

• Table of
Contents

• Index
• Reviews

• Reader
Reviews

• Errata

Perl for Oracle DBAs

By Andy Duncan, Jared Still

Publisher: O'Reilly
Pub Date: August 2002

ISBN: 0-596-00210-6
Pages: 620
Slots: 1

Perl is a very powerful tool for Oracle database administrators, but too few
DBAs realize how helpful Perl can be in managing, monitoring, and tuning
Oracle9i, Oracle8i, and earlier databases. You don't need to be a Perl expert
to reap the rewards of reading Perl for Oracle DBAs. The book explains what
you need to know about Perl, profiles the best Perl open source applications
available to DBAs, and provides the Perl DBA Toolkit, a comprehensive suite
of ready-to-use scripts designed to ease the burden of Oracle database
administration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

• Table of
Contents

• Index
• Reviews

• Reader
Reviews

• Errata

Perl for Oracle DBAs

By Andy Duncan, Jared Still

Publisher: O'Reilly
Pub Date: August 2002

ISBN: 0-596-00210-6
Pages: 620
Slots: 1

 Copyright

 Preface

 Audience for This Book

 Which Platform and Version?

 Structure of This Book

 About the Perl DBA Toolkit and Examples

 Conventions Used in This Book

 Comments and Questions

 Acknowledgments

 Part I: Introducing Perl for Oracle

 Chapter 1. Perl Meets Oracle

 Section 1.1. What is Perl?

 Section 1.2. The Perl/Oracle Architecture

 Section 1.3. Perl for Oracle DBAs

 Section 1.4. For Further Information

 Chapter 2. Installing Perl

 Section 2.1. Installing Perl

 Section 2.2. Installing Perl DBI

 Section 2.3. Running Perl DBI

 Section 2.4. Installing Cygwin

 Part II: Extending Perl

 Chapter 3. Perl GUI Extensions

 Section 3.1. Perl/Tk

 Section 3.2. OraExplain

 Section 3.3. StatsView

 Section 3.4. Orac

 Section 3.5. DDL::Oracle

 Section 3.6. SchemaDiff

 Section 3.7. Senora

 Section 3.8. DBD::Chart

 Section 3.9. SchemaView-Plus

 Section 3.10. Open Source Perl IDEs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 3.11. Open Source Perl GUI Debuggers

 Chapter 4. Perl Web Extensions

 Section 4.1. Apache

 Section 4.2. Oracletool

 Section 4.3. Karma

 Chapter 5. Embedding Perl into Apache with mod_perl

 Section 5.1. mod_perl

 Section 5.2. Apache::OWA

 Chapter 6. Embedded Perl Web Scripting

 Section 6.1. Embperl

 Section 6.2. Mason

 Chapter 7. Invoking the Oracle Call Interface with Oracle::OCI

 Section 7.1. What is Oracle::OCI?

 Section 7.2. What Is OCI?

 Section 7.3. Installing Oracle::OCI

 Section 7.4. Coding with Oracle::OCI

 Section 7.5. The Future of Oracle::OCI

 Chapter 8. Embedding Perl into PL/SQL

 Section 8.1. Communication Between Perl and PL/SQL

 Section 8.2. Embedding Perl Within Oracle

 Part III: The Perl DBA Toolkit

 Chapter 9. Installing the PDBA Toolkit

 Section 9.1. Introducing the PDBA Toolkit

 Section 9.2. Toolkit Modules

 Section 9.3. Installing the PDBA Toolkit for Unix

 Section 9.4. Installing the PDBA Toolkit for Win32

 Section 9.5. Configuring the PDBA Toolkit

 Chapter 10. Performing Routine DBA Tasks with the PDBA Toolkit

 Section 10.1. Managing User Accounts

 Section 10.2. Maintaining Indexes

 Section 10.3. Killing Sniped Sessions

 Section 10.4. Managing Extent Usage

 Section 10.5. Extracting DDL and Data

 Chapter 11. Monitoring the Database with the PDBA Toolkit

 Section 11.1. Monitoring the Alert Log

 Section 11.2. Monitoring the Databases

 Chapter 12. Building a Database Repository with the PDBA Toolkit

 Section 12.1. Repository Table Structure

 Section 12.2. Installing the Repository

 Section 12.3. Loading the Repository with Data

 Section 12.4. Reporting on Database Changes

 Section 12.5. Reporting on SQL Execution Plans

 Chapter 13. Extending the PDBA Toolkit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chapter 13. Extending the PDBA Toolkit

 Section 13.1. Modifying a Script in the Toolkit

 Section 13.2. Modifying a Module in the Toolkit

 Part IV: Appendixes

 Appendix A. The Essential Guide to Perl

 Obtaining Online Information

 Running Perl Scripts

 Perl Variable Types: Scalars, Arrays, and Hashes

 Perl Contexts: Void, Scalar, List, and Boolean

 Program and Subroutine Parameters

 Perl References

 Perl's Object Orientation

 Appendix B. The Essential Guide to Perl DBI

 DBI Class Methods

 Database Handles — Preparation

 Statement Handle Methods

 Database Handles — SQL and Cleanup

 Metadata

 Oracle-Specific Methods

 Appendix C. The Essential Guide to Regular Expressions

 The Origins of Regular Expressions

 Built-in String Handling Functions

 Regular Expression Concepts

 Metacharacters

 Match Suffixes

 Appendix D. The Essential Guide to Perl Data Munging

 What Is Data Munging?

 Data-Munging Example: An Inter-Database Transfer

 Numeric Modules

 Date Modules

 Conversion Modules

 XML Modules

 Colophon

 Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://safari.oreilly.com). For more
information contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks
of O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those designations appear in this
book, and O'Reilly & Associates, Inc. was aware of a trademark claim, the designations have
been printed in caps or initial caps. The association between the image of thread-winged
lacewings and the topic of Perl for Oracle DBAs is a trademark of O'Reilly & Associates, Inc.

Oracle® and all Oracle-based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation, Inc. in the United States and other countries. O'Reilly & Associates, Inc. is
independent of Oracle Corporation.

While every precaution has been taken in the preparation of this book, the publisher and the
author assume no responsibility for errors or omissions, or for damages resulting from the use of
the information contained herein.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface
There are many books on Perl and many books on Oracle, but until now there have been no
books dedicated to describing the relationship between these two popular technologies. Our aim
is to bridge the gap between the world's leading data-processing language and the world's
leading database. The Perl language was created with the goal of making "the easy things easy
and the hard things possible." Oracle's ever-expanding purpose is to provide a complete
database environment for the entire interconnected world. This mission makes Oracle a tough
taskmaster — and thus an environment ideally suited to Perl, because being an Oracle database
administrator is one of the toughest jobs around.

Oracle DBAs need enormous intelligence, infinite patience, and considerable courage. We think
they also need Perl. The Perl open source language is a many-splendored thing; you can write
scripts with it, develop GUIs with it, create web sites with it, generate XML with it — and you can
probably hang your towels from it! Perl fills data warehouses and runs on virtually every operating
system around. Perl is the toolkit without limitations, the salvation of your 24x7 lifestyle. If Gandalf
the Wizard were to choose a scripting language, he would choose Perl.

Our mission in this book is to show you how Perl can revolutionize your life as an Oracle DBA.
We'll focus on four aspects of the Perl/Oracle connection:

The Perl language itself

We'll introduce you to the Perl language, with its rich history and culture, present some
language basics, and shine some light on CPAN, the Comprehensive Perl Archive
Network, the main distribution point for Perl modules.

The Perl/Oracle architecture

We'll introduce you to the modules that allow Perl programs to communicate with Oracle
databases.

Perl applications for Oracle DBAs

We'll profile about a dozen of the best ready-made applications written in Perl for use by
Oracle DBAs. These provide help with database administration, monitoring, tuning, and
daily troubleshooting. They also provide components you can use in your own Perl scripts,
should you choose to add a little program development to your daily DBA routine.

The PDBA Toolkit

We'll present, for your enjoyment, an Oracle database administration toolkit we've written
ourselves. The Perl Database Administration (PDBA) Toolkit contains nearly 100 Perl
scripts and reusable modules that perform operations ranging from creating new Oracle
users to monitoring the Oracle alert log to building a repository of database information for
use in tuning and troubleshooting. All of this code is available on the O'Reilly web site
(http://www.oreilly.com/catalog/oracleperl/pdbatoolkit).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Audience for This Book

If you're an Oracle DBA who is trying desperately to keep up with the daily demands of
administering, monitoring, and tuning your Oracle databases, this book is for you. We are Oracle
DBAs ourselves, and we know how difficult your job can be. This book provides both information
and software that we hope will ease your burden.

Although the primary audience is Oracle DBAs, many DBAs end up being devel-opers from time
to time, and there is no better language than Perl for writing those quick scripts. Anyone doing
Perl development will find Chapter 7, Chapter 8, and Chapter 13, as well as the appendixes,
particularly useful.

This book assumes no prior experience with Perl, though some knowledge of the language will
help you get the most out of the material presented here. Although the book's appendixes explore
the essential syntax of Perl, Perl DBI (DataBase Interface), Perl's regular expressions, and Perl's
data-munging modules, a complete Perl tutorial is beyond our scope. Our goal here is to jump-
start your explorations into the intersection where Perl meets Oracle. We'll provide plenty of
suggestions for where to go next on your journey.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Which Platform and Version?

Both Perl and Oracle run on virtually every hardware platform and operating system. To
demonstrate this ubiquity, we've used a wide variety of OS platforms and Oracle versions in the
preparation of this book. Oracle versions range from Oracle7.3 through Oracle9i. OS platforms
include Linux Red Hat 6, Linux SuSE 7.3, Solaris 8, Windows NT 4, Windows 2000, and others.
We've focused on Unix and Win32 operating systems, but we've also included specific installation
instructions for particular operating system variants when necessary.

Against this irresistible surge of platforms, our immovable rock is the Perl version we've used on
all of these operating systems. Perl 5.6.1 was the latest stable Perl release available as we wrote
this book and developed the toolkit software. We also used the most current stable version of Perl
DBI, Version 1.20, in conjunction with Perl DBI's Oracle-specific driver module, DBD::Oracle
(DataBase Driver for Oracle), Version 1.12.

By the time you read this book, it's possible that the latest stable versions
on the CPAN web site will have been upgraded, particularly if Perl itself is
upgraded to Perl6, which was under development as we wrote this book.
We'll be updating our toolkit as an open source project in order to cope
with any such Perl enhancements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Structure of This Book

This book is divided into four parts:

Part I

Chapter 1 introduces the Perl language and explains why it is such a helpful language for
Oracle database administrators. It also provides an overview of the main components of
the Perl/Oracle architecture.

Chapter 2 describes how to install Perl on Unix and Win32 systems. It also describes how
to install Cygwin, a Unix-like development environment you can install on your Win32
machine.

Part II

Chapter 3 describes Perl/Tk, an extensive GUI-based toolkit for Perl, as well as a number
of applications that provide Oracle DBAs with graphically oriented tools for performing
database administration. These include OraExplain, StatsView, Orac, DDL::Oracle,
SchemaDiff, Senora, DBD::Chart, SchemaView-Plus, and a variety of Perl GUI integrated
development environments (IDEs) and debuggers.

Chapter 4 discusses the relationship between Perl and the Apache web server, and
focuses on two Oracle applications that use a web browser as their user interface:
Oracletool and Karma.

Chapter 5 explains how the use of Apache's mod_perl module can greatly improve the
performance of Perl web-based CGI (Common Gateway Interface) scripts used with
Oracle. This chapter also covers several related Apache modules: Apache::Registry,
Apache::DBI, and Apache::OWA (used to connect mod_perl to Oracle's PL/SQL Web
Toolkit).

Chapter 6 describes two applications, Embperl and Mason, that demonstrate the
advantages of embedded scripting, a method that allows Perl code to be embedded within
web pages. These tools provide a mechanism for filling your production web pages with
dynamic Oracle data and creating your own Oracle web tools, while separating content
from design issues.

Chapter 7 covers Oracle::OCI, a Perl module that provides a more extensive interface to
Oracle's Oracle Call Interface (OCI) than is possible with Perl DBI.

Chapter 8 discusses extproc_perl, a Perl module that communicates with the Oracle
PL/SQL language's external procedure C library system (known as EXTPROC). This
module and the others described here allow Perl code to be embedded directly in PL/SQL
programs.

Part III

Chapter 9 introduces the components of the Perl Database Administration Toolkit (PDBA)
and explains how to install it and build the toolkit's password server.

Chapter 10 describes the toolkit's Perl scripts that help DBAs perform day-to-day
administration. We'll cover managing user accounts, maintaining indexes, killing sniped
sessions, managing extent usage, and extracting DDL (Data Definition Language) and
data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11 describes the toolkit's Perl scripts that can be used to monitor both the Oracle
alert log (containing database error and status messages) and the connectivity of the
databases.

Chapter 12 describes the toolkit's Perl scripts that allow you to build a repository in which to
store information about the many changes made to an Oracle database's tables, indexes,
roles, schemas, and other objects.

Chapter 13 provides information that will be helpful if you decide to modify any of the
scripts or modules in the toolkit. We'll take a detailed look inside one of the toolkit's scripts
and modules and illustrate how you can change it to suit your specific database
administration needs.

Part IV

Appendix A summarizes basic Perl syntax, including object-oriented features.

Appendix B presents the main Perl DBI application programming interface (API) functions.

Appendix C describes the basics of regular expressions (regexes), patterns of literals and
metacharacters used extensively by Perl for pattern matching.

Appendix D summarizes the Perl data-munging modules that are helpful in formatting and
transforming data for data warehouses and other such Oracle applications; it includes
sections on numeric, date, conversion, and XML modules.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

About the Perl DBA Toolkit and Examples

The full source code for the PDBA Toolkit is available on the O'Reilly web site at:

http://www.oreilly.com/catalog/oracleperl/pdbatoolkit

The toolkit is a fully open source-compliant project, and we welcome all contributions to extend it.
In line with the OSI (Open Source Initiative) guidelines,[1] the PDBA Toolkit is freely available for
download over the Internet under the Perl Artistic License.[] We'll try our best to keep this code up
to date as Perl and the many modules described in this book are upgraded. Our goal is to have
you be able to download the latest and greatest version of the toolkit at all times as we seek
constantly to improve it.

[1] The Open Source Initiative (OSI) is a "non-profit corporation dedicated to managing and promoting the Open
Source Definition for the good of the community" (seehttp://www.opensource.org/).

[] The Perl Artistic License "state(s) the conditions under which a package may be copied, such that the copyright
holder maintains some semblance of artistic control over the development of the package, while giving the users of the
package the right to use and distribute the package in a more-or-less customary fashion, plus the right to make
reasonable modifications" (see http://www.perl.com/pub/a/language/misc/Artistic.html).

In addition to the toolkit programs, we have also provided a large number of stand-alone Perl
programs in the book and on our site. We'll also try to keep this code up to date and available for
download at the O'Reilly web page cited earlier.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Used for filenames, directory names, and URLs. It is also used for emphasis and for the
first use of a technical term.

Constant width

Used for code examples.

Constant width bold
Used occasionally in code examples to highlight statements being discussed.

Indicates a tip, suggestion, or general note. For example, we'll tell you if a
certain feature is version-specific.

Indicates a warning or caution. For example, we'll tell you if a certain
operation has some kind of negative impact on the system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Comments and Questions

We have tested and verified the information in this book and in the source code to the best of our
ability, but given the number of tools described in this book and the rapid pace of technological
change, you may find that features have changed or that we have made mistakes. If so, please
notify us by writing to:

O'Reilly & Associates
1005 Gravenstein Highway
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

You can also send messages electronically. To be put on the mailing list or request a catalog,
send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for this book where you can find updated links to Perl and Oracle software
discussed in this book, along with errata (previously reported errors and corrections are available
for public view there). You can access this page at:

http://www.oreilly.com/catalog/perloracledba

To download the PDBA Toolkit, you can go directly to:

http://www.oreilly.com/catalog/oracleperl/pdbatoolkit

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Acknowledgments

As you might expect, a tremendous number of people from the Perl and Oracle communities have
helped us put this book together, including many of the creators of the actual tools discussed
here. We cannot thank them enough (although we'll do our best). We also are very grateful to the
whole O'Reilly editorial and production team.

From Andy

First of all I have to thank my wife and beg her not to throw me out of the house for having
deserted our family (my son Ross, four-and-a-half, and daughter Ellie, two-and-a-bit) for the last
six months while completing this magnum opus. I had thought my previous book, Oracle & Open
Source, written with Sean Hull, was as tough as it would get on a family, but I was proved wrong.
Daddy could often only be located by following the trail of pizza crumbs and Dr. Pepper cans from
the fridge to the darkest recesses of the house where he hid, tip-tapping away on a variety of
workstations. But all will be redeemed if you get as much out of this book as I have, in its long-
fingered probings into the darkest recesses of Perl for Oracle DBAs. My wife Sue has been the
magnificent rock upon which I built my effort, and without her and our beautiful children, you can
just take everything else and give it all away. I am forever in their debt.

As with all O'Reilly books, this has also been an immense collaborative effort involving more than
just the writing team of myself, Jared, and our omniscient editor, Debby Russell. I would like to
thank Tim Bunce, the father of Perl DBI, for his help and support over the past five years, and
everyone else who has helped us achieve our goal of producing this book, particularly our
technical reviewers who did such a magnificent job under tight deadline pressure: Stephen
Andert, Tim Bunce, Ben Evans, Lance Hollman, Thomas A. Lowery, Ilya Sterin, and Richard
Sutherland.

Many others also helped us ensure that this book was both as accurate and as up-to-date as we
could possibly make it. My deepest thanks to all of them: Dean Arnold, Jeffrey W. Baker, Doug
Bloebaum, Ronald Bourret, Thomas Boutell, Hans-Bernhard Broeker, Alan Burlison, Damian
Conway, Martin Drautzburg, Thomas Eibner, Kim Fowler, Andy Gillen, Lars Hecking, Russell
Herbert, Roger Hipperson, Dan Horne, Jeff Horwitz, Sean Hull, Randy Kobes, Robert Lupton,
Doug MacEachern, Edmund Mergl, Julian Moss, Alistair Orchard, Ian Pilgrim, Alan Ranger, Eric
S. Raymond, Gerald Richter, Dave Rolsky, Dave Roth, Nick Semenov, Steve Shaw, Jonathan
Swartz, Svante Sörmark, Jesse Reed Vincent, Adam vonNieda, and Ken Williams.

My future bar bill is now immense, possessing gravitational mass in its own right. However, before
I finish, I have to thank our editor Debby Russell, who has done so much to support us and sculpt
our natural techno-speak into what we hope you'll find to be an invaluable guiding light towards
the Perl and Oracle mithril of a deep subterranean world. She also brought this book down from
being a ridiculous 1,000-page cave troll into the more-or-less manageable wood-elf you hold in
your hands without losing a single important point. And finally, I have to thank David Gray, for his
album, White Ladder, without which the completion of my half of this book would have been
simply impossible, Dr. Pepper or no Dr. Pepper.

From Jared

I must first thank my own personal goddess, my wife, Carla. Although her husband spent many
early mornings, late nights, weekends, and even several days of vacation time over a period of
months, sequestered away in his hobbit hole of a computer warren producing code and text, she
remained supportive and understanding.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next I must thank my coauthor Andy. A true human dynamo, Andy was a whirlwind of activity
while we collaborated on this project, and a source of inspiration on several occasions. He and
Debby Russell are responsible for bringing our massive first draft down to a manageable size.

Andy and I both owe a deep debt of gratitude to everyone who has assisted us in the creation of
this book. Andy has already mentioned those who have given us direct help in this project. I would
like to reiterate our thanks to Tim Bunce for his outstanding work on the Perl DBI and
DBD::Oracle modules. I would take it even further and thank Larry Wall for the inspired moment
when he first decided to create Perl.

Hats off to the entire open source community as well. Without the dedication and hard work of so
many talented individuals, computing would be far less interesting. Trite? Maybe, but nonetheless
sincere.

I'm grateful to my friends who listened patiently when they asked what "the book" was about when
they learned I was working on one, even though they had never heard of Perl or Oracle, and for
the fact they are still my friends, in spite of missed social occasions.

Finally, I thank my parents, Jerry and Betty. They had no idea that their combined genes would
create progeny with a predilection for Perl, Unix, Linux, databases, and a fascination with ones
and zeros arranged in meaningful patterns. Thanks Dad, thanks Mom.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part I: Introducing Perl for Oracle
This first part of the book introduces Perl and the architecture that allows it to
connect to the Oracle database. It consists of the following chapters:

Chapter 1 introduces the Perl language and explains why it is such a helpful
language for Oracle database administrators. It also provides an overview of the
main components of the Perl/Oracle architecture.

Chapter 2 describes how to install Perl on Unix and Win32 systems. It also describes
how to install Cygwin, a Unix-like development environment you can install on your
Win32 machine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. Perl Meets Oracle
Perl is the world's number one solution for transforming and gluing data together, and Oracle is
the world's number one solution for storing that data. In this book we'll explore the interface
between two of the finest American inventions since baseball and pretzels. We're going to grab
that Oracle data, we're going to flip that Oracle data, and we're going to munge that Oracle data.
And we're going to do it all in Perl!

The goal of this book is to explore the frontier connecting the Perl and Oracle worlds, having as
much fun along the way as possible. There are many routes through this largely unexplored
territory, and one we think is particularly important is the one focused on Oracle database
administration. We are Oracle DBAs ourselves and we know the frustrations the job can bring.
We've found Perl an enormous help to us in performing administrative tasks — both routine ones,
like adding new users to the database, and more complex ones, like monitoring database
connectivity in real time and tracking down database performance problems by comparing SQL
execution plans. We want to share the information we've acquired over the years about Perl and
its many Oracle applications. We also want to give you access to our own Oracle database
administration scripts, which we've packaged up in the Perl Database Administration (PDBA)
Toolkit described in this book and freely available on the O'Reilly web site.

This chapter sets the scene by introducing you to Perl and how it connects to Oracle. We'll look at
the following:

Perl's origins and advantages

We'll take a look at where Perl came from and what makes it such a popular and powerful
language.

Perl/Oracle architecture

We'll see how Perl connects to the Oracle database via the Perl DBI module, the
DBD::Oracle program, and Oracle's own OCI product. These modules interact to allow Perl
programs access to Oracle databases.

Perl for Oracle DBAs

We'll discuss why Perl is a particularly appropriate language for Oracle DBAs to learn and
use.

We'll also provide a list of additional Perl resources.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.1 What is Perl?

Perl is a wonderful language with a rich history and culture. Many books have been written about
its capabilities and roots. In this book we'll be focusing on how Perl and Oracle work together, and
we'll only skim the surface of Perl's overall capabilities, giving you just enough detail so you'll
appreciate what Perl can do for you.

In a nutshell, Perl is a freely available interpreted scripting language that combines the best
capabilities of a variety of other languages. Despite borrowing other language capabilities, the
whole of Perl is far greater than the sum of its parts. Perl was designed especially to be:

Extremely fast, in order to be useful when scanning through large files

Especially good at text handling, because data comes in many different forms and Perl has
to handle them all

Extensible, in order for Perl to expand users' horizons, not restrict them

A tutorial for basic Perl is outside the scope of this book. Fortunately, there are many excellent
web sites and books containing the information you need to get going. We've collected references
to what we consider to be the best Perl books and online documentation in Section 1.4 at the end
of this chapter. The appendixes provide quick references to different aspects of Perl's capabilities.
For online information, check out the main Perl portals at:

http://www.perl.com
http://www.perl.org
http://www.activestate.com (for Win32)

Before we get into the details of how Perl and Oracle interact, let's take a step back to look at
where Perl came from.

1.1.1 The Origins of Perl

Larry Wall created Perl back in 1987 with the goal of making "the easy things easy and the hard
things possible" — originally just for himself, but ultimately for a whole generation of developers.
Larry had been working on a complex system and had been trying to get Unix's awk utility to do
his bidding. He finally gave up on it and under the auspices of a secret project for the National
Security Agency known as the "Blacker," he decided to create a new language by raiding a
primeval soup of technologies and splicing together the genetic structures of awk, sed, sh and C,
as well as csh, Pascal, and BASIC. The first release of Perl, Perl 1.0, arrived after a nine-month
gestation period.

Perl was unlike any other computer language that had come before it, and this sea change was
partially reflected in the name. The original name, "Pearl," stood for "Practical Extraction And
Report Language," but in the spirit of this compact language, Larry wanted to save typing that
extra fifth character. The name quickly morphed into Perl, which by now also stood for
"Pathologically Eclectic Rubbish Lister." This self-irreverence further distinguished the language
and gave it a certain counter-culture cachet.

Perhaps the most accurate summary of what Perl is best for can be found in the README file
written by its author for Perl Version 1.0:

Perl is a interpreted language optimized for scanning arbitrary text files, extracting
information from those text files, and printing reports based on that information. It's
also a good language for many system management tasks. The language is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

also a good language for many system management tasks. The language is
intended to be practical (easy to use, efficient, complete) rather than beautiful (tiny,
elegant, minimal). It combines (in the author's opinion, anyway) some of the best
features of C, sed, awk, and sh, so people familiar with those languages should have
little difficulty with it. (Language historians will also note some vestiges of csh,
Pascal, and even BASIC|PLUS.) Expression syntax corresponds quite closely to C
expression syntax. If you have a problem that would ordinarily use sed or awk or sh,
but it exceeds their capabilities or must run a little faster, and you don't want to write
the silly thing in C, then perl may be for you. There are also translators to turn your
sed and awk scripts into perl scripts. OK, enough hype.

The Unix world embraced the Perl language, and the fast-growing Perl development community
gradually built their favorite language into the world's supreme text-processing engine. Over the
next few years, Perl grew ever more powerful. Perl's regular expression handling was enhanced,
the ability to handle binary files was added to the language, and the three main variable types
were honed and sculpted. Soon the Perl Artistic License was adopted, and with the publication of
the first edition of Programming Perl, the definitive guide to the language, the camel became the
Perl trademark.[1]

[1] The camel is a great image for Perl because it suggests a horse designed by more than one voice — perhaps a bit
challenged in looks, but perfectly adapted for a difficult ecological niche.

Perl has become hugely popular, largely because of its extremely fast text processing and its
ability to glue difficult things together with ease. With the explosion of the interactive Internet in
the 1990s, Perl found itself superbly pre-adapted to become the new tool of an Internet
generation. It glued those trillions of text packets into one big global village! And as the World
Wide Web burst on the scene, Perl continued to evolve, emerging as the premier language for
developing web applications. Perl 4 brought the release of modules allowing Perl to interact with
Oracle (and other) databases. The current version of Perl, Perl 5, contains long-sought object-
oriented features.

1.1.1.1 Perl on Win32

Although Perl's origins were in the Unix world, it was ported to Windows back in 1995 by Dick
Hardt and Hip Communications, the forerunners of ActiveState. Windows NT administrators then
discovered a whole new world of functionality via the Win32 modules supplied by ActiveState, and
Perl became their dominant scripting language. Perl was a lifesaver for busy administrators
performing large NT system updates. (Adding 100 users to a system via the repetitive and arthritic
point-and-click method really is no fun!)

Win32 Perl became so popular that there was some danger that the Unix and Windows versions
would diverge. But Larry Wall was not about to let this happen. Those not familiar with Perl may
wonder why it matters. What difference would it make if the Unix and Win32 Perls were different?
In fact, it is this hard-won unity that gives Perl its power. You can write a single script on one
operating system, and as long as you don't use native methods, you can run it unchanged on
every other kind of machine, from Linux to Windows NT to Solaris and back again. That is a huge
advantage in our multiplatform, networked computing world.

1.1.1.2 CPAN (the Comprehensive Perl Archive Network)

Over the years, an enthusiastic and partisan army of Perl volunteers has extended Perl in a
myriad of ways. CPAN (the Comprehensive Perl Archive Network), an online repository of Perl
core files, documentation, and contributed modules, has become a model for an open source
development community. Check out:

http://www.cpan.org

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Literally thousands of Perl modules are now available on CPAN, providing virtually any application
you can imagine — and many you haven't yet imagined. Just about every Perl module we
describe in this book, from core modules like Perl and Perl DBI themselves to Oracle-specific
database administration scripts like OraExplain and Orac, can be downloaded from CPAN.

New Perl modules go through an evolutionary process that begins with an individual developer's
code, which he or she posts to CPAN. As others learn about the new module and start
downloading and testing it, and relying upon it, it becomes more and more acceptable. If it's good
enough, and if enough people and products rely upon it, the Perl gods ultimately might decide to
include the new module in the next general Perl distribution.

1.1.1.3 Perl and the corporate world

When Java, Microsoft's Active Server Pages (ASP), and similar corporate tools came along,
many people assumed that they would sweep the inelegant Perl away. However, this hasn't come
to pass. Instead, Perl has grown exponentially both in market share and stature, especially since
its 1994 Perl 5 adoption of reference technology, which greatly increased its scope in terms of
both extensibility and object orientation. Tim Bunce's Perl DBI module, built on the object-oriented
base, gave Perl the ability to interface with Oracle and other databases. The fact that Perl can
now dynamically glue the Internet to the database has greatly increased corporate acceptance of
the language.

1.1.2 The Perl Advantage

There are nearly as many reasons why people choose to use Perl as there are people who use
Perl. Aside from the language's specific capabilities, we think there are a few key reasons for
Perl's awesome acceptance among programmers and nonprogrammers alike:

Practicality

Unlike some languages that have developed within the ivory towers of computer science
departments, Perl is a practical language. It is unbound by dogma and driven by day-to-day
practicalities. With its flexible syntax, it gives users enormous freedom to do what they want
to do.

Bandwidth

Perl is one of the most concise languages around. In ten lines of Perl code, you can
achieve more than is possible in any other language. Disciplined use of Perl can thus
reduce program maintenance costs (because there's less to maintain) and aid clarity
(because there's less code to try to understand).

Range

Literally thousands of Perl modules are available for download from CPAN, covering
virtually every computing requirement imaginable. The abundance of prebuilt code modules
makes Perl the number one choice for anyone with a wide range of programming needs —
and that description fits most Oracle DBAs.

Perl's Three Virtues
In the original Camel Book — the latest edition is Programming Perl by Larry Wall, Tom
Christiansen, and Jon Orwant, 3rd ed. (O'Reilly & Associates, 2000) — Larry Wall
identified three characteristics of virtuous programmers; these have become the most
basic Perls of Wisdom among the faithful:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Laziness

From the Old English for "resistance to work," laziness is a virtue that makes you
write labor-saving programs in order to avoid unnecessary effort. It also
encourages good documentation to keep others from bothering you by asking
impertinent questions.

Impatience

From the Latin for "unwillingness to endure waiting," impatience pushes you into
change and arises from the restless injustice felt when computer applications
are inefficient. It makes you write programs that match and even anticipate your
needs.

Hubris

From the Greek for "excessive pride or wanton violence," hubris ensures that
you create solutions that others say only good things about and that cut through
any problem's resistance.

We believe that Perl's popularity is based to a large extent on the fact that it has resisted the
temptation to try to become the most elegant language of its time. A linguist by training, Larry Wall
took many lessons from the development of real-world natural human languages, and blended the
necessary messiness of those languages into his evolving design for Perl. In the following
sections we'll look at how the English language itself offers some important Perl analogies.

1.1.2.1 Flat learning curve

Although natural languages such as English are difficult and messy, even a baby can learn them.
The messiness of such languages aids learning, develops expression, and allows the human
mind to map complex real-world problems onto the symbolic logic of complex real-world
languages. Perl tries to follow this pattern — it's very intentionally designed for humans rather
than computers. You need only a little Perl to get going, just as a baby needs only a little
language to ask for a chocolate ice cream. Indeed most of the fun of Perl is that you never stop
learning about its new elements. This characteristic of Perl contrasts with some other languages
where you have to learn virtually the entire shooting match before you can do the simplest thing,
such as print:

"Hello World! :-)"

It also means that it's okay to know only parts of the whole language — every Perl programmer is
on the same flat learning curve as every other Perl programmer, merely at a different position.

1.1.2.2 Expression

Perl is optimized for expressive power, rather than ease of operation. Once you've learned an
element of Perl, such as the structure of hashes (described in Appendix A), you can use this
knowledge in many different ways to achieve many different ends. Again, this is similar to English,
in which you can learn a rhetorical debating technique and then employ it in many different ways
to get what you want.

1.1.2.3 There's more than one way to do it (TMTOWTDI)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In many computer languages, there's often a single acceptable way to do a certain thing — for
example, communicate with a distant server. Perl is different. So is English. In real life, when you
introduce yourself to other people, there are many different ways to successfully perform this
occasionally tricky verbal task. It's the same in Perl. What counts is what works best for you, not
some rigid adherence to a strictly enforced protocol. As with formal introductions, of course, there
are certain conventions that most people use. There is peer pressure even among Perl
programmers. But Perl itself doesn't care; if you want to do something different, you are free to do
so.

1.1.2.4 Flexibility

English is a successful language mainly because it looks forward into the future, rather than
backward towards its origins. It's built up from Latin, Greek, French, Anglo-Saxon, and many other
elements. And if it needs to borrow the word "veranda" from the Portuguese in order to describe a
covered porch, it just goes right ahead without worrying about whether doing so breaks some
rule. Perl is the same: if it sees a great idea in Java, it just goes right ahead and borrows it,
slipping it in so the join is invisible. Eventually, if it's a successful graft, even Java programmers
may come to think that the idea originally came from Perl. It is this continuous evolution that
transforms Perl from the ordinary into the extraordinary.

1.1.2.5 Ambiguity

English is also successful because it's so good at handling ambiguity. Although there are few
cases, genders, or definitive word endings in the English language, local ambiguities are quickly
resolved by the juxtaposition of certain other words, conventions, and punctuation. Perl is the
same: some pieces of isolated code can be quite ambiguous, but the ambiguity is quickly
resolved in the context of its word order, punctuation, and relationship to other code fragments.
There are even pronouns in Perl, such as $_ and @_ for "it" and "they"!

1.1.2.6 Acceptance of the real world

In a pure computer language world, you could visit the local cinema in an infinite number of ways;
for example, you could float up to 10,000 feet, disappear, and then rematerialize in your favorite
seat to watch The Lord of the Rings. But the fact is that you'd most often walk or drive there.
Similarly, Perl recognizes that most people tend to want to do things in familiar ways (e.g.,
opening a file, processing the lines in it, and then closing the file). So Perl will typically assume
that you'll be following a natural order unless you tell it explicitly that you won't be.

1.1.2.7 Simplicity

Lawyers have taken the once straightforward English language and twisted it into the most
tortuous logic the human mind could devise — unfortunately, this is the route most often taken by
other computer languages. They start simply enough, but develop a rigid straitjacket of theoretical
perfection before drowning in a bog of complexity. You'll be pleased to hear that Perl is much
friendlier. There is no ideology that must be obeyed. A country run by Perl programmers would be
a really cool place to live!

1.1.2.8 Cooperation and divergence

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Natural languages have evolved with the involvement of different people over a long period of
time — indeed, they continue to evolve. They're also continuously diverging into separate dialects
and even other languages. Perl too began as an amalgam of different ideas, shepherded together
by Larry Wall. It has since continued as a cooperative effort, with many contributing voices. The
eventual creation of Perl 6 will be one vast community effort (something we hope you'll be part of).

But language fragmentation has been an ongoing problem for Perl. The solution has been a
continuous release program over the last decade that has accommodated divergent tendencies.
The CPAN architecture also offers a outlet for those with independent voices. The threatened
Win32 divergence we discussed earlier in the Section 1.1.1.1 could have had a dramatic impact
on the unity of Perl — and all that implies in terms of portability and extensibility. Thankfully, as we
described earlier, that threat came to a happy conclusion. And it's still true that if you write a Perl
script on one operating system, then as long as you haven't used native methods and system
commands, the script can be copied to any other machine and will work there identically,
regardless of operating system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2 The Perl/Oracle Architecture

How do Oracle DBAs, developers, and users take advantage of everything that Perl has to offer?
The architecture illustrated in the figures in the following sections show how the various Perl and
Oracle modules fit together to make the Perl/Oracle connection clean and efficient. In the
following sections we'll take a look at the main components of this architecture:

Perl DBI

DBD::Oracle

OCI

Perl DBI and DBD::Oracle are Perl modules available from CPAN. OCI is an Oracle Corporation
product that comes with all versions of the Oracle database.

1.2.1 Perl DBI and DBD::Oracle

Perl DBI is a generic application programming interface (API). It is similar in concept to ODBC
(Oracle DataBase Connectivity) and JDBC (Java DataBase Connectivity), but it has a Perl-based
object-oriented architecture. Perl DBI's object-oriented architecture allows it to have a single
routing point to many different databases (shown in Figure 1-1), each via a database-specific
driver. Oracle uses the DBD::Oracle driver, another Perl module that provides the actual
communication to the low-level OCI code. It is OCI that makes the final connection to the Oracle
database.

Figure 1-1. Perl DBI can interface to many databases

The beauty of Perl DBI is you can forget the details of the necessary connections beneath its
simple API calls. The DBI package glides serenely over the surface of our databases, while the
driver module, DBD::Oracle, does all the hard paddling beneath the surface.

Figure 1-2 shows how all the modules fit together on the Perl and Oracle sides.

Figure 1-2. The Perl/Oracle architecture

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2.1.1 The origins of Perl DBI

The origins of Perl DBI date back more than a decade. Way back in 1991, an Oracle DBA, Kevin
Stock, created a database connection program called OraPerl that was released for Perl 4. Over
time, similar Perl 4 programs appeared, such as Michael Peppler's Sybperl, designed for
communication with the Sybase database. In a parallel development, starting around September
of 1992, a Perl-based group was working on a specification for DBPerl, a database-independent
specification for Perl 4. Within two years they were just ready to start implementing DBPerl when
Larry Wall started releasing the alpha version of the object-oriented Perl 5. Taking advantage of
both Perl 5 and the earlier Call Level Interface (CLI) work from the SQL Access Group, the
DBPerl team relaid the foundations of Perl DBI within an object-oriented framework, creating this
new architecture in a similar form to that employed by the familiar API of ODBC. Meanwhile, Tim
Bunce wrote an emulation layer for OraPerl Version 2.4 that let people easily move their legacy
Perl 4 OraPerl scripts over to Perl 5 and Perl DBI.

With the new DBI architecture, you could now transparently employ just one Perl module to
connect to every type of database, as long as you had the right driver. Fortunately for Oracle
DBAs, Tim Bunce, the main creator of Perl DBI, is also the main creator of DBD::Oracle, which
automatically keeps Oracle on the cutting edge of Perl DBI's development schedule.

1.2.1.2 The Perl DBI API

We won't try to describe all of the capabilities of Perl DBI here, but Table 1-1 provides a summary
of the main calls (e.g., DBI class methods) to OCI. For additional background information about
Perl DBI, see Appendix B. And for much more information, consult the references listed under
Section 1.4.2 at the end of this chapter.

Table 1-1. Main Perl DBI functions
DBI function Description

available_drivers() Lists all of the available DBD drivers including DBD::Oracle
data_sources() Lists all of the databases available to DBD::Oracle
connect() Establishes an Oracle database connection
disconnect() Disconnects a login session from Oracle
err() Returns the relevant Oracle error code
errstr() Supplies an associated Oracle error message
prepare() Prepares a SQL statement for execution
execute() Executes a prepared statement
do() Prepares and executes a single SQL statement all together
bind_param() Binds a value to a prepared statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

commit() Commits a transaction
rollback() Rolls back a transaction
table_info() Fetches metadata information from a table
fetchrow_arrayref() Fetches a row of data into a referenced array
fetchrow_array() Fetches a row of data into an array
selectrow_array() Executes prepare(), execute() and fetchrow_array() all in one call

1.2.2 The Oracle Call Interface

As we've said, Oracle Corporation's Oracle Call Interface (OCI) is the component in the
Perl/Oracle architecture that makes the final connection to the Oracle database servers. This C-
based API provides a comprehensive library used to connect into Oracle from the external world.
Use of OCI lets your Perl programs take advantage of the following OCI capabilities:

High performance

Security features, including user authentication

Scalability

N-tiered authentication

Full and dynamic access to Oracle objects

User session handles

Multi-threaded capabilities

Support for accessing special Oracle datatypes such as LOBs (large objects)

Transactions

Dynamic connection and session management

Asynchronous event notification

Access to other databases

Full character set support

For more about OCI, see Chapter 7, where we describe Oracle::OCI, a new Perl module that
provides an even closer interface between Perl and Oracle. You can get complete information
about OCI at Oracle Corporation's http://technet.oracle.com pages; in particular, see
http://technet.oracle.com/tech/oci/.

In Table 1-2 we list the main OCI functions to give you a sense of the kinds of Oracle operations
you can invoke from your Perl programs.

Table 1-2. Main OCI functions
OCI function Description

OCIAttrSet() Sets handle attributes
OCIAttrGet() Gets attributes from a handle
OCIBindByName() Links variables to a SQL statement placeholder by name
OCIBindByPos() Links variables to a SQL statement placeholder by position

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OCIDefineByPos() Links a typed select-list item with the output data buffer
OCIDescribeAny() Describes schema objects
OCIDescriptorAlloc() Allocates storage for descriptors and LOB locators
OCIDescriptorFree() Releases the resources taken by descriptors
OCIEnvInit() Allocates the initial OCI environment handle
OCIErrorGet() Returns a buffered error message
OCIHandleAlloc() Points to an allocated handle
OCIHandleFree() Explicitly releases a memory handle and its resources
OCIInitialize() Initializes the environment for OCI processes
OCILobRead() Reads specified LOB and FILE portions into a buffer
OCILobWrite() Writes a specified buffer into a LOB
OCILogoff() Ends a login session
OCILogon() Logs into the OCI session
OCIParamGet() Gets the descriptor of a parameter attached to a statement handle
OCIParamSet() Puts the object retrieval descriptor into an object retrieval handle
OCIServerAttach() Creates the pathway to a data source
OCIServerDetach() Detaches from a data source
OCISessionBegin() Begins a user session for a given server
OCISessionEnd() Ends a user session
OCIStmtExecute() Sends an application request to the server
OCIStmtFetch() Fetches data rows from previous queries
OCIStmtPrepare() Prepares a SQL statement for later execution
OCITransCommit() Commits a nominated transaction

At the most basic level, virtually all outside programs — from web applications to standalone GUI
applications — interact with Oracle through this OCI program layer. Fortunately, the OCI libraries
are automatically available in every Oracle database installation, so no special installation
process is required. You'll generally discover the appropriate files under the $ORACLE_HOME/lib
and $ORACLE_HOME/include directories, on Unix systems, and under %ORACLE_HOME%\lib
and %ORACLE_HOME%\include on Win32.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3 Perl for Oracle DBAs

Perl has become an increasingly popular tool for Oracle DBAs who need a quick way of handling the 101
DBA is expected to do every day. Perl is operating system-independent, powerful, flexible, remarkably quick to code,
and extremely fast in execution. These capabilities are especially important if you are working in a rapidly changing
environment where one day you might be populating a data warehouse from a difficult data source, and the next you
might be generating all of the information for a dynamic web application — and the whole time you're performing all of
your usual administrative tasks. That certainly describes the diverse world of an Oracle DBA!

Of course, the focus of any Oracle site's business is data. And from the start, Perl was designed to be a
engine, perhaps the finest and quickest in the world. It can find data, clean data, parse data, substitute data, print
eat data, and spit data out from the other end in the exact format you require. It can do all of this with text data, binary
data, and network data.

There are a variety of ways that Oracle DBAs can combine the power of Perl and Oracle. We describe four main paths
in this book; the following list provides a road map:

Existing modules and applications

All kinds of excellent Perl modules and complete open source applications are freely available for Oracle DBAs to
use. The chapters in Part II of this book describe the Perl/Oracle applications that we consider the best of the
bunch; these are listed in Table 1-3 and fall into several categories:

Perl GUI applications

In Chapter 3, we describe Perl/Tk, Perl's own tookit for developing graphical user interfaces, along with a
variety of graphical Oracle applications and helper modules: OraExplain, StatsView, Orac,
SchemaDiff, Senora, DBD::Chart, SchemaView-Plus, as well as some Perl GUI integrated development
environments (IDEs) and debuggers.

Perl web-based applications

In Chapter 4, we discuss the use of Apache with Perl and Oracle and describe two particular applications,
Oracletool and Karma. In Chapter 5 we show how using the Apache mod_perl module can greatly improve
the performance of Perl web-based scripts. And in Chapter 6, we discuss two embedded Perl web scripting
applications, Embperl and Mason.

Connectivity tools

In Chapter 2, we describe how to install Perl DBI and DBD::Oracle to allow your Perl programs to
with Oracle databases with great ease and efficiency. Later chapters describe some additional connectivity
tools. In Chapter 7 we describe the new Oracle::OCI module that provides higher performance and a true
one-to-one mapping with functions of the Oracle Call Interface. In Chapter 8, we describe
extproc_perl, Oracle's EXTPROC, and the other modules that allow Perl to be essentially embedded into
Oracle's own PL/SQL language.

Database administration scripts

Just about every Oracle DBA has his or her own set of scripts they've written to make their daily lives easier.
Many of these DBAs have been kind enough to share the wealth with their peers. Following this trend, we've
packaged up our own set of scripts and modules into an open source collection we call the PDBA Toolkit. As a
side benefit, the toolkit provides us with a living breathing entity whose code we can use to illustrate
Perl. We describe this toolkit in Part III of this book.

Data-processing scripts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many Oracle DBAs spend at least part of their time dealing with data warehousing as well as database
administration. They often need to clean and transform data that originates in other databases and
and is now destined for Oracle. Perl, with its regular expressions and high performance, is one of the best
solutions around for preparing data for use in data warehouse applications. Data munging is the term used to
describe the data cleaning, formatting, and transformation often required by data warehouses.
provides an essential guide to Perl regular expressions, and Appendix D, summarizes the many Perl modules
available to perform data-processing and data-munging operations on all kinds of data, including numeric,
date, and XML formats.

Custom scripts

Helpful as all of these packaged solutions may be, DBAs often find it necessary to write their own custom queries
and scripts to solve their immediate problems. Every DBA ends up needing to write quick 5- or 10-line
programs simply to glue things together in their databases. They also may find that the canned
tools available for Oracle are great, but not quite right for their needs. The nice thing about Perl is that it makes it
easy for you to add, change, or customize. All of the applications we describe throughout this book are available
in source form so you can modify them to suit your needs. Our own toolkit is designed specifically to
accommodate such customization. The modular nature of the scripts, coupled with the documentation provided in
Part III of this book (see Chapter 13, in particular) should make it easy for you. You'll also find the
helpful in learning the basics of Perl.

Table 1-3 lists all of the applications and tools mentioned in this book. We tried to include the most up-to-date
information possible in this book at the time of publication, but because most of these programs are continually being
enhanced, make sure to check out the sites listed in the table for current information.

Table 1-3. Perl/Oracle applications and related tools
Application/tool Chapter Description/download site

ActivePerl 1

Precompiled binary Win32 Perl from ActiveState

http://www.activestate.com

http://aspn.activestate.com/ASPN/Downloads/

http://aspn.activestate.com/ASPN/PPM/FAQ

http://downloads.activestate.com/

Apache 4

Apache web server software

http://www.apache.org/

http://httpd.apache.org/

http://httpd.apache.org/dist/httpd/

http://httpd.apache.org/docs/windows.html

http://httpd.apache.org/dist/httpd/binaries/win32/

http://httpd.apache.org/docs/mod/directives.html

Apache mod_perl 5

Apache Perl integration

http://perl.apache.org/

http://www.cpan.org/authors/id/DOUGM/

http://www.modperl.com/

http://www.refcards.com/about/mod_perl.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://theoryx5.uwinnipeg.ca/ppmpackages (Win32)

http://theoryx5.uwinnipeg.ca/guide/

http://mathforum.org/epigone/modperl

Apache::DBI 5
Caching Perl DBI connections with mod_perl

http://www.cpan.org/authors/id/MERGL/

Apache::OWA 5

Linking Perl to Oracle's PL/SQL Web Toolkit

http://sourceforge.net/projects/owa/

http://owa.sourceforge.net/

http://www.cpan.org/authors/id/S/SV/SVINTO

http://www.cpan.org/authors/id/J/JI/JIMW/ (libapreq)

http://technet.oracle.com

http://technet.oracle.com/doc/windows/was.21/psqlwtlk.htm[2]

CPAN (2000+
packages) 1

The Comprehensive Perl Archive Network

http://www.cpan.org

http://search.cpan.org

Cygwin (and DJGPP) 2

Unix-like environments for Win32

http://www.cygwin.com/

http://cygwin.com/cygwin-ug-net/using-cygwinenv.html

http://www.delorie.com/djgpp/

DBD::Chart (see also,
zlib, gd, and PNG) 3

SQL-like chart generation using Perl DBI

http://www.presicient.com/dbdchart/

http://www.cpan.org/authors/id/D/DA/DARNOLD/ftp://ftp.uu.net/graphics/jpeg

http://www.ijg.org/

http://www.cpan.org/authors/id/NI-S/ (Tk::JPEG)

DDL::Oracle 3

Perl package for specific Oracle DDL generation

http://sourceforge.net/projects/ddl-oracle/

http://www.cpan.org/authors/id/R/RV/RVSUTHERL/

Embperl (see also
HTML::Template and
Mason)

6

HTML embedded Perl system

http://perl.apache.org/embperl/

http://www.cpan.org/authors/id/GRICHTER/ (Apache::SessionX and stable
source)http://www.cpan.org/authors/id/A/AM/AMS/ (Storable)

http://www.cpan.org/authors/id/JBAKER/
(Apache::Session)http://theoryx5.uwinnipeg.ca/ppmpackages (Win32)

Exception (see also
Perl GUI debuggers) B

Java-like try and catch structures in Perl

http://www.cpan.org/authors/id/P/PJ/PJORDAN/

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

extproc_perl (see also
Perl DBI) 8

Oracle Perl Procedure Library (Perl linkage to PL/SQL)

http://www.smashing.org/

http://www.cpan.org/modules/by-authors/Jeff_Horwitz

http://technet.oracle.com

http://download.oracle.com/otndoc/oracle9i/901_doc/appdev.901/a88876/adg11rtn.htm

http://download.oracle.com/otndoc/oracle9i/901_doc/server.901/a90117/manproc.htm

http://otn.oracle.com/deploy/security/alerts.htm (Oracle security alerts)

gcc (see also Unix
freeware) 2

GNU C compiler

http://www.gnu.org/

gd (see also PNG and
zlib) 3

Graphics drawing packages with Perl

http://www.cpan.org/authors/id/LDS/

http://www.boutell.com/gd/ (gd)

gdb (see also gcc) 8
GNU debugger (for particular usage with gcc)

http://www.gnu.org/software/gdb/

HTML::Template (and
Template Toolkit) (see
also Embperl and
Mason)

6

HTML embedded Perl system

http://www.cpan.org/authors/id/S/SA/SAMTREGAR/

http://www.cpan.org/authors/id/ABW/

http://www.openinteract.org/

http://openinteract.sourceforge.net/

http://perl.apache.org/features/tmpl-cmp.html

Karma 4

Web tool for Oracle DBAs

http://hypno.iheavy.com/karma/index.html

http://www.cpan.org/authors/id/M/MA/MARKOV/ (MailTools)

http://www.cpan.org/authors/id/KJALB/ (TermReadKey)

http://www.cpan.org/authors/id/GBARR/ (libnet)

LWP 5

Library for WWW access in Perl

http://www.cpan.org/authors/id/GAAS/ (LWP,URI,MIME::Base64,HTML::Parser
Digest::MD5)

http://www.cpan.org/authors/id/S/SB/SBURKE/ (HTML::Tagset)

http://www.cpan.org/authors/id/GBARR/ (libnet)

http://www.cpan.org/authors/id/KWILLIAMS/ (HTML::SimpleParse)
Linux application and package download sites

http://www.redhat.com/apps/download/

http://www.suse.de/us/support/download/

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Linux packages 2
http://www.linux-mandrake.com/en/ftp.php3

http://www.caldera.com/download/mirrors.html

http://www.debian.org/distrib/ftplist

http://www.turbolinux.com/download/

http://www.slackware.com/packages/

MSI (as standard from
Win2000 onward) 2

Microsoft software package installer

http://download.microsoft.com/download/platformsdk/wininst/1.1/NT4/EN-
US/InstMsi.exe

http://download.microsoft.com/download/platformsdk/wininst/1.1/W9X/EN-
US/InstMsi.exe

Mason (see also
HTML::Template and
Embperl)

6

HTML embedded Perl

http://www.masonhq.com/

http://www.cpan.org/authors/id/J/JS/JSWARTZ/

http://www.cpan.org/authors/id/DEWEG/ (Time::HiRes)

http://www.cpan.org/authors/id/GSAR/ (MLDBM)

http://www.cpan.org/authors/id/ILYAZ/modules/ (FreezeThaw)

http://www.cpan.org/authors/id/A/AM/AMS/ (Storable)

http://www.cpan.org/authors/id/D/DR/DROLSKY/ (Params::Validate

MySQL D

Open source database

http://www.mysql.com/

http://sourceforge.net/projects/mysql/

http://www.cpan.org/authors/id/JWIED/ (DBD::mysql)

NMAKE (see also
ActivePerl) 6

Pure Perl Win32 package compilation

http://download.microsoft.com/download/vc15/Patch/1.52/W95/EN-US/Nmake15.exe

OraExplain (see also
Perl DBI) 3

Perl/Tk Oracle SQL tuning tool

http://www.cpan.org/authors/id/TIMB/

Orac 3
Perl/Tk general Oracle DBA tool

http://www.cpan.org/authors/id/A/AN/ANDYDUNC/

Oracle::OCI 7

Direct Perl interface to Oracle Call Interface

http://www.perl.com/CPAN/authors/id/TIMB/

http://archive.develooper.com/oracle-oci@perl.org/

http://www.cpan.org/authors/id/T/TB/TBONE/ (Data::Flow)

http://www.cpan.org/authors/id/HVDS/ (C::Scan)

http://technet.oracle.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://technet.oracle.com/tech/oci/

http://otn.oracle.com/tech/oci/htdocs/faq.html

http://www.orafaq.org/faqoci.htm

Oracletool 4

General web tool for Oracle DBAs

http://www.oracletool.com/

http://www.cpan.org/authors/id/GAAS/ (Digest::MD5)

http://www.cpan.org/authors/id/D/DP/DPARIS/ (Crypt::IDEA and Crypt::Blowfish

http://www.cpan.org/authors/id/LDS/ (Crypt::CBC)

PNG (see also zlib
and gd) 3

Portable Network Graphics (GIF image alternative)

http://www.libpng.org/pub/png/

http://www.cpan.org/authors/id/NI-S/ (Tk::PNG)

Perl 1

The main Perl portals and download sites

http://www.perl.com

http://www.perl.org

http://www.perl.com/CPAN/README.html

http://www.perl.com/CPAN/src/stable.tar.gz

http://learn.perl.org/

http://history.perl.org/

http://www.wall.org

http://lists.perl.org/

http://archive.develooper.com/

Perl DBA Toolkit (see
also DDL::Oracle) 9

Our Perl toolkit for Oracle DBAs

http://www.oreilly.com/catalog/oracleperl

http://www.oreilly.com/catalog/oressentials/chapter/defrag.pdf

http://www.cpan.org/authors/id/GBARR/ (TimeDate)

http://www.cpan.org/authors/id/S/SI/SIFUKURT/ (Crypt::RC4)

http://www.cpan.org/authors/id/M/MI/MIVKOVIC/ (Mail::Sendmail)

http://www.cpan.org/authors/id/SBECK/ (Date::Manip)

http://www.roth.net (Win32::Daemon)
Perl DBI portals and resources

http://dbi.perl.org

http://dbi.perl.org/doc/faq.html

http://xmlproj.dyndns.org/dbi/faq.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Perl DBI and
DBD::Oracle 1

http://archive.develooper.com/dbi-users@perl.org/

http://www.xray.mpe.mpg.de/mailing-lists/dbi/

http://xmlproj.com/PPM/ (latest Win32 packages)

http://www.perl.com/CPAN/modules/by-module/DBI

http://www.perl.com/CPAN/modules/by-module/DBD

http://www.cpan.org/authors/id/TIMB/

Perl DBI
ProxyServer(version
numbers may change;
if so, try
http://search.cpan.org)

2

Proxy serving for Perl DBI

http://search.cpan.org/doc/TIMB/DBI-1.20/lib/DBI/ProxyServer.pm

http://search.cpan.org/doc/TIMB/DBI-1.20/lib/DBD/Proxy.pm

http://www.cpan.org/authors/id/A/AM/AMS/ (Storable)

http://www.cpan.org/authors/id/JWIED/ (Net::Daemon and PlRPC — which contains
RPC::PlServer and RPC::PlClient)

Perl GUI debuggers
(see also Exception) 3

Perl GUI debug tools

http://members.tripod.com/~CurtMcKelvey/perldbgui/ (perldbgui)

http://www.cpan.org/authors/id/A/AE/AEPAGE/ (ptkdb)

http://sourceforge.net/projects/open-perl-ide/ (OpenPerlIDE)

Perl IDE tools 3

Perl GUI development tools

http://sourceforge.net/projects/open-perl-ide/ (OpenPerlIDE)

http://sourceforge.net/projects/kpad/ (KakePad)

http://www.xarka.com/optiperl/ (OptiPerl)

http://www.activestate.com/Products/Komodo/ (Komodo)

http://www.ultraedit.com/ (UltraEdit)

Perl SQL tools (see
also Senora) 3

SQL*Plus-like Perl tools

http://www.perldoc.com/perl5.6.1/lib/DBI/Shell.html

http://dbishell.sourceforge.net/

http://piqt.sourceforge.net/

http://sourceforge.net/projects/dsql/

Perl XML (see later for
specific XML Perl
modules)

D

Perl XML resources

http://www.xml.com/pub/q/perlxml

http://xmlxslt.sourceforge.net/

http://perl.apache.org http://xml.sergeant.org/

http://www.xmlsoft.org/

http://www.xmlproj.com/perl-xml-faq.dkb

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://www.perlxml.net http://www.cpan.org/modules/by-module/XML/

http://sourceforge.net/projects/perl-xml:

Perl conversion
modules D

Perl's main data conversion modules

http://www.gnu.org/software/recode/recode.html,ftp://ftp.gnu.org/gnu/recode/

http://www.cpan.org/authors/id/CXL/ (Convert::EBCDIC)

http://www.cpan.org/authors/id/COLINK/ (Convert::SciEng)

http://www.cpan.org/authors/id/GENJISCH/ (Convert::Translit)

http://www.cpan.org/authors/id/R/RR/RRWO/ (Convert::Units)

http://www.cpan.org/authors/id/ANDK/ (Convert::UU)

http://www.cpan.org/authors/id/E/ED/EDAVIS/ (Convert::Recode)

Perl date modules
(and other required
helper packages)

D

Perl's major date-handling modules

http://www.cpan.org/authors/id/D/DE/DESIMINER/ (Date::Business

http://www.cpan.org/authors/id/STBEY/ (Date::Calc and Date::Pcalc

http://www.cpan.org/authors/id/H/HF/HFB/ (Date::Christmas)

http://www.cpan.org/authors/id/M/MI/MIDI/ (Date::Decade)

http://www.cpan.org/authors/id/RBOW/ (Date::Easter)

http://www.cpan.org/authors/id/B/BB/BBEAUSEJ/ (Date::Handler)

http://www.cpan.org/authors/id/M/MI/MIYAGAWA/ (Date::Japanese::Era

http://www.cpan.org/authors/id/JTOBEY/ (Date::Simple)

http://www.cpan.org/authors/id/T/TM/TMTM/ (Date::Range)

http://www.cpan.org/authors/id/SBECK/ (Date::Manip)

http://www.cpan.org/authors/id/B/BZ/BZAJAC/ (DateTime::Precise)

http://www.cpan.org/authors/id/GAAS (Mime::Base64)

http://www.cpan.org/authors/id/D/DA/DANKOGAI (Jcode)

http://www.cpan.org/authors/id/ADESC (Devel::CoreStack)

http://www.cpan.org/authors/id/MSCHWERN (Test::Harness and Test::Simple

Perl numeric modules D

Perl's major numeric modules

http://www.cpan.org/authors/id/L/LU/LUISMUNOZ/ (Number::Encode

http://www.cpan.org/authors/id/WRW/ (Number::Format)

http://www.cpan.org/authors/id/S/SB/SBURKE/ (Number::Latin)

http://www.cpan.org/authors/id/K/KE/KENNEDYH/ (Number::Phone::US

http://www.cpan.org/authors/id/W/WI/WIMV/ (Number::Spice)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://www.cpan.org/authors/id/L/LH/LHOWARD/ (Number::Spell)

Perl/Tk 3

Perl GUI toolkit (derived originally from Tcl/Tk)

http://www.lehigh.edu/~sol0/ptk/ptk.html

http://www.perltk.org/

http://www.oreilly.com/catalog/mastperltk/

http://www.cpan.org/authors/id/NI-S/

http://www.cpan.org/authors/id/SREZIC/

SSL 5

Secure Sockets Layer for Perl and the Web

http://www.openssl.org/ (OpenSSL)

http://www.cpan.org/authors/id/C/CH/CHAMAS/ (Crypt::SSLeay)

http://www.cpan.org/authors/id/SAMPO/ (Net::SSLeay)

http://www.cpan.org/authors/id/A/AS/ASPA/ (IO::Socket::SSL)

SchemaDiff 3
DDL::Oracle and Perl/Tk Oracle schema comparisons

http://sourceforge.net/projects/schemadiff/

SchemaView-Plus
(see also
XML::Dumper and
XML:: Parser)

3

Perl/Tk Oracle tool for viewing schema connections

http://www.cpan.org/authors/id/M/MI/MILSO

http://dbman.linux.cz (dbMan, earlier related tool)

Senora (see also Perl
SQL tools) 3

DDL::Oracle-based SQL*Plus-like tool

http://sourceforge.net/projects/senora/

StatsView (see also
PNG, zlib,
OraExplain)

3

Perl/Tk statistics for Oracle on Unix

http://www.cpan.org/authors/id/ABURLISON/

http://www.gnuplot.info/

http://sourceforge.net/projects/gnuplot/

Unix freeware (also
good sources for gcc
binary packages; see
also gcc)

2

Binary Perl packages for Unix

http://sunfreeware.com/ (Solaris)

http://ftp.univie.ac.at/aix/andftp://aixpdslib.seas.ucla.edu/pub/ (AIX)

http://jazz.external.hp.com/src/index.html (HP-UX)

http://freeware.sgi.com/index.html (IRIX)

http://www.openbsd.org/ports.html (OpenBSD)

XML::Dumper 3
Dump Perl data to structured XML

http://www.cpan.org/authors/id/E/EI/EISEN

XML::Generator::DBI D

DBI and XML linkage package

http://www.cpan.org/authors/id/M/MS/MSERGEANT

http://www.cpan.org/authors/id/KMACLEOD/ (libxml-perl and XML::Parser::PerlSAX

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://www.cpan.org/authors/id/K/KR/KRAEHE/ (XML::Handler::YAWriter)

http://www.cpan.org/authors/id/GAAS/ (MIME::Base64)

XML::LibXML D

Alternative Perl XML parser

http://www.cpan.org/authors/id/M/MS/MSERGEANT/ (XML::LibXML

http://www.xmlsoft.org (libxml2)

XML::LibXSLT D

Perl Extensible Stylesheet Language Transformations

http://www.cpan.org/authors/id/M/MS/MSERGEANT/ (XML::LibXSLT

http://xmlsoft.org/XSLT/downloads.html (libxslt)

http://www.w3.org/TR/xslt

http://xmlsoft.org/XSLT/

XML::Parser 3

Perl XML parser

http://sourceforge.net/projects/expat (CXMLparser)

http://www.cpan.org/authors/id/C/CO/COOPERCL

XML::XMLtoDBMS
(see also XML::Parser
and XML::LibXML)

D

The Perl port of XML-DBMS from Java

http://www.rpbourret.com/xmldbms/index.htm (Perl port accessed from this page)

http://www.cpan.org/authors/id/GBARR/ (TimeDate)

XML::XPath (see also
XML::Parser) D

Perl and XPath

http://www.cpan.org/authors/id/M/MS/MSERGEANT

http://www.w3.org/TR/xpath

zlib (see also PNG) 3

Gzip's back-end compression library

http://www.gzip.org/zlib/

http://www.zlib.org

http://www.gzip.org/

http://www.info-zip.org/pub/infozip/

http://www.pkware.com/

[2] As with most technet.oracle.com pages, this requires password-protected membership, which can be freely acquired from
http://technet.oracle.com/membership/.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.4 For Further Information

We've collected what we consider to be the best online and offline resources for Perl in the
following sections. If you run into problems or just want to expand your horizons, do check out the
books, web sites, and mailing lists summarized here.

