possible null reference exception, the code must check if session data is returned
before trying to assign it to the properties of a PeerInfo object.
Public Function GetPeerInfo(ByVal email As String) As PeerInfo

 ' Define command and connection.
 Dim con As New SqlConnection(ConnectionString)
 Dim cmd As New SqlCommand("GetPeerAndSessionInfo", con)
 cmd.CommandType = CommandType.StoredProcedure

 ' Add parameters.
 Dim param As SqlParameter
 param = cmd.Parameters.Add("@EmailAddress", SqlDbType.VarChar, 50)
 param.Value = email
 Dim Peer As New PeerInfo()
 Try
 con.Open()
 Dim r As SqlDataReader = cmd.ExecuteReader()
 r.Read()
 Peer.EmailAddress = r("EmailAddress")
 Peer.ID = r("ID")
 If Not (r("ObjRef") Is DBNull.Value) Then
 Peer.ObjRef = r("ObjRef")
 End If
 Finally
 con.Close()
 End Try
 Return Peer

End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Discovery Service
The discovery service wraps the P2PDatabase component. As with the discovery service in Chapter 8, it catches all exceptions,
logs them, and replaces them with a generic ApplicationException to ensure that no sensitive information will be returned to the
client.

Peers interact with the discovery service as follows:
1. New users call RegisterNewUser() to create a new record in the Peers table.

2. Users call StartSession() to log in, supply their current connectivity information, and create a new record in the
Sessions table.

3. Users call GetPeers() periodically to retrieve a list of other users. In turn, GetPeers() calls RefreshSession(),
ensuring that the record for the requesting peer is kept current.

4. If a user wants to send a message, it calls GetPeer() to retrieve the connectivity information for a specific user. It
can then contact the user directly.

5. When the user is finished and wants to leave the peer community, it calls EndSession() to remove the session
record.

The full DiscoveryService code is shown here:
Public Class DiscoveryService
 Inherits System.Web.Services.WebService

 Private DB As New P2PDatabase()

 <WebMethod()> _
 Public Sub RegisterNewUser(ByVal emailAddress As String)

 Try
 DB.AddPeer(emailAddress)
 Catch err As Exception
 Trace.Write(err.ToString)
 Throw New ApplicationException("Could not register new user.")
 End Try

 End Sub

 <WebMethod()> _
 Public Function StartSession(ByVal emailAddress As String, _
 objRef() As Byte) As Guid

 Try
 Return DB.CreateSession(emailAddress, objRef)
 Catch err As Exception
 Trace.Write(err.ToString)
 Throw New ApplicationException("Could not create session.")
 End Try

 End Function

 <WebMethod()> _
 Public Sub RefreshSession(ByVal sessionID As Guid)

 Try
 DB.RefreshSession(sessionID)
 Catch err As Exception
 Trace.Write(err.ToString)
 Throw New ApplicationException("Could not refresh session.")
 End Try

 End Sub

 <WebMethod()> _
 Public Sub EndSession(ByVal sessionID As Guid)

 Try
 DB.DeleteSession(sessionID)
 Catch err As Exception
 Trace.Write(err.ToString)
 Throw New ApplicationException("Could not end session.")
 End Try

 End Sub

 <WebMethod()> _
 Public Function GetPeerInfo(ByVal emailAddress As String, _
 ByVal sessionID As Guid) As PeerInfo

 Try
 Return DB.GetPeerInfo(emailAddress)
 Catch err As Exception
 Trace.Write(err.ToString)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Trace.Write(err.ToString)
 Throw New ApplicationException("Could not find peer.")
 End Try

 End Function

 <WebMethod()> _
 Public Function GetPeers() As String()

 Try
 RefreshSession(sessionID)
 Return DB.GetPeers()
 Catch err As Exception
 Trace.Write(err.ToString)
 Throw New ApplicationException("Could not find peers.")
 End Try

 End Function

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Talk .NET Peers
The final step is to modify the Talk .NET peer application to use the discovery service instead of the well-known Remoting server.
Thanks to the well-encapsulated design of the Talk .NET client, you won't need to modify the main form code. Instead, almost all
of the changes are confined to the remotable ClientProcess class.

The ClientProcess class is used to send and receive messages with .NET Remoting. In the revised version, it will also have the
additional responsibility of interacting with the discovery web service. To support this design, we need to add two member
variables, as shown here:
Public Class ClientProcess
 Inherits MarshalByRefObject
 Implements ITalkClient

 ' Holds a reference to the web-server proxy.
 Private DiscoveryService As New localhost.DiscoveryService()

 ' Tracks the GUID for the current session.
 Private SessionID As Guid

 ' (Other code omitted.)

End Class

The ClientProcess constructor accepts a Boolean parameter that indicates whether a new record needs to be created for this
user. If the user hasn't registered before, the ClientProcess class calls the RegisterNewUser() web method.
Public Sub New(ByVal userEmailAddress As String, ByVal createUser As Boolean)

 Me.[Alias] = userEmailAddress
 If createUser Then
 DiscoveryService.RegisterNewUser(userEmailAddress)
 End If

End Sub

The Login() method registers ClientProcess to receive messages from other peers. It also retrieves the ObjRef for the current
instance using the Remoting Services.Marshal() method, and submits it to the sever.

Public Sub Login()

 ' Configure the client channel for sending messages and receiving
 ' the server callback.
 RemotingConfiguration.Configure("TalkClient.exe.config")

 ' Retrieve the ObjRef for this class.
 Dim Obj As ObjRef = RemotingServices.Marshal(Me)

 ' Serialize the ObjRef to a memory stream.
 Dim ObjStream As New MemoryStream()
 Dim f As New BinaryFormatter()

 f.Serialize(ObjStream, Obj)

 ' Start a new session and record the session GUID.
 Me.SessionID = DiscoveryService.StartSession(ObjStream.ToArray())

End Sub

The GetUsers() method now calls the discovery web service to retrieve the list of peer e-mail addresses:
Public Function GetUsers() As ICollection
 Return DiscoveryService.GetPeers(Me.SessionID)
End Function

The SendMessage() method calls the discovery service to retrieve the appropriate ObjRef, deserializes it, converts it to a proxy,
and then invokes the ITalkClient.ReceiveMessage() method.
Public Sub SendMessage(ByVal emailAddress As String, ByVal messageBody As String)

 ' Retrieve the peer information.
 Dim PeerInfo As localhost.PeerInfo
 PeerInfo = DiscoveryService.GetPeerInfo(emailAddress)

 ' Deserialize the proxy.
 Dim ObjStream As New MemoryStream(PeerInfo.ObjRef)
 Dim f As New BinaryFormatter()
 Dim Obj As Object = f.Deserialize(ObjStream)
 Dim Peer As ITalkClient = CType(Obj, ITalkClient)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim Peer As ITalkClient = CType(Obj, ITalkClient)
 ' Send the message to this peer.
 Try
 Peer.ReceiveMessage(messageBody, Me.Alias)
 Catch
 ' Ignore connectivity errors.
 ' Alternatively, you could raise an event or throw an error that the main
 ' form could respond to and use to update the form display.
 End Try

End Sub

The LogOut() method ends the session:
Public Sub LogOut()
 DiscoveryService.EndSession(Me.SessionID)
End Sub

Finally, the Login window is modified to include a check box that the user can select to create the account for the first time, as
shown in Figure 10-2.

Figure 10-2: Logging in with a new or existing account

The startup code can retrieve the user's check box selection from the readonly CreateNew property:
Public ReadOnly Property CreateNew() As Boolean
 Get
 Return chkCreateNew.Checked
 End Get
End Property

This information is passed to the ClientProcess constructor, which then determines whether or not it needs to call the
RegisterNewUser() web method.
Dim Client As New ClientProcess(frmLogin.UserName, frmLogin.CreateNew)

The new Talk .NET client is now fully functional. The next two sections describe some enhancements you can implement.

Adding Caching

Currently, the Talk .NET client contacts the discovery service every time it sends a message. You could improve upon this
situation by increasing the amount of information the client keeps locally. For example, the client might keep a cache with peer-
connectivity information in it. That way, if one user sends several messages to another, it will only need to contact the server once,
when the first message is sent.

To add caching, you must first add a Hashtable collection to the ClientProcess class. This collection will store all the PeerInfo
objects for recently contacted clients, indexed by the e-mail address.
' Contains all recently contacted clients.
Private RecentClients As New Hashtable()

Whenever a message is sent, the code will check the RecentClients collection. If it finds the corresponding user, it will use the
stored ObjRef. Otherwise, it will retrieve the ObjRef from the server and add it to the hashtable.
Public Sub SendMessage(ByVal emailAddress As String, ByVal messageBody As String)

 Dim PeerInfo As localhost.PeerInfo

 ' Check if the peer-connectivity information is cached.
 If RecentClients.Contains(emailAddress) Then
 PeerInfo = CType(RecentClients(emailAddress), localhost.PeerInfo)
 Else
 PeerInfo = DiscoveryService.GetPeerInfo(emailAddress, Me.SessionID)
 RecentClients.Add(PeerInfo.EmailAddress, PeerInfo)
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If
 ' Deserialize the proxy.
 Dim ObjStream As New MemoryStream(PeerInfo.ObjRef)
 Dim f As New BinaryFormatter()
 Dim Obj As Object = f.Deserialize(ObjStream)
 Dim Peer As ITalkClient = CType(Obj, ITalkClient)

 ' Send the message to this peer.
 Try
 Peer.ReceiveMessage(messageBody, Me.Alias)
 Catch
 RecentClients.Remove(PeerInfo)
 ' Optionally, you might want to try retrieving new peer information
 ' and resending the message, if you used the connectivity information
 ' in the local cache.
 End Try

End Sub

As implemented, this will retain ObjRef for the life of the application, or until a transmission error occurs. If you anticipate that
connectivity information will change frequently, or that the Talk .NET client application will run for an extremely long period of time
(for example, several days), you might want to take a few additional measures to help ensure that this information is valid. For
example, you could use code in the GetUsers() method to check the currently logged-on users and remove an ObjRef as soon as
a peer disappears from the network:
Public Function GetUsers() As ICollection

 Dim Peers() As String
 Peers = DiscoveryService.GetPeers()

 ' Identify any peers in the local cache that aren't online.
 Dim PeerSearch As New ArrayList()
 PeerSearch.AddRange(Peers)
 Dim PeersToDelete As New ArrayList()

 Dim Item As DictionaryItem
 Dim Peer As localhost.PeerInfo
 For Each Item In Me.RecentClients
 Peer = CType(Item.Value, localhost.PeerInfo)
 ' Check if this e-mail address is in the server list.
 If Not PeerSearch.Contains(Peer.EmailAddress) Then
 ' The e-mail address wasn't found. Mark this peer for deletion.
 PeersToDelete.Add(Peer)
 End If
 Next

 ' Remove the peers that weren't found.
 For Each Peer In PeersToDelete
 Me.RecentClients.Remove(Peer.EmailAddress)
 Next

 Return Peers

End Function

This code works in two steps because items cannot be removed from a collection while you're iterating through it, without causing
an error.

Adding E-mail Validation

Currently, no validation is performed when a user registers with the server. This is simply intended as a convenience for testing
purposes. Ideally, you would not create a new user account until you could confirm that the e-mail address is correct.

To validate an e-mail address, you can borrow a technique from the world of e-commerce. It works like this:
1. When the user makes a request, save the submitted information into a different table (for example, a

NewUserRequests table). Create a new GUID to identify the request.

2. Next, send an e-mail to the user-supplied e-mail address (you can use the System.Web.Mail.SmtpServer class
for this task). Here's the trick: This e-mail can include an HTTP GET link to a web-service method (or ASP.NET
web page) that confirms the new user account. This link will submit the request GUID through the query string.
For example, the link might take this form: http://www.mysite.com/RegisterUser.asmx?requestGuid=382c74c3-
721d-4f34-80e5-57657b6cbc27 (assuming "requestGuid" is the name of the web-method parameter).

3. When the user receives the message and clicks on the link, the confirmation method will run with the identifying
GUID.

4. The confirmation method will first check that the response has been received within a reasonable amount of
time (for example, three days). If so, it can then find the request record with the matching GUID, remove it from
the database, and add the user information to the Users table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
This chapter demonstrated how to integrate a peer-to-peer community that uses Remoting with a discovery web service. Along the
way, several changes were made to the overall system, including the addition of a list of registered users in the database. The
next chapter builds on these changes to add security using the cryptography classes included with .NET. You'll learn how to
validate peer identities and encrypt messages before they travel across the network.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part Four: Advanced Peer-to-Peer
Chapter List

Chapter 11: Security and Cryptography

Chapter 12: Working with Messenger and Groove

Chapter 13: The Intel Peer-to-Peer Accelerator Kit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11: Security and Cryptography
Writing secure code is hard. Even in traditional client-server applications, it's difficult to defend against the vast array of possible
threats and attacks. Security considerations stretch across every area of programming, from design to deployment, and include
everything from hiding sensitive information to restricting the abilities of different classes of users. Code that runs smoothly,
requires user credentials, and uses encryption can still be filled with exploitable security holes. Most often, the professional
developers who created it won't have any idea of the risk until these weaknesses are exploited.

In peer-to-peer programming, security considerations are multiplied. Communication is usually over the public Internet, but peers
communicate with a wide array of different devices that are often anonymous, and there may not be any central authority for
authenticating users. However, a little work can go a long way toward improving the security of any system. This chapter won't tell
you how to make a bulletproof security infrastructure—for that you need highly complex protocols such as Kerberos and Secure
Sockets Layer (SSL), which can't be easily applied to a peer-to-peer system. However, this chapter shows the security
fundamentals that you need to prevent casual hacking, data tampering, and eavesdropping. In other words, if you apply the
fundamentals in this chapter, you can change a wide-open application into one that requires significant effort to breach—and
that's a worthwhile change.

Security and Peer-to-Peer
Part of the challenge of security is that it's an immense field that covers everything from the way users jot down passwords and
lock server-room doors to advanced cryptography. This chapter focuses on two basic types of security issues:

Authentication and authorization. How do you verify that a user is who he or she claims to be and how do you grant
or restrict application privileges based on this identity?

Encryption and cryptography. How can you ensure that sensitive data cannot be read by an eavesdropper or
tampered with by an attacker?

This certainly isn't all there is to security in a peer-to-peer application. For example, you've already seen in Chapter 6 how you can
use .NET code-access security to restrict the permissions you give to dynamically executed code. In addition, you might need to
make decisions about how you enforce nonrepudiation, which is how transactional systems ensure that user actions are
nonreversible, even if compromised (generally using a combination of logging techniques). You also might want to create an
incident response plan for dealing with security problems as well as an auditing system that logs user behavior and alerts users or
administrators if a suspicious pattern of behavior emerges.

Security Challenges

The security discussion in this chapter takes the peer-to-peer perspective. The security issues with distributed applications are
inherently more complex than in stand-alone applications, and the security considerations for peer-to-peer systems are some of
the most complex of all. Unfortunately, the source of peer-to-peer flexibility—loosely defined networks and a lack of server control
—can also be the source of endless security headaches.

Some of the challenges in secure peer-to-peer programming include the following:

How can two peers validate each other's identity if they don't have access to a centralized user database or any
authentication information?

Once two peers validate each other's identity, how do they make trust decisions to determine what interactions are
safe?

As messages are sent over the network, how can a peer be certain that they aren't being tampered with?

How can a peer hide sensitive data so a hacker can't sniff it out as it travels over the Internet?

What happens if a malicious user tries to impersonate another user or computer? What happens if a hacker tries to
capture the network packets you use for authentication and interaction, and use them later?

This chapter looks at all these considerations, but it won't directly deal with one of the most important details—trying to limit the
damage of an attack by coding defensively. Secure programming isn't just about authentication and cryptography; it's also about
making sensible coding choices and using basic validation and error-handling logic to close security holes. For example, a file-
sharing application should check that it can't be tricked into returning or overwriting a system file. It should also include failsafes
that allow it to stop writing a file if the hard drive is out of space or the size of the file seems grossly out of proportion. (For
example, if you attempt to download a song and the end of the file still hasn't been reached after 100 MB.)

These common-sense measures can prevent serious security problems. For best results, review your code frequently with other
programmers. Spend time in the design, testing, and review stage looking exclusively for security flaws. Take the perspective of a
hacker trying to decide what features could be exploited to gain privileged access, steal data, or even just cripple the computer by
wasting its CPU or hard-drive resources (a common and often overlooked tactic known as a denial of service attack).
Unfortunately, you can't find the security problems in a piece of code until they are exploited—and it's far better for you to exploit
them in the testing phase than for a hacker to discover them in a real-world environment.

Design Choices

In enterprise development, the best security choice is to rely on third-party security services whenever possible. For example, if
you use integrated Windows authentication and SSL encryption, you gain a relatively well-protected system without needing to
write a single line of code. Unfortunately, in peer-to-peer applications, your environment probably won't support these features.
For example, Windows authentication won't work in its most secure forms between networks. SSL can't be accessed outside of
the Internet Information Server (IIS), unless you want to deal with extremely complicated low-level Windows API code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fortunately, .NET provides a reasonable alternative: the rich set of classes in the System.Security.Cryptography namespace.
These classes allow your code to manually perform various cryptography tasks such as encrypting and decrypting data, signing
messages, and so on. However, these features come at a price. Typically, you'll find that the more cryptography code you write,
the more tightly your solution becomes bound to a particular platform and implementation. You'll also need to manage a slew of
additional details, such as keys, block sizes, .NET-to-binary data-type conversions, and so on. Lastly, although the
System.Security.Cryptography namespace contains robust, professional-level classes, it's easy to use these classes incorrectly. In
other words, by writing your own cryptography code you increase the chances of leaving security holes. That doesn't mean that it's
better to avoid custom cryptography altogether, but it does mean that you should have your cryptography code reviewed by a
security expert before a mission-critical application is deployed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Understanding Cryptography
Before you see a full example with the System.Security.Cryptography classes, you need to understand the basics of three
cryptography essentials: hash codes, encryption, and digital signatures.

Understanding Hash Codes

A hash algorithm takes a block of binary data and uses it to generate a fixed-side checksum. For example, the SHA-256 hash
algorithm always creates a 256-bit (32-byte) hash for data, regardless of the size of the input data.

Hash codes serve a variety of purposes. One of the most common is to prevent data tampering. For example, consider a scenario
in which you store important data on a disk file and record the hash of that data in a database. At a later point, you can open the
file, recalculate the hash, and compare it with the value in the database. If the two hashes don't agree, the file has changed. If
your program is the only application allowed to access that file, and if your program always records the hash value in the database
after making changes, it's reasonable to assume that the file has been tampered with. You can use a similar technique to validate
messages that are sent between computers.

Like any type of checksum, a hash algorithm works in one direction only. It's completely impossible to re-create the document
from the hash because the hash doesn't include all the information that was in the document. However, cryptographic hash
algorithms also have a key characteristic that distinguishes them from other types of checksums: They're collision resistant.
Changing even a single byte in the source document has a fifty-fifty chance of independently changing each byte in the hash. It's
extremely difficult for an attacker to look at a hash and create a new document that will generate the same hash. (The difficulty of
this task is comparable to trying to break an encrypted message through brute force.) Thus, hashes play a key role in ensuring
data integrity.

The System.Security.Cryptography namespace includes the following hash algorithms:

MD5 (implemented by the MD5CryptoServiceProvider class) generates a 128-bit hash.

SHA-1 (implemented by the SHA1CryptoServiceProvider class) generates a 160-bit hash.

SHA-256 (implemented by the SHA256Managed class) generates a 256-bit hash.

SHA-384 (implemented by the SHA384Managed class) generates a 384-bit hash.

SHA-512 (implemented by the SHA512Managed class) generates a 512-bit hash.

As a rule of thumb, the larger the hash size, the more difficult it is to find another document that will generate a duplicate hash
value.

Note Using hash codes isn't enough to protect messages exchanged between computers. The problem is that an attacker
can tamper with a message and simply generate a new hash code that matches the altered message. To overcome
this problem, you need to combine hashing with some form of encryption to create a keyed hash or digital
signature.We'll look at digital signatures later in this chapter.

Understanding Encryption

There are essentially two types of encryption: symmetric encryption and asymmetric encryption. In many peer-to-peer
applications, you'll need to use both. Either way, the basic principle behind encryption is always the same: Encryption scrambles
information so that it can only be understood by the recipient. A malicious third party might be able to intercept the message, using
characteristics of the network that are beyond your control, but won't be able to decipher it.

Technically, any digitally encrypted message can be broken using a brute force attack, which is a process by which an attacker
tries every possible sequence of bytes as a key until finally one combination works. In most cases, a brute-force attack is
prohibitively expensive, which is to say that the value of the data is less than the cost (in time or computer hardware) of cracking it,
or the data will no longer be valid by the time it's deciphered. Very few attacks use brute force. Usually, they rely on weak or
compromised passwords or flaws in the application or platform that are much easier to exploit.

Symmetric encryption (also known as "secret-key" encryption) is the type of encryption that most people are familiar with. It
depends on a shared, secret key that's used to encrypt and decrypt data. Technically, this secret key is a series of bytes that can
be derived from a password or other information as needed. Symmetric encryption is far faster than asymmetric encryption but
suffers from a significant limitation in distributed computing scenarios: Both parties need to know the secret key before the
communication begins. There's no easy way to transmit the secret key information without compromising security.

The .NET Framework includes the following symmetric algorithms:

DES (implemented by the DESCryptoServiceProvider class) uses a 64-bit key.

TripleDES (implemented by the TripleDESCryptoServiceProvider class) uses a 128-bit or 192-bit key.

RC2 (implemented by the RC2CryptoServiceProvider class) uses a 40- to 128-bit key.

Rijndael (implemented by the RijndaelManaged class) uses a 128-bit, 192-bit, or 256-bit key.

The larger the key size, the harder it is for a brute-force attack to succeed. Generally, DES is supported for legacy uses only,
because its 64-bit key size is considered dangerously weak. Rijndael is the recommended encryption algorithm.

Asymmetric encryption uses a pair of mathematically related keys that includes both a public and private key. The private key is
carefully guarded, while the public key is made available to the entire world. The interesting thing about asymmetric encryption is
that any data encrypted with one key can only be decrypted with the other matching key. This makes asymmetric encryption very
versatile.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, consider two peers communicating on a network. Each peer has its own key pair.
1. Peer A encrypts a message using the public key that belongs to Peer B.

2. Peer A sends the message to Peer B.

3. Peer B decrypts the message using the corresponding private key. No other user can decrypt this message (not
even Peer A, the one who created it) because no one else has the private key.

This demonstrates how asymmetric encryption can be used to protect information without needing to exchange a shared, secret
key value. This makes it possible for any two parties on a network to exchange encrypted data, even if they have never met
before. The process is diagrammed in Figure 11-1.

Figure 11-1: How user A can send an encrypted message to user B

Asymmetric encryption also underlies a special form of message validation. It works like this:
1. Peer A encrypts a message using its own private key.

2. Peer A sends the message to Peer B.

3. Peer B decrypts the message using the public key belonging to Peer A. Because this key is publicly available,
any user can perform this step. However, because the message can only be encrypted using the private key,
Peer B now knows beyond a doubt that the message originated from Peer A.

This shows you how message authentication works with asymmetric encryption. In practice, you don't need to encrypt the entire
message—just a hash code, as described in the next section. Often, both validation and encryption will be combined in the same
application to prevent message tampering and hide sensitive data. This is the approach taken in the peer-to-peer example shown
later in this chapter.

.NET provides implementation for two asymmetric algorithms:

RSA (implemented by the RSACryptoServiceProvider class) allows key sizes from 364 to 16,384 bits (in 8-bit
increments).

DSA (implemented by the DSACryptoServiceProvider class) allows key sizes from 364 to 512 bits (in 64-bit
increments).

In most cases, you'll use RSA, because DSA can only be used for creating and verifying digital signatures, not for encrypting data.
Note that asymmetric encryption allows for much larger key sizes. However, the key size can be misleading. It's estimated that a
1,024-bit RSA key (the default size) is roughly equivalent in strength to a 75-bit symmetric key.

Asymmetric encryption does have one significant shortcoming: It's slow, often hundreds of times slower than symmetric
encryption. It also produces less compact ciphertext (encrypted data) than symmetric encryption. Thus, if you need to encode a
large amount of information (for example in a file-sharing application), asymmetric encryption alone is probably not the approach
you want. A better choice is to combine symmetric and asymmetric encryption. We'll discuss this topic a little later.

Understanding Digital Signatures

Digital signatures combine the concepts of hash codes and asymmetric encryption. Remember, hash codes are used to take a
digital "fingerprint" of some data, and thereby prevent it from being altered. However, attackers can get around this defense if
hash codes aren't stored in a secure location by regenerating and replacing the hash code. Digital signatures prevent this type of
tampering using encryption.

To sign some data with a digital signature, a user creates a hash and then encrypts the hash using a private key. Any other user
can validate the signature because the corresponding public key is freely available, but no other user can generate a new
signature because they won't have the required private key. Thus, a digital signature is tamper-proof.

Of course, life isn't quite this simple. In order for this system to work, the recipient must already know the public key of the
message author. Otherwise, the signature can't be validated. Unfortunately, you can't just transmit the public key, because then it
could be read and replaced by the same attacker who will attempt to tamper with the message! The solution? Use a third party
that can validate users and vouch for their public keys. On the Internet, this is often performed with digital certificates. Digital
certificates contain a user's public and private keys and are signed by a third-party certificate authority (CA) such as VeriSign.
When you establish an SSL connection with a website, your computer decides to trust the website's identity because it provides a
certificate signed by a trusted CA.

In a peer-to-peer application, you could use certificates (in fact, Intel's Peer-to-Peer Accelerator Kit provides exactly this feature,
as described in Chapter 13). However, .NET doesn't provide any classes either for working with certificates in a user's certificate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

as described in Chapter 13). However, .NET doesn't provide any classes either for working with certificates in a user's certificate
store or validating that a certificate is signed by a trusted CA. In addition, the certificate itself cannot contain application-specific
information, such as whether a user should be given supervisor or guest rights in a peer-to-peer application. To get around this
limitation in this chapter, we'll use our discovery service to act as a central authority for user-identity validation. It will map public
keys to application-specific permissions using the database.

Note .NET does provide classes that allow you to read some basic certificate information from a certificate file. This
rudimentary functionality is found in the System.Security.Cryptography.X509Certificates namespace. In addition, the
downloadable Web Services Enhancements (WSE) provides some tools for reading information from installed
certificates. In future versions of the .NET Framework, these features will be more closely integrated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Asserting Identity with Digital Signatures
To put these concepts into practice, we'll return to Talk .NET and the discovery service presented in the previous chapter. Using
the discovery service, users query the server for a peer (by e-mail address), and receive an ObjRef that points to the peer. It
shouldn't be possible for a malicious user to impersonate another user by logging in with the wrong e-mail address.

To prevent impersonation, you need to modify the Talk .NET server. The new server must take the following authentication steps:

When a user creates a new account, the server tests the e-mail address and verifies that the user has access to
that e-mail. It then stores a record for the user that includes public key information and the e-mail address.
Duplicate e-mail addresses aren't allowed.

When a user logs in for a session, the server validates the user's login request against the public key information
stored in the database. The most secure way to perform this step is for the user to sign the login message using a
digital signature. If the signatures can be verified with the public key information in the database, then the server
can conclude that the user has access to the private key. The user is then authenticated, and a new session is
started.

When a user queries the discovery service for a reference to another user, they can now be sure that this reference
corresponds to the originally registered user, unless the key has been stolen.

We'll walk through the .NET cryptography code needed for this operation— and consider some of its shortcomings—over the next
few sections.

The Server Database

The discovery service developed in Chapter 10 stores a list of unique e-mail addresses, which serve as user IDs. In this example,
we'll modify the database so that the Peers table also includes public key information, as shown in Figure 11-2.

Figure 11-2: The revised Peers table

This information is stored as an XML string, because the .NET classes for asymmetric encryption provide a ToXmlString() method
that can export public or private key information in a standardized format. You can then use this data to re-create the encryption
object later. Here's a code snippet that demonstrates how it works:
' Create a new cryptographic object that encapsulates a new,
' dynamically generated key pair.
Dim Rsa As New RSACryptoServiceProvider()

' Retrieve the full key information as a string with XML data,
' using the True parameter.
Dim KeyPairInfo As String = Rsa.ToXmlString(True)

' Retrieve just the public key information as a string with XML data,
' using the False parameter.
Dim PublicKeyInfo As String = Rsa.ToXmlString(False)

' Create a new duplicate RSA object and load the full key data into it.
Dim RsaDuplicate As New RSACryptoServiceProvider()
RsaDuplicate.FromXmlString(KeyPairInfo)

' Create a duplicate RSA object with public key information only.
' This allows you to validate signatures and encrypt data, but you can't decrypt data.
Dim RsaPublicOnly As New RSACryptoServiceProvider()
RsaPublicOnly.FromXmlString(PublicKeyInfo)

Note that the database table only includes the public key information. This is enough for the server to validate signatures from the
user. The server should never be given access to a user's private key, because that information must be carefully protected! The
peer will store the full key pair on the local computer. In our example, this information is simply saved to the peer's hard drive,
which means that an attacker could impersonate the user if the attacker can steal the key file. Other approaches might be to store
this data in the registry, in a secure database, or even in a custom piece of hardware. The latter provides the best security, but it's
obviously very unlikely in a peer-to-peer scenario.

Along with these changes, the database class, database stored procedure, and web service need to be modified so that they
store the public key XML information in the database. These changes aren't shown here because they're all very trivial. As you'll
see, the tricky part comes when you need to actually use the key.

The Client Login

When the client first loads, it presents the user with a choice of creating a new account or using an existing one, as shown in
Figure 11-3. If the user chooses to create a new account, the key information is saved to disk. If the user chooses to use an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11-3. If the user chooses to create a new account, the key information is saved to disk. If the user chooses to use an
existing account, the key information is retrieved from disk. Of course, the user should not be able to create an account if the
matching key already exists, or allowed to use an existing account if the key information can't be found.

Figure 11-3: The Login window

The startup code is shown here. Note that the key information is stored in a file that uses the unique user ID, which is the e-mail
address.
' Create the login window, which retrieves the user identifier.
Dim frmLogin As New Login()

' Create the cryptography object with the key pair.
Dim Rsa As New RSACryptoServiceProvider()

' Create the new remotable client object.
Dim Client As ClientProcess

' Only continue if the user successfully exits by clicking OK
' (not the Cancel or Exit button).
Do

 If Not frmLogin.ShowDialog() = DialogResult.OK Then End

 Try
 If frmLogin.CreateNew Then
 If File.Exists(frmLogin.UserName) Then
 MessageBox.Show("Cannot create new account. " & _
 "Key file already exists for this user.")
 Else
 ' Generate a new key pair for this account.
 Rsa = New RSACryptoServiceProvider()

 Client = New ClientProcess(frmLogin.UserName, _
 frmLogin.CreateNew, Rsa)

 ' Write the full key information to the hard drive.
 Dim fs As New FileStream(frmLogin.UserName, FileMode.Create)
 Dim w As New BinaryWriter(fs)
 w.Write(Rsa.ToXmlString(True))
 w.Flush()
 fs.Close()

 Exit Do
 End If
 Else

 If File.Exists(frmLogin.UserName) Then

 ' Retrieve the full key information from the hard drive
 ' and use it to set the Rsa object.
 Dim fs As New FileStream(frmLogin.UserName, FileMode.Open)
 Dim r As New BinaryReader(fs)
 Rsa.FromXmlString(r.ReadString())
 fs.Close()

 Client = New ClientProcess(frmLogin.UserName, _
 frmLogin.CreateNew, Rsa)
 Exit Do
 Else
 MessageBox.Show("No key file exists for this user.")
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If
 End If

 Catch Err As Exception
 MessageBox.Show(Err.Message)
 End Try

Loop

' (Create and show the client form as usual).

The SignedObject Class

In this example you only need to use digital signature authentication in the Login() web method. However, it would be a mistake to
code this logic directly in the web method itself. In order to ensure that the logic that runs on the client is consistent with the logic
that runs on the server, and in order to reuse the signing logic in other places if it becomes necessary, you should abstract this
functionality in a dedicated class. This class should be placed in a separate component.

In this example, the dedicated class is called SignedObject. The SignedObject class allows you to attach a digital signature to any
.NET object using serialization. Here's how the signing process works:

1. You define a serializable class that contains all the data you want to sign. For example, the StartSession() web
method will use a serializable LoginInfo class that stores the e-mail address of the user attempting to log on.

2. You create and configure the serializable object in code. Then, you create the SignedObject class. The
SignedObject class provides a constructor that takes any object, along with the key pair XML.

3. The SignedObject constructor serializes the supplied object to a byte array. It uses the key pair XML to create a
new cryptography object and generate a signature.

4. Both the signature and the serialized object are stored in private member variables.

5. Because SignedObject is itself serializable, you can convert the entire package, signature and all, to a stream of
bytes using .NET serialization. This is necessary for web methods, because they won't allow you to use
SignedObject directly as a parameter type. Instead, you'll have to use the provided Serialize() method to convert
it to a byte array, and submit that to the server.

In this example, the SignedObject will be used to sign instances of the LoginInfo class, which encapsulates the information
required for a user to log in. The LoginInfo class is shown here:
<Serializable()> _
Public Class LoginInfo

 Public EmailAddress As String
 Public TimeStamp As DateTime
 Public ObjRef As Byte()

End Class

On the web-service side, these steps take place:
1. The server deserializes the byte array into the SignedObject, using the shared Deserialize() method.

2. Next, the server looks up the appropriate public key XML information, and submits it to the ValidateSignature()
method. This method returns true if the newly generated computer signature matches the stored signature.

3. The GetObjectWithoutSignature() method can be used at any time to retrieve the inner object (in this case, the
LoginInfo object). Remember, this doesn't mean the signature is valid, so before you call this method make sure
to validate the signature. (Another approach would be to perform the signature validation in the
GetObjectWithoutSignature() method, and throw an exception if the signatures don't match.)

Figure 11-4 shows the end-to-end process on the client and server.

Figure 11-4: Using SignedObject to sign a LoginInfo

The full SignedObject code is shown in the code listing that follows. Notice that data is serialized between .NET data types and
binary data using the BinaryFormatter class. To create a signature with the RsaCryptoServiceProvider class, you use the
SignData() method. To validate the signature, you use the VerifyData() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Imports System.Security.Cryptography
Imports System.IO
Imports System.Runtime.Serialization.Formatters.Binary

<Serializable()> _
Public Class SignedObject

 ' Stores the signed object.
 Private SerializedObject As New MemoryStream()

 ' Stores the object's signature.
 Private Signature() As Byte

 Public Sub New(ByVal objectToSign As Object, ByVal keyPairXml As String)

 ' Serialize a copy of objectToSign in memory.
 Dim f As New BinaryFormatter()
 f.Serialize(Me.SerializedObject, objectToSign)

 ' Add the signature.
 Me.SerializedObject.Position = 0
 Dim Rsa As New RSACryptoServiceProvider()
 Rsa.FromXmlString(keyPairXml)
 Me.Signature = Rsa.SignData(Me.SerializedObject, HashAlgorithm.Create())

 End Sub
 Public Shared Function Deserialize(ByVal signedObjectBytes() As Byte) _
 As SignedObject
 ' Deserialize the SignedObject.
 Dim ObjectStream As New MemoryStream()
 ObjectStream.Write(signedObjectBytes, 0, signedObjectBytes.Length)
 ObjectStream.Position = 0
 Dim f As New BinaryFormatter()
 Return CType(f.Deserialize(ObjectStream), SignedObject)

 End Function

 Public Function Serialize() As Byte()

 ' Serialize the whole package, signature and all.
 Dim f As New BinaryFormatter()
 Dim ObjectStream As New MemoryStream()
 f.Serialize(ObjectStream, Me)
 Return ObjectStream.ToArray()

 End Function

 Public Function ValidateSignature(ByVal publicKeyXml) As Boolean

 ' Calculate a new signature using the supplied public key, and
 ' indicate whether it matches the stored signature.
 Dim Rsa As New RSACryptoServiceProvider()
 Rsa.FromXmlString(publicKeyXml)
 Return Rsa.VerifyData(Me.SerializedObject.ToArray(), _
 HashAlgorithm.Create(), Me.Signature)

 End Function

 Public Function GetObjectWithoutSignature() As Object

 ' Deserialize the inner (packaged) object.
 Dim f As New BinaryFormatter()
 Me.SerializedObject.Position = 0
 Return f.Deserialize(Me.SerializedObject)

 End Function

End Class

The code in this class may appear complex, but it's vastly simpler to work with than it would be if you didn't use .NET serialization.
In that case, you would have to manually calculate hash sizes, copy the hash to the end of the message bytes, and so on. Even
worse, if you made a minor mistake such as miscalculating a byte offset, an error would occur.

The Login Process on the Client Side

The ClientProcess.Login() method requires some minor changes to work with the cryptographic components. The modified lines
are emphasized.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub Login()

 ' Configure the client channel for sending messages and receiving
 ' the server callback.
 RemotingConfiguration.Configure("TalkClient.exe.config")

 ' Retrieve the ObjRef for this class.
 Dim Obj As ObjRef = RemotingServices.Marshal(Me)

 ' Serialize the ObjRef to a memory stream.
 Dim ObjStream As New MemoryStream()
 Dim f As New BinaryFormatter()
 f.Serialize(ObjStream, Obj)

 ' Define the login information.
 Dim Login As New LoginInfo()
 Login.EmailAddress = Me.Alias
 Login.ObjRef = ObjStream.ToArray()
 Login.TimeStamp = DiscoveryService.GetServerDateTime()
 ' Sign the login information.
 Dim Package As New SignedObject(Login, Me.Rsa.ToXmlString(True))
 ' Start a new session by submitting the signed object,
 ' and then record the session GUID.
 Me.SessionID = DiscoveryService.StartSession(Package.Serialize())
End Sub

The Login Process on the Web-Server Side

One detail we haven't addressed is the use of a timestamp. This prevents a type of exploit known as a replay attack, whereby a
malicious user records network traffic and then "replays" it (copies it back into the network stream) to become authenticated later
on. It's doubtful that a replay attack would succeed with this application, because the ObjRef would no longer be valid. Still, using
a time-stamp tightens security. The server can check the time, and if it's set in the future or more than two minutes in the past, the
server will reject the request. Of course, in order for this to work in systems in which clients could have different regional time
settings (or just incorrect times), the client must retrieve the server time using the GetServerDateTime() web method.
<WebMethod()> _
Public Function GetServerDateTime() As DateTime
 Return DateTime.Now
End Function

The StartSession method that deserializes the package, validates the time information, retrieves the public key that matches the
user e-mail address from the database, and uses it to validate the signature. Assuming all these checks pass, it stores the ObjRef
in the database.
<WebMethod()> _
Public Function StartSession(ByVal signedLoginInfo As Byte()) As Guid

 Try
 Dim Package As SignedObject = SignedObject.Deserialize(signedLoginInfo)
 Dim Login As LoginInfo = CType(Package.GetObjectWithoutSignature, _
 LoginInfo)

 ' Check date.
 If DateTime.Now.Subtract(Login.TimeStamp).TotalMinutes > 2 Or _
 DateTime.Now.Subtract(Login.TimeStamp).TotalMinutes < 0 Then
 Throw New ApplicationException("Invalid request message.")
 End If

 ' Verify the signature.
 Dim Peer As PeerInfo = DB.GetPeerInfo(Login.EmailAddress)
 If Not Package.ValidateSignature(Peer.PublicKeyXml) Then
 Throw New ApplicationException("Invalid request message.")
 End If
 Return DB.CreateSession(Peer.EmailAddress, Login.ObjRef)
 Catch err As Exception
 Trace.Write(err.ToString)
 Throw New ApplicationException("Could not create session.")
 End Try

End Function

One side effect of using custom cryptography is the fact that the web service becomes much less generic. The design we've
introduced forces clients not only to use the SignedObject class, but to know when to use it. Data is simply supplied as a byte
array, so problems could occur if the client serializes the wrong type of object (or uses a different version of the cryptographic
component from the one the server is using). These details must be tightly controlled, or they will quickly become a source of new
headaches. Unfortunately, this is a necessary trade-off.

Tip You may want to place the LoginInfo class into a separate assembly, and never update that assembly in order to prevent
any versioning problems with serialization. Alternatively, you can write custom serialization code, which is beyond the
scope of this book.

Weaknesses in This Approach

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The key limitation in this design is the server, which is trusted implicitly. What happens if a malicious user is able to perform some
type of IP spoofing, or intercept communication before it reaches the server? This type of attack generally requires some type of
privileged network access (and thus is less common than some other attacks), but it's a significant risk in a large-scale application.
The attacker then has the ability to impersonate the server and return a validated ObjRef that actually points to the wrong user.

There's no easy way around the challenge of validating the server identity. One option is for the server to sign all its response
using the SignedObject class. The peer will then retrieve the response and validate the digital signature before attempting to use
the ObjRef. In order for this to work, each client would need to be deployed with the information about the server's public key
(perhaps stored in a configuration file). Otherwise, they would have no way to validate the signature.

Another problem is that the identity validation currently works only in one direction. In other words, a peer can validate the identity
of another peer before contacting it. However, when a peer is contacted, the peer has no way to validate the user that's initiating
the contact. In order to remedy this problem, the peers would need to exchange digitally signed messages. Any peer could then
retrieve the public key XML for another peer from the server, and then use it to authenticate incoming messages. To ensure
optimum performance, the peer XML information could be cached in memory in a local hashtable, so that the peer doesn't need to
repeatedly contact the remote web service to request the same key information. (This pattern is shown in the previous chapter
with the RecentClients collection.)

You should also remember that the use of signatures simply helps to ensure that a user identity remains consistent between the
time it's created and the time the user starts a session. It doesn't necessarily indicate anything about the trustworthiness of the
user—you need to perform those verifications before you register the user in the database. And no matter what approach you use,
you're still at the mercy of a properly authenticated user who behaves improperly.

Trust Decisions

In the messaging example, the service is used to return a single piece of information: an object reference that can be used for a
Remoting interaction. However, there's no reason why the server can't store additional information. For example, it might provide
personal contact information for the user, or assign the user a specific set of permissions at a custom security level using a
custom database. It's up to your application to retrieve and interpret this information, but the overall design is still the same.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hiding Information with Encryption
In the previous example, cryptography is used to assist in user authentication. However, no steps are taken to hide data as it flows
over the wire. Malicious users can eavesdrop and discover valuable information such as the ObjRef (where a client can be
reached), or the e-mails of users that are currently online, and so on. The same problem occurs with communication between
peers. Currently, messages flow over the network as plain text, which is visible to any user in the right place with a network sniffer.

You can solve this problem by adding a new class to the cryptography component, which you can use on both the client and web-
server end. This is the EncryptedObject class.

The EncryptedObject Class

In adding an encryption solution, you can use the same approach we used for signing data. In this case, you'll need a dedicated
class, which we'll name EncryptedObject. The methods exposed by this class are quite similar to those provided by the
SignedObject class, but the code involved is somewhat more complicated. This is because when you use asymmetric encryption
you must encrypt data one block at a time. If you need to encrypt data that's larger than one block, you must divide it into multiple
blocks, encrypt each one individually, and piece the encrypted blocks back together.

Here's an overview of how you would use the EncryptedObject:
1. First, create and configure a serializable object.

2. Create the EncryptedObject class. The EncryptedObject class provides a constructor that takes any object,
along with the public key XML (which should be the public key of the recipient). This constructor serializes the
object, encrypts it, and stores it in an internal member variable.

3. You can then convert the encrypted object into a byte array through .NET serialization using the Serialize()
method. This is the data you'd send to the other peer.

4. The recipient deserializes the byte array into an EncryptedObject, using the shared Deserialize() method.

5. The recipient calls the DecryptContainedObject() method with its private key to retrieve the original object.

The EncryptedObject code is shown here. The Serialize() and Deserialize() methods are omitted, because they're identical to
those used in the SignedObject class.
<Serializable()> _
Public Class EncryptedObject

 Private SerializedObject As New MemoryStream()

 Public Sub New(ByVal objectToEncrypt As Object, ByVal publicKeyXml As String)

 ' Serialize a copy of objectToEncrypt in memory.
 Dim f As New BinaryFormatter()
 Dim ObjectStream As New MemoryStream()
 f.Serialize(ObjectStream, objectToEncrypt)
 ObjectStream.Position = 0

 Dim Rsa As New RSACryptoServiceProvider()
 Rsa.FromXmlString(publicKeyXml)
 ' The block size depends on the key size.
 Dim BlockSize As Integer
 If Rsa.KeySize = 1024 Then
 BlockSize = 16
 Else
 BlockSize = 5
 End If

 ' Move through the data one block at a time.
 Dim RawBlock(), EncryptedBlock() As Byte
 Dim i As Integer
 Dim Bytes As Integer = ObjectStream.Length
 For i = 0 To Bytes Step BlockSize

 If Bytes - i > BlockSize Then
 ReDim RawBlock(BlockSize - 1)
 Else
 ReDim RawBlock(Bytes - i - 1)
 End If

 ' Copy a block of data.
 ObjectStream.Read(RawBlock, 0, RawBlock.Length)

 ' Encrypt the block of data.
 EncryptedBlock = Rsa.Encrypt(RawBlock, False)

 ' Write the block of data.
 Me.SerializedObject.Write(EncryptedBlock, 0, EncryptedBlock.Length)
 Next

 End Sub

 ' (Serialize and Deserialize methods omitted.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Public Function DecryptContainedObject(ByVal keyPairXml As String) As Object

 Dim Rsa As New RSACryptoServiceProvider()
 Rsa.FromXmlString(keyPairXml)

 ' Create the memory stream where the decrypted data
 ' will be stored.
 Dim ObjectStream As New MemoryStream()
 'Dim ObjectBytes() As Byte = Me.SerializedObject.ToArray()
 Me.SerializedObject.Position = 0
 ' Determine the block size for decrypting.
 Dim keySize As Integer = Rsa.KeySize / 8

 ' Move through the data one block at a time.
 Dim DecryptedBlock(), RawBlock() As Byte
 Dim i As Integer
 Dim Bytes As Integer = Me.SerializedObject.Length
 For i = 0 To bytes - 1 Step keySize

 If ((Bytes - i) > keySize) Then
 ReDim RawBlock(keySize - 1)
 Else
 ReDim RawBlock(Bytes - i - 1)
 End If

 ' Copy a block of data.
 Me.SerializedObject.Read(RawBlock, 0, RawBlock.Length)

 ' Decrypt a block of data.
 DecryptedBlock = Rsa.Decrypt(RawBlock, False)

 ' Write the decrypted data to the in-memory stream.
 ObjectStream.Write(DecryptedBlock, 0, DecryptedBlock.Length)
 Next

 ObjectStream.Position = 0
 Dim f As New BinaryFormatter()
 Return f.Deserialize(ObjectStream)

 End Function

End Class

Sending and Receiving Encrypted Messages

Now, you only need to make minor changes to the ClientProcess class in order to use encryption with the EncryptedObject class.
First, you need to define a Message class that will contain the information that's being sent:

<Serializable()> _
Public Class Message

 Public SenderAlias As String
 Public MessageBody As String

 Public Sub New(ByVal sender As String, ByVal body As String)
 Me.SenderAlias = sender
 Me.MessageBody = body
 End Sub

End Class

You also need to modify the ITalkClient interface:
Public Interface ITalkClient

 ' The server calls this to forward a message to the appropriate client.
 Sub ReceiveMessage(ByVal encryptedMessage As EncryptedObject)

End Interface

When sending a message, you need to construct a Message object and encrypt it. You don't need to use the Serialize() method to
convert it to a byte stream because the .NET Remoting infrastructure can automatically convert serializable types for you. The full
code is shown here, with the modified lines highlighted in bold. Note that the public XML information is retrieved from the web
service as needed for the peer.
Public Sub SendMessage(ByVal emailAddress As String, ByVal messageBody As String)

 Dim PeerInfo As localhost.PeerInfo

 ' Check if the peer-connectivity information is cached.
 If RecentClients.Contains(emailAddress) Then
 PeerInfo = CType(RecentClients(emailAddress), localhost.PeerInfo)
 Else
 PeerInfo = DiscoveryService.GetPeerInfo(emailAddress)
 RecentClients.Add(PeerInfo.EmailAddress, PeerInfo)
 End If

 Dim ObjStream As New MemoryStream(PeerInfo.ObjRef)
 Dim f As New BinaryFormatter()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim f As New BinaryFormatter()
 Dim Obj As Object = f.Deserialize(ObjStream)
 Dim Peer As ITalkClient = CType(Obj, ITalkClient)

 Dim Message As New Message(Me.Alias, messageBody)
 Dim Package As New EncryptedObject(Message, PeerInfo.PublicKeyXml)
 Try
 Peer.ReceiveMessage(Package)
 Catch
 ' Ignore connectivity errors.
 End Try

End Sub

When receiving a message, the peer simply decrypts the contents using its private key.
Private Sub ReceiveMessage(ByVal encryptedMessage As EncryptedObject) _
 Implements ITalkClient.ReceiveMessage

 Dim Message As Message
 Message = CType(encryptedMessage.DecryptContainedObject(_
 Me.Rsa.ToXmlString(True)), Message)
 RaiseEvent MessageReceived(Me, _
 New MessageReceivedEventArgs(Message.MessageBody, Message.SenderAlias))

End Sub

The same technique can be applied to protect any data. For example, you could (and probably should) use it to encrypt messages
exchanged between the client and discovery service.

Chaining Encryption and Signing

The designs of the EncryptedObject and SignedObject classes lend themselves particularly well to being used together. For
example, you can create a signed, encrypted message by wrapping a Message object in an EncryptedObject, and then wrapping
the EncryptedObject in a SignedObject. (You could also do it the other way around, but the encrypt-and-sign approach is
convenient because it allows you to validate the signature before you perform the decryption.)

Figure 11-5 diagrams this process.

Figure 11-5: Encrypting and signing a message

Here's the code you would use to encrypt and sign the message:
Dim Message As New Message(Me.Alias, messageBody)

' Encrypt the message using the recipient's public key.
Dim EncryptedPackage As New EncryptedObject(Message, PeerInfo.PublicKeyXml)

' Sign the message with the sender's private key.
Dim SignedPackage As New SignedObject(Message, Me.Rsa.ToXmlString(True))

Try
 Peer.ReceiveMessage(SignedPackage)
Catch
 ' Ignore connectivity errors.
End Try

The recipient would then validate the signature, deserialize the encrypted object, and then decrypt it:
' Verify the signature.
If Not encryptedPackage.ValidateSignature(PeerInfo.PublicKeyXml) Then
 ' Ignore this message.
Else
 Dim EncryptedMessage As EncryptedObject
 EncryptedMessage = CType(encryptedPackage.GetObjectWithoutSignature, _
 EncryptedObject)

 ' Decrypt the message.
 Dim Message As Message
 Message = CType(EncryptedMessage.DecryptContainedObject(_
 Me.Rsa.ToXmlString(True)), Message)
 RaiseEvent MessageReceived(Me, _
 New MessageReceivedEventArgs(Message.MessageBody, Message.SenderAlias))

End If

Using Session Keys

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There's one other enhancement that you might want to make to this example. As described earlier, asymmetric encryption is
much slower than symmetric encryption. In the simple message-passing example this won't make much of a difference, but if you
need to exchange larger amounts of data it becomes much more important.

In this case, the solution is to use symmetric encryption. However, because both peers won't share a symmetric key, you'll have to
create one dynamically and then encrypt it asymmetrically. The recipient will use its private key to decrypt the symmetric key, and
then use the symmetric key to decrypt the remainder of the message.

This pattern is shown, in abbreviated form, with the following LargeEncryptedObject class. It includes the code used to encrypt the
serializable object, but leaves out the asymmetric encryption logic used to encrypt the dynamic symmetric key for brevity. The
code used for symmetric encryption is much shorter, because it can use a special object called the CryptoStream. The
CryptoStream manages blockwise encryption automatically and can be used to wrap any other .NET stream object. For example,
you can use a CryptoStream to perform automatic encryption before data is sent to a FileStream, or perform automatic decryption
as it is read to memory. In the case of the LargeEncryptedObject, the CryptoStream wraps another memory stream.
<Serializable()> _
Public Class LargeEncryptedObject

 Private SerializedObject As New MemoryStream()
 Private EncryptedDynamicKey() As Byte

 Public Sub New(ByVal objectToEncrypt As Object, ByVal publicKeyXml As String)

 ' Generate the new symmetric key.
 ' In this example, we'll use the Rijndael algorithm.
 Dim Rijn As New RijndaelManaged()
 ' Encrypt the RijndaelManaged.Key and RijndaelManaged.IV properties.
 ' Store the data in the EncryptedDynamicKey member variable.
 ' (Asymmetric encryption code omitted.)

 ' Write the data to a stream that encrypts automatically.
 Dim cs As New CryptoStream(Me.SerializedObject,_
 Rijn.CreateEncryptor(), CryptoStreamMode.Write)

 ' Serialize and encrypt the object in one step using the CryptoStream.
 Dim f As New BinaryFormatter()
 f.Serialize(cs, objectToEncrypt)

 ' Write the final block.
 cs.FlushFinalBlock()

 End Sub

 Public Function DecryptContainedObject(ByVal keyPairXml As String) As Object

 ' Generate the new symmetric key.
 Dim Rijn As New RijndaelManaged()

 ' Decrypt the EncryptedDynamic key member variable, and use it to set
 ' the RijndaelManaged.Key and RijndaelManaged.IV properties.
 ' (Asymmetric decryption code omitted.)

 ' Write the data to a stream that decrypts automatically.
 Dim ms As New MemoryStream()
 Dim cs As New CryptoStream(ms, Rijn.CreateDecryptor(), _
 CryptoStreamMode.Write)

 ' Decrypt the object 1 KB at a time.
 Dim i, BytesRead As Integer
 Dim Bytes(1023) As Byte
 For i = 0 To Me.SerializedObject.Length
 BytesRead = Me.SerializedObject.Read(Bytes, 0, Bytes.Length)
 cs.Write(Bytes, 0, BytesRead)
 Next

 ' Write the final block.
 cs.FlushFinalBlock()
 ' Now deserialize the decrypted memory stream.
 ms.Position = 0
 Dim f As New BinaryFormatter()
 Return f.Deserialize(ms)

 End Function

 ' (Serialize and Deserialize methods omitted.)

End Class

A full description of the .NET cryptography classes and the CryptoStream is beyond the scope of this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
This chapter examined two core security topics. First, we considered how you can use a third party to provide authentication
services to a peer-to-peer application. Second, we looked at how you can implement encryption between peers to protect
sensitive data. Both of these techniques require .NET cryptography classes and some custom code, and they won't ever be as
foolproof as a standard system such as SSL or Kerberos. However, they can add a valuable layer of protection in environments
where these protocols aren't supported. Understanding how to implement this type of security also makes you better prepared to
evaluate the security that's implemented in third-party platforms such as the Intel Peer-to-Peer Accelerator Kit and Groove.

Security is an enormous topic, and there are countless books dedicated exclusively to cryptography and .NET security. Security
isn't just about cryptography, and using cryptography doesn't ensure that your data is safe! Always evaluate your peer-to-peer
applications from an attacker-centric point of view when testing it. And remember, a small amount of validation code can often
dramatically reduce the damage of a successful attack.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12: Working with Messenger and Groove
All of the peer-to-peer applications developed so far in this book have been designed from the ground up, using nothing but built-
in .NET technologies. You need to code the business logic, decide how the interaction of distributed nodes will take place, and
create the network and directory or lookup services. Now, in the last two chapters, we'll consider some new options.

In this chapter, we'll look at how you can create a peer-to-peer application by using an existing peer-to-peer network. You'll learn
how you can create your own application that piggybacks on the popular Windows Messenger network or uses the Groove
platform. Both of these choices are best suited for specialized applications over which you don't need complete control. They also
present some interesting choices. For example, you might want to build a collaborative tool that you can run with a Groove tool or
use the Windows Messenger as a background to send messages that coordinate multiple workers as they process a distributed
task such as the one shown in Chapter 6. We'll also briefly consider some other peer-to-peer development platforms.

Using Windows Messenger
Windows Messenger is a popular protocol for instant messaging between peers. It uses a centralized peer-to-peer model. All
messages are sent through the server using peer-to-server connections, except for file transfer and voice chat.

There are three types of servers involved in the Messenger system:

Dispatch server. This is the initial point of connection. It refers users to the appropriate notification server. The
dispatch server can be found at messenger.hotmail.com on port 1863.

Notification server. This is where the sessions are maintained while users are interacting with the system.

Switchboard server. This server acts as a gateway between users for chat. A new switchboard session is opened
for every chat window in Messenger. All messages are routed through the switchboard, including file transfer and
voice chat invitations.

The actual MSN Messenger protocol is fairly simple. It consists of predefined ASCII messages that are exchanged over a TCP
connection. The latest version of this protocol (MSNP7) is described unofficially by Mike Mintz at
http://www.hypothetic.org/docs/msn. Using the information provided here, in conjunction with the standard .NET TCP classes, you
could connect to a Messenger server, retrieve contacts, send messages, and so on.

Writing this type of application wouldn't be too difficult, but it would involve some detailed study of the Messenger protocol. A
much easier option is to use the MSNP Helper API for .NET, an open-source .NET component that allows you to interact with the
Windows Messenger network almost effortlessly. You can download the MSNP Helper API and documentation and read any
recent news at its SourceForge.net home page, http://msnphelper.sourceforge.net. Documentation is in the form of an HTML Help
class library reference, and the component is included in a single assembly named msnp.dll, which you can reference in your
projects.

Note The MSNP Helper API for .NET doesn't use the MSNP7 protocol. Instead, it uses the somewhat older MSNP2
protocol, which is the only protocol to have been released officially. Presumably, the officially undocumented MSNP7
protocol could change without warning. Neither protocol has any official support.

So why would you want to create a custom program that uses the Messenger network? One reason might just be to access or add
features that wouldn't otherwise be available, such as the ability to send large messages, encrypt messages before they reach the
server, or log the status of users over a long period of time. Or, you might want to create another type of application that isn't
primarily concerned with sending and receiving messages. Some possibilities include the following:

A long-running service that monitors when a user appears or leaves and launches other tasks accordingly.

An automated tool that sends certain types of messages to specified users at specified times.

Some type of task processor that routes business-specific commands through Messenger. In this case, you would
probably define the commands using string constants (much as in Chapter 9).

Microsoft doesn't officially support using the Messenger network in this way. However, it hasn't acted to discourage individual
developers from "reasonable" use that doesn't abuse the system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating a Windows Messenger Client
To learn how to use the MSNP component, it helps to create a simple Messenger client that emulates some of the standard
features found in the Windows Messenger application. As a prerequisite, you should understand how a basic Messenger
interaction works, as described here:

1. You sign in to Messenger with a valid user name and get authenticated.

2. If desired, you retrieve your list of contacts and their statuses.

3. You start a session with one of your Messenger contacts. A session can be thought of as a separate chat
window in the Messenger application. Before you can send messages to any user, either you (or the recipient)
must start a session by opening a chat window. You can also create multiple sessions at once (although our
simple example won't use this feature). Whenever a session is established, the contact list is updated.

4. You send and receive messages through the server switchboard.

5. At some later point, you end the session and sign out.

Figure 12-1 shows the client we'll create to demonstrate the MSNP component. It allows a user to log in, see other contacts, start
a session, and send messages.

Figure 12-1: The custom Messenger client

To create this client, start by creating a new Windows project. Add the reference to the msnp.dll and import the MSNP namespace
if desired.

In order to send and receive messages with the MSNP component, you must create a class that implements the ISessionHandler
interface. As part of this interface, you'll need to implement methods such as MessageReceived() and ErrorReceived(). These
methods will be triggered by the MSNP component in response to messages received from the Messenger network. (A more
typical way to implement this type of design is to use events. However, this approach is equivalent.)

The ISessionHandler interface allows you to receive messages. To send messages, you must create an instance of the
MSNPHelper class. The MSNPHelper class allows you to retrieve contacts, sign in and sign out, and create sessions. Every
session is handled by a separate instance of the Session class. You use the Session class to send messages. Figure 12-2
diagrams this interaction.

Figure 12-2: Interacting with Messenger through the MSNP component

In our simple example, the ISessionHandler interface is implemented directly by the form:
Public Class MessengerForm
 Inherits System.Windows.Forms.Form
 Implements MSNP.ISessionHandler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The form also uses some form-level variables to track the current MSNPHelper and Session objects:
 ' The helper used to sign in and out and retrieve contacts.
 Private Helper As MSNP.MSNPHelper

 ' These variables track the current session as well as the related user.
 Private CurrentSessionUser As String
 Private CurrentSession As MSNP.Session

When the form loads, it signs in to a new Messenger session. The user e-mail address and password are hard-coded to facilitate
testing, but you could easily add a login window. The IP address is retrieved for the dispatch server using the System.Net.Dns
class.
Private Sub MessengerForm_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ' Retrieve the IP address for the messenger server.
 Dim IP As String
 IP = System.Net.Dns.GetHostByName(_
 "messenger.hotmail.com").AddressList(0).ToString()

 ' For simplicity's sake, a test user is hard-coded.
 ' Note that that communication is always performed on port 1863.
 Helper = New MSNP.MSNPHelper(IP, 1863, "mymsgtest@hotmail.com", _
 "letmein", Me)

 ' SignIn with the supplied information.
 ' This method blocks until the sign operation is complete.
 ' An invalid user or password may simply stall the application without
 ' generating an error, so you may want to execute this method asynchronously.
 Helper.Signin()

 Me.RefreshContactList()
End Sub

Note Although the MSNPHelper requires that you supply the password in clear text, this password is never transmitted over
the network. Instead, the password is hashed using the MD5 hashing algorithm and a value supplied by the server. For
more information, refer to the detailed description of the underlying protocol at
http://www.hypothetic.org/docs/msn/connecting.php.

When you create the MSNPHelper you supply the login information, the IP address and port to use, and an ISessionHandler
object. In this example, the current form implements the ISessionHandler, so we pass that as a reference.

The next step is to call the form-level RefreshContactList() subroutine, which retrieves contact information and uses it to fill a
ListView control:
Private Sub RefreshContactList()

 ' Fill the contact list.
 Dim Item As ListViewItem
 Dim Peer As MSNP.Contact
 For Each Peer In Me.Helper.FLContacts
 Item = lstContacts.Items.Add(Peer.FriendlyName)
 Item.SubItems.Add(Peer.State.ToString())
 Item.SubItems.Add(Peer.Substate.ToString())
 Item.SubItems.Add(Peer.UserName)
 Next

End Sub

This method is also called by the ISessionHandler UserJoined() and UserDeparted() methods. However, in this case the method
won't execute on the main application thread, so the call must be marshaled using the Control.Invoke() method.
Public Sub UserDeparted(ByVal session As MSNP.Session, _
 ByVal userHandle As String) Implements MSNP.ISessionHandler.UserDeparted

 ' Refresh the contact list.
 Dim Invoker As New MethodInvoker(AddressOf Me.RefreshContactList)
 Me.Invoke(Invoker)

End Sub

Public Sub UserJoined(ByVal session As MSNP.Session, _
 ByVal userHandle As String, ByVal userFriendlyName As String) _
 Implements MSNP.ISessionHandler.UserJoined

 ' Refresh the contact list.
 Dim Invoker As New MethodInvoker(AddressOf Me.RefreshContactList)
 Me.Invoke(Invoker)

End Sub

Note that if the user's friendly name is different from his or her e-mail address, multiple entries may appear for the user in the
contact list (you may have also noticed this phenomenon if you use the Microsoft Outlook Express Hotmail integration). You can
use additional code to ignore entries with duplicate UserName values.

Nothing else happens until a user starts a session, or a session is started when another user sends a message. The user can
start a session by selecting a user in the contact list and clicking the Create Session button. The button event handler uses the
MSNPHelper.RequestSession() method, which returns immediately. The MSNP component will continue trying to establish the
session for a maximum of about 30 seconds.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub cmdStartSession_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdStartSession.Click

 If Not Me.CurrentSession Is Nothing Then
 MessageBox.Show("There is already a current session.")
 Return

 Else
 If lstContacts.SelectedIndices.Count = 0 Then
 MessageBox.Show("No user is selected.")
 Return
 Else
 Dim Contact As String
 Contact = lstContacts.Items(_
 lstContacts.SelectedIndices(0)).SubItems(3).Text
 Helper.RequestSession(Contact, Guid.NewGuid())

 End If
 End If

End Sub

Note that every session requires an identifier that's generated by the client and is unique within the application. Our custom client
simply creates a new GUID.

If the session is successfully established, the ISessionHandler.Session Started() method will be triggered. In our example, the
method handler simply updates the form with the retrieved session ID and stores the session object in a member variable for use
when sending messages later on. In addition, the ISessionHandler.SessionEnded() method removes these details.

Public Sub SessionStarted(ByVal session As MSNP.Session) _
 Implements MSNP.ISessionHandler.SessionStarted

 Dim Updater As New UpdateControlText(lblSession)
 Updater.ReplaceText(session.SessionIdentifier.ToString())
 Me.CurrentSession = session

End Sub

Public Sub SessionEnded(ByVal session As MSNP.Session) _
 Implements MSNP.ISessionHandler.SessionEnded

 ' Don't try to update the form if it's in the process of closing.
 If Not IsClosing Then
 Dim Updater As New UpdateControlText(lblSession)
 Updater.ReplaceText("")
 End If
 Me.CurrentSession = Nothing

End Sub

This code uses the UpdateControlText class, which can update the Text property of any control on the correct thread. This useful
class is shown here:
Public Class UpdateControlText

 Private NewText As String
 Private ControlToUpdate As Control

 Public Sub New(ByVal controlToUpdate As Control)
 Me.ControlToUpdate = controlToUpdate
 End Sub

 Public Sub AddText(ByVal newText As String)
 SyncLock Me
 Me.NewText = newText
 Dim Invoker As New MethodInvoker(AddressOf AddText)
 Me.ControlToUpdate.Invoke(Invoker)
 End SyncLock
 End Sub

 ' This method executes on the user-interface thread.
 Private Sub AddText()
 Me.ControlToUpdate.Text &= NewText
 End Sub

 Public Sub ReplaceText(ByVal newText As String)
 SyncLock Me
 Me.NewText = newText
 Dim Invoker As New MethodInvoker(AddressOf ReplaceText)
 Me.ControlToUpdate.Invoke(Invoker)
 End SyncLock
 End Sub

 ' This method executes on the user-interface thread.
 Private Sub ReplaceText()
 Me.ControlToUpdate.Text = NewText
 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

Now that a session is established, the client can send messages by clicking the Send button. The button event handler checks
that there's a current session and uses the Session.SendMessage() method.
Private Sub cmdSend_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdSend.Click

 If Me.CurrentSession Is Nothing Then
 MessageBox.Show("There is no current session.")
 Return
 Else
 Me.CurrentSession.SendMessage(txtSend.Text)
 Dim NewText As String
 NewText = "SENT: " & txtSend.Text
 NewText &= Environment.NewLine & Environment.NewLine
 txtMessages.Text &= NewText
 End If

End Sub

Messages are received through the ISessionHandler.MessageReceived() method. Blank messages are ignored, because they're
used to indicate that the user has started typing, thereby allowing you to display the "User is typing a message" status message in
your application.
Public Sub MessageReceived(ByVal session As MSNP.Session, _
 ByVal message As MSNP.MimeMessage) _
 Implements MSNP.ISessionHandler.MessageReceived

 ' Add text.
 If message.Body <> "" Then
 Dim Updater As New UpdateControlText(txtMessages)
 Dim NewText As String
 NewText = "FROM: " & message.SenderFriendlyName
 NewText &= Environment.NewLine
 NewText &= "RECEIVED: " & message.Body
 NewText &= Environment.NewLine & Environment.NewLine
 Updater.AddText(NewText)
 End If
End Sub

Finally, when the form closes, it signs the user out of Windows Messenger.
Private Sub MessengerForm_Closed(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Closed

 If Not Me.CurrentSession Is Nothing Then
 Me.CurrentSession.EndSession()
 End If
 Helper.Signout()

End Sub

Figure 12-3 shows the interaction of two Windows Messenger peers, one of which uses the custom client.

Figure 12-3: Interaction with the custom Messenger

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Understanding the Groove Platform
Groove is a remarkable platform for building collaborative peer-to-peer applications. It's the invention of Lotus Notes creator Ray
Ozzie, it's partly owned by Microsoft, and it can integrate with COM and .NET applications.

The core concept behind Groove is shared spaces, where multiple users work on a single task. Examples of shared spaces
include a chat window, or a shared white-board or calendar. Each user interacts with the shared space on his or her local
computer, and changes are seamlessly applied to all other users in the shared space. The basic Groove Workspace includes
tools that allow users to jointly edit Word documents, view PowerPoint slides, surf Internet pages, share files, chat, and more.

All of these tools run inside the Groove transceiver. It's through the Groove transceiver that you log in, see who else is online,
create a new shared space, and invite users to join you in a shared space. A shared space (see Figure 12-4) can include a single
Groove tool (like chat) or it can combine more than one Groove tool (for example, if you want to create a synchronized discussion,
calendar, and document review session). The important point to remember is that it's the Groove infrastructure that synchronizes
changes with all the subscribed users.

Figure 12-4: A sample Groove shared space in the transceiver

The Groove infrastructure also adds the following benefits that aren't as easy to incorporate into your custom peer-to-peer
applications:

Security. Groove uses encryption to protect data on the wire, digital finger-prints (essentially a GUID) to uniquely
track users, and digital signatures to verify that messages aren't tampered with and users aren't impersonated.

Firewall traversal. Groove uses its own proprietary central server components that solve firewall and network
address translation (NAT) problems. (Incidentally, you can host your own Groove Enterprise server for a significant
fee.)

Offline support. Groove synchronization can automatically update clients when they come online, thereby allowing
your application to work even in the face of variable network connectivity.

But Groove isn't just a collection of typical peer-to-peer collaborative tools. It's also a framework that allows you to create your own
tools and add them to shared spaces. In this case, the goal is to make creating a Groove tool nearly as easy as creating a stand-
alone Windows application, so that the developer doesn't need to worry about security, synchronization, networking, and so on.
Groove even provides a Visual Studio .NET add-in that makes this process relatively easy. You'll still need to learn the Groove
toolset object model and its deployment and configuration system (particularly if you want to develop more advanced tools), but
you won't need to overcome the same challenges as you would if you were writing a collaborative application from scratch.

Groove provides a .NET developer hub at http://www.groove.net/developers/dotnet. Using this link, you can download the Groove
2.1 Workspace, the Groove toolkit for Visual Studio .NET, and a more generic Groove development kit with samples. You can
also read whitepapers and other documentation about developing with Groove. Groove Networks was one of the first
organizations to become a Visual Studio .NET Integration Partner (VSIP), and both Groove and Microsoft are committed to
collaborating in the future and extending their tools together into the world of collaborative peer-to-peer.

From a business point of view, the only downside to using Groove is that it isn't free. You can use the scaled-down trial version to
test your custom tools, but you need to purchase the full version to access advanced features and use automated deployment.
You can find information about purchasing Groove at http://www.groove.net/products/workspace/starterkit-smb.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating a Simple Groove Application
Once you've installed the Groove toolkit for Visual Studio .NET, you'll be able to directly create a Groove project. Simply select
Groove Tool Projects Groove Tool in VB .NET from the Create Project window (see Figure 12-5).

Figure 12-5: Creating a Groove project

Groove projects resemble user controls. They have a Windows design surface, but no form border (because they're hosted in the
transceiver). You can code any valid VB .NET code in a Groove project, including code that interacts with a web service, reads
from a database, launches new threads, opens new windows, and so on.

Figure 12-6 shows the contents of a simple Groove project and its assembly references.

Figure 12-6: The contents of a Groove project

Note Behind the scenes, the Groove toolkit makes heavy use of .NET-to-COM interoperability. It uses runtime callable
wrappers (RCW) to make its COM library of components available to your .NET applications, and COM callable
wrappers (CCW) to wrap your .NET Groove tools so they can be hosted in the unmanaged Groove transceiver. You
won't need to deal with this layer of interoperability directly.

The Groove Designer Code

If you look at the auto-generated code for the default Groove user control, you'll see three collapsed regions with Groove code.
The first ("Groove member variables") defines two form-level variables:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private WithEvents propertyList As GroovePropertyList
Private WithEvents recordSetEngine As GrooveRecordSetEngine

The propertyList variable is used to access a small amount of tool-specific information (such as the tool name and assembly). The
recordSetEngine variable is used to access data that will be synchronized across all users in the shared space.

Both the property list and record set rely on Groove's persistence engines. Groove provides four persistence engines:

PropertyListEngine. This models data as a series of name and value pairs. You can store any basic type of data
(numeric, string, and so on). Property lists are used extensively by Groove to provide information about the
environment.

RecordSetEngine. This models a set of records. Each record is divided into multiple fields that can use basic data
types such as strings and numbers as well as XML elements. A record set can include many different types of
records. This is the most commonly used Groove persistence engine for storing data in a custom tool.

HierarchicalRecordSetEngine. This is similar to the RecordSetEngine, except that it allows you to organize different
record sets into a tree-like hierarchy.

DocumentShareEngine. This engine allows you to share files in a distributed space.

In this example, we'll use the RecordSetEngine to manage shared data. To change data, the application opens a
RecordSetEngine transaction and makes the desired changes. The RecordSetEngine then replicates the changes over all the
peers in the shared space, using encryption. The change then appears in each local copy of the tool as a RecordSetEngine event.
The tool responds to this event and updates the local display accordingly. Figure 12-7 diagrams this arrangement.

Figure 12-7: Synchronization in a Groove shared space

Continuing our exploration of the designer code, you'll find a collapsed region named "IGrooveComponent default
implementation." It includes a basic implementation of the IGrooveComponent interface, including an Initialize() subroutine that
retrieves the property list and some basic information from the Groove environment:
' Common Groove property names.
Private Const CommonPropertyName = "Name"
Private Const CommonPropertyBindableURL = "_BindableURL"
Private Const CommonPropertyCanonicalURL = "_CanonicalURL"
Private Const RecordSetEngineConnection = 0
' Cached Groove property values.
Private componentName As String
Private componentBindableURL As String
Private componentCanonicalURL As String

Public Sub Initialize(ByVal propertyListInterop _
 As Groove.Interop.Components.IGroovePropertyList) _
 Implements Groove.Interop.Components.IGrooveComponent.Initialize

 ' Create the property list wrapper object.
 propertyList = new GroovePropertyList(propertyListInterop)

 componentBindableURL = _
 propertyList.OpenPropertyAsString(CommonPropertyBindableURL)
 componentCanonicalURL = _
 propertyList.OpenPropertyAsString(CommonPropertyCanonicalURL)

 ' This is a GUID that uniquely identifies the tool.
 componentName = propertyList.OpenPropertyAsString(CommonPropertyName)

End Sub

This information is made available through several property procedures that also implement the IGrooveComponent interface:
Public ReadOnly Property BindableURL() As String _
 Implements Groove.Interop.Components.IGrooveComponent.BindableURL
 Get
 Return componentBindableURL
 End Get
End Property

Public ReadOnly Property CanonicalURL() As String _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public ReadOnly Property CanonicalURL() As String _
 Implements Groove.Interop.Components.IGrooveComponent.CanonicalURL
 Get
 Return componentCanonicalURL
 End Get
End Property

Public Function OpenName() As String _
 Implements Groove.Interop.Components.IGrooveComponent.OpenName
 Return componentName
End Function

Finally, the component includes code to create a new RecordSetEngine instance, and disposes of it when the application ends.
This manual dispose step is used because the RecordSetEngine is actually a wrapper for a COM component, and therefore it
holds unmanaged resources.
Public Sub ConnectToComponent(ByVal componentInterop As _
 Groove.Interop.Components.IGrooveComponent, ByVal connectionID As Integer) _
 Implements Groove.Interop.Components.IGrooveComponent.ConnectToComponent

 Select Case connectionID
 Case RecordSetEngineConnection
 ' Create the recordSetEngine wrapper object.
 Dim recordSetEngineInterop As _
 Groove.Interop.CollectionComponents.IGrooveRecordSetEngine
 recordSetEngineInterop = componentInterop
 recordSetEngine = New GrooveRecordSetEngine(recordSetEngineInterop)
 End Select

End Sub

Public Sub UnconnectFromComponents() _
 Implements Groove.Interop.Components.IGrooveComponent.UnconnectFromComponents
 recordSetEngine.Dispose()
End Sub

Public Sub Terminate() _
 Implements Groove.Interop.Components.IGrooveComponent.Terminate
 propertyList.Dispose()
End Sub

The third and final designer region is used to hold a default implementation of the RecordSetChanged event handler:
Private Sub OnRecordSetChanged(ByVal sender As GrooveRecordSetEngine, _
 ByVal e As GrooveRecordSetListenerEventArgs) _
 Handles recordSetEngine.RecordSetChangedEvent

 ' (By default, no code is included.)

End Sub

The Groove Application Logic

The next step is to use this basic framework to add some application-specific logic. At a minimum, a Groove tool allows the user to
create and manage some information and responds when this information is changed by updating the display accordingly.

Our simple example is a collaborative party planner. It displays a list of food items that are being brought to the party by various
individuals. Any individual in the shared space can add or remove items from this list. The interface (shown in Figure 12-8)
includes a ListView and two buttons, one for removing items and one for adding them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12-8: A custom Groove tool with a shared list

Tip Remember to anchor your controls to the sides of the user control container so they can adapt to fit the space allocated
to them in the Groove transceiver.You can also improve your interfaces with docking and splitter bars and other niceties.

When a user clicks the Add button, the item information is read from the text boxes, added to a new Groove record, and then
inserted into the Groove record set.

Private Sub cmdAdd_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdAdd.Click

 ' Verify the item information is present.
 If txtItem.Text = "" Or txtBroughtBy.Text = "" Then
 MessageBox.Show("Enter your name and the item name.")
 Return
 End If

 ' Create a new record to add to the Groove record set.
 Dim Record As New GrooveRecord()

 Try
 ' Set the new field values.
 Record.SetField("Item", txtItem.Text)
 Record.SetField("BroughtBy", txtBroughtBy.Text)

 ' Add the record.
 Me.recordSetEngine.AddRecord(Record)

 Finally
 ' Explicitly release the unmanaged resources held by the record.
 Record.Dispose()
 End Try

End Sub

Note that this code does not actually modify the ListView control—it only changes the Groove record set. The local peer must
respond, like all peers in the shared space, to the RecordSetChanged event in order to update the ListView. At this point, the peer
reads the information from the record (along with the record ID that's assigned by Groove to uniquely identify this record) and
inserts a new ListViewItem. Individual values are read using Record.OpenFieldAsString() method.
Private Sub OnRecordSetChanged(ByVal sender As GrooveRecordSetEngine, _
 ByVal e As GrooveRecordSetListenerEventArgs) _
 Handles recordSetEngine.RecordSetChangedEvent

 Dim RecordID As Double
 Dim Record As IGrooveRecord
 ' The ToolHelper is used to start a new transaction.
 ' This prevents the data from changing while the display is being updated.
 Dim ToolHelper As New GrooveToolHelper(Me.propertyList)
 ToolHelper.StartTelespaceTransaction(True)

 Try
 ' Determine the type of change.
 Select Case e.RecordSetChangeType

 Case GrooveRecordSetChangeType.GrooveRecordSetChangeType_Added

 ' The record set contains one or more items to be added.
 Do While e.RecordIDEnum.HasMore()
 RecordID = e.RecordIDEnum.OpenNext()
 If recordSetEngine.HasRecord(RecordID) Then

 Record = recordSetEngine.OpenRecord(RecordID)
 Dim Item As New ListViewItem(_
 Record.OpenFieldAsString("Item"))
 Item.SubItems.Add(Record.OpenFieldAsString(_
 "BroughtBy"))
 lstItems.Items.Add(Item)

 ' Store the unique record ID.
 item.Tag = RecordID

 ' Explicitly release the record.
 Record.Dispose()
 End If
 Loop

 ' (The code for other types of changes is omitted.)
 Catch Err As Exception
 ' Abort transaction.
 ToolHelper.AbortTelespaceTransaction()
 MessageBox.Show(Err.Message)

 End Try

End Sub

The Remove button uses similar logic. It verifies that an item is selected, starts a transaction, and removes it from the record set.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub cmdRemove_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdRemove.Click

 If lstItems.FocusedItem Is Nothing Then
 MessageBox.Show("No item selected.")

 Else
 ' Get the unique record ID.
 Dim RecordID As Double = CType(lstItems.FocusedItem.Tag, Double)

 ' Open a transaction on the telespace to prevent data from
 ' changing out from under us.
 Dim ToolHelper As New GrooveToolHelper(Me.propertyList)
 ToolHelper.StartTelespaceTransaction(False)

 Try
 ' Remove the record.
 Me.recordSetEngine.RemoveRecord(RecordID)
 ToolHelper.CommitTelespaceTransaction()

 Catch Err As Exception
 ToolHelper.AbortTelespaceTransaction()
 MessageBox.Show(Err.Message)

 End Try
 End If

End Sub

Once again, the code reacts to the RecordSetChanged event and uses this opportunity to update the ListView. This time, the
code loops through the ListView items until it finds one that matches the unique record ID.
Case GrooveRecordSetChangeType.GrooveRecordSetChangeType_Removed

 ' RecordSet contains one or more items to be removed.
 Do While e.RecordIDEnum.HasMore()
 RecordID = e.RecordIDEnum.OpenNext()

 ' Check the ListView for this item.
 Dim Item As ListViewItem
 For Each Item In lstItems.Items
 If CType(Item.Tag, Double) = RecordID Then
 lstItems.Items.Remove(item)
 End If
 Next
 Loop

This is all the custom code you need to add. The next step is to test the custom Groove tool in the transceiver.

Debugging a Groove Application

The Groove toolkit allows you to debug your Groove application inside Visual Studio .NET. When you run your Groove project, a
special instance of the transceiver will appear with your tool loaded in a new shared space. You can interact with the tool and even
set breakpoints or use variable watches in your code. When you close the transceiver, the debugging session will end and you
can continue to edit your code.

Figure 12-9 shows the party planner running in Groove.

Figure 12-9: Running the custom tool in the Groove transceiver

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note In order to debug your tool, Groove cannot already be running. If it is, shut it down before starting your project.

Even in a single user environment, you can test all of your code. That's because all peers respond to changes in the exact same
way, including the peer that originates the change. For example, in the party planner example, the ListView control isn't updated
until the Groove infrastructure notifies the application that the record set has been altered. This is the same process that will
happen with any other users working in the same shared space.

For a more detailed multiuser test, you'll need to compile your project, create the Groove XML files that describe it, sign it, and
then inject it into the Groove Workspace. This is outside the scope of this book, although it's well-explained in the Groove toolkit
documentation.

Enhancing the Groove Application

The current party application treats all peers equivalently. However, in a real peer-to-peer application you almost always want
some ability to track user identities and possibly assign different sets of abilities to different types of users. This type of design is
possible with Groove's rich class library—provided you know where to work.

The first step is to import some additional Groove assemblies that you'll need to use to add the identity features. These include
Groove.Interop.Account Services, Groove.Interop.IdentityServices, and Groove.Interop.ContactServices, as shown in Figure 12-
10. All of these assemblies can be added directly from the global assembly cache.

Figure 12-10: Groove assemblies for identity management

Using the property list information provided in the Groove environment, you can retrieve two types of information:

Identity information for the user who created the shared space. This user might be given some sort of administrator-
like privileges.

Identity information about the current user. This can be used to log changes accurately and even restrict what
operations a user is allowed to perform.

Groove provides several identity-related interfaces, as shown in Figure 12-11. One of the most import is IGrooveIdentity, which
allows you to uniquely identify users. Other important interfaces include IGrooveVCard and IGrooveIdentification. IGrooveVCard
returns information about the user-specific VCard, which is the Groove equivalent of a digital certificate. The IGrooveIdentification
returns a specific subset of VCard information such as the user name, organization, and so on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12-11: Groove identity interfaces

Here's how you might retrieve identity information when the shared space is first initialized. In this case, the code retrieves the
unique URL identifier for both users and stores them in form-level variables. It also presets the txtBoughtBy text box with the
user's name and displays the shared space owner information.
' Track unique identifiers that indicate who created the
' shared space and who is currently using it.
Private UserUrl As String
Private CreatorUrl As String

Private Sub GrooveUserControl_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ' Define some basic Groove identity interfaces.
 Dim Account As Groove.Interop.AccountServices.IGrooveAccount
 Dim Identity As Groove.Interop.IdentityServices.IGrooveIdentity
 Dim Contact As Groove.Interop.ContactServices.IGrooveContact
 Dim VCard As Groove.Interop.ContactServices.IGrooveVCard
 Dim Identification As Groove.Interop.ContactServices.IGrooveIdentification

 ' Retrieve the identity information for the shared space creator.
 Account = CType(Me.propertyList.OpenProperty("_Account"), _
 Groove.Interop.AccountServices.IGrooveAccount)
 Identity = Account.DefaultIdentity
 Me.CreatorUrl = Identity.URL
 Contact = Identity.Contact
 VCard = Contact.OpenVCard()
 Identification = VCard.OpenIdentification()

 ' Display this identity in the window.
 lblCreator.Text = "Space hosted by: " & Identification.OpenFullName()

 ' Retrieve the identify information for the current user.
 Identity = CType(Me.propertyList.OpenProperty("_CurrentIdentity"), _
 Groove.Interop.IdentityServices.IGrooveIdentity)
 Me.UserUrl = Identity.URL
 Contact = Identity.Contact
 VCard = Contact.OpenVCard()
 Identification = VCard.OpenIdentification()

 ' Pre-fill in the txtBroughtBy textbox.
 txtBroughtBy.Text = Identification.OpenFullName()

End Sub

Now you can add some useful identity integrity features. First of all, you can make the txtBroughtBy textbox read-only, and you
can add the user URL information to the record set and ListView. This way, you'll be assured that the user offering to bring a party
item is who he or she claims to be.

Here's the updated code for adding new entries:
' Set the new field values.
Record.SetField("Item", txtItem.Text)
Record.SetField("BroughtBy", txtBroughtBy.Text)
Record.SetField("UserURL", Me.UserUrl)

And here's the code that responds to the change and inserts the new ListViewItem:
Record = recordSetEngine.OpenRecord(RecordID)

Dim Item As New ListViewItem(Record.OpenFieldAsString("Item"))
Item.SubItems.Add(Record.OpenFieldAsString("BroughtBy"))
Item.SubItems.Add(Record.OpenFieldAsString("UserURL"))
lstItems.Items.Add(Item)

' Store the unique record ID.
item.Tag = RecordID

Next, you can tweak the code for removing items so that items can't be removed unless the removing user is the user who added
the item originally.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub cmdRemove_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdRemove.Click

 If lstItems.FocusedItem Is Nothing Then
 MessageBox.Show("No item selected.")
 ElseIf lstItems.FocusedItem.SubItems(2).Text <> Me.UserUrl Then
 MessageBox.Show("You did not add this item.")
 Else
 ' (Code omitted.)
 End If
End Sub

Figure 12-12 shows the revamped Groove tool in action.

Figure 12-12: A Groove tool that recognizes identities

This only scratches the surface of some of Groove's more advanced features. For more information, refer to the Groove developer
documentation. Keep in mind, however, that the Groove toolkit for Visual Studio .NET is still considered to be a preview of new
Groove technology. It will likely change as the COM interoperability code is replaced with native .NET solutions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other Peer-to-Peer Platforms
In the future, most programmers who want to write peer-to-peer applications will use a third-party platform rather than creating the
infrastructure from scratch. The two platforms shown in this chapter are useful choices, but they won't meet the needs of all
developers. Windows Messenger is primarily suited for small-scale implementations, particularly when adding peer-to-peer
messaging to an existing application. Groove is a more comprehensive platform that's well suited to creating all types of
collaborative applications. In this section, we'll consider two other choices.

Gnutella

Windows Messenger isn't the only instant-messaging platform—AOL provides a similar product, as does the pioneer, ICQ. It's
possible to use these protocols, and there are some open-source projects dedicated to the task, but there are currently no .NET
components that make it easy. Thus, if you want to use these other platforms, you need to study the platform and write a
significant amount of custom code with .NET's networking classes.

The same is true of Gnutella, the fully decentralized protocol used for file sharing. There is a decentralized set of Java classes
(known as JTella and available at http://jtella.sourceforge.net) that provides this functionality for Java applications, but there is
currently no .NET equivalent, although there are several in-progress projects on SourceForge.net and at least one attempt to port
the JTella logic to C#.

In addition, for the truly ambitious, information about the Gnutella protocol can be found at http://rfc-gnutella.sourceforge.net and
various other locations on the Internet. There is currently one Gnutella client totally implemented on the .NET platform using C#
code. It's Swapper.NET by Jason Thomas, which is available for download (in compiled form only) at
http://www.revolutionarystuff.com/swapper.

DirectPlay

Microsoft's DirectX includes DirectPlay, a technology that's designed with peer-to-peer game play in mind. DirectPlay can be used
in a server-based or pure peer-to-peer environment. Either way, it plays the same role: completely managing network
communication and data exchange. Generally, a developer will use DirectPlay to keep multiple peers synchronized in a
multiplayer game, although the technology is impressive enough that it could conceivably be incorporated into a variety of different
application types.

Some of the features that DirectPlay offers include group management (registration and deregistration of users), bandwidth
management that allows large amounts of data to be exchanged without introducing problems, and connection statistics.
DirectPlay also includes a variety of message services, such as guaranteed delivery and guaranteed sequencing, both of which
are optional. DirectPlay even includes a related API named DirectPlay voice, which is fine-tuned for real-time voice communication
between players.

To learn about DirectPlay, you can download the full DirectX 9.0 SDK for .NET from http://msdn.microsoft.com/library/default.asp?
url=/downloads/list/directx.asp. You can also refer to .NET Game Programming with DirectX 9.0 (Apress 2003), which includes a
full chapter on the subject.

Windows Peer-to-Peer Networking

It may be that the infrastructure for peer-to-peer systems won't be built-in to the next generation of programming toolkits, but
rather into the next generation of Windows. Microsoft has recently released a peer-to-peer upgrade for Windows XP that adds
decentralized peer connectivity features, and a peer-to-peer SDK with examples (currently all in unmanaged code). To download
the update and the SDK, visit http://msdn.microsoft.com/library/default.asp?url=/downloads/list/winxppeer.asp.

However, there's one huge limitation: These technologies rely in large part on the next generation of Internet addressing
technology, IPv6. Even though there are facilities to "work through" NATs based on IPv4, the solution is far from complete, and it
will be some time before it matures into a practical platform for building applications. But you can get a head start on this emerging
field by referring to Microsoft's peer-to-peer networking home page, http://www.microsoft.com/windowsxp/p2p.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
This chapter looked at the shortcuts you can use to create certain types of peer-to-peer applications by working with existing peer-
to-peer networks. The first choice, using Windows Messenger, provides a reliable communication infrastructure that could support
your own custom business processes and clients. The second option, using Groove, allows you to develop a rich set of
collaborative tools with a full-featured toolset, although it requires a user license.

In the next chapter, we'll consider a free peer-to-peer framework that extends the Remoting infrastructure included with .NET: the
Intel Peer-to-Peer Accelerator Kit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13: The Intel Peer-to-Peer Accelerator Kit

Overview
Over the last twelve chapters we've considered a variety of peer-to-peer applications implemented on technologies such as
Remoting, web services, and the .NET networking classes. Some used central coordinators while others relied on a simple
discovery service. All of them required a substantial amount of custom programming, and they'll experience significant problems
when faced with issues such as network address translation (NAT) and firewalls.

What if there was a way to avoid the work of infrastructure programming and only worry about coding application-specific logic?
As shown in the last chapter, you can create collaborative applications that piggyback on Windows Messenger and Groove, but
the former is limited in scope while the latter forces you to buy a specific product. An ideal solution would be a generic peer-to-
peer programming platform, on top of which developers could create a wide variety of distributed applications.

If you're hoping that this chapter will present that ideal peer-to-peer platform, then you'll be at least somewhat disappointed. Intel's
Peer-to-Peer Accelerator Kit is only a beginning, and it's still too early to determine whether this software will fall by the wayside or
mature into a powerful, widely accepted platform. In the meantime, you have to choose between coding peer-to-peer applications
the hard way or investing some time in learning an ambitious new component with an uncertain future.

This chapter introduces the Intel Peer-to-Peer Accelerator Kit and discusses its architecture. You'll learn how to modify the Talk
.NET messaging application to use the toolkit and analyze the basic samples that Intel includes to see how they resemble, and
differ from, the projects developed in this book.

Note As this book goes to print, the Intel Peer-to-Peer Accelerator Kit is no longer available from the Microsoft-supported
GotDotNet website (http://www.gotdotnet.com).Whether this represents the end of the Intel Peer-to-Peer Accelerator
Kit or the start of another toolkit is still uncertain. However, no matter what its ultimate fate will be, you can still use
version 1.0 of the Peer-to-Peer Accelerator Kit to create peer-to-peer applications, and you can study the toolkit to
learn more about peer-to-peer programming in general.You can even use the Intel Peer-to-Peer Accelerator Kit source
code (provided in C#) when crafting your own peer-to-peer applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

About the Intel Peer-to-Peer Accelerator Kit
The goal of the Intel Peer-to-Peer Accelerator Kit is to promote the adoption of peer-to-peer designs by providing a set of easy-to-
use peer-to-peer enhancements for .NET applications. These enhancements are built on top of the .NET Framework. They
include

A set of messaging enhancements that use SOAP and HTTP to transport data on a network. The messaging
enhancements are designed to increase reliability, availability, and security in a peer-to-peer application.

Extensions to .NET that allow you to use the messaging enhancements with Remoting and other network classes.

A peer-to-peer daemon (a long-running Windows service) that runs on each peer and facilitates the messaging
enhancements features. If you develop multiple peer-to-peer applications with the Intel toolkit, they'll all share the
same local service.

Use of a web service for peer discovery. The operation of the web service is completely transparent; you simply
host it and configure the clients to be able to locate the server. They'll form peer lookups as required.

An application-level FileCopy API that you can use to transfer files between peers.

Out of this feature set, the last point (the FileCopy API) is probably the least impressive. Although it saves some custom coding
work if you need to create a file sharing application, it roughly parallels the type of file transfer approach you would be able to
create on your own without too much effort (as described in Chapter 9). The messaging enhancements contain the most useful
functionality in the Peer-to-Peer Accelerator Kit, including enhancements that allow you to use Secure Sockets Layer (SSL)
automatically, and cross firewall boundaries.

Currently, there are no other .NET products that compete with Intel's Peer-to-Peer Accelerator Kit. Other peer-to-peer platforms
exist (notably JXTA, which is usually applied to Java development), but none have a .NET-specific implementation at the time of
this writing. For more information about JXTA and to see how its architecture compares to Intel's toolkit, you may want to consider
Brendon Wilson's excellent website, which provides a complete JXTA book from New Riders in PDF format. This material is ideal
for getting acquainted with a different platform—check it out at http://www.brendonwilson.com/projects/jxta.

The Messaging Enhancements

The messaging enhancements are the most compelling part of the Intel Peer-to-Peer Accelerator Kit. They include the following:

Store-and-forward. If this is enabled and you attempt to send a one-way message to a peer that appears to be
offline, the message will be cached locally and delivery will be attempted later.

Tunnel and relay. This feature allows two peers to communicate over a firewall by sending messages through a
relay service.

SSL. As you saw in Chapter 11, it's not possible to use SSL certificate authentication and encryption directly from a
peer-to-peer application. Intel's Peer-to-Peer Accelerator Kit solves this problem (with the use of some intensive
C++ plumbing).

The messaging enhancements are designed so that they can be easily enhanced in the future. For example, Intel documentation
references different methods of firewall traversal such as UPnP NAT and the SOCKS Protocol, which would allow for more flexible
handling of peer connectivity. Unfortunately, these solutions aren't implemented in the current (version 1.0) release.

The Intel Peer-to-Peer Daemon

The core piece of technology in the Intel Peer-to-Peer Accelerator Kit is a special Windows service that runs on every peer and
handles all communication between computers. This service (shown in Figure 13-1) loads at startup and runs transparently in the
background. It acts as a container for all the peer-to-peer services.

Figure 13-1: The Intel Peer-to-Peer daemon service

The peer service performs the following tasks:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It listens for incoming messages and then delivers them to the appropriate application object (in conjunction with the
.NET Remoting infrastructure). This is its most important responsibility.

It coordinates peer discovery. It automatically submits peer information to the configured discovery service so that a
particular application doesn't need to call a Register() or Login() method.

When delivering messages, it looks up peer location information from the discovery service as required. It also
maintains a local cache of peer location information (much as in the Chapter 10 example).

It encrypts and decrypts messages in secure sessions.

It stores messages for later delivery if store-and-forward is enabled.

It sets up a connection with a configured relay server and uses it to avoid firewall or NAT problems. In addition, if
configured as a relay server, it routes messages between peers that cannot communicate directly.

It tracks the list of published files (much as in the Chapter 9 example).

Figure 13-2 shows the how the architecture works in a typical application scenario.

Figure 13-2: Sending a message from one peer to another

Note You can configure the behavior of the peer service by modifying the settings in its configuration file.We'll cover this
topic in detail later in this chapter.

Peer-to-Peer URLs and Remoting

The peer service works by mapping peer URLs to Remoting endpoints. In other words, your application works in terms of abstract
peer-to-peer endpoints. These endpoints include information about the remote computer and the remote object and indicate
additional information such as whether or not the message should be encrypted before it's sent. The peer-to-peer service
translates the peer-to-peer endpoint into that actual Remoting endpoint, and it handles the additional steps that may be required
to bypass a firewall or create a secure session, and so on.

So far, you've become well-acquainted with the URL format used by .NET Remoting. It starts with the prefix tcp or http (depending
on the protocol used for communication) and indicates the remote application and object. Here's an example:
tcp://localhost:8000/RemoteObject

URLs with the Intel Peer-to-Peer Accelerator look quite a bit different. They start with the prefix peer, which indicates that the
message must be handled by the Intel messaging enhancements. The peer URL format is shown here:
peer://[PeerName]/[Application]/[Object]?[Parameters]

The peer name is a dynamic GUID that's generated at install time and uniquely identifies the computer (regardless of the
application). The application and object have the same meaning as they do in an ordinary Remoting scenario. Finally, the URL
also allows a query string portion that specifies additional parameters. There are currently three parameters you can use:

PeerSecure=True specifies that the communication must be encrypted in an SSL session.

If you've enabled store-and-forward, PeerExpire=<Time> and PeerLive=<Seconds> can set how long a message is
retained if the peer is offline.

When using these options, you won't need to modify the URL manually. Instead, you can use the methods provided by the Intel
Peer-to-Peer Accelerator Kit classes.

Remember, the underlying transport mechanism is still an HTTP transfer over Remoting. The peer prefix indicates a virtual
transportation specification. The peer service translates peer URLs into the actual endpoints, as shown in Figure 13-3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-3: How the Intel Peer-to-Peer Accelerator Kit maps peer URLs

The Discovery Service

The discovery service is implemented as a web service that exposes three methods: SetPeer() for adding peer information or
updating it, RemovePeer() for removing peer registration, and lookup() for retrieving peer URLs. The peer service handles
interaction with the discovery service transparently and caches recently looked-up information to optimize performance.

Every directory service contains information about the peer, its URL, and a timestamp. This data is stored and transmitted as an
XML fragment.
<PeerInformation>
 <PeerName>pCDA296F7E06511D1BFD300C04FB12345.peer</PeerName>
 <URL>http://10.1.1.26:4375</URL>
 <URL secure="true">https://10.1.1.26:4376</URL>
 <EntryTime>2001-09-28 18:12:19Z</EntryTime>

</PeerInformation>

The timestamp is used to determine which entry to use if multiple registrations are found. When retrieving the peer-connectivity
information, the peer service can choose to submit a minimum date, in which case all peer information older than this date will be
ignored. The peer service uses this feature intrinsically to retrieve updated information if a message delivery attempt fails.

Intel Peer-to-Peer Drawbacks

Despite its promise, the Intel Peer-to-Peer Accelerator Kit isn't without some limitations. For example, when you examine the peer-
to-peer messaging application developed later in this chapter, you'll notice that response times are slower than in the original
version. Part of this is due to the need to forward all messages through the peer service. Another consideration is the fact that the
Intel Peer-to-Peer Accelerator Kit only supports the HTTP Protocol for exchanging data with the relatively verbose SOAP
messages, rather than leaner binary messages over TCP. In addition, the revamped application requires some additional
considerations that weren't necessary in earlier implementations, and therefore complicate the code.

Another limitation is the reliance on a discovery service. Intel follows the same approach as the examples in this book by using a
separate web service to map peer names to connectivity information. However, this means that you need to include a server in
your peer-to-peer system as well as a configuration file that tells all peers where to access it. Though an early beta of the Intel
Peer-to-Peer Accelerator Kit experimented with broadcasting, it isn't supported in the release version, and hence there's no way to
create fully decentralized peer-to-peer applications (although you can configure multiple discovery servers and thereby reduce the
burden on a single computer). It's also important to note that the Intel solution for firewall traversal, while useful, is still more
rudimentary than that offered by more mature (and far more complex) peer-to-peer applications such as most Gnutella clients. It
requires you to provide an available relay and tell the peer where to find it—additional configuration steps that can only complicate
life.

Finally, one other potential problem is the way that the Intel Peer-to-Peer Accelerator Kit generates URLs. As you've seen, these
don't use fixed endpoints with the machine name or IP address. Instead, they use a GUID. In order for a peer to connect to
another, it must know which GUID to use in constructing the URL. Fortunately, the GUID is machine-specific, so you can distribute
the GUID for a server endpoint in a client configuration file, much as you would with .NET Remoting. However, this also means
that if you want multiple peers to interact (for example, in a chat application), you'll almost certainly need some sort of central
component that allows peers to retrieve the URLs of other peers on the system. This component is in addition to the peer-to-peer
discovery service, which isn't application-specific. The server component might map user names or e-mail addresses to GUID
values, while the discovery service maps these to the required peer-connectivity information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Installing the Intel Peer-to-Peer Accelerator Kit
You can download the Intel Peer-to-Peer Accelerator Kit at the companion site for this book: http://www.prosetech.com. This site
will also post any update links for the Intel Peer-to-Peer Accelerator Kit if they become available. (Unfortunately, at the time of this
writing, the Intel Peer-to-Peer Accelerator Kit is no longer available on the Microsoft-supported http://www.gotdotnet.comsite).

The Intel Peer-to-Peer Accelerator Kit download is in the form of a ZIP file with two setup applications. One allows you to install
the peer-to-peer name server (used for discovery), while the other includes the Peer-to-Peer Accelerator Kit, which includes the
required assemblies, documentation, and optionally, several sample applications and the source code for the toolkit (see Figure
13-4).

Figure 13-4: Installing the Intel Peer-to-Peer Accelerator Kit

Tip Intel also provides white papers and a rudimentary peer-to-peer case study at http://www.intel.com/ids/p2p.

The peer-to-peer name server installs the discovery web service and discovery database. It can only be installed on a server
version of Windows, such as Windows 2000 Server or Windows Server 2003. However, if you want to test on a single computer,
you only need to install the Peer-to-Peer Accelerator Kit.

The Peer-to-Peer Accelerator Kit setup installs files into the [InstallDir]\Intel\ P2P\v1.0 directory. (By default, the root installation
directory is C:\Program Files.) In this path are the following subdirectories:

Bin contains the compiled Intel Peer-to-Peer Accelerator Kit assemblies, which you'll need to reference in your
peer-to-peer applications.

Config contains two files that define machine-specific configuration settings, such as peer service.

Docs contains a white paper specification and an HTML Help file that acts as a basic namespace reference. This
namespace reference only includes the subset of the Peer-to-Peer Accelerator Kit classes that you'll need to use
directly.

Samples contains several sample applications. Some of these have associate Visual Studio .NET project files, but
most simply include the source code. All samples are in C# syntax.

Src includes the complete source C# code for the toolkit, organized by namespace. You can use this to learn about
the operation of the toolkit or integrate some of its techniques into your own code. Some of the code, such as the
code that's required to implement SSL secure channels, is unmanaged C++ code.

The core namespaces and classes are as follows:

Intel.Peer.Messaging includes the PeerChannel class, which works with Remoting and the peer service to allow
peer-to-peer communication.

Intel.Peer.Security.CertificateManagement includes the PeerCertificate Management utility class, which contains a
small set of methods that can be used to create, remove, and check for peer certificates and key pairs.

Intel.Peer.File.FileCopy includes the PeerFileCopy and PeerFileURI Collection classes, which allow you to easily
integrate file-transfer functionality into your peer-to-peer applications.

Intel.Peer.Messaging.Utility includes the PeerWebRequestUtility class, which allows you to use peer-to-peer
communication with the WebRequest class. We won't consider this approach in this chapter.

Configuring the Peer Service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You won't need to perform any additional configuration to test the Intel Peer-to-Peer Accelerator Kit. The peer service is
automatically installed and configured to run on startup as part of the installation process. However, when testing peer-to-peer
applications in distributed environments, you'll have to specify the discovery service to use and optionally configure a relay
service.

Both of these details are configured by editing the Intel.Peer.Common. Dameon.config XML configuration file, which is found in
the InstallDir]\Intel\ P2P\v1.0\Config directory.

Here's the basic outline of the configuration file sections:
<?xml version="1.0" encoding="utf-8" ?>
<PeerConfiguration>

 <!-- Entry for the ListenerPort and LoggingLevel -->

 <!-- Entry for the Listener -->

 <!-- Entry for the Peer Name System -->

 <!-- Entry for the Secure Listener -->

 <!-- Entry for the Relay -->

 <!-- Entry for Tunnel -->

 <!-- Entry for Port Mapped data -->

 <!-- Entry for Store and Forward service -->

 <!-- Entry for FileCopyService -->

</PeerConfiguration>

The first section allows you to configure the port that the peer service uses to listen for incoming requests. You can also configure
the client certificate to use when creating secure sessions as well as a proxy address and port.
<Messaging LoggingLevel="0">

 <ListenerPort>8080</ListenerPort>

 <ClientCertificate>C:\Program Files\Intel\P2P\v1.0\data\Security\Client.cer
 </ClientCertificate>

 <HttpProxyHost></HttpProxyHost>
 <HttpProxyPort>1</HttpProxyPort>

</Messaging>

You can also set a logging level from 0 to 5, where 0 indicates no logging and 5 indicates the maximum number of log messages.
The log messages are written to a Windows event log named PeerServices.

The secure listener entry configures the server certificate as well as the port to use for SSL communication.
<Module Name="SecureListener" Assembly="...Intel.Peer.Messaging.Services.dll"
 TypeName="Intel.Peer.Security.SecureListener.SecureListenerInitializer"
 Load="true" Essential="true">

 <ListenerPort>8443</ListenerPort>
 <ServerCertificate>
 <Name>MyCert</Name>
 </ServerCertificate>

</Module>

The peer-name system entry is where you configure the discovery service. You can use the <Cache> element to configure how
many peer entries will be retained in local memory or on disk. The peer name system entry also specifies the <URL> element with
the HTTP path to the .asmx web service that performs the discovery. The server name is the only part of this URL that you should
need to modify, because the discovery service is installed by default as peernameservice.asmx in a virtual directory named
peernameservice.
<Module Name="PeerNameSystem" Assembly="...Intel.Peer.Messaging.Services.dll"
 TypeName="Intel.Peer.Messaging.NameService.PeerNameSystem"
 Load="true" Essential="true">

 <DataStore Assembly="...Intel.Peer.Messaging.Services.dll"
 TypeName="Intel.Peer.Messaging.NameService.PnsXmlStore">
 <Cache>
 <OnDisk>
 <MaxEntries>1000</MaxEntries>
 <Path>C:\Program Files\Intel\P2P\v1.0\Data\NameServiceCache</Path>
 </OnDisk>
 <InMemory>
 <MaxEntries>100</MaxEntries>
 </InMemory>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </InMemory>
 </Cache>
 </DataStore>

 <ServerInformation>
 <URL>http://{server_name}/peernameservice/peernameservice.asmx</URL>
 </ServerInformation>

</Module>

Optionally, you can specify several server URLs. In this case, the peer will pass its information to every server whenever an
update is performed. On lookup calls the peer will try the servers in order until a response is returned.

In addition, you can also configure the store-and-forward entry to configure how much space is allocated for messages (in
megabytes) that are queued for attempted retransmission. You can set where they should be stored, how often delivery should be
reattempted (in seconds), and the maximum life span a message is allowed to have (in days). The defaults allocate 10 MB of
space, retry message delivery every ten minutes, and allow stored messages to last a full week on the peer.
<Module Name="StoreAndForward" Assembly="...Intel.Peer.Messaging.Services.dll"
 TypeName="Intel.Peer.Messaging.StoreAndForward.PeerStoreAndForwardService"
 Load="true" Essential="true">

 <StorageSpace>10</StorageSpace>
 <StoragePath>C:\Program Files\Intel\P2P\v1.0\Data\StoreForward</StoragePath>
 <MaxLive>7</MaxLive>
 <DeliveryInterval>600</DeliveryInterval>

</Module>

Finally, the relay and tunnel elements allow you to set up firewall traversal solutions. The relay element allows you to configure a
peer to act as a relay server (or "super peer") that takes additional responsibility for transmitting messages between peers that
could not otherwise communicate, as shown in Figure 13-5.

Figure 13-5: The role of a relay server

In Figure 13-5, Peer A is unable to open a connection to Peer B. However, it can contain the relay server hosted by Peer C. If
Peer B is also using Peer C, all communication can be routed through subconnections in Peer C. These are called tunneled
connections, and they use the BEEP Protocol.

This is how it works, step-by-step:
1. During startup, the listener on Peer A makes a connection to the relay service on Peer C and opens a channel

using BEEP. It identifies itself to the relay using its peer name.

2. The relay returns one or two new URLs that can be used to contact Peer B through the relay on Peer C. These
URLs are also returned by the tunnel to the peer service on Peer B.

3. When a message is sent through the relay service, it examines the path, determines which peer it's for, and then
opens a channel on the peer's tunnel and relays the data.

4. The relay continues to operate this way until the tunneling connection from the peer is closed or lost.

To configure a peer to act as a relay server, specify a port to use for receiving requests and one for tunneling connections. You
must also modify the <Module> tag and set Load to true (which isn't the default).
<Module Name="Relay" Assembly="...Intel.Peer.Messaging.Services.dll"
 TypeName="Intel.Peer.Messaging.NetworkConnectivity.RelayService.Configuration.
 RelayInitializer" Load="true" Essential="false">

 <TunnelIdPath>C:\Program Files\Intel\P2P\v1.0\Data\TunnelIDs.ser</TunnelIdPath>
 <RelayPort>100</RelayPort>
 <TunnelPort>200</TunnelPort>
 <UsesBEEPTunnel>true</UsesBEEPTunnel>
 <HttpCallPorts>1024..1054</HttpCallPorts>

</Module>

Once you have a relay server, you can make use of it in other peers by configuring the tunnel entry. Once again, you must set
Load to true. You must also set the tunnel endpoint to the host name where the relay service is running.
<Module Name="Tunnel" Assembly="...Intel.Peer.Messaging.Services.dll"
 TypeName="Intel.Peer.Messaging.NetworkConnectivity.Tunnel.Configuration.
 TunnelInitializer" Load="true" Essential="false">

 <TunnelEndpoint>{relay_host_name}:200</TunnelEndpoint>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <TunnelEndpoint>{relay_host_name}:200</TunnelEndpoint>
 <BEEPUsage>
 <UsesBEEPTunnel>true</UsesBEEPTunnel>
 <BEEPProxy>
 <Endpoint>{beepproxy_host_name:port}</Endpoint>
 <EndPoint>{second_beep_proxy_host_name:port}</EndPoint>
 </BEEPProxy>
 </BEEPUsage>

</Module>

Clearly, the manual configuration steps that are involved make this a less-than-perfect solution. Other firewall traversal
mechanisms are defined in the Intel Peer-to-Peer Accelerator Kit architecture specification but not implemented.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating a Messenger that Uses Intel Peer-to-Peer
To get a better understanding of how the Intel Peer-to-Peer Accelerator Kit works in a peer-to-peer application you might design,
this chapter modifies the peer messaging application (first presented in Chapter 4) to use the toolkit. This gives the added benefit
of firewall traversal and integrated security, but it also requires some unexpected code changes.

The next three sections present the basic changes that are required to the interfaces, server, and client. After reviewing these, you
can continue with the last section to easily add enhanced security.

Changes to the Talk Component

The first step is to redefine the interfaces used in the system. In a peer-to-peer application developed with the Intel toolkit, you
don't use the ObjRef directly. Instead, when a peer wants to communicate with another peer, it constructs a new Peer URL and
uses the System.Activator object to retrieve a proxy.

To support this approach, the signature of the ITalkServer.AddUser() method needs to be modified slightly so that it accepts a
peer URL instead of a ITalkClient.
Public Interface ITalkServer
 ' These methods allow users to be registered and unregistered
 ' with the server.
 Sub AddUser(ByVal [alias] As String, ByVal peerUrl As String)
 Sub RemoveUser(ByVal [alias] As String)

 ' This returns a collection of currently logged-in user names.
 Function GetUsers() As ICollection

 ' The client calls this to send a message to the server.
 Sub SendMessage(ByVal senderAlias As String, _
 ByVal recipientAlias As String, ByVal message As String)

End Interface

This example is using the centralized version of the Talk .NET application. If it was the decentralized version, you would also need
to modify the GetUser() method to return a peer URL instead of an ITalkClient reference.

Changes to the TalkServer

Even though the Intel Peer-to-Peer Accelerator Kit includes a discovery service, a coordinator component is still required to help
online peers discover one another for messaging purposes. Before modifying the TalkServer, you need to add a reference to the
Intel.Peer.Messaging.dll assembly and import the following namespace:
Import Intel.Peer.Messaging

The first change is how the TalkServer coordinator object is registered. Instead of using the configuration file and the
RemotingConfiguration.Configure() method, the registration must be performed programmatically (although you could store some
of this information in application settings in a configuration file to allow easy modification).

The registration consists of three steps: defining an application name, registering a new channel, and registering a new well-
known Singleton object that clients can call. At the end of these steps, the server displays the URL of the Talk .NET server
coordinator object in the trace display (see Figure 13-6).
' Set the application name. This information is used to create the complete URL.
RemotingConfiguration.ApplicationName = "TalkServer"

' Create and register the channel for peer-to-peer communication.
Dim Channel As New PeerChannel()
ChannelServices.RegisterChannel(Channel)

' Register the ServerProcess object as a Singleton so clients can call it.
Dim Uri As String = "ServerObject"
Dim ServiceEntry As New WellKnownServiceTypeEntry(GetType(ServerProcess), Uri, _
 WellKnownObjectMode.Singleton)
RemotingConfiguration.RegisterWellKnownServiceType(ServiceEntry)

' Retrieve the complete URL and display it.
Dim Url As String = PeerChannel.GetUrl(Uri)
Trace.WriteLine(Url)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-6: The server object URL

The TalkServer requires very few additional changes. The new AddUser() method must be modified so that it stores a collection of
Peer URLs instead of ITalkClient references:
Public Sub AddUser(ByVal [alias] As String, ByVal peerUrl As String) _
 Implements TalkComponent.ITalkServer.AddUser

 Trace.Write("Added user '" & [alias] & "'")
 SyncLock _ActiveUsers
 _ActiveUsers([alias]) = peerUrl
 End SyncLock

 MessageDelivery.UpdateUsers(_ActiveUsers.Clone())

End Sub

The message delivery code must also take this change into account. Before it can contact a peer, it must convert the URL into a
proxy. Here's the abbreviated code from the MessageDelivery class:
' Deliver the message.
Dim Recipient As ITalkClient
Dim PeerUrl As String
Dim Sender, MessageBody As String

SyncLock RegisteredUsers
 If RegisteredUsers.ContainsKey(NextMessage.RecipientAlias) Then
 PeerUrl = RegisteredUsers(NextMessage.RecipientAlias)
 MessageBody = NextMessage.MessageBody
 Sender = NextMessage.SenderAlias

 Else
 ' User wasn't found. Try to find the sender.
 If RegisteredUsers.ContainsKey(NextMessage.SenderAlias) Then
 PeerUrl = RegisteredUsers(NextMessage.SenderAlias)
 MessageBody = "'" & NextMessage.MessageBody & _
 "' could not be delivered."
 Sender = "Talk .NET"
 Else
 ' Both sender and recipient weren't found.
 ' Ignore this message.
 End If
 End If
End SyncLock

If PeerUrl <> "" Then
 Recipient = CType(Activator.GetObject(GetType(ITalkClient), PeerUrl), _
 ITalkClient)
 Recipient.ReceiveMessage(MessageBody, Sender)
End If

Optionally, the server can also enable store-and-forward to ensure that message delivery is reattempted periodically if the peer
cannot be contacted immediately. In order to support this feature, the server must be calling a method that's marked with the
<OneWay> attribute, because there's no way for it to be sure that the method has actually executed. The ReceiveMessage()
already uses this attribute. The only other step is to add the parameters to the peer URL that instructs the peer service to cache
the message if needed. You do this by using the shared PeerChannel.EnableStoreAndForward() method and by specifying an
absolute expiration date as a DateTime object or a number of seconds to live. The following example caches a message for up to
120 seconds.
If PeerUrl <> "" Then
 PeerUrl = PeerChannel.EnableStoreAndForward(PeerUrl, 120)
 Recipient = CType(Activator.GetObject(GetType(ITalkClient), PeerUrl), _
 ITalkClient)
 Recipient.ReceiveMessage(MessageBody, Sender)
End If

The peer clients can use the same approach to cache messages sent to the server (although this would be less useful) or to
cache messages sent to other peers.

Changes to the Talk Client

As with the TalkServer, you need to add a reference to the Intel.Peer.Messaging.dll assembly and import the
Intel.Peer.Messaging namespace on the client. The client also needs to register its peer channel and the ClientProcess Singleton
programmatically. The first step is to define the channel and a unique application name. In this case, the user alias is used as the
application name. This allows you to run multiple clients on the same computer without creating a conflict.
RemotingConfiguration.ApplicationName = [Alias]
Dim Channel As New PeerChannel()
ChannelServices.RegisterChannel(Channel)

The next step is to register the remotable ClientProcess object so that the server can contact the peer:
Dim Uri As String = "TalkClient"
Dim ServiceEntry As New WellKnownServiceTypeEntry(GetType(ClientProcess), _
 Uri, WellKnownObjectMode.Singleton)
RemotingConfiguration.RegisterWellKnownServiceType(ServiceEntry)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RemotingConfiguration.RegisterWellKnownServiceType(ServiceEntry)

Now the peer can create a proxy object for talking to the server using the server's URL. In this case, the URL is constructed by
using the defined application and object name, along with the machine-specific peer identifier. Remember, to avoid hard-coding
these values, you can read them from the application settings section in a configuration file.
Dim Peer As String = "pCAC4B01B908344AF9784515B13521E15.peer"
Dim App As String = "TalkServer"
Dim Obj As String = "ServerObject"
Dim Url As String = "peer://" & Peer & "/" & App & "/" & Obj

' Create the proxy.
Server = CType(Activator.GetObject(GetType(ITalkServer), Url), ITalkServer)

The final step is to register with the server using the local peer URL. All this code takes place in the ClientProcess.Login() method.
Dim PeerUrl As String = PeerChannel.GetUrl(Uri)
Server.AddUser(_Alias, PeerUrl)

In the original Talk .NET application, the client application registers the ClientProcess object and then creates a new
ClientProcess instance to start sending messages to the server. When the server calls back to the client, no new object is created.
Instead, the existing ClientProcess instance is used. However, with the Intel Peer-to-Peer Accelerator Kit, this behavior changes. If
you use the exact same approach, you'll actually end up with two ClientProcess objects: the one you created manually and the
one created by the Remoting infrastructure to handle the server callbacks. This creates a significant problem. Namely, the Talk
form will no longer receive the ClientProcess.MessageReceived event, because it will occur in a different object than the one it's
using.

The recommended way to solve this problem is to use some sort of shared location to store a callback. Emulating the design
pattern used in Intel's own Messenger sample, you can make three changes:

Make all the members and methods of the ClientProcess class shared, except for the ITalkClient methods such as
ReceiveMessage(). Change the other parts of the application so they use these shared methods and don't try to
create a ClientProcess instance.

Use a callback instead of an event to contact the Talk form.

In the ReceiveMessage() method, check the shared callback delegate. If it's initialized, raise the callback.

Here's the abbreviated ClientProcess code:
Public Class ClientProcess
 Inherits MarshalByRefObject
 Implements ITalkClient

 ' This callback is used to transfer the message from the remotable
 ' ClientProcess object to the Talk form.
 Public Shared MessageReceivedCallback As ReceiveMessageCallback

 ' The reference to the server object.
 Private Shared Server As ITalkServer

 Private Shared _Alias As String
 Public Shared Property [Alias]() As String
 Get
 Return _Alias
 End Get
 Set(ByVal Value As String)
 _Alias = Value
 End Set
 End Property

 Public Shared Sub Login()
 ' (Code omitted.)
 End Sub

 Public Shared Sub LogOut()
 ' (Code omitted.)
 End Sub

 Public Shared Sub SendMessage(ByVal recipientAlias As String, _
 ByVal message As String)
 ' (Code omitted.)
 End Sub

 ' This is the only nonshared method.
 <System.Runtime.Remoting.Messaging.OneWay()> _
 Private Sub ReceiveMessage(ByVal message As String, _
 ByVal senderAlias As String) Implements ITalkClient.ReceiveMessage

 If Not ClientProcess.MessageReceivedCallback Is Nothing Then
 MessageReceivedCallback(message, senderAlias)
 End If

 End Sub

 Public Shared Function GetUsers() As ICollection
 Return Server.GetUsers
 End Function

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

With these changes, the Talk .NET application becomes fully functional. Another recommended change is to reduce the
frequency that the client retrieves new users from the server by increasing the tmrRefreshUsers timer interval. This is useful
because the communication latency is noticeably greater than it was with the pure Remoting solution.

Adding Security

In order to communicate using secure encryption, you simply need to instruct the peer service by adding the PeerSecure option to
the end of the peer URL. This can be accomplished using the shared PeerChannel.MakeSecure() method.

Dim Peer As String = "pCAC4B01B908344AF9784515B13521E15.peer"
Dim App As String = "TalkServer"
Dim Obj As String = "ServerObject"
Dim Url As String = "peer://" & Peer & "/" & App & "/" & Obj

Url = PeerChannel.MakeSecure(Url)
Server = CType(Activator.GetObject(GetType(ITalkServer), Url), ITalkServer)

In addition, you can configure a service to require secure sessions and reject requests that don't use them. In this case, you use
the shared PeerChannel .SecureWellKnownServiceType() method. This can be called for both the ClientProcess and the
ServerProcess objects before they're registered with the Remoting infrastructure.
Dim Uri As String = "ServerObject"
Dim ServiceEntry As New WellKnownServiceTypeEntry(GetType(ServerProcess), _
 Uri, WellKnownObjectMode.Singleton)

PeerChannel.SecureWellKnownServiceType(ServiceEntry)
RemotingConfiguration.RegisterWellKnownServiceType(ServiceEntry)

Tip You cannot use the store-and-forward capability in conjunction with secure messages.

Unfortunately, life isn't nearly this simple. In order to create a secure SSL session, the peers must be able to authenticate one
another using certificates. That means that you must create a certificate for every peer and store it in the local certificate store.
You must also configure the trusted roots on both peers so that certificates signed by this peer are trusted implicitly. (A better and
more secure alternative is to sign the peer certificates using a trusted third party, such as a local Windows server or certificate
authority. However, the Intel Peer-to-Peer Accelerator Kit API doesn't support this functionality directly.)

This process can be accomplished programmatically using the PeerCertificate Management class, which is demonstrated in the
CertificateManagementUI sample application (see Figure 13-7). Essentially, this application calls the
PeerCertificateManagement.CreateKeyAndSelfSignedCertificate() method to generate a new certificate (with a 512-bit RSA
asymmetric key pair), sign it, and add it to the local personal certificate store.

Figure 13-7: The CertificateManagementUI utility

Figure 13-8 shows the CertificateManagementUI utility.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-8: Creating a new certificate

Once a certificate is created, you still have several additional steps to complete. First, run the makecert.exe utility included with the
.NET Framework, and find the certificate in the Personal store (see Figure 13-9). You must then perform three additional tasks:

Export this certificate to a .cer file stored on your hard drive (typically in the Intel Peer-to-Peer Accelerator Kit
directory).

Import this certificate into the Trusted Root store for the current user.

Import this certificate into the Trusted Root store for the peer you want to communicate with securely.

Figure 13-9: The makecert.exe utility

All of these tasks are described in more detail, along with the basics of client certificates, in a lengthy HTML file called
CertificateManagement Education and Help.html, which can be found in the CertificateManagementUI directory. A detailed
discussion is beyond the scope of this chapter.

Finally, you need to modify the configuration file to use this new certificate. To configure the certificate for incoming connections,
you modify the <ServerCertificate> tag to use the certificate name:
<Module Name="SecureListener" Assembly="...Intel.Peer.Messaging.Services.dll"
 TypeName="Intel.Peer.Security.SecureListener.SecureListenerInitializer"
 Load="true" Essential="true">

 <ListenerPort>8443</ListenerPort>
 <ServerCertificate>
 <Name>P2PUser1</Name>
 </ServerCertificate>

</Module>

You must also configure the certificate in order to use it for outgoing connections. In this case, you need to reference the exported
certificate file instead of the certificate name, because the certificate information will be read from the disk, not from the local
store. This quirk is related to a limitation in .NET's support for retrieving certificate information.

<Messaging LoggingLevel="0">

 <ListenerPort>8080</ListenerPort>
 <ClientCertificate>C:\MyDir\P2PUser1.cer</ClientCertificate>
 <HttpProxyHost></HttpProxyHost>
 <HttpProxyPort>1</HttpProxyPort>

</Messaging>

Finally, you must restart the peer service using the Computer Management utility in the Control Panel.

Clearly, the configuration steps involved in setting up SSL authentication and encryption are far from minor. If you need a more
flexible, dynamic form of authentication and validation, refer instead to the custom examples developed in Chapter 11.

Note With encrypted communication, the peer service performs the encryption and decryption. Thus, an unencrypted
message could be sent if an attacker could determine the underlying Remoting address and contact it directly. For that
reason, you should not rely on SSL sessions for encryption, unless your computer is behind a firewall that makes port-
scanning attacks impossible.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dissecting the Samples
To learn more about the Intel Peer-to-Peer Accelerator Kit, you can explore the samples (and if you're somewhat more ambitious,
the source code for the toolkit itself). Unfortunately, the samples are only provided in C# syntax. However, as you no doubt
already know, almost all C# code can be converted to VB .NET code on a line-by-line basis. This means that once you acclimatize
yourself to the altered syntax, case sensitivity, and preponderance of curly braces, you should be able to determine exactly how
the code samples work.

The next few sections introduce each of the sample applications and briefly describe the underlying operation and design
decisions. You can also refer to the readme.htm file that's provided in each sample directory, which supplies limited information
about how to test the example.

FileCopy

The Intel Peer-to-Peer Accelerator Kit also provides basic functionality for transferring files and monitoring their progress. The
underlying operation of the file copy feature is fairly similar to the custom approach developed in Chapter 4. Files become
available when they're "advertised," at which point they're dynamically associated with a unique GUID. If a peer wants to download
the file, it uses the GUID in its request. Unlike our custom solution, the use of a peer service allows shared files to persist between
application sessions. To remove a file from the available pool, its advertisement must be specifically cancelled. If a physical file is
moved or deleted, the advertisement will still remain and an error will occur if another peer tries to download the file.

The FileCopy example is a console application that allows you to transfer a file between two peers. This functionality does not
include any way to associate application-specific metadata (such as MP3 song information) with a file, so you still need to add
these features to a central coordinator or lookup service if you need them.

Messenger

This Messenger example is a Windows application that allows instant messaging, similar to the Talk .NET application. It uses a
global session concept, whereby all registered peers become a part of the same chat room. Messages are sent to every peer,
which means that the system won't scale well to extremely large networks.

The Messenger is similar to the decentralized version of Talk .NET because the central coordinator (called the listener) is used for
storing registered user URLs. It doesn't perform the actual message delivery. The central coordinator uses a "push" model.
Whenever a new user joins the system, the new user list is sent to each registered peer. When sending a message, the peer goes
through each entry in the local copy of the user list and contacts each peer separately.

The peer clients aren't configured with any information about the location of the listener. When launching a peer client, you must
supply a command-line parameter that indicates the peer ID for the machine where the server is running. The listener displays this
information in a console window when it first starts. (See Figure 13-10.)

Figure 13-10: The Intel Peer-to-Peer Messenger

Note One significant limitation in the design of the Messenger application is the fact that it doesn't use interfaces. This
means that the shared assembly (ListenerObject.dll) must contain the complete code for both the server and peer
remotable objects. In fact, this DLL even includes the Windows form code, which means that the server must be
updated if you want to change any aspect of the peer UI.

Scribble

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Scribble example is a collaborative Windows Forms application that allows multiple peers to share a single whiteboard.
Whatever one peer draws on the whiteboard will be replicated to all registered users.

The Scribble example uses the same design as the Messenger. It's composed of two components: a Scribble server application
and a Scribble client application. The Scribble server component records a list of registered users and provides the user list to all
peers that connect with the system. The peers, however, communicate directly.

Tip The readme.htm file included with the Scribble example shows the logic in detailed pseudocode so that you can
understand the operation of the application without needing to dive into the C# source code.

SharedCyclesP2P

SharedCyclesP2P (see Figure 13-11) is a Windows application that demonstrates one way to build a distributed task manager.
SharedCyclesP2P uses a foreman application, which divides a computer-intensive graphic into a user-defined number of smaller
jobs and a large number of worker peers that perform the actual work. The foreman assigns job portions to the pool of workers
and combines the results. One of the most interesting aspects of the SharedCyclesP2P application is that it tackles a relatively
practical example (rendering a ray trace drawing), rather than the more rudimentary prime number search that's used to
demonstrate distributed computing in Chapter 6. Figure 13-11 shows a partially complete rendering job displayed in the foreman.

Figure 13-11: A partially complete SharedCyclesP2P job

The readme.htm file included with SharedCyclesP2P includes detailed information for testing the example. The most significant
limitation in SharedCyclesP2P is that it doesn't provide a discovery mechanism for locating worker peers. Instead, you need to
take the peer ID, which is displayed in the console window, and paste it into a text file. The foreman reads this text file to locate
available workers. Clearly, you would need to replace this mechanism with some type of registration mechanism or an application-
specific discovery service before making this into a production application.

ShareBaby2

ShareBaby2 (see Figure 13-12) is a file-sharing Windows application that works somewhat like the example presented in Chapter
9. It makes use of a discovery service and database for sharing file keyword information and uses multiple threads to manage
concurrent uploads and downloads. However, it doesn't offer the same features for file-progress monitoring. It doesn't use the
simple FileCopy API included with the Intel Peer-to-Peer Accelerator Kit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-12: The Intel Peer-to-Peer ShareBaby2

Peer ASP Host

The peer ASP host is a console application that shows how you can host an ASP.NET web service inside a peer-to-peer
application. In order to perform this feat, the ASP.NET process is actually hosted inside a custom host application instead of the
Internet Information Server (IIS). It's a thought-provoking example of how you might want to combine these two technologies, but it
does introduce an additional layer of customization that could make it difficult to upgrade your application to future .NET
Framework releases and adopt new features.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
Intel's Peer-to-Peer Accelerator Kit is an excellent example of how extensible the .NET Framework really is, and how it can lend
itself to a new programming paradigm such as peer-to-peer. It's still too early to decide whether Intel's Peer-to-Peer Accelerator
Kit will live up to its promise or become another interesting sidebar in the history of programming. Presumably, Intel is committed
to peer-to-peer technology today because they hope it will drive the adoption of their hardware in the future, and despite investing
in peer-to-peer development and belonging to peer-to-peer working groups, Intel's interest could waver.

Unfortunately, the fact that the toolkit is written as a proprietary component (rather than a traditional open-source project) doesn't
encourage confidence. Unlike most emerging technologies, there's no supporting developer community or hub on the website
where you can find news about ongoing developments or plans. But whatever the ultimate fate of the Intel Peer-to-Peer
Accelerator Kit, you can still learn enough about peer-to-peer development to make it worthwhile to examine it closely and
experiment with some of the samples. Comparing this code to some of the samples in this book will also help you understand the
trade-offs and design decisions inherent in any peer-to-peer programming project. In fact, you can even review, modify, or use the
C# source code, which is installed with the setup in the [InstallDir]\Intel\P2P\v1.0\src directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

A
Abort() method, 285

in FileDownloadQueue class, 275, 279
in FileServer class, 264, 265
in FileUpload class, 269
in main form of FileSwapper, 257
in Search class, 261

AcceptFile() method, 104-5
AcceptTcpClient() method, 203, 267
access control, and peer-to-peer, 10
AcquireReaderLock() method, 117
AcquireWriterLock() method, 118
activation types, for remote objects, 46
Activator.GetObject() method, 88
active open, 203
ActiveUsers collection, 99, 116, 134-35
Add Web Reference window, 244
AddFile() method, 273, 277
AddFile stored procedure, 227-28
AddFileInfo() method, 233
AddKeyword stored procedure, 227-28
AddListViewItem() method, 253
AddPeer stored procedure, 226-27, 288, 289
AddUser() method, 74, 100, 115

and locking, 117-18
modifying to store collection of Peer URLs, 381

AddWorker() method, 156-57
ADO .NET data containers, 42
ADO.NET DataSet, 222
advantages of peer-to-peer, 8
alias keyword, 85
AllocateWork() method, 275, 278
Alta-Vista search engine, use of spiders, 18
anon.penet.fi remailer, 11
AOL Messenger, 361-62
App class, 241, 246-47
app.config file, 49, 51
Application Center, 108
application domains, 35
Application Shared feature, of Windows Messenger, 12
Application UnhandledException event, 257
ApplicationException, 233
application-level protocols, 199
applications

dividing into multiple layers, 5-6
new types as result of peer-to-peer, 12

App.Login() method, 247, 255
App.Logout() method, 247
App.PublishFiles() method, 247, 256
App.SearchForFile() method, 249, 261
<appSettings> section, of client configuration file, 88
architecture of peer-to-peer, 23-31

characteristics, 23-27
network addressing challenges, 26-27
peer discovery, 24-25
peer identity, 23-24
server-mode/client-mode (SM/CM) model, 25-26

overview, 23
topology, 27-30

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

arp.exe utility, 195-96
ArrayList, 236
arrays, 42
.asmx files, 223, 238-39
.asmx web service, 376
ASP.NET, 223

caching, 238
handling of web-service request, 219-20

Assembly.LoadFrom() method, 179
asymmetric encryption, 310-12
Attach to Process window, 143
authentication and authorization. See security

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

B
BackgroundStatusChanged event, 172
bandwidth, 9, 11
BEEP Protocol, 377-78
BeginInvoke() method, 82
benefits of peer-to-peer, 8
bidirectional TCP channel, 64
Bin subdirectory, 373
BinaryFormatter class, 318
BinaryReader class, 270, 281

and network streams, 202
and TCP communication, 203-5

BinaryReader.ReadString() method, 202
BinaryWriter class, 281

data conversion into byte arrays with, 180, 202
and FileSwapper peers communication, 268, 270
sending input strings to client with, 203-5

bottlenecks, 4, 9, 107, 148, 177
broadcast messages, 25
broadcasts, 212-13
brokered peer-to-peer, 28
browsers, web, 13
brute force attacks, 309
buddy lists, 93, 100, 109, 288
ByRef parameter, 44
ByVal parameter, 108

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

C
CA (certificate authority), 312
<Cache> element, 375
caching, 9, 30, 238, 299-301
CancelTask() method, 151
CCW (COM callable wrappers), 347
censorship, vulnerability to, 11
central discovery server, 18, 24-25, 28
.cer file, 387
certificate authority (CA), 312
CertificateManagement Education and Help.html file, 387
CertificateManagementUI sample application, 386-87
challenges of peer-to-peer, 9
ChangeStatus() method, 253
channel classes, 69
channel sinks, 65
<channel> tag, 67
channels, 65-67

HTTP, 65-66, 110
TCP, 20, 64

ChannelServices.RegisterChannel() method, 68
characteristics of peer-to-peer, 23-27

network addressing challenges, 26-27
peer discovery, 24-25
peer identity, 23-24
server-mode/client-mode (SM/CM) model, 25-26

Check() method, 181
CheckForFile() method, 273, 276
cipher-block streaming, 148
Class A networks, 192
Class B networks, 192, 193
Class C networks, 192, 193
class library (DLL) project, 50
classes. See also names of specific classes

channel, 69
collection, 42
ordinary, 40
remotable, 40
serializable, 40, 41, 42, 43

client lifetime, 134-44
client login, 315-17
client side, login process on, 321
Client-activated objects, 46
ClientInfo class, 135
ClientProcess class, 83, 84-90, 98, 384

Hashtable collection of, 299
interaction with the discovery web service, 296
revising, 101-2
in Task Worker creation process, 167-71

ClientProcess Login() method, 383
ClientProcess object, 131, 383-84
ClientProcess Singleton, 383
ClientProcess.AcceptFile() method, 103
ClientProcess.GetUsers() method, 90
ClientProcess.Login() method, 321
ClientProcess.MessageReceived event, 384
ClientProcess.ReceiveMessage() method, 85, 108
ClientProcess.SendMessage() method, 90
clients

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in basic remoting example, 53-55, 63-64
cleaning up after, 95-97
tracking, 80-81

client-server computing
birth of, 4
and Internet, 13-14

Clone() method, 130
CLR (common language runtime), 35, 39, 45, 113-14
clustering. See distributed computing
collection access. See coordination servers, threading
collection classes, 42
COM callable wrappers (CCW), 347
Common Language Runtime check box, 143
common language runtime (CLR), 35, 39, 45, 113-14. See CLR (common language runtime)
Component class, 165-66
component hosts, 45-46, 50-52
Computer Management utility, 140, 141, 142, 389
computers, increased power of, 15
concurrency errors, 114
concurrent requests. See coordination servers, threading
Config subdirectory, 373
ConfigFileName string, 45
configurable sandbox, 180-84
configuration files, Remoting, 47-49, 62
ConfigurationSettings.AppSettings collection, 89
configuring

FileSwapper application, 258-59
Remoting, 64-69

dynamic registration, 67-69
formatters and channels, 65-67
overview, 64-65

ConfirmationCallback value, 61
consistency, lack of, 23
Console object, 49, 50
containers, ADO .NET, 42
content descriptors, 224
content-description language, 12, 18
ContextMenu control, 165
continuous polling, 36
Control class, 132
Control.Invoke() method, 253, 259, 262, 340
coordination servers, 28, 77-82. See also messengers, building; Remoting

overview, 77-79
sending messages, 81-82
tracking clients, 80-81

coordination servers, threading, 113-45
deadlocks, 126-27
dealing with client requests, 131-34
delivery service, 118-26

message delivery with, 121-23
overview, 118-20
using, 123-26

overview, 113
refining Talk .NET, 134-44

client lifetime, 134-36
duplicate users, 136-37
using Windows service, 138-44

synchronizing collection access, 115-18
thread starvation, 126-27
threading essentials, 113-14
ThreadPool class, 127-31

cost benefits of peer-to-peer, 11-12
CreateNew property, 298
CreateSession() method, 291
CreateSession stored procedure, 288, 289
critical sections, 115
cryptography, 308-13. See also digital signatures; encryption
CryptoStream object, 331-33

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

D
data containers, ADO .NET, 42
data stores, serializing information to, 36
DataAvailable property, 202
Database class, 229-36, 291-93
databases

pooling connections to, 6
Talk .NET, and stateless server, 108

DatabaseStore method, 178
datagram sockets, 198
datagrams, IP, 191-92
DataReader, 236
deadlocks, 126-27
Debug window, 144
debugging

Groove applications, 356-57
launching multiple projects for, 56
web services, 239-40
Windows services, 142-44

decentralization, Talk .NET, 97-100
DecryptContainedObject() method, 325
DeleteFiles stored procedure, 228-29, 233
DeletePeersAndFiles stored procedure, 228-29
DeleteSession stored procedure, 288, 290
Deliver() method, 121
DeliverMessages() method, 121, 123
delivery service, 118-26

message delivery with, 121-23
overview, 118-20
using, 123-26

DeliveryService class, 123, 128-29, 130, 130-31
DeliveryService object, 125, 130
DeliveryService.RegisteredUsers collection, 124
DeliveryService.UpdateUsers() method, 124
DeliveryThread variable, 123
demilitarized zone, 109
denial of service attack, 307
Dequeue() method, 121
DES symmetric algorithms, 310
descriptors, content, 224
Deserialize() method, 318, 325
destinationPath parameter, 104
dial-up Internet connections, 13-14
digital signatures, 313-24

client login, 315-17
limitations of, 323-24
login process

on client side, 321
on Web-Server side, 322-23

trust decisions, 324
server database, 313-15
SignedObject class, 317-21

directories, virtual Web, 220
DirectPlay, 362
DirectX 9.0 SDK for .NET, 362
disconnected clients, removing, 130-31
discovery, peer, 24-25
discovery server, 24-25, 28
Discovery Server. See also FileSwapper application
discovery service, 236-40. See also Remoting, using discovery service with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

indexing with, 216
and Intel Peer-to-Peer Accelerator Kit, 370-71
overview, 215-16
public key information, 313-15
stateful and stateless, 217-18
testing, 238-40

discovery service web reference, of FileSwapper application, 244-45
dispatch servers, 335
DisplayFile objects, 277-78
distributed computing, 5-6, 147-49
distributed searching, 18
distributed task manager, building, 147-86

creating task worker, 165-75
ClientProcess class, 167-71
main form, 171-75
overview, 165
system tray interface, 165-67

creating work manager, 155-64
overview, 155-56
tasks, 158-63
tracking workers, 156-58

enhancing work manager, 175-86
configurable sandbox, 180-84
generic task client, 178-80
overview, 175
performance scoring, 176-77
pure peer-to-peer task manager, 185-86
queuing, 175-76
writing directly to result store, 177-78

interface, 149-55
message objects, 152-54
overview, 149-50
task logic, 154-55
TaskComponent interfaces, 150-52

Dns class, 199, 200-201
DNS (Domain Name Service), 13, 14, 199
Dns.GetHostName() method, 201
Docs subdirectory, 373
DocumentShareEngine persistence engine, 349
domain names, 222
Domain Name Service (DNS), 13, 14, 199
DoTask() method, 179
Download() method, 273, 279, 281
downloading files, in FileSwapper application, 272-84

FileDownloadClient class, 279-84
FileDownloadQueue class, 275-79
overview, 272-74

DownloadThreads collection, 275, 276, 278
DropMultiCastGroup() method, 214
DSA asymmetric algorithms, 311
duplicate users. See coordination servers, threading
dynamic ports, 53, 110, 198
dynamic registration, 15, 67-69

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

E
economic benefits of peer-to-peer, 11-12
e-mail protocols, 199
e-mail validation, 301-2
EncryptedObject class, 329-30
encryption, 309-12, 324-33

chaining encryption and signing, 329-31
with cipher-block streaming, 148
EncryptedObject class, 324-27
sending and receiving encrypted messages, 327-29
using session keys, 331-33

endpoints, 198, 369
EndSession() method, 293
Eratosthenes, 154-55
error handling

in DeliverMessages() method, 123
of TCP, 196

ErrorReceived() method, 337
errors, concurrency, 114
Ethernet Protocol, 190-91
EventArgs classes, 42
EventArgs objects, 60, 170-71
Evidence class, 181
exceptions, .NET, 42
expired peer information, removing, 238

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

F
FIFO (first-in-first-out) collections, 119
file sharing. See also FileSwapper application
file system, virtual, 12
file transfer feature, adding, 100-107
File Transfer Protocol (FTP), 199
FileCopy API, 366, 389-90
FileDownloadClient class, 273, 277, 279-84
FileDownloadClient objects, 285
file-downloading, in FileSwapper application, 272-84

FileDownloadClient class, 279-84
FileDownloadQueue class, 275-79
overview, 272-74

FileDownloadQueue class, 273, 275-79
File.Keywords array, 233
FileOfferReceived event, 105-6, 131
FileOfferReceived method, 133
FileOfferReceivedEventArgs class, 102-3
Files table, 225
FileServer class, 264-68
file-sharing, 11. See also FileSwapper application
FileSwapper application, 241-86

configuration, 258-59
discovery service web reference, 244-45
file-downloading, 272-84

FileDownloadClient class, 279-84
FileDownloadQueue class, 275-79
overview, 272-74

file-uploading, 263-72
FileServer class, 264-68
FileUpload class, 269-72
overview, 263-64

global data and tasks, 245-49
ListView controls, 253-55
main form, 255-58
overview, 241-43
Search class, 259-63
threads in, 243
utility classes, 249-53

FileSystemWatcher class, 285
FileUpload class, 264, 269-72
file-uploading, in FileSwapper application, 263-72

FileServer class, 264-68
FileUpload class, 269-72
overview, 263-64

FileWebRequest class, 200
FileWebResponse class, 200
FindPrimes() method, 171-72
firewall traversal, with Groove, 346
firewalls, 26, 27, 65

during early Internet, 14
and ICQ, 15
and Talk .NET, 109-10

first-in-first-out (FIFO) collections, 119
<formatter> tag, 67
formatters, 65-67
FormTraceListener class, 75-76
Freenet, 17-18
FTP (File Transfer Protocol), 199
future of peer-to-peer, 19-20

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

G
generic task client, 178-80
GetFileInfo() method, 234
GetJoinedResults() method, 160
GetLifetimeService() method, 58
GetMP3Keywords() method, 250
GetObjectWithoutSignature() method, 318
GetPeerAndSessionInfo stored procedure, 288, 290
GetPeerInfo() method, 292
GetPeers() method, 290, 293
GetPeers stored procedure, 288
GetProgress() method, 176
GetServerDateTime() web method, 322
GetStream() method, 205-7
GetTagData() method, 250, 251, 252
GetUser() method, 98, 379
GetUsers() method, 74, 87, 99, 100, 107

checking currently logged-on users, 300
and collection access synchronization, 117, 118
refreshing client expiry date when calling, 135-36
retrieving list of peer e-mail addresses, 297
and security measures, 81

Global class, 241, 245-46
global counters, 114
global data and tasks, of FileSwapper application, 245-49
Global Grid Forum, 186
Global.Identity property, 247
globally unique identifiers (GUIDs). See GUIDs (globally unique identifiers)
Global.MaxUploadThreads setting, 267
Global.SharedFiles variable, 247
Globus, 186
Gnutella, 17, 361-62

connectivity problems with, 9
reason not venerable to legal intervention, 11

Google search engine, use of spiders, 18
GotDotNet website, 366
grid computing. See distributed computing
Groove platform, 16, 21, 345-61

application logic, 352-56
creating simple application, 347-48
debugging applications, 356-57
designer code, 348-51
enhancing applications, 357-61
identity-related interfaces, 357-58
obtaining, 346
overview, 345-46

Groove.Interop.AccountServices, 357, 358
Groove.Interop.ContactServices assembly, 357, 358
Groove.Interop.IdentityServices, 358
Groove.Interop.IdentityServices assembly, 357
GUIDs (globally unique identifiers), 101

and discovery service, 215
dynamically generated, 24
and e-mail validation, 302
and FileUpload class, 270
and Intel Peer-to-Peer Accelerator Kit, 372
and work manager creation, 157

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

H
hackers. See security
hardware clustering, 108
hash codes, 308-9
hashtable, 158, 160
Hashtable collection, 80, 101, 102, 115, 299
Hashtable.Synchronized() method, 116-17
HierarchicalRecordSetEngine persistence engine, 349
higher-level web services infrastructure, 20
HTTP channels, 65-66, 110
HTTP GET link, 301
HTTP (Hypertext Transfer Protocol), 199
HTTP transfer, 370
HttpWebRequest class, 200
HttpWebResponse class, 200
hubs, 189
hybrid peer-to-peer designs, 19-20
Hypertext Transfer Protocol (HTTP), 199

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

I
IANA (Internet Assigned Numbers Authority), 198
ICMP (Internet Control Message Protocol), 191
ICMP protocol, 194
ICQ instant messenger, 15-16, 361-62
identifiers, peer. See also GUIDs (globally unique identifiers)
identity, peer, 23-24
identity-related interfaces, of Groove, 357-58
IGrooveComponent interface, 349-51
IGrooveIdentification interface, 357
IGrooveIdentity interface, 357
IIS (Internet Information Server), 38, 217, 220-22
IIS Manager administrative utility, 221
IMembershipCondition, 181
inconsistency, 23
indexing, with discovery service, 216
Infrasearch, 18
Ingo Rammer, 64, 110
Initialize() subroutine, 349-50
InitializeLifetimeService() method, 58, 86
Insert statement, 289
installing

Intel Peer-to-Peer Accelerator Kit, 372-74
Internet Information Server (IIS), 220-21
Windows services, 140-42

InstallUtil.exe utility, 141
instant-messaging, 15-16. See also names of specific instant messaging software
Intel Peer-to-Peer Accelerator Kit, 365-94

configuring peer service, 374-79
creating messenger that uses Intel peer-to-peer, 379-89

adding security, 385-89
changes to Talk client, 383-85
changes to Talk component, 379
changes to TalkServer, 380-82
overview, 379

discovery service, 370-71
drawbacks, 371-72
installing, 372-74
messaging enhancements, 367
overview, 365-67
peer-to-peer daemon, 367-68
samples, 389-94
URLs and remoting, 367-69

Intel.Peer.Common.Dameon.config XML configuration file, 374
Intel.Peer.File.FileCopy namespace, 374
Intel.Peer.Messaging namespace, 374
Intel.Peer.Messaging.dll assembly, 380, 383
Intel.Peer.Messaging.Utility namespace, 374
Intel.Peer.Security.CertificateManage ment namespace, 374
Intel's .NET Peer-to-Peer Accelerator Kit, 21
intercept communication, 323
Internet, and peer-to-peer, 13-20

client-server Internet, 13-14
"death" of peer-to-peer, 19-20
early Internet, 13
resurgence of peer-to-peer, 14-18

Internet Assigned Numbers Authority (IANA), 198
Internet Control Message Protocol (ICMP), 191
Internet Explorer, viewing web-service methods in, 239
Internet Group Management Protocol (IGMP), 191
Internet Information Server (IIS), 38, 217, 220-22

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Internet Protocol (IP), 191-92
Internet service providers (ISPs), 13-14
inter-process communication, 35-39
Invoke() method, 132
IP addresses, 192-94. See also network address translation (NAT)

and early Internet, 13
for exposing web service on Internet, 222
and ICQ, 15
and IPv6 protocol, 14

IP datagrams, 191-92
IP header, 191-92
IP (Internet Protocol), 191-92
IP spoofing, 323
IPAddress class, 199
IPAddress objects, 199
ipconfig.exe, 196
IPEndpoint class, 199
IPHostEntry class, 199, 201
IPv4 Internet Protocol, 194
IPv6 Internet Protocol, 14, 194, 363
ISessionHandler interface, 337-44
ISessionHandler.MessageReceived() method, 343
ISessionHandler.SessionEnded() method, 341-42
ISessionHandler.SessionStarted() method, 341-42
ISPs (Internet service providers), 13-14
ITalkClient, 73-74, 100-101
ITalkClient interface, 328-29
ITalkClient methods, 384
ITalkClient references, 97
ITalkClient.NotifyListChanged() method, 93
ITalkClient.NotifyUserAdded() method, 93
ITalkClient.NotifyUserRemoved() method, 93
ITalkClient.ReceiveMessage() method, 98, 297
ITalkServer, 73-74
ITalkServer.AddUser() method, 379
ITaskServer interface, 150-51
ItemActivate event, 274

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

J
Jabber, 16
JTella, 362
JXTA platform, 367
JXTA Search, 18

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

K
keep-alive pinging messages, 58
Keywords table, 225, 226
KeywordUtil class, 241, 252

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

L
LANs (local area networks), 189
LargeEncryptedObject class, 331-33
LastUpdate field, 289-90
LastUpdated field, 226, 227
layers

dividing applications into, 5-6
proxy, 54

LDAP (Lightweight Directory Access Protocol), 199
legal intervention, vulnerability to, 11
Length property, 202
lifetime lease, 54
lifetime, remote object, 58-59
<lifetime> configuration section, 58
Lightweight Directory Access Protocol (LDAP), 199
ListView controls

of FileSwapper application, 253-55
and FileUpload class, 269
and Groove platform, 355, 357

ListViewItem, 271, 360
ListViewItem.ChangeStatus method, 271, 272
ListViewItemWrapper class, 242, 253-55, 271, 277
load balancing, 108
Load() method, 249, 250
LoadFrom() method, 179
local area networks (LANs), 189
localhost loopback alias, 89
Localstart.asp file, 221
locking. See coordination servers, threading
login form, 83-84
Login() method, 86-87, 88, 296
login process

on client side, 321
on Web-Server side, 322-23

Login() web method, 317
LoginInfo class, 317, 318, 319, 323
LogOut() method, 298
lookup() method, 370
loopback address, 221
lower-level raw sockets, 198

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

M
machine and device capabilities (MADCAP) server, 213
machine.config file, 66
main form

of FileSwapper application, 255-58
of Task Worker, 171-75

Main() method, 139
mainframes, 4
MarshalByRefObject instances, 45, 72, 85
MaxWorkers settings, 156, 161
MD5 hash algorithm, 308, 339
mediated peer-to-peer, 28
MembershipCondition class, 181
Message class, 42, 43, 120, 327-28
Message object, 50
message queues, 36
Message value, 61
message-board postings, 13
MessageBox, 131
MessageDelivery class, 381-82
MessageDelivery variable, 123
MessageReceived event, 90, 131
MessageReceived() method, 337
messages

sending, 81-82
trace, 74

Messages collection, 123
Messages queue, 121
Messenger. See Windows Messenger
Messenger application, 390-91
messengers, building, 71-111

coordination server, 77-82
overview, 77-79
sending messages, 81-82
tracking clients, 80-81

overview, 71
Talk .NET, 71-77, 95-111

adding file transfer feature, 100-107
cleaning up after clients, 95-97
creating TraceComponent, 74-77
databases and stateless server, 108
decentralization, 97-100
defining interfaces, 73-74
firewalls, 109-10
OneWay methods, 108-9
optional features, 109
overview, 71-73
ports, 109-10
remoting and network address translation (NAT), 110-11
scalability challenges, 107

TalkClient, 82-94
ClientProcess class, 84-90
overview, 82-84

MethodInvoker delegate, 132
methods, and web services, 222. See also names of specific methods
Microsoft Data Engine (MSDE), 217
Microsoft Message Queuing queues, 36
Microsoft's Application Center, 108
Microsoft's Windows Messenger. See Windows Messenger
Mintz, Mike, 336
<Module> tag, 378
Monitor class, 126

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mosaic, 13
MP3 files, 249. See also Gnutella; Napster
MP3Util class, 241, 250
MSDE (Microsoft Data Engine), 217
MSN Messenger. See Windows Messenger
MSNP Helper API for .NET, 336
MSNPHelper class, 337, 339, 340
MSNPHelper.RequestSession() method, 341
multicast broadcast messages, 25
multicasts, 213-14
multiple layers, dividing applications into, 5-6
multiple messages. See coordination servers, threading
multithreaded systems. See coordination servers, threading
multitier programming, 6
music files. See Gnutella; MP3 files; Napster

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

N
namespaces, virtual, 24
Napster, 17

central discovery and lookup server, 28
peer-to-peer model for, 11

NAT. See network address translation (NAT)
.NET exceptions, 42
.NET Game Programming with DirectX 9.0, 362
.NET passport, 15
.NET Peer-to-Peer Accelerator Kit, 21
.NET Terrarium, 18, 19, 181
network addressing challenges, 26-27
network address translation (NAT), 26

during early Internet, 14
and Groove, 346
and Talk .NET, 110-11

network broadcast messages, 25
network interface cards (NICs), 189
network-broadcasting techniques, 30
networking, 189-214

application-level protocols, 199
defined, 189
Internet Protocol (IP), 191-92
IP addresses, 192-94
in .NET, 199-202
overview, 189-91
pinging, 194-96
ports, 197-98
tracing, 194-96
Transmission Control Protocol (TCP), 196-97

communicating with, 202-9
handling multiple connections, 208-9

User Datagram Protocol (UDP), 196, 197
broadcasts and multicasts, 212-14
communicating with, 209-14

networking addressing challenges, 9
NetworkStream class, 200, 201-2
NetworkStream.Read() methods, 202
NICs (network interface cards), 189
noise words, 252
non-repudiation, 306
<NonSerialized> attribute, 43
notification servers, 335
NotifyIcon control, 165, 166
NotImplementedException, 181
n-tier programming, 6
null characters, 252

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

O
object lifetime, 38
ObjRef pointer, 97, 299-300

deserialization and conversion to proxy, 297
serialized, 288
storage of, 291, 322-23

OfferedFiles collection, 102
Olson, Lance, 19
omitting information, 43
OneWay attribute, 108-9, 382
OneWayRemoting directory, 55
OnStart() method, 138
OnStop() method, 138
OpenFileDialog class, 105
optimized routing, 9
ordinary classes, 40
overview, 189-91
Ozzie, Ray, 16, 345

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

P
P2PDatabase class, 230, 291
parallelism. See distributed computing
ParseKeywords() method, 252
passive open, 203
passwords, use with file transfer feature, 107
Path class, 102
peer ASP host, 394
Peer class, 229
peer discovery, 24-25
peer identifiers, 215
peer identity, 23-24
peer IDs, 24
peer information, expired, 238
PeerCertificate Management class, 386
PeerCertificate Management utility class, 374
PeerCertificateManagement.CreateKe yAndSelfSignedCertificate() method, 386
PeerChannel class, 374
PeerChannel.EnableStoreAndForward () method, 382
PeerChannel.MakeSecure() method, 385-86
PeerChannel.SecureWellKnownServic eType() method, 386
PeerExpire=<Time> parameter, 370
PeerFileCopy class, 374
PeerFileURI Collection class, 374
PeerInfo object, 291, 292-93, 299
PeerLive=<Seconds> parameter, 370
peernameservice directory, 376
peernameservice.asmx, 376
Peers table, 225, 287
PeerSecure=True parameter, 370
peer-to-peer

areas in which applicable, 10-12
benefits and challenges, 8-9
and brief history of programming, 3-8
and client-server Internet, 13-14
distinguishing features of, 8
and early Internet, 13
future of, 19-20
in .NET, 20-21
overview, 3
resurgence of, 14-18
security concerns, 10

peer-to-peer working group, 26
PeerWebRequestUtility class, 374
Pending() method, 203
performance scoring, 176-77
persistence engines, of Groove, 348-49
ping.exe utility, 194
pinging, 194-96
PingRecipients() method, 261
PingUtility, 262
pluggable channels, 20
policy levels, 182
port 80 application, 110
ports, 53, 109-10, 197-98
Position property, 202
Primes integer array, 153
primes, mathematical methods for finding, 154-55

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

private IP addresses, 193
private keys, 310-11, 312, 329
Private keyword, 86
Processes window, 143
programming. See also peer-to-peer

distributed, 5-6
history of, 3-8

ProjectInstaller.vb file, 140
propertyList variable, 348
PropertyListEngine persistence engine, 348
proxies, 223-24
proxy class, 224, 244, 245
proxy communication, 41
proxy layers, 54
public keys, 310-11, 312, 313-14, 325
PublishFiles() method, 236, 247-48
pure peer-to-peer applications, 29-30
pure peer-to-peer task manager, 185-86

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

Q
QueuedFiles collection, 275, 276, 277
queues, 119
QueueUserWorkItem() method, 128
queuing, 36, 175-76
QUIT command, 199

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

R
RC2 symmetric algorithms, 310
RCW (runtime callable wrappers), 347
Read() method, 202
Readable property, 202
reader locking, 117
ReaderWriterLock class, 118
real-time collaboration software, 12
real-time searching technology, 12, 18
ReceiveFileOffer() method, 102
ReceiveMessage() method, 57, 74, 81-82, 89

ByVal parameters used by, 44
Private keyword of, 86
remote object creation, 54
sending client object to remote application domain by calling, 53

ReceiveResults() method, 169, 170
ReceiveTask() method, 162-63, 169-70
ReceiveTaskCancel() method, 150-51
ReceiveTaskComplete() method, 163, 170
RecentClients collection, 299
Record.OpenFieldAsString() method, 353-54
RecordSetChanged event handler, 351, 355
RecordSetEngine persistence engine, 348, 349, 351
recordSetEngine variable, 348
ref attribute, 67
Reference.vb proxy class, 244
RefreshContactList() subroutine, 340
RefreshListViewItem() method, 253
RefreshPeer method, 226, 227
RefreshRegistration() method, 236
RefreshSession() method, 293
RefreshSession stored procedure, 288, 289
Register() method, 236
registered user ports, 53, 110, 197
RegisteredUsers collection, 121-22, 123
RegisterMessage() method, 119
RegisterNewUser() method, 293, 296, 299
RegisterWellKnownServiceType() method, 68-69
registration database, 224-36, 287-93

creating database, 225-26
creating Database class, 229-36
Database class, 291-93
overview, 224, 287-88
stored procedures, 226-29, 288-91

registries, dynamic, 15
RegistrySettings class, 242, 249-50
relay element, 377
relay peers, 26
remotable classes, 40
RemoteLibrary.RemoteObject class, 55
RemoteObject class, 50, 54
RemoteObject.ReceiveMessage() method, 44
Remoting, 35-69. See also distributed task manager; messengers, building

advantages of, 37-38
architecture, 39-49

configuration files, 47-49
overview, 39-41
remotable types, 44
remoting hosts, 45-47

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

serializable types, 41-44
basic example of, 49-59

application in action, 55-57
client, 53-54
client configuration file, 54-55
overview, 49-50
remote objects, 50, 58-59
server, 50-51
server configuration file, 51-53

bidirectional example, 59-64
client, 63-64
configuration files, 62
overview, 59-60
remote objects, 60-62

comparison with web services, 218-19
configuring, 64-69

dynamic registration, 67-69
formatters and channels, 65-67
overview, 64-65

disadvantages of, 38-39
infrastructure of, 20, 21
overview, 35
and Talk .NET, 110-11

Remoting, using discovery service with, 287-302
overview, 287
registration database, 287-93

Database class, 291-93
overview, 287-88
stored procedures, 288-91

Talk .NET peers, 296-302
adding caching, 299-301
adding e-mail validation, 301-2

RemotingConfiguration.Configure() method, 45, 57, 67, 380
RemotingConfiguration.RegisterWellK nownServiceType() method, 68
RemovePeer() method, 370
RemoveUser() method, 74, 100, 115, 117, 118, 131, 135
RemoveWorker() method, 156-57
replay attacks, 322
result store, 177-78
ResultsReceived event, 172
Rijndael symmetric algorithms, 310
route.exe, 196
routers, 190
routing, optimized, 9
routing system, 16
RSA asymmetric algorithms, 311, 312
RsaCryptoServiceProvider class, 318
runtime callable wrappers (RCW), 347

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

S
Samples subdirectory, 373
sandbox, configurable, 180-84
SandboxEvidence object, 181, 182, 184
SandboxMembership Condition class, 181
SandBoxPerms permission set, 182
Save() method, 249, 250
scalability challenges

distributed vs. client-server systems, 5-6
Talk .NET, 107

SCM (Service Control Manager), 138
Scribble application, 391
Search class, 242, 259-63
SearchForFile() method, 236
searching technology

distributed searching, 18
JXTA Search, 18
real-time, 12, 18

"secret-key" encryption. See symmetric encryption
Secure Sockets Layer (SSL), 38, 366, 389
security, 10, 305-33. See also digital signatures; encryption

challenges of, 306-7, 306-7
cryptography, 308-13
design choices, 307-8
of file transfer feature, 107
omitting information, 43
overview, 305-6
and Remoting, 38
and Talk .NET interfaces, 74

Seek() method, 202
Send() method, 209
SendFileOffer() method, 101-2
sending messages, 81-82
SendMessage() method, 74, 81-82, 89, 95, 297
SequenceNumber, 153
serializable classes, 40, 41, 42, 43
serializable types, 41-44
<Serializable> attribute, 42
Serialize() method, 318, 325, 328
serializing information to data stores, 36
server database, and digital signatures, 313-15
server, in basic remoting example, 50-53
<ServerCertificate> tag, 388
Server.exe.config file, 50, 51
server-mode/client-mode (SM/CM) model, 25-26
ServerProcess class, 77, 79

and delivery service, 123-24
GetUser() method in, 98
potential problems with collection of client information, 114-15
and reader and writing locking implementation, 116

ServerProcess.AddUser() method, 86-87, 136
ServerProcess.RemoveUser() method, 130
ServerProcess.SendMessage() method, 108, 109, 124, 130
<serverProviders> tag, 67
Service Control Manager (SCM), 138
ServiceBase class, 138
ServiceBase.Run() method, 139
ServiceInstaller class, 138, 141
ServiceInstaller.StartType property, 141
ServiceProcess object, 125

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ServiceProcessInstaller class, 138, 141
Services.Marshal() method, 296
Session class, 337-38
Sessions table, 287, 288, 289
Session.SendMessage() method, 343
SET ROWCOUNT statement, 236
SetAppDomainPolicy() method, 184
SETI@Home, 12, 16-17, 147, 186
SetPeer() method, 370
SHA-1 hash algorithm, 308
SHA-256 hash algorithm, 309
SHA-384 hash algorithm, 309
SHA-512 hash algorithm, 309
ShareBaby2 application, 393
shared spaces, 345
SharedFile array, 236
SharedFile class, 229
SharedFile object, 236, 263
sharing files. See file-sharing
Show system processes check box, 143
sieve of Eratosthenes, 154
SignData() method, 318
SignedObject class, 317-21, 323, 329-30
SignedObject constructor, 317
SingleCall objects, 46
Singleton mode, 52
Singleton objects, 38, 46-47, 78
smart caching, 9
SM/CM (server-mode/client-mode) model, 25-26
SOAP communication, 66
SOAP messages, 37, 110, 219, 371
Socket class, 200
Socket property, 202
SocketException class, 200
sockets, 198
SOCKS Protocol, 367
software load balancing, 108
Solution Explorer, 244, 245
spiders, 18
Src subdirectory, 373
SSL (Secure Sockets Layer), 38, 366, 389
StartAllocateWork() method, 273
StartDownload() method, 273, 279
StartSearch() method, 261
StartSession() method, 293, 317, 322
Startup module, 77
StartUpload() method, 265, 269
StartWaitForRequest(), 264
StartWaitForRequest() method, 265
state management, 38
stateful and stateless discovery service, 217-18
stateful model, 46
stateless server, 108
STOR command, 199
stored procedures, 226-29, 288-91
stream sockets, 198
streaming, cipher-block, 148
StringBuilder object, 173-74, 234
String.Split() method, 252
SubmitTask() method, 161
SwapperClient class, 241

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Swapper.NET, 362
switchboard servers, 335
switches, 189
symmetric encryption, 309-10, 331
synchronizing collection access, 115-18
SyncLock statement, 115, 116
system tray interface, 165-67
System.Activator object, 379
System.Collections.DictionaryBase, 156
System.Diagnostics namespace, 74
System.IO namespace, 102
System.MarshalByRefObject class, 44
System.Net namespace, 199
System.Net.Dns class, 339
System.Net.Sockets class, 200
System.Net.Sockets namespace, 20, 199
System.Runtime.Remoting.Channels namespace, 69
System.Runtime.Remoting.Channels. Http namespace, 69
System.Runtime.Remoting.Channels. Tcp namespace, 69
System.Runtime.Remoting.Messaging namespace, 108-9
System.Runtime.Remoting.ObjRef class, 80
System.Security.Cryptography namespace, 307, 308-9
System.Security.Cryptography.X509Ce rtificates namespace, 313
System.ServiceProcess namespace, 138
System.Threading namespace, 126
System.Threading.ReaderWriterLock class, 117
System.Threading.Thread class, 127
System.Threading.Thread object, 123
System.Thread.ThreadPool class, 128
System.Timers namespace, 133
System.Web.Mail.SmtpServer class, 301
System.Web.Services namespace, 222
System.Windows.Forms.Timer class, 133

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

T
Talk client, changes to, 383-85
Talk component, changes to, 379
Talk .NET, 71-77, 95-111

adding file transfer feature, 100-107
cleaning up after clients, 95-97
creating TraceComponent, 74-77
databases and stateless server, 108
decentralization, 97-100
defining interfaces, 73-74
firewalls, 109-10
OneWay methods, 108-9
optional features, 109
overview, 71-73
ports, 109-10
refining, 134-44

client lifetime, 134-36
duplicate users, 136-37
using Windows service, 138-44

remoting and network address translation (NAT), 110-11
scalability challenges, 107

Talk .NET peers, 296-302
adding caching, 299-301
adding e-mail validation, 301-2

TalkClient, 82-94
ClientProcess class, 84-90
overview, 82-84

TalkComponent, 73
TalkServer, changes to, 380-82
Task class, 152, 158-60, 161
task client, generic, 178-80
Task objects, 155, 156, 158, 161
task worker, creating, 165-75

ClientProcess class, 167-71
main form, 171-75
overview, 165
system tray interface, 165-67

TaskAssigned property, 158
TaskComponent interfaces, 150-52, 154
TaskID, 153, 155
TaskRequest class, 152
TaskRequest object, 150, 152
TaskResults class, 152, 154
TaskResults object, 150, 152
Tasks collection, 155
TaskSegment class, 152, 153
TaskSegment object, 150, 152, 163-64
Tasks.Workers collections, 162
TCP channels, 20, 64
TCP (Transmission Control Protocol), 196-97

communicating with, 202-9
handling multiple connections, 208-9

TcpClient class, 200
TcpClient.AcceptTcpClient() method, 285
TcpClient.Connect() method, 205
TcpClient.GetStream() method, 200, 203
TcpClient.Pending() method, 285
TCP/IP client channel, 55
TCP/IP server channel, 52
TcpListener class, 200, 264
TcpListener.Start() method, 203
temporary files, 247

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Terrarium, 18, 19, 181
testing discovery service, 238-40
TestObject proxy class, 54
TestObject.ReceiveMessage() method, 54
Text property, of controls, 132
TFTP (Trivial File Transfer Protocol), 199
third-party certificate authority (CA), 312
Thomas, Jason, 362
thread contention, 118
threading coordination server. See coordination servers, threading
ThreadPool class, 127-31, 267
threads, 243
thread-safe wrapper, 115
Time Taken label, 173
time to live, 192
timers, 60
TimeSpan object, 117
timestamps, 322-23
tmrRefreshUsers timer interval, 385
topology of peer-to-peer ToXmlString() method, 314
TraceComponent, 74-77
TraceListener class, 74, 142-43
tracert request, 195
Trace.Write() method, 116
tracing, 80-81, 194-96
TransferFile() method, 101
Transmission Control Protocol. See TCP (Transmission Control Protocol)
TripleDES symmetric algorithms, 310
Trivial File Transfer Protocol (TFTP), 199
Trusted Root store, 387
tunnel element, 377
TwoWayRemoting directory, 60
txtBoughtBy text box, 359-60
txtUser textbox, 83

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

U
UDP. See User Datagram Protocol (UDP)
UdpClient class, 200, 209
UdpClient.JoinMulitcastGroup() method, 214
UdpClient.Receive() method, 212
unique identifiers, 23. See GUIDs (globally unique identifiers)
Universal Naming Convention (UNC) path, 179
Unregister() method, 236
Update() button, 259
UpdateControlText class, 342-43
UpdateControlText object, 172
UpdateUsers() method, 119
upgrades, peer-to-peer, 362-63
Upload() method, 265, 269, 270
uploading files, in FileSwapper application, 263-72

FileServer class, 264-68
FileUpload class, 269-72
overview, 263-64

UploadThreads collection, 267
UPnP NAT, 367
Url Behavior in the Properties window, 245
<URL> element, 375
Usenet, 13
User Datagram Protocol (UDP), 196, 197

broadcasts and multicasts, 212-14
communicating with, 209-14

user names, 23
UserDeparted() method, 340
UserJoined() method, 340
UserName property, 83
utility classes, 249-53

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

V
ValidateSignature() method, 318
VerifyData() method, 318
virtual "creature" classes, 18
virtual file system, 12
virtual namespaces, 24
virtual web directories, 220
virus-scanning software, 11

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

W
WaitForRequest() method, 264, 265, 267, 268
WANs (wide area networks), 189
web browsers, 13
web directories, virtual, 220
web servers, 13-14
web services, 36-37, 215-40

calling, 36-37
comparison with Remoting, 218-19
debugging, 239-40
deploy on websites, 223
discovery service, 215-18, 236-40

overview, 215-16
stateful and stateless, 217-18
testing, 238-40

essentials of, 218-24
anatomy of web-service request, 219-20
Internet Information Server (IIS), 220-22
overview, 218-19
WebService class, 222-23
web-service client, 223-24

registration database, 224-36
creating database, 225-26
creating Database class, 229-36
overview, 224
stored procedures, 226-29

serialization, 44
viewing methods in Internet Explorer, 239

Web Services Description Language (WSDL), 218
Web Services Enhancements (WSE), 313
web.config file, 230-31
<WebMethod> attribute, 222
WebRequest class, 374
Web-Server side, login process on, 322-23
WebService class, 222, 222-23
web-service client, 223-24
web-service request, 219-20
well-known system ports, 53, 110, 197
WHERE clause, 229, 234
wide area networks (WANs), 189
Wilson, Brendon, 367
Windows Form application, 50
Windows Form interface, 138
Windows Messenger, 12, 15, 16, 21, 335-44

avoiding firewall problems, 27
central database, 24
creating a Windows Messenger client, 337-44
overview, 335-37

Windows peer-to-peer networking, 362-63
Windows services, 138-44

debugging, 142-44
installing, 140-42
overview, 138-40

Windows Sockets (Winsock) interface, 20
Windows XP, peer-to-peer upgrade for, 362-63
work manager

creating, 155-64
overview, 155-56
tasks, 158-60
tasks, completing, 163-64
tasks, dispatching, 161-63
tracking workers, 156-58

enhancing, 175-86
configurable sandbox, 180-84
generic task client, 178-80

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

overview, 175
performance scoring, 176-77
pure peer-to-peer task manager, 185-86
queuing, 175-76
writing directly to result store, 177-78

WorkerID, 155
WorkerRecord class, 157-58
WorkerRecord object, 155, 176
WorkerRecord objects, 156, 157
Workers collection, 155
Write() method, 75, 202
Writeable property, 202
WriteLine() method, 75
writing directly to result store, 177-78
writing locking, 117
WSDL (Web Services Description Language), 218
WSE (Web Services Enhancements), 313

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

X-Z
XML format, of configuration files, 47-48
XML routing system, 16
XmlNode object, 222

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

List of Figures

Chapter 1: The Evolution of Peer-to-Peer
Figure 1-1: Client-server computing

Figure 1-2: Distributed computing

Figure 1-3: Peer-to-peer computing

Chapter 2: Peer-to-Peer Architecture
Figure 2-1: The server-mode/client-mode model

Figure 2-2: A pure peer-to-peer search

Chapter 3: Remoting Essentials
Figure 3-1: Remotable and serializable types

Figure 3-2: The Remoting proxy mechanism

Figure 3-3: The component host in an enterprise system

Figure 3-4: The component host in a peer-to-peer system

Figure 3-5: Adding a configuration file to a project

Figure 3-6: An automatically generated configuration file

Figure 3-7: Launching multiple projects for debugging

Figure 3-8: Entering a message in the client

Figure 3-9: Receiving the message with the remote object

Figure 3-10: Receiving a callback at the client

Figure 3-11: The many layers of Remoting

Chapter 4: Building a Simple Messenger
Figure 4-1: Components of the Talk .NET system

Figure 4-2: Forwarding trace messages to a form

Figure 4-3: The login form

Figure 4-4: The Talk form

Figure 4-5: Multiple client interaction

Figure 4-6: The server trace display

Figure 4-7: Offering a file transfer

Figure 4-8: A completed file transfer

Chapter 5: Threading the Coordination Server
Figure 5-1: Interaction with the DeliveryService

Figure 5-2: The threaded message delivery

Figure 5-3: Trace output for the threaded Talk .NET

Figure 5-4: Multiple thread message delivery

Figure 5-5: Creating a service installer in Visual Studio .NET

Figure 5-6: Installing a service with InstallUtil.exe

Figure 5-7: Starting the service through the SCM

Figure 5-8: Finding the service

Figure 5-9: Attaching the Visual Studio .NET debugger to a service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-10: The trace output in Visual Studio .NET

Chapter 6: Building a Distributed Task Manager
Figure 6-1: The work request process

Figure 6-2: The order of work request steps

Figure 6-3: The worker in the system tray

Figure 6-4: The main form

Figure 6-5: A completed prime number query

Figure 6-6: The server trace transcript

Figure 6-7: Granting all permissions to the worker assembly

Figure 6-8: Granting reduced permissions to the task assembly

Figure 6-9: The two-stage request process with a decentralized work manager

Chapter 7: Networking Essentials
Figure 7-1: The network hierarchy

Figure 7-2: The network protocol stack

Figure 7-3: A TCP or UDP connection

Figure 7-4: Sending data over TCP

Figure 7-5: Multiple TCP connections

Figure 7-6: Sending data over UDP

Chapter 8: Building a Discovery Web Service
Figure 8-1: The discovery pattern

Figure 8-2: The effect of indexing content with a discovery service

Figure 8-3: Serving a web-service request with ASP.NET

Figure 8-4: The registration database

Figure 8-5: Sample registration data

Figure 8-6: Viewing web-service methods in Internet Explorer

Figure 8-7: Configuring web-service debugging

Chapter 9: Building a File Sharer
Figure 9-1: The FileSwapper display

Figure 9-2: Threads in FileSwapper

Figure 9-3: Adding a web reference

Figure 9-4: The hidden proxy class

Figure 9-5: FileSwapper configuration settings

Figure 9-6: A FileSwapper search

Figure 9-7: The uploading process

Figure 9-8: FileSwapper uploads

Figure 9-9: The downloading process

Figure 9-10: FileSwapper downloads

Chapter 10: Using a Discovery Service with Remoting
Figure 10-1: The Talk .NET registration database

Figure 10-2: Logging in with a new or existing account

Chapter 11: Security and Cryptography

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11-1: How user A can send an encrypted message to user B

Figure 11-2: The revised Peers table

Figure 11-3: The Login window

Figure 11-4: Using SignedObject to sign a LoginInfo

Figure 11-5: Encrypting and signing a message

Chapter 12: Working with Messenger and Groove
Figure 12-1: The custom Messenger client

Figure 12-2: Interacting with Messenger through the MSNP component

Figure 12-3: Interaction with the custom Messenger

Figure 12-4: A sample Groove shared space in the transceiver

Figure 12-5: Creating a Groove project

Figure 12-6: The contents of a Groove project

Figure 12-7: Synchronization in a Groove shared space

Figure 12-8: A custom Groove tool with a shared list

Figure 12-9: Running the custom tool in the Groove transceiver

Figure 12-10: Groove assemblies for identity management

Figure 12-11: Groove identity interfaces

Figure 12-12: A Groove tool that recognizes identities

Chapter 13: The Intel Peer-to-Peer Accelerator Kit
Figure 13-1: The Intel Peer-to-Peer daemon service

Figure 13-2: Sending a message from one peer to another

Figure 13-3: How the Intel Peer-to-Peer Accelerator Kit maps peer URLs

Figure 13-4: Installing the Intel Peer-to-Peer Accelerator Kit

Figure 13-5: The role of a relay server

Figure 13-6: The server object URL

Figure 13-7: The CertificateManagementUI utility

Figure 13-8: Creating a new certificate

Figure 13-9: The makecert.exe utility

Figure 13-10: The Intel Peer-to-Peer Messenger

Figure 13-11: A partially complete SharedCyclesP2P job

Figure 13-12: The Intel Peer-to-Peer ShareBaby2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Back Cover
Peer-to-peer proponents claim that their technology holds the keys to building virtual supercomputers,
sharing vast pools of knowledge, and creating self-sufficient communities on the Internet. Peer-to-Peer
with VB .NET explores how these design ideas can be integrated into existing .NET applications.

This book is an honest assessment of P2P and .NET. It doesn’t just explain how to create P2P applications—
it examines the tradeoffs that professional developers will encounter with .NET and P2P. It also considers
several different approaches (Remoting, .NET networking, etc.) rather than adopting one fixed technology,
and includes detailed examples of several popular P2P application types (messenger, file sharer, and
distributed task manager).

About the Author

Matthew MacDonald is an author, educator, and MCSD developer who has a passion for emerging
technologies. He is a regular writer for developer journals such as Inside Visual Basic, ASPToday, and
Hardcore Visual Studio .NET, and he's the author of several books about programming with .NET, including
User Interfaces in VB .NET: Windows Forms and Custom Controls, The Book of VB .NET, and .NET
Distributed Applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Peer-to-Peer with VB .NET
Matthew MacDonald

Apress™

Copyright © 2003 Matthew MacDonald

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the
copyright owner and the publisher.
1-59059-105-4

12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked
name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

Technical Reviewer: Ron Miller
Editorial Board: Dan Appleman, Craig Berry, Gary Cornell, Tony Davis, Steven Rycroft, Julian Skinner, Martin Streicher, Jim
Sumser, Karen Watterson, Gavin Wright, John Zukowski
Assistant Publisher: Grace Wong
Project Manager: Beth Christmas
Copy Editor: Mark Nigara
Production Manager: Kari Brooks
Production Editor: Lori Bring
Compositor and Proofreader: Kinetic Publishing Services, LLC
Indexer: Kevin Broccoli
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY, 10010 and
outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, email orders@springer-ny.com, or visit http://www.springer-ny.com. Outside the
United States: fax +49 6221 345229, email orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA 94710. Phone 510-
549-5930, fax 510-549-5939, email info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an "as is" basis, without warranty. Although every precaution has been taken in the
preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or
damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads section.

For my loving wife, Faria

About the Author

Matthew MacDonald is an author, educator, and MCSD developer. He's a regular contributor to programming journals such as
Inside Visual Basic and Hardcore Visual Basic, and the author of several books about .NET programming, including The Book of
VB .NET (No Starch), ASP.NET: The Complete Reference (Osborne/McGraw-Hill), and Microsoft .NET Distributed Applications
(Microsoft Press). In a dimly remembered past life, he studied English literature and theoretical physics.

About the Technical Reviewer

Ron Miller works as a Senior Engineer at Pitney Bowes developing new shipping systems. He has been in the IT industry for over
20 years and has developed a variety of solutions from Distributed Asset Management systems to those providing daily sales
figures to handhelds. Ron can be found searching for that "better solution" to the problem at hand. In his spare time, Ron takes
pleasure in restoring older Lancias and BMWs.

Acknowledgments

No author could complete a book without a small army of helpful individuals. I'm deeply indebted to the whole Apress team,
including Beth Christmas and Lori Bring, who helped everything move swiftly and smoothly; Ron Miller, who performed the tech
review; Mark Nigara, who performed the copy edit (and discussed the countless ways to capitalize "web services"); and many
other individuals who worked behind the scenes indexing pages, drawing figures, and proofreading the final copy. I owe a special
thanks to Gary Cornell, who always offers invaluable advice about projects and the publishing world. He's helped to build a truly
unique company with Apress.

In writing the code for this book, I've had the help of articles, sample code, and in-depth presentations from the best .NET
developers. In particular, I should thank Lance Olson, whose sample formed the basis for the pinging code used to test peer
connectivity, and Jason Thomas (the creator of the Gnutella client Swapper.NET—see http://www.revolutionarystuff.com/swapper
for more information). Peer-to-peer is still evolving and changing crazily, and I hope to have the chance to update this book
sometime in the future with the next round of developer tools and technologies.

Finally, I'd never write any book without the support of my wife and these special individuals: Nora, Razia, Paul, and Hamid.
Thanks everyone!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
Like all new development models, peer-to-peer programming has been praised, denounced, and often confused in the
programming community. Peer-to-peer proponents claim that their technology holds the key to building virtual supercomputers
that can share vast pools of knowledge and create self-sufficient communities on the Internet. Peer-to-peer critics claim it's little
more than an interesting novelty—suitable for some applications, but useless in the business world.

This book takes a practical look at peer-to-peer programming, without the hype. You'll explore how peer-to-peer designs work,
learn fundamental peer-to-peer concepts, and master the .NET technologies you'll need to implement them. You'll also see that
while some aspects of .NET are ideally suited for the peer-to-peer world, other high-level features haven't materialized yet. The
emphasis in this book is on integrating peer-to-peer designs into your applications. This means that you'll focus on "hybrid" peer-
to-peer designs that combine traditional solutions and peer-to-peer concepts to create new features such as instant messaging,
resource sharing, and distributed computing.

This book is organized into four parts. The first part explores peer-to-peer design concepts and architecture. The second and third
parts lead you through the process of creating several hybrid peer-to-peer applications that are most at home on local area
networks and in the enterprise environment. The fourth part introduces advanced peer-to-peer issues, including security and
decentralized designs. In this part you'll explore how to use third-party platforms to meet challenges such as firewalls and network
address translation and take your peer-to-peer designs to the Internet.

About This Book
This book is designed for experienced programmers who are familiar with the .NET platform and the VB .NET language and want
to extend their skills to peer-to-peer programming. It doesn't assume any knowledge of peer-to-peer concepts, or of the distributed
technologies that you can use to build a peer-to-peer solution (such as .NET networking or Remoting).

What This Book Teaches You

This book provides the following information:

A detailed description of the .NET technologies that can be used for peer-to-peer programming, including
Remoting, networking, web services, and encryption.

A thorough explanation of peer-to-peer conceptions such as peer discovery, communication, and the role of a
central lookup or coordination server.

Examples of common peer-to-peer applications such as chat servers, file-sharing services, and distributed work
managers.

An explanation of some third-party tools that can help simplify peer-to-peer programming in .NET, such as Groove
and the Intel Peer-to-Peer Accelerator Kit.

What This Book Doesn't Teach You

Of course, it's just as important to point out what this book doesn't contain:

A description of core .NET concepts such as namespaces, assemblies, exception handling, and types.

A primer on object-oriented design. No .NET programmer can progress very far without a solid understanding of
classes, interfaces, and other .NET types. In this book, many examples will rely on these basics, using objects to
encapsulate, organize, and transfer information.

The "everything from scratch" decentralized peer-to-peer application. Some parts of peer-to-peer technology (such
as firewall traversal and adaptive bandwidth management) are quite complex and extremely difficult to implement
correctly. This book assumes that you don't want to code this infrastructure from scratch. Instead, you'll look at
hybrid peer-to-peer designs and the emerging third-party technologies that can handle the lower-level plumbing for
you.