1.4.1 Further Information on Perl

Appendix A summarizes the essential elements of Perl's syntax, up to and including its object
orientation. It also provides a full guide to the use of the very helpful perldoc command, which is
the best way to access online manual page information on Perl once it has been installed.

1.4.1.1 Perl web sites

The following web sites provide good springboards into the world of Perl:

http://www.perl.com

Contains everything you ever wanted to know about Perl.

http://www.perl.org

Another central resource for Perl users.

http://learn.perl.org

Site dedicated to people fresh to Perl.

http://history.perl.org
http://www.wall.org

Information on the history of Perl.

1.4.1.2 Perl mailing lists

One of the wonderful benefits of open source tools like Perl is the large number of people out
there willing to help you. There are literally hundreds of Perl mailing lists to choose from.
Fortunately, there is one site for keeping tabs on all of them:

http://lists.perl.org

An excellent central resource for tracking down virtually every kind of Perl mailing list you
could possibly think of.

beginners-subscribe@perl.org

Send a blank email here to get attached to the Perl beginners' mailing list.

beginners@perl.org

Once registered, you can post your questions here.

beginners-unsubscribe@perl.org

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you're ready to move on to other lists, you can unsubscribe by sending another blank
email to the preceding address.

http://archive.develooper.com

Before posting any questions, you may want to check the Perl archive first.

1.4.1.3 Perl books

There are enough books on Perl to fill the capacious saddles of several very large camels. Here
we'll list just a few of our favorite general texts.

http://www.oreilly.com/catalog/lperl3 (the Llama book)

Learning Perl, by Randal L. Schwartz and Tom Christiansen, 3rd ed. (O'Reilly &
Associates, 2001)

http://www.oreilly.com/catalog/lperlwin (the Gecko book)

Learning Perl on Win32 Systems, by Randal L. Schwartz, Erik Olson, and Tom
Christiansen (O'Reilly & Associates, 1997)

http://www.oreilly.com/catalog/pperl3 (the Camel book)

Programming Perl, by Larry Wall, Tom Christiansen, and Jon Orwant, 3rd ed. (O'Reilly &
Associates, 2000)

http://www.roth.net/books/extensions2

Win32 Perl Programming: The Standard Extensions, by Dave Roth, 2nd ed. (New Riders
Publishing, 2001)

http://www.oreilly.com/catalog/perlnut

Perl in a Nutshell, by Ellen Siever, Stephen Spainhour, and Nathan Patwardhan (O'Reilly &
Associates, 1998)

http://www.oreilly.com/catalog/advperl (the Panther book)

Advanced Perl Programming, by Sriram Srinivasan (O'Reilly & Associates, 1997)

http://www.effectiveperl.com (the Shiny Ball book)

Effective Perl Programming: Writing Better Programs with Perl, by Joseph N. Hall (Addison-
Wesley, 1998)

http://www.oreilly.com/catalog/regex (the Owls book)

Mastering Regular Expressions: Powerful Techniques for Perl and Other Tools, by Jeffrey
Friedl (O'Reilly & Associates, 1997)

http://www.manning.com/Conway/index.html (the Renaissance book)

Object Oriented Perl, by Damian Conway (Manning, 1999)

1.4.2 Further Information on Perl DBI

If you want to learn more about Perl DBI, first check out Appendix B. It's likely you'll need more

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you want to learn more about Perl DBI, first check out Appendix B. It's likely you'll need more
detailed information, however, if you're planning to do anything complex. Here are some
recommended resources.

1.4.2.1 Perl DBI web sites

The following sites are the best places to go for more information:

http://dbi.perl.org

Central home page for the Perl DBI project and the best place to start

http://dbi.perl.org/doc/faq.html

Central FAQ for Perl DBI

1.4.2.2 Perl DBI mailing lists

The DBI Users mailing list is the information backbone for the entire DBI community, and you'll
find a great deal of help available there. However, it's generally considered good form if you at
least search the DBI FAQ located at http://dbi.perl.org/doc/faq.html, and possibly the following
mail archives, before posting any new questions:

http://lists.perl.org/showlist.cgi?name=dbi-users

The folks at perl.org maintain the DBI Users mailing list, and you can register yourself with
them at this web address.

dbi-users-subscribe@perl.org

To subscribe to the mailing list, send an empty email here.

dbi-users@perl.org

Once you've been successfully registered by perl.org, you can post your Perl DBI questions
and comments via this email link.

dbi-users-unsubscribe@perl.org

To unsubscribe from the mailing list, post an empty email here.

http://archive.develooper.com/dbi-users@perl.org

The main archive attached to the central DBI Users mailing list, organized by date and
threaded topic.

http://www.xray.mpe.mpg.de/mailing-lists/dbi

Another searchable archive for the DBI mailing list. Again, you may want to search through
this archive before posting any new mailing list questions.

1.4.2.3 Perl DBI books

Two O'Reilly books complement the one you're reading right now. The first contains much more
detail on the Perl DBI API; the second also describes Perl DBI, as well as many other open
source technologies (including Tcl and Python) and their parallel use of OCI:

http://www.oreilly.com/catalog/perldbi

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming the Perl DBI: Database Programming with Perl, by Alligator Descartes and
Tim Bunce (O'Reilly & Associates, 2000).

http://www.oreilly.com/catalog/oracleopen

Oracle & Open Source: Tools and Applications, by Andy Duncan and Sean Hull (O'Reilly &
Associates, 2001).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. Installing Perl
Now that you've learned how Perl can ease the burden of Oracle database administration, you're
probably eager to get started. This chapter explains how to install Perl for use with Oracle. We'll
cover the following steps:

Installing Perl

If you're installing Perl on Unix, we recommend that you install directly from source. If
you're installing Perl on Win32, we recommend that you use the pre-built ActivePerl
distribution, available from ActiveState; ActivePerl has become the de facto standard Perl
version for the Win32 platform.

Installing Perl DBI

Once you've installed Perl itself, you need database connectivity for it. We'll describe how
to install Perl's generic DBI module, as well as DBD::Oracle, the Oracle-specific driver for
Perl DBI.

Installing Cygwin

Cygwin is a complete Unix-like development environment that you can install on your
Win32 machine. It allows you to combine the benefits of access to Unix compilers,
interpreters, and other tools (e.g., Perl, gcc) with the convenience of traditional Win32
software (e.g,. Microsoft Word, Excel). We'll explain how to install Cygwin and get the
various Perl modules running on it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.1 Installing Perl

We described Perl's origins and advantages in Chapter 1. In this section, we'll describe the basics
of the installation process for Perl. To obtain Perl and to get more detailed information about this
process, check out these web sites:

http://www.perl.com
http://www.perl.org

Main Perl portals.

http://www.activestate.com

ActiveState Win32 Perl portal site. You'll find many other projects, including ActivePerl,
under the main ActiveState portal; most ActiveState products tend to have fairly fluid web
addresses, so we won't attempt to provide them here.

2.1.1 Installing Perl on Unix

There are three basic ways to get started with Perl on Unix and Linux systems, the third of which
is best for reasons we'll explain shortly:

1. Find Perl already installed on your system.

2. Download a binary executable that will build Perl for you out of the box.

3. Configure and build Perl yourself from the source code.

On most Unix versions, if you install Perl as the root user and accept the default installation
directories, it will generally embed itself into either one of the following directories:

/usr/bin
/usr/local/bin

In most cases, this is fine; however, you may wish to install it somewhere else, such as
/u01/app/perl.

There are several reasons why you might want to install Perl in a different location:

If you're an Oracle DBA who is working on other people's systems, you may be denied
access to the root user's system directories.

You may have theoretical access, but jumping through the corporate hoops to get actual
physical access on some production systems (and having to fill out all the necessary forms)
may just not be worth it.

Some versions of Perl, may already exist on your system and be used by everyone else.
However, you want your own latest-and-greatest private Perl to do the work you need it to
do, without upsetting the informational applecart. Those guys in marketing may be happy
relying on that ancient Perl 4 workhorse, but we need something a bit more developed.

There are also several secondary reasons:

Upgrading module versions, such as DBD::Oracle, when they become available, will be
simpler if you're in complete control of the Perl installation location.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Adding new modules also becomes easier if you don't need to ask people's permission to
do it, or to work within their weekly downtime window (you can almost guarantee that
window will be Wednesday morning at 3:00 AM).

For similar reasons, upgrading Perl itself will also be painless. Your local neighborhood
system administrators may even award you bonus points for keeping off their turf!

Although we'll assume in the following discussion that you're installing Perl in default locations as
root (which is most often the case), we'll indicate the one place where you can change this
default, if you want to install Perl under something more like the oracle or oramon user, in a
nonstandard location.

This chapter assumes that you want to create your own version of Perl —
one that is distinct from the Perl executables provided automatically in
Oracle releases beginning with Version 8.1.7. (Later in this chapter, in
Section 2.1.1.3 we'll explain why we recommend that you create your own
version of Perl.) You need to be careful not to get these two versions of
Perl confused (people installing Perl for the first time sometimes do this).
One way to keep the versions straight is to ensure that your own
independent version of Perl comes first in your system's generic PATH
variable.

2.1.1.1 Finding Perl already installed on your system

If Perl exists somewhere on your system (i.e., the main perl executable program is available
under your operating system, via the PATH environment variable), you can usually find it by
running the following command:

$ perl -v

If you believe that Perl is on your machine, but this command fails to return anything, you may
want to discover where Perl is living and then add it to your executables PATH. To find it, try one
of the following commands:

$ type perl

$ which perl

$ whence perl

$ locate perl

If these fail to work, or if Perl is still unavailable on your flavor of Unix, try the ultimate blockbuster
approach:

$ find / -name "perl*" -print 2>/dev/null

Click, whirr. Once you've found Perl, add its executable directory into your PATH and then run the
perl -v command. What we're looking for is something like this:

$ perl -v

This is perl, v5.6.1 built for i686-linux

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copyright 1987-2001, Larry Wall

Perl may be copied only under the terms of either the Artistic License

or the GNU General Public License, which may be found in the

Perl 5 source kit.

Complete documentation for Perl, including FAQ lists, should be found

On this system using `man perl' or `perldoc perl'. If you have access

to the Internet, point your browser at http://www.perl.com/, the Perl

Home Page.

$

Most Linux machines (depending on the release date of the Linux distribution) have Perl already
on them. If you find Perl 5.6, or above, that's good enough. For some bizarre reason, many
proprietary versions of Unix fail to come presupplied with Perl, but that's OK. It's much more fun to
install from source! We'll show you how shortly.

2.1.1.2 Installing Perl from a prebuilt package

Some Oracle DBAs running Unix systems choose to install Perl from a prebuilt executable binary.
In general, we recommend against this approach. Even if this option is available to you, it has
several disadvantages in comparison to building Perl from source, mainly because prebuilt
binaries may not match the configuration of your local system — for example:

They may implicitly point to libraries that are not available on the particular machine.

The original compiler options with which the package was created may not be supported on
your current system.

They may assume default paths that don't exist. For example, most of the prebuilt Unix Perl
packages assume that the main perl executable is going to live under /usr/local/bin. This is
especially problematic if, as we mentioned earlier, write access is unavailable to these
kinds of directories.

Building from source, as we describe in the next section, is the best way to overcome local
difficulties of these kinds.

If you do need to go down the prepackaged route, for whatever reason, be aware that most
proprietary Unixes do have some great freeware sites. Although we think Perl is best if built from
source on Unix, you need to build it with compilers, and if you haven't got one, these sites and
their packages are invaluable for providing you with prepackaged compilers such as gcc. Some of
the best sites we've found are:

For Solaris

http://sunfreeware.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For AIX

http://ftp.univie.ac.at/aix

ftp://aixpdslib.seas.ucla.edu/pub

For HP-UX

http://jazz.external.hp.com/src/index.html#perl

For IRIX

http://freeware.sgi.com/index.html

For OpenBSD

http://www.openbsd.org/ports.html

For Linux

Virtually every flavor of Linux also has its own home site, which is full of Unix freeware
download opportunities. Here are just some of the possibilities:

http://www.redhat.com/apps/download/
http://www.suse.de/us/support/download/
http://www.linux-mandrake.com/en/ftp.php3
http://www.caldera.com/download/mirrors.html
http://www.debian.org/distrib/ftplist
http://www.turbolinux.com/download/
http://www.slackware.com/packages/

You'll find the appropriate installation instructions at each site, and a web search should uncover
any others. Here we'll run through the typical steps for Solaris. These are only guidelines; be sure
that you obtain, and read carefully, the most up-to-date installation information for your own
platform.

1. Download the latest Perl package for your version of Solaris from the web site.

2. Unzip the download (using either gunzip or gzip -d) as the root user.

3. Use pkgadd -d to add the package to your system.

For example, the following commands would install the standard Perl 5.6.1 package as the root
user:

$ gzip -d perl-5.6.1-sol8-sparc-local.gz

$ pkgadd -d perl-5.6.1-sol8-sparc-local

These kinds of steps (as specified on the appropriate site FAQ or within any accompanying
README files) will build a fully functioning Perl system for you, adding the Perl executable to a
directory like /usr/local/bin/perl. You'll follow similar steps for most of the other Unixes.

Using some download browser screens, the prebuilt packages will
occasionally download without the *.gz suffix. This confuses the gunzip
program. If this problem occurs, you can solve it by simply renaming the
downloaded file with the additional *.gz suffixed extension.

2.1.1.3 Installing Perl from source

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This third option is the one we recommend for Unix. To use our PDBA Toolkit most effectively, we
recommend that you install at least Perl 5.6 from source. It's true that you may have older
versions of Perl on your system, or versions built from prepackaged executables. However, we
need to lay a specific version of Perl DBI on top of Perl, and for that reason we must ensure that
Perl 5.6 has been set up correctly for your machine. The best way of doing this is by building up
from source.

2.1.1.3.1 Obtaining the required C compiler

You must have a C compiler before you can complete your Perl installation. Fortunately, Linux
virtually always comes with a gcc C compiler already on board, and most proprietary Unix types
often come with their own, which is usually called cc. Even if you already have a C compiler,
though, you may want to get hold of gcc because most open source project installations are built
and tested with it. Using gcc, rather than any other C compiler, automatically eliminates many
compiler incompatibility problems.

The gcc compiler is the creation of the GNU project, which was started in 1984 by Richard M.
Stallman with the goal of developing a completely free Unix-like operating system. This project
culminated in the development of the various GNU/Linux operating systems, better known by their
generic name "Linux" after their core kernel developed by Linus Torvalds. You can check out the
GNU project's definition of the word "free," get information about gcc, and learn much more at:

http://www.gnu.org

Although gcc is usually the right choice, always read the appropriate README files within the
stable.tar.gz Perl distribution for each operating system. For instance, here's what the
README.aix file says about using gcc:

Perl can be compiled with either IBM's ANSI C compiler or with gcc. The former is
recommended, as not only can it compile Perl with no difficulty, but also can take
advantage of features listed later that require the use of IBM compiler-specific
command-line flags.

With AIX, you may have difficulties unless you do use the proprietary cc compiler, as the note
suggests. Most HP platforms are also better served with HP's "official" C compiler, which you may
have to purchase as an extra-cost item.

If you enjoy a challenge, and you'd like to boot-strap gcc from its own
source code using your own proprietary cc compiler as the bootstrapper,
check out the GNU web site for details.

You won't need to compile gcc from source (unless you enjoy Catch-22-type challenges) because
virtually every flavor of Unix has a gcc binary package built for it already by the open source
community. You can get such packages from the freeware sites listed in the previous section.

For example, at the time this book went to press, the following sites contained the latest gcc
package for three major commercial Unix flavors.

http://sunfreeware.com

For Solaris

http://ftp.univie.ac.at/aix/aix432

For AIX

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://jazz.external.hp.com/src/gnu/download2_95_2.html

For HP-UX

You'll find appropriate README installation instructions at each site. Here, we'll run through the
typical steps for Solaris. These are only guidelines. Be sure you obtain the most up-to-date
installation information for your own platform, from the site where you get the gcc package:

1. Download the latest gcc package, for your version of Solaris, from the sunfreeware.com
site.

2. Unzip the download using either gunzip or gzip -d as the root user. This file will be called
something like gcc-3.0.3-sol8-sparc-local.gz.

3. Use pkgadd -d to add the package to your system.

For example, if you're logged on as the root user, the following commands will install the gcc
package:

gzip -d gcc-3.0.3-sol8-sparc-local.gz

pkgadd -d gcc-3.0.3-sol8-sparc-local

The actual executable will usually get dispatched to /usr/local/bin/gcc.

As a final compilation caveat, note that the default Perl installation process looks for a generic cc
compiler, unless you alter this behavior by following the detailed instructions in the Perl INSTALL
file. To make sure you still pick up gcc anyway, move your old cc compiler somewhere safe, such
as cc.old, or place a new cc location higher up in your PATH. Now we symbolically link in the new
cc file to point at the real gcc compiler, to achieve a situation similar to the following:

$ type cc

cc is /home/oracle/bin/cc

$ ls -l /home/oracle/bin/cc

/home/oracle/bin/cc -> gcc

$ type gcc

gcc is /usr/local/bin/gcc

2.1.1.3.2 Obtaining the source for Perl.

Once the compiler is ready, it's time to get the Perl source code itself. To obtain the latest version,
visit CPAN, the Comprehensive Perl Archive Network:

http://www.perl.com/CPAN/README.html

This will probably direct you to download the most recent stable version of Perl — for example:

http://www.perl.com/CPAN-local/src/stable.tar.gz

Once you've obtained your own copy of stable.tar.gz, follow these basic steps to install Perl:

1. Download the zipped tar file (or "tarball," as we'll call it from now on) into a temporary
directory accessible to the root user.

2. Unpack the main bundled file into its own directory:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ls *.gz

stable.tar.gz

gzip -d stable.tar.gz

ls *.tar

stable.tar

tar xvf stable.tar

3. Change into the new Perl directory once the extraction process has completed, and then
carefully work through the instructions in the README and INSTALL files:

ls

perl-5.6.1

cd perl-5.6.1

vi README INSTALL

4. These instructions ask us to run an intelligent and friendly configuration program,
Configure, a sort of Hitchhiker's Guide to the Perl installation process. By now, this program
has been run, quite literally, a few million times, so there are few installation issues the
program has failed to cope with. You should have no problems running it, especially if
you're happy with a totally default install. For re-installations, the following preparation step
also ensures that no previously existing master configuration files will interfere with the
process:

rm -f config.sh Policy.sh

If you wish to install Perl as a non-root user within a nonstandard area, this is the place
where we deviate from the path of root enlightenment. Pick your target installation directory
(say, /u01/app/perl) and then run the Configure program slightly differently, perhaps as an
oracle or oramon user:

$./Configure -Dprefix=/u01/app/perl

This tells Perl all it needs to know. When you run make install shortly, /u01/app/perl will
become the parent directory where Perl will get installed.

To get back to the main flow, root users will simply run the following:

sh Configure -de

(If you use sh Configure -des, the final "s" will take all the defaults for your system.)

5. Answering the configuration questions will only take a few minutes (if in doubt, simply
accept the defaults supplied). Once this Q&A session is completed, we're ready to begin
the build and installation stages. Make sure any configuration errors are dealt with before
you proceed with each next step (although you're unlikely to encounter any unless your
machine or workstation is fairly nonstandard). Run through the next few steps:

$ make

$ make test

$ make install

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Once you've completed these, Perl should now be installed. Check it out with the perl -v
command, as described earlier. Make sure it's the one you were expecting — at least the
5.6 version.

2.1.2 Installing Perl on Win32

For Win32, although you can build from source (if you have the relevant Win32 compilers, or you
can use Cygwin (as described later in this chapter), most people use the prebuilt ActiveState
binaries, and that's what we'll do here.

Follow these steps:

1. Consult the main portal page for ActiveState to see all of the latest information for installing
ActivePerl (and many other products, including ActivePython and ActiveTcl):

http://www.activestate.com

You'll be able to go from there to pages like this:

http://aspn.activestate.com/ASPN/Downloads/ActivePer
http://aspn.activestate.com/ASPN/Downloads/ActivePerl/More

2. You can download the latest binary executable build of ActivePerl from a web address such
as the following:

http://downloads.activestate.com/ActivePerl/Windows/5.6

The download file will be named something like the following:

ActivePerl-5.6.1.628-MSWin32-x86-multi-thread.msi

3. You will need the appropriate MSI Microsoft Windows program installer. If it's not already
available within your particular Win32 system (it comes as standard with Windows 2000),
you'll need to obtain it. You'll generally find that the ActiveState site is the best place to
direct you to the latest location and version for this purpose. We provide the current
Microsoft addresses, but note that these do tend to move around a bit. If the following
URLs are invalid, the ActiveState Perl download pages will contain the latest address:

http://download.microsoft.com/download/platformsdk/wininst/1.1/NT4/EN-US/InstMsi.exe

For WinNT

http://download.microsoft.com/download/platformsdk/wininst/1.1/W9X/EN-US/InstMsi.exe

For Win98 and Win95

Install the MSI Microsoft installer itself by double-clicking on it in Windows Explorer (this
installation may be almost instantaneous).

4. Once the MSI program is confirmed as having been installed, double-click on the actual
ActivePerl download, in Windows Explorer, as in Figure 2-1.

5. After answering some questions about where you want Perl to be installed and where you
accepted the defaults, Win32 Perl is then installed directly onto your system, in the
standard Win32 way.

Once the process is complete, you can then test your Perl installation with the perl -v test
(also shown in Figure 2-1).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because of the standard security architecture of Win32 systems, network
shares and shared drives in a cluster are sometimes unavailable to the
SYSTEM user. Therefore, any Perl scripts running from a scheduler or as
a service will require that Perl be installed on a local drive. The C:\ drive is
often a safe bet (this is generally the default), and this is where we always
install Perl.

Figure 2-1. Installing ActivePerl

We hope you won't encounter any problems getting Perl installed. But if you do, and you can't get
the necessary help from the README and INSTALL files or here in this book, go to the Perl
information sources listed in Chapter 1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2 Installing Perl DBI

Now that you've installed Perl itself, you need to set things up so your Perl programs can
communicate with your Oracle database. The best way to do this is via the magic of the Perl DBI
module and its Oracle-specific database driver, DBD::Oracle. These modules let us gain access to
our target database through the Oracle Call Interface provided by Oracle Corporation. The
architecture for this arrangement, which takes full advantage of the object-oriented features
available within Perl 5, is shown in Figure 2-2. This figure also demonstrates how the same Perl DBI
interface can be used, with other drivers, to connect to other databases, and how all of these drivers
are hidden from your Perl scripts by the DBI package.[1]

[1] You can even access different database types within the same Perl script using DBI. Doing so can be especially useful
when you want to transfer information from one database type to another without having to use Oracle's SQL*Loader
product.

This section focuses on the installation of Perl DBI. For more information about Perl DBI's
capabilities, see Appendix B, and the book and online references listed in Chapter 1. For complete
online information, go to http://dbi.perl.org.

We'll show how to install the DBI modules for both Unix and Win32.

Figure 2-2. The Perl DBI architecture

Before we get to the DBI and DBD::Oracle modules, however, we need to take a step back to
discuss the methodology we'll be using for installing Perl modules onto Unix systems, both here and
in the rest of the book.

2.2.1 Methods for Installing Perl Modules

There are two basic approaches to installing Perl modules (for example, Perl DBI, DBD::Oracle, and
the many other modules we'll be discussing in later chapters) on Unix systems. The first is what
some people call the traditional method. The second is the CPAN method. We recommend the
traditional method, as we describe in the next section, but because the CPAN method is quite
popular, we'll describe that one here as well.

2.2.1.1 The traditional method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Briefly, the traditional method consists of the following steps:

1. Download a module's tarball from cpan.org.

2. Unpack it.

3. Build it.

4. Test it.

5. Install it.

This process often requires specifying the following steps on the command line (once the module
tarball has been downloaded from the CPAN site, http://www.cpan.org).

$ gzip SomeModule-1.00.tar.gz # Unzip archive

$ tar xvf SomeModule-1.00.tar # Unpack archive

$ cd SomeModule-1.00 # Enter archive

$ perl Makefile.PL # Configure the build

$ make # Build, or compile, the module

$ make test # Test the module's compilation

$ make install # Install the tested module

There are a lot of keystrokes here. However, there is a way to cut down on this effort, and that's to
use the CPAN module described in the next section.

2.2.1.2 The CPAN method

The CPAN module (a separate entity from CPAN itself) provides a streamlined way to install Perl
modules. You can learn the details of this built-in module by running the following commands:[2]

[2] The perldoc (Perl documentation) program itself is installed automatically with Perl, as part of the general Perl
development environment.

$ perldoc perlmodinstall

$ perldoc CPAN

If you have a valid Internet connection open, you will have two ways of using CPAN. You can use
either an interactive shell or a direct command-line instruction. We'll load up two modules in the
following sections using these methods.

The CPAN module comes prebundled with Perl. When you run its shell
(described in the next section) for the first time, it will ask you a one-time
series of short configuration questions. Once you've completed these,
you're ready to start installing online!

2.2.1.3 The interactive CPAN shell

First, we'll try the interactive CPAN shell, and install Number::Format, a helpful Perl module for
manipulating number and string displays, particularly financial data:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. We enter the shell via the following command:

$ perl -MCPAN -e "shell"
cpan shell — CPAN exploration and modules installation (v1.59_51)

ReadLine support enabled

cpan>

2. We then install Number::Format with a straightforward instruction at the cpan> prompt. This
sets off a train of events in which CPAN goes off to the nearest cpan.org mirrors, First, it
interrogates the Comprehensive Perl Archive Network, as to whether our target module really
exists. After validating this fact and a few other related pieces of information, it automatically
downloads the latest existing tarball from the mirror and installs it for you. It does all this via
some Perl magic of which Mithrandir himself would be proud:

cpan> install Number::Format
CPAN: Net::FTP loaded ok

Fetching with Net::FTP:

 ftp://ftp.demon.co.uk/pub/CPAN/authors/01mailrc.txt.gz

Going to read /home/andyd/.cpan/sources/authors/01mailrc.txt.gz

CPAN: Compress::Zlib loaded ok

Fetching with Net::FTP:

 ftp://ftp.demon.co.uk/pub/CPAN/modules/02packages.details.txt.gz

Going to read

 /home/andyd/.cpan/sources/modules/02packages.details.txt.gz

Fetching with Net::FTP:

 ftp://ftp.demon.co.uk/pub/CPAN/modules/03modlist.data.gz

Going to read /home/andyd/.cpan/sources/modules/03modlist.data.gz

Running install for module Number::Format

Running make for W/WR/WRW/Number-Format-1.44.tar.gz

Fetching with Net::FTP:

 ftp://ftp.demon.co.uk/pub/CPAN/authors/id/W/WR/WRW/Number-

Format-1.44.tar.gz

CPAN: MD5 loaded ok

Fetching with Net::FTP:

 ftp://ftp.demon.co.uk/pub/CPAN/authors/id/W/WR/WRW/CHECKSUMS

Checksum for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /home/andyd/.cpan/sources/authors/id/W/WR/WRW/Number-

Format-1.44.tar.gz ok

Scanning cache /home/andyd/.cpan/build for sizes

 CPAN.pm: Going to build W/WR/WRW/Number-Format-1.44.tar.gz

Writing Makefile for NumberFormat

 /usr/bin/make -- OK
Running make test

No tests defined for NumberFormat extension.

 /usr/bin/make test -- OK
Running make install

Writing /usr/lib/perl5/site_perl/5.6.1/i686-

linux/auto/NumberFormat/.packlist

Appending installation info to /usr/lib/perl5/5.6.1/i686-

linux/perllocal.pod

 /usr/bin/make install -- OK
cpan>

Although the preceding is a lot of output, it has taken our fingers relatively few keystrokes to
get Number::Format installed. In addition to the interrogation shown here, notice the three
build and installation steps we've highlighted — make, make test, and make install — all
done automatically.

3. Once we've finished installing new packages, we simply quit out of the shell:

cpan>quit
Lockfile removed.

$

Number::Format (and any other requested modules) is now installed, as if you had done it by
hand.

2.2.1.4 CPAN from the command line

Using CPAN directly from the command line is even easier than using the interactive CPAN shell.
We'll use it to get another useful Perl module, the Convert::EBCDIC bundle, which deals with IBM
mainframe EBCDIC data and its conversion to and from ASCII formats. Follow these steps:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. This time, we'll install our target module directly, with a single command at the operating
system prompt:

$ perl -MCPAN -e "install 'Convert::EBCDIC'"
2. This runs through a processing operation that's similar to the shell method shown earlier:

Going to read /home/andyd/.cpan/sources/authors/01mailrc.txt.gz

CPAN: Compress::Zlib loaded ok

Going to read

 /home/andyd/.cpan/sources/modules/02packages.details.txt.gz

Going to read /home/andyd/.cpan/sources/modules/03modlist.data.gz

Running install for module Convert::EBCDIC

Running make for C/CX/CXL/Convert-EBCDIC-0.06.tar.gz

CPAN: Net::FTP loaded ok

Fetching with Net::FTP:

 ftp://ftp.demon.co.uk/pub/CPAN/authors/id/C/CX/CXL/Convert-

EBCDIC-0.06.tar.gz

CPAN: MD5 loaded ok

Fetching with Net::FTP:

 ftp://ftp.demon.co.uk/pub/CPAN/authors/id/C/CX/CXL/CHECKSUMS

Checksum for /home/andyd/.cpan/sources/authors/id/C/CX/CXL/Convert-

EBCDIC-0.06.tar.gz ok

Scanning cache /home/andyd/.cpan/build for sizes

 CPAN.pm: Going to build C/CX/CXL/Convert-EBCDIC-0.06.tar.gz

Writing Makefile for ConvertEBCDIC

 /usr/bin/make -- OK
Running make test

No tests defined for ConvertEBCDIC extension.

 /usr/bin/make test -- OK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /usr/bin/make test -- OK
Running make install

Writing /usr/lib/perl5/site_perl/5.6.1/i686-

linux/auto/ConvertEBCDIC/.packlist

Appending installation info to /usr/lib/perl5/5.6.1/i686-

linux/perllocal.pod

 /usr/bin/make install -- OK
$

Convert::EBCDIC should now be fully installed. (We discuss both Number::Format and
Convert::EBCDIC in Appendix D.)

2.2.1.5 The traditional method

As you can see, the CPAN installation method is very convenient. However, like many Perl
developers, we've chosen to use the older paradigm because it gives us better control and is more
reliable.

Many of the modules we're going to discuss in this book have compilation routes that deviate from
the norm. CPAN is a fire-and-forget missile. You press the button, and away it goes, but it always
expects our target to be in view. If the target is elsewhere, it's intelligent enough to try to adapt, but
it may still fail to do exactly what you wish, and consequently miss the mark. On the other hand,
because of the greater number of steps required by the traditional method, we actually achieve
better granularity when we use that method, and we find it particularly helpful when explaining Perl
to others. We can hop between steps and offer you more advice on debugging, alternative location
installations, and other compilation tips (particularly in places where the Perl module is a glue layer
camouflaging the more difficult API of a passenger C library, which itself needs compilation).[3]

[3] You can think of the difference between the CPAN and traditional methods as analogous to the old conflict between
what's called, in military circles, Sigint (Signals Intelligence) and Humint (Human Intelligence). Sigint, or CPAN, is easier
to deploy and gather information from, whereas the traditional cloak-and-dagger Humint, pays for its greater management
overhead with a greater depth of penetration.

Thus, from here on, we're going to sidestep the CPAN module and stick mainly to la methode
traditionelle as we discuss Perl installation. However, if you ever get jealous of Win32 people using
PPM (the Perl Package Manager, which we describe in the later section, Section 2.2.3), nothing
stops from you using CPAN; we promise to turn a blind eye, especially as we use PPM quite often.

2.2.2 Installing Perl DBI on Unix

In this section, we'll explain how to install Perl DBI using the following tarballs:

DBI-1.20.tar.gz
DBD-Oracle-1.12.tar.gz

The central locations for these are:

http://www.perl.com/CPAN/modules/by-module/DBI
http://www.perl.com/CPAN/modules/by-module/DBD

You can obtain the relevant interface and driver packages by clicking on and saving the files from
the appropriate links. Save them to a Perl module repository.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2.2.1 Installing Perl DBI

Once you have the relevant downloads, you can begin the Perl DBI installation. Before starting,
always scan through the relevant README files; the following instructions do change gradually over
time. If any problems occur with your installation, you'll find that the solution is most likely buried
deep within either the DBI or the DBD::Oracle README files. Follow these steps:

1. As a sanity check, make sure that the Perl version you installed earlier is set up correctly. Do
this as the same user with which you installed Perl:

$ type perl

perl is hashed (/usr/bin/perl)

$ perl -v

This is perl, v5.6.1 built for i686-linux.........
2. If this looks good, carry on with the Perl DBI installation by unpacking the tarball and

checking the documentation:

$ gzip -d DBI-1.20.tar.gz

$ tar xvf DBI-1.20.tar

$ cd DBI-1.20

$ vi README

3. If you have no special requirements (as detailed in the README file), follow the standard
Perl installation instructions.[4] If any step fails, you will need to sort out what's causing the
problem before you can move on:

[4] If you installed Perl earlier in a nonstandard directory as a non-root user, all subsequent module installations
will automatically feed themselves into the correct library locations, and no further intervention will be required on
your part.

$ perl Makefile.PL

This step may produce an informational note similar to the following:

*** Note:

 The optional PlRPC-modules (RPC::PlServer etc) are not installed.

 If you want to use the DBD::Proxy driver and DBI::ProxyServer
 modules, then you'll need to install the RPC::PlServer,

 RPC::PlClient, Storable and Net::Daemon modules. The CPAN

 Bundle::DBI may help you.

 You can install them any time after installing the DBI.
 You do *not* need these modules for typical DBI usage.
The DBI::ProxyServer and DBD::Proxy combination is an alternative approach to the one we
describe in this section. It lets you avoid using DBD::Oracle on remote Oracle clients. We'll
describe this approach, as well as the details of the dbiproxy daemon program, later in this
chapter; the dbiproxy daemon is also displayed in Figure 2-4. To get dbiproxy to work, you'll

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chapter; the dbiproxy daemon is also displayed in Figure 2-4. To get dbiproxy to work, you'll
need to install four more packages before installing DBI (remember that these are optional
and unnecessary for typical DBI usage). You can always come back to these packages at a
later time; for now, let's move on.

4. Having configured Perl DBI, let's build, test, and install it.

$ make

$ make test

$ make install

Perl DBI should now be installed. But we need to keep the bubbly on ice, for a little while longer.
The next stage is to pair DBI up with its partner, the DBD::Oracle driver.

2.2.2.2 Installing DBD::Oracle

Follow these steps to install the DBD::Oracle module:

1. At this point, make sure you have a test Oracle database running, with the appropriate TNS
listener up. Also, if you're the root user, make sure you have the usual Oracle environment
variables set up: ORACLE_HOME and ORACLE_SID (you may choose to use TWO_TASK,
instead of ORACLE_SID, depending on your setup). You particularly need ORACLE_HOME
to locate the OCI code libraries. Note that DBD::Oracle is similar in concept to the Type II fat
JDBC drivers for use with the java.sql database connectivity package in Java. It needs at
least Oracle client libraries available, in order to compile successfully:[5]

[5] That is why DBI::ProxyServer and DBD::Proxy may be of interest for remote clients. They let you sidestep the
requirement for Oracle client libraries at the remote end (see Figure 2-4).

$ ORACLE_HOME=/u01/app/oracle/product/8.1.5

$ export ORACLE_HOME

$ ORACLE_SID=orcl

$ export ORACLE_SID

2. To make sure the DBD::Oracle driver is working correctly (before its full installation in the
make test step described later), you'll also need to set up the following special
ORACLE_USERID environment variable. (Simply change the scott/tiger@orcl string on your
own installation to a valid connection string on your own test database.)

$ ORACLE_USERID=scott/tiger@orcl
$ export ORACLE_USERID

3. As a final environmental gotcha, you may also need to have your LD_LIBRARY_PATH
environmental value pointing to all of the right little places on various Unix flavors. This will
help ensure that DBD::Oracle will pick up the correct Oracle libraries:

$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ORACLE_HOME/lib
$ export LD_LIBRARY_PATH

4. We're now ready to unpack DBD::Oracle:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ gzip -d DBD-Oracle-1.12.tar.gz

$ tar xvf DBD-Oracle-1.12.tar

$ cd DBD-Oracle-1.12

$ vi README

5. As the Captain himself might have once said, "Transporter room, this is Kirk. Configure, build,
and install":

$ perl Makefile.PL

$ make

$ make test
$ make install
If you do encounter any errors with this installation (particularly on the make test step), you
must sort them out before running the final make install step — even if the errors appear to
be nonfatal. That way, you'll have greater confidence when you're running production DBI
scripts later on. Following this error hit list should remove most of the gremlins:

a. Ensure that ORACLE_USERID is set correctly, as described earlier.

b. Check that LD_LIBRARY_PATH can access the libraries residing in
$ORACLE_HOME/lib.

c. Make sure your Oracle database is up and running with adequate memory available in
the shared pool, particularly if you know that the machine's memory is tight.

d. Check that the correct Oracle listener is responding correctly. You can do this by
connecting to it via a SQL*Plus session, from the same machine on which you're
installing DBD::Oracle.

e. Scan through the README files again with a fine-toothed comb.

If you can't solve your problem (which should be a very rare case), you may be able to get help from
the DBI users mailing lists or from the helpful information in the DBI FAQs. We explain how to
access these at the end of Chapter 1.

Once you've successfully completed the make install step, you'll find plenty of up-to-date Perl DBI
documentation automatically loaded onto your system. You can ensure that the documentation has
been loaded by running the following pair of commands:

$ perldoc DBD::Oracle

$ perldoc DBI

2.2.3 Installing Perl DBI on Win32

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In contrast to the Unix installation, installing Perl DBI using ActiveState's version of Perl is very
straightforward. We recommend that for Win32 you use the PPM (Perl Package Manager) module,
which installs automatically alongside ActivePerl with its utility ppm program (which runs it).

PPM simplifies the tasks of locating, installing, upgrading, and removing software packages on
Win32. It determines whether the most recent version of a software package is installed, and can
install or upgrade that package from a local or remote host. PPM is very similar to the interactive
CPAN shell module described earlier. Although PPM is usually run via its ppm interactive shell
program, it can also be used directly on the command line. PPM uses PPD (Perl Package
Description) files containing an extended form of the Open Software Description specification,[6] for
information about software packages. These description files are written in XML. For more
information on PPM on Win32, run the very helpful perldoc command; we'll say more about perldoc
in Appendix A:

[6] http://www.w3.org/TR/NOTE-OSD.html

DOS> perldoc PPM

We've chosen to use PPM ActivePerl packages, instead of hand-crafting Perl module installations,
for the following reasons:

Most Win32 users don't have a development environment in which to compile and test source
code installations.

Many Perl modules on Unix require the manual compilation of libraries such as zlib for
compression, expat for XML parsing, or gd for dynamic image creation. All ActivePerl
modules have precompiled these libraries for you into DLLs, where necessary, before you
download them. These will save you a significant amount of work over compiling DLLs of your
own.

Just as compiling from source is the standard method for installing Perl on Unix, the de facto
standard method on Win32 is to use PPM.

2.2.3.1 Running PPM

For a comprehensive guide to installing Perl modules on Win32, check out the following site:

http://aspn.activestate.com/ASPN/Products/ActivePerl/faq/ActivePerl-faq2.html

Unless you're accessing the Internet through proxies, as we'll discuss shortly, the following steps
should take only a few minutes:

1. As with CPAN, make sure your PC is connected to the Internet before you run ActiveState's
PPM. (Note that PPM itself was automatically installed when you loaded ActivePerl earlier.) If
you're connected through a proxy, you'll need to set the Win32 environment variable
HTTP_proxy to the name of your proxy server. You may also need to set the variables
HTTP_proxy_user and HTTP_proxy_pass, if your server requires a username and password.
If you need additional information, check out this web site:
http://aspn.activestate.com//ASPN/Products/ActivePerl/faq/ActivePerl-
faq2.html#ppm_and_proxies

2. Now start up an MS-DOS window and type the PPM command shown here at the command-
line prompt:

C:\> ppm

This will bring up the PPM program prompt.

3. Install the ActivePerl DBI package as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PPM> install DBI

4. When this completes, type:

PPM> install DBD-Oracle8

This should load the latest Oracle DBD::Oracle package.

5. Alternatively, if Oracle8 (or later) is unavailable on your system, you may wish to load a
slightly earlier DBD::Oracle package instead:

PPM> install DBD-Oracle

6. Your Perl DBI installation process should now be complete. You can quit and prepare for the
heady excitement of the "Hello World" example coming up.

2.2.3.2 Getting the latest PPD files

For the very latest Perl DBI and DBD::Oracle packages on Win32, you can go beyond ActiveState
and turn to a knight in shining armor, Ilya Sterin. Ilya regularly provides the latest binary
compilations at the http://xmlproj.com/PPM web page. Check this site first! If the PPD files you're
looking for are there, you can run the following PPM commands to obtain the very latest DBI and
DBD::Oracle downloads:

DOS> ppm

PPM> remove DBD::Oracle

PPM> remove DBI

PPM> set repository XMLPROJ http://xmlproj.com/PPM/

PPM> install DBI-1_20
PPM> install DBD-Oracle-1_12
PPM> quit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.3 Running Perl DBI

Would this book be complete without a "Hello World" example? Of course not, so here goes! Our
very simple Perl DBI script (in Example 2-1) will simply connect to the orcl Oracle database as the
scott user, run through a straightforward SQL cursor on the DUAL table via a prepared statement,
and then print out the result before logging off. We'll run the same script on both Unix and Win32
to demonstrate Perl's operating system independence:

Example 2-1. Our first Perl DBI script, HelloWorld.pl

#!perl -w
use strict;

use DBI;
Connect to Oracle database, making sure AutoCommit is

turned off and potential errors are raised.

my $dbh = DBI->connect('dbi:Oracle:orcl', 'scott', 'tiger',
 { RaiseError => 1, AutoCommit => 0 });

Create the SQL.

my $sql = qq{ SELECT 'Hello World' FROM DUAL };

Prepare the SQL and execute.

my $sth = $dbh->prepare($sql);

$sth->execute();

Fetch output rows into array, plus prepare a

print formatter for the results.

while (my($helloWorldString) = $sth->fetchrow_array) {

 # Print out the result.

 print $helloWorldString, "\n";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

$dbh->disconnect(); # Disconnect

Example 2-1 may look a little scary, but after reading Appendix B, you'll quickly be able to reduce
it to the following:

#!perl -w

use strict;

use DBI;

my $dbh = DBI->connect('dbi:Oracle:orcl', 'scott', 'tiger',
 { RaiseError => 1, AutoCommit => 0 });

print $dbh->selectrow_array(qq{ SELECT 'Hello World' FROM DUAL });

$dbh->disconnect();

Note the following about Example 2-1:

If you know some Perl already, you may notice how we've only imported the DBI module,
within the script, via Perl's use command. The Perl DBI package takes care of picking up
DBD::Oracle, for us when we run the DBI->connect call. (The dbi:Oracle:orcl parameter
string cleverly indicates that we want to use DBD::Oracle rather than any other database
driver.)

You may also wish to change the orcl, scott, and tiger information strings to something
more appropriate for your own target database before running the program.

Before we run this script under either Unix or Win32, we need to do the following:

1. Make sure ORACLE_HOME is set within the command shell environment, to ensure that
the DBD::Oracle driver can locate the OCI libraries.

2. Make sure the target database is up and ready.

3. Check that the relevant database listener is up and running; you can do this by trying to
connect to the target database via a remote SQL*Plus session.

We should now be ready to run the HelloWorld.pl Perl script under both Unix and Win32.

2.3.1 Running a Perl Script on Unix

Follow these steps to run a Perl script on a Unix system:

1. Log in to Unix as the Oracle user. If necessary with your particular version of Unix, make
sure that the LD_LIBRARY_PATH environment variable is set correctly by adding
$ORACLE_HOME/lib to it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Make sure the Perl executable program is within your PATH:

$ type perl

This should return something similar to the following:

perl is hashed (/usr/bin/perl)

3. Ensure that you're in the directory where you've written the HelloWorld.pl script.

4. Now simply type:

$ perl HelloWorld.pl

(You may want to use the optional -w flag, as in perl -w HelloWorld.pl, to make explicit any
warnings.)

If you make the HelloWorld.pl file executable, you can also use the shebang syntax on line
1, #!perl -w, to run the program directly:

$ chmod +x HelloWorld.pl

$./HelloWorld.pl

5. The resulting output should be:

Hello World

OK, so it's lacking in wild inspiration, but from little acorns grow. You can see our output in
Figure 2-3, along with the corresponding Win32 version.

2.3.2 Running a Perl Script on Win32

Follow these steps to run a Perl script on a Win32 system:

1. Go to the directory where you've created the HelloWorld.pl script (or copied it) from your
Unix system.

C:\> cd Perl\eg

2. Enter the following:

C:\Perl\eg> perl HelloWorld.pl
(Some Win32 systems associate the .pl suffix with the Perl interpreter, which means that
you may be able to drop the use of the explicit perl command.)

3. You should now see the following output generated:

Hello World

Again, this is demonstrated in Figure 2-3.

Now we can break out the bubbly!

2.3.3 DBI by Proxy

One of DBD::Oracle's major limitations is its reliance on the presence of at least Oracle client
libraries for successful compilation. Indeed, here's what the Version 1.12 DBD::Oracle README

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

libraries for successful compilation. Indeed, here's what the Version 1.12 DBD::Oracle README
file has to say:

Install enough Oracle software to enable DBD::Oracle to build. That usually includes
Pro*C. That's not very specific because it varies so much between Oracle releases.

Figure 2-3. HelloWorld.pl running under Win32 and Unix

If you have an Oracle server but no client machines possessing on-board Oracle software, this is
a problem. It's also a problem if you have a client firewall that DBD::Oracle fails to break through.
Fear not, for there is a potential solution at hand — Jochen Wiedmann's amazing
DBI::ProxyServer and DBD::Proxy module set, which comes automatically within the DBI tarball.
For DBI 1.20, you can read about both modules here:

http://search.cpan.org/doc/TIMB/DBI-1.20/lib/DBI/ProxyServer.pm
http://search.cpan.org/doc/TIMB/DBI-1.20/lib/DBD/Proxy.pm

(Try searching on http://search.cpan.org if these version-specific documents have been
superseded.)

The idea is to set up a proxy server daemon, dbiproxy, that runs on your Oracle server machine.
On your remote clients, you use DBD::Proxy instead of DBD::Oracle. This module connects
across the network to the dbiproxy daemon, which passes through the SQL requests to a server-
configured DBD::Oracle driver, thereby allowing proxy access to the Oracle database. This setup
is displayed in Figure 2-4.

In order to use the ProxyServer system over a network, we need to install several Perl packages:

Storable (as used by the following PlRPC packages); you can find this at
http://www.cpan.org/authors/id/KWILLIAMS.

Net::Daemon.

PlRPC (which contains the RPC::PlServer and RPC::PlClient subpackages).

You can find these at http://www.cpan.org/authors/id/JWIED.

Figure 2-4. DBI:ProxyServer and DBD::Proxy architecture

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.4 Installing Cygwin

Cygwin is a free, open source Win32 porting layer for Unix applications, originally developed by Cygnus
Solutions (now a part of Red Hat, Inc.) The Cygwin library brings to Windows the Unix system calls and
environment that Unix programs expect. This makes it fairly easy to port Unix applications to Win32 without
having to make extensive changes to the source code.

Cygwin is an increasingly popular solution for Win32 users who want at least occasional access to the
compilers, scripts, and favorite Unix commands (e.g., grep, ps, sed) that their Unix counterparts take for
granted. Of course, Linux is often a viable choice for PC users, but many of those users aren't willing to give up
Microsoft Word, Excel, and the other standard Windows programs. Cygwin is a nice compromise. You can
install it and have it available when you need to run a Unix program, without completely changing your
environment. It's like having an extra driver in your bag of golf clubs; you may not need it all the time, but every
now and then it is awfully useful!

If you're going to be using Perl on a Win32 platform, you may find Cygwin particularly useful. Because the
compiler comes with Cygwin, you'll be able to compile Perl, Perl DBI, and/or DBD::Oracle from source if you
wish, rather than having to use the prebuilt binaries available from ActiveState. That way, you can customize
Perl as needed to suit your own environment. And Cygwin also extends your reach; some of the Oracle
applications we describe in this book, such as Oracle::OCI described in Chapter 7, or the latest XML parsers
described in Appendix D (and many other open source applications as well), are yet to be available as Win32
executables. New Perl modules requiring C libraries don't tend to be available on ActivePerl for some
because of the required development lead-in time. You can keep ahead of the game with Cgywin.

You can learn much more about Cygwin at:

http://www.cygwin.com

2.4.1 Installing Perl under Cygwin

First of all, visit the http://www.cygwin.com site and check out the latest download instructions for Cygwin. These
are continuously updated to ease Cygwin's installation, which gets easier by the month. The following are the
steps we took to install the latest version available to us:

1. Create a new directory on your PC that's ready for the Cygwin downloads:

C:\>mkdir cygwin

C:\>cd cygwin

C:\cygwin>

2. Download the setup program. Instead of downloading a single massive tarball, we chose to download
setup.exe, a sort of traffic-cop program designed to direct the rest of the installation proper, in a manner
conceptually similar to the Perl configure program. We got hold of setup.exe from this URL:

http://www.cygwin.com/setup.exe

3. Run the setup program. Once we had downloaded setup.exe, we ran the program by double-clicking
inside the C:\cygwin directory in Windows Explorer. The first screen we saw is shown on the left in
2-5.

4. We then pressed Next->, taking us to the screen on the right in Figure 2-5, which provided a range of
three options. We decided to download our required packages from the Internet, and then install them
later — you may prefer to install directly from the Internet. Choose the approach that suits you best.

5. We then moved progressively through the screens in Figure 2-6, choosing Internet Explorer IE5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. We then moved progressively through the screens in Figure 2-6, choosing Internet Explorer IE5
to overcome any potential proxy difficulties. As before, you may prefer alternative options.

6. The next stage was the pop-up list of Cygwin mirrors, shown on the left side in Figure 2-7. All the Cygwin
packages, shortly to be downloaded, come from one of these mirrors.

Figure 2-5. First steps — Setting up Cygwin

Figure 2-6. Determining download locations and options

Figure 2-7. Choosing download packages

7. After we chose a convenient mirror, the main package selection screen appeared. Note that the
setup.exe program will already have worked out the absolute base set of packages you need to get
Cygwin up and running. The rest are optional. To get a real development environment going, we need
more than the economy model cup-holder allocation of one for the driver. We need swing-out tables,
portable showers, and a whole army of oil-damped cup-holders, all over the vehicle!

8. Click on the Category name tags of the main package selection screen shown in Figure 2-7. These
include Admin, Archive, Base, Database, and Devel. Go ahead. Open them all up. In the early
Cygwin used to be a single download, but it took 3.9812 eons to bring back the whole caboodle over a
home Internet connection. A single rogue disconnection could lose the entire shooting match,
to start all over again. Thankfully, the various bits and pieces of Cygwin are now available as separate
items.

9. The packages we recommend you choose for a minimalist Perl-based development environment are
detailed in Table 2-1. In compiling this list, we've tried to identify what's truly necessary and what's
have, balancing both against the restrictions of bandwidth. The safest bet, if you have both the time to
spare and the hard disk capacity available, is to simply get everything. (If you don't have time or space for
that now, though, you can always pick up the missed packages later on. Cygwin's setup.exe program is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that now, though, you can always pick up the missed packages later on. Cygwin's setup.exe program is
clever enough to determine what you've already got, and what you need. In addition, it will even flag the
latest versions of programs as they become available on the Cygwin home site.)

Table 2-1. Cygwin packages for Perl development
Category Packages required

Base All
Devel All

Editors vim -- vi Improved (not that we're die-hard vi fanatics, but we do need a text
editor)

Graphics All (for possible use with DBD::Chart and other Perl-based graphics packages
that rely on these libraries)

Interpreters Perl (fairly essential, this one)

Libs All (although in a crunch you may want to come back later for the OpenGL,
OpenSSL, and Tcl/Tk libraries; make sure you do get all the Win32 libraries)

10. To save further time and hard disk space, you may want to avoid selecting the source code options until
you need to dig down into programs of interest later on.

11. Once you've selected what you want, click on Next-> on the main packages selection screen
7, and let the download begin. At this point, you may need to go to your Win32 Start bar at the bottom of
the screen in order to bring up the minimized Cygwin progress window — it may have disappeared
behind all your other windows. Cygwin's setup.exe will now weave its gold and silvery magic, while we go
for a nice hot cup of tea, or some other alkaloid-based stimulant.

12. Once we're back, and Cygwin has done its stuff, we just need to do a little housekeeping. Those who
downloaded the packages, rather than installing directly, will have to rerun the first stages of the
setup.exe process. This time, we install from locally supplied packages instead of downloading from the
Internet. Installation should then take place, as shown in Figure 2-8.

Figure 2-8. Completing the Cygwin installation

13. At some point, you should also have been asked if you wanted Cygwin to be added to the Start
a Cygwin shortcut placed on the desktop, as in the center screen of Figure 2-8. Once these options are
installed, use either route to bring up a Cygwin shell window. For good measure, check to see if Perl has
been installed as expected. You can do this with the following command:

$ perl -v

Perl should now be confirmed as available under Cygwin, and we should have a full GNU-like
development environment for compiling both DBI and DBD::Oracle.

Unix-like file security is only possible for Cygwin under NTFS partitions on the various
Windows NT-related platforms. To effectively use file security commands such as
chmod, you also need to add the ntsec flag to the CYGWIN environment variable —
for example:

$ export CYGWIN="$CYGWIN ntsec"

You can read more about the CYGWIN variable and its many other options at

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can read more about the CYGWIN variable and its many other options at
http://cygwin.com/cygwin-ug-net/using-cygwinenv.html.

2.4.2 Installing Perl DBI under Cygwin

Follow these steps to install Perl DBI under Cygwin:

1. Download the latest Perl DBI and DBD::Oracle tarballs to C:\cygwin from:

http://www.cpan.org/authors/id/TIMB

2. Now unpack the DBI tarball (once again, we used Version 1.20):

$ gzip -d DBI-1.20.tar.gz

$ tar xvf DBI-1.20.tar

$ cd DBI-1.20

3. Next, compile DBI:

$ make

4. You may get a few warnings with make under Cygwin, but everything should still be OK, as the
should get compiled as necessary. The final part of the output should look something like this:

...

cp dbish blib/script/dbish

/usr/bin/perl -I/usr/lib/perl5/5.6.1/cygwin-multi

-I/usr/lib/perl5/5.6.1 -MExtUt

ils::MakeMaker -e "MY->fixin(shift)" blib/script/dbish

Manifying blib/man3/DBI.ProxyServer.3

Manifying blib/man3/DBD.Proxy.3

Manifying blib/man3/DBI.Format.3

Manifying blib/man1/dbish.1

Manifying blib/man3/DBI.Shell.3

Manifying blib/man3/DBI.3

Manifying blib/man3/DBI.FAQ.3

Manifying blib/man3/Bundle.DBI.3

Manifying blib/man3/Win32.DBIODBC.3

Manifying blib/man1/dbiproxy.1

Manifying blib/man3/DBI.W32ODBC.3

Manifying blib/man3/DBI.DBD.3

$

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$

5. Now test and install:

$ make test

$ make install

...

Writing /usr/lib/perl5/site_perl/5.6.1/cygwin-multi/auto/DBI/.packlist

Appending installation info to /usr/lib/perl5/5.6.1/cygwin-multi/perllocal.pod

$

We're done!

2.4.3 Installing DBD::Oracle under Cygwin

The installation of DBD::Oracle is a little more involved than that of Perl DBI. Follow these steps:

1. Unpack as usual:

$ cd C:/cygwin

$ gzip -d DBD-Oracle-1.12.tar.gz

$ tar xvf DBD-Oracle-1.12.tar

$ cd DBD-Oracle-1.12

2. Read through some important README information, particularly the README.wingcc file:[7]

[7] Those new to the vi editor can read some great help pages at http://www.vim.org/html/quickref.html and
http://www.vim.org/html/help.html.

$ vi README README.win32 README.wingcc
3. Create the liboci.a file, as instructed in README.wingcc, and place it somewhere such that Cygwin's

make compilation utilities can find it later on, such as /usr/local/lib. We did this via the following

$ cd C:/cygwin/DBD-Oracle-1.12

$ dlltool --input-def oci.def --output-lib liboci.a

$ ls -la liboci.a

-rw-r--r-- 1 andyd None 260806 Dec 28 14:40 liboci.a

$ mv liboci.a /usr/local/lib
4. The required definitions archive is now available for other compilation tools, such as make, to view.

Before beginning compilation, however, make sure that you can access all of the required Oracle client
libraries, especially for the make test step. Change values where appropriate:

$ ORACLE_HOME=C:/ORANT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ ORACLE_HOME=C:/ORANT
$ export ORACLE_HOME

$ ORACLE_SID=orcl
$ export ORACLE_SID

$ ORACLE_USERID=scott/tiger@orcl
$ export ORACLE_USERID

5. Because ActivePerl is the usual Win32 environment for DBI, Cygwin compilation can sometimes lag
slightly behind other more typical Unix-style operating systems. For instance, the latest flavor of
DBD::Oracle available at the time we carried out this installation was DBD-Oracle-1.12. This had slightly
altered an older part of the Makefile.PL file from DBD::Oracle 1.08, a version we knew would compile
without problems. The old code in Makefile.PL from DBD::Oracle 1.08 was:

die qq{ The $ORACLE_ENV environment variable value ($OH) is not valid.

 It must be set to hold the path to an Oracle installation directory

 on this machine (or a compatible archtecture).

 See the README.clients file for more information.

 ABORTED!

} unless -d $OH;
This had become updated to:

die qq{ The $ORACLE_ENV environment variable value ($OH) is not valid.

 It must be set to hold the path to an Oracle installation directory

 on this machine (or a compatible archtecture).

 See the README.clients file for more information.

 ABORTED!

} unless (($os eq 'VMS') ? -d $OH : -d "$OH/lib/.");
Notice the more complex unless condition. Although the rest of our Cygwin compilation will look for
important locations, such as /lib, under $ORACLE_HOME/OCI80, the code shown previously
its location directly under $ORACLE_HOME, where it will fail to find it under certain Oracle versions. It
then aborts the build operation. (This is version-specific however, and anything after Oracle8i
8.1.5 seems to revert back to the Unix-style directory structures.)

You'll probably have no problems of your own. This is just an example of the kind
of thing you have to look out for, especially if you use earlier versions of Oracle.

6. To get around this problem, we commented out the previous section in Makefile.PL and set it to this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#die qq{ The $ORACLE_ENV environment variable value ($OH) is not valid.

It must be set to hold the path to an Oracle installation directory

on this machine (or a compatible archtecture).

See the README.clients file for more information.

ABORTED!
#} unless (($os eq 'VMS') ? -d $OH : -d "$OH/lib/.");
OK, this hack lacks splendor, but it does remove an immediate problem, and we're confident that it
doesn't create other problems elsewhere. You may have your own little niggles to solve too, but ice-cool
code warrior perseverance will see you through.

7. We can now begin the compilation run:

$ perl Makefile.PL

8. This produces rather "interesting" output:

Using DBI 1.20 installed in

/usr/lib/perl5/site_perl/5.6.1/cygwin-multi/auto/DBI

 Configuring DBD::Oracle ...

>>> Remember to actually *READ* the README file!

 Especially if you have any problems.

Using Oracle in C:/ORANT

Can't stat C:/ORANT/rdbms: No such file or directory
I can't find the header files I need in your Oracle installation.
You probably need to install some more Oracle components.
I'll keep going, but the compile will probably fail.
See README.clients for more information.

Found OCI80 directory

Using OCI directory 'OCI80'

Using liboci.a (did you build it?)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using liboci.a (did you build it?)
System: perl5.006001 cygwin_nt-4.0 loreley 1.3.2(0.3932)

2001-05-20 23:28 i686 unknown

Compiler: gcc -O2 -DPERL_USE_SAFE_PUTENV -fno-strict-aliasing

-I/usr/local/inc

lude

Linker: /usr/bin/ld

Sysliblist:

Warning: If you have problems you may need to rebuild perl with
-Uusemymalloc.
Checking if your kit is complete...

Looks good

LD_RUN_PATH=/usr/local/lib
Using DBD::Oracle 1.12.

Using DBI 1.20 installed in

/usr/lib/perl5/site_perl/5.6.1/cygwin-multi/auto/DBI

Writing Makefile for DBD::Oracle

*** If you have problems...

 read all the log printed above, and the README

 and README.help files.

 (Of course, you have read README by now anyway, haven't you?)

At first, this looks a little ugly, especially the fact that C:/ORANT/rdbms does not exist! Did we cause this
with our hack? No, the preceding is absolutely fine and to be expected. We can ignore the
C:/ORANT/rdbms problem — the compilation will later find everything it needs under
C:/ORANT/OCI80/include. These kinds of warnings are only here because of the strange hybrid nature of
a Unix-style Cygwin running on a Win32 box, with its own particular complexities.

9. We're now ready for compilation, with make — though did you also notice that reminder about
Note also that the LD_RUN_PATH is set to /usr/local/lib. This is where we should have placed
Now let's go for the compilation:

$ make

10. Again, we'll get more warnings than is usual under Unix, but as long as the liboci.a file is in /usr/local/lib
(or possibly /usr/lib, if this should fail to work), there should be no real worries, and the correct
file should be produced. It is possible, however, that you might encounter OCI8 problems because the
latest Oracle client libraries may be unavailable. For example, if you get errors saying that certain OCI
definitions are undeclared (such as OCI_HTYPE_ and OCI_DTYPE_ values), you should check to see if

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

definitions are undeclared (such as OCI_HTYPE_ and OCI_DTYPE_ values), you should check to see if
they're declared in oci.h, which should be under the following directory:

$ORACLE_HOME/OCI80/include

If they're undeclared, you'll have two choices. You can either get more up-to-date Oracle client
go back a step and run the following commands, which allow you to use the older Oracle7-style OCI
libraries:

$ make clean

$ perl Makefile.PL -8
$ make

If the rogue definitions are declared in oci.h, you may need to check that the generated Makefile
including the appropriate C header file directories. More debug details should be available within the
online DBD::Oracle documentation, which comes with the tarball.

11. Once we've got everything ship shape, we can then run the two final installation instructions:

$ make test

$ make install

We should then be able to run the program in Example 2-2, which is illustrated in Figure 2-9. We ran it
with the following command:

$ perl cygwinDBI.pl

Figure 2-9. Perl DBI running under Cygwin

Example 2-2. Running DBI under Cygwin — cygwinDBI.pl

#!perl -w

use strict;

use DBI;

my $dbh = DBI->connect('DBI:Oracle:orcl', 'scott', 'tiger',

 {RaiseError => 1, AutoCommit => 0});

my $msg =

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $msg =
 $dbh->selectrow_array(

 "SELECT SYSDATE || ' Hello Cygwin DBI! :-)' message FROM DUAL"

);

Lets have some formatting fun! :-)

my $msg_len = length($msg);
$underline = '=' x ($msg_len + 6);

print "\n", $underline, "\n",

"|| ", ' ' x $msg_len, " ||", "\n",

"|| ", $msg, " ||", "\n",
"|| ", ' ' x $msg_len, " ||", "\n",

$underline, "\n\n";

$dbh->disconnect;

To further investigate some of the formatting operations shown in Example 2-2, try the following
command to see the Perl online documentation (and see Appendix A for a full description of perldoc

$ perldoc perlop

Now that Perl is well and truly on board, we're ready to sail out from the Perl havens and head towards an
open sea of exploration and destiny. In the next few chapters, we'll examine a variety of Perl modules that
extend the combined power of Perl and Oracle.

And Then There's DJGPP
In case Cygwin isn't enough for you and you're still feeling a little cramped creatively, yet another
open source Win32 GNU compilation environment is available. This is DJGPP (which stands for DJ
Delorie's GNU Programming Platform), a toolset related in spirit to Cygwin. You can learn more
about it at:

http://www.delorie.com/djgpp/

There's even an online Perl document dedicated to building DJGPP Perl under DOS:

$ perldoc perldos

You may wish to give DJGPP a try; in Perl, there really is always more than one way to do it!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part II: Extending Perl
This second part of the book describes a wide variety of Perl modules and
applications that Oracle DBAs will find helpful. It consists of the following chapters:

Chapter 3 describes Perl/Tk, an extensive GUI-based toolkit for Perl, as well as a
number of applications that provide Oracle DBAs with graphically oriented tools for
performing database administration. In addition to Perl/Tk, this chapter covers
OraExplain, StatsView, Orac, DDL::Oracle, SchemaDiff, Senora, DBD::Chart,
SchemaView-Plus, and a variety of Perl GUI integrated development environments
(IDEs) and debuggers.

Chapter 4 discusses the relationship between Perl and the Apache web server, and
focuses on two Oracle applications that use a web browser as their user interface:
Oracletool and Karma.

Chapter 5 explains how the use of Apache's mod_perl module can greatly improve
the performance of Perl web-based CGI (Common Gateway Interface) scripts used
with Oracle. This chapter also covers several related Apache modules:
Apache::Registry, Apache::DBI, and Apache::OWA (used to connect mod_perl to
Oracle's PL/SQL Web Toolkit).

Chapter 6 describes two applications, Embperl and Mason, that demonstrate the
advantages of embedded scripting, a method that allows Perl code to be embedded
within web pages. These tools provide a mechanism for filling your production web
pages with dynamic Oracle data and creating your own Oracle web tools, while
separating content from design issues.

Chapter 7 covers Oracle::OCI, a Perl module that provides a more extensive
interface to Oracle's OCI than is possible with Perl DBI.

Chapter 8 discusses extproc_perl, a Perl module that communicates with the Oracle
PL/SQL language's external procedure C library system (known as EXTPROC). This
module and the others described here allow Perl code to be embedded directly in
PL/SQL programs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. Perl GUI Extensions
In Chapter 2, we looked at standard Perl and its database connectivity module, Perl DBI. The
command-line interface available in Perl and Perl DBI has served developers well for many years.
But over time, people have become more accustomed to graphical user interfaces (GUIs), and
there has been a movement towards GUI facilities for Perl. Oracle DBAs in particular appreciate
applications that give them an easy-to-use graphical interface for managing their databases and a
way to visually inspect difficult-to-interpret database data. In this chapter we'll look at Perl/Tk, an
extensive GUI-based toolkit, as well as at a number of applications (many of them based on
Perl/Tk) that provide Oracle DBAs with the graphical interfaces they find so useful. We'll cover:

Perl/Tk

A popular toolkit often used to build GUIs in Perl for both Unix and Win32.

OraExplain

A Perl/Tk SQL tuning tool for Oracle that explains SQL execution plans. OraExplain was
the first major canned application that combined Perl DBI and Perl/Tk for Oracle. It also
inspired many other Perl/Tk applications.

StatsView

A statistics-gathering tool written in Perl/Tk for Oracle DBAs who also perform Unix system
administration. This tool collects all kinds of useful statistics and then displays them in
enhanced graphical format, courtesy of the gnuplot program.

Orac

A GUI wrapper program built using Perl/Tk that provides a useful way to maintain a
repository of configurable SQL scripts for interrogating and managing Oracle databases.

DDL::Oracle

A nongraphical Perl package that reverse-engineers Data Definition Language (DDL)
statements. This back-end Oracle package often drives Perl/Tk scripts in order to help
them provide visual DDL aids for Oracle DBAs.

SchemaDiff

A Perl package built on DDL::Oracle and Perl/Tk that compares different Oracle schemas.

Senora

An interactive Oracle shell program that provides a flexible and extensible alternative to
SQL*Plus.

DBD::Chart

A Perl driver interface that renders graphs and charts. DBD::Chart is another excellent
supplementary module for visualizing complex information; it is often used to generate
back-end images for use by Perl/Tk.

SchemaView-Plus

Another program built on Perl/Tk that compares different Oracle schemas. This program is
also built on the Perl DBIx extension, DBIx::SystemCatalog.

Perl IDEs and GUI debuggers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Perl IDEs and GUI debuggers

Open source integrated development environments providing graphical interfaces for
editing and debugging Perl code.

In the next chapter, we'll move on to look at the Perl extensions and applications that use the
Web, rather than custom-built GUIs, as their user interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.1 Perl/Tk

The Perl/Tk module, developed Nick Ing-Simmons, is one of the most popular and useful of the Perl
extension modules. Perl/Tk is a toolkit that gives Perl the ability to create interactive and full-fledged
GUI-driven applications. Writing GUIs can be complex, but Perl/Tk makes it easy by making available
standardized libraries of reusable GUI code (widgets and controls) that you can select as appropriate.

For those interested in writing Oracle DBA GUI applications of their own, we'll try to cover all the bases
in this chapter, but we'll mostly focus on the tools currently available for those simply looking for ready-
to-use database administration and tuning programs. For more information on generic Perl/Tk issues,
these are the online and book resources we consider to be best:

http://www.lehigh.edu/~sol0/ptk/ptk.html

Stephen Lidie's central portal, for all things Perl/Tk.

http://www.perltk.org

Didier Ladner's central Perl/Tk resource.

http://www.oreilly.com/catalog/mastperltk

For those who prefer information in book form, we thoroughly recommend Mastering Perl/Tk, by
Nancy Walsh and Stephen Lidie (O'Reilly & Associates, 2002). As one of us helped technically
review this book, we must admit a bias, but it's the definitive text.

For a quick example of what Perl/Tk can do for you, take a look at the widgets demonstration program in
Figure 3-1, which comes automatically with the Perl/Tk installation.

Figure 3-1. The Perl/Tk widget program's image interface

3.1.1 Installing Perl/Tk under Unix

As with virtually every other Perl module we'll discuss in this book, you can install Perl/Tk from the online
CPAN system in the following way:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ perl -MCPAN -e "shell"

cpan shell -- CPAN exploration and modules installation (v1.59_51)

ReadLine support enabled

cpan> install Tk <RETURN>
However, to gain far more control over the install and its tests, and to access all of the install information
for the various Unix flavors, get hold of Perl/Tk's latest tarball from the following web site:

http://www.cpan.org/authors/id/NI-S

Once you've downloaded the CPAN source into the temporary directory of your choice, you can install
Perl/Tk manually as follows (we've demonstrated this with the Tk800.023.tar.gz file):

$ gzip -d Tk800.023.tar.gz
$ tar xvf Tk800.023.tar

$ cd Tk800.023

Always comb religiously through the README and INSTALL files to make sure nothing special is
required for your machine's setup:

$ vi README INSTALL

Once you're happy with your setup, you can proceed. Perl/Tk follows the usual pattern for installing most
Perl modules. However, it is a large body of code, in comparison to most other Perl modules, so it often
takes a few minutes to install, and you must ensure that the user running make test has access to the
appropriate X Windows server, by running a command such as xhost +. Once the testing is complete,
you'll also need to install Perl/Tk as root:

$ perl Makefile.PL

$ make

$ make test

$ make install

We're now all set! All that rigid command-line discipline is about to change. Assuming that the
installation ran typically smoothly, Perl/Tk is now installed and ready to GUI.

3.1.2 Installing Perl/Tk on Win32

The corresponding ActiveState installation on Win32 is straightforward. Simply connect your PC to the
Internet, as in Chapter 2, and then run through the following PPM commands, much as you did when
installing Perl DBI and DBD-Oracle:

1. Fire up an MS-DOS command window and run PPM:

C:\> ppm

2. Now install ActivePerl's remotely accessed Perl/Tk package by typing:

PPM> install Tk

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PPM> install Tk

This may take slightly longer to load than your average ActivePerl package, as it's very large, but
should still only take a few minutes.

3. When the command completes, enter:

PPM> quit

Perl/Tk should now be installed.

3.1.3 Combining Perl/Tk and Perl DBI

To try Perl/Tk on for size, let's try searching for the widgets program demonstrated in Figure 3-1 as
follows:

Unix

From the Perl/Tk installation location, look for the ../demos directory, change directory into there,
and then type perl widget.

Win32

Go to the C:\Perl\bin directory and type either perl widget or widget.bat.

Those of you who are rolling your own might like to run through Example 3-1. This follows the general
Perl/Tk program algorithm shown in Figure 3-2.

Figure 3-2. The basic structure of Perl/Tk programs

Example 3-1. HelloPtk.pl — trying Perl/Tk on for size

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#!/usr/bin/perl

use strict;

use warnings;

Step 1: Get hold of the main Perl/Tk package.

use Tk;

Step 2: Create the Main Window. Use the name of the program,

held in the special Perl variable $0, to create the title.

my $mw = MainWindow->new(-title=>$0);

Step 3: Pack a label onto the screen to hold our initial message.

$mw->Label(-text=> "Hello Perl/Tk", -anchor=>'center'
)->pack(-side=>'top');

Step 4: Create a button to neatly exit the program.

$mw->Button(-text=>'Exit',

 -command=>\&doExit)->pack(-side=>'bottom');

Step 5: Launch the Perl/Tk looping process, to display window.MainLoop();

Step 6: Create an exit subroutine.

sub doExit { exit 0; }
We've run through the following program steps in a little more detail:

1. The first part of the program picks up the main Tk package.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. We then construct the main window and store its handle within a traditionally named $mw
variable. (We've also made use of the built-in $0 Perl variable, which automatically contains the
name of a Perl script.)

3. We create our label, "Hello Perl/Tk", and place it at the top of the screen.

4. To close the program neatly, in accordance with Figure 3-2, we attach an exit button to the
doExit() subroutine. If we decide to extend the program later on, you can also add any special
cleanup code that is necessary.

5. Now we can enter Perl/Tk's main looping process. This takes care of all the hard work of tracking
mouse movements, button commands, and so on. Once the program's widgets are laid out, the
MainLoop traffic cop directs the Perl GUI script to wherever the user desires to go.

6. Finally, we code our special exit command. Although the exit subroutine is fairly basic in our
prototype, you can place any necessary cleanup code here later on — for example, a graceful
database disconnection. We run the program via the following command:

$ perl HelloPtk.pl

You can see HelloPtk.pl in action in Figure 3-3 on both Win32 and Unix.

Figure 3-3. HelloPtk.pl under both Win32 and Linux

Exciting as HelloPtk.pl may be, both in looks and execution, the real fun begins when we start to
combine Perl/Tk with Perl DBI. In Example 3-2 we've expanded HelloPtk.pl to work out the time
according to SYSDATE. You can see this program at work in Figure 3-4.

Figure 3-4. WhatIsTheTime.pl in action, under Unix

Example 3-2. WhatIsTheTime.pl — Combining Perl/Tk and Perl DBI

#!/usr/bin/perl

Step 1: Get hold of the main Perl/Tk package, DBI, and set the

Oracle Environment, plus set the database connection and SQL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use Tk;

use DBI;
use strict;

use warnings;

my $dbh = DBI->connect('dbi:Oracle:orcl', 'scott', 'tiger',
 { RaiseError=>1, AutoCommit=>0 });
my $sql = qq{ SELECT TO_CHAR(SYSDATE, 'HH:MI:SS') FROM DUAL };

my $mw = MainWindow->new(-title=>$0); # Set the main window up

Step 2: Get the latest time from the Oracle database.

my oracleTime;

getTheOracleTime();

Step 3: Pack a simple button onto the screen, to ask Oracle for the

current SYSDATE time. Assign the appropriate callback.

$mw->Button(-text=>"What's the Time, according to Oracle?",

 -command=> \&getTheOracleTime)->pack(-side=>'top');

Step 4: Pack a label onto the screen holding the SYSDATE time.

$mw->Label(-textvariable=> \$oracleTime, -anchor=>'center'
)->pack(-side=>'bottom');
Create another button to neatly exit the program.

$mw->Button(-text=>'Exit',

 -command=>\&doExit)->pack(-side=>'bottom');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -command=>\&doExit)->pack(-side=>'bottom');

Launch the Perl/Tk looping process, to display the window! :-)

MainLoop();

Step 5: Create the two required subroutines.

sub getTheOracleTime {
 my $sth = $dbh->prepare($sql);

 $sth->execute();

 ($oracleTime) = $sth->fetchrow_array();

}

sub doExit {
 $dbh->disconnect(); # A clean and graceful disconnection 8-)
 exit;

}

In the following list we've indicated the main differences between this program and the original
HelloPtk.pl skeleton:

1. We acquire Perl DBI, connect to the database, and create our SQL.

2. We call getTheOracleTime() to initialize the $oracleTime variable.

3. We create a button to call getTheOracleTime() and change the display.

4. We need to create a display label, referencing the $oracleTime variable. The text changes, as
appropriate, whenever the call button is pressed.

5. Finally, we add the new getTheOracleTime() function and remember to disconnect cleanly from
the database when the doExit() function is called.

6. We run the program by typing the following at the command line:

$ perl WhatIsTheOracleTime.pl

Although this is a rather stripped-down example, it does show how easy it is to quickly combine Perl/Tk
and Perl DBI in order to develop your own applications. Before you know it, you'll have built an entire
collection of Perl/Tk widgets that do all sorts of wonderful things — and you'll fail to understand how you
ever lived without them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2 OraExplain

OraExplain, an Oracle tuning tool that DBAs can use to explain SQL execution plans and
examine their SQL cache, was the first widely available tool that combined Perl/Tk and Perl DBI.
OraExplain was created by Alan Burlison, a Solaris kernel gatekeeper for Sun Microsystems, and
Tim Bunce quickly added the original ora_explain.pl module to the DBD::Oracle driver download
bundle. So when you obtain DBD::Oracle, you'll get OraExplain automatically (at least if you're
installing on Unix).

If you're on Win32 and using ActivePerl's DBD-Oracle8 package, you'll
find that OraExplain fails to come with the download. However, you can
get hold of the source bundle containing the precursor file,
ora_explain.PL, from the following site:

http://www.cpan.org/authors/id/TIMB/

If you use WinZip or another decompression tool, you'll find the
ora_explain.PL file within the main unload directory, as shown in Figure 3-
5.

Figure 3-5. Finding and running OraExplain

Follow these installation steps:

1. Once you've extracted, or located, the ora_explain.PL precursor file, run the following
command:

$ perl ora_explain.PL

2. This extracts the actual ora_explain application. Now we can run it:

$ perl ora_explain

The rest of the steps should be fairly straightforward once you've connected to your target
Oracle databases. Check out the program and consult the instructions provided with it if
you need help.[1]

[1] The program may ask you to run the utlxplan.sql file, which is normally available from
$ORACLE_HOME/rdbms/admin (on Unix) or %ORACLE_HOME%\rdbms\admin (on Win32). This happens if

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ORACLE_HOME/rdbms/admin (on Unix) or %ORACLE_HOME%\rdbms\admin (on Win32). This happens if
the DBA user you've logged in as requires it to create the PLAN_TABLE object for EXPLAIN PLAN usage.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.3 StatsView

After his triumph with OraExplain, Alan Burlison went on to create yet another superb Perl/Tk
application, StatsView, a program designed for use by both system administrators and Oracle
DBAs using Unix systems. If you serve both functions at your site, we feel confident that you'll
love StatsView too. Although StatsView is aimed clearly at Solaris, the program's Oracle-based
monitoring is equally applicable to other Unix operating systems, so we thought we'd install it on
Linux to see how far we could push it.

Like many of the best things in life, StatsView comes with a few challenges:

You have to preinstall the gnuplot command-driven plotting program, which itself relies on
various C libraries, depending on how you configure it. The gnuplot program plots functions
and data points in many different formats in either GIF or PNG image formats. See Figure
3-6 for a typical example.

You'll also need an extra Perl/Tk module containing cutting-edge widgets.

Figure 3-6. StatsView and some gathered tuning figures

Although installing StatsView requires some special challenges, it comes with a silver lining. In
the course of getting StatsView to work, you'll have installed some of the best Perl and C libraries
around for performing graphical information plotting on both Unix and Win32. Here's where you
start going beyond Perl Imperial Trooper rank and start heading towards Perl Sith Lord status!

The first thing we need to do for StatsView is to get hold of the extended Tk::GBARR Perl/Tk
module and layer it over the standard Perl/Tk Unix distribution. We'll describe that task and the
other installation procedures in the following sections.

3.3.1 Installing Tk::GBARR

Although the main Perl/Tk download may seem to possess virtually all of the screen widgets you
could possibly need, after a while you may require more specialized options. Many packages on
CPAN provide additional functionality; check under the main /Tk module directory on CPAN.

One of the most popular packages is Slaven Rezic's Tk::GBARR package, which contains many
varied Perl/Tk widgets created by one of Perl/Tk's prime movers. Many of these widgets provide
capabilities beyond those in standard Perl/Tk distributions. Most of the Tk::GBARR widgets, such
as Tk::ProgressBar, do eventually become part of the standard distribution, but if you want to get
ahead of the game, you can find Tk::GBARR at:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://www.cpan.org/authors/id/SREZIC

Follow these installation instructions:

1. Download and unpack the latest tarball from CPAN:

$ gzip -d Tk-GBARR-2.05.tar.gz

$ tar xvf Tk-GBARR-2.05.tar

$ cd Tk-GBARR-2.05

2. Check for the latest notes, where to post potential errors, and so on, and then install the
program in the usual manner. Once again, note that during the make test step you'll see
lots of GUI examples popping up, albeit this time very briefly:

$ vi README

$ perl Makefile.PL

$ make

$ make test

$ make install

3. Subject to our usual warnings that you must deal with any unlikely errors before going on,
you can now consider Tk::GBARR to be installed, ready for use with StatsView.

3.3.2 Downloading StatsView

Get StatsView itself from the following location:

http://www.cpan.org/authors/id/ABURLISON

Unpack it according to the standard cavalry drill:

$ gzip -d StatsView-1.4.tar.gz

$ tar xvf StatsView-1.4.tar

$ cd StatsView-1.4

3.3.2.1 The need for PNG

When we installed StatsView, we faced something of a dilemma. Although StatsView assumes
that gnuplot will use the GIF graphics file format, there are some reasons why you may prefer to
use another format. GIF presents a problem because the Lempel Ziv Welch (LZW) algorithm that
underlies the GIF format is patented (see the sidebar, "The LZW Patent Issue"). To avoid patent
complications, many people prefer to use the freely available PNG[2] and JPEG[3] formats.

[2] You can find out much more about PNG (Portable Network Graphics) at the following page:
http://www.libpng.org/pub/png.

[3] The Joint Photographic Experts Group designed this image standard, which is named for them. You can find out
more at the following two sites: http://www.ijg.org/, and http://www.jpeg.org.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In fact, the PNG graphics format came about largely as a result of patent issues. Many people
were interested in developing an alternative, freely available format that could be using in place of
LZW. After an initial technical paper from Thomas Boutell describing a proposed format, a
number of like-minded developers got together to work on the new format, culminating in Guy Eric
Schalnat's creation of the libpng library.

To avoid patent issues ourselves, we'll load up the PNG library and its required compression
companion, zlib, for use with gnuplot.

3.3.2.2 Installing zlib

Used by PNG to compress its graphics, zlib is an open data-compression library that has now
been ported to virtually every kind of operating system. You can get hold of the latest zlib
package, generally called zlib.tar.gz, from here:

http://www.gzip.org/zlib
http://www.zlib.org

Created originally for PNG, zlib is maintained by Jean-loup Gailly, the primary author of gzip
(http://www.gzip.org), and gzip coauthor Mark Adler, the original author of Zip (http://www.info-
zip.org/Zip.html). Unsurprisingly, zlib is the back-end engine of the gzip program, decoupled and
morphed into an independent library for other open source projects requiring compression (i.e.,
virtually everything using the Internet). zlib thus contains the same lossless deflationary
compression algorithms employed by both Zip and gzip, and as originally used in PKWARE[4]

(http://www.pkware.com). (For some help with compression terminology, see the sidebar,
Lossless versus Lossy, later in this chapter in the discussion of DBD::Chart.)

[4] PKWARE was founded in 1986 by Phil Katz, a pioneer of compression software, who developed the .zip file format
in 1989. This inspired the Zip and GNU Zip (gzip) open source projects that use unpatented compression algorithms.
These algorithms are an alternative to LZW, a patented algorithm used in the compress executables found with most
proprietary Unix distributions. See the discussion in the sidebar, The LZW Patent Issue.

To install zlib, run through the following steps to configure the Makefile:[5]

[5] We install zlib and PNG automatically for Win32 later when we download ActivePerl's GD.pm module for use with
DBD::Chart. This has the required binaries built in.

1. Decompress the original zlib.tar.gz tarball. This should unpack into a directory with a
version number, such as zlib-1.1.3 as follows:

$ gzip -d zlib.tar.gz

$ tar xvf zlib.tar

$ cd zlib-1.1.3

$ vi README

$./configure

Before compilation, make sure to read the Makefile to see whether you'd like to change any
compile options:

$ vi Makefile

2. Once you're happy with Makefile, move straight into a tested compilation:

$ make test

You're trying to create an output response such as:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

...

inflate with dictionary: hello, hello!

 *** zlib test OK ***
3. Now it's time to install:

$ make install

This copies zlib.h to /usr/local/include, and the library archive libz.a to /usr/local/lib. zlib is
now accessible to other bodies of code that rely upon it, such as PNG.

The LZW Patent Issue
Compression is the process that reduces the physical size of blocks of information. It is
vital to storing and transmitting data, particularly graphics data and data being
transferred over networks. A number of compression algorithms have been widely
adopted. One of the most popular, the LZW (Lempel Ziv Welch) algorithm, is used in
the GIF graphics file format, the Unix compress utility, and many other pieces of
software.

LZW is named after its developers: Abraham Lempel and Jakob Ziv, who first
proposed substitutional compression in 1977 and 1978, and Terry Welch who modified
the LZ-78 variant to create the algorithm in 1984. Unisys acquired the patent on the
compression algorithm that came to be known as LZW.

For many years, developers used the LZW algorithm freely. But on December 28, 1994
came an announcement by CompuServe that it would start trying to collect royalties on
the use of the company's GIF graphics file format because of its underlying use of
LZW. CompuServe and others had been under increasing pressure from Unisys, the
LZW patent holder. With the popularization of the Web, use of GIF and other
technologies using LZW were booming. Despite a lot of complaint and controversy
among developers and users, Unisys' patent and licensing agreements held up. The
company did compromise by not seeking fees on products using LZW that were
delivered prior to 1995.

Ultimately, the LZW patent controversy led developers to seek out and develop their
own compression algorithms and tools — for example, PNG and zlib.

3.3.2.3 Installing PNG

You can get hold of the latest libpng tarball from the following pages:

http://www.libpng.org/pub/png

1. We begin our dance with the usual introductions:

$ gzip -d libpng-1.0.12.tar.gz

$ tar xvf libpng-1.0.12.tar

$ cd libpng-1.0.12

$ vi README INSTALL

2. You'll find all sorts of Makefile versions in the /scripts directory, for different Unix flavors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. You'll find all sorts of Makefile versions in the /scripts directory, for different Unix flavors.
Choose your poison and copy it to the main download directory. Look it over carefully to
ensure that it's right for your system:

$ cp scripts/makefile.linux makefile

$ vi makefile

3. Following the advice given within the file, we manually pointed the following variables at
places matching our immediately previous installation of zlib:

ZLIBLIB=/usr/local/lib

ZLIBINC=/usr/local/include

Make sure you're also happy with the default installation file destinations:

prefix=/usr/local

INCPATH=$(prefix)/include

LIBPATH=$(prefix)/lib

4. Let's make and test PNG:

$ make test

Look for an output similar to the following:

...

 tIME = 7 Jun 1996 17:58:08 +0000

libpng passes test
5. Also check to make sure that the two PNG files produced by this installation, pngtest.png

and pngout.png, are identical. You can view this PNG image in Figure 3-7; the image is
also borrowed by the Tk::PNG installation we'll be doing later for Perl/Tk.

6. You'll find other assorted tests mentioned within the INSTALL file. Once you're happy with
these, install PNG properly:

$ make install

All of the necessary libraries and include files should now go to /usr/local/include and
/usr/local/lib, as with zlib earlier.

Figure 3-7. PNG, JPEG, and gd test images

3.3.2.4 Installing gnuplot

For all the latest information and downloads relating to gnuplot, check out:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://www.gnuplot.info
http://sourceforge.net/projects/gnuplot

For GIF usage, gnuplot uses an old version of gd, which itself is no longer
available from Thomas Boutell's gd site. This is because gd now only
deals with PNG and JPEG images, which is why we're avoiding the use of
GIFs with gnuplot.

In the future, the gnuplot team may be forced, for patent reasons, to
withdraw the old gd downloads they maintain. They recommend that you
switch to using PNG as soon as you can; most of the latest browser
technologies now support PNG. (We'll be installing the more modern
PNG-based gd program later, when we install Lincoln Stein's GD.pm
program for use with Perl/Tk.)

1. Let's get straight into the installation game:

$ gzip -d gnuplot-3.7.1.tar.gz

$ tar xvf gnuplot-3.7.1.tar

$ cd gnuplot-3.7.1

2. Next, we check out the 0README and 0INSTALL files:

$ vi 0README 0INSTALL

3. Following their advice, we checked the term/png.trm file and found nothing problematic
there. By default, the gnuplot compilation checks all the directories such as /usr/local/lib
and /usr/local/include, where we'd installed our required PNG and zlib library files. We were
able to configure without incident. Notice that we deliberately fail to include the old GIF-
based gd program.

$./configure --without-gd --with-png
$ make

4. Optional tests are provided:

$ cd demo

$../gnuplot simple.dem

If the ../gnuplot simple.dem step fails to work first time, and you're running an X11 display, it
may be because gnuplot requires the currently uninstalled gnuplot_x11 driver program. You
may therefore have to update your PATH, unless you've previously installed an earlier
gnuplot version:

$ PATH=`pwd`/..:$PATH

$../gnuplot simple.dem

(This test problem will resolve itself once you've fully installed gnuplot.)

5. Once gnuplot is executing successfully, you can run several other sample programs too
from the same directory:

$../gnuplot fit.dem

6. Once you're happy with these demonstrations, install gnuplot under /usr/local/bin:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ make install

Now we can get back to the StatsView installation directory.

3.3.2.5 Installing StatsView

Now we're back to more mainstream Perl territory. After the final make install step, StatsView
produces a program called sv, which is placed into the /usr/local/bin directory:

$ cd ..

$ perl Makefile.PL

$ make

$ make install
Now we can test this initial Linux-PNG setup in the following way:

1. First of all, the main /usr/local/bin/sv program uses a Solaris-based ps -ef command to
check whether the Oracle background processes are running. This command was
unavailable on our Linux system, so we moved to /scripts within the StatsView unload
directory and copied the original sv program to a new one of our own, lin_sv.

$ cd scripts

$ cp sv lin_sv

We then edited this file to replace the ps -ef command with a ps aux one. You might like to
try something similar on your own operating system, if you hit the same kind of OS-specific
problem.

2. Before testing the program, also make sure that your target database is running with an
appropriate listener.

3. Next, as the root user, create a statistical information storage directory:

$ pwd

$ mkdir StatsViewTest

4. Ensure that your environment is set correctly, especially PATH, to help DBD::Oracle and
your own system pick up the sv and lin_sv programs:

$ export ORACLE_HOME=/u01/app/oracle/product/8.1.5

$ export LD_LIBRARY_PATH=$ORACLE_HOME/lib

$ export PATH=.:/usr/local/bin:$PATH
5. Finally, we ran our slightly Linux-modified copy of the sv program:

$ cd scripts

$./lin_sv &

6. The first thing we did was set up a file for the monitor to store information in. We did this by
clicking Monitor, then Start. On the resulting Output tab we selected an Interval of 10
seconds and a Samples rate of 60, and then pressed Browse to nominate a file in which to
save the results (see Figure 3-8).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-8. Setting up the StatsView monitoring process

7. We also chose all of these available monitoring options and then set the monitor going:

Buffer Cache
Datafile I/O
Library Cache
Tablespace I/O
Data Dictionary Cache
Dynamic Extension
Shared Pool

After 10 minutes, the monitoring completed automatically. We then moved to the second stage of
StatsView to graphically view the information collected:

1. Drill down onto the menu option, File, then Open File... to choose the nominated storage
file.

2. Click down on whichever monitor option is of interest; we chose Datafile I/O. Now a gnuplot
graph will appear (as in the earlier Figure 3-6).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.4 Orac

Orac is a tool developed by one of your authors, Andy Duncan. It is based on Perl/Tk and its
many widgets, and it employs Perl DBI to connect to the Oracle database. It is basically a GUI
wrapper containing a large repository of prepared, configurable SQL scripts that allow Oracle
DBAs to interrogate and manage their databases. Using Orac, users can rapidly apply these
scripts to any target databases without having to copy them from one machine to another via
complicated directory structure installs and environment variable setups. If these scripts are no
longer up-to-date because of changes to the Oracle data dictionary, they can be modified or
changed directly within the repository. Orac makes it easy for you to make changes to the scripts.

Orac owes a great debt to many people besides its main author. Andy
received early input from Dave Ensor, coauthor of Oracle Design
(O'Reilly) and from Tim Bunce, chief creator of Perl DBI and coauthor of
Programming the Perl DBI (O'Reilly).

Many of Orac's central scripts were based largely upon those packaged
up by Brian Lomasky in his book, Oracle Scripts, for which he graciously
gave permission for adaptation and use within the Orac program. As the
program grew, Guy Harrison, author of the excellent Oracle SQL: High
Performance Tuning (Prentice Hall), also allowed his very fine tuning
scripts to be adapted for use within Orac.

Since Orac was first released on CPAN, many other Oracle DBAs have
contributed additional useful scripts. Orac has become a real community
effort.

3.4.1 Installing Orac

You can download the Orac tarball from here:

http://www.cpan.org/authors/id/A/AN/ANDYDUNC

3.4.1.1 Installing Orac on Unix

Once Orac has been downloaded, unpack it, and set the environment. Once this is completed, we
can then simply run it with a single command:

$ gzip -d Orac-alpha-1.2.6.tar.gz

$ tar xvf Orac-alpha-1.2.6.tar

$ cd Orac-alpha-1.2.6

Before you actually run the program, make sure your environment can run both ordinary Perl DBI
and Perl/Tk scripts. Ensure that ORACLE_HOME is set to make sure DBD::Oracle works
correctly, underneath Perl DBI.

$ export ORACLE_HOME=/u01/oracle/8.1.5

3.4.1.2 Installing Orac on Win32

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For Win32, simply unpack the tarball into its own directory with your favorite unzip program. If you
have Perl DBI and Perl/Tk both working on your machine, Orac should be ready to fire up straight
out of the box, once you've personalized it as described in the next section. (You may have to set
ORACLE_HOME via the Registry, the system environment, or AUTOEXEC.BAT in order to get
Perl DBI connecting to Oracle properly.)

3.4.2 Personalizing Orac

On a server system, Orac allows each of its users to save his or her own personalized options,
such as font, background color, and so on. It then stores these in various locations depending
upon the operating system:

Unix

Your personal options are hidden within the $HOME/.orac directory.

Win32 (business systems with the USERPROFILE environment variable)

Personal options are stored within the %USERPROFILE%/orac directory.

Win32 (home systems, without the USERPROFILE environment variable)

Options are stored within the directory from which you launch Orac.

Alternatively, personal options can be stored in a named directory. To do this, set the following
environment variable before running the program on Unix:

$ export ORAC_HOME=/my_personal_options_directory/orac_profile

To carry out a similar operation on Win32 (especially if you're on a non-USERPROFILE system
like Win98), edit your AUTOEXEC.BAT file to preset your environment when booting up:

DOS> set ORAC_HOME=C:\Temp\Orac

3.4.3 Running Orac

Within the Win32 environment, double-click on the orac_dba.pl program icon, or on either Unix or
Win32 command lines, run the following command:

$ perl orac_dbal.pl

Because Orac also works with other databases, the first time you log in to the program, choose
Oracle as your default database. Following the subsequent user login dialog, you'll be given
access to a wide range of menu-driven options designed for an Oracle DBA (see Figure 3-9)
summarized in Table 3-1.

Figure 3-9. Some of the options under Orac

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 3-1. Orac's main user options for Oracle DBAs
Main
menu Description

File Provides individual user customizations and general program help.
Devel Collection of GUI screens based on the DDL::Oracle API.
Structure Options to access the current physical structure of the database.

Object Daily DBA tasks and problem solving, such as DDL generation to create the entire
database in a single script and PL/SQL debug options.

Lock Investigates the various types of locking going on in a target database. Especially
useful in panic stations.

Tune Tuning options, including a SQL Cache Browser and physical IO graphs.
SQL Gateway to Thomas Lowery's GUI shell program for direct database work.

My Tools Facility for storing your own favorite DBA scripts and rerunning them as GUI reports
driven by automatically generated buttons and menus.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.5 DDL::Oracle

The DDL::Oracle back-end module developed by Richard Sutherland was initially designed to
reverse-engineer Oracle DDL (Data Definition Language) from Oracle8i databases, although its
functionality is expanding and the module now offers other additional features for Oracle DBAs. It
currently resides on a SourceForge web site, but you can still get the latest tarball from the Perl
CPAN site:

http://sourceforge.net/projects/ddl-oracle
http://www.cpan.org/authors/id/R/RV/RVSUTHERL

The DDL::Oracle object-oriented module is designed for use by other scripts (such as Orac or
debug.pl, as we describe later), rather than as a standalone program. The SourceForge site also
provides many of the facilities you'll find useful if you start using DDL::Oracle in a serious way with
your own scripts (as we hope you will), including a mailing list:

ddl-oracle-users@lists.sourceforge.net

3.5.1 Installing DDL::Oracle on Unix

If you download DDL::Oracle directly, you can install it with the following steps:

$ gzip -d DDL-Oracle-1.10.tar.gz

$ tar xvf DDL-Oracle-1.10.tar

$ cd DDL-Oracle-1.10

$ vi README

The installation of DDL::Oracle follows the usual Perl pattern:

$ perl Makefile.PL

$ make

$ make test

$ make install

Once DDL::Oracle is installed, you can view its documentation from within the installation directory
(see Appendix A, for much more information about the perldoc program):

$ perldoc DDL::Oracle

3.5.1.1 Using DDL::Oracle with Orac

You can use DDL::Oracle in many different ways, though mainly through other programs that make
use of its facilities. The DDL::Oracle download bundle supplies a number of example scripts that can
be used as templates for your own DDL::Oraclescripts. We'll discuss some of these scripts — in
particular, defrag.pl, in later sections, but first we'll show how DDL::Oracle is typically used within
other programs. We'll start with Orac, which we introduced earlier in this chapter.

Example 3-3 shows how the Orac program uses DDL::Oracle to drive the Devel menu; note that all
of the options you see here are direct mappings from DDL::Oracle's API. DDL::Oracle can create

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of the options you see here are direct mappings from DDL::Oracle's API. DDL::Oracle can create
DDL for virtually every kind of object in the database and in many different ways (e.g., CREATE or
DROP statements). To illustrate its use, we'll work through some cut-down code used to create the
output in Figure 3-10.

Figure 3-10. DDL::Oracle driving the Orac Devel menu

Example 3-3. Usage of DDL::Oracle within the Orac program

Step 1: We bind the left-hand scroll list to the right-hand text

screen. If double-clicked, we go to the related subfunction.

$window->{text}->bind(

 '<Double-1>', # Links a double-click to the command below
 sub{

 # Step 2: As soon as the user double-clicks, lock out

 # all other commands until we're done.

 $window->Busy(-recurse=>1);

 $self->{Main_window}->Busy(-recurse=>1);

 # Step 3: Here's the money shot. Configure DDL::Oracle,

 # using its full API driven by other Perl/Tk buttons.

 DDL::Oracle->configure(

 dbh => $self->{Database_conn}, # database
 resize => $resize, # handle
 schema => $schema,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 schema => $schema,
 prompt => $prompt,
 heading => 0,
 view => $view,
 blksize => $Block_Size,
 version => $Oracle_Version
);

 # Step 4: Create a new DDL::Oracle object dependent

 # upon whatever live table or object was double-clicked.

 my $obj = DDL::Oracle->new(
 type => $obj_type,
 list => [[$main::v_sys,
 $window->{text}->get('active'),
]]);
 my $sql;

 # Step 5: Depending upon the exact type of DDL required,

 # use DDL::Oracle to generate the DDL and fill $sql.

 if ($action eq "drop"){

 $sql = $obj->drop;

 } elsif ($action eq "create"){

 $sql = $obj->create;
 } elsif ($action eq "resize"){

 $sql = $obj->resize;

 } elsif ($action eq "compile"){

 $sql = $obj->compile;

 }

 # Step 6: Output the DDL text generated and then move

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 # the cursor to the bottom of the text panel.

 $current_index = $text->index('current'); # Current mark

 $text->insert('end', $sql . "\n\n");
 $self->search_text(\$text, $current_index);

 $text->see(q{end linestart});

 # Step 7: Remove screen lock, to choose further options.

 $self->{Main_window}->Unbusy;

 $window->Unbusy;

 });

Here's what's going on in this code.

1. The code in Example 3-3 is basically a scroll widget bind command on the left side of the
screen. This is filled with a table list, and the binding is attached to a text widget on the right
side of the screen. Whenever an object such as the table SCOTT.DEPT is double-clicked, the
defined subcommand runs. This fills up the text widget with DDL output.

2. Following the double-click operation, we lock the program. This turns the cursor into an
hourglass or watch, depending on your operating system.

3. We then configure the new DDL::Oracle object. This derives its values from the radio buttons,
seen displayed at the bottom of Figure 3-10. (The database handle provided by Perl DBI was
previously stored in $self->{Database_conn} by the object-oriented orac_Oracle.pm module.)

4. Next, we find out what was actually double-clicked in the left-hand scrolling screen list
generated earlier by a simple piece of SQL such as the SELECT TABLE_NAME FROM
USER_TABLES statement.

5. Depending upon what kind of DDL we need, (determined from the higher Perl/Tk radio button
set), we take the DDL text generated from $obj and store it in a simple Perl string variable,
named $sql. (In this case, we wanted to view the DDL necessary to CREATE the DEPT
table.)

6. The required DDL is then pasted to the right-hand text scroller.

7. On task completion, we unlock the screen to await further user instruction.

3.5.2 Installing DDL::Oracle on Win32

There is an ActivePerl package for DDL::Oracle. To obtain it, simply connect your PC to the Internet,
as described in Chapter 2, and run ppm:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C:\>ppm

PPM interactive shell (2.1.5) - type 'help' for available commands.

PPM> install DDL-Oracle
Install package 'DDL-Oracle?' (y/N): y

Installing package 'DDL-Oracle'...

...

Writing C:\Perl\site\lib\auto\DDL\Oracle\.packlist

PPM> quit

As well as grabbing the DDL::Oracle module files, this ActivePerl installation also provides some of
the most important sample scripts that come with Richard Sutherland's main source code download
on Unix (see Table 3-2).

Table 3-2. DDL::Oracle download example scripts
Script Purpose

ddl.pl Generates various types of DDL for a single, named object.
copy_user.pl Generates for new users, with identical privileges from other users.
defrag.pl Creates command files to defragment Oracle tablespaces.
query.pl Generates DDL for a specified list of objects.

3.5.3 Using DDL::Oracle as a Batch and List Processor

One important thing that differentiates DDL::Oracle from other available freely available tools is its
batch orientation. If you're ever in a situation where you need to create many different scripts (for
backups, performance tuning, or any other purpose) for your DBA work and you find yourself cutting
and pasting from one script to another, you probably need DDL::Oracle. By using DDL::Oracle in
batch mode, you can concentrate on solving your problem and let DDL::Oracle do the hard work on
the back end, generating the actual DDL code required.

DDL::Oracle can also be used as a list processor. In this mode you can send it a list of objects or
components for which to generate DDL — for example, all the tables in a particular tablespace. One
of the most useful of the helpful sample scripts provided with the program is defrag.pl, which you
can use for reorganizing these tablespaces. We'll take a quick look at this script in the next section.

3.5.4 defrag.pl

There are many different options for running defrag.pl, all of which you can read about by issuing
this command:

$ perl defrag.pl --help

We ran the following command to generate defragmentation scripts for our USERS tablespace:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ perl defrag.pl --user=system --password=manager --sid=orcl \

 --tablespace=USERS

...

defrag.pl completed successfully

on Sun Mar 24 12:34:49 2002

This operation created the following list of files:

defrag_USERS.sh
defrag_USERS.sh1
defrag_USERS.sh2
defrag_USERS.sh3
defrag_USERS.sh4
defrag_USERS.sh5
defrag_USERS_drop_all.sql
defrag_USERS_add_tbl.sql
defrag_USERS_add_ndx.sql
defrag_USERS_exp.par
defrag_USERS_imp.par

These scripts are essentially designed to export the target data, drop the objects, recreate the
resized and defragmented objects, and then import the data once again. There are several different
types of scripts:

Shell scripts

Let's look at a sample from the defrag_USERS.sh2 script:

Step 2 -- Use SQL*Plus to run defrag_USERS_drop_all.sql

which will drop all objects in tablespace USERS

sqlplus -s / << EOF

 SPOOL /u02/tools/DDL-Oracle-1.10/defrag_USERS_drop_all.log

 @ /u02/tools/DDL-Oracle-1.10/defrag_USERS_drop_all.sql
EOF

...

SQL scripts

Let's examine part of the defrag_USERS_drop_all.sql script mentioned:

PROMPT DROP TABLE demo.customer CASCADE CONSTRAINTS

DROP TABLE demo.customer CASCADE CONSTRAINTS ;

PROMPT DROP TABLE demo.department CASCADE CONSTRAINTS

DROP TABLE demo.department CASCADE CONSTRAINTS ;

...

Export/Import parameter files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, here's a short sample from the defrag_USERS_imp.par file:

log = /u02/tools/DDL-Oracle-1.10/defrag_USERS_imp.log

file = /u02/tools/DDL-Oracle-1.10/defrag_USERS.pipe

rows = y

commit = y

ignore = y

buffer = 65535

analyze = n

recordlength = 65535

full = y

...

When you're ready to defragment, you simply execute the following command:

$./defrag_USERS.sh

This executes everything else needed to reorganize your tablespace. Defragtastic!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.6 SchemaDiff

DDL::Oracle is a very helpful resource, and many of the new Oracle tools coming off the open
source Perl conveyer belt from SourceForge.net and FreshMeat.net are based upon it. In this
section we'll take a look at one of these tools, Alistair Orchard's SchemaDiff program, which you
can use to compare different Oracle schemas.

3.6.1 Installing SchemaDiff

You can obtain SchemaDiff from:

http://sourceforge.net/projects/schemadiff

We downloaded SchemaDiff-2.3.0.zip and ran it on Win32, after having expanded it into the
C:\SchemaDiff directory. (It works equally well on Unix.)

We already had the SCOTT user set up on the ORCL database. We decided to set up the IRISH
user on the MYDB database with exactly the same structure. Once we'd done this, we ran the
following SQL while logged on as IRISH:

DROP TABLE EMP;

CREATE TABLE EMP

 (EMPNO NUMBER(4) CONSTRAINT PK_EMP PRIMARY KEY,

 ENAME VARCHAR2(10),

 JOB VARCHAR2(9),

 SSN VARCHAR2(50),
 MGR NUMBER(4),

 HIREDATE DATE,

 SAL NUMBER(7,2),

 COMM NUMBER(7,2),

 DEPTNO NUMBER(2) CONSTRAINT FK_DEPTNO REFERENCES DEPT);

DROP TABLE EMP2;
CREATE TABLE EMP2
 (EMPNO NUMBER(4) CONSTRAINT PK_EMP2 PRIMARY KEY,

 ENAME VARCHAR2(10),

 JOB VARCHAR2(9),

 MGR NUMBER(4),

 HIREDATE DATE,

 SAL NUMBER(7,2),

 COMM NUMBER(7,2),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 COMM NUMBER(7,2),

 DEPTNO NUMBER(2) CONSTRAINT FK_DEPTNO2 REFERENCES DEPT);

We wanted to check to see if SchemaDiff would notice that IRISH has the SSN (Social Security
number) column added to the standard EMP table, and see if it would also spot the extra EMP2
table.

3.6.2 Running SchemaDiff

Let's see how SchemaDiff behaves with the database and user described in the previous section.

1. To get going, just start up the program:

$ perl SchemaDiff.pl

This will generate the left screen in Figure 3-11. Fill this in appropriately, connecting to the
target databases as a DBA user.

Figure 3-11. Setting up SchemaDiff

2. On the second screen, use the selection boxes to link the two target schemas, in this case
SCOTT=IRISH.

3. The third screen now allows you to choose options for generating various report formats
and DDL files to upgrade one schema or the other, depending on which you prefer to be
dominant.

When running SchemaDiff, we opted for the HTML report option and for the DDL scripts to be
written from the point of view of the IRISH schema. You can see part of the HTML summary in
Figure 3-12, along with some of the DDL generated within the IRISH.sql file.

Figure 3-12. Typical SchemaDiff output

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You'll find that plenty of other fine treasures can be hauled from SchemaDiff. Check out its
Mother-of-Perl SourceForge foundry for the latest version.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.7 Senora

Another helpful DDL::Oracle-based product is Martin Drautzburg's Senora, an alternative to
Oracle's own SQL*Plus.

3.7.1 Installing Senora

You can get hold of Senora here:

http://sourceforge.net/projects/senora

We downloaded the senora-0.4.tgz tarball:

$ gzip -d senora-0.3.tgz

$ tar xvf senora-0.3.tar

$ cd senora

$ vi README.txt

To access Senora, type in something similar to this statement:

$ perl Senora.pm scott/tiger@orcl

You will now see a doppelganger screen that looks amazingly similar to something you may have
seen somewhere before:

SEN*Ora: Release 0.4.0.0.4 - Production on Mon Dec 31 21:53:26 CET 2001

(c) Copyright 2001 Miracle Exploration. No rights reserved.

Connected to:

Oracle8i Enterprise Edition Release 8.1.7.0.0 - Production

PL/SQL Release 8.1.7.0.0 - Production

...

0:scott@orcl>

3.7.2 Senora and SQL*Plus

The output in the previous section looks remarkably like SQL*Plus? Why, in the name of the two
Larrys, would we bother changing to something new when SQL*Plus comes with all versions of
Oracle (and is likely to be included at least until Kurt Vonnegut's Ice-9 has been invented, the
whole world has become an icy lake and even the Oracle database has gone open source)? Well,
Senora author Martin Drautzburg does put forward some arguments for consideration:

Extensibility

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Like most of us, you may love SQL*Plus to bits, but even those devoted to SQL*Plus have
to admit that it lacks extensibility. You have to get hold of tools like TOAD or SQL*Navigator
to do anything beyond basic SQL*Plus — and even these tools are impossible to extend. If
you don't want to pay for a commercial product, you just have to hope and pray that the
noncommercial version of TOAD you download every month will now provide the features
you need. And you may not yet be in a position to write your own tools with Perl/Tk. Senora
fills the gap by giving you much of the browsing and analyzing capabilities of these tools
without the need to acquire any other tool or hand over your credit card number.

Plug-ins

You can extend Senora by providing your own plug-ins, or maybe collecting other people's
plug-ins from a growing Senora library. Who said the Napster spirit was dead? Most of
Senora's core functionality is written as plug-ins providing additional commands to a basic
Senora module. We've defined the main plug-ins in Table 3-3.

Unix-style options

Many appreciate Senora's Unix-style switches, provided via other plug-ins directly
accessible from the Senora command line. This means you can have a single script with 10
different switch-dependent options, rather than 10 different scripts.

Flexible outputs

Senora also attempts to provide more flexible (and perhaps friendlier) report formatting
than SQL*Plus, with columns tending to be only as wide as maximally necessary and
linebreaks tending to come after blank lines, rather than splitting headers and columns.

Legacy scripts

Senora can run most existing SQL*Plus scripts, including those using @ and @@,
DEFINE, ampersands (&), and bind variables.

3.7.3 Running Senora

Let's take a look at the plug-ins available through Senora (see Table 3-3) and then see how some
of them work.

Table 3-3. Senora plug-ins
Senora plug-

in Description/commands/aliases

DataDictionary
Pulls the code of procedures or lists all objects according to a pattern:

pull, ls, set ddView

Bind
Declares and prints out bind variables:

print (p), variable (var)

Sqlplus

Provides many SQL*Plus-style cloned commands:

show user (id), describe (desc|d), prompt, head, set server output (so), exec,
define, list (l), spool (spo), column, show errors

SessionMgr
Connects and disconnects sessions:

disconnect (dis), connect (conn|c), quit (exit|q)

MainLoop
Executes SQL scripts:

set verify, startRel (@@), start (@)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tuning

Provides many highly useful tuning output commands:

show parameter (sp), ps, kept, xqueries (xq), waits, cstatement (cs), validate (vi),
rollSegs, locks, space, hwm, stat, xplain, jobs

PluginMgr
Enables help and the addition of further plug-ins:

help (he), register, set pluginCode

We particularly like the ls option provided by the DataDictionary plug-in, illustrated here:

0:scott@orcl> ls

Table/Bonus Table/Dept

Table/Emp Index/Pk_Dept

Index/Pk_Emp Table/Salgrade

The DataDictionary plug-in is standard with Senora. To add a new self-documented plug-in, you
register it interactively via the shell command prompt. For example, the Tuning.pm module is an
optional extra plug-in, and you can use the PluginMgr register command to set it.[6] You may also
need to be connected as a DBA user when using the tuning options, because many of the
commands — for example, xqseries (xq), which is illustrated here — access DBA-type tables:

[6] If you want to write your own Senora plug-ins, use the Tuning.pm file as a skeleton.

$ perl Senora.pm system/manager@orcl
...

0:system@orcl> register Tuning
Tuning registered

0:system@orcl> xq
Order by "rds/xl" desc (top 10)

Username|reads|exec|loads|rds/Xl|cmd|statement |

SYS |1452 |389 |1 |3.73 |3 |select /*+ index(idl_ub1$ i_idl_u|

 : : : : : : ub11) +*/ piece#,length,piece fr:

 : : : : : :om idl_ub1$ where obj#=:1 and:

 : : : : : : part=:2 and version=:3 order by :

 : : : : : : piece# :

...

10 rows selected.

system@orcl>

We like Senora a lot, and we think you will too.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

More SQL*Plus Clones
A number of other more generic SQL*Plus-like Perl DBI tools are available. You might
want to check out the following:

http://www.perldoc.com/perl5.6.1/lib/DBI/Shell.html

The dbish program is a command-line interface for Perl DBI itself; it comes with
the Perl DBI download (so you probably already have it!). The program has
evolved greatly over the years from the original pmsql script written by Andreas
König. Its current incarnation has benefited from input from Tim Bunce, Jochen
Wiedmann, Adam Marks, and most recently, Tom Lowery.

http://dbishell.sourceforge.net

Vivek Dasmohapatra's dbishell database shell program includes specific support
for Oracle, MySQL, Sybase, and PostgreSQL. It also provides a generic driver
for every other DBI database type.

http://piqt.sourceforge.net

Lorance Stinson's Perl Interactive Query Tool (PIQT) is similar to dbishell, but it
has more of a Lisp-like syntax.

http://sourceforge.net/projects/dsql

Daniel Tamborelli Alvarenga's SQL Query Tool works for MySQL, Oracle,
PostgreSQL, SQL Server, ODBC, and all supported Perl DBI drivers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.8 DBD::Chart

If you're an Oracle DBA who needs to visualize and report upon lots of complex information, particularly
performance statistics, in graphical form, you will benefit from the amazing DBD::Chart. Just two of its
many possibilities are displayed in Figure 3-13.

Figure 3-13. Two examples of what DBD::Chart can do

DBD::Chart provides a mechanism within Perl for rendering pie charts, bar charts, line, point, area, and
candlestick graphs, and HTML image maps via the use of SQL. The neat thing about DBD::Chart is that it
uses Perl DBI methods to create charts directly, rather than requiring you to invoke yet another
programming interface. For example, a SELECT statement is used to output a particular chart type, and
the WHERE clause is used to determine its dimensions.

If you tried to produce a chart without DBD::Chart, you'd have to select database row information into
Perl arrays and then process the arrays separately to create the charts via a special Perl charting API.
With DBD::Chart, you can do all this in one operation that is very SQL-like. For example, when you create
a new chart, you do it with a CREATE statement just as if you're creating a table. When you insert
information into the chart, you do this with an INSERT statement, as if you're adding a row to a table. This
is a very neat idea. We particularly like it because virtually all of the dynamic charts we ever create come
directly from databases.

DBD::Chart is particularly useful with either Perl/Tk or Perl CGI, when run in conjunction with Perl DBI.
(Image maps can also be linked to CGI programs, with HTML usage.) You can see from the following
breakdown of the code used to generate the two images in Figure 3-13 just how close DBD::Chart is to
ordinary DBI. (See Appendix B, for a summary of the DBI API.)

1. Obtain Perl DBI and connect with the DBD::Chart driver:

use DBI;

use strict;

my $dbh = DBI->connect('dbi:Chart:', undef, undef,
 { PrintError => 1, RaiseError => 1 });

2. We now can create a pie chart, with various rugby football information, in exactly the same way we
might create an Oracle table with DBD::Oracle, and then select from it afterwards:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my @game_plan = qw(points possesion penalties goals turnovers yardage);

my @game_values = (70, 64, 18, 16, 19, 22);

$dbh->do('CREATE TABLE gamepie (
 Segment varchar(10),
 First integer)');
my $sth = $dbh->prepare('INSERT INTO gamepie VALUES(?, ?)');

for (my $i = 0; $i <= $#game_plan; $i++) {

 $sth->execute($game_plan[$i], $game_values[$i]);

}

$sth = $dbh->prepare(

 "SELECT PIECHART, IMAGEMAP FROM gamepie
 WHERE WIDTH=700 AND HEIGHT=600 AND
 TITLE = 'Sample Pie Chart' AND
 SIGNATURE = 'Copyright(C) 2002, Jared Still' AND
 3-D=1 AND
 COLORS=(red, white, blue, lyellow, lgray, pink)"
);

$sth->execute;

my $row = $sth->fetchrow_arrayref;

3. Having created the chart in memory via the use of SQL, we now output it to a PNG file. We then
drop the memory structure, as if dropping a table:

open(PIE, '>gamepie.png');

binmode PIE;

print PIE $$row[0];

close PIE;

$dbh->do('DROP table gamepie');

4. We now create a three-axis bar chart. In this particular example, we'll cover ancient English sites
of special interest (at least to one of the authors):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$dbh->do('CREATE TABLE spiritaxis (

 Month char(3),

 Visitors integer,

 Monument varchar(11))');

my @months = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);

my @monuments =

 qw(Stonehenge Avebury SilburyHill Glastonbury WhiteHorse);

 $sth = $dbh->prepare('INSERT INTO spiritaxis VALUES(?, ?, ?)');

 foreach my $month (@months) {

 foreach my $visitors (@monuments) {

 $sth->execute($month, 1 * int(rand(2000)), $visitors);

 }

}

$sth = $dbh->prepare(

 "SELECT BARCHART, IMAGEMAP

 FROM spiritaxis

 WHERE WIDTH=700 AND HEIGHT=600 AND

 TITLE = 'Visitors Per Saturday' AND

 SIGNATURE = 'Copyright(C) 2002, Andy Duncan' AND

 X-AXIS = 'Month' AND

 Y-AXIS = 'Visitors' AND

 Z-AXIS = 'Monument' AND

 COLORS=(white) AND

 SHOWGRID = 1"

);

$sth->execute;

$row = $sth->fetchrow_arrayref;

5. As before, we output the chart's memory structure into a file and then reclaim the memory by
dropping the table:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

open(BAR, '>spiritaxis.png');

binmode BAR;

print BAR $$row[0];

close BAR;

$dbh->do('DROP table spiritaxis');
DBD::Chart is an amazing piece of work. May it live long and prosper. In the following sections we'll
explain how to install this tool.

3.8.1 Preparing DBD::Chart

DBD::Chart possesses an almost infinite number of uses, limited only by the SQL you can choose to fill it.
It's available here:

http://www.presicient.com/dbdchart
http://www.cpan.org/authors/id/D/DA/DARNOLD

Although DBD::Chart itself is 100% pure Perl, it does rely on one other Perl module, GD.pm, which itself
requires several other non-Perl C libraries. Fortunately, these libraries are all open source and either
available to compile from source on Unix, or built into the precompiled GD.pm ActivePerl package.

3.8.2 Installing DBD::Chart on Unix

GD.pm relies upon three separate C libraries. Fortunately, we've already installed the ones required for
zlib and PNG (see the earlier discussion under StatsView) so we only need one more library (we also
recommend a JPEG library for completeness). Just to give you a sense of the scope of DBD::Chart,
we've included every download in Table 3-4 for use with either Perl CGI or Perl/Tk. Collect your
unclaimed tarballs, and then we'll work through the entire shooting gallery.

Table 3-4. DBD::Chart's related Unix downloads
Download Download addresses Example tarball

zlib http://www.gzip.org/zlib/, http://www.zlib.org zlib.tar.gz
PNG http://www.libpng.org/pub/png libpng-1.0.12.tar.gz
jpeg-6b ftp://ftp.uu.net/graphics/jpeg, http://www.ijg.org jpegsrc.v6b.tar.gz
gd http://www.boutell.com/gd gd-1.8.4.tar.gz
GD.pm http://www.cpan.org/authors/id/LDS GD-1.33.tar.gz
Tk::PNG[7] http://www.cpan.org/authors/id/NI-S Tk-PNG-2.005.tar.gz
Tk::JPEG http://www.cpan.org/authors/id/NI-S Tk-JPEG-2.014.tar.gz

[7] Although Tk::PNG and Tk::JPEG are only required for the use of DBD::Chart with Perl/Tk modules, we thought it would be
useful to include them here as part of the full set.

3.8.2.1 JPEG

To complement our PNG library, we can load up JPEG support from the Independent JPEG Group (IJG).
Although the lossless PNG graphics format is better for sharp letters and line drawings, JPEG's lossy
nature allows you to create massively compressed files while still retaining a human perception of high
quality (see the sidebar for a definitions of these terms).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Lossless versus Lossy
You will often hear the terms "lossless" or "lossy" used when referring to graphics images or
compression algorithms. Lossless decompression preserves every part of an original file so it
can be reproduced exactly as it was, no matter how small the compressed file gets. Think of
lossless compression as being like a squashed-up handkerchief stuffed very small into a
pocket; it can be uncompressed later as a complete, flat-ironed handkerchief. With lossy
compression, on the other hand, the reduced storage technique throws away bits of the
original file so when it is uncompressed it looks essentially the same, but lacks the
completeness of the original.

The trick to saving room is to throw away only those bits that aren't essential later on. Think of
someone making an annotated sketch of your monogrammed handkerchief. Embroiderers
can take this sketch and stitch you another monogrammed hanky without needing to see the
complete original. All they need are the cloth dimensions and the position, size, color, and
shape of your initials. The stitch technique may be entirely different, but the difference may be
visible only under a microscope. And the storage required for the embroidering instructions is
massively reduced, or "lossy," leading to much cheaper information transmission for the price
of an invisible reduction in similarity to the original.

This quality makes JPEG a very popular image content system for photographic usage on the Internet.
Because the Tk::JPEG module is currently more widely available than Tk::PNG, particularly within
ActivePerl, it's also a good format to use with Perl/Tk canvas applications. Let's take a look:

1. Read carefully through the install.doc document to ensure that the configuration provides all the
options you require:

$ gzip -d jpegsrc.v6b.tar.gz

$ tar xvf jpegsrc.v6b.tar

$ cd jpeg-6b

$ vi README install.doc
2. You may be able to move straight into the following commands:

$./configure

$ make

$ make test

The test step compares several JPEG files, which come with the download, with program
compilations. Several of these test images should resemble the rose seen earlier in Figure 3-7
which is also borrowed by Tk::JPEG for its own testing. Note, however, that the various .jpg files
will be of different physical sizes because of lossy compression.

3. Once the testing is complete, we can move on to the installation:

$ make install

$ make install-lib

Our default installation, on Linux, put the library and C header files into /usr/lib and /usr/include
rather than /usr/local/. You will want to be aware of this during installation, so we can pick up the
library correctly later.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.8.2.2 The gd library

Next we load up Thomas Boutell's gd library. The reason this library is required here is because it drives
Lincoln Stein's GD.pm Perl package, which itself is relied upon by DBD::Chart. A splendid web of intrigue,
indeed! Follow these steps:

1. Unpack the download:

$ gzip -d gd-1.8.4.tar.gz

$ tar xvf gd-1.8.4.tar

$ cd gd-1.8.4

2. The best help is available by browsing the download's index.html file. In accordance with the
instructions provided, we changed the Makefile in several ways. We added the JPEG library to the
main required libraries:

#LIBS=-lgd -lpng -lz -lm

LIBS=-lgd -lpng -lz -ljpeg -lm
Because the JPEG libraries and C header files had defaulted to be installed in /usr/lib and
/usr/include, our Makefile had to be adjusted accordingly:

INCLUDEDIRS=-I. -I/usr/include/freetype2 -I/usr/include/X11 \

 -I/usr/X11R6/include/X11 -I/usr/local/include -I/usr/include
LIBDIRS=-L. -L/usr/local/lib -L/usr/lib -L/usr/lib/X11 -L/usr/X11R6/lib
(When you install JPEG on your own setup, your defaults may set to /usr/local/lib and
/usr/local/include. If this happened, then the previous changes to INCLUDEDIRS and LIBDIRS will
be unnecessary.)

3. We then tried:

$ make

$ make install

This installed the main gd library and header files in the following places:

/usr/local/lib/libgd.a
/usr/local/include/gd.h

4. When you install gd, you also obtain the gddemo program. If you run this program, you'll find that it
creates a new PNG file, demoout.png, directly from a supplied one, demoin.png, which is a snazzy
picture of a space shuttle:

$./gddemo

If this fails to work the first time, you may have to play around with the LD_LIBRARY_PATH
variable, for example:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

The new file should be the original space shuttle, but overlaid with decorative imagery, as seen
earlier on the right side of Figure 3-7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.8.2.3 GD.pm

Although he is better known for his work with CGI.pm and mod_perl (covered in the following chapters),
Lincoln Stein has also created another great piece of work in GD.pm. This program provides a Perl front
end to Thomas Boutell's gd C library. Follow these steps:

1. Because we're relying on the gd module's being available, this step differs from the standard
vanilla Perl configuration:

$ gzip -d GD-1.33.tar.gz

$ tar xvf GD-1.33.tar

$ cd GD-1.33

$ perl Makefile.PL

The preceding step will ask various questions. Your mileage may vary. (Before completing the
installation of GD.pm, you may wish to acquire FreeType and XPM (X PixMap) support.
Information is available in the GD.pm download bundle. If you aren't interested, just say no):

Build JPEG support? [y]
Build FreeType support? [y]

Build XPM support? [y]

2. Next, compile and test the module:

$ make

$ make test

During the test stage, we're looking for output similar to the following:

...

All tests successful, 2 subtests skipped.
Files=1, Tests=10,

0 wallclock secs (0.49 cusr + 0.06 csys = 0.55 CPU)

3. You may also want to complete an optional step to provide a helpful GD.html documentation file in
the current directory:

$ make html

4. We're now ready to:

$ make install

The GD.pm Perl package should now be loaded and ready to fire.

3.8.2.4 Completing the DBD::Chart installation

We can finally nail the main event:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ gzip -d DBD-Chart-0.60.tar.gz

$ tar xvf DBD-Chart-0.60.tar

$ cd DBD-Chart-0.60

$ vi README

$ perl Makefile.PL

$ make

$ make test # There may not be too much here just yet! 8-)

$ make install

DBD::Chart is now fully installed. If you want to test this program, the best way is to go to the /examples
directory, move all the current *.png files to another directory, and then run all the example Perl programs
to create new PNGs — for example:

$ cd examples

$ mkdir tmp_safe

$ mv *.png tmp_safe

$ perl simpcandle.pl

You should now find a handful of PNGs in the current directory, similar to those we first showed you in
Figure 3-13. For specific DBD::Chart use with Perl/Tk programs, such as Orac, we also need to install the
Tk::JPEG module. While we're at it, we'll also compile the Tk::PNG module here for Unix — it's bound to
turn up as a package on ActivePerl sooner or later for Win32 users (it will make lossless PNG usage on
Perl/Tk that much more attractive).