If you haven't learned the .NET fundamentals, you probably won't be able to work through this book. Start with a more general
book about the .NET Framework and the VB .NET language.

Peer-to-Peer and .NET

In the past, Microsoft programmers have been left behind in the peer-to-peer debate. While they were struggling with COM and
multitier design, a new type of software architecture appeared, one that seems more at home in open-source languages and the
world of the Internet. The .NET platform presents a platform that embraces the Internet.

That said, it's important to note that .NET still lacks some higher-level tools that will be needed to standardize and extend large-
scale peer-to-peer applications. Some other programming platforms, such as JXTA (a Sun-led initiative for peer-to-peer
programming that focuses on Java), currently offer more than .NET in this respect. However, as the .NET platform matures,
support for peer-to-peer networking will only improve, either through .NET Framework updates or optional add-ons.

There's already one promising toolkit that abstracts away some of the work in building a peer-to-peer infrastructure in .NET: Intel's
freely downloadable Peer-to-Peer Accelerator Kit. The final part of this book examines the Intel toolkit, considers its advantages,
and shows how it extends the .NET Framework. At the same time, you'll look at the Groove platform, which provides the
infrastructure for peer-to-peer collaborative applications as well as an easier way to control Microsoft's own Windows Messenger
network.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note In short, Microsoft has identified peer-to-peer as a promising new area where they must provide cutting-edge
development tools. .NET moves toward this vision, but there are likely many more revolutions ahead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Code Samples
It's a good idea to use the online site to download the most recent, up-to-date code samples. In addition, many of the samples
presented in this book are quite lengthy, and the full code is not listed in these pages. To test them on your own system, you'll
need to download the complete projects. To download the source code, go to http://www.prosetech.com. You can also download
the source code from the Downloads section of the Apress website (http://www.apress.com).

All the code in this book is supported by versions 1.0 and 1.1 of the .NET Framework. For best results, compile the code on your
system before executing it. Projects are provided in Visual Studio .NET 2002 format, which means that you must "upgrade" the
project before using it in Visual Studio .NET 2003. This upgrading process is easy and automatic. No code changes are required.

Variable Naming

It seems that variable naming is about to become another religious issue for which there is no clear standard, even though
developers take heated, uncompromising attitudes about it. Hungarian notation, the preferred standard for C++ and VB (in a
slightly modified form), is showing its age. In the world of .NET, where memory management is handled automatically, it seems a
little backward to refer to a variable by its data type, especially when that data type may change without any serious
consequences and when the majority of variables store references to full-fledged objects.

To complicate matters, Microsoft recommends that objects use simple names for properties and methods, such as COM
components and controls. This system makes a good deal of sense, as data-type considerations are becoming more and more
transparent. Visual Studio .NET now takes care of some of the work of spotting the invalid use of data types, and its built-in
IntelliSense automatically displays information about the data types used by a method.

In this book, data-type prefixes are not used for variables. The only significant exception is with control variables, for which it's still
a useful trick to distinguish between types of controls (such as txtUserName and lstUserCountry) and some data objects. Of
course, when you create your programs you're free to follow whatever variable naming convention you prefer, provided you make
the effort to adopt complete consistency across all your projects (and ideally across all the projects in your organization).

Note This book uses an underscore to denote private variables that are linked to a property procedure. For example, if a
class provides a property called Name, the data for that property will be stored in a private variable called _Name.
Underscores are not used for any other variable names.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Feedback
You can send complaints, adulation, and everything in between directly to p2p@prosetech.com. I can't solve your .NET problems
or critique your own code, but I'll know what I did right and wrong (and what I may have done in an utterly confusing way) with this
book from your feedback. You can also send comments about the website support.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter Overview
It's easiest to read the book from start to finish because later chapters discuss alternate approaches to some of the earlier
applications. However, if you're already familiar with peer-to-peer concepts, you may find it easier to skip to the chapters that
interest you.

The book follows this four-part structure.

Part One: Introducing Peer-to-Peer

The first part of this book explores peer-to-peer fundamentals. Chapter 1 takes a high-level look at the peer-to-peer world. It
presents the key characteristics of peer-to-peer applications, a brief history of peer-to-peer development, and the place of peer-to-
peer designs in the enterprise world.

Chapter 2 tackles peer-to-peer architecture and dissects several different peer-to-peer models. In this chapter, you'll learn about
the basic challenges and design decisions that face any peer-to-peer project as well as the .NET technologies that are available to
meet them. By the end of the chapter, you'll be able to decide when you should (and shouldn't) use peer-to-peer designs in your
own solutions.

Part Two: Peer-to-Peer with a Coordination Server

This part introduces "brokered" peer-to-peer designs, in which a central server plays an important role in helping peers
communicate. This design can be easily implemented with .NET's high-level Remoting Framework, which you'll encounter in
Chapter 3 in detail. Next, Chapter 4 and Chapter 5 show how Remoting can be used to build an instant-messaging application that
routes messages over a network, tracks multiple clients, and uses multiple threads and locking to handle simultaneous requests
seamlessly.

Finally, Chapter 6 takes a different approach by developing a model for distributed computing in which multiple clients can work
together to solve a single CPU-intensive problem. You'll learn how to create a dedicated client to work with a fixed problem type,
or how you can use .NET reflection and dynamic assembly loading to create task-independent peers. You'll also see the code-
access security measures you'll need to make to ensure that the second approach won't become an express highway for
spreading malicious worms across the Internet.

Part Three: Peer-to-Peer with a Discovery Server

Some of the most common and powerful peer-to-peer designs combine a decentralized application with a centralized repository of
peer information. The second part of this book explores this model of peer-to-peer design. Chapter 7 introduces the lower level of
.NET networking support that you'll need to create direct connections between peers. Chapter 8 shows you how to build a
discovery server as an ASP.NET web service, and Chapter 9 brings it all together with a complete sample application for sharing
files between peers.

Chapter 10 revisits the discovery service and considers how you can adapt your design for a system that uses .NET Remoting for
peer-to-peer interaction. In the process, you'll develop a discovery service that you can use with the Talk .NET instant-messaging
code sample presented in Chapter 4 and Chapter 5.

Part Four: Advanced Peer-to-Peer

The last part of this book tackles a few advanced topics in peer-to-peer application programming. Chapter 11 considers security
and how you can use .NET's native support for cryptography to protect sensitive data and verify peer identity. Chapter 12 explores
third-party toolkits for collaborative peer-to-peer applications with Windows Messenger and Groove. Finally, Chapter 13 introduces
Intel's freely downloadable Peer-to-Peer Accelerator Kit, which extends .NET Remoting with valuable networking and peer
connectivity features.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part One: Introducing Peer-to-Peer
Chapter List

Chapter 1: The Evolution of Peer-to-Peer

Chapter 2: Peer-to-Peer Architecture

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1: The Evolution of Peer-to-Peer
Peer-to-peer is an almost magical term that's often used, rarely explained, and frequently misunderstood. In the popular media,
peer-to-peer is often described as a copyright-violating technology that underlies song-swapping and file-sharing systems such as
Napster and Gnutella. In the world of high-tech business, peer-to-peer networking is a revolution that promises to harness the
combined computing power of ordinary personal computers and revolutionize the way we communicate. And to Internet pioneers,
peer-to-peer is as much a philosophy as it is a model of development, one that contains the keys needed to defeat censorship and
create global communities. All of these descriptions contain part of the answer, but none will help you build your own peer-to-peer
systems, or explain why you should.

In this chapter, you'll learn what distinguishes peer-to-peer applications from traditional enterprise systems, how peer-to-peer
technology evolved in the early Internet, and what advantages and disadvantages the peer-to-peer model offers. You'll also
preview the .NET technologies you'll need to build peer-to-peer software, and the challenges you'll face along the way. By the end
of the chapter, you'll be able to decide when you should (and shouldn't) use peer-to-peer designs in your own solutions.

A Brief History of Programming
The easiest way to understand peer-to-peer applications is by comparing them to other models of programming architecture. To
understand peer-to-peer programming, you need to realize that it's part revolution, part evolution. On the one hand, peer-to-peer
programming is the latest in a long line of schisms that have shaken up the programming world. Like them, it promises to change
the face of software development forever. On the other hand, peer-to-peer programming borrows heavily from the past. It's likely
that peer-to-peer concepts may end up enhancing existing systems, rather than replacing them.

The Birth of Client-Server

In a traditional business environment, software is centralized around a server. In the not-so-distant past, this role was played by a
mainframe. The mainframe performed all the work, processing information, accessing data stores, and so on. The clients were
marginalized and computationally unimportant: "dumb terminals." They were nothing more than an interface to the mainframe.

As Windows development gained in popularity, servers replaced the mainframe, and dumb terminals were upgraded to low-cost
Windows stations that assumed a more important role. This was the start of the era of client-server development. In client-server
development, the server hosts shared resources such as the program files and back-end databases, but the application actually
executed on the client (see Figure 1-1).

Figure 1-1: Client-server computing

This approach is far from ideal because the clients can't work together. They often need to compete for limited server resources
(such as database connections), and that competition creates frequent bottlenecks. These limitations appear most often in large-
scale environments and specialized systems in which client communication becomes important. In mid-scale systems, clientserver
development has proved enormously successful because it allows costly mainframes to be replaced by more affordable servers.
In fact, though many programming books talk about the end of client-server development, this model represents the most
successful programming paradigm ever applied to the business world, and it's still alive and well in countless corporations.

Distributed Computing

The more popular the Windows PC became in the business world and the more it became involved in ambitious enterprise
systems, the more the limitations of client-server programming began to show. A new model was required to deal with the massive
transactional systems that were being created in the business world. This new model was distributed computing. Distributed
computing tackles the core problem of client-server programming—its lack of scalability—with a component-based model that can
spread the execution of an application over multiple machines.

In a distributed system, the client doesn't need to directly process the business and data-access logic or connect directly to the
database. Instead, the client interacts with a set of components running on a server computer, which in turn communicates with a
data store or another set of components (see Figure 1-2). Thus, unlike a client-server system, a significant part of the business
code executes on the server computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-2: Distributed computing

By dividing an application into multiple layers, it becomes possible for several computers to contribute in the processing of a single
request. This distribution of logic typically slows down individual client requests (because of the additional overhead required for
network communication), but it improves the overall throughput for the entire system. Thus, distributed systems are much more
scalable than client-server systems and can handle larger client loads.

Here are some of the key innovations associated with distributed computing:

If more computing power is needed, you can simply move components to additional servers instead of providing a
costly server upgrade.

If good stateless programming practices are followed, you can replace individual servers with a clustered group of
servers, thereby improving scalability.

The server-side components have the ability to use limited resources much more effectively by pooling database
connections and multiplexing a large number of requests to a finite number of objects. This guarantees that the
system won't collapse under its own weight. Instead, it will simply refuse clients when it reaches its absolute
processing limit.

Distributed computing is associated with a number of good architecture practices, which make it easier to debug,
reuse, and extend pieces of an application.[1]

Distributed programming is the only way to approach a large-scale enterprise-programming project. However, the classic
distributed design shown in Figure 1-2 isn't suited for all scenarios. It shares some of the same problems as client-server models:
namely, the overwhelming dependence on a central server or cluster of server-like computers. These high-powered machines are
the core of the application—the 1 percent of the system where 99 percent of the work is performed. The resources of the clients
are mostly ignored.

Peer-to-Peer Appears

The dependency on a central set of servers isn't necessarily a problem. In fact, in some environments it's unavoidable. The
reliability, availability, and manageability of a distributed system such as the one shown in Figure 1-2 are hard to beat. In all
honesty, you aren't likely to use peer-to-peer technology to build a transaction-processing backbone for an e-commerce website.
However, there are other situations that a server-based system can't deal with nearly as well. You'll see some of these examples
at the end of this section.

Peer-to-peer technology aims to free applications of their dependence on a central server or group of servers, and it gives them
the ability to create global communities, harness wasted CPU cycles, share isolated resources, and operate independently from
central authorities. In peer-to-peer design, computers communicate directly with each other. Instead of a sharp distinction between
servers that provide resources and clients that consume them, every computer becomes an equal peer that can exhibit clientlike
behavior (making a request) and server-like behavior (filling a request). This increases the value of each computer on the network.
No longer is it restricted to being a passive client consumer—a peer-to-peer node can participate in shared work or provide
resources to other peers.

Peer-to-peer is most often defined as a technology that takes advantage of resources "at the edges of the network" because it
bypasses the central server for direct interaction. As you can see in Figure 1-3, this approach actually complicates the overall
system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-3: Peer-to-peer computing

Peer-to-peer programming is regarded by some as a new generation of programming design, and by others as a subset of
distributed computing. In a sense, distributed architecture overlaps with peer-to-peer architecture because many of the
technologies used to create distributed enterprise applications can be used to create peer-to-peer systems as well. However,
peer-to-peer applications represent a dramatic shift toward a decentralized design philosophy that is quite different from what
most programmers expect in an enterprise application.

Here are some of the hallmarks that distinguish a peer-to-peer application:

The processing is performed on the peers, not farmed out to another computer (such as a high-powered server).

The peers interact by establishing direct connections, rather than passing messages through a central authority.

The system can deal with inconsistent connectivity (for example, peers who disappear and reappear on the
network).

The system uses a proprietary peer naming and discovery system that operates outside the Internet's Domain
Name Service (DNS) registry.

[1]Distributed computing is sometimes described as multitier or n-tier programming, but this is not strictly correct. Distributed
computing is a physical model that splits execution over multiple computers. Multitier programming is a logical model that divides
an application into distinct layers. Think of it this way: A program with a multitier design has the option of graduating into a
distributed application. However, multitier design and component-based programming can still be used in a traditional client-server
application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Evaluating the Peer-to-Peer Model
The inevitable question is this: Can a peer-to-peer application perform better than a client-server application? Unfortunately, this
question is not easily answered. It not only depends on the type of application, but on the type of peer-to-peer design, the number
of users, and the overall traffic patterns. The most honest answer is probably this: There are some development niches in which
peer-to-peer applications will perform better and require fewer resources. However, a peer-to-peer application can easily introduce
new headaches and scalability challenges, which can't be dismissed easily. In order to create a successful peer-to-peer
application, you must understand both the advantages and drawbacks of a peer-to-peer design.

Benefits and Challenges

Peer-to-peer applications hold a great deal of promise. Some of the unique properties of a peer-to-peer system are as follows:

A large network of peers will almost always have more computing resources at hand than a powerful central server.

A completely decentralized peer-to-peer application should have improved reliability because the server won't be a
single point of failure for the system.

A peer-to-peer application should also have improved performance because there is no central server to act as a
bottleneck.

Enterprise programmers have met some of these challenges by introducing server farms and clustering technologies. However,
these solutions are expensive, and minor server-side problems can still derail an entire enterprise application.

On the other hand, the advantages of peer-to-peer applications are qualified by a few significant drawbacks:

As a peer-to-peer design becomes more decentralized, the code becomes more complex and the required network
bandwidth to manage the peer discovery process increases. This might not be a problem if the bandwidth is spread
out equitably over the network, but it often does become a problem in an intranet where the network must also be
used for a critical client-server business application.

Although peer-to-peer systems don't rely on a central server, they do rely on the cooperation of multiple peers. This
cooperating can be damaged by the variable connectivity of the Internet, where peers might abruptly disappear,
even in the middle of serving a request. Similarly, in fully decentralized peer-to-peer systems, low-bandwidth clients
can become "mini-bottlenecks" for their part of the network.

Peer-to-peer programming introduces significant challenges with network addressing due to the way the Internet
works with dynamic IP addresses, proxy servers, network address translation (NAT), and firewalls.

It's also difficult to predict how a decentralized peer-to-peer solution will scale as the user community grows. Like all complex
systems, a peer-to-peer network can display a dramatically different behavior at a certain "critical mass" of peers. Gnutella, a
peer-to-peer protocol used for popular file-sharing applications, is in some respects an enormous in-progress experiment. As the
network has grown wildly beyond what was originally expected, connectivity has suffered—frequently. At times, entire islands of
peers have broken off from the main pool, able to communicate within their community, but unable to access other parts of the
Gnutella network.

Ingenious techniques such as smart caching and optimized routing have been developed to meet the challenges of large peer-to-
peer networks. However, it's still hard to predict how these solutions will play out on a large scale over a loosely connected
network that might include hundreds of thousands of peers. These emergent behaviors are impossible to plan for. The only way to
solve them is with an iterative process of development that involves frequent testing and updates. Ultimately, a peer-to-peer
system may become more robust and perform better than a classic enterprise application, but it will take ongoing development
work.

Peer-to-Peer and Security

Security is a concern with any type of application, and peer-to-peer systems are no exception. The key difference is that with
server-based programming, the server is in complete control. If the server adopts rigorous privacy standards and security
safeguards, your information is safe, and you're in a "benevolent dictator" situation. However, if the server falls short of its
commitment in any way, you'll have no protection.

In a decentralized peer-to-peer application, peers lack the protection of the server. On the one hand, they're also free from
monitoring and have control of their private information. It's difficult to track an individual peer's actions, which remain publicly
exposed, but lost in a sea of information. Nevertheless, malicious peers can connect directly to other peers to steal information or
cause other types of problems.

Doing away with a central authority is both liberating and dangerous. For example, a malicious user can easily place a virus in a
file-swapping peer-to-peer application disguised as another popular type of application and infect countless users, without being
subject to any type of punishment or even being removed from the system. In addition, the decentralized nature of peer discovery
makes it difficult for an organization to enforce any kind of access control (short of blocking Internet access on certain ports). For
these reasons, peer-to-peer application programmers need to consider security from the initial design stage. Some peer-to-peer
applications handle security issues by allowing users to assign different levels of trust to certain peers. Other peer-to-peer systems
rely on encryption to mask communication and certificates to validate peer identities. These topics are explored in Chapter 11,
with cryptography, and Chapter 6, with code access security.

The Peer-to-Peer Niche

Peer-to-peer applications may not displace enterprise development, but they do tackle some increasingly difficult enterprise
problems. Some of the scenarios for which a peer-to-peer design is well suited are presented in the next few sections.

Systems with Which Clients Need to Interact

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The server-based model emphasizes one-way communication from the client to the server. That means that the client must
initiate every interaction. This poses difficulty if you want to create a collaborative application such as a real-time chat, a
multiplayer game, or a groupware application. With the introduction of a little peer-to-peer code, the problem becomes much more
manageable.

Systems with Which Clients Need to Share Content
In the server-based system, everything needs to be routed through the central server. This taxes the computing power and
network bandwidth of a small section of the overall network. Thus, you'll need a disproportionately powerful server to handle a
relatively small volume of requests. If, however, the central server is used simply to locate other peers, it can become a "jumping
off" point for a true peer-to-peer interaction, which is much more efficient. This is the infamous Napster model.

In some cases, you might use the file-sharing abilities of a peer-to-peer application to support other features. For example, some
virus-scanning software packages use a form of file sharing to distribute virus catalog updates. In this model, an individual
computer in an enterprise will download an updated virus catalog as needed. Other peers will then retrieve the update from the
nearest local user, rather than the remote servers, thereby minimizing network traffic and the load placed on the central servers.
Similar forms of resource sharing can support a variety of services, and in doing so they prove that peer-to-peer applications are
about more than just swapping digital music.

Systems for Which a Central Server Would Be a Liability
This is generally the case if an application operated outside the bounds of local law (or in an area that could be subjected to future
prosecution). For example, Napster, despite being partly peer-to-peer, required a central server for content lookup and for
resolving peer addresses, and was thus subjected to legal intervention. Gnutella, a more radically "pure" peer-to-peer application,
isn't vulnerable in the same way. Similarly, consider the case of the legendary remailer anon.penet.fi, which was forced to close in
1996 because the anonymity of users could not be guaranteed against court orders that might have forced it to reveal account
identities. Pure peer-to-peer systems, because they have no central server, are impervious to censorship and other forms of
control.

Systems That Would Otherwise Be Prohibitively Expensive
You could build many peer-to-peer applications as server-based applications, but you'd require a significant hardware investment
and ongoing work from a network support team to manage them. Depending on the type of application, this might not be realistic.
For example, SETI@Home could not afford a supercomputer to chew through astronomical data in its search for unusual signals.
However, by harnessing individual chunks of CPU time on a large network of peers, the same task could be completed in a
sustainable, affordable way. Another example is a virtual file system that can provide terabytes of storage by combining small
portions of an individual peer hard drive. In many ways, these applications represent the ideal peer-to-peer niche.

Thus, peer-to-peer applications don't always provide new features, but sometimes provide a more economical way to perform the
same tasks as other application types. They allow specialized applications to flourish where the support would otherwise not exist.
This includes every type of peer-to-peer application, from those that promote collaboration and content sharing, to those that work
together to complete CPU-intensive tasks.

A New Class of Application
Of course, new technologies always lead to a few new and radical applications that could not exist with earlier technologies.
These applications may not grow and flourish right away—in fact, it's impossible to predict what next-generation software will be
facilitated by peer-to-peer technology.

One possibility is real-time searching technology that allows peers to share any type of resources. The immense diversity of this
content, and the variety of ways it can be described, make it impossible for a central server to catalogue it effectively. However, if
a peer-to-peer application that uses an effective content-description query language could be designed, it could pass a specific,
highly sophisticated request out to a wide audience of peers, who would then respond according to the highly specific information
they have on hand. The way we share information on networks would be revolutionized overnight.

Another example of a new sort of application that might become possible with peer-to-peer is real-time collaboration software.
Currently, collaborative applications allow for relatively simple tasks, such as exchanging text messages or sketching ideas on a
primitive whiteboard. In the future, we could see peer-to-peer software tailored for a specific industry or activity. There could be a
collaborative application that allows groups of users to work together on complex projects such as creating an architectural model,
reviewing experimental data, or teaching a virtual lesson.[2]

[2]Microsoft's Windows Messenger includes a feature called Application Sharing, which allows users to collaborate in any ordinary
application. However, a collaboration "killer app" would doubtlessly include some more insightful, specialized interfaces that would
coordinate multiple users.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Evolution of the Internet
So far we've considered peer-to-peer as it relates to the dominant architecture in enterprise applications. There's another way to
look at the evolution of peer-to-peer technology: in relation to the development of the early Internet.

The Early Internet

The Internet was first envisioned in the late 1960s as a global peer-to-peer system in which all computers could participate as
equals. It was assumed that computers in the early Internet would always be on and always be connected. Thus, they were
assigned permanent IP addresses that were recorded in a global registry called the Domain Name Service (DNS).

Note An IP address is a 32-bit number that uniquely identifies a computer on a network or the Internet. An IP address is
typically written as four numbers from 0-255 separated by periods (as in 168.212.226.204). IP addresses can be tied to
website names (such as http://www.amazon.com) using the DNS registry, but they don't need to be. In any case, the IP
address is the key to finding and communicating with another computer on a conventional network.

Unlike today's Internet, the early Internet was much more open. Any computer could send a packet to another. Usenet allowed
message-board postings to be propagated across the Internet in a manner not unlike the way today's peer-to-peer applications
route their own proprietary messages. Client-server applications such as FTP and Telnet existed, but any computer could morph
into a server and host the application. On the whole, the usage patterns of the early Internet were peer-to-peer.

The Client-Server Internet

Two trends conspired to shift the Internet into a predominantly client-server system. The first was the invention of Mosaic, the first
web browser. It was at this point that a larger community of casual users began to take interest in the content that was available
on the World Wide Web, and another model began to spread.

To access the Internet, a PC user needed to use a temporary dial-up connection via an Internet service provider (ISP). These PC
users became second-class citizens of the Internet, interacting as clients to download information from established web servers.
Because these users weren't permanently connected to the Internet, it made less sense to assign them an entry in the DNS. And
because there weren't enough IP addresses available to handle the sudden onslaught of new users, ISPs began assigning IP
addresses dynamically so that each user had a different IP address for every session.[3] The DNS system was never designed for
this sort of environment. The creators of the Internet assumed that changing an IP address would be a rare occurrence, and as a
result, it could take days for a modification to make its way through the DNS system.

The end result was that the PC user became an invisible client on the Internet, able to receive data but not able to contribute any.
With the commercialization of the Internet, this one-way pattern became the norm, and the Internet became the computer-based
counterpart of newspaper and television media. Early visions of the Internet as the great equalizer of communication faded.

At the same time, the cooperative model of the Internet began to break down. Network administrators reacted to the threat of
malicious users by using firewalls and network address translation (NAT). Both of these changes furthered the transformation to a
client-server Internet. Computers could no longer contact each other as peers. Instead, communication could only succeed if the
client inside the firewall (or behind the NAT) initiated it. Even the network infrastructure of the Internet became more and more
optimized for client-server communication. Internet providers built up their networks with asymmetric bandwidth with which
download times are always faster than upload times.

Interestingly, much of the underlying technology that supports the Internet is still based on peer-to-peer concepts. For example,
the DNS registry is not a central repository stored at a single location but a system for sharing information among peer DNS
servers. Similarly, a network of mail-server peers routes e-mail. On a hardware level, the physical routers that route network traffic
follow some peer-to-peer patterns: They communicate together and cooperate to optimize a path for data transmission. However,
the infrastructure that's developed on top of this substrate is primarily client-server. In order for peer-to-peer to succeed,
applications will need to reintroduce some of the ideas pioneered by the early Internet.

The Return of Peer-to-Peer

Recently, there's been a resurgence of peer-to-peer activity on the Internet—this time in the form of a few revolutionary
applications such as Napster, SETI@Home, ICQ, and Gnutella. Not all of these are pure peer-to-peer applications. In fact, all but
Gnutella rely on a central server for some tasks. Nevertheless, they all include a framework that allows significant peer interaction.

Part of the reason behind this latest change is the increasing value of the ordinary PC. When they first appeared on the Internet,
PCs were primitive enough that it seemed appropriate to treat them as dumb terminals that did little more than download and
display HTML pages. Today, PCs offer much more CPU power and contain more disk space (and thereby host more potentially
valuable content). PCs have also swelled to be the largest single part of the Internet. What they can't offer in quality, they can
offer through sheer numbers.

Note Even a conservative estimate of 100 million PCs on the Internet, each with only a 100 MHz chip and a 100 MB hard
drive, arrives at a staggering total of 10 billion MHz of processing power and 10,000 TBs of storage. The real total is
almost certainly much larger.

There is one disheartening fact about all of the examples of current peer-to-peer applications. Without exception, each one has
developed a proprietary system for peer discovery and communication. Some of these systems are complementary, and a few are
based on more-or-less open standards. However, the next wave of peer-to-peer development will probably appear when broader
standards emerge and technology companies such as Microsoft and Sun develop high-level tools that specifically address (and
solve) the severe networking demands of peer-to-peer programming.

Instant Messaging

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first wave of peer-to-peer applications included instant-messaging software, which allows users to carry out real-time
conversations. The key insight behind applications such as ICQ is that users would require a new kind of registry to allow them to
find each other on the Internet. Or to put it another way: Communicating over the Internet is easy; locating a friend is not, because
of the unreliable nature of dynamic IP addresses. ICQ solved this problem by introducing a dynamic registry that associates each
user with a unique number. Later instant-messaging systems bind a user to an e-mail address or, in the case of Windows
Messenger, a .NET passport. With a dynamic registry, the user's connection information (the IP address) can be changed
instantly.

However, most messaging applications are not strictly peer-to-peer because they use a central server to route messages. This
allows the server to store messages for offline users and route messages through a firewall. Some messaging systems provide
the option of establishing direct client-to-client connections when possible and only using the server as a fallback (ICQ), while
others use direct client-to-client communication when large amounts of information must be transferred (such as sending a file in
Windows Messenger). There are advantages and drawbacks to both approaches, and you'll explore them in the second part of
this book when you develop an instant-messaging example.

Jabber and Groove
Instant-messaging applications require their own proprietary infrastructure. However, there are at least two tools that are evolving
to supply some of this infrastructure for you. One is Jabber, an open-source instant-messaging platform that began as a switching
system between incompatible instant-messaging protocols. Today, you can use Jabber as an XML routing system that allows peer
communication. See http://www.jabber.org and http://www.jabbercentral.com for more information.

Groove is a more ambitious platform for collaborative applications that was developed by Ray Ozzie, the creator of Lotus Notes.
Groove is not an open-source project, but it's of interest to Microsoft developers because it's COM-based and includes .NET tools,
which make it easy to build collaborative applications that include automatic support for routing and encryption. Essentially,
Groove provides a peer-to-peer infrastructure that you can use in your own peer-to-peer applications. You will find out more about
Groove in Chapter 12.

SETI@Home
SETI@Home is an innovative project that exploits the idle time on the average personal computer. SETI@Home masquerades as
an ordinary screen saver. When it runs, it processes a chunk of astronomical radio data downloaded from the SETI@Home site
and scans for unusual patterns. When it's finished, it uploads the results and requests another block.

The idea of using multiple ordinary computers to do the work of one supercomputer is far from new. In the early days of the
Internet, distributed-computing projects were used to test encryption codes. Math hobbyists and researchers sometimes did
similar independent work to generate potential prime numbers or test a theory, although the efforts were never as well integrated.
SETI@Home was the first to create an effective vehicle for distributing the code (a screen saver) and combine it with a problem
that could easily be factored into smaller parts. Several other companies have tried, without success, to create similar projects in
the commercial arena.

In some ways, SETI@Home deviates from a true peer-to-peer system because it relies on a central server that ultimately controls
the entire system. However, in another respect SETI@Home represents the ideal of peer-to-peer design:

Every computer participates in performing the heavy lifting. In Chapter 6, you'll learn how to design a peer-to-peer .NET
application for distributed computing. Best of all, unlike SETI@Home, you'll learn how to make this program generic enough to
handle a dynamically defined task.

For more information about SETI@Home, see http://setiathome.berkeley.edu.

Napster and Gnutella
Napster and Gnutella are examples of peer-to-peer applications designed for content sharing—specifically, for sharing MP3 music
files.

Napster's genius was to combine peer-to-peer technology with a centralized peer directory. This created a hybrid system that
performed and scaled extremely well. The central server never became a bottleneck because it was used for comparatively low-
bandwidth activities while the actual file transfers were performed between peers on the edges of the network. Napster also
exploited a niche that was particularly well suited for peer-to-peer applications: popular music. Any large group of users with music
collections is certain to have a significant redundancy in catalogued songs. This redundancy allowed the overall system to work
reliably, even though it was composed of thousands of unreliable clients. In other words, the chance that a given song could be
found was quite high, though the chance that a given user was online was low.

Gnutella is a decentralized, pure peer-to-peer model that almost disappeared before being discovered by open-source
developers. Unlike Napster, Gnutella doesn't use a central server, but relies on a message-based system in which peers forward
communication to small groups. However, though all peers are given equal opportunity by the Gnutella software, they aren't all
equal. When a computer is discovered with a higher bandwidth, it morphs into a super-node and is given a higher share of
responsibility.

The Gnutella design has several well-known limitations. It does not provide any security to disguise user actions, or any anonymity
for peers, or any way to verify the content of files. It also lacks the optimized routing and caching that allow more sophisticated
peer-to-peer applications to dynamically correct load imbalances as they occur.

In Part Three, you'll use .NET's networking support to create a hybrid file-sharing application like Napster's.

Freenet
Freenet is a peer-to-peer model for a virtual pooled hard drive—with one significant difference. Freenet's goal is to ensure free
and uncensored communication over the Internet. Every Freenet peer surrenders a small portion of space on their hard drive, on
which encrypted data is stored. The actual content stored on a given peer changes regularly so that the most requested content is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

which encrypted data is stored. The actual content stored on a given peer changes regularly so that the most requested content is
replicated while the least requested content gradually disappears. Because of its design, Freenet is quite efficient for transferring
large amounts of information. It also allows any user to freely publish information to the Internet, without requiring a website.
However, there is no way for a Freenet peer to determine what's being stored on the local drive. Overall, Freenet is a niche use of
peer-to-peer technology, but it's an example of an elegant, completely decentralized model. For more information about Freenet,
see http://freenetproject.org.

JXTA Search
One peer-to-peer application type that hasn't yet materialized is distributed searching. Currently, web search engines such as
AltaVista and Google use spiders that continuously crawl through an unlimited series of websites, following links and cataloguing
everything they find. When you perform a search with Google, you're searching the most recent results from the spider's search.
Unfortunately, this doesn't necessarily reflect the content on the Web at that moment. Some of the results you retrieve may be
months old, and may point to nonexisting links while omitting much more important current data. And the data stored on internal
networks but not published on a website will always be beyond the reach of the search.

One idea is to supplement the current generation of searching technology with real-time searches over a peer network.
Unfortunately, before a peer-searching technology can work, it needs a large network of like-minded peers with valuable content,
and a content-description language that can be used to advertise resources and create queries. One early attempt to standardize
such a system was Infrasearch. The technology behind Infrasearch was recently purchased by Sun and incorporated into their
new JXTA platform. It's not yet ready for prime time, but it promises to change the way we find information on the Internet.

For information about JXTA, go to http://search.jxta.org.

.NET Terrarium

.NET Terrarium is a learning game for the Microsoft .NET platform. It allows developers to create virtual "creature" classes and
insert them into a virtual ecosystem hosted by a group of peers. Like Napster and SETI@Home, .NET Terrarium is a hybrid peer-
to-peer application that makes use of a central discovery server. Currently, the source code for .NET Terrarium is not available,
although it's expected that some pieces will gradually appear, accompanied by helpful commentary from Microsoft's architects.
You can download Terrarium at http://www.gotdotnet.com/terrarium.

The "Death" of Peer-to-Peer

Peer-to-peer applications are still in their infancy, and already some reports are predicting their demise. Most of these claims
center around the inability of most peer-to-peer venture projects to make money, particularly such high-profile failures as Napster.
However, peer-to-peer is not just a business model. It's also a framework that deals with current problems with distributed
computer systems—problems that can't be resolved in any other way.

There are two schools of thought on the future of peer-to-peer. Some believe that pure peer-to-peer applications are the ultimate
future of computing, and that the current trend of combining peer-to-peer concepts with more traditional client-server components
is transitional. Others believe that peer-to-peer technology will be integrated into the current generation of applications, thereby
adding new capabilities.

One interesting example is the .NET learning game Terrarium, which was initially envisioned as a straight peer-to-peer application.
When the resulting network traffic became difficult to manage, the team switched to a hybrid system with sever-based peer
discovery. The final solution incorporates .NET web services (primarily a client-server technology) with peer-to-peer networking.
Lance Olson, Terrarium's lead program manager, describes it this way:

I think that the peer-to-peer hype was sold as a new application model and an entirely new world around which
we would build applications. And I think that the truth of the matter is that it's much more evolutionary… . Peer-
to-peer is certainly not dead. However, the hype and the notion of peer-to-peer as just a stand-alone concept is
probably … more of an evolutionary step than something that is just an entirely new model. And so the peer-to-
peer world as I see it in the future is more one of applications that are more fault tolerant or are more interactive
and have a better ability to contact other resources that are available on the network. So they're just like the
applications today, only better in those senses.[4]

Recently, more and more developers have been speaking out in favor of hybrid peer-to-peer designs. Quite simply, enterprise
companies are unwilling to give up their servers. They need to be able to access a central component they can control, support,
back up, and protect. Enterprise companies are much more interested in systems that centralize some core services but still allow
for client interactions using peer-to-peer protocols.

Note This book focuses on the hybridization of peer-to-peer concepts. In other words, you'll learn how to create solutions
that incorporate peer-to-peer design, but the book may make use of server components that aren't necessarily pure
peer-to-peer systems. Pure peer-to-peer implementations require a significant amount of messy network coding, and
.NET does not yet provide high-level ways to deal with these problems. (Other platforms, such as JXTA, are also
evolving to tackle these problems.) Peer-to-peer—like .NET—is a compromise. It's your challenge to integrate it the
best way you can for your development.

[3]The IPv6 protocol promises to solve this problem and prevent the Internet from running out of IP addresses. IPv6 uses 128-bit
IP addresses with values represented as hexadecimal numbers separated by colons (as in 0528:a165:ff00:50bf:7708:0dc9:4d76).
IPv6 will support an incredible one trillion machines, and one billion networks. However, it's uncertain when IPv6 will be widely
implemented.

[4]From Episode 21, "‘Terrarium’ and Peer-to-Peer," of "The .NET Show" (see http://msdn.microsoft.com/theshow/).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Peer-to-Peer Technologies in .NET
The .NET class library provides multiple technologies for communicating between computers. Some of these are layered on top of
one another. You choose a high-level or low-level technology based on how much control you need and how much simplicity you
would like.

Some of these technologies include

The low-level networking classes in the System.Net.Sockets namespace, which wrap the Windows Sockets
(Winsock) interface and allow you to create and access TCP channels directly. These classes are the heart of most
peer-to-peer applications.

The networking classes in the System.Net namespace, which allow you to use a request or response access
pattern with a URI over (HTTP).

The higher-level Remoting infrastructure, which allows you to interact with (or create) objects in other application
domains using pluggable channels including TCP and HTTP and formats including binary encoding or SOAP.
These classes can also be used in a peer-to-peer application, with some adaptation.

The higher-level web services infrastructure, which provides fixed services as static class methods. This model is
not suited for peer-to-peer communication, but is useful when creating a discovery service.

In addition, there are several .NET technologies that you'll need to use and understand as part of any peer-to-peer application that
isn't trivially simple. This includes threading, serialization, code access security, and encryption. You'll get a taste of all of these in
this book.

Finally, it's worth mentioning a few third-party tools that you'll see in Part Four of this book.

Windows Messenger is Microsoft's instant-messaging product. There is some published information available on
the Windows Messenger protocol, and even a .NET library that allows you to harness it in your own software. See
Chapter 12 for more information.

Groove is a platform for collaborative applications that manages the synchronization of a shared space. It's not free,
but it's powerful, and Chapter 12 shows how it can help your applications.

Intel provides a free .NET Peer-to-Peer Accelerator Kit, which extends .NET's Remoting infrastructure with support
for security, discovery, and limited firewall traversal. It's still an early product, but it promises to eliminate some of
the connectivity headaches with peer-to-peer on the Web. You'll consider Intel's toolkit in Chapter 13.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
Peer-to-peer applications represent a fundamental shift from most other types of enterprise development and a return to some of
the concepts that shaped the early Internet. They provide the key to collaboration and distributed computing, but require a new
programming model that offers additional complexity and isn't yet built into development platforms such as .NET. You'll explore
some of the new considerations required for peer-to-peer programming and take a closer look at different peer-to-peer models in
the next chapter.

Perhaps the most interesting thing about a peer-to-peer system is that the work it performs is often more than the sum of its parts.
Peers in a peer-to-peer application are a bit like ants in a colony. Each individual peer contributes relatively little at any one
moment, but the sum of the work performed by all peers is surprisingly powerful.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2: Peer-to-Peer Architecture
Before you dive into a full-fledged peer-to-peer application, you need to understand some of the design issues that affect every
peer-to-peer project. These are questions about peer identity, discovery, communication, and interaction. In this chapter, you'll
investigate these issues and dissect different types of peer-to-peer architecture.

You'll notice that this is a fairly short chapter. There's a reason for that. Although peer-to-peer architecture is important, it's often
more helpful to see live examples than volumes of theory. This chapter is only meant to introduce the basics that you need to
understand the peer-to-peer examples developed throughout the book.

Peer-to-Peer Characteristics
One characteristic you won't find in the peer-to-peer world is consistency. The more you learn about different peer-to-peer
applications, the more you'll see the same problems solved in different ways. This is typical of any relatively new programming
model in which different ideas and techniques will compete in the field. In the future, peer-to-peer applications will probably settle
on more common approaches. But even today, most of these techniques incorporate a few core ingredients, which are discussed
in the following sections.

Peer Identity

In a peer-to-peer system, a peer's identity is separated into two pieces: a unique identifier, and a set of information specifying how
to contact the peer. This separation is important—it allows users in a chat application to communicate based on user names, not
IP addresses, and it allows peers to be tracked for a long period of time, even as their connection information changes.

The connectivity information that you need depends on the way you are connecting with the peer, although it typically includes
information such as a port number and IP address. (We'll examine this information in detail in Chapter 7, which explains core
networking concepts.) The peer ID is a little trickier. How can you guarantee that each peer's identifier is unique on a large
network that changes frequently?

There are actually two answers. One approach is to create a central component that stores a master list of user information. This
is the model that chat applications such as Windows Messenger use. In this case, the central database needs to store
authentication information as well, in order to ensure that peers are who they claim to be. It's an effective compromise, but a
departure from pure peer-to-peer programming.

A more flexible approach is to let the application create a peer identifier dynamically. The best choice is to use a globally unique
identifier (GUID). GUIDs are 128-bit integers that are represented in hexadecimal notation (for example, 382c74c3-721d-4f34-
80e5-57657b6cbc27). The range of GUID values is such that a dynamically generated GUID is statistically unique—in other
words, the chance of two randomly generated GUIDs having the same value is so astonishingly small that it can be ignored
entirely.

In .NET, you can create GUIDs using the System.Guid structure. A peer can be associated with a new GUID every time it joins the
network, or a GUID value can be generated once and stored on the peer's local hard drive if you need a more permanent identity.
Best of all, GUIDs aren't limited to identifying peers. They can also track tasks in a distributed-computing application (such as the
one in Chapter 6) or files in a file-sharing application (as shown in Chapter 9). GUIDs can also be used to uniquely identify
messages as they are routed around a decentralized peer-to-peer network, thereby ensuring that duplicate copies of the same
message are ignored.

Regardless of the approach you take, creating a peer-to-peer application involves creating a virtual namespace that maps peers
to some type of peer identifier. Before you begin to code, you need to determine the type of peer identifier and the required peer
connection information.

Peer Discovery

Another challenge in peer-to-peer programming is determining how peers find each other on a network. Because the community
of peers always changes, joining the network is not as straightforward as connecting to a well-known server to launch a client-
server application.

The most common method of peer discovery in .NET applications is to use a central discovery server, which will provide a list of
peers that are currently online. In order for this approach to work, peers must contact the discovery server regularly and update
their connectivity information. If no communication is received from a peer within a set amount of time, the peer is considered to
be no longer active, and the peer record is removed from the server.

When a peer wants to communicate with another peer, it first contacts the discovery server to learn about other active peers. It
might ask for a list of nearby peers, or supply a peer identifier and request the corresponding connectivity information it needs to
connect to the peer. The peer-to-peer examples presented in the second and third part of this book all use some form of
centralized server.

The discovery-server approach is the easiest way to quickly implement are liable peer-to-peer network, but it isn't suitable for all
scenarios. In some cases, there is no fixed server or group of servers that can play the discovery role. In this case, peers need to
use another form of discovery. Some options include

Sending a network broadcast message to find any nearby peers. This technique is limited because broadcast
messages cannot cross routers from one network to another.

Sending a multicast broadcast message to find nearby peers. This technique can cross networks, but it only works
if the network supports multicasting.

Reading a list of super-peers from some location (typically a text file or a web page), and trying to contact them
directly. This requires a fixed location to post the peer information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last approach is not perfect, but it's the one most commonly used in decentralized peer-to-peer applications such as Gnutella.
You'll learn about broadcasting in Chapter 9.

The Server-Mode/Client-Mode Model

Peer to peer applications often play two roles, and act both as a client and server. For example, in a file-sharing application every
interaction is really a client-server interaction in which a client requests a file and a server provides it. The difference with peer-to-
peer applications is every peer can play both roles, usually with the help of threading code that performs each task
simultaneously. This is known as the server-mode/client-mode (SM/CM) model, as shown in Figure 2-1.

Figure 2-1: The server-mode/client-mode model

The dual roles in a file-sharing application are fairly obvious, but there are some types of applications that require more server
work. For example, in a distributed-computing application, a work manager typically divides a task into multiple task segments,
assigns it to a group of workers, and assembles their responses into a final solution. In some respects, this kind of application
doesn't appear to be a true peer-to-peer application at all, because it centralizes functionality in a dedicated server module.
However, you can make this application into more of a peer-to-peer solution by applying the SM/CM model. For example, you
might create a peer that has the ability to request work and perform work for other requesters, as you will in our example in
Chapter 6.

Remember, in a single interaction, the parts of a peer-to-peer system are not equivalent. One peer will take the role of a server,
while the other acts as a client. However, over a longer time frame, each peer has the capability to play different roles.

Network Addressing Challenges

Firewalls and network address translation (NAT) devices are the bane of all peer-to-peer applications and can make it all but
impossible for peers to interact.

Firewalls act as gatekeepers separating the public Internet and an internal network (or individual computer). Firewalls typically
work as a kind of one-way gate, allowing outgoing traffic, but preventing arbitrary outside computers from sending information to a
computer inside the Internet. In some cases, firewalls can be configured to allow or deny connections on specific ports, thereby
authorizing some channels for peer-to-peer communication, although it's becoming increasingly common for firewalls to lock down
almost everything. Further complicating life is NAT, which hides a client's IP address so it's not publicly accessible. The NAT is
intelligent enough to be able to route a response from a server to the original client, but other peers can't communicate with the
hidden computer. Thus, a peer could work in client-mode, but not server-mode, which would cripple the functionality of the
system.

The peer-to-peer working group (http://peer-to-peerwg.org) identifies some of the most common approaches for interacting over a
firewall or NAT. Two basic techniques include

Reversing the connection. If PeerA can't contact PeerB due to a firewall, have PeerA contact PeerC, which will then
notify PeerB. PeerB can then initiate the connection to PeerA. This won't work if both PeerA and PeerB are behind
firewalls.

Using a relay peer. If PeerA and PeerB need to communicate but are separated by a firewall, have them route all
communication through some PeerC that is visible to both. JXTA and Gnutella use variations of this approach.

Coding this sort of low-level networking logic is a chore at best. If you need to create peer-to-peer applications over a wide
network that can tunnel through firewalls, your best choice may be a third-party tool such as the ones we'll explore in Part Four of
this book. Or, you may want to incorporate some centralized components. For example, a typical chat application such as
Windows Messenger avoids firewall problems because all clients connect directly to the server, rather than to each other.
However, some features (for example, file transfer) use direct connections and are consequently not supported by all peers. You
may want to take this approach in your own applications to guarantee basic functionality, while giving peers the option of using
direct connections for some features whenever possible.

Tip You can often tell whether the current computer is behind a NAT by examining its IP address. RFC 1918 spells out
common NAT addresses: 10.0.0.0–10.255.255.255, 172.16.0.0–172.31.255.255,192.168.0.0–192.168.255.255. If your
IP address falls within one of these ranges, you'll be able to create outgoing connections, but won't be able to accept
incoming ones.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Peer-to-Peer Topology
Peer-to-peer applications don't necessarily abolish the central server completely. In fact, there are a variety of peer-to-peer
designs. Some are considered "pure" peer-to-peer, and don't include any central components, while others are hybrid designs.

Peer-to-Peer with a Discovery Server

One of the most common peer-to-peer compromises involves a discovery server, which is a repository that lists all the connected
peers. Often, a discovery server maps user names to peer connectivity information such as an IP address. When users start the
application, they're logged in and added to the registry. After this point, they must periodically contact the discovery server to
confirm that they're logged in and that their connection information hasn't changed.

There is more than one way for peers to use the information in a discovery server. In a simple application, peers may simply
download a list of nearby users and contact them directly with future requests. However, it's also possible that the peer will need
to communicate with a specific user (for example, in the case of a chat application). In this scenario, the discovery server can be
structured to allow peer lookups by name, e-mail address, or some other fixed unique identifier. The peer interaction works like
this:

1. The peer contacts the discovery server with a request to find the contact information for a specific user (for
example, someone@somewhere.com).

2. The discovery server returns the user's IP address and port information.

3. The peer contacts the desired user directly.

This approach is also known as brokered or mediated peer-to-peer because the discovery server plays a central role in facilitating
user interaction.

Note This approach is much easier to scale than a pure peer-to-peer model. Although pure peer-to-peer models can be
made efficient and scalable, the "plumbing" code is significantly more difficult. If you can rely on a discovery server in
your applications, it will greatly simplify most solutions.

Peer-to-Peer with a Coordination Server

Some peer-to-peer applications benefit from a little more help on the server side. These applications combine peer-to-peer
interaction with a central component that not only contains peer lookup information, but also includes some application-specific
logic.

One example is Napster, which uses a central discovery and lookup server. In this system, peers register their available resources
at periodic intervals. If a user needs to find a specific resource, the user queries the lookup server, which will then return a list of
peers that have the desired resource. This helps to reduce network traffic and ensures that the peers don't waste time
communicating if they have nothing to offer each other. The file-transfer itself is still peer-to-peer. This blend of peer-to-peer and
traditional application design can greatly improve performance. By using a centralized server intelligently for a few critical tasks,
network traffic can be reduced dramatically.

One question that arises with this sort of design is exactly how much responsibility the central server should assume. For
example, you might create a messaging application in which communication is routed through the centralized server so that it can
be analyzed or even logged. Similarly, you might design a content-sharing application that caches files on the server. These
designs will add simplicity, but they can also lead to massive server bottlenecks for large peer-to-peer systems. As you'll discover
in this book, a key part of the art of peer-to-peer programming with .NET is choosing the right blend between pure peer-to-peer
design and more traditional enterprise programming.

Pure Peer-to-Peer

A pure peer-to-peer application has no central server of any kind. A typical user only communicates with a small group of nearby
peers. In this scenario, even basic message routing and caching becomes a challenge. Typically, every message is automatically
given several pieces of information, including the following:

A unique GUID

A field that records the "number of hops"—in other words, how many peers have already forwarded this copy of the
message

A setting that determines the maximum number of hops the message will be allowed to live for

The sender's identifier (a GUID), and optionally, its connectivity information

To make a request, a peer creates a new message and sends it to its local group of peers. When a peer receives a message, it
performs the following steps:

1. The peer checks that the message hasn't been recently received (probably by comparing it with a collection that
caches the last 50 messages). If it has been received, the message is discarded.

2. The peer increments the number-of-hops field.

3. The peer checks the number of hops against the maximum number of hops allowed. If the number of hops
exceeds the allowed lifetime, the message is discarded. This helps to prevent the same message from being
continuously rerouted to the same peers over the network.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. The peer forwards the message along to all the peers it knows about in a decentralized system such as
Gnutella. The peers themselves will decide if they can satisfy the request. In a decentralized system such as
Overnet, the peer now examines the message to determine the requested resource and compares that with a
collection of information compiled by other peers. This information will probably be a hashtable that maps
resource names to peers. When it finds a peer that can fulfill the request, it forwards the message to that peer
only.

5. All the peers that have received the message start the same process at step 1.

This branching-out process is shown in Figure 2-2.

Figure 2-2: A pure peer-to-peer search

When a peer is found that can satisfy the request, it sends back a response. Typically, this response is sent back over the network
in the same patch it took to arrive, thereby increasing the likelihood that it will be able to traverse the network. Alternatively, the
peer could attempt to open a direct connection to the requesting peer to notify it that it has the requested resource.

Using this technique, a computer can indirectly contact a large network in a short time. There is no central server, and hence no
single point of failure, and no possibility for out-of-date information. However, there are other drawbacks. The network traffic is
likely to be high and the coding is complicated because each peer needs to maintain two things: a cache of peer-discovery data
(which maps peer identifiers to peer connectivity information) and a cache of recently processed messages (which prevents a
message from being rerouted to peers that have already processed it). It's also possible for some peer groups to become
disconnected from the rest of the network, leading to multiple peer pockets instead of one large global network. This is most
common when the number of peers is small.

One problem with pure peer-to-peer applications is the initial connection to the peer network. To find other peers, the application
can use network-broadcasting techniques (such as IP multicast), but these can exert a significant overhead and won't work in all
network environments. These approaches are most useful in an intranet in which the infrastructure required for multicast is known
to exist.

Another approach is for the peer to use a list of well-known nodes to become connected at startup. This list might be retrieved
from a configuration file (which can be updated every time the application is used successfully), or a fixed location on a network.
An example of a pure peer-to-peer application that uses this approach is Gnutella.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
The challenges that face peer-to-peer applications are far from trivial. Some challenges, such as the connectivity hurdles set in
place by firewalls, proxy servers, and NAT, are quite difficult to overcome (and won't be fully resolved in this book). That said,
hybrid designs, such as those pioneered by Napster and instant-messaging applications, have met with wild popularity, and are
much easier to implement in .NET. In this book, you'll focus on these hybrid designs and consider the design decisions (and the
trade-offs) you'll face when building such a system. This book also looks forward to the future of peer-to-peer and introduces
some of the tools and add-ons that may eventually evolve into a richer peer-to-peer programming framework.

In the next chapter, you'll be introduced to Remoting, which will provide the framework for a peer-to-peer messaging application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part Two: Peer-to-Peer with a Coordination Server
Chapter List

Chapter 3: Remoting Essentials

Chapter 4: Building a Simple Messenger

Chapter 5: Threading the Coordination Server

Chapter 6: Building a Distributed Task Manager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3: Remoting Essentials

Overview
In a peer-to-peer application, clients communicate over a network (or the network of networks, the Internet). You can select the
protocol used for communication and the encoding used for messages. Most other models for distributed applications aren't nearly
as flexible.

One approach for peer-to-peer communication in the .NET world is Remoting, a high-level abstraction that wraps networking code.
Remoting is an attractive choice for communication in a peer-to-peer system because it's flexible, reliable, and easy to configure.
With Remoting, the common language runtime (CLR) takes care of basic infrastructure chores such as releasing unneeded
objects, creating and closing connections, and managing simultaneous requests with a pool of threads. Remoting also has some
limitations—namely, because of the way it's designed, it works better for brokered communication with a coordination server than
for decentralized peer-to-peer applications.

In this chapter, you'll learn all the Remoting basics that you need to create a peer-to-peer application such as the Messenger
program presented in the next two chapters. You'll learn how objects communicate out-of-process, how to serialize data that must
be sent across the network, and how to handle concurrent access. You'll also learn the ins and outs of some trickier aspects of
Remoting, such as bidirectional communication, callbacks and events, and object lifetime. You'll also see why Remoting code is
used differently in a peer-to-peer application than in a typical .NET enterprise system.

But before we begin, it helps to take a broad look at what Remoting is, how it fits into the grand scheme of distributed application
technologies, and what its advantages and shortcomings are.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Inter-Process Communication
Every .NET program consists of one or more threads inside an application domain. Application domains are isolated logical
processes that can't communicate directly. To bridge the gap between more than one application domain, you can use .NET
Remoting.

Remoting is often described as the way that programs communicate with each other in .NET. This description is accurate, but it
ignores the fact that there are literally dozens of different ways for applications to communicate on any platform. Some of the
options for inter-process communication include

Serializing information to a data store that both applications can access (such as a database or a file)

Sending a custom message to a Microsoft Message Queuing queue

Calling an ASP.NET web service with a SOAP message

Creating a connection by directly using .NET's networking support, which provides classes that wrap Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP) channels, or raw sockets

Using an operating system service such as named pipes or COM/DCOM (or see Microsoft Knowledge Base Article
Q95900 for some other legacy choices)

All of these approaches have dramatically different characteristics, and different niches in the programming world. For example,
the first choice (serializing information to a data store) is never workable if you need to provide instantaneous communication. In
order to receive new messages regularly, multiple applications would need to poll the data source continuously, thereby creating
an unbearable burden on your system. I've seen examples of chat applications that rely on this sort of continuous polling and, as a
result, cannot scale beyond a small set of users without crippling the server.

On the other hand, the second option (using a message queue) is extremely scalable because it uses a disconnected message-
based architecture. Every machine has its own queue that it monitors for received messages. To send a message, you simply
need to know the queue name of the recipient. However, this approach is rarely used for peer-to-peer applications because it ties
each client to a specific machine (the one on which the queue exists). It also requires aWindows PC with Microsoft Message
Queuing installed and properly configured. Finally, message queuing only allows one-way "fire-and-forget" communication. To
respond to a message, a new message must be created and sent to the original sender's queue. This means that a complex
interaction (such as querying a computer for a list of files and initiating a download) could require several back-and-forth
messages, thereby increasing the complexity and possibility for error. As a result, it's much more likely to find message queuing at
work in the enterprise world (for example, as the backbone of an internal order processing system).

The third option, web services, excels at no-nonsense cross-platform communication. Unfortunately, it's too feature-limited for a
peer-to-peer application. The problem is that web services are essentially a client-server technology. To use a web service, a
client contacts the web server, makes a request, and waits for a response. There's no way for the server to contact the client at a
later time, and there's no way for multiple clients to interact (unless they too are configured as web servers running ASP.NET and
providing their own web services). Web services are the ticket when you wish to provide server-side functionality to all kinds of
clients. They aren't any help if you want to build a system of equal peers that work together.

The final two options suggest some more useful ways to create a peer-to-peer application. Direct networking in .NET is an
important technique, and you'll look into it in the third part of this book. However, direct networking can be complicated, and it will
dramatically inflate the amount of code you need to write. To simplify your life, you can make use of one of the higher-level
abstractions provided by Microsoft. In the past, this was the quirky technology of COM/DCOM. Today, DCOM is replaced by a
newer and more flexible standard: .NET Remoting.

Introducing Remoting

Remoting is a generic method of inter-process and remote communication in.NET. It allows applications in different processes
and different computers to communicate seamlessly. Like DCOM, Remoting is designed to let you use the objects in another
application in the same way that you use local objects. The heavy lifting takes place behind the scenes and requires little
programmer intervention.

The real strength of Remoting, however, is the fact that it abstracts the way you use remote objects from the way you
communicate with them. When you use Remoting, you have the choice of different activation types, transport protocols,
serialization formats, and object-lifetime policies. You can change these options with a few lines of code or a configuration file, but
the code for using the remote object remains unchanged, and your application stays blissfully unaware of how the communication
takes place.

Remoting Advantages

Remoting is a boon for any sort of distributed application developer. Some of its advantages include the following:

Remoting can be used with different protocols and even in cross-platform projects. Because Remoting supports the
ability to send SOAP-formatted messages, you can bring a Java client into the mix, although it won't be quite as
easy as it is with web services.

Remoting handles state management and object lifetime, ensuring that objects time out when the client isn't using
them (thereby preventing potential memory leaks).

Remoting is extensible. You can create building blocks for other transport channels or formats that will plug in to the
Remoting infrastructure.

Remoting is scalable. Remote requests are handled by a pool of listener threads provided by the CLR. If too many
concurrent requests are sent to the same object, the excess requests will be politely queued and may time out
without damaging the performance of the overall system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When used in conjunction with Internet Information Server (IIS), Remoting allows you to use Secure Sockets Layer
(SSL) security to encrypt messages.

Even though Remoting hides some infrastructure details, it's inherently trickier than programming a local application. You'll need to
perform extra work to make events, custom structures, and object creation work the way you expect with remote objects. You'll
also need to accept some significant trade-offs.

Remoting supports several types of objects, including client-activated, SingleCall, and Singleton objects. For reasons you'll
discover shortly, a peer-to-peer application requires Singleton objects. Singleton objects are, generally speaking, the most
complex types of objects because they need to deal with the reality that multiple clients may use them at once. (In other words, a
single computer in your peer-to-peer system may be simultaneously contacted by several peers, each of which will call methods
on the same object.) In order to handle this possibility, you'll need to introduce threading code at some point, as explained in
Chapter 5.

Remoting Drawbacks

Programming with Remoting means that you're programming at a higher level than with raw sockets and channels. Although this
means you're insulated from a number of costly errors, it can also restrict some of the things that you can do. Here are a few
examples:

Remoting imposes some rules about how objects are exposed. For example, you can't tie objects in the same
application domain to separate channels.

Remoting is inextricably tied up with objects. Clients interact with a remotable object by calling any of its public
methods. Typically, this means you need to create a dedicated Remoting "front end" for any application that
requires remote communication.

Remoting is not designed for on-the-fly configuration. Although it's possible to create an application that dynamically
unregisters Remoting channels and creates new ones, you would need to do more work to implement it. Usually,
Remoting applications are designed with the assumption that it's acceptable to restart the hosting application if the
configuration information changes.

Remoting sends objects in all-or-nothing chunks. If you need to stream large files across the network, this may not
be the best approach. It's for this reason that we'll use a different approach in the third part of this book to build a
file-sharing application.

You have no control of the thread pool used to handle Remoting requests. That means you can't fine-tune details
such as the number of maximum requests.

For the most part, Remoting is a perfect compromise between flexibility and safety. For example, the fact that you can't configure
how the CLR allocates its thread pool is usually a benefit. The CLR handles requests very efficiently, and by performing its work
automatically, it ensures that you won't unwittingly choose an ill-suited setting that would harm the scalability of your system. (It's
for a similar reason that you can't configure how frequently the garbage collector runs or how much memory is initially allocated to
an application.)

The next two chapters will discuss some of these issues in more detail as they develop a messaging application using Remoting.
The remainder of this chapter introduces the basics of the Remoting infrastructure.

Note In this chapter, you'll look at Remoting in terms of objects, and consider how these objects interact across application
domain boundaries. We won't consider how remotable objects are used for communication in a peer-to-peer
application yet—those design decisions will be considered in the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Remoting Architecture
For the purposes of Remoting, you can divide all .NET classes into three types:

Remotable classes. Any class that derives directly or indirectly from MarshalByRefObject automatically gains the
ability to be exposed remotely and invoked by .NET peers in other application domains.

Serializable classes. Any class that is marked with the <Serializable> attribute can be copied across application
boundaries. Serializable types must be used for the parameters or return values of methods in a remotable class.

Ordinary classes. These classes can't be used to send information across application boundaries, and they can't be
invoked remotely. This type of class can still be used in a remotable application, even though it doesn't play a part
in Remoting communication.

Figure 3-1 shows both remotable and serializable types in action. Incidentally, it's possible for a class to be both serializable and
remotable, but it's not recommended. (In this case, you could interact with a remote instance of the object or send a copy of it
across the network.)

Figure 3-1: Remotable and serializable types

Figure 3-1 shows a good conceptual model of what takes place with Remoting, but it omits the work that takes place behind the
scenes. For example, serializable types are not moved, but rather copied by converting them into a stream of bytes. Similarly,
remotable types aren't accessed directly, but through a proxy mechanism provided by the CLR (see Figure 3-2). This is similar to
the way that many high-level distributed technologies work, including web services and COM/DCOM.

Figure 3-2: The Remoting proxy mechanism

With proxy communication, you interact with a remote object by using a local proxy that provides all the same methods. You call a
method on the proxy class in exactly the same way that you would call a method on a local class in your application. Behind the
scenes, the proxy class opens the required networking channel (with the help of the CLR), calls the corresponding method of the
remote object, waits for the response, deserializes any returned information, and then returns it to your code. This entire process
is transparent to your .NET code. The proxy object behaves just like the original object would if it were instantiated locally.

In the next two examples, we'll consider serializable and remotable types in more detail, and show you how to make your own.

Serializable Types

A serializable type is one that .NET can convert to a stream of bytes and reconstruct later, potentially in another application
domain. Serializable classes are a basic feature of .NET programming and are used to persist objects to any type of stream,
including a file. (In this case, you use the methods of the BinaryFormatter in the System.Runtime.Serialization.Formatters.Binary
namespace or the SoapFormatter in the System.Runtime.Serialization.Formatters.Soap namespace to perform manual
serialization.) Serialized classes are also used with Remoting to copy objects from one application domain to another.

All basic .NET types are automatically serializable. That means that you can send integers, floating point numbers, bytes, strings,
and date structures to other .NET clients without worry. Some other serializable types include the following:

Arrays and collection classes (such as the ArrayList). However, the content or the array or collection must also be
serializable. In other words, an array of serializable objects can be serialized, but an array of non-serializable
objects cannot.

The ADO.NET data containers, such as the DataTable, DataRow, and DataSet.

All .NET exceptions. This allows you to fire an exception in a remotable object that an object in another application
domain can catch.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All EventArgs classes. This allows you to fire an event from a remotable object and catch it in another application
domain.

Many, but not all .NET types are serializable. To determine if a given type is serializable, look it up in the class library reference
and check if the type definition is preceded with the <Serializable> attribute.

You can also make your own serializable classes. Here's an example:
<Serializable> _
Public Class Message

 Public Text As String
 Public Sender As String

End Class

A serializable class must follow several rules:

You must indicate to .NET that the class can be serialized by adding the <Serializable> attribute just before the
class declaration.

Every member variable and property must also be serializable. The previous example works because the Message
class encapsulates two strings, and strings are serializable.

If you derive from a parent class, this class must also be serializable.

Both the client and recipient must understand the object. If you try to transmit an unrecognized object, the recipient
will simply end up with a stream of uninterpretable bytes. Similar problems can occur if you change the version of
the object on one end.

Remember, when you send a serializable object you're in fact copying it. Thus, if you send a Message object to another peer,
there will be two copies of the message: one in the application domain of the sender (which will probably be released because it's
no longer important) and one in the application domain of the recipient.

When a class is serialized, every object it references is also serialized. This can lead to transmitting more information than you
realize. For example, consider this revised version of the Message class that stores a reference to a previous message:
<Serializable> _
Public Class Message

 Public Text As String
 Public Sender As String
 Public PreviousMessage As Message
End Class

When serializing this object, the Message referred to by the PreviousMessage member variable is also serialized and transmitted.
If this message refers to a third message, it will also be serialized, and so on. This is a dangerous situation for data integrity
because it can lead to duplicate copies of the same object in the remote application domain.

Finally, if there's any information you don't want to serialize, add the <NonSerialized> attribute just before it. The variable will be
reinitialized to an empty value when the object is copied, as follows:
<Serializable> _
Public Class Message

 Public Text As String
 Public Sender As String
 <NonSerialized> Public PreviousMessage As Message
End Class

This technique is useful if you need to omit information for security reasons (for example, a password), or leave out a reference
that may not be valid in another application domain (for example, file handles).

Tip You may be familiar with web-service serialization. However, the serialization mechanism used in Remoting has little in
common with the one used in web services, even if you're using SOAP-formatted messages. This difference is
necessary because web services place a greater emphasis on cross-platform compatibility and restrict many types that
would have no meaning to non-.NET clients. As a result, there are serializable classes that you use with Remoting that
can't be sent to a web service.

Remotable Types

A remotable type is one that can be accessed from another application domain. Following is an example of a simple remotable
object. It's identical to any other .NET class, except for the fact that it derives from the System.MarshalByRefObject class.
Public Class RemoteObject
 Inherits MarshalByRefObject

 Public Sub ReceiveMessage(ByVal message As Message)
 Console.WriteLine("Received message: " & message.Text)
 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

Every public property, method, and member variable in a remotable class is automatically accessible to any other application. In
the previous example, this means that any .NET application can call RemoteObject.ReceiveMessage(), as long as it knows the
URL where it can find the object. All the ByVal parameters used by ReceiveMessage() must be serializable. ByRef parameters, on
the other hand, must be remotable. (In this case, the ByRef parameter would pass a proxy reference to the original object in the
sender's application domain.)

In this example, RemoteObject represents the complete, viable code for a remote object that writes a message to a console
window. With the aid of configuration files, we'll develop this into a working example.

Tip Like any public method, the ReceiveMessage() method could also be called by another class in the same application.
However, to prevent confusion, it's best to only include methods that are designed exclusively for remote communication
in a MarshalByRefObject.

Remoting Hosts

MarshalByRefObject instances have the ability to be invoked remotely. However, simply creating a MarshalByRefObject doesn't
make it available to other applications. Instead, you need a server application (also called a component host) that listens for
requests, and provides the remotable objects as needed. The component host also determines the URL the client must use to
locate or create the remote object, and configures how the remote object is activated and how long it should live. This information
is generally set in the component host's configuration file. Any executable .NET application can function as a component host,
including a Windows application, console application, or Windows service.

A component host requires very little code because the Remoting infrastructure handles most of the work. For example, if you
place your configuration information into a single file, you can configure and initialize your component host with a single line of
code, as follows:
RemotingConfiguration.Configure(ConfigFileName)

In this case, ConfigFileName is a string that identifies a configuration file that defines the application name, the protocol used to
send messages, and the remote objects that should be made available. We'll consider these settings in the next section.

Once you have called the RemotingConfiguration.Configure() method, the CLR will maintain a pool of threads to listen for
incoming requests, as long as the component host application is running. If it receives a request that requires the creation of a
new remotable object, this object will be created in the component host's application domain. However, these tasks take place on
separate threads. The component host can remain blissfully unaware of them and continue with other tasks, or—more commonly
—remain idle (see Figure 3-3).

Figure 3-3: The component host in an enterprise system

This model is all well and good for a distributed enterprise application, but it's less useful in a peer-to-peer scenario. In an
enterprise application, a component host exposes useful server-side functionality to a client. Typically, each client will create a
separate object, work with it, and then release it. By using Remoting, the object is allowed to execute on the server, where it can
reap a number of benefits including database connection pooling and the use of higher-powered server hardware.

In a peer-to-peer application, however, the component host and the remote component are tied together as one application that
supports remote communication. This means that every peer in a peer-to-peer application consists of a remotable interface that's
exposed to the world and a component host that contains the rest of the application. Figure 3-4 diagrams this approach.

Figure 3-4: The component host in a peer-to-peer system

These two models are dramatically different. Enterprise systems use a stateless approach. Communication is usually initiated by
the client and all functionality is held at the server (much like the client-server model). Peer-to-peer applications use a stateful
model in which independent peers converse through Remoting front-ends.

This difference between enterprise development and peer-to-peer applications becomes evident when you need to choose an
activation type for a remote object. Remotable types can be configured with one of three activation types, depending on the
configuration file settings:

SingleCall. This defines a stateless object that is automatically created at the start of every method invocation and
destroyed at the end. This is similar to how web services work.

Client-activated. This defines a stateful object that is created by the client and lives until its set lifetime expires, as
defined by client usage and configuration settings. Client-activated objects are the most similar to local.NET
objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Singleton. This defines a stateful object that is accessible to the remote client, but has a lifetime controlled by the
server.

Generally, SingleCall objects are perfect for enterprise applications that simply want to expose server resources. They can't be
used in a peer-to-peer application as the basis for bidirectional communication between long-running applications. In a peer-to-
peer application, you need to use the Singleton type, which associates an endpoint with a single object instance. No matter how
many clients connect, there's only ever one remote object created. Or, to put it another way, a Singleton object points to a place
where a specific object exists. SingleCall and client-activated addresses point to a place where a client can create its own instance
of a remotable object. In this book, we'll focus on the Singleton activation type.

There is one other twist to developing with Remoting. In order for another application to call a method on a remote object, it needs
to know some basic information about the object. This information takes the form of .NET metadata. Without it, the CLR can't
verify your remote network calls (checking, for example, that you have supplied the correct number of parameters and the correct
data types). Thus, in order to successfully use Remoting to communicate, you need to distribute the assembly for the remote
object to the client and add a reference to it.

There are some ways of minimizing this inconvenience, either by pre-generating a proxy class or by using interfaces. We'll use the
latter method in the next chapter when we develop a real Remoting example.

Note It may seem counterintuitive that you need to distribute the assembly for remote objects to all clients. This is one of the
quirks of using an object-based model for remote communication (such as Remoting or web services). This problem
won't appear when we use a lower-level networking approach in the third part of this book.

Configuration Files

The configuration files use an XML format to define the channels and ports that should be used for communication, the type of
formatting for messages, and the objects that should be exposed. In addition, they can specify additional information such as a
lifetime policy for remotable objects. Here's the basic framework for a configuration file with Remoting:
<configuration>
 <system.runtime.remoting>
 <application>
 <service>
 <!-- Information about the supported (remotable) objects. -->
 </service>

 <channels>
 <!-- Information about the channels used for communication. -->
 </channels>

 <!-- Optional information about the lifetime policy (tag below). -->
 <lifetime />

 </application>
 </system.runtime.remoting>
</configuration>

You can create this configuration file outside of Visual Studio .NET, provided you place it in the bin directory where the compiled
application will be executed. A simpler approach is to add your configuration file to the Visual Studio .NET project. Simply right-
click on the project in the Solution Explorer and select Add → New Item. Then, choose Application Configuration File under the
Utility node (see Figure 3-5).

Figure 3-5: Adding a configuration file to a project

The application configuration file is automatically given the name app.config. When Visual Studio .NET compiles your project, it
will copy the app.config file to the appropriate directory and give it the full name (the name of the application executable, plus the
.config extension). To see this automatically generated configuration file for yourself, select Project Show All Files from the
menu. Once you compile your project, you'll see the appropriate file appear in the bin directory (see Figure 3-6).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-6: An automatically generated configuration file

Configuration files are required for every application that needs to communicate using Remoting. This includes a component host
and any client that wants to interact with a remote object. The next section shows specific configuration file examples.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Basic Remoting Example
To make all this clear, we'll consider a stripped-down Remoting example. To start, we'll create two console applications: a client
and a server. The client will send a message to the server, which will display it in a console window.

Tip There's a reason we're beginning with a simple console example rather than a Windows Form application. The Console
object is guaranteed to be thread-safe, meaning that there's no possibility for error if multiple clients call the same
remote object at once.With a Windows Form, life isn't always as easy.

We'll also need to create a class library project that contains the remote object. That way, you can easily add a reference to the
remote object from the client. Without this extra step, the client would lack the metadata that tells the CLR how it should verify
method invocations, and communication wouldn't be possible.

If you coded the remote object directly in the server application, you would face the same problem in a different way. Because the
server application is an executable assembly, you can't add a reference to it in your client. It's possible to circumvent this
restriction using interfaces, as you'll see in the next chapter. Without them you must separate the remotable parts of an
application into a separate assembly.

The Remote Object

You can begin by creating the remote object for the server. If you're using Visual Studio .NET, you'll begin by creating a new class
library (DLL) project. This example reuses the RemoteObject class presented earlier, but replaces the custom Message object
with a simple string for simplicity's sake.
Public Class RemoteObject
 Inherits MarshalByRefObject

 Public Sub ReceiveMessage(ByVal message As String)
 Console.WriteLine("Received message: " & message)
 End Sub
End Class

Because this object will be created in the server's application domain, it can use the Console object to display a message. A
similar interaction would be possible if the server were a Windows Form application, but you would need a little extra threading
code to prevent glitches when interacting with user-interface controls. The Console object, however, is always guaranteed to be
thread-safe.

The Server

The server (or component host) is the main console application. If you're using Visual Studio .NET, you'll begin by creating a new
console application. This application registers the Remoting settings defined in the Server.exe.config file, displays a message, and
waits for the user to press Enter, at which point it will end.

Imports System.Runtime.Remoting

Public Module ServerApplication

 Public Sub Main()

 Console.WriteLine("Configuring remotable objects....")
 RemotingConfiguration.Configure("Server.exe.config")

 Console.WriteLine("Waiting for a request.")
 Console.WriteLine("Press any key to exit the application.")

 ' The CLR will monitor for requests as long as this application
 ' is running. When the user presses Enter, it will end.
 Console.ReadLine()

 End Sub

End Module

Tip The name Server.exe.config is used because the application executable file is Server.exe. According to .NET
conventions, settings for an executable application should always be stored in a configuration file that has the same
name as the executable, and adds the .config extension. In some cases, .NET will read and apply these settings
automatically, although this is not the case for Remoting settings (and so it's technically possible to use any file name
you like).

The Server Configuration File

The server configuration file defines the object it will expose and the channel it will open for client requests. Remember, if you're
using Visual Studio .NET, you should always give the application configuration file the name app.config. When Visual Studio .NET
compiles your project, it will copy the app.config file to the appropriate directory, and give it the correct name.

Here's a sample configuration file for a component host:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 <configuration>
2 <system.runtime.remoting>
3 <application name="Server">
4 <service>
5 <wellknown mode="Singleton"
6 type="RemoteLibrary.RemoteObject, RemoteLibrary"
7 objectUri="RemoteObject" />
8 </service>
9 <channels>
10 <channel ref="tcp server" port="8000" />
11 </channels>
12 </application>
13 </system.runtime.remoting>
14 </configuration>

It contains several important pieces of information:

The application is assigned the name "Server" (line 3).

The Singleton mode is used (line 5), ensuring that only a single instance of the object will be created on the server.

The remotable object has the fully qualified class name of RemoteLibrary.RemoteObject (first part of line 6). The
remotable object can be found in the DLL assembly RemoteLibrary.dll (second part of line 6). Both of these pieces
of information must match exactly. Note that the assembly name does not include the extension .dll. This is simply
a matter of convention.

The remoteable object is given the URI "RemoteObject" (line 7). Together with the computer name and port
number, this specifies the URL the client needs to use to access the object.

A TCP/IP server channel is defined on port 8000 (line 10). This channel can receive messages and respond to
them. By default, this channel will use binary encoding for all messages, although you'll see how to tweak this later
on.

In this case, the port number isn't terribly important. The next chapter discusses port numbers in more detail.

Note Ports are generally divided into three groups: well-known ports (0–1023), registered ports (1024–49151), and dynamic
ports (49152–65535). Historically, well-known ports have been used for server-based applications such as web servers
(80), FTP (20), and POP3 mail transfer (110). In your application, you would probably do best to use a registered or
dynamic port that's not frequently used. These are less likely to cause a conflict (although more likely to be blocked by
a firewall). For example, 6346 is most commonly used by Gnutella. For a list of frequently registered ports, refer to the
C:\{WinDir]\System32\Drivers\Etc\Services file, or the http://www.iana.org/assignments/port-numbers site.

The Client

The client is also created as a console application. It performs a continuous loop asking the user for an input string, and only exits
if the user enters the keyword "exit." Every time a message is entered, the client sends this object to the remote application
domain simply by calling the remote object's ReceiveMessage() method.
Imports System.Runtime.Remoting

Public Module ClientApplication

 Public Sub Main()

 Console.WriteLine("Configuring remote objects....")
 RemotingConfiguration.Configure("Client.exe.config")

 Do
 Console.WriteLine()
 Console.WriteLine("Enter the message you would like to send.")
 Console.WriteLine("Or type 'exit' to exit the application.")
 Console.Write(">")
 Dim Message As String = Console.ReadLine()
 If Message.ToUpper() = "EXIT" Then Exit Do

 ' Create the remote object.
 Dim TestObject As New RemoteLibrary.RemoteObject()

 ' Send the message to the remote object.
 TestObject.ReceiveMessage(Message)
 Console.WriteLine()
 Console.WriteLine("Message sent.")
 Loop

 End Sub

End Module

In order for the client to be able to use the RemoteObject class, you must add a reference to the class library assembly that
contains this type.

When the client creates the TestObject, it's actually creating a proxy class that mimics the remote object. When the client calls
TestObject.ReceiveMessage(), the TestObject proxy class makes a call over the network and transmits the information needed to
the real remote object instance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This proxy layer has a couple of other side effects. For example, when the client creates the proxy class, it doesn't create the
server-side object. If the remote object doesn't yet exist, it will be created the first time the ReceiveMessage() method is called.
Similarly, the .NET Framework will not destroy the object if it goes out of scope or if the proxy reference is set to Nothing. Instead,
the remote object behaves according to a specific lifetime lease. In this case, because the lifetime lease has not been explicitly
configured, the default settings will prevail. That means that the object will have an initial lifetime of about five minutes, after which
it will be destroyed if it experiences two minutes of inactivity. Thus, if the client sends multiple messages within a two-minute time
period, it will reuse the same remote object instance, even though the proxy class is re-created with each iteration of the loop.
We'll look at more advanced leasing options later in this chapter.

The Client Configuration File

The client configuration file loosely resembles the server configuration. It defines what channel to use to send communication,
what URL to contact, and what object to communicate with.
1 <configuration>
2 <system.runtime.remoting>
3 <application name="Client">
4 <client>
5 <wellknown url="tcp://localhost:8000/RemoteObject"
6 type="RemoteLibrary.RemoteObject, RemoteLibrary"/>
7 </client>
8 <channels>
9 <channel ref="tcp client"/>
10 </channels>
11 </application>
12 </system.runtime.remoting>
13 </configuration>

The file contains several pieces of information:

The application is assigned the name "Client" (line 3). This designation has no particular significance because the
client will not be contacted by URL.

The URL for the remote object is specified (line 5). This URL consists of the computer name, port, and object URI.
(In this example, the machine name is identified only as "localhost," which is a loopback alias that always points to
the current computer.) The full object URL takes the following form:
 <client url="[Protocol]://[MachineName]:[Port]/[ObjectURI]">

The remotable object has the fully qualified class name of RemoteLibrary.RemoteObject (first part of line 6). The
remotable object can be found in the DLL assembly RemoteLibrary.dll (second part of line 6). Both of these pieces
of information must match exactly. Note that the assembly name does not include the extension .dll. This is simply
a matter of convention.

A TCP/IP client channel is defined without a port number (line 9). This means that .NET will dynamically choose the
most suitable port to open the connection on the client. This port does not need to be hard-coded, because no
other application is trying to contact this client by URL.

The Application in Action

All the parts of this application are provided with the online samples for this chapter, in the OneWayRemoting directory. To test
this solution, you can configure Visual Studio .NET to launch both the client and the server at the same time (just make sure the
server is initialized before you enter any messages in the client). To do so, simply set Visual Studio .NET to launch multiple
projects, as shown in Figure 3-7.

Figure 3-7: Launching multiple projects for debugging

Next, type a message into the client (Figure 3-8). After a brief delay, while the server-side object is created, the message will
appear in the server's console window (Figure 3-9).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-8: Entering a message in the client

Figure 3-9: Receiving the message with the remote object

To confirm that the application is working as expected, you can perform a simple test. Modify the client by omitting the
RemotingConfiguration.Configure() method call. Now, when you create the RemoteObject, a local object will be instantiated in the
client's application domain. When you call the ReceiveMessage() method, the message will be processed in the client's
application domain and will be output in the client's console window.

Clearly, this is a trivial example of Remoting at work. But it gives you an important overview of the following key fundamentals:

Remoting is based on objects. While an experienced network programmer will refer to "sending a message" across
the network (the terminology often used in this book), in Remoting you send this message by invoking a method on
a remote object.

Remote objects are not necessarily tied to the server that hosts them. In fact, if you do want to allow communication
between the remote object and the hosting "container" (as you probably will in a peer-to-peer application), you'll
need to use synchronization code because these parts of the application execute on different threads.

Remoting uses configuration files to register available objects and define the channel that will be used. That makes
it easy to change settings without recompiling. These settings are passed to the Remoting infrastructure provided
by the CLR, which automatically creates channels, opens ports, and provides requested objects as needed without
requiring any additional code.

Remote Object Lifetime

One of the problems with the previous generation of distributed object technology (for example, COM/DCOM) is the fact that it
lacked a reliable way to handle object lifetime. In DCOM, the solution was to use keep-alive pinging messages, which increased
network traffic unnecessarily and allowed greedy clients to keep objects alive indefinitely, wasting server memory. Remoting
introduces a new lease-based system for handling object lifetimes that allows them to be automatically destroyed after a fixed
amount of time (or a fixed period of idleness). You can set lifetime properties in several ways:

The application domain can configure default settings for all the objects it creates by using the <lifetime>
configuration section in its configuration file.

The client using the object can manually retrieve the remote object's lease from the GetLifetimeService() method
(which all MarshalByRefObject instances inherit). The client can then modify the lease settings.

The object itself can override its InitializeLifetimeService() method (which all MarshalByRefObject instances inherit)
and add code to ignore lease settings and configure its own lease properties.

You can implement a custom lease sponsor that monitors an object and determines if its lifetime should be
extended when it expires.

The lifetime leasing system plays a minor role in peer-to-peer programming, in which you typically want an object's network
interface to remain as long as the application domain exists. For that reason, you'll usually want to configure an infinite lease time.
The easiest way is to simply override the InitializeLifetimeService() to return a null reference:
' Ensures that this object will not be prematurely released.
Public Overrides Function InitializeLifetimeService() As Object
 Return Nothing
End Function

This works because it specifies a null reference in the place of the lease object. Alternatively, you could retrieve the ILease object
and modify it to apply new settings, as shown here:
Public Overrides Function InitializeLifetimeService() As Object
 Dim Lease As ILease = MyBase.InitializeLifetimeService()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim Lease As ILease = MyBase.InitializeLifetimeService()
 ' Lease can only be configured if it's in an initial state.
 If Lease.CurrentState = LeaseState.Initial Then
 Lease.InitialLeaseTime = TimeSpan.FromMinutes(10)
 Lease.RenewOnCallTime = TimeSpan.FromMinutes(5)
 End If

 Return Lease

End Function

This will set a lease-lifetime policy in which the object lives at least ten minutes, and is removed after not being used for a five-
minute period. As discussed previously, this technique would rarely be used in a peer-to-peer application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Bidirectional Remoting Example
In the One-Way Remoting example, the client always contacts the server. The server can respond to the client through the
method return value, but once the method call is finished, the client closes the connection and the server can no longer contact
the client. This is not appropriate for a peer-to-peer system, which requires bidirectional communication.

In order to support bidirectional communication, the client must meet three criteria:

It must provide a remotable type (a class that derives from MarshalByRefObject) that the server can call.

It must open a bidirectional Remoting channel, which it will use to listen for calls initiated from the server.

There must be some way to transfer the received information from the remotable client type to the main client
application. This can be accomplished in a loosely coupled way by using a local event.

Once these criteria are met, there are several choices for the actual method of communication:

The server can fire an event, which will be delivered by Remoting to the client's remotable object.

The client can create a delegate that points to one of the methods in its remotable object, and then submit this
delegate to the server. The server can then trigger the method by invoking the delegate.

The client can create a reference to its local remotable object and pass this reference to the server. The server can
then call a method on the local object directly. Alternatively, you could pass the reference as an interface
implemented by the remotable object. In either case, the server must know enough about the remotable client
object or its interface to be able to call one of its methods.

The first option—using events—requires the least amount of work. Multiple clients can attach event handlers to the same event,
and the server doesn't need to worry about who is being contacted when it fires the event. The only consideration is making sure
that the EventArgs object is serializable, so that it can leap across application domain boundaries. However, the event-based
approach is less practical because it doesn't allow the flexibility for the server to call a specific client. It can also lead to problems if
clients disconnect from the network without unregistering their event handlers properly.

The delegate or interface approaches are more flexible. In both cases, the server is in charge of tracking clients (typically by using
some sort of collection object), and removing them from the collection when they can no longer be contacted. The instant-
messaging example in the next chapter uses an interface-based approach.

The following example uses a similar, yet slightly different approach: a delegate that both the server and client recognize. This
project can be found in the TwoWayRemoting directory with the samples for this chapter. This example uses a Windows client.
The server (component host) is unchanged.

The Remote Objects

The first step is to modify the server-side remotable object so that it will attempt to contact the client after a short delay through a
callback. It works like this:

1. The client calls a method in the remote object.

2. The method sets up a timer and returns.

3. When the timer ticks, a new message is sent to the client. This requires opening a new connection because the
original connection has been closed. This time, the server is acting as a client because it's opening the
connection.

Here's the code for our simple example:

Public Delegate Sub ConfirmationCallback(ByVal message As String)

Public Class RemoteObject

 Inherits MarshalByRefObject

 Private WithEvents tmrCallback As New System.Timers.Timer()
 Private Callback As ConfirmationCallback
 Private Message As String

 Public Sub ReceiveMessage(ByVal message As String, _
 ByVal callback As ConfirmationCallback)
 Me.Callback = callback
 Me.Message = "Received message: " & message
 tmrCallback.Interval = 5000
 tmrCallback.Start()
 End Sub

 Private Sub tmrCallback_Elapsed(ByVal sender As System.Object, _
 ByVal e As System.Timers.ElapsedEventArgs) _
 Handles tmrCallback.Elapsed
 tmrCallback.Stop()
 Callback.Invoke(Message)
 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

Note This simple design isn't suitable for a system that experiences multiple calls in close succession because the
ConfirmationCallback and Message values will be overwritten with each new call. Don't worry too much about this
limitation now—the next two chapters will explore these limitations in detail and resolve them.

The RemoteLibrary project also contains the remotable portion of the client, which is a dedicated listener object. This object is
created in the client's application domain for the sole purpose of receiving the callback. It raises a local event so the client
application can become notified of the callback. This is a common pattern in peer-to-peer systems with Remoting, and you'll see it
again in the next chapter.

Public Class Listener

 Inherits MarshalByRefObject

 Public Event CallbackReceived(ByVal sender As Object, _
 ByVal e As MessageEventArgs)

 Public Sub ConfirmationCallback(ByVal message As String)
 RaiseEvent CallbackReceived(Me, New MessageEventArgs(message))
 End Sub

 ' Ensures that this object will not be prematurely released.
 Public Overrides Function InitializeLifetimeService() As Object
 Return Nothing
 End Function

End Class

Public Class MessageEventArgs
 Inherits EventArgs

 Public Message As String

 Public Sub New(ByVal message As String)
 Me.Message = message
 End Sub

End Class

The Configuration Files

The configuration files require only a single change from the previous example. In the simple One-Way Remoting example, the
client declared a client-only channel (TCP client), while the server declared a server-only channel (TCP server). To remedy this
design, you must configure a bidirectional channel that can create new outgoing connections and receive incoming connections.

The changed line looks like this in the server:
<channel ref="tcp" port="8000" />

The client configuration file requires a similar change. It doesn't define a port number because the .NET Framework will
dynamically choose the first available dynamic port.
<channel ref="tcp"/>

The Client

The client is modeled after the One-Way Remoting example. It allows any message to be dispatched to the client. The message is
then returned through a callback and handled in a local event, which displays the message box shown in Figure 3-10.

Figure 3-10: Receiving a callback at the client

The client code is encapsulated in a single form, as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Imports System.Runtime.Remoting

Public Class Client
 Inherits System.Windows.Forms.Form

 ' Create the local remotable object that can receive the callback.
 Private ListenerObject As New RemoteLibrary.Listener()

 ' Create the remote object.
 Private TestObject As New RemoteLibrary.RemoteObject()

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 RemotingConfiguration.Configure("Client.exe.config")

 End Sub

 Private Sub cmdSend_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdSend.Click

 ' Create the delegate that points to the client object.
 Dim Callback As New RemoteLibrary.ConfirmationCallback(_
 AddressOf ListenerObject.ConfirmationCallback)
 ' Connect the event handler to the local listener class.
 AddHandler ListenerObject.CallbackReceived, _
 AddressOf ListenerObject_CallbackReceived

 ' Send the message to the remote object.
 TestObject.ReceiveMessage(txtMessage.Text, Callback)

 End Sub

 Private Sub ListenerObject_CallbackReceived(ByVal sender As Object, _
 ByVal e As RemoteLibrary.MessageEventArgs)

 MessageBox.Show(e.Message)

 End Sub

End Class

Note You might assume that server callbacks and events work using the channel established by the client. However, due to
the way that Remoting works, this isn't possible. Instead, the server opens a new channel to deliver its message, which
has significant implications if the client is behind a firewall or network address translation (NAT) device. Ingo Rammer
has created a proof-of-concept bidirectional TCP channel that solves this issue and allows the server to use the client-
created channel (it's available at http://www.dotnetremoting.cc/projects/modules/BidirectionalTcpChannel.asp).
Unfortunately, this sample isn't yet ready for a production environment. Your best bet may be to wait for future .NET
platform releases, since Microsoft Remoting architects are actively considering this issue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Configuring Remoting
Remoting uses a multilayered architecture that allows developers to "snap-in" custom modules for different types of formatting,
different communication channels, or additional services (such as logging or encryption). In many cases, this layered design
means that you can switch the entire communication protocol of an application simply by modifying a single setting in the XML
configuration file. This is a unique advantage of Remoting, and none of the lower-level approaches considered later in this book
can provide anything like it.

The Remoting model shown in Figure 2-2 simplifies a few details and collapses the Remoting infrastructure down to a single layer.
In reality, a Remoting call is routed through several channel sinks in a set order, each of which performs an important task. By
default, the first channel sink is the formatter, which encodes the message in SOAP or binary representation. The final channel
sink is always the transport channel, which routes the message using the appropriate transport protocol. This model is
diagrammed in Figure 3-11.

Figure 3-11: The many layers of Remoting

Formatters and Channels

The examples so far have used TCP communication and binary encoding. This is generally the most performance-optimal form of
communication, although it can run into trouble in an Internet scenario, particularly when a firewall is involved. Firewalls are often
configured to reject incoming TCP connections.

To switch to a more Internet-friendly HTTP channel, simply replace this line in the configuration file:
<channel ref="tcp"/>

with this one:
<channel ref="http"/>

You'll need to perform this change for both the client and server. An error will occur if the two parts of the system try to
communicate using different formatters or protocols.

As with the TCP channel, there are three versions of the HTTP channel that you can use: http client, http server, and bidirectional
http. These are all aliases to specific channel classes that are defined in your computer's machine.config file:
<channels>
 <channel id="http"
 type="System.Runtime.Remoting.Channels.Http.HttpChannel,
 System.Runtime.Remoting, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089"/>
 <channel id="http client"
 type="System.Runtime.Remoting.Channels.Http.HttpClientChannel,
 System.Runtime.Remoting, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089"/>
 <channel id="http server"
 type="System.Runtime.Remoting.Channels.Http.HttpServerChannel,
 System.Runtime.Remoting, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089"/>
 <channel id="tcp"
 type="System.Runtime.Remoting.Channels.Tcp.TcpChannel,
 System.Runtime.Remoting, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089"/>
 <channel id="tcp client"
 type="System.Runtime.Remoting.Channels.Tcp.TcpClientChannel,
 System.Runtime.Remoting, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089"/>
 <channel id="tcp server"
 type="System.Runtime.Remoting.Channels.Tcp.TcpServerChannel,
 System.Runtime.Remoting, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089"/>
</channels>

You'll also need to change the URL used to request the object over the HTTP channel, by replacing the "tcp" prefix with "http," as
shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<wellknown url="http://localhost:8000/RemoteObject"
 type="RemoteLibrary.RemoteObject, RemoteLibrary"/>

The port number can be used in the same manner. Any available port can be used for TCP or HTTP communication.