3.8.2.5 Tk::PNG

Follow these steps to install Tk::PNG:

1. Everything should run smoothly during this installation, because TK::PNG is expecting the zlib
PNG libraries to be just where we put them earlier. Well, that's the plan. For variations, scan the
README file thoroughly for complete information:

$ gzip -d Tk-PNG-2.005.tar.gz

$ tar xvf Tk-PNG-2.005.tar

$ cd Tk-PNG-2.005

$ vi README
$ perl Makefile.PL

$ make

2. The make test step should pop up the PNG picture we showed back in Figure 3-7, as also used by
the original libpng installation:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ make test

...

All tests successful.
Files=1, Tests=4, 2 wallclock secs

(0.33 cusr + 0.03 csys = 0.36 CPU)

3. Now carry out the install:

$ make install

3.8.2.6 Tk::JPEG

1. Let's wrap up by installing Tk::JPEG:

$ gzip -d Tk-JPEG-2.014.tar.gz

$ tar xvf Tk-JPEG-2.014.tar

$ cd Tk-JPEG-2.014

2. As with the PNG installation, the make test step should pop up the JPEG picture of the rose,
shown in Figure 3-7, as seen with the earlier installation of the JPEG libraries. If this occurs, the
launchpad is ready:

$ perl Makefile.PL

$ make

$ make test

$ make install

3.8.3 Installing DBD::Chart on Win32

In absolute contrast with the Unix installation of DBD::Chart, the DBD::Chart installation on Win32 via
ActiveState is a miniscule effort. The folks at ActiveState have locked up the hard work of installing the C
libraries deep inside their GD.pm package.

To install DBD::Chart on Win32, follow these steps:

1. As earlier with the Perl/Tk download, connect your PC to the Internet and run the PPM program:

C:\> ppm

2. Now install the ActivePerl GD and Tk::JPEG packages by typing:

PPM> install GD

PPM> install Tk-JPEG

PPM> exit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PPM> exit

For those who have waded through the Unix install, we're embarrassed to say that this is really all
you have to do to get zlib, PNG, JPEG, gd, and GD.pm onto Win32. When the revolution comes,
there shall be a reckoning!

3.8.3.1 Loading DBD::Chart for ActivePerl

Although ActiveState may lack a DBD::Chart package in its library, the package is relatively
straightforward to add because it's 100% pure Perl:

1. Get hold of the latest download file, such as DBD-Chart-0.60.tar.gz, from:

http://www.cpan.org/authors/id/D/DA/DARNOLD

2. Unzip the tarball to the a temporary directory, such as:

C:\DBD-Chart-0.60

3. Go to the main ..\DBD directory where ActivePerl keeps its modules, and copy in DBD::Chart's
main Chart.pm module. For example:

C:\DBD-Chart-0.60> cd C:\Perl\site\lib\DBD

C:\Perl\site\lib\DBD> copy C:\DBD-Chart-0.60\Chart.pm .
4. Now create a new subdirectory under ..\DBD, itself named Chart:

C:\Perl\site\lib\DBD> mkdir Chart

5. Enter this subdirectory, and copy Plot.pm to it from the..\Chart directory within the download area:

C:\Perl\site\lib\DBD> cd Chart

C:\Perl\site\lib\DBD\Chart> copy C:\DBD-Chart-0.60\Chart\Plot.pm .
This completes the Win32 installation of DBD::Chart. (We'll cover another way of installing larger
pure-Perl modules, using NMAKE, in Chapter 6, where a slightly longer setup can save a lot of
copying by hand.) To test our Tk::JPEG system, we fired up Orac to see if it could detect both
DBD::Chart and Tk::JPEG as being successfully installed. The resulting, slightly lossy tablespace
allocations chart is displayed in Figure 3-14.

Figure 3-14. DBD::Chart examines tablespace allocations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.9 SchemaView-Plus

SchemaView-Plus is another helpful Perl/Tk tool for Oracle DBAs that allows you to examine
different database schemas and save them for future reference. It also provides insight into the
world of Perl and XML data parsing. SchemaView-Plus was written by Milan Sorm, who also
developed the dbMan application (see http://dbman.linux.cz), also written in Perl/Tk. (The
SchemaView-Plus tool also uses the Perl DBIx extension, DBIx::SystemCatalog.)

3.9.1 Installing SchemaView-Plus on Unix

In addition to downloading SchemaView-Plus itself, you'll need to obtain several additional
modules. Table 3-5 lists the locations for the software you'll need to install.

Table 3-5. Description and downloads for SchemaView-Plus
C library/Perl module Description/download address

expat
XML parser C library

http://sourceforge.net/projects/expat

XML::Parser
Parses XML

http://www.cpan.org/authors/id/C/CO/COOPERCL

XML::Dumper
Dumps Perl data to structured XML

http://www.cpan.org/authors/id/E/EI/EISEN

SchemaView-Plus
Examines different database schemas

http://www.cpan.org/authors/id/M/MI/MILSO

Appendix D, describes how to install expat and its dependent XML::Parser Perl module, along
with other XML modules; expat and XML::Parser must be installed prior to using SchemaView-
Plus. In addition, we need to install XML::Dumper as follows:

$ gzip -d XML-Dumper-0.4.tar.gz

$ tar xvf XML-Dumper-0.4.tar

$ cd XML-Dumper-0.4

$ perl Makefile.PL

$ make

$ make test

$ make install

Now let's install SchemaView-Plus itself:

1. With the XML system set up, we can now get to SchemaView-Plus:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ gzip -d SchemaView-Plus-0.10.tar.gz

$ tar xvf SchemaView-Plus-0.10.tar

$ cd SchemaView-Plus-0.10

$ perl Makefile.PL

$ make

$ make test

$ make install

2. Make sure we can find the svplus program and set ORACLE_HOME:

$ export PATH=/usr/local/bin:$PATH

$ export ORACLE_HOME=/u01/app/oracle/product/8.1.5

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ORACLE_HOME/lib

$ svplus

Many different schema-related options are available via SchemaView-Plus, and walking through
them when the program is installed is the best way to discover them. To give you a flavor of the
program, we've included two screenshots in Figure 3-15, one for Unix and one for Win32.

Figure 3-15. SchemaView-Plus examining table relationships

3.9.2 Installing SchemaView-Plus on Win32

To install SchemaView-Plus on Win32, do the following:

1. Obtain the XML::Dumper package from over the Internet at ActiveState (XML::Parser
comes preloaded with ActivePerl):

C:\>ppm

PPM> install XML-Dumper

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PPM> install XML-Dumper
Install package 'XML-Dumper?' (y/N): y

Installing package 'XML-Dumper'...

...

Writing C:\Perl\site\lib\auto\XML\Dumper\.packlist

PPM> quit

2. Next, download and extract SchemaView-Plus to a suitable directory.

3. Run the program like this:

C:\SchemaView-Plus-0.10>perl bin/svplus

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.10 Open Source Perl IDEs

Even with all of the wonderful applications profiled in this book, you might still find that none are
quite right for your own database administration needs. If you have a serious itch you really need
to scratch, you might eventually decide that you need to do some coding of your own. Fortunately,
this is becoming easier all the time.

Most Perl devotees are still wedded firmly to the command line and to the use of text editors like
vi or emacs for development. However, for those accustomed to the typical Win32 code
development style, Open Perl IDE offers an excellent development alternative. Open Perl IDE is
an integrated development environment (IDE) for writing and debugging Perl scripts with any
standard Perl distribution under Win32. This open source software is written in Delphi 5 Object
Pascal and Perl. In addition to providing a complete development environment, it also offers
excellent Perl code debugging facilities.

To install Open Perl IDE, follow these steps:

1. Go to:

http://sourceforge.net/projects/open-perl-ide

We downloaded the following file to its own newly created directory:

C:\OpenPerlIDE\Open_Perl_IDE_0.9.8.168a.zip

2. Double-click on this and check the readme.txt file.

3. Unpack to the same directory.

4. Double-click on the PerlIDE.exe program. The IDE should now be up and running, as
shown in Figure 3-16.

Figure 3-16. Open Perl IDE in action with Perl DBI

Other Perl IDEs you might want to consider include:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Kake Pad

http://sourceforge.net/projects/kpad

OptiPerl

http://www.xarka.com/optiperl

Komodo

http://www.activestate.com/Products/Komodo

UltraEdit

http://www.ultraedit.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.11 Open Source Perl GUI Debuggers

A number of excellent Perl GUI debuggers provide graphical interfaces for diagnosing problems
in your Perl programs. The quickest way to get up to speed on the general topic of debugging in
Perl is to type the following commands:

$ perldoc perldebug

$ perldoc perldiag

Perlish people tend to use command-line debug programs with major sprinklings of print
statements. But several open source GUI debugger programs are out there that you might want to
consider. We've listed the best-known in Table 3-6.

Table 3-6. Open source Perl GUI debugging programs
GUI Description

perldbgui
A GUI for the standard Perl debugger:

http://members.tripod.com/~CurtMcKelvey/perldbgui

ptkdb
This can work with Apache Perl scripts and is shown in Figure 3-17:

http://www.cpan.org/authors/id/A/AE/AEPAGE

Open Perl
IDE

This IDE, described in the previous section, can help write and debug Perl
programs:

http://sourceforge.net/projects/open-perl-ide

Figure 3-17. ptkdb — Stepping into the DBI module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Perl Web Extensions
This chapter describes the basics of web-based Oracle applications whose output or interface is
viewed through a web browser, rather than through the graphical user interfaces (GUIs) offered
by the applications described in Chapter 3. The advantage of employing a web solution is that you
need to deploy it only once, at one web address, and thereby provide a tool that anyone with a
web browser can access from anywhere on the network. Using the web as an interface can make
life a lot easier for Oracle database administrators who may manage dozens of databases and
who need to maintain a satellite's eye view of their operation and performance. DBAs have long
dreamed of being able to monitor their databases from the beach via remote-control applications
that require nothing more than browser control from a Palm pilot or some other type of PDA, a
cellular phone, or a laptop. That particular scenario is likely to remain a dream, but it's certainly
true that use of the Web adds a convenient dimension to database administration.

Many web-based database applications are implemented as Perl CGI scripts. CGI (Common
Gateway Interface) programs are typically small programs (running on the web server) that have
historically been used to provide dynamic content to web pages. The output of a CGI program is
simply an HTML page that is read by a web browser. How do CGIs work? On the client side, the
browser calls a CGI in the same way that it would call a static web page — by making a request
for a file from the web server. By calling a CGI, though, the client is actually telling the server to
run a small program. In the case of an Oracle CGI script, running that program pulls data from the
Oracle database and thus produces the dynamic content for the web page. We won't attempt to
describe the details of CGI in this book. If you are interested in learning more, we recommend the
following classic text by Lincoln Stein, the creator of the CGI.pm module:[1]

[1] Lincoln is also the author of Network Programming with Perl (Addison-Wesley, 2000), and the coauthor, with Doug
MacEachern, of Writing Apache Modules with Perl and C (O'Reilly & Associates, 1999).

Official Guide to Programming With Cgi.Pm, by Lincoln Stein (Wiley & Sons, 1998)

In this chapter we'll describe two excellent web-based applications for Oracle DBAs:

Oracletool

One of the best tools around for Oracle DBAs is Adam vonNieda's Oracletool, which
provides a web-based interface for database performance monitoring and a variety of other
database administration tasks. Oracletool is implemented as a Perl CGI script.

Karma

Another excellent web-based Perl application for Oracle database monitoring is Sean Hull's
Karma. Karma is not strictly a Perl CGI script, but instead relies upon daemons to collect
statistics and warnings for Oracle DBAs.

Something else we like about Oracletool and Karma is that you can play around with both of them
on their home sites (listed later). If you're just interested in checking them out, and if the
installation procedures described in the following sections seem like a little too much work at this
point, feel free to examine the demonstrations provided on their sites. We're confident you won't
be disappointed.

Before we look at the details of these applications, we'll take a step back and describe how to
install and configure Apache, the leading web server in use today.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1 Apache

Apache is an open source web server — and the most popular web server in use today (including
both open source and commercial web servers).[2] Apache is fast, efficient, easy to configure, and
very stable on the widest variety of platforms. Apache[3] runs on virtually every operating system,
including Win32, Linux, BSD, Solaris, and many other varieties of Unix. The main web site for
Apache is:

[2] According to Netcraft (http://www.netcraft.com/survey/), Apache's share of the web's active sites market was 64% as of
March 2002. Following behind was Internet Information Server (IIS), placing second at 27%, and iPlanet, placing third at
2%.

[3] Apache 1.3.24 is the latest version as of this writing, with Apache 2.0 in alpha testing.

http://www.apache.org/

Apache and Perl are fast friends. This chapter focuses on Perl-based applications for Oracle that
are implemented as CGI scripts or daemons. In Chapter 5, we'll discuss Apache's mod_perl
module, which makes the Apache/Perl connection a more efficient one.

To obtain the downloads and information concerning Apache for Unix, Win32, and Oracle's use of
Apache, check out the following URLs:

http://www.apache.org/

Main Apache umbrella web site for all the Apache Software Foundation (ASF) related
projects.

http://httpd.apache.org/

Central site for the actual Apache web server, the ASF's core offering.

http://httpd.apache.org/dist/httpd/

Main download page for Apache on Unix.

http://httpd.apache.org/docs/windows.html

Page dedicated towards helping Win32 users of Apache.

http://httpd.apache.org/dist/httpd/binaries/win32/

Download page for Win32 Apache.

http://www.oracle.com/ip/deploy/ias/index.html?web.html

Oracle Corporation's use of Apache as the Oracle9i Application HTTP Server (iAS).

http://httpd.apache.org/docs/mod/directives.html

The Apache Run Time Configuration Directives page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because Apache is supplied these days as part of your Oracle installation, you may simply choose
to use that version because it's highly compatible with the Oracle development environment. The
only problem is that it might be a fairly old version of Apache, depending on the Oracle version
you're using, and it might therefore be difficult to modify in order to meet your own production
standards or to blend in with non-Oracle toolsets. In case you need to customize Apache for your
environment, we'll describe in the following sections how to install an independent Apache directly
on both Unix and Win32. This way, you get the latest and greatest Apache, with complete freedom
to modify it to meet your personal requirements.

4.1.1 Installing Apache on Unix

Download the latest stable version of Apache from:

http://httpd.apache.org/dist/httpd/

Get the latest stable tarball (we used apache_1.3.24.tar.gz) and unpack it into a temporary working
directory:

$ gzip -d apache_1.3.24.tar.gz

$ tar xvf apache_1.3.24.tar

$ cd apache_1.3.24

$ vi README INSTALL
The main installation instructions are within the INSTALL file where you're offered two options:

The old-style compilation

The out-of-the-box APACI (Apache AutoConf Interface) Install method

Unless you enjoy pain, we recommend that you go for APACI every time!

Although we're installing Apache as root, it may not always be a good idea
to run the resultant httpd servers as root. Most Unix systems immediately
switch Apache to the nobody user in nogroup (a harmless person) once
they've attached to port 80. However some may not and you may therefore
risk superuser permissions being accessible over the Web. Alternatively,
you may simply wish to run a thoroughly secure system. To achieve this
goal, you may want to create a special user to run Apache, typically
webuser in webgroup. Check out the Group and User directives on the
Apache configuration directives page mentioned previously or via the two
following references:

http://httpd.apache.org/docs/mod/core.html#group

http://httpd.apache.org/docs/mod/core.html#user

Let's run through the Unix installation instructions:

1. We're going to take the option to build Apache with Perl. To do this, find out where your Perl
executable is living, and then configure Apache under APACI using this address, combined
with the -- with-perl directive. Also, let the ./configure program know where you want to
ultimately install Apache with the -prefix=MyApacheDir switch.[4] We'll assume for now that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ultimately install Apache with the -prefix=MyApacheDir switch.[4] We'll assume for now that
you're happy to install Apache in the usual place, /usr/local/apache, as the root user:

[4] In development mode, it's often a good idea to install Apache to a nondefault area; this helps you avoid
overwriting a production version. It may also be necessary if you don't have root permission.

$ type perl

perl is hashed (/usr/bin/perl)
$./configure --prefix=/usr/local/apache --with-perl=/usr/bin/perl

2. We should now be ready to go straight into the installation:

$ make

$ make install

You're looking for the following output:

+--+

| You now have successfully built and installed the |

| Apache 1.3 HTTP server. To verify that Apache actually |

| works correctly you now should first check the |

| (initially created or preserved) configuration files |

...

+--+

3. Finally, get the Apache httpd server itself up and running:

$ /usr/local/apache/bin/apachectl start

/usr/local/apache/bin/apachectl start: httpd started
You can test the successful installation by visiting localhost with your browser, as shown in
Figure 4-1.

4. Now visit the httpd.conf configuration file and find out where the /cgi-bin/ directive will look for
CGI scripts:

$ vi /usr/local/apache/conf/httpd.conf

The default should look like this:

ScriptAlias /cgi-bin/ "/usr/local/apache/cgi-bin/"

All CGI scripts should go in the /usr/local/apache/cgi-bin directory.

5. Now search for the following line, dealing with .cgi scripts:

#AddHandler cgi-script .cgi

Uncomment this, and add a similar line to deal with .pl scripts:

AddHandler cgi-script .cgi

AddHandler cgi-script .pl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. If you're not root, or you'd like a separate development port, you might like to change the Port
value from 80, the default for the Internet, to some other value higher than 1024. A typical
development port is:

Port 8080

To restart Apache, with the new configuration, run the following command:

$ /usr/local/apache/bin/apachectl restart
(You will find that the Apache logs go into the /usr/local/apache/logs directory or in
<server_root>/logs, depending upon how you've configured httpd.conf.)

You'll find a Perl CGI example script in Example 4-1.

Figure 4-1. Hello Apache, the first screen arriveth

4.1.2 Installing Apache on Win32

The process of installing Apache on Win32 platforms has improved by leaps and bounds in the last
few years, and it's now a straightforward install. We downloaded this self-extracting file:

apache_1.3.24-win32-x86-no_src.msi

which we obtained from:

http://httpd.apache.org/dist/httpd/binaries/win32/

If you have the MSI installer program on your Windows box (as discussed in Chapter 2), double-
clicking on the Apache MSI file should result in a typical pain-free Windows-style installation.The
main question you'll be asked is whether you want to run Apache as a Windows service or as a
console application. We opted for the second choice because the Win32 version of mod_perl (which
we'll be installing in Chapter 5) expects Apache to be run in console mode. Follow these steps:

1. As with the earlier Unix installation, we made some tiny changes to the httpd.conf file to
enable the execution of our CGI Perl files before starting up Apache to test them. To gain
direct access to httpd.conf from the Windows Start menu, click through the following:

Start->Programs->Apache HTTP Server->Configure Apache Server->

Edit the Apache httpd.conf Configuration File
2. Once inside httpd.conf, note the location of CGI's script bin:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ScriptAlias /cgi-bin/ "C:/Program Files/Apache Group/Apache/cgi-bin/"

3. Now find the handler line dealing with .cgi scripts:

#AddHandler cgi-script .cgi
4. Uncomment it to activate it and add a similar line to deal with .pl scripts:

AddHandler cgi-script .cgi
AddHandler cgi-script .pl
At this point, you might want to review the discussion of the Port value in the Unix installation
section, but on Win32 we're generally happy with the default HTTP value, unless we know
something else is running on it:

Port 80

5. Fire up Apache as a console application from the Start menu:

Start->Programs->Apache HTTP Server->

Start Apache in Console
6. To shut down Apache via its console, simply close down the console window. Any errors will

have appeared in:

C:\Program Files\Apache Group\Apache\logs\error.log
The best web server in the world is now ready to do your bidding.

4.1.3 Using DBD::Chart with Apache

After dealing with all of these installation procedures, you're probably itching to see some action. In
a bid to avoid disappointment, we'll try out the DBD::Chart Perl script shown in Example 4-1. (We
introduced DBD::Chart in Chapter 3.) This example graphically charts Oracle database objects.
(Check out the DBI API details in Appendix B, if you need more detailed information.)

If you're using ActivePerl, all of the Perl CGI scripts you place into Apache's
../cgi-bin/ directory, under Win32 must have the following first line:

#!/perl/bin/perl

This tells the Apache web server to execute them with ActivePerl, which is
generally available as:

C:\Perl\Bin\perl.exe

If the ActivePerl perl.exe executable is in a different or nondefault location,
alter the Apache directive appropriately.

Example 4-1. Oracle_objects.pl

#!/perl/bin/perl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#!/perl/bin/perl
use strict;

use DBI;

use Socket qw(:DEFAULT :crlf); # Built-in Perl module, provides $CRLF

Step 1: Tell the calling browser a mime.types PNG is on its way.

print "Content-type: image/png$CRLF$CRLF";
Step 2: Connect to Oracle and prepare the SQL.

my $dbh = DBI->connect('dbi:Oracle:orcl', 'system', 'manager',

 { RaiseError => 1 });

my $sth = $dbh->prepare('SELECT object_type, ' .

 ' COUNT(*)' .

 ' FROM dba_objects ' .

 ' GROUP BY object_type');

$sth->execute;

Step 3: Create the DBD::Chart graph, and prepare to insert bars.

my $chart_dbh = DBI->connect('dbi:Chart:');

$chart_dbh->do(

 'CREATE TABLE bars (object_type CHAR(30), object_count FLOAT)');

my $chart_sth = $chart_dbh->prepare('INSERT INTO bars VALUES(?, ?)');

while (my @res = $sth->fetchrow) {

 # Step 4: Add an entry to chart.

 $chart_sth->execute($res[0], $res[1]);

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Step 5: Prepare the Chart for output without the need for any

temporary file storage of the default PNG output.

$chart_sth =

 $chart_dbh->prepare("SELECT BARCHART " .

 " FROM bars " .

 " WHERE WIDTH=900 " .

 " AND HEIGHT=300 " .

 " AND 3-D=1 " .

 " AND X-ORIENT= 'HORIZONTAL' " .

 " AND TITLE = 'Object Types' ");

Step 6: Send the PNG on its way back to the browser, then clean up.

$chart_sth->execute;

my $row = $chart_sth->fetchrow_arrayref;

binmode STDOUT;

print $$row[0]; # PNG file sent here! :-)
$chart_dbh->do('DROP CHART bars');

$chart_dbh->disconnect;

$dbh->disconnect;

Here's what's going on in this script:

1. Before we pump out the PNG's binary image, we need to tell the calling browser to expect a
mime.types PNG output.

Note the $CRLF newline pair included here; it is used to separate the content-type
declaration from the actual content. The $CRLF variable from Perl's built-in Socket.pm
ensures that we get the right combination of \015\012 for Internet line endings. The \n
character normally represents \012, and \r normally represents \015; however, this may vary
from system to system. To be strict about what we output, we use Socket's $CRLF, which
guarantees to be \015\012 (also known as CRLF, for carriage return/line feed). Many systems
also recognize \n as a CRLF, so web people often use the \n\n pair.[5]

[5] This may actually be incorrect, though most browsers will be able to cope with it, even on DOS systems,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[5] This may actually be incorrect, though most browsers will be able to cope with it, even on DOS systems,
because of the Internet rule of thumb: "Be strict about what you send out; be liberal about what you accept." See
http://www.faqs.org/rfcs/rfc2068.html for a strict interpretation of Internet line endings.

2. We create the SQL to extract the required information from Oracle.

3. Next, we create the destination bar chart and get it ready for data entry.

4. Row by row, we fill up the bar chart with SELECT results.

5. We prepare to output the final dynamic chart using the DBI API.

6. We send the PNG directly to the browser. This is done entirely in memory, without the need
for a transitional operating system file. Once we've sent the PNG on its way, we clean up and
free our resources.

Store this Perl script in your CGI bin directory under either Unix or Win32:

/usr/local/apache/cgi-bin/

C:/Program Files/Apache Group/Apache/cgi-bin/

(Notice how Apache, even on Win32, still prefers the Unix-style forward slash, which is used
internally by Win32 systems anyway.)

If you're using Unix, you will need to change the script's first line to call your local Perl version — for
example:

#!/usr/bin/perl

Now call up the following address on your browser:

http://localhost/cgi-bin/Oracle_objects.pl

You should see something like Figure 4-2.

As we discussed in Chapter 3, DBD::Chart is a fine piece of work, one whose limitations are
bounded only by feverish imagination. All we need now is a collection of SQL scripts, a CGI
program providing a pick-list of these scripts, a wing, a prayer and a few parameter switches. If we
had all of these, we could create a really lovely Oracle DBA tool. Or maybe we should just download
a single canned application that does all of this for us? Read on. . . .

Figure 4-2. DBD::Chart and Apache

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2 Oracletool

Oracletool, developed by Adam vonNieda as a tuning, monitoring, and general database
administration tool, is one of the best Perl CGI applications you'll find anywhere. Oracletool
provides a simple web-based interface to many of the day-to-day maintenance tasks an Oracle
DBA needs to keep a typical database in good working order. (It's also a very useful development
utility.)

Oracletool provides a reasonable degree of security as a default, and also gives you the ability to
configure more rigorous security. You can choose your level of security based on your own site's
requirements. The faint of heart will be glad to hear that Oracletool does not modify your database.
You can create a user with the SELECT ANY TABLE privilege, and rest assured that running
Oracletool won't break your database. Not that you'll need to worry in any case — Oracletool is
well written, and behaves consistently.

To learn more about Oracletool, visit the following page:

http://www.oracletool.com/

In the following sections we'll show how to install Oracletool and try out a few of its options. There
is much more to learn about Oracletool, however. You can find a more detailed discussion in
Oracle & Open Source, and you can browse freely through the tool's many helpful menus and
screens to explore its capabilities.

4.2.1 Installing Oracletool

The instructions for installing Oracletool are virtually identical under Unix and Win32. Get hold of
the latest tarball, such as oracletool-2.0.tar.gz, and unpack it into a local directory. Good
instructions come with the download. We'll provide the usual two summaries here.

4.2.1.1 Installing Oracletool on Unix

1. Copy the oracletool.sam file to your ../cgi-bin/ directory under Apache. Rename it to
oracletool.ini. For instance:

$ cp oracletool.sam /usr/local/apache/cgi-bin/oracletool.ini
2. Now edit this file. Basically, ensure that ORACLE_HOME is set for the use of Perl DBI and

that TNS_ADMIN is set so Oracletool can get hold of your target databases.[6] (The
TNS_ADMIN value will default to $ORACLE_HOME/network/admin, but there's no harm
done making sure it's clear to anyone later maintaining the file.)

[6] Note that the parameters in oracletool.sam are not Perl variables; they are more in the style of Java .ini
parameters. (See Table 4-1 for more initialization parameters.)

ORACLE_HOME = /opt/oracle/product/9.0.1

TNS_ADMIN = /opt/oracle/product/9.0.1/network/admin

3. Now copy oracletool.pl itself to your ../cgi-bin/ directory, without renaming it this time (unless
you'd prefer a .cgi suffix):

$ cp oracletool.pl /usr/local/apache/cgi-bin/oracletool.pl

4. Make sure that the first line of the oracletool.pl script points to the right Perl executable:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#!/usr/bin/perl

5. We also had some problemettes connecting orcl.world and Oracletool to Oracle9i, on SuSE
7.3 Linux, but there are a range of connection options you can try near the top of
oracletool.pl. For instance, we replaced the following line, which was deliberately stripping
out .world suffixes:

my %hash =

 map { (split(/\.world/i,(split(':'))[-1]))[0] , undef }
 DBI->data_sources('Oracle')

We used one of the commented-out simpler alternatives. Problem solved:

my %hash =

 map { (split(':'))[-1] , undef } DBI->data_sources('Oracle')

6. Once you've solved any rare teething problems like this, you should secure oracletool.pl by
changing its permissions, as with the Unix chmod command:

$ chmod 755 oracletool.pl

7. Now ensure that your Apache web server and target Oracle database are running. Type the
following into your browser location field:

http://localhost/cgi-bin/oracletool.pl

8. You'll be greeted with the screen sequence displayed in Figure 4-3.

4.2.1.2 Installing Oracletool on Win32

For Win32, follow these steps:

1. Copy the oracletool.sam file to your ..\cgi-bin\ directory under Apache. Rename it to
oracletool.ini:

C:> copy oracletool.sam

 C:\Program Files\Apache Group\Apache\cgi-bin\oracletool.ini

2. Now edit this file, in the same way as on Unix. Make sure ORACLE_HOME is set for the
use of Perl DBI if your Win32 platform needs it, and that TNS_ADMIN is set so Oracletool
can get hold of your target databases:

ORACLE_HOME = C:\\ORANT # You may not need to set this on Win32

TNS_ADMIN = C:\\ORANT\\NET80\\ADMIN

3. Now copy oracletool.pl itself to your ..\cgi-bin\ directory:

C:> copy oracletool.pl

 C:\Program Files\Apache Group\Apache\cgi-bin\oracletool.pl

4. Make sure that the first line of the oracletool.pl script points to the right Perl executable. For
Win32 using ActivePerl, that's usually:

#!/perl/bin/perl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#!/perl/bin/perl

5. If you're running on NTFS or a similarly secure NT-based filesystem, you should secure
oracletool.pl by changing its permissions via your security system to have the equivalent of
755 status on Unix.

6. Now ensure that your Apache web server and target Oracle database are running. Then
type the following into your browser location field to get to the screens displayed in Figure 4-
3:

http://localhost/cgi-bin/oracletool.pl

Figure 4-3. Logging into Oracletool on Win32 and Linux

Table 4-1. Main Oracletool initialization parameters
Parameter Description

ORACLE_HOME Enables Perl DBI to connect to Oracle
TNS_ADMIN Tells Oracletool where to find your tnsnames.ora file
EXPIRATION Cookie expiration time (defaults to one year)
ORACLENAMES Uncomment if using Oracle*Names
DEBUG Sends debug information to a nominated log file
LOGGING Similar to debug, but for standard logging information
LOG Full path of log file required by DEBUG and LOGGING
AUTO_REFRESH Determines screen refresh rate in seconds
LIMIT_SEARCH Limits various searches (to keep resource use down)
ENCRYPTION_STRING Used to encrypt passwords; should be made unguessable
ENCRYPTION_METHOD Determines whether IDEA or Blowfish is used in level 2 security

4.2.1.3 Preferences and privileges

Once you've connected to a database, you can change the Oracletool look and feel by selecting
one of the theme options from the Preferences menu. The following Oracle user privileges are
also required to run Oracletool's selection reports:

Oracle7, Oracle8, Oracle8i

SELECT ANY TABLE

Oracle9i

SELECT ANY TABLE, SELECT ANY DICTIONARY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To obtain DBA reports, the user must also possess the DBA privilege. Once you're all sorted out,
welcome to Oracletool!

4.2.1.4 Enhanced security

You'll notice that passwords are being stored inside cookies, which means you don't have to keep
logging on. To protect these cookies, there are three levels of Oracletool security, and the program
figures out ahead of time which extra Perl security modules you have installed. It then chooses the
security level accordingly:

Level 0

If you lack the security modules discussed as follows, you'll be at this security level.
Passwords are stored in cookies, in plain text — for example:

mydb.sessionid system~manager
Level 1

The username, password, and encryption string are MD5-encoded into a single string. The
default encryption string is stored within oracletool.ini:

ENCRYPTION_STRING = changeme
Obviously, you may wish to alter this string. We changed ours to drinkme, and this turned
our cookie password string into:

mydb.sessionid

c3lzdGVt-bWFuYWdlcg%3D%3D-FbMoQ1xyHjwXuKU3aTIL3g%3D%3D
The reason Oracletool did this was because two security modules, created by Gisle Aas,
come preinstalled automatically with ActivePerl:

Digest::MD5

MIME::Base64

You'll have to install these manually with Unix. (See later for details.)

Level 2

This level uses the IDEA or Blowfish block ciphers (both use extremely secure algorithms).
Oracletool defaults to the IDEA algorithm within oracletool.ini:

ENCRYPTION_METHOD = idea
If you'd like to use Blowfish instead, change idea to blowfish in oracletool.ini. You'll need the
following modules for level 2 security:

Digest::MD5

Crypt::IDEA or Crypt::Blowfish, both by Dave Paris

Crypt::CBC, by Lincoln Stein

As of this writing, some of the Crypt-* modules mentioned previously, were not available under
ActiveState; you should check out the current situation at:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://aspn.activestate.com/ASPN/Downloads/ActivePerl/PPM/Packages

You can get the Unix packages via the three following addresses:

http://www.cpan.org/authors/id/GAAS/
http://www.cpan.org/authors/id/D/DP/DPARIS/
http://www.cpan.org/authors/id/LDS/

You can also find out your current security level from the main Oracletool menu by selecting the
About option on the main menu

Given a choice between Crypt::IDEA and Crypt::Blowfish, we recommend
that you opt for the latter. Since around 1999, Version 1.01 of Crypt::IDEA
has had some build problems with Perl, particularly with Perl 5.6.1 on
some flavors of Linux (though it's possible that this been resolved with
later versions of either Perl or Crypt::IDEA). This problem occurred
because Perl used to "pollute" the namespace of C-based modules. The
problem was fixed in Perl 5.6; however, some modules had come to rely
upon this "feature."

4.2.2 Using Oracletool

We won't provide a detailed description of Oracletool here because ample documentation is
available in your Oracletool download. Simply point your browser at the relevant directory where
you unpacked Oracletool, and view the following file:

file:///C|/MyOracletoolUnpackDirectory/oracletool-2.0/doc/index.htm

We suggest that you wander through the different Oracletool DBA options and check out the
program's many capabilities (one of them, the fragmentation monitoring option, is shown in Figure
4-4).

Oracletool was designed to be as concise and straightforward as possible. (One way it avoids
"code bloat" is to limit itself to monitoring, rather than changing, its target databases.) To this end,
Oracletool requires Perl DBI and DBD::Oracle as the only extra Perl modules beyond the standard
module set for Perl 5.6.

The requirements code block for the 21,000+ line oracletool.pl file is simply:

Figure 4-4. The Oracletool fragmentation feature

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

require 5.003;

use strict;

use CGI qw(:standard); # CGI, File::Basename and FileHandle

use File::Basename; # all standard built-in Perl modules! :-)

use FileHandle;

if (! eval "require DBI") {

 ErrorPage("It appears that the DBI module is not installed!");

}

Everything else is also contained within this single CGI script, except the initialization values held
in oracletool.ini.

Not only does Oracletool currently offer a lot of features (for a summary of current features, see
Table 4-2), but its author is continually adding even more capabilities. You can participate in its
growth by emailing new ideas to Oracletool's creator via adam@oracletool.com.

Table 4-2. Major features of Oracletool 2.0
Feature Description

Schema list Drill-down screen used to examine each individual schema.
Session info Various session-based reports and the ability to view sessions.

Tablespaces Large tablespace report and access to tablespace allocations graph (see Figure 4-
5).

Datafiles Datafiles report, plus access to a datafiles I/O chart.
Redo /
Archives Online redo log information, including archiving status.

Rollback
segs Access to various reports on rollback segments and transactions.

Perf /
memory

Memory and SQL allocations, multithreaded server (MTS) use, and shared pool
flushing.

Locks /
contends Checks on object lock contention and session wait information.

Explain plan Online form to check SQL explain plans (Oracletool will install PLAN_TABLE for you
automatically, if it is unavailable).

SQL
Worksheet

Ability to enter and execute multiple SQL statements, online. SELECT statements
produce formatted reports, and DML is executed.

Security Reports on roles, profiles, auditing, and other security concerns.
Controlfiles Various control file reports, including a breakdown of record types.
Init
parameters Report on all current INIT.ORA parameters, including descriptions.

Recent
events Various instance reports including log switches, and startup times

Preferences Customization screens displayed for fonts and themes.
Many different reports and options, including:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DB Admin

User administration

Session administration

Rollback segment administration

Generate table DDL

Invalid object administration

Parameter administration

Job Scheduler (DBMS_JOB)

Space report by user

Space report by tablespace / user

Datafile fragmentation report

Object extent report

Monitoring Oracletool database monitoring system.
Change
connection Connection screen to other databases.

My
Oracletool Ability to add your own scripts to the Oracletool SQL repository.

Figure 4-5. Oracletool's tablespace allocation

In the following sections, we'll look at a few Oracletool features we especially like.

4.2.2.1 My Oracletool

The My Oracletool feature was recently added to Oracletool. Using this feature, you can add your
own SQL scripts, store them within a target repository, and execute them later whenever you wish.
One such script is shown in Figure 4-6.

Figure 4-6. My Oracletool in action

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2.2.2 Oracletool monitoring

Version 2.0 of Oracletool also added the ability to monitor databases by utilizing a PL/SQL-based
framework. Oracletool checks for common database problems, such as inadequate tablespace
usage, resource contention, and so on. When these problems reach certain thresholds, a warning
email is delivered to a configured pager's email address via a nominated email server. See Figure
4-7 for an example.

Figure 4-7. Setting up Oracletool monitoring

The way Oracletool is designed, the main server has certain PL/SQL procedures installed on it,
and the target clients have other procedures installed. This framework is held together by
database links. Because of this design, OS daemons are unnecessary. You schedule the
monitoring tasks either via Oracle's built-in DBMS_JOB package or via an OS cron script like this
one:

#!/bin/sh

ORACLE_BASE=/u01/oracle

ORACLE_HOME=$ORACLE_BASE/8.1.7

TNS_ADMIN=$ORACLE_HOME/network/admin

PATH=$PATH:$ORACLE_HOME/bin

export ORACLE_BASE ORACLE_HOME TNS_ADMIN PATH

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sqlplus -s ot_monitor/ot_monitor_password@server <<EOF

 exec ot_monitor_server.checkall;

EOF

The monitoring server must have a JServer release so that it is able to send emails via the
DBMS_SMTP package; the result is that you must be running at least Oracle8i; note, however,
that the clients need only be running Oracle8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3 Karma

Sean Hull's Karma program takes Oracle database monitoring a step further. Like Oracletool, it is intended to help
DBAs with their daily work. The program is especially helpful in automating the tracking of important, though
tedious-to-collect information — information that you may need to know, but be too busy to gather personally.
Karma's comprehensive configuration capabilities let you select the particular features and database events to
monitor, how often to monitor them, and how strictly to monitor them. (See Figure 4-8 for a sample screen
produced by Karma.) You can also break up your many databases into groups, each with its own monitoring
criteria and thresholds. Karma's goal is to help Oracle DBAs collect numerous useful statistics automatically in the
background. Karma offers the ability to notify the DBA by email when database problems occur, and it provides a
single place to keep track of many different databases.

Figure 4-8. The main Karma page indicating alarms

Because Karma collects a wider range of statistics than Oracletool's monitoring features do, and because it
provides a full suite of online monitoring options, program installation and configuration are slightly more involved.
Unlike Oracletool, Karma is not implemented as a CGI script. Instead, it runs a daemon, generating HTML pages
in a specified location.

For complete information about Karma, go to:

http://hypno.iheavy.com/karma/

The following sections describe the installation on both Unix and Win32. In both environments, note that you may
also need several other modules, depending on your requirements:

http://www.cpan.org/authors/id/M/MA/MARKOV/

Graham Barr's and Mark Overmeer's MailTools.pm Perl module. This is needed by Karma if you'll be using
the email notification facility.

http://www.cpan.org/authors/id/KJALB/

The CPAN home of Kenneth Albanowski's TermReadKey.pm package; it's necessary for collecting
operating system statistics under Unix.

http://www.cpan.org/authors/id/GBARR/

Graham Barr's home CPAN directory containing some of Perl's most influential modules, including the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Graham Barr's home CPAN directory containing some of Perl's most influential modules, including the
library required by MailTools.pm.

4.3.1 Installing Karma on Unix

We downloaded the following file from the Karma site provided earlier:

karma-1.0.0.tar.gz

For Unix, follow these instructions:

1. Unpack your Karma tarball under a suitable Apache ../htdocs directory:

$ cd /usr/local/apache/htdocs

$ gzip -d karma-1.0.0.tar.gz

$ tar xvf karma-1.0.0.tar

$ cd karma-1.0.0

2. There are a variety of installation document files; the QUICKSTART document is especially designed for
those who want to just get on with it:

$ vi README INSTALL QUICKSTART
3. When it's ready, Karma uses the Makefile.PL configuration method:

$ perl Makefile.PL

$ make

4. Check that the make test step produces output such as the following, before installing:

$ make test

PERL_DL_NONLAZY=1 /usr/bin/perl -Iblib/arch -Iblib/lib -I/usr/local/lib/perl5/5.

6.1/i686-linux -I/usr/local/lib/perl5/5.6.1 test.pl

...

ok 1

Now install:

$ make install

5. Before you run Karma, you may want to set the KARMA_HOME environment variable to ensure that
correct files are accessed by the daemon agents. You'll also need to set the Oracle environment:

$ export KARMA_HOME=/usr/local/apache/htdocs/karma-1.0.0
$ export ORACLE_HOME=/u01/app/oracle/product/8.1.5

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ORACLE_HOME/lib

4.3.1.1 Installing TermReadKey.pm

If you will later want to check the alert log file for each database via Karma, you need to install the
TermReadKey.pm module to keep passwords secret. It provides Perl with various input controls for reading

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TermReadKey.pm module to keep passwords secret. It provides Perl with various input controls for reading
console input and allowing specialized input, such as reading in passwords without echoing them back. Follow
these steps:

1. Unpack the tarball from the CPAN web site provided earlier:

$ gzip -d TermReadKey-2.14.tar.gz$ tar xvf TermReadKey-2.14.tar

$ cd TermReadKey-2.14

2. The command-line input effects are demonstrated by the make test step:

$ perl Makefile.PL

$ make

$ make test

...

This is ReadMode 2. It's just like #1, but echo is turned off. Great

for passwords.

You may enter some invisible text here:

You entered 'The Invisible Man'.

3. If the tests work OK, go for the install:

$ make install

4.3.1.2 Installing MailTools.pm

If you're thinking of using Karma's automatic email options, you'll need to install MailTools.pm. To do this, you also
need Graham Barr's libnet library. We're after two Perl modules contained within this bundle, Net::SMTP
Net::Domain. The full libnet module collection is summarized in Table 4-3.

Table 4-3. Modules available within Perl's libnet library
Perl libnet module Description

Net::FTP File Transfer Protocol
Net::SMTP Simple Mail Transfer Protocol
Net::Time Daytime Protocol
Net::NNTP Network News Transfer Protocol
Net::POP3 Post Office Protocol 3
Net::SNPP Simple Network Pager Protocol

You can get hold of the latest bundle, such as libnet-1.0704.tar.gz, from:

http://www.cpan.org/authors/id/GBARR/

Once you've unpacked the tarball, the perl Makefile.PL step does more configuration than most Perl
construction kits, and the test step also requires access to a list of Internet hosts. Be prepared to answer plenty of
questions, especially during the installation stage. You can, however, skip these tests if you wish:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ perl Makefile.PL

$ make

$ make test
$ make install

We're now ready for MailTools.pm proper:

$ gzip -d MailTools-1.40.tar.gz

$ tar xvf MailTools-1.40.tar

$ cd MailTools-1.40

$ perl Makefile.PL

$ make

$ make test

$ make install

4.3.1.3 Configuring Karma

To test Karma and create errors (which we're hoping the program will email us about), we created a ridiculously
small TEMP temporary tablespace:

CREATE TABLESPACE TEMP DATAFILE
 '/u04/temp1orcl.ora' SIZE 10240 REUSE AUTOEXTEND OFF

DEFAULT STORAGE

(

 INITIAL 4096

 NEXT 2048

 PCTINCREASE 0

)

TEMPORARY LOGGING ;

Because we're intending to use OS monitoring, we now need our own special user located directly within the target
database, with a SELECT ANY TABLE privilege. We also need a small set of statistical collection tables. We can
accomplish this by running two scripts provided by Karma, in the ../sql directory:

karma_user.sql
karma_objs.sql

Running these two SQL scripts produces the following output, including the expected truncation error:

SQL> @karma_user

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL> @karma_user
Enter value for karma_password: seadevil
User created.

Grant succeeded.

Grant succeeded.

SQL> connect karma/seadevil
Connected.

SQL> @karma_objs
Creating karma_os_stats table...

Table created.

Creating karma_alertlog_errors table...

Table created.

TRUNCATE TABLE karma_agent
 *
ERROR at line 1:
ORA-00942: table or view does not exist
Creating karma_agent table...

Table created.

1 row created.

SQL>

Follow these steps:

1. As the nominated Oracle user, we can now get the Karma OS monitor agent going. The following script
prompted us for the karma user password, seadevil, which then kicked off a daemonized karmagentd
woke up every 300 configured seconds to check the alert log file specified:

$ karmagentd -u karma -t ORCL -a $ORACLE_HOME/rdbms/log/alert_orcl.log
2. The statistics collected by karmagentd are then made accessible to the Web by the karmad program

We'll be kicking this off shortly as the root user. But first, we need to make sure that our configuration is
right. We do this by altering the karma.conf file. The following example shows our karma.conf
These will check various database states and report back to us if warning or alert thresholds are crossed.
Notice the notify_email tag, which tells Karma to whom to send emails. Additional help is available in
installation files.

karma:Marlow:ORCL:karma:seadevil

repqueue

reperror

Marlow:notify_email:full:oracle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Marlow:notify_email:full:oracle
notify_alert:10:fragmentation,a,b,c
notify_warning:15:hitratios,a,b,c
Marlow:refresh:5:75

Marlow:redolog:1:30:15

Marlow:rollback:1:0:0

Marlow:tablespace:1:85:95

Marlow:slowsql:1:100:200

Marlow:alertlog:1:60:86400

Marlow:hitratios:1:95:70

Marlow:fragmentation:1:0:0

Marlow:extents:1:2:1

Marlow:latch:1:0:0

Marlow:mts:1:50:75

Marlow:os:1:5:10

warn_blink:true

alert_blink:true

pref_group_sections:true

doc_root:/usr/local/apache/htdocs/karma-1.0.0/doc_root

3. We can then start up the main karmad program:

$ karmad -c $KARMA_HOME/karma.conf

4. Two mail messages are now generated automatically by the Karma system and sent to the oracle
These allow us to focus on the requisite errors via the web pages that show these warnings:

Message 1:

From root Sun Sep 2 21:00:16 2001

Return-Path: <root>

Received: (from root@localhost)

 by localhost.localdomain (8.8.7/8.8.7) id VAA01389;

 Sun, 2 Sep 2001 21:00:15 +0100

Date: Sun, 2 Sep 2001 21:00:15 +0100

From: root <root@localhost.localdomain>

Message-Id: <200109022000.VAA01389@localhost.localdomain>

Subject: ORCL:ALRT:fragmentation,hitratios,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To: oracle@localhost.localdomain
Status: RO

ORCL database **ALERT** - The following services have problems:
 fragmentation
 hitratios
&

Message 2:

From root Sun Sep 2 21:00:16 2001

Return-Path: <root>

Received: (from root@localhost)

 by localhost.localdomain (8.8.7/8.8.7) id VAA01389;

 Sun, 2 Sep 2001 21:00:15 +0100

Date: Sun, 2 Sep 2001 21:00:15 +0100

From: root <root@localhost.localdomain>

Message-Id: <200109022000.VAA01389@localhost.localdomain>

Subject: ORCL:WARNING:alertlog, redolog

To: oracle@localhost.localdomain
Status: RO

ORCL database WARNING - The following services have problems:
 alertlog
 redolog
&

Checking on this later via the web browser, we'll also be able to find out something about our TEMP tablespace,
with the information generated from our alert log file (see Figure 4-9).

Figure 4-9. Karma reporting on alert log errors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3.2 Installing Karma on Win32

At the time this book went to press, the full daemon karmagentd functionality of Karma had yet to be ported to a
Win32 service. Even now, though, you can still do a lot with karmad:

1. Unzip the karma-1.0.0.tar.gz file into an unpack directory under Apache's ..\htdocs directory, such as:

C:\Program Files\Apache Group\Apache\htdocs\karma-1.0.0

2. You then need to check out the following set of files:

README
README.WIN32
INSTALL
QUICKSTART

3. We'll assume here that you don't have the compilation facilities on your Win32 box that are required
automatic installation of Karma. We'll therefore explain how to perform a manual installation.

4. We unpack the karmad program from its wrapper:

$ cd bin

$ perl karmad.PL

This should leave us with the Perl program, karmad.

As with Unix, you may wish to create a Karma user within the target database. The ../sql/karma.sql
has been provided for this purpose. We're now ready to configure Karma for database action.

4.3.2.1 Configuring Karma on Win32

The karma.conf file itself contains plenty of help on how to configure Karma, though fortunately most of the
configuration is fairly intuitive. The main configuration parameters we chose were:

karma:Henley-On-Thames:ORCL:karma:dalek
repqueue

reperror

Henley-On-Thames:refresh:5:75

Henley-On-Thames:redolog:1:30:15

Henley-On-Thames:rollback:1:0:0

Henley-On-Thames:tablespace:1:85:95

Henley-On-Thames:slowsql:1:100:200

Henley-On-Thames:alertlog:1:60:86400

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Henley-On-Thames:hitratios:1:95:70

Henley-On-Thames:fragmentation:1:0:0

Henley-On-Thames:extents:1:2:1

Henley-On-Thames:latch:1:0:0

Henley-On-Thames:mts:1:50:75

Henley-On-Thames:os:1:5:10

warn_blink:false

alert_blink:false

pref_group_sections:true

#doc_root: Commented out to use default Present Working Directory
The database connection line at the top of the list is perhaps the most important thing to get right. We also decided
to default the ..\doc_root to the present working directory.

4.3.2.2 Running Karma on Win32

To get the basic karmad program running, change to the main Karma home directory, make sure your target
Oracle database is accessible via its listener, and then run the main Karma monitor program:

C:\> cd C:\Program Files\Apache Group\Apache\htdocs\karma-1.0.0

C:\> perl bin\karmad -c karma.conf

The daemonic karmad monitor periodically produces a series of HTML pages, which you can access via a web
server (you can also access them directly with a local browser if you'd prefer). We liked the idea of the first
so we started up Apache and then visited the following page:

http://localhost/karma-1.0.0/doc_root/index.html

You can see the first result in Figure 4-10.

Figure 4-10. The main Karma screen on Win32

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3.2.3 Extra Perl modules for Win32

If you do want to push Karma to get mail notification and OS monitoring, you'll need to get hold of two more
ActivePerl packages. Connect to the Internet and run ActivePerl's PPM program to install the MailTools
You may also want to install TermReadKey in anticipation of the time that the daemon-based karmagentd
ported to a service under Win32:

C:\> ppm

PPM> install MailTools

PPM> install TermReadKey

PPM> exit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Embedding Perl into Apache with mod_perl
Although the Perl CGI methodology we discussed in Chapter 4, is an easy and popular approach
to building web-based applications, there have historically been some performance problems with
this approach. Whenever a Perl CGI script is run, the rather sizeable Perl interpreter must first be
brought into memory before it can interpret and execute your program. Unfortunately, that can be
a very slow process. Fans of Java servlets have pointed to this performance issue in advocating
that their technology be used instead of Perl. But Perl has not taken this challenge from Java
evangelists lying down! Apache's mod_perl module provides an interface between Apache and
Perl that allows Perl code to be cached in the web server's memory space. The effect is a
substantial improvement in performance over standard Perl CGI applications.

How much is substantial? As with so many things, the only real benchmarks are either for highly
oversimplified cases (with no real application) or for highly specialized cases (with little
extensibility). For most real-world programs, however, we can tell you that mod_perl provides a
raw speed increase of approximately 40 to 60%. But this is only part of the story. The really
significant gain is the vastly increased scalability provided through mod_perl because the
interpreter is in memory and can be shared between processes.

The mod_perl module binds the Perl interpreter directly into the heart of the Apache server, thus
avoiding the overhead of loading the interpreter into memory for each script executed on the
server. As well as doing memory caching, this module also allows you to extend the Apache
server in the Perl language itself. With mod_perl in place, the entire server-side Apache API
becomes available to Perl programs. In this chapter, we'll describe mod_perl, as well as several
related Apache modules:

mod_perl

The module that provides the interface between Apache and Perl.

Apache::Registry

An Apache module that is provided as a standard part of the mod_perl download. It greatly
improves the performance of your CGI Perl scripts by evaluating your scripts into server
subroutines that remain resident in the Apache server's memory.

Apache::DBI

This Apache module pools all of your database connections into memory. By providing
persistent connections in this way, Apache::DBI greatly improves the performance of your
Perl CGI scripts. This is a supplementary Apache module that you must obtain from CPAN.

Apache::OWA

To illustrate the effectiveness of mod_perl, we'll also show how it's used with the
Apache::OWA Perl Apache module, which connects mod_perl to the PL/SQL Web Toolkit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1 mod_perl

First created by Doug MacEachern in 1996, mod_perl is the main flower of the Apache Perl integration project.
It brings the full power of the Perl language into the heart of the Apache HTTP server by linking the Perl
runtime library into Apache's modular C language API. This is like being able to turn your Jeep into a jet-
powered helicopter for the weekend, and then back again on Monday, at the flick of a switch.[1]

[1] The same trick is repeated, later in this book, in Chapter 8, when we embed Perl into a PL/SQL C library.

Once Apache is up and running with mod_perl, the Perl interpreter engine is up and running too, conveniently
preloaded into constant memory. This means there's no restart overhead each time you run a Perl CGI script.
The speed improvement brought to any Perl-based web site by the addition of mod_perl, and the scalability
implications, are enormous. Important Apache mod_perl links include:

http://perl.apache.org:

Apache Perl integration project home page.

http://www.modperl.com:

Home page of Lincoln Stein and Doug MacEachern's helpful book, Writing Apache Modules with Perl
and C (O'Reilly & Associates, 1999).[2]

[2] The official O'Reilly page is http://www.oreilly.com/catalog/wrapmod.

http://www.refcards.com/about/mod_perl.html:

Andrew Ford's online reference cards for mod_perl, also supported by his book, the mod_perl Pocket
Reference (O'Reilly & Associates, 2000).[3]

[3] http://www.oreilly.com/catalog/modperlpr

http://theoryx5.uwinnipeg.ca/guide

A good entry point to the University of Winnipeg's excellent pages on mod_perl and CGI scripting.
guide is particularly helpful in explaining the complex issue of porting CGI scripts to Apache::Registry
and mod_perl.

http://mathforum.org/epigone/modperl

Ken William's superb mod_perl topics archive.

5.1.1 Installing mod_perl on Unix

Before you can test your mod_perl installation, you must make sure that the Perl LWP.pm module is available.
Developed by Gisle Aas, this module provides a "Library for WWW access in Perl"; it consists of a wide range
of related Perl modules designed to help simplify Perl Internet client connections. Not only is this module useful
for our later mod_perl test, it's invaluable for many Perl Internet requirements. We'll come back to LWP.pm
again and again as we discuss Perl and the Web in the next few chapters.

5.1.1.1 LWP-Library for WWW access in Perl

The main focus of LWP is to provide classes and functions allowing the creation of Internet Perl clients. The
library also contains modules for more general use, even making it possible to create simple HTTP servers.

Fortunately for us, Gisle Aas has collated all of the related LWP modules into a single download, libwww-perl-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fortunately for us, Gisle Aas has collated all of the related LWP modules into a single download, libwww-perl-
5.64.tar.gz (or its latest derivative). However, LWP itself relies upon several other related modules, as detailed
in the appropriate installation order, in Table 5-1. If you want to install these by hand, download the latest
tarballs and process them in the usual perl Makefile.PL manner. Alternatively, we'll accept a little sneaky
automation here. There is a very handy command you can run, which should load everything required for
LWP, directly over the Internet, in just one line:

$ perl -MCPAN -e 'install Bundle::LWP'

An even sneakier routine loads the whole of mod_perl and many of its related modules:

$ perl -MCPAN -e 'install Bundle::Apache'

This will load every module you require, including LWP. However, we'll still go through the manual route; this
way, we can describe all the bumps in the road and configure everything properly. The CPAN module is a
great tool, but it can sometimes be unreliable, as we discussed in Chapter 2, particularly when CPAN
are not preconfigured by their authors in exactly the way that CPAN is expecting (many Internet modules
into this category).

Table 5-1. Modules required to install LWP
Perl module Description/download page

Digest::MD5
Perl interface to the MD5 message digest algorithm[4]

http://www.cpan.org/authors/id/GAAS

HTML::Parser
HTML parser class module for Perl

http://www.cpan.org/authors/id/GAAS

Libnet (e.g., libnet-1.0704.tar.gz)
Many related Perl modules

http://www.cpan.org/authors/id/GBARR

MIME::Base64
Module for encoding and decoding of Base64 strings

http://www.cpan.org/authors/id/GAAS

URI
Uniform Resource Identifiers module

http://www.cpan.org/authors/id/GAAS

HTML::Tagset
Data tables handler useful for parsing HTML

http://www.cpan.org/authors/id/S/SB/SBURKE

LWP (e.g., libwww-perl-5.64.tar.gz)
The complete library for WWW access in Perl

http://www.cpan.org/authors/id/GAAS

[4] To learn more about Ronald L. Rivest's MD5 message digest algorithm, check out: http://theory.lcs.mit.edu/~rivest/homepage.html

Two other CPAN packages that people often use alongside LWP include:

Storable

Persistent data storage used to make HTTP less stateless.

http://www.cpan.org/authors/id/A/AM/AMS

HTML-SimpleParse

A bare bones HTML parser.

http://www.cpan.org/authors/id/KWILLIAMS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1.1.2 SSL — Secure Sockets Layer

If you need enhanced security at your site, you may also want to use the popular Secure Sockets Layer (SSL)
program. Before you install LWP (or re-install it), be sure to check out the programs and Perl extensions listed
in Table 5-2.

Table 5-2. Optional SSL modules for use with LWP
Perl module or C program Description/download page

OpenSSL
Open Secure Sockets Layer program

http://www.openssl.org

Crypt::SSLeay[5]
OpenSSL Perl glue providing https support to LWP

http://www.cpan.org/authors/id/C/CH/CHAMAS

Net::SSLeay
Perl extension for using OpenSSL and https sockets

http://www.cpan.org/authors/id/SAMPO

IO::Socket::SSL
SSL socket interface class

http://www.cpan.org/authors/id/A/AS/ASPA

[5] SSLeay is named after the original "Secure Sockets Layer work by Eric A. Young."

5.1.1.3 Installing mod_perl

Before we begin our installation of mod_perl, we recommend that for security reasons you shut down all your
Apache processes, and then save the entire Apache root structure, perhaps in a tarball, before continuing. We
can always revert back to this saved structure later on, should mod_perl prove problematic.

To do the actual mod_perl installation on Unix, first download the latest and greatest goods by visiting Doug
MacEachern's CPAN page:

http://www.cpan.org/authors/id/DOUGM

Then follow these steps:

1. Begin with the time-honored routine:

$ gzip -d mod_perl-1.26.tar.gz

$ tar xvf mod_perl-1.26.tar

$ cd mod_perl-1.26

$ vi README INSTALL

2. There exists a bewildering array of options you can use to build mod_perl. You'll find all of them detailed
in the INSTALL file. We're just going to go for the simple install of compiling every option available,
the clever EVERYTHING=1 switch:

$ perl Makefile.PL EVERYTHING=1 APACHE_PREFIX=/usr/local/apache
3. The first thing Makefile.PL will try to do is find a source directory for Apache within the local vicinity. This

should be available from the installation we performed in the previous chapter:

Configure mod_perl with ../apache_1.3.24/src ? [y] y
If a local Apache directory is unavailable, you'll be asked to supply one. Answer accordingly:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Please tell me where I can find your apache src [] <your apache source>
You'll then be asked if you want to build the httpd executable in the Apache source directory you
nominated. We said yes:

Shall I build httpd in ../apache_1.3.24/src for you? [y] y
(On some Unix systems, including some Solaris flavors, it may be best to always use fully qualified path
names, because of some problems with include paths. If mod_perl fails to build as expected, thoroughly
check all the documentation that comes with mod_perl as well as the online resources mentioned at the
start of this chapter, particularly the topics archive.)

4. Lots of information will then appear, but assuming no problems, we can go ahead with the compilation:

$ make

5. The make test step is highly recommended if you've loaded LWP. In the following example, we include
only a few lines of typical output, but much more than this should appear. Expect some tests to be
skipped depending on your platform:

$ make test

...

internal/table......ok

internal/taint......ok

All tests successful, 6 tests skipped.
Files=34, Tests=390, 23 wallclock secs

(18.68 cusr + 1.75 csys = 20.43 CPU)

If any tests should fail, re-run make test, but this time in verbose mode:

$ make test TEST_VERBOSE=1
6. Before installing, go to /usr/local/apache/bin directory and save the old httpd file (just in case):

$ cd /usr/local/apache/bin

$ mv httpd httpd.old
7. We can now do the install:

$ make install

8. If you specified it earlier, you should also find a new httpd living under the Apache source directory,
which you may have supplied on the Makefile.PL step. This will be approximately four times the size of
your old httpd. Copy it to the main Apache executables' bin:

$ cd ../apache_1.3.24/src

$ cp httpd /usr/local/apache/bin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ cp httpd /usr/local/apache/bin
$ cd /usr/local/apache/bin

$ ls -la httpd*

-rwxr-xr-x 1 root root 1497133 Apr 1 15:47 httpd

-rwxr-xr-x 1 root root 410220 Apr 1 15:45 httpd.old

9. As a sanity check, to ensure that we've successfully loaded mod_perl into the httpd binary, try the
following command:

$./httpd -l

Compiled-in modules:

 ...

 mod_auth.c

 mod_setenvif.c

 mod_perl.c # Bingo!!! :-)
(If you didn't build Apache and mod_perl yourself, there is a chance that mod_perl will be dynamically
loaded (following the DSO build pattern). In this case, it won't show up on httpd -l, which shows only
statically compiled-in modules.)

5.1.1.4 Specifying the mod_perl Apache library

After a refreshing rest, we can begin again by writing our first mod_perl server script module, HelloApache.pm
(We'll deal with the conversion of ordinary CGI scripts later.) First of all, we need to establish where our main
mod_perl Apache library will be. We suggest that you create a ../lib/perl/Apache directory:

$ cd /usr/local/apache

$ mkdir -p lib/perl/Apache

We now have two options for telling mod_perl where this library will be when Apache starts running. The first is
to add the following line somewhere near the top of our httpd.conf configuration file:

PerlSetEnv PERL5LIB /usr/local/apache/lib/perl

However, because this approach adds a little overhead to each HTTP request, we recommend the second
option instead. Go to your conf directory and edit a new Perl file:

$ cd /usr/local/apache/conf

$ vi startup.pl
$ chmod 755 startup.pl

Create the Perl script shown in Example 5-1 as your superuser (to ensure later security). Change directives,
where appropriate, such as the location of the perl program in the shebang line (notice that we've commented
out Apache::DBI, which we'll be covering later):

Example 5-1. startup.pl — Apache mod_perl initialization script

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#!/usr/bin/perl

Set up the include path to get our new lib/perl directory

BEGIN {

 use Apache();

 use lib Apache->server_root_relative('lib/perl');

}

Insert the most required modules

use Apache::Registry();

use Apache::Constants();

#use Apache::DBI(); # We'll get to this later! :-)
use LWP();

use CGI qw(-compile :all);

use CGI::Carp();

1; # Must finish with a true value

On httpd startup, the preceding Perl script will be run and will therefore load everything important directly into
memory (use startup.pl to add other modules later on). It is run by adding the following lines to httpd.conf

PerlRequire conf/startup.pl
PerlFreshRestart On

PerlFreshRestart On means that on every hit to Apache, its entire collection of
compiled modules is dumped and reloaded. PerlFreshRestart Off means that
modules are only loaded once, when the Apache child process fires up, for added
performance. Having PerlFreshRestart On is a major performance cost but is pretty
much essential while we're in development. Developing with PerlFreshRestart Off
headache, because if you change a module and reload the page, you can't be sure
whether you have the new modified version of your module, or some older cached
copy that an Apache child still has hanging about.

Here's the bottom line: use PerlFreshRestart On for development, Off for production.

Now we can restart Apache, this time with the added zest of mod_perl:

$ /usr/local/apache/bin/apachectl restart
/usr/local/apache/bin/apachectl start: httpd started

This means we can also write our first new Apache module, to directly access the internal workings of the
server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ cd /usr/local/apache/lib/perl/Apache

$ vi HelloApache.pm

Now create the test package, as in Example 5-2:

Example 5-2. The HelloApache.pm module

package Apache::HelloApache;

use strict;

use Apache::Constants qw(:common);

sub handler {

 my $r = shift;

 $r->content_type('text/html');

 $r->send_http_header;

 my $host = $r->get_remote_host;

 $r->print(<<END);

<HTML><HEAD><TITLE>HelloApache</TITLE></HEAD>

<BODY><CENTER>

<H1>Hello $host</H1>

<H2>Okay, perhaps we should have said "Hello World!" but nobody

expects Perl Sith Lords to do the expected! :-)

<H2>

</CENTER></BODY></HTML>

END

 return OK;

}

1; # Must finish with a true value

Because this is a real live server upgrade, we need to tell httpd when to access this handler process.
edit httpd.conf:

<Location /hello/apache>

 SetHandler perl-script

 PerlHandler Apache::HelloApache

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PerlHandler Apache::HelloApache
</Location>

Now restart Apache and point your browser to http://localhost/hello/apache:

$ /usr/local/apache/bin/apachectl restart

/usr/local/apache/bin/apachectl restart: httpd restarted

Ladies and Gentlemen, check out Figure 5-1. The mod_perl has landed.

Figure 5-1. Our first Apache Perl module in sparkling form

Now, you may acknowledge that this is all very nice and agree that mod_perl works much more efficiently than
the plain Perl CGI alternative. But you may also have 200 debugged Perl CGI scripts, all of which work
brilliantly from a functional point of view, and you may have very little free time available to spend converting
these scripts to Apache server modules. So even though your scripts are eating up too much CPU (and
management is thinking of Java servlets), you probably have little inclination to plunge into a major conversion
effort. What can you do? Read on.

5.1.2 Apache Perl Modules

Because you've embedded the Perl interpreter into the heart of the Apache server, the entire Apache server-
side API is available to Perl programmers. The two modules listed here will provide you with the most bang for
the buck in terms of managing your current collections of DBA CGI scripts:

Apache::Registry

Fortunately, we can avoid rewriting all of our CGI scripts into Apache server functions like HelloApache
Like King Arthur's cavalry, Apache::Registry comes riding through the mist to our rescue. With
Apache::Registry, we get most of the benefits of mod_perl without having to change a single line of our
current CGI scripts. We can then eventually choose to port these over to the new modular style in
own good time.

Apache::DBI

Using traditional Perl CGI scripts eats up memory, but there is another major cost as well, especially in
conjunction with Perl DBI. That is the continuous creation stream of expensive database connections.
The solution can be found in the mysterious connection pool of Apache::DBI.

We'll look at these two key modules in the following sections. All of the popular Apache mod_perl packages
are summarized in Table 5-3.

Table 5-3. Main Apache mod_perl modules
mod_perl module Description

Apache::Registry Enhances the running of unaltered CGI scripts
Apache::Status Embedded interpreter providing runtime status
Apache::Embperl Embeds Perl within HTML
Apache::SSI Server-side includes, implemented in Perl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache::DBI Transparently maintains persistent DBI connections
Apache::Gateway Implements an HTTP/1.1 gateway
Apache::GzipChain Compresses web output on the fly
Apache::Filter Filters document and script outputs
Apache::Sandwich Automatically generates page headers and footers
Apache::TransLDAP Translates URIs via LDAP lookups[6]

Apache::ASP Implements a port of Active Server Pages to Perl[7]

Apache::AuthenDBI Authenticates against a database via DBI
Apache::PHLogin Authenticates against a PH database with the Net::PH module[8]

Apache::DBILogger Logs requests to a database via Perl DBI
Apache::Session Provides persistent session management facilities
Apache::Throttle Content negotiation based on connection speed

[6] URI stands for Uniform Resource Identifiers (see http://www.ics.uci.edu/pub/ietf/uri/ for more on related Internet definitions). LDAP
stands for Lightweight Directory Access Protocol (see http://www.openldap.org/ for the OpenLDAP project).

[7] Check out http://www.nodeworks.com/asp/ for more details.

[8] The Ph (Phonebook) Nameserver is a database widely used as an online phonebook server for public organizations. See http://www-
dev.cso.uiuc.edu/ph/for more details.

5.1.2.1 Apache::Registry

To take advantage of the performance advantages of mod_perl, you normally must rewrite your Perl
scripts in the form of server subroutines. Apache::Registry, which comes automatically with mod_perl
avoid this overhead.

As we mentioned, you may already have a large number of working scripts that you use in performing Oracle
database administration. There is nothing really wrong with them; the only problem is the overhead of their full
execution cycle every time they're requested. This makes them processor-intensive (i.e., slow). You'd rather
avoid rewriting them all as mod_perl scripts, but you would like to make them run faster — this is where
Apache::Registry comes in. It takes CGI script calls, in the form of http://www.myhost.com/cgi-bin/cgi-script.pl
and evaluates them into server subroutines, thereby turning plain old scripts into much quicker mod_perl
objects. These server subroutines remain resident in the Apache server's memory. You will generally find that
using Apache::Registry gives you a massive power enhancement.

You will need to check the mod_perl and Apache::Registry documentation, as this
shortcut makes certain assumptions about your CGI coding standards. Scripts that
you have coded in a quick-and-dirty way may end up failing the evaluation performed
by Apache::Registry.[9]

[9] Check out these pages for more information: http://perl.apache.org/ and
http://perl.apache.org/dist/cgi_to_mod_perl.html.

By far the most common problem is using uninitialized "my" variables. What
Apache::Registry really does is to grab the meat of a script and put it into a handler
subroutine, which may fail to recognize uninitialized lexical variables. (See Appendix
A, for a discussion of "my" variables.) Therefore, we need to hard-initialize all of our
variables (e.g., specify my $foo = 0; instead of just my $foo;), to avoid the most
common trap. Check out the following for much more
detail:http://theoryx5.uwinnipeg.ca/guide/.

Note that each child process must compile at least once, so early requests may seem slow, but each
subsequent request will be dealt with in Apache server memory and will seem very fast indeed. You will
particularly notice this effect with large scripts or those with lots of module calls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Follow these steps to use Apache::Registry:

1. We need to add a few more lines to our httpd.conf file:

Alias /perl /usr/local/apache/perl

<Location /perl>
 SetHandler perl-script

 PerlHandler Apache::Registry

 PerlSendHeader On

 Options +ExecCGI

</Location>

2. Now create a corresponding ../perl directory on the web server, into which we move our chosen CGI
scripts (obviously, you may simply wish to point the /perl alias, as above, directly towards your current
CGI directory):

$ cd /usr/local/apache

$ mkdir perl

We'll use the code in Example 5-3 to demonstrate how Apache::Registry works. Notice that we can use
all of the typical CGI environmental variables, such as REMOTE_ADDR.

Example 5-3. The HelloInquisition.pl program

#!/usr/bin/perl

use strict;

print "Content-Type: text/html\n\n";

print <<END;

<HTML><HEAD><TITLE>HelloInquistion</TITLE></HEAD>

<BODY><CENTER>

<H1>Hello $ENV{REMOTE_ADDR}, are you comfortable? 8-)</H1>
<H2>Nobody ever expects the HelloInquisition.pl Script!</H2>
</CENTER></BODY></HTML>

END

Make the script executable and restart Apache to pick up the httpd.conf change:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ cd /usr/local/apache/perl

$ chmod 755 *.pl

$ /usr/local/apache/bin/apachectl restart

/usr/local/apache/bin/apachectl restart: httpd restarted

You can see the Perl script output in Figure 5-2.

Figure 5-2. Apache::Registry linking CGI to mod_perl

Use of the Apache::Registry module helps overcome the performance problem that occurs when the Perl
interpreter has to be re-executed every time a Perl script is called. But there is also another source of
performance problems with CGI scripts more closely linked to database usage. We'll discuss that in the next
section.

5.1.2.2 Apache::DBI

Each time you run a Perl CGI script that accesses a database, that script opens a new connection to the
Oracle database at the beginning of the script, and then has to close it again at the end. This happens every
single time you run the script, no matter how many thousands of people an hour are browsing the target page.
This login process has a substantial overhead associated with it. It creates another performance issue for CGI
scripts, one that even Apache::Registry can't overcome: even if the script is always in memory, it still has to
open and close database connections.

Edmund Mergl has provided an excellent solution. His Apache::DBI module is an extension to Apache
written in Perl (and thus requires the presence of mod_perl). Once you load Apache::DBI, it pools, or caches,
all of the required database connections into memory, lending them out the same way that ConnectionPool
classes do for Java. Whenever this module detects that a CGI script is opening or closing a database
connection, it simply steps in and takes over from DBI, handing out and collecting its pooled Oracle
connections as necessary, closing and opening them independently of the CGI scripts in current operation.
These cached connections are known as persistent connections because the connection to the database is
kept persistent between sessions. Apache::DBI does its work entirely in the background, so you'll be aware
only that your web site has become much faster and far more scalable — even more important, your database
is doing less work!

Unlike Apache::Registry, which comes preloaded with mod_perl, Apache::DBI is a supplementary module
available from CPAN.[10] You can obtain it from:

[10] The Apache module Apache::AuthDBI also comes with Apache::DBI, giving you two excellent modules for the price of downloading
just one.

http://www.cpan.org/authors/id/MERGL

Follow these steps:

1. Simply install Apache::DBI the same way you'd install any other regular Perl module (notice that there is
no make test step):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ gzip -d ApacheDBI-0.88.tar.gz

$ tar xvf ApacheDBI-0.88.tar

$ cd ApacheDBI-0.88

$ vi README

$ perl Makefile.PL

$ make

$ make install

2. Revisit startup.pl script and uncomment the earlier call to Apache::DBI:

$ cd /usr/local/apache/conf

$ vi startup.pl

#!/usr/bin/perl

...

use Apache::DBI(); # Uncomment this non-standard Perl Apache module! 8)

...

1;

Alternatively, add the following line to httpd.conf:

PerlModule Apache::DBI

3. Apache::DBI transparently takes over the following DBI calls within scripts:

DBI->connect

DBI->disconnect

4. By taking over DBI->connect statements, to prevent them from connecting directly to a database each
time, Apache::DBI lends scripts a preprepared database connection. It creates and deletes these
connections, as necessary, in the background to maintain a pool of replacements. It also replaces the
DBI->disconnect statement with a do-nothing statement, as follows:

sub disconnect {

 my $prefix = "$$ Apache::DBI ";

 print STDERR "$prefix disconnect (overloaded) \n"

 if $Apache::DBI::DEBUG > 1;

 1;

};

Simply move your DBI web scripts to the target ../perl area to gain its benefit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1.2.3 Apache and ORACLE_HOME

Apache generally needs to know where your ORACLE_HOME is in order to get DBD::Oracle to work correctly.
The easiest way of specifying any environment variable is to have a line such as the following in httpd.conf

PerlSetEnv ORACLE_HOME /opt/oracle/product/9.0.1

(We use PerlSetEnv, rather than Apache's usual SetEnv, because it is guaranteed to take effect before all of
the mod_perl and Apache handlers run; their Perl additions may later require values such as
ORACLE_HOME.)

With persistent database connections now on board, let's give it a whirl. Try out the CGI script in Example 5-4
Notice that there's no explicit use of Apache::DBI within the script. It has been called off the bench in
and mod_perl is holding it in memory for us under the floodlights, keeping it there until we send out the blade
runners later on to shut down the Apache server daemons.

Example 5-4. WaitsMonitor.pl

#!/usr/bin/perl

use strict;

use DBI;

use CGI qw(:standard :netscape);

use CGI::Pretty qw(:html3);

Link to Oracle, this time via Apache::DBI in the background,

and set up our SQL to get our results.

my $url = 'dbi:Oracle:orcl.world';

my $user = 'system';

my $passwd = 'manager';

my $dbh = DBI->connect($url, $user, $passwd, {RaiseError=>1, AutoCommit=>0});

my $sth = $dbh->prepare('select event Wait_Event, ' .

 'total_waits Tot_Waits, ' .

 'time_waited Times_Waited ' .

 'from v$system_event ' .

 'where event like \'%file%\' ' .

 'order by total_waits desc ') ;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'order by total_waits desc ') ;

$sth->execute or die "Cannot execute";

Get the fieldnames, and make them into table headers.

my $rs = $sth->{NAME};

my @col_head;

for (@$rs)

{

 push(@col_head, $_);

}

Now get the data dough, and roll out the pastry

my @row;

my @rows;

while (@row = $sth->fetchrow_array)

{

 push(@rows, td(\@row));

}

$dbh->disconnect;

Finished with DBI. Now we sort out the CGI side of life.

my $title = "Welcome back to WaitsMonitor!";

Create the HTML page.

my $current_time = localtime();

print header,

 start_html(-title=>$title, -bgcolor=>'white', -text=>'black'),

 center(h1($title),

 hr(),

 table({border=>'2'},

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 table({border=>'2'},

 caption($current_time),

 TR([th(\@col_head), @rows])

)),

 end_html;

Make the script executable:

$ cd /usr/local/apache/perl

$ chmod 755 WaitsMonitor.pl

You can see the results of this script's being called in Figure 5-3.

Figure 5-3. Apache::DBI saving us connection time

5.1.3 Installing mod_perl on Win32

Fortunately for those of us who have just waded through the Unix installation of mod_perl, there is a binary
version of mod_perl that was built for Win32 and Perl 5.6 by the heroic Randy Kobes. Installing it is very
straightforward:

1. Now is as good a time as any to load up your favorite optional Apache-related module from
ActiveState.com (though it's also possible to do this later on):

C:\Program Files\Apache Group\Apache\modules>ppm

PPM interactive shell (2.1.5) - type 'help' for available commands.

PPM> install ApacheDBI
Install package 'ApacheDBI?' (y/N): y

...

2. We can also use PPM to install a more independent distribution of mod_perl (available from Canada's
University of Winnipeg Department of Theoretical Physics). You will get all of the default Perl modules
required by mod_perl with this download, and much more besides. (Notice the use of an HTTP address
to pick up the PPD file, which itself points us towards the gzipped file on the web server that contains
the necessary files):[11]

[11] The installation tarball can be downloaded directly from the University of Winnipeg site; if you'd like to view its constituents,
check out http://theoryx5.uwinnipeg.ca/ppmpackages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PPM> set repository theoryx5

 http://theoryx5.uwinnipeg.ca/cgi-bin/ppmserver.pl?urn:/PPMServer

PPM > install mod_perl

PPM > set save
The set save step ensures that theoryx5 is available later for PPM downloads.

3. During the PPM process, a second console screen should pop up, asking you where you'd like to install
the necessary mod_perl.so file. We used the directory for modules installed with Apache in Chapter 4

Which directory should mod_perl.so be placed in?

 (enter q to quit) [C:/Apache/modules]

 C:/progra~1/apache~1/apache/modules
4. The mod_perl.so file is now safely shipped in:

C:\Program Files\Apache Group\Apache\modules>dir mod_perl*
MOD_PERL SO 208,896 14/03/02 1:39 mod_perl.so

5.1.3.1 Configuring Apache on Win32

We're nearly there. Before starting Apache on Win32, however, we need to add the following line to the
httpd.conf file after all the other LoadModule statements:

LoadModule perl_module modules/mod_perl.so
Do this from the Win32 Start menu as follows:

Start Programs Apache HTTP Server Configure Apache Server Edit
the Apache httpd.conf Configuration File
Also make sure you add the following line after the AddModule section:

AddModule mod_perl.c

Keep httpd.conf open at this point, and move onto the next stage.

5.1.3.2 Testing on Win32

As with Unix, we need to load up the Count of Monte Cristo's chest of Apache jewels every time we fire up the
server.

1. Modify the original startup.pl file from Unix and insert it into the C:\Program Files\Apache
Group\Apache\conf directory. Note especially the first line, which directs Apache to use ActivePerl's Perl
executable:

#!/perl/bin/perl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#!/perl/bin/perl
Set up the include path to get our new lib/perl directory

BEGIN {

 use Apache();

 use lib Apache->server_root_relative('lib/perl');

}

Insert our A-Team modules

use Apache::Registry();

use Apache::Constants();

use Apache::DBI();

use LWP(); Uncomment if LWP loaded! :-)

use CGI qw(-compile :all);

use CGI::Carp();

1;

2. On server startup, this will locate our nominated Apache/Perl library and load all of our Apache::*
modules into the requisite memory areas.

3. Now create the actual directories necessary to store the Apache modules; startup.pl will point at these
when it's fired up:

C:\Program Files\Apache Group\Apache\lib>mkdir perl

C:\Program Files\Apache Group\Apache\lib>cd perl

C:\Program Files\Apache Group\Apache\lib\perl>mkdir Apache

4. Now add the following to httpd.conf to ignite this process later on:

PerlRequire conf/startup.pl

PerlFreshRestart On

We can now write our first Win32 Perl Apache module.

5.1.3.3 HelloWin32.pm

Move to our new perl\Apache directory:

C:\ cd C:\Program Files\Apache Group\Apache\lib\perl\Apache
We can create our new module, shown in Example 5-5, which does some checking on tablespace
fragmentation via a subroutine called from the Apache handler process. (It's easy to forget, but what we're
doing here really is quite amazing. We're right in the heart of the Apache server, changing it directly to make it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

doing here really is quite amazing. We're right in the heart of the Apache server, changing it directly to make it
do exactly what we want it to do. Could any other web server give you this kind of flexibility with something as
relatively easy to use as Perl?)

Example 5-5. HelloWin32.pm

package Apache::HelloWin32;

use strict;

use DBI;

use Apache::Constants qw(:common);

use CGI qw(-compile :all);

sub handler {

 my $r = shift;

 $r->content_type('text/html');

 $r->send_http_header;

 my $host = $r->get_remote_host;

 my $table = tabspace_frag();
 $r->print(<<END);

<HTML><HEAD><TITLE>Hello Win32</TITLE></HEAD><BODY>

<H1>Hello $host - Let's do something half useful</H1><HR>
$table
</BODY></HTML>

END

 return OK;

}

sub tabspace_frag {
 my $url = 'dbi:Oracle:orcl';

 my $user = 'system';

 my $passwd = 'manager';

 my $dbh = DBI->connect($url, $user, $passwd, {RaiseError=>1});

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 my $dbh = DBI->connect($url, $user, $passwd, {RaiseError=>1});

 my $sth = $dbh->prepare('SELECT ts.name tspace, ' .

 'tf.blocks blocks, ' .

 'sum(f.length) free, ' .

 'count(*) pieces, ' .

 'max(f.length) biggest, ' .

 'min(f.length) smallest, ' .

 'round(avg(f.length)) average, ' .

 'sum(decode(sign(f.length-5), ' .

 '-1,f.length,0)) dead ' .

 'FROM sys.fet$ f, sys.file$ tf, ' .

 'sys.ts$ ts ' .

 'WHERE ts.ts# = f.ts# ' .

 'AND ts.ts# = tf.ts# ' .

 'GROUP BY ts.name,tf.blocks');

 $sth->execute;

 # Get the fieldnames, and make them into table headers.

 my $rs = $sth->{NAME};

 my @col_head;

 for (@$rs)

 {

 push(@col_head, $_);

 }

 # Now get the data, to fill the table with shortly.

 my @row;

 my @rows;

 while (@row = $sth->fetchrow_array)

 {

 push(@rows, td(\@row));

 }

 $dbh->disconnect;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $dbh->disconnect;

 # Now we sort out CGI and return to handler.

 # Create the HTML page.

 return center(table({border=>'2'},

 caption("Tablespace Fragmentation"),
 TR([th(\@col_head), @rows])));

}

1; # This is a package, therefore truth required

Before we complete our test run, we need to make one final addition to the httpd.conf configuration file before
running the server:

<Location /hello/win32>

 SetHandler perl-script

 PerlHandler Apache::HelloWin32
</Location>

We can now set Apache running:

Start-> Programs-> Apache HTTP Server-> Start Apache in Console

You can see the spectacular results in Figure 5-4.

Figure 5-4. HelloWin32.pm attempting to be half useful

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2 Apache::OWA

Apache::OWA was written by Svante Sörmark and was named originally after the Oracle Web
Application server, which has since morphed into Oracle iAS. Apache::OWA's mission is to give
Apache direct access to Oracle Corporation's PL/SQL Web Toolkit. These packages ship
automatically with later Oracle servers, from Oracle Version 8.1.7 onward, and they allow PL/SQL
programs to create web content.

Although this module is not obviously aimed squarely at Oracle DBAs, we've included it for
several reasons:

Many DBAs have database administration tools that are driven by the PL/SQL Web Toolkit
or have tools that they would like to access over the Web. If that is true at your site and you
either don't have access to a web application server or you want to bypass the complexities
of working within your particular server setup, Apache::OWA may be a good option.
Essentially, this module will provide you with the necessary access to the PL/SQL Web
Toolkit and save you from having to do all of the necessary configuration on your own.
You'll end up being able to combine Oracletool, Karma, your own Perl and PL/SQL Web
Toolkit DBA scripts, and perhaps some Perl-based system administration web pages too —
all within one personalized centrally controlled environment.

Many Oracle DBAs are also Web Application Server administrators, and for those folks
Apache::OWA may be a critically important tool.

This module is a great piece of work. In just a few hundred lines of Perl code,
Apache::OWA is one of the greatest examples of Oracle-accessing code we've seen. If
you're thinking of writing your own Apache Perl modules at any point — for example, to
drive your own web and data needs, we highly recommend that you use the OWA.pm file
work as a code skeleton.[12]

[12] Richard Sutherland's DDL::Oracle tool (described in Chapter 3) is also an excellent code template.

You can find out more about Apache::OWA from the following web sites:

http://sourceforge.net/projects/owa
http://owa.sourceforge.net

The main packages in the PL/SQL Web Toolkit are described in the following list.

HTP

HyperText procedures that generate HTML and send it to the browser. Most HTP
procedures bear the name of the HTML construct they're responsible for. For example,
HTP.ANCHOR creates HTML anchor statements such as:

Input text...

HTF

HyperText functions that help corresponding HTP procedures by wrapping input with
various HTML constructs.

OWA_UTIL

A collection of utility procedures and functions divided into three groups:

HTML utilities

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A typical procedure here would retrieve the values of CGI environment variables or
perform a URL redirection operation.

Dynamic SQL utilities

These produce web pages with dynamically generated SQL.

Date utilities

These simplify date handling.

OWA_OPT_LOCK

This package imposes optimistic locking strategies in order to prevent lost updates.

OWA

Holds internal procedures called by the Oracle PL/SQL Agent itself.

OWA_PATTERN

These pattern-matching utilities perform string matching and substitution with regular
expression functionality. Many of the regex definitions used here are the same as those
defined in Appendix C.

OWA_TEXT

This set of utilities is used by OWA_PATTERN to manipulate large data strings. They have
also been externalized for direct implementation.

OWA_IMAGE

A set of utilities for manipulating HTML image maps.

OWA_COOKIE

Datatypes, procedures, and functions for manipulating HTML cookies.

For more information about these packages, check out http://technet.oracle.com — in particular,
pages like the following:

http://technet.oracle.com/doc/windows/was.21/psqlwtlk.htm

5.2.1 Installing Apache::OWA on Unix

Before installing Apache::OWA, you should be aware that this module relies upon the presence of
another module called Apache::Request, which lives on CPAN under the name libapreq. You can
get this module from:

http://www.cpan.org/authors/id/J/JI/JIMW

Apache::Request was developed by Jim Winstead and mimics the abilities of CGI.pm to deal with
GET and POST program parameters. However, it does this in a quicker way for Apache/Perl
modules, giving Apache::OWA more execution speed. To improve performance even more, we
recommend that you install Apache::DBI for use with Apache::OWA.

The Perl modules contained within the generic Apache::Request library make use of the
underlying libapreq C library. They're installed as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ gzip -d libapreq-1.0.tar.gz

$ tar xvf libapreq-1.0.tar

$ cd libapreq-1.0

$ vi README INSTALL

$ perl Makefile.PL

$ make

$ make test

$ make install

(Make sure to check out the README and INSTALL files with libapreq, particularly on Solaris 8
and Red Hat Linux. There were some issues noted with Version 0.31, although Version 1.0
should have resolved them.)

We can now download and install Apache::OWA proper. We got hold of the Apache-OWA-
0.7.tar.gz tarball from the following site:

http://www.cpan.org/authors/id/S/SV/SVINTO

Apache::OWA bends the old conventions a little by naming its unpack directory differently from
the download tarball, but hey, we like a little individuality to break up these installation runs. Also
note that the make test step was a little skimpy with our tarball, though this may have changed by
the time you come to download your own latest version. Let's work through the steps:

$ gzip -d Apache-OWA-0.7.tar.gz

$ tar xvf Apache-OWA-0.7.tar

$ cd OWA
$ vi README

$ perl Makefile.PL

$ make

$ make test # May be a little skimpy, just yet! :-)
$ make install

That should be it. Now let's try the same under Win32.

5.2.2 Installing Apache::OWA on Win32

Once again, those great folks at ActiveState have done us proud. Just start up a command
console while connected to the Internet, and then click in about 50 letters. We'll highlight the
places you actually have to type:

C:\Perl\site\lib\Apache> ppm
PPM interactive shell (2.1.5) - type 'help' for available commands.

PPM> install libapreq

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PPM> install libapreq
Install package 'libapreq?' (y/N): y
...

Writing C:\Perl\site\lib\auto\libapreq\.packlist

PPM> install Apache-OWA
Install package 'Apache-OWA?' (y/N): y
...

Writing C:\Perl\site\lib\auto\Apache\OWA\.packlist

PPM> quit

5.2.3 Configuring Apache::OWA

Those who have wrestled in the past with the various Oracle Webserver products and their
sometimes cumbersome administration suites will appreciate how minutely scaled the same
process is for Apache::OWA in comparison. It's the size of The Incredible Shrinking Man at the
end of the film, when he escapes from the spider (i.e., very small indeed). We simply edit
httpd.conf, to create a DAD (Database Access Descriptor). Follow these steps:

1. For applications with little need for authentication, all you'll require is the following. This
calls procedures in the orcl database, living under scott's schema:

<Location /scott/ >

 SetHandler perl-script

 PerlHandler Apache::OWA

 PerlSendHeader ON

 PerlSetVar DAD orcl:scott:tiger
</Location>

2. When we create the scott.HelloApacheOWA procedure, in Example 5-6, we'll call it from a
browser as follows:

http://localhost/scott/HelloApacheOWA

If by using the same URL we decide instead to call a similarly named procedure under
another schema (e.g., webaccess, we'd do it like this):

<Location /scott/ >

 SetHandler perl-script

 PerlHandler Apache::OWA

 PerlSendHeader ON

 PerlSetVar DAD orcl:scott:tiger

 PerlSetVar SCHEMA webaccess
</Location>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</Location>

3. Alternatively, if we set the correct public synonyms and execute permissions, and we want
all of our users to log in to the web pages with their individual Oracle username and
passwords, we'd do it like this:

<Location /owa_db_auth/ >

 AuthName owa_db_auth

 AuthType Basic

 PerlAuthenHandler Apache::OWA

 PerlSendHeader ON

 Require valid-user
 PerlSetVar DB orcl
 PerlSetVar SCHEMA webaccess
 PerlSetVar DB_AUTH true
</Location>

(Other more complex security possibilities are documented within the Apache::OWA
download.)

As an example of how Apache::OWA works, let's take the first simple configuration we worked
through preceding, and insert it into our httpd.conf file. We created the HelloApacheOWA
procedure in Example 5-6, under scott:

Example 5-6. HelloApacheOWA.sql

create or replace procedure HelloApacheOWA as

 cursor curs_dept is

 select deptno, dname, loc

 from dept

 order by deptno;

begin

 htp.htmlOpen;

 htp.headOpen;

 htp.title('Apache::OWA, Perl Apache Module for Oracle PL/SQL');

 htp.headClose;

 htp.bodyOpen(cattributes => ' bgcolor="WHITE" ');

 htp.centerOpen;

 htp.header(1, 'Hello Apache::OWA! :-)');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 htp.header(1, 'Hello Apache::OWA! :-)');

 htp.hr;

 htp.tableOpen(cattributes => ' border="2" width="80%" ');

 htp.tableRowOpen;

 htp.tableHeader('Department Number');

 htp.tableHeader('Department Name');

 htp.tableHeader('City Location');

 htp.tableRowClose;

 for rec_dept in curs_dept loop

 htp.tableRowOpen;

 htp.tableData(rec_dept.deptno);

 htp.tableData(rec_dept.dname);

 htp.tableData(rec_dept.loc);

 htp.tableRowClose;

 end loop;

 htp.tableClose;

 htp.hr;

 htp.centerClose;

 htp.bodyClose;

 htp.htmlClose;

end;

When we call this procedure via the browser, it generates the output in Figure 5-5. At this point,
you may already be thinking of a hundred ways you could expand your own usage of mod_perl
and Apache::OWA to create the mother of all remote DBA web toolkits, driven by Perl and
PL/SQL. Go for it!

Figure 5-5. Apache::OWA calls PL/SQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Embedded Perl Web Scripting
In the last two chapters, we've looked at several categories of Perl web-based Oracle
applications: those that use standard Perl CGI scripts and those that use the Apache mod_perl
module to make those scripts run more efficiently. With both approaches, though, the developer
needs to worry about the design of the web pages displayed by the application. Interesting as web
page design can be, you may feel that as an Oracle DBA you have enough responsibilities on
your plate. You may need to fill web pages with data — product lists, employee data, and all kinds
of other information — but you may not have a keen interest in how to lay out that data on the
pages themselves. In this chapter, we'll look at another approach to dynamic web programming,
one that completely separates database issues and web page design issues. This approach is to
use embedded scripting, and it can be an elegant solution, as long as the embedded language is
a simple and straightforward one.

This embedded approach is also known as templating, because the presentation layer — or site
design — is the template to which is added the application or code development layer (that layer
contains the business-specific detail).

There are various web programming solutions loosely based on the idea of embedding code into
HTML pages, and then preprocessing it. With Java, for example, you use Java Server Pages
(JSPs). Microsoft's version of this technology is known as Active Server Pages (ASPs). There are
also several excellent Perl embedded scripting solutions that we'll describe in this chapter:

Embperl

An embedded scripting language that's useful for building up mod_perl web sites from
collections of small reusable components. It uses a C-library back end to assist with its
processing.

Mason

Another embedded scripting language. Similar to Embperl in its functionality and use of
mod_perl, but built purely in Perl. It uses an object-oriented style of component
programming.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.1 Embperl

Gerald Richter's Embperl program is a popular solution for those who want to separate web page
design from data coding issues while taking advantage of Perl's ability to generate dynamic content
without having to worry about web page design issues. As its name suggests, Embperl provides the
ability to embed Perl within your HTML presentation layer templates.[1]

[1] This approach is similar to what is done with PHP (http://www.php.net) and PL/SQL Server Pages (PSPs).

The Embperl 2.0 release promises extensive new capabilities, offering such features as XML and
XSLT integration. Although Embperl is implemented primarily in Perl, it also has a C back end for
speedier processing. For detailed information, go to:[2]

[2] As a rule of thumb, only the latest stable releases make it to CPAN, whereas beta versions are generally available on the
other site.

http://perl.apache.org/embperl
http://www.cpan.org/authors/id/GRICHTER

In the following sections we'll describe how to install Embperl on Unix and Win32 systems. The
Apache configuration and execution of Embperl is virtually identical on the two systems, so once we're
installed on both systems we'll run through a single configuration sequence.

6.1.1 Installing Embperl on Unix

This section describes how to install Embperl and its associated modules on Unix platforms.

Although you can use Embperl under vanilla CGI Apache, we strongly
recommend that you use mod_perl. Not only is the performance difference
astonishing, but mod_perl also allows you to use a wide range of Apache
modules, including the highly useful Apache::Session and Apache::DBI. And
without Apache::Session (as we describe below), you will get no session
persistence between HTTP requests.

1. If you're installing Embperl on Unix, you need to obtain a few additional modules to get its full
application benefit. (Embperl is also expecting you to have pre-loaded mod_perl, which provides
it with many of its extended options. We'll also assume this, for the rest of this installation.)

Storable.pm

Raphael Manfredi's popular advanced module for storing various persistent data
structures in Perl (and required by Apache::Session). In the later section, Section 6.1.5
we'll explain the advantages of storing persistent web data. Download and install the
tarball from the following Perl 5 Porters site:

http://www.cpan.org/authors/id/A/AM/AMS

Apache::Session

Jeffrey Baker's Apache Perl module. This interface between Apache and the Storable.pm
module is used to store persistent web data. Download and install it from:

http://www.cpan.org/authors/id/JBAKER

Apache::SessionX

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is a subsidiary module developed by Gerald Richter to complement Embperl by
creating an extended persistence framework for Embperl's session data between HTTP
requests (thus extending Apache::Session). Download and install the latest version from
the CPAN site at:

http://www.cpan.org/authors/id/GRICHTER

2. For testing purposes, Embperl also requires that LWP and all of its precursor modules be
installed; Chapter 5, contains the full details about LWP installation.

3. Once you've installed these required modules, you can install Embperl itself. During the
installation you need to supply the location of your Apache source directory. Embperl can then
get hold of the relevant Apache code headers, and configure itself against mod_perl. For
example:

$ perl Makefile.PL

Build with support for Apache mod_perl?(y/n) [y]y

Use ../apache_1.3.24/src as Apache source(y/n) [y]y

...

4. Once Embperl has been configured, complete the installation as follows:

$ make

$ make test

$ make install

We can now head on down to Embperl's configuration.

6.1.2 Installing Embperl on Win32

Installing Embperl on Win32 is remarkably easy because of the good work of those physics
philosopher-kings at the University of Winnipeg. The gig's all been tied up with super-strings and made
as simple as falling off a p-brane bubble quark. When it's installing, take a look at all of those modules
you get. It's just like Christmas:

PPM> set repository theoryx5

 http://theoryx5.uwinnipeg.ca/cgi-bin/ppmserver.pl?urn:/PPMServer

PPM> set save

PPM> install Storable
Install package 'Storable?' (y/N): y

Installing package 'Storable'...

...

PPM> install Apache-Session

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PPM> install Apache-Session
Install package 'Apache-Session?' (y/N): y

Installing package 'Apache-Session'...

...

PPM> install Apache-SessionX
Install package 'Apache-SessionX?' (y/N): y

Installing package 'Apache-SessionX'...

...

PPM> install Embperl
Install package 'Embperl?' (y/N): y

Installing package 'Embperl'...

...

PPM> quit

And that's it. We're now ready to configure and deploy Embperl, a process that is virtually identical on
both Win32 and Unix.

6.1.3 Deploying HTML::Embperl

There are many different ways to deploy Embperl, and all of them are discussed in depth within the
documentation. For starters, take a look at the information obtained from the following command:

$ perldoc Embperl

Our favorite way of deploying Embperl is to ask the Apache web server to call it. Apache can be called
with any files bearing a particular suffix (such as .epl) in the same way that you can configure Apache
to call Perl if it finds scripts ending with .cgi. You do this in httpd.conf by adding a handler (in our case
a PerlHandler) and associating a file type with a nominated suffix in the following way. Here we have
chosen the typically generic Embperl .epl suffix:

PerlModule Embperl

EMBPERL_DEBUG 2285
<Files *.epl>
 SetHandler perl-script

 PerlHandler Embperl

 Options ExecCGI

</files>

AddType text/html .epl
1. Once we restart Apache, every time anybody calls up a web page from this server, suffixed with

.epl, Embperl will be called to deal with it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. There are many different EMBPERL_DEBUG levels, and we've chosen an output level initially
recommended by the Embperl download installation files. While you're getting used to Embperl,
you may want to try these settings as a starting point, and then alter them to create varying
output within Apache's generated logs as you progress.

We started, as illustrated in Example 6-1, with our first Embperl .epl file, which checks up on
who is accessing which object within the Oracle database. A bit later we'll run through how
Embperl interprets this information.

Example 6-1. ObjectAccess.epl — Embperl and Oracle

<html><head>

<title>Embperl Object Access Checker</title>

</head><body><center>

<h1>Hello Embperl, Let's Check Object Access! 8-)</h1><hr>

[-

$url = 'dbi:Oracle:orcl';

$user = 'system';

$passwd = 'manager';

use DBI ;

Connect to the database

$dbh = DBI->connect($url, $user, $passwd, {RaiseError=>1});

Prepare the SQL to check up on object access

$sth = $dbh->prepare ('select s.osuser "OS User", ' .

 's.username "Username", ' .

 's.serial# "Serial#", ' .

 's.sid "Sid", ' .

 'a.owner||\'.\'||a.object "Object Name", ' .

 '\'=> \'||a.type "Lock Mode" ' .

 'from v$session s, v$access a ' .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'where a.sid = s.sid ' .

 'order by 6,1,2,3,4,5');

Execute the Query

$sth->execute;

Get the Column Headers

$head = $sth->{NAME} ;
Fetch the data into the drillable data_ref array reference

$data_ref = $sth->fetchall_arrayref ;
-]

<table border="2">

<tr><th>[+ $head->[$col] +]</th></tr>
<tr><td>[+ $data_ref->[$row][$col] +]</td></tr>
</table>

<hr></center></body></html>

Store ObjectAccess.epl within the ../htdocs directory alongside ordinary flat HTML files, and
then fire up Apache. Our new Embperl file produced the subsequent browser output in Figure 6-
1. So that's the culprit!

Figure 6-1. Our first Embperl execution

6.1.4 Looking at Embperl Syntax

Now let's look at what is going on in Example 6-1. There are three main ways to actually embed Perl
within Embperl templates; these different approaches are summarized in Table 6-1. In the following
sections we'll focus on how Embperl syntax differs from standard Perl syntax.

Table 6-1. Embedding Perl within the Embperl template

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Format Description Example

[- ... -]
Code execution: The code between the [- and the -] is executed, without any
HTML being generated. This approach is mainly for assignments, function
calls, creating database connections, and so on, as in Example 6-1.

[-

$dbh = DBI-
>connect(

$url, $user,
$passwd)

-]

[+ ... +] Code output: The code is executed as with the previous example, except this
time the last thing evaluated is streamed back to the HTML output.

<tr><th>

[+ $head->
[$col] +]

</th></tr>

[! ... !]
One-time execution: The code is executed as with [- ... -], but only for the first
request, which is useful for variable or subroutine initialization and other one-off
executions

[!

Sub
session_start
{

$start_time =
localtime; }

!]

6.1.4.1 Controlling template-driven program flow

To exercise structured program flow within Embperl, you can employ another square-bracketed
syntactical element:

[$ <conditional element> <optional conditional construct> $]

This is perhaps best explained by working through the examples in the following numbered list:

1. Suppose you want to set up a conditional if chain to do different things with HTML. Depending
upon how you're being sent data, you do it like this:

[$ if $ENV{REQUEST_METHOD} eq 'GET' $]
 <h2> I see you've called me with a GET request! :-) </h2>

[$ elsif $ENV{REQUEST_METHOD} eq 'POST' $]
 <h2> Thanks for calling me with a POST request! 8-) </h2>

[$ else $]
 <h1> You've created a new Request Method, Congratulations! $-) </h1>

[$ endif $]
Notice that although this code looks similar to ordinary Perl, brackets such as (...), are missing
from the main if condition, and no curly brackets like {...} are used to wrap statements. Also
notice that whereas in ordinary Perl you would use a left-facing bracket, }, to end the complete
statement, in Embperl you use endif instead. This is a keyword that traditional Perl would fail to
recognize.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We have been told that Embperl 2.0 will be more closely aligned with
standard Perl.

2. You can also use while loops, for example, to display the Apache server's current environment:

[$ while ($env_variable_name, $env_value) = each (%ENV) $]

 [+ $env_variable_name +] = [+ $env_value +]

[$ endwhile $]
Again notice the use of endwhile rather than a left-facing curly bracket, }.

3. Similarly, you can also employ do...until loops:

[-

@crew = ('Kirk', 'McCoy', 'Spock', 'Beam Me Up');

$tribble = 0;

-]

[$ do $]

 [+ $crew[$tribble++] +]

[$ until $tribble > $#crew $]

Notice how the tribbles keep growing in number.

4. You can also use foreach loops:

[-

$warp_factor = 1;

@federation_planet = ('Earth', 'Vulcan',

 'Solaria', 'Aurora', 'Terminus', 'Trantor');

-]

[$ foreach $thataway (@federation_planet) $]

Head for Federation Planet [+ $thataway +],

 Mr Sulu, Warp Factor [+ $warp_factor++ +]

[$ endforeach $]

6.1.4.2 Strict variable naming

As with standard Perl, variables pop into existence as soon as you mention them, but if you'd rather
enforce stricter discipline and pre-declare global variable names, you can use var:

[$ var $klingon @vulcan %romulan $]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[$ var $klingon @vulcan %romulan $]

This is equivalent to the Perl strict pragma shown here:

use strict;

use vars qw ($klingon @vulcan %romulan) ;

6.1.4.3 Useful table tricks

The eagle-eyed among you may have spotted something strange about the following lines in Example
6-1:

<tr><th>[+ $head->[$col] +]</th></tr>

<tr><td>[+ $data_ref->[$row][$col] +]</td></tr>

There is only one table header element, and one detail element, yet the screen in Figure 6-1 is filled to
overflowing with the milk and honey of multiline and multicolumn results. What's going on? A little bit of
magic.

First, the special $col variable works out just how many element are within the array referenced by
$head, which was created by the $head = $sth->{NAME} code line. The special $row variable does
exactly the same for the $data_ref reference value.

Next, Embperl iterates through the whole of the arrays accessed by these variables, until $col and
$row return undef values (i.e., they run out of milk and honey). You may want to avoid questioning too
much how Embperl does this; otherwise the fairy dust may lose its sparkle. The Pandora's box of
source code is available though, if you're prepared to open it.

6.1.5 Embperl Forms Handling and Apache::Session

One of the major benefits of the Web is its stateless protocol, HTTP, which makes your processing
extremely lightweight at both the server and browser ends. Unfortunately, the stateless protocol can
also be a great disadvantage when compared with a stateful client-server model, for example. The
problem is that you keep losing all of your user information every time users change pages. This can
be financially challenging if your site runs shopping-cart applications!

Embperl can perform many of the regular <hidden> type shenanigans to overcome this limitation, but it
can also make use of Apache::Session to draw an Excalibur sword of stateful data from a dry stone of
statelessness. It stores this rich vein of information between page requests via the following special
Perl hash variables:

%udat

Stores individual user data. Every time an individual comes back to your server, via his browser,
to hit different pages, you can access all of his previously input data (if your Embperl script
stored it neatly away when you last had access to it).

%mdat

Stores data for a nominated module or page.

%fdat

Stores all of the data associated with a form.

%idat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stores all of the data input so far on a particular form, which is very useful for those of us who
relish sticky widgets.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2 Mason

Jonathan Swartz, aided and abetted by Dave Rolsky, has created another fine Perl templating
package in HTML::Mason. Unlike Embperl, which has a C-based back end, Mason is built purely
with Perl, and this implementation tends to reduce potential complexities during installation.

You can download the latest package from CPAN and learn much more about Mason at the
following sites:

http://www.masonhq.com
http://www.cpan.org/authors/id/J/JS/JSWARTZ

The following sections describe how to install Mason on Unix and Win32 and then work through
an example.

6.2.1 Installing Mason on Unix

We need to pre-install the following Perl modules for Mason on Unix platforms:

Time::HiRes

Douglas E. Wegscheid's module helps Mason deal with POSIX commands such as usleep(
) and ualarm() at subsecond levels.

http://www.cpan.org/authors/id/DEWEG

MLDBM

Gurusamy Sarathy's Multi-Level DBM module serializes multilevel hashes, and all the data
their references point to, into single BLOBs of data; these can then be stored by any one of
the different Perl modules listed here. You can learn more at:

http://www.cpan.org/authors/id/GSAR

Data::Dumper

This comes automatically with Perl now, and saves Perl hash structures in neatly formatted
platform-independent files, useful for printing or evaluating.

FreezeThaw

Converts Perl data structures to and from strings suitable for storage.

http://www.cpan.org/authors/id/ILYAZ/modules

Storable

As discussed earlier with Embperl, this module uses a C back end to greatly speed
information storage and retrieval and thus make your Perl data structures persistent. We
recommend that you load Storable, because it is significantly faster than either
Data::Dumper or FreezeThaw.

http://www.cpan.org/authors/id/A/AM/AMS

Params::Validate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This validates method or function call parameters, and can also determine their type and
class hierarchy relationships.

http://www.cpan.org/authors/id/D/DR/DROLSKY

Now follow these steps:

1. Once the main modules above are installed, we can get to the main event:

$ gzip -d HTML-Mason-1.04.tar.gz

$ tar xvf HTML-Mason-1.04.tar

$ cd HTML-Mason-1.04

2. You may wish to set an environmental variable, APACHE, to direct the Mason configuration
to pick up an Apache server with mod_perl attached[3] — for example:

[3] As with Embperl, Mason can be operated without mod_perl, but you will achieve much better performance
if you do use it.

$ export APACHE=/usr/local/apache/bin/httpd

3. Alternatively, just insert the full httpd file path when Makefile.PL asks for it:

$ perl Makefile.PL

...

4. For testing purposes, specify the full path to an httpd with mod_perl enabled. The path
defaults to $ENV{APACHE}, if present.

 [/usr/local/apache/bin/httpd] ('!' to skip):

...

$

5. Mason's make test step will also keep stopping and restarting httpd — for example:

$ make

$ make test

...

Testing whether Apache can be started

Waiting for httpd to start.

Killing httpd process (746)

Waiting for previous httpd to shut down

...

$ make install

6.2.2 Installing Mason on Win32

To install Mason on Win32 platforms, simply connect to the Internet, call up PPM, and install
HTML::Mason direct from the University of Winnipeg. (You'll notice on the actual install that you'll

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTML::Mason direct from the University of Winnipeg. (You'll notice on the actual install that you'll
get a lot of other modules delivered.)

PPM> set repository theoryx5

 http://theoryx5.uwinnipeg.ca/cgi-bin/ppmserver.pl?urn:/PPMServer

PPM> install HTML-Mason

Install package 'HTML-Mason?' (y/N): y

Installing package 'HTML-Mason'...

...

You then can install the following additional modules from the ActiveState site:

PPM> install Time-HiRes

Install package 'Time-HiRes?' (y/N): y

Installing package 'Time-HiRes'...

...

PPM> install MLDBM

Install package 'MLDBM?' (y/N): y

Installing package 'MLDBM'...

...

PPM> quit

6.2.2.1 Installing Params::Validate

There is a slight complication with Mason on Win32: it requires the Params::Validate module. This
module may not be available from either the University of Winnipeg, which specializes in difficult-
to-install XS modules, or ActiveState itself. Fear not, for HTML::Mason is a pure Perl module, so
in the worst case we can create our own PPM installation with it very easily. Here's how:

1. First, get the latest tarball from Dave Rolsky's site:

http://www.cpan.org/authors/id/D/DR/DROLSKY

2. Unpack it to its own directory, using gzip or WinZip. Go to this directory and run the
following command:

C: \Params-Validate-0.14>perl Makefile.PL

3. Now, while steadying your hand with a single malt whisky, download the latest NMAKE self-
inflating program from Microsoft into the C: \Params-Validate-0.14 directory. The latest
incarnation of NMAKE should always be pointed to by the current ActiveState PPM FAQ.
The one we used was:

http://aspn.activestate.com/ASPN/PPM/FAQ

This pointed us towards the NMAKE download at the following address:

http://download.microsoft.com/download/vc15/Patch/1.52/W95/EN-US/Nmake15.exe

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Once you've got this, inflate it:

C: \Params-Validate-0.14>Nmake15.exe

...

 Inflating: NMAKE.ERR

 Inflating: NMAKE.EXE

 Inflating: README.TXT

5. Now run the NMAKE.EXE program, which will read the Makefile created earlier by the perl
Makefile.PL step:

C: \Params-Validate-0.14>nmake

...

cp lib/Attribute/Params/Validate.pm blib\lib\Attribute\

 Params\Validate.pm

cp lib/Params/Validate.pm blib\lib\Params\Validate.pm

6. You can even run tests if you want to:

C: \Params-Validate-0.14>nmake test

...

noop.t t\03-attribute.t t\04-defaults.t t\05-noop_default.t

Using C:/Params-Validate-0.14/blib

t\01-validate.......ok

t\02-noop...........ok

...

7. We're now ready to install Params::Validate via the PPM program:

C: \Params-Validate-0.14>ppm install

...

Installing C:\Perl\site\lib\Attribute\Params\Validate.pm

Installing C:\Perl\site\lib\Params\Validate.pm

Writing C:\Perl\site\lib\auto\Params\Validate\.packlist

C: \Params-Validate-0.14>

Mason is now ready for launch on Win32.

6.2.3 Configuring Mason for Apache

There is plenty of excellent documentation on configuring Mason for use with Apache. Simply
point your browser at the HTML documents that come with the Mason download:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

../htdocs/index.html

To configure Mason, visit the following page:

../htdocs/Mason.html#configuring_mason

In this section, we'll illustrate a fairly simple setup — we'll treat all the files found with the .mcomp
suffix as special Mason templates files. We added the following to our httpd.conf file, including
two alternative commented-out lines for Win32:

PerlSetVar MasonCompRoot /usr/local/apache/htdocs

PerlSetVar MasonDataDir /usr/local/apache/mason

#PerlSetVar MasonCompRoot "C:/Program Files/Apache Group/Apache/htdocs"
#PerlSetVar MasonDataDir "C:/Program Files/Apache Group/Apache/mason"
PerlModule HTML::Mason::ApacheHandler

<FilesMatch "*.mcomp">

 SetHandler perl-script

 PerlHandler HTML::Mason::ApacheHandler

</FilesMatch>

AddType text/html .mcomp

Let's see what's going on here:

1. The MasonCompRoot directive tells Apache where our Mason component root will be (in
this case, it's the same as our default document root).

2. The MasonDataDir directive tells Apache where Mason will be storing transitory and
permanent data information. Although this directory and its subdirectories will be created
automatically on server startup, we'll take the trouble to create the Mason directory
manually here just to show how it's done:

$ cd /usr/local/apache

$ mkdir mason

3. The PerlModule directive assigns Mason the requisite Apache handler.

4. The FilesMatch block next tells Apache to look out for .mcomp files and to direct them
toward Mason's Apache handler, if it should find them.

5. We also need to let Apache know that .mcomp files are to be ultimately treated as .html
files, with the AddType line.

Now that we've loaded Mason, let's take a look at using it. Like Embperl, Mason is component-
based, a mixture of Perl and HTML that gives you powerful direct access into the heart of the
Apache server. We've briefly summarized its major features in Table 6-2.

Table 6-2. Mason's main object features
Mason API Description

Request Provides a gateway to all of Mason's extra features beyond syntactic tags
Component Allows you to examine components currently loaded into memory

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Parser Translates components into Perl subroutines
Interpreter Defines how Mason components are loaded and then executed
ApacheHandler Connects Mason to mod_perl, in response to HTTP requests

Next, we'll work through Mason's inline use of Perl (here's where it comes closest in functionality
to Embperl). The three inline methods are all used in Example 6-2, which is executed and
displayed in Figure 6-2.

Example 6-2. hello.mcomp

<html><head><title>Hello HTML::Mason</title></head><body>

<center>

<p><h1>HTML::Mason :-)</h1><hr>

<%perl>

my $noun = 'World';

my @time = split /[\s:]/, localtime;

</%perl>

<h2>Hello <% $noun %>,

% if ($time[4] < 12) {

 Good morning.

% } elsif ($time[4] < 18) {

 Good afternoon.

% } else {

 Good evening.

% }

</h2>

<h3><% scalar(localtime) %></h3>

<hr></center></body></html>

Figure 6-2. Hello Mason!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 6-3 provides examples of the three types of inline Perl available with Mason.

Table 6-3. Embedding Perl within the Mason template
Format Description Example

<% ...
%>

The single piece of Perl within the braces is evaluated and
returned to the browser.

Hello, <%
$user_login %>!

% ... Any line beginning with % is treated as a Perl line to be executed. % if (/Hello/) {

<%perl>
...

</%perl>

For code blocks, use this syntax, and everything between the tags
is executed as Perl code. The tag is case-insensitive so <%PERL>
... </%PERL> is equally valid.

<%perl>

my $dbh = DBI-
>connect($url,
$user, $passwd);

</%perl>

For a database-related example, we've provided MasonBlock.mcomp in Example 6-3. Once
again, set mod_perl running, along with the target database, and call up the page as in Figure 6-
3.

Incidentally, one of the things we especially like about Mason is the comprehensive error browser
reporting it provides. This feature greatly aids the development of code, especially when it's all
spaghettified across the httpd server, mod_perl, Perl itself, and the Oracle database!

Example 6-3. MasonBlock.mcomp — Combining Mason with DBI

<html><head><title>Hello HTML::Mason and DBI</title></head><body>

<center>

<p><h1>Chiseling into DBI with HTML::Mason 8)</h1><hr>

<%perl>

use DBI;

my $url = 'dbi:Oracle:orcl';

my $user = 'system';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $user = 'system';

my $passwd = 'manager';

my $dbh = DBI->connect($url, $user, $passwd, {RaiseError=>1});

my $sth = $dbh->prepare(

 'select tablespace_name tabSpace, ' .

 'segment_type segType, ' .

 'owner, ' .

 'segment_name segName, ' .

 'blocks, ' .

 'bytes, ' .

 'extents, ' .

 'next_extent nextExt ' .

 'from dba_segments ' .

 'where owner != \'SYS\' ' .

 'order by 1, 2, 3, 4');

$sth->execute;

my $rs = $sth->{NAME};

</%perl>

<table border="2">

<tr>

% for my $heading (@$rs)

% {

 <th><% $heading %></th>

% }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% }

</tr>

% while (my @row = $sth->fetchrow_array)

% {

<tr>

% for my $data (@row)

% {

 <td><% $data %></td>

% }

</tr>

% }

<caption>DBA Segments</caption></table>

% $dbh->disconnect;

<hr></center></body></html>

Figure 6-3. Mason, Oracle, and DBI

If you still hunger for more Perl HTML templating, you may to try out Sam Tregar's
HTML::Template module. This module is based on the use of extended HTML tags.
HTML::Template aims for a more lightweight, streamlined interface than those offered by Embperl
and Mason, while also stressing the separation of design and content production. You may also
be tempted by the larger solutions of Andy Wardley's Template Toolkit or Matt Sergeant's XML-
based AxKit (you'll find more on XML in Appendix D). Check out the following:

http://www.cpan.org/authors/id/S/SA/SAMTREGAR
http://www.cpan.org/authors/id/ABW
http://www.openinteract.org
http://openinteract.sourceforge.net
http://www.cpan.org/authors/id/M/MS/MSERGEANT
http://perl.apache.org/features/tmpl-cmp.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Invoking the Oracle Call Interface with
Oracle::OCI
Back in Chapter 1, we introduced the Oracle Call Interface (OCI), the low-level application
programming interface (API) provided by Oracle Corporation that allows the outside world access
to the Oracle database engine. The 3GL language most often used to interact with OCI is C,
although it is also possible to use higher-level languages like Perl to communicate with the
database via OCI.

Although it is possible to access OCI directly, doing so is quite complicated, and most DBAs and
developers (who fear being lost in a swirling river of pointers, linked lists, and casts) prefer a
simpler and more convenient interface such as Perl DBI, which we introduced in Chapter 2. Perl
DBI is actually not database-specific. It can be used to communicate with Oracle, SQL Server,
MySQL, and a variety of other databases. When communicating with Oracle, Perl DBI requires
the Oracle-specific driver, DBD::Oracle, also described in Chapter 2.

The Perl DBI connection to OCI via DBD::Oracle is a useful one, and for many years it has
represented the only convenient way that Perl programs could communicate with Oracle. The
main design goal of Perl DBI is to provide a consistent, easy-to-use interface to a variety of
databases. It isn't especially optimized for any specific database. As a result, the Perl DBI
interface to OCI is rather limited; it allows access to only a subset of the extensive functionality of
OCI. Back in Chapter 2 we described how Perl DBI allows Perl programs to include appropriate
API calls to OCI for certain common database operations. But what if the calls available through
Perl DBI are insufficient? Developers and DBAs wanting more sophisticated access to database
operations — for example, specialized data loading, use of multiple database connections, and so
on — have been faced with a choice between sticking with Perl (and limiting what they could do)
and being forced to use C (in order to have full access to everything OCI has to offer). But now
there's a new game in town — the Perl module Oracle::OCI.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1 What is Oracle::OCI?

Oracle::OCI takes Perl/Oracle connectivity to a new level. It combines the power of a typical C
programming environment with a much friendlier Perl interface. Oracle::OCI gives you access to
every bit of functionality available in OCI, and it operates seamlessly with any version of the
Oracle database. It lets you do the more complex direct data loading, threading, and large object
(LOB) handling that until now has required C programming. Oracle::OCI communicates with
Oracle at a very low level, which also gives it excellent performance. If you've ever wanted to get
that 15-hour batch extract program down to 5 hours, Oracle::OCI may be just the thing you've
been looking for. There is a price for this power, however. When you use Oracle::OCI, you must
code in such a way that there is close to a line-by-line correspondence between your Perl script
and OCI, with Oracle::OCI acting as the router in between.

In this chapter we'll first look at the Oracle Call Interface itself and what it provides. Then we'll
explain how to install Oracle::OCI and use it to get the most effective and efficient connectivity
between your Perl programs and the Oracle database. Next we'll look at several examples of the
code you might write to issue OCI calls from Perl to Oracle. We'll compare the line-by-line
Oracle::OCI approach to the Perl DBI approach and, finally, we'll suggest a way you can mix and
match the two approaches.

Let's start by looking at Figure 7-1, which illustrates the various modules now providing
connections to the Oracle database. This figure shows the full set of modules and how they
relate, assuming that you have all of them. Most people don't yet have the Oracle::OCI module,
and they rely entirely on the Perl DBI and DBD::Oracle link. This situation may change in the
future, however, and Oracle::OCI may become integral for everyone. Figure 7-2 compares the
two architectures (Oracle::OCI vs. Perl DBI/DBD::Oracle).

Figure 7-1. The Perl triumvirate: Perl DBI, DBD::Oracle, and Oracle::OCI

Figure 7-2. Comparing the Oracle::OCI and the Perl DBI/DBD::Oracle architectures

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.2 What Is OCI?

As we've discussed, Oracle's Oracle Call Interface is the comprehensive API that is used to
connect internally to the Oracle database server. Here is a sampling of what OCI has to offer.
Oracle::OCI allows Perl programs to access all of these capabilities; in a few cases, we'll note
what Oracle::OCI's interface offers us over that provided historically by Perl DBI:

OCI provides tight low-level control over all aspects of program flow, from server
connections to the management of networked transactions, all accomplished in a highly
efficient and scalable way.

OCI's dynamic structures can define virtually any arbitrary data structure.

OCI provides a complete metadata feature set, enabling drill-down discoveries on the
database's entire structural architecture.

OCI offers asynchronous event notification. This feature allows program clients to register
an interest in such notifications and the ability to propagate messages, enabling domino
effects to ripple through a system.

OCI gives us enhanced DML (Data Manipulation Language) capabilities, including the
ability to do direct data loading (this is similar to what can be done with SQL*Loader). This
feature is particularly useful for applications that need to fill data warehouses under tight
time constraints.

Using OCI directly, Perl-based applications can service an increased number of users and
requests without requiring an additional hardware investment. OCI does this by reducing
SQL round-trips, using piggy-backing processes, and sharing logins and transactions. User
handling can be considerably simplified.

OCI can manipulate large objects in chunks and streams. Although binary large object
(BLOB) features are available within standard Perl DBI, if you need fine-grained LOB
access via Perl, Oracle::OCI is the way to go. For instance, if a BLOB contains XML data
(as many applications now do), Oracle::OCI provides the perfect way to parse this data.
(For more information, see the discussion of data munging with XML in Appendix D.)

OCI offers us a back-stage pass into Oracle's tactical core. For instance, it can perform
such complex underlying activities as cache pinning, advanced queuing, and parallel server
management.

OCI provides access to the latest Oracle object development techniques and many of its
data transformations — for example, string substitution, decoding, and so on. These aren't
available using a more generic API, such as basic Perl DBI or ODBC.

OCI provides all of the capabilities summarized here with high performance and thread
safety as a consequence of its fine-tuned low-level optimization.

The interleaved relationship between Oracle::OCI and Perl DBI/DBD::Oracle (illustrated earlier in
Figure 7-1) also allows us to mix the calls to either API and to reuse handles and object
instances. This is impossible in languages other than Perl. You'd either have to use reams of pure
OCI or choose an alternative interface at a much higher level (for example, ODBC). There is no
way to work on the middle ground in between the two. In Perl, however, you can get the best of
both worlds.

Most DBAs will never need the low-level capabilities offered by OCI and available via the
Oracle::OCI interface. If you are in this category, you can safely ignore this chapter. However, if

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle::OCI interface. If you are in this category, you can safely ignore this chapter. However, if
you do need to include any of the functionality listed previously in your own applications, and Perl
DBI falls just short of your personal summit (or if you are just curious about what all the
excitement is about), then please read on.

7.2.1 Why Oracle::OCI Instead of C?

Let's assume that you're convinced now that OCI is a great thing. But why choose Oracle::OCI to
build your applications? Why not just use C, the traditional choice of the professional? To
convince the jury, let's take a brief look at what we needed to be able to do in order to write
effective OCI programs before Oracle::OCI arrived on the scene:

1. We had to be fully competent in our chosen 3GL. For example, in C, you had to be
comfortable with pointers, voids, casts, and the asterisk-laden shooting match, which is
what drove many wizened C programmers over to Perl in the first place.[1] (Witnessing a
thousand lines of difficult C code being shrunk to ten of Perl for the first time, without
spotting the dreaded malloc anywhere, was divine revelation for many.)

[1] At least one of your authors still has nightmares about linked lists.

2. You probably had to write huge source code files for even trivial jobs. (Even logging on,
within OCI, can take pages of code, as we'll witness shortly.) The point of Perl DBI was to
be the tip of an iceberg, to hide the gory details of OCI behind a simple API. It was also
able to provide easy Perl-based access to all of the other hundreds of Perl modules
available out there (e.g., Apache::DBI, DBD::Chart, Perl/Tk, etc.). When encountering a
situation that really did require that low-level OCI functionality, many people who had
become downright comfortable with Perl had to throw all of that advantage away, and begin
again with their dusted-down Kernighan and Ritchie.[2]

[2] The classic text for C is The C Programming Language, by Brian W. Kernighan and Dennis M. Ritchie
(Prentice Hall); it is surely one of the finest technical books of all time.

3. You needed to compile the source files down to object code with a native compiler, and link
it to the OCI libraries, thereby making the final application machine-dependent. This
seemed a shame, because OCI is the most widely available interface for connecting Oracle
to the outside world. And porting 3GL code to other systems, even if you're a believer in
strict ANSI C, is more than a trivial afterthought (especially if like Gulliver on his travels, you
get your Big-Endians mixed up with your Lilliputians).

The 3GL compilation process is illustrated in Figure 7-3. It works, but it's certainly not ideal. It
would be nice to overcome this one-way track to binary-only solutions. It would be great if we
could write shorter, machine-independent OCI programs, in clear understandable Perl code.

That's what this chapter is all about.

Figure 7-3. Constructing 3GL OCI applications

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.2.2 For More Information on OCI

We've introduced OCI, but there is much more to learn. At last count (in OCI 8.1), there were 530
distinct functions! We have found the following resources to be the most useful; note that most of
these references are to the very helpful Oracle Technology Network (OTN).

The guiding aim of the Oracle::OCI project is to keep synchronized with
OCI itself and thus to ensure that the official Oracle Corporation OCI
documentation always remains simultaneously the documentation for
Oracle::OCI.

http://technet.oracle.com:

Main technical reference for all Oracle products. Once you've set up a free login user,
search with the string "OCI" and you should get access to a great many useful references.

http://technet.oracle.com/tech/oci:

Good general reference kick-off point for drilling down into OCI.

http://otn.oracle.com/tech/oci/htdocs/faq.html:

Comprehensive FAQ.

http://www.orafaq.org/faqoci.htm:

Another more independent, FAQ.

7.2.3 OCI Functions

Basically, if there is an OCI function supplied by Oracle Corporation within your local version of
OCI (the one that comes with your database), then you can assume that once we build
Oracle::OCI, there will be a corresponding function available for use within Perl. See Figure 7-2
for a diagrammatic representation of this one-to-one mapping.

OCI functions can be broken down into four main categories as follows. Because there are so
many OCI functions, we haven't attempted to list them all. For all but the second category (where
there are only four functions in all), we've simply provided examples of the most common
functions. Check out the documentation listed in the previous section for much more.

OCI relational functions

These OCI functions are the common functions used to deal with the normal operations of
a relational database, such as logging on, executing statements, managing database
access, processing SQL statements, and so on. We provide some examples of these in
Table 7-1.

OCI external procedure functions

These OCI functions are used to connect with extproc_plsql, a module we describe in
Chapter 8, and with other external C libraries. These functions are listed in Table 7-2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OCI navigational and type functions

These OCI functions are used to navigate between objects supplied by the Oracle
Enterprise database server. Table 7-3 provides examples.