By default, the TCP channel uses binary encoding. The HTTP channel, on the other hand, always defaults to SOAP (XML-based
text) communication. These defaults can be changed. For example, you could use binary communication over an HTTP channel
to allow .NET programs to communicate efficiently over the Internet and through a firewall. This would reduce the size of the
message because binary encoding is much more compact than XML encoding, but it wouldn't sacrifice any of the connectivity.
Similarly, you could use SOAP over a TCP channel. This is an unlikely choice, but might have some uses if you were creating a
Remoting client using a non-.NET language such as Java.

In order to specify a formatter other than the default, you must add a <serverProviders> tag inside the <channel> tag, and a
<formatter> tag inside the <serverProviders> tag. You then set the ref attribute of the <formatter> tag to "soap" or "binary." You
must repeat this on both the client and server configuration file.

Here's a sample configuration file that combines HTTP transport with .NET's proprietary binary encoding:
<configuration>
 <system.runtime.remoting>
 <application name="Server">
 <service>
 <wellknown mode="Singleton"
 type="RemoteLibrary.RemoteObject, RemoteLibrary"
 objectUri="RemoteObject" />
 </service>

 <channels>
 <channel ref="http server" port="8080" >
 <serverProviders>
 <formatter ref="binary" >
 </serverProviders>
 </channel>
 </channels>

 </application>
</system.runtime.remoting>

Dynamic Registration

The last topic this chapter considers is dynamic registration with Remoting. In the examples presented so far, all the Remoting
settings have been centralized in a configuration file. The server defines the channel type and registers an available object in one
step, using the RemotingConfiguration.Configure() method.

However, it's also possible to perform these tasks exclusively through .NET code. The disadvantage of this approach is that it
intermingles configuration details with the application code, and it may force you to recompile your code when you change the
distribution of your system. However, dynamic registration also has a number of advantages:

It allows you to read and apply configuration information from another source, such as a database or a web service.

It allows you to change the objects that are available or the channels that are used during the lifetime of your
application.

It allows you to make a conditional decision about what channels to use and which objects to expose.

It allows you to use interface-based programming, as shown in the next chapter.

Dynamic registration is easy. All you need to do is create at least one instance of one of the HTTP or TCP channel classes,
register it using the shared ChannelServices.RegisterChannel() method, and register an object type that you want to make
available using the shared RemotingConfiguration. RegisterWellKnownServiceType() method. This method also allows you to
specify the activation type of the object.
RemotingConfiguration.ApplicationName = "Server"

' Define the channel.
Dim Channel As New TcpServerChannel(8000)

' Register the channel.
ChannelServices.RegisterChannel(Channel)

' Register the remote object type.
RemotingConfiguration.RegisterWellKnownServiceType(_
 GetType(RemoteLibrary.RemoteObject), _
 "RemoteLibrary.RemoteObject", _
 WellKnownObjectMode.Singleton)

The process on the client is much the same. The only difference is that you use the RegisterWellKnownServiceType() method,
instead of the RegisterWellKnownClientType() method.
RemotingConfiguration.RegisterWellKnownClientType(_
 GetType(RemoteLibrary.RemoteObject), _
 "tcp://localhost:8000/RemoteObject ")

Note The channel classes are located in three namespaces: System.Runtime.Remoting.Channels,
System.Runtime.Remoting.Channels.Tcp, and System.Runtime.Remoting.Channels.Http. Depending on the type of
channel class you need to create, you'll have to import some of these name-spaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
In this chapter you've been presented with a condensed (but thorough) primer on Remoting. While Remoting is extremely flexible,
most of its assumptions are tailored to stateless enterprise applications that are squarely focused on a small group of powerful
server computers. To use Remoting in a peer-to-peer application is an entirely different matter. It will force you to master
threading, understand SingleCall activation, and use a central coordinator component. The rewards are a flexible, extensible
system that saves you from building key parts of the peer-to-peer infrastructure from scratch.

Depending on your needs, you may even want to extend and customize the Remoting infrastructure. In this case, you'll probably
want to consult a dedicated book about Remoting, such as Ingo Rammer's Advanced .NET Remoting (Apress 2002). In the final
part of this book, you'll look at one example of a component that extends Remoting with features that are ideal for the peer-to-peer
domain: the Intel Peer-to-Peer Accelerator Kit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4: Building a Simple Messenger

Overview
The last chapter conducted a whirlwind tour of Remoting, .NET's object-based model for communication between applications and
across a network. Remoting is a surprisingly flexible technology. By default, it's tailored for traditional enterprise computing, in
which all the work is performed by a central group of powerful server computers. But with a little more effort, you can use
Remoting as the basis for a peer-to-peer system that uses brokered communication. In this chapter, we'll explore one such
example with an instant-messaging application that relies on a central coordinator. Along the way, you'll learn the advantages and
drawbacks involved with using Remoting in a peer-to-peer project.

Though Remoting is fairly easy to use, there can be a fair bit of subtlety involved in using it correctly. In the example presented in
this chapter, it's easy to ignore threading and concurrency problems, scalability considerations, and security. These details are
explored in more detail in the next chapter. In this chapter, however, we'll concentrate on creating a basic, reliable framework for a
messaging application based on Remoting.

Because the code is quite lengthy, it won't be presented in this chapter all at once. Instead, it's broken down and dissected in
detail throughout the chapter. But before we consider a single line of code, we need to plan the overall architecture of the system,
which we'll call Talk .NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Envisioning Talk .NET
Every Internet user is familiar with the basic model for an instant-messaging application. Users log on to some sort of central
authority, retrieve a list that indicates who else is currently online, and exchange simple text messages. Some messaging
platforms include additional enhancements, such as file-transfer features and group conversations that can include more than two
parties.

All current-day instant-messaging applications rely on some sort of central component that stores a list of who is currently online
as well as the information needed to contact them. Depending on the way the system is set up, peers may retrieve this information
and contact a chosen user directly, or they may route all activity through the central coordinator. This chapter will consider both
alternatives. We'll use the central coordinator approach first.

Conceptually, there are two types of applications in Talk .NET: the single server and the clients (or peers). Both applications must
be divided into two parts: a remotable MarshalByRefObject that's exposed to the rest of the world and used for communication
over the network, and a private portion, which manages the user interface and local user interaction. The server runs continuously
at a fixed, well-known location, while the clients are free to appear and disappear on the network. Figure 4-1 diagrams these
components.

Figure 4-1: Components of the Talk .NET system

In order for the server to contact the client, the client must maintain an open bidirectional channel. When a message arrives, the
server notifies the client. This notification can take place in several ways—it might use a callback or event, or the server could just
call a method on the client object or interface, which is the approach taken in Talk .NET. Communication between these
components uses TCP channels and binary formatting in our example, although these details are easy enough to change through
the configuration files.

One of the most important aspects of the Talk .NET design is the fact that it uses interfaces to manage the communication
process. Interfaces help to standardize how any two objects interact in a distributed system. Talk .NET includes two interfaces:
ITalkServer, which defines the methods that a client can call on the server, and ITalkClient, which defines the methods that the
server (or another client) can call on a client. Before actually writing the code for the Talk .NET components, we'll define the
functionality by creating these interfaces.

Note You can examine the full code for Talk .NET with the online samples for this chapter. There are a total of four projects
that make up this solution; each is contained in a separate directory under the Talk .NET directory.

Defining the Interfaces

The first step in creating the system is to lock down the methods that will be used for communication between the server and
client components. These interfaces must be created in a separate DLL assembly so that they can be used by both the TalkClient
and TalkServer applications. In the sample code, this class library project is called TalkComponent. It contains the following code:
Public Interface ITalkServer

 ' These methods allow users to be registered and unregistered
 ' with the server.
 Sub AddUser(ByVal [alias] As String, ByVal callback As ITalkClient)
 Sub RemoveUser(ByVal [alias] As String)

 ' This returns a collection of user names that are currently logged in.
 Function GetUsers() As ICollection

 ' The client calls this to send a message to the server.
 Sub SendMessage(ByVal senderAlias As String, _
 ByVal recipientAlias As String, ByVal message As String)

End Interface

Public Interface ITalkClient

 ' The server calls this to forward a message to the appropriate client.
 Sub ReceiveMessage(ByVal message As String, ByVal senderAlias As String)

End Interface

' This delegate is primarily for convenience on some server-side code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

' This delegate is primarily for convenience on some server-side code.
Public Delegate Sub ReceiveMessageCallback(ByVal message As String, _
 ByVal senderAlias As String)

Tip Remember to consider security when designing the interfaces. The interfaces define the methods that will be exposed
publicly to other application domains. Don't include any methods that you don't want a user at another computer to be
able to trigger.

ITalkServer defines the basic AddUser() and RemoveUser() methods for registering and unregistering users. It also provides a
GetUsers() method that allows peers to retrieve a complete list of online users, and a SendMessage() method that actually routes
a message from one peer to another. When SendMessage()is invoked, the server calls the ReceiveMessage() method of the
ITalkClient interface to deliver the information to the appropriate peer.

Finally, the ReceiveMessageCallback delegate represents the method signature for the ITalkClient.ReceiveMessage() method.
Strictly speaking, this detail isn't required. However, it makes it easier for the server to call the client asynchronously, as you'll see
later.

One design decision has already been made in creating the interfaces. The information that's being transferred—the sender's
user name and the message text—is represented by separate method parameters. Another approach would be to create a
custom serializable Message object, which would be added to the TalkComponent project. Both approaches are perfectly
reasonable.

Creating the TraceComponent

In Figure 4-1, both the client and the server are depicted as Windows applications. For the client, this design decision makes
sense. For the server, however, it's less appropriate because it makes the design less flexible. For example, it might make more
sense to implement the server component as a Windows service instead of a stand-alone application (as demonstrated in the next
chapter).

A more loosely coupled option is possible. The server doesn't need to include any user-interface code. Instead, it can output
messages to another source, such as the Windows event log. The Talk .NET server will actually output diagnostic messages
using tracing code. These messages can then be dealt with in a variety of ways. They can be captured and recorded in a file, sent
to an event log, shown in a console window, and so on. In the Talk .NET system, these messages will be caught by a custom
trace listener, which will then display the trace messages in aWindows form. This approach is useful, flexible, and simple to code.

In .NET, any class can intercept, trace, and debug messages, provided it inherits from TraceListener in the System.Diagnostics
namespace. This abstract class is the basis for DefaultTraceListener (which echoes messages to the Visual Studio .NET
debugger), TextWriterTraceListener (which sends messages to a TextWriter or Stream, including a FileStream) and
EventLogTraceListener (which records messages in the Windows event log).

All custom trace listeners work by overriding the Write() and WriteLine() methods. The entire process works like this:
1. The program calls a method such as Debug.Write() or Trace.Write().

2. The common language runtime (CLR) iterates through the current collection of debug listeners
(Debug.Listeners) or trace listeners (Trace.Listeners).

3. Each time it finds a listener object, it calls its Write() or WriteLine() method with the message.

The solution used in this example creates a generic listener that forwards trace messages to a form, which then handles them
appropriately. This arrangement is diagrammed in Figure 4-2.

Figure 4-2: Forwarding trace messages to a form

The following is the outline for a FormTraceListener. This class is implemented in a separate class library project named
TraceComponent.
' The form listener is a TraceListener object that
' maps trace messages to an ITraceForm instance, which
' will then display them in a window.
Public Class FormTraceListener
 Inherits TraceListener

 Public TraceForm As ITraceForm

 ' Use the default trace form.
 Public Sub New()
 MyBase.New()
 Me.TraceForm = New SimpleTraceForm()
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub
 ' Use a custom trace form.
 Public Sub New(ByVal traceForm As ITraceForm)
 MyBase.New()

 If Not TypeOf traceForm Is Form Then
 Throw New InvalidCastException(_
 "ITraceForm must be used on a Form instance.")
 End If

 Me.TraceForm = traceForm
 End Sub

 Public Overloads Overrides Sub Write(ByVal value As String)
 TraceForm.LogToForm(value)
 End Sub

 Public Overloads Overrides Sub WriteLine(ByVal message As String)
 ' WriteLine() and Write() are equivalent in this simple example.
 Me.Write(message)

 End Sub

End Class

The FormTraceListener can send messages to any form that implements an ITraceForm interface, as shown here:
' Any custom form can be a "trace form" as long as it
' implements this interface.
Public Interface ITraceForm

 ' Determines how trace messages will be displayed.
 Sub LogToForm(ByVal message As String)

End Interface

Finally, the TraceComponent assembly also includes a sample form that can be used for debugging. It simply displays received
messages in a list box and automatically scrolls to the end of the list each time a message is received.
Public Class SimpleTraceForm
 Inherits System.Windows.Forms.Form
 Implements ITraceForm

 ' (Designer code omitted.)
 Public Sub LogToForm(ByVal message As String) Implements ITraceForm.LogToForm
 ' Add the log message.
 lstMessages.Items.Add(message)

 ' Scroll to the bottom of the list.
 lstMessages.SelectedIndex = lstMessages.Items.Count - 1
 End Sub

End Class

This approach is useful for the Talk .NET server, but because it's implemented as a separate component, it can easily be reused
in other projects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Coordination Server
Now that we've defined the basic building blocks for the Talk .NET system, it's time to move ahead and build the server. The
TalkServer application has the task of tracking clients and routing messages from one user to another. The core of the application
is implemented in the remotable ServerProcess class, which is provided to clients as a Singleton object. A separate module,
called Startup, is used to start the TalkServer application. It initializes the Remoting configuration settings, creates and initializes
an instance of the FormTraceListener, and displays the trace form modally. When the trace form is closed, the application ends,
and the ServerProcess object is destroyed.

The startup code is shown here:
Imports System.Runtime.Remoting

Public Module Startup

 Public Sub Main()
 ' Create the server-side form (which displays diagnostic information).
 ' This form is implemented as a diagnostic logger.
 Dim frmLog As New TraceComponent.FormTraceListener()
 Trace.Listeners.Add(frmLog)

 ' Configure the connection and register the well-known object
 ' (ServerProcess), which will accept client requests.
 RemotingConfiguration.Configure("TalkServer.exe.config")
 ' From this point on, messages can be received by the ServerProcess
 ' object. The object will be created for the first request,
 ' although you could create it explicitly if desired.

 ' Show the trace listener form. By using ShowDialog(), we set up a
 ' message loop on this thread. The application will automatically end
 ' when the form is closed.
 Dim frm As Form = frmLog.TraceForm
 frm.Text = "Talk .NET Server (Trace Display)"
 frm.ShowDialog()
 End Sub

End Module

When you start the server, the ServerProcess Singleton object isn't created. Instead, it's created the first time a client invokes one
of its methods. This will typically mean that the first application request will experience a slight delay, while the Singleton object is
created.

The server configuration file is shown here. It includes three lines that are required if you want to run the Talk .NET applications
under .NET 1.1 (the version of .NET included with Visual Studio .NET 2003). These lines enable full serialization, which allows the
TalkServer to use the ITalkClient reference. If you are using .NET 1.0, these lines must remain commented out, because they will
not be recognized. .NET 1.0 uses a slightly looser security model and allows full serialization support by default.
<configuration>
 <system.runtime.remoting>
 <application name="TalkNET">
 <service>
 <wellknown
 mode="Singleton"
 type="TalkServer.ServerProcess, TalkServer"
 objectUri="TalkServer" />
 </service>
 <channels>
 <channel port="8000" ref="tcp" >
 <!-- If you are using .NET 1.1, uncomment the lines below. -->
 <!--
 <serverProviders>
 <formatter ref="binary" typeFilterLevel="Full" />
 </serverProviders>
 -->
 </channel>
 </channels>
 </application>
 </system.runtime.remoting>
</configuration>

Most of the code for the ServerProcess class is contained in the methods implemented from the ITalkServer interface. The basic
outline is shown here:
Public Class ServerProcess
 Inherits MarshalByRefObject
 Implements ITalkServer

 ' Tracks all the user aliases, and the "network pointer" needed
 ' to communicate with them.
 Private ActiveUsers As New Hashtable()

 Public Sub AddUser(ByVal [alias] As String, ByVal client As ITalkClient) _
 Implements TalkComponent.ITalkServer.AddUser
 ' (Code omitted.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' (Code omitted.)
 End Sub

 Public Sub RemoveUser(ByVal [alias] As String) _
 Implements TalkComponent.ITalkServer.RemoveUser
 ' (Code omitted.)
 End Sub

 Public Function GetUsers() As System.Collections.ICollection _
 Implements TalkComponent.ITalkServer.GetUsers
 ' (Code omitted.)
 End Function

 <System.Runtime.Remoting.Messaging.OneWay()> _
 Public Sub SendMessage(ByVal senderAlias As String, _
 ByVal recipientAlias As String, ByVal message As String) _
 Implements TalkComponent.ITalkServer.SendMessage
 ' (Code omitted.)
 End Sub

End Class

You'll see each method in more detail in the next few sections.

Tracking Clients

The Talk .NET server tracks clients using a Hashtable collection. The Hashtable provides several benefits compared to arrays or
other types of collections:

The Hashtable is a key/value collection (unlike some collections, which do not require keys). This allows you to
associate two pieces of information: the user name and a network reference to the client.

The Hashtable is optimized for quick key-based lookup. This is ideal, because users send messages based on the
user's name. The server can speedily retrieve the client's location information.

The Hashtable allows easy synchronization for thread-safe programming. We'll look at these features in the next
chapter.

The collection stores ITalkClient references, indexed by user name. Technically, the ITalkClient reference really represents an
instance of the System.Runtime.Remoting.ObjRef class. This class is a kind of network pointer—it contains all the information
needed to generate a proxy object to communicate with the client, including the client channel, the object type, and the computer
name. This ObjRef can be passed around the network, thus allowing any other user to locate and communicate with the client.

Following are the three collection-related methods that manage user registration. They're provided by the server.
Public Sub AddUser(ByVal [alias] As String, ByVal client As ITalkClient) _
 Implements TalkComponent.ITalkServer.AddUser
 Trace.Write("Added user '" & [alias] & "'")
 ActiveUsers([alias]) = client
End Sub

Public Sub RemoveUser(ByVal [alias] As String) _
 Implements TalkComponent.ITalkServer.RemoveUser
 Trace.Write("Removed user '" & [alias] & "'")
 ActiveUsers.Remove([alias])
End Sub

Public Function GetUsers() As System.Collections.ICollection _
 Implements TalkComponent.ITalkServer.GetUsers
 Return ActiveUsers.Keys
End Function

The AddUser() method doesn't check for duplicates. If the specified user name doesn't exist, a new entry is created. Otherwise,
any entry with the same key is overwritten. The next chapter introduces some other ways to handle this behavior, but in a
production application, you would probably want to authenticate users against a database with password information. This allows
you to ensure that each user has a unique user name. If a user were to log in twice in a row, only the most recent connection
information would be retained.

Note that only one part of the collection is returned to the client through the GetUsers() method: the user names. This prevents a
malicious client from using the connection information to launch attacks against the peers on the system. Of course, this approach
isn't possible in a decentralized peer-to-peer situation (wherein peers need to interact directly), but in this case, it's a realistic level
of protection to add.

Sending Messages

The process of sending a message requires slightly more work. The server performs most of the heavy lifting in the
SendMessage() method, which looks up the appropriate client and invokes its ReceiveMessage() method to deliver the message.
If the recipient cannot be found (probably because the client has recently disconnected from the network), an error message is
sent to the message sender by invoking its ReceiveMessage() method. If neither client can be found, the problem is harmlessly
ignored.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub SendMessage(ByVal senderAlias As String, _
 ByVal recipientAlias As String, ByVal message As String) _
 Implements TalkComponent.ITalkServer.SendMessage

 ' Deliver the message.
 Dim Recipient As ITalkClient
 If ActiveUsers.ContainsKey(recipientAlias) Then
 Trace.Write("Recipient '" & recipientAlias & "' found")
 Recipient = CType(ActiveUsers(recipientAlias), ITalkClient)
 Else
 ' User wasn't found. Try to find the sender.
 If ActiveUsers.ContainsKey(senderAlias) Then
 Trace.Write("Recipient '" & recipientAlias & "' not found")
 Recipient = CType(ActiveUsers(senderAlias), ITalkClient)
 message = "'" & message & "' could not be delivered."
 senderAlias = "Talk .NET"
 Else
 Trace.Write("Recipient '" & recipientAlias & "' and sender '" & _
 senderAlias & "' not found")
 ' Both sender and recipient weren't found.
 ' Ignore this message.
 End If
 End If

 Trace.Write("Delivering message to '" & recipientAlias & "' from '" & _
 senderAlias & "'")
 If Not Recipient Is Nothing Then
 Dim callback As New ReceiveMessageCallback(_
 AddressOf Recipient.ReceiveMessage)
 callback.BeginInvoke(message, senderAlias, Nothing, Nothing)
 End If

End Sub

You'll see that the server doesn't directly call the ClientProcess.ReceiveMessage() method because this would stall the thread and
prevent it from continuing other tasks. Instead, it makes the call on a new thread by using the BeginInvoke() method provided by
all delegates. It's possible to use a server-side callback to determine when this call completes, but in this case, it's not necessary.

This completes the basic framework for the TalkServer application. The next step is to build a client that can work with the server
to send instant messages around the network.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The TalkClient
The client portion of Talk .NET is called TalkClient. It's designed as a Windows application (much like Microsoft's Windows
Messenger). It has exactly two responsibilities: to allow the user to send a message to any other online user and to display a log of
sent and received messages.

When the TalkClient application first loads, it executes a startup procedure, which presents a login form and requests the name of
the user that it should register. If one isn't provided, the application terminates. Otherwise, it continues by taking two steps:

It creates an instance of the ClientProcess class and supplies the user name. The ClientProcess class mediates all
communication between the remote server and the client user interface.

It creates and shows the main chat form, named Talk, around which most of the application revolves.

The startup code is shown here:
Public Class Startup

 Public Shared Sub Main()
 ' Create the login window (which retrieves the user identifier).
 Dim frmLogin As New Login()

 ' Only continue if the user successfully exits by clicking OK
 ' (not the Cancel or Exit button).
 If frmLogin.ShowDialog() = DialogResult.OK Then
 ' Create the new remotable client object.
 Dim Client As New ClientProcess(frmLogin.UserName)

 ' Create the client form.
 Dim frm As New Talk()
 frm.TalkClient = Client

 ' Show the form.
 frm.ShowDialog()
 End If
 End Sub

End Class

On startup, the ClientProcess object registers the user with the coordination server. Because ClientProcess is a remotable type, it
will remain accessible to the server for callbacks throughout the lifetime of the application. These call-backs will, in turn, be raised
to the user interface through local events. We'll dive into this code shortly.

The login form (shown in Figure 4-3) is quite straightforward. It exposes a public UserName property, which allows the Startup
routine to retrieve the user name without violating encapsulation. This property could also be used to pre-fill the txtUser textbox by
retrieving the previously used name, which could be stored in a configuration file or the Windows registry on the current computer.

Figure 4-3: The login form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Class Login
 Inherits System.Windows.Forms.Form

 ' (Designer code omitted.)

 Private Sub cmdExit_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdExit.Click
 Me.Close()
 End Sub

 Public Property UserName()
 Get
 Return txtUser.Text
 End Get
 Set(ByVal Value)
 txtUser.Text = UserName
 End Set
 End Property

End Class

The Remotable ClientProcess Class

The ClientProcess class does double duty. It allows the TalkClient to interact with the TalkServer to register and unregister the
user or send a message destined for another user. The ClientProcess also receives callbacks from the TalkServer and forwards
these to the TalkClient through an event. In the Talk .NET system, the only time the TalkServer will call the ClientProcess is to
deliver a message sent from another user. At this point, the ClientProcess will forward the message along to the user interface by
raising an event. Because the server needs to be able to call ClientProcess.ReceiveMessage() across the network, the
ClientProcess class must inherit from MarshalByRefObject. ClientProcess also implements ITalkClient.

Here's the basic outline for the ClientProcess class. Note that the user name is stored as a member variable named _Alias, and
exposed through the public property Alias. Because alias is a reserved keyword in VB .NET, you will have to put this word in
square brackets in the code.
Imports System.Runtime.Remoting
Imports TalkComponent

Public Class ClientProcess
 Inherits MarshalByRefObject
 Implements ITalkClient

 ' This event occurs when a message is received.
 ' It's used to transfer the message from the remotable
 ' ClientProcess object to the Talk form.
 Event MessageReceived(ByVal sender As Object, _
 ByVal e As MessageReceivedEventArgs)

 ' The reference to the server object.
 ' (Technically, this really holds a proxy class.)
 Private Server As ITalkServer

 ' The user ID for this instance.
 Private _Alias As String
 Public Property [Alias]() As String
 Get
 Return _Alias
 End Get
 Set(ByVal Value As String)
 _Alias = Value
 End Set
 End Property

 Public Sub New(ByVal [alias] As String)
 _Alias = [alias]
 End Sub
 ' This override ensures that if the object is idle for an extended
 ' period, waiting for messages, it won't lose its lease and
 ' be garbage collected.
 Public Overrides Function InitializeLifetimeService() As Object
 Return Nothing
 End Function

 Public Sub Login()
 ' (Code omitted.)
 End Sub

 Public Sub LogOut()
 ' (Code omitted.)
 End Sub

 Public Sub SendMessage(ByVal recipientAlias As String, _
 ByVal message As String)
 ' (Code omitted.)
 End Sub

 Private Sub ReceiveMessage(ByVal message As String, _
 ByVal senderAlias As String) Implements ITalkClient.ReceiveMessage
 ' (Code omitted.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' (Code omitted.)
 End Sub

 Public Function GetUsers() As ICollection
 ' (Code omitted.)
 End Function

End Class

The InitializeLifetimeService() method must be overridden to preserve the life of all ClientProcess objects. Even though the startup
routine holds a reference to a ClientProcess object, the ClientProcess object will still disappear from the network after its lifetime
lease expires, unless you explicitly configure an infinite lifetime. Alternatively, you can use configuration file settings instead of
overriding the InitializeLifetimeService() method, as described in the previous chapter.

One other interesting detail is found in the ReceiveMessage() method. This method is accessible remotely to the server because it
implements ITalkClient.ReceiveMessage. However, this method is also marked with the Private keyword, which means that other
classes in the TalkClient application won't accidentally attempt to use it.

The Login() method configures the client channel, creates a proxy to the server object, and then calls the
ServerProcess.AddUser() method to register the client. The Logout() method simply unregisters the user, but it doesn't tear down
the Remoting channels—that will be performed automatically when the application exits. Finally, the GetUsers() method retrieves
the user names of all the users currently registered with the coordination server.
Public Sub Login()

 ' Configure the client channel for sending messages and receiving
 ' the server callback.
 RemotingConfiguration.Configure("TalkClient.exe.config")

 ' You could accomplish the same thing in code by uncommenting
 ' the following two lines:
 ' Dim Channel As New System.Runtime.Remoting.Channels.Tcp.TcpChannel(0) and
 ' ChannelServices.RegisterChannel(Channel).

 ' Create the proxy that references the server object.
 Server = CType(Activator.GetObject(GetType(ITalkServer), _
 "tcp://localhost:8000/TalkNET/TalkServer"), ITalkServer)
 ' Register the current user with the server.
 ' If the server isn't running, or the URL or class information is
 ' incorrect, an error will most likely occur here.
 Server.AddUser(_Alias, Me)

End Sub

Public Sub LogOut()

 Server.RemoveUser(_Alias)
End Sub

Public Function GetUsers() As ICollection
 Return Server.GetUsers()
End Function

Following is the client configuration, which only specified channel information. The client port isn't specified and will be chosen
dynamically from the available ports at runtime. As with the server configuration file, you must enable full serialization if you are
running the Talk .NET system with .NET 1.1. Otherwise, the TalkClient will not be allowed to transmit the ITalkClient reference
over the network to the server.

<configuration>
 <system.runtime.remoting>
 <application>
 <channels>
 <channel port="0" ref="tcp" >
 <!-- If you are using .NET 1.1, uncomment the lines below. -->
 <!--
 <serverProviders>
 <formatter ref="binary" typeFilterLevel="Full" />
 </serverProviders>
 -->
 </channel>
 </channels>
 </application>
 </system.runtime.remoting>
</configuration>

You'll notice that the Login() method mingles some dynamic Remoting code (used to create the TalkServer instance) along with a
configuration file (used to create the client channel). Unfortunately, it isn't possible to rely exclusively on a configuration file when
you use interface-based programming with Remoting. The problem is that the client doesn't have any information about the
server, only an interface it supports. The client thus cannot register the appropriate object type and create it directly because
there's no way to instantiate an interface. The previous solution, which uses the Activator.GetObject() method, forces you to
include several distribution details in your code. This means that if the object is moved to another computer or exposed through
another port, you'll need to recompile the code.

You can resolve this problem in several ways. One option is simply to add a custom configuration setting with the full object URI.
This will be an application setting, not a Remoting setting, so it will need to be entered in the <appSettings> section of the client
configuration file, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<configuration>

<appSettings>
 <add key="TalkServerURL"
 value="tcp://localhost:8000/TalkNET/TalkServer" />
 </appSettings><
 <system.runtime.remoting>
 <application>
 <channels>
 <channel port="0" ref="tcp" >
 <!-- If you are using .NET 1.1, uncomment the lines below. -->
 <!--
 <serverProviders>
 <formatter ref="binary" typeFilterLevel="Full" />
 </serverProviders>
 -->
 </channel>
 </channels>
 </application>
 </system.runtime.remoting>

</configuration>

You can then retrieve this setting using the ConfigurationSettings.AppSettings collection:
Server = CType(Activator.GetObject(GetType(ITalkServer), _
 ConfigurationSettings.AppSettings("TalkServer")), ITalkServer)

Note that in this example, we use the loopback alias localhost, indicating that the server is running on the same computer. You
should replace this value with the name of the computer (if it's on your local network), the domain name, or the IP address where
the server component is running.

The last ingredient is the ClientProcess methods for sending and receiving messages. The following code shows the
SendMessage() and ReceiveMessage() methods. The SendMessage() simply executes the call on the server and the
ReceiveMessage() raises a local event for the client, which will be handled by the Talk form.
Public Sub SendMessage(ByVal recipientAlias As String, ByVal message As String)
 Server.SendMessage(_Alias, recipientAlias, message)
End Sub

Private Sub ReceiveMessage(ByVal message As String, _
 ByVal senderAlias As String) Implements ITalkClient.ReceiveMessage
 RaiseEvent MessageReceived(Me, New MessageReceivedEventArgs(message, _
 senderAlias))
End Sub

The MessageReceived event makes use of the following custom EventArgs class, which adds the message-specific information:
Public Class MessageReceivedEventArgs
 Inherits EventArgs

 Public Message As String
 Public SenderAlias As String

 Public Sub New(ByVal message As String, ByVal senderAlias As String)
 Me.Message = message
 Me.SenderAlias = senderAlias
 End Sub

End Class

The Talk Form

The Talk form is the front-end that the user interacts with. It has four key tasks:

Log the user in when the form loads and log the user out when the form closes.

Periodically refresh the list of active users by calling ClientProcess.GetUsers(). This is performed using a timer.

Invoke ClientProcess.SendMessage() when the user sends a message.

Handle the MessageReceived event and display the corresponding information on the form.

The form is shown in Figure 4-4. Messages are recorded in a RichTextBox, which allows the application of formatting, if desired.
The list of clients is maintained in a ListBox.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-4: The Talk form

The full form code is shown here:
Public Class Talk
 Inherits System.Windows.Forms.Form

 ' (Designer code omitted.)
 ' The remotable intermediary for all client-to-server communication.
 Public WithEvents TalkClient As ClientProcess

 Private Sub Talk_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Me.Text &= " - " & TalkClient.Alias

 ' Attempt to register with the server.
 TalkClient.Login()

 ' Ordinarily, a user list is periodically fetched from the
 ' server. In this case, the code enables the timer and calls it
 ' once (immediately) to initially populate the list box.
 tmrRefreshUsers_Tick(Me, EventArgs.Empty)
 tmrRefreshUsers.Enabled = True
 lstUsers.SelectedIndex = 0
 End Sub
 Private Sub TalkClient_MessageReceived(ByVal sender As Object, _
 ByVal e As MessageReceivedEventArgs) Handles TalkClient.MessageReceived

 txtReceived.Text &= "Message From: " & e.SenderAlias
 txtReceived.Text &= " delivered at " & DateTime.Now.ToShortTimeString()
 txtReceived.Text &= Environment.NewLine & e.Message
 txtReceived.Text &= Environment.NewLine & Environment.NewLine

 End Sub

 Private Sub cmdSend_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdSend.Click

 ' Display a record of the message you're sending.
 txtReceived.Text &= "Sent Message To: " & lstUsers.Text
 txtReceived.Text &= Environment.NewLine & txtMessage.Text
 txtReceived.Text &= Environment.NewLine & Environment.NewLine

 ' Send the message through the ClientProcess object.
 Try
 TalkClient.SendMessage(lstUsers.Text, txtMessage.Text)
 txtMessage.Text = ""
 Catch Err As Exception
 MessageBox.Show(Err.Message, "Send Failed", _
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation)
 End Try

 End Sub

 ' Checks every 30 seconds.
 Private Sub tmrRefreshUsers_Tick(ByVal sender As System.Object, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub tmrRefreshUsers_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles tmrRefreshUsers.Tick

 ' Prepare list of logged-in users.
 ' The code must copy the ICollection entries into
 ' an ordinary array before they can be added.
 Dim UserArray() As String
 Dim UserCollection As ICollection = TalkClient.GetUsers
 ReDim UserArray(UserCollection.Count - 1)
 UserCollection.CopyTo(UserArray, 0)
 ' Replace the list entries. At the same time,
 ' the code will track the previous selection and try
 ' to restore it, so the update won't be noticeable.
 Dim CurrentSelection As String = lstUsers.Text
 lstUsers.Items.Clear()
 lstUsers.Items.AddRange(UserArray)
 lstUsers.Text = CurrentSelection

 End Sub

 Private Sub Talk_Closed(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Closed
 TalkClient.LogOut()
 End Sub

End Class

The timer fires and refreshes the list of user names seamlessly every 30 seconds. In a large system, you would lower this value to
ease the burden on the coordinator. For a very large system with low user turnover, it might be more efficient to have the server
broadcast user-added and user-removed messages. To support this infrastructure, you would add methods such as
ITalkClient.NotifyUserAdded() and ITalkClient.NotifyUserRemoved(). Or you might just use a method such as
ITalkClient.NotifyListChanged(), which tells the client that it must contact the server at some point to update its information.

The ideal approach isn't always easy to identify. The goal is to minimize the network chatter as much as possible. In a system with
100 users who query the server every 60 seconds, approximately 100 request messages and 100 response messages will be sent
every minute. If the same system adopts user-added and user-removed broadcasting instead, and approximately 5 users join or
leave the system in a minute, the server will likely need to send 5 messages to each of 100 users, for a much larger total of 500
messages per minute. The messages themselves would be smaller (because they would not contain the full user list), but the
network overhead would probably be great enough that this option would work less efficiently.

In a large system, you might use "buddy lists" so that clients only receive a user list with a subset of the total number of users. In
this case, the server broadcast approach would be more efficient because a network exchange would only be required for those
users who are on the same list as the entering or departing peer. This reduces the total number of calls dramatically. Overall, this
is probably the most sustainable option if you want to continue to develop the Talk .NET application to serve a larger audience.

Because the client chooses a channel dynamically, it's possible to run several instances of the TalkClient on the same computer.
After starting the new instances, the user list of the original clients will quickly be refreshed to represent the full user list. You can
then send messages back and forth, as shown in Figure 4-5. Clients can also send messages to themselves.

Figure 4-5: Multiple client interaction

In each case, the coordination server brokers the communication. The trace output for a sample interaction on the server
computer is shown in Figure 4-6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-6: The server trace display

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enhancing Talk .NET
Talk .NET presents a straightforward way to reinvent the popular instant-messaging application in .NET code. However, as it
currently stands, it's best suited for small groups of users and heavily reliant on a central coordination server. In fact, in many
respects it's hard to call this a true peer-to-peer application at all.

Fortunately, Talk .NET is just a foundation that you can build on. This section considers possible enhancements, stumbling
blocks, and a minor redesign that allows true peer-to-peer communication.

Cleaning Up After Clients

Currently, the system assumes that all clients will log out politely when they've finished using the system. Due to network
problems, program error, or some other uncontrollable factor, this may not be the case. Remember, one of the defining
characteristics of any peer-to-peer system is that it must take into account the varying, fragile connectivity of users on the Internet.
For this reason, Talk .NET needs to adopt a more defensive approach.

Currently, the SendMessage() method raises an unhandled exception if it can't contact the specified user. This exception will
propagate back to the user-interface code, where it will be handled and will result in a user error message. The problem with this
approach is that the user remains in the server's collection and continues to "appear" online. If another user attempts to send a
message to this user, valuable server seconds will be wasted attempting to contact the offline user, thereby raising the exception.
This problem will persist until the missing user logs back in to the system.

To account for this problem, users should be removed from the collection if they cannot be contacted. Here's the important portion
of the SendMessage() code, revised accordingly:
If Not Recipient Is Nothing Then

 Dim callback As New ReceiveMessageCallback(_
 AddressOf Recipient.ReceiveMessage)

 Try
 callback.BeginInvoke(message, senderAlias, Nothing, Nothing)
 Catch Err As Exception
 ' Client could not be contacted.
 Trace.Write("Message delivery failed")
 ActiveUsers.Remove(recipientAlias)
 End Try
End If

You may also want to send a message explaining the problem to the user. However, you also need to protect yourself in case the
user who sent the message can't be contacted or found. To prevent the code from becoming too fragmented, you can rewrite it
using recursion, as shown here:
Public Sub SendMessage(ByVal senderAlias As String, _
 ByVal recipientAlias As String, ByVal message As String) _
 Implements TalkComponent.ITalkServer.SendMessage

 Dim Recipient As ITalkClient
 If ActiveUsers.ContainsKey(recipientAlias) Then
 Trace.Write("Recipient '" & recipientAlias & "' found")
 Recipient = CType(ActiveUsers(recipientAlias), ITalkClient)

 If Not Recipient Is Nothing Then

 Trace.Write("Delivering message to '" & recipientAlias & "' from _
 '" & senderAlias & "'")
 Dim callback As New ReceiveMessageCallback(_
 AddressOf Recipient.ReceiveMessage)

 ' Deliver the message.
 Try
 callback.BeginInvoke(message, senderAlias, Nothing, Nothing)

 Catch Err As Exception
 ' Client could not be contacted.
 ActiveUsers.Remove(recipientAlias)
 If senderAlias <> "Talk .NET"
 ' Try to send a warning message.
 message = "'" & message & "' could not be delivered."
 SendMessage("Talk .NET", senderAlias, message)

 End Try
 End If

 Else
 ' User was not found. Try to find the sender.
 Trace.Write("Recipient '" & recipientAlias & "' not found")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Trace.Write("Recipient '" & recipientAlias & "' not found")
 If senderAlias <> "Talk .NET"
 ' Try to send a warning message.
 message = "'" & message & "' could not be delivered."
 SendMessage("Talk .NET", senderAlias, message)
 End If

 End If

End Sub

Of course, in order for this approach to work, you'll need to ensure that no other user can take the user name "Talk .NET." You
could add this restriction in your logon or authentication code.

Toward Decentralization

Talk .NET will always requires some sort of centralized server component in order to store information about logged-on users and
their locations. However, it's not necessary to route all communication through the server. In fact, Remoting allows clients to
communicate directly—with a few quirks.

Remoting is designed as an object-based networking technology. In order for clients to communicate directly, they need to have a
reference to each other's remotable ClientProcess object. As you've already learned, you can create this reference through a
configuration file or .NET Remoting code, if you know the appropriate URL. This is how the client contacts the coordination server
in the Talk .NET system—by knowing the computer and port where it's located. But there's also another approach: by passing an
object reference. The server calls the client back by using one of its stored ITalkClient references.

The ITalkClient reference isn't limited to exchanges between the server and client. In fact, this reference can be passed to any
computer on the network. Because ITalkClient references a remotable object (in this case, ClientProcess), whenever the
reference travels to another application domain, it actually takes the form of an ObjRef: a network pointer that encapsulates all the
information needed to describe the object and its location on the network. With this information, any .NET application can
dynamically construct a proxy and communicate with the client it references. You can use the ObjRef as the basis for
decentralized communication.

To see this in action, modify the ITalkServer interface to expose an additional method that returns an ITalkClient reference for a
specific user:

Public Interface ITalkServer

 ' (Other code omitted.)
 Function GetUser(ByVal [alias] As String) As ITalkClient

End Interface

Now, implement the GetUser() method in the ServerProcess class:
Public Function GetUser(ByVal [alias] As String) As TalkComponent.ITalkClient _
 Implements TalkComponent.ITalkServer.GetUser

 Return ActiveUsers([alias])

End Function

Now the ClientProcess class can call GetUser() to retrieve the ITalkUser reference of the peer it wants to communicate with; it can
then call the ITalkClient.ReceiveMessage() method directly:
Public Sub SendMessage(ByVal recipientAlias As String, ByVal message As String)

 Dim Peer As ITalkClient = Server.GetUser(recipientAlias)
 Peer.ReceiveMessage(message, Me.Alias)

End Sub

With this change in place, the system will work exactly the same. However, the coordination server is now simply being used as a
repository of connection information. Once the lookup is performed, it's no longer required.

Note You can find this version of the application in the Talk .NET Decentralized directory with the online samples for this
chapter.

Which approach is best? There's little doubt that the second choice is more authentically peer-to-peer. But the best choice for
your system depends on your needs. Some of the benefits of the server-focused approach include the following:

The server can track system activity, which could be useful, depending on your reporting needs. If you run the
second version of this application, you'll see that the server trace log reflects when users are added or removed, but
it doesn't contain any information when messages are sent.

The connectivity is likely to be better. Typically, if a client can contact the server, the server will be able to call the
client. However, two arbitrary clients may not be able to interact, depending on firewalls and other aspects of
network topology.

The server can offer some special features that wouldn't be possible in a decentralized system, such as multiuser
broadcasts that involve thousands of users.

On the other hand, the benefits of the decentralized approach include the following:

The server has no ability to monitor conversations. This translates into better security (assuming peers don't fully
trust the behavior of the server).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The possibility for a server bottleneck decreases. This is because the server isn't called on to deal with messages,
but rather, only to provide client lookup, thereby reducing its burden and moving network traffic out to the edges of
the network.

Most peer-to-peer supporters would prefer the decentralized approach. However, the current generation of instant-messaging
applications avoid it for connectivity reasons. Instead, they use systems that more closely resemble the client-server model.

In some cases you might want to adopt a blended approach that makes use of both of these techniques. One option is to allow
the client to specify the behavior through a configuration setting. Another option would be to use peer-to-peer communication only
when large amounts of data need to be transmitted. This is the approach used in the next section to provide a file transfer service
for Talk .NET.

In any case, if you adopt the decentralized approach, you can further reduce the burden on the central coordinator by performing
the client lookup once, and then reusing the connection information for all subsequent messages. For example, you could cache
the retrieved client reference in a local ActiveUsers collection, and update it from the server if an error is encountered while
sending a message. Or, you might modify the system so that the GetUsers() method returns the entire collection, complete with
user names and ITalkClient network pointers. The central coordinator would then simply need to support continuous requests to
three methods: AddUser(), RemoveUser(), and GetUsers(). This type of design works well if you use "buddy lists" to determine
who a user can communicate with. That way, users will only retrieve information about a small subset of the total number of users
when they call GetUsers().

Adding a File Transfer Feature

Using the decentralized approach, it's easy to implement a file transfer feature that's similar to the one provided by Microsoft's
Windows Messenger. This feature wouldn't be practical with the centralized approach because it encourages the server to
become a bottleneck. Although transferring files isn't a complex task, it can take time, and the CLR only provides a limited number
of threads to handle server requests. If all the threads are tied up with sending data across the network (or waiting as data is
transferred over a low-bandwidth connection), subsequent requests will have to wait—and could even time out.

The file transfer operation can be broken down into four steps:
1. Peer A offers a file to Peer B.

2. Peer B accepts the file offer and initiates the transfer.

3. Peer A sends the file to Peer B.

4. Peer B saves the file locally in a predetermined directory.

These steps require several separate method calls. Typically, in step 2, the user will be presented with some sort of dialog box
asking whether the file should be transferred. It's impractical to leave the connection open while this message is being displayed
because there's no guarantee the user will reply promptly, and the connection could time out while waiting. Instead, the peer-to-
peer model requires a looser, disconnected architecture that completely separates the file offer and file transfer.

The first step needed to implement the file transfer is to redefine the ITalkClient interface. It's at this point that most of the coding
and design decisions are made.
Public Interface ITalkClient

 ' (Other code omitted.)
 Sub ReceiveFileOffer(ByVal filename As String, _
 ByVal fileIdentifier As Guid, ByVal senderAlias As String)
 Function TransferFile(ByVal fileIdentifier As Guid, _
 ByVal senderAlias As String) As Byte()

End Interface

You'll notice that both methods use a globally unique identifier (GUID) to identify the file. There are several reasons for this
approach, all of which revolve around security. If the TransferFile() method accepted a full file name, it would be possible for the
client to initiate a transfer even if the file had not been offered, thereby compromising data security. To circumvent this problem, all
files are identified uniquely. The identifier used is a GUID, which guarantees that a client won't be able to guess the identifier for a
file offered to another user. Also, because GUIDs are guaranteed to be unique, a peer can offer multiple files to different users
without confusion. More elaborate security approaches are possible, but this approach is a quick and easy way to prevent users
from getting ahold of the wrong files.

The file itself is transferred as a large byte array. While this will be sufficient in most cases, if you want to control how the data is
streamed over the network, you'll need to use a lower-level networking class, such as the ones described in the second part of this
book.

Once the ITalkClient interface is updated, you can begin to revise the ClientProcess class. The first step is to define a Hashtable
collection that can track all the outstanding file offers since the application was started:
Private OfferedFiles As New Hashtable()

To offer a file, the TalkClient calls the public SendFileOffer() method. This method looks up the client reference, generates a new
GUID to identify the file, stores the information, and sends the offer.
Public Function SendFileOffer(ByVal recipientAlias As String, _
 ByVal sourcePath As String)

 ' Retrieve the reference to the other user.
 Dim peer As ITalkClient = Server.GetUser(recipientAlias)

 ' Create a GUID to identify the file, and add it to the collection.
 Dim fileIdentifier As Guid = Guid.NewGuid()
 OfferedFiles(fileIdentifier) = sourcePath

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 OfferedFiles(fileIdentifier) = sourcePath
 ' Offer the file.
 peer.ReceiveFileOffer(Path.GetFileName(sourcePath), fileIdentifier, Me.Alias)

End Function

Notice that only the file name is transmitted, not the full file path. The full file path is stored for future reference in the Hashtable
collection, but it's snipped out of the offer using the Path class from the System.IO namespace. This extra step is designed to
prevent the recipient from knowing where the offered file is stored on the offering peer.

Tip Currently, the TalkClient doesn't go to any extra work to "expire" an offered file and remove its information from the
collection if it isn't transferred within a set period of time. This task could be accomplished using a separate thread that
would periodically examine the collection. However, because the in-memory size of the OfferedFiles collection will
always remain relatively small, this isn't a concern, even after making a few hundred unclaimed file offers.

The file offer is received by the destination peer with the ReceiveFileOffer() method. When this method is triggered, the
ClientProcess class raises a local event to alert the user:
Event FileOfferReceived(ByVal sender As Object, _
 ByVal e As FileOfferReceivedEventArgs)

Private Sub ReceiveFileOffer(ByVal filename As String, _
 ByVal fileIdentifier As System.Guid, ByVal senderAlias As String) _
 Implements TalkComponent.ITalkClient.ReceiveFileOffer

 RaiseEvent FileOfferReceived(Me, _
 New FileOfferReceivedEventArgs(filename, fileIdentifier, senderAlias))

End Sub

The FileOfferReceivedEventArgs class simply provides the file name, file identifier, and sender's name:
Public Class FileOfferReceivedEventArgs
 Inherits EventArgs
 Public Filename As String
 Public FileIdentifier As Guid
 Public SenderAlias As String

 Public Sub New(ByVal filename As String, ByVal fileIdentifier As Guid, _
 ByVal senderAlias As String)
 Me.Filename = filename
 Me.FileIdentifier = fileIdentifier
 Me.SenderAlias = senderAlias
 End Sub

End Class

The event is handled in the form code, which will then ask the user whether the transfer should be accepted. If it is, the next step
is to call the ClientProcess.AcceptFile() method, which initiates the transfer.
Public Sub AcceptFile(ByVal recipientAlias As String, _
 ByVal fileIdentifier As Guid, ByVal destinationPath As String)

 ' Retrieve the reference to the other user.
 Dim peer As ITalkClient = Server.GetUser(recipientAlias)

 ' Create an array to store the data.
 Dim FileData As Byte()

 ' Request the file.
 FileData = peer.TransferFile(fileIdentifier, Me.Alias)
 Dim fs As FileStream

 ' Create the local copy of the file in the desired location.
 ' Warning: This method doesn't bother to check if it's overwriting
 ' a file with the same name.
 fs = File.Create(destinationPath)
 fs.Write(FileData, 0, FileData.Length)

 ' Clean up.
 fs.Close()

End Sub

There are several interesting details in this code:

It doesn't specify the destination file path and file name. This information is supplied to the AcceptFile() method
through the destinationPath parameter. This allows the form code to stay in control, perhaps using a default
directory or prompting the user for a destination path.

It includes no exception-handling code. The assumption is that the form code will handle any errors that occur and
inform the user accordingly.

It doesn't worry about overwriting any file that may already exist at the specified directory with the same name.
Once again, this is for the form code to check. It will prompt the user before starting the file transfer.

The peer offering the file sends it over the network in its TransferFile() method, which is in many ways a mirror image of
AcceptFile().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Function TransferFile(ByVal fileIdentifier As System.Guid, _
 ByVal senderAlias As String) As Byte() _
 Implements TalkComponent.ITalkClient.TransferFile

 ' Ensure that the GUID corresponds to a valid file offer.
 If Not OfferedFiles.Contains(fileIdentifier) Then
 Throw New ApplicationException(_
 "This file is no longer available from the client.")
 End If

 ' Look up the file path from the OfferedFiles collection and open it.
 Dim fs As FileStream
 fs = File.Open(OfferedFiles(fileIdentifier), FileMode.Open)

 ' Fill the FileData byte array with the data from the file.
 Dim FileData As Byte()
 ReDim FileData(fs.Length)
 fs.Read(FileData, 0, FileData.Length)

 ' Remove the offered file from the collection.
 OfferedFiles.Remove(fileIdentifier)

 ' Clean up.
 fs.Close()
 ' Transmit the file data.
 Return FileData

End Function

The only detail we haven't explored is the layer of user-interface code in the Talk form. The first step is to add an "Offer File"
button that allows the user to choose a file to send. The file is chosen using the OpenFileDialog class.
Private Sub cmdOffer_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdOffer.Click

 ' Prompt the user for a file to offer.
 Dim dlgOpen As New OpenFileDialog()
 dlgOpen.Title = "Choose a File to Transmit"

 If dlgOpen.ShowDialog() = DialogResult.OK Then
 Try

 ' Send the offer.
 TalkClient.SendFileOffer(lstUsers.Text, dlgOpen.FileName)
 Catch Err As Exception
 MessageBox.Show(Err.Message, "Send Failed", _
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation)
 End Try
 End If

End Sub

The Talk form code also handles the FileOfferReceived event, prompts the user, and initiates the transfer if accepted (see Figure
4-7).

Figure 4-7: Offering a file transfer

Private Sub TalkClient_FileOfferReceived(ByVal sender As Object, _
 ByVal e As TalkClient.FileOfferReceivedEventArgs) _
 Handles TalkClient.FileOfferReceived

 ' Create the user message describing the file offer.
 Dim Message As String
 Message = e.SenderAlias & " has offered to transmit the file named: "
 Message &= e.Filename & Environment.NewLine
 Message &= Environment.NewLine & "Do You Accept?"

 ' Prompt the user.
 Dim Result As DialogResult = MessageBox.Show(Message, _
 "File Transfer Offered", MessageBoxButtons.YesNo, MessageBoxIcon.Question)

 If Result = DialogResult.Yes Then

 Try
 ' The code defaults to the TEMP directory, although a more
 ' likely option would be to read information from a registry or
 ' configuration file setting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' configuration file setting.
 Dim DestinationPath As String = "C:\TEMP\" & e.Filename

 ' Receive the file.
 TalkClient.AcceptFile(e.SenderAlias, e.FileIdentifier, _
 DestinationPath)

 ' Assuming no error occurred, display information about it
 ' in the chat window.
 txtReceived.Text &= "File From: " & e.SenderAlias
 txtReceived.Text &= " transferred at "
 txtReceived.Text &= DateTime.Now.ToShortTimeString()
 txtReceived.Text &= Environment.NewLine & DestinationPath
 txtReceived.Text &= Environment.NewLine & Environment.NewLine

 Catch Err As Exception
 MessageBox.Show(Err.Message, "Transfer Failed", _
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation)
 End Try

 End If

End Sub

Figure 4-8: A completed file transfer

Note Adding a file transfer feature such as this one is a notorious security risk. Because the communication is direct, there's
no way to authenticate the recipient. (A central server, on the other hand, could verify that users are who they claim to
be.) That means that a file could be offered to the wrong user or a malicious user who is impersonating another user.
To reduce the risk, the server component could require user ID and password information before returning any
information from the GetUsers() collection.We'll deal with security more closely in Chapter 11.

Scalability Challenges with the Simple Implementation

In its current form, the Talk .NET application is hard pressed to scale in order to serve a large audience. The key problem is the
server component, which could become a critical bottleneck as the traffic increases. To reduce this problem, you can switch to the
decentralized approach described earlier, although this is only a partial solution. It won't deal with the possible problems that can
occur if the number of users grows so large that storing them in an in-memory hashtable is no longer effective.

Databases and a Stateless Server

To combat this problem, you would need to store the list of logged-on users and their connection information in an external data
store such as a database. This would reduce the performance for individual calls (because they would require database lookups),
but it would increase the overall scalability of the system (because the memory overhead would be lessened).

This approach also allows you to create a completely stateless coordination server. In this case, you could replace your
coordination server by a web farm of computers, each of which would access the same database. Each client request could be
routed to the computer with the least traffic, guaranteeing performance. Much of the threading code presented in the next chapter
would not be needed anymore, because all of the information would be shared in a common database that would provide its own
concurrency control. In order to create the cluster farm and expose it under a single IP, you would need to use hardware
clustering or a software load-balancing solution such as Microsoft's Application Center. All in all, this is a fairly good idea of how a
system such as Microsoft's Windows Messenger works. It's also similar to the approach followed in the third part of this book,
where you'll learn how to create a discovery server using a web service.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OneWay Methods

There is also a minor messaging enhancement you can implement using the OneWay attribute from the
System.Runtime.Remoting.Messaging namespace. When you apply this attribute to a method, you indicate that, when this
method is called remotely, the caller will disconnect immediately without waiting for the call to complete. This means that the
method cannot return a result or modify a ByVal parameter. It also means that any exception thrown in the method will not be
detected by the caller. The advantage of this approach is that it eliminates waiting. In the Talk .NET system, the coordination
server automatically calls a client if a message cannot be delivered. Thus, there's no reason for the client to wait while the
message is actually being delivered.

There are currently two methods that could benefit from the OneWay attribute: ClientProcess.ReceiveMessage() and
ServerProcess.SendMessage(). Here's an example:
<System.Runtime.Remoting.Messaging.OneWay()> _
Private Sub ReceiveMessage(ByVal message As String, _
 ByVal senderAlias As String) Implements ITalkClient.ReceiveMessage
 ' (Code omitted.)
End Sub

Note that there's one reason you might not want to apply the OneWay attribute to ServerProcess.SendMessage(). If you do, you
won't be able to detect an error that might result if the user has disconnected without logging off correctly. Without catching this
error, it's impossible to detect the problem, notify the sender, and remove the user from the client collection. This error-handling
approach is implemented in the next chapter.

Optional Features

Finally, there are a number of optional features that you can add to Talk .NET. These include variable user status, user
authentication with a password, and buddy lists. The last of these is probably the most useful, because it allows you to limit the
user list information. With buddy lists, users only see the names of the users that they want to contact. However, buddy lists must
be stored on the server permanently, and so can't be held in memory. Instead, this information would probably need to be stored
in a server-side database.

Another option would be to store a list on the local computer, which would then be submitted with the login request. This would
help keep the system decentralized, but it would also allow the information to be easily lost, and make it difficult for users to obtain
location transparency and use the same buddy list from multiple computers. As you'll see, users aren't always prepared to accept
the limitations of decentralized peer-to-peer applications.

Firewalls, Ports, and Other Issues

Remoting does not provide any way to overcome some of the difficulties that are inherent with networking on the Internet. For
example, firewalls, depending on their settings, can prevent communication between the clients and the coordination server. On a
local network, this won't pose a problem. On the Internet, you can lessen the possibility of problems by following several steps:

Use the centralized design in which all communication is routed through the coordination server.

Make sure the coordination server is not behind a firewall (in a company network, you would place the coordination
server in the demilitarized zone, or DMZ). This helps connectivity because often communication will succeed when
the client is behind a firewall, but not when both the client and server are behind firewalls.

Change the configuration files so that HTTP channels are used instead. They're typically more reliable over the
Internet and low-bandwidth connections. You should still use binary formatting, however, unless you're trying to
interoperate with non-.NET clients.

It often seems that developers and network administrators are locked in an endless battle, with developers trying to extend the
scope of their applications while network administrators try to protect the integrity of their network. This battle has escalated to
such a high point that developers tout new features such as .NET web services because they use HTTP and can communicate
through a firewall. All this ignores the fact that, typically, the firewall is there to prevent exactly this type of communication.
Thwarting this protection just means that firewall vendors will need to go to greater lengths building intelligence into their firewall
products. They'll need to perform more intensive network analysis that might reject SOAP messages or deny web-service
communication based on other recognizable factors. These changes, in turn, raise the cost of the required servers and impose
additional overhead.

In short, it's best to deal with firewall problems by configuring the firewall. If your application needs to use a special port, convince
the network administrators to open it. Similarly, using port 80 for a peer-to-peer application is sure to win the contempt of system
administrators everywhere. If you can't ensure that your clients can use another port, you may need to resort to this sleight-of-
hand, but it's best to avoid the escalating war of Internet connectivity altogether.

Note Ports are generally divided into three groups: well-known ports (0–1023), registered ports (1024–49151), and dynamic
ports (49152–65535). Historically, well-known ports have been used for server-based applications such as web servers
(80), FTP (20), and POP3 mail transfer (110). In your application, you would probably do best to use a registered or
dynamic port that isn't frequently used. These are less likely to cause a conflict (although more likely to be blocked by a
firewall). For example, 6346 is most commonly used by Gnutella. For a list of frequently registered ports, refer to the
C:\{WinDir]\System32\Drivers\Etc\Services file or the http://www.iana.org/assignments/port-numbers site.

Remoting and Network Address Translation

.NET Remoting, like many types of distributed communication, is challenged by firewalls, proxy servers, and network address
translation (NAT). Many programmers (and programming authors) assume that using an HTTP channel will solve these problems.
It may—if the intervening firewall restricts packets solely based on whether they contain binary information. However, this won't
solve a much more significant problem: Most firewalls allow outgoing connections but prevent all incoming ones. Proxy servers
and NAT devices work in the same way. This is a significant limitation. It means that a Talk .NET peer can contact the server (and
the server can respond), but the server cannot call back to the client to deliver a message.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There's more than one way to solve this problem, but none is easy (or ideal). You could implement a polling mechanism, whereby
every client periodically connects to the server and asks for any unsent messages. The drawback of this approach is that the
message latency will be increased, and the load on the server will rise dramatically with the number of clients.

Another approach is to use some sort of bidirectional communication method. For example, you might want to maintain a
connection and allow the server to fire its event or callback at any time using the existing connection. This also reduces the
number of simultaneous clients the server can handle, and it requires a specially modified type of Remoting channel. Ingo
Rammer has developed one such channel, and it's available at
http://www.dotnetremoting.cc/projects/modules/BidirectionalTcpChannel.asp. However, this bidirectional channel isn't yet
optimized for a production environment, so enterprise developers will need to wait.

Unfortunately, neither of these two proposed solutions will work if you want to use decentralized communication in which peers
contact each other directly. In this case, you'll either need to write a significant amount of painful low-level networking code (which
is beyond the scope of this book), or use a third-party platform such as those discussed in Part Three.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
In this chapter, we developed an instant-messaging application using Remoting and showed how it could be modified into a peer-
to-peer system with a central lookup service. However, the current version of the Talk .NET system still suffers from some notable
shortcomings, which will become particularly apparent under high user loads. If different users attempt to register, unregister, or
send messages at the same time, the user collection may be updated incorrectly, and information could be lost. To guard against
these problems, which are almost impossible to replicate under modest loads, you'll need to add multithreading, as described in
the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5: Threading the Coordination Server

Overview
In the previous chapter, we developed an instant-messaging application that relies on a central coordinator. As it stands, the
central coordinator isn't equipped to handle concurrent requests, which could lead to subtle problems when registering and
removing users. There are two approaches that can handle these problems.

The first option is to move the user registry into a database. This approach has a cost. Though a database will ensure scalability
and eliminate the possibility of concurrency problems, it will also slow down individual client requests. Using a database makes the
most sense if you intend to scale the system to an extremely large audience (with hundreds of simultaneous users). The database
approach is demonstrated with the discovery service in Chapter 7.

The second option is to revise the central coordinator and add the .NET threading code needed to safely handle access to the
user collection. This approach is ideal when creating a peer-to-peer system for a smaller community (for example, inside the
private network of a single organization). This is the approach we'll develop in this chapter.

This chapter also introduces a few additional enhancements to the Talk.NET system. These include the following:

Mechanisms to handle users who supply duplicate user names and users who disconnect from the system without
properly logging out.

Client-side threading code to properly handle user-interface refreshes, particularly when multiple messages are
received at once.

A modified TalkService component recast as a Windows service, so it can load automatically and run in the
background without user intervention.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Threading Essentials
The common language runtime (CLR) uses a thread pool to listen for requests for remotable objects. That means that if more
than one user attempts to call a method at the same time, the tasks will complete simultaneously on different threads. With a
sufficiently high number of simultaneous requests, every thread in the pool will be busy, and some users will have to wait for a
thread to become free before their task can be completed (or, in extreme cases, until a time-out occurs and an error is raised on
the client). With thread pools, threads are kept alive indefinitely and reused as long as there's outstanding work to complete.

Generally, thread pools ensure optimum performance. For the most part, clients won't need to wait (as they probably would if the
server provided only one thread). On the other hand, no matter how heavy the traffic, the CLR will never create so many threads
that the server computer becomes swamped and unable to complete any of the work before a time-out occurs (which could occur
if a new thread was created to serve each and every request).

Multithreaded systems always add a few new wrinkles for the application programmer to worry about. These mainly come in the
form of concurrency errors. If these problems aren't anticipated, they can be fiendishly difficult to diagnose and resolve once the
application is deployed in the field.

Concurrency errors occur when more than one thread modifies the same piece of memory. The problem is that the last update
always takes precedence, even if it doesn't take into account the work performed by other threads. The canonical example of a
concurrency error is a global counter that's being incremented by several threads. A concurrency error can occur if all threads
attempt to increment the counter at once.

For example, consider the case in which the global counter is currently at 5 and there are two threads at work. Here's how it might
unfold for the worse:

1. Thread A reads the value 5.

2. Thread B reads the value 5.

3. Thread A increments the value of the counter to 6.

4. Thread B increments the value of the counter to 6.

In this case, the last update wins and the counter stands at 6, even though it should really be set to 7 to represent both of the
increment operations. This is just one example of a concurrency problem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Threading and the Coordination Server
The ServerProcess class contains only a single piece of shared data: the collection of client information. Unfortunately, this is
enough to cause trouble because the collection object is not intrinsically thread-safe. If more than one thread attempts to perform
work with the collection at the same time, it's possible that the collection won't be properly updated. For example, if two users are
registered at the same time, only one update might persist, leading to an unregistered user. Even worse, iterating through a
collection isn't a thread-safe operation, which means that trying to register a new user and look up an existing user for a message
delivery at the same time could conceivably cause a problem. These errors could be rare, but they're never worth the risk because
they tend to grow increasingly more significant and frequent as an application becomes more successful and is used by a larger
and larger user base.

Resolving concurrency problems is fairly easy. The Hashtable collection provides a thread-safe wrapper that you can use with a
minimum of fuss, or you can take control of the situation yourself with Visual Basic's SyncLock statement. Both of these
techniques ensure that only one client can access the collection at a time. However, these approaches can reduce performance.
Every time you use locking, you force some code to execute synchronously, meaning that other clients attempting the same task
or requiring access to the same resource could be stalled. If your locks are too coarse, held too long, and applied too often, the
overall performance of your application may be unacceptable for a large number of users. This is the key compromise with
multithreaded programming, and it requires an experienced developer to strike the right balance.

The next few sections show how you can add locking to the ServerProcess class, and how you can do so to minimize the
performance overhead.

Synchronizing Collection Access

The easiest methods to deal with are the AddUser() and RemoveUser() methods, which manage the user registration process.
There are three ways you could apply a lock, and we'll consider the trade-offs and advantages of each one.

First, you can create what's known as a critical section by locking the entire ServiceProcess object. It looks like this:
Public Sub AddUser(ByVal [alias] As String, ByVal client As ITalkClient) _
 Implements TalkComponent.ITalkServer.AddUser

 SyncLock Me
 Trace.Write("Added user '" & [alias] & "'")
 ActiveUsers([alias]) = client
 End SyncLock
End Sub

When a thread hits this patch of code, the SyncLock statement is used to lock the entire ServiceProcess object. That means that
no other thread will be able to use ServiceProcess until the first thread completes its task. This is true even if the other thread is
calling an innocent, unrelated method that wouldn't pose any threat. Clearly, this coarse lock can create frequent bottlenecks.

A more fine-tuned option is shown in the next example. In this case, only the ActiveUsers collection itself is locked. Other threads
can continue working with ServiceProcess, until they hit a line of code that requires the ActiveUsers collection, at which point
they'll be stalled:
Public Sub AddUser(ByVal [alias] As String, ByVal client As ITalkClient) _
 Implements TalkComponent.ITalkServer.AddUser

 Trace.Write("Added user '" & [alias] & "'")
 SyncLock ActiveUsers
 ActiveUsers([alias]) = client
 End SyncLock
End Sub

Tip SyncLock can only be used with objects, not simple value types such as integers. Because ActiveUsers is a Hashtable
object, this technique works perfectly. If an unhandled error occurs inside the SyncLock block, the lock is automatically
released.

Note that the lock is only used around the single statement that interacts with the collection. The Trace.Write() method call is not
included in the block. This ensures that the lock is held for the shortest possible time, and helps to wring every possible degree of
concurrency out of this solution.

Finally, you can accomplish exactly the same thing by using the synchronized wrapper provided by the Hashtable collection as
shown here:
Public Sub AddUser(ByVal [alias] As String, ByVal client As ITalkClient) _
 Implements TalkComponent.ITalkServer.AddUser

 Trace.Write("Added user '" & [alias] & "'")
 Dim SynchronizedCollection As Hashtable
 SynchronizedCollection = Hashtable.Synchronized(ActiveUsers)
 SynchronizedCollection([alias]) = client

End Sub

The synchronized wrapper returned by the Hashtable.Synchronized() method is identical to the original Hashtable in every respect
except for the fact that it wraps all its methods with locking statements to prevent concurrency problems. Thus, the previous code
sample is equivalent to manually locking the collection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tip In some cases, it's better to manually lock the collection yourself rather than use the synchronized wrapper. This is
primarily the case if you need to perform several tasks with the collection, one after the other. In this case, it will be better
to lock the object once and perform the work, rather than use the synchronized wrapper, which will obtain and release
the lock with each individual method call.

Either one of these approaches provides a good solution for the AddUser() and RemoveUser() methods, because they typically
execute quite quickly and hold the lock for mere fractions of a second. However, it's still possible to coax a little more performance
from your locking code by using the System.Threading.ReaderWriterLock class. This class allows you to create a lock that permits
only one user to write to the collection at a time, but allows multiple users to read from it. By implementing this design, you could
protect the AddUser() and RemoveUser() methods without locking out the harmless GetUsers() method.

To implement reader and writing locking, you must first create a member variable in the ServerProcess class that represents the
lock:
Private ActiveUsersLock As New ReaderWriterLock()

In the GetUsers() method, you would acquire a reader lock by using the AcquireReaderLock() method. This method accepts a
TimeSpan object that represents the interval of time to wait while attempting to acquire the lock before giving up. You can use –1
to specify an infinite wait, meaning the code won't time out (although the network connection eventually will, if the lock is never
obtained). In this case, we specify a more reasonable maximum of one minute. If the lock is not acquired within this time period,
an exception will be thrown.
Public Function GetUsers() As System.Collections.ICollection _
 Implements TalkComponent.ITalkServer.GetUsers

 ActiveUsersLock.AcquireReaderLock(TimeSpan.FromMinutes(1))
 Return ActiveUsers.Keys
 ActiveUsersLock.ReleaseReaderLock()
End Function

The AddUser() and RemoveUser() methods use the AcquireWriterLock() method, as shown in the following code snippet.
Public Sub AddUser(ByVal [alias] As String, ByVal client As ITalkClient) _
 Implements TalkComponent.ITalkServer.AddUser

 Trace.Write("Added user '" & [alias] & "'")
 ActiveUsersLock.AcquireWriterLock(TimeSpan.FromMinutes(1))
 ActiveUsers[alias] = client
 ActiveUsersLock.ReleaseWriterLock()
End Sub

Now multiple users can call the GetUsers() method and read from the collection at the same time without causing an error.
However, if the AddUser() or RemoveUser() method is executed, an exclusive lock will be required, which will temporarily prevent
any other read or write operation.

Remember, when using the ReaderWriterLock class, you should make sure to explicitly release the lock if an exception occurs
after you acquire it.

Creating a Delivery Service

Synchronizing the collection access with AddUser() and RemoveUser() is straightforward, once you understand a few threading
concepts. Doing the same with the message delivery isn't quite as easy. In an average system, the number of messages will be
quite high. It's not practical to lock the user collection each time you need to search for a message recipient, because the entire
system could shudder to a standstill.

Another option is to use a dedicated delivery service that runs on a separate thread, routing messages as needed. This delivery
service wouldn't use the ActiveUsers collection but rather a recent copy of the collection. This reduces thread contention, which
occurs when multiple clients try to grab the same resource, and some are left waiting. Best of all, the delivery service will operate
on a different thread from the pool of threads used to handle incoming requests. This ensures that the server won't become a
bottleneck, even if there's a measurable delay required in order to contact a remote client and transmit a message.

The delivery service should have the following basic skeleton:
Public Class DeliveryService
 ' Stores a copy of the ActiveUsers collection.
 Private RegisteredUsers As New Hashtable()
 ' Stores messages that haven't been delivered yet.
 Private Messages As New Queue()

 ' Adds a message to the queue.
 Public Sub RegisterMessage(ByVal message As Message)
 ' (Code omitted.)
 End Sub

 ' Updates the user list.
 Public Sub UpdateUsers(ByVal users As Hashtable)
 ' (Code omitted.)
 End Sub

 ' Keep the thread active as long as there are messages.
 ' After that, suspend it.
 Public Sub Deliver()
 ' (Code omitted.)
 End Sub

 ' Look up the remote client and send the message.
 Private Sub DeliverMessages()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub DeliverMessages()
 ' (Code omitted.)
 End Sub

End Class

In this example, messages are stored in a Queue object. Queues are first-in-first-out (FIFO) collections. Using a queue ensures
that messages are dealt with in the order that they're received, and none are delayed unreasonably.

The RegisterMessage() and UpdateUsers() methods are quite straightforward and need simple locking code to ensure that no
concurrency errors will occur as messages are registered or the user list is updated:
Public Sub RegisterMessage(ByVal message As Message)
 SyncLock Messages
 Messages.Enqueue(message)
 End SyncLock
End Sub

Public Sub UpdateUsers(ByVal users As Hashtable)
 SyncLock (RegisteredUsers)
 RegisteredUsers = users
 End SyncLock
End Sub

Messages are submitted as instances of the Message class, which encapsulates all the relevant information, including the sender,
recipient, and message text. Here's the class you'll need:
Public Class Message
 Private _SenderAlias As String
 Private _RecipientAlias As String
 Private _MessageBody As String

 Public Property SenderAlias() As String
 Get
 Return _SenderAlias
 End Get Set(ByVal Value As String)
 _SenderAlias = Value
 End Set
 End Property

 Public Property RecipientAlias() As String
 Get
 Return _RecipientAlias
 End Get
 Set(ByVal Value As String)
 _RecipientAlias = Value
 End Set
 End Property

 Public Property MessageBody() As String
 Get
 Return _MessageBody
 End Get
 Set(ByVal Value As String)
 _MessageBody = Value
 End Set
 End Property

 Public Sub New(ByVal sender As String, ByVal recipient As String, _
 ByVal body As String)
 Me.SenderAlias = sender
 Me.RecipientAlias = recipient
 Me.MessageBody = body
 End Sub
End Class

Message Delivery with the Delivery Service
The message delivery is performed in the DeliverMessages() method, while the Deliver() method keeps the thread alive, looping
continuously, and calling DeliverMessages() if there are items in the Messages queue. Remember, once a thread completes, it
cannot be resurrected. The only way to keep the message delivery thread alive is to use a loop in the Deliver() method and
explicitly suspend the thread when there's no work to do.
Public Sub Deliver()

 Do
 Trace.Write("Starting message delivery")
 DeliverMessages()

 ' Processing is complete. The thread can be put on hold.
 Trace.Write("Suspending thread")
 Thread.CurrentThread.Suspend()
 Loop

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

Another option would be to use some sort of timer to periodically scan the Messages queue and deliver messages. However, this
could lead to latency when delivering messages. If your timer fires every five seconds, for example, messages may take over five
seconds to be transmitted to their destination. Also, you would need to manually disable the timer while a message deliver was in
process, and re-enable it afterwards. Similar logic can be accomplished more efficiently using threads.

The majority of the work takes place in the DeliverMessages() method. The Messages collection is locked only to retrieve the next
message object, by calling Dequeue(). Calling this method retrieves the Message object and removes it from the queue. The
RegisteredUsers collection is locked during the lookup operation.
Private Sub DeliverMessages()

 Do While Messages.Count > 0
 Trace.Write("Retrieving next message")

 Dim NextMessage As Message
 SyncLock Messages
 NextMessage = CType(Messages.Dequeue(), Message)
 End SyncLock
 Dim Recipient As ITalkClient
 Dim MessageBody As String
 Dim Sender As String

 ' Look up the recipient.
 SyncLock RegisteredUsers

 If RegisteredUsers.ContainsKey(NextMessage.RecipientAlias) Then
 Recipient = CType(RegisteredUsers(NextMessage.RecipientAlias), _
 ITalkClient)
 MessageBody = NextMessage.MessageBody
 Sender = NextMessage.SenderAlias
 Else
 ' User wasn't found. Try to find the sender.
 If RegisteredUsers.ContainsKey(NextMessage.SenderAlias) Then
 Recipient = CType(RegisteredUsers(NextMessage.SenderAlias), _
 ITalkClient)
 MessageBody = "'" & NextMessage.MessageBody & _
 "' could not be delivered."
 Sender = "Talk .NET"
 Else
 ' Both sender and recipient were not found.
 ' Ignore this message.
 End If
 End If

 End SyncLock

 ' Deliver the message.
 If Not Recipient Is Nothing Then
 Trace.Write("Performing message delivery callback")
 Dim callback As New ReceiveMessageCallback(AddressOf _
 Recipient.ReceiveMessage)
 Try
 callback.BeginInvoke(MessageBody, Sender, Nothing, Nothing)
 Catch Err As Exception
 Trace.Write("Message delivery failed")
 End Try
 End If
 Loop

End Sub

Note Error handling is mandatory in the DeliverMessages() method. Because this method isn't directly called by the client,
exceptions will not propagate to the user-interface level. Any problems will simply derail the delivery thread, halting all
message delivery.

The threading used here is quite efficient. Because the RegisteredUsers collection is only updated periodically, and because
there's only ever one delivery operation running at a time on this thread, there's little likelihood of thread contention (when one
thread needs to wait for another one to finish using a resource and release its lock). The same is true of the Messages collection,
which is only locked briefly to retrieve or add a message.

Using the Delivery Service
To start using the new delivery service, you'll need to modify the server code. The first step is to create two additional member
variables in the ServerProcess class: MessageDelivery and DeliveryThread. MessageDelivery stores a reference to an instance of
the DeliveryService class, and DeliveryThread references the System.Threading.Thread object where it executes.
Public Class ServerProcess
 Inherits MarshalByRefObject
 Implements ITalkServer

 ' The object used for delivering messages.
 Private MessageDelivery As New DeliveryService()

 ' The thread where the message delivery takes place.
 Private DeliveryThread As New Thread(AddressOf MessageDelivery.Deliver)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private DeliveryThread As New Thread(AddressOf MessageDelivery.Deliver)

 Public Sub New()
 MyBase.New()
 DeliveryThread.IsBackground = True
 End Sub

 ' (Other code omitted.)

End Class

When the ServerProcess is first created, the delivery thread is configured to run in the background. This means that it will
automatically be aborted when the ServerProcess thread is destroyed. You could also use the ServerProcess constructor to
configure the priority of the delivery thread.

ServerProcess also needs to update the DeliveryService.RegisteredUsers collection periodically. One possibility is to update this
copy of the collection only when a user is added to the collection. At this point the server clones a new copy of the user collection,
and submits it to the delivery service. This ensures that the delivery service can always locate message recipients. It also doesn't
use much additional memory, because the duplicate collection actually references the same set of ITalkClient objects. It's only the
memory references that are actually duplicated.
Public Sub AddUser(ByVal [alias] As String, ByVal client As ITalkClient) _
 Implements TalkComponent.ITalkServer.AddUser

 Trace.Write("Added user '" & [alias] & "'")
 SyncLock ActiveUsers
 ActiveUsers([alias]) = client
 MessageDelivery.UpdateUsers(ActiveUsers.Clone())
 End SyncLock

End Sub

There's not much point to refresh the collection when users are removed because this won't help the delivery service, and it will
increase the potential for thread contention. Note that it's not necessary to lock the DeliveryService.Registered Users collection
because the DeliveryService.UpdateUsers() method performs this step on its own.

The ServerProcess.SendMessage() method also needs to change. It will no longer send the message directly. Instead, it will just
submit the message to the delivery service.
Public Sub SendMessage(ByVal senderAlias As String, _
 ByVal recipientAlias As String, ByVal message As String) _
 Implements TalkComponent.ITalkServer.SendMessage

 ' Register the message.
 Trace.Write("Queuing message to '" & recipientAlias & "_
 ' from '" & senderAlias & "'")
 Dim NewMessage As New Message(senderAlias, recipientAlias, message)
 MessageDelivery.RegisterMessage(NewMessage)

 ' Resume the thread if needed.

 If (DeliveryThread.ThreadState And ThreadState.Unstarted) = _
 ThreadState.Unstarted Then
 Trace.Write("Start delivery thread")
 DeliveryThread.Start()
 ElseIf (DeliveryThread.ThreadState And ThreadState.Suspended) = _
 ThreadState.Suspended Then
 Trace.Write("Resuming delivery thread")
 DeliveryThread.Resume()

 End If

End Sub

Once the message is queued, the status of the thread is checked. It's then started for this first time, if needed, or unsuspended. If
the thread is already actively delivering messages, it will not suspend itself. Instead, it will pick up the new message as soon as it
finishes delivering all the others.

Figure 5-1 and Figure 5-2 show two different views of this process. Figure 5-1 shows the interaction of the DeliveryService and the
ServiceProcess objects. Figure 5-2 shows the threading picture (where the code is executed). As you can see, when
ServiceProcess calls DeliveryService the code executes on the same thread. This is why synchronization code is needed: to
prevent the Remoting threads from conflicting with the delivery process.

Figure 5-1: Interaction with the DeliveryService

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-2: The threaded message delivery

Finally, Figure 5-3 shows the typical trace output after sending messages between clients.

Figure 5-3: Trace output for the threaded Talk .NET

Deadlocks and Other Threading Nightmares

We've haven't discussed some of the other potential hurdles of multithreaded programming, including deadlocking and thread
starvation. That's because these problems are unlikely to occur in Talk .NET. Deadlocks only appear when you're attempting to
acquire locks on multiple objects at the same time or when objects are trying to obtain locks on each other. The end result is a
stand-off where multiple segments of code wait for each other to surrender the lock they desire. Contrary to what some
programmers may have told you, deadlocks aren't always that difficult to avoid. The best advice is to never hold more than one
lock at a time, and to use fine-grained locks instead of coarse-grained critical sections. If you really must obtain multiple locks at
once, always make sure that you obtain them in the same order. Finally, if you're writing some really intricate threading code, you
would do well to master some of the more advanced classes in the System.Threading namespace. For example, using the
Monitor class, you can write intelligent threading code that prevents deadlocks by releasing all locks if it can't complete its task.

A more realistic danger is thread starvation, the condition that occurs when you have too many threads competing for the CPU,
and some threads never have the processor's attention for long enough to complete some reasonable work. This problem most
often occurs when you create too many threads, so that the operating system wastes a large amount of time tracking, scheduling,
and splicing from one thread to another. In the current delivery service, this isn't a problem because only one additional thread is
created and this thread is reused for all message delivery operations. In the next section, however, you'll learn about an alternate
design in which thread starvation is a real possibility and you'll see how the ThreadPool class can reduce the risk dramatically.

Using the ThreadPool

The delivery service design presented here will typically work very well, but it isn't the only option. Another solution is to create
multiple threads to handle the message delivery. This design is possible because each message delivery is a separate operation.
Using multiple threads allows the delivery of multiple messages to be performed asynchronously, potentially increasing delivery
times if the system is large and networking delays are significant. But it also requires more memory, because each thread will
have its own copy of the collection of registered users. In a real-world application, you would probably test both approaches with a
scaled-down, automated version of the application before you begin coding the full solution.

The basic operation of the system is shown in Figure 5-4. The idea is that a thread is created every time a message needs to be
delivered.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-4: Multiple thread message delivery

If you implemented this design by using the System.Threading.Thread class, you would quickly run into a few terrible headaches.
The overhead of creating and destroying threads would waste valuable server resources, and the system would perform poorly
under heavy user loads because it would create far too many threads for the CPU to track and manage effectively. Instead, most
of the computer's resources would be dedicated to tracking and scheduling threads, and the system would collapse under its own
weight.

Luckily, there's a better approach: using a thread pool. A thread pool is a dedicated group of threads that are reused indefinitely
(in much the same way the Remoting infrastructure uses threads to handle user requests). The advantages of thread pools
include the following:

Threads are only created once, so the overhead of creating and destroying threads is negligible.

Several operations can complete at the same time. With Remoting, this means that other messages won't be
stalled while the delivery service attempts to contact a disconnected client.

Thread pools multiplex a large number of requests to a small number of threads (typically about 25). This ensures
that the system never creates more threads than it can handle.

You can create a thread pool system on your own, but you'll need significant code to monitor the threads and distribute the work
appropriately. Thankfully,.NET provides a simple thread pool through the System.Thread.ThreadPool class. Using the ThreadPool
class is easy—the only disadvantages are threefold: you lack any way to configure how many threads it uses; you can't set
relative priorities; and you can't cancel tasks after they have been submitted. By default, the ThreadPool allocates about 25
threads per CPU.

To perform a task asynchronously with the ThreadPool, simply use the static QueueUserWorkItem() method with a delegate that
points to the method that should be executed.
ThreadPool.QueueUserWorkItem(AddressOf WorkMethod)

This schedules the task. When there is a free thread, the CLR will use it to execute the specified code.

To use the ThreadPool class with Talk .NET, you would first simplify the DeliveryService class:
Public Class DeliveryService

 Private RegisteredUsers As Hashtable
 Private NextMessage As Message

 Public Sub New (ByVal users As Hashtable, ByVal nextMessage As Message)
 RegisteredUsers = users
 NextMessage = nextMessage
 End Sub

 Public Sub DeliverMessage(state As Object)
 ' Deliver the message.
 Dim Recipient As ITalkClient
 Dim MessageBody As String
 Dim Sender As String

 ' There's no need to lock anything, because no other part of the
 ' application will communicate with this class once it is started.
 If RegisteredUsers.ContainsKey(NextMessage.RecipientAlias) Then
 Recipient = CType(RegisteredUsers(NextMessage.RecipientAlias), _
 ITalkClient)
 MessageBody = NextMessage.MessageBody
 Sender = NextMessage.SenderAlias

 Else
 ' User wasn't found. Try to find the sender.
 If RegisteredUsers.ContainsKey(NextMessage.SenderAlias) Then
 Recipient = CType(RegisteredUsers(NextMessage.SenderAlias), _
 ITalkClient)
 MessageBody = "'" & NextMessage.MessageBody & _
 "' could not be delivered."
 Sender = "Talk .NET"
 Else
 ' Both sender and recipient were not found.
 ' Ignore this message.
 End If
 End If

 ' Deliver the message.
 If Not Recipient Is Nothing Then
 Trace.Write("Performing message delivery callback")
 Dim callback As New ReceiveMessageCallback(AddressOf _
 Recipient.ReceiveMessage)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Recipient.ReceiveMessage)
 Try
 SyncLock Recipient
 callback.BeginInvoke(MessageBody, Sender, Nothing, Nothing)
 End SyncLock
 Catch Err As Exception
 Trace.Write("Message delivery failed")
 End Try
 End If

 End Sub
End Class

There's no longer any need to provide a form-level reference to the delivery object and thread in the ServerProcess class
(although you could store this information in a collection, if needed). The ServerProcess.SendMessage() method creates a new
DeliveryService object and queues it with the thread pool.
Public Sub SendMessage(ByVal senderAlias As String, _
 ByVal recipientAlias As String, ByVal message As String) _
 Implements TalkComponent.ITalkServer.SendMessage

 Dim NewMessage As New Message(senderAlias, recipientAlias, message)
 Dim NewDelivery As New DeliveryService(ActiveUsers.Clone(), NewMessage)

 Trace.Write("Queuing message to '" & recipientAlias & "_
 ' from '" & senderAlias & "'")
 ThreadPool.QueueUserWorkItem(NewDelivery.DeliverMessage)

End Sub

Note In this example, each thread is given a separate copy of the user collection. However, you must still lock the ITalkClient
object before you attempt to send a message, to prevent a problem that could occur if more than one delivery thread
tries to send a message to the same user at the same time. Remember, when you clone a collection, it still contains
the same objects.

There's only one such ThreadPool per application domain, so if you use it in more than one part of your application, all work items
will be constrained to the set number of threads.

Cleaning Up Disconnected Clients

Currently, neither of these examples go the extra length to remove a client when message delivery fails. In these multithreaded
examples, this step isn't as easy as it was in the nonthreaded version of Talk .NET. The problem is that it's not enough to remove
the user from the DeliveryService copy of the collection—if you do, it will simply reappear the next time the collection is copied
over, and it won't affect the contact list downloaded by the clients. Instead, the DeliveryService class needs to call the
ServerProcess.RemoveUser() method to make sure the central collection is modified.

In order to add this functionality, you need to create a DeliveryService class that stores a reference to the ServerProcess.

Public Class DeliveryService

 Public Server As ServerProcess

 ' (Other code omitted)

End Class

You could set this reference in the DeliveryService constructor. Then, you can use this reference to call RemoveUser() as needed:
Try
 callback.BeginInvoke(MessageBody, Sender, Nothing, Nothing)
Catch Err As Exception
 Trace.Write("Message delivery failed")
 Server.RemoveUser(Recipient)
End Try

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Threading and the Client
The most important place for threading code is at the coordination server, because it will regularly deal with simultaneous client
requests. That's why the last few sections have dealt exhaustively with server-side threading issues. However, the peers in the
system also expose an object through Remoting (called ClientProcess). That means that each client also has a pool of threads—
provided by the CLR—listening for remote method calls. The ClientProcess object will be invoked on a different thread from the
rest of the application, and multiple requests from different peers could be received at once.

What's worse, the code commits one of the cardinal sins of Windows programming: manipulating the user interface from a thread
that doesn't own it. To deal with this reality and prevent another level of subtle, maddening bugs, you need to fortify the client and
add some synchronization code.

Tip To verify that the event handlers for events such as MessageReceived and FileOfferReceived don't execute on the user-
interface thread, you can perform a simple test. Display the unique numeric identifier for the current thread
(Thread.CurrentThread.Hashcode), either by showing a MessageBox or writing a debug statement.You'll see that the
identifier for it isn't the same in the event handler as it is in other form methods.

Unfortunately, you can't lock user interface elements (such as controls). Instead, you need to ensure that code that interacts with
the user interface executes on the user-interface thread. The base .NET Control class provides an Invoke() method designed for
exactly this purpose. In order to execute a method on the user-interface thread, pass a reference to this method to the Invoke()
method, using the MethodInvoker delegate.
MyControl.Invoke(New MethodInvoker(AddressOf MyMethod))

The MethodInvoker delegate can point to any method that takes no parameters. This means you need to perform a little bit more
work if you want the method to have access to one or more variables. For example, in TalkClient, the method must have access to
a string variable with the message text in it. The easy way to allow this is to create a dedicated class that combines the method
with the required information. Here's the class used in the revised TalkClient:
Public Class UpdateControlText

 Private NewText As String

 ' The reference is retained as a generic control,
 ' allowing this helper class to be reused in other scenarios.
 Private ControlToUpdate As Control

 Public Sub New(ByVal newText As String, ByVal controlToUpdate As Control)
 Me.NewText = newText
 Me.ControlToUpdate = controlToUpdate
 End Sub

 ' This method must execute on the user-interface thread.
 Public Sub Update()
 Me.ControlToUpdate.Text &= NewText
 End Sub

End Class

As you can see, some effort has been made to ensure that this class is as generic as possible. It can be used to update the Text
property of any control in a thread-safe manner. Here's how you'll put it to work when receiving a message:
Private Sub TalkClient_MessageReceived(ByVal sender As Object, _
 ByVal e As MessageReceivedEventArgs) Handles TalkClient.MessageReceived
 ' Define the text.
 Dim NewText As String
 NewText = "Message From: " & e.SenderAlias
 NewText &= " delivered at " & DateTime.Now.ToShortTimeString()
 NewText &= Environment.NewLine & e.Message
 NewText &= Environment.NewLine & Environment.NewLine

 ' Create the object.
 Dim ThreadsafeUpdate As New UpdateControlText(NewText, txtReceived)

 ' Invoke the update on the user-interface thread.
 Me.Invoke(New MethodInvoker(AddressOf ThreadsafeUpdate.Update))

End Sub

Ideally, all methods that access the user interface should be performed on the user-interface thread. That means you'll need to
update the code that prompts the user to accept a file transfer in response to the FileOfferReceived method. Here's one option:
Private Sub TalkClient_FileOfferReceived(ByVal sender As Object, _
 ByVal e As TalkClient.FileOfferReceivedEventArgs) _
 Handles TalkClient.FileOfferReceived

 ' Create the user message describing the file offer.
 Dim Message As String
 Message = e.SenderAlias & " has offered to transmit the file named: "
 Message &= e.Filename & Environment.NewLine
 Message &= Environment.NewLine & "Do You Accept?"

 'Fortunately the MessageBox.Show method is thread-safe,
 'saving some work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'saving some work.
 Dim Result As DialogResult = MessageBox.Show(Message, _
 "File Transfer Offered", MessageBoxButtons.YesNo, MessageBoxIcon.Question)

 If Result = DialogResult.Yes Then

 Try
 Dim DestinationPath As String = "C:\TEMP\" & e.Filename

 ' Receive the file.
 TalkClient.AcceptFile(e.SenderAlias, e.FileIdentifier, _
 DestinationPath)
 ' Display information about it in the chat window.
 Dim NewText As String
 NewText = "File From: " & e.SenderAlias
 NewText &= " transferred at " & DateTime.Now.ToShortTimeString()
 NewText &= Environment.NewLine & DestinationPath
 NewText &= Environment.NewLine & Environment.NewLine
 Dim ThreadsafeUpdate As New UpdateControlText(NewText, txtReceived)
 Me.Invoke(New MethodInvoker(AddressOf ThreadsafeUpdate.Update))
 Catch err As Exception
 MessageBox.Show(err.Message, "Transfer Failed", _
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation)
 End Try
 End If

End Sub

You won't need to take any extra steps when updating the user list—this call is performed on the user-interface thread thanks to a
UI-friendly timer. This is the key difference between the System.Windows.Forms.Timer class and other classes in the
System.Timers namespace.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Refining Talk .NET
So far this chapter has investigated threading intricacies and rewritten all the parts of the Talk. NET system that are vulnerable to
threading problems. At this point, it's worth considering a few additional enhancements that you can make to round out Talk .NET.

Client Lifetime

Currently, there are only two ways that a client is removed from the user list: if the client logs out or if an error occurs when
sending that client a message. To improve the system and ensure it more accurately reflects the clients that are currently
connected, you can add an expiry time to the client login information. This expiry date should be fairly generous (perhaps 15
minutes) to prevent the system from being swamped by frequent network messages. Unfortunately, there will always be a trade-
off between ensuring the up-to-date accuracy of the system, and ensuring the optimal performance of the system.