OCI datatype mapping and manipulation functions

These OCI functions supply data attribute manipulation functions for the Enterprise Server
— for example, string handling. Examples are provided in Table 7-4.

Table 7-1. OCI relational functions
Functional area Example function

Advanced Queuing OCIAQListen listens on queues for agents
Handles and descriptors OCIDescriptorAlloc allocates and initializes a LOB locator
Bind and define OCIStmtGetBindInfo gets the bind and indicator variables
Direct path loading OCIDirPathFinish finishes and commits loaded data
Connect and authorize OCIEnvCreate creates and initializes an OCI environment
Large objects OCILobFileOpen opens LOB files
Statement handling OCIStmtFetch fetches rows from queries
Thread management OCIThreadCreate creates new threads
Transactions OCITransRollback rolls back transactions
Miscellaneous OCIBreak carries out an immediate asynchronous break

Table 7-2. OCI external procedure functions
OCI function Description

OCIExtProcAllocCallMemory Allocates memory for external procedures
OCIExtProcRaiseExcp Raises PL/SQL exceptions
OCIExtProcRaiseExcpWithMsg Raises exceptions along with a message
OCIExtProcGetEnv Gets the handles detailing the OCI environment

Table 7-3. OCI navigational and type functions
Functional area Example function

Flush and refresh OCICacheRefresh refreshes pinned persistent objects
Mark cache objects OCIObjectMarkDelete marks an object as deleted
Get object status OCIObjectExists checks if an instance of an object exists
General navigation OCIObjectGetObjectRef returns a reference to a given object
Pin, unpin, and free OCIObjectPin pins objects in the cache
Type information OCITypeByName gets Type Descriptor Objects (TDOs) by name

Table 7-4. OCI datatype mapping functions
Functional Area Example function

Collectors and iterators OCIIterDelete deletes an iterator
Date functions OCIDateAddDays adds or subtracts days
Number functions OCINumberAbs works out an absolute value
Raw functions OCIRawAllocSize allocates raw memory
REF functions OCIRefIsEqual compares two REFs for equality
String functions OCIStringAssignText assigns text to a string
Table functions OCITableFirst returns the first index of a table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.3 Installing Oracle::OCI

In order to install Oracle::OCI itself, you will need to obtain some additional precursor modules from CPAN.
describe those and then explain how to install and run Oracle::OCI.

7.3.1 Installing Oracle::OCI on Win32

There is quite a bit of compilation needed for Oracle::OCI, and at the time of writing there are no PPM files available
to help us (basically because of a necessary bootstrapping process we'll describe later). However, we're confident
that the Win32 Perl DBI community will oblige, sooner rather than later. If you're prepared to get your compilers dirty
on Win32, the steps will be logically the same as for Unix, so simply follow the Unix installation steps we've provided,
and adapt the instructions for your particular compiler type.

At the present time, Oracle::OCI is still something of an experimental Perl development. For now, if
Win32, your options are to try installing Oracle::OCI with Cygwin, as we discussed in Chapter 2, or to create your own
versions with commercial Win32 compilers.

The best place to keep track of new developments is the main DBI page at http://dbi.perl.org, where you
for the FAQ work of Ilya Sterin. Ilya regularly creates both XML and Oracle PPD files independently of
ActiveState.com; he's often on the leading edge of the technical frontier. You can also look for Ilya's DBI FAQ at
http://xmlproj.com/dbi/faq.html or his Perl Oracle PPM packages for Win32 at http://xmlproj.com/PPM

7.3.2 Precursor Modules

You will need to install these modules in the following order:

Data::Flow

Following original inspirational work by Ilya Zakharevich, Terrence Brannon took over the Data::Flow
which is a Perl extension for simple recipe-controlled builds of data. You can obtain it from:

http://www.cpan.org/authors/id/T/TB/TBONE

C::Scan

C::Scan also follows in the footsteps of original work by Ilya Zakharevich. C::Scan is designed to scan C
language files for easily recognized constructs. You'll require its latest incarnation, especially
with Perl 5.6, at Hugo van der Sanden's CPAN site. (Note that future versions may once again be taken over
by their original creator, whose CPAN site listing follows). For Oracle::OCI 0.06, we required at least
Version 0.74:

http://www.cpan.org/authors/id/HVDS

http://www.cpan.org/authors/id/ILYAZ

7.3.3 Setting the Oracle::OCI Environment

To make sure that the latest downloaded version of Oracle::OCI works, you'll probably also need the latest Perl DBI
and DBD::Oracle modules installed. All three modules are tightly interwoven, as we saw earlier in Figure 7-1
explain how to do those installations shortly.

Oracle::OCI is unlike any other typical Perl module installation we've seen in this book. The main difference is the
tarball, which is actually a toolkit for building Oracle::OCI, rather than being Oracle::OCI itself. Why is the software

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tarball, which is actually a toolkit for building Oracle::OCI, rather than being Oracle::OCI itself. Why is the software
built in this way? The project's aim is to match your own database's OCI setup as closely as possible. The
therefore examines your own exact OCI situation and configures accordingly. Doing so ensures that every single OCI
function that's available on your own system will be available later within a brand-new Oracle::OCI module tailored
exactly for your system. Let's go to work.

7.3.4 Installing Oracle::OCI on Unix

The first step in understanding how to install Oracle::OCI is to get our heads around its central concept. It's not a
module in its own right — one you can simply unpack and install, as if you're taking a nice shiny laptop out
and plugging in the wires. Instead, Oracle::OCI is a toolkit for building a nice shiny Perl module. What this toolkit does
is examine your local version of OCI and then do a one-to-one mapping of all of its functions in order to build a
blueprint of the Oracle::OCI system you will eventually require. This blueprint is then used to pull all the bits and
pieces together, constructing the module that will be installed. The world's most highly personalized Perl module is
essentially built before your very eyes, and you then simply install this module. It's magic!

The following installation notes were prepared using the latest version of Oracle::OCI
available to us. However, this project is an extremely fast-moving one. Always check out
the latest README file coming with your own latest Oracle::OCI download. This file will
contain the most up-to-date installation instructions, and these are expected to get much
easier over time. Tim Bunce is likely to be developing this Perl module rapidly over the next
few years.

Follow these steps to install Oracle::OCI on Unix systems:

1. First of all, you might want to alter the boot and h2xs scripts so they have the correct version of Perl on their
first shebang line. For instance, Oracle::OCI-0.06 had the following Perl command at the top of the

[3] For more on h2xs, which is beyond the scope of this book, we highly recommend Chapter 18, Extending Perl: A First Course,
Sriram Srinivasan's finely honed masterpiece, Advanced Perl Programming (O'Reilly & Associates, 1997),
http://www.oreilly.com/catalog/advperl/.

#!/opt/perl5/bin/perl -w

We changed ours to:

#!/usr/bin/perl -w

The following form may be more of a universal solution:

#!perl -w

(However, make sure to first check step 3, which follows, before doing these hacks.)

2. If you experience connection errors on the build, you might want to update the first few lines of the
and 05dbi.t test programs. You'll find that these are dynamically linked to the main unpack directory,
need to get the right ORACLE_SID and ORACLE_USERID variables set for your environment
Oracle::OCI:

$ export ORACLE_SID=orcl.world
$ export ORACLE_USERID=scott/tiger

3. Once everything's looking good, just run the boot program:

$./boot

Alternatively, if you don't want to hack the #! lines as in step 1, simply run this program as follows:

$ perl boot

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ perl boot

This will build and test everything, and will prepare your proper OCI configuration system (to be installed later).

4. You may experience some difficulties during the build. We can't predict everything that might go wrong.
Because the errors can be varied, we think the best way of tackling any problems is to use the resources
detailed in the next section. We also think that getting your hands dirty in the OCI code mines, while
an elven ring, should steer you clear of the really ugly cave trolls. Here are some of those we

 On SuSE Linux 7.3, we got some ORACLE not available errors, with Oracle9i. Setting
orcl.world cleared these.

We kept getting ./boot test compilation errors, related to various OCI pointer types, possibly errors only
introduced since the introduction of Oracle9i. We added the following lines to getptrdef.h
the problem:

#define ora_getptr_OCIAnyDataSetPtr ora_getptr_generic

#define ora_getptr_OCIAnyDataPtr ora_getptr_generic

#define ora_getptr_OCICPoolPtr ora_getptr_generic

#define ora_getptr_OCIXADTablePtr ora_getptr_generic

#define ora_getptr_OCIXADFieldPtr ora_getptr_generic

Once the boot command does fire correctly, you're looking for output like this:

chmod 755 blib/arch/auto/Oracle/OCI/OCI.so

...

t/01base............ok

t/05dbi.............ok

All tests successful.
Files=2, Tests=119, 11 wallclock secs (0.81 cusr+0.07 csys = 0.88 CPU)

...

5. Now we get to the fun part. After the first compilation stage, we should now possess a pre-installation
Oracle::OCI module, ready to load up and install as in the usual Perl manner. It should be quietly awaiting
instruction within the ../Oracle/OCI directory. Go here, and inscribe the following spells onto the command line
to repeat the wizardry:

$ cd Oracle/OCI
$ perl Makefile.PL

$ make

$ make test

...

All tests successful.
...

6. The final step should produce plenty of output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ make install

7.3.5 For Further Help with Oracle::OCI

Here are some suggestions for things to check and do if you have trouble with Oracle::OCI:

1. There's some great help on the Oracle::OCI mailing lists. To join the mighty throng, send an email

oracle-oci-help@perl.org

2. There is also a mail archive, which is especially useful for dealing with installation problems when slight tweaks
are required for different flavors of Unix. Check out:

http://archive.develooper.com/oracle-oci@perl.org

3. Oracle Corporation occasionally moves their installation directories around just to keep us on our toes. For
example:

You might want to look out for situations where Oracle::OCI is expecting to see
$ORACLE_HOME/network/public, but the files it's looking for are actually in
$ORACLE_HOME/rdbms/public

C header files expected in $ORACLE_HOME/rdbms/demo may also be hiding in
$ORACLE_HOME/plsql/public

4. You may get lines such as the following:

Error: invalid argument declaration

'void * argv[]' in OCI.xs, line 666

Find the offending line in the OCI.xs file, and then add the relevant function to the following piece of code in
the boot file, which deliberately excludes such problematic items:

oci_skip => [sort keys %{ { ... } }]

5. For errors such as:

Error: 'OCIFooBar *' not in typemap in

OCI.xs, line 777

You might want to add an extra line to the extra.typemap file:

OCIFooBar * T_PTROBJ

You might also want to check the README.build file, which may hold the exact answer to your problem. However, as
Oracle::OCI matures, expect it to become as pain-free as DBD::Oracle and Perl DBI are now.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.4 Coding with Oracle::OCI

In the following sections, we're going to present essentially the same example coded three
different ways; each creates a simple table description:

1. Example 7-1 shows how the example looks using pure Oracle::OCI code. You'll notice that
this is a lot more code than a typical Perl DBI script. Essentially, we use OCI functions on a
one-to-one basis, so even just logging in to a database can take a whole page of code,
whereas DBI does it in one line.

2. Example 7-2 shows how much shorter the example can be if you use pure Perl DBI, where
a single DBI function takes the place of as many as ten Oracle::OCI functions.[4]

[4] Basically, this is what DBI has been doing for us all along. It's just that we've had no need to worry about it
before; it's all been kept under the covers.

3. Example 7-3 shows a blended approach. We combine, in a single Perl script, both Perl DBI
and Oracle::OCI. Where we can use DBI commands within Oracle::OCI, we do so to save
typing pages of code. The only places where we actually need to use one-to-one OCI
mappings are the cases where we journey beyond Perl DBI.[5] (The earlier Figure 7-1
shows the relationship between Perl DBI and Oracle::OCI.)

[5] We're only doing this because we're hunting for that last iota of extra functionality or performance. In
general, we let the standard Army infantry of Perl DBI make up the bulk of the Normandy invasion forces. We
bring in the Airborne troops of Oracle::OCI just do that little bit extra at the end.

7.4.1 Pure Oracle::OCI Code

This first example (Example 7-1) shows pure unadulterated Oracle::OCI code. Notice how just
logging on takes over a page of code. (We'll work through the steps after the example.)

Example 7-1. rawOCI.pl — Oracle::OCI in action

#!/usr/bin/perl -w

Pure-ish Oracle::OCI

use strict;

use DBI qw(neat);

use Oracle::OCI qw(:all);

Step 1: Get the environment right, and set up your target
database and user, before we initialize.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

database and user, before we initialize.
$ENV{ORACLE_SID} ||= 'ORCL';

my $dbuser = $ENV{ORACLE_USERID} || 'scott/tiger';

The following call to new_ptr() and bless are 'scaffolding'

which this version of Oracle::OCI requires, but these will not be

needed in future versions. This will reduce the clutter

and bring the code much closer to the equivalent OCI C code! :-)

sub new_ptr {

 my $class = shift;

 my $modifiable = do { my $foo = shift || 0 };

 return bless \$modifiable => $class;

}

Initialize the environment via OCI.

my $envhp = new_ptr('OCIEnvPtr');

OCIInitialize (OCI_OBJECT, 0, 0, 0, 0);

OCIEnvInit($envhp, OCI_DEFAULT, 0, 0);

Step 2: Allocate the various handles.
Get the Error Handle

OCIHandleAlloc ($$envhp, my $errhp=0, OCI_HTYPE_ERROR, 0, 0);

bless $errhp => 'OCIErrorPtr';

Get the Server Contexts etc.

OCIHandleAlloc ($$envhp, my $svrhp=0, OCI_HTYPE_SERVER, 0, 0);

bless $svrhp => 'OCIServerPtr';

OCIHandleAlloc ($$envhp, my $svchp=0, OCI_HTYPE_SVCCTX, 0, 0);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OCIHandleAlloc ($$envhp, my $svchp=0, OCI_HTYPE_SVCCTX, 0, 0);

bless $svchp => 'OCISvcCtxPtr';

Step 3: Now Attach and set the attribute server context
within the Service context, before logging on.
OCIServerAttach ($svrhp, $errhp, 0, 0, OCI_DEFAULT);

OCIAttrSet

 ($$svchp, OCI_HTYPE_SVCCTX, $$svrhp, 0, OCI_ATTR_SERVER, $errhp);

OCIHandleAlloc($$envhp, my $authp=0, OCI_HTYPE_SESSION, 0, 0);

bless $authp => 'OCISessionPtr';

my ($user, $pass) = split /\//, $dbuser;

my @user_buf_len = oci_buf_len($user);

my @pass_buf_len = oci_buf_len($pass);

OCIAttrSet ($$authp, OCI_HTYPE_SESSION, @user_buf_len,

 OCI_ATTR_USERNAME, $errhp);

OCIAttrSet ($$authp, OCI_HTYPE_SESSION, @pass_buf_len,

 OCI_ATTR_PASSWORD, $errhp);

Finally, meine kleine Freunden, we begin a session...

my $status = OCISessionBegin ($svchp, $errhp, $authp,

 OCI_CRED_RDBMS, OCI_DEFAULT);

warn get_oci_error($errhp, $status) unless $status == OCI_SUCCESS;

OCIAttrSet ($$svchp, OCI_HTYPE_SVCCTX, $$authp, 0,

 OCI_ATTR_SESSION, $errhp);

Step 4: Now prepare the description of the target table,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Step 4: Now prepare the description of the target table,
and start some data processing.
OCIHandleAlloc($$envhp, my $dschp, OCI_HTYPE_DESCRIBE, 0, 0);

bless $dschp => 'OCIDescribePtr';

my $tablename = $ARGV[0];

OCIDescribeAny ($svchp, $errhp, oci_buf_len($tablename),

 OCI_OTYPE_NAME, 1, OCI_PTYPE_TABLE, $dschp);

Get the parameter descriptor.

OCIAttrGet ($dschp, OCI_HTYPE_DESCRIBE, my $parmp, 0, OCI_ATTR_PARAM,

 $errhp, 'OCIDescribePtr');

Get the table list, number of columns and description.

OCIAttrGet ($parmp, OCI_DTYPE_PARAM, my $collst, 0,

 OCI_ATTR_LIST_COLUMNS, $errhp, 'OCIParamPtr');

OCIAttrGet ($parmp, OCI_DTYPE_PARAM, my $numcols, 0, OCI_ATTR_NUM_COLS,

 $errhp, 'OCIParamPtr');

my $errstr;

Describe the target table.

printf ("\n------------------\n");

printf ("TABLE : %s \n", $tablename);

printf ("------------------\n");

my %col_attr = (

 OCI_ATTR_NAME => "ColName",

 OCI_ATTR_IS_NULL => "NULL?",

);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

);

foreach my $colnum (1..$$numcols) {

 my $col_parmdp_int = 0;

 my $col_parmdp = bless \$col_parmdp_int => 'OCIParamPtr';

 OCIParamGet($collst, OCI_DTYPE_PARAM, $errhp, $col_parmdp, $colnum);

 my $describe_attr = {

 OCI_ATTR_NAME => 0,

 OCI_ATTR_IS_NULL => 1,

 };

 printf "\n";

 foreach my $attr (sort keys %$describe_attr) {

 my $type = $describe_attr->{$attr};

 no strict 'refs';

 $status = OCIAttrGet($col_parmdp, OCI_DTYPE_PARAM,

 oci_buf_len(my $tmp, 90),

 &$attr, $errhp, $type);

 warn "$attr: ".get_oci_error($errhp, $status, 'OCIAttrGet')

 if $status;

 warn get_oci_error($errhp, $status)

 if $status;

 printf "%-20s: %s\n", $col_attr{$attr}, neat($tmp);

 }

}

Step 5: Logout and detach from the server.
OCIHandleFree($$dschp, OCI_HTYPE_DESCRIBE);

OCISessionEnd($svchp, $errhp, $authp, 0);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OCIServerDetach($svrhp, $errhp, OCI_DEFAULT);

Step 6: Clean up memory and deallocate handles.
OCIHandleFree($$svrhp, OCI_HTYPE_SERVER);

OCIHandleFree($$svchp, OCI_HTYPE_SVCCTX);

OCIHandleFree($$errhp, OCI_HTYPE_ERROR);

OCIHandleFree($$authp, OCI_HTYPE_SESSION); # Bye, Bye !!! :-)

You can see that this is quite a bit of work. Let's go through the code and examine what it is we're
doing:

1. We first ensure that our passwords and all the other usual suspects are sorted out before
initializing the OCI environment.

2. Having initialized, we can now allocate all of our various memory handles.

3. We attach to the server, log in, and establish various attributes.

4. Now we can do some processing. In this case, we describe the various columns of a target
table. We format and print the results as we go.

5. In the final stages, we end the session and then detach from the server.

6. We can now deallocate all of the memory handles.

Once completed, we can run the script with the target table supplied:

$ perl rawOCI.pl DEPT
We received the following output:

TABLE : DEPT

NULL? : 0

ColName : 'DEPTNO'

NULL? : 1

ColName : 'DNAME'

NULL? : 1

ColName : 'LOC'

7.4.2 Pure Perl DBI and DBD::Oracle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We did an awful lot of work in Example 7-1 — two pages of code just to get a few simple column
descriptions! What if we'd done something similar in Perl DBI instead? We'll do just that in
Example 7-2.

Example 7-2. rawDBI.pl

#!/usr/bin/perl -w

use strict;

Pure-ish DBI

use DBI qw(neat);

Step 1: Get the environment right, and set up your target
database and user.
$ENV{ORACLE_SID} ||= 'ORCL';

my $dbuser = $ENV{ORACLE_USERID} || 'scott/tiger';

Steps 2 & 3: We initialize and log onto the database.
my ($user, $pass) = split /\//, $dbuser;

my $dbh = DBI->connect("dbi:Oracle:", $user, $pass,

 {RaiseError => 1});

Step 4: Now prepare the description of the target table.
my $sth = $dbh->prepare("select * from $ARGV[0]");

$sth->execute;

Describe the target table.

printf ("\n------------------\n");

printf ("TABLE : %s \n", $ARGV[0]);

printf ("------------------\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my %col_attr = (

 NAME => "ColName",

 NULLABLE => "NULL?",

);

foreach my $colnum (0..($sth->{NUM_OF_FIELDS} - 1)) {

 printf "\n";

 foreach my $attr (sort keys %col_attr) {

 my $tmp = $sth->{ $attr }->[$colnum];

 printf "%-20s: %s\n", $col_attr{$attr}, neat($tmp);

 }

}

$sth->finish;

Steps 5 & 6: Logout, clean-up and check out.
$dbh->disconnect; # Bye, Bye !!! 8)

There's much less work involved using just Perl DBI and DBD::Oracle, especially with logging on
and logging off. Just for the record, we obtained the following results:

$ perl rawDBI.pl DEPT

TABLE : DEPT

ColName : 'DEPTNO'

NULL? : ''

ColName : 'DNAME'

NULL? : 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NULL? : 1

ColName : 'LOC'

NULL? : 1

So what's the point of Oracle::OCI — the same result for four times the effort? Has the stardust of
Perl lost its magic? No, it has become more powerful than you can imagine. What we're trying to
do is get the finely-grained OCI stuff we mentioned earlier without having to do it all in hundreds
of lines of C. We'll see how shortly.

7.4.3 Mixing and Matching Oracle::OCI, Perl DBI, and DBD::Oracle

When you need certain OCI functionality that isn't available in Perl DBI, the most effective thing to
do is to mix and match. Where we can save code using Perl DBI, we can do that, and where we
really need OCI functionality, we can do that too — all within the same script. As the earlier Figure
7-1 showed, the various interface modules — Oracle::OCI, Perl DBI, and DBD::Oracle — are all
tightly integrated. When you set up a $dbh database handle with Perl DBI, for example, you get
access to all of the memory handles Oracle::OCI also requires. Take a look at Example 7-3 to see
how we use the best of both the DBI and OCI worlds. In fact, this is why we think Oracle::OCI may
potentially become the very best way of accessing the entire OCI API in any language. (See
Section 7.5 at the end of this chapter.)

Example 7-3. blendOciDbi.pl — Combining DBI and Oracle::OCI

#!/usr/bin/perl -w

use strict;

Blended DBI and OCI

use DBI qw(neat);

use Oracle::OCI qw(:all);

Step 1: Get the environment right, and set up your target
database and user.
$ENV{ORACLE_SID} ||= 'ORCL';

my $dbuser = $ENV{ORACLE_USERID} || 'scott/tiger';

Steps 2 & 3: We initialize and log onto the database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Steps 2 & 3: We initialize and log onto the database.
my ($user, $pass) = split /\//, $dbuser;

my $dbh = DBI->connect("dbi:Oracle:$ENV{ORACLE_SID}", $user, $pass);

Step 4: Now prepare the description of the target table, this time
using OCI, after we've established our connection with DBI.
Notice the frequent use of the Perl DBI $dbh variable.
my $tablename = $ARGV[0];

bless $dbh => 'OCIEnvPtr';

OCIHandleAlloc($dbh, my $dschp, OCI_HTYPE_DESCRIBE, 0, 0);

bless $dschp => 'OCIDescribePtr';

OCIDescribeAny ($dbh, $dbh, oci_buf_len($tablename), OCI_OTYPE_NAME,

 1, OCI_PTYPE_TABLE, $dschp);

Get the parameter descriptor.

OCIAttrGet ($dschp, OCI_HTYPE_DESCRIBE, my $parmp, 0, OCI_ATTR_PARAM,

 $dbh, 'OCIDescribePtr');

Get the table list, number of columns and description.

OCIAttrGet ($parmp, OCI_DTYPE_PARAM, my $collst, 0,

 OCI_ATTR_LIST_COLUMNS, $dbh, 'OCIParamPtr');

OCIAttrGet ($parmp, OCI_DTYPE_PARAM, my $numcols, 0,

 OCI_ATTR_NUM_COLS, $dbh, 'OCIParamPtr');

my $errstr;

Describe the target table.

printf ("\n------------------\n");

printf ("TABLE : %s \n", $tablename);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

printf ("TABLE : %s \n", $tablename);

printf ("------------------\n");

my %col_attr = (

 OCI_ATTR_NAME => "ColName",

 OCI_ATTR_IS_NULL => "NULL?",

);

my $status;

foreach my $colnum (1..$$numcols) {

 my $col_parmdp_int = 0;

 my $col_parmdp = bless \$col_parmdp_int => 'OCIParamPtr';

 OCIParamGet($collst, OCI_DTYPE_PARAM, $dbh, $col_parmdp, $colnum);

 my $describe_attr = {

 OCI_ATTR_NAME => 0,

 OCI_ATTR_IS_NULL => 1,

 };

 printf "\n";

 foreach my $attr (sort keys %$describe_attr) {

 my $type = $describe_attr->{$attr};

 no strict 'refs';

 $status = OCIAttrGet($col_parmdp, OCI_DTYPE_PARAM,

 oci_buf_len(my $tmp, 90),

 &$attr, $dbh, $type);

 warn "$attr: ".get_oci_error($dbh, $status, 'OCIAttrGet')

 if $status;

 warn get_oci_error($dbh, $status) if $status;

 printf "%-20s: %s\n", $col_attr{$attr}, neat($tmp);

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Steps 5 & 6: Logout, clean-up and check out.
$dbh->disconnect; # Bye, Bye !!! >=8+)

When we ran the code in Figure 7-3 in blendOciDbi.pl, we received this output:

$ perl blendOciDbi.pl DEPT

TABLE : DEPT

NULL? : 0

ColName : 'DEPTNO'

NULL? : 1

ColName : 'DNAME'

NULL? : 1

ColName : 'LOC'

With more than 530 OCI functions to choose from, we're confident you'll find exactly what you're
looking for when you combine Perl DBI and Oracle::OCI. For instance, the following
bioinformatics code snippet takes LOB processing a helpful bit further than DBI can go. We fetch
a LOB locator with DBI, and then process its genetic information with Oracle::OCI:

my $lob_locator = $dbh->selectrow_array("select my_lob " .

 "from human_genome " .

 "where id = 'insulin' " .

 "for update",

 { ora_auto_lob => 0 });

Start Oracle::OCI
OCILobGetLength($dbh, $dbh, $lob_locator, my $lob_len = 0);
OCILobTrim($dbh, $dbh, $lob_locator, $lob_len - 2);
Update the Bioinformatics genetic code inside the LOB
my ($offset, $amount, $buffer) = ($lob_len/2, 44, '');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my ($offset, $amount, $buffer) = ($lob_len/2, 44, '');
OCILobRead($dbh, $dbh, $lob_locator, $amount, $offset,
 oci_buf_len($buffer, 200, \$amount), 0, 0, 0, 0);
$buffer =~ s/ATGC/ACTG/g;
OCILobWrite($dbh, $dbh, $lob_locator, $amount, $offset,
 oci_buf_len($buffer), OCI_ONE_PIECE, 0, 0, 0, 1);
Back to DBI

...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.5 The Future of Oracle::OCI

We're sure that within a few years Oracle::OCI will be an advanced, mature set of packages used
by every Perl Oracle user around. Author Tim Bunce actually predicts that Oracle::OCI will
eventually hold the complex code, but that simpler modules will be layered on top to provide
specific functionality. For example, future modules may include the following:

Oracle::LOB

For dealing with large binary objects

Oracle::DirectPath

For speeding data loads

Oracle::Collection

For collections, index-by tables (associative arrays), and nested tables

Oracle::Transaction

For finely grained remote transactions

7.5.1 Oracle::PLSQL

Another extremely interesting development in the world of OCI will be Oracle::PLSQL. At the time
we were writing this book, this module was planned but did not yet exist. We expect this module
to provide fantastic connectivity between PL/SQL and Perl. In this way, it will tie in neatly with the
extproc_plsql module we describe in Chapter 8. Using the upcoming Oracle::PLSQL, PL/SQL
functions could be mapped directly to Perl functions, and vice versa, in a way similar to what's
happened with SQLJ and Java. We expect that eventually there could be room enough for this
symbiosis of Perl and PL/SQL to manage all of the following Oracle features:

Transparent use of the UTL_FILE built-in package between PL/SQL and Perl

Advanced Queuing

Replication

Standby databases

Parallel servers

Gathering and processing of performance statistics

Building of custom tools with the DBMS_DEBUG built-in package

For instance, Tim Bunce predicts snippets of code, such as the following example, which works
with binary files to load their information into the $buffer variable:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use DBI;

$dbh = DBI->connect('dbi:Oracle:', $user, $pass, { ora_autolob => 0 });

$bfile =

 $dbh->selectcol_array(

 "select bfile from mylobs where id=? for update", undef, 1);

use Oracle::PLSQL;

$dbms_lob = new Oracle::PLSQL DBMS_LOB => \$dbh;

$dbms_lob->fileexists($bfile) or die "File missing";

$length = $dbms_lob->filelength($bfile);

$dbms_lob->filegetname($bfile, $diename, $filename);

$dbms_lob->fileopen($bfile, $dbms_lob->{file_readonly});

$dbms_lob->read($bfile, 40, 1, $buffer);
$dbms_lob->fileclose($bfile);

Stay tuned to the Oracle::OCI dial for further information.

7.5.2 Contributing to the Oracle::OCI Project

Most Oracle DBAs probably already have their hands full and won't be interested in adding to
their workload. But if you do want to help with the Oracle::OCI project, we recommend that you
get hold of the latest download and start trying to make it work for your own needs. It can take a
while to get the hang of it, but for practice you might want to try to replicate the OCI demonstration
programs provided by Oracle Corporation, listed in the next section. For further information on the
project, visit Tim Bunce's CPAN site where you'll find numerous presentation downloads on DBI,
DBD::Oracle, and Oracle::OCI:

http://www.perl.com/CPAN/authors/id/TIMB

7.5.3 Demo Programs

If you want to cut your teeth on some hard-core OCI programming, check out the code examples
provided by Oracle Corporation detailing in-depth usage of OCI calls, available automatically
within your current Oracle installation.[6] These C files, and supporting SQL files, generally appear
in the../rdbms/demo or ../oci/samples directories. A variety of helpful information is included within
the header parts of these files; for example, you'll find out what accompanying SQL files need to
be preinstalled, and so on. We've listed the OCI 8.1 demonstration programs in Table 7-5.

[6] These are not guaranteed to appear, nor guaranteed to work, by Oracle Corporation, but you'll generally find them
and they do generally work. They provide excellent templates on which to build your own code, especially if you wish
to help develop Oracle::OCI.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 7-5. OCI demonstrations from Oracle Corporation
C programs Description

cdemo1.c..cdemo5.c Basic SQL processing

cdemo81.c, cdemo82.c Basic Oracle8 SQL session and object
processing

cdemobj.c REF selection and navigational interface
cdemocor.c..cdemocor1.c Demonstrate a prefetching user interface
cdemodp.c..cdemodp_lip.c Loading data through direct path API
cdemodr1.c..cdemodr3 Returning values and LOBs, etc.
cdemodsa.c, cdemodsc.c Used for describing tables
cdemoext.c OCI extraction
cdemofil.c OCI file handling
cdemofo.c OCI callbacks for application failover
cdemofor.c OCI formatting
cdemolb2.c, cdemolb2.c, cdemolbs.c,
cdemoplb.c Working with LOBs

cdemorid.c DML prefetches
cdemort.c Type information
cdemoses.c Session management
cdemosyev.c System event registration
cdemothr.c OCI threading
cdemoucb.c, cdemoucbl.c User callbacks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8. Embedding Perl into PL/SQL
PL/SQL is Oracle's own programming language. It©'s a powerful procedural language that is
tightly integrated with SQL ("PL/SQL" stands for "Procedure Language extension to Structured
Query Language"). It offers a full range of datatypes, conditional and sequential control, looping,
exception handling, modular code constructs, user-defined datatypes (such as objects), and a lot
more. It's likely that you have a whole raft of PL/SQL programs that you use daily to perform
Oracle database administration.

With all of its advantages, PL/SQL has a few limitations as well. There are things PL/SQL
programmers want to do that turn out to be impossible, or at least inefficient, to do with PL/SQL
alone. As you might suspect, we think Perl is the ideal supplement to PL/SQL. By calling Perl
modules from your PL.SQL programs (more accurately, by embedding Perl within PL/SQL), your
PL/SQL programs acquire many additional capabilities:

Mailing and the Internet

It is sometimes difficult to email or connect to the Internet from within PL/SQL, but there are
hundreds of helpful connectivity options available through Perl.

Encryption

PL/SQL offers very little built-in security, but Perl provides access to many different types of
encrypted security systems. (Later in this chapter we'll show how we use the MD5 message
digest algorithm from within PL/SQL via Digest::MD5.)

Operating system commands

Every now and again — perhaps while running complex backup maneuvers — we run into
situations where we'd like to be able to run system commands directly via the operating
system. Perl provides this ability (though, as we'll see, we will have to be careful how we
use it).

Access to C libraries

Perl has literally hundreds of modules providing API access to the world's most popular C
libraries. Allowing PL/SQL to access these via Perl extends PL/SQL's functional horizons.

Regular expressions

Although Oracle is catching up with regular expressions, particularly with some of the
PL/SQL Web Toolkit packages, such as OWA_PATTERN and OWA_TEXT, Perl's regular
expression engine is generally held to be the world's most powerful. It would be nice to get
access to it via PL/SQL.

Overall performance

Before external procedures arrived on the scene, it was a laborious process (usually
necessitating wrestling with the DBMS_PIPE built-in package), to get PL/SQL to talk to the
outside world. It involved complex listener setups, excellent 3GL language skills, plus a
good sense of humor and a large Simpsons video collection for post-installation de-stress
relaxation.[1]

[1] It actually was possible to involve Perl in these older solutions, as we did at the following web page, but we
believe that extproc_perl is a much better solution:
http://www.cybcon.com/~jkstill/util/debug_pipe/debug_pipe.html.

With external procedures now capable of linking to Perl, we save a lot of effort, and our programs
run much faster.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.1 Communication Between Perl and PL/SQL

The way you combine Perl and PL/SQL, and get the most out of these two excellent languages, is
with Perl's extproc_perl module, created by Jeff Horwitz. PL/SQL is able to communicate with this
library via its external procedure C-library system, which is known as EXTPROC.

8.1.1 What are External Procedures?

External procedure is a generic term for a server-side program that you can compile into the
native "shared library" format of the operating system. Under Unix, a shared library is a shared
object or .so file. Under Win32, it's a DLL (dynamically linked library). You can write an external
procedure in any language you wish, as long as your compiler, interpreter, and/or linker will
generate the appropriate shared library format that is callable from the language you have used.
Historically, most external procedures called from PL/SQL have been C programs, but Perl is now
becoming a popular option. This is because it is now possible to embed Perl directly within a C
library via Doug MacEachern's ExtUtils::Embed module, as shown in Figure 8-1.

Figure 8-1. Embedding Perl directly within a C library

8.1.2 Embedding Perl in C

The ExtUtils::Embed module was actually developed as a way of embedding the Perl interpreter
within C, via Apache, specifically for mod_perl. Our ability to use it with PL/SQL is really a
byproduct of that development. To find out more about its use, run the following command:

$ perldoc perlembed

Instead of having to work out all the information necessary to embed Perl into C, all we have to
run now is a command such as the following:

$ cc - o myCexecutable myCexecutable.c \

 `perl -MExtUtils::Embed -e ccopts -e ldopts`

This determines everything your C program will need in order to embed Perl, including the three
main C-related files held under the Perl library tree: EXTERN.h, perl.h, and libperl.a. It's a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

main C-related files held under the Perl library tree: EXTERN.h, perl.h, and libperl.a. It's a
particularly good technique, because the embedded Perl interpreter is still able to read and
interpret independent Perl scripts, a fact we rely on with our embedded Perl system, as we'll
explain later in this chapter. Although the two header include files are important, it's the libperl.a
archive which is the really crucial file to include; this archive contains the core of Perl's interpreter
C code.

8.1.3 Calling the Embedded Perl C Library from PL/SQL

Once we've compiled our new library with its embedded Perl system (we'll show how to do that
shortly), we can start using it like any other efficient C-based EXTPROC library. (We create our
new one with a special ExtProc.pm Perl module; this sits on top of the standard Perl interpreter,
plus any other modules, such as Perl DBI, that we require.)

Let's look at what happens when you call this embedded Perl C library from PL/SQL in order to
call a particular Perl function; numbers are keyed to the step numbers shown in Figure 8-2.

1. The process starts with a PL/SQL client application calling a special PL/SQL "module
body."

2. PL/SQL looks for a special Net8 listener process[2] that should already be running in the
background.

[2] Net8 is known as Oracle Net in Oracle8i and later releases and SQL*Net in Oracle7 and earlier releases.

3. At this point, the listener spawns an Oracle executable program called EXTPROC (note the
uppercase name on this program).

4. EXTPROC loads the dynamic library (extproc_perl.so), and then invokes this library with
the specified Perl function call.

5. The library then interrogates a Perl boot script (in this case, ora_perl_boot.pl) and looks for
the requested function.

6. On finding it, it executes the Perl function code, deals with any parameters, and then
returns the results all the way back to the calling PL/SQL client.

7. The extproc_perl.so C library returns these results via the EXTPROC process.

8. The EXTPROC process channels these results into the PL/SQL Runtime Engine.

9. And finally, the PL/SQL Runtime Engine returns these results to the calling PL/SQL
application code.

Figure 8-2. extproc_perl in action

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.2 Embedding Perl Within Oracle

Running extproc_perl is mainly about getting the Oracle external procedures system working correctly.
One of the best general guides we've found for these installation procedures is Chapter 23 of Oracle
PL/SQL Programming, 3rd ed. (now covering Oracle9i) by Steven Feuerstein with Bill Pribyl (O'Reilly &
Associates, 2002). For further information on Oracle's external procedures, the best online information
source is perhaps http://technet.oracle.com. Although the pages are very fluid (you may need to
browse around a bit), we found the following pages useful when we were investigating the subject:

http://download.oracle.com/otndoc/oracle9i/901_doc/appdev.901/a88876/adg11rtn.htm

Oracle9i Application Developer's Guide — Fundamentals for Release 1, Chapter 10.

http://download.oracle.com/otndoc/oracle9i/901_doc/server.901/a90117/manproc.htm

Oracle9i Database Administrator's Guide for Release 1, Chapter 5.

8.2.1 EXTPROC security

Before you get too deeply into the details of extproc_perl, we recommend that you check out the
following page for possible security alerts about EXTPROC, the actual program spawned by the
Oracle external procedure listener processes:

http://otn.oracle.com/deploy/security/alerts.htm

Because of the nature of what EXTPROC does — using external libraries to access the inside of the
Oracle database — we have to be vigilant in our use of the EXTPROC system provided by Oracle. We
recommend that you carefully follow the guidelines provided in any relevant security advisories you
find on the web page we've referenced previously.

8.2.1.1 extproc_perl and Win32

Like Oracle::OCI, which we described in the previous chapter, extproc_perl[3] is still in something of an
experimental stage. At the time this book went to press, there still wasn't a PPM available for
installation on Win32 systems. Once the module is fully mature, we're sure it will become available on
a PPM repository. Keep checking at the following page for more details or at the download sites
mentioned in subsequent sections:

[3] Also known as the "Oracle Perl Procedure Library."

http://dbi.perl.org

(Compilation on Win32, with commercial compilers, should follow the same logical steps as the Unix
installation process described shortly — your mileage may vary.)

8.2.2 A Detailed Look at extproc_perl

Figure 8-3 and Figure 8-4, in combination, show how we can track the dynamic calling of an external
Perl procedure from within a PL/SQL code block. (We've also included some Oracle library
configuration information in Figure 8-3 that is presented in greater detail later in this chapter.)

Figure 8-3. PL/SQL's active linkage to extproc_perl #1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-4. PL/SQL's active linkage to extproc_perl #2

Let's see what's going on here:

1. From deep within the database, the PL/SQL program broadcasts to the EXTPROC listener. It
sends out targeting information, stored within library and function declarations, so the listener
can locate the correct code within the external procedure. It also sends any required
parameters.

2. The listener picks up the signal from the PL/SQL engine.

3. It then launches the EXTPROC rocket program (or spawns it, as the manuals say, which is too
Borg for those of us who are followers of the One True Kirk.)

4. Once EXTPROC is deployed, it takes over mission control, and coordinates the entire operation
between the PL/SQL ground station and the external C program agents. It maps shared code
pages into the address space of the user process and maintains this link until the client session
completes. It then retracts its panels and splashes back down, to be sent up again on later
missions. While on station, EXTPROC deals with all requests by the client session for external
procedural help.

8.2.3 Downloading extproc_perl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can download the latest stable version of extproc_perl from here:

http://www.smashing.org
http://www.cpan.org/modules/by-authors/Jeff_Horwitz

8.2.4 Setting Up External Procedures

Setting up external procedures is not simple. You will need to do quite a bit of work to get the setup
right. We've summarized the main steps here; in the following sections we'll show the details for each
point:

Add a tnsnames.ora entry for the EXTPROC listener process, which calls the EXTPROC
program. This should be installed in $ORACLE_HOME/bin.

Edit the listener.ora file by adding an entry for the "external procedure listener."

Start a separate listener process to exclusively handle external procedures.

The EXTPROC process, launched by the listener, inherits the operating
system privileges of the listener. Therefore, Oracle recommends that
privileges for a separate listener process be made restrictive. They should
lack the ability to read or write to database files or to the server address
space. To provide this level of security, you may want to run your listener as
an OS user with limited permissions, such as nobody.

Now let's look at the setup details:

1. With every significant release of Oracle, the configuration of the .ora files in
$ORACLE_HOME/network/admin seems to change. We recommend that you refer to your own
installation configuration details for the exact setup required by your system. We'll concentrate
on the logical semantics here, rather than the exact details for each version. A typical
tnsnames.ora, on the same server as the listener, should be given a new entry such as the
following. (This is different for Oracle9i; see the discussion later for details):

extproc_connection_data =
(DESCRIPTION =

 (ADDRESS = (PROTOCOL=IPC)(KEY=extproc_key))
 (CONNECT_DATA = (SID = extproc_agent)
)

In some examples, the basic entry name, extproc_connection_data, is fixed. However, even if
this is the case in your version of Oracle, it may need a suffix if your sqlnet.ora contains a
default domain name such as:

NAMES.DEFAULT_DOMAIN=ORACLE.OREILLY.COM

You may need to change the server tnsnames.ora entry name to match the domain name
entries as follows:

extproc_connection_data.ORACLE.OREILLY.COM = ...

2. However, the key you specify (in this case extproc_key) must also match the KEY you specify

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. However, the key you specify (in this case extproc_key) must also match the KEY you specify
the listener.ora file. In addition, the SID name you specify (in this case extproc_agent) must
match the SID entry in the listener.ora file. (You may just want to call everything extproc to keep
it simple.) In the following, we've attached entries to a new listener entry in order to run up a
separate listener purely for external procedures:

EXTERNAL_PROCEDURE_LISTENER =

(ADDRESS_LIST =

 (ADDRESS = (PROTOCOL=ipc)

 (KEY=extproc_key)
)

)

SID_LIST_EXTERNAL_PROCEDURE_LISTENER =

(SID_LIST =

 (SID_DESC = (SID_NAME=extproc_agent)
 (ORACLE_HOME=/u02/app/oracle/product/8.0.4)

 (PROGRAM=extproc)
)

)

3. Note the following conditions for the preceding listener.ora example:

The EXTPROC program is conventionally referred to as extproc in lower case.

The ORACLE_HOME must be set to the Oracle software home.

The EXTPROC executable must exist in $ORACLE_HOME/bin.

However, in Oracle9i, most things are automatic with PLSExtProc. With a small change to
DBD::Oracle, described later, this is fine. Let's examine two snippets from the two main
Oracle9i .ora files. First, listener.ora:

(SID_DESC =

 (SID_NAME = PLSExtProc)
 (ORACLE_HOME = /opt/oracle/product/9.0.1)

 (PROGRAM = extproc)
)

And now, tnsnames.ora:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EXTPROC_CONNECTION_DATA.LOCAL =

 (DESCRIPTION =

 (ADDRESS_LIST =

 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC))
)

 (CONNECT_DATA =

 (SID = PLSExtProc)
 (PRESENTATION = RO)

)

)

4. Once ready, we can start up a separate listener as a low-privilege user:

$ lsnrctl start EXTERNAL_PROCEDURE_LISTENER

Once the listener is running successfully, we can skip the following section. However, it may prove
useful if you encounter any listener problems.

8.2.5 Debugging External Procedure Listeners

You'll be among friends if your listener setups refuse to work first time around. This badge of honor
even has a special debug routine to help you; look for the following file under ORACLE_HOME:

dbgextp.sql

Before you install this file, be sure to read it; it contains some good documentation regarding how you
can make use of it with debugging programs.

Now follow these steps:

1. In a perfect world, you should get no errors when you execute the
STARTUP_EXTPROC_AGENT procedure. Notice that in addition to CONNECT and
RESOURCE, other important privileges granted to the new user include both CREATE ANY
LIBRARY and DROP ANY LIBRARY:

SQL> connect system/manager

SQL> create user extproctest identified by extproctest;

SQL> grant connect, resource to extproctest;

SQL> grant create any library, drop any library to extproctest;

SQL> connect extproctest / extproctest

SQL> @?/plsql/demo/dbgextp.sql

SQL> call DEBUG_EXTPROC.STARTUP_EXTPROC_AGENT();
Call completed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. If STARTUP_EXTPROC_AGENT refuses to fire, this will indicate that the .ora files have a
configuration problem of some kind. Once everything's ship shape, drop this test user:

SQL> connect system/manager;

SQL> drop user extproctest cascade;

The DEBUG_EXTPROC package can be made to work with popular C
program debug utilities. If you don't have a debugger on your system and
you're using gcc, you will be able to use the excellent gdb debugger, which is
designed to work hand-in-glove with gcc. See
http://www.gnu.org/software/gdb/.

8.2.6 Building a New Perl

Before doing anything else, you will need to establish whether you're using a Perl distribution with a
shared libperl. This is a pre-condition for extproc_perl. In the following sections we'll see how to find
this out and how to build a new Perl if you need to do so.

8.2.6.1 The need for a shared libperl

To find out if you are using a Perl distribution with a shared libperl, you can issue the following:

$ perl -MConfig -e 'print "$Config{useshrplib}\n"'

false
Alas, false was the wrong answer. But, every cloud has a mithril silver lining. Because we're pointing
Perl directly into the heart of the Oracle database, we'll do as Jeff Horwitz actually recommends and
build a special version of Perl, just for Oracle's use. This way, we can do all the things we need to do
without clobbering anyone or anything else along the way.

We're also going to make use of a DBD::Oracle patch, supplied within the extproc_perl download, to
rebuild Perl DBI. This makes it doubly sensible to break out a fresh Perl to play with.

Because Oracle lacks support for the dynamic loading of shared objects from external procedures,
Perl's DynaLoader is compromised. We have to load shared objects from targeted modules at runtime,
and this static architecture requires XS hooks, special pleading, and a delegation of Papal Nuncios
from Rome. Building a brand new Perl is definitely the way to go!

8.2.6.2 Building Perl for the oracle user

In this section, we'll work through how to build a brand new Perl for the oracle user. You may want to
breeze through Chapter 2, again to remind yourself about the basics of Perl installation, but we'll do an
abbreviated installation run right here and now, and assume that the oracle user's HOME directory is:

/opt/oracle

If security is an issue, you may wish to create this new Perl for whichever user you run your listeners
with (see our earlier note on listener security):

1. Once the Perl installation user is chosen, you may want to create a new directory in the $HOME
directory (to store the forthcoming downloads) and a related perl/bin directory (where we'll
ultimately install Perl):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ cd $HOME

$ mkdir perldown

$ mkdir -p perl/bin

2. Next, get and unpack stable.tar.gz from http://www.perl.com/CPAN/src:

$ cd ../perldown

$ gzip -d stable.tar.gz

$ tar xvf stable.tar

$ cd perl-5.6.1

3. Configure in a shared libperl and a Perl home of /opt/oracle/perl:

$ rm -f config.sh Policy.sh

$ sh Configure -Dprefix=/opt/oracle/perl -Duseshrplib
The configurator will ask lots of questions, depending on your setup. We have to be careful here
and resist pumping the RETURN key like a Motörhead drummer. You must say "no" to the
following question:

Many scripts expect perl to be installed as /usr/bin/perl.

I can install the perl you are about to compile also as /usr/bin/perl

(in addition to /opt/oracle/perl/bin/perl).
Do you want to install perl as /usr/bin/perl? [y] n
This is an exception; aside from the use of a shared libperl, we do intend to build a totally
regular, though local, Perl.

4. Once Perl is configured, run make:

$ make

5. You may find time to make a nice hot cup of tea, while the Perl monkey spends a couple of
minutes churning the compilation organ. When it's completed, check it over:

$ make test

... All tests successful.

u=0.93 s=0.12 cu=64.77 cs=8.81 scripts=249 tests=12503

6. Now let's go create (note that for once we can avoid doing this as root):

$ make install

7. At some point during this installation, you may get the following warning:

Warning: perl appears in your path in the following locations

beyond where we just installed it: /usr/bin/perl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

beyond where we just installed it: /usr/bin/perl

This is kind of like a private sentry turning back a known Four Star General because of a
forgotten password; it's a good thing. To get around this, we must make sure our local hero Perl
comes ahead of any others when we compile our library. Once the compilation has finished,
you'll still see the older Perl before our nice new sparkling one:

$ type perl

perl is hashed (/usr/bin/perl)

We can get round this immediately by resetting PATH:

$ export PATH=$HOME/perl/bin:$PATH

$ type perl

perl is /opt/oracle/perl/bin/perl
(We'll also have to do this more permanently via whatever profiling system we're using, to
ensure that our oracle user always gets the right Perl.)

8. Now, the proof of the Christmas pudding is in the eating, so let's see if we've acquired the use
a shared libperl. Go to it, Red:

$ perl -MConfig -e 'print "$Config{useshrplib}\n"'

true
Next, we can move on and install Perl DBI and DBD::Oracle over the fresh new Perl.

8.2.7 Perl DBI and DBD::Oracle

As Figure 8-5 shows, once PL/SQL calls the embedded Perl interpreter via external procedures, it's
pretty much out on a limb in the outside world. Therefore, although we can return ordinary values to
the host database, we need to use DBI (using its own form of SQL) if we wish to loop back. This
loopback behavior is displayed in Figure 8-6. (Notice that we can connect to other databases as well,
although we have to establish a proper connection in these cases.)

Figure 8-5. The basic circuitry of extproc_perl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-6. Using Perl DBI in loopback mode

8.2.7.1 The importance of OCIExtProcContext

The OCIExtProcContext structure from OCI, originally set up when extproc_perl is first called, gives
DBI the ability to remain within the current PL/SQL transaction. This prevents the need for a new
database connection to be set up. (We'll say more about this shortly.)

There is a slight complication to DBI, however, caused by the use of OCIExtProcContext. In order to
get DBI to work within our Oracle Perl interpreter, we needed to apply a patch to DBD::Oracle. This
patch will be included in versions of DBD::Oracle, from 1.13 onward, but the extproc_per-0.93.tar.gz
tarball we downloaded had the patch designed for DBD::Oracle 1.08, and we were still on DBD::Oracle
1.12. To deal with this incompatibility, we therefore obtained DBD::Oracle 1.08, just to make sure the
patch we had access to would work as expected. To complete our tarball set, we obtained the
following files, including Digest::MD5 for testing purposes, and copied them to /opt/oracle/perldown:

http://www.cpan.org/authors/id/TIMB/DBI-1.20.tar.gz
http://www.cpan.org/authors/id/TIMB/DBD-Oracle-1.08.tar.gz
http://www.cpan.org/authors/id/JHORWITZ/extproc_perl-0.93.tar.gz
http://www.cpan.org/authors/id/GAAS/Digest-MD5-2.16.tar.gz

Before we went into combat, we extracted the Perl ammunition:

$ gzip -d *.gz

$ tar xvf DBI-1.20.tar

$ tar xvf DBD-Oracle-1.08.tar

$ tar xvf extproc_perl-0.93.tar

$ tar xvf Digest-MD5-2.16.tar

You may want to get rid of all these .tar files when you've finished the installation, but we always tend
to keep these until the bitter end, along with our lucky rabbits' feet.

8.2.7.2 Patching DBD::Oracle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At this point, you may find it useful to go into the extproc_perl distribution directory, and check on the
documentation:

1. Open up the README.DBI. This contains the information on the DBI patch:

$ cd extproc_perl

$ vi README.DBI
2. We also need to make sure we're using the right Perl:

$ type perl

perl is hashed (/opt/oracle/perl/bin/perl)
3. Now we can install DBI, confident that we're dealing with the right Perl agent (those agents can

get tricky when you've got more than one of them):

$ cd ../DBI-1.20

$ vi README

$ perl Makefile

$ make

$ make test

$ make install

...

Writing

 /opt/oracle/perl/lib/site_perl/5.6.1/i686-linux/auto/DBI/.packlist
Now the patch comes into play. Go to DBD::Oracle's installation home:

$ cd ../DBD-Oracle-1.08

4. It's time to start up our target Oracle database and make sure its listeners are fired up. Make
sure that ORACLE_HOME, ORACLE_SID, and ORACLE_USERID are all set, as per the
DBD::Oracle README file:

$ export ORACLE_USERID=scott/tiger@orcl.world

$ env | grep ORACLE

ORACLE_SID=orcl.world

ORACLE_USERID=scott/tiger@orcl.world

ORACLE_HOME=/opt/oracle/product/9.0.1

The DBD::Oracle patch is worth a look if you have time. You'll notice a sustained use of
OCIExtProcContext and other OCI code elements, as from Figure 8-5 and Figure 8-6. We've
detailed a snippet or two here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

...

 #ifdef OCI_V8_SYNTAX

+ SV **svp;

+ struct OCIExtProcContext *this_ctx;
...

+ if (sv_isa(*svp, "ExtProc::OCIExtProcContext")) {
+ IV tmp = SvIV((SV*)SvRV(*svp));

+ this_ctx = (struct OCIExtProcContext *)tmp;
+ }

...

5. To patch DBD::Oracle, carry out the following steps:

$ cp dbdimp.c dbdimp.old

$ chmod 644 dbdimp.c

6. Now move down a directory, as the patch is designed to be applied from the parent directory:

$ cd ..

$ cp extproc_perl/DBD-Oracle.patch .

$ patch -p0 < DBD-Oracle.patch
patching file `DBD-Oracle-1.08/dbdimp.c'
$ cd DBD-Oracle-1.08

$ ls -la dbdimp.* | grep -v '.h'

-r--r--r-- 1 oracle oinstall 57336 Apr 7 12:02 dbdimp.c

-r--r--r-- 1 oracle oinstall 56354 Apr 7 12:01 dbdimp.old

Note the slightly larger dbdimp.c file.

7. Oracle9i users and anyone else with a PLSExtProc listener instance may want to make a very
small manual change to the dbdimp.c file before compiling. Look for the following line:

if (!strncmp(dbname,"extproc",7)) is_extproc = 1;
Change this to:

if (!strncmp(dbname,"PLSExtProc",10)) is_extproc = 1;
This will ensure that the correct database context is called later on.

8. We can now install DBD::Oracle as usual:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ perl Makefile.PL

$ make

$ make test

$ make install

You may also want to install other modules at this point — for example, Digest::MD5 or anything else
from CPAN that catches your fancy. Because we're embedding Perl into a C library, we have to embed
everything along with it that we might need later. Fortunately, the main module that makes
extproc_perl possible, ExtProc.pm, will always be installed automatically.

8.2.7.3 Connecting back to the host database

As far as the host database goes, when you call the external procedure you remain permanently
connected to the database as the PL/SQL client user. However, to use DBI for host callbacks, you can
make use of the OCIExtProcContext object, as noted earlier. Fortunately, ExtProc.pm has made this
easy. You simply use it to grab the database context from within the bootstrap .pl script file and then
use the following code to phone home:

use DBI;

use ExtProc;

Pick up the current OCI context

my $context = ExtProc::context;

Call back to the host database

my $dbh = DBI->connect("dbi:Oracle:extproc", "", "",
 { 'context' => $context });
Here's what's going on:

1. Notice that there is no user or password required with the DBI->connect statement. You're still
technically logged into the database as the user who's running the actual PL/SQL and are still
part of the current transaction.

2. Notice as well the database SID, extproc within the DBI driver setup string (you may wish to
change this to PLSExtProc, depending on your setup):

dbi:Oracle:extproc
If you choose a more standard connection, such as dbi:Oracle:orcl, you'll create a proper DBI
connection, which incurs significant overhead. You'll also need to supply a user and password.
Using dbi:Oracle:extproc is also much faster, as it's tuned directly into OCI.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Alternatively, if you wish to connect to a remote database or to connect as another database
user, just connect with DBI normally and follow its standard
scott/tiger@my_remote_database_sid pattern. For example:

my $dbh =

 DBI->connect("dbi:Oracle:my_remote_database_sid", "scott", "tiger",
 { RaiseError=>1, AutoCommit=>0 });

8.2.8 Installing extproc_perl

We can now move on to the actual installation of extproc_perl. Switch over to the /extproc_perl
directory and ritually scan the installation files:

$ cd ../extproc_perl

$ vi README INSTALL
Note that the INSTALL file is the one you want to be checking here, rather than README.

8.2.8.1 ora_perl_boot.pl

Before configuration, we created a bootstrap Perl script file, ora_perl_boot.pl; at runtime, the C library
will scan this file for functions. ora_perl_boot.pl contains the subroutines we'll be calling later from
within PL/SQL. The name of this file on the configuration step will default to:

$ORACLE_HOME/lib/ora_perl_boot.pl

This seems to be a sensible name. We don't actually have to create this bootstrap file right now (see
the note later in this section), but it seems a good time to illustrate doing so. In addition, although test
routines are not necessary right now, this also seems as good a time as any to write some in a new
$ORACLE_HOME/lib/ora_perl_boot.pl file. (See Example 8-1, and notice our alternative use of
PLSExtProc in Test 4, for database context.)

Example 8-1. The ora_perl_boot.pl bootstrap file

sub localtime { # Test 1 - What's the time Mr Wolf? :-)

 my $x = localtime(time);

 return $x;

};

sub ls { # Test 2. ==> Hey, this could be rather dangerous! <==

 my ($lsarg) = @_;

 $lsarg ||= '.';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $lsarg ||= '.';

 my $ls = '/bin/ls -l';

 my $lsret = qx($ls $lsarg);

 return $lsret;

}

sub md5hex { # Test 3 - A little enigmatic encryption :)

 my ($data) = @_;

 use Digest::MD5;

 my $ctx = Digest::MD5->new;

 $ctx->add($data);

 my $digest = uc($ctx->hexdigest);

 return $digest;

}

sub tab_keyword { # Test 4 - Using DBI call-back context

 # Pick up the current OCI context and recall host.

 use DBI;

 use ExtProc;

 my($keyword) = @_;

 my $context = ExtProc::context;

 my $dbh = DBI->connect("dbi:Oracle:PLSExtProc", "", "",
 {RaiseError=>1, context => $context});

 # Viewing all SYSTEM tables, formatted

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 # Viewing all SYSTEM tables, formatted

 my $sth = $dbh->prepare("SELECT table_name " .

 "FROM user_tables ");

 $sth->execute;

 $sth->bind_columns(\$table_name);

 my $return_string;

 my $counter = 0;

 while ($sth->fetch) {

 $table_name = lc($table_name);

 $table_name =~ s/($keyword)/uc($1)/ieg; # Hey, Regular

 # Expressions!!! 8-)

 $counter++;

 if ($counter > 4) {

 $counter = 1;

 $return_string .= "\n";

 }

 $return_string .= sprintf("%-30s ", $table_name);

 }

 $dbh->disconnect;

 return $return_string;

}

You can create this boot file after the installation if you wish. As long as the
subsequent installation knows where to expect to find it, that's good enough.
You can also change the boot file after the installation to add extra
subroutines, extra parameters, and so on. The only restriction is that you must
use basic Perl, pre-installed modules, or pure Perl modules. If you wish to use
a new optional module — for example, Oracle::OCI — you must rebuild the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a new optional module — for example, Oracle::OCI — you must rebuild the
extproc_perl.so library with the Oracle::OCI module explicitly mentioned in the
build process. Everything you wish to use has to be included within the
extproc_perl.so library file, although rebuilding this is fairly painless once
you've successfully set up the EXTPROC listener process.

Example 8-1 is not a polished subroutine collection. At this point, we'd recommend that you go back
and check the ls() subroutine in the example. You could almost drive a Saturn V rocket through its
security (or lack of it)! (See Figure 8-7 a bit later for more details.) You will need to watch out for this
kind of thing if you employ the rocket thrust power of extproc_perl. For more on Perl security, check
out:

$ perldoc perlsec

8.2.8.2 Installation steps

Follow these steps to install extproc_perl:

1. Depending on the Oracle version, some header files may be missing from the locations where
extproc_perl (originally developed on Solaris) expects to find them. You may have to
symbolically link them in where appropriate. For now, though, let's assume that all the files are
where we need them:

$ perl Makefile.PL

This step will ask several questions. Because of the restriction on dynamically loaded Perl
modules, we have to specifically embed Perl modules statically within our external procedure
library via the extproc_perl configuration process. The Makefile.PL configurator will
automatically suggest several modules you might like to include. In addition to these, we'll also
add the DBI, DBD::Oracle, and Digest::MD5 modules, which we'll be testing later via subroutine
md5hex() in the boot file:

Modules to include in this

 build [IO Socket attrs]: IO Socket attrs Digest::MD5
 DBI DBD::Oracle <RETURN>

2. We also accepted the default name and location for the bootstrap file:

Path to bootstrap

 file [/opt/oracle/product/9.0.1/lib/ora_perl_boot.pl]: <RETURN>
3. It's time to compile:

$ make

We hope you have as much fun as we did with the make step!

4. We can now create our special library file, which also automatically installs the essential
ExtProc.pm Perl module:

$ make install

...

*** You should now copy extproc_perl.so to a convenient location.
...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

...

So, Mr. Bond, did we cut the library file from the Monte Carlo card pack?

$ ls -la *.so

-rwxr-xr-x 1 oracle oinstall 13008 Apr 7 12:18 extproc_perl.so
You win again, Mr. Bond, but we'll be back! Having created a shiny extproc_perl.so library, we
place it where Oracle can find it later. $ORACLE_HOME/lib seems the most natural place:

$ cp extproc_perl.so $ORACLE_HOME/lib

Now there's just one more hurdle before the home stretch; we'll discuss it in the next section.

There are two built-in extproc_perl functions detailed in the README.special
file. The first is _version, which supplies the current extproc_perl version, and
the second is _flush, which destroys the current Perl interpreter and all the
Perl data; a new interpreter is started for the next query. (You'll see _flush in
action at the end of the chapter in Figure 8-9.)

8.2.9 Deploying extproc_perl

All of the operating system elements are now in place for being able to use extproc_perl. The final task
is the creation of the actual PERL_LIB library within the database and its associated perl function.
We'll do this in Example 8-2; you can change this code and add more parameters to suit your own
environment, either now or at a later time.

Example 8-2. Creating the PERL_LIB library and perl function

CREATE OR REPLACE LIBRARY PERL_LIB IS

 '/opt/oracle/product/9.0.1/lib/extproc_perl.so'

/

show error library perl_lib

CREATE OR REPLACE FUNCTION perl (

 sub IN VARCHAR2, arg1 in VARCHAR2 default NULL,

 arg2 in VARCHAR2 default NULL, arg3 in VARCHAR2 default NULL,

 dummy in VARCHAR2 default NULL

) RETURN STRING AS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

) RETURN STRING AS

EXTERNAL NAME "ora_perl_sub"

LIBRARY "PERL_LIB"

WITH CONTEXT

PARAMETERS (

 CONTEXT,

 RETURN INDICATOR BY REFERENCE,

 sub string,

 arg1 string,

 arg1 INDICATOR short,

 arg2 string,

 arg2 INDICATOR short,

 arg3 string,

 arg3 INDICATOR short,

 dummy string,

 dummy INDICATOR short

);

/

show errors function perl;

create public synonym perl for perl;

grant execute on perl to public;

8.2.10 Testing extproc_perl

To recap, here's what we've done to get ready to run extproc_perl:

The external procedure listener is running and ready to spawn EXTPROC.

The PERL_LIB library has been created, along with the related perl function, and has been
made available to public.

The extproc_perl.so library has been compiled and is accessible to EXTPROC.