In order to use an expiry policy, the ActiveUsers collection will need to store expiry dates (or last update times) and client
references. You handle this by creating a new class that aggregates these two pieces of information, such as the ClientInfo class
shown here:
Public Class ClientInfo

 Public ProxyRef As ITalkClient
 Public LastUpdated As DateTime

End Class

The ActiveUsers collection will then only store ClientInfo objects. Once the expiry dates are in place, there are two ways to
implement an expiry policy:

You could give the server the responsibility for calling a "dummy" method in the client that simply returns True. If
this method can be called without a networking error, the client's expiry date will be updated accordingly.

You can give the client the responsibility of contacting the server and logging in periodically before the expiry date is
reached.

Both methods are used in the current generation of peer-to-peer applications. The latter is generally preferred, because it
simplifies the server-side coding. It also ensures that the server won't have to wait for a communication error to detect an
improperly disconnected client. Instead, it will just inspect the expiry date. Because the server is a critical component in the
system, you should reduce its work as much as possible.

In either case, the server needs to periodically examine the list of logged-in users and remove invalid entries. This could be
performed on a separate thread or in response to a timer. The separate thread would probably create a copy of the collection
before examining it for expired users, in order to minimize locking possibilities. It would then double-check the live collection and
call the RemoveUser() method.

In Talk .NET, there's another, potentially more efficient approach. The client expiry date could be refreshed every time the client
calls the GetUsers() method. This reduces network traffic because the client is already calling GetUsers() as long as it's active in
order to keep its list of contacts up to date. To accommodate this design, you would need to modify the GetUsers() signature so
that it accepts the client name (or, in a secure application, a security token of some kind). Here's an example:

Public Sub GetUsers(requestingUser As String)

 SyncLock ActiveUsers
 ' Refresh the client last update time.
 CType(ActiveUsers(requestingUser), ClientInfo).LastUpdated = DateTime.Now
 ' Return the client list.
 Return ActiveUsers.Keys
 End SyncLock
End Sub

Note We will deal with expiry dates again in more detail when we create a discovery service in the third part of this book.

Duplicate Users

The current TalkServer makes no effort to prevent duplicate users. This is a problem because if there's more than one user that
logs on with the same name, only the most recent user will be entered in the collection (and will be able to receive messages).

To overcome this problem, you simply need to modify the ServerProcess.AddUser() method so that it refuses attempts to create
an already existing user.
Public Function AddUser(ByVal [alias] As String, ByVal client As ITalkClient) _
 As Boolean Implements TalkComponent.ITalkServer.AddUser
 SyncLock Me
 If ActiveUsers.Contains([alias])
 Return False
 Else
 ActiveUsers[alias] = client
 Return True
 End SyncLock
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

Similarly, TalkClient should be modified so that it will refuse to continue until it receives acceptance from the server:

Public Shared Sub Main()
 Dim frmLogin As New Login()

 Do
 If frmLogin.ShowDialog() = DialogResult.OK Then
 ' Create the new remotable client object.
 Dim Client As New ClientProcess(frmLogin.UserName)

 If frm.TalkClient.Login() Then
 ' Create the client form.
 Dim frm As New Talk()
 frm.TalkClient = Client

 ' Show the form.
 frm.ShowDialog()
 Else
 ' Login attempt failed. The loop will try it again.
 End If
 Else
 ' User chose to exit the application.
 Exit Do
 End If
 Loop

End Sub

Unfortunately this approach is still a little too restrictive. What happens in the legitimate case that a user wants to log in again after
the application disconnected due to network problems? The user could use a new alias or wait for the old information to expire,
but this is still far from ideal. One option is to add a "dummy" method to the ClientProcess. When faced with a duplicate login
request, the server could then call this dummy method and, if it receives an error, it would determine that the current client is
invalid and allow the new login request.

If you implement an authentication system, this code may change. In the case of an authentication system, it's safe to assume
that if a user who already exists logs in again, the old information should be replaced without asking any questions, provided the
user's identity is confirmed (typically by comparing the supplied password against a database).

Using a Windows Service

Remoting and Windows services make a great match. Currently, the TalkServer component host uses a Windows Form interface.
This imposes some limits— namely, it requires someone to launch the application, or at least log on to a server computer so it can
be loaded automatically. Windows services, on the other hand, require no user intervention other than starting the computer. The
TalkServer, if implemented as a Windows service, will run quietly in the background, logged in under a preset account, even if the
computer isn't currently in use, or is still at the Windows Login screen. Administrators using the computer can interact with
Windows Services through the Service Control Manager (SCM), which allows services to be started, stopped, paused, and
resumed.

This book won't explore Windows services in much detail, as they're already covered in many introductory .NET books, and they
aren't specific to peer-to-peer development. However, it's surprisingly easy to create a simple Windows service to host the Talk
.NET peer-to-peer system, and it's worth a quick digression.

The first requirement is to understand a few basics about programming aWindows service in .NET. Here's a quick summary of the
most important ones:

Windows services use the classes in the System.ServiceProcess namespace. These include ServiceBase (from
which every Windows service class must derive), and ServiceInstaller and ServiceProcessInstaller (which are used
to install a service).

Windows services cannot be tested in the Visual Studio .NET environment. Instead, you must install the service
and start it using the SCM.

When you start a Windows service, the corresponding OnStart() method is called in the service class. This method
only has 30 seconds to set up the service, usually by enabling a timer or starting a new thread. The OnStart()
method does not actually perform the required task.

When the service is stopped, the OnStop() method is called. This tears down whatever resources the OnStart()
method sets up.

To create a Windows service, Visual Studio .NET programmers can start by creating a Windows service project. The project will
contain a single class that inherits from ServiceBase as well as the installation classes that you'll generate later.

In Talk .NET, the Windows service plays a simple role. It configures the .NET Remoting channels in the OnStart() method and
unregisters them in the OnStop() method. Once these channels are in existence, the Talk .Net ServiceProcess object will be
created with the first client requests, and preserved until the service is stopped.

Following is a simple service that does exactly that. The code sample includes a portion of the hidden designer code, so you can
better see how it works.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Imports System.ServiceProcess
Imports System.Runtime.Remoting
Imports System.Runtime.Remoting.Channels

Public Class TalkNetService
 Inherits System.ServiceProcess.ServiceBase
 Public Sub New()

 MyBase.New()
 InitializeComponent()
 End Sub

 Private Sub InitializeComponent()
 ' (The code for all design-time property configuration appears here.)
 Me.ServiceName = "Talk .NET Service"
 End Sub

 <MTAThread()> _
 Shared Sub Main()
 ServiceBase.Run(New TalkNetService())
 End Sub

 ' Register the listening channels.
 Protected Overrides Sub OnStart(ByVal args() As String)
 RemotingConfiguration.Configure("SimpleServer.exe.config")
 End Sub

 ' Remove all the listening channels.
 Protected Overrides Sub OnStop()
 Dim Channel As IChannel
 For Each Channel In ChannelServices.RegisteredChannels()
 ChannelServices.UnregisterChannel(Channel)
 Next
 End Sub

End Class

The lifetime of a service runs something like this:
1. When the service is installed or when the computer is started, the Main() method is invoked. The Main() method

creates a new instance of the service and passes it to the base ServiceBase.Run() method. This loads the
service into memory and provides it to the SCM, but does actually start it.

2. The next step depends on the service configuration—it may be started automatically, or the user may have to
manually start it by selecting it with a tool such as the Computer Management utility.

3. When the service is started, the SCM calls the OnStart() method of your class. However, this method doesn't
actually perform the work, it just prepares it (starting a new thread, creating a timer, or something else). If
OnStart() doesn't return after approximately 30 seconds, the start attempt will be aborted and the service will be
terminated.

4. Afterward, the service does its actual work. This may be performed continuously on a separate thread, in
response to a timer tick or another event, or (as in this example) in response to client requests through the
Remoting infrastructure.

Installing the Windows Service

Windows service applications cannot be executed from inside Visual Studio .NET. To test your service, you need to create an
installer. Visual Studio .NET will perform this step automatically: Just click on your service code file, switch to the design
(component) view, and click the Add Installer link that appears in the Properties window (see Figure 5-5). A new ProjectInstaller.vb
file will be added to your project, which contains all the code required to install the service.

Figure 5-5: Creating a service installer in Visual Studio .NET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tip You can configure some of the default service settings before you install the service by configuring the properties of the
ServiceProcessInstaller and ServiceInstaller classes. Set the ServiceProcessInstaller.Account property to LocalService if
you want the service to run under a system account, rather than the account of the currently logged-in user. Set the
ServiceInstaller.StartType property to Automatic if you want the service to be configured to start automatically when the
computer boots up. Both of these details can be configured manually using the Computer Management utility.

At this point, you can either use the generated installation components in a custom setup application, or you can use the
InstallUtil.exe utility included with .NET. First, build the project. Then, browse to the directory where the executable was created
(typically the bin directory) and type in the following instruction:
InstallUtil TalkNetService.exe
The output for a successful install operation is shown in Figure 5-6.

Figure 5-6: Installing a service with InstallUtil.exe

You can now find and start the service using the Computer Management administrative tool. In the Control Panel, select
Computer Management from the Administrative Tools group, and right-click the Talk .NET Service (see Figure 5-7).

Figure 5-7: Starting the service through the SCM

To update the service, you need to recompile the executable, uninstall the existing service, and then reinstall the new service. To
uninstall a service, simply use the /u parameter with InstallUtil:
InstallUtil TalkNetService.exe /u

Debugging the Windows Service

This implementation works exactly the same as before, except trace messages will no longer be captured by the
TraceFormListener. Also, the only way to end the service will be through the SCM, not by closing the trace form.

What happens if you want to capture the trace messages and inspect them later? As discussed in Chapter 4, you can use another
type of TraceListener and write messages to a text file or an event log. If you don't want to create a permanent record of
messages, but you want to watch the messages "live," and possibly debug the service source code, you can still use the Visual
Studio .NET debugger. You simply need to attach the debugger to the service manually.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's how it works. First you start Visual Studio .NET. Then, you open the TalkService project. This step isn't required, but it
allows you to set breakpoints and single-step through the code easily. Finally, assuming the Talk .NET Service is running, select
Tools Debug Processes from the Visual Studio .NET menu. The Processes window will appear, as shown in Figure 5-8.

Figure 5-8: Finding the service

If you're running the service under a system account, you must select the "Show system processes" check box, or the service
won't appear in the list. When you find the TalkService, select it and click Attach. Finally, in the Attach to Process window (Figure
5-9), select the Common Language Runtime check box to debug the code as a CLR application, and click OK.

Figure 5-9: Attaching the Visual Studio .NET debugger to a service

Trace messages will now appear in the Debug window (as shown in Figure 5-10), and Visual Studio .NET will be able to work its
usual debugging magic with breakpoints, single-stepping, and variable watches.

Figure 5-10: The trace output in Visual Studio .NET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
This chapter dove into threading intricacies and the heavy lifting you need to manage concurrent access with the coordination
server. Many of these concepts are important for any type of application, but this chapter placed a special focus on the trade-offs
and design decisions of Talk .NET so that you can develop a better idea of how to structure a peer-to-peer system. Of course,
though we've taken Talk .NET through several stages in evolution, it probably isn't production-ready. To actually deploy it in the
real world, you would need to spend much more time profiling and tweaking the code.

In the next chapter, we'll take peer-to-peer systems with Remoting in an entirely new direction and consider how to build a task
manager for distributed computing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6: Building a Distributed Task Manager

Overview
The Remoting Framework developed over the last few chapters isn't limited to messenger-style applications. In fact, it may be
better suited for an entirely different type of application: a distributed supercomputer.

One of the best-known examples of this type of application is SETI@Home, which harnesses the power of idle personal
computers to digest large amounts of astronomical data in search of unusual signals. SETI@Home, like the messenger
application we've created, isn't a pure peer-to-peer application—it depends on a central server that plays a key role in coordinating
the entire system, and it doesn't make use of any peer interaction. Nevertheless, the bulk of the actual work is performed at the
edges of the network, by ordinary peers.

This type of distributed processing works well with the Remoting architecture because it doesn't require frequent interaction across
the network. Typically, peers will run independently to perform their work, and messages will only be exchanged when starting or
completing a task. Thus, the higher-level object abstraction that Remoting uses is perfectly suitable. In fact, inventing a proprietary
messaging format and communication protocol for this sort of system might just be overkill.

In this chapter you'll look at how to build your own peer-to-peer task processor system for specific tasks and how to extend the
system to handle dynamically defined task types. Along the way, you'll also consider how .NET code-access security allows you to
build a better sandbox and execute user-supplied code without risking the threat of Trojans, viruses, and worms.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Distributed Computing Issues
Distributed computing (also described as grid computing, parallelism, and clustering) isn't suitable for all tasks. For example, an
operation that takes a relatively short amount of time may actually be lengthened by the overhead needed to send network
messages to other peers—not to mention the additional work needed to divide the problem into multiple chunks and reassemble
the answer.

Most significantly, distributed computing increases the overall complexity of the system and often makes it more fragile. That's
because distributed computing raises other issues that aren't encountered if a single process is doing the same work. These
problems include

How to handle communication errors.

How to track free workers and in-progress tasks.

How to deal with a worker that doesn't respond in a timely fashion.

How to allocate work intelligently, depending on the perceived complexity of the problem and the computing
resources (or communication speed) of the worker.

Most developers think of distributed computing as a way to break a single problem down into multiple pieces that can be worked
on, independently, by multiple machines. This is the ideal scenario, but not the only case. In some instances, you might use a
distributed-computing framework just to remove a bottleneck for a highly computational task on a server. For example, a web
service that receives task requests could deliver these requests to a task manager. The task manager would then send each task
to a separate computer. The overall throughput of the system would increase, but each individual task wouldn't be broken down or
reassembled. We'll examine this pattern, which is often easier to manage in the enterprise world, toward the end of this chapter.

If you want to shorten the time taken to complete individual tasks, rather than simply improve the overall throughput of an
application, you'll need to take advantage of parallelism by dividing each task into multiple pieces. Some problems are much more
suitable for this approach than others. For example, in the next section you'll consider a work manager that calculates prime
number lists. In this case, the problem (searching a range of values for prime numbers) is one that can easily be subdivided into
smaller pieces, like many search and analysis tasks. However, some tasks can only be performed with all the data. One example
is the encryption of a large amount of information with cipher-block streaming. In this case, each block of data is encrypted using
information from the preceding block, and it's impossible to encrypt the data separately (although distributed computing is used
with other cryptography problems, such as cracking unbreakable ciphers).

Parallelism also introduces a new kind of fragility because the overall process is only as successful as its weakest link. If you have
a worker that goes offline in the middle of a task, or operates very slowly, the whole task will be held back. To avoid this problem,
you can store statistics about peers and use the most reliable ones wherever possible. You might also want to regularly poll a
worker to retrieve its progress so you can cancel a slow-running task and reschedule it elsewhere. Or you may want to simply
assign a task multiple times (if you have a large pool of workers) and use the first received task results. This approach might seem
wasteful, but in a large environment, it provides increased robustness through redundancy.

Finally, note that some tasks aren't well suited for any type of distributed computing. These include operations that perform simple
tasks with large amounts of data, in which case the overhead required to transmit the information might not be worth the relatively
minor benefits of parallelism. Generally, tasks that make heavy use of computation (for example, CPU-intensive calculations) are
the best choices for distributed computing.

Note For more information about new initiatives in distributed computing, you may be interested in visiting
http://www.globus.org, which is a research project aimed at developing tools for grid computing on a large scale. They
currently provide a toolkit for Java and are considering the promise of .NET. Another worthwhile site is
http://www.gridforum.org, which is a community of researchers and developers working on emerging issues in grid
computing.

In the next few sections, we'll create a distributed work system that's designed to solve a single problem: finding prime numbers.
For maximum speed, it uses multiple workers in a single operation and assembles their results with a work manager.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Defining the Task Interface
The first step, as with the messaging application in Chapter 4, is to define the objects used to transmit messages and the common
interfaces that are exposed through Remoting. In this example, we'll need three interfaces: a task worker, a work manager, and a
task requester. In the actual implementation, the task worker and task requester interfaces will be implemented by the same
application so that all peers can perform and request work, but this isn't a requirement.

Figure 6-1 shows how messages will be processed in our system.

Figure 6-1: The work request process

Figure 6-2 shows a slightly simplified view of steps that would occur with a request and a single worker. It works like this:
1. The work manager receives a TaskRequest object.

2. The work manager stores a Task object internally in a collection.

3. The work manager divides the work into segments and sends available workers a TaskSegment object with a
part of the work.

4. When the workers finish, they send back the TaskSegment with the result information added.

5. When all task segments have been received, the work manager compiles the information into a TaskResults
object and sends it to the client.

Figure 6-2: The order of work request steps

The TaskComponent Interfaces

The ITaskServer interface defines methods for registering and unregistering peers, for receiving a task request, and for receiving
a task-completed notification. Optionally, you might want to add a method such as ReceiveTaskCancel(), which would allow a
worker to signal that it's unable to finish processing the assigned task (possibly because it's shutting down).
Public Interface ITaskServer

 ' These methods allow workers to register and unregister with the server.
 Function AddWorker(ByVal callback As ITaskWorker) As Guid
 Sub RemoveWorker(ByVal workerID As Guid)

 ' This method is called to send a task-complete notification.
 Sub ReceiveTaskComplete(ByVal taskSegment As TaskSegment, _
 ByVal workerID As Guid)

 ' This method is used to register a task.
 Function SubmitTask(ByVal taskRequest As TaskRequest) As Guid

End Interface

The ITaskWorker interface defines a single method for receiving a task assignment. In addition, you might want to add a
CancelTask() method, which allows the server to cancel a task (perhaps if the worker is taking too long and another peer is
faster), and a CheckTaskRunning() method, which would allow the server to regularly poll the worker to verify that work is still
underway.
Public Interface ITaskWorker
 ' The server calls this to submit a task to a client.
 Sub ReceiveTask(ByVal task As TaskSegment)

End Interface

Finally, the ITaskRequester defines a single method for receiving the final task results. You could add an additional method here
to send a failure notification if a problem occurs midway through the process (for example, a worker application disconnects
without finishing its work and there are no other available workers to assign the segment to).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Interface ITaskRequester

 Sub ReceiveResults(ByVal results As TaskResults)

End Interface

These interfaces are all coded in a separate DLL, called the TaskComponent. In addition, two delegates are defined, which are
used on the server side to easily launch certain methods asynchronously:
Public Delegate Sub ReceiveTaskDelegate(ByVal taskSegment As TaskSegment)
Public Delegate Sub ReceiveResultsDelegate(ByVal results As TaskResults)

Message Objects

The next step is to define the objects that route task information around the network. These include the following:

TaskRequest, which identifies the initial task parameters.

TaskSegment, which identifies the task parameters for a portion of the task, and the task results for that segment
once it's complete.

TaskResults, which contain the aggregated results from all task segments, which are delivered to the client who
made the initial request.

All of these classes are task-specific. In other words, you must customize them with different properties depending on the type of
task your system is designed to tackle. In addition, the server uses a Task object to store information about requested and in-
progress tasks.

The TaskRequest, TaskSegment, and TaskResults classes are all defined in the TaskComponent assembly because they're a
necessary part of the interface between the remote components. The Task class, however, is not defined here, because it's only
used by the server, and it can be modified without affecting other parts of the system.

The message objects are serializable, include default constructors, and use public variables. This allows them to be adapted for
use with a web service, if needed.

The TaskRequest defines a range of numbers (between FromNumber and ToNumber). This is the range of values that will be
searched for prime numbers. In addition, the TaskRequest indicates the ITaskRequester client that should be notified when the
prime number list has been calculated.
<Serializable()> _
Public Class TaskRequest

 Public Client As ITaskRequester
 Public FromNumber As Integer
 Public ToNumber As Integer
 Public Sub New(ByVal client As ITaskRequester, ByVal fromNumber As Integer, _
 ByVal toNumber As Integer)
 Me.Client = client
 Me.FromNumber = fromNumber
 Me.ToNumber = toNumber
 End Sub

 Public Sub New()
 ' Default constructor.
 End Sub

End Class

The TaskSegment class resembles TaskRequest, with a few additions. It now stores a TaskID and SequenceNumber. The
SequenceNumber is used when reassembling segments to ensure that the answers are ordered properly. The TaskSegment
class also identifies the GUID of the worker who has been assigned this task, and a Primes integer array that will hold the results
when the TaskSegment is sent back to the server.
<Serializable()> _
Public Class TaskSegment

 Public TaskID As Guid
 Public SequenceNumber As Integer
 Public FromNumber As Integer
 Public ToNumber As Integer
 Public WorkerID As Guid

 ' This holds the task results.
 Public Primes() As Integer

 Public Sub New(ByVal taskID As Guid, ByVal fromNumber As Integer, _
 ByVal toNumber As Integer, ByVal sequenceNumber As Integer)
 Me.TaskID = taskID
 Me.FromNumber = fromNumber
 Me.ToNumber = toNumber
 Me.SequenceNumber = sequenceNumber
 Me.WorkerID = WorkerID
 End Sub

 Public Sub New()
 ' Default constructor.
 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

The TaskResults class stores information about the full range of numbers (the same information used in the TaskRequest) as well
as the list of prime numbers (as an array of integers named Primes).
<Serializable()> _
Public Class TaskResults

 Public Primes() As Integer
 Public FromNumber As Integer
 Public ToNumber As Integer

 Public Sub New(ByVal fromNumber As Integer, ByVal toNumber As Integer, _
 ByVal results() As Integer)
 Me.Primes = results
 Me.FromNumber = fromNumber
 Me.ToNumber = toNumber
 End Sub

 Public Sub New()
 ' Default constructor.
 End Sub

End Class

The Task Logic

It also makes sense to define the task processing logic in a separate component. For convenience, we'll add this logic to the
TaskComponent.

There are many different mathematical methods for finding primes in a range of numbers (as well as methods for testing probable
primes). One historical method that's often cited for finding small primes (those less than 10,000,000) is the sieve of Eratosthenes,
invented by Eratosthenes in about 240 B.C. In this method, you begin by making a list of all the integers in a range of numbers.
You then strike out the multiples of all primes less than or equal to the square root of the maximum number. The numbers that are
left are the primes.

In this chapter, we won't go into the theory that proves the sieve of Eratosthenes works or show the fairly trivial code that performs
it. However, the full code is presented with the online examples for this chapter, and it takes this form:
Public Class Eratosthenes

 Public Shared Function FindPrimes(ByVal fromNumber As Integer, _
 ByVal toNumber As Integer) As Integer()
 ' (Code omitted.)
 End Function

End Class

The sieve of Eratosthenes is an excellent test for the distributed work manager because it can take quite a long amount of time,
and it depends solely on the CPU speed of the computer. Calculating a list of primes between 1,000,000 and 5,000,000 might
take about ten minutes on an average computer.

Tip For more information about the sieve of Eratosthenes, see http://primes.utm.edu/links/programs/sieves/Eratosthenes,
which contains a wealth of resources about prime-number searching and the math involved.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating the Work Manager
The work manager follows a similar pattern to the coordination server developed for the Talk .NET system over the last two
chapters. Perhaps the most important detail is the information that the work manager stores in its memory, which includes the
collections shown here:
Private Workers As New Hashtable()
Private Tasks As New Hashtable()

The Workers collection tracks information about the registered peers and how to reach them using WorkerRecord objects. These
objects are indexed by the WorkerID. The Tasks collection holds a collection of Task objects, which represent the ongoing,
currently scheduled tasks. Objects in the Tasks collection are indexed by TaskID. To write more error-proof code, you could
replace the worker and task hashtables with custom dictionary collections that can only hold WorkerRecord and Task objects
respectively. These custom dictionary collections would derive from System.Collections.DictionaryBase.

The work manager can also use private variables to store global preferences. In this fairly simple example, we'll only use one
custom setting: an integer that sets the maximum number of workers that can be assigned to a task. This helps to ensure that
other workers will be free to serve new requests. It also prevents a task from being broken into so many separate pieces that the
communication time begins to become a factor.
Private MaxWorkers As Integer

The MaxWorkers settings is read from a configuration file when the server object is created:
Public Sub New()
 MyBase.New()

 ' Retrieve configuration settings.
 MaxWorkers = Int32.Parse(ConfigurationSettings.AppSettings("MaxWorkers"))
End Sub

For our test, we'll allow three maximum workers:
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="MaxWorkers" value="3" />
 </appSettings>

 <system.runtime.remoting>
 <!-- Remoting settings omitted. -->
 </system.runtime.remoting>
</configuration>

The work manager also uses the trace component used in the messenger application, which shows a window with trace
messages that indicate what actions the server has performed.

Tracking Workers

The server provides an AddWorker() method that allows peers to register themselves in the Workers collection, and a
RemoveWorker() method that allows peers to remove themselves. The following is the code for these methods:

Public Function AddWorker(ByVal callback As TaskComponent.ITaskWorker) _
 As System.Guid Implements TaskComponent.ITaskServer.AddWorker

 Dim Worker As New WorkerRecord(callback)
 SyncLock Workers
 Workers(Worker.WorkerID) = Worker
 End SyncLock
 Trace.Write("Added worker " & Worker.WorkerID.ToString())
 Return Worker.WorkerID

End Function

Public Sub RemoveWorker(ByVal workerID As System.Guid) _
 Implements TaskComponent.ITaskServer.RemoveWorker

 SyncLock Workers
 Workers.Remove(workerID)
 End SyncLock
 Trace.Write("Removed worker " & workerID.ToString())

End Sub

Note that the RemoveWorker() method assumes that the worker has finished all its tasks before exiting. Clearly, it would make
sense to add a check to this code that looks for outstanding TaskSegments registered to this worker and tries to reassign them.

Workers are stored as WorkerRecord objects, as shown in the following example. Each worker has a globally unique identifier
(GUID), which is generated automatically when the WorkerRecord class is instantiated. This allows workers to be identified
uniquely on a network, without needing to assign them preexisting names (like a user alias). It's a technique you'll use again in
later peer-to-peer examples in this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Class WorkerRecord

 Private _WorkerID As Guid = Guid.NewGuid()
 Private _WorkerReference As ITaskWorker
 Private _TaskAssigned As Boolean = False

 Public ReadOnly Property WorkerID() As Guid
 Get
 Return _WorkerID
 End Get
 End Property

 Public ReadOnly Property ITaskWorker() As ITaskWorker
 Get
 Return _WorkerReference
 End Get
 End Property

 Public Property TaskAssigned() As Boolean
 Get
 Return _TaskAssigned
 End Get
 Set(ByVal Value As Boolean)
 _TaskAssigned = Value
 End Set
 End Property

 Public Sub New(ByVal worker As ITaskWorker)
 _WorkerReference = worker
 End Sub

End Class

The WorkerRecord also provides a TaskAssigned property, which is initially set to False. In our simple example, a worker can be
assigned at most one task. A more sophisticated worker might be able to hold a queue of task requests and deal with them one by
one. In this case, you would replace the TaskAssigned Boolean variable with a TasksAssigned integer count. When assigning a
task, the server would look for peers that have the lowest number of assigned tasks first.

Tasks

When the server receives a TaskRequest, it creates a new Task object. The Task object stores the original Task data, along with
additional information, including

The GUID, which the Task class generates automatically.

A collection that contains WorkerRecords for the workers that are processing the segments of this task.

A hashtable with an entry for each TaskSegment result. These entries are indexed by sequence number.

The Task class code is shown here:

Public Class Task

 Private _TaskID As Guid = Guid.NewGuid()

 ' The original task information.
 Private _Request As TaskRequest

 ' Holds WorkerRecord objects.
 Private _WorkersInProgress As New ArrayList()

 ' Holds partial prime lists, indexed by sequence number.
 Private _TaskResults As New Hashtable()

 Public ReadOnly Property TaskID() As Guid
 Get
 Return _TaskID
 End Get
 End Property

 Public ReadOnly Property Request() As TaskRequest
 Get
 Return _Request
 End Get
 End Property

 Public Property Workers() As ArrayList
 Get
 Return _WorkersInProgress
 End Get
 Set(ByVal Value As ArrayList)
 _WorkersInProgress = Value
 End Set
 End Property

 Public Property Results() As Hashtable
 Get
 Return _TaskResults

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Return _TaskResults
 End Get
 Set(ByVal Value As Hashtable)
 _TaskResults = Value
 End Set
 End Property

 Public Function GetJoinedResults() As Integer()
 ' (Code omitted.)

 End Function

 Public Sub New(ByVal taskRequest As TaskRequest)
 _Request = taskRequest
 End Sub

End Class

The Task class also contains a GetJoinedResults() method that steps through the hashtable or results and combines all values
into a large array, which can then be returned to the client. Each entry in the hashtable is an array of primes that represents the
solution for part of the original requested range. The code uses the fact that the entries in the results hashtable are indexed by
their sequence number. Thus, as long as all the segments are present, they can be reassembled in order by starting with
sequence number 0, regardless of the actual order in which the results were received.
Public Function GetJoinedResults() As Integer()

 ' Count the number of primes.
 Dim NumberOfPrimes As Integer
 Dim SegmentResults() As Integer
 Dim i As Integer For i = 0 To _TaskResults.Count - 1
 SegmentResults = CType(_TaskResults(i), Integer())
 NumberOfPrimes += SegmentResults.Length
 Next

 ' Create the whole array.
 Dim Results(NumberOfPrimes - 1) As Integer

 ' Combine the partial results, in order.
 Dim Pos As Integer
 For i = 0 To _TaskResults.Count - 1

 SegmentResults = CType(_TaskResults(i), Integer())
 SegmentResults.CopyTo(Results, Pos)
 Pos += SegmentResults.Length
 Next

 Return Results
End Function

Dispatching Tasks

The bulk of the work manager logic takes place in the SubmitTask() method, which receives a task request, breaks it into
segments, and assigns it. The first step is to examine the request information and verify that it's valid.
' Validate task request.
If taskRequest.FromNumber > taskRequest.ToNumber Then
 Throw New ArgumentException("First number must be smaller than the second.")
End If

Note that the error condition leads to an exception. That means that SubmitTask() shouldn't be implemented as a one-way
method, or the client will not receive this information.

Next, the code judges the range of numbers. If the range is very small, it decides to only send the request to one worker.
Otherwise, it uses the full number of maximum workers allowed by MaxWorkers.
' Calculate if the task can benefit from parallelism.
Dim TotalRange As Integer = taskRequest.ToNumber - taskRequest.FromNumber
Dim MaxWorkersForTask As Integer
If TotalRange < 10000 Then
 MaxWorkersForTask = 1
Else
 MaxWorkersForTask = MaxWorkers
End If

Tip Depending on your design, it might make most sense to encapsulate the logic for validating a task and evaluating the
Task range with dedicated methods in the Task class. This would be particularly useful if you wanted the work manager
to manage more than one type of task. In this case, you would create a generic interface (possibly named ITask) that
you would implement in all your Task classes.

Assuming these two steps succeed, a new Task object is created.
' Create the task.
Dim Task As New Task(taskRequest)

Next, the code searches for free workers. It attempts to use as many workers as there are available (up to the specified
maximum), and it takes the first available workers it finds. This may include the worker making the request, which is perfectly
reasonable. The workers are added to the Tasks.Workers collections and immediately marked as assigned.
Dim Worker As WorkerRecord

' This lock ensures that the server won't try to allocate two different

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

' This lock ensures that the server won't try to allocate two different
' tasks to the same worker if the requests arrive simultaneously.
SyncLock Workers
 ' Try to find workers for this task.
 Dim Item As DictionaryEntry
 For Each Item In Workers
 Worker = CType(Item.Value, WorkerRecord)
 If Not Worker.TaskAssigned Then
 Worker.TaskAssigned = True
 Task.Workers.Add(Worker)
 End If
 If Task.Workers.Count >= MaxWorkersForTask Then Exit For
 Next

End SyncLock

Next, a quick check is made to ensure that there's at least one worker, or an exception will be thrown.
If Task.Workers.Count = 0 Then
 Throw New ApplicationException("No free workers. Try again later.")
End If

The work of dividing the task into segments begins next. First, a calculation is made to determine an average range for numbers.
For example, if there's a total range of 100,000 and three workers to handle it, the average range is 33,333. The first two workers
will receive this range of numbers, while the last will receive everything that remains (in this case 33,334 items). Once the
segment is constructed, it's sent asynchronously to the worker by calling the worker's ReceiveTask() method.
Trace.Write("Trying to assign " & Task.Workers.Count.ToString() & _
 " worker(s) for task " & Task.TaskID.ToString())

' Calculate segment sizes.
Dim Segment As TaskSegment
Dim LowerBound As Integer = taskRequest.FromNumber
Dim AverageRange As Integer = Math.Floor(TotalRange / Task.Workers.Count)
Dim i As Integer

' Divide the task into segments, and dispatch each segment.
' This code will be skipped if there's only one segment because
' (WorkersToUse.Count - 2) will equal 0.
Dim ReceiveTask As ReceiveTaskDelegate
For i = 0 To Task.Workers.Count - 2
 Segment = New TaskSegment(Task.TaskID, LowerBound, _
 LowerBound + AverageRange, i)
 LowerBound += AverageRange + 1
 Worker = CType(Task.Workers(i), WorkerRecord)
 Segment.WorkerID = Worker.WorkerID
 ReceiveTask = New ReceiveTaskDelegate(AddressOf _
 Worker.ITaskWorker.ReceiveTask)
 ReceiveTask.BeginInvoke(Segment, Nothing, Nothing)
Next

' Create the last segment to get the remaining numbers.
Segment = New TaskSegment(Task.TaskID, LowerBound, taskRequest.ToNumber, i)
Worker = CType(Task.Workers(Task.Workers.Count - 1), WorkerRecord)
Segment.WorkerID = Worker.WorkerID

ReceiveTask = New ReceiveTaskDelegate(AddressOf Worker.ITaskWorker.ReceiveTask)
ReceiveTask.BeginInvoke(Segment, Nothing, Nothing)

Finally, the Task object is stored in the Tasks collection.
' Store the Task object.
SyncLock Tasks
 Tasks.Add(Task.TaskID, Task)
End SyncLock

Trace.Write("Created and assigned task " & Task.TaskID.ToString() & ".")

Completing Tasks

The work manager's ReceiveTaskComplete() method is the last part of the ITaskServer interface. It receives completed
TaskSegment objects, adds them to the corresponding Task (from the in-memory Tasks collection), and then marks the worker as
available. If the number of received results equals the number of task segments, the task is declared complete. A notification
message is sent to the original task requester with the list of primes, and the task is removed from memory.

Public Sub ReceiveTaskComplete(ByVal taskSegment As TaskSegment, _
 ByVal workerID As System.Guid) _
 Implements TaskComponent.ITaskServer.ReceiveTaskComplete

 Trace.Write("Received result sequence #" & _
 taskSegment.SequenceNumber.ToString() & " for task " & _
 taskSegment.TaskID.ToString() & ".")

 Dim Task As Task = CType(Tasks(taskSegment.TaskID), Task)
 Task.Results.Add(taskSegment.SequenceNumber, taskSegment.Primes)

 ' Free up worker.
 Dim Worker As WorkerRecord = CType(Workers(taskSegment.WorkerID), _
 WorkerRecord)
 Worker.TaskAssigned = False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Check if this is the final submission.
 If Task.Results.Count = Task.Workers.Count Then

 SyncLock Tasks
 Trace.Write("Task " & Task.TaskID.ToString() & " completed.")
 Dim Primes() As Integer = Task.GetJoinedResults()
 Dim Results As New TaskResults(Task.Request.FromNumber, _
 Task.Request.ToNumber, Primes)
 Dim ReceiveResults As New ReceiveResultsDelegate(_
 AddressOf Task.Request.Client.ReceiveResults)
 ReceiveResults.BeginInvoke(Results, Nothing, Nothing)

 ' Remove task.
 Tasks.Remove(Task.TaskID)
 End SyncLock

 End If

End Sub

You might choose to implement the ReceiveTaskComplete() method as a one-way method for maximum performance because
the worker doesn't need to receive any information or exceptions that might be raised on the server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating the Task Worker
The peer application performs two functions: It allows a user to submit task requests, and it performs prime number calculations
when instructed to by the server.

To encourage users to run the worker component continuously, it uses a system tray interface. When the application is first
started, it loads a system tray icon. Users can right-click the system tray icon to receive a menu with options for exiting the
application or submitting new tasks, as shown in Figure 6-3. Another option would be to implement the worker as a Windows
service that starts automatically when the computer boots up.

Figure 6-3: The worker in the system tray

The System Tray Interface

Creating a system tray application is quite easy. First, we create a Component class that holds the logic for the ContextMenu and
NotifyIcon controls. All component classes have a design-time surface where you can create and store these objects, much like
the component tray when designing a form. This allows you to configure the menu properties quickly using designers, rather than
code it all manually in your startup class.

The skeleton for this class is shown here:
Public Class Startup
 Inherits System.ComponentModel.Component
 Friend WithEvents mnuContext As System.Windows.Forms.ContextMenu
 Friend WithEvents mnuShowStatus As System.Windows.Forms.MenuItem
 Friend WithEvents mnuSeparator As System.Windows.Forms.MenuItem
 Friend WithEvents mnuExit As System.Windows.Forms.MenuItem

 Friend WithEvents TrayIcon As System.Windows.Forms.NotifyIcon

 ' This is the object that provides the client-side remotable interface.
 Private Client As New ClientProcess()

 ' This is the main status form. We create it here to ensure that there's
 ' ever only one instance.
 Private frm As New MainForm()

 Public Sub New()
 frm.Client = Client
 InitializeComponent()
 End Sub

 Private Sub InitializeComponent()
 ' (Designer code omitted.)
 End Sub

 ' (Event handlers go here.)
End Class

On startup, the code creates our component, ensures the NotifyIcon is visible, and logs in to the server through the remotable
ClientProcess.
Public Shared Sub Main()

 Dim Startup As New Startup()
 Startup.TrayIcon.Visible = True

 ' Create the new remotable client object.
 Startup.Client.Login()

 ' Prevent the application from exiting prematurely.
 System.Windows.Forms.Application.Run()

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

The NotifyIcon has an attached context menu, which is immediately available. The menu items allow the user to exit the
application or access the main window:
Private Sub mnuShowStatus_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles mnuShowStatus.Click

 frm.Show()

End Sub

Private Sub mnuExit_Click(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles mnuExit.Click

 If Client.Status = BackgroundStatus.Processing Then
 MessageBox.Show("A background task is still in progress.", "Cannot Exit")
 Else
 Try
 Client.LogOut()
 Catch
 ' Ignore error that might occur if server no longer exists.
 End Try

 ' Clear the system tray icon manually.
 ' Otherwise, it may linger until the user moves the mouse over it.
 TrayIcon.Visible = False

 System.Windows.Forms.Application.Exit()
 End If

End Sub

The ClientProcess

The ClientProcess class follows a similar model to the chat client in our earlier Talk .NET example. It calls server methods to
request a new task and receives task-complete notifications or task requests. If it receives information that the main form needs to
access, it raises an event. In addition, it includes two readonly properties, which provide the server-generated GUID and the
current status (which indicates if the worker is currently carrying out a prime number search). The possible status values are
provided in an enumeration:
Public Enum BackgroundStatus
 Processing
 Idle
End Enum

Note that the ClientProcess class works both as a task worker (by implementing ITaskWorker) and as a TaskRequester (by
implementing ITaskRequester). Here's the essential code, without the remotable methods:
Public Class ClientProcess
 Inherits MarshalByRefObject
 Implements ITaskWorker, ITaskRequester
 ' This event occurs when work begins or ends on the background thread.
 Public Event BackgroundStatusChanged(ByVal sender As Object, _
 ByVal e As BackgroundStatusChanged)

 ' This event occurs when the prime number series is received
 ' (answer to a query).
 Public Event ResultsReceived(ByVal sender As Object, _
 ByVal e As ResultsReceivedEventArgs)

 ' The reference to the server object.
 Private Server As ITaskServer

 ' The server-assigned ID.
 Private _ID As Guid
 Public ReadOnly Property ID() As Guid
 Get
 Return _ID
 End Get
 End Property

 ' Indicates whether prime number work is being carried out.
 Private _Status As BackgroundStatus = BackgroundStatus.Idle
 Public ReadOnly Property Status() As BackgroundStatus
 Get
 Return _Status
 End Get
 End Property

 Public Sub New()

 ' Configure the client channel for sending messages and receiving
 ' the server callback.
 RemotingConfiguration.Configure("TaskWorker.exe.config")

 ' Create the proxy that references the server object.
 Server = CType(Activator.GetObject(GetType(ITaskServer), _
 "tcp://localhost:8000/WorkManager/TaskServer"), ITaskServer)

 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

 Public Sub Login()
 ' Register the current worker with the server.
 _ID = Server.AddWorker(Me)
 End Sub

 Public Sub LogOut()
 Server.RemoveWorker(ID)
 End Sub

 ' This override ensures that if the object is idle for an extended
 ' period, it won't lose its lease and be garbage collected.
 Public Overrides Function InitializeLifetimeService() As Object
 Return Nothing
 End Function

 ' Submits client's request to the server.
 Public Sub FindPrimes(ByVal fromNumber As Integer, ByVal toNumber As Integer)
 Server.SubmitTask(New TaskRequest(Me, fromNumber, toNumber))
 End Sub

 <System.Runtime.Remoting.Messaging.OneWay()> _
 Public Sub ReceiveTask(ByVal task As TaskComponent.TaskSegment) _
 Implements TaskComponent.ITaskWorker.ReceiveTask
 ' (Code omitted.)
 End Sub

 <System.Runtime.Remoting.Messaging.OneWay()> _
 Public Sub ReceiveResults(ByVal results As TaskComponent.TaskResults) _
 Implements TaskComponent.ITaskRequester.ReceiveResults
 ' (Code omitted.)
 End Sub

End Class

The remotable ReceiveTask() and ReceiveResults() methods are both implemented as one-way methods so that the server won't
be put on hold while the client deals with the information. The ReceiveTask() method performs all of its work directly in the method
body, and then returns the completed segment to the server. An event is fired to notify the client form when the processing status
changes.
_Status = BackgroundStatus.Processing
' Raise an event to alert the form that the background thread is processing.
RaiseEvent BackgroundStatusChanged(Me, _
 New BackgroundStatusChanged(BackgroundStatus.Processing))

' Find the prime numbers and submit the list to the server.
task.Primes = Erastothenes.FindPrimes(task.FromNumber, task.ToNumber)
Server.ReceiveTaskComplete(task, ID)
' Raise an event to alert the form that the background thread is finished.
_Status = BackgroundStatus.Idle
RaiseEvent BackgroundStatusChanged(Me, _
 New BackgroundStatusChanged(BackgroundStatus.Idle))

Alternatively, you could implement a separate thread to do this work, which would then call ReceiveTaskComplete() when
finished. This would give the client the ability to cancel, prioritize, or otherwise monitor the thread as needed.

The ReceiveResults() method simply raises an event to the client with the list of primes:
' Raise an event to notify the form.
RaiseEvent ResultsReceived(Me, New ResultsReceivedEventArgs(results.Primes))

Here's the code detailing the two custom EventArgs objects used by the ClientProcess:
Public Class ResultsReceivedEventArgs
 Inherits EventArgs

 Private _Primes() As Integer
 Public Property Primes() As Integer()
 Get
 Return _Primes
 End Get
 Set(ByVal Value As Integer())
 _Primes = Value
 End Set
 End Property

 Public Sub New(ByVal primes() As Integer)
 _Primes = primes
 End Sub

End Class

Public Class BackgroundStatusChanged
 Inherits EventArgs

 Private _Status As BackgroundStatus
 Public Property Status() As BackgroundStatus
 Get
 Return _Status
 End Get

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Get
 Set(ByVal Value As BackgroundStatus)
 _Status = Value
 End Set
 End Property

 Public Sub New(ByVal status As BackgroundStatus)
 Me.Status = status
 End Sub
End Class

The Main Form

The main form allows the user to submit new tasks and see if the local worker is currently occupied with a task segment. The form
is shown in Figure 6-4.

Figure 6-4: The main form

The form code is quite straightforward. When the user clicks the Find Primes button, the start time is recorded and the
ClientProcess.FindPrimes() method is called, which will forward the request to the server. If there's an error (for example, the
server can't find any available workers), it will appear in the interface immediately.
Private StartTime As DateTime

Private Sub cmdFind_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdFind.Click

 txtResults.Text = ""
 lblTimeTaken.Text = ""

 Try
 StartTime = DateTime.Now
 Client.FindPrimes(txtFrom.Text, txtTo.Text)
 Catch Err As Exception
 MessageBox.Show(Err.ToString())
 End Try

End Sub

The form handles both the BackgroundStatusChanged and the ResultsReceived events, and updates the interface accordingly.
However, before the update is performed, the code must be marshaled to the correct userinterface thread. To accomplish this
goal, we reuse the UpdateControlText object introduced in the last chapter.
Public Class UpdateControlText

 Private NewText As String

 ' The reference is retained as a generic control,
 ' allowing this helper class to be reused in other scenarios.
 Private ControlToUpdate As Control

 Public Sub New(ByVal newText As String, ByVal controlToUpdate As Control)
 Me.NewText = newText
 Me.ControlToUpdate = controlToUpdate
 End Sub

 ' This method must execute on the user-interface thread.
 Public Sub Update()
 Me.ControlToUpdate.Text = NewText

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Me.ControlToUpdate.Text = NewText
 End Sub

End Class

When the background status changes, a label control is modified accordingly:
Private Sub Client_BackgroundStatusChanged(ByVal sender As Object, _
 ByVal e As TaskWorker.BackgroundStatusChanged) _
 Handles Client.BackgroundStatusChanged

 Dim NewText As String
 If e.Status = BackgroundStatus.Idle Then
 NewText = "The background thread has finished processing its " & _
 "prime number query, and is now idle."
 ElseIf e.Status = BackgroundStatus.Processing Then
 NewText = "The background thread has received a new " & _
 "prime number query, and is now processing it."
 End If

 Dim ThreadsafeUpdate As New UpdateControlText(NewText, lblBackgroundInfo)

 ' Invoke the update on the user-interface thread.
 Me.Invoke(New MethodInvoker(AddressOf ThreadsafeUpdate.Update))

End Sub

When results are received, the array of prime numbers is converted to a long string, which is used to fill a text box. A StringBuilder
object is used to quickly build up the string. This operation is much faster than string concatenation, and the difference is dramatic.
If you run the same code without using a StringBuilder, you'll notice that the Time Taken label is updated long before the prime
number list appears.
Private Sub Client_ResultsReceived(ByVal sender As Object, _
 ByVal e As TaskWorker.ResultsReceivedEventArgs) Handles Client.ResultsReceived

 Dim NewText As String
 NewText = DateTime.Now.Subtract(StartTime).ToString()
 Dim ThreadsafeUpdate As New UpdateControlText(NewText, lblTimeTaken)

 ' Invoke the update on the user-interface thread.
 Me.Invoke(New MethodInvoker(AddressOf ThreadsafeUpdate.Update))

 Dim Builder As New System.Text.StringBuilder()
 Dim Prime As Integer
 For Each Prime In e.Primes
 Builder.Append(Prime.ToString() & " ")
 Next
 NewText = Builder.ToString()
 ThreadsafeUpdate = New UpdateControlText(NewText, txtResults)

 ' Invoke the update on the user-interface thread.
 Me.Invoke(New MethodInvoker(AddressOf ThreadsafeUpdate.Update))

End Sub

There are a couple of additional form details that aren't shown here. For example, if the user attempts to close the form, you need
to make sure that it isn't disposed, only hidden. You can see all the details in the code download provided for this chapter.

Figure 6-5 shows a prime number query that was satisfied by multiple clients.

Figure 6-5: A completed prime number query

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-6 shows the server log for the operation.

Figure 6-6: The server trace transcript

Tip If you run multiple instances of the TaskWorker on the same computer, you'll be able to test the system, but the
processing speed won't increase. That's because all workers are still competing for the resources of the same computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enhancing the Work Manager
Distributed computing is easy with .NET Remoting, but it's difficult to do well. In order to manage the system, you need a
dedicated work manager that must be coded very carefully, or it could weaken the entire system.

Many potential enhancements to the work-manager system deal with improving the work manager itself. The next few sections
describe several possibilities.

Queuing

Currently, tasks are allocated as soon as they are received, much as messages were immediately sent with the first version of the
Talk .NET coordination server. With a queued work manager, new task requests would be stored in memory. A dedicated work
manager thread would periodically scan the queued tasks and allocate them to workers. One advantage of this approach is that it
would allow the work manager to hold on to submitted tasks that can't be fulfilled right away (because there are no available
workers). This approach would also allow you to deal with worker cancellations.

Fortunately, this design is easy to implement. In fact, you've already seen it, in Chapter 5 with an asynchronous message delivery!
This design can be adapted almost exactly to the work manager coordinator.

You might also want to use the worker manager queuing thread to monitor currently assigned tasks. In this case, you could
remove an assigned task if a peer doesn't respond after a long amount of time, and assign it to a different worker. If the task is
extremely important and the system is working over a fast network, you might even want to add a GetProgress() method in the
worker, which the server could call periodically to verify that a task is properly underway.

Queuing could also be applied in the worker itself. In this scenario, work segments would be added to a collection in memory. A
separate thread would perform the actual work and would retrieve a new task segment as soon as the current one is finished.

Note For a demonstration of queuing in action, refer to the revamped coordination server in Chapter 5, or the file transfer
application that we'll develop in Chapter 9.

Performance Scoring

Currently, the work manager assigns work to the first available workers. This means that in a system with lots of extra capacity,
the workers registered near the top of the collection will serve the most requests.

If you have peers of widely different abilities or connection speeds, you might want to assign work more intelligently. In this case,
the server needs to track information about each worker. This information would probably be stored in the WorkerRecord object,
although you could create another class and store it in a different hashtable (indexed by a worker ID) to reduce tread contention.

There are several questions you need to answer with performance scoring:

What statistics will you measure?

How often will you retrieve the statistics?

How will you combine the statistics to arrive at a single performance metric?

How will the performance metric influence the work assignment or worker choice?

For example, you might decide to track the peer's uptime, the number of task segments the peer has processed, the average
response time for completing a task segment, and so on. Then, you need to provide a property that combines these details to
arrive at a single number. There's no magic formula here—you may need to tweak this calculation based on experience. Here's an
example that combines this information with different weighting
Performance Score = Total Uptime In Minutes - (Average Task Time In Minutes) * 50

In this case, the higher the performance score, the better. The average task time is weighted by a factor of 50 representing its
importance relative to the total uptime.

Finally, now that you have this information, you need to optimize your work-assignment algorithm. There are two basic choices
here:

Sort the collection of available workers by performance score. Then, take the workers with the best performance
score, and use only them.

Use the workers as normal, but adjust the amount of work given to them so that the best performing workers
receive the greatest share of the work. For example, in the prime number example, a better performing worker
would receive a larger range of numbers.

The first approach is best suited to the prime number example. The second approach works well when you have a problem with a
high degree of parallelism (for example, a task that's being divided into dozens of task segments).

Writing Directly to a Result Store

In the distributed prime number example, all communication flows through the central work manager. In some cases, you may be
able to reduce the amount of communication by using peers that store their results directly. This technique is primarily useful when
you're using a distributed-computing framework to remove a processing bottleneck but aren't dividing individual tasks into multiple
segments.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, consider a web service that allows clients to upload graphic projects that will be rendered on the server and stored
on a hard drive. This task is extremely CPU-intensive, so you're unlikely to perform it inside the web-service method itself. Instead,
the web service might forward the request to a back-end work manager. The client would check for the completed file at a later
date.

In this scenario, the work manager doesn't necessarily need to receive the results from the peers because it doesn't need to
contact the client directly or reassemble multiple task segments. The workers will still send back a task-complete
acknowledgement to the work manager in order to confirm that the work was completed and that it doesn't need to be
resubmitted. However, the workers can store the results directly in a database, file, or some other sort of permanent storage.

To support this design, the task request message would need to contain information about how the task results should be
serialized. To ensure maximum flexibility, you could define an abstract class to use like this:
<Serializable()> _
Public MustInherit Class ResultStore
End Class

Following is an example result store that contains the information needed to store results in a database:
<Serializable()> _
Public Class DatabaseStore
 Inherits ResultStore

 Public DatabaseConnection As String
 Public Table As String
 Public TaskIDFieldName As String
 Public ClientIDFieldName As String
 Public ResultFieldName As String

End Class

Now the work manager would create a DatabaseStore method and send it to the appropriate worker with the task request. The
worker would complete the task and then store it directly in the specified location.

A Generic Task Client

In the prime number work manager, the work manager system is tightly bound to the type of problem (in this case, calculating
prime numbers). The message formats are hard-coded to use certain properties that only make sense in this context. Then the
task-submission logic implements the task-specific code needed to divide the range of prime numbers into shorter lists, and so on.
This limits the flexibility of the system.

You might be able to create a more flexible system by creating a work manager that supports multiple types of tasks, defining a
generic interface for all task objects, and moving some of the code into the task object itself. However, the task server and
workers would still need to reference the assemblies for all the types of tasks.

What if there were a way for a requester to define a new type of task with a request? This would allow you to create a distributed
computer that could tackle any client-defined problem, without needing to modify and redeploy the software. In fact, this is
possible with .NET, but it isn't suitable in all situations.

The basic concept is for the task requester to submit a .NET assembly (as an array of bytes) with the task. The worker would then
save this file to disk, and load the task processor using reflection. The worker only needs to know the name of the class, which it
uses to instantiate the task-specific object. It could call methods in a generic task interface (for example, IGenericTask.DoTask())
to perform its work. The data would be returned as a variable-sized byte array, which only the client would be able to interpret.

Here's a snippet of code that creates an object in an assembly, knowing only its name and an interface that it supports:
' Load an assembly from a file.
Dim TaskAssembly As System.Reflection.Assembly
TaskAssembly = System.Reflection.Assembly.LoadFrom("PrimeNumberTest.dll")

' Instantiate a class from the assembly.
Dim TaskProcess As IGenericTask
TaskProcess = CType(TaskAssembly.CreateInstance("TaskProcessor"), IGenericTask)

' (You can now call TaskProcess.DoTask() to perform the task.)

Tip The Assembly.LoadFrom() method provides several useful overloaded versions. One version takes a URI that points to
a remote assembly (possibly an assembly, which can include a Universal Naming Convention (UNC) path to an
assembly on another computer, or a URL to an assembly on a web server). This version is particularly useful because
the assembly is transparently copied to the local GAC, where it's cached. If you use LoadFrom() in this way to instantiate
an assembly that already exists in the GAC, the local copy is used, thereby saving time.

To make this example even more generic, the DoTask() method uses a byte array for all input parameters and the return value,
which allows you to store any type and length of data.
<Serializable()> _
Public Class TaskRequest
 Public Client As ITaskRequester
 Public InputData() As Byte
 Public OutputData() As Byte

End Class

The easiest way to convert the real input and output values into a byte array is to use a memory stream and a BinaryWriter.
Here's the code you would use to call the prime number test component generically. It's included with the online examples for this
chapter in the DynamicAssemblyLoad project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim ms As New MemoryStream()
Dim w As New BinaryWriter(ms)

' Write the parameters to the memory stream.
w.Write(FromValue)
w.Write(ToValue)

' Convert the memory stream to a byte array.
Dim InputData() As Byte = ms.ToArray()

' Call the task, generically.
Dim OutputData() As Byte = TaskProcess.DoTask(InputData)

' Convert the returned values (the list of primes) using a BinaryReader,
' and display them.
ms = New MemoryStream(OutputData)
Dim r As New BinaryReader(ms)
Do Until ms.Position = ms.Length
 Console.WriteLine(r.ReadInt32())
Loop

Of course, this approach sacrifices some error-checking ability for the sake of being generic. If the caller doesn't encode
parameters in the same way that the task processor decodes them, an error will occur.

A Configurable Sandbox

As it stands, the generic task client is a perfect tool for distributing a malicious virus on a broad scale. Once an assembly is saved
to a user's local hard drive, it has full privileges and can take any action from calculating prime numbers to deleting operating
system files. In other words, an attacker could define a malicious task, and your system would set to work executing it
automatically!

Fortunately, there's a solution. You need to build your own code sandbox and carefully restrict what the assembly can do. This is
the approach taken by the peer-to-peer .NET Terrarium learning game. It allows you to restrict a dynamically loaded assembly so
that it can't perform any actions other than the ones you allow. The code for this task is somewhat lengthy, but it works remarkably
well. We'll examine the code you need piece by piece.

All the changes are implemented in the worker application. The goal is to create a way that the worker can identify user-supplied
assemblies, and assign them less permissions before executing them. In order to create this design, you'll need to create a
custom-evidence class, a membership condition, and a policy level.

First of all, you need to create a serializable Evidence class that will be used to identify assemblies that should be granted lesser
permission. This class doesn't require any functionality because it acts as a simple marker.
<Serializable()> _
Public NotInheritable Class SandboxEvidence
End Class

Next, you need to create a MembershipCondition class that implements IMembershipCondition. This class is responsible for
implementing a Check() method that scans a collection of evidence and returns True, provided it finds an instance of
SandboxEvidence. (In other words, the SandboxMembership Condition class checks whether an assembly should be sandboxed.)

The abbreviated code is shown here. It leaves out some of the methods you must include for XML serialization. However,
because you don't need to store this membership condition (it is implemented programmatically), these methods simply throw a
NotImplementedException.
<Serializable()> _
Public NotInheritable Class SandboxMembershipCondition
 Implements IMembershipCondition

 Public Function Check(ByVal ev As Evidence) As Boolean _
 Implements IMembershipCondition.Check

 Dim Evidence As Object
 For Each Evidence In ev
 If TypeOf Evidence Is SandboxEvidence Then
 Return True
 End If
 Next
 Return False
 End Function

 ' (Other methods omitted.)

End Class

Now you have the required ingredients to create a safe sandbox. The first step is to determine what permissions sandboxed code
should be granted. In this case, we'll only allow it the Execute permission. This allows it to perform calculations, allocate memory,
and so on, but doesn't allow it to access the file system, a database, or any other system resource.
' Create a permission set with the permissions the dynamically loaded assembly
' should have.
Dim SandBoxPerms As New NamedPermissionSet("Sandbox", PermissionState.None)
SandBoxPerms.AddPermission(New SecurityPermission(SecurityPermissionFlag.Execution))

Now that you've defined the permissions, you need to create a policy that will apply them. A policy level is essentially a tree of
code groups. At runtime, the .NET security infrastructure will examine each code group. When it finds a code group with a
membership condition that matches the evidence provided with the assembly, it takes the permission set from the code group and
uses it for all the code that executes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this case, you need a policy tree with two groups:

A group that matches the SandboxEvidence and grants the limited SandBoxPerms permission set.

A group that matches all other code and grants full privileges.

In addition, you need a root group that contains both these groups and defines a "first match" rule. This organization is shown in
Figure 6-7 and Figure 6-8.

Figure 6-7: Granting all permissions to the worker assembly

Figure 6-8: Granting reduced permissions to the task assembly

The code you need is shown here:
Dim Policy As PolicyLevel = PolicyLevel.CreateAppDomainLevel()
Policy.AddNamedPermissionSet(SandBoxPerms)

' The policy collection automatically includes an "everything" and
' a "nothing" permission set. We need to use these.
Dim None As NamedPermissionSet = Policy.GetNamedPermissionSet("Nothing")
Dim All As NamedPermissionSet = Policy.GetNamedPermissionSet("Everything")

Dim SandboxCondition As New SandboxMembershipCondition()
Dim AllCondition As New AllMembershipCondition()

' The default group grants nothing.
Dim RootCodeGroup As New FirstMatchCodeGroup(AllCondition, _
 New PolicyStatement(None))

' Code with the SandboxEvidence is given execute permission only.
Dim SandboxCodeGroup As New UnionCodeGroup(SandboxCondition, _
 New PolicyStatement(SandBoxPerms))

' All other code will be given full permission.
Dim AllCodeGroup As New UnionCodeGroup(AllCondition, New PolicyStatement(All))

' Add these membership conditions.
RootCodeGroup.AddChild(SandboxCodeGroup)
RootCodeGroup.AddChild(AllCodeGroup)
Policy.RootCodeGroup = RootCodeGroup

Finally, you set the policy to the current application domain using the SetAppDomainPolicy() method. This method can only be
called once.
' Set this policy into action for the current application.
AppDomain.CurrentDomain.SetAppDomainPolicy(Policy)

You can then load the task assembly—but with a twist. When you load it, you'll specify a SandboxEvidence object that will identify
the assembly as one that needs to run with reduced permissions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

' Create the evidence that identifies assemblies that should be sandboxed.
Dim Evidence As New Evidence()
Evidence.AddHost(New SandboxEvidence())

' Load an assembly from a file.
' We specify the evidence to use as an extra parameter.
Dim TaskAssembly As System.Reflection.Assembly
TaskAssembly = System.Reflection.Assembly.LoadFrom("PrimeNumberTest.dll", _
 Evidence)

' (Instantiate the class as before.)

Note You can test this code using the DynamicAssemblyLoad project included with the samples for this chapter. If you add
any restricted code to the task processor (for example, an attempt to access the file system), a security exception will
be thrown when you execute it.

Toward a Pure Peer-to-Peer Task Manager

The distributed computing example in this chapter relied on a central component to coordinate work. However, this isn't
incompatible with the peer-to-peer programming philosophy. That's because a peer in the prime number system can act both as a
worker and a task requester. The next step is to allow a peer to play all three roles: worker, requester, and coordinator, for its own
tasks.

One way to implement this is to reduce the role of the central component, as you'll see in the third part of this book. For example,
you could replace the work manager with a basic discovery server. A peer that wants to request a task would then query the
server, which could return a list containing a subset of available workers. The peer would then contact these peers to begin a new
task. In this scenario, you would need to use a two-stage commit protocol. First, the peer would contact workers and ask if they
were available. If the worker is available, it would respond "yes" and make itself unavailable for any other requests for a brief time
period while it waits for an assignment from the requester (possibly five minutes). Next, the requester peer would deliver task
segments to all the workers it had reserved. (See Figure 6-9.)

Figure 6-9: The two-stage request process with a decentralized work manager

Of course, decentralization has its sacrifices, and a fully decentralized task processor might not be what you want at all. Without a
central authority, it's easy for a malicious (or just plain greedy) peer to monopolize network resources. Also, it's difficult to modify
the rules for prioritizing tasks and determine how to subdivide them into task segments, because every peer would need to be
updated. For those reasons, a hybrid design such as the one developed in this chapter may be the most effective and practical.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
In this chapter, we considered the design of a distributed work manager. This type of application promises vastly improved
performance, but introduces new complications and requires much more work than a stand-alone application. However, the
benefits increase as the pool of available workers increases and the task load mounts. SETI@Home, the largest public-distributed
computing project in terms of computing power, reached a record 71 teraflops per second on September 26, 2001. By
comparison, the fastest individual computer in the world, IBM's ASCI White, runs at 12.3 teraflops per second. ASCI White costs
over $100 million, while SETI@Home cost an estimated $500,000 to develop.

Distributed computing is highly dependent on the problem domain. Some approaches work well for certain types of problems, and
some tasks are inherently more suited to distributed computing than others. Most distributed supercomputers have their own
individual approaches, which are customized based on the task and type of data. In the future, it's likely that broader standards
and a consistent framework will emerge from communities such as the Global Grid Forum (http://www.gridforum.org) and Globus
(http://www.globus.org). For a list of some current large-scale distributed applications with their performance information, visit
http://www.aspenleaf.com/distributed/distrib-projects.html.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part Three: Peer-to-Peer with a Discovery Server
Chapter List

Chapter 7: Networking Essentials

Chapter 8: Building a discovery Web Service

Chapter 9: Building a File Sharer

Chapter 10: Using a Discovery Service with Remoting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7: Networking Essentials
So far, we've used the Remoting infrastructure to communicate between applications. However, peer-to-peer applications often
need to work at a lower level and take networking, sockets, and broadcasts into their own hands.

In this chapter, we'll cover the essentials of network programming with .NET. We'll start by reviewing the basics of physical
networks and network protocols such as the Internet Protocol (IP), Transmission Control Protocol (TCP), and User Datagram
Protocol (UDP), and then consider the support that's built into the System.Net namespace. We'll also present sample applications
that demonstrate how you can stream data across a network with a TCP or UDP connection. All of this is in preparation for the
peer-to-peer file-sharing application we'll develop over the next two chapters.

Network Basics
A network is defined simply as a group of devices connected by communication links. A traditional local area network (LAN)
connects devices over a limited area, such as a company website or an individual's house. Multiple local area networks are
connected into a wide area network (WAN) using a variety of technologies. In fact, the Internet is nothing more than a high-speed
backbone that joins together millions of LAN networks.

Networks are made up of four key physical components (not including the cabling), as described here:

A network interface card (NIC) is the adapter that connects a device to a LAN. In a personal computer, all traffic
flows through the network card.

A hub connects multiple devices in a LAN. Essentially, traffic received by the hub is forwarded to every device
connected to the hub.

A switch connects multiple hubs or devices. It works like a hub, but with intelligence. Traffic received by a hub is
forwarded to a destination node based on a lookup table stored in the switch. In the past, switches were most often
used to connect hubs, but the low cost of switches and their superior performance means that many modern
networks connect devices directly to switches.

A router connects multiple subnets. Each subnet may consist of connected devices, hubs, and switches.

Figure 7-1 shows a sample network diagram that puts these parts into perspective.

Figure 7-1: The network hierarchy

Programming tasks rarely require any understanding of the physical makeup of a network. What's much more important are the
protocols used to encode information sent over a network link. Understanding the technology used to transfer information around
a network can be difficult, because there are layers upon layers of different protocols that work in conjunction. At the transport
level, most of the computers or devices connected to the network use the Ethernet Protocol. Ethernet defines the electrical signals
that devices use to communicate on the wire. Other layers are built on top of the transport protocol, as shown in Figure 7-2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-2: The network protocol stack

This diagram simplifies life slightly by concentrating on the protocols with which you'll need to work when programming a peer-to-
peer application. For example, it doesn't mention other network-level technologies for data linking, such as frame relay, or
Internet-layer protocols such as the Internet Control Message Protocol (ICMP), which is used to manage and report errors
between devices on a network and the Internet Group Management Protocol (IGMP), which is used to join multicast groups.

Each of the layers in Figure 7-2 plays a critical role in networking; you'll be introduced to them over the next few sections.

Internet Protocol

The Internet Protocol (IP) is an addressing protocol that's one of the cornerstones of the modern Internet. With IP, every device on
a network is assigned a unique 32-bit (four bytes) numeric address, called the IP address. Usually, the address is represented in a
dotted quad notation, as in 192.145.0.1. Each of these four values represents one byte of the IP address, and can thus be a
number from 0 to 255.

According to IP, nodes on a network must send information using IP datagrams. Each datagram contains the actual data that's
being sent and an IP header. The IP header is the important part—it allows the maze of switches and routers in between the
source and the destination to direct the message appropriately. The IP header contains quite a bit of information, but the most
important details are as follows:

The time to live (in hops). For example, if a message only has five hops to live, it can only cross five routers before
it will be discarded. Of course, the IP packet might take several independent paths, each one of which will be limited
to five hops.

The IP address of the device that sent the message.

The IP address of the device that should receive the message.

Of course, you'll never need to create an IP header or break your data into separate IP packets on your own because the .NET
and Windows infrastructure will handle these lower-level tasks for you. In this book, we won't analyze the IP header in detail or
explain how routers and subnets route and filter messages. There are numerous books dedicated to networking technology.

IP Addresses

One less obvious fact about IP is that the IP address itself reveals some information about the device. Every IP address is made
up of two pieces: a portion that identifies the network (and possibly the subnet of the network), and a portion that identifies the
device in the network. The number of bytes allocated to each part depends on the type of network that's being used. Here's how it
works:

If the first value in the IP address is from 1–126, it's a class A network address.

If the first value in the IP address is from 128–191, it's a class B network address.

If the first value in the IP address is from 192–223, it's a class C network address.

The difference between these types of networks is the number of nodes they can accommodate. Class A addresses are used for
extremely large networks that can accommodate over 16 million nodes. With a class A network, the first byte in the IP address is
used to define the network and the remaining three bytes identify the host. It's only possible to have 126 class A networks
worldwide, so only extremely large companies such as AT&T, IBM, and HP have class A networks. Thus, in the IP address
120.24.0.10, the number 120 identifies the network and the remaining values identify the device.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Class B addresses use the first two bytes to describe the network. There can be about 16,000 class B networks worldwide, each
with a maximum of 65,534 devices. Thus, in the IP address 150.24.0.10, the value 150.24 identifies the network, and the 0.10
identifies the device.

Finally, class C networks use the first three bytes to describe a network. That leaves only one byte to identity the device. As a
result, class C networks can hold only 254 devices. Most companies that request an IP address will be assigned a class C IP
address. If more devices are required, multiple class C networks can be used.

Note that this list leaves out some valid IP addresses because they have special meanings. Here's a summary of special IP
addresses:

127.0.0.0 is a loopback address that always refers to the local network.

127.0.0.1 is a loopback address that refers to the current device.

IP addresses that start with a number from 224–239 are used for multicasting.

IP addresses that start with 240–255 are reserved for testing purposes.

Chapter 1 introduced the problem that the world is running out of IP addresses. In fact, there are already more devices connected
to the Internet than there are available IP addresses. To compensate for this problem, devices that aren't connected to the
Internet (or access the Internet through a gateway computer) can be given private IP addresses. Private IP addresses aren't
globally unique. They're just unique within a network. All classes of networks reserve some values for private IP addresses, as
follows:

In a class A network, any address beginning with 10 is private.

In a class B network, any address beginning with 172.16–172.31 is private.

In a class C network, any address beginning with 192.168.0–192.168.255 is private.

Of course, a computer that's sheltered from the Internet doesn't need to use a private IP address—just about any IP address
would do. Unfortunately, computers without an IP address can be difficult or impossible to contact from another network. This is
one of the headaches of peer-to-peer programming.

Note The current version of the Internet Protocol is known as IPv4. At some point, IPv6 will replace IPv4. Among other
improvements, IPv6 will enlarge the pool of available addresses, because every address will use 128 bits (16 bytes)
instead of 32 bits.

Tracing, Pinging, and More

For a behind-the-scenes look at networking, you can use some of the commandline utilities that are included with the Windows
operating system. One well-known utility is ping.exe, which contacts a device at a specified IP address using the ICMP protocol,
and sends four test packets requesting a response. If the remote device receives the ping request, it will normally echo the
packets back. Each packet is 32 bytes in size and is given 128 hops to live.

For example entering this at the command line:
ping 127.0.0.1

might elicit this response:
Pinging 127.0.0.1 with 32 bytes of data:

Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128

Ping statistics for 127.0.0.1:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms

The ping utility can be used to test if a remote host is online, although it may not succeed, depending on the firewall. For example,
many heavily trafficked sites ignore ping requests because they're wary of being swamped by a flood of simultaneous pings that
will tie up the server, thereby creating a denial-of-service attack.

To study the low-level communication in more detail, you can use an interesting utility called tracert.exe. It attempts to contact the
host specified in the IP address, and indicates the route that was taken.

This tracert request simply uses the local loopback alias:
tracert 127.0.0.1

It receives the following unremarkable response:

Tracing route to localhost [127.0.0.1]
over a maximum of 30 hops:
 1 <1 ms <1 ms <1 ms localhost [127.0.0.1]
Trace complete.

The following tracert request, however, contacts a Microsoft web server. Note that we've used a domain name instead of the IP
address. You can use either interchangeably with all of the command-line utilities discussed in this section. However, many IP
addresses will not have a DNS entry (particularly if the computer isn't a web server).
tracert www.yahoo.com

Here's the result:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tracing route to www.yahoo.akadns.net [64.58.76.177]
over a maximum of 30 hops:

 1 26 ms 23 ms 23 ms tlgw11.bloor.phub.net.cable.rogers.com
[24.114.131.1]
 2 23 ms 23 ms 24 ms 10.1.67.1
 3 26 ms 23 ms 23 ms gw02.bloor.phub.net.cable.rogers.com
[66.185.83.157]
 4 25 ms 23 ms 23 ms gw01.wlfdle.phub.net.cable.rogers.com
[66.185.80.6]
 5 28 ms 23 ms 24 ms gw02.wlfdle.phub.net.cable.rogers.com
[66.185.80.142]
 6 48 ms 47 ms 47 ms dcr1-so-3-1-0.NewYork.cw.net [206.24.207.85]
 7 51 ms 53 ms 53 ms dcr1-loopback.Washington.cw.net [206.24.226.99]
 8 52 ms 52 ms 53 ms bhr1-pos-0-0.Sterling1dc2.cw.net [206.24.238.34]
 9 51 ms 53 ms 52 ms csr03-ve242.stng01.exodus.net [216.33.98.219]
 10 57 ms 54 ms 52 ms 216.35.210.122
 11 55 ms 53 ms 53 ms www8.dcx.yahoo.com [64.58.76.177]

Trace complete.

In this case, 11 routers are crossed en route to the Yahoo! web server, which isn't bad! As with the ping test, a tracecert can fail if
a firewall prevents it.

Another interesting utility is arp.exe, which can display the media access control (MAC) address and IP address of the current
computer. (The MAC address is a unique hexadecimal value hard-coded in the network card.)

Here's a sample arp request:
arp -a

And here's the command-line response:
Interface: 24.114.131.60 —- 0x10003
 Internet Address Physical Address Type
 24.114.131.1 00-00-77-95-5d-5b dynamic

Alternatively, you can use ipconfig.exe to retrieve just IP information for the current computer.

Finally, you can use route.exe to determine how outgoing requests are routed from your computer. Enter the following at the
command line to see a list of address ranges and where the request will be forwarded:
route print

In the display below, requests for the local computer (IP address 24.114.131.0) are routed to the loopback alias 127.0.0.1. All
other requests are dispatched to the gateway at 24.114.131.60.
===
Active Routes:
Network Destination Netmask Gateway Interface Metric
 0.0.0.0 0.0.0.0 24.114.131.1 24.114.131.60 30
 24.114.131.0 255.255.255.128 24.114.131.60 24.114.131.60 30
 24.114.131.60 255.255.255.255 127.0.0.1 127.0.0.1 30
 24.255.255.255 255.255.255.255 24.114.131.60 24.114.131.60 30
 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
 224.0.0.0 240.0.0.0 24.114.131.60 24.114.131.60 30
 255.255.255.255 255.255.255.255 24.114.131.60 24.114.131.60 1
Default Gateway: 24.114.131.1
===
Persistent Routes:
 None

Transmission Control Protocol and User Datagram Protocol

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are two higher-level protocols that depend on IP. When
you program an application, you won't create IP datagrams directly. Instead, you'll send information using TCP or UDP.

TCP is a connection-oriented protocol that has built-in flow control, error correction, and sequencing. Thanks to these features,
you won't need to worry about resending information if a data collision occurs. You also won't have to worry about resolving any
one of the numerous possible network problems that could occur as information is segmented into packets and then transported
and reassembled in its proper sequence at another computer. As a result, TCP is a fairly complex protocol with a certain amount
of overhead built-in. However, it's also the favorite of most network programmers, and it's the protocol we'll use to transfer files
with the application developed in the next two chapters.

Tip If an unrecoverable error occurs with TCP and retransmission cannot solve it, an error will be propagated up the stack
until it appears in your code as a .NET exception.You can catch and respond to this exception accordingly.

UDP is a connectionless protocol for transferring data. It doesn't guarantee that messages will be received in sequence, that
messages won't be lost, or that only one copy of a given message will be received. As a result, UDP is quite fast, but it requires a
significant amount of work from the application programmer if you need to send important data. One reason UDP might be used in
a peer-to-peer application is to support peer discovery. This is because UDP allows you to send messages to multiple nodes on
the network at once, without necessarily knowing their IP address. This is possible through broadcasting and multicasting, two
technologies introduced later in this chapter.

Ports

Both TCP and UDP introduce the concept of ports. Port numbers don't correspond to anything physical—they're simply a method
for differentiating different application endpoints on the same computer. For example, if you're running a web server, your
computer will respond to requests on port 80. Another application might use port 8000. Ports map connections to applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Port numbers are divided into three categories:

Ports from 0–1023 are well-known system ports. They should only be used by a privileged system process (for
example, part of the Windows operating system), not your application code.

Ports from 1024–49151 are registered user ports. Your server applications can use one of these ports, although
you may want to check that your choice doesn't conflict with a registered port number for an application that could
be used on your server.

Ports from 49152–65525 are dynamic ports. They're often used for ports that are allocated at runtime (for example,
a local port a client might use when contacting a server).

The Internet Assigned Numbers Authority (IANA) assigns registered ports. For a list of defined port numbers, refer to
http://www.iana.org/assignments/port-numbers.

Remember, every transmission over TCP or UDP involves two port numbers: one at the server end and one at the client end. The
server port is generally the more important one. It's fixed in advance, and the server usually listens to it continuously. The client
port is used to receive data sent from the server, and it can be chosen dynamically when the connection is initiated. A combination
of port number and IP address makes an endpoint, or socket, as shown in Figure 7-3.

Figure 7-3: A TCP or UDP connection

Finally, it's worth noting that although only one application can use a port at a time, an application can serve multiple clients
through the same port—in fact, with .NET, it's easy.

Note An endpoint in a TCP connection is called a stream socket. An endpoint in a UDP connection is called a datagram
socket. There's one other type of socket that we won't use in this book, which is the lower-level raw socket, which
bypasses both TCP and UDP.

Application-Level Protocols

Several higher-level protocols are common in the Internet world. These are called application protocols, and the interesting fact is
that they're built on top of TCP or UDP.

For example, the File Transfer Protocol (FTP), Hypertext Transfer Protocol (HTTP), and e-mail protocols (SMTP, POP3, and
IMAP) all use TCP to establish connections and send messages. They simply define a grammar of recognized messages. For
example, FTP defines commands such as STOR (upload a file) and QUIT (close the connection). These commands, however, are
nothing special— they're really just ASCII-formatted strings that are sent over a TCP connection. You could easily create your own
FTP-like protocol by defining some string constants and relying on the TCP to perform all the heavy lifting.

Similarly, some application-level protocols are based on UDP. They include Trivial File Transfer Protocol (TFTP), Lightweight
Directory Access Protocol (LDAP), and DNS (the protocol used to transfer domain name information). In this case, the low-
bandwidth features of UDP are preferred to the connection-centric ones of TCP.

This brings our exploration of core networking concepts to a close. In the next section, you'll consider how these protocols are
used in .NET code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Networking in .NET
The .NET Framework includes two namespaces designed for network programming: System.Net and System.Net.Sockets. The
System.Net namespace includes several classes that won't interest peer-to-peer programmers, including abstract base classes
and types used to set Windows authentication credentials. However, there are also several noteworthy types:

IPAddress represents a numeric IP address.

IPEndPoint represents a combination of an IPAddress and port number. Taken together, these constitute a socket
endpoint.

Dns provides shared helper methods that allow you to resolve domain names (for example, you can convert a
domain name into a number IP address, and vice versa).

IPHostEntry associates a DNS host name with an array of IPAddress objects. Usually, you'll only be interested in
retrieving the first IP address (in fact, in most cases there will only be one associated IP address).

The FileWebRequest and FileWebResponse classes are useful when downloading a file from a URI (such as
file://ComputerName/ShareName/FileName). However, we won't use these classes in this book.

The HttpWebRequest and HttpWebResponse classes are useful when downloading a web page from a web server.
However, we won't use these classes in this book.

The System.Net.Sockets class includes the types you'll need for socket programming with TCP or UDP. This namespace holds
the most important functionality for the peer-to-peer programmer, including the following class types:

TcpListener is used on the server side to listen for connections.

TcpClient is used on the server and client side to transfer information over a TCP connection. Usually, you'll
transmit data by reading and writing to the stream returned from TcpClient.GetStream().

UdpClient is used on the server and client to transfer information over a UDP connection, using methods such as
Send() and Receive().

Socket represents the Berkeley socket used by both TCP and UDP. You can communicate using this socket
directly, but it's usually easier to use the higher-level TcpClient and UdpClient classes.

SocketException represents any error that occurs at the operating system level when attempting to establish a
socket connection or send a message.

NetworkStream is used with TCP connections. It allows you to send and receive data using a convention .NET
stream, which is quite handy.

In the remainder of this chapter, we'll consider some of these essential types and create a few sample programs that show
networking in action.

The Dns Class

On the Internet, publicly accessible IP addresses can be mapped to host names. For example, the IP address 207.46.134.222
maps to http://www.microsoft.com, and you can use either the domain name or the IP address when accessing the site in a
browser.

In some cases, you'll need to retrieve the IP address for a domain name, or vice versa. This task is performed seamlessly in a
web browser, and it can also be accomplished using the nslookup.exe command-line utility. In order to retrieve this information,
your computer must access a DNS server. If the DNS server you contact cannot resolve the name by examining the values in its
cache, it will forward the request to a DNS root server.

In .NET, you can perform this task quite easily using the Dns class, which provides a small set of shared methods. For example,
the following code snippet retrieves an IPHostEntry for a specific domain name and then displays the first linked IP address.
Dim IP As IPHostEntry
IP = Dns.GetHostByName("www.microsoft.com")

' Displays "207.46.249.27".
Console.WriteLine(IP.AddressList(0).ToString())

The following code performs the reverse task:
Dim IP As IPHostEntry
IP = Dns.GetHostByAddress("207.46.249.27")

' Displays "microsoft.com".
Console.WriteLine(IP.HostName)

Finally, you can use the Dns.GetHostName() method to retrieve the host name of the current computer, which you can then
convert into the local numeric IP address.
Dim IP As IPHostEntry
IP = Dns.GetHostByName(Dns.GetHostName())

' Displays the IP address for the current computer.
Console.WriteLine(IP.AddressList(0).ToString())

Network Streams

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In .NET, you can send data over a TCP connection using the NetworkStream class, which follows the standard .NET streaming
model. That means that you can write data to a NetworkStream in the same way that you would write bytes to a file. (It also
means you can chain a CryptoStream onto your network stream for automatic encryption.)

The NetworkStream class differs slightly from other .NET streams because it represents a buffer of data that's just about to be
sent or has just been received. On the sender's side, the buffer is emptied as data is sent across the network. On the recipient's
side, the buffer is emptied as data is read into the application.

Because of this behavior, the NetworkStream class is not seekable, which means you cannot use the Seek() method or access
the Length or Position properties.

In addition, the NetworkStream class adds a few useful properties:

Writeable and Readable indicate whether the NetworkStream supports write and read operations, respectively.

Socket contains a reference to the underlying socket that's being used for data transmission.

DataAvailable is a Boolean flag that's set to True when there's incoming data in the stream that you have not yet
read.

The Write() and Read() methods allow you to copy byte arrays to and from the NetworkStream, but to simplify life you'll probably
use the BinaryWriter and BinaryReader classes that are defined in the System.IO namespace. These classes can wrap any
stream, and automatically convert common .NET types (such as strings, integers, and dates) into an array of bytes.

One good rule of thumb is to use the same approach for writing to a file as you do when reading it. For example, if you use the
BinaryWriter to write data, use the BinaryReader to retrieve it, instead of the NetworkStream.Read() methods. This prevents you
from introducing problems if you don't decode data the same way you encode it. For example, by default the BinaryWriter
encodes data to binary using UTF-8 encoding. If you use Unicode to decode it, a problem could occur.

Tip Keep in mind that when you read more than one byte at a time, the method will not return until all the data is read. For
example, if you use BinaryReader.ReadString(), the method will not return until it reaches the end of the string.

The BinaryReader class also helps to add type safety to the NetworkStream. For example, if you use BinaryReader.ReadString()
and the data in the stream doesn't correspond to a string, an exception will be thrown immediately.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Communicating with TCP
TCP connections require a three-stage handshaking mechanism:

1. First, the server must enter listening mode by performing a passive open. At this point, the server will be idle,
waiting for an incoming request.

2. A client can then use the IP address and port number to perform an active open. The server will respond with an
acknowledgment message in a predetermined format that incorporates the client sequence number.

3. Finally, the client will respond to the acknowledgment. At this point, the connection is ready to transmit data in
either direction.

In .NET, you perform the passive open with the server by using the TcpListener.Start() method. This method initializes the port,
sets up the underlying socket, and begins listening, although it doesn't block your code. After this point, you can call the Pending()
method to determine if any connection requests have been received. Pending() examines the underlying socket and returns True
if there's a connection request. You can also call AcceptTcpClient() at any point to retrieve the connection request, or block the
application until a connection request is received.

When AcceptTcpClient() returns, it provides a TcpClient object that can be used to retrieve and send data. The easiest approach
is to create a NetworkStream by calling the TcpClient.GetStream() method. After this, communication is simply a matter of reading
and writing to a stream, and it can be performed in more or less the same way you would access a file on your computer's hard
drive.

The following example shows a console server that waits for a TCP connection request on port 11000. When a connection
request is received, it accepts it automatically and starts a new thread to listen for data received from the client. When a message
is received, a BinaryReader is used to retrieve it, and the message is displayed in the console window. At the same time, the main
application thread loops continuously, prompting the user for input, and sends input strings to the client using a BinaryWriter.
Imports System.Net
Imports System.Net.Sockets
Imports System.IO
Imports System.Threading

Module TcpServerConsole

 Private Stream As NetworkStream

 Public Sub Main()
 ' Create a new listener on port 11000.
 Dim Listener As New TcpListener(11000)
 ' Initialize the port and start listening.
 Listener.Start()

 Console.WriteLine("* TCP Server *")
 Console.WriteLine("Waiting for a connection...")

 Try
 ' Wait for a connection request
 ' and return a TcpClient initialized for communication.
 Dim Client As TcpClient = Listener.AcceptTcpClient()
 Console.WriteLine("Connection accepted.")
 Console.WriteLine(New String("-", 40))
 Console.WriteLine()

 ' Retrieve the network stream.
 Stream = Client.GetStream()

 ' Create a new thread for receiving incoming messages.
 Dim ReceiveThread As New Thread(AddressOf ReceiveData)
 ReceiveThread.IsBackground = True
 ReceiveThread.Start()

 ' Create a BinaryWriter for writing to the stream.
 Dim w As New BinaryWriter(Stream)

 ' Loop until the word QUIT is entered.
 Dim Text As String
 Do
 Text = Console.ReadLine()

 ' Send the text to the remote client.
 If Text <> "QUIT" Then w.Write(Text)

 Loop Until Text = "QUIT"

 ' Terminate the receiving thread.
 ReceiveThread.Abort()

 ' Close the connection socket.
 Client.Close()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Client.Close()
 ' Close the underlying socket (stop listening for new requests).
 Listener.Stop()

 Catch Err As Exception
 Console.WriteLine(Err.ToString())
 End Try

 End Sub

 Private Sub ReceiveData()
 ' Create a BinaryReader for the stream.
 Dim r As New BinaryReader(Stream)

 Do
 ' Display any received text.
 Try
 If Stream.DataAvailable Then
 Console.WriteLine(("*** RECEIVED: " + r.ReadString()))
 End If

 Catch Err As Exception
 Console.WriteLine(Err.ToString())
 End Try

 Loop
 End Sub
End Module

This demonstrates one important aspect of socket programming with .NET—you can write and read data asynchronously.

The client code uses the TcpClient.Connect() method to initiate the connection. After that point, the stream is retrieved from the
GetStream() method, and the code is almost identical.
Imports System.Net
Imports System.Net.Sockets
Imports System.IO
Imports System.Threading

Module TcpClientConsole

 Private Stream As NetworkStream
 Public Sub Main()

 Dim Client As New TcpClient()

 Try
 ' Try to connect to the server on port 11000.
 Client.Connect(IPAddress.Parse("127.0.0.1"), 11000)
 Console.WriteLine("* TCP Client *")
 Console.WriteLine("Connection established.")
 Console.WriteLine(New String("-", 40))
 Console.WriteLine()

 ' Retrieve the network stream.
 Stream = Client.GetStream()

 ' Create a new thread for receiving incoming messages.
 Dim ReceiveThread As New Thread(AddressOf ReceiveData)
 ReceiveThread.IsBackground =
 True ReceiveThread.Start()

 ' Create a BinaryWriter for writing to the stream.
 Dim w As New BinaryWriter(Stream)

 ' Loop until the word QUIT is entered.
 Dim Text As String
 Do
 Text = Console.ReadLine()

 ' Send the text to the remote client.
 If Text <> "QUIT" Then w.Write(Text)

 Loop Until Text = "QUIT"

 ' Close the connection socket.
 Client.Close()

 Catch Err As Exception
 Console.WriteLine(Err.ToString())
 End Try

 End Sub

 Private Sub ReceiveData()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub ReceiveData()
 ' Create a BinaryReader for the stream.
 Dim r As New BinaryReader(Stream)

 Do
 ' Display any received text.
 Try
 If Stream.DataAvailable Then
 Console.WriteLine(("*** RECEIVED: " + r.ReadString()))
 End If

 Catch Err As Exception
 Console.WriteLine(Err.ToString())
 End Try
 Loop
 End Sub
End Module

Figure 7-4 shows both parts of the applications as they interact.

Figure 7-4: Sending data over TCP

Handling Multiple Connections

Newcomers to network programming often wonder how they can handle more than one simultaneous request, and they
sometimes assume that multiple server reports are required. This isn't the case—if it were, a small set of applications could
quickly exhaust the available ports.

Instead, server applications handle multiple requests with the same port. This process is almost completely transparent because
the underlying TCP architecture in Windows automatically identifies messages and routes them to the appropriate object in your
code. Connections are uniquely identified based on four pieces of information: the IP address and server port, and the IP address
and client port. For example, Figure 7-5 shows a server with connections to two different clients. The server endpoint is the same,
but the connections are uniquely identified at the operating system level based on the client's IP address and port number.

Figure 7-5: Multiple TCP connections

Remember, unless you specify otherwise, the client's port is chosen dynamically from the set of available ports when the
connection is created. That means that you could create a client that opens multiple connections to the same server. On the
server side, each connection would be dealt with uniquely, because each connection would have a different client port number.

Of course, to handle simultaneous connections you'll need to use multi-threading. Here's an outline of the basic pattern you would
use on the server:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim Listener As New TcpListener(11000)
Dim Client As TcpClient
' Initialize the port and start listening.
Listener.Start()

Do
 ' Wait for a connection request
 ' and return a TcpClient initialized for communication.
 Client = Listener.AcceptTcpClient()

 ' Create a new object to handle this connection.
 Dim Handler As New MyTcpClientHandler(Client)

 ' Start this object working on another thread.
 Dim HandlerThread As New Thread(AddressOf Handler.Process())
 HandlerThread.Start()
Loop
' Close the underlying socket (stop listening for new requests).
Listener.Stop()

In addition, the main listener thread would probably use some sort of collection to track in-progress connections. Chapter 9
presents a complete example of a multithreaded server and client, with a file-sharing application that uses TCP connections to
transfer file data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Communicating with UDP
In UDP, no connection needs to be created. As a result, there's no differentiation between client and server, and no listener class.
Data can be sent immediately once the UdpClient object is created. However, you cannot use the NetworkStream to send
messages with UDP. Instead, you must write binary data directly using the Send() and Receive() methods of the UdpClient class.
Every time you use the Send() method, you specify three parameters: a byte array, the length of the byte array, and the
IPEndPoint for the remote computer where the message will be sent.

The following example rewrites the earlier TCP demonstration to use UDP. Because UDP does not make any distinction between
client and server, we only need one application: a generic client that can both send and receive messages. When the console
application is started, it prompts you for the IP address and remote port where messages should be sent, and the local port that
will be polled for incoming messages. Here's the complete code:
Imports System.Net
Imports System.Net.Sockets
Imports System.IO
Imports System.Threading
Imports System.Text

Module UdpClientConsole
 ' The port used to listen for incoming messages.
 Private LocalPort As Integer

 Public Sub Main()

 ' Set up ports.
 Console.Write("Remote IP: ")
 Dim IP As String = Console.ReadLine()

 Console.Write("Remote port: ")
 Dim Port As String = Console.ReadLine()

 ' Define the IP and port where messages are sent.
 Dim RemoteEndPoint As New IPEndPoint(IPAddress.Parse(IP), _
 Int32.Parse(Port))

 Console.Write("Local port: ")
 LocalPort = Int32.Parse(Console.ReadLine())
 Console.WriteLine(New String("-", 40))
 Console.WriteLine()

 ' Create a new thread for receiving incoming messages.
 Dim ReceiveThread As New Thread(AddressOf ReceiveData)
 ReceiveThread.IsBackground = True
 ReceiveThread.Start()

 Dim Client As New UdpClient()

 Try
 ' Loop until the word QUIT is entered.
 Dim Text As String
 Dim Data() As Byte
 Do
 Text = Console.ReadLine()

 ' Send the text to the remote client.
 If Text <> "QUIT" Then
 ' Encode the data to binary manually using UTF8 encoding.
 Data = Encoding.UTF8.GetBytes(Text)

 ' Send the text to the remote client.
 Client.Send(Data, Data.Length, RemoteEndPoint)
 End If

 Loop Until Text = "QUIT"
 Catch Err As Exception
 Console.WriteLine(Err.ToString())
 End Try

End Sub

Private Sub ReceiveData()

 Dim Client As New UdpClient(LocalPort)

 Dim Data() As Byte
 Dim Text As String

 Do
 Try
 ' Receive bytes.
 Data = Client.Receive(Nothing)

 ' Try to convert bytes into a message using UTF8 encoding.
 Text = Encoding.UTF8.GetString(Data)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Text = Encoding.UTF8.GetString(Data)

 ' Display the retrieved text.
 Console.WriteLine("*** RECEIVED: " & Text)
 Catch Err As Exception
 Console.WriteLine(Err.ToString())
 End Try
 Loop
 End Sub
End Module

Note that the code passes a null reference (Nothing) to the UdpClient.Receive() method. This instructs it to retrieve any message
that has been received on the listening port. Alternatively, you could supply an IPEndPoint representing a remote client. In this
case, the Receive() method would only retrieve data sent by that client.

If you start two instances of the UDP test application, you might have an exchange such as the one shown in Figure 7-6. In this
example, both instances are on the local computer. They differ only in the port that they're using.

Figure 7-6: Sending data over UDP

Broadcasts and Multicasts

UDP provides one feature that TCP doesn't: the ability to send broadcasts and multicasts.

Broadcasts are network messages that are sent to all devices on the local subnet. When a client receives a broadcast, it decides
whether the message is of interest or should be discarded. The architecture of broadcast messages makes them quite bandwidth-
intensive, because a separate copy of the message is sent to each device. For this reason, routers always block broadcast
messages, and they can never reach outside their own portion of the network.

To send a broadcast message, you use an IP address that identifies the network and has all host bits set to 1. In other words, if
the network is identified by the first three bytes (142.128.0), you would send a broadcast to all machines on this network by
sending a UDP message to the IP address (142.128.0.255). Even without knowing the network portion of an IP address, you can
set all bits to 1, and use the broadcast address 255.255.255.255, which will attempt to contact every reachable computer (but,
once again, it will be blocked by all routers).

Here's a snippet of code for use in sending a simple broadcast message:
Dim IP As String = "255.255.255.255"
Dim Port As String = 8800

Dim RemoteEndPoint As New IPEndPoint(IPAddress.Parse(IP), _
 Int32.Parse(Port))

Dim Client As New UdpClient()
Dim Data() As Byte = System.Text.Encoding.UTF8.GetBytes("Broadcast Message")

' Send the broadcast message.
Client.Send(Data, Data.Length, RemoteEndPoint)

Broadcasting would be highly inefficient if it were implemented with TCP, because the broadcaster would be flooded with
acknowledgment messages from every recipient. As it is, broadcast messages with UDP still aren't that bandwidth-friendly. A
much more efficient protocol is multicasting. Multicasting provides a way to define "groups" of computers with a multicasting IP
address. Devices can join this group, in which case they'll receive all multicast messages, or leave it at will. Even better, multicast
messages can cross router boundaries and flow freely across the Internet. Unfortunately, multicasting still isn't supported by all
network hardware.

Multicast addresses range from 224.0.0.0 to 239.255.255.255. However, not all of these addresses are available (some have
special meanings, and others are scope-relative, which means they cannot cross a router). You can register a multicast port for
your application from the IANA, which is responsible for assigning all multicast ports. See
http://www.iana.org/assignments/multicast-addresses for current assignments. Alternatively, you can use the predefined multicast
address 224.0.0.1 to access all computers on a subnet. (You can also use a machine and device capabilities (MADCAP) server to
request a dynamically assigned multicast address that will be used for a limited period of time, although this technique is beyond
the scope of this book.)

Here's the code you would use to send a multicast message on the local subnet of the network:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim IP As String = "224.0.0.1"
Dim Port As String = 8800

Dim RemoteEndPoint As New IPEndPoint(IPAddress.Parse(IP), _
 Int32.Parse(Port))
Dim Client As New UdpClient()
Dim Data() As Byte = System.Text.Encoding.UTF8.GetBytes("Multicast Message")

' Send the broadcast message.
Client.Send(Data, Data.Length, RemoteEndPoint)

In .NET, a client can join a multicast group using the UdpClient.JoinMulticastGroup() method, and unsubscribe using the
DropMultiCastGroup() method. Thus, before you can receive the multicast message shown earlier, you would need to use this
code:
Dim Client As New UdpClient(LocalPort)
Client.JoinMulticastGroup(IPAddress.Parse("224.0.0.1"))

Both broadcasting and multicasting could be used to support peer-to-peer discovery, although they have several weaknesses.
Broadcasting is bandwidth-intensive, and can't propagate beyond a local network. Multicasting is much more efficient, but isn't
supported by all ISPs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
The technology that allows communication to flow from device to device over the Internet is quite complex, with multiple layers
that work together to ensure reliability and scalability. Fortunately, the .NET Framework makes networking programming fairly
easy, by encapsulating DNS lookup in a Dns class and providing a .NET implementation of Windows sockets through the
TcpListener, TcpClient, and UdpClient. Armed with these techniques, you're ready to create the file-sharing application in Chapter
9. First, though, you need to consider a new method of peer-to-peer discovery: using a web service.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8: Building a Discovery Web Service

Overview
In the client-server world, applications are deployed in a static, well-known environment. Database connection strings, server
paths, and other location-specific details rarely change, and can often be hard-coded in configuration files (or even application
code). Developers and network administrators work in close contact, and the system runs smoothly, day in and day out.

In a peer-to-peer application, you can't take anything about the environment for granted. The first consideration for any peer-to-
peer application is how peers will discover one another on the network and retrieve the information they need to communicate.
One approach is to create a complex "switchboard" of messages that routes peer requests around the network in a constant low
babble. However, there's another approach that's easier to implement (and easier to make reliable). This approach is to use a
hybrid design, with a central component that acts as a repository for peer information.

You've already tackled one such design in the second part of this book, where a central coordinator served stored information
about peers in a chat system. However, this approach was tied to the Remoting network pointer (the ObjRef), and required a
continuously running server application. This chapter presents an approach that's often more robust and scalable, thus replacing
the central coordination component with a stateless web service and a back-end database. We'll use this approach to create a
discovery service that will support the file-sharing application described in the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Discovery Service
A discovery service has one key task: to map peer identifiers to peer connectivity information (see Figure 8-1). The peer identifier
might be a unique user name or a dynamically generated identifier such as a globally unique identifier (GUID). The connectivity
information includes all the details needed for another peer to create a direct connection. Typically, this includes an IP address
and port number, although this information could be wrapped up in a higher-level construct. For example, the coordination server
that we used in the Remoting chat application stores a proxy (technically, an ObjRef) that encapsulates the IP address and port
number as well as other details such as the remote class type and version.

Figure 8-1: The discovery pattern

In addition, a discovery service might provide information about the resources a peer provides. For example, in the file-sharing
application demonstrated in the next chapter, a peer creates a query based on a file name or keyword. The server then responds
with a list of peers that can satisfy that request. In order to provide this higher-level service, the discovery service needs to store a
catalog of peer information, as shown in Figure 8-2. This makes the system more dependent on its central component, and it
limits the ways that you can search, because the central component must expect the types of searches and have all the required
catalogs. However, if your searches are easy to categorize, this approach greatly improves performance and reduces network
bandwidth.

Figure 8-2: The effect of indexing content with a discovery service

Stateful and Stateless Discovery Services

Discovery services can be divided into two categories: stateful and stateless. The coordination component in Part Two was a
stateful server; in other words, it runs continuously and stores all information directly in memory. This approach is fast for an off-
the-cuff solution, but it presents a few shortcomings, including the following:

Long-running applications sometimes fail.

If the server needs to be restarted, all the information about active peers will be lost. This may be a minor issue if
the peers are able to dynamically log back in, or it may be a more severe disruption.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It's not efficient to store a large amount of information in memory. As the amount of information increases (for large
systems, or for systems in which other resources need to be centrally indexed), the performance of the central
server worsens.

Stateful applications can be called simultaneously by multiple clients. As you saw in Chapter 5, you can deal with
this by using threading code, but the issues are sometimes subtle and mistakes can lead to errors that are difficult
to diagnose.

In this chapter we'll use a stateless server, which retains no in-memory information. Instead, information is serialized into a back-
end database. This has the advantage of allowing more complex searches and reducing concurrency problems because
databases are extremely efficient at handling large volumes of data and large numbers of simultaneous users. The discovery logic
is coded using a .NET web service, which springs to life when called and is destroyed immediately after it returns the requested
information.

Overall, you'll find that the discovery service is more efficient for large systems. However, it does impose some additional
requirements. The central server will need to run a reliable database engine (in our example, SQL Server), and Internet
Information Server (IIS), which hosts all web services. Fortunately, IIS is built-in to Windows 2000, Windows XP, and Windows
Server 2003.

Tip If you don't have an instance of SQL Server, you can use a scaled-down version for free. It's called Microsoft Data
Engine (MSDE), and it's included with all versions of Visual Studio .NET. The key limitations are that it will only support
five simultaneous connections, and it doesn't include graphical tools for designing a database. For more information,
refer to the Visual Studio .NET Help files.

In the next few sections, we'll present a whirlwind review of web services and then dive directly into a full-scale example by
developing the discovery service we'll need to use with the file-sharing application described in the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Web Service Essentials
As a .NET programmer, you've probably already heard more than a little about Microsoft's favorite new innovation, the hotly hyped
web services. Web services play much the same role as components exposed through Remoting: They're packages for business
code that you want to execute on another computer. Unlike Remoting, web services use the ASP.NET engine, require IIS, and
stress interoperability with other platforms through open standards such as SOAP, which is used to communicate with a web
service, and Web Services Description Language (WSDL), which is used to describe the functionality provided by a web service.

Here's a short list of the key differences between Microsoft's two new distributed technologies, Remoting and web services:

Remoting has the option of using faster communication through TCP/IP connections and the BinaryFormatter. Web
services only support SOAP message formatting, which uses larger XML text messages.

Web services support open standards that target cross-platform use, such as SOAP and WSDL. This allows third-
party clients (such as a Java application) to interact with them.

Web services only support a small set of .NET types for parameters or return values. You can use your own custom
classes, but they can only include data members. Property procedures, constructor logic, methods, and so on,
cannot be used.

Web services don't require a component host application. Instead, this functionality is provided by the ASP.NET
engine and IIS.

Web services are requested much like a web page over an HTTP channel. This allows web-service requests to
cross most firewalls. Of course, the same is possible with Remoting, as long as you configure your component
accordingly.

Web services are always stateless. That means they can't run asynchronously in the background or perform tasks
continuously. Instead, they're created to serve a single client request and are destroyed immediately when the
request ends. Remoting components don't have this limitation, as long as they're client-activated or Singleton
objects (such as the Talk .NET coordination server in Chapter 4).

Web services can use some powerful ASP.NET features, such as caching, process recycling, web-farm server
clustering, and application state.

It's sometime said that Remoting always performs better than web services, because it can use binary formatting and the TCP/IP
protocol, rather than larger SOAP messages and the HTTP protocol. This is true to a point, but this minor advantage can be
countered by some of the built-in ASP.NET services, such as caching. It's also true that the restricted nature of web services
simplifies design issues. It's generally easier to create a high-performance stateless object such as a web service than a stateful
coordination object that needs to make heavy use of threads and synchronization codes.

Most .NET programmers have already heard more than enough about the promise of .NET web services. In this chapter, we'll
cover the most important essentials in an abbreviated form, so that we can get back to peer-to-peer programming as quickly as
possible. You won't learn about background information such as the SOAP and WSDL standards. If you're interested in a more
detailed exploration of web services, there are many excellent books available. And if you've already mastered web services, feel
free to skip ahead.

The Anatomy of a Web-Service Request

The ASP.NET engine handles a web-service request in much the same way as aweb-page request. The only difference is that
web-service results are usually formatted in an XML grammar called SOAP, not ordinary HTML.

Here's an overview of the process (shown in Figure 8-3):

Figure 8-3: Serving a web-service request with ASP.NET

1. A client sends a SOAP-formatted request to a web service.

2. IIS receives the request, determines that it's for ASP.NET, and invokes the ASP.NET engine.

3. ASP.NET creates the web-services object.

4. ASP.NET runs the requested method with the supplied information.

5. ASP.NET destroys the web-services object.

6. ASP.NET returns the web-services result in a SOAP-formatted message over HTTP.

ASP.NET uses a pool of worker threads to handle multiple concurrent requests efficiently. A new, distinct web-service object is
created for each request, ensuring that you don't need to worry about creating your own custom threading code.

The Least You Need to Know About IIS

IIS is the software a computer needs to serve web requests, whether they're for ordinary HTML pages or ASP.NET web pages
and web services. IIS performs two key functions:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It exposes directories on your hard drive as virtual web directories over HTTP. For example, you might map the
path C:\MyWeb to http://[ComputerName]/PublicWeb. Now, the web services and web pages in C:\MyWeb
can be accessed through HTTP in a web browser, using addresses that start with
http://[ComputerName]/PublicWeb.

Using file extensions, IIS maps web requests to the application that can handle them. For example, ASP.NET
pages (.aspx files) and web services (.asmx files) are registered to the ASP.NET worker process. When IIS
receives a web request for one of these file types, it invokes the ASP.NET engine, which handles the rest of the
work.

IIS also imposes its own security controls, which you can customize. For example, by default, IIS will not allow a client to browse
the list of files contained in a virtual directory. You can also use IIS to authenticate the user by demanding Windows authentication
credentials, although this technique is of little use in a peer-to-peer application because the clients won't have Windows user
accounts on the server.

IIS is included with the Windows 2000, Windows XP, and Windows Server 2003 operating systems, but isn't automatically
installed. To install it, follow these steps:

1. Click the Start button, and select Settings Control Panel.

2. Choose Add or Remove Programs, and click Add/Remove Windows Components.

3. Find Internet Information Server in the list, select it, and click Next to install the appropriate files.

You can test if IIS is installed by requesting the page http://localhost/localstart.asp in your web browser.
Localstart.asp is an ordinary ASP file that's stored in the root directory of your computer's website. Localhost is an alias that
always refers to the IP address 127.0.0.1. This is known as the loopback address, because it always refers to the current
computer. If your request works and you see the IIS Help page in your browser, IIS is installed correctly.

Typically, the root website http://localhost is mapped to the directory c:\intepub\wwwroot. You can create new virtual
directories using the IIS Manager administrative utility. Just select Internet Information Server from the Administrative Tools
section of the Control Panel, and follow these steps:

1. Right-click the Default Web Site item (under your computer in the tree), and choose New Virtual Directory to
start the Virtual Directory wizard. Click Next.

2. Enter the alias, which is the name of the new virtual directory you want to create, and click Next.

3. Choose the physical directory that will be exposed. Click Next to continue.

4. The next window allows you to adjust the permissions granted to the virtual directory. The default settings allow
clients to run ASP.NET pages and web services, but they can't make any modifications or upload files. This is
the recommended configuration.

5. Click Next, and then Finish to end the wizard. You will see the virtual directory appear in the IIS Manager tree.

It's always a good idea to create a dedicated virtual directory before creating a project in Visual Studio .NET. Otherwise, your
project will automatically be placed in a subdirectory of c:\inetpub\wwwroot. The discovery service presented in this chapter uses
the virtual directory http://[ComputerName]/Discovery, which is mapped to the physical directory
C:\Code\P2P\Chapter08\Discovery.

Tip Any computer on your network can access a web service using the computer name or IP address of the computer where
the web service is hosted. However, if you want to expose a web service on the Internet, you'll probably need to invest in
a fixed IP address or enlist the services of a dedicated Internet hosting company.With a fixed IP address, it also
becomes possible to register a domain name (for example, http://www.mysite.com).

The Web-Service Class

Like a Remoting component, a web service is, at its simplest, just a collection of methods organized in a class. To expose a
method over the Internet, you need to add a <WebMethod> attribute to the method. In addition, it's a common convention to
derive from the WebService class, although this isn't required. Both the WebMethod attribute and the WebService class are found
in the System.Web.Services namespace.

Here's a sample web service with one method:
Public Class MyService

 <WebMethod()> _
 Public Sub MyMethod()
 ' (Code goes here.)
 End Sub
End Class

Although web services can include any .NET code, they only support a limited set of .NET types for use as method parameters or
return values. Supported types include

Basic data types such as integers, floating point numbers, Boolean variables, dates and times, strings, and
enumerations.

Arrays of any supported type.

The ADO.NET DataSet (although this type will probably not be understood by non-.NET clients).

The XmlNode object, which represents an arbitrary portion of an XML document.

A custom class or structure. However, only data members will be preserved. All code will be ignored.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There's one nice side to this limitation. It means that you never need to distribute a custom assembly to clients that need to use a
web service. Instead, they can download all the information they need about the service.

Remember, all web services are stateless. That means that if you create any member variables, they'll be initialized to default
empty values every time a web method is invoked. Similarly, if you create a constructor, it will be called before every method call.

In order to deploy a web service on a website, you need to follow three simple steps:
1. Compile the web service into a .dll assembly.

2. Copy the assembly into the bin directory of a virtual directory on your server.

3. Add an .asmx file extension that will allow you to identify the web service in the virtual directory.

The .asmx file is the web-service endpoint. The client cannot access your web-service .dll directly—instead, it makes a request for
the .asmx file, along with information about the method it wants to invoke and the data it's sending. The .asmx file simply indicates
the class and assembly name for the corresponding web service in a single line of text:
<%@ WebService Language="vb" Class="MyService" %>

The ASP.NET engine will then instantiate the corresponding class from the bin subdirectory and run the requested method.

Note Visual Studio .NET automates this process when you create a web-service project, compiling the web service into an
assembly and generating the corresponding .asmx file. These are the only two files you need to deploy.

The Web-Service Client

As with Remoting, a web-service client communicates with a web service using a proxy. With Remoting, the proxy is generated
dynamically at runtime. With web services, the proxy is generated by some tool at design time. In Visual Studio .NET, the proxy is
created in a process called "adding a web reference." It's at this point that you specify the location of the web service, and then
Visual Studio .NET generates a proxy class that can communicate with it and adds the proxy class to your project.

The proxy class has the same interface as the web service it communicates with. To use a web method, you create an instance of
the proxy class and invoke the method of the proxy class. To your code, it seems like using an ordinary local object, but behind
the scenes the proxy class creates and sends a SOAP request, waits for a response, and converts the return value into the
expected .NET type. If you haven't already used web-service references in your own projects, you'll see how to add one in the
next chapter.

Now that we've covered the groundwork, we're ready to begin coding a real-world application. The next section begins by creating
a registration database, which we'll expose through a simple .NET web service.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Registration Database
The registration database stores a list of all the peers that are currently available and the information needed to connect to them.
It also uses a basic cataloging system, whereby each peer uploads a catalog of available resources shortly after logging in. When
a peer needs a specific resource, it calls a web-service method. The web service attempts to find peers that can provide the
resource and returns a list of search matches with the required peer-connectivity information.

In this case, the resources are files that a peer is willing to exchange. The catalog stores file names, but that isn't enough. File
names can be changed arbitrarily and have little consistency among users, so searching based on file names isn't a desirable
option. Instead, file names are indexed using multiple content descriptors. In the case of an MP3 file, these content descriptors
might include information such as the artist name, song title, and so on. The file-sharing application can use more than one
possible method to retrieve this information, but the most likely choice is to retrieve it from the file. For example, MP3 files include
a header that stores song data. A file-sharing application could use this information to create a list of keywords for a file, and
submit that to the server. This is the approach taken in our sample registration database.

Note In order to index a file, a peer must understand the file format and know how to extract the required information. The
server does not deal with the file data, and can't perform this task.

Creating the Database

The registration database consists of three tables, as shown in Figure 8-4. These tables include the following:

Figure 8-4: The registration database

1. The Peers table lists currently connected peers, each of which is assigned a unique GUID. The peer-connectivity
information includes the numeric IP address (stored as a string in dotted notation) and port number. The Peers
table also includes a LastUpdate time, which allows an expiration policy to be used to remove old peer
registration records.

2. The Files table lists shared files, the peer that's sharing them, and the date stamp on the file. Each file has a
unique GUID, thereby ensuring that they can be tracked individually.

3. The Keywords table lists a single-word descriptor for a file. You'll notice that the Keywords table is linked to both
the Files table and the Peers table. This makes it easier to delete the keywords related to a peer if the peer
registration expires, without having to retrieve a list of shared files.

Figure 8-5 shows the sample data that you would expect in the registration database after a single client has connected and
registered two shared files (in this case, recordings of two classical compositions by Debussy).

Figure 8-5: Sample registration data

All GUID values are generated by the peer and submitted to the server. This allows the peer to keep track of its shared files and
quickly validate download requests, as you'll see in the next chapter.

Tip If you want to test this database on your own system, you can use the SQL script that's included with the samples for this
chapter. It automatically creates the database and the stored procedures described in the next section, provided you are
using SQL Server 2000.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stored Procedures

The next step is to define a set of stored procedures that encapsulate some of the most common database tasks.

The AddPeer stored procedure inserts a new peer registration record in the database. RefreshPeer updates the LastUpdated field
in the peer record. Every peer must call this method periodically to prevent their registration record from expiring.

CREATE Procedure AddPeer
(
 @ID uniqueidentifier,
 @IP nvarchar(15),
 @Port smallint
)
AS
INSERT INTO Peers
(
 ID, IP, Port, LastUpdate
)
VALUES
(
 @ID, @IP, @Port, GETDATE()
)
GO

CREATE Procedure RefreshPeer
(
 @ID uniqueidentifier
)
AS
UPDATE Peers SET LastUpdate=GETDATE() WHERE ID=@ID
GO

Two more stored procedures, AddFile and AddKeyword, allow new catalog information to be added to the database.
CREATE Procedure AddFile
(
@ID uniqueidentifier,
@PeerID uniqueidentifier,
@FileName nvarchar(50),
@FileCreated datetime
)
AS
INSERT INTO Files
(
 ID, PeerID, FileName, FileCreated
)
VALUES
(
 @ID, @PeerID, @FileName, @FileCreated
)
GO

CREATE Procedure AddKeyword
(
 @FileID uniqueidentifier,
 @PeerID uniqueidentifier,
 @Keyword nvarchar(50)
)
AS
INSERT INTO Keywords
(
 FileID, PeerID, Keyword
)
VALUES
(
 @FileID, @PeerID, @Keyword
)
GO

Finally, a DeletePeersAndFiles stored procedure handles the unregistration process, removing related records from the Files,
Peers, and Keywords tables. The DeleteFiles stored procedure provides a similar function, but leaves the peer record intact. Its
primary use is when updating the catalog.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE Procedure DeletePeerAndFiles
(
 @ID uniqueidentifier
)
AS
DELETE FROM Files WHERE PeerID = @ID
DELETE FROM Peers WHERE ID = @ID
DELETE FROM Keywords WHERE PeerID = @ID
GO

CREATE Procedure DeleteFiles
(
 @ID uniqueidentifier
)
AS
DELETE FROM Files WHERE PeerID = @ID
DELETE FROM Keywords WHERE PeerID = @ID
GO

The database doesn't include a stored procedure for performing queries, because this step is easier to accomplish with a
dynamically generated SQL statement that uses a variable number of WHERE clauses.

Creating the Database Class

The next step is to create a class that encapsulates all the data-access logic. The web service will then make use of this class to
perform database tasks, rather than connect with the database directly. This separation makes it easier to debug, enhance, and
optimize the data-access logic.

For maximum reusability, the data-access code could be implemented as a separate assembly. In our example, however, it's a
part of the web service project.

The database code includes a Peer and SharedFile class, which models a row from the Peers and Files tables, respectively. The
SharedFile class also includes information about the related peer.
Public Class Peer
 Public Guid As Guid
 Public IP As String
 Public Port As Integer
End Class

Public Class SharedFile
 Public Guid As Guid
 Public FileName As String
 Public FileCreated As Date
 Public Peer As New Peer()
 Public Keywords() As String
End Class

Neither of these classes uses full property procedures, because they aren't fully supported in a web service. If you were to add
property procedure code, it might be used on the server side. However, it would be ignored on the client side, thus limiting its
usefulness.

The database code could be separated into multiple classes (for example, a PeersDB, FilesDB, and KeywordsDB database).
However, because there's a relatively small set of tasks that will be performed with the registration database, you can implement
all methods in a single class without any confusion. Here's the basic framework for the class:
Public Class P2PDatabase

 Private ConnectionString As String

 Public Sub New()
 ConnectionString = ConfigurationSettings.AppSettings("DBConnection")
 End Sub

 Public Sub AddPeer(ByVal peer As Peer)
 ' (Code omitted.)
 End Sub

 Public Sub RefreshPeer(ByVal peer As Peer)
 ' (Code omitted.)
 End Sub

 Public Sub DeletePeerAndFiles(ByVal peer As Peer)
 ' (Code omitted.)
 End Sub

 Public Sub AddFileInfo(ByVal files() As SharedFile, ByVal peer As Peer)
 ' (Code omitted.)
 End Sub

 Public Function GetFileInfo(ByVal keywords() As String) As SharedFile()
 ' (Code omitted.)
 End Function
End Class

When a P2PDatabase instance is created, the connection string is retrieved from a configuration file. This will be the configuration
associated with the application that's using the P2PDatabase class. In our example, this is the web.config file used by the web

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

associated with the application that's using the P2PDatabase class. In our example, this is the web.config file used by the web
service.
<?xml version="1.0" encoding="utf-8" ?>

<configuration>
 <appSettings>
 <add key="DBConnection"
 value="Data Source=localhost;Initial Catalog=P2P;user ID=sa" />
 </appSettings>
 <system.web>
 <!-- Other settings omitted. -->
 </system.web>
</configuration>

The actual database code is quite straightforward. The basic pattern is to create a command for the corresponding stored
procedure, add the required information as parameters, and execute the command directly. For example, here's the code used to
register, update, and remove peer information:
Public Sub AddPeer(ByVal peer As Peer)

 ' Define command and connection.
 Dim con As New SqlConnection(ConnectionString)
 Dim cmd As New SqlCommand("AddPeer", con)
 cmd.CommandType = CommandType.StoredProcedure

 ' Add parameters.
 Dim param As SqlParameter
 param = cmd.Parameters.Add("@ID", SqlDbType.UniqueIdentifier)
 param.Value = peer.Guid
 param = cmd.Parameters.Add("@IP", SqlDbType.NVarChar, 15)
 param.Value = peer.IP
 param = cmd.Parameters.Add("@Port", SqlDbType.SmallInt)
 param.Value = peer.Port

 Try
 con.Open()
 cmd.ExecuteNonQuery()
 Finally
 con.Close()
 End Try

End Sub

Public Sub RefreshPeer(ByVal peer As Peer)

 ' Define command and connection.
 Dim con As New SqlConnection(ConnectionString)
 Dim cmd As New SqlCommand("RefreshPeer", con)
 cmd.CommandType = CommandType.StoredProcedure
 ' Add parameters.
 Dim param As SqlParameter
 param = cmd.Parameters.Add("@ID", SqlDbType.UniqueIdentifier)
 param.Value = peer.Guid

 Try
 con.Open()
 cmd.ExecuteNonQuery()
 Finally
 con.Close()
 End Try

End Sub

Public Sub DeletePeerAndFiles(ByVal peer As Peer)

 ' Define command and connection.
 Dim con As New SqlConnection(ConnectionString)
 Dim cmd As New SqlCommand("DeletePeerAndFiles", con)
 cmd.CommandType = CommandType.StoredProcedure

 ' Add parameters.
 Dim param As SqlParameter
 param = cmd.Parameters.Add("@ID", SqlDbType.UniqueIdentifier)
 param.Value = peer.Guid

 Try
 con.Open()
 cmd.ExecuteNonQuery()
 Finally
 con.Close()
 End Try

End Sub

Note Even if you're new to ADO.NET coding, the previous code sample is fairly self-explanatory. There are numerous books
dedicated to the basics of ADO.NET programming, including several titles from Apress.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that if an error occurs, the connection is closed, but the error isn't handled. Instead, it's allowed to propagate back to the
caller (in this case, the web service), which will handle it accordingly. Another option would be to catch all errors and throw a
higher-level exception, such as an ApplicationException, with the original exception wrapped inside.

The code for the AddFileInfo() method is lengthier because it adds multiple records: one new file record, and one keyword record
for each keyword string in the File.Keywords array. All the work is performed with the same open connection, thereby reducing the
overhead required for the whole process. The AddFileInfo() method also clears the current registration information before it begins
by calling the DeleteFiles stored procedure. This ensures that the same peer can't accidentally register the same file twice.
Public Sub AddFileInfo(ByVal files() As SharedFile, ByVal peer As Peer)

 ' Define commands and connection.
 Dim con As New SqlConnection(ConnectionString)
 Dim cmdDelete As New SqlCommand("DeleteFiles", con)
 cmdDelete.CommandType = CommandType.StoredProcedure

 Dim cmdFile As New SqlCommand("AddFile", con)
 cmdFile.CommandType = CommandType.StoredProcedure

 Dim cmdKeyword As New SqlCommand("AddKeyword", con)
 cmdKeyword.CommandType = CommandType.StoredProcedure

 Dim param As SqlParameter

 Try
 con.Open()

 ' Delete current registration information.
 param = cmdDelete.Parameters.Add("@ID", SqlDbType.UniqueIdentifier)
 param.Value = peer.Guid
 cmdDelete.ExecuteNonQuery()

 Dim File As SharedFile
 For Each File In files

 ' Add parameters.
 cmdFile.Parameters.Clear()
 param = cmdFile.Parameters.Add("@ID", SqlDbType.UniqueIdentifier)
 param.Value = File.Guid
 param = cmdFile.Parameters.Add("@PeerID", SqlDbType.UniqueIdentifier)
 param.Value = peer.Guid
 param = cmdFile.Parameters.Add("@FileName", SqlDbType.NVarChar, 50)
 param.Value = File.FileName
 param = cmdFile.Parameters.Add("@FileCreated", SqlDbType.DateTime)
 param.Value = File.FileCreated

 cmdFile.ExecuteNonQuery()

 ' Add keywords for this file.
 ' Note that the lack of any keywords isn't considered
 ' to be an error condition (although it could be).
 Dim Keyword As String
 For Each Keyword In File.Keywords
 cmdKeyword.Parameters.Clear()
 param = cmdKeyword.Parameters.Add("@FileID", _
 SqlDbType.UniqueIdentifier)
 param.Value = File.Guid
 param = cmdKeyword.Parameters.Add("@PeerID", _
 SqlDbType.UniqueIdentifier)
 param.Value = peer.Guid
 param = cmdKeyword.Parameters.Add("@Keyword", _
 SqlDbType.NVarChar, 50)
 param.Value = Keyword
 cmdKeyword.ExecuteNonQuery()
 Next
 Next

 Finally
 con.Close()
 End Try

End Sub

Finally, the GetFileInfo() method creates a dynamic SQL query based on a list of search keywords. The query joins the Files,
Peers, and Keywords tables in order to retrieve all the required peer-connectivity and file information. For each keyword, a
WHERE clause is appended to the SQL expression. For maximum performance, this process is performed with a StringBuilder
object instead of through ordinary string concatenation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Function GetFileInfo(ByVal keywords() As String) As SharedFile()

 ' Build dynamic query string.
 Dim DynamicSQL As New System.Text.StringBuilder(_
 "SELECT DISTINCT Files.ID AS FileID, Peers.ID AS PeerID, " & _
 "FileName, FileCreated, IP, Port " & _
 "FROM Files, Keywords, Peers " & _
 "WHERE Files.ID = keywords.FileID AND Files.PeerID = Peers.ID AND ")

 Dim i As Integer
 For i = 1 To keywords.Length
 DynamicSQL.Append("Keyword LIKE '%" + keywords(i - 1) + "%' ")
 If Not (i = keywords.Length) Then DynamicSQL.Append("OR ")
 Next

 ' Define command and connection.
 Dim con As New SqlConnection(ConnectionString)
 Dim cmd As New SqlCommand(DynamicSQL.ToString(), con)
 Dim r As SqlDataReader
 Dim Files As New ArrayList()

 Try
 con.Open()
 r = cmd.ExecuteReader()
 Do While (r.Read())
 Dim File As New SharedFile()
 File.Guid = r("FileID")
 File.FileName = r("FileName")
 File.FileCreated = r("FileCreated")
 File.Peer.IP = r("IP")
 File.Peer.Port = r("Port")
 File.Peer.Guid = r("PeerID")
 Files.Add(File)
 Loop
 Finally
 con.Close()
 End Try

 ' Convert the generic ArrayList to an array of SharedFile objects.
 Return CType(Files.ToArray(GetType(SharedFile)), SharedFile())

End Function

Results from the query are retrieved using a DataReader. Each time a matching file is found, a new SharedFile object is created
and added to an ArrayList. Once all the matching files are found, the ArrayList is converted to a strongly typed SharedFile array,
and returned.

Tip You might want to use the SQL statement SET ROWCOUNT before you execute the query. This way, you can limit the
total number of requests and ensure that the discovery service won't be swamped by returning tens of thousands of
results to a poorly worded query. For example, the SQL statement SET ROWCOUNT 100 caps search results to the first
100 rows that match the query.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Discovery Service
Now that the actual data-access logic has been written, the actual discovery web service will need very little code. For the most
part, its methods simply wrap the P2PDatabase component. All exceptions are caught, logged, and suppressed, so that sensitive
information will not be returned to the client, who is in no position to correct low-level database errors anyway.

A typical interaction with the discovery service goes as follows:
1. The client generates a new GUID to identify itself, records its current IP address and port, and calls Register()

with this information.

2. The client inspects the files that it's sharing, creates the keywords lists, and calls PublishFiles() to submit the
catalog.

3. After this point, the client calls RefreshRegistration() periodically, to prevent its login information from expiring.

4. Optionally, the client calls SearchForFile() with any queries.

5. The client ends the session by calling Unregister().

The complete web-service code is shown here:
Public Class DiscoveryService
 Inherits System.Web.Services.WebService
 ' This object will be created with each new method request.
 ' (This isn't a problem because P2PDatabase is stateless.)
 Private DB As New P2PDatabase()

 <WebMethod()> _
 Public Function Register(ByVal peer As Peer) As Boolean

 Try
 DB.AddPeer(peer)
 Return True
 Catch
 Return False
 End Try

 End Function

 <WebMethod()> _
 Public Function RefreshRegistration(ByVal peer As Peer) As Boolean

 Try
 DB.RefreshPeer(peer)
 Return True
 Catch err As Exception
 Trace.Write(err.ToString)
 Return False
 End Try

 End Function

 <WebMethod()> _
 Public Sub Unregister(ByVal peer As Peer)

 Try
 DB.DeletePeerAndFiles(peer)
 Catch err As Exception
 Trace.Write(err.ToString)
 End Try

 End Sub

 <WebMethod()> _
 Public Function PublishFiles(ByVal files() As SharedFile, _
 ByVal peer As Peer) As Boolean

 Try
 DB.AddFileInfo(files, peer)
 Return True
 Catch err As Exception
 Trace.Write(err.ToString)
 Return False
 End Try

 End Function

 <WebMethod()> _
 Public Function SearchForFile(ByVal keywords() As String) As SharedFile()

 Try
 Return DB.GetFileInfo(keywords)
 Catch err As Exception
 Trace.Write(err.ToString)
 Dim EmptyArray() As SharedFile = {}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim EmptyArray() As SharedFile = {}
 Return EmptyArray
 End Try

 End Function

End Class

To improve performance, you might consider using ASP.NET caching. However, as queries are likely to differ quite a bit, and the
list of keywords stored in the database can grow dramatically, it's difficult to implement an effective caching strategy.

There's one function that the web service doesn't provide: removing expired peer information. In Chapter 5, you saw how this type
of work can be performed on a dedicated thread. However, as web services are stateless, it's not easy to run other code
asynchronously. Instead, you would need to create a separate component that runs on the server (perhaps a Windows service),
and periodically scans the database for Peer records beyond a certain age limit. It would then remove these records using the
DeletePeerAndFiles stored procedure. This logic is easy to implement and could be added to the P2PDatabase class.

Testing the Discovery Service

Once you've completed the service, you can load the corresponding .asmx page into Internet Explorer to see an automatically
generated test page that lists the web methods exposed by this web service (see Figure 8-6). However, you won't be able to test
them directly because they require a client that can create and configure the custom Peer and SharedFile objects.

Figure 8-6: Viewing web-service methods in Internet Explorer

To put the directory service to a real test, you need to build a dedicated client application, such as the one presented in the next
chapter. In this case, you'll probably want to debug your web service and client application at the same time. To do so, right-click
the project name in the Solution Explorer, and select Properties. Then, navigate to the Configuration Properties → Debugging
node, and choose "Wait for an external process to connect" (as shown in Figure 8-7). Now, when you run your web-service
project, Visual Studio .NET will load the debugging symbols and wait for a client request. You can use the full set of debugging
tools to watch the web service as it reacts, including breakpoints, variable watches, and the command window.

Figure 8-7: Configuring web-service debugging

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
This chapter laid the groundwork for the ambitious file-sharing application that we'll develop in the next chapter. Here you learned
how to use the .NET web-service functionality and a back-end database to create a highly scalable registry service. Best of all, the
code is carefully separated into multiple layers through stored procedures and a dedicated database component, thereby ensuring
that it can be easily altered and extended in the future.

It's important to realize that the discovery process isn't standardized in peer-to-peer applications. There are many other ways you
can organize or customize a registration database. For example, the registration database used in this example stores enough
data for peers to make direct TCP/IP connections. However, if you wanted to use some other type of communication protocol, you
might store different information. Chapter 10 develops a discovery service that uses Remoting. It simply serializes ObjRef objects
to a binary database field. A peer can then read this information, reconstruct a proxy object, and use it directly through the .NET
Remoting platform services.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9: Building a File Sharer
In the last chapter, you learned how to catalog peers and resources with a discovery web service. In this chapter, we'll develop a
sophisticated file-sharing application that uses the discovery service.

The file-sharing client is a lengthy example, and it will take the entire chapter to dissect the code. This complexity is a result of the
multiple roles that a peer-to-peer application must play. A peer-to-peer client needs to periodically submit registration information
to a central web service, serve files to hordes of eager peers, and retrieve more files from a different set of peers on the network—
potentially all at once. The only way to handle these issues is with careful, disciplined threading code.

An Overview of FileSwapper
The FileSwapper application is built around a single form (see Figure 9-1). This form uses multiple tables and allows users to
initiate searches, configure settings, and monitor uploads and downloads.

Figure 9-1: The FileSwapper display

FileSwapper divides its functionality into a small army of classes, including the following:

SwapperClient, which is the main form class. It delegates as much work as possible to other classes and uses a
timer to periodically update its login information with the discovery service.

Global, which includes the data that's required application-wide (for example, registry settings).

App, which includes shared methods for some of the core application tasks such as Login(), Logout(), and
PublishFiles(), and also provides access to the various application threads.

KeywordUtil and MP3Util, which provide a few shared helper methods for analyzing MP3 files and parsing the
keywords that describe them.

RegistrySettings, which provides access to the application's configuration settings, along with methods for saving
and loading them.

ListViewItemWrapper, which performs thread-safe updating of a ListViewItem.

Search, which contacts the discovery service with a search request on a separate thread (allowing long-running
searches to be easily interrupted).

FileServer and FileUpload, which manage the incoming connections and transfer shared files to interested peers.

FileDownloadQueue and FileDownloadClient, which manage in-progress downloads from other peers.

Messages, which defines constants used for peer-to-peer communication.

The file-transfer process is fairly easy. Once a peer locates another peer that has an interesting file, it opens a direct TCP/IP
connection and sends a download request. Conceptually, this code is quite similar to some of the examples shown in Chapter 7.
However, the application is still fairly complex because it needs to handle several tasks that require multithreading at once.
Because every peer acts as both a client and a server, every application needs to simultaneously monitor for new incoming
connections that are requesting files. In addition, the application must potentially initiate new outgoing connections to download
other files. Not only does the client need to perform uploading and downloading at the same time, but it also needs to be able to
perform multiple uploads or downloads at once (within reason). In order to accommodate this design, a separate thread needs to
work continuously to schedule new uploads or downloads as required.

Figure 9-2 shows a simplified view of threads in the FileSwapper application. Note that for the most part, independent threads run
code in separate objects to prevent confusion. However, this isn't a requirement, and a single object could be executed on
multiple threads or a single thread could run the code from multiple objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-2: Threads in FileSwapper

The full FileSwapper application can be downloaded with the code for this chapter. In this chapter, we'll walk through all the
threading and networking code, but omit more trivial details such as namespace imports and the automatically generated
Windows designer code. We'll begin by examining some of the building blocks such as the classes used to register the peer, to
read configuration information, and to process MP3 files. Next, you'll look at the code for searching available peers. Finally, you'll
see the multithreaded code for handling simultaneous uploads and downloads over the network.

The Discovery Service Web Reference

The FileSwapper requires a web reference to the discovery service in order to work. To add this, right-click the project name in the
Solution Explorer, and choose Add Web Reference. Type the full path to the virtual directory and web service .asmx file in the
Address field of the Add Web Reference window. When you press Enter, the list of web-service methods from the Internet
Explorer test page will appear, as shown in Figure 9-3.

Figure 9-3: Adding a web reference

Click Add Reference to generate the proxy class and add it to your project. The proxy class should not be manually modified once
it's created, and so it isn't shown in the Solution Explorer. However, you can examine it by choosing Project Show All Files
from the Visual Studio .NET window. The proxy class is always named Reference.vb, as shown in Figure 9-4. We won't consider
the proxy class code in this book, although it makes interesting study if you'd like to understand a little more about how web
services convert .NET objects into SOAP messages and back.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-4: The hidden proxy class

If you need to change a web service, you must recompile it and then update the client's web reference. To do so, right-click the
web-service reference in the Solution Explorer, and choose Update Web Reference.

In the remainder of this chapter, we'll walk through the FileSwapper code class-by-class, and discuss the key design decisions.

Tip If you click on a web reference in the Solution Explorer, you can find a property called Url Behavior in the Properties
window. This property is set to static by default, in which case a fixed URL is set for the discovery service and added to
the generated proxy class code. If you change the Url Behavior property to dynamic, an application setting will be added
to the client application's configuration file with the web-service URL. This way, if you move the web service to another
server you only need to change the configuration file, rather than recompile the client application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Global Data and Tasks
The FileSwapper application uses two classes that consist of shared members: Global and App. These classes act like global
modules and are available from any location in the FileSwapper code. That means that you don't need to create an instance of
these classes—instead, their properties and methods are always available and you can access them through the class name.

The Global class stores data that's required by multiple objects in the application. As with any application, it's always best to keep
the amount of global data to a minimum. A large number of global variables usually indicates a poor structure that really isn't
object-oriented. All the data in the Global class is held using public shared variables, making it widely available. For example, any
code in the application can use the Global.Identity property to access information about the current computer's IP address and
port number settings.

Here's the full code for the Global class:
Public Class Global

 ' Contains information about the current peer.
 Public Shared LoggedIn As Boolean = False
 Public Shared Identity As New Peer()

 ' Lists files that are available for other peers.
 Public Shared SharedFiles() As SharedFile

 ' Provides access to configuration settings that are stored in the registry.
 Public Shared Settings As New RegistrySettings()

End Class

Though these variables are always available, some of them still need to be set at startup before they contain any useful
information. For example, the Identity, SharedFiles, and Settings variables all begin in a default, empty state.

The App class also relies on shared variables to store a common set of information. It actually stores references to three separate
objects, each of which will be executed on an independent thread. Using the App class, your startup code can easily initialize the
threads on startup and abort them when the application is about to end. The App class also includes a private shared variable that
references the web-service proxy. This ensures that no other part of the application can access the discovery service directly—
instead, the application must call one of the App class methods.

Here's the outline for the App class, with all its public and private member variables:
Public Class App

 ' Holds a reference to the web-service proxy.
 Private Shared Discovery As New DiscoveryService()
 Public Shared SearchThread As Search
 Public Shared DownwnloadThread As FileDownloadQueue
 Public Shared UploadThread As FileServer

 ' (Code omitted.)

End Class

The App class also defines five higher-level methods that deal with registration. First, the App.Login() method retrieves the IP
address of the current computer, configures the Global.Identity property accordingly, and logs in to the discovery web service.
Public Shared Sub Login()
 Global.Identity.Guid = Guid.NewGuid
 Global.Identity.IP = _
 Dns.GetHostByName(Dns.GetHostName).AddressList(0).ToString()

 Global.LoggedIn = Discovery.Register(Global.Identity)
End Sub

The App.Logout() method uses the Global.Identity information to unregister the peer, provided the peer is currently logged in.
Similarly, the App.Refresh Login() method resubmits the Global.Identity information to prevent the peer from expiring from the
discovery service.
Public Shared Sub Logout()
 If Global.LoggedIn Then Discovery.Unregister(Global.Identity)
End Sub

Public Shared Sub RefreshLogin()
 If Global.LoggedIn Then
 Discovery.RefreshRegistration(Global.Identity)
 End If
End Sub

The App.PublishFiles() method (shown next) examines files in the local share path and creates a catalog, which it assigns to the
Global.SharedFiles variable. The PublishFiles() method retrieves the share path from the directory specified in the registry and
examines the file extension to determine the type of file. Depending on the application settings, non-MP3 files may be ignored.
Temporary files (files with the extension .tmp) are always ignored because they most likely correspond to an in-progress
download. Here's the code for the PublishFiles() method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Shared Function PublishFiles() As Boolean
 Try
 Dim Dir As New DirectoryInfo(Global.Settings.SharePath)
 Dim Files() As FileInfo = Dir.GetFiles()
 Dim FileList As New ArrayList()
 Dim File As FileInfo
 Dim IsMP3 As Boolean

 For Each File In Files
 IsMP3 = Path.GetExtension(File.Name).ToLower() = ".mp3"

 If Path.GetExtension(File.Name).ToLower() = ".tmp" Then
 ' Ignore all temporary files.
 ElseIf (Not IsMP3) And Global.Settings.ShareMP3Only Then
 ' Ignore non-MP3 files depending on setting.
 Else
 Dim SharedFile As New SharedFile()
 SharedFile.Guid = Guid.NewGuid()
 SharedFile.FileName = File.Name
 SharedFile.FileCreated = File.CreationTime

 If IsMP3 Then
 SharedFile.Keywords = MP3Util.GetMP3Keywords(File.FullName)
 Else
 ' Determine some other way to set keywords,
 ' perhaps by file name or file
 ' type.
 ' The default (no keywords) will prevent the
 ' file from appearing in a search.
 End If

 FileList.Add(SharedFile)
 End If
 Next

 Global.SharedFiles = CType(FileList.ToArray(GetType(SharedFile)), _
 SharedFile())
 Return Discovery.PublishFiles(Global.SharedFiles, Global.Identity)

 Catch Err As Exception
 MessageBox.Show(Err.ToString())
 End Try
End Function

If you're using non-MP3 files, you'll need to add code to determine a set of valid keywords. This code might parse the file name or
look for data inside the file. In the case of MP3 files, the code retrieves the tag data using the utility methods shown in the next
section.

Finally, the App.SearchForFile() method simply wraps the web method of the same name:
Public Shared Function SearchForFile(ByVal keywords() As String) As SharedFile()
 Return Discovery.SearchForFile(keywords)
End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Utility Functions
There are three utility classes in the FileSwapper: RegistrySettings, MP3Util, and KeywordUtil. All of them use shared methods to
provide helper functions.

The first class, RegistrySettings, wraps access to the Windows registry. It allows the application to store and retrieve machine-
specific information. You could replace this class with code that reads and writes settings in an application configuration file, but
the drawback would be that multiple users couldn't load the same client application file from a network (as they would end up
sharing the same configuration file).

The RegistrySettings class provides five settings as public variables and two methods. The Load() method retrieves the values
from the specified key and configures the public variables. The Save() method stores the current values in the appropriate
locations. The RegistrySettings class also hard-codes several pieces of information, including the first-run defaults (which are
used if no preexisting registry information is found), and the path used for storing registry settings
(HKEY_LOCAL_MACHINE\Software\FileSwapper\Settings). This information could also be drawn from an application
configuration file.
Public Class RegistrySettings

 Public SharePath As String
 Public ShareMP3Only As Boolean
 Public MaxUploadThreads As Integer
 Public MaxDownloadThreads As Integer
 Public Port As Integer

 Public Sub Load()
 Dim Key As RegistryKey
 Key = Microsoft.Win32.Registry.LocalMachine.CreateSubKey(_
 "Software\FilesSwapper\Settings")
 SharePath = Key.GetValue("SharePath", Application.StartupPath)
 Port = CType(Key.GetValue("LocalPort", "8000"), Integer)
 ShareMP3Only = CType(Key.GetValue("OnlyShareMP3", "True"), Boolean)
 MaxUploadThreads = CType(Key.GetValue("MaxUploadThreads", "2"), Integer)
 MaxDownloadThreads = CType(Key.GetValue("MaxDownloadThreads", "2"), _
 Integer)
 End Sub

 Public Sub Save()
 Dim Key As RegistryKey
 Key = Microsoft.Win32.Registry.LocalMachine.CreateSubKey(_
 "Software\FilesSwapper\Settings")

 Key.SetValue("SharePath", SharePath)
 Key.SetValue("LocalPort", Port.ToString())
 Key.SetValue("OnlyShareMP3", ShareMP3Only.ToString())
 Key.SetValue("MaxUploadThreads", MaxUploadThreads.ToString())
 Key.SetValue("MaxDownloadThreads", MaxDownloadThreads.ToString())
 End Sub

End Class

Tip Instead of including a Load() and Save() method, you could create property procedures for the RegistrySettings class
that perform this work. Then, whenever you set a property, the value will be committed, and whenever you access a
value, it will be retrieved from the registry. This adds additional overhead, but it's minor.

The MP3Util class provides the functionality for retrieving MP3 tag data from a file. The class provides two shared functions. The
first, GetMP3Keywords(), opens a file, looks for the 128-byte ID3v2 tag that should be found at the end of the file, and verifies that
it starts with the word "TAG". If so, individual values for the artist, album, and song title are retrieved using the second method,
GetTagData(), which converts the binary data to a string using ASCII encoding information. All the retrieved data is delimited with
spaces and combined into along string using a StringBuilder. This string is then parsed into a list of keywords.

Public Class MP3Util

 Public Shared Function GetMP3Keywords(ByVal filename As String) As String()
 Dim fs As New FileStream(filename, FileMode.Open)

 ' Read the MP3 tag.
 fs.Seek(0 - 128, SeekOrigin.End)
 Dim Tag(2) As Byte
 fs.Read(Tag, 0, 3)

 If Encoding.ASCII.GetString(Tag).Trim() = "TAG" Then

 Dim KeywordString As New StringBuilder()
 ' Title.
 KeywordString.Append(GetTagData(fs, 30))
 ' Artist.
 KeywordString.Append(" ")
 KeywordString.Append(GetTagData(fs, 30))
 ' Album.
 KeywordString.Append(" ")
 KeywordString.Append(GetTagData(fs, 30))
 ' Year.
 KeywordString.Append(" ")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 KeywordString.Append(" ")
 KeywordString.Append(GetTagData(fs, 4))

 fs.Close()
 Return KeywordUtil.ParseKeywords(KeywordString.ToString())

 Else
 fs.Close()
 Dim EmptyArray() As String = {}
 Return EmptyArray
 End If
 End Function

 Public Shared Function GetTagData(ByVal stream As Stream, _
 ByVal length As Integer) As String
 Dim Bytes(length - 1) As Byte
 stream.Read(Bytes, 0, length)

 Dim TagData As String = Encoding.ASCII.GetString(Bytes)
 ' Trim nulls.
 Dim TrimChars() As Char = {" ", vbNullChar}
 TagData = TagData.Trim(TrimChars)
 Return TagData
 End Function

End Class

Note The GetTagData() includes a very important final step, which removes all null characters from the string.Without this
step, the string will contain embedded nulls. If you try to submit this data to the discovery web service, the proxy class
will throw an exception, because it won't be able to format the strings into a SOAP message.

The final utility class is KeywordUtil. It includes a single shared method— ParseKeywords()—that takes a string which contains a
list of keywords, and splits it into words wherever a space, comma, or period is found. This step is performed using the built-in
String.Split() method. Thus, if you index an MP3 file that has the artist "Claude Debussy," the keyword list will include two entries:
"Claude" and "Debussy". This allows a peer to search with both or only one of these terms.

At the same time that ParseKeywords() splits the keyword list, it also removes extraneous strings, such as noise words ("the",
"for", "and", and so on). You may want to add additional noise words to improve its indexing. In addition, strings that include only a
delimiter are removed (for example, a string containing a single blank space). This is necessary because the String.Split() method
doesn't deal well with multiple spaces in a row. To make the processing logic easy, keywords are added into an ArrayList on the
fly and converted into a strongly typed string array when the process is complete.
Public Class KeywordUtil

 Private Shared NoiseWords() As String = {"the", "for", "and", "or"}
 Public Shared Function ParseKeywords(ByVal keywordString As String) _
 As String()
 ' Split the list of words into an array.
 Dim Keywords() As String
 Dim Delimeters() As Char = {" ", ",", "."}
 Keywords = keywordString.Split(Delimeters)
 ' Add each valid word into an ArrayList.
 Dim FilteredWords As New ArrayList()
 Dim Word As String
 For Each Word In Keywords
 If Word.Trim() <> "" And Word.Length > 1 Then
 If Array.IndexOf(NoiseWords, Word.ToLower()) = -1 Then
 FilteredWords.Add(Word)
 End If
 End If
 Next

 ' Convert the ArrayList into a normal string array.
 Return FilteredWords.ToArray(GetType(String))
 End Function

End Class

Thread-Safe ListViewItem Updates

The FileSwapper is a highly asynchronous application that provides real-time status information for many tasks. In several places
in code, a user-interface operation needs to be marshaled to the user-interface thread in order to prevent potential errors. This is
usually the case when updating one of the three main ListView controls in the FileSwapper: the upload status display, the
download status display, and the search-result listing.

For the first two cases, there's a direct mapping between threads and ListView items. For example, every concurrent upload
requires exactly one ListViewItem to display ongoing status information. To simplify the task of creating and updating the
ListViewItem, FileSwapper includes a wrapper class called ListViewItemWrapper. ListViewItemWrapper performs two tasks.
When it's first instantiated, it creates and adds a ListViewItem on the correct thread using the private AddListViewItem()
procedure. Second, when a user calls the ChangeStatus() method, it updates the status column of a ListViewItem on the correct
thread using the private RefreshListViewItem() procedure. In order to use these subroutines with the Control.Invoke() method,
they cannot take any parameters. Thus, the information required to create or update the ListViewItem must be stored in temporary
private variables, such as RowName and RowStatus.

Here's the complete code for the ListViewItemWrapper:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Class ListViewItemWrapper

 Private ListView As ListView
 Private ListViewItem As ListViewItem

 ' These variables are used to store temporary information required when a call
 ' is marshaled to the user-interface thread.
 Private RowName As String
 Private RowStatus As String

 Public Sub New(ByVal listView As ListView, ByVal rowName As String, _
 ByVal rowStatus As String)
 Me.ListView = listView
 Me.RowName = rowName
 Me.RowStatus = rowStatus

 ' Marshal the operation to the user-interface thread.
 listView.Invoke(New MethodInvoker(AddressOf AddListViewItem))
 End Sub

 ' This code executes on the user-interface thread.
 Private Sub AddListViewItem()
 ' Create new ListView item.
 ListViewItem = New ListViewItem(RowName)
 ListViewItem.SubItems.Add(RowStatus)
 ListView.Items.Add(ListViewItem)
 End Sub

 Public Sub ChangeStatus(ByVal rowStatus As String)
 Me.RowStatus = rowStatus

 ' Marshal the operation to the user-interface thread.
 ListView.Invoke(New MethodInvoker(AddressOf RefreshListViewItem))
 End Sub

 ' This code executes on the user-interface thread.
 Private Sub RefreshListViewItem()
 ListViewItem.SubItems(1).Text = RowStatus
 End Sub

End Class

The ListViewItemWrapper is a necessity in our peer-to-peer application, because the downloading and uploading operations won't
be performed on the main application threads. However, you'll find that this class is useful in many Windows applications. Any
time you need to create a highly asynchronous interface, it makes sense to use this control wrapper design pattern.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Main Form
We've now covered enough of the FileSwapper code to examine the main form, which acts as the hub of the application.

When the main form first loads, it reads the registry, updates the configuration window with the retrieved settings, starts the other
threads, and then logs in, as shown here:
Private Sub SwapperClient_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Me.Show()
 Me.Refresh()

 ' Read the registry.
 Global.Settings.Load()
 txtSharePath.Text = Global.Settings.SharePath
 txtPort.Text = Global.Settings.Port
 chkMP3Only.Checked = Global.Settings.ShareMP3Only
 txtUploads.Text = Global.Settings.MaxUploadThreads
 txtDownloads.Text = Global.Settings.MaxDownloadThreads

 ' Create the search, download, and upload objects.
 ' They will create their own threads.
 App.SearchThread = New Search(lstSearchResults)
 App.DownwnloadThread = New FileDownloadQueue(lstDownloads)
 App.UploadThread = New FileServer(lstUploads)
 App.UploadThread.StartWaitForRequest()

 ' Start the login process.
 Global.Identity.Port = Global.Settings.Port
 DoLogin()

End Sub

The login is actually a multiple step procedure. First, the peer information is submitted with the App.Login() method. Next, the file
catalog is created and submitted with the App.PublishFiles() method. Finally, the timer is enabled to automatically update the login
information as required.

While the peer is sending data to the discovery web service, the mouse pointer is changed to an hourglass, and the text in the
status bar panel is updated to reflect what's taking place.
Private Sub DoLogin()

 Me.Cursor = Cursors.WaitCursor

 ' Log in.
 pnlState.Text = "Trying to log in."
 App.Login()
 If Not Global.LoggedIn Then
 pnlState.Text = "Not logged in."
 Return
 End If

 ' Submit list of files.
 pnlState.Text = "Sending file information..."
 If App.PublishFiles() Then
 pnlState.Text = "File list published to server."
 Else
 pnlState.Text = "Could not publish file list."
 End If

 ' Refresh login information every five minutes.
 tmrRefreshRegistration.Start()

 Me.Cursor = Cursors.Default

End Sub

The timer fires every 300,000 milliseconds (every five minutes) to update the login information:
Private Sub tmRefreshRegistration_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles tmrRefreshRegistration.Tick

 App.RefreshLogin()

End Sub

Currently, no steps are taken to refresh the published file list, although you can add this functionality easily using a timer, or by
monitoring the file system for changes.

When the form closes, the client is automatically logged out, and the threads are terminated:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub SwapperClient_Closed(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Closed

 App.Logout()
 App.DownwnloadThread.Abort()
 App.SearchThread.Abort()
 App.UploadThread.Abort()

End Sub

In this case, the code is actually not aborting the thread directly. Instead, it's calling a custom Abort() method that's provided in
each of the threaded classes. The code in this method then terminates processing in the most reasonable manner, as you'll see
later in this chapter.

To be even more cautious, the FileSwapper also traps the Application.UnhandledException event. This event fires if an exception
is about to terminate your application (typically because it isn't handled with a Catch block). You won't be able to stop the
application from ending, but you'll be able to perform some last minute cleanup such as attempting to log out of the discovery
service, or logging information about the error.
Public Sub UnhandledException(ByVal sender As Object, _
 ByVal e As UnhandledExceptionEventArgs)

 ' Log the error.
 Trace.Write(e.ExceptionObject.ToString())

 ' Log out of the discovery service.
 App.Logout()

End Sub

This event handler is coded inside the main form and attached shortly after a login:

Private Sub SwapperClient_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ' (Other code omitted.)
 DoLogin()

 AddHandler AppDomain.CurrentDomain.UnhandledException, _
 AddressOf UnhandledException
End Sub

FileSwapper Configuration

The FileSwapper application includes a configuration window (see Figure 9-5) that allows the registry settings to be configured by
the user. This window doesn't perform any validation, although you could add this code easily.

Figure 9-5: FileSwapper configuration settings

When the user clicks the Update() button, these settings are saved in the registry. The peer then logs out and logs back in to the
discovery service.
Private Sub cmdUpdate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdUpdate.Click

 Global.Settings.Port = Val(txtPort.Text)
 Global.Settings.SharePath = txtSharePath.Text
 Global.Settings.ShareMP3Only = chkMP3Only.Checked
 Global.Settings.MaxDownloadThreads = Val(txtDownloads.Text)
 Global.Settings.MaxUploadThreads = Val(txtUploads.Text)

 Global.Settings.Save()

 ' Log back in.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Log back in.
 App.Logout()
 Global.Identity.Port = Global.Settings.Port
 DoLogin()

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Searches
The Search class is the first of three custom-threaded objects used by FileSwapper. As part of any search, FileSwapper attempts
to contact each peer with a network ping (the equivalent of asking "are you there?"). FileSwapper measures the time it takes for a
response and any errors that occur, and then displays this information in the search results. This allows the user to decide where
to send a download request, depending on which peer is fastest.

The drawback of this approach is that pinging each peer could take a long time, especially if some peers are unreachable. This in
itself isn't a problem, provided the user has some way to cancel a long-running search and start a new one. To implement this
approach, the Search class uses custom threading code.

Threading the Search class may seem easy, but it runs into the classic userinterface problem. In order to display the results in the
ListView, the user-interface code must be marshaled to the main application thread using the Control.Invoke() method. This isn't
difficult, but it is an added complication.

The Search class needs to track several pieces of information:

The thread it's using to execute the search.

Its current state (searching, not searching).

The search keywords.

The ListView where it should write search results.

The SearchResults it retrieves.

The ping times it calculates.

Here's a basic skeleton that shows the private variables used by the Search class:
Public Class Search

 ' The thread in which the search is executed.
 Private SearchThread As System.Threading.Thread

 ' The ListView in which results must be displayed.
 Private ListView As ListView

 Private Keywords() As String

 ' The current state.
 Private _Searching As Boolean = False
 Public ReadOnly Property Searching() As Boolean
 Get
 Return _Searching
 End Get
 End Property

 ' The search results and ping times.
 Private SearchResults() As SharedFile
 Private PingTimes As New Hashtable()

 Public Function GetSearchResults() As SharedFile()
 If _Searching = False Then
 Return SearchResults
 Else
 Return Nothing
 End If
 End Function

 Public Sub New(ByVal linkedControl As ListView)
 ListView = linkedControl
 End Sub

 ' (Other code omitted.)

End Class

The Search class code uses a thread-wrapping pattern that allows it to manage all the intricate threading details. Essentially, the
Search class tracks the thread it's using and performs thread management so the rest of the application doesn't need to. The
Search class provides methods such as StartSearch(), which creates and launches the thread, and Abort(), which stops the
thread. This is a pattern we'll use again for the file download and upload objects.
Public Sub StartSearch(ByVal keywordString As String)
 If _Searching Then
 Throw New ApplicationException("Cancel current search first.")
 Else
 _Searching = True
 SearchResults = Nothing

 ' Parse the keywords using the same logic used when indexing files.
 Keywords = KeywordUtil.ParseKeywords(keywordString)

 ' Create the search thread, which will run the private Search() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Create the search thread, which will run the private Search() method.
 SearchThread = New Threading.Thread(AddressOf Search)
 SearchThread.Start()
 End If
End Sub

Public Sub Abort()
 If _Searching Then
 SearchThread.Abort()
 _Searching = False
 End If
End Sub

The actual searching code is contained in the private Search() method. The search results are downloaded using the shared
App.SearchForFile() method, which passes the request to the discovery web service. The individual peers are pinged using a
private PingRecipients() method, which makes use of a separate component. This component isn't shown here, because it
requires raw socket code that's quite lengthy.
Private Sub Search()
 SearchResults = App.SearchForFile(Me.Keywords)
 _Searching = False

 PingRecipients()
 Try
 ListView.Invoke(New MethodInvoker(AddressOf UpdateInterface))
 Catch
 ' An error could occur here if the search is canceled and the
 ' class is destroyed before the invoke finishes.
 End Try
End Sub

Private Sub PingRecipients()
 PingTimes.Clear()
 Dim File As SharedFile
 For Each File In SearchResults
 Dim PingTime As Integer = PingUtility.Pinger.GetPingTime(File.Peer.IP)
 If PingTime = -1 Then
 PingTimes.Add(File.Guid, "Error")
 Else
 PingTimes.Add(File.Guid, PingTime.ToString() & " ms")
 End If
 Next
End Sub

Note The PingUtility uses the Internet Control Message Protocol (ICMP). As you saw in Chapter 8, not all networks allow
ping requests. If a ping attempt fails, the peer's ping time will show an error, but the peer may still be reachable for a
file transfer.

When the results have been retrieved and the ping times compiled, the final results are written to the ListView and the call is
marshaled to the correct thread using the Control.Invoke() method.
Private Sub UpdateInterface()

 ListView.Items.Clear()
 If SearchResults.Length = 0 Then
 MessageBox.Show("No matches found.", "Error", MessageBoxButtons.OK, _
 MessageBoxIcon.Information)
 Else
 Dim File As SharedFile
 For Each File In SearchResults
 Dim Item As ListViewItem = ListView.Items.Add(File.FileName)
 Item.SubItems.Add(PingTimes(File.Guid).ToString())
 Item.SubItems.Add(File.FileCreated)
 Item.SubItems.Add(File.Peer.IP)
 Item.SubItems.Add(File.Peer.Port)
 Item.SubItems.Add(File.Guid.ToString())
 Item.SubItems.Add(File.Peer.Guid.ToString())

 ' Store the SharedFile object for easy access later.
 Item.Tag = File
 Next
 End If

End Sub

Note that the matching SharedFile object is embedded in each ListViewItem, so that it can be retrieved easily if the user chooses
to download the file. This saves you from the work of creating a custom ListViewItem or parsing the text information in the
ListViewItem to determine the appropriate settings.

Only one search can run at a time, because the App object provides a single Search variable. When the user clicks the Search
button on the SwapperClient form, the current search is aborted immediately, regardless of its state, and a new search is
launched based on the current keywords.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub cmdSearch_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdSearch.Click

 If App.SearchThread.Searching Then
 App.SearchThread.Abort()
 End If

 App.SearchThread.StartSearch(txtKeywords.Text)

End Sub

Figure 9-6 shows sample search results for a query with the single word "Debussy".

Figure 9-6: A FileSwapper search

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Uploads
The file uploading and downloading logic represents the heart of the FileSwapper application. The user needs the ability not only
to perform both of these operations at the same time, but also to serve multiple upload requests or download multiple files in
parallel. To accommodate this requirement, we must use a two-stage design, in which one class is responsible for creating new
upload or download objects as needed. In the case of an upload, this is the FileServer class. The FileServer waits for requests
and creates a FileUpload object for each new file upload. The diagrams in Figure 9-7 show how the FileServer and FileUpload
classes interact.

Figure 9-7: The uploading process

The FileServer Class

The FileServer class listens for connection requests on the defined port using a TcpListener. It follows the same pattern as the
asynchronous Search class:

The thread used to monitor the port is stored in a private member variable.

The thread is created with a call to StartWaitForRequest(), and aborted with a call to Abort(). The actual monitoring
code exists in the WaitForRequest() method.

The ListView that tracks uploads is stored in a private member variable.

This framework is shown in the following code listing. One of the differences you'll notice is that an additional member variable is
used to track individual upload threads. The Abort() method doesn't just stop the thread that's waiting for connection requests—it
also aborts all the threads that are currently transferring files.
Public Class FileServer

 ' The thread where the port is being monitored.
 Private WaitForRequestThread As System.Threading.Thread

 ' The TcpListener used to monitor the port.
 Private Listener As TcpListener

 ' The ListView that tracks current uploads.
 Private ListView As ListView

 ' The current state.
 Private _Working As Boolean
 Public ReadOnly Property Working() As Boolean
 Get
 Return _Working
 End Get
 End Property

 ' The threads that are allocated to transfer files.
 Private UploadThreads As New ArrayList()

 Public Sub New(ByVal linkedControl As ListView)
 ListView = linkedControl
 End Sub

 Public Sub StartWaitForRequest()
 If _Working Then
 Throw New ApplicationException("Already in progress.")
 Else
 _Working = True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 _Working = True

 WaitForRequestThread = New Threading.Thread(AddressOf WaitForRequest)
 WaitForRequestThread.Start()
 End If
 End Sub

 Public Sub Abort()
 If _Working Then
 Listener.Stop()

 WaitForRequestThread.Abort()

 ' Abort all upload threads.
 Dim UploadThread As FileUpload
 For Each UploadThread In UploadThreads
 UploadThread.Abort()
 Next

 _Working = False
 End If
 End Sub

 Public Sub WaitForRequest()
 ' (Code omitted.)
 End Sub

End Class

The WaitForRequest() method contains some more interesting code. First, it instantiates a TcpListener object and invokes the
AcceptTcpClient() method, blocking the thread until it receives a connection request. Once a connection request is received, the
code creates a new FileUpload object, starts it, and adds the FileUpload object to the UploadThreads collection.

The WaitForRequest() code doesn't create threads indiscriminately, however. Instead, it examines the Global.MaxUploadThreads
setting to determine how many upload threads can exist at any one time. If there's already that number of items in the
UploadThreads collection, new requests will receive a busy message instructing them to try again later. The connection will be
closed and no new FileUpload object will be created. To ensure that the server is always ready to serve new clients, it
automatically scans the UploadThreads collection for objects that have finished processing every time it receives a request. Once
it removes these, it decides whether the new request can be accommodated.

Tip .NET is quite efficient when destroying and creating new threads. However, you could optimize performance even further
by reusing upload and download threads and maintaining a thread pool, rather than by creating new threads. One way to
do this is to use the ThreadPool class that was introduced in Chapter 5.

Public Sub WaitForRequest()

 Listener = New TcpListener(Global.Settings.Port)
 Listener.Start()
 Do

 ' Block until connection received.
 Dim Client As TcpClient = Listener.AcceptTcpClient()

 ' Check for completed requests.
 ' This will free up space for new requests.
 Dim UploadThread As FileUpload
 Dim i As Integer
 For i = (UploadThreads.Count - 1) To 0 Step -1

 UploadThread = CType(UploadThreads(i), FileUpload)
 If UploadThread.Working = False Then
 UploadThreads.Remove(UploadThread)
 End If
 Next
 Try
 Dim s As NetworkStream = Client.GetStream()
 Dim w As New BinaryWriter(s)
 If UploadThreads.Count > Global.Settings.MaxUploadThreads Then
 w.Write(Messages.Busy)
 s.Close()
 Else
 w.Write(Messages.Ok)
 Dim Upload As New FileUpload(s, ListView)
 UploadThreads.Add(Upload)
 Upload.StartUpload()
 End If
 Catch Err As Exception
 ' Errors are logged for future reference, but ignored, so that the
 ' peer can continue serving clients.
 Trace.Write(Err.ToString())
 End Try

 Loop

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

FileSwapper peers communicate using simple string messages. A peer requests a file for downloading by submitting its GUID.
The server responds with a string "OK" or "BUSY" depending on its state. These values are written to the stream using the
BinaryWriter. To ensure that the correct values are always used, they aren't hard-coded in the WaitForRequest() method, but
defined as constants in a class named Messages. As you can see from the following code listing, FileSwapper peers only support
a very limited vocabulary.
Public Class Messages

 ' The server will respond to the request.
 Public Const Ok = "OK"

 ' The server has reached its upload limit. Try again later.
 Public Const Busy = "BUSY"

 ' The requested file isn't in the shared collection.
 Public Const FileNotFound = -1

End Class

The FileUpload Class

The FileUpload class uses the same thread-wrapping design as the FileServer and Search classes. The actual file transfer is
performed by the Upload() method. This method is launched asynchronously when the FileServer calls the StartUpload() method
and canceled if the FileServer calls Abort(). A reference is maintained to the ListView control with the upload listings in order to
provide real-time progress information.
Public Class FileUpload

 ' The thread where the file transfer takes place.
 Private UploadThread As System.Threading.Thread

 ' The underlying network stream.
 Private Stream As NetworkStream

 ' The current state.
 Private _Working As Boolean
 Public ReadOnly Property Working() As Boolean
 Get
 Return _Working
 End Get
 End Property

 ' The ListView where results are recorded.
 Private ListView As ListView

 Public Sub New(ByVal stream As NetworkStream, ByVal listView As ListView)
 Me.Stream = stream
 Me.ListView = listView
 End Sub

 Public Sub StartUpload()
 If _Working Then
 Throw New ApplicationException("Already in progress.")
 Else
 _Working = True
 UploadThread = New Threading.Thread(AddressOf Upload)
 UploadThread.Start()
 End If
 End Sub
 Public Sub Abort()
 If _Working Then
 UploadThread.Abort()
 _Working = False
 End If
 End Sub

 Private Sub Upload()
 ' (Code omitted)
 End Sub

End Class

We'll dissect the code in the Upload() method piece by piece. The first task the Upload() method undertakes is to create a
BinaryWriter and BinaryReader for the stream, and then it reads the GUID of the requested file into a string.
' Connect.
Dim w As New BinaryWriter(Stream)
Dim r As New BinaryReader(Stream)

' Read file request.
Dim FileRequest As String = r.ReadString()

It then walks through the collection of shared files, until it finds the matching GUID.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim File As SharedFile
Dim Filename
For Each File In Global.SharedFiles
 If File.Guid.ToString() = FileRequest Then
 Filename = File.FileName
 Exit For
 End If
Next

Tip Download requests use a GUID instead of a file name. This design allows you to enhance the FileSwapper program to
allow sharing in multiple directories, in which case the file name may no longer be unique. The GUID approach also
makes it easy to validate a user request before starting a transfer. This is a key step, which prevents a malicious client
from trying to trick a FileSwapper peer into downloading a sensitive file that it isn't sharing.

If the file isn't found in the collection of shared files, the message constant for file not found (-1) is written to the network stream,
and no further action is taken.
' Check file is shared.
If Filename = "" Then
 w.Write(Messages.FileNotFound)

If the file is found, a new ListViewItem is added to the upload display, using a helper class named ListViewItemWrapper. The
ListViewItemWrapper handles the logic needed to create the ListViewItem and change the status text in a thread-safe manner, by
marshaling these operations to the correct thread.
Else
 ' Create ListView.
 Dim ListViewItem As New ListViewItemWrapper(ListView, Filename, _
 "Initializing")

The next step is to open the file and write the file size (in bytes) to the network stream. This information allows the remote peer to
determine progress information while downloading the file.
 Try
 ' Open file.
 Dim Upload As New FileInfo(Path.Combine(Global.Settings.SharePath, _
 Filename))

 ' Read file.
 Dim TotalBytes As Integer = Upload.Length
 w.Write(TotalBytes)

Next, the file is opened, and the data is written to the network stream 1KB at a time. The ListViewItem.ChangeStatus method is
used to update the status display in the loop, but a time limit is used to ensure that no more than one update is made every
second. This reduces on-screen flicker for fast downloads.
 Dim TotalBytesRead, BytesRead As Integer

 Dim fs As FileStream = Upload.OpenRead()
 Dim Buffer(1024) As Byte
 Dim Percent As Single
 Dim LastWrite As DateTime = DateTime.MinValue
 Do
 ' Write a chunk of bytes.
 BytesRead = fs.Read(Buffer, 0, Buffer.Length)
 w.Write(Buffer, 0, BytesRead)
 TotalBytesRead += BytesRead

 ' Update the display once every second.
 If DateTime.Now.Subtract(LastWrite).TotalSeconds > 1 Then
 Percent = Math.Round((TotalBytesRead / TotalBytes) * 100, 0)
 LastWrite = DateTime.Now
 ListViewItem.ChangeStatus(Percent.ToString() & "% transferred")
 End If
 Loop While BytesRead > 0

 fs.Close()
 ListViewItem.ChangeStatus("Completed")

 Catch Err As Exception
 Trace.Write(Err.ToString)
 ListViewItem.ChangeStatus("Error")
 End Try

End If

Stream.Close()
_Working = False

In this case, the client simply disconnects when it stops receiving data and notices that the connection has been severed.
Alternatively, you could use a special signal (such as a specific byte sequence) to indicate that the file is complete or, more
practically, you could precede every 1KB chunk with an additional byte describing the status (last chunk, more to come, and so
on). The client would have to remove this byte before writing the data to the file.

Figure 9-8 shows the upload status list with three entries. Two uploads have completed, while one is in progress.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-8: FileSwapper uploads

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Downloads
The file-downloading process is similar to the file-uploading process. A FileDownloadQueue class creates FileDownloadClient
instances to serve new user requests, provided the maximum number of simultaneous downloads hasn't been reached. Download
progress information is written directly to the download ListView display, using the thread-safe ListViewItemWrapper. The whole
process is diagrammed in Figure 9-9.

Figure 9-9: The downloading process

A download operation begins when a user double-clicks an item in the ListView search results, thereby triggering the ItemActivate
event. The form code handles the event, checks that the requested file hasn't already been submitted to the FileDownloadQueue,
and then adds it. This code demonstrates another advantage of using GUIDs to uniquely identify all files on the peer-to-peer
network: it allows each peer to maintain a history of downloaded files.

The complete code for the ItemActivate event handler is shown here:
Private Sub lstSearchResults_ItemActivate(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles lstSearchResults.ItemActivate

 ' Retrieve information about the requested file.
 Dim File As SharedFile
 File = CType(CType(sender, ListView).SelectedItems(0).Tag, SharedFile)

 ' Check if the file is already downloaded, or in the process of being
 ' downloaded.
 If App.DownwnloadThread.CheckForFile(File) Then
 MessageBox.Show("You are already downloading this file.", "Error", _
 MessageBoxButtons.OK, MessageBoxIcon.Information)

 ' If you comment-out the following lines, you'll be able to test
 ' FileSwapper with a single active instance and download files
 ' from your own computer.
 ElseIf File.Peer.Guid.ToString() = Global.Identity.Guid.ToString() Then
 MessageBox.Show("This is a local file.", "Error", _
 MessageBoxButtons.OK, MessageBoxIcon.Information)

 Else
 ' Add the file to the download queue.
 App.DownwnloadThread.AddFile(File)

 ' Start the download queue thread if necessary (this is only performed
 ' once, the first time you download a file).
 If Not App.DownwnloadThread.Working Then
 App.DownwnloadThread.StartAllocateWork()
 End If

 ' Switch to the Downloads tab to see progress information.
 tbPages.SelectedTab = tbPages.TabPages(1)
 End If

End Sub

The FileDownloadQueue Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The FileDownloadQueue tracks and schedules ongoing downloads. When the user requests a file, it's added to the QueuedFiles
collection. If the maximum download thread count hasn't yet been reached, the file is removed from this collection and a new
FileDownloadClient object is created to serve the request. All active FileDownloadClient objects are tracked in the
DownloadThreads collection.

The FileDownloadQueue class creates new FileDownloadClient objects as needed in its private AllocateWork() method, which it
executes on a separate thread. The application requests a new download by calling the StartAllocate Work() method, which
creates the thread and invokes the AllocateWork() method asynchronously. The Abort() method stops the work allocation. This is
the same design you saw with the FileServer class.
Public Class FileDownloadQueue

 ' The thread where downloads are scheduled.
 Private AllocateWorkThread As System.Threading.Thread

 ' The ListView where downloads are tracked.
 Private ListView As ListView

 ' The current state.
 Private _Working As Boolean
 Public ReadOnly Property Working() As Boolean
 Get
 Return _Working
 End Get
 End Property

 ' The collection of files that are waiting to be downloaded.
 Private QueuedFiles As New ArrayList()

 ' The threaded objects that are currently downloading files.
 Private DownloadThreads As New ArrayList()

 Public Sub New(ByVal linkedControl As ListView)
 ListView = linkedControl
 End Sub
 Public Sub StartAllocateWork()
 If _Working Then
 Throw New ApplicationException("Already in progress.")
 Else
 _Working = True

 AllocateWorkThread = New Threading.Thread(AddressOf AllocateWork)
 AllocateWorkThread.Start()
 End If
 End Sub

 Public Sub Abort()
 If _Working Then
 AllocateWorkThread.Abort()

 ' Abort all download threads.
 Dim DownloadThread As FileDownloadClient
 For Each DownloadThread In DownloadThreads
 DownloadThread.Abort()
 Next

 _Working = False
 End If
 End Sub

 Private Sub AllocateWork()
 ' (Code omitted.)
 End Sub
 Public Function CheckForFile(ByVal file As SharedFile) As Boolean
 ' (Code omitted.)
 End Function

 Public Sub AddFile(ByVal file As SharedFile)
 ' (Code omitted.)
 End Sub

End Class

The CheckForFile() method allows the application to verify that a file hasn't been downloaded before and isn't currently being
downloaded. The code scans for the QueuedFiles and DownloadThreads collections to be sure.

Public Function CheckForFile(ByVal file As SharedFile) As Boolean

 ' Check the queued files.
 Dim Item As DisplayFile
 For Each Item In QueuedFiles
 If Item.File.Guid.ToString() = file.Guid.ToString() Then Return True
 Next

 ' Check the in-progress downloads.
 Dim DownloadThread As FileDownloadClient
 For Each DownloadThread In DownloadThreads
 If DownloadThread.File.Guid.ToString() = file.Guid.ToString() Then _
 Return True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Return True
 Next

 Return False

End Function

If this check succeeds, the AddFile() method is used to queue the file. Locking is used to ensure that no problem occurs if the
FileDownloadClient is about to modify the QueuedFiles collection.
Public Sub AddFile(ByVal file As SharedFile)

 ' Add shared file.
 SyncLock QueuedFiles
 QueuedFiles.Add(New DisplayFile(file, ListView))
 End SyncLock

End Sub

The QueuedFile collection stores DisplayFile objects, not SharedFile objects. The DisplayFile object is a simple package that
combines a SharedFile instance and a ListViewItemWrapper. The ListViewItemWrapper is used to update the status of the
download on screen.
Public Class DisplayFile

 Private _ListViewItem As ListViewItemWrapper
 Private _File As SharedFile
 Public ReadOnly Property File() As SharedFile
 Get
 Return _File
 End Get
 End Property

 Public ReadOnly Property ListViewItem() As ListViewItemWrapper
 Get
 Return _ListViewItem
 End Get
 End Property

 Public Sub New(ByVal file As SharedFile, ByVal linkedControl As ListView)

 _ListViewItem = New ListViewItemWrapper(linkedControl, file.FileName, _
 "Queued")
 _File = file

 End Sub

End Class

As soon as the DisplayFile object is created, the underlying ListViewItem is created and added to the download list. That means
that as soon as a download request is selected, it appears in the download status display, with the status "Queued." This differs
from the approach used with file uploading, in which the ListViewItem is only created once the connection has been accepted.

The AllocateWork() method performs the real work for the FileDownloadQueue. It begins by scanning the collection for completed
items and removing them for the collection. This is a key step, because the FileDownloadQueue relies on the Count property of
the DownloadThreads collection to determine how many downloads are currently in progress. When scanning the collection, the
code counts backward, which allows it to delete items without changing the index numbering for the remaining items.
Do

 ' Remove completed.
 Dim i As Integer
 For i = DownloadThreads.Count - 1 To 0 Step -1
 Dim DownloadThread As FileDownloadClient
 DownloadThread = CType(DownloadThreads(i), FileDownloadClient)
 If Not DownloadThread.Working Then
 SyncLock DownloadThreads
 DownloadThreads.Remove(DownloadThread)
 End SyncLock
 End If
Next

Next, new FileDownloadClient objects are created while threads are available.
Do While QueuedFiles.Count > 0 And _
DownloadThreads.Count < Global.Settings.MaxDownloadThreads

 ' Create a new FileDownloadClient.
 Dim DownloadThread As New FileDownloadClient(QueuedFiles(0))
 SyncLock DownloadThreads
 DownloadThreads.Add(DownloadThread)
 End SyncLock

 ' Remove the corresponding queued file.

 SyncLock QueuedFiles
 QueuedFiles.RemoveAt(0)
 End SyncLock

 ' Start the download (on a new thread).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Start the download (on a new thread).
 DownloadThread.StartDownload()

Loop

Finally, the thread doing the work allocation is put to sleep for a brief ten seconds, after which it continues through another
iteration of the loop.
 Thread.Sleep(TimeSpan.FromSeconds(10))
Loop

The FileDownloadClient Class

The FileDownloadClient uses the same thread-wrapping design as the FileUpload class. The actual file transfer is performed by
the Download() method. This method is launched asynchronously when the FileDownloadQueue calls the StartDownload()
method, and canceled if the FileDownloadQueue calls Abort(). The current SharedFile and ListViewItem information is tracked
using a private DisplayFile property.

Here's the basic structure:
Public Class FileDownloadClient

 ' The thread where the file download is performed.
 Private DownloadThread As System.Threading.Thread

 ' The current state.
 Private _Working As Boolean
 Public ReadOnly Property Working() As Boolean
 Get
 Return _Working
 End Get
 End Property

 ' The SharedFile and ListViewItem used for this download.
 Private DisplayFile As DisplayFile
 Public ReadOnly Property File() As SharedFile
 Get
 Return DisplayFile.File
 End Get
 End Property

 Public Sub New(ByVal file As DisplayFile)
 Me.DisplayFile = file
 End Sub

 ' The TCP/IP connection used to make the request.
 Private Client As TcpClient

 Public Sub StartDownload()
 If _Working Then
 Throw New ApplicationException("Already in progress.")
 Else
 _Working = True
 DownloadThread = New Threading.Thread(AddressOf Download)
 DownloadThread.Start()
 End If
 End Sub
 Public Sub Abort()
 If _Working Then
 Client.Close()
 DownloadThread.Abort()
 _Working = False
 End If
 End Sub

 Private Sub Download()
 ' (Code omitted.)
 End Sub

End Class

The Download() method code is lengthy, but straightforward. At first, the client attempts to connect with the remote peer by
opening a TCP/IP connection to the indicated port and IP address. To simplify the code, no error handling is shown (although it is
included with the online code).
DisplayFile.ListViewItem.ChangeStatus("Connecting...")

' Connect.
Dim Completed As Boolean = False

Do
 Client = New TcpClient()
 Dim Host As IPHostEntry = Dns.GetHostByAddress(DisplayFile.File.Peer.IP)
 Client.Connect(Host.AddressList(0), Val(DisplayFile.File.Peer.Port))

The next step is to define a new BinaryReader and BinaryWriter for the stream and check if the connection succeeded. If the
connection doesn't succeed, the thread will sleep for ten seconds and the connection will be reattempted in a loop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim r As New BinaryReader(Client.GetStream())
 Dim w As New BinaryWriter(Client.GetStream())

 Dim Response As String = r.ReadString()
 If Response = Messages.Busy Then
 DisplayFile.ListViewItem.ChangeStatus("Busy - Will Retry")
 Client.Close()
 ElseIf Response = Messages.Ok Then
 DisplayFile.ListViewItem.ChangeStatus("Connected")

 ' (Download file here.)

 Else
 DisplayFile.ListViewItem.ChangeStatus("Error - Will Retry")
 Client.Close()

 End If

 If Not Completed Then Thread.Sleep(TimeSpan.FromSeconds(10))
Loop Until Completed

_Working = False

The actual file download is a multiple step affair. The first task is to request the file using its GUID.
' Request file.
w.Write(DisplayFile.File.Guid.ToString())

The server will then respond with the number of bytes for the file, or an error code if the file isn't found. Assuming no error is
encountered, the FileSwapper will create a temporary file. Its name will be the GUID plus the extension .tmp.
Dim TotalBytes As Integer = r.ReadInt32()
If TotalBytes = Messages.FileNotFound Then
 DisplayFile.ListViewItem.ChangeStatus("File Not Found")

Else
 ' Write temporary file.
 Dim FullPath As String = Path.Combine(Global.Settings.SharePath, _
 File.Guid.ToString() & ".tmp")
 Dim Download As New FileInfo(FullPath)

The file transfer takes place 1KB at a time. The status for the in-progress download will be updated using the ListViewItem
wrapper, no more than once per second.

 Dim TotalBytesRead, BytesRead As Integer

 Dim fs As FileStream = Download.Create()
 Dim Buffer(1024) As Byte
 Dim Percent As Single
 Dim LastWrite As DateTime = DateTime.Now
 Do
 ' Read a chunk of bytes.
 BytesRead = r.Read(Buffer, 0, Buffer.Length)
 fs.Write(Buffer, 0, BytesRead)
 TotalBytesRead += BytesRead

 ' Update the display once every second.
 If DateTime.Now.Subtract(LastWrite).TotalSeconds > 1 Then
 Percent = Math.Round((TotalBytesRead / TotalBytes) * 100, 0)
 LastWrite = DateTime.Now
 DisplayFile.ListViewItem.ChangeStatus(_
 Percent.ToString() & "% transferred")
 End If
 Loop While BytesRead > 0

When the file transfer is complete, the file must be renamed. The new name will be the same as the file name on the remote peer.
However, special care is needed to handle duplicate file names. Before attempting the rename, the code checks for a name
collision and adds a number (1, 2, 3, 4, and so on) to the file name to ensure uniqueness.
 fs.Close()

 ' Ensure that a unique name is chosen.
 Dim FileNames() As String = Directory.GetFiles(Global.Settings.SharePath)
 Dim FinalPath As String = Path.Combine(Global.Settings.SharePath, _
 File.FileName)

 Dim i As Integer
 Do While Array.IndexOf(FileNames, FinalPath) <> -1
 i += 1
 FinalPath = Path.Combine(Global.Settings.SharePath, _
 Path.GetFileNameWithoutExtension(File.FileName) & i.ToString() & _
 Path.GetExtension(File.FileName))
 Loop

 ' Rename file.
 System.IO.File.Move(FullPath, FinalPath)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 System.IO.File.Move(FullPath, FinalPath)
 DisplayFile.ListViewItem.ChangeStatus("Completed")
End If

Client.Close()
Completed = True

Currently, the code doesn't add the newly downloaded file to the App.Shared Files collection, and it doesn't contact the discovery
service to add it to the published catalog of files. However, you could easily add this code.

Figure 9-10 shows the upload status list with six entries. Two downloads are in progress while four are queued, because the
maximum download thread count has been reached.

Figure 9-10: FileSwapper downloads

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Possible Enhancements
FileSwapper contains the minimum amount of code needed to show a complete, well-designed framework for peer-to-peer
request handling. It still lacks a number of niceties that you'd want to add in a production-level application. Some of these possible
enhancements are listed here:

Currently, new files that are downloaded to the shared directory are ignored. That means that any files you
download will not be shared with other users unless you restart the application. To solve this problem, you could
add a timer that periodically refreshes the catalog with the server, or you could use a FileSystemWatcher to monitor
the directory. You might even want to add discovery-service methods to publish individual files and reduce the
bandwidth and database effort required when single files are added.

Currently, there's no ability for the user to cancel in-progress downloads. This would be easy to add, because each
FileDownloadClient object stores the related ListViewItem. If a user selects a download to cancel from the ListView,
you would simply have to look up the FileDownloadClient that references the corresponding ListViewItem and call
its Abort() method.

You could enhance the communication used between peers. For example, the uploading peer could send a status
message before every chunk of data. Similarly, after every chunk of data, the downloading peer could send a single
byte indicating whether it was ready to receive more data, about to cancel the download, or in some other state.

You could improve the shutdown code by adding some sort of flag that can be set to instruct the download and
upload threads to shut down, so that the application would not need to abort them forcefully. You might also want to
poll for connection requests in the FileServer class using the TcpClient.Pending() method, and only call
TcpClient.AcceptTcpClient() once a connection request has been received. This way, the thread will remain
responsive and can be shut down more easily. Fortunately, .NET networking is very friendly—although these
touches would improve the application, they aren't at all necessary.

Currently, the error handling is quite rudimentary. You could add more sophisticated exception handlers to log
problems, inform the user, and protect the application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
File-sharing applications are one of the best-known niches of peer-to-peer programming. In this chapter, you've learned that the
greatest challenge with a peer-to-peer file sharer may not be networking, but using threads to handle the application's many
responsibilities.

FileSwapper is only one example of a simple client, but it provides a solid, extensible framework that you can use when designing
your own resource-sharing peer-to-peer applications. However, there are still a number of additional challenges to face, including
firewalls and other network-connectivity issues (the bane of any peer-to-peer application), and security. We'll consider some of
these issues in the following chapters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10: Using a Discovery Service with Remoting

Overview
Chapter 8 presented the basics of discovery services and showed how you could use a discovery service to facilitate peer
discovery and index peer content. To support this design, the registration database stored information about each peer and the
TCP/IP endpoint it uses to listen for connections.

But what if you want to apply the same approach—using a stateless discovery web service—but allow your peers to interact using
.NET Remoting? This simpler approach is less suitable for situations in which you need to stream large amounts of data over the
wire (such as the file-sharer application), but it could be useful if you're building a distributed task processor or messaging
application. Fortunately, the changes are easy to implement. You simply need to serialize Remoting's network pointer, the ObjRef.

In this chapter, we'll use this technique to develop a discovery web service that can support the Talk .NET application developed
in Part Two. We'll use the decentralized version presented at the end of Chapter 4, because it allows peers to interact directly and
only requires the server for peer discovery. Best of all, you'll see that you can implement these changes with minimal coding
changes to the Talk .NET peer application—a fact that makes this the shortest chapter in this book!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Registration Database
The first step is to design the back-end database. This database contains two tables (as shown in Figure 10-1):

The Peers table stores a list of users, each of which has a unique e-mail address.

The Sessions table stores a list of currently active users, with the information needed to connect to them.

Figure 10-1: The Talk .NET registration database

Strictly speaking, you only require one table to store the list of currently connected peers. However, by creating two tables you
gain the ability to define a list of allowed users, and validate them at the server before allowing them to join the peer community. In
addition, you might want to add more tables to define "buddy lists"—groups of contacts that determine who a peer can see online
and interact with.

The Sessions table doesn't directly store an IP address and port number— instead, it stores a serialized ObjRef, which is
Remoting's network pointer. When serialized, the ObjRef typically takes about 1,008 bytes. The Sessions table provides space for
up to 1,500 bytes to be safe, and the code verifies that this constraint is met when serializing the ObjRef.