The ora_perl_boot.pl bootstrap file has been put in place; it is waiting now for calls from the perl
function via extproc_perl.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oh, what a tangled web we've woven — but one with a huge potential problem. Let's do some testing.
You can see our first two tests being called in Figure 8-7; note the security implications of our ls
subroutine. Figure 8-8 shows our third test; note how the addition of the md5hex encryption subroutine
adds a necessary degree of security.

Figure 8-7. extproc_perl — tests 1 and 2

Figure 8-8. extproc_perl — test 3

Figure 8-9 shows our final context link back to Perl DBI, and the use of regular expressions. This Perl
routine's purpose is to list all of the tables in USER_TABLES and to highlight a chosen string — in this
case, COL. Notice the use of _flush, the built-in function that clears out the Perl interpreter
beforehand.

Figure 8-9. Callback DBI, using ExtProc context

As Laurence Olivier might have said, we'll leave it to your imagination to fill in the many and varied
possibilities of using extproc_perl. Suffice it to say that through extproc_perl you now have the entire
range of Perl and CPAN modules to play with — including mailing, regular expressions, FTP, Telnet,
IO::Socket, and all the other golden gems of Perl Internet functionality. If you're interested in
encryption and related security operations, you'll find that you now have a full range of Perl security
modules available, including Authen::ACE, Crypt::Beowulf, the various message digest algorithms,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

modules available, including Authen::ACE, Crypt::Beowulf, the various message digest algorithms,
and the Crypt::Twofish2 encryption module. You can see the ever-growing list of Perl security modules
at http://search.cpan.org/Catalog/Security/.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part III: The Perl DBA Toolkit
This third part of the book describes the Perl Database Administration (PDBA)
Toolkit, a set of Perl scripts and reusable modules that we've developed to help
Oracle DBAs perform both routine database administration and more advanced
monitoring and tuning. It consists of the following chapters:

Chapter 9 introduces the components of the Perl Database Administration Toolkit
and explains how to install it and build the toolkit's password server.

Chapter 10 describes the toolkit's Perl scripts that help DBAs perform day-to-day
administration. We'll cover managing user accounts, maintaining indexes, killing
sniped sessions, managing extent usage, and extracting DDL (Data Definition
Language) and data.

Chapter 11 describes the toolkit's Perl scripts that can be used to monitor both the
Oracle alert log (containing database error and status messages) and the
connectivity of the databases.

Chapter 12 describes the toolkit's Perl scripts that allow you to build a repository in
which to store information about the many changes made to an Oracle database's
tables, indexes, roles, schemas, and other objects.

Chapter 13 provides information that will be helpful if you decide to modify any of the
scripts or modules in the toolkit. We'll take a detailed look inside one of the toolkit's
scripts and modules and illustrate how you can change them to suit your specific
database administration needs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9. Installing the PDBA Toolkit
In earlier chapters we looked at a number of applications that Perl programmers have developed
to help you perform Oracle database administration tasks. In this part of the book we'll introduce
our own toolkit of scripts and modules written in Perl. These scripts are also aimed at Oracle
DBAs and focus on areas of database administration that aren't covered in the other applications
we've examined. You will find all of the toolkit code freely available on the O'Reilly web site (see
the Preface for details).

Rather than being a ready-made application, you can think of the Perl DBA Toolkit (PDBA, for
short) described in this chapter and the following ones as a collection of resources. You can run
the scripts as is, or you can build on them in any way you wish. Think of the scripts provided in the
toolkit as a handy collection of sailing knots and rigging splices that you can use for tying various
Perl modules together into the best Oracle DBA solution for your own needs.

In this chapter, we'll cover these topics:

Introducing the toolkit and its core modules

We'll explain the contents of the toolkit and describe the functionality of the common
modules that are used by many of the Perl scripts described in subsequent chapters.

Installing the toolkit

We'll describe how to install the toolkit on Unix and Win32 systems.

Configuring the toolkit

After installation, we'll explain how you can configure the toolkit with users, passwords, and
other system-specific characteristics to meet your own site's needs.

Subsequent chapters describe different components of the toolkit in greater detail.

One part of the toolkit, the PDBA repository, requires special installation
procedures; those are covered in Chapter 12, not in the general
installation procedures described in this chapter. If you do not need the
capabilities provided by the repository, you can simply skip that chapter
and the repository installation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.1 Introducing the PDBA Toolkit

Your authors have been Oracle DBAs for many years. Over that time we've encountered our
share of frustration with database problems and inadequate tools. We've also ended up writing
literally thousands of ad hoc scripts to diagnose and fix problems on the fly. We've checked
database connectivity, monitored the Oracle alert log, wrestled with password management,
rebuilt indexes, and endured the drudgery of creating thousands of user accounts. We've used
many programming languages and applications. Some we've loved and others we've hated.
Some did the trick, but at a huge cost in money and complexity. Then we discovered Perl and
realized how helpful it could be in developing those quick scripts so essential to an Oracle
database administrator. Perl — and the modules that connect it to Oracle — gave us the keys to
the kingdom!

The Perl DBA Toolkit is our own ongoing open source contribution to the world of Perl and Oracle.
We have pooled our own script libraries and modules in order to build a cohesive Perl tool library
for you to use in performing Oracle database administration tasks. Many of the scripts included
here are integrated versions of those we've used on a regular basis in our DBA activities over the
years. Others have been on our wish lists for a very long time, and this book has finally inspired
us to transfer these wishes into reality.

It's up to you how you want to use this toolkit. It serves as a complete, standalone application, and
it also provides a helpful template for you to use in doing Perl programming of your own. In
building this toolkit, we've tried to demonstrate the flexibility and power of this amazing language
by putting together, for your enjoyment, a living, breathing network of Perl coding examples (in
addition to providing a huge array of Oracle database administration operations, of course).

The toolkit contains two distinct types of programs:

Perl scripts

Standalone scripts, written in Perl, that perform some distinct function; examples include
adding a new user to the database, rebuilding an index, or populating the toolkit repository
with data from the Oracle data dictionary.

Supporting modules

Underlying modules, also written in Perl, that provide more basic functionality that is shared
by multiple scripts; examples include finding and loading various types of configuration files
and processing command-line arguments.

Tables 9-1 through 9-5 list the toolkit scripts that are installed automatically, along with the
supporting modules (listed in Table 9-6) when you install the toolkit. All toolkit scripts are shown
here except for a few additional scripts used only for setting up the repository (described in
Chapter 12) and for demonstration purposes.

We describe the routine database administration scripts (Chapter 10)
before the monitoring scripts (Chapter 11) and repository scripts (Chapter
12) because they provide general-purpose functionality. However, if you
use the monitoring and/or repository functionality of the toolkit, we
recommend that you install and run those scripts before using any other
toolkit scripts. Essentially, the monitoring scripts provide a first perimeter
of security for your database, and the repository scripts provide a second.
For the safest possible database operation, it's best to install and run
these scripts before undertaking routine database administration.

Table 9-1 lists the scripts that are associated with the password server described in Chapter 13.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 9-1 lists the scripts that are associated with the password server described in Chapter 13.
(See Section 9.5.3 and Section 9.5.4, later in this chapter.)

Table 9-1. Chapter 9 scripts — Password encryption
Script Description

pwd.pl Password server daemon that encrypts passwords via a TCP socket; works
remotely with the other Perl scripts via the toolkit module set.

pwc.pl Client that remotely retrieves encrypted passwords from the password server,
easing the secure database access overhead imposed by other scripts.

pwd_service.pl Installs the password server as a service on Win32.

Table 9-2 summarizes the database administration scripts found in Chapter 10. These scripts
perform a wide variety of DBA tasks, including managing user accounts (e.g., creating new users
from the command line, creating new users via duplicated accounts, creating multiple accounts
with automatically mailed passwords), maintaining indexes, killing sniped database sessions,
managing extent usage, and extracting DDL and data (e.g., creating delimited data dump files for
SQL*Loader transfer).

Table 9-2. Chapter 10 scripts — Routine database administration
Script Description

ddl_oracle.pl Generates the DDL necessary to recreate schemas, tables, indexes, views,
PL/SQL, materialized views, and other objects.

sqlunldr.pl

Dumps entire schemas to comma-delimited files and generates the SQL*Loader
scripts necessary to reload them. Also dumps LONG RAW and BLOB objects,
converting them to hex format via the Oracle HEX_TO_RAW function in the
SQL*Loader control file in order to convert the data back into binary format.

create_user.pl
Creates Oracle users from the command line. You can create a user and assign
passwords, tablespaces, and privileges, all with one easy command-line call. Best
of all, you can use this script to preconfigure different groups of runtime privileges.

drop_user.pl

Drops a database user by first dropping all of the users' tables and indexes before
dropping the account. Doing so avoids most of the resource-intensive SQL
recursion incurred when dropping an account containing many tables and
indexes.

dup_user.pl Duplicates an account, with the source user's system privileges, object privileges,
roles, and quotas assigned directly to the target user.

my_script.pl This is a demonstration script used in the explanation of the PDBA::OPT module.

mucr8.pl
When creating a large number of users, this utility creates them all with a single
operation. Configurable permissions are granted, and the passwords
automatically generated get emailed back to the new account owners.

kss.pl Kills sniped sessions. (We'll explain what these are, and why you would want to
kill them, in Chapter 10.)

kss_NT.pl Win32 version of kss.pl.
kss_service.pl Used to create an appropriate snipe-killing service on Win32.

idxr.pl

Determines if an index should be rebuilt and, if so, rebuilds it. Checks on a per-
schema basis, and is configured to check indexes based on days since the index
was last analyzed. A configurable time limit is imposed, which allows index
rebuilds to fit within a predefined time schedule.

maxext.pl

Monitors the size and number of extents in tables and indexes. If they're nearing
a maximum allowed or if the object will be unable to extend because of limited
free space, it notifies the DBA. This script is most useful for databases that use
dictionary-managed extents.

Table 9-3 lists the monitoring scripts described in Chapter 11. These will help you maximize the
availability of your databases by alerting you to problems — both error conditions reported in the
Oracle alert log and problems with database connectivity.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 9-3. Chapter 11 scripts — Database monitoring
Script Description

chkalert.pl

Daemon that monitors Oracle alert logs for error conditions and notifies the
DBA via either email messages or pager calls. Oracle's alert.log files contain
important error messages as well as a log of database startup and shutdown
messages.

chkalert_NT.pl Win32 version of chkalert.pl.
chkalert_service.pl Utility script that creates a Win32 service for chkalert_NT.pl.

dbup.pl Working alongside chkalert.pl, a highly configurable database connectivity
monitor that checks to see if databases are up and available.

dbup_NT.pl Win32 version of dbup.pl.
dbup_service.pl Creates the Win32 service for dbup_NT.pl.

dbignore.pl Utility script used with dbup.pl to temporarily disable connectivity checks on
an individual database (e.g., while maintenance is being performed).

Table 9-4 summarizes the PDBA repository scripts contained in Chapter 12. These scripts
compare different database schema versions over time, detecting database changes (official or
otherwise). They also store SQL execution plans within a library cache; doing so allows the scripts
to compare the current execution plan with plans previously collected; this way, the scripts can
report on changed execution plans and the reasons behind the changes.

Table 9-4. Chapter 12 scripts — repository and DDL "time travel"
Script Description

baseline.pl
Creates the baseline for the PDBA repository (described inChapter 12), establishes
"time travel" control of DDL (Data Definition Language), and stores the entire
database structural change record across time boundaries.

spdrvr.pl Perl driver for SQL*Plus that reports on information created by baseline.pl.

sxp.pl Collects and stores SQL statements from the data dictionary and generates
accompanying execution plans for later comparison with other plans.

sxpcmp.pl Examines the current SQL statements, generating execution plans.
sxprpt.pl Generates reports based on the stored SQL and execution plans.

Table 9-5 lists the scripts described in Chapter 13. In particular, you'll find in that chapter a line-
by-line examination of the dba_jobsm.pl script, providing a detailed example of how the PDBA
Toolkit is used in a Perl script.

Table 9-5. Chapter 13 scripts — extending the PDBA Toolkit
Script Description

dba_jobs.pl Reports on the status of jobs in a database.
dba_jobsm.pl Reports on the status of jobs in multiple databases.
null_test.pl Test script used in explanation of extending the PDBA Toolkit.

9.1.1 Supporting Modules

We've written most of the PDBA Toolkit's functionality in the form of encapsulated Perl modules.
These modules are called by many of the scripts in the toolkit. Our purpose was to both
encourage code reuse and simplify the creation of new scripts. Table 9-6 provides a summary of
the modules; we'll discuss them in some detail in the following sections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that these modules are also available for use in scripts you develop yourself. You will find
that taking advantage of this ready-made code will speed your own development process. If you
decide to create your own scripts, you'll find that using these modules will dramatically reduce the
amount of code you'll need to write yourself.

Table 9-6. PDBA Toolkit supporting modules
Module Description

PDBA::CM Connection manager that simplifies Perl-to-Oracle connectivity.
PDBA::ConfigFile Finds and opens configuration files.
PDBA::ConfigLoad Finds, opens, parses, and loads configuration files into memory.
PDBA::DBA Designed for DBA-specific tasks; many are data-dictionary related.
PDBA::Daemon Runs Perl script daemons on Unix.

Win32::Daemon This module, by Dave Roth, is included here because it is so important to
toolkit daemon services on Win32 systems.

PDBA::GQ Generic query module that simplifies single-table queries.

PDBA::LogFile Creates and locks log files; used by many scripts in the toolkit to perform
logging actions.

PDBA::OPT Processes command-line arguments unhandled by calling scripts.
PDBA::PWC Password client module.
PDBA::PWD Password server module.
PDBA::PWDNT Password server modules for Win32.
PDBA::PidFile Used to control script execution.
PDBA Modular collection of widely used methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.2 Toolkit Modules

The supporting modules listed in Table 9-6 are described in the following sections. Over the next few chapters
we'll work through the scripts supported by these modules.

9.2.1 PDBA::CM (Connection Manager)

The PDBA::CM module is the connection manager for the toolkit. This module makes connections to Oracle
databases via the Perl DBI and DBD::Oracle modules. PDBA::CM also allows you to predefine Oracle
environment variables; we'll explain how in the installation instructions for this module later in the chapter.

Why is CM necessary? To see why, we'll first see how Perl DBI makes the connection to Oracle without CM.
Because we're only interested in connecting to Oracle databases, we can safely override or "subclass" the Perl
DBI connect method with the PDBA::CM module. This provides our own Oracle-optimized method. Why would
we want to do that? If you choose to configure the optional PDBA::CM configuration file, you can let it set up the
Oracle environment for you.

First let's look at what's involved in setting up the environment on your own. Before running an ordinary
standalone Perl script for Oracle, you would usually need to set up the environment as shown in the following
example:

$ export ORACLE_SID=mydb

$ export ORACLE_HOME=/u01/app/oracle/product/8.1.7

$ export ORACLE_BASE=/u01/app/oracle/

$ export TNS_ADMIN=/u01/app/oracle/product/8.1.7/network/admin

A regular Perl DBI script then connects to the target database like this:

my $db = $ENV{ORACLE_SID}

my $username = 'scott';

my $password = 'tiger';

my $dbh = DBI->connect('dbi:Oracle:' . $db, $username, $password,

 { RaiseError => 1, AutoCommit => 0 });

By using PDBA::CM and setting its configuration file, you avoid this environmental overhead:

my $db = 'orcl';

my $username = 'scott';

my $password = 'tiger';

my $dbh =

 new PDBA::CM (DATABASE=>$db, USERNAME=>$username, PASSWORD=>$password);

Here are the main differences between using CM and configuring on your own:

1. There was no manual work needed to set the Oracle environment; this is a blessing when you are faced
with many scripts that need to be run for different remote databases.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. The CM module makes use of its own configuration file, which lets it determine at runtime what
ORACLE_HOME, ORACLE_BASE, and the other variables should be set to.

3. By subclassing DBI, we include all of its functionality, via Perl's object orientation, for the price of a single
new method and a single call at the top of your scripts:

use PDBA::CM;

The module calls DBI::init_rootclass to set up PDBA::CM as a DBI root class. (For more detail
examine the script t/subclass.t in the DBI distribution.)

We'll look at a few special cases in the following sections.

9.2.1.1 Special login cases for SYSDBA and SYSOPER

As we describe in Appendix B, if you need to connect via Perl DBI as SYSDBA or SYSOPER, you must explicitly
indicate it. Here's how SQL*Plus does it:

sqlplus "system/manager as sysdba"

To do this in Perl DBI, you alter the login sequence as follows:

$dbh = DBI->connect('dbi:Oracle:' . $db, $username, $password,

 {RaiseError => 1, AutoCommit => 0, ora_session_mode => 2
What is happening here?

1. By setting the ora_session_mode to 2, you tell DBI that this is a SYSDBA account.

2. To log in as SYSOPER, you set ora_session_mode to 4.

In our PDBA::CM, you only need to set the MODE attribute to one of two valid values:

$dbh = new PDBA::CM (DATABASE=>$db, USERNAME=>$username, PASSWORD=>$password,

 MODE=>'SYSOPER'); # Or SYSDBA! :-)

9.2.1.2 RaiseError and AutoCommit

All connections to Oracle databases established via the CM module set the class attribute RaiseError
AutoCommit to 0. This is done for the following reasons:

If RaiseError is set to its DBI default of 0, fatal errors must be explicitly trapped:

my $sth = $dbh->prepare('select * from dual') or die "$DBI::errstr\n";
With RaiseError set to 1, you avoid this code overhead on all method calls, but the exception is still raised
if there is a problem with any method:

my $sth = $dbh->prepare('select * from dual'); # Raises error on failure! :-)

If AutoCommit is set to 1, or true, as a DBI default to match ODBC, this commits all database transactions
automatically. We want to avoid this behavior in the toolkit, so we turn it off by setting AutoCommit
false.

9.2.2 PDBA::DBA (DBA Methods)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The PDBA::DBA module stores methods that can be used by the toolkit to simplify routine Oracle database
administration tasks. Although each of these individual tasks might be perfectly straightforward, as such tasks
accumulate most DBAs end up spending much too much valuable time writing one-off scripts. PDBA::DBA
to remedy this situation.

9.2.2.1 Creating user accounts

One good example of a typical one-off DBA task is the creation of a new user account. You may already
possess several tools for creating new users. User creation can be a rather cumbersome process. Depending
on the target application, there are often numerous privilege sets that need to be assigned to various application
roles. To complicate matters, users may need multiple roles assigned in ways that are difficult to predict ahead
of time. You'll start developing a particularly bad headache when you're responsible for several applications.
Worse still, this labor-intensive work is quite prone to human error.

Our PDBA::DBA module can automate all of these complexities and remove the chance for error. Here's
example of how you can use this module's new method to duplicate a user account.

$ dup_user.pl -machine turing -database orcl -username scott \

 -new_username scott -source_user samantha
This example creates user scott in the database orcl. A password is generated for the new scott account, and
the account receives the same privileges as the source user — in this case, samantha.

You can also use PDBA::DBA directly within Perl scripts of your own:

my $newUser = new PDBA::DBA(
DBH => $dbh,

OBJECT_TYPE => 'user',

OBJECT => 'alicia',

PASSWORD => 'generate',

DEFAULT_TABLESPACE => 'users',

TEMPORARY_TABLESPACE => 'temp',

PRIVS => ['create session', 'resource', 'connect', 'oem_monitor'],

QUOTAS => { users => 'unlimited', tools => '10m', indx => 'unlimited'}

);

eval { $newUser->create };

if($@) { warn "error creating user: $DBI::errstr\n" }

else { print "Password: $newUser->{PASSWORD}\n" }

The main PDBA::DBA methods are summarized in Table 9-7.

Table 9-7. Main PDBA::DBA module methods
Method Description

new Used to instantiate a new PDBA::DBA object.
create Used to create various objects in an Oracle database.
drop Used to drop various objects in the Oracle database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

info Gathers information on target objects within the database.

9.2.3 PDBA::ConfigFile (Configuration File Handler)

The PDBA::ConfigFile module plays a very important part in the PDBA Toolkit. It facilitiates the creation of
powerful and robust scripts that are driven by a configuration file. If you need to change a script's purpose, all
you need do is change the configuration file.

9.2.3.1 Simplifying configuration

First let's look at a script that uses a configuration file, on execution, without PDBA::ConfigFile:

$ myscript1.pl -conf $HOME/pdba/myconfig.conf
The bare bones myscript1.pl script is shown in Example 9-1.

Example 9-1. myscript1.pl — Opening a configuration file with standard Perl

#!/usr/bin/perl

use Getopt::Long;

my %optctl=();

GetOptions(\%optctl, "conf=s");

my $configFile='';

my $fh;

if (exists $optctl{conf}) {

 $configFile = exists $optctl{conf};

 # Exit, if you can't read the file.

 unless(-r $configFile){

 die "cannot read the config file, $configFile - $!\n";

 };

 $fh = new IO::File;

 $fh->open($configFile) || die "Cannot open $configFile - $!\n"

} else { die "please specify a configuration file!\n"; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

} else { die "please specify a configuration file!\n"; }

There are a number of drawbacks to this approach:

Code volume

You will need to type in a fair amount of code every time you need to use a configuration file.

Maintenance

It's difficult to modify the configuration code block when it's embedded in several scripts.

Flexibility

myscript1.pl only looks for the configuration file in the full path location specified by the command line. It
would be nice if you could just supply a file name, and let Perl go find it, wherever it is. That's what
done with PDBA::ConfigFile.

Here's an example of doing much the same thing with PDBA::ConfigFile:

$ myscript2.pl -conf myconfig.conf

This executes myscript2.pl in Example 9-2. Notice that there is a lot less script code.

Example 9-2. myscript2.pl — Opening a configuration file with PDBA::ConfigFile

#!/usr/bin/perl

use PDBA::ConfigFile;

use Getopt::Long;

my %optctl=();

GetOptions(\%optctl, "conf=s");

my$configFile='mytest.conf';

my $fh;

unless ($fh = new PDBA::ConfigFile(FILE => $configFile)){
 die "failed to open $configFile\n";
}

9.2.3.2 Automatic file searching

In cases where you don't specify a full OS path, PDBA::ConfigFile checks in several places for your config

1. The first place it looks is the current directory.

2. Next is the home directory, as specified by the HOME environment variable.

3. Next up is PDBA_HOME, assuming that you've set up this environment variable.

4. PDBA::ConfigFile then searches through the directories in your PATH.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. You can also search a specific set of directories:

unless ($fh = new PDBA::ConfigFile(

 FILE => $configFile,

 PATH => ENV{$HOME} . PDBA->pathsep() . "$ENV{ORACLE_HOME}/conf"
)){ die "failed to open $configFile\n" }

PDBA::ConfigFile returns a value of undef if the configuration file remains unfound, a behavior used to
trap errors, as with the die call above. (The pathsep method allows the proper parsing of the PATH
variable, depending on whether you're running via Unix or Win32. We'll say more about this later on.)

9.2.4 PDBA::ConfigLoad (Configuration File Loader)

The PDBA::ConfigLoad module finds your configuration file and loads it for you. In doing this, it assumes that
the configuration information is structured as Perl code. This provides several advantages:

It entails much less script programming.

You will have an easier time understanding the structure of the configuration data.

The reduction in complexity makes scripts much more maintainable.

Let's consider the example of an old-fashioned configuration file:

1. You want there to be a defaults list when you're creating users or objects for a specific database.

2. The configurations must be capable of specifying defaults for different databases.

3. There must be a generic default for unspecified databases.

Let's examine what these requirements entail in a typical configuration file in Example 9-3.

Example 9-3. Old-fashioned colon-separated configuration file

tables: object type:database:tablespace:pctfree:pctused:initial:next

table:default:users:60:10:128k:128k
table:dw:dwload:10:5:128m:128m
indexes: object type:database:tablespace:pctfree:initial:next

index:default:indx:5:128k:128k
index:dw:load_idx:5:4m:4m
users: object type:database:tablespace:temp tablespace:privs:quotas

privs must be separated by commas

quotas must be in tablespace/space usage pairs, all comma separated

user:default:users:temp:connect,resource:users,10m,indx,5m
user:dw:dw_users:dw_temp:create session,dw_user:dw_users,200m,dw_indx,100m

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

user:dw:dw_users:dw_temp:create session,dw_user:dw_users,200m,dw_indx,100m
As Morpheus might have said to Neo in The Matrix, "Do you think that's easy to read, or modify?" If
use this configuration file, you'd also need to write some complex code to parse it. Contrast this to the
configuration script in Example 9-4. Each component is clearly labeled, as in a tnsnames.ora file structure, and
when you need to add to this configuration file, it's a simple matter of pasting in appropriate values.

Example 9-4. New-fangled Perl script configuration file

package dbparms;
use vars qw(%defaults);

%defaults = (

 table => {

 default => { tablespace => 'users', pctfree => 60, pctused => 10,

 initial => '128k', next => '128k'

 },

 dw => { tablespace => 'dw_load', pctfree => 10, pctused => 5,

 initial => '128m', next => '128m'

 },

 },

 index => {

 default => { tablespace => 'index', pctfree => 5,

 initial => '128k', next => '128k'

 },

 dw=> { tablespace => 'load_idx', pctfree => 5,

 initial => '4m', next => '4m'

 },

 },

 user => {

 default => { default_tablespace => 'users',

 temporary_tablespace => 'temp',

 privs => ['connect', 'resource'],

 quotas => { users => '10m', indx => '5m' }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 },

 dw=> { default_tablespace => 'dw_users',

 temporary_tablespace => 'dw_temp',

 privs => ['create session', 'dw_user'],

 quotas => { dw_users => '200m', dw_indx => '100m' }

 },

 },

);

9.2.4.1 Loading a Perl configuration script

Coincidentally, it's also easier to load into a Perl script using PDBA::ConfigLoad:

use PDBA::ConfigFile;

my $nf = new PDBA::ConfigLoad(FILE => 'nf.conf');
unless ($nf) { die "failed to load\n " }

That's all there is to it. Three lines of Perl makes your configuration file loaded and ready to use. The data
structure for your configuration files is defined and documented, and there's an added silver-lining benefit as
well; it's also now a simple matter to check your configuration file for syntactical correctness. Here's how:

perl -cw myconfig.conf # -c, checks syntax, -w, looks for warnings
Because this is a Perl script, Perl will throw an error if the file fails to compile.

So how do you access all of these configuration parameters? It's easier than you might think. The following
script will print some of the values loaded in the previous example:

$dwprivs = join(', ', @{$dbparms::defaults{user}->{dw}{privs}});
%dwquotas = %{$dbparms::defaults{user}->{dw}{quotas}};

print qq {

user defaults for dw:

default tablespace : $dbparms::defaults{user}->{dw}{default_tablespace}
temporary tablespace: $dbparms::defaults{user}->{dw}{temporary_tablespace}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

temporary tablespace: $dbparms::defaults{user}->{dw}{temporary_tablespace}
};

print "privs: $dwprivs\n";

print "\ntablespace quotas\n";

for my $tbs (keys %dwquotas) {

 print "\ttbs: $tbs quota: $dwquotas{$tbs}\n";

}

Here's the output from the preceding script, using the configuration file in Example 9-4:

user defaults for dw:

default tablespace : dw_users

temporary tablespace: dw_temp

privs: create session, dw_user

tablespace quotas

 tbs: dw_users quota: 200m

 tbs: dw_indx quota: 100m

(Appendix A, walks through the concepts that underly the discussion in this section; see particularly its
discussions of anonymous arrays and references.)

9.2.4.2 Referring to configuration variables by package name

Take another look at our first line in Example 9-4:

package dbparms;

By packaging the configuration variables in this way, we also remove the possibility of overwriting variables in
the main script, because they're in a different namespace. In Perl's use strict mode, every variable has to be
referred to by its package name, dbparms, and its variable name. For example, the %defaults hash is accessed
by %dbparms::defaults. (Again, refer to Appendix A if you are confused by all this.)

9.2.5 PDBA::Daemon and Win32::Daemon (Background Programs)

The PDBA::Daemon module (and its Win32 partner, Win32::Daemon) create background, server-like
These are programs that you start once; they then continue to run in the background without any necessary
user interaction, and they continue to run until you explicitly tell them to stop. These background programs differ
for Unix and Win32:

Unix

Unix background programs are often referred to as daemons. The term comes from an ancient Greek
definition of daemon as a guardian spirit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Win32

Background processes on Win32 are more often known as services.

We'll look first at creating a daemon process in Unix and later turn our attention to Win32.

9.2.5.1 PDBA::Daemon: Creating a Unix daemon process in Perl

There are a few basic rules you will need to follow when creating simple daemon processes on Unix:

1. Close unnecessary open files, including STDIN and STDOUT.

2. Disassociate the daemon from the original process group.

3. Disassociate the daemon from the controlling terminal.

4. Make sure that the daemon issues a chdir to a directory that will remain mounted.

This is all done easily, within a few lines of Perl:

if ($pid = fork) { exit 0 } # exit parent
 if (defined($pid)) {

 close STDOUT;

 close STDIN;

 chdir('/');

 croak "Cannot detach from terminal" unless $sess_id = POSIX::setsid();

 return $pid;

 }

 if (++$tries>5) { die "fork failed after $tries attempts: $!\n" }

 else {

 sleep 3;

 redo;

 }

}

Let's see what's going on here:

1. The call to fork is how Perl starts a new process. In this case, the parent process exits while the
continues running in the background.

2. The next section closes STDIN and STDOUT and then changes to the root directory. (It is important that
daemons run on file systems that are unlikely to be dismounted. For instance, if your daemon were
started in /u01/oracle/app/perl/bin and left there, it becomes difficult to unmount that file system for
necessary maintenance.)

3. The final task is to disassociate the daemon from the controlling process group. This is done via the Perl
POSIX module using the setsid function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although daemons require only a small amount of Perl code, there's a lot of Unix
magic going on behind the scenes. If you are interested in discovering the Unix system
internals underlying daemons, you might want to read The Magic Garden Explained
by Berny Goodheart and James Cox (Prentice Hall, 1994).

Let's demonstrate a short daemon script in Example 9-5.

Example 9-5. daemon_test.pl — Example Perl daemon

#!/usr/bin/perl

use warnings;

use PDBA::Daemon;

use IO::File;

my $logFile = '/tmp/daemon_test.log';

my $lh = new IO::File;

$lh->open("+> $logFile") || die "unable to create log file $logFile - $!\n";

&PDBA::Daemon::daemonize;

for (my $i = 0; $i < 5; $i++) {

 my ($sec,$min,$hour) = localtime(time);

 my $output = sprintf("%02d:%02d:%02d\n", $hour,$min,$sec);

 $lh->printflush($output);

 sleep 5;

}

$lh->close;

You can check this background daemon's progress, once it has been started, by tailing its log file as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$./daemon_test.pl

$ tail -f /tmp/daemon_test.log

21:43:39

21:43:44

...

A little code, and one call to PDBA::Daemon::daemonize, and you have an independent Perl daemon up and
running. This is an extremely useful feature, as we'll see later.

9.2.5.2 Win32::Daemon: Creating a Win32 daemon in Perl

Win32 also has background processes, better known as services. Win32 services are implemented differently
than Unix daemons. Therefore, our standard daemon creation operation via PDBA::Daemon needs adjustment.
Enter the Win32::Daemon module, a brilliant piece of software created by Win32 Perl guru Dave Roth of Roth
Consulting. This module creates system services written entirely in Perl and is available from
http://www.roth.net. We'll show you how to install it later in this chapter.

Unlike Unix systems, Win32 platforms typically have a service control application. Each
Perl service must continually respond to signals from this, like the High King of the
NazgÛl periodically checking the fiery Red Eye's beam from Barad-dÛr.

Win32 service scripts look substantially different from daemonized Unix scripts, as Example 9-6 shows.

Example 9-6. Win32 service script

use Win32;

use Win32::Daemon; # http://www.roth.net! :-)

use IO::File;

my $attempts;

Win32::Daemon::StartService();

sleep(1);

my $lh = new IO::File;

my $logFile = "c:/temp/daemon_test.log";

$lh->open($logFile) || die;

LOG($lh, "Service Starting - State is: " . $State);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LOG($lh, "Service Starting - State is: " . $State);

while(SERVICE_START_PENDING != Win32::Daemon::State())

 LOG($lh, "Waiting for service - state is: " . $State . "...");

 sleep(1);

 if ($attempts++ > 15) {

 LOG("Failed to start service in " . $attempts . " attempts");

 Win32::Daemon::State(SERVICE_STOPPED);

 Win32::Daemon::StopService();

 exit 2;

 }

 $State = Win32::Daemon::State();

}

Win32::Daemon::State(SERVICE_RUNNING);

$State = Win32::Daemon::State();

LOG($lh, "Service Started - State is: " . $State);

while (1) { # Main loop! 8-)

 # check for Win32 Service state

 my $PrevState = SERVICE_RUNNING;

 while(SERVICE_STOPPED != ($State = Win32::Daemon::State())) {

 if(SERVICE_RUNNING == $State) {

 LOG($lh, "Service running");

 last;

 } elsif(SERVICE_PAUSE_PENDING == $State) {

 # "Pausing...";

 LOG($lh, "Pausing Service");

 Win32::Daemon::State(SERVICE_PAUSED);

 $PrevState = SERVICE_PAUSED;

 next;

 } elsif(SERVICE_CONTINUE_PENDING == $State) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 } elsif(SERVICE_CONTINUE_PENDING == $State) {

 # "Resuming...";

 LOG($lh, "Resuming Service");

 Win32::Daemon::State(SERVICE_RUNNING);

 $PrevState = SERVICE_RUNNING;

 last;

 } elsif(

 SERVICE_STOP_PENDING == $State or

 SERVICE_CONTROL_SHUTDOWN == $State) {

 # "Stopping...";

 LOG($lh, "Stopping Service");

 # Tell the OS that the service is terminating...

 Win32::Daemon::State(SERVICE_STOPPED);

 Win32::Daemon::StopService();

 exit 8;

 last;

 } else {

 # We have some unknown state...

 # reset it back to what we last knew the state to be...

 LOG($lh, "Unknown State of : " . $State . " - exiting...");

 Win32::Daemon::State(SERVICE_STOPPED);

 Win32::Daemon::StopService();

 exit 8;

 last;

 }

 sleep 1;

 }

 LOG($lh, "Main Loop");

 sleep 1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sleep 1;

}

########################

sub LOG {

 my($lh) = shift;

 my @msg = @_;

 my($sec, $min, $hour, $mday, $mon, $year, $wday, $yday, $isdst);

 # mon = 0..11 and wday = 0..6

 ($sec, $min, $hour, $mday, $mon, $year, $wday, $yday, $isdst) =

 localtime(time);

 # change $mon to 1-12 and $wday to 1-7;

 $mon++; # to get it to agree with the cron syntax

 $day++;

 $year += 1900; # Y2K fix

 $lh->printflush("%04d/%02d/%02d %02d:%02d:%02d: %s\n",

 $year,$mon,$mday,$hour,$min,$sec,@msg);

}

As you can see, setting up Win32 services is an involved process — and remember that Win32::Daemon
sheltered you from the really gory internals!

9.2.5.3 Using Unix Daemons and Win32 services in Perl

Now that you have some grasp of Unix daemons and Win32 services, let's consider why you would want to use
them in the first place. In this chapter, we'll focus on how they can help to automate as many Oracle DBA tasks
as possible:

When we're using daemons and services, we can be instantly notified of problems, even during evenings
and weekends. That way, we can fix them immediately (rather than end up walking unaware into user
firestorms the next day).

We'd like to avoid reading log files by eye. We'd much rather a Perl robot did this for us. (Perl
very good at reading log files; they don't get tired or bored and don't inadvertently skip over a page.)

We can manage more databases than we could otherwise, and do a better job of it.

We can free up more time to do interesting things (often involving even more Perl!).

Running Unix daemons and Win32 services also helps us maintain those two commandments tattooed in deep
purple on a DBA's soul:

Thou shalt monitor the alert.log file for serious problems.

Thou shalt ensure that databases can be connected to over the network.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unless it's an acceptable plan to manually check alert.log for each database, you'll want to automate these
processes. To do this, many shops run cron or at scripts, with names like every10 or LifeSaver. These run every
few minutes, attempting database connections, and they notify the DBA if problems occur. In Chapter 11
present a better method of checking the alert logs, using Perl of course. It's a better method because it allows
you to determine which errors are of importance to you, paging the DBA only when necessary. It will be flexible,
will be easy to set up, and will avoid the straitjacket of a rigidly bound cron schedule.

9.2.6 PDBA::GQ (Generic Query)

DBAs often open cursors to single tables (such as DBA_TABLES), read in some rows from it, get the column
values, and then process the data in some way. If you do this routine often enough, you'll soon tire of its
repetitive nature, even if you're just cutting and pasting queries from prestored SQL scripts. The PDBA::GQ
module is designed to streamline this task. The module's main methods are listed in Table 9-8.

Table 9-8. PDBA::GQ module methods
Method Description

new Instantiates a new GQ query object
next Retrieves the next row from a query object
all Retrieves all the rows from a query object
getColumns Returns a hash reference of column names for a query object[1]

[1] See Appendix A for a description of anonymous hash references.

The standard DBI query method often uses bind variables in the following way:

my $sql = q{

 select object_name, created, last_ddl_time

 from dba_objects

 where owner = ?

 and object_type = ?

};

my @bindparms = qw(SCOTT TABLE);
my $sth = $dbh->prepare($sql);

mu $rv = $sth->execute(@bindparms);
while (my $hashRef = $sth->fetchrow_hashref) {

 print "Object: $hashRef->{OBJECT_NAME}\n";

 print "Created on : $hashRef->{CREATED}\n";

 print "Last DDL Time : $hashRef->{LAST_DDL_TIME}\n";

}

PDBA::GQ can help simplify that approach as follows:

my @bindparms = qw(SCOTT TABLE);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my @bindparms = qw(SCOTT TABLE);
my $dbaObj = new PDBA::GQ {

 $dbh, "dba_objects",

 {

 WHERE => "owner = ? and object_type = ?",

 BINDPARMS => \@bindparms
 }

};

while (my $row = $dbaObj->next) {

 print "Object: $row->{OBJECT_NAME}\n";

 print "Created on : $row->{CREATED}\n";

 print "Last DDL Time : $row->{LAST_DDL_TIME}\n";

}

Note how the PDBA::GQ module saves us several steps from the previous code snippet:

The prepare and execute methods are called automatically on object creation.

All column names are made available without explicit specification.

Column names are still available via the regular fetchrow_hashref mechanism.

PDBA::GQ uses several Perl DBI methods for returning data from Oracle (all of these are fully described in
Appendix B).

fetchrow_hashref

Offers a straightforward interface at the sacrifice of a little speed. Because of its ease of operation, we've
used fetchrow_hashref as the query method in PDBA::GQ's next method.

fetchall_arrayref

Used in PDBA::GQ's all method to retrieve all the rows from a SQL query in one go; especially helpful
when we're loading small sets of reference data.

The default return value for PDBA::GQ's all method is a reference to an array of hash references. Example 9-7
uses this approach. The memory structure is displayed in Figure 9-1.

Example 9-7. GQ::all — Returning a reference to array of hashrefs

my $vobj = new PDBA::GQ(

 $dbh,

 'v$parameter',

 { WHERE => q{name like 'job%'} }

);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Default is reference to an array of hash references.

my $arrayref = $vobj->all;
Print it out.

for my $row (@$arrayref) {

 print "PARM: $row->{NAME} VALUE: $row->{VALUE}\n";

}

Figure 9-1. An array reference to a list of hashes

We can change this default memory structure by using the [] anonymous array notation. Example 9-8
the same query, this time with data returned as a reference to an array of array references. (Again, for more
about this and other Perl DBI topics, see Appendix B.)

Example 9-8. GQ::all — returning a ref to array of array refs

my $vobj = new PDBA::GQ(

 $dbh,

 'v$parameter',

 { WHERE => q{name like 'job%'} }

);

Send an empty array reference, as an argument to indicate

the requested return type of data.

my $arrayRowRef = $vobj->all([]);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $arrayRowRef = $vobj->all([]);
my $colNames = $vobj->getColumns;

Print it out.

for my $row (@$arrayRowRef) {

 print "PARM: $row->[$colNames->{NAME}] VALUE: $row->[$colNames->{VALUE}]\n";

}

With the array-to-array method, you generally refer to the exact position of an element within an array. However,
the getColumns method loads up a hash array, with the column names as keys and the array elements as
values. This allows you to refer to the column names, even though your data is stored in an array. It's a kind of
magic!

9.2.7 PDBA::LogFile (Logfile Handler)

Many of our toolkit utilities log their actions by means of the PDBA::LogFile module. For example, we have a
script called dbup.pl that periodically tests connections to all configured databases. Every attempted connection
gets logged, successes and failures are recorded, and the failures are emailed to the DBA. The PDBA::LogFile
module's purpose in life is to facilitate logging by PDBA scripts; its methods are introduced in Table 9-9

Table 9-9. PDBA::LogFile methods
Method Description

new
Creates a new log file object:

$logFh = new PDBA::LogFile($log);

makepath

Creates a path to the logfile:

$log="$ENV{HOME}/pdba/log/log.txt";

PDBA::LogFile->makepath($log);

print
Performs buffered prints to the logfile:

$logFh->print("test line\n");

printflush
Performs nonbuffered prints to the logfile:

$logFh->printflush("test line\n");

Logfiles are often locked, so if another instance of a utility is run, it avoids writing over the logfile in use.
Therefore, if you are planning several utility instances, it's often best if each gets its own logfile. To open and
lock a logfile, here's what you need to do:

use PDBA;

use PDBA::LogFile;

my $logFile = PDBA::pdbaHome . '/logs/test.log';

my $logFh = new PDBA::LogFile($logFile);

if(! $logFh) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 die "failed to open log file for writing - $!\n"

}

It's a lot simpler than you may have imagined. Here's part of what was going on behind the scenes in
PDBA::LogFile, when the logfile was created:

if (-r $logFile and -w $logFile) {

 # This should never happen, but we'll check anyway.

 $self->open($logFile) || return undef;

 $self->close;

 # Try to open existing log file.

 # file must be opened with intent to write

 $self->open("+<$logFile") || return undef;

 # Lock file, recreate and relock, and print PID to file.

 if (flock $self, LOCK_EX|LOCK_NB) {

 $self->open("+>>$logFile") || return undef;

 print "LogFile 4 : $logFile\n" if $debug;

 if (flock $self, LOCK_EX|LOCK_NB) {

 $self->autoflush;

 return 1;

 } else { return undef }

 } else { $self->close; return undef }

} else { # Lock file does not exist.

 $self->open("+>>$logFile") || return undef;

 # Get an exclusive lock on the file.

 if (flock $self, LOCK_EX|LOCK_NB) {

 print "LogFile 7 : $logFile\n" if $debug;

 return 1

 }

 else { return undef }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Setting up logfiles is one of those necessary but code-intensive tasks that most of us don't care to spend a lot of
time on: we'll take the modular use of PDBA::LogFile every time! PDBA::LogFile also avoids assuming anything
about logfile location. This means we can do OS-portable log creation using the built-in File::Spec and
modules:

use PDBA;

use PDBA::LogFile;

use File::Spec;

use File::Path;

my $logFile = PDBA::pdbaHome . '/logs/test.log';

my ($volume, $directories, $file) = File::Spec->splitpath($logFile);

my $path = $volume . $directories;

Create the path.
File::Path::mkpath($path, 0, 0750);
Make sure it's there.
-d || -w || -r || -x $path || die "dir $path not usable\n";
my $logFh = new PDBA::LogFile($logFile);

if(! $logFh) { die "could not open log file for writing - $!\n" }

for (my $i = 1; $i<10; $i++) {

 $logFh->printflush("test line # $i\n");

 sleep 5;

}

Path creation is made even simpler by adding a makepath method to PDBA::LogFile as shown in Example 9-9

Example 9-9. Simplified logfile creation

use PDBA::LogFile;

my $logFile = PDBA::pdbaHome . '/logs/test.log';

PDBA::LogFile->makepath($logFile);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PDBA::LogFile->makepath($logFile);
my $logFh = new PDBA::LogFile($logFile);

if(! $logFh) { die "could not open log file for writing - $!\n" }

for (my $i = 1; $i<10; $i++) {

 $logFh->printflush("test line # $i\n");

 sleep 2;

}

On Unix, makepath creates directories with default file permissions of read, write, and execute for the owner;
read and execute for the group, and nothing for others. On Win32, makepath also tries to set permissions, but
doing so depends on the file system security setup.

9.2.7.1 PERMS attribute

To set permissions to other values, use the PERMS attribute with an octal permissions value. The following
example will prevent anyone other than the system administrator and the file owner from viewing the contents of
the log directories:

my $logFile = PDBA::pdbaHome . '/logs/test.log';

PDBA::LogFile->makepath($logFile, PERMS => 0700);
The two print methods, print and printflush, both create a timestamp, which is prefixed on each printed line. Both
methods print by calling methods in the IO::File superclass. The output from Example 9-9 would look like this:

20011021233514:test line # 1

20011021233516:test line # 2

...

20011021233530:test line # 9

The printflush method is preferred for logging operations, as its output is unbuffered
and immediately logged, but you may require print if you need to buffer disk IO.

9.2.8 PDBA::OPT (Option Handler)

The PDBA::OPT module is used in conjunction with the password-control modules (PDBA::PWC, PDBA::PWD
and PDBA::PWDNT) described in the following sections. The role of PDBA::OPT is to scan the command line
for options that may be intended for the password server, rather than for Oracle itself. PDBA::OPT then feeds
the security information found on the command line to the PDBA::PWC module to retrieve a password. The
following sections describe the basics of how the various password modules work. See Chapter 11 for an
extended example of how PDBA::OPT supports the alert log monitoring scripts provided in the toolkit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.2.9 PDBA::PidFile (Program Id Handler)

A popular mechanism for preventing programs from being run concurrently is to create a baton file that is then
immediately locked. Subsequent attempts to run the same program try to lock the baton file as well. If a program
is unable to lock the file, that program exits gracefully with an appropriate message. If the program is
lock its baton file, processing continues as in the following code snippet, which uses the PDBA::PidFile
to control script execution:

use PDBA::PidFile;

my $lockFile = '/tmp/myapp_pid.lock';

my $fh = new PDBA::PidFile($lockfile, $$);

if (! $fh) {

 die "could not lock PID file\n";

}

One approach might be a daemon for monitoring alert.log. Let's look at the requirements:

You only want this program to run on one instance at one time.

To ensure that it's always running, you run it once per hour via the system scheduler:

If the script is unable to create and lock a baton file via PDBA::PidFile, the script simply exits.

If the previous monitor script dies for some reason, then the next time the scheduler tries to start
another instance, PDBA::PidFile successfully creates and locks the baton, and normal processing
continues.

Example 9-10 shows how PDBA::PidFile accomplishes these goals.

Example 9-10. Locking portion of PDBA::PidFile module

sub lockFile {

 my $self=shift;

 my (%options) = @_;

 my $lockFile = $options{file};

 croak "lockFile requires a file name\n" unless $lockFile;

 my $pid = $options{pid};

 croak "lockFile requires a PID\n" unless $pid;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (-r $lockFile and -w $lockFile) {

 $self->open($lockFile) || return undef;

 ($lockPid) = <$self>;

 $self->close;

 # try to open existing lock file

 # file must be opened with intent to write

 $self->open("+<$lockFile") || return undef;

 # lock file, recreate and relock

 # print PID to file

 if (flock $self, LOCK_EX|LOCK_NB) {

 $self->open(">$lockFile") || return undef;

 # return pid from file if you can't lock

 if (flock $self, LOCK_EX|LOCK_NB) {

 $self->printflush($pid) ;

 return $pid;

 }

 else { return undef }

 } else { return $lockPid }

 } else { # lock file does not exist

 $self->open(">$lockFile") || return undef;

 $self->printflush($pid);

 # get an exclusive lock on the file

 if (flock $self, LOCK_EX|LOCK_NB) { return $pid }

 else { return undef }

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

9.2.10 PDBA::PWD (Password Daemon)

The PDBA::PWD module provides the core functionality in the pwd.pl script that we use to centralize
management in the toolkit.

Password management is a recurrent issue for DBAs. There is a trend today in many large Oracle sites towards
OS authentication, in which the Oracle database allows all authentication to be enforced by the operating
system. But this type of authentication may not be feasible in some environments. Many corporate security
policies may prohibit the use of OPS$ Oracle accounts, and many DBAs dislike OS authentication, preferring
the forced use of passwords because that approach gives DBAs greater control over database security.

Despite the recent advent of single sign-on systems, Public Key Infrastructures (PKI),[2] and other advanced
security schemes, database accounts protected by passwords are likely to be with us for some time to
Unfortunately, there are some inherent problems with the use of passwords — for example:

[2] For a discussion of the very real risks of PKI, see http://www.counterpane.com/pki-risks.html.

Process monitoring

Passwords entered on command lines are visible to utilities such as the ps program.

Maintenance overhead

Passwords that are hard-coded into scripts make code maintenance difficult.

Username rigidity

Inflexible privilege assignment leads to extra work when people join or leave development teams. If
getting help from DBAs takes extra time or effort, users may compromise security by swapping
usernames and passwords among themselves.

User resistance

If site policy requires regular password changes, you may find yourself flooded with users who have
forgotten the new passwords they've been forced to create.

Password security overload

If password policy prohibits the use of dictionary words and previous passwords, and insists upon vowel
number replacement,[3] people will inevitably come up with password schemes designed to aid memory.
Unfortunately, these are rapidly figured out by cracker systems. As a challenge, see if you can guess the
third password in this list:

[3] Vowel number replacement refers to the practice of replacing vowels in words with numeric digits that resemble the vowel —
for example, the word PASSWORD becomes P4SSW0RD. The numeric digit 4 replaces the letter A, and the numeric digit
replaces the letter O.

P4SSW0RD0N3

P4SSW0RDTW0

?

P4SSW0RDTHR33 just got you access to the Human Resources payroll table.

9.2.10.1 Batch job password problems

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Even totally secure password systems may encounter difficult management situations. Batch table loads, index
rebuilds, billing statement runs, and a host of other long-running jobs are usually run at night. Unless someone
is going to run these jobs manually and input all the passwords as necessary, these jobs need an automated
method for inputting correct passwords.

To deal with this situation, some DBAs create protected files that contain passwords accessible to scripts
requiring passwords. Unfortunately, this solution produces its own problems:

External password visibility

System administrators often have the ability to read any file on a Unix or Win32 server. When your
passwords are stored in a local file or are hard-coded in scripts on every system that has an Oracle
database, this increases the risk to your databases by exposing those passwords to people who may not
have been granted access to them.

File distribution

You often need to distribute copies of this hard-coded file to all of your servers; once again, this
complicates password management in a distributed environment.

The PDBA::PWD module lessens these problems. It's a TCP socket server, written in Perl, and modeled after
the non-forking server found in the excellent Perl Cookbook, by Tom Christiansen and Nathan Torkington
(O'Reilly & Associates, 1998). Account passwords remain stored in a single Fort Knox file, and passwords are
encrypted over the network.

9.2.11 PDBA::PWC (Password Client)

We've also provided a client module, PDBA::PWC, used to communicate with the password server. The
script can retrieve passwords on the command line or, even better, Perl scripts can import the PWC
in this way avoid making passwords visible to operating systems.

9.2.12 PDBA::PWDNT (Password Client for NT)

The PDBA::PWDNT module is the Win32 version of PDBA::PWC. It makes use of the Win32::Daemon
that allows it to be installed as a Win32 service.

9.2.13 PDBA (PDBA Utilities)

The PDBA module is a collection of utilities. These are used throughout the other modules, as well as in the
individual scripts included in the toolkit. PDBA simplifies the process of writing portable scripts — or at least
minimizes the changes necessary when porting scripts across platforms. Table 9-10 lists the methods provided
in PDBA. The following sections describe their use.

Table 9-10. PDBA methods
Method Description

email Sends emails from Perl scripts
pathsep Determines the correct separator to use in PATH variables
osname Returns the platform as either Unix or MSWin32
pdbaHome Returns the value of PDBA_HOME

9.2.13.1 pathsep

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Back in the IBM PC dark ages, someone decided that PATH entries in MS-DOS would be separated by
semicolons (;). This presented a problem to folks used to the colon character (:) employed by Unix. Today,
PATH variables are seldom used in Perl scripts, but when they are, the pathsep method comes in really handy.
By using pathsep rather than literal characters, we make the path separator transparent, and we always end up
getting the right one:

use PDBA;

my @pathDirs = split(PDBA->pathsep(),$ENV{PATH});
my $fullPath='';

my $file='test.conf';

for my $dir (@pathDirs) {

 $fullPath = $dir . PDBA->pathsep() . $file;
 # if file exists and is readable, we're done

 last if -r $fullPath;

 $fullPath = '';

}

raise an error if not found

unless($fullPath) { die "could not find config file $file\n" }

This code snippet works on either Win32 or Unix without hard-coding.

9.2.13.2 osname

We sometimes need to let our code know which platform it's being executed on. In such cases, you will find
osname method very helpful. For example:

use PDBA;

my $pathsep = ';';

if ('Unix' eq PDBA->osname()) { $pathsep = ':' }
return $pathsep;

9.2.13.3 pdbaHome

The pdbaHome method determines the location of PDBA_HOME. On Win32, PDBA_HOME is stored in the
Windows Registry. On Unix, it simply needs to be set as an ordinary environment variable. The following code
snippet illustrates the use of pdbaHome:

use PDBA;

my @searchPaths = ('./', '../', PDBA->pdbaHome());
There's a lot going on internally here to determine the correct value for PDBA_HOME:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sub pdbaHome {

 if ('Unix' eq PDBA->osname()) {

 if (exists $ENV{PDBA_HOME}) {return $ENV{PDBA_HOME}}

 else{return $ENV{HOME} }
 } else {

 eval q{use Win32::TieRegistry (Delimiter=>q{/}, ArrayValues => 0)};

 if ($@) {

 die "could not load Win32::TieRegistry in PDBA\n";

 } else {

 no warnings;

 $pdbaKey= $Registry->{"LMachine/Software/PDBA/"}; # :-)

 use warnings;

 $ENV{PDBA_HOME} = $pdbaKey->{'/PDBA_HOME'};

 unless ($ENV{PDBA_HOME}) { die "PDBA_HOME not set in registry\n" }

 return $ENV{PDBA_HOME};

 }

 }

}

There is a default for PDBA_HOME on Unix, but not on Win32:

On Unix, if you examine the code for pdbaHome, you'll see that the return value defaults to $ENV{HOME}
if PDBA_HOME is unset.

In contrast, on Win32 the PDBA_HOME registry value is mandatory, because some Win32 platforms lack
a suitable default value for PDBA_HOME.

By wrapping the use Win32::TieRegistry portion inside an eval{} block, Perl avoids compiling this code unless it
is being executed on a Win32 platform. This feature allows us to write a script that can be executed on both
Unix and Win32 platforms.

9.2.13.4 email

We've centralized a simple-to-use email method in the PDBA module. There are several reasons why
this method helpful:

You'll often want to notify someone via email if a Perl monitor detects a problem.

You may want a facility for notifying Oracle account owners of various information regarding the
administration of your databases and their accounts.

The email method shown here in use is based on the Mail::Sendmail module developed by Milivoj Ivkovic:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[4] For more information, see http://alma.ch/perl/mail.htm#Mail::Sendmail

use PDBA;

my @addresses = ('scott.tiger@oracle.com','tony.tiger@oracle.com');

my $message = "yes, we're almost there";

my $subject = "are we there yet?";

if (PDBA->email(\@addresses, $message, $subject)) {
 print "Mail sent\n";

} else {

 print "Mail unsent\n";

}

To conclude, the PDBA module is our workhorse module, the spider module in the center of the toolkit's web.
Therefore, in addition to the methods described in this section, it contains additional private methods
only for internal use by other modules in the PDBA Toolkit. This module is the one we're most likely to update
we continue the development of this toolkit. If you wish to explore it further, check out the comprehensive
documentation available via the perldoc PDBA command.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.3 Installing the PDBA Toolkit for Unix

There are three basic steps involved in installing the toolkit on Unix systems:

Set the environment

We need to ensure that the Unix environment has been correctly prepared for installation.

Load the modules and scripts

Once the environment is set, we can install the main body of code.

Edit the configuration files

Once the code is installed, we can configure, secure, and store all of our database connection
parameters.

You will need to follow the steps in this section to install the PDBA Toolkit on your Unix platform so the scripts
introduced in later chapters will work properly.

9.3.1 Setting the PDBA Environment

PDBA_HOME is the default directory for the PDBA Toolkit and all of its associated files. However, as we
mentioned earlier in the discussion of the PDBA module, it may not be necessary to set PDBA_HOME
Unix. If you create an account dedicated to running the PDBA Toolkit, you may be happy enough storing its
configuration files under the HOME structure of that account. Recall from our earlier discussion that this is
where PDBA will look for them if PDBA_HOME has not been set. For instance, for new user oramon
/home directory, the default location will be under /home/oramon/pdba.

9.3.1.1 Setting PDBA_HOME from the command line

If you do wish to explicitly control the location of PDBA_HOME, it's as easy as this:

$ export PDBA_HOME=/u01/my_pdba_home_dir

To avoid typing this line as part of every login, edit your .profile file or equivalent, and add PDBA_HOME
the usual suspects required for the toolkit's installation. They are:

ORACLE_HOME
ORACLE_SID (or TWO_TASK)
TNS_ADMIN

It is possible to create the entire PDBA Toolkit, while logged in as the root account,
but we'd like to recommend another approach. The toolkit modules and scripts
should be installed as root or as the user who owns the Perl installation. (For
instance, you may have installed a local Perl for user oracle.) However, the
configuration files should be installed in a user account, such as oramon, oracle, or
pdbauser. Toolkit scripts should be executed under that account as well to keep
your system administrator happy.

9.3.2 Installing the PDBA Perl Modules and Scripts

Before actually installing the toolkit there are some other tasks you will need to deal with:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Install additional Perl modules

The PDBA Toolkit is dependent on other Perl modules that must first be installed.

Determine installation locations

Decide if the default locations for the supporting modules and the scripts are acceptable. Determine
alternate locations as needed.

We'll first install the additional Perl modules needed for the PDBA Toolkit.

9.3.2.1 Installing additional modules

There are three external Perl modules we need to load. We've kept this list of extras to a minimum in order
keep installation as simple as possible. However, as we developed this toolkit, we did try to follow the maxim
of Perl programmers everywhere: "Laziness is a virtue." Put another way, Perl programmers are advised to
avoid reinventing the wheel whenever possible and to make use of existing code wherever they can.

These are the necessary modules; all of which can be installed from CPAN:

http://www.cpan.org/authors/id/GBARR

Graham Barr's TimeDate date parser.

http://www.cpan.org/authors/id/S/SI/SIFUKURT

Kurt Kincaid's Crypt::RC4 cryptographic module.

http://www.cpan.org/authors/id/M/MI/MIVKOVIC

Milivoj Ivkovic's OS-independent Mail::Sendmail email sender (described earlier).

When connected to the Internet, the easiest way of installing these modules is this:

$ perl -MCPAN -e "shell"

cpan> install Date::Format
cpan> install Crypt::RC4

cpan> install Mail::Sendmail

cpan> quit

Lockfile removed.

Installing Date::Format automatically picks up the rest of the TimeDate bundle.

9.3.2.2 Determining installation locations for Perl modules

Now we can go ahead with the toolkit installation. First you need to download the toolkit. You can download
PDBA-1.0.tar.gz, or its latest derivative, from our O'Reilly site:[5]

[5] We will be regularly updating the PDBA Toolkit as an evolving open source project, although you may wish to load PDBA-1.0.tar.gz
first, just to get the hang of its installation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://www.oreilly.com/catalog/oracleperl/pdbatoolkit

You now need to make two important decisions:

Where do we want the PDBA supporting modules to go?

Where do we want the PDBA scripts to go?

We generally want all of our Perl modules to be stored within the default Perl library tree. However, if you
wish to install these modules elsewhere — perhaps to control access — use the PREFIX switch. For
example, the following will install everything under ~/oramon/pdba:

$ perl Makefile.PL PREFIX=/home/oramon/pdba
This will mean that the modules get installed in directories that normally are invisible to Perl. The installer will
take care of this by adding a code line near the top of PDBA executable shell scripts, as in the following:

use lib qq{/home/oramon/pdba/lib/site_perl/5.6.1/};

Later on, this specification will tell Perl where to find the PDBA modules as Perl requires them. However, we
recommend that you accept the default Perl library locations just to keep everything simple.

9.3.2.3 Determining installation locations for Perl scripts

The recommended location for the Perl scripts isn't as obvious. Perl's ExtUtils::MakeMaker generally places
scripts within the /usr/bin location. However, we (or your system administrator) may prefer /usr/local/bin
slight command-line modification changes the target script directory as follows:

$ perl Makefile.PL INSTALLSCRIPT=/usr/local/bin
Installing the PDBA scripts in /usr/local/bin has the added advantage of separating the executable scripts
from the OS binaries found in /usr/bin. This makes your scripts less vulnerable during system upgrades or
rebuilds. Making them publicly available under /usr/local/bin still avoids a security risk (as the configuration
files contain the confidential information). This information may be easily protected inside a user account
such as oramon.

9.3.2.4 INSTALLSITELIB

Installation variations are possible too. For example, you might wish to put the modules in
/home/oramon/pdba and the executable scripts in /usr/local/bin. But beware! You might think the following
would suffice:

$ perl Makefile.PL PREFIX=/home/oramon/pdba INSTALLSCRIPT=/usr/local/bin
Alas, this produces unintuitive results. Rather than placing executables in /usr/local/bin, you'll find them
lurking in /home/oramon/local/bin. This is because PREFIX takes precedence over INSTALLSCRIPT
must instead substitute INSTALLSITELIB for PREFIX:

$ perl Makefile.PL INSTALLSITELIB=/home/oramon/pdba INSTALLSCRIPT=/usr/local/bin
For more on this and other MakeMaker variations, try the following command:

$ perldoc ExtUtils::MakeMaker

9.3.2.5 Ready to install

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

From now on, we'll assume that the PDBA Toolkit is being built by the oramon account. Follow these steps:

1. Go to the PDBA_HOME directory:

$ chdir $PDBA_HOME

2. Unpack the tarball:

$ gzip -d PDBA-1.0.tar.gz

$ tar xvf PDBA-1.0.tar

3. Now we configure and compile in the traditional manner:

$ cd PDBA-1.0

$ perl Makefile.PL INSTALLSCRIPT=/usr/local/bin

$ make

Let's test the compilation. This requires setting the ORACLE_USERID environment variable to a user
with the SELECT ANY TABLE privilege:

$ export ORACLE_USERID=system/manager

$ make test

4. To install the PDBA Toolkit under the Perl library tree, you'll need to log in as root:

$ su - root

cd /home/oramon/PDBA-1.0

5. Now finish the job:

make install

You'll see output that looks something like this:

Installing /usr/lib/perl5/site_perl/5.6.1/PDBA/CM.pm

...

Installing /usr/share/man/man3/PDBA::CM.3pm

...

Installing /usr/bin/pwd.pl

Writing /usr/lib/perl5/site_perl/5.6.1/i586-linux/auto/PDBA/.packlist

Appending installation info to /usr/lib/perl5/5.6.1/i586-linux/perllocal.pod

9.3.3 Installing PDBA Unix Configuration Files

We'll store our Unix configurables via the highly sophisticated flat-file method,[6] albeit one with a special
twist. While PDBA modules and scripts are now installed in the proper locations, the configuration files
remain within the build directory. Let's find them a proper home:

[6] If it's good enough for Apache, it's good enough for us!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ cd $PDBA_HOME/PDBA-1.0

Of course, the final location of the files will depend on how you set PDBA_HOME:

If PDBA_HOME is set to /u01/app/pdba, for example, this is where the files will get stored.

If PDBA_HOME is not set, the configuration files will get stored in $HOME/pdba.

To install the default configuration files, you simply need to execute this command:

$ perl cp_config

The cp_config script checks any potential PDBA_HOME value, determines what to do, and then installs the
files accordingly (as described earlier). To configure these files, skip the Win32 installation, and go directly to
the Section 9.5, later in this chapter, as configuration is similar for both platforms.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.4 Installing the PDBA Toolkit for Win32

Before we discuss toolkit installation on Win32 systems, we need to make sure that the
PDBA_HOME environment variable is in an accessible place. On Win32, only one mechanism
ensures the availability of this variable — the Windows Registry. Although we'll use the Registry
just once, we must make sure that PDBA_HOME can be accessed by programs running through
the Windows Scheduler, through the Windows services system, or just as plain old scripts.