Stored Procedures

The database includes six stored procedures, as described here:

AddPeer creates a peer record for a newly registered user.

CreateSession inserts a new session record when an existing user logs in.

DeleteSession removes a session record.

GetPeers retrieves a list of all the peers who are currently logged in. In a large system, this would be adapted so
that it retrieved a list of logged-in users according to a contact list.

GetPeerAndSessionInfo retrieves information about the peer, and the current contact information if the peer is
logged in. This could be split into two stored procedures, but for simplicity's sake it's handled in one.

RefreshSession updates the expiration date on the current session record. Peer sessions that haven't been
updated within three minutes will be ignored (and optionally, can be removed).

The stored procedure code is similar to what you saw in Chapter 8. For example, AddPeer wraps a simple SQL Insert statement:
CREATE Procedure AddPeer
(
 @EmailAddress nvarchar(50)
)
AS

INSERT INTO Peers (EmailAddress) VALUES (@EmailAddress)
GO

The CreateSession stored procedure is more sophisticated. Before adding the session record, it removes any existing session
records with the same e-mail address. It also performs a lookup to map the supplied peer e-mail address to the unique identity
number the database uses in the Sessions table.
CREATE Procedure CreateSession
(
 @ID uniqueidentifier,
 @EmailAddress nvarchar(50),
 @ObjRef varbinary(1500)
)
AS

DECLARE @PeerID int
SELECT @PeerID = ID FROM Peers WHERE EmailAddress = @EmailAddress

DELETE FROM Sessions WHERE PeerID=@PeerID

INSERT INTO Sessions (ID, PeerID, LastUpdate, ObjRef)

 VALUES (@ID, @PeerID, GETDATE(), @ObjRef)
GO

Note that the unique identifier is generated by the server rather than the database engine, and as such it doesn't need to be
returned using a parameter.

The RefreshSession stored procedure simply updates the LastUpdate field.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE Procedure RefreshSession
(
 @ID uniqueidentifier
)
AS
UPDATE Sessions SET LastUpdate=GETDATE() WHERE [ID]=@ID
GO

The DeleteSession stored procedure removes the session based on its unique identifier.
CREATE Procedure DeleteSession
(
 @ID uniqueidentifier
)
AS

DELETE FROM Sessions WHERE ID = @ID
GO

The GetPeers method returns the e-mail addresses for all the currently logged-on users by joining the Sessions and Peers tables.
At the same time, any entry that hasn't been updated in more than three minutes is ignored.
CREATE PROCEDURE GetPeers AS

SELECT EmailAddress FROM Sessions INNER JOIN Peers ON Peers.ID = PeerID
 WHERE DATEDIFF(MINUTE, LastUpdate, GETDATE()) < 3
GO

Optionally, you could remove old sessions records, either by using a separate long-running application that periodically scans the
database, or by adding the necessary code to a frequently invoked stored procedure such as CreateSession or DeleteSession.
However, this additional step probably isn't necessary. The CreateSession stored procedure code already ensures that all of a
user's old records are removed every time the user logs in.

Finally, the GetPeerAndSessionInfo stored procedure returns peer and session information. A left join is used to ensure that peer
information is returned, even if the user isn't currently logged in and doesn't have a session record.
CREATE PROCEDURE GetPeerAndSessionInfo
(
 @EmailAddress nvarchar(50)
)
AS
SELECT TOP 1 * FROM Peers Left JOIN Sessions ON PeerID = Peers.ID
 WHERE EmailAddress = @EmailAddress ORDER BY LastUpdate DESC
GO

If the system is working correctly, this will return only a single record. But just to be defensive, this stored procedure returns only
the first record that was most recently updated by using the TOP 1 and ORDER BY clauses.

The Database Class

As in Chapter 8, a class named P2PDatabase is used to wrap the stored procedure code with the required ADO.NET commands.
Information about a peer and its current session can be packaged into a PeerInfo object, as shown here:
Public Class PeerInfo

 Public ID As Integer
 Public EmailAddress As String
 Public PublicKeyXml As String
 Public ObjRef() As Byte

End Class

The P2PDatabase includes a method for each stored procedure. You won't see the full code here, but it's provided online with the
Chapter 11 examples, and it's quite straightforward. However, there are two fine points worth identifying.

First of all, note how the CreateSession() method takes special care to validate that the ObjRef is less than the 1,500 bytes
allocated for storage in the database. Because it's presumably impossible for an ObjRef to be larger, the code makes this check
using a debug assertion. Alternatively, you might want to throw a custom error indicating the problem if the byte array is too large.
Public Function CreateSession(ByVal emailAddress As String, _
 ByVal objRef() As Byte) As Guid

 ' Define command and connection.
 Dim SessionID As Guid = Guid.NewGuid()

 Dim con As New SqlConnection(ConnectionString)
 Dim cmd As New SqlCommand("CreateSession", con)
 cmd.CommandType = CommandType.StoredProcedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cmd.CommandType = CommandType.StoredProcedure
 ' Add parameters.
 Dim param As SqlParameter
 param = cmd.Parameters.Add("@ID", SqlDbType.UniqueIdentifier)
 param.Value = SessionID
 param = cmd.Parameters.Add("@EmailAddress", SqlDbType.NVarChar, 300)
 param.Value = emailAddress

 Debug.Assert(objRef.Length < 1500)

 param = cmd.Parameters.Add("@ObjRef", SqlDbType.VarBinary, 1500)
 param.Value = objRef

 Try
 con.Open()
 cmd.ExecuteNonQuery()
 Finally
 con.Close()
 End Try

 Return SessionID

End Function

The GetPeerInfo() method also requires special care. It calls the GetPeerAnd SessionInfo stored procedure, which may or may
not return session information. To prevent a possible null reference exception, the code must check if session data is returned
before trying to assign it to the properties of a PeerInfo object.
Public Function GetPeerInfo(ByVal email As String) As PeerInfo

 ' Define command and connection.
 Dim con As New SqlConnection(ConnectionString)
 Dim cmd As New SqlCommand("GetPeerAndSessionInfo", con)
 cmd.CommandType = CommandType.StoredProcedure

 ' Add parameters.
 Dim param As SqlParameter
 param = cmd.Parameters.Add("@EmailAddress", SqlDbType.VarChar, 50)
 param.Value = email
 Dim Peer As New PeerInfo()
 Try
 con.Open()
 Dim r As SqlDataReader = cmd.ExecuteReader()
 r.Read()
 Peer.EmailAddress = r("EmailAddress")
 Peer.ID = r("ID")
 If Not (r("ObjRef") Is DBNull.Value) Then
 Peer.ObjRef = r("ObjRef")
 End If
 Finally
 con.Close()
 End Try
 Return Peer

End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Discovery Service
The discovery service wraps the P2PDatabase component. As with the discovery service in Chapter 8, it catches all exceptions,
logs them, and replaces them with a generic ApplicationException to ensure that no sensitive information will be returned to the
client.

Peers interact with the discovery service as follows:
1. New users call RegisterNewUser() to create a new record in the Peers table.

2. Users call StartSession() to log in, supply their current connectivity information, and create a new record in the
Sessions table.

3. Users call GetPeers() periodically to retrieve a list of other users. In turn, GetPeers() calls RefreshSession(),
ensuring that the record for the requesting peer is kept current.

4. If a user wants to send a message, it calls GetPeer() to retrieve the connectivity information for a specific user. It
can then contact the user directly.

5. When the user is finished and wants to leave the peer community, it calls EndSession() to remove the session
record.

The full DiscoveryService code is shown here:
Public Class DiscoveryService
 Inherits System.Web.Services.WebService

 Private DB As New P2PDatabase()

 <WebMethod()> _
 Public Sub RegisterNewUser(ByVal emailAddress As String)

 Try
 DB.AddPeer(emailAddress)
 Catch err As Exception
 Trace.Write(err.ToString)
 Throw New ApplicationException("Could not register new user.")
 End Try

 End Sub

 <WebMethod()> _
 Public Function StartSession(ByVal emailAddress As String, _
 objRef() As Byte) As Guid

 Try
 Return DB.CreateSession(emailAddress, objRef)
 Catch err As Exception
 Trace.Write(err.ToString)
 Throw New ApplicationException("Could not create session.")
 End Try

 End Function

 <WebMethod()> _
 Public Sub RefreshSession(ByVal sessionID As Guid)

 Try
 DB.RefreshSession(sessionID)
 Catch err As Exception
 Trace.Write(err.ToString)
 Throw New ApplicationException("Could not refresh session.")
 End Try

 End Sub

 <WebMethod()> _
 Public Sub EndSession(ByVal sessionID As Guid)

 Try
 DB.DeleteSession(sessionID)
 Catch err As Exception
 Trace.Write(err.ToString)
 Throw New ApplicationException("Could not end session.")
 End Try

 End Sub

 <WebMethod()> _
 Public Function GetPeerInfo(ByVal emailAddress As String, _
 ByVal sessionID As Guid) As PeerInfo

 Try
 Return DB.GetPeerInfo(emailAddress)
 Catch err As Exception
 Trace.Write(err.ToString)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Trace.Write(err.ToString)
 Throw New ApplicationException("Could not find peer.")
 End Try

 End Function

 <WebMethod()> _
 Public Function GetPeers() As String()

 Try
 RefreshSession(sessionID)
 Return DB.GetPeers()
 Catch err As Exception
 Trace.Write(err.ToString)
 Throw New ApplicationException("Could not find peers.")
 End Try

 End Function

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Talk .NET Peers
The final step is to modify the Talk .NET peer application to use the discovery service instead of the well-known Remoting server.
Thanks to the well-encapsulated design of the Talk .NET client, you won't need to modify the main form code. Instead, almost all
of the changes are confined to the remotable ClientProcess class.

The ClientProcess class is used to send and receive messages with .NET Remoting. In the revised version, it will also have the
additional responsibility of interacting with the discovery web service. To support this design, we need to add two member
variables, as shown here:
Public Class ClientProcess
 Inherits MarshalByRefObject
 Implements ITalkClient

 ' Holds a reference to the web-server proxy.
 Private DiscoveryService As New localhost.DiscoveryService()

 ' Tracks the GUID for the current session.
 Private SessionID As Guid

 ' (Other code omitted.)

End Class

The ClientProcess constructor accepts a Boolean parameter that indicates whether a new record needs to be created for this
user. If the user hasn't registered before, the ClientProcess class calls the RegisterNewUser() web method.
Public Sub New(ByVal userEmailAddress As String, ByVal createUser As Boolean)

 Me.[Alias] = userEmailAddress
 If createUser Then
 DiscoveryService.RegisterNewUser(userEmailAddress)
 End If

End Sub

The Login() method registers ClientProcess to receive messages from other peers. It also retrieves the ObjRef for the current
instance using the Remoting Services.Marshal() method, and submits it to the sever.

Public Sub Login()

 ' Configure the client channel for sending messages and receiving
 ' the server callback.
 RemotingConfiguration.Configure("TalkClient.exe.config")

 ' Retrieve the ObjRef for this class.
 Dim Obj As ObjRef = RemotingServices.Marshal(Me)

 ' Serialize the ObjRef to a memory stream.
 Dim ObjStream As New MemoryStream()
 Dim f As New BinaryFormatter()

 f.Serialize(ObjStream, Obj)

 ' Start a new session and record the session GUID.
 Me.SessionID = DiscoveryService.StartSession(ObjStream.ToArray())

End Sub

The GetUsers() method now calls the discovery web service to retrieve the list of peer e-mail addresses:
Public Function GetUsers() As ICollection
 Return DiscoveryService.GetPeers(Me.SessionID)
End Function

The SendMessage() method calls the discovery service to retrieve the appropriate ObjRef, deserializes it, converts it to a proxy,
and then invokes the ITalkClient.ReceiveMessage() method.
Public Sub SendMessage(ByVal emailAddress As String, ByVal messageBody As String)

 ' Retrieve the peer information.
 Dim PeerInfo As localhost.PeerInfo
 PeerInfo = DiscoveryService.GetPeerInfo(emailAddress)

 ' Deserialize the proxy.
 Dim ObjStream As New MemoryStream(PeerInfo.ObjRef)
 Dim f As New BinaryFormatter()
 Dim Obj As Object = f.Deserialize(ObjStream)
 Dim Peer As ITalkClient = CType(Obj, ITalkClient)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim Peer As ITalkClient = CType(Obj, ITalkClient)
 ' Send the message to this peer.
 Try
 Peer.ReceiveMessage(messageBody, Me.Alias)
 Catch
 ' Ignore connectivity errors.
 ' Alternatively, you could raise an event or throw an error that the main
 ' form could respond to and use to update the form display.
 End Try

End Sub

The LogOut() method ends the session:
Public Sub LogOut()
 DiscoveryService.EndSession(Me.SessionID)
End Sub

Finally, the Login window is modified to include a check box that the user can select to create the account for the first time, as
shown in Figure 10-2.

Figure 10-2: Logging in with a new or existing account

The startup code can retrieve the user's check box selection from the readonly CreateNew property:
Public ReadOnly Property CreateNew() As Boolean
 Get
 Return chkCreateNew.Checked
 End Get
End Property

This information is passed to the ClientProcess constructor, which then determines whether or not it needs to call the
RegisterNewUser() web method.
Dim Client As New ClientProcess(frmLogin.UserName, frmLogin.CreateNew)

The new Talk .NET client is now fully functional. The next two sections describe some enhancements you can implement.

Adding Caching

Currently, the Talk .NET client contacts the discovery service every time it sends a message. You could improve upon this
situation by increasing the amount of information the client keeps locally. For example, the client might keep a cache with peer-
connectivity information in it. That way, if one user sends several messages to another, it will only need to contact the server once,
when the first message is sent.

To add caching, you must first add a Hashtable collection to the ClientProcess class. This collection will store all the PeerInfo
objects for recently contacted clients, indexed by the e-mail address.
' Contains all recently contacted clients.
Private RecentClients As New Hashtable()

Whenever a message is sent, the code will check the RecentClients collection. If it finds the corresponding user, it will use the
stored ObjRef. Otherwise, it will retrieve the ObjRef from the server and add it to the hashtable.
Public Sub SendMessage(ByVal emailAddress As String, ByVal messageBody As String)

 Dim PeerInfo As localhost.PeerInfo

 ' Check if the peer-connectivity information is cached.
 If RecentClients.Contains(emailAddress) Then
 PeerInfo = CType(RecentClients(emailAddress), localhost.PeerInfo)
 Else
 PeerInfo = DiscoveryService.GetPeerInfo(emailAddress, Me.SessionID)
 RecentClients.Add(PeerInfo.EmailAddress, PeerInfo)
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If
 ' Deserialize the proxy.
 Dim ObjStream As New MemoryStream(PeerInfo.ObjRef)
 Dim f As New BinaryFormatter()
 Dim Obj As Object = f.Deserialize(ObjStream)
 Dim Peer As ITalkClient = CType(Obj, ITalkClient)

 ' Send the message to this peer.
 Try
 Peer.ReceiveMessage(messageBody, Me.Alias)
 Catch
 RecentClients.Remove(PeerInfo)
 ' Optionally, you might want to try retrieving new peer information
 ' and resending the message, if you used the connectivity information
 ' in the local cache.
 End Try

End Sub

As implemented, this will retain ObjRef for the life of the application, or until a transmission error occurs. If you anticipate that
connectivity information will change frequently, or that the Talk .NET client application will run for an extremely long period of time
(for example, several days), you might want to take a few additional measures to help ensure that this information is valid. For
example, you could use code in the GetUsers() method to check the currently logged-on users and remove an ObjRef as soon as
a peer disappears from the network:
Public Function GetUsers() As ICollection

 Dim Peers() As String
 Peers = DiscoveryService.GetPeers()

 ' Identify any peers in the local cache that aren't online.
 Dim PeerSearch As New ArrayList()
 PeerSearch.AddRange(Peers)
 Dim PeersToDelete As New ArrayList()

 Dim Item As DictionaryItem
 Dim Peer As localhost.PeerInfo
 For Each Item In Me.RecentClients
 Peer = CType(Item.Value, localhost.PeerInfo)
 ' Check if this e-mail address is in the server list.
 If Not PeerSearch.Contains(Peer.EmailAddress) Then
 ' The e-mail address wasn't found. Mark this peer for deletion.
 PeersToDelete.Add(Peer)
 End If
 Next

 ' Remove the peers that weren't found.
 For Each Peer In PeersToDelete
 Me.RecentClients.Remove(Peer.EmailAddress)
 Next

 Return Peers

End Function

This code works in two steps because items cannot be removed from a collection while you're iterating through it, without causing
an error.

Adding E-mail Validation

Currently, no validation is performed when a user registers with the server. This is simply intended as a convenience for testing
purposes. Ideally, you would not create a new user account until you could confirm that the e-mail address is correct.

To validate an e-mail address, you can borrow a technique from the world of e-commerce. It works like this:
1. When the user makes a request, save the submitted information into a different table (for example, a

NewUserRequests table). Create a new GUID to identify the request.

2. Next, send an e-mail to the user-supplied e-mail address (you can use the System.Web.Mail.SmtpServer class
for this task). Here's the trick: This e-mail can include an HTTP GET link to a web-service method (or ASP.NET
web page) that confirms the new user account. This link will submit the request GUID through the query string.
For example, the link might take this form: http://www.mysite.com/RegisterUser.asmx?requestGuid=382c74c3-
721d-4f34-80e5-57657b6cbc27 (assuming "requestGuid" is the name of the web-method parameter).

3. When the user receives the message and clicks on the link, the confirmation method will run with the identifying
GUID.

4. The confirmation method will first check that the response has been received within a reasonable amount of
time (for example, three days). If so, it can then find the request record with the matching GUID, remove it from
the database, and add the user information to the Users table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
This chapter demonstrated how to integrate a peer-to-peer community that uses Remoting with a discovery web service. Along the
way, several changes were made to the overall system, including the addition of a list of registered users in the database. The
next chapter builds on these changes to add security using the cryptography classes included with .NET. You'll learn how to
validate peer identities and encrypt messages before they travel across the network.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part Four: Advanced Peer-to-Peer
Chapter List

Chapter 11: Security and Cryptography

Chapter 12: Working with Messenger and Groove

Chapter 13: The Intel Peer-to-Peer Accelerator Kit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11: Security and Cryptography
Writing secure code is hard. Even in traditional client-server applications, it's difficult to defend against the vast array of possible
threats and attacks. Security considerations stretch across every area of programming, from design to deployment, and include
everything from hiding sensitive information to restricting the abilities of different classes of users. Code that runs smoothly,
requires user credentials, and uses encryption can still be filled with exploitable security holes. Most often, the professional
developers who created it won't have any idea of the risk until these weaknesses are exploited.

In peer-to-peer programming, security considerations are multiplied. Communication is usually over the public Internet, but peers
communicate with a wide array of different devices that are often anonymous, and there may not be any central authority for
authenticating users. However, a little work can go a long way toward improving the security of any system. This chapter won't tell
you how to make a bulletproof security infrastructure—for that you need highly complex protocols such as Kerberos and Secure
Sockets Layer (SSL), which can't be easily applied to a peer-to-peer system. However, this chapter shows the security
fundamentals that you need to prevent casual hacking, data tampering, and eavesdropping. In other words, if you apply the
fundamentals in this chapter, you can change a wide-open application into one that requires significant effort to breach—and
that's a worthwhile change.

Security and Peer-to-Peer
Part of the challenge of security is that it's an immense field that covers everything from the way users jot down passwords and
lock server-room doors to advanced cryptography. This chapter focuses on two basic types of security issues:

Authentication and authorization. How do you verify that a user is who he or she claims to be and how do you grant
or restrict application privileges based on this identity?

Encryption and cryptography. How can you ensure that sensitive data cannot be read by an eavesdropper or
tampered with by an attacker?

This certainly isn't all there is to security in a peer-to-peer application. For example, you've already seen in Chapter 6 how you can
use .NET code-access security to restrict the permissions you give to dynamically executed code. In addition, you might need to
make decisions about how you enforce nonrepudiation, which is how transactional systems ensure that user actions are
nonreversible, even if compromised (generally using a combination of logging techniques). You also might want to create an
incident response plan for dealing with security problems as well as an auditing system that logs user behavior and alerts users or
administrators if a suspicious pattern of behavior emerges.

Security Challenges

The security discussion in this chapter takes the peer-to-peer perspective. The security issues with distributed applications are
inherently more complex than in stand-alone applications, and the security considerations for peer-to-peer systems are some of
the most complex of all. Unfortunately, the source of peer-to-peer flexibility—loosely defined networks and a lack of server control
—can also be the source of endless security headaches.

Some of the challenges in secure peer-to-peer programming include the following:

How can two peers validate each other's identity if they don't have access to a centralized user database or any
authentication information?

Once two peers validate each other's identity, how do they make trust decisions to determine what interactions are
safe?

As messages are sent over the network, how can a peer be certain that they aren't being tampered with?

How can a peer hide sensitive data so a hacker can't sniff it out as it travels over the Internet?

What happens if a malicious user tries to impersonate another user or computer? What happens if a hacker tries to
capture the network packets you use for authentication and interaction, and use them later?

This chapter looks at all these considerations, but it won't directly deal with one of the most important details—trying to limit the
damage of an attack by coding defensively. Secure programming isn't just about authentication and cryptography; it's also about
making sensible coding choices and using basic validation and error-handling logic to close security holes. For example, a file-
sharing application should check that it can't be tricked into returning or overwriting a system file. It should also include failsafes
that allow it to stop writing a file if the hard drive is out of space or the size of the file seems grossly out of proportion. (For
example, if you attempt to download a song and the end of the file still hasn't been reached after 100 MB.)

These common-sense measures can prevent serious security problems. For best results, review your code frequently with other
programmers. Spend time in the design, testing, and review stage looking exclusively for security flaws. Take the perspective of a
hacker trying to decide what features could be exploited to gain privileged access, steal data, or even just cripple the computer by
wasting its CPU or hard-drive resources (a common and often overlooked tactic known as a denial of service attack).
Unfortunately, you can't find the security problems in a piece of code until they are exploited—and it's far better for you to exploit
them in the testing phase than for a hacker to discover them in a real-world environment.

Design Choices

In enterprise development, the best security choice is to rely on third-party security services whenever possible. For example, if
you use integrated Windows authentication and SSL encryption, you gain a relatively well-protected system without needing to
write a single line of code. Unfortunately, in peer-to-peer applications, your environment probably won't support these features.
For example, Windows authentication won't work in its most secure forms between networks. SSL can't be accessed outside of
the Internet Information Server (IIS), unless you want to deal with extremely complicated low-level Windows API code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fortunately, .NET provides a reasonable alternative: the rich set of classes in the System.Security.Cryptography namespace.
These classes allow your code to manually perform various cryptography tasks such as encrypting and decrypting data, signing
messages, and so on. However, these features come at a price. Typically, you'll find that the more cryptography code you write,
the more tightly your solution becomes bound to a particular platform and implementation. You'll also need to manage a slew of
additional details, such as keys, block sizes, .NET-to-binary data-type conversions, and so on. Lastly, although the
System.Security.Cryptography namespace contains robust, professional-level classes, it's easy to use these classes incorrectly. In
other words, by writing your own cryptography code you increase the chances of leaving security holes. That doesn't mean that it's
better to avoid custom cryptography altogether, but it does mean that you should have your cryptography code reviewed by a
security expert before a mission-critical application is deployed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Understanding Cryptography
Before you see a full example with the System.Security.Cryptography classes, you need to understand the basics of three
cryptography essentials: hash codes, encryption, and digital signatures.

Understanding Hash Codes

A hash algorithm takes a block of binary data and uses it to generate a fixed-side checksum. For example, the SHA-256 hash
algorithm always creates a 256-bit (32-byte) hash for data, regardless of the size of the input data.

Hash codes serve a variety of purposes. One of the most common is to prevent data tampering. For example, consider a scenario
in which you store important data on a disk file and record the hash of that data in a database. At a later point, you can open the
file, recalculate the hash, and compare it with the value in the database. If the two hashes don't agree, the file has changed. If
your program is the only application allowed to access that file, and if your program always records the hash value in the database
after making changes, it's reasonable to assume that the file has been tampered with. You can use a similar technique to validate
messages that are sent between computers.

Like any type of checksum, a hash algorithm works in one direction only. It's completely impossible to re-create the document
from the hash because the hash doesn't include all the information that was in the document. However, cryptographic hash
algorithms also have a key characteristic that distinguishes them from other types of checksums: They're collision resistant.
Changing even a single byte in the source document has a fifty-fifty chance of independently changing each byte in the hash. It's
extremely difficult for an attacker to look at a hash and create a new document that will generate the same hash. (The difficulty of
this task is comparable to trying to break an encrypted message through brute force.) Thus, hashes play a key role in ensuring
data integrity.

The System.Security.Cryptography namespace includes the following hash algorithms:

MD5 (implemented by the MD5CryptoServiceProvider class) generates a 128-bit hash.

SHA-1 (implemented by the SHA1CryptoServiceProvider class) generates a 160-bit hash.

SHA-256 (implemented by the SHA256Managed class) generates a 256-bit hash.

SHA-384 (implemented by the SHA384Managed class) generates a 384-bit hash.

SHA-512 (implemented by the SHA512Managed class) generates a 512-bit hash.

As a rule of thumb, the larger the hash size, the more difficult it is to find another document that will generate a duplicate hash
value.

Note Using hash codes isn't enough to protect messages exchanged between computers. The problem is that an attacker
can tamper with a message and simply generate a new hash code that matches the altered message. To overcome
this problem, you need to combine hashing with some form of encryption to create a keyed hash or digital
signature.We'll look at digital signatures later in this chapter.

Understanding Encryption

There are essentially two types of encryption: symmetric encryption and asymmetric encryption. In many peer-to-peer
applications, you'll need to use both. Either way, the basic principle behind encryption is always the same: Encryption scrambles
information so that it can only be understood by the recipient. A malicious third party might be able to intercept the message, using
characteristics of the network that are beyond your control, but won't be able to decipher it.

Technically, any digitally encrypted message can be broken using a brute force attack, which is a process by which an attacker
tries every possible sequence of bytes as a key until finally one combination works. In most cases, a brute-force attack is
prohibitively expensive, which is to say that the value of the data is less than the cost (in time or computer hardware) of cracking it,
or the data will no longer be valid by the time it's deciphered. Very few attacks use brute force. Usually, they rely on weak or
compromised passwords or flaws in the application or platform that are much easier to exploit.

Symmetric encryption (also known as "secret-key" encryption) is the type of encryption that most people are familiar with. It
depends on a shared, secret key that's used to encrypt and decrypt data. Technically, this secret key is a series of bytes that can
be derived from a password or other information as needed. Symmetric encryption is far faster than asymmetric encryption but
suffers from a significant limitation in distributed computing scenarios: Both parties need to know the secret key before the
communication begins. There's no easy way to transmit the secret key information without compromising security.

The .NET Framework includes the following symmetric algorithms:

DES (implemented by the DESCryptoServiceProvider class) uses a 64-bit key.

TripleDES (implemented by the TripleDESCryptoServiceProvider class) uses a 128-bit or 192-bit key.

RC2 (implemented by the RC2CryptoServiceProvider class) uses a 40- to 128-bit key.

Rijndael (implemented by the RijndaelManaged class) uses a 128-bit, 192-bit, or 256-bit key.

The larger the key size, the harder it is for a brute-force attack to succeed. Generally, DES is supported for legacy uses only,
because its 64-bit key size is considered dangerously weak. Rijndael is the recommended encryption algorithm.

Asymmetric encryption uses a pair of mathematically related keys that includes both a public and private key. The private key is
carefully guarded, while the public key is made available to the entire world. The interesting thing about asymmetric encryption is
that any data encrypted with one key can only be decrypted with the other matching key. This makes asymmetric encryption very
versatile.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, consider two peers communicating on a network. Each peer has its own key pair.
1. Peer A encrypts a message using the public key that belongs to Peer B.

2. Peer A sends the message to Peer B.

3. Peer B decrypts the message using the corresponding private key. No other user can decrypt this message (not
even Peer A, the one who created it) because no one else has the private key.

This demonstrates how asymmetric encryption can be used to protect information without needing to exchange a shared, secret
key value. This makes it possible for any two parties on a network to exchange encrypted data, even if they have never met
before. The process is diagrammed in Figure 11-1.

Figure 11-1: How user A can send an encrypted message to user B

Asymmetric encryption also underlies a special form of message validation. It works like this:
1. Peer A encrypts a message using its own private key.

2. Peer A sends the message to Peer B.

3. Peer B decrypts the message using the public key belonging to Peer A. Because this key is publicly available,
any user can perform this step. However, because the message can only be encrypted using the private key,
Peer B now knows beyond a doubt that the message originated from Peer A.

This shows you how message authentication works with asymmetric encryption. In practice, you don't need to encrypt the entire
message—just a hash code, as described in the next section. Often, both validation and encryption will be combined in the same
application to prevent message tampering and hide sensitive data. This is the approach taken in the peer-to-peer example shown
later in this chapter.

.NET provides implementation for two asymmetric algorithms:

RSA (implemented by the RSACryptoServiceProvider class) allows key sizes from 364 to 16,384 bits (in 8-bit
increments).

DSA (implemented by the DSACryptoServiceProvider class) allows key sizes from 364 to 512 bits (in 64-bit
increments).

In most cases, you'll use RSA, because DSA can only be used for creating and verifying digital signatures, not for encrypting data.
Note that asymmetric encryption allows for much larger key sizes. However, the key size can be misleading. It's estimated that a
1,024-bit RSA key (the default size) is roughly equivalent in strength to a 75-bit symmetric key.

Asymmetric encryption does have one significant shortcoming: It's slow, often hundreds of times slower than symmetric
encryption. It also produces less compact ciphertext (encrypted data) than symmetric encryption. Thus, if you need to encode a
large amount of information (for example in a file-sharing application), asymmetric encryption alone is probably not the approach
you want. A better choice is to combine symmetric and asymmetric encryption. We'll discuss this topic a little later.

Understanding Digital Signatures

Digital signatures combine the concepts of hash codes and asymmetric encryption. Remember, hash codes are used to take a
digital "fingerprint" of some data, and thereby prevent it from being altered. However, attackers can get around this defense if
hash codes aren't stored in a secure location by regenerating and replacing the hash code. Digital signatures prevent this type of
tampering using encryption.

To sign some data with a digital signature, a user creates a hash and then encrypts the hash using a private key. Any other user
can validate the signature because the corresponding public key is freely available, but no other user can generate a new
signature because they won't have the required private key. Thus, a digital signature is tamper-proof.

Of course, life isn't quite this simple. In order for this system to work, the recipient must already know the public key of the
message author. Otherwise, the signature can't be validated. Unfortunately, you can't just transmit the public key, because then it
could be read and replaced by the same attacker who will attempt to tamper with the message! The solution? Use a third party
that can validate users and vouch for their public keys. On the Internet, this is often performed with digital certificates. Digital
certificates contain a user's public and private keys and are signed by a third-party certificate authority (CA) such as VeriSign.
When you establish an SSL connection with a website, your computer decides to trust the website's identity because it provides a
certificate signed by a trusted CA.

In a peer-to-peer application, you could use certificates (in fact, Intel's Peer-to-Peer Accelerator Kit provides exactly this feature,
as described in Chapter 13). However, .NET doesn't provide any classes either for working with certificates in a user's certificate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

as described in Chapter 13). However, .NET doesn't provide any classes either for working with certificates in a user's certificate
store or validating that a certificate is signed by a trusted CA. In addition, the certificate itself cannot contain application-specific
information, such as whether a user should be given supervisor or guest rights in a peer-to-peer application. To get around this
limitation in this chapter, we'll use our discovery service to act as a central authority for user-identity validation. It will map public
keys to application-specific permissions using the database.

Note .NET does provide classes that allow you to read some basic certificate information from a certificate file. This
rudimentary functionality is found in the System.Security.Cryptography.X509Certificates namespace. In addition, the
downloadable Web Services Enhancements (WSE) provides some tools for reading information from installed
certificates. In future versions of the .NET Framework, these features will be more closely integrated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Asserting Identity with Digital Signatures
To put these concepts into practice, we'll return to Talk .NET and the discovery service presented in the previous chapter. Using
the discovery service, users query the server for a peer (by e-mail address), and receive an ObjRef that points to the peer. It
shouldn't be possible for a malicious user to impersonate another user by logging in with the wrong e-mail address.

To prevent impersonation, you need to modify the Talk .NET server. The new server must take the following authentication steps:

When a user creates a new account, the server tests the e-mail address and verifies that the user has access to
that e-mail. It then stores a record for the user that includes public key information and the e-mail address.
Duplicate e-mail addresses aren't allowed.

When a user logs in for a session, the server validates the user's login request against the public key information
stored in the database. The most secure way to perform this step is for the user to sign the login message using a
digital signature. If the signatures can be verified with the public key information in the database, then the server
can conclude that the user has access to the private key. The user is then authenticated, and a new session is
started.

When a user queries the discovery service for a reference to another user, they can now be sure that this reference
corresponds to the originally registered user, unless the key has been stolen.

We'll walk through the .NET cryptography code needed for this operation— and consider some of its shortcomings—over the next
few sections.

The Server Database

The discovery service developed in Chapter 10 stores a list of unique e-mail addresses, which serve as user IDs. In this example,
we'll modify the database so that the Peers table also includes public key information, as shown in Figure 11-2.

Figure 11-2: The revised Peers table

This information is stored as an XML string, because the .NET classes for asymmetric encryption provide a ToXmlString() method
that can export public or private key information in a standardized format. You can then use this data to re-create the encryption
object later. Here's a code snippet that demonstrates how it works:
' Create a new cryptographic object that encapsulates a new,
' dynamically generated key pair.
Dim Rsa As New RSACryptoServiceProvider()

' Retrieve the full key information as a string with XML data,
' using the True parameter.
Dim KeyPairInfo As String = Rsa.ToXmlString(True)

' Retrieve just the public key information as a string with XML data,
' using the False parameter.
Dim PublicKeyInfo As String = Rsa.ToXmlString(False)

' Create a new duplicate RSA object and load the full key data into it.
Dim RsaDuplicate As New RSACryptoServiceProvider()
RsaDuplicate.FromXmlString(KeyPairInfo)

' Create a duplicate RSA object with public key information only.
' This allows you to validate signatures and encrypt data, but you can't decrypt data.
Dim RsaPublicOnly As New RSACryptoServiceProvider()
RsaPublicOnly.FromXmlString(PublicKeyInfo)

Note that the database table only includes the public key information. This is enough for the server to validate signatures from the
user. The server should never be given access to a user's private key, because that information must be carefully protected! The
peer will store the full key pair on the local computer. In our example, this information is simply saved to the peer's hard drive,
which means that an attacker could impersonate the user if the attacker can steal the key file. Other approaches might be to store
this data in the registry, in a secure database, or even in a custom piece of hardware. The latter provides the best security, but it's
obviously very unlikely in a peer-to-peer scenario.

Along with these changes, the database class, database stored procedure, and web service need to be modified so that they
store the public key XML information in the database. These changes aren't shown here because they're all very trivial. As you'll
see, the tricky part comes when you need to actually use the key.

The Client Login

When the client first loads, it presents the user with a choice of creating a new account or using an existing one, as shown in
Figure 11-3. If the user chooses to create a new account, the key information is saved to disk. If the user chooses to use an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11-3. If the user chooses to create a new account, the key information is saved to disk. If the user chooses to use an
existing account, the key information is retrieved from disk. Of course, the user should not be able to create an account if the
matching key already exists, or allowed to use an existing account if the key information can't be found.

Figure 11-3: The Login window

The startup code is shown here. Note that the key information is stored in a file that uses the unique user ID, which is the e-mail
address.
' Create the login window, which retrieves the user identifier.
Dim frmLogin As New Login()

' Create the cryptography object with the key pair.
Dim Rsa As New RSACryptoServiceProvider()

' Create the new remotable client object.
Dim Client As ClientProcess

' Only continue if the user successfully exits by clicking OK
' (not the Cancel or Exit button).
Do

 If Not frmLogin.ShowDialog() = DialogResult.OK Then End

 Try
 If frmLogin.CreateNew Then
 If File.Exists(frmLogin.UserName) Then
 MessageBox.Show("Cannot create new account. " & _
 "Key file already exists for this user.")
 Else
 ' Generate a new key pair for this account.
 Rsa = New RSACryptoServiceProvider()

 Client = New ClientProcess(frmLogin.UserName, _
 frmLogin.CreateNew, Rsa)

 ' Write the full key information to the hard drive.
 Dim fs As New FileStream(frmLogin.UserName, FileMode.Create)
 Dim w As New BinaryWriter(fs)
 w.Write(Rsa.ToXmlString(True))
 w.Flush()
 fs.Close()

 Exit Do
 End If
 Else

 If File.Exists(frmLogin.UserName) Then

 ' Retrieve the full key information from the hard drive
 ' and use it to set the Rsa object.
 Dim fs As New FileStream(frmLogin.UserName, FileMode.Open)
 Dim r As New BinaryReader(fs)
 Rsa.FromXmlString(r.ReadString())
 fs.Close()

 Client = New ClientProcess(frmLogin.UserName, _
 frmLogin.CreateNew, Rsa)
 Exit Do
 Else
 MessageBox.Show("No key file exists for this user.")
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If
 End If

 Catch Err As Exception
 MessageBox.Show(Err.Message)
 End Try

Loop

' (Create and show the client form as usual).

The SignedObject Class

In this example you only need to use digital signature authentication in the Login() web method. However, it would be a mistake to
code this logic directly in the web method itself. In order to ensure that the logic that runs on the client is consistent with the logic
that runs on the server, and in order to reuse the signing logic in other places if it becomes necessary, you should abstract this
functionality in a dedicated class. This class should be placed in a separate component.

In this example, the dedicated class is called SignedObject. The SignedObject class allows you to attach a digital signature to any
.NET object using serialization. Here's how the signing process works:

1. You define a serializable class that contains all the data you want to sign. For example, the StartSession() web
method will use a serializable LoginInfo class that stores the e-mail address of the user attempting to log on.

2. You create and configure the serializable object in code. Then, you create the SignedObject class. The
SignedObject class provides a constructor that takes any object, along with the key pair XML.

3. The SignedObject constructor serializes the supplied object to a byte array. It uses the key pair XML to create a
new cryptography object and generate a signature.

4. Both the signature and the serialized object are stored in private member variables.

5. Because SignedObject is itself serializable, you can convert the entire package, signature and all, to a stream of
bytes using .NET serialization. This is necessary for web methods, because they won't allow you to use
SignedObject directly as a parameter type. Instead, you'll have to use the provided Serialize() method to convert
it to a byte array, and submit that to the server.

In this example, the SignedObject will be used to sign instances of the LoginInfo class, which encapsulates the information
required for a user to log in. The LoginInfo class is shown here:
<Serializable()> _
Public Class LoginInfo

 Public EmailAddress As String
 Public TimeStamp As DateTime
 Public ObjRef As Byte()

End Class

On the web-service side, these steps take place:
1. The server deserializes the byte array into the SignedObject, using the shared Deserialize() method.

2. Next, the server looks up the appropriate public key XML information, and submits it to the ValidateSignature()
method. This method returns true if the newly generated computer signature matches the stored signature.

3. The GetObjectWithoutSignature() method can be used at any time to retrieve the inner object (in this case, the
LoginInfo object). Remember, this doesn't mean the signature is valid, so before you call this method make sure
to validate the signature. (Another approach would be to perform the signature validation in the
GetObjectWithoutSignature() method, and throw an exception if the signatures don't match.)

Figure 11-4 shows the end-to-end process on the client and server.

Figure 11-4: Using SignedObject to sign a LoginInfo

The full SignedObject code is shown in the code listing that follows. Notice that data is serialized between .NET data types and
binary data using the BinaryFormatter class. To create a signature with the RsaCryptoServiceProvider class, you use the
SignData() method. To validate the signature, you use the VerifyData() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Imports System.Security.Cryptography
Imports System.IO
Imports System.Runtime.Serialization.Formatters.Binary

<Serializable()> _
Public Class SignedObject

 ' Stores the signed object.
 Private SerializedObject As New MemoryStream()

 ' Stores the object's signature.
 Private Signature() As Byte

 Public Sub New(ByVal objectToSign As Object, ByVal keyPairXml As String)

 ' Serialize a copy of objectToSign in memory.
 Dim f As New BinaryFormatter()
 f.Serialize(Me.SerializedObject, objectToSign)

 ' Add the signature.
 Me.SerializedObject.Position = 0
 Dim Rsa As New RSACryptoServiceProvider()
 Rsa.FromXmlString(keyPairXml)
 Me.Signature = Rsa.SignData(Me.SerializedObject, HashAlgorithm.Create())

 End Sub
 Public Shared Function Deserialize(ByVal signedObjectBytes() As Byte) _
 As SignedObject
 ' Deserialize the SignedObject.
 Dim ObjectStream As New MemoryStream()
 ObjectStream.Write(signedObjectBytes, 0, signedObjectBytes.Length)
 ObjectStream.Position = 0
 Dim f As New BinaryFormatter()
 Return CType(f.Deserialize(ObjectStream), SignedObject)

 End Function

 Public Function Serialize() As Byte()

 ' Serialize the whole package, signature and all.
 Dim f As New BinaryFormatter()
 Dim ObjectStream As New MemoryStream()
 f.Serialize(ObjectStream, Me)
 Return ObjectStream.ToArray()

 End Function

 Public Function ValidateSignature(ByVal publicKeyXml) As Boolean

 ' Calculate a new signature using the supplied public key, and
 ' indicate whether it matches the stored signature.
 Dim Rsa As New RSACryptoServiceProvider()
 Rsa.FromXmlString(publicKeyXml)
 Return Rsa.VerifyData(Me.SerializedObject.ToArray(), _
 HashAlgorithm.Create(), Me.Signature)

 End Function

 Public Function GetObjectWithoutSignature() As Object

 ' Deserialize the inner (packaged) object.
 Dim f As New BinaryFormatter()
 Me.SerializedObject.Position = 0
 Return f.Deserialize(Me.SerializedObject)

 End Function

End Class

The code in this class may appear complex, but it's vastly simpler to work with than it would be if you didn't use .NET serialization.
In that case, you would have to manually calculate hash sizes, copy the hash to the end of the message bytes, and so on. Even
worse, if you made a minor mistake such as miscalculating a byte offset, an error would occur.

The Login Process on the Client Side

The ClientProcess.Login() method requires some minor changes to work with the cryptographic components. The modified lines
are emphasized.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub Login()

 ' Configure the client channel for sending messages and receiving
 ' the server callback.
 RemotingConfiguration.Configure("TalkClient.exe.config")

 ' Retrieve the ObjRef for this class.
 Dim Obj As ObjRef = RemotingServices.Marshal(Me)

 ' Serialize the ObjRef to a memory stream.
 Dim ObjStream As New MemoryStream()
 Dim f As New BinaryFormatter()
 f.Serialize(ObjStream, Obj)

 ' Define the login information.
 Dim Login As New LoginInfo()
 Login.EmailAddress = Me.Alias
 Login.ObjRef = ObjStream.ToArray()
 Login.TimeStamp = DiscoveryService.GetServerDateTime()
 ' Sign the login information.
 Dim Package As New SignedObject(Login, Me.Rsa.ToXmlString(True))
 ' Start a new session by submitting the signed object,
 ' and then record the session GUID.
 Me.SessionID = DiscoveryService.StartSession(Package.Serialize())
End Sub

The Login Process on the Web-Server Side

One detail we haven't addressed is the use of a timestamp. This prevents a type of exploit known as a replay attack, whereby a
malicious user records network traffic and then "replays" it (copies it back into the network stream) to become authenticated later
on. It's doubtful that a replay attack would succeed with this application, because the ObjRef would no longer be valid. Still, using
a time-stamp tightens security. The server can check the time, and if it's set in the future or more than two minutes in the past, the
server will reject the request. Of course, in order for this to work in systems in which clients could have different regional time
settings (or just incorrect times), the client must retrieve the server time using the GetServerDateTime() web method.
<WebMethod()> _
Public Function GetServerDateTime() As DateTime
 Return DateTime.Now
End Function

The StartSession method that deserializes the package, validates the time information, retrieves the public key that matches the
user e-mail address from the database, and uses it to validate the signature. Assuming all these checks pass, it stores the ObjRef
in the database.
<WebMethod()> _
Public Function StartSession(ByVal signedLoginInfo As Byte()) As Guid

 Try
 Dim Package As SignedObject = SignedObject.Deserialize(signedLoginInfo)
 Dim Login As LoginInfo = CType(Package.GetObjectWithoutSignature, _
 LoginInfo)

 ' Check date.
 If DateTime.Now.Subtract(Login.TimeStamp).TotalMinutes > 2 Or _
 DateTime.Now.Subtract(Login.TimeStamp).TotalMinutes < 0 Then
 Throw New ApplicationException("Invalid request message.")
 End If

 ' Verify the signature.
 Dim Peer As PeerInfo = DB.GetPeerInfo(Login.EmailAddress)
 If Not Package.ValidateSignature(Peer.PublicKeyXml) Then
 Throw New ApplicationException("Invalid request message.")
 End If
 Return DB.CreateSession(Peer.EmailAddress, Login.ObjRef)
 Catch err As Exception
 Trace.Write(err.ToString)
 Throw New ApplicationException("Could not create session.")
 End Try

End Function

One side effect of using custom cryptography is the fact that the web service becomes much less generic. The design we've
introduced forces clients not only to use the SignedObject class, but to know when to use it. Data is simply supplied as a byte
array, so problems could occur if the client serializes the wrong type of object (or uses a different version of the cryptographic
component from the one the server is using). These details must be tightly controlled, or they will quickly become a source of new
headaches. Unfortunately, this is a necessary trade-off.

Tip You may want to place the LoginInfo class into a separate assembly, and never update that assembly in order to prevent
any versioning problems with serialization. Alternatively, you can write custom serialization code, which is beyond the
scope of this book.

Weaknesses in This Approach

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The key limitation in this design is the server, which is trusted implicitly. What happens if a malicious user is able to perform some
type of IP spoofing, or intercept communication before it reaches the server? This type of attack generally requires some type of
privileged network access (and thus is less common than some other attacks), but it's a significant risk in a large-scale application.
The attacker then has the ability to impersonate the server and return a validated ObjRef that actually points to the wrong user.

There's no easy way around the challenge of validating the server identity. One option is for the server to sign all its response
using the SignedObject class. The peer will then retrieve the response and validate the digital signature before attempting to use
the ObjRef. In order for this to work, each client would need to be deployed with the information about the server's public key
(perhaps stored in a configuration file). Otherwise, they would have no way to validate the signature.

Another problem is that the identity validation currently works only in one direction. In other words, a peer can validate the identity
of another peer before contacting it. However, when a peer is contacted, the peer has no way to validate the user that's initiating
the contact. In order to remedy this problem, the peers would need to exchange digitally signed messages. Any peer could then
retrieve the public key XML for another peer from the server, and then use it to authenticate incoming messages. To ensure
optimum performance, the peer XML information could be cached in memory in a local hashtable, so that the peer doesn't need to
repeatedly contact the remote web service to request the same key information. (This pattern is shown in the previous chapter
with the RecentClients collection.)

You should also remember that the use of signatures simply helps to ensure that a user identity remains consistent between the
time it's created and the time the user starts a session. It doesn't necessarily indicate anything about the trustworthiness of the
user—you need to perform those verifications before you register the user in the database. And no matter what approach you use,
you're still at the mercy of a properly authenticated user who behaves improperly.

Trust Decisions

In the messaging example, the service is used to return a single piece of information: an object reference that can be used for a
Remoting interaction. However, there's no reason why the server can't store additional information. For example, it might provide
personal contact information for the user, or assign the user a specific set of permissions at a custom security level using a
custom database. It's up to your application to retrieve and interpret this information, but the overall design is still the same.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hiding Information with Encryption
In the previous example, cryptography is used to assist in user authentication. However, no steps are taken to hide data as it flows
over the wire. Malicious users can eavesdrop and discover valuable information such as the ObjRef (where a client can be
reached), or the e-mails of users that are currently online, and so on. The same problem occurs with communication between
peers. Currently, messages flow over the network as plain text, which is visible to any user in the right place with a network sniffer.

You can solve this problem by adding a new class to the cryptography component, which you can use on both the client and web-
server end. This is the EncryptedObject class.

The EncryptedObject Class

In adding an encryption solution, you can use the same approach we used for signing data. In this case, you'll need a dedicated
class, which we'll name EncryptedObject. The methods exposed by this class are quite similar to those provided by the
SignedObject class, but the code involved is somewhat more complicated. This is because when you use asymmetric encryption
you must encrypt data one block at a time. If you need to encrypt data that's larger than one block, you must divide it into multiple
blocks, encrypt each one individually, and piece the encrypted blocks back together.

Here's an overview of how you would use the EncryptedObject:
1. First, create and configure a serializable object.

2. Create the EncryptedObject class. The EncryptedObject class provides a constructor that takes any object,
along with the public key XML (which should be the public key of the recipient). This constructor serializes the
object, encrypts it, and stores it in an internal member variable.

3. You can then convert the encrypted object into a byte array through .NET serialization using the Serialize()
method. This is the data you'd send to the other peer.

4. The recipient deserializes the byte array into an EncryptedObject, using the shared Deserialize() method.

5. The recipient calls the DecryptContainedObject() method with its private key to retrieve the original object.

The EncryptedObject code is shown here. The Serialize() and Deserialize() methods are omitted, because they're identical to
those used in the SignedObject class.
<Serializable()> _
Public Class EncryptedObject

 Private SerializedObject As New MemoryStream()

 Public Sub New(ByVal objectToEncrypt As Object, ByVal publicKeyXml As String)

 ' Serialize a copy of objectToEncrypt in memory.
 Dim f As New BinaryFormatter()
 Dim ObjectStream As New MemoryStream()
 f.Serialize(ObjectStream, objectToEncrypt)
 ObjectStream.Position = 0

 Dim Rsa As New RSACryptoServiceProvider()
 Rsa.FromXmlString(publicKeyXml)
 ' The block size depends on the key size.
 Dim BlockSize As Integer
 If Rsa.KeySize = 1024 Then
 BlockSize = 16
 Else
 BlockSize = 5
 End If

 ' Move through the data one block at a time.
 Dim RawBlock(), EncryptedBlock() As Byte
 Dim i As Integer
 Dim Bytes As Integer = ObjectStream.Length
 For i = 0 To Bytes Step BlockSize

 If Bytes - i > BlockSize Then
 ReDim RawBlock(BlockSize - 1)
 Else
 ReDim RawBlock(Bytes - i - 1)
 End If

 ' Copy a block of data.
 ObjectStream.Read(RawBlock, 0, RawBlock.Length)

 ' Encrypt the block of data.
 EncryptedBlock = Rsa.Encrypt(RawBlock, False)

 ' Write the block of data.
 Me.SerializedObject.Write(EncryptedBlock, 0, EncryptedBlock.Length)
 Next

 End Sub

 ' (Serialize and Deserialize methods omitted.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Public Function DecryptContainedObject(ByVal keyPairXml As String) As Object

 Dim Rsa As New RSACryptoServiceProvider()
 Rsa.FromXmlString(keyPairXml)

 ' Create the memory stream where the decrypted data
 ' will be stored.
 Dim ObjectStream As New MemoryStream()
 'Dim ObjectBytes() As Byte = Me.SerializedObject.ToArray()
 Me.SerializedObject.Position = 0
 ' Determine the block size for decrypting.
 Dim keySize As Integer = Rsa.KeySize / 8

 ' Move through the data one block at a time.
 Dim DecryptedBlock(), RawBlock() As Byte
 Dim i As Integer
 Dim Bytes As Integer = Me.SerializedObject.Length
 For i = 0 To bytes - 1 Step keySize

 If ((Bytes - i) > keySize) Then
 ReDim RawBlock(keySize - 1)
 Else
 ReDim RawBlock(Bytes - i - 1)
 End If

 ' Copy a block of data.
 Me.SerializedObject.Read(RawBlock, 0, RawBlock.Length)

 ' Decrypt a block of data.
 DecryptedBlock = Rsa.Decrypt(RawBlock, False)

 ' Write the decrypted data to the in-memory stream.
 ObjectStream.Write(DecryptedBlock, 0, DecryptedBlock.Length)
 Next

 ObjectStream.Position = 0
 Dim f As New BinaryFormatter()
 Return f.Deserialize(ObjectStream)

 End Function

End Class

Sending and Receiving Encrypted Messages

Now, you only need to make minor changes to the ClientProcess class in order to use encryption with the EncryptedObject class.
First, you need to define a Message class that will contain the information that's being sent:

<Serializable()> _
Public Class Message

 Public SenderAlias As String
 Public MessageBody As String

 Public Sub New(ByVal sender As String, ByVal body As String)
 Me.SenderAlias = sender
 Me.MessageBody = body
 End Sub

End Class

You also need to modify the ITalkClient interface:
Public Interface ITalkClient

 ' The server calls this to forward a message to the appropriate client.
 Sub ReceiveMessage(ByVal encryptedMessage As EncryptedObject)

End Interface

When sending a message, you need to construct a Message object and encrypt it. You don't need to use the Serialize() method to
convert it to a byte stream because the .NET Remoting infrastructure can automatically convert serializable types for you. The full
code is shown here, with the modified lines highlighted in bold. Note that the public XML information is retrieved from the web
service as needed for the peer.
Public Sub SendMessage(ByVal emailAddress As String, ByVal messageBody As String)

 Dim PeerInfo As localhost.PeerInfo

 ' Check if the peer-connectivity information is cached.
 If RecentClients.Contains(emailAddress) Then
 PeerInfo = CType(RecentClients(emailAddress), localhost.PeerInfo)
 Else
 PeerInfo = DiscoveryService.GetPeerInfo(emailAddress)
 RecentClients.Add(PeerInfo.EmailAddress, PeerInfo)
 End If

 Dim ObjStream As New MemoryStream(PeerInfo.ObjRef)
 Dim f As New BinaryFormatter()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim f As New BinaryFormatter()
 Dim Obj As Object = f.Deserialize(ObjStream)
 Dim Peer As ITalkClient = CType(Obj, ITalkClient)

 Dim Message As New Message(Me.Alias, messageBody)
 Dim Package As New EncryptedObject(Message, PeerInfo.PublicKeyXml)
 Try
 Peer.ReceiveMessage(Package)
 Catch
 ' Ignore connectivity errors.
 End Try

End Sub

When receiving a message, the peer simply decrypts the contents using its private key.
Private Sub ReceiveMessage(ByVal encryptedMessage As EncryptedObject) _
 Implements ITalkClient.ReceiveMessage

 Dim Message As Message
 Message = CType(encryptedMessage.DecryptContainedObject(_
 Me.Rsa.ToXmlString(True)), Message)
 RaiseEvent MessageReceived(Me, _
 New MessageReceivedEventArgs(Message.MessageBody, Message.SenderAlias))

End Sub

The same technique can be applied to protect any data. For example, you could (and probably should) use it to encrypt messages
exchanged between the client and discovery service.

Chaining Encryption and Signing

The designs of the EncryptedObject and SignedObject classes lend themselves particularly well to being used together. For
example, you can create a signed, encrypted message by wrapping a Message object in an EncryptedObject, and then wrapping
the EncryptedObject in a SignedObject. (You could also do it the other way around, but the encrypt-and-sign approach is
convenient because it allows you to validate the signature before you perform the decryption.)

Figure 11-5 diagrams this process.

Figure 11-5: Encrypting and signing a message

Here's the code you would use to encrypt and sign the message:
Dim Message As New Message(Me.Alias, messageBody)

' Encrypt the message using the recipient's public key.
Dim EncryptedPackage As New EncryptedObject(Message, PeerInfo.PublicKeyXml)

' Sign the message with the sender's private key.
Dim SignedPackage As New SignedObject(Message, Me.Rsa.ToXmlString(True))

Try
 Peer.ReceiveMessage(SignedPackage)
Catch
 ' Ignore connectivity errors.
End Try

The recipient would then validate the signature, deserialize the encrypted object, and then decrypt it:
' Verify the signature.
If Not encryptedPackage.ValidateSignature(PeerInfo.PublicKeyXml) Then
 ' Ignore this message.
Else
 Dim EncryptedMessage As EncryptedObject
 EncryptedMessage = CType(encryptedPackage.GetObjectWithoutSignature, _
 EncryptedObject)

 ' Decrypt the message.
 Dim Message As Message
 Message = CType(EncryptedMessage.DecryptContainedObject(_
 Me.Rsa.ToXmlString(True)), Message)
 RaiseEvent MessageReceived(Me, _
 New MessageReceivedEventArgs(Message.MessageBody, Message.SenderAlias))

End If

Using Session Keys

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There's one other enhancement that you might want to make to this example. As described earlier, asymmetric encryption is
much slower than symmetric encryption. In the simple message-passing example this won't make much of a difference, but if you
need to exchange larger amounts of data it becomes much more important.

In this case, the solution is to use symmetric encryption. However, because both peers won't share a symmetric key, you'll have to
create one dynamically and then encrypt it asymmetrically. The recipient will use its private key to decrypt the symmetric key, and
then use the symmetric key to decrypt the remainder of the message.

This pattern is shown, in abbreviated form, with the following LargeEncryptedObject class. It includes the code used to encrypt the
serializable object, but leaves out the asymmetric encryption logic used to encrypt the dynamic symmetric key for brevity. The
code used for symmetric encryption is much shorter, because it can use a special object called the CryptoStream. The
CryptoStream manages blockwise encryption automatically and can be used to wrap any other .NET stream object. For example,
you can use a CryptoStream to perform automatic encryption before data is sent to a FileStream, or perform automatic decryption
as it is read to memory. In the case of the LargeEncryptedObject, the CryptoStream wraps another memory stream.
<Serializable()> _
Public Class LargeEncryptedObject

 Private SerializedObject As New MemoryStream()
 Private EncryptedDynamicKey() As Byte

 Public Sub New(ByVal objectToEncrypt As Object, ByVal publicKeyXml As String)

 ' Generate the new symmetric key.
 ' In this example, we'll use the Rijndael algorithm.
 Dim Rijn As New RijndaelManaged()
 ' Encrypt the RijndaelManaged.Key and RijndaelManaged.IV properties.
 ' Store the data in the EncryptedDynamicKey member variable.
 ' (Asymmetric encryption code omitted.)

 ' Write the data to a stream that encrypts automatically.
 Dim cs As New CryptoStream(Me.SerializedObject,_
 Rijn.CreateEncryptor(), CryptoStreamMode.Write)

 ' Serialize and encrypt the object in one step using the CryptoStream.
 Dim f As New BinaryFormatter()
 f.Serialize(cs, objectToEncrypt)

 ' Write the final block.
 cs.FlushFinalBlock()

 End Sub

 Public Function DecryptContainedObject(ByVal keyPairXml As String) As Object

 ' Generate the new symmetric key.
 Dim Rijn As New RijndaelManaged()

 ' Decrypt the EncryptedDynamic key member variable, and use it to set
 ' the RijndaelManaged.Key and RijndaelManaged.IV properties.
 ' (Asymmetric decryption code omitted.)

 ' Write the data to a stream that decrypts automatically.
 Dim ms As New MemoryStream()
 Dim cs As New CryptoStream(ms, Rijn.CreateDecryptor(), _
 CryptoStreamMode.Write)

 ' Decrypt the object 1 KB at a time.
 Dim i, BytesRead As Integer
 Dim Bytes(1023) As Byte
 For i = 0 To Me.SerializedObject.Length
 BytesRead = Me.SerializedObject.Read(Bytes, 0, Bytes.Length)
 cs.Write(Bytes, 0, BytesRead)
 Next

 ' Write the final block.
 cs.FlushFinalBlock()
 ' Now deserialize the decrypted memory stream.
 ms.Position = 0
 Dim f As New BinaryFormatter()
 Return f.Deserialize(ms)

 End Function

 ' (Serialize and Deserialize methods omitted.)

End Class

A full description of the .NET cryptography classes and the CryptoStream is beyond the scope of this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
This chapter examined two core security topics. First, we considered how you can use a third party to provide authentication
services to a peer-to-peer application. Second, we looked at how you can implement encryption between peers to protect
sensitive data. Both of these techniques require .NET cryptography classes and some custom code, and they won't ever be as
foolproof as a standard system such as SSL or Kerberos. However, they can add a valuable layer of protection in environments
where these protocols aren't supported. Understanding how to implement this type of security also makes you better prepared to
evaluate the security that's implemented in third-party platforms such as the Intel Peer-to-Peer Accelerator Kit and Groove.

Security is an enormous topic, and there are countless books dedicated exclusively to cryptography and .NET security. Security
isn't just about cryptography, and using cryptography doesn't ensure that your data is safe! Always evaluate your peer-to-peer
applications from an attacker-centric point of view when testing it. And remember, a small amount of validation code can often
dramatically reduce the damage of a successful attack.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12: Working with Messenger and Groove
All of the peer-to-peer applications developed so far in this book have been designed from the ground up, using nothing but built-
in .NET technologies. You need to code the business logic, decide how the interaction of distributed nodes will take place, and
create the network and directory or lookup services. Now, in the last two chapters, we'll consider some new options.

In this chapter, we'll look at how you can create a peer-to-peer application by using an existing peer-to-peer network. You'll learn
how you can create your own application that piggybacks on the popular Windows Messenger network or uses the Groove
platform. Both of these choices are best suited for specialized applications over which you don't need complete control. They also
present some interesting choices. For example, you might want to build a collaborative tool that you can run with a Groove tool or
use the Windows Messenger as a background to send messages that coordinate multiple workers as they process a distributed
task such as the one shown in Chapter 6. We'll also briefly consider some other peer-to-peer development platforms.

Using Windows Messenger
Windows Messenger is a popular protocol for instant messaging between peers. It uses a centralized peer-to-peer model. All
messages are sent through the server using peer-to-server connections, except for file transfer and voice chat.

There are three types of servers involved in the Messenger system:

Dispatch server. This is the initial point of connection. It refers users to the appropriate notification server. The
dispatch server can be found at messenger.hotmail.com on port 1863.

Notification server. This is where the sessions are maintained while users are interacting with the system.

Switchboard server. This server acts as a gateway between users for chat. A new switchboard session is opened
for every chat window in Messenger. All messages are routed through the switchboard, including file transfer and
voice chat invitations.

The actual MSN Messenger protocol is fairly simple. It consists of predefined ASCII messages that are exchanged over a TCP
connection. The latest version of this protocol (MSNP7) is described unofficially by Mike Mintz at
http://www.hypothetic.org/docs/msn. Using the information provided here, in conjunction with the standard .NET TCP classes, you
could connect to a Messenger server, retrieve contacts, send messages, and so on.

Writing this type of application wouldn't be too difficult, but it would involve some detailed study of the Messenger protocol. A
much easier option is to use the MSNP Helper API for .NET, an open-source .NET component that allows you to interact with the
Windows Messenger network almost effortlessly. You can download the MSNP Helper API and documentation and read any
recent news at its SourceForge.net home page, http://msnphelper.sourceforge.net. Documentation is in the form of an HTML Help
class library reference, and the component is included in a single assembly named msnp.dll, which you can reference in your
projects.

Note The MSNP Helper API for .NET doesn't use the MSNP7 protocol. Instead, it uses the somewhat older MSNP2
protocol, which is the only protocol to have been released officially. Presumably, the officially undocumented MSNP7
protocol could change without warning. Neither protocol has any official support.

So why would you want to create a custom program that uses the Messenger network? One reason might just be to access or add
features that wouldn't otherwise be available, such as the ability to send large messages, encrypt messages before they reach the
server, or log the status of users over a long period of time. Or, you might want to create another type of application that isn't
primarily concerned with sending and receiving messages. Some possibilities include the following:

A long-running service that monitors when a user appears or leaves and launches other tasks accordingly.

An automated tool that sends certain types of messages to specified users at specified times.

Some type of task processor that routes business-specific commands through Messenger. In this case, you would
probably define the commands using string constants (much as in Chapter 9).

Microsoft doesn't officially support using the Messenger network in this way. However, it hasn't acted to discourage individual
developers from "reasonable" use that doesn't abuse the system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating a Windows Messenger Client
To learn how to use the MSNP component, it helps to create a simple Messenger client that emulates some of the standard
features found in the Windows Messenger application. As a prerequisite, you should understand how a basic Messenger
interaction works, as described here:

1. You sign in to Messenger with a valid user name and get authenticated.

2. If desired, you retrieve your list of contacts and their statuses.

3. You start a session with one of your Messenger contacts. A session can be thought of as a separate chat
window in the Messenger application. Before you can send messages to any user, either you (or the recipient)
must start a session by opening a chat window. You can also create multiple sessions at once (although our
simple example won't use this feature). Whenever a session is established, the contact list is updated.

4. You send and receive messages through the server switchboard.

5. At some later point, you end the session and sign out.

Figure 12-1 shows the client we'll create to demonstrate the MSNP component. It allows a user to log in, see other contacts, start
a session, and send messages.

Figure 12-1: The custom Messenger client

To create this client, start by creating a new Windows project. Add the reference to the msnp.dll and import the MSNP namespace
if desired.

In order to send and receive messages with the MSNP component, you must create a class that implements the ISessionHandler
interface. As part of this interface, you'll need to implement methods such as MessageReceived() and ErrorReceived(). These
methods will be triggered by the MSNP component in response to messages received from the Messenger network. (A more
typical way to implement this type of design is to use events. However, this approach is equivalent.)

The ISessionHandler interface allows you to receive messages. To send messages, you must create an instance of the
MSNPHelper class. The MSNPHelper class allows you to retrieve contacts, sign in and sign out, and create sessions. Every
session is handled by a separate instance of the Session class. You use the Session class to send messages. Figure 12-2
diagrams this interaction.

Figure 12-2: Interacting with Messenger through the MSNP component

In our simple example, the ISessionHandler interface is implemented directly by the form:
Public Class MessengerForm
 Inherits System.Windows.Forms.Form
 Implements MSNP.ISessionHandler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The form also uses some form-level variables to track the current MSNPHelper and Session objects:
 ' The helper used to sign in and out and retrieve contacts.
 Private Helper As MSNP.MSNPHelper

 ' These variables track the current session as well as the related user.
 Private CurrentSessionUser As String
 Private CurrentSession As MSNP.Session

When the form loads, it signs in to a new Messenger session. The user e-mail address and password are hard-coded to facilitate
testing, but you could easily add a login window. The IP address is retrieved for the dispatch server using the System.Net.Dns
class.
Private Sub MessengerForm_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ' Retrieve the IP address for the messenger server.
 Dim IP As String
 IP = System.Net.Dns.GetHostByName(_
 "messenger.hotmail.com").AddressList(0).ToString()

 ' For simplicity's sake, a test user is hard-coded.
 ' Note that that communication is always performed on port 1863.
 Helper = New MSNP.MSNPHelper(IP, 1863, "mymsgtest@hotmail.com", _
 "letmein", Me)

 ' SignIn with the supplied information.
 ' This method blocks until the sign operation is complete.
 ' An invalid user or password may simply stall the application without
 ' generating an error, so you may want to execute this method asynchronously.
 Helper.Signin()

 Me.RefreshContactList()
End Sub

Note Although the MSNPHelper requires that you supply the password in clear text, this password is never transmitted over
the network. Instead, the password is hashed using the MD5 hashing algorithm and a value supplied by the server. For
more information, refer to the detailed description of the underlying protocol at
http://www.hypothetic.org/docs/msn/connecting.php.

When you create the MSNPHelper you supply the login information, the IP address and port to use, and an ISessionHandler
object. In this example, the current form implements the ISessionHandler, so we pass that as a reference.

The next step is to call the form-level RefreshContactList() subroutine, which retrieves contact information and uses it to fill a
ListView control:
Private Sub RefreshContactList()

 ' Fill the contact list.
 Dim Item As ListViewItem
 Dim Peer As MSNP.Contact
 For Each Peer In Me.Helper.FLContacts
 Item = lstContacts.Items.Add(Peer.FriendlyName)
 Item.SubItems.Add(Peer.State.ToString())
 Item.SubItems.Add(Peer.Substate.ToString())
 Item.SubItems.Add(Peer.UserName)
 Next

End Sub

This method is also called by the ISessionHandler UserJoined() and UserDeparted() methods. However, in this case the method
won't execute on the main application thread, so the call must be marshaled using the Control.Invoke() method.
Public Sub UserDeparted(ByVal session As MSNP.Session, _
 ByVal userHandle As String) Implements MSNP.ISessionHandler.UserDeparted

 ' Refresh the contact list.
 Dim Invoker As New MethodInvoker(AddressOf Me.RefreshContactList)
 Me.Invoke(Invoker)

End Sub

Public Sub UserJoined(ByVal session As MSNP.Session, _
 ByVal userHandle As String, ByVal userFriendlyName As String) _
 Implements MSNP.ISessionHandler.UserJoined

 ' Refresh the contact list.
 Dim Invoker As New MethodInvoker(AddressOf Me.RefreshContactList)
 Me.Invoke(Invoker)

End Sub

Note that if the user's friendly name is different from his or her e-mail address, multiple entries may appear for the user in the
contact list (you may have also noticed this phenomenon if you use the Microsoft Outlook Express Hotmail integration). You can
use additional code to ignore entries with duplicate UserName values.

Nothing else happens until a user starts a session, or a session is started when another user sends a message. The user can
start a session by selecting a user in the contact list and clicking the Create Session button. The button event handler uses the
MSNPHelper.RequestSession() method, which returns immediately. The MSNP component will continue trying to establish the
session for a maximum of about 30 seconds.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub cmdStartSession_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdStartSession.Click

 If Not Me.CurrentSession Is Nothing Then
 MessageBox.Show("There is already a current session.")
 Return

 Else
 If lstContacts.SelectedIndices.Count = 0 Then
 MessageBox.Show("No user is selected.")
 Return
 Else
 Dim Contact As String
 Contact = lstContacts.Items(_
 lstContacts.SelectedIndices(0)).SubItems(3).Text
 Helper.RequestSession(Contact, Guid.NewGuid())

 End If
 End If

End Sub

Note that every session requires an identifier that's generated by the client and is unique within the application. Our custom client
simply creates a new GUID.

If the session is successfully established, the ISessionHandler.Session Started() method will be triggered. In our example, the
method handler simply updates the form with the retrieved session ID and stores the session object in a member variable for use
when sending messages later on. In addition, the ISessionHandler.SessionEnded() method removes these details.

Public Sub SessionStarted(ByVal session As MSNP.Session) _
 Implements MSNP.ISessionHandler.SessionStarted

 Dim Updater As New UpdateControlText(lblSession)
 Updater.ReplaceText(session.SessionIdentifier.ToString())
 Me.CurrentSession = session

End Sub

Public Sub SessionEnded(ByVal session As MSNP.Session) _
 Implements MSNP.ISessionHandler.SessionEnded

 ' Don't try to update the form if it's in the process of closing.
 If Not IsClosing Then
 Dim Updater As New UpdateControlText(lblSession)
 Updater.ReplaceText("")
 End If
 Me.CurrentSession = Nothing

End Sub

This code uses the UpdateControlText class, which can update the Text property of any control on the correct thread. This useful
class is shown here:
Public Class UpdateControlText

 Private NewText As String
 Private ControlToUpdate As Control

 Public Sub New(ByVal controlToUpdate As Control)
 Me.ControlToUpdate = controlToUpdate
 End Sub

 Public Sub AddText(ByVal newText As String)
 SyncLock Me
 Me.NewText = newText
 Dim Invoker As New MethodInvoker(AddressOf AddText)
 Me.ControlToUpdate.Invoke(Invoker)
 End SyncLock
 End Sub

 ' This method executes on the user-interface thread.
 Private Sub AddText()
 Me.ControlToUpdate.Text &= NewText
 End Sub

 Public Sub ReplaceText(ByVal newText As String)
 SyncLock Me
 Me.NewText = newText
 Dim Invoker As New MethodInvoker(AddressOf ReplaceText)
 Me.ControlToUpdate.Invoke(Invoker)
 End SyncLock
 End Sub

 ' This method executes on the user-interface thread.
 Private Sub ReplaceText()
 Me.ControlToUpdate.Text = NewText
 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

Now that a session is established, the client can send messages by clicking the Send button. The button event handler checks
that there's a current session and uses the Session.SendMessage() method.
Private Sub cmdSend_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdSend.Click

 If Me.CurrentSession Is Nothing Then
 MessageBox.Show("There is no current session.")
 Return
 Else
 Me.CurrentSession.SendMessage(txtSend.Text)
 Dim NewText As String
 NewText = "SENT: " & txtSend.Text
 NewText &= Environment.NewLine & Environment.NewLine
 txtMessages.Text &= NewText
 End If

End Sub

Messages are received through the ISessionHandler.MessageReceived() method. Blank messages are ignored, because they're
used to indicate that the user has started typing, thereby allowing you to display the "User is typing a message" status message in
your application.
Public Sub MessageReceived(ByVal session As MSNP.Session, _
 ByVal message As MSNP.MimeMessage) _
 Implements MSNP.ISessionHandler.MessageReceived

 ' Add text.
 If message.Body <> "" Then
 Dim Updater As New UpdateControlText(txtMessages)
 Dim NewText As String
 NewText = "FROM: " & message.SenderFriendlyName
 NewText &= Environment.NewLine
 NewText &= "RECEIVED: " & message.Body
 NewText &= Environment.NewLine & Environment.NewLine
 Updater.AddText(NewText)
 End If
End Sub

Finally, when the form closes, it signs the user out of Windows Messenger.
Private Sub MessengerForm_Closed(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Closed

 If Not Me.CurrentSession Is Nothing Then
 Me.CurrentSession.EndSession()
 End If
 Helper.Signout()

End Sub

Figure 12-3 shows the interaction of two Windows Messenger peers, one of which uses the custom client.

Figure 12-3: Interaction with the custom Messenger

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Understanding the Groove Platform
Groove is a remarkable platform for building collaborative peer-to-peer applications. It's the invention of Lotus Notes creator Ray
Ozzie, it's partly owned by Microsoft, and it can integrate with COM and .NET applications.

The core concept behind Groove is shared spaces, where multiple users work on a single task. Examples of shared spaces
include a chat window, or a shared white-board or calendar. Each user interacts with the shared space on his or her local
computer, and changes are seamlessly applied to all other users in the shared space. The basic Groove Workspace includes
tools that allow users to jointly edit Word documents, view PowerPoint slides, surf Internet pages, share files, chat, and more.

All of these tools run inside the Groove transceiver. It's through the Groove transceiver that you log in, see who else is online,
create a new shared space, and invite users to join you in a shared space. A shared space (see Figure 12-4) can include a single
Groove tool (like chat) or it can combine more than one Groove tool (for example, if you want to create a synchronized discussion,
calendar, and document review session). The important point to remember is that it's the Groove infrastructure that synchronizes
changes with all the subscribed users.

Figure 12-4: A sample Groove shared space in the transceiver

The Groove infrastructure also adds the following benefits that aren't as easy to incorporate into your custom peer-to-peer
applications:

Security. Groove uses encryption to protect data on the wire, digital finger-prints (essentially a GUID) to uniquely
track users, and digital signatures to verify that messages aren't tampered with and users aren't impersonated.

Firewall traversal. Groove uses its own proprietary central server components that solve firewall and network
address translation (NAT) problems. (Incidentally, you can host your own Groove Enterprise server for a significant
fee.)

Offline support. Groove synchronization can automatically update clients when they come online, thereby allowing
your application to work even in the face of variable network connectivity.

But Groove isn't just a collection of typical peer-to-peer collaborative tools. It's also a framework that allows you to create your own
tools and add them to shared spaces. In this case, the goal is to make creating a Groove tool nearly as easy as creating a stand-
alone Windows application, so that the developer doesn't need to worry about security, synchronization, networking, and so on.
Groove even provides a Visual Studio .NET add-in that makes this process relatively easy. You'll still need to learn the Groove
toolset object model and its deployment and configuration system (particularly if you want to develop more advanced tools), but
you won't need to overcome the same challenges as you would if you were writing a collaborative application from scratch.

Groove provides a .NET developer hub at http://www.groove.net/developers/dotnet. Using this link, you can download the Groove
2.1 Workspace, the Groove toolkit for Visual Studio .NET, and a more generic Groove development kit with samples. You can
also read whitepapers and other documentation about developing with Groove. Groove Networks was one of the first
organizations to become a Visual Studio .NET Integration Partner (VSIP), and both Groove and Microsoft are committed to
collaborating in the future and extending their tools together into the world of collaborative peer-to-peer.

From a business point of view, the only downside to using Groove is that it isn't free. You can use the scaled-down trial version to
test your custom tools, but you need to purchase the full version to access advanced features and use automated deployment.
You can find information about purchasing Groove at http://www.groove.net/products/workspace/starterkit-smb.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating a Simple Groove Application
Once you've installed the Groove toolkit for Visual Studio .NET, you'll be able to directly create a Groove project. Simply select
Groove Tool Projects Groove Tool in VB .NET from the Create Project window (see Figure 12-5).

Figure 12-5: Creating a Groove project

Groove projects resemble user controls. They have a Windows design surface, but no form border (because they're hosted in the
transceiver). You can code any valid VB .NET code in a Groove project, including code that interacts with a web service, reads
from a database, launches new threads, opens new windows, and so on.

Figure 12-6 shows the contents of a simple Groove project and its assembly references.

Figure 12-6: The contents of a Groove project

Note Behind the scenes, the Groove toolkit makes heavy use of .NET-to-COM interoperability. It uses runtime callable
wrappers (RCW) to make its COM library of components available to your .NET applications, and COM callable
wrappers (CCW) to wrap your .NET Groove tools so they can be hosted in the unmanaged Groove transceiver. You
won't need to deal with this layer of interoperability directly.

The Groove Designer Code

If you look at the auto-generated code for the default Groove user control, you'll see three collapsed regions with Groove code.
The first ("Groove member variables") defines two form-level variables:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private WithEvents propertyList As GroovePropertyList
Private WithEvents recordSetEngine As GrooveRecordSetEngine

The propertyList variable is used to access a small amount of tool-specific information (such as the tool name and assembly). The
recordSetEngine variable is used to access data that will be synchronized across all users in the shared space.

Both the property list and record set rely on Groove's persistence engines. Groove provides four persistence engines:

PropertyListEngine. This models data as a series of name and value pairs. You can store any basic type of data
(numeric, string, and so on). Property lists are used extensively by Groove to provide information about the
environment.

RecordSetEngine. This models a set of records. Each record is divided into multiple fields that can use basic data
types such as strings and numbers as well as XML elements. A record set can include many different types of
records. This is the most commonly used Groove persistence engine for storing data in a custom tool.

HierarchicalRecordSetEngine. This is similar to the RecordSetEngine, except that it allows you to organize different
record sets into a tree-like hierarchy.

DocumentShareEngine. This engine allows you to share files in a distributed space.

In this example, we'll use the RecordSetEngine to manage shared data. To change data, the application opens a
RecordSetEngine transaction and makes the desired changes. The RecordSetEngine then replicates the changes over all the
peers in the shared space, using encryption. The change then appears in each local copy of the tool as a RecordSetEngine event.
The tool responds to this event and updates the local display accordingly. Figure 12-7 diagrams this arrangement.

Figure 12-7: Synchronization in a Groove shared space

Continuing our exploration of the designer code, you'll find a collapsed region named "IGrooveComponent default
implementation." It includes a basic implementation of the IGrooveComponent interface, including an Initialize() subroutine that
retrieves the property list and some basic information from the Groove environment:
' Common Groove property names.
Private Const CommonPropertyName = "Name"
Private Const CommonPropertyBindableURL = "_BindableURL"
Private Const CommonPropertyCanonicalURL = "_CanonicalURL"
Private Const RecordSetEngineConnection = 0
' Cached Groove property values.
Private componentName As String
Private componentBindableURL As String
Private componentCanonicalURL As String

Public Sub Initialize(ByVal propertyListInterop _
 As Groove.Interop.Components.IGroovePropertyList) _
 Implements Groove.Interop.Components.IGrooveComponent.Initialize

 ' Create the property list wrapper object.
 propertyList = new GroovePropertyList(propertyListInterop)

 componentBindableURL = _
 propertyList.OpenPropertyAsString(CommonPropertyBindableURL)
 componentCanonicalURL = _
 propertyList.OpenPropertyAsString(CommonPropertyCanonicalURL)

 ' This is a GUID that uniquely identifies the tool.
 componentName = propertyList.OpenPropertyAsString(CommonPropertyName)

End Sub

This information is made available through several property procedures that also implement the IGrooveComponent interface:
Public ReadOnly Property BindableURL() As String _
 Implements Groove.Interop.Components.IGrooveComponent.BindableURL
 Get
 Return componentBindableURL
 End Get
End Property

Public ReadOnly Property CanonicalURL() As String _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public ReadOnly Property CanonicalURL() As String _
 Implements Groove.Interop.Components.IGrooveComponent.CanonicalURL
 Get
 Return componentCanonicalURL
 End Get
End Property

Public Function OpenName() As String _
 Implements Groove.Interop.Components.IGrooveComponent.OpenName
 Return componentName
End Function

Finally, the component includes code to create a new RecordSetEngine instance, and disposes of it when the application ends.
This manual dispose step is used because the RecordSetEngine is actually a wrapper for a COM component, and therefore it
holds unmanaged resources.
Public Sub ConnectToComponent(ByVal componentInterop As _
 Groove.Interop.Components.IGrooveComponent, ByVal connectionID As Integer) _
 Implements Groove.Interop.Components.IGrooveComponent.ConnectToComponent

 Select Case connectionID
 Case RecordSetEngineConnection
 ' Create the recordSetEngine wrapper object.
 Dim recordSetEngineInterop As _
 Groove.Interop.CollectionComponents.IGrooveRecordSetEngine
 recordSetEngineInterop = componentInterop
 recordSetEngine = New GrooveRecordSetEngine(recordSetEngineInterop)
 End Select

End Sub

Public Sub UnconnectFromComponents() _
 Implements Groove.Interop.Components.IGrooveComponent.UnconnectFromComponents
 recordSetEngine.Dispose()
End Sub

Public Sub Terminate() _
 Implements Groove.Interop.Components.IGrooveComponent.Terminate
 propertyList.Dispose()
End Sub

The third and final designer region is used to hold a default implementation of the RecordSetChanged event handler:
Private Sub OnRecordSetChanged(ByVal sender As GrooveRecordSetEngine, _
 ByVal e As GrooveRecordSetListenerEventArgs) _
 Handles recordSetEngine.RecordSetChangedEvent

 ' (By default, no code is included.)

End Sub

The Groove Application Logic

The next step is to use this basic framework to add some application-specific logic. At a minimum, a Groove tool allows the user to
create and manage some information and responds when this information is changed by updating the display accordingly.

Our simple example is a collaborative party planner. It displays a list of food items that are being brought to the party by various
individuals. Any individual in the shared space can add or remove items from this list. The interface (shown in Figure 12-8)
includes a ListView and two buttons, one for removing items and one for adding them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12-8: A custom Groove tool with a shared list

Tip Remember to anchor your controls to the sides of the user control container so they can adapt to fit the space allocated
to them in the Groove transceiver.You can also improve your interfaces with docking and splitter bars and other niceties.

When a user clicks the Add button, the item information is read from the text boxes, added to a new Groove record, and then
inserted into the Groove record set.

Private Sub cmdAdd_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdAdd.Click

 ' Verify the item information is present.
 If txtItem.Text = "" Or txtBroughtBy.Text = "" Then
 MessageBox.Show("Enter your name and the item name.")
 Return
 End If

 ' Create a new record to add to the Groove record set.
 Dim Record As New GrooveRecord()

 Try
 ' Set the new field values.
 Record.SetField("Item", txtItem.Text)
 Record.SetField("BroughtBy", txtBroughtBy.Text)

 ' Add the record.
 Me.recordSetEngine.AddRecord(Record)

 Finally
 ' Explicitly release the unmanaged resources held by the record.
 Record.Dispose()
 End Try

End Sub

Note that this code does not actually modify the ListView control—it only changes the Groove record set. The local peer must
respond, like all peers in the shared space, to the RecordSetChanged event in order to update the ListView. At this point, the peer
reads the information from the record (along with the record ID that's assigned by Groove to uniquely identify this record) and
inserts a new ListViewItem. Individual values are read using Record.OpenFieldAsString() method.
Private Sub OnRecordSetChanged(ByVal sender As GrooveRecordSetEngine, _
 ByVal e As GrooveRecordSetListenerEventArgs) _
 Handles recordSetEngine.RecordSetChangedEvent

 Dim RecordID As Double
 Dim Record As IGrooveRecord
 ' The ToolHelper is used to start a new transaction.
 ' This prevents the data from changing while the display is being updated.
 Dim ToolHelper As New GrooveToolHelper(Me.propertyList)
 ToolHelper.StartTelespaceTransaction(True)

 Try
 ' Determine the type of change.
 Select Case e.RecordSetChangeType

 Case GrooveRecordSetChangeType.GrooveRecordSetChangeType_Added

 ' The record set contains one or more items to be added.
 Do While e.RecordIDEnum.HasMore()
 RecordID = e.RecordIDEnum.OpenNext()
 If recordSetEngine.HasRecord(RecordID) Then

 Record = recordSetEngine.OpenRecord(RecordID)
 Dim Item As New ListViewItem(_
 Record.OpenFieldAsString("Item"))
 Item.SubItems.Add(Record.OpenFieldAsString(_
 "BroughtBy"))
 lstItems.Items.Add(Item)

 ' Store the unique record ID.
 item.Tag = RecordID

 ' Explicitly release the record.
 Record.Dispose()
 End If
 Loop

 ' (The code for other types of changes is omitted.)
 Catch Err As Exception
 ' Abort transaction.
 ToolHelper.AbortTelespaceTransaction()
 MessageBox.Show(Err.Message)

 End Try

End Sub

The Remove button uses similar logic. It verifies that an item is selected, starts a transaction, and removes it from the record set.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub cmdRemove_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdRemove.Click

 If lstItems.FocusedItem Is Nothing Then
 MessageBox.Show("No item selected.")

 Else
 ' Get the unique record ID.
 Dim RecordID As Double = CType(lstItems.FocusedItem.Tag, Double)

 ' Open a transaction on the telespace to prevent data from
 ' changing out from under us.
 Dim ToolHelper As New GrooveToolHelper(Me.propertyList)
 ToolHelper.StartTelespaceTransaction(False)

 Try
 ' Remove the record.
 Me.recordSetEngine.RemoveRecord(RecordID)
 ToolHelper.CommitTelespaceTransaction()

 Catch Err As Exception
 ToolHelper.AbortTelespaceTransaction()
 MessageBox.Show(Err.Message)

 End Try
 End If

End Sub

Once again, the code reacts to the RecordSetChanged event and uses this opportunity to update the ListView. This time, the
code loops through the ListView items until it finds one that matches the unique record ID.
Case GrooveRecordSetChangeType.GrooveRecordSetChangeType_Removed

 ' RecordSet contains one or more items to be removed.
 Do While e.RecordIDEnum.HasMore()
 RecordID = e.RecordIDEnum.OpenNext()

 ' Check the ListView for this item.
 Dim Item As ListViewItem
 For Each Item In lstItems.Items
 If CType(Item.Tag, Double) = RecordID Then
 lstItems.Items.Remove(item)
 End If
 Next
 Loop

This is all the custom code you need to add. The next step is to test the custom Groove tool in the transceiver.

Debugging a Groove Application

The Groove toolkit allows you to debug your Groove application inside Visual Studio .NET. When you run your Groove project, a
special instance of the transceiver will appear with your tool loaded in a new shared space. You can interact with the tool and even
set breakpoints or use variable watches in your code. When you close the transceiver, the debugging session will end and you
can continue to edit your code.

Figure 12-9 shows the party planner running in Groove.

Figure 12-9: Running the custom tool in the Groove transceiver

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note In order to debug your tool, Groove cannot already be running. If it is, shut it down before starting your project.

Even in a single user environment, you can test all of your code. That's because all peers respond to changes in the exact same
way, including the peer that originates the change. For example, in the party planner example, the ListView control isn't updated
until the Groove infrastructure notifies the application that the record set has been altered. This is the same process that will
happen with any other users working in the same shared space.

For a more detailed multiuser test, you'll need to compile your project, create the Groove XML files that describe it, sign it, and
then inject it into the Groove Workspace. This is outside the scope of this book, although it's well-explained in the Groove toolkit
documentation.

Enhancing the Groove Application

The current party application treats all peers equivalently. However, in a real peer-to-peer application you almost always want
some ability to track user identities and possibly assign different sets of abilities to different types of users. This type of design is
possible with Groove's rich class library—provided you know where to work.

The first step is to import some additional Groove assemblies that you'll need to use to add the identity features. These include
Groove.Interop.Account Services, Groove.Interop.IdentityServices, and Groove.Interop.ContactServices, as shown in Figure 12-
10. All of these assemblies can be added directly from the global assembly cache.

Figure 12-10: Groove assemblies for identity management

Using the property list information provided in the Groove environment, you can retrieve two types of information:

Identity information for the user who created the shared space. This user might be given some sort of administrator-
like privileges.

Identity information about the current user. This can be used to log changes accurately and even restrict what
operations a user is allowed to perform.

Groove provides several identity-related interfaces, as shown in Figure 12-11. One of the most import is IGrooveIdentity, which
allows you to uniquely identify users. Other important interfaces include IGrooveVCard and IGrooveIdentification. IGrooveVCard
returns information about the user-specific VCard, which is the Groove equivalent of a digital certificate. The IGrooveIdentification
returns a specific subset of VCard information such as the user name, organization, and so on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12-11: Groove identity interfaces

Here's how you might retrieve identity information when the shared space is first initialized. In this case, the code retrieves the
unique URL identifier for both users and stores them in form-level variables. It also presets the txtBoughtBy text box with the
user's name and displays the shared space owner information.
' Track unique identifiers that indicate who created the
' shared space and who is currently using it.
Private UserUrl As String
Private CreatorUrl As String

Private Sub GrooveUserControl_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ' Define some basic Groove identity interfaces.
 Dim Account As Groove.Interop.AccountServices.IGrooveAccount
 Dim Identity As Groove.Interop.IdentityServices.IGrooveIdentity
 Dim Contact As Groove.Interop.ContactServices.IGrooveContact
 Dim VCard As Groove.Interop.ContactServices.IGrooveVCard
 Dim Identification As Groove.Interop.ContactServices.IGrooveIdentification

 ' Retrieve the identity information for the shared space creator.
 Account = CType(Me.propertyList.OpenProperty("_Account"), _
 Groove.Interop.AccountServices.IGrooveAccount)
 Identity = Account.DefaultIdentity
 Me.CreatorUrl = Identity.URL
 Contact = Identity.Contact
 VCard = Contact.OpenVCard()
 Identification = VCard.OpenIdentification()

 ' Display this identity in the window.
 lblCreator.Text = "Space hosted by: " & Identification.OpenFullName()

 ' Retrieve the identify information for the current user.
 Identity = CType(Me.propertyList.OpenProperty("_CurrentIdentity"), _
 Groove.Interop.IdentityServices.IGrooveIdentity)
 Me.UserUrl = Identity.URL
 Contact = Identity.Contact
 VCard = Contact.OpenVCard()
 Identification = VCard.OpenIdentification()

 ' Pre-fill in the txtBroughtBy textbox.
 txtBroughtBy.Text = Identification.OpenFullName()

End Sub

Now you can add some useful identity integrity features. First of all, you can make the txtBroughtBy textbox read-only, and you
can add the user URL information to the record set and ListView. This way, you'll be assured that the user offering to bring a party
item is who he or she claims to be.

Here's the updated code for adding new entries:
' Set the new field values.
Record.SetField("Item", txtItem.Text)
Record.SetField("BroughtBy", txtBroughtBy.Text)
Record.SetField("UserURL", Me.UserUrl)

And here's the code that responds to the change and inserts the new ListViewItem:
Record = recordSetEngine.OpenRecord(RecordID)

Dim Item As New ListViewItem(Record.OpenFieldAsString("Item"))
Item.SubItems.Add(Record.OpenFieldAsString("BroughtBy"))
Item.SubItems.Add(Record.OpenFieldAsString("UserURL"))
lstItems.Items.Add(Item)

' Store the unique record ID.
item.Tag = RecordID

Next, you can tweak the code for removing items so that items can't be removed unless the removing user is the user who added
the item originally.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub cmdRemove_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdRemove.Click

 If lstItems.FocusedItem Is Nothing Then
 MessageBox.Show("No item selected.")
 ElseIf lstItems.FocusedItem.SubItems(2).Text <> Me.UserUrl Then
 MessageBox.Show("You did not add this item.")
 Else
 ' (Code omitted.)
 End If
End Sub

Figure 12-12 shows the revamped Groove tool in action.

Figure 12-12: A Groove tool that recognizes identities

This only scratches the surface of some of Groove's more advanced features. For more information, refer to the Groove developer
documentation. Keep in mind, however, that the Groove toolkit for Visual Studio .NET is still considered to be a preview of new
Groove technology. It will likely change as the COM interoperability code is replaced with native .NET solutions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other Peer-to-Peer Platforms
In the future, most programmers who want to write peer-to-peer applications will use a third-party platform rather than creating the
infrastructure from scratch. The two platforms shown in this chapter are useful choices, but they won't meet the needs of all
developers. Windows Messenger is primarily suited for small-scale implementations, particularly when adding peer-to-peer
messaging to an existing application. Groove is a more comprehensive platform that's well suited to creating all types of
collaborative applications. In this section, we'll consider two other choices.

Gnutella

Windows Messenger isn't the only instant-messaging platform—AOL provides a similar product, as does the pioneer, ICQ. It's
possible to use these protocols, and there are some open-source projects dedicated to the task, but there are currently no .NET
components that make it easy. Thus, if you want to use these other platforms, you need to study the platform and write a
significant amount of custom code with .NET's networking classes.

The same is true of Gnutella, the fully decentralized protocol used for file sharing. There is a decentralized set of Java classes
(known as JTella and available at http://jtella.sourceforge.net) that provides this functionality for Java applications, but there is
currently no .NET equivalent, although there are several in-progress projects on SourceForge.net and at least one attempt to port
the JTella logic to C#.

In addition, for the truly ambitious, information about the Gnutella protocol can be found at http://rfc-gnutella.sourceforge.net and
various other locations on the Internet. There is currently one Gnutella client totally implemented on the .NET platform using C#
code. It's Swapper.NET by Jason Thomas, which is available for download (in compiled form only) at
http://www.revolutionarystuff.com/swapper.

DirectPlay

Microsoft's DirectX includes DirectPlay, a technology that's designed with peer-to-peer game play in mind. DirectPlay can be used
in a server-based or pure peer-to-peer environment. Either way, it plays the same role: completely managing network
communication and data exchange. Generally, a developer will use DirectPlay to keep multiple peers synchronized in a
multiplayer game, although the technology is impressive enough that it could conceivably be incorporated into a variety of different
application types.

Some of the features that DirectPlay offers include group management (registration and deregistration of users), bandwidth
management that allows large amounts of data to be exchanged without introducing problems, and connection statistics.
DirectPlay also includes a variety of message services, such as guaranteed delivery and guaranteed sequencing, both of which
are optional. DirectPlay even includes a related API named DirectPlay voice, which is fine-tuned for real-time voice communication
between players.

To learn about DirectPlay, you can download the full DirectX 9.0 SDK for .NET from http://msdn.microsoft.com/library/default.asp?
url=/downloads/list/directx.asp. You can also refer to .NET Game Programming with DirectX 9.0 (Apress 2003), which includes a
full chapter on the subject.

Windows Peer-to-Peer Networking

It may be that the infrastructure for peer-to-peer systems won't be built-in to the next generation of programming toolkits, but
rather into the next generation of Windows. Microsoft has recently released a peer-to-peer upgrade for Windows XP that adds
decentralized peer connectivity features, and a peer-to-peer SDK with examples (currently all in unmanaged code). To download
the update and the SDK, visit http://msdn.microsoft.com/library/default.asp?url=/downloads/list/winxppeer.asp.

However, there's one huge limitation: These technologies rely in large part on the next generation of Internet addressing
technology, IPv6. Even though there are facilities to "work through" NATs based on IPv4, the solution is far from complete, and it
will be some time before it matures into a practical platform for building applications. But you can get a head start on this emerging
field by referring to Microsoft's peer-to-peer networking home page, http://www.microsoft.com/windowsxp/p2p.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
This chapter looked at the shortcuts you can use to create certain types of peer-to-peer applications by working with existing peer-
to-peer networks. The first choice, using Windows Messenger, provides a reliable communication infrastructure that could support
your own custom business processes and clients. The second option, using Groove, allows you to develop a rich set of
collaborative tools with a full-featured toolset, although it requires a user license.

In the next chapter, we'll consider a free peer-to-peer framework that extends the Remoting infrastructure included with .NET: the
Intel Peer-to-Peer Accelerator Kit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13: The Intel Peer-to-Peer Accelerator Kit

Overview
Over the last twelve chapters we've considered a variety of peer-to-peer applications implemented on technologies such as
Remoting, web services, and the .NET networking classes. Some used central coordinators while others relied on a simple
discovery service. All of them required a substantial amount of custom programming, and they'll experience significant problems
when faced with issues such as network address translation (NAT) and firewalls.

What if there was a way to avoid the work of infrastructure programming and only worry about coding application-specific logic?
As shown in the last chapter, you can create collaborative applications that piggyback on Windows Messenger and Groove, but
the former is limited in scope while the latter forces you to buy a specific product. An ideal solution would be a generic peer-to-
peer programming platform, on top of which developers could create a wide variety of distributed applications.

If you're hoping that this chapter will present that ideal peer-to-peer platform, then you'll be at least somewhat disappointed. Intel's
Peer-to-Peer Accelerator Kit is only a beginning, and it's still too early to determine whether this software will fall by the wayside or
mature into a powerful, widely accepted platform. In the meantime, you have to choose between coding peer-to-peer applications
the hard way or investing some time in learning an ambitious new component with an uncertain future.

This chapter introduces the Intel Peer-to-Peer Accelerator Kit and discusses its architecture. You'll learn how to modify the Talk
.NET messaging application to use the toolkit and analyze the basic samples that Intel includes to see how they resemble, and
differ from, the projects developed in this book.

Note As this book goes to print, the Intel Peer-to-Peer Accelerator Kit is no longer available from the Microsoft-supported
GotDotNet website (http://www.gotdotnet.com).Whether this represents the end of the Intel Peer-to-Peer Accelerator
Kit or the start of another toolkit is still uncertain. However, no matter what its ultimate fate will be, you can still use
version 1.0 of the Peer-to-Peer Accelerator Kit to create peer-to-peer applications, and you can study the toolkit to
learn more about peer-to-peer programming in general.You can even use the Intel Peer-to-Peer Accelerator Kit source
code (provided in C#) when crafting your own peer-to-peer applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

About the Intel Peer-to-Peer Accelerator Kit
The goal of the Intel Peer-to-Peer Accelerator Kit is to promote the adoption of peer-to-peer designs by providing a set of easy-to-
use peer-to-peer enhancements for .NET applications. These enhancements are built on top of the .NET Framework. They
include

A set of messaging enhancements that use SOAP and HTTP to transport data on a network. The messaging
enhancements are designed to increase reliability, availability, and security in a peer-to-peer application.

Extensions to .NET that allow you to use the messaging enhancements with Remoting and other network classes.

A peer-to-peer daemon (a long-running Windows service) that runs on each peer and facilitates the messaging
enhancements features. If you develop multiple peer-to-peer applications with the Intel toolkit, they'll all share the
same local service.

Use of a web service for peer discovery. The operation of the web service is completely transparent; you simply
host it and configure the clients to be able to locate the server. They'll form peer lookups as required.

An application-level FileCopy API that you can use to transfer files between peers.

Out of this feature set, the last point (the FileCopy API) is probably the least impressive. Although it saves some custom coding
work if you need to create a file sharing application, it roughly parallels the type of file transfer approach you would be able to
create on your own without too much effort (as described in Chapter 9). The messaging enhancements contain the most useful
functionality in the Peer-to-Peer Accelerator Kit, including enhancements that allow you to use Secure Sockets Layer (SSL)
automatically, and cross firewall boundaries.

Currently, there are no other .NET products that compete with Intel's Peer-to-Peer Accelerator Kit. Other peer-to-peer platforms
exist (notably JXTA, which is usually applied to Java development), but none have a .NET-specific implementation at the time of
this writing. For more information about JXTA and to see how its architecture compares to Intel's toolkit, you may want to consider
Brendon Wilson's excellent website, which provides a complete JXTA book from New Riders in PDF format. This material is ideal
for getting acquainted with a different platform—check it out at http://www.brendonwilson.com/projects/jxta.

The Messaging Enhancements

The messaging enhancements are the most compelling part of the Intel Peer-to-Peer Accelerator Kit. They include the following:

Store-and-forward. If this is enabled and you attempt to send a one-way message to a peer that appears to be
offline, the message will be cached locally and delivery will be attempted later.

Tunnel and relay. This feature allows two peers to communicate over a firewall by sending messages through a
relay service.

SSL. As you saw in Chapter 11, it's not possible to use SSL certificate authentication and encryption directly from a
peer-to-peer application. Intel's Peer-to-Peer Accelerator Kit solves this problem (with the use of some intensive
C++ plumbing).

The messaging enhancements are designed so that they can be easily enhanced in the future. For example, Intel documentation
references different methods of firewall traversal such as UPnP NAT and the SOCKS Protocol, which would allow for more flexible
handling of peer connectivity. Unfortunately, these solutions aren't implemented in the current (version 1.0) release.

The Intel Peer-to-Peer Daemon

The core piece of technology in the Intel Peer-to-Peer Accelerator Kit is a special Windows service that runs on every peer and
handles all communication between computers. This service (shown in Figure 13-1) loads at startup and runs transparently in the
background. It acts as a container for all the peer-to-peer services.

Figure 13-1: The Intel Peer-to-Peer daemon service

The peer service performs the following tasks:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It listens for incoming messages and then delivers them to the appropriate application object (in conjunction with the
.NET Remoting infrastructure). This is its most important responsibility.

It coordinates peer discovery. It automatically submits peer information to the configured discovery service so that a
particular application doesn't need to call a Register() or Login() method.

When delivering messages, it looks up peer location information from the discovery service as required. It also
maintains a local cache of peer location information (much as in the Chapter 10 example).

It encrypts and decrypts messages in secure sessions.

It stores messages for later delivery if store-and-forward is enabled.

It sets up a connection with a configured relay server and uses it to avoid firewall or NAT problems. In addition, if
configured as a relay server, it routes messages between peers that cannot communicate directly.

It tracks the list of published files (much as in the Chapter 9 example).

Figure 13-2 shows the how the architecture works in a typical application scenario.

Figure 13-2: Sending a message from one peer to another

Note You can configure the behavior of the peer service by modifying the settings in its configuration file.We'll cover this
topic in detail later in this chapter.

Peer-to-Peer URLs and Remoting

The peer service works by mapping peer URLs to Remoting endpoints. In other words, your application works in terms of abstract
peer-to-peer endpoints. These endpoints include information about the remote computer and the remote object and indicate
additional information such as whether or not the message should be encrypted before it's sent. The peer-to-peer service
translates the peer-to-peer endpoint into that actual Remoting endpoint, and it handles the additional steps that may be required
to bypass a firewall or create a secure session, and so on.

So far, you've become well-acquainted with the URL format used by .NET Remoting. It starts with the prefix tcp or http (depending
on the protocol used for communication) and indicates the remote application and object. Here's an example:
tcp://localhost:8000/RemoteObject

URLs with the Intel Peer-to-Peer Accelerator look quite a bit different. They start with the prefix peer, which indicates that the
message must be handled by the Intel messaging enhancements. The peer URL format is shown here:
peer://[PeerName]/[Application]/[Object]?[Parameters]

The peer name is a dynamic GUID that's generated at install time and uniquely identifies the computer (regardless of the
application). The application and object have the same meaning as they do in an ordinary Remoting scenario. Finally, the URL
also allows a query string portion that specifies additional parameters. There are currently three parameters you can use:

PeerSecure=True specifies that the communication must be encrypted in an SSL session.

If you've enabled store-and-forward, PeerExpire=<Time> and PeerLive=<Seconds> can set how long a message is
retained if the peer is offline.

When using these options, you won't need to modify the URL manually. Instead, you can use the methods provided by the Intel
Peer-to-Peer Accelerator Kit classes.

Remember, the underlying transport mechanism is still an HTTP transfer over Remoting. The peer prefix indicates a virtual
transportation specification. The peer service translates peer URLs into the actual endpoints, as shown in Figure 13-3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-3: How the Intel Peer-to-Peer Accelerator Kit maps peer URLs

The Discovery Service

The discovery service is implemented as a web service that exposes three methods: SetPeer() for adding peer information or
updating it, RemovePeer() for removing peer registration, and lookup() for retrieving peer URLs. The peer service handles
interaction with the discovery service transparently and caches recently looked-up information to optimize performance.

Every directory service contains information about the peer, its URL, and a timestamp. This data is stored and transmitted as an
XML fragment.
<PeerInformation>
 <PeerName>pCDA296F7E06511D1BFD300C04FB12345.peer</PeerName>
 <URL>http://10.1.1.26:4375</URL>
 <URL secure="true">https://10.1.1.26:4376</URL>
 <EntryTime>2001-09-28 18:12:19Z</EntryTime>

</PeerInformation>

The timestamp is used to determine which entry to use if multiple registrations are found. When retrieving the peer-connectivity
information, the peer service can choose to submit a minimum date, in which case all peer information older than this date will be
ignored. The peer service uses this feature intrinsically to retrieve updated information if a message delivery attempt fails.

Intel Peer-to-Peer Drawbacks

Despite its promise, the Intel Peer-to-Peer Accelerator Kit isn't without some limitations. For example, when you examine the peer-
to-peer messaging application developed later in this chapter, you'll notice that response times are slower than in the original
version. Part of this is due to the need to forward all messages through the peer service. Another consideration is the fact that the
Intel Peer-to-Peer Accelerator Kit only supports the HTTP Protocol for exchanging data with the relatively verbose SOAP
messages, rather than leaner binary messages over TCP. In addition, the revamped application requires some additional
considerations that weren't necessary in earlier implementations, and therefore complicate the code.

Another limitation is the reliance on a discovery service. Intel follows the same approach as the examples in this book by using a
separate web service to map peer names to connectivity information. However, this means that you need to include a server in
your peer-to-peer system as well as a configuration file that tells all peers where to access it. Though an early beta of the Intel
Peer-to-Peer Accelerator Kit experimented with broadcasting, it isn't supported in the release version, and hence there's no way to
create fully decentralized peer-to-peer applications (although you can configure multiple discovery servers and thereby reduce the
burden on a single computer). It's also important to note that the Intel solution for firewall traversal, while useful, is still more
rudimentary than that offered by more mature (and far more complex) peer-to-peer applications such as most Gnutella clients. It
requires you to provide an available relay and tell the peer where to find it—additional configuration steps that can only complicate
life.

Finally, one other potential problem is the way that the Intel Peer-to-Peer Accelerator Kit generates URLs. As you've seen, these
don't use fixed endpoints with the machine name or IP address. Instead, they use a GUID. In order for a peer to connect to
another, it must know which GUID to use in constructing the URL. Fortunately, the GUID is machine-specific, so you can distribute
the GUID for a server endpoint in a client configuration file, much as you would with .NET Remoting. However, this also means
that if you want multiple peers to interact (for example, in a chat application), you'll almost certainly need some sort of central
component that allows peers to retrieve the URLs of other peers on the system. This component is in addition to the peer-to-peer
discovery service, which isn't application-specific. The server component might map user names or e-mail addresses to GUID
values, while the discovery service maps these to the required peer-connectivity information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Installing the Intel Peer-to-Peer Accelerator Kit
You can download the Intel Peer-to-Peer Accelerator Kit at the companion site for this book: http://www.prosetech.com. This site
will also post any update links for the Intel Peer-to-Peer Accelerator Kit if they become available. (Unfortunately, at the time of this
writing, the Intel Peer-to-Peer Accelerator Kit is no longer available on the Microsoft-supported http://www.gotdotnet.comsite).

The Intel Peer-to-Peer Accelerator Kit download is in the form of a ZIP file with two setup applications. One allows you to install
the peer-to-peer name server (used for discovery), while the other includes the Peer-to-Peer Accelerator Kit, which includes the
required assemblies, documentation, and optionally, several sample applications and the source code for the toolkit (see Figure
13-4).

Figure 13-4: Installing the Intel Peer-to-Peer Accelerator Kit

Tip Intel also provides white papers and a rudimentary peer-to-peer case study at http://www.intel.com/ids/p2p.

The peer-to-peer name server installs the discovery web service and discovery database. It can only be installed on a server
version of Windows, such as Windows 2000 Server or Windows Server 2003. However, if you want to test on a single computer,
you only need to install the Peer-to-Peer Accelerator Kit.

The Peer-to-Peer Accelerator Kit setup installs files into the [InstallDir]\Intel\ P2P\v1.0 directory. (By default, the root installation
directory is C:\Program Files.) In this path are the following subdirectories:

Bin contains the compiled Intel Peer-to-Peer Accelerator Kit assemblies, which you'll need to reference in your
peer-to-peer applications.

Config contains two files that define machine-specific configuration settings, such as peer service.

Docs contains a white paper specification and an HTML Help file that acts as a basic namespace reference. This
namespace reference only includes the subset of the Peer-to-Peer Accelerator Kit classes that you'll need to use
directly.

Samples contains several sample applications. Some of these have associate Visual Studio .NET project files, but
most simply include the source code. All samples are in C# syntax.

Src includes the complete source C# code for the toolkit, organized by namespace. You can use this to learn about
the operation of the toolkit or integrate some of its techniques into your own code. Some of the code, such as the
code that's required to implement SSL secure channels, is unmanaged C++ code.

The core namespaces and classes are as follows:

Intel.Peer.Messaging includes the PeerChannel class, which works with Remoting and the peer service to allow
peer-to-peer communication.

Intel.Peer.Security.CertificateManagement includes the PeerCertificate Management utility class, which contains a
small set of methods that can be used to create, remove, and check for peer certificates and key pairs.

Intel.Peer.File.FileCopy includes the PeerFileCopy and PeerFileURI Collection classes, which allow you to easily
integrate file-transfer functionality into your peer-to-peer applications.

Intel.Peer.Messaging.Utility includes the PeerWebRequestUtility class, which allows you to use peer-to-peer
communication with the WebRequest class. We won't consider this approach in this chapter.

Configuring the Peer Service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You won't need to perform any additional configuration to test the Intel Peer-to-Peer Accelerator Kit. The peer service is
automatically installed and configured to run on startup as part of the installation process. However, when testing peer-to-peer
applications in distributed environments, you'll have to specify the discovery service to use and optionally configure a relay
service.

Both of these details are configured by editing the Intel.Peer.Common. Dameon.config XML configuration file, which is found in
the InstallDir]\Intel\ P2P\v1.0\Config directory.

Here's the basic outline of the configuration file sections:
<?xml version="1.0" encoding="utf-8" ?>
<PeerConfiguration>

 <!-- Entry for the ListenerPort and LoggingLevel -->

 <!-- Entry for the Listener -->

 <!-- Entry for the Peer Name System -->

 <!-- Entry for the Secure Listener -->

 <!-- Entry for the Relay -->

 <!-- Entry for Tunnel -->

 <!-- Entry for Port Mapped data -->

 <!-- Entry for Store and Forward service -->

 <!-- Entry for FileCopyService -->

</PeerConfiguration>

The first section allows you to configure the port that the peer service uses to listen for incoming requests. You can also configure
the client certificate to use when creating secure sessions as well as a proxy address and port.
<Messaging LoggingLevel="0">

 <ListenerPort>8080</ListenerPort>

 <ClientCertificate>C:\Program Files\Intel\P2P\v1.0\data\Security\Client.cer
 </ClientCertificate>

 <HttpProxyHost></HttpProxyHost>
 <HttpProxyPort>1</HttpProxyPort>

</Messaging>

You can also set a logging level from 0 to 5, where 0 indicates no logging and 5 indicates the maximum number of log messages.
The log messages are written to a Windows event log named PeerServices.

The secure listener entry configures the server certificate as well as the port to use for SSL communication.
<Module Name="SecureListener" Assembly="...Intel.Peer.Messaging.Services.dll"
 TypeName="Intel.Peer.Security.SecureListener.SecureListenerInitializer"
 Load="true" Essential="true">

 <ListenerPort>8443</ListenerPort>
 <ServerCertificate>
 <Name>MyCert</Name>
 </ServerCertificate>

</Module>

The peer-name system entry is where you configure the discovery service. You can use the <Cache> element to configure how
many peer entries will be retained in local memory or on disk. The peer name system entry also specifies the <URL> element with
the HTTP path to the .asmx web service that performs the discovery. The server name is the only part of this URL that you should
need to modify, because the discovery service is installed by default as peernameservice.asmx in a virtual directory named
peernameservice.
<Module Name="PeerNameSystem" Assembly="...Intel.Peer.Messaging.Services.dll"
 TypeName="Intel.Peer.Messaging.NameService.PeerNameSystem"
 Load="true" Essential="true">

 <DataStore Assembly="...Intel.Peer.Messaging.Services.dll"
 TypeName="Intel.Peer.Messaging.NameService.PnsXmlStore">
 <Cache>
 <OnDisk>
 <MaxEntries>1000</MaxEntries>
 <Path>C:\Program Files\Intel\P2P\v1.0\Data\NameServiceCache</Path>
 </OnDisk>
 <InMemory>
 <MaxEntries>100</MaxEntries>
 </InMemory>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </InMemory>
 </Cache>
 </DataStore>

 <ServerInformation>
 <URL>http://{server_name}/peernameservice/peernameservice.asmx</URL>
 </ServerInformation>

</Module>

Optionally, you can specify several server URLs. In this case, the peer will pass its information to every server whenever an
update is performed. On lookup calls the peer will try the servers in order until a response is returned.

In addition, you can also configure the store-and-forward entry to configure how much space is allocated for messages (in
megabytes) that are queued for attempted retransmission. You can set where they should be stored, how often delivery should be
reattempted (in seconds), and the maximum life span a message is allowed to have (in days). The defaults allocate 10 MB of
space, retry message delivery every ten minutes, and allow stored messages to last a full week on the peer.
<Module Name="StoreAndForward" Assembly="...Intel.Peer.Messaging.Services.dll"
 TypeName="Intel.Peer.Messaging.StoreAndForward.PeerStoreAndForwardService"
 Load="true" Essential="true">

 <StorageSpace>10</StorageSpace>
 <StoragePath>C:\Program Files\Intel\P2P\v1.0\Data\StoreForward</StoragePath>
 <MaxLive>7</MaxLive>
 <DeliveryInterval>600</DeliveryInterval>

</Module>

Finally, the relay and tunnel elements allow you to set up firewall traversal solutions. The relay element allows you to configure a
peer to act as a relay server (or "super peer") that takes additional responsibility for transmitting messages between peers that
could not otherwise communicate, as shown in Figure 13-5.

Figure 13-5: The role of a relay server

In Figure 13-5, Peer A is unable to open a connection to Peer B. However, it can contain the relay server hosted by Peer C. If
Peer B is also using Peer C, all communication can be routed through subconnections in Peer C. These are called tunneled
connections, and they use the BEEP Protocol.

This is how it works, step-by-step:
1. During startup, the listener on Peer A makes a connection to the relay service on Peer C and opens a channel

using BEEP. It identifies itself to the relay using its peer name.

2. The relay returns one or two new URLs that can be used to contact Peer B through the relay on Peer C. These
URLs are also returned by the tunnel to the peer service on Peer B.

3. When a message is sent through the relay service, it examines the path, determines which peer it's for, and then
opens a channel on the peer's tunnel and relays the data.

4. The relay continues to operate this way until the tunneling connection from the peer is closed or lost.

To configure a peer to act as a relay server, specify a port to use for receiving requests and one for tunneling connections. You
must also modify the <Module> tag and set Load to true (which isn't the default).
<Module Name="Relay" Assembly="...Intel.Peer.Messaging.Services.dll"
 TypeName="Intel.Peer.Messaging.NetworkConnectivity.RelayService.Configuration.
 RelayInitializer" Load="true" Essential="false">

 <TunnelIdPath>C:\Program Files\Intel\P2P\v1.0\Data\TunnelIDs.ser</TunnelIdPath>
 <RelayPort>100</RelayPort>
 <TunnelPort>200</TunnelPort>
 <UsesBEEPTunnel>true</UsesBEEPTunnel>
 <HttpCallPorts>1024..1054</HttpCallPorts>

</Module>

Once you have a relay server, you can make use of it in other peers by configuring the tunnel entry. Once again, you must set
Load to true. You must also set the tunnel endpoint to the host name where the relay service is running.
<Module Name="Tunnel" Assembly="...Intel.Peer.Messaging.Services.dll"
 TypeName="Intel.Peer.Messaging.NetworkConnectivity.Tunnel.Configuration.
 TunnelInitializer" Load="true" Essential="false">

 <TunnelEndpoint>{relay_host_name}:200</TunnelEndpoint>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <TunnelEndpoint>{relay_host_name}:200</TunnelEndpoint>
 <BEEPUsage>
 <UsesBEEPTunnel>true</UsesBEEPTunnel>
 <BEEPProxy>
 <Endpoint>{beepproxy_host_name:port}</Endpoint>
 <EndPoint>{second_beep_proxy_host_name:port}</EndPoint>
 </BEEPProxy>
 </BEEPUsage>

</Module>

Clearly, the manual configuration steps that are involved make this a less-than-perfect solution. Other firewall traversal
mechanisms are defined in the Intel Peer-to-Peer Accelerator Kit architecture specification but not implemented.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating a Messenger that Uses Intel Peer-to-Peer
To get a better understanding of how the Intel Peer-to-Peer Accelerator Kit works in a peer-to-peer application you might design,
this chapter modifies the peer messaging application (first presented in Chapter 4) to use the toolkit. This gives the added benefit
of firewall traversal and integrated security, but it also requires some unexpected code changes.

The next three sections present the basic changes that are required to the interfaces, server, and client. After reviewing these, you
can continue with the last section to easily add enhanced security.

Changes to the Talk Component

The first step is to redefine the interfaces used in the system. In a peer-to-peer application developed with the Intel toolkit, you
don't use the ObjRef directly. Instead, when a peer wants to communicate with another peer, it constructs a new Peer URL and
uses the System.Activator object to retrieve a proxy.

To support this approach, the signature of the ITalkServer.AddUser() method needs to be modified slightly so that it accepts a
peer URL instead of a ITalkClient.
Public Interface ITalkServer
 ' These methods allow users to be registered and unregistered
 ' with the server.
 Sub AddUser(ByVal [alias] As String, ByVal peerUrl As String)
 Sub RemoveUser(ByVal [alias] As String)

 ' This returns a collection of currently logged-in user names.
 Function GetUsers() As ICollection

 ' The client calls this to send a message to the server.
 Sub SendMessage(ByVal senderAlias As String, _
 ByVal recipientAlias As String, ByVal message As String)

End Interface

This example is using the centralized version of the Talk .NET application. If it was the decentralized version, you would also need
to modify the GetUser() method to return a peer URL instead of an ITalkClient reference.

Changes to the TalkServer

Even though the Intel Peer-to-Peer Accelerator Kit includes a discovery service, a coordinator component is still required to help
online peers discover one another for messaging purposes. Before modifying the TalkServer, you need to add a reference to the
Intel.Peer.Messaging.dll assembly and import the following namespace:
Import Intel.Peer.Messaging

The first change is how the TalkServer coordinator object is registered. Instead of using the configuration file and the
RemotingConfiguration.Configure() method, the registration must be performed programmatically (although you could store some
of this information in application settings in a configuration file to allow easy modification).

The registration consists of three steps: defining an application name, registering a new channel, and registering a new well-
known Singleton object that clients can call. At the end of these steps, the server displays the URL of the Talk .NET server
coordinator object in the trace display (see Figure 13-6).
' Set the application name. This information is used to create the complete URL.
RemotingConfiguration.ApplicationName = "TalkServer"

' Create and register the channel for peer-to-peer communication.
Dim Channel As New PeerChannel()
ChannelServices.RegisterChannel(Channel)

' Register the ServerProcess object as a Singleton so clients can call it.
Dim Uri As String = "ServerObject"
Dim ServiceEntry As New WellKnownServiceTypeEntry(GetType(ServerProcess), Uri, _
 WellKnownObjectMode.Singleton)
RemotingConfiguration.RegisterWellKnownServiceType(ServiceEntry)

' Retrieve the complete URL and display it.
Dim Url As String = PeerChannel.GetUrl(Uri)
Trace.WriteLine(Url)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-6: The server object URL

The TalkServer requires very few additional changes. The new AddUser() method must be modified so that it stores a collection of
Peer URLs instead of ITalkClient references:
Public Sub AddUser(ByVal [alias] As String, ByVal peerUrl As String) _
 Implements TalkComponent.ITalkServer.AddUser

 Trace.Write("Added user '" & [alias] & "'")
 SyncLock _ActiveUsers
 _ActiveUsers([alias]) = peerUrl
 End SyncLock

 MessageDelivery.UpdateUsers(_ActiveUsers.Clone())

End Sub

The message delivery code must also take this change into account. Before it can contact a peer, it must convert the URL into a
proxy. Here's the abbreviated code from the MessageDelivery class:
' Deliver the message.
Dim Recipient As ITalkClient
Dim PeerUrl As String
Dim Sender, MessageBody As String

SyncLock RegisteredUsers
 If RegisteredUsers.ContainsKey(NextMessage.RecipientAlias) Then
 PeerUrl = RegisteredUsers(NextMessage.RecipientAlias)
 MessageBody = NextMessage.MessageBody
 Sender = NextMessage.SenderAlias

 Else
 ' User wasn't found. Try to find the sender.
 If RegisteredUsers.ContainsKey(NextMessage.SenderAlias) Then
 PeerUrl = RegisteredUsers(NextMessage.SenderAlias)
 MessageBody = "'" & NextMessage.MessageBody & _
 "' could not be delivered."
 Sender = "Talk .NET"
 Else
 ' Both sender and recipient weren't found.
 ' Ignore this message.
 End If
 End If
End SyncLock

If PeerUrl <> "" Then
 Recipient = CType(Activator.GetObject(GetType(ITalkClient), PeerUrl), _
 ITalkClient)
 Recipient.ReceiveMessage(MessageBody, Sender)
End If

Optionally, the server can also enable store-and-forward to ensure that message delivery is reattempted periodically if the peer
cannot be contacted immediately. In order to support this feature, the server must be calling a method that's marked with the
<OneWay> attribute, because there's no way for it to be sure that the method has actually executed. The ReceiveMessage()
already uses this attribute. The only other step is to add the parameters to the peer URL that instructs the peer service to cache
the message if needed. You do this by using the shared PeerChannel.EnableStoreAndForward() method and by specifying an
absolute expiration date as a DateTime object or a number of seconds to live. The following example caches a message for up to
120 seconds.
If PeerUrl <> "" Then
 PeerUrl = PeerChannel.EnableStoreAndForward(PeerUrl, 120)
 Recipient = CType(Activator.GetObject(GetType(ITalkClient), PeerUrl), _
 ITalkClient)
 Recipient.ReceiveMessage(MessageBody, Sender)
End If

The peer clients can use the same approach to cache messages sent to the server (although this would be less useful) or to
cache messages sent to other peers.

Changes to the Talk Client

As with the TalkServer, you need to add a reference to the Intel.Peer.Messaging.dll assembly and import the
Intel.Peer.Messaging namespace on the client. The client also needs to register its peer channel and the ClientProcess Singleton
programmatically. The first step is to define the channel and a unique application name. In this case, the user alias is used as the
application name. This allows you to run multiple clients on the same computer without creating a conflict.
RemotingConfiguration.ApplicationName = [Alias]
Dim Channel As New PeerChannel()
ChannelServices.RegisterChannel(Channel)

The next step is to register the remotable ClientProcess object so that the server can contact the peer:
Dim Uri As String = "TalkClient"
Dim ServiceEntry As New WellKnownServiceTypeEntry(GetType(ClientProcess), _
 Uri, WellKnownObjectMode.Singleton)
RemotingConfiguration.RegisterWellKnownServiceType(ServiceEntry)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RemotingConfiguration.RegisterWellKnownServiceType(ServiceEntry)

Now the peer can create a proxy object for talking to the server using the server's URL. In this case, the URL is constructed by
using the defined application and object name, along with the machine-specific peer identifier. Remember, to avoid hard-coding
these values, you can read them from the application settings section in a configuration file.
Dim Peer As String = "pCAC4B01B908344AF9784515B13521E15.peer"
Dim App As String = "TalkServer"
Dim Obj As String = "ServerObject"
Dim Url As String = "peer://" & Peer & "/" & App & "/" & Obj

' Create the proxy.
Server = CType(Activator.GetObject(GetType(ITalkServer), Url), ITalkServer)

The final step is to register with the server using the local peer URL. All this code takes place in the ClientProcess.Login() method.
Dim PeerUrl As String = PeerChannel.GetUrl(Uri)
Server.AddUser(_Alias, PeerUrl)

In the original Talk .NET application, the client application registers the ClientProcess object and then creates a new
ClientProcess instance to start sending messages to the server. When the server calls back to the client, no new object is created.
Instead, the existing ClientProcess instance is used. However, with the Intel Peer-to-Peer Accelerator Kit, this behavior changes. If
you use the exact same approach, you'll actually end up with two ClientProcess objects: the one you created manually and the
one created by the Remoting infrastructure to handle the server callbacks. This creates a significant problem. Namely, the Talk
form will no longer receive the ClientProcess.MessageReceived event, because it will occur in a different object than the one it's
using.

The recommended way to solve this problem is to use some sort of shared location to store a callback. Emulating the design
pattern used in Intel's own Messenger sample, you can make three changes:

Make all the members and methods of the ClientProcess class shared, except for the ITalkClient methods such as
ReceiveMessage(). Change the other parts of the application so they use these shared methods and don't try to
create a ClientProcess instance.

Use a callback instead of an event to contact the Talk form.

In the ReceiveMessage() method, check the shared callback delegate. If it's initialized, raise the callback.

Here's the abbreviated ClientProcess code:
Public Class ClientProcess
 Inherits MarshalByRefObject
 Implements ITalkClient

 ' This callback is used to transfer the message from the remotable
 ' ClientProcess object to the Talk form.
 Public Shared MessageReceivedCallback As ReceiveMessageCallback

 ' The reference to the server object.
 Private Shared Server As ITalkServer

 Private Shared _Alias As String
 Public Shared Property [Alias]() As String
 Get
 Return _Alias
 End Get
 Set(ByVal Value As String)
 _Alias = Value
 End Set
 End Property

 Public Shared Sub Login()
 ' (Code omitted.)
 End Sub

 Public Shared Sub LogOut()
 ' (Code omitted.)
 End Sub

 Public Shared Sub SendMessage(ByVal recipientAlias As String, _
 ByVal message As String)
 ' (Code omitted.)
 End Sub

 ' This is the only nonshared method.
 <System.Runtime.Remoting.Messaging.OneWay()> _
 Private Sub ReceiveMessage(ByVal message As String, _
 ByVal senderAlias As String) Implements ITalkClient.ReceiveMessage

 If Not ClientProcess.MessageReceivedCallback Is Nothing Then
 MessageReceivedCallback(message, senderAlias)
 End If

 End Sub

 Public Shared Function GetUsers() As ICollection
 Return Server.GetUsers
 End Function

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

With these changes, the Talk .NET application becomes fully functional. Another recommended change is to reduce the
frequency that the client retrieves new users from the server by increasing the tmrRefreshUsers timer interval. This is useful
because the communication latency is noticeably greater than it was with the pure Remoting solution.

Adding Security

In order to communicate using secure encryption, you simply need to instruct the peer service by adding the PeerSecure option to
the end of the peer URL. This can be accomplished using the shared PeerChannel.MakeSecure() method.

Dim Peer As String = "pCAC4B01B908344AF9784515B13521E15.peer"
Dim App As String = "TalkServer"
Dim Obj As String = "ServerObject"
Dim Url As String = "peer://" & Peer & "/" & App & "/" & Obj

Url = PeerChannel.MakeSecure(Url)
Server = CType(Activator.GetObject(GetType(ITalkServer), Url), ITalkServer)

In addition, you can configure a service to require secure sessions and reject requests that don't use them. In this case, you use
the shared PeerChannel .SecureWellKnownServiceType() method. This can be called for both the ClientProcess and the
ServerProcess objects before they're registered with the Remoting infrastructure.
Dim Uri As String = "ServerObject"
Dim ServiceEntry As New WellKnownServiceTypeEntry(GetType(ServerProcess), _
 Uri, WellKnownObjectMode.Singleton)

PeerChannel.SecureWellKnownServiceType(ServiceEntry)
RemotingConfiguration.RegisterWellKnownServiceType(ServiceEntry)

Tip You cannot use the store-and-forward capability in conjunction with secure messages.

Unfortunately, life isn't nearly this simple. In order to create a secure SSL session, the peers must be able to authenticate one
another using certificates. That means that you must create a certificate for every peer and store it in the local certificate store.
You must also configure the trusted roots on both peers so that certificates signed by this peer are trusted implicitly. (A better and
more secure alternative is to sign the peer certificates using a trusted third party, such as a local Windows server or certificate
authority. However, the Intel Peer-to-Peer Accelerator Kit API doesn't support this functionality directly.)

This process can be accomplished programmatically using the PeerCertificate Management class, which is demonstrated in the
CertificateManagementUI sample application (see Figure 13-7). Essentially, this application calls the
PeerCertificateManagement.CreateKeyAndSelfSignedCertificate() method to generate a new certificate (with a 512-bit RSA
asymmetric key pair), sign it, and add it to the local personal certificate store.

Figure 13-7: The CertificateManagementUI utility

Figure 13-8 shows the CertificateManagementUI utility.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-8: Creating a new certificate

Once a certificate is created, you still have several additional steps to complete. First, run the makecert.exe utility included with the
.NET Framework, and find the certificate in the Personal store (see Figure 13-9). You must then perform three additional tasks:

Export this certificate to a .cer file stored on your hard drive (typically in the Intel Peer-to-Peer Accelerator Kit
directory).

Import this certificate into the Trusted Root store for the current user.

Import this certificate into the Trusted Root store for the peer you want to communicate with securely.

Figure 13-9: The makecert.exe utility

All of these tasks are described in more detail, along with the basics of client certificates, in a lengthy HTML file called
CertificateManagement Education and Help.html, which can be found in the CertificateManagementUI directory. A detailed
discussion is beyond the scope of this chapter.

Finally, you need to modify the configuration file to use this new certificate. To configure the certificate for incoming connections,
you modify the <ServerCertificate> tag to use the certificate name:
<Module Name="SecureListener" Assembly="...Intel.Peer.Messaging.Services.dll"
 TypeName="Intel.Peer.Security.SecureListener.SecureListenerInitializer"
 Load="true" Essential="true">

 <ListenerPort>8443</ListenerPort>
 <ServerCertificate>
 <Name>P2PUser1</Name>
 </ServerCertificate>

</Module>

You must also configure the certificate in order to use it for outgoing connections. In this case, you need to reference the exported
certificate file instead of the certificate name, because the certificate information will be read from the disk, not from the local
store. This quirk is related to a limitation in .NET's support for retrieving certificate information.

<Messaging LoggingLevel="0">

 <ListenerPort>8080</ListenerPort>
 <ClientCertificate>C:\MyDir\P2PUser1.cer</ClientCertificate>
 <HttpProxyHost></HttpProxyHost>
 <HttpProxyPort>1</HttpProxyPort>

</Messaging>

Finally, you must restart the peer service using the Computer Management utility in the Control Panel.

Clearly, the configuration steps involved in setting up SSL authentication and encryption are far from minor. If you need a more
flexible, dynamic form of authentication and validation, refer instead to the custom examples developed in Chapter 11.

Note With encrypted communication, the peer service performs the encryption and decryption. Thus, an unencrypted
message could be sent if an attacker could determine the underlying Remoting address and contact it directly. For that
reason, you should not rely on SSL sessions for encryption, unless your computer is behind a firewall that makes port-
scanning attacks impossible.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dissecting the Samples
To learn more about the Intel Peer-to-Peer Accelerator Kit, you can explore the samples (and if you're somewhat more ambitious,
the source code for the toolkit itself). Unfortunately, the samples are only provided in C# syntax. However, as you no doubt
already know, almost all C# code can be converted to VB .NET code on a line-by-line basis. This means that once you acclimatize
yourself to the altered syntax, case sensitivity, and preponderance of curly braces, you should be able to determine exactly how
the code samples work.

The next few sections introduce each of the sample applications and briefly describe the underlying operation and design
decisions. You can also refer to the readme.htm file that's provided in each sample directory, which supplies limited information
about how to test the example.

FileCopy

The Intel Peer-to-Peer Accelerator Kit also provides basic functionality for transferring files and monitoring their progress. The
underlying operation of the file copy feature is fairly similar to the custom approach developed in Chapter 4. Files become
available when they're "advertised," at which point they're dynamically associated with a unique GUID. If a peer wants to download
the file, it uses the GUID in its request. Unlike our custom solution, the use of a peer service allows shared files to persist between
application sessions. To remove a file from the available pool, its advertisement must be specifically cancelled. If a physical file is
moved or deleted, the advertisement will still remain and an error will occur if another peer tries to download the file.

The FileCopy example is a console application that allows you to transfer a file between two peers. This functionality does not
include any way to associate application-specific metadata (such as MP3 song information) with a file, so you still need to add
these features to a central coordinator or lookup service if you need them.

Messenger

This Messenger example is a Windows application that allows instant messaging, similar to the Talk .NET application. It uses a
global session concept, whereby all registered peers become a part of the same chat room. Messages are sent to every peer,
which means that the system won't scale well to extremely large networks.

The Messenger is similar to the decentralized version of Talk .NET because the central coordinator (called the listener) is used for
storing registered user URLs. It doesn't perform the actual message delivery. The central coordinator uses a "push" model.
Whenever a new user joins the system, the new user list is sent to each registered peer. When sending a message, the peer goes
through each entry in the local copy of the user list and contacts each peer separately.

The peer clients aren't configured with any information about the location of the listener. When launching a peer client, you must
supply a command-line parameter that indicates the peer ID for the machine where the server is running. The listener displays this
information in a console window when it first starts. (See Figure 13-10.)

Figure 13-10: The Intel Peer-to-Peer Messenger

Note One significant limitation in the design of the Messenger application is the fact that it doesn't use interfaces. This
means that the shared assembly (ListenerObject.dll) must contain the complete code for both the server and peer
remotable objects. In fact, this DLL even includes the Windows form code, which means that the server must be
updated if you want to change any aspect of the peer UI.

Scribble

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Scribble example is a collaborative Windows Forms application that allows multiple peers to share a single whiteboard.
Whatever one peer draws on the whiteboard will be replicated to all registered users.

The Scribble example uses the same design as the Messenger. It's composed of two components: a Scribble server application
and a Scribble client application. The Scribble server component records a list of registered users and provides the user list to all
peers that connect with the system. The peers, however, communicate directly.

Tip The readme.htm file included with the Scribble example shows the logic in detailed pseudocode so that you can
understand the operation of the application without needing to dive into the C# source code.

SharedCyclesP2P

SharedCyclesP2P (see Figure 13-11) is a Windows application that demonstrates one way to build a distributed task manager.
SharedCyclesP2P uses a foreman application, which divides a computer-intensive graphic into a user-defined number of smaller
jobs and a large number of worker peers that perform the actual work. The foreman assigns job portions to the pool of workers
and combines the results. One of the most interesting aspects of the SharedCyclesP2P application is that it tackles a relatively
practical example (rendering a ray trace drawing), rather than the more rudimentary prime number search that's used to
demonstrate distributed computing in Chapter 6. Figure 13-11 shows a partially complete rendering job displayed in the foreman.

Figure 13-11: A partially complete SharedCyclesP2P job

The readme.htm file included with SharedCyclesP2P includes detailed information for testing the example. The most significant
limitation in SharedCyclesP2P is that it doesn't provide a discovery mechanism for locating worker peers. Instead, you need to
take the peer ID, which is displayed in the console window, and paste it into a text file. The foreman reads this text file to locate
available workers. Clearly, you would need to replace this mechanism with some type of registration mechanism or an application-
specific discovery service before making this into a production application.

ShareBaby2

ShareBaby2 (see Figure 13-12) is a file-sharing Windows application that works somewhat like the example presented in Chapter
9. It makes use of a discovery service and database for sharing file keyword information and uses multiple threads to manage
concurrent uploads and downloads. However, it doesn't offer the same features for file-progress monitoring. It doesn't use the
simple FileCopy API included with the Intel Peer-to-Peer Accelerator Kit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-12: The Intel Peer-to-Peer ShareBaby2

Peer ASP Host

The peer ASP host is a console application that shows how you can host an ASP.NET web service inside a peer-to-peer
application. In order to perform this feat, the ASP.NET process is actually hosted inside a custom host application instead of the
Internet Information Server (IIS). It's a thought-provoking example of how you might want to combine these two technologies, but it
does introduce an additional layer of customization that could make it difficult to upgrade your application to future .NET
Framework releases and adopt new features.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Last Word
Intel's Peer-to-Peer Accelerator Kit is an excellent example of how extensible the .NET Framework really is, and how it can lend
itself to a new programming paradigm such as peer-to-peer. It's still too early to decide whether Intel's Peer-to-Peer Accelerator
Kit will live up to its promise or become another interesting sidebar in the history of programming. Presumably, Intel is committed
to peer-to-peer technology today because they hope it will drive the adoption of their hardware in the future, and despite investing
in peer-to-peer development and belonging to peer-to-peer working groups, Intel's interest could waver.

Unfortunately, the fact that the toolkit is written as a proprietary component (rather than a traditional open-source project) doesn't
encourage confidence. Unlike most emerging technologies, there's no supporting developer community or hub on the website
where you can find news about ongoing developments or plans. But whatever the ultimate fate of the Intel Peer-to-Peer
Accelerator Kit, you can still learn enough about peer-to-peer development to make it worthwhile to examine it closely and
experiment with some of the samples. Comparing this code to some of the samples in this book will also help you understand the
trade-offs and design decisions inherent in any peer-to-peer programming project. In fact, you can even review, modify, or use the
C# source code, which is installed with the setup in the [InstallDir]\Intel\P2P\v1.0\src directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

A
Abort() method, 285

in FileDownloadQueue class, 275, 279
in FileServer class, 264, 265
in FileUpload class, 269
in main form of FileSwapper, 257
in Search class, 261

AcceptFile() method, 104-5
AcceptTcpClient() method, 203, 267
access control, and peer-to-peer, 10
AcquireReaderLock() method, 117
AcquireWriterLock() method, 118
activation types, for remote objects, 46
Activator.GetObject() method, 88
active open, 203
ActiveUsers collection, 99, 116, 134-35
Add Web Reference window, 244
AddFile() method, 273, 277
AddFile stored procedure, 227-28
AddFileInfo() method, 233
AddKeyword stored procedure, 227-28
AddListViewItem() method, 253
AddPeer stored procedure, 226-27, 288, 289
AddUser() method, 74, 100, 115

and locking, 117-18
modifying to store collection of Peer URLs, 381

AddWorker() method, 156-57
ADO .NET data containers, 42
ADO.NET DataSet, 222
advantages of peer-to-peer, 8
alias keyword, 85
AllocateWork() method, 275, 278
Alta-Vista search engine, use of spiders, 18
anon.penet.fi remailer, 11
AOL Messenger, 361-62
App class, 241, 246-47
app.config file, 49, 51
Application Center, 108
application domains, 35
Application Shared feature, of Windows Messenger, 12
Application UnhandledException event, 257
ApplicationException, 233
application-level protocols, 199
applications

dividing into multiple layers, 5-6
new types as result of peer-to-peer, 12

App.Login() method, 247, 255
App.Logout() method, 247
App.PublishFiles() method, 247, 256
App.SearchForFile() method, 249, 261
<appSettings> section, of client configuration file, 88
architecture of peer-to-peer, 23-31

characteristics, 23-27
network addressing challenges, 26-27
peer discovery, 24-25
peer identity, 23-24
server-mode/client-mode (SM/CM) model, 25-26

overview, 23
topology, 27-30

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

arp.exe utility, 195-96
ArrayList, 236
arrays, 42
.asmx files, 223, 238-39
.asmx web service, 376
ASP.NET, 223

caching, 238
handling of web-service request, 219-20

Assembly.LoadFrom() method, 179
asymmetric encryption, 310-12
Attach to Process window, 143
authentication and authorization. See security

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

B
BackgroundStatusChanged event, 172
bandwidth, 9, 11
BEEP Protocol, 377-78
BeginInvoke() method, 82
benefits of peer-to-peer, 8
bidirectional TCP channel, 64
Bin subdirectory, 373
BinaryFormatter class, 318
BinaryReader class, 270, 281

and network streams, 202
and TCP communication, 203-5

BinaryReader.ReadString() method, 202
BinaryWriter class, 281

data conversion into byte arrays with, 180, 202
and FileSwapper peers communication, 268, 270
sending input strings to client with, 203-5

bottlenecks, 4, 9, 107, 148, 177
broadcast messages, 25
broadcasts, 212-13
brokered peer-to-peer, 28
browsers, web, 13
brute force attacks, 309
buddy lists, 93, 100, 109, 288
ByRef parameter, 44
ByVal parameter, 108

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

C
CA (certificate authority), 312
<Cache> element, 375
caching, 9, 30, 238, 299-301
CancelTask() method, 151
CCW (COM callable wrappers), 347
censorship, vulnerability to, 11
central discovery server, 18, 24-25, 28
.cer file, 387
certificate authority (CA), 312
CertificateManagement Education and Help.html file, 387
CertificateManagementUI sample application, 386-87
challenges of peer-to-peer, 9
ChangeStatus() method, 253
channel classes, 69
channel sinks, 65
<channel> tag, 67
channels, 65-67

HTTP, 65-66, 110
TCP, 20, 64

ChannelServices.RegisterChannel() method, 68
characteristics of peer-to-peer, 23-27

network addressing challenges, 26-27
peer discovery, 24-25
peer identity, 23-24
server-mode/client-mode (SM/CM) model, 25-26

Check() method, 181
CheckForFile() method, 273, 276
cipher-block streaming, 148
Class A networks, 192
Class B networks, 192, 193
Class C networks, 192, 193
class library (DLL) project, 50
classes. See also names of specific classes

channel, 69
collection, 42
ordinary, 40
remotable, 40
serializable, 40, 41, 42, 43

client lifetime, 134-44
client login, 315-17
client side, login process on, 321
Client-activated objects, 46
ClientInfo class, 135
ClientProcess class, 83, 84-90, 98, 384

Hashtable collection of, 299
interaction with the discovery web service, 296
revising, 101-2
in Task Worker creation process, 167-71

ClientProcess Login() method, 383
ClientProcess object, 131, 383-84
ClientProcess Singleton, 383
ClientProcess.AcceptFile() method, 103
ClientProcess.GetUsers() method, 90
ClientProcess.Login() method, 321
ClientProcess.MessageReceived event, 384
ClientProcess.ReceiveMessage() method, 85, 108
ClientProcess.SendMessage() method, 90
clients

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in basic remoting example, 53-55, 63-64
cleaning up after, 95-97
tracking, 80-81

client-server computing
birth of, 4
and Internet, 13-14

Clone() method, 130
CLR (common language runtime), 35, 39, 45, 113-14
clustering. See distributed computing
collection access. See coordination servers, threading
collection classes, 42
COM callable wrappers (CCW), 347
Common Language Runtime check box, 143
common language runtime (CLR), 35, 39, 45, 113-14. See CLR (common language runtime)
Component class, 165-66
component hosts, 45-46, 50-52
Computer Management utility, 140, 141, 142, 389
computers, increased power of, 15
concurrency errors, 114
concurrent requests. See coordination servers, threading
Config subdirectory, 373
ConfigFileName string, 45
configurable sandbox, 180-84
configuration files, Remoting, 47-49, 62
ConfigurationSettings.AppSettings collection, 89
configuring

FileSwapper application, 258-59
Remoting, 64-69

dynamic registration, 67-69
formatters and channels, 65-67
overview, 64-65

ConfirmationCallback value, 61
consistency, lack of, 23
Console object, 49, 50
containers, ADO .NET, 42
content descriptors, 224
content-description language, 12, 18
ContextMenu control, 165
continuous polling, 36
Control class, 132
Control.Invoke() method, 253, 259, 262, 340
coordination servers, 28, 77-82. See also messengers, building; Remoting

overview, 77-79
sending messages, 81-82
tracking clients, 80-81

coordination servers, threading, 113-45
deadlocks, 126-27
dealing with client requests, 131-34
delivery service, 118-26

message delivery with, 121-23
overview, 118-20
using, 123-26

overview, 113
refining Talk .NET, 134-44

client lifetime, 134-36
duplicate users, 136-37
using Windows service, 138-44

synchronizing collection access, 115-18
thread starvation, 126-27
threading essentials, 113-14
ThreadPool class, 127-31

cost benefits of peer-to-peer, 11-12
CreateNew property, 298
CreateSession() method, 291
CreateSession stored procedure, 288, 289
critical sections, 115
cryptography, 308-13. See also digital signatures; encryption
CryptoStream object, 331-33

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

D
data containers, ADO .NET, 42
data stores, serializing information to, 36
DataAvailable property, 202
Database class, 229-36, 291-93
databases

pooling connections to, 6
Talk .NET, and stateless server, 108

DatabaseStore method, 178
datagram sockets, 198
datagrams, IP, 191-92
DataReader, 236
deadlocks, 126-27
Debug window, 144
debugging

Groove applications, 356-57
launching multiple projects for, 56
web services, 239-40
Windows services, 142-44

decentralization, Talk .NET, 97-100
DecryptContainedObject() method, 325
DeleteFiles stored procedure, 228-29, 233
DeletePeersAndFiles stored procedure, 228-29
DeleteSession stored procedure, 288, 290
Deliver() method, 121
DeliverMessages() method, 121, 123
delivery service, 118-26

message delivery with, 121-23
overview, 118-20
using, 123-26

DeliveryService class, 123, 128-29, 130, 130-31
DeliveryService object, 125, 130
DeliveryService.RegisteredUsers collection, 124
DeliveryService.UpdateUsers() method, 124
DeliveryThread variable, 123
demilitarized zone, 109
denial of service attack, 307
Dequeue() method, 121
DES symmetric algorithms, 310
descriptors, content, 224
Deserialize() method, 318, 325
destinationPath parameter, 104
dial-up Internet connections, 13-14
digital signatures, 313-24

client login, 315-17
limitations of, 323-24
login process

on client side, 321
on Web-Server side, 322-23

trust decisions, 324
server database, 313-15
SignedObject class, 317-21

directories, virtual Web, 220
DirectPlay, 362
DirectX 9.0 SDK for .NET, 362
disconnected clients, removing, 130-31
discovery, peer, 24-25
discovery server, 24-25, 28
Discovery Server. See also FileSwapper application
discovery service, 236-40. See also Remoting, using discovery service with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

indexing with, 216
and Intel Peer-to-Peer Accelerator Kit, 370-71
overview, 215-16
public key information, 313-15
stateful and stateless, 217-18
testing, 238-40

discovery service web reference, of FileSwapper application, 244-45
dispatch servers, 335
DisplayFile objects, 277-78
distributed computing, 5-6, 147-49
distributed searching, 18
distributed task manager, building, 147-86

creating task worker, 165-75
ClientProcess class, 167-71
main form, 171-75
overview, 165
system tray interface, 165-67

creating work manager, 155-64
overview, 155-56
tasks, 158-63
tracking workers, 156-58

enhancing work manager, 175-86
configurable sandbox, 180-84
generic task client, 178-80
overview, 175
performance scoring, 176-77
pure peer-to-peer task manager, 185-86
queuing, 175-76
writing directly to result store, 177-78

interface, 149-55
message objects, 152-54
overview, 149-50
task logic, 154-55
TaskComponent interfaces, 150-52

Dns class, 199, 200-201
DNS (Domain Name Service), 13, 14, 199
Dns.GetHostName() method, 201
Docs subdirectory, 373
DocumentShareEngine persistence engine, 349
domain names, 222
Domain Name Service (DNS), 13, 14, 199
DoTask() method, 179
Download() method, 273, 279, 281
downloading files, in FileSwapper application, 272-84

FileDownloadClient class, 279-84
FileDownloadQueue class, 275-79
overview, 272-74

DownloadThreads collection, 275, 276, 278
DropMultiCastGroup() method, 214
DSA asymmetric algorithms, 311
duplicate users. See coordination servers, threading
dynamic ports, 53, 110, 198
dynamic registration, 15, 67-69

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

E
economic benefits of peer-to-peer, 11-12
e-mail protocols, 199
e-mail validation, 301-2
EncryptedObject class, 329-30
encryption, 309-12, 324-33

chaining encryption and signing, 329-31
with cipher-block streaming, 148
EncryptedObject class, 324-27
sending and receiving encrypted messages, 327-29
using session keys, 331-33

endpoints, 198, 369
EndSession() method, 293
Eratosthenes, 154-55
error handling

in DeliverMessages() method, 123
of TCP, 196

ErrorReceived() method, 337
errors, concurrency, 114
Ethernet Protocol, 190-91
EventArgs classes, 42
EventArgs objects, 60, 170-71
Evidence class, 181
exceptions, .NET, 42
expired peer information, removing, 238

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

F
FIFO (first-in-first-out) collections, 119
file sharing. See also FileSwapper application
file system, virtual, 12
file transfer feature, adding, 100-107
File Transfer Protocol (FTP), 199
FileCopy API, 366, 389-90
FileDownloadClient class, 273, 277, 279-84
FileDownloadClient objects, 285
file-downloading, in FileSwapper application, 272-84

FileDownloadClient class, 279-84
FileDownloadQueue class, 275-79
overview, 272-74

FileDownloadQueue class, 273, 275-79
File.Keywords array, 233
FileOfferReceived event, 105-6, 131
FileOfferReceived method, 133
FileOfferReceivedEventArgs class, 102-3
Files table, 225
FileServer class, 264-68
file-sharing, 11. See also FileSwapper application
FileSwapper application, 241-86

configuration, 258-59
discovery service web reference, 244-45
file-downloading, 272-84

FileDownloadClient class, 279-84
FileDownloadQueue class, 275-79
overview, 272-74

file-uploading, 263-72
FileServer class, 264-68
FileUpload class, 269-72
overview, 263-64

global data and tasks, 245-49
ListView controls, 253-55
main form, 255-58
overview, 241-43
Search class, 259-63
threads in, 243
utility classes, 249-53

FileSystemWatcher class, 285
FileUpload class, 264, 269-72
file-uploading, in FileSwapper application, 263-72

FileServer class, 264-68
FileUpload class, 269-72
overview, 263-64

FileWebRequest class, 200
FileWebResponse class, 200
FindPrimes() method, 171-72
firewall traversal, with Groove, 346
firewalls, 26, 27, 65

during early Internet, 14
and ICQ, 15
and Talk .NET, 109-10

first-in-first-out (FIFO) collections, 119
<formatter> tag, 67
formatters, 65-67
FormTraceListener class, 75-76
Freenet, 17-18
FTP (File Transfer Protocol), 199
future of peer-to-peer, 19-20

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

G
generic task client, 178-80
GetFileInfo() method, 234
GetJoinedResults() method, 160
GetLifetimeService() method, 58
GetMP3Keywords() method, 250
GetObjectWithoutSignature() method, 318
GetPeerAndSessionInfo stored procedure, 288, 290
GetPeerInfo() method, 292
GetPeers() method, 290, 293
GetPeers stored procedure, 288
GetProgress() method, 176
GetServerDateTime() web method, 322
GetStream() method, 205-7
GetTagData() method, 250, 251, 252
GetUser() method, 98, 379
GetUsers() method, 74, 87, 99, 100, 107

checking currently logged-on users, 300
and collection access synchronization, 117, 118
refreshing client expiry date when calling, 135-36
retrieving list of peer e-mail addresses, 297
and security measures, 81

Global class, 241, 245-46
global counters, 114
global data and tasks, of FileSwapper application, 245-49
Global Grid Forum, 186
Global.Identity property, 247
globally unique identifiers (GUIDs). See GUIDs (globally unique identifiers)
Global.MaxUploadThreads setting, 267
Global.SharedFiles variable, 247
Globus, 186
Gnutella, 17, 361-62

connectivity problems with, 9
reason not venerable to legal intervention, 11

Google search engine, use of spiders, 18
GotDotNet website, 366
grid computing. See distributed computing
Groove platform, 16, 21, 345-61

application logic, 352-56
creating simple application, 347-48
debugging applications, 356-57
designer code, 348-51
enhancing applications, 357-61
identity-related interfaces, 357-58
obtaining, 346
overview, 345-46

Groove.Interop.AccountServices, 357, 358
Groove.Interop.ContactServices assembly, 357, 358
Groove.Interop.IdentityServices, 358
Groove.Interop.IdentityServices assembly, 357
GUIDs (globally unique identifiers), 101

and discovery service, 215
dynamically generated, 24
and e-mail validation, 302
and FileUpload class, 270
and Intel Peer-to-Peer Accelerator Kit, 372
and work manager creation, 157

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

H
hackers. See security
hardware clustering, 108
hash codes, 308-9
hashtable, 158, 160
Hashtable collection, 80, 101, 102, 115, 299
Hashtable.Synchronized() method, 116-17
HierarchicalRecordSetEngine persistence engine, 349
higher-level web services infrastructure, 20
HTTP channels, 65-66, 110
HTTP GET link, 301
HTTP (Hypertext Transfer Protocol), 199
HTTP transfer, 370
HttpWebRequest class, 200
HttpWebResponse class, 200
hubs, 189
hybrid peer-to-peer designs, 19-20
Hypertext Transfer Protocol (HTTP), 199

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

I
IANA (Internet Assigned Numbers Authority), 198
ICMP (Internet Control Message Protocol), 191
ICMP protocol, 194
ICQ instant messenger, 15-16, 361-62
identifiers, peer. See also GUIDs (globally unique identifiers)
identity, peer, 23-24
identity-related interfaces, of Groove, 357-58
IGrooveComponent interface, 349-51
IGrooveIdentification interface, 357
IGrooveIdentity interface, 357
IIS (Internet Information Server), 38, 217, 220-22
IIS Manager administrative utility, 221
IMembershipCondition, 181
inconsistency, 23
indexing, with discovery service, 216
Infrasearch, 18
Ingo Rammer, 64, 110
Initialize() subroutine, 349-50
InitializeLifetimeService() method, 58, 86
Insert statement, 289
installing

Intel Peer-to-Peer Accelerator Kit, 372-74
Internet Information Server (IIS), 220-21
Windows services, 140-42

InstallUtil.exe utility, 141
instant-messaging, 15-16. See also names of specific instant messaging software
Intel Peer-to-Peer Accelerator Kit, 365-94

configuring peer service, 374-79
creating messenger that uses Intel peer-to-peer, 379-89

adding security, 385-89
changes to Talk client, 383-85
changes to Talk component, 379
changes to TalkServer, 380-82
overview, 379

discovery service, 370-71
drawbacks, 371-72
installing, 372-74
messaging enhancements, 367
overview, 365-67
peer-to-peer daemon, 367-68
samples, 389-94
URLs and remoting, 367-69

Intel.Peer.Common.Dameon.config XML configuration file, 374
Intel.Peer.File.FileCopy namespace, 374
Intel.Peer.Messaging namespace, 374
Intel.Peer.Messaging.dll assembly, 380, 383
Intel.Peer.Messaging.Utility namespace, 374
Intel.Peer.Security.CertificateManage ment namespace, 374
Intel's .NET Peer-to-Peer Accelerator Kit, 21
intercept communication, 323
Internet, and peer-to-peer, 13-20

client-server Internet, 13-14
"death" of peer-to-peer, 19-20
early Internet, 13
resurgence of peer-to-peer, 14-18

Internet Assigned Numbers Authority (IANA), 198
Internet Control Message Protocol (ICMP), 191
Internet Explorer, viewing web-service methods in, 239
Internet Group Management Protocol (IGMP), 191
Internet Information Server (IIS), 38, 217, 220-22

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Internet Protocol (IP), 191-92
Internet service providers (ISPs), 13-14
inter-process communication, 35-39
Invoke() method, 132
IP addresses, 192-94. See also network address translation (NAT)

and early Internet, 13
for exposing web service on Internet, 222
and ICQ, 15
and IPv6 protocol, 14

IP datagrams, 191-92
IP header, 191-92
IP (Internet Protocol), 191-92
IP spoofing, 323
IPAddress class, 199
IPAddress objects, 199
ipconfig.exe, 196
IPEndpoint class, 199
IPHostEntry class, 199, 201
IPv4 Internet Protocol, 194
IPv6 Internet Protocol, 14, 194, 363
ISessionHandler interface, 337-44
ISessionHandler.MessageReceived() method, 343
ISessionHandler.SessionEnded() method, 341-42
ISessionHandler.SessionStarted() method, 341-42
ISPs (Internet service providers), 13-14
ITalkClient, 73-74, 100-101
ITalkClient interface, 328-29
ITalkClient methods, 384
ITalkClient references, 97
ITalkClient.NotifyListChanged() method, 93
ITalkClient.NotifyUserAdded() method, 93
ITalkClient.NotifyUserRemoved() method, 93
ITalkClient.ReceiveMessage() method, 98, 297
ITalkServer, 73-74
ITalkServer.AddUser() method, 379
ITaskServer interface, 150-51
ItemActivate event, 274

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

J
Jabber, 16
JTella, 362
JXTA platform, 367
JXTA Search, 18

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

K
keep-alive pinging messages, 58
Keywords table, 225, 226
KeywordUtil class, 241, 252

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

L
LANs (local area networks), 189
LargeEncryptedObject class, 331-33
LastUpdate field, 289-90
LastUpdated field, 226, 227
layers

dividing applications into, 5-6
proxy, 54

LDAP (Lightweight Directory Access Protocol), 199
legal intervention, vulnerability to, 11
Length property, 202
lifetime lease, 54
lifetime, remote object, 58-59
<lifetime> configuration section, 58
Lightweight Directory Access Protocol (LDAP), 199
ListView controls

of FileSwapper application, 253-55
and FileUpload class, 269
and Groove platform, 355, 357

ListViewItem, 271, 360
ListViewItem.ChangeStatus method, 271, 272
ListViewItemWrapper class, 242, 253-55, 271, 277
load balancing, 108
Load() method, 249, 250
LoadFrom() method, 179
local area networks (LANs), 189
localhost loopback alias, 89
Localstart.asp file, 221
locking. See coordination servers, threading
login form, 83-84
Login() method, 86-87, 88, 296
login process

on client side, 321
on Web-Server side, 322-23

Login() web method, 317
LoginInfo class, 317, 318, 319, 323
LogOut() method, 298
lookup() method, 370
loopback address, 221
lower-level raw sockets, 198

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

M
machine and device capabilities (MADCAP) server, 213
machine.config file, 66
main form

of FileSwapper application, 255-58
of Task Worker, 171-75

Main() method, 139
mainframes, 4
MarshalByRefObject instances, 45, 72, 85
MaxWorkers settings, 156, 161
MD5 hash algorithm, 308, 339
mediated peer-to-peer, 28
MembershipCondition class, 181
Message class, 42, 43, 120, 327-28
Message object, 50
message queues, 36
Message value, 61
message-board postings, 13
MessageBox, 131
MessageDelivery class, 381-82
MessageDelivery variable, 123
MessageReceived event, 90, 131
MessageReceived() method, 337
messages

sending, 81-82
trace, 74

Messages collection, 123
Messages queue, 121
Messenger. See Windows Messenger
Messenger application, 390-91
messengers, building, 71-111

coordination server, 77-82
overview, 77-79
sending messages, 81-82
tracking clients, 80-81

overview, 71
Talk .NET, 71-77, 95-111

adding file transfer feature, 100-107
cleaning up after clients, 95-97
creating TraceComponent, 74-77
databases and stateless server, 108
decentralization, 97-100
defining interfaces, 73-74
firewalls, 109-10
OneWay methods, 108-9
optional features, 109
overview, 71-73
ports, 109-10
remoting and network address translation (NAT), 110-11
scalability challenges, 107

TalkClient, 82-94
ClientProcess class, 84-90
overview, 82-84

MethodInvoker delegate, 132
methods, and web services, 222. See also names of specific methods
Microsoft Data Engine (MSDE), 217
Microsoft Message Queuing queues, 36
Microsoft's Application Center, 108
Microsoft's Windows Messenger. See Windows Messenger
Mintz, Mike, 336
<Module> tag, 378
Monitor class, 126

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mosaic, 13
MP3 files, 249. See also Gnutella; Napster
MP3Util class, 241, 250
MSDE (Microsoft Data Engine), 217
MSN Messenger. See Windows Messenger
MSNP Helper API for .NET, 336
MSNPHelper class, 337, 339, 340
MSNPHelper.RequestSession() method, 341
multicast broadcast messages, 25
multicasts, 213-14
multiple layers, dividing applications into, 5-6
multiple messages. See coordination servers, threading
multithreaded systems. See coordination servers, threading
multitier programming, 6
music files. See Gnutella; MP3 files; Napster

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

N
namespaces, virtual, 24
Napster, 17

central discovery and lookup server, 28
peer-to-peer model for, 11

NAT. See network address translation (NAT)
.NET exceptions, 42
.NET Game Programming with DirectX 9.0, 362
.NET passport, 15
.NET Peer-to-Peer Accelerator Kit, 21
.NET Terrarium, 18, 19, 181
network addressing challenges, 26-27
network address translation (NAT), 26

during early Internet, 14
and Groove, 346
and Talk .NET, 110-11

network broadcast messages, 25
network interface cards (NICs), 189
network-broadcasting techniques, 30
networking, 189-214

application-level protocols, 199
defined, 189
Internet Protocol (IP), 191-92
IP addresses, 192-94
in .NET, 199-202
overview, 189-91
pinging, 194-96
ports, 197-98
tracing, 194-96
Transmission Control Protocol (TCP), 196-97

communicating with, 202-9
handling multiple connections, 208-9

User Datagram Protocol (UDP), 196, 197
broadcasts and multicasts, 212-14
communicating with, 209-14

networking addressing challenges, 9
NetworkStream class, 200, 201-2
NetworkStream.Read() methods, 202
NICs (network interface cards), 189
noise words, 252
non-repudiation, 306
<NonSerialized> attribute, 43
notification servers, 335
NotifyIcon control, 165, 166
NotImplementedException, 181
n-tier programming, 6
null characters, 252

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

O
object lifetime, 38
ObjRef pointer, 97, 299-300

deserialization and conversion to proxy, 297
serialized, 288
storage of, 291, 322-23

OfferedFiles collection, 102
Olson, Lance, 19
omitting information, 43
OneWay attribute, 108-9, 382
OneWayRemoting directory, 55
OnStart() method, 138
OnStop() method, 138
OpenFileDialog class, 105
optimized routing, 9
ordinary classes, 40
overview, 189-91
Ozzie, Ray, 16, 345

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

P
P2PDatabase class, 230, 291
parallelism. See distributed computing
ParseKeywords() method, 252
passive open, 203
passwords, use with file transfer feature, 107
Path class, 102
peer ASP host, 394
Peer class, 229
peer discovery, 24-25
peer identifiers, 215
peer identity, 23-24
peer IDs, 24
peer information, expired, 238
PeerCertificate Management class, 386
PeerCertificate Management utility class, 374
PeerCertificateManagement.CreateKe yAndSelfSignedCertificate() method, 386
PeerChannel class, 374
PeerChannel.EnableStoreAndForward () method, 382
PeerChannel.MakeSecure() method, 385-86
PeerChannel.SecureWellKnownServic eType() method, 386
PeerExpire=<Time> parameter, 370
PeerFileCopy class, 374
PeerFileURI Collection class, 374
PeerInfo object, 291, 292-93, 299
PeerLive=<Seconds> parameter, 370
peernameservice directory, 376
peernameservice.asmx, 376
Peers table, 225, 287
PeerSecure=True parameter, 370
peer-to-peer

areas in which applicable, 10-12
benefits and challenges, 8-9
and brief history of programming, 3-8
and client-server Internet, 13-14
distinguishing features of, 8
and early Internet, 13
future of, 19-20
in .NET, 20-21
overview, 3
resurgence of, 14-18
security concerns, 10

peer-to-peer working group, 26
PeerWebRequestUtility class, 374
Pending() method, 203
performance scoring, 176-77
persistence engines, of Groove, 348-49
ping.exe utility, 194
pinging, 194-96
PingRecipients() method, 261
PingUtility, 262
pluggable channels, 20
policy levels, 182
port 80 application, 110
ports, 53, 109-10, 197-98
Position property, 202
Primes integer array, 153
primes, mathematical methods for finding, 154-55

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

private IP addresses, 193
private keys, 310-11, 312, 329
Private keyword, 86
Processes window, 143
programming. See also peer-to-peer

distributed, 5-6
history of, 3-8

ProjectInstaller.vb file, 140
propertyList variable, 348
PropertyListEngine persistence engine, 348
proxies, 223-24
proxy class, 224, 244, 245
proxy communication, 41
proxy layers, 54
public keys, 310-11, 312, 313-14, 325
PublishFiles() method, 236, 247-48
pure peer-to-peer applications, 29-30
pure peer-to-peer task manager, 185-86

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

Q
QueuedFiles collection, 275, 276, 277
queues, 119
QueueUserWorkItem() method, 128
queuing, 36, 175-76
QUIT command, 199

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

R
RC2 symmetric algorithms, 310
RCW (runtime callable wrappers), 347
Read() method, 202
Readable property, 202
reader locking, 117
ReaderWriterLock class, 118
real-time collaboration software, 12
real-time searching technology, 12, 18
ReceiveFileOffer() method, 102
ReceiveMessage() method, 57, 74, 81-82, 89

ByVal parameters used by, 44
Private keyword of, 86
remote object creation, 54
sending client object to remote application domain by calling, 53

ReceiveResults() method, 169, 170
ReceiveTask() method, 162-63, 169-70
ReceiveTaskCancel() method, 150-51
ReceiveTaskComplete() method, 163, 170
RecentClients collection, 299
Record.OpenFieldAsString() method, 353-54
RecordSetChanged event handler, 351, 355
RecordSetEngine persistence engine, 348, 349, 351
recordSetEngine variable, 348
ref attribute, 67
Reference.vb proxy class, 244
RefreshContactList() subroutine, 340
RefreshListViewItem() method, 253
RefreshPeer method, 226, 227
RefreshRegistration() method, 236
RefreshSession() method, 293
RefreshSession stored procedure, 288, 289
Register() method, 236
registered user ports, 53, 110, 197
RegisteredUsers collection, 121-22, 123
RegisterMessage() method, 119
RegisterNewUser() method, 293, 296, 299
RegisterWellKnownServiceType() method, 68-69
registration database, 224-36, 287-93

creating database, 225-26
creating Database class, 229-36
Database class, 291-93
overview, 224, 287-88
stored procedures, 226-29, 288-91

registries, dynamic, 15
RegistrySettings class, 242, 249-50
relay element, 377
relay peers, 26
remotable classes, 40
RemoteLibrary.RemoteObject class, 55
RemoteObject class, 50, 54
RemoteObject.ReceiveMessage() method, 44
Remoting, 35-69. See also distributed task manager; messengers, building

advantages of, 37-38
architecture, 39-49

configuration files, 47-49
overview, 39-41
remotable types, 44
remoting hosts, 45-47

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

serializable types, 41-44
basic example of, 49-59

application in action, 55-57
client, 53-54
client configuration file, 54-55
overview, 49-50
remote objects, 50, 58-59
server, 50-51
server configuration file, 51-53

bidirectional example, 59-64
client, 63-64
configuration files, 62
overview, 59-60
remote objects, 60-62

comparison with web services, 218-19
configuring, 64-69

dynamic registration, 67-69
formatters and channels, 65-67
overview, 64-65

disadvantages of, 38-39
infrastructure of, 20, 21
overview, 35
and Talk .NET, 110-11

Remoting, using discovery service with, 287-302
overview, 287
registration database, 287-93

Database class, 291-93
overview, 287-88
stored procedures, 288-91

Talk .NET peers, 296-302
adding caching, 299-301
adding e-mail validation, 301-2

RemotingConfiguration.Configure() method, 45, 57, 67, 380
RemotingConfiguration.RegisterWellK nownServiceType() method, 68
RemovePeer() method, 370
RemoveUser() method, 74, 100, 115, 117, 118, 131, 135
RemoveWorker() method, 156-57
replay attacks, 322
result store, 177-78
ResultsReceived event, 172
Rijndael symmetric algorithms, 310
route.exe, 196
routers, 190
routing, optimized, 9
routing system, 16
RSA asymmetric algorithms, 311, 312
RsaCryptoServiceProvider class, 318
runtime callable wrappers (RCW), 347

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

S
Samples subdirectory, 373
sandbox, configurable, 180-84
SandboxEvidence object, 181, 182, 184
SandboxMembership Condition class, 181
SandBoxPerms permission set, 182
Save() method, 249, 250
scalability challenges

distributed vs. client-server systems, 5-6
Talk .NET, 107

SCM (Service Control Manager), 138
Scribble application, 391
Search class, 242, 259-63
SearchForFile() method, 236
searching technology

distributed searching, 18
JXTA Search, 18
real-time, 12, 18

"secret-key" encryption. See symmetric encryption
Secure Sockets Layer (SSL), 38, 366, 389
security, 10, 305-33. See also digital signatures; encryption

challenges of, 306-7, 306-7
cryptography, 308-13
design choices, 307-8
of file transfer feature, 107
omitting information, 43
overview, 305-6
and Remoting, 38
and Talk .NET interfaces, 74

Seek() method, 202
Send() method, 209
SendFileOffer() method, 101-2
sending messages, 81-82
SendMessage() method, 74, 81-82, 89, 95, 297
SequenceNumber, 153
serializable classes, 40, 41, 42, 43
serializable types, 41-44
<Serializable> attribute, 42
Serialize() method, 318, 325, 328
serializing information to data stores, 36
server database, and digital signatures, 313-15
server, in basic remoting example, 50-53
<ServerCertificate> tag, 388
Server.exe.config file, 50, 51
server-mode/client-mode (SM/CM) model, 25-26
ServerProcess class, 77, 79

and delivery service, 123-24
GetUser() method in, 98
potential problems with collection of client information, 114-15
and reader and writing locking implementation, 116

ServerProcess.AddUser() method, 86-87, 136
ServerProcess.RemoveUser() method, 130
ServerProcess.SendMessage() method, 108, 109, 124, 130
<serverProviders> tag, 67
Service Control Manager (SCM), 138
ServiceBase class, 138
ServiceBase.Run() method, 139
ServiceInstaller class, 138, 141
ServiceInstaller.StartType property, 141
ServiceProcess object, 125

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ServiceProcessInstaller class, 138, 141
Services.Marshal() method, 296
Session class, 337-38
Sessions table, 287, 288, 289
Session.SendMessage() method, 343
SET ROWCOUNT statement, 236
SetAppDomainPolicy() method, 184
SETI@Home, 12, 16-17, 147, 186
SetPeer() method, 370
SHA-1 hash algorithm, 308
SHA-256 hash algorithm, 309
SHA-384 hash algorithm, 309
SHA-512 hash algorithm, 309
ShareBaby2 application, 393
shared spaces, 345
SharedFile array, 236
SharedFile class, 229
SharedFile object, 236, 263
sharing files. See file-sharing
Show system processes check box, 143
sieve of Eratosthenes, 154
SignData() method, 318
SignedObject class, 317-21, 323, 329-30
SignedObject constructor, 317
SingleCall objects, 46
Singleton mode, 52
Singleton objects, 38, 46-47, 78
smart caching, 9
SM/CM (server-mode/client-mode) model, 25-26
SOAP communication, 66
SOAP messages, 37, 110, 219, 371
Socket class, 200
Socket property, 202
SocketException class, 200
sockets, 198
SOCKS Protocol, 367
software load balancing, 108
Solution Explorer, 244, 245
spiders, 18
Src subdirectory, 373
SSL (Secure Sockets Layer), 38, 366, 389
StartAllocateWork() method, 273
StartDownload() method, 273, 279
StartSearch() method, 261
StartSession() method, 293, 317, 322
Startup module, 77
StartUpload() method, 265, 269
StartWaitForRequest(), 264
StartWaitForRequest() method, 265
state management, 38
stateful and stateless discovery service, 217-18
stateful model, 46
stateless server, 108
STOR command, 199
stored procedures, 226-29, 288-91
stream sockets, 198
streaming, cipher-block, 148
StringBuilder object, 173-74, 234
String.Split() method, 252
SubmitTask() method, 161
SwapperClient class, 241

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Swapper.NET, 362
switchboard servers, 335
switches, 189
symmetric encryption, 309-10, 331
synchronizing collection access, 115-18
SyncLock statement, 115, 116
system tray interface, 165-67
System.Activator object, 379
System.Collections.DictionaryBase, 156
System.Diagnostics namespace, 74
System.IO namespace, 102
System.MarshalByRefObject class, 44
System.Net namespace, 199
System.Net.Dns class, 339
System.Net.Sockets class, 200
System.Net.Sockets namespace, 20, 199
System.Runtime.Remoting.Channels namespace, 69
System.Runtime.Remoting.Channels. Http namespace, 69
System.Runtime.Remoting.Channels. Tcp namespace, 69
System.Runtime.Remoting.Messaging namespace, 108-9
System.Runtime.Remoting.ObjRef class, 80
System.Security.Cryptography namespace, 307, 308-9
System.Security.Cryptography.X509Ce rtificates namespace, 313
System.ServiceProcess namespace, 138
System.Threading namespace, 126
System.Threading.ReaderWriterLock class, 117
System.Threading.Thread class, 127
System.Threading.Thread object, 123
System.Thread.ThreadPool class, 128
System.Timers namespace, 133
System.Web.Mail.SmtpServer class, 301
System.Web.Services namespace, 222
System.Windows.Forms.Timer class, 133

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

T
Talk client, changes to, 383-85
Talk component, changes to, 379
Talk .NET, 71-77, 95-111

adding file transfer feature, 100-107
cleaning up after clients, 95-97
creating TraceComponent, 74-77
databases and stateless server, 108
decentralization, 97-100
defining interfaces, 73-74
firewalls, 109-10
OneWay methods, 108-9
optional features, 109
overview, 71-73
ports, 109-10
refining, 134-44

client lifetime, 134-36
duplicate users, 136-37
using Windows service, 138-44

remoting and network address translation (NAT), 110-11
scalability challenges, 107

Talk .NET peers, 296-302
adding caching, 299-301
adding e-mail validation, 301-2

TalkClient, 82-94
ClientProcess class, 84-90
overview, 82-84

TalkComponent, 73
TalkServer, changes to, 380-82
Task class, 152, 158-60, 161
task client, generic, 178-80
Task objects, 155, 156, 158, 161
task worker, creating, 165-75

ClientProcess class, 167-71
main form, 171-75
overview, 165
system tray interface, 165-67

TaskAssigned property, 158
TaskComponent interfaces, 150-52, 154
TaskID, 153, 155
TaskRequest class, 152
TaskRequest object, 150, 152
TaskResults class, 152, 154
TaskResults object, 150, 152
Tasks collection, 155
TaskSegment class, 152, 153
TaskSegment object, 150, 152, 163-64
Tasks.Workers collections, 162
TCP channels, 20, 64
TCP (Transmission Control Protocol), 196-97

communicating with, 202-9
handling multiple connections, 208-9

TcpClient class, 200
TcpClient.AcceptTcpClient() method, 285
TcpClient.Connect() method, 205
TcpClient.GetStream() method, 200, 203
TcpClient.Pending() method, 285
TCP/IP client channel, 55
TCP/IP server channel, 52
TcpListener class, 200, 264
TcpListener.Start() method, 203
temporary files, 247

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Terrarium, 18, 19, 181
testing discovery service, 238-40
TestObject proxy class, 54
TestObject.ReceiveMessage() method, 54
Text property, of controls, 132
TFTP (Trivial File Transfer Protocol), 199
third-party certificate authority (CA), 312
Thomas, Jason, 362
thread contention, 118
threading coordination server. See coordination servers, threading
ThreadPool class, 127-31, 267
threads, 243
thread-safe wrapper, 115
Time Taken label, 173
time to live, 192
timers, 60
TimeSpan object, 117
timestamps, 322-23
tmrRefreshUsers timer interval, 385
topology of peer-to-peer ToXmlString() method, 314
TraceComponent, 74-77
TraceListener class, 74, 142-43
tracert request, 195
Trace.Write() method, 116
tracing, 80-81, 194-96
TransferFile() method, 101
Transmission Control Protocol. See TCP (Transmission Control Protocol)
TripleDES symmetric algorithms, 310
Trivial File Transfer Protocol (TFTP), 199
Trusted Root store, 387
tunnel element, 377
TwoWayRemoting directory, 60
txtBoughtBy text box, 359-60
txtUser textbox, 83

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

U
UDP. See User Datagram Protocol (UDP)
UdpClient class, 200, 209
UdpClient.JoinMulitcastGroup() method, 214
UdpClient.Receive() method, 212
unique identifiers, 23. See GUIDs (globally unique identifiers)
Universal Naming Convention (UNC) path, 179
Unregister() method, 236
Update() button, 259
UpdateControlText class, 342-43
UpdateControlText object, 172
UpdateUsers() method, 119
upgrades, peer-to-peer, 362-63
Upload() method, 265, 269, 270
uploading files, in FileSwapper application, 263-72

FileServer class, 264-68
FileUpload class, 269-72
overview, 263-64

UploadThreads collection, 267
UPnP NAT, 367
Url Behavior in the Properties window, 245
<URL> element, 375
Usenet, 13
User Datagram Protocol (UDP), 196, 197

broadcasts and multicasts, 212-14
communicating with, 209-14

user names, 23
UserDeparted() method, 340
UserJoined() method, 340
UserName property, 83
utility classes, 249-53

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

V
ValidateSignature() method, 318
VerifyData() method, 318
virtual "creature" classes, 18
virtual file system, 12
virtual namespaces, 24
virtual web directories, 220
virus-scanning software, 11

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

W
WaitForRequest() method, 264, 265, 267, 268
WANs (wide area networks), 189
web browsers, 13
web directories, virtual, 220
web servers, 13-14
web services, 36-37, 215-40

calling, 36-37
comparison with Remoting, 218-19
debugging, 239-40
deploy on websites, 223
discovery service, 215-18, 236-40

overview, 215-16
stateful and stateless, 217-18
testing, 238-40

essentials of, 218-24
anatomy of web-service request, 219-20
Internet Information Server (IIS), 220-22
overview, 218-19
WebService class, 222-23
web-service client, 223-24

registration database, 224-36
creating database, 225-26
creating Database class, 229-36
overview, 224
stored procedures, 226-29

serialization, 44
viewing methods in Internet Explorer, 239

Web Services Description Language (WSDL), 218
Web Services Enhancements (WSE), 313
web.config file, 230-31
<WebMethod> attribute, 222
WebRequest class, 374
Web-Server side, login process on, 322-23
WebService class, 222, 222-23
web-service client, 223-24
web-service request, 219-20
well-known system ports, 53, 110, 197
WHERE clause, 229, 234
wide area networks (WANs), 189
Wilson, Brendon, 367
Windows Form application, 50
Windows Form interface, 138
Windows Messenger, 12, 15, 16, 21, 335-44

avoiding firewall problems, 27
central database, 24
creating a Windows Messenger client, 337-44
overview, 335-37

Windows peer-to-peer networking, 362-63
Windows services, 138-44

debugging, 142-44
installing, 140-42
overview, 138-40

Windows Sockets (Winsock) interface, 20
Windows XP, peer-to-peer upgrade for, 362-63
work manager

creating, 155-64
overview, 155-56
tasks, 158-60
tasks, completing, 163-64
tasks, dispatching, 161-63
tracking workers, 156-58

enhancing, 175-86
configurable sandbox, 180-84
generic task client, 178-80

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

overview, 175
performance scoring, 176-77
pure peer-to-peer task manager, 185-86
queuing, 175-76
writing directly to result store, 177-78

WorkerID, 155
WorkerRecord class, 157-58
WorkerRecord object, 155, 176
WorkerRecord objects, 156, 157
Workers collection, 155
Write() method, 75, 202
Writeable property, 202
WriteLine() method, 75
writing directly to result store, 177-78
writing locking, 117
WSDL (Web Services Description Language), 218
WSE (Web Services Enhancements), 313

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

X-Z
XML format, of configuration files, 47-48
XML routing system, 16
XmlNode object, 222

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

List of Figures

Chapter 1: The Evolution of Peer-to-Peer
Figure 1-1: Client-server computing

Figure 1-2: Distributed computing

Figure 1-3: Peer-to-peer computing

Chapter 2: Peer-to-Peer Architecture
Figure 2-1: The server-mode/client-mode model

Figure 2-2: A pure peer-to-peer search

Chapter 3: Remoting Essentials
Figure 3-1: Remotable and serializable types

Figure 3-2: The Remoting proxy mechanism

Figure 3-3: The component host in an enterprise system

Figure 3-4: The component host in a peer-to-peer system

Figure 3-5: Adding a configuration file to a project

Figure 3-6: An automatically generated configuration file

Figure 3-7: Launching multiple projects for debugging

Figure 3-8: Entering a message in the client

Figure 3-9: Receiving the message with the remote object

Figure 3-10: Receiving a callback at the client

Figure 3-11: The many layers of Remoting

Chapter 4: Building a Simple Messenger
Figure 4-1: Components of the Talk .NET system

Figure 4-2: Forwarding trace messages to a form

Figure 4-3: The login form

Figure 4-4: The Talk form

Figure 4-5: Multiple client interaction

Figure 4-6: The server trace display

Figure 4-7: Offering a file transfer

Figure 4-8: A completed file transfer

Chapter 5: Threading the Coordination Server
Figure 5-1: Interaction with the DeliveryService

Figure 5-2: The threaded message delivery

Figure 5-3: Trace output for the threaded Talk .NET

Figure 5-4: Multiple thread message delivery

Figure 5-5: Creating a service installer in Visual Studio .NET

Figure 5-6: Installing a service with InstallUtil.exe

Figure 5-7: Starting the service through the SCM

Figure 5-8: Finding the service

Figure 5-9: Attaching the Visual Studio .NET debugger to a service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-10: The trace output in Visual Studio .NET

Chapter 6: Building a Distributed Task Manager
Figure 6-1: The work request process

Figure 6-2: The order of work request steps

Figure 6-3: The worker in the system tray

Figure 6-4: The main form

Figure 6-5: A completed prime number query

Figure 6-6: The server trace transcript

Figure 6-7: Granting all permissions to the worker assembly

Figure 6-8: Granting reduced permissions to the task assembly

Figure 6-9: The two-stage request process with a decentralized work manager

Chapter 7: Networking Essentials
Figure 7-1: The network hierarchy

Figure 7-2: The network protocol stack

Figure 7-3: A TCP or UDP connection

Figure 7-4: Sending data over TCP

Figure 7-5: Multiple TCP connections

Figure 7-6: Sending data over UDP

Chapter 8: Building a Discovery Web Service
Figure 8-1: The discovery pattern

Figure 8-2: The effect of indexing content with a discovery service

Figure 8-3: Serving a web-service request with ASP.NET

Figure 8-4: The registration database

Figure 8-5: Sample registration data

Figure 8-6: Viewing web-service methods in Internet Explorer

Figure 8-7: Configuring web-service debugging

Chapter 9: Building a File Sharer
Figure 9-1: The FileSwapper display

Figure 9-2: Threads in FileSwapper

Figure 9-3: Adding a web reference

Figure 9-4: The hidden proxy class

Figure 9-5: FileSwapper configuration settings

Figure 9-6: A FileSwapper search

Figure 9-7: The uploading process

Figure 9-8: FileSwapper uploads

Figure 9-9: The downloading process

Figure 9-10: FileSwapper downloads

Chapter 10: Using a Discovery Service with Remoting
Figure 10-1: The Talk .NET registration database

Figure 10-2: Logging in with a new or existing account

Chapter 11: Security and Cryptography

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11-1: How user A can send an encrypted message to user B

Figure 11-2: The revised Peers table

Figure 11-3: The Login window

Figure 11-4: Using SignedObject to sign a LoginInfo

Figure 11-5: Encrypting and signing a message

Chapter 12: Working with Messenger and Groove
Figure 12-1: The custom Messenger client

Figure 12-2: Interacting with Messenger through the MSNP component

Figure 12-3: Interaction with the custom Messenger

Figure 12-4: A sample Groove shared space in the transceiver

Figure 12-5: Creating a Groove project

Figure 12-6: The contents of a Groove project

Figure 12-7: Synchronization in a Groove shared space

Figure 12-8: A custom Groove tool with a shared list

Figure 12-9: Running the custom tool in the Groove transceiver

Figure 12-10: Groove assemblies for identity management

Figure 12-11: Groove identity interfaces

Figure 12-12: A Groove tool that recognizes identities

Chapter 13: The Intel Peer-to-Peer Accelerator Kit
Figure 13-1: The Intel Peer-to-Peer daemon service

Figure 13-2: Sending a message from one peer to another

Figure 13-3: How the Intel Peer-to-Peer Accelerator Kit maps peer URLs

Figure 13-4: Installing the Intel Peer-to-Peer Accelerator Kit

Figure 13-5: The role of a relay server

Figure 13-6: The server object URL

Figure 13-7: The CertificateManagementUI utility

Figure 13-8: Creating a new certificate

Figure 13-9: The makecert.exe utility

Figure 13-10: The Intel Peer-to-Peer Messenger

Figure 13-11: A partially complete SharedCyclesP2P job

Figure 13-12: The Intel Peer-to-Peer ShareBaby2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Peer-to-Peer with VB .NET
by Matthew MacDonald ISBN:1590591054

Apress © 2003 (456 pages)

This text takes a look at peer-to-peer programming with VB .NET, and provides complete
examples demonstrating instant messaging, file sharing, and how distributed computing
and peer-to-peer work together.

Table of Contents

Peer-to-Peer with VB .NET
Introduction
Part One - Introducing Peer-to-Peer
Chapter 1 - The Evolution of Peer-to-Peer
Chapter 2 - Peer-to-Peer Architecture
Part Two - Peer-to-Peer with a Coordination Server
Chapter 3 - Remoting Essentials
Chapter 4 - Building a Simple Messenger
Chapter 5 - Threading the Coordination Server
Chapter 6 - Building a Distributed Task Manager
Part Three - Peer-to-Peer with a Discovery Server
Chapter 7 - Networking Essentials
Chapter 8 - Building a Discovery Web Service
Chapter 9 - Building a File Sharer
Chapter 10 - Using a Discovery Service with Remoting
Part Four - Advanced Peer-to-Peer
Chapter 11 - Security and Cryptography
Chapter 12 - Working with Messenger and Groove
Chapter 13 - The Intel Peer-to-Peer Accelerator Kit
Index
List of Figures

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