We recommend that the PDBA Toolkit and all its configuration files be
stored on the C: drive, because of the way that Windows security works.
Programs executing from drives other than C: may lack access to drives
other than C: when running via the Windows Scheduler. Likewise, Perl
scripts running as Win32 services may fail to work properly when
executed from a network drive.

You will need to follow the steps in this section to install the toolkit on your Win32 platform so the
scripts introduced in later chapters will work properly.

9.4.1 PDBA Registry Settings

Follow these steps to provide the proper registry settings:

1. Visit our O'Reilly site and download PDBA.ppd. Save this to a suitable place such as
C:\TEMP. (You only need this temporarily and can delete it afterwards):

http://www.oreilly.com/catalog/oracleperl/pdbatoolkit

2. Now install PDBA via ActivePerl's PPM program:[7]

[7] You could also download PDBA_1_00_Win32.tar.gz, uncompress it, and install it manually, copying the
files to the appropriate locations. PPM is much easier, though, and less error-prone.

DOS> ppm

PPM> install --location=c:\temp PDBA
Install package 'PDBA?' (y/N): y

...

Installing C:\Perl\site\lib\PDBA\CM.pm

...

Installing C:\Perl\site\lib\PDBA\util\pdba.reg
...

Installing C:\Perl\bin\pwc.pl

...

Writing C:\Perl\site\lib\auto\PDBA\.packlist

PPM>

(Notice the -- location PPM argument used to locate the PDBA.ppd file. (Note that there are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(Notice the -- location PPM argument used to locate the PDBA.ppd file. (Note that there are
two dashes in the option, not one.)

3. Once you've installed PDBA via PPM, you'll need to track down the pdba.reg file. If your
Perl installation is on drive C:, its file path will be:

C:\Perl\site\lib\PDBA\util\pdba.reg

4. Edit this file with a right-click, and check to make sure you're happy with the default for
PDBA_HOME, which we've preset to:[8]

[8] You may be curious about the use of the forward slash, /, rather than the standard Windows backslash, \.
The backslash has a special meaning in Perl, changing the meaning of following characters. Perl therefore
requires two backslashes, , to really mean a single one, \. Because the Windows kernel uses a forward slash
internally as the separator, using it in Perl works just fine.

C:/pdba

5. Change it if you wish and then exit from the file. To update the Registry, double-click the
pdba.reg file via Windows Explorer.

6. This installs the key [HKEY_LOCAL_MACHINE/Software/PDBA] with a PDBA_HOME entry
assigned to C:/pdba (or whatever you've changed it to). Registry work is now over. Sighs of
relief, as we go back to our lives, citizens.

7. Finally, you need to copy the supplied configuration files from their installed location to the
directory indicated by PDBA_HOME. You can do this by simply using the Windows Explorer
to cut-and-paste the files from their current location. Alternately, you can use the copy
command from the command prompt window. Assuming that the PDBA Toolkit was
installed on drive C:, the configuration files will be located in the C:\Perl\site\lib\PDBA\conf
directory, as in Figure 9-2. Assuming that PDBA_HOME is set to C:\pdba, the following
command will locate the configuration files at their final destination:

DOS> copy C:\Perl\site\lib\PDBA\conf*.conf C:\pdba

Figure 9-2. PDBA configuration files

9.4.2 Installing Additional Perl Modules

A few additional modules are required for the toolkit to work properly:

TimeDate

Graham Barr's TimeDate date parser.

Crypt::RC4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Kurt Kincaid's Crypt::RC4 cryptographic module.

Mail::Sendmail

Milivoj Ivkovic's OS-independent email sender.

Win32::Daemon

Dave Roth's invaluable module that allows us to create Win32 services in Perl.

Install the first three from ActiveState via PPM:

DOS> ppm

PPM> install TimeDate

PPM> install Crypt-RC4

PPM> install Mail-Sendmail

The last module,Win32::Daemon, was described earlier in Section 9.2.5. This module allows Perl
to act as a service on Win32, the same way it can run as a daemon on Unix. The URL for
Win32::Daemon is:

ftp://ftp.roth.net/pub/ntperl/Daemon/20000319/Bin/

The latest version, as this book went to press, was daemon_5006.Zip. Download this file to a
suitable location, such as C:\temp, and extract the Win32-Daemon.ppd file from the archive into
C:\temp via your favorite unzip program. You're now ready to install the module via PPM:

DOS> ppm

PPM> install --location=c:\temp Win32-Daemon
PPM> quit

As we describe later, this PPD file (shown in Example 9-11) loads up various other software
components from Dave Roth's site, depending on how Perl interprets your OS architecture.

Example 9-11. Win32-Daemon.ppd

<SOFTPKG NAME="Win32-Daemon" VERSION="0,2000,06,20">

 <TITLE>Win32::Daemon</TITLE>

 <ABSTRACT>The Win32::Daemon extension for Win32 X86. Allows Perl

 to be a Win32 service.</ABSTRACT>

 <AUTHOR>Roth Consulting (http://www.roth.net/)</AUTHOR>

 <IMPLEMENTATION>

 <OS NAME="MSWin32" />

 <ARCHITECTURE NAME="MSWin32-x86-object" />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ARCHITECTURE NAME="MSWin32-x86-object" />
 <CODEBASE

 </IMPLEMENTATION>

 <IMPLEMENTATION>

 <OS NAME="MSWin32" />

 <ARCHITECTURE NAME="MSWin32-x86" />
 <CODEBASE

HREF="http://www.roth.net/perl/packages/x86/Win32/Daemon_5005.tar.gz" />
 </IMPLEMENTATION>

 <IMPLEMENTATION>

 <OS NAME="MSWin32" />

 <ARCHITECTURE NAME="MSWin32-x86-multi-thread" />
 <CODEBASE

HREF="http://www.roth.net/perl/packages/x86/Win32/Daemon_5006.tar.gz" />
 </IMPLEMENTATION>

 </SOFTPKG>

You're done with the installation! All of the Perl modules and scripts needed for the toolkit are now
installed. Onward and upward to the toolkit configuration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.5 Configuring the PDBA Toolkit

PDBA Toolkit configuration works the same way for both Unix and Win32. As we mentioned earlier,
based upon a flat-file system.

From this point on, we'll refer to the file locations as PDBA_HOME/file_name.conf
regardless of platform.

We'll begin with the actual PDBA module and then continue with Connection Manager, the Password
Server, and then the Password Client, each with its own configuration file, as shown in Figure 9-2.

9.5.1 PDBA Module Configuration

The PDBA module requires little configuration. It needs to know just two things:

Which mail server to use

Where it should say the emails are being sent from

The configuration file is PDBA_HOME/pdba.conf. The default contents are shown in Example 9-12.

Example 9-12. pdba.conf — Default values

package pdbaparms;

 # who should mail be from?

 # does not need to be a valid address

 fromAddress => 'oracle@jks.com',
);

Simply adjust the values to those for your own site. The mailServer parameter needs to be a valid mail
server, but fromAddress can be a purely informational FROM: address. For example, if your domain is
mydomain.com, you may want to simply set it to oracle@mydomain.com. Or you can set it to a real
address, if you prefer, to make potential replies easier. For instance, you could change the two key lines
like this:

mailServer => 'mail.mydomain.com',
...

fromAddress => 'oracle@mydomain.com',
When you're finished, check the file for syntactic correctness with the -cw switches:

$ perl -cw pdba.conf

9.5.2 PDBA::CM Module Configuration

We've included the PDBA::CM (Connection Manager) module in the toolkit as an optional convenience,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We've included the PDBA::CM (Connection Manager) module in the toolkit as an optional convenience,
although we hope you'll want to set it up. The default PDBA_HOME/cm.conf is shown in Example 9-13

Example 9-13. cm.conf — CM configuration file

package cmconf;

 ORACLE_BASE => '/u02/app/oracle',

 TNS_ADMIN => '/u02/app/oracle/product/8.1.7/network/admin'

 },

 ts99 => {

 ORACLE_HOME => '/u02/app/oracle/product/8.1.7',

 ORACLE_BASE => '/u02/app/oracle',

 TNS_ADMIN => '/u02/app/oracle/product/8.1.7/network/admin'

 },

);

New database connection attempts made via PDBA::CM check for this file as follows:

1. If it exists, the contents are checked for the target database.

2. If the database entry exists, cm.conf values are used to set ORACLE_HOME, ORACLE_BASE
TNS_ADMIN, and any other required environment variables.

3. If a database entry is not specified, the default values are used.

Setting the environment variables in this way means you get them right every time you connect to a target
database — and you don't have to remember them. This is useful for scripts running from a system
scheduler. The usual method used to run an ordinary Perl script is to wrap it. The wrapper sets the
environment and then executes the script. Example 9-14 may look familiar to cron users. When running a
script via the Unix cron scheduler, you normally must explicitly set all Oracle environment variables in the
script. This is because scripts that run via cron do not inherit the environment variables that are normally
set when logged into an interactive Unix account.

Example 9-14. mybatch.sh — Setting up a Perl script in a wrapper script

#!/bin/ksh

Set the environment

export ORACLE_SID=ts01

export ORAENV_ASK=NO

. /usr/local/bin/oraenv $ORACLE_SID

Execute the script

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mybatch.pl -database -username ayn -password rand
Using PDBA::CM's configuration file eliminates the need for this kind of logic. You simply run the Perl
mybatch.pl directly via the system scheduler. For most situations, you set up cm.conf with just the default
values and it works fine. You need only add specific database parameters as necessary. For Win32 users
who need a simple default, edit the supplied cm.conf file to make it look like Example 9-15:

Example 9-15. cm.conf — Basic CM configuration file

package cmconf;

use vars qw(%env);

%env = (default => {

 ORACLE_BASE => 'c:/oracle',

 TNS_ADMIN => 'c:/oracle/ora81/network/admin'

 },

);

Note that by default PDBA::CM ignores the cm.conf file if ORACLE_HOME is set. You can override that
behavior with the FORCE_CONFIG attribute. You can also tell PDBA::CM to look beyond PDBA_HOME
for a configuration file via PATH and FILE:

my $dbh = new PDBA::CM (

 DATABASE => $db,

 USERNAME => $username,

 PASSWORD => $password,

 FORCE_CONFIG=> 1, # Use the config file! :-)
 PATH => '/u02/app/oracle/config',
 FILE => 'oracle_cm.conf'
);

9.5.3 Password Server Configuration

The password server configuration file, PDBA_HOME/pwd.conf, contains five data structures:

$port

Sets the TCP port for the password server

%pwd

Sets the passwords for the password server

%users

Sets up password server users

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%encryption

Encrypts passwords

%instanceAuth

Sets up per-account authorization

We'll describe these in the following sections.

9.5.3.1 $port: Setting the TCP port for the password server

First you need to set the TCP port to be used by the password server. The setting in the file is currently
1579. You can change this to any other setting as follows:

package pwd;

use vars qw($port %pwd %instanceAuth %users %encryption);

$port=1579;

Ports < 1024 will require special OS or root permissions.

9.5.3.2 %pwd: Setting the passwords for password server

This is where the passwords for each account are specified by machine or database server name, Oracle
instance name, and account name, in a manner similar to the tnsnames.ora file structure. Example 9-16
taken directly from the pwd.conf file included in the PDBA distribution. It contains passwords for the
and system users, for the databases ts98 and ts99 on the watson server, and for database ts01 on the
sherlock server.

Example 9-16. pwd.conf

%pwd = (

 sherlock => {

 ts01 => { system => 'hoser',

 sys => 'hosehead' }

 },

 watson => {

 ts99 => { system => 'wazzup',

 sys => 'wizard' },

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sys => 'wizard' },

 ts98 => { system => 'whyn0t',

 sys => 'bcuz' }

 }

);

This type of data structure is known as a hash of hashes (see Appendix A). The%pwd Perl hash contains a
list of hash keys, in this case sherlock and watson. Each of these contains another Perl hash. Inside these
hashes are the actual accounts and passwords. Here's what you need to do:

If you're ready to edit your pwd.conf file, go ahead and change the server names, accounts, and
passwords to those appropriate for your site.

If you do edit the file, be sure to check it with perl -cw pwd.conf when done.

The method used to access this data may appear initially to be somewhat daunting, but scrutiny reveals
that it's only a loop extracting servers, instances, usernames, and passwords, as Example 9-17 shows.

Example 9-17. pwd.pl — Accessing data elements

1 use PDBA::ConfigFile;

2

3 unless (new PDBA::ConfigLoad(FILE => 'pwd.conf', PATH => './'))

4 die "could not load pwd.conf\n";

5 }

6

7 $t=0;

8 for my $server (keys %pwd::pwd) {
9 print "\t" x $t, "server: $server\n";

10 $t++;

11 for my $instance (keys %{$pwd::pwd{$server}}) {
12 print "\t" x $t, "instance: $instance\n";

13 $t++;

14 for my $user (keys %{$pwd::pwd{$server}->{$instance}}) {
15 print "\t" x $t, "username: $user",
16 "password: $pwd::pwd{$server}->{$instance}{$user}\n";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16 "password: $pwd::pwd{$server}->{$instance}{$user}\n";
17 }

18 $t--;

19 }

20 $t--;

21 }

Here's what is going on.

1. Line 8 extracts the server names from the %pwd hash via the built-in Perl function keys. (Recall how
each server has its own hash inside %pwd.)

2. Line 11 extracts instances.

3. Line 14 uses %{} to de-reference yet another nested hash, this time for each server.

4. The account names and passwords are finally revealed in lines 15 and 16.

Fortunately, PDBA::PWD takes care of all these technical difficulties. The only place this password
structure is used is within the PDBA::PWD module. Retrieving a single password in a real-life script is
actually fairly simple, as you can see here:

my $password = $pwd::pwd{$server}->{$instance}{$user};

9.5.3.3 %users: Setting up password server users

The password server is only available for clients specified in the %users hash. These require a password.
In case you're thinking "Oh great, another password to remember, let's use P4SSW0RDF1V3 or
something," keep in mind that this one greatly reduces the number of other passwords you need to
remember. Attempts to retrieve a password without a correct username and password will return no data.
There are no informational messages declaring that the password or username is incorrect. Simply change
the content for your own users in pwd.conf as follows:

%users = (andyd => 'perlgeek', # Needs to get out more! :-)

 jkstill => 'getalife', # Gotta turn off that computer! 8-)

 scott => 'tiger');

9.5.3.4 %encryption: Encrypting passwords

Most folks have become increasingly security-conscious lately, and rightly so. Sending clear text
passwords over a network is now considered unacceptable practice, because the routing of TCP/IP
packets over a multiply-redundant network makes it easy for unauthorized persons to compromise security.
With that in mind, we designed the PDBA::PWD module to ensure that passwords are transmitted in
encrypted form. To assist in the encryption, we've chosen the RC4 encryption algorithm available via the
Crypt::RC4 Perl module. It is fast, easy to install, and available for both Unix and Win32 platforms.[9]

need do is specify a string to use as the encryption key. This is done via the %encryption hash in
PDBA/pwd.conf, shown in Example 9-18.

[9] Once you're used to Crypt::RC4, you may wish to modify our toolkit to gain even greater security with ever more secure Perl
modules; see http://search.cpan.org/Catalog/Security.

Example 9-18. pwd.conf — The %encryption hash

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%encryption = (

 level => 'simple',

 # don't change this

 maxKeyLen => 56

);

There are three pieces of data in the %encryption hash, and the only one you need to be concerned with
for now is key. Here are the requirements for key:

It needs to be a phrase and can be practically anything you want.

Nonsense key phrases are best — anything that is difficult to guess.

The key is used to encrypt passwords sent over the network.

If you make the key longer than 56 characters, it will be truncated to a length of 56.

It can be shorter than 56 characters, but for best results make it at least 56.

You may recognize our own key as being from J.R.R.Tolkien's The Lord of The Rings. It is too predictable
for an actual encryption key, but demonstrates that the key can be anything you like. Change the key, and
then check the configuration file with perl -cw pwd.conf.

9.5.3.5 %instanceAuth: Setting up per-account authorization

The %instanceAuth hash provides an optional security feature. It can be used to limit which users are able
to retrieve passwords for a particular account. If you have some sensitive accounts, you can limit access to
them with %instanceAuth. Any accounts unspecified will be available to all authorized users. If the
%instanceAuth structure is missing completely, all users found in %users have access to all passwords for
all accounts.

Consider Example 9-19: it's a subset of the servers found within Example 9-16. In the %pwd hash, there
are two servers, with three Oracle instances, and two accounts in each instance, sys and system. This is a
total of six passwords, and we want to filter their access as follows:

You want to allow andyd and jkstill to have access to the system account on ts01.

Only andyd is to have access to the sys account on ts01.

Only scott and andyd are to have access to the sys account on ts99.

All authorized users of the password server, as found in the %users hash, are to have access to the
supplied accounts sys and system in the ts98 instance, as well as to the system account in ts99

The entries in %instanceAuth shown in Example 9-19 create the required filter. The only entries needed
are for accounts where you wish to limit the users who can retrieve passwords.

Example 9-19. pwd.conf — Using the %instanceAuth structure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%instanceAuth = (

 sherlock => {

 ts01 => { system => [qw(andyd jkstill)],
 sys => [qw(andyd)] }
 },

 watson => { ts99 => {

 sys => [qw(scott andyd)] }
 }

);

Let's see what's going on here.

1. The lowest-level entry in the %instanceAuth structure is something called an "anonymous array" —
that is, it exists in Perl memory as an array, but it has no name. (You can read up on anonymous
arrays in Appendix A.)

2. You can tell it's an anonymous array because the data is in square brackets [], indicating an array,
but there is no name associated with it.

3. If this level of security is unnecessary, just delete all of the data inside the %instanceAuth hash so it
looks like this:

%instanceAuth = ();

You must keep %instanceAuth, though, even if it is undefined. If you delete it entirely, a warning will
be raised when you check the file via the command perl -cw pwd.conf.

9.5.3.6 Securing pwd.conf

The PDBA/pwd.conf file is sensitive, so you need to set Fort Knox file permissions enabling only authorized
users to read or edit it. On Unix, this is done via chmod:

$ chmod 640 pwd.conf
$ ls -la pwd.conf

-rw-r----- 1 oramon dba 8508 Apr 14 07:27 pwd.conf

Setting the permission to 0640 allows users belonging to the DBA group to view the file, while only the file
owner can edit it. Win32 security is different. Setting the proper permissions on Win32 is a point-and-click
operation that works as follows:

1. Find the target file in Windows Explorer and right-click on it.

2. If you have network security on your system, you'll see a Security tab. Click on it.

3. The File Permissions dialog should appear, like the one in Figure 9-3. In this example, everyone on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. The File Permissions dialog should appear, like the one in Figure 9-3. In this example, everyone on
the network has access to PDBA_HOME/pwd.conf.

4. Allowing all users on the network to have read access should be avoided for a file containing
passwords. You may want to highlight users or groups that should no longer have access to the file
(such as Everyone). Click on Remove so they no longer have access to this file.

Figure 9-3. Setting file security on Win32

9.5.3.7 Running the password server on Unix

Those on Unix are now ready to run the password server via the command line as follows:

$ pwd.pl

That's all there is to it. The password server has landed. You can verify its operation via a ps command,
using either the -fea or -aux switches, depending on your own Unix flavor:

$ ps -fea | grep pwd | grep -v grep

oramon 25771 1 0 08:12 ? 00:00:00 perl /usr/bin/pwd.pl
$ ps -aux | grep pwd | grep -v grep

oramon 25771 0.0 0.8 5668 4540 ? S 08:12 0:00 perl /usr/bin/pwd.pl

9.5.3.8 Running the password server on Win32

Running the password server on Win32 is slightly more involved. You need to install the pwd.pl script as a
service. Thanks to the Win32::Daemon module, this is straightforward.

1. The first thing to do is to locate the script pwd_service.pl. This is used to install pwd.pl as a service
or to remove it. If Perl is installed on C:, the path will be:

C:\Perl\site\lib\PDBA\util\pwd_service.pl
2. Once the script has been located, you open a command prompt window to execute the script and

install the password server service. The following command will install the service.

C:\Perl\site\lib\PDBA\util\pwd_service.pl -install

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C:\Perl\site\lib\PDBA\util\pwd_service.pl -install
3. This will automatically detect where Perl.exe and pwd.pl are located and use them to install the

service. Example 9-20 reproduces the relevant script portion.

Example 9-20. pwd_service.pl — Install password server service on Win32

use File::Basename;

use Getopt::Long;

use Win32::Daemon;

my %optctl=();

my $perlExe = $EXECUTABLE_NAME;

build a path to pwd.pl

my @dirs = File::Spec->splitdir($perlPath);

%Hash = (name => 'Oracle_PWD_Server',
 display => 'Oracle_PWD_Server',
 path => $perlExe,
 user => '', # Unnecessary, for this particular application.

 pwd => '', # Unnecessary, for this particular application.

 parameters => $pwdPath);
unless (GetOptions(\%optctl, "install!", "remove!")) {

 usage(1);

}

if ($optctl{remove}) {

 if(Win32::Daemon::DeleteService($Hash{name})) {

 print "Successfully removed.\n";

 } else {

 print "Failed to remove service: " . GetError() . "\n";

 }

}

print "finished.\n";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sub GetError {

 return(Win32::FormatMessage(Win32::Daemon::GetLastError()));

}

If you should happen to have a nonstandard installation of Perl, you can use Table 9-11 (password server
parameters) as a guide in editing the attributes of the %Hash data structure in pwd.pl.

Table 9-11. Parameters for installing the password server on Win32
Attribute Description

name The name of the service. We've set it to Oracle_PWD_Server.
display The name to display in the Win32 Service Manager.
path The full path to the Perl executable — for example, C:\Perl\bin\perl.exe.
user Who the user is to run as (unnecessary for this application).
pwd Password for user (unnecessary for this application).
parameters The full pathname to the pwd.pl script — for example, C: \Perl\bin\pwd.pl.

9.5.3.9 Starting the service

Now all you need do is run Win32 Service Manager to start the service. There are two different paths,
shown in Table 9-12, depending on which Win32 platform you're on.

Table 9-12. Installing the password server on Win32
Win32

version Start menu instructions

NT 4.0 Start->Settings->Control Panel. Then double-click on the Services icon. Highlight the
Oracle_PWD_Server service and click Start.

Windows
2000

Start->Programs->Administrative Tools->Services. Highlight the Oracle_PWD_Server, right-
click on it, and press Start.

9.5.4 Password Client Configuration

We're in the home stretch now. All that's left is to set up the password client pwc.pl and give it a whirl. As
with the password server, the client program uses a configuration file. Unlike the server, the configuration
file is optional. We hope you'll want to use it though, as it makes the client program considerably easier to
use. Bring up PDBA_HOME/pwc.conf in your favorite editor and take a look at it. The contents of the file,
as it appears in the PDBA distribution, are shown in Example 9-21.

Example 9-21. pwc.conf — Password client configuration

package pwc;
use vars qw(%optctl);

%optctl = (host => 'sherlock',

 port => 1579,

 machine => 'watson',

 instance => 'ts98',

 username => 'sys',

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 my_username => 'scott',

 my_password => 'tiger',

 key => 'One Ring to bring them all and in the darkness bind them');

All of the command-line options except -conf can be specified in this file, thus avoiding long command-line
entries and the use of clear text passwords (which is what we were trying to avoid in the first place). It
assumes that the configuration file name is PDBA_HOME/pwc.conf, unless another name is specified
directly on the command line with the -conf filename option. Typing pwc.pl -help on the command line
displays all of the options as a useful reminder of what you'll need to input. Table 9-13 summarizes these
options.

Table 9-13. Command-line options for pwc.pl
Argument Value

conf Tells pwc.pl the name of the configuration file to use.
host Win32 or Unix server on which the password server is running.

port Host port being used by the password server. This will be the same value specified for
port, in PDBA_HOME/pwd.conf.

machine Name of the physical host the database instance is on.
instance Database instance.
username Username for which you are requesting the password.
my_username Your password server username.
my_password Your password server password.

key
Key used to encrypt/decrypt passwords sent over the network. Your password server
authentication is encrypted as well. Include this value in quotes if spaces or special
characters are included.

Note the following:

Any options not specified in this file will need to be included on the command line.

Arguments specified on the command line override those in the configuration file.

One common approach is to create a configuration file specifying the password server and port, your
username and password, and the key used to encrypt data across the network. With those options present
in the configuration file, you would only need to specify the configuration file, database server machine,
database instance, and account name on the command line. For example, your command line would look
something like this when you're retrieving the password for account system in instance vdr on database
server elfenwood:

$ pwc.pl -machine elfenwood -instance VDR -username system -conf pwc.conf

To connect to a different host's password server, you would modify the command line as follows:

$ pwc.pl -host mycroft -machine elfenwood -instance VDR \
 -username system -conf pwc.conf

Example 9-22 is an example of connecting to an alternate password server. In this case the password
server on Unix server sherlock was unavailable, so a connection was made to the alternate password
server on the Win32 server mycroft.

Example 9-22. Connecting to an alternate password server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%oramon > pwc.pl

%oramon >

Let's see what's happening in Example 9-22.

1. Notice in the example that the password whyn0t was returned for the sys user in database instance
ts99 on the database server watson. You might find the password, originally found in Example 9-16
a little hard to pick out, because neither a line feed nor a carriage return is displayed, just the
password. (Obviously, you can adapt your client scripts so passwords are not revealed in this way;
we've done it only to demonstrate the concept.)

2. You can copy the configuration file to any file name you like, and use it that way. This would be
useful if you wanted to keep different configuration files for each database server or to organize
them by username.

3. Be sure that you avoid changing the password client package line near the top of the package,
package pwc;, as that line is required for this configuration file to work properly.

4. Secure PDBA_HOME/pwc.conf to protect it from unauthorized users, as we showed with pwd.conf
earlier.

The pwc.pl script is useful in demonstrating how to use the password server in your own scripts. It is also
useful as a standalone script for retrieving passwords at the command line. On Unix systems, it may even
be used to retrieve passwords and use them directly as input. This example demonstrates its use in
logging in to SQL*Plus without any need to type the password:

sqlplus system/$(pwc.pl -machine sherlock -database ts01 -username system)

This uses the Korn shell's $() subshell mechanism, returning the output of pwc.pl to the current shell.

Alas, we do not know of an equivalent subshell mechanism on the Win32 platform.

9.5.4.1 Using PDBA::PWC in your own Perl scripts

The password client module is available for use in your own Perl scripts as well. Here are the basic pieces
you'll need to include in order to connect to the password server:

use PDBA::PWC;

my $client = new PDBA::PWC(

 host => $remote_host,

 port => $remote_port

);

$client->authenticate(

 username => $myusername,

 password => $mypassword,

 key => $key,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 key => $key,

 debug => $optctl{debug}

);

my $password = $client->getPassword(

 machine => $machine,

 instance => $instance,

 username => $username,

 key => $key

);

This completes the toolkit installation. In the following chapters, we'll see what it can do for us.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10. Performing Routine DBA Tasks with the
PDBA Toolkit
The Perl DBA Toolkit we introduced and installed in Chapter 9 contains dozens of Perl scripts that
you can use to simplify — and even automate — the many routine tasks that Oracle DBAs wrestle
with every day. We use these scripts daily in our own database administration work, and we think
you will find that they make your work much more efficient.

This chapter focuses on the repetitive operations that Oracle DBAs tend to perform over and over
again. In the following chapters we'll focus on a few more specialized tasks: in Chapter 10 we'll
show how you can monitor your database using the toolkit scripts, and in Chapter 11 we'll build a
repository for storing database information.

If you have installed the PDBA Toolkit as described in Chapter 9, all of the scripts mentioned in
this chapter will be on your system. If you're running on a Unix system, you'll find them in
/usr/local/bin, and if you're using Win32, you'll find them in C:\Perl\bin (unless you chose
alternative locations during the installation). We'll examine the scripts in the following categories:

Managing user accounts

We'll use the create_user.pl, create_user.conf, drop_user.pl, dup_user.pl, mucr8.msg, and
mucr.pl scripts and files to create single users and groups of users, to drop users, and to
perform account maintenance.

Maintaining indexes

We'll use the idxr.pl and index_frag_test.sql scripts and files to inspect, tune, and rebuild
database indexes.

Killing sniped sessions

We'll use the kss.pl, kss.conf, and kss_NT.pl scripts and files to kill sniped sessions and
manage user connection resources.

Managing extent usage

We'll use the maxext.pl script to determine extents, manage statistics, and reorganize
objects.

Extracting DDL and data

We'll use the sqlunldr.pl, exp_exclude.conf, and ddl_oracle.pl scripts and files to extract
data and DDL statements in a portable way and to transfer objects and data transparently
across systems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.1 Managing User Accounts

Managing user accounts can consume quite a bit of database administration time, especially if the DBA doesn't have the
proper tools to simplify the job. Even when account management is performed infrequently,[1] it can be
Any new account you create must have the proper privileges to log on to the database and be able to create database
as necessary. And for any new account, you will need to make sure you're granting only the necessary privileges
database objects — and not granting any privileges the user should not have.

[1] It may even be that managing accounts is least organized when done infrequently; in such cases, there is less impetus to organize the tasks.

Dropping database accounts may also be a bit of a chore, but for different reasons. Dropping an account with a large number
of objects can cause an extreme amount of activity in the Oracle data dictionary. This can result in contention with other
processes in the data dictionary and may result in failure of the DROP USER command.

This section introduces scripts and configuration files you can use to simplify account management. We'll provide ways
you to:

Create predefined PDBA roles.

Create users simply from the Unix or Win32 command line.

Duplicate existing accounts within the database.

Drop existing accounts (first removing the account's tables and indexes to prevent data dictionary contention).

10.1.1 Creating Accounts the Old Way

Oracle DBAs often create new users by means of shell scripts such as the one shown in Example 10-1

Example 10-1. Creating users with a shell script

#!/usr/bin/ksh

DBAUSER=system

DBAPASSWORD=manager

DEFTBS=users

TMPTBS=temp

ROLES="connect,resource"

for var in username password database

do

 print "please enter the value for $var : \c"

 read answer

 eval "$var=$answer"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

done

sqlplus <<EOF

$DBAUSER/$DBAPASSWORD@$database

CREATE USER $username IDENTIFIED BY $password
DEFAULT TABLESPACE $DEFTBS
TEMPORARY TABLESPACE $TMPTBS;
GRANT $ROLES TO $username;
EOF

While this method is effective if you're creating a simple account, more work is often needed to tailor specific
example, if you're creating a user within a particular application suite, there are likely to be specific roles and privileges that
must be granted users so they will be able to gain access to the application's data. Here is a typical scenario:

1. You're asked to create a data entry account for someone new working on a Human Resources package. For this
clerical role you've already created an appropriate role, hr_clerk. Let's assume this new carla account was created in
the database via the script in Example 10-1. We must now relog into SQL*Plus and execute the following:

SQL> GRANT HR_CLERK TO CARLA;

2. Because carla does not need to be able to create database objects, we revoke RESOURCE to prevent inadvertent
misuse of database resource.

3. You may recall that granting a user RESOURCE means that Oracle auto-grants an UNLIMITED TABLESPACE
privilege to carla. So now we have to issue a countermanding REVOKE UNLIMITED TABLESPACE.

Let's just stop here, because this kind of manual DBA work can quickly spiral out of control, especially with multiple
multiple applications coming and going across the entire company.

Fortunately, Perl provides an easier way, and we've packaged some helpful Perl account maintenance scripts in our toolkit
you to use.

10.1.2 Creating a Single Account with create_user.pl

The toolkit script create_user.pl and its associated configuration file create_user.conf give you a lot of
new user accounts from the command line. In comparison with the rather cumbersome way we created
HR_CLERK role in the earlier example, we can now issue a single command. There is no need to perform the extra manual
work of logging onto SQL*Plus for fine tuning. Let's look at some examples..

10.1.2.1 Scenario #1

First, we're going to create a single user account.

1. Here carla is created with a single script, create_user.pl, and the generated password is printed to the screen.

2. The -verbose option shows all the CREATE and GRANT steps taken:

$ create_user.pl -machine sherlock -database ts01 -username jkstill \

-new_username carla -new_password generate -pdbarole app_clerk -verbose

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-new_username carla -new_password generate -pdbarole app_clerk -verbose

creating user 'carla'

default tablespace : users

temporary tablespace: temp

grants: create session hr_clerk

quotas:

user 'carla' created
password BNHV815
$

10.1.2.2 Scenario #2

After creating carla, we learn that a developer needs access to a production database in order to troubleshoot a
discovered problem. The developer's access needs to be the same as it is in his development database. First
you'd fix things without the toolkit. (Later, we'll show how you'd do it with the toolkit, which manages the
simply with configurable and pre-stored elements that replace manual investigative hunches with precise and reliable
information.)

1. Although you're opposed to developers possessing accounts on production databases, through gritted teeth you agree
to create alicia on production with the same privileges she has in development.

2. Using the trusty old shell script method, you create the basic alicia account, then log in to the development
determine her exact privilege set (you might use an application such as Orac or Oracletool to work this out). You then
manually grant the discovered privileges to production, in a process that is both tedious and error-prone.

The toolkit comes to the rescue. Fortunately, you've predefined all of the privileges needed for the databases you
in the toolkit's create_user.conf file. Instead, you can simply run a command line similar to what you did to create
account, with some changes for the user name and privileges granted. Example 10-2 shows how it's

Example 10-2. Create a developer account with create_user.pl

%oramon> create_user.pl -machine sherlock -database ts01 \

 -username jkstill -new_username alicia -new_password generate \

default tablespace : users

temporary tablespace: temp

grants: connect resource plustrace javauserpriv javadebugpriv

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

revokes: unlimited tablespace

quotas:

 indx: 5m

 users: unlimited

user 'alicia' created

password: CBLD1749

With a single command you create the new alicia account and grant the following roles to it:

CONNECT
RESOURCE
PLUSTRACE
JAVAUSERPRIV
JAVADEBUGPRIV
SELECT_CATALOG_ROLE

In addition, you set the user quotas on the USERS and INDX tablespaces. Let's take a closer look now at
and create_user.pl.

10.1.2.3 The create_user.conf configuration file

Make sure that the create_user.conf file is in your PDBA_HOME directory:

1. If it's missing from PDBA_HOME (perhaps because you are logged on as a new user), copy it from the
installation directory. For Unix, type:

$ cp /u01/build/PDBA-1.00/routine_tasks/create_user.conf $PDBA_HOME

On Win32, type:

DOS> copy C:\Perl\site\lib\PDBA\conf\create_user.conf C:\PDBA

2. Now open the file with your favorite text editor. The working contents of the file will look similar to
example also gives us a good opportunity to show how Perl's qw{} quote word constructor is used.

[2] For much more on the qw{}, q{}, and qq{} quote constructions in Perl (these essentially allow us to use less punctuation within our code), check
out perldoc perlop.

Example 10-3. create_user.conf

package cuconf;

use vars qw{ %roles %tablespaces };

%roles = (

 developer => {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 developer => {
 grants => [qw{ connect
 resource
 plustrace
 javauserpriv
 javadebugpriv
 select_catalog_role }],

 revokes => ['unlimited tablespace'],

 quotas => { users => 'unlimited', indx => '5m', },

 },

 app_clerk => {

 grants => ['create session', 'hr_clerk'],

 revokes => [],

 quotas => {},

 },

 app_admin => {

 grants => ['create session','hr_admin',],

 revokes => [],

 quotas => {},

 },

 backup => {

 grants => [qw{ connect exp_full_database imp_full_database }],

 revokes => [],

 quotas => {},

 },

 dba => {
 grants => [qw{connect dba}],
 revokes => [],
 tablespaces => { default => 'tools', temporary => 'temp2', },
 quotas => {},

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 quotas => {},
 },
 sysdba => {

 grants => [qw{connect dba sysdba}],

 revokes => [],

 quotas => {},

 },

);

%tablespaces = (default => 'users', temporary => 'temp',);
create_user.conf defines a number of logical roles; we'll refer to these as PDBA roles, to differentiate them from standard
Oracle database roles. Near the top of the %roles hash in Example 10-3, you'll find the role DEVELOPER. Each PDBA role is
a privilege group assigned as a single entity. (Example 10-2 shows account alicia, as created using the PDBA role
DEVELOPER.)

If you compare the granted privileges listed for DEVELOPER in Example 10-3, you'll see that they match the screen in
Example 10-2.

Notice also the UNLIMITED TABLESPACE revoke, reversing its automatic assignment to those granted RESOURCE. The
create_users.conf configuration file directed this operation without your needing to remember. You can extend this
to any combination of grants, revokes, and quotas.

New entries can be added to %roles. For example, you might need to create lots of inventory testers on your
could then add the following PDBA role:

inventory_tester => {

 grants => [qw{
 connect

 resource

 plustrace

 select_catalog_role

 inventory_user }],

 revokes => ['unlimited tablespace'],

 quotas => { users => '10m', indx => '5m', },
},

Let's see what's going on here:

1. In addition to the standard database roles of CONNECT, RESOURCE, PLUSTRACE, and SELECT_CATALOG_ROLE,
the application-specific role of INVENTORY_USER is included.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Because RESOURCE was granted, UNLIMITED TABLESPACE is specified under revokes, ensuring its immediate
removal from any new account.

3. Finally, any user created under inventory_tester will receive quotas of 10 and 5 megabytes on the
tablespaces, respectively.

To create a more limited production version of INVENTORY_TESTER, you can limit the grants to CREATE_SESSION and
the database role INVENTORY_USER:

inventory_production => { grants => ['create session','inventory_user'}],
 revokes => [],

 quotas => {}, },

10.1.2.4 Tablespaces

When you are creating an account, it is good practice to specify a default tablespace for the user's object creation needs, and
a temporary tablespace for disk sorts and related operations. Specifying tablespaces in this way avoids having the generic
SYSTEM tablespace being assigned for both purposes (this also avoids point deductions by the Big DBA in the sky, who
generally frowns upon disk sorts in the SYSTEM tablespace's data dictionary area and the potential for SYSTEM to run out of
room).

Going back to Example 10-3, you'll notice that the DBA PDBA role has the following clearly specified

tablespaces => { default => 'tools', temporary => 'temp2', },
Every other account makes use of another special hash, %tablespaces:

%tablespaces = (default => 'users', temporary => 'temp',);
This ensures that every new user created gets USERS and TEMP as its default tablespaces; this avoids having us clobber
SYSTEM!

We can also override all these configured tablespaces, as we'll find out shortly.

10.1.2.5 create_user.pl

Now let's examine the create_user.pl script, which does the actual user account creation. The script's options are
Table 10-1.

Table 10-1. Command-line options - create_user.pl
Option Description

-machine Server where target database resides.
-database Target database.
-username DBA account that is creating the new account.
-password DBA's account password (optional if password server used).
-
new_username New user account to be created.

-
new_password

Password for new account. (Specifying a value of generate causes automatic password generation; see
Example 10-2.)

-pdbarole PDBA role to assign to the new account.
-default_tbs Overrides the default tablespace value in create_user.conf.
-temp_tbs Overrides the temporary tablespace value in create_user.conf.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-verbose Outputs every user creation step to the screen.
-list_roles Prints the list of available PDBA roles and privileges.

The password generation code for the -new_password switch is found in the PDBA::DBA module and is shown in
10-4. This code simply selects several characters of the alphabet, based on the current time value of seconds as
SYSDATE and a MOD value of v$timer.hsecs.

Example 10-4. Generating passwords in PDBA::DBA.pm

my $Alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';

my $PasswordGenSql = qq {select

 substr('$Alphabet',MOD(TO_CHAR(SYSDATE,'SS'),25)+1,1)||

 substr('$Alphabet',MOD(substr(mod(hsecs,99999999)+?,5,2),25)+1,1)||

 substr('$Alphabet',MOD(substr(mod(hsecs,99999999)+?,6,2),25)+1,1)||

 substr('$Alphabet',MOD(substr(mod(hsecs,99999999)+?,7,2),25)+1,1)||

 mod(hsecs,9999) as password

 from v\$timer

};

sub genPassword {

 my $newPassword;

 my $sthPasswordGen = $dbh->prepare($PasswordGenSql);

 $sthPasswordGen->bind_columns(undef, \$newPassword);

 my $seed = (localtime(time))[0];

 use DBI qw{:sql_types};

 $sthPasswordGen->bind_param(1, $seed, SQL_INTEGER);

 $sthPasswordGen->bind_param(2, $seed, SQL_INTEGER);

 $sthPasswordGen->bind_param(3, $seed, SQL_INTEGER);

 $sthPasswordGen->execute();

 $sthPasswordGen->fetch();

 return $newPassword;

}

This routine lacks true randomness but possesses sufficient uniqueness for the assignment of new account passwords. Users
should, of course, be told to change these passwords upon receipt.

The list_roles switch reveals all of the roles, types, and privileges as follows:

$ create_user.pl -list_roles

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ create_user.pl -list_roles
ROLE: app_clerk

 TYPE: grants

 PRIV: create session

 PRIV: hr_clerk

 TYPE: quotas

 TYPE: revokes

...

ROLE: dba

 TYPE: grants

 PRIV: connect

 PRIV: dba

 TYPE: quotas

 TYPE: revokes

 TYPE: tablespaces

 PRIV: default: tools

 PRIV: temporary: temp

The -default_tbs and -temp_tbs switches assign specific tablespaces by overriding create_user.conf
new DBA user, homer, with default and temporary tablespaces of USERS and TEMP, respectively:

$ create_user.pl -machine sherlock -database ts01 \

 -username system -password manager \

 -new_username homer -new_password doh \
 -pdbarole dba -default_tbs users -temp_tbs temp

10.1.3 Creating a Single Account With dup_user.pl

At times, you may wish to simply duplicate a user account by copying all of the characteristics of one
However, the source account may come with a large number of directly granted privileges. Duplicating accounts
difficult; you will need to untangle all of the source account's privileges, no matter how twisted they've become. Moreover, you
must log in as the owner of original objects and re-grant these privileges. In Figure 10-1 we've illustrated a new
receiving direct privileges from the GL, AP, and HR accounts.

Figure 10-1. Multiple direct grants to a new account

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If your new account name were rowan, here's what you'd need to do to assign the correct database privileges:

CONNECT HR/password

GRANT SELECT,UPDATE,INSERT,DELETE ON EMPLOYEES TO ROWAN;

CONNECT GL/password;

GRANT SELECT,UPDATE,INSERT,DELETE ON ACCOUNT_CODES TO ROWAN;

CONNECT AP/password;

GRANT SELECT,UPDATE,INSERT,DELETE ON PURCHASE_ORDERS TO ROWAN;

This may look fairly painless. However, if the source account has many such privileges, this process can become very
complex. This inspired us to create the dup_user.pl script. It fully duplicates a complete Oracle user, including all roles,
directly granted privileges, system privileges, default and temporary tablespace assignments, and tablespace quotas. Its
options are summarized in Table 10-2.

Table 10-2. Command-line options — dup_user.pl
Option Description

-machine Server where the target database resides.
-database Target database.
-username DBA account.
-password DBA account password (optional if password server in use.)
-source_username Account to duplicate.
-new_username User account to create.
-nosystemprivs Avoids assigning source system privileges to target.
-systemprivs Assigns source system privileges to target (the default).
-noobjectprivs Avoids assigning source object privileges to target.
-objectprivs Assigns source object privileges to target (the default).
-noroles Avoids assigning source roles to target.
-roles Assigns source roles to target (the default).

We'll demonstrate the use of dup_user.pl on our test database by creating a duplicate of scott who has been granted a few
extra privileges:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT GRANTEE, 'ROLE' PRIVTYPE, GRANTED_ROLE PRIVNAME,

 NULL OWNER, NULL TABLE_NAME

 FROM DBA_ROLE_PRIVS

 WHERE GRANTEE = 'SCOTT'

 UNION

SELECT GRANTEE, 'SYSPRIV' PRIVTYPE, PRIVILEGE PRIVNAME,

 NULL OWNER, NULL TABLE_NAME

 FROM DBA_SYS_PRIVS

 WHERE GRANTEE = 'SCOTT'

 UNION

SELECT GRANTEE, 'TABPRIV' PRIVTYPE, PRIVILEGE PRIVNAME,

 OWNER, TABLE_NAME

 FROM DBA_TAB_PRIVS

 WHERE GRANTEE = 'SCOTT'

 ORDER BY 1, 2, 3, 4, 5;

 PRIV

GRANTEE TYPE PRIV NAME OWNER TABLE NAME

---------- ------- ---------------------- ---------- -------------------

SCOTT ROLE CONNECT
 RESOURCE

 SELECT_CATALOG_ROLE

 SYSPRIV CREATE SESSION

 CREATE TRIGGER

 TABPRIV DELETE JKSTILL LCL_1

 EXECUTE JKSTILL TRUNCATE_TEST_NAMES

 SELECT JKSTILL LCL_1

 UPDATE JKSTILL LCL_1

We'll use dup_user.pl to create SCOTT_DUP, a duplicated clone of SCOTT. Note the following:

1. The script must log in to the test database as JKSTILL, and grant privileges on the LCL_1 table and
TRUNCATE_TEST_NAMES procedure.

2. For this to work, the Password server (see the discussion in Chapter 9) must be running and configured with passwords

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. For this to work, the Password server (see the discussion in Chapter 9) must be running and configured with passwords
from accounts holding necessary privileges.

3. JKSTILL's password on the ts01 database is also required.

Here's the command line needed to create the duplicate account:

$ dup_user.pl -machine sherlock -database ts01 -username jkstill \

 -source_username scott -new_username scott_dup

The data dictionary confirms SCOTT_DUP's creation, with SCOTT's privileges:

PRIV

GRANTEE TYPE PRIV NAME OWNER TABLE NAME

---------- ------- ---------------------- ---------- -------------------

SCOTT_DUP ROLE CONNECT
 RESOURCE

 SELECT_CATALOG_ROLE

 SYSPRIV CREATE SESSION

 CREATE TRIGGER

 TABPRIV DELETE JKSTILL LCL_1

 EXECUTE JKSTILL TRUNCATE_TEST_NAMES

 SELECT JKSTILL LCL_1

 UPDATE JKSTILL LCL_1

10.1.4 Creating Multiple Accounts with mucr8.pl

Most requests for new accounts come one at a time. However, you may occasionally have to deal with the need to create a
large number of new accounts all at once. For example, you may be asked to migrate an existing application to Oracle or to
install a new company-wide application. Whatever the reason, creating hundreds of new users can be a heavy
and it's essential to create an accurate list of all the new account names. This will be our starting point in this section. But
entering many account names by hand is a time-consuming and potentially error-prone process. So
list, with permission, from such places as:

The project manager of the company-wide application.

The company personnel records (although it's often rightly difficult to obtain this sensitive information).

The information we'll need is the following:

The account name
The user's email address
The user's first name (optional)
The user's last name (optional)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The essential elements are the account name and the email address, though the first and last names are useful for
constructing account names if specific account names remain unavailable. Once we have the list, we could employ single-
user creation tools executed inside a Unix for loop.

However, our cross-platform mucr8.pl (Multi User Create) toolkit script provides functionality well beyond this.
do:

1. We'll start by getting a copy of the mucr8.conf file and placing it into your PDBA_HOME directory (you may have
already done this in Chapter 9). (We also need the create_user.conf configuration file that was
chapter in Section 10.1.2.)

2. On Unix, copy configuration files from the PDBA installation directory:

$ cp /u01/build/PDBA-1.00/routine_tasks/mucr8.conf $PDBA_HOME

On Win32, type:

DOS> copy C:\Perl\site\lib\PDBA\conf\mucr8.conf C:\PDBA

3. Now open up mucr8.conf within a text editor, as shown in Example 10-5.

Example 10-5. mucr8.conf

package mucr8;

use PDBA;

use vars qw(%conf %tags) ;

%conf = (
 messageFile => PDBA->pdbaHome . '/mucr8.msg',

 fieldSeparator => ':',

 usernamePosition => 0,

 emailAddressPosition => 1

);

%tags = (
 '<<APPLICATION>>' => '$optctl{application}', # Used later,
 '<<DATABASE>>' => '$optctl{database}', # in messages! :-)
 '<<USERNAME>>' => '$newUsername',
 '<<PASSWORD>>' => '$newUser->{PASSWORD}'
);

1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1;

The %conf hash sets up script controls, and %tags personalizes the email messages sent to each new account. There are
four keys in %conf:

messageFile

Points to the message file emailed to users. This file contains tags used as placeholders for runtime data, which we'll
discuss shortly.

fieldSeparator

Separates fields in the list file data used by mucr8.pl.

usernamePosition, emailAddressPosition

Numeric positions of data within the text record; for example:

rogerwil:rogerw@yourdomain.com:Wilco:Roger
The rogerwil username is held in field 0, the email address in field 1.

10.1.4.1 mucr8.msg

The mucr7.msg file contains the text that will be automatically emailed to the owners of new Oracle accounts. It makes
<< >> tags to customize the message, as we'll explain shortly.

On Unix, copy the mucr8.msg file from the directory from which PDBA was installed:

$ cp /u01/build/PDBA-1.00/routine_tasks/mucr8.msg $PDBA_HOME

On Win32, the copy operation is very similar:

DOS> copy C:\Perl\site\lib\PDBA\conf\mucr8.msg C:\PDBA

Take a look at mucr8.msg in Example 10-6.

Example 10-6. mucr8.msg

An account has been created for you on one of the company Oracle databases in support of

the following application:

Application: <<APPLICATION>>

The information you need to logon to this database is as follows:

Username : <<USERNAME>>
Password : <<PASSWORD>>
Database : <<DATABASE>>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Database : <<DATABASE>>

If you are unsure why you received this email or are having difficulty, please contact the

Help Desk at 555-346-2852.

Thank You,

Your DBA Team

At runtime, the mucr8.pl script replaces the << * >> tags with the attributes assigned in mucr8.conf within the
(shown in Example 10-5). These replace the corresponding tag values found in mucr8.msg. The following cut-down code from
mucr8.pl accomplishes this:

open(MSG,"< mucr8.msg") # Open the email message file.

my @mailMsg = <MSG>; # Slurp the message file into @mailMsg array.

close MSG;

Create a scalar variable, $msg, made up of all elements from the

@mailMsg array, slurped in earlier.

my $msg = join('',@mailMsg);
Loop through all tags defined in the %tags hash, found in mucr8.conf.

foreach my $tag (keys %mucr8::tags) {

 # For each tag from %tags, replace the tag found in the message

 # file with the value specified from %tags.

 eval '$msg =~ ' . "s/$tag/" . (eval $mucr8::tags{$tag}) . "/gm" ;
}

If the tag found in mucr8.msg is <<USERNAME>>, it's replaced by the variable $newUsername from the
so on. Any of the attributes associated with a new user object may also be used as replacement text message values. Here
are some you may find useful:

Scalars

OBJECT

Name of the created user.

PASSWORD

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Scalar containing the password assigned.

DEFAULT_TABLESPACE

Default tablespace.

TEMPORARY_TABLESPACE

Corresponding temporary tablespace.

PROFILE

Assigned profile, if any.

Array references

PRIVS

Reference to an array of privileges granted.

REVOKES

Reference to an array of privileges revoked.

Hash references

QUOTAS

Hash reference to the account quotas.

You add the scalars to the mucr8.conf like this:

'<<DEFAULT_TBS>>' => '$newUser->{DEFAULT_TABLESPACE}',

The following array reference lists privileges in the mucr8.conf file:

'<<PRIVS>' => q{join(',' @{$newUser->{PRIVS}})},

The following hash reference fills the <<QUOTAS>> key in any message:

'<<QUOTAS>>' =>

 q{join(',',map { $_ . ' => ' . $newUser->{QUOTAS}{$_}}

 keys %{$newUser->{QUOTAS}})},

The variable information from an example email using <<PRIVS>> and <<QUOTAS>> might look like this:

...

Application: ACCT and HR

The information you need to log on to this database is as follows:

Username : brubble

Password : KAEE7858

Database : ts01

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Database : ts01

Grants : connect,resource,plustrace,javauserpriv,javadebugpriv,select_catalog_role
Quotas : indx => 5m,users => unlimited
...

10.1.4.2 Running mucr8.pl

Creating actual database accounts in a test database may make our discussion easier to understand, so let's try out
mucr8.pl script. Create a file called myusers.txt with the following lines:

brubble,<your email address here>

fflintstone, <your email address here>

(Change the email addresses to some valid and observable test values.) Table 10-3 summarizes the
options.

Table 10-3. Command-line options — mucr8.pl
Option Description

-machine Server where the target database resides.
-database Target database.
-username DBA account.
-password DBA password (optional if Password server in use).
-filename File name containing the new account information.
-application Informational only; allows the use of this value within the email message file to specify the application.
-pdbarole Which PDBA role to assign to the new account.
-default_tbs Overrides default tablespace.
-temp_tbs Overrides temporary tablespace.
-verbose Outputs all of the user creation steps to the screen.
-message_file Name of the email message file sent to new account owners. This overrides the file name in
-logfile Log of operations. Defaults to mucr8.log.
-field_separator Field separator for list file. Overrides mucr8.conf value.
-
mail_password Causes mucr8.pl to email account information to users.

-dryrun Prints an operational dry run. Logging is turned off, email is unsent, and the new accounts remain
untouched.

10.1.4.3 Account creation dry run

We'll try the new -dryrun option in our first example. Example 10-7 shows a dry run for our friends Barney Rubble
Flintstone.

Example 10-7. A mucr8.pl dry run

mucr8.pl -machine sherlock -database ts01 -username jkstill \

 -filename myusers.txt -pdbarole developer -verbose \

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -filename myusers.txt -pdbarole developer -verbose \

 -application 'ACCT and HR' \

 -dryrun

dry run only

default tablespace: users

temp tablespace: temp

grants: connect resource plustrace javauserpriv javadebugpriv

 indx: 5m

 users: unlimited

user: fflintstone email: fred.flintstone@yourdomain.com

user: brubble email: barney.rubble@yourdomain.com

Here's what's going on in Example 10-7:

1. Because the -dryrun option was specified, account creation failed to take place. Only a report of the future
shown on the screen.

2. Next, having checked the output, we actually create the accounts:

$ mucr8.pl -machine sherlock -database ts01 -username jkstill \

 -filename myusers.txt -pdbarole developer -verbose \
 -application 'ACCT and HR'

user: brubble password: KAEE7858
user: fflintstone password: KBPF7869

3. As you can see, the only output when creating accounts for real includes the username and password. You may wish to
record these, even though the passwords have been mailed to the user. They're also recorded in
sure that this file is secure or simply delete it afterwards.

If you run a test with PDBA role DEVELOPER, you may encounter errors against databases with
some Java components missing. If so, use the CONNECT PDBA role, which has minimal
privileges; it should work on most databases.

10.1.5 Dropping Oracle Accounts

You can drop most user accounts easily using Oracle's SQL*Plus, as in the following example:

SQL> DROP USER username CASCADE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL> DROP USER username CASCADE;

However, account removal can become complex. When an Oracle account owns a large number of objects, removing that
account with DROP USER can cause a great deal of recursive data dictionary SQL. This can be a major resource drain, and
take excessive time to complete. To avoid this situation, some DBAs drop all account tables before executing
username CASCADE. In the toolkit, we've provided a Perl script that allows you to do this automatically —
10-4 summarizes the command-line options for this script.

Table 10-4. Command-line options — drop_user.pl
Option Description

-machine Server where the target database resides.
-database Target database.
-username DBA account.
-password DBA password (optional if password server in use).
-drop_username Name of the user to drop.
-force Drops user without verification (the default is to ask).

The drop_user.pl script allows you to change your mind; before actually dropping the user, it will ask you to
really do want to drop that user. In the following example we use drop_user.pl to erase the newly created account for Barney
Rubble:

$ drop_user.pl -machine sherlock -database ts01 -username system \

 -drop_username brubble

dropping user 'brubble'

Really drop user brubble?: Y/N: y
user brubble successfully dropped

Because the -force option was not specified, drop_user.pl required verification. Any response starting without Y (or y) results
in drop_user.pl exiting without dropping the account.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.2 Maintaining Indexes

Indexes on tables are required in any database to help enforce integrity constraints and, more
importantly, to increase database performance. If you don't maintain your indexes, there will be a
measurable and noticeable effect on performance. In this section we'll provide some index
maintenance scripts aimed at helping Oracle DBAs keep their databases running efficiently.

10.2.1 Looking at Oracle Space Problems

When table space is freed due to DML deletes or updates within previously full index blocks, Oracle
ordinarily fails to reuse this space except under special circumstances. Oracle reuses such an index
block only when it becomes completely empty, and this situation naturally leads to b*-tree index
fragmentation. If unattended, indexes eventually become like Tom and Jerry's favorite snack —
except Swiss cheese is supposed to be full of holes. An exaggerated example using
index_frag_test.sql illustrates the point.

On Unix, you'll find this script in the PDBA installation directory:

$ ls /u01/build/PDBA-1.00/routine_tasks/index_frag_test.sql

On Win32, type:

DOS> type C:\Perl\site\lib\PDBA\sql\index_frag_test.sql

This test script is shown in Example 10-8.

Example 10-8. index_frag_test.sql

DROP TABLE IDX_FRAGMENT;

PROMPT creating test table IDX_FRAGMENT

CREATE TABLE IDX_FRAGMENT (PK NUMBER NOT NULL, TESTDATA VARCHAR2(2000));

PROMPT inserting test data into IDX_FRAGMENT

DECLARE

 Maxcount CONSTANT INTEGER := 1000;

 Insert_Str VARCHAR2(2000);

BEGIN

 Insert_Str := RPAD('X',1000,'X');

 FOR N IN 1 .. maxcount

 LOOP

 INSERT INTO IDX_FRAGMENT(PK,TESTDATA)

 VALUES(N, Insert_Str);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 VALUES(N, Insert_Str);

 END LOOP;

 COMMIT;

END;

/

PROMPT creating primary key IDX_FRAGMENT_PK

ALTER TABLE IDX_FRAGMENT ADD CONSTRAINT IDX_FRAGMENT_PK PRIMARY KEY(PK);

PROMPT creating index IDX_FRAGMENT_IDX

CREATE INDEX IDX_FRAGMENT_IDX ON IDX_FRAGMENT(TESTDATA, PK) PCTFREE 0;

COL SEGMENT_NAME FORMAT A30 HEAD 'SEGMENT NAME'

COL EXTENT_ID FORMAT A10 HEAD 'EXTENT ID'

COL BYTES FORMAT 999,999,999 HEAD 'BYTES'

COMPUTE SUM OF BYTES ON REPORT

BREAK ON REPORT

-- show number of extents, and then number of rows in table

SELECT SEGMENT_NAME, DECODE(EXTENT_ID,0,'0',TO_CHAR(EXTENT_ID)) EXTENT_ID,

 BYTES

 FROM DBA_EXTENTS

 WHERE OWNER = USER

 AND SEGMENT_NAME = 'IDX_FRAGMENT_IDX'

 ORDER BY TABLESPACE_NAME, SEGMENT_TYPE, SEGMENT_NAME;

SELECT COUNT(*) IDX_FRAGMENT_ROW_COUNT FROM IDX_FRAGMENT;

PROMPT delete every 5th row from the table and reinsert it

DECLARE

 Maxcount CONSTANT INTEGER := 1000;

 insert_str VARCHAR2(2000);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 insert_str VARCHAR2(2000);

BEGIN

 insert_str := RPAD('X',1000,'X');

 FOR N IN 1 .. Maxcount

 LOOP

 -- DELETE EVERY 5TH ROW

 IF MOD(N,5) = 0 THEN

 -- DELETE THE ROW

 DELETE FROM IDX_FRAGMENT WHERE PK = N;

 -- PUT IT BACK

 INSERT INTO IDX_FRAGMENT(PK,TESTDATA)

 VALUES(N, Insert_Str);

 END IF;

 END LOOP;

 COMMIT;

END;

/

SELECT SEGMENT_NAME, DECODE(EXTENT_ID,0,'0',TO_CHAR(EXTENT_ID)) EXTENT_ID,

 BYTES

 FROM DBA_EXTENTS

 WHERE OWNER = USER

 AND SEGMENT_NAME = 'IDX_FRAGMENT_IDX'

 ORDER BY TABLESPACE_NAME, SEGMENT_TYPE, SEGMENT_NAME;

SELECT COUNT(*) IDX_FRAGMENT_ROW_COUNT FROM IDX_FRAGMENT;

In a nutshell, index_frag_test.sql creates a two-column table with 1000 rows, each row averaging
1002 bytes. We're going to fragment this index to make our point.

Both columns help create an IDX_FRAGMENT_IDX index, creating 12.6 rows per index block on
our 8K block database. Let's take a look at the output. We'll pick up the important lines afterwards:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

01: creating test table IDX_FRAGMENT

02: inserting test data into IDX_FRAGMENT

03: creating primary key IDX_FRAGMENT_PK

04: creating index IDX_FRAGMENT_IDX

05:

06: Index created.

07:

08: SEGMENT NAME EXTENT ID BYTES

09: ------------------------------ ---------- ------------

10: IDX_FRAGMENT_IDX 0 131,072

11: IDX_FRAGMENT_IDX 1 131,072

12: IDX_FRAGMENT_IDX 2 131,072

13: IDX_FRAGMENT_IDX 3 131,072

14: IDX_FRAGMENT_IDX 4 131,072

15: IDX_FRAGMENT_IDX 5 131,072

16: IDX_FRAGMENT_IDX 6 131,072

17: IDX_FRAGMENT_IDX 7 131,072

18: IDX_FRAGMENT_IDX 8 131,072

19: IDX_FRAGMENT_IDX 9 131,072

20: IDX_FRAGMENT_IDX 10 131,072

21: ------------

22: sum 1,441,792

23:

24: 11 rows selected.
25:

26: IDX_FRAGMENT_ROW_COUNT

27: ----------------------

28: 1000

29: 1 row selected.

30:

31: delete every 5th row from the table and reinsert it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

31: delete every 5th row from the table and reinsert it
32:

33: PL/SQL procedure successfully completed.

34:

35: SEGMENT NAME EXTENT ID BYTES

36: ------------------------------ ---------- ------------

37: IDX_FRAGMENT_IDX 0 131,072

38: IDX_FRAGMENT_IDX 1 131,072

39: IDX_FRAGMENT_IDX 2 131,072

40: IDX_FRAGMENT_IDX 3 131,072

41: IDX_FRAGMENT_IDX 4 131,072

42: IDX_FRAGMENT_IDX 5 131,072

43: IDX_FRAGMENT_IDX 6 131,072

44: IDX_FRAGMENT_IDX 7 131,072

45: IDX_FRAGMENT_IDX 8 131,072

46: IDX_FRAGMENT_IDX 9 131,072

47: IDX_FRAGMENT_IDX 10 131,072

48: IDX_FRAGMENT_IDX 11 131,072

49: IDX_FRAGMENT_IDX 12 131,072

50: IDX_FRAGMENT_IDX 13 131,072

51: IDX_FRAGMENT_IDX 14 131,072

52: IDX_FRAGMENT_IDX 15 131,072

53: IDX_FRAGMENT_IDX 16 131,072

54: IDX_FRAGMENT_IDX 17 131,072

55: IDX_FRAGMENT_IDX 18 131,072

56: IDX_FRAGMENT_IDX 19 131,072

57: IDX_FRAGMENT_IDX 20 131,072

58: IDX_FRAGMENT_IDX 21 131,072

59: IDX_FRAGMENT_IDX 22 131,072

60: ------------

61: sum 3,014,656

62:

63: 23 rows selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

63: 23 rows selected.
Viewing the code output shows that:

At line 24, IDX_FRAGMENT_IDX gets created with a total of eleven 128K extents.

At line 31, a procedure deletes every fifth table row before immediately reinserting it. The
index impact can be seen at line 63. Even though the index is still pointing to the same 1000
rows, it now requires more than twice as much space to do so; 3,014,656 bytes.

If this were a million-row index, the additional space required would cause many more index
buffer gets and disk reads. The holes in the index would have a noticeable impact on
performance.

The idxr.pl script described in the next section will help you maintain your indexes for peak
performance.

10.2.2 Rebuilding Indexes with idxr.pl

To assist you in rebuilding an index and improving the efficiency of index operations, we've included
the script idxr.pl in the toolkit. This script uses Oracle's ALTER INDEX REBUILD statement. Some
of its features include:

Compute index statistics

You can generate statistics for the index at the time of the rebuild.

Control over length of runtime

You can specify a limited runtime. The script runs within a maintenance window, rebuilding as
many indexes as possible in that time frame.

Incremental index rebuilds

Based on LAST_ANALYZED dates, and runtime windows, you control how many idxr.pl
executions are necessary to completely rebuild indexes.

Index optimal height calculation

The optimal index height is calculated from index statistics. If the actual height is greater than
the calculated value, the index will be rebuilt.

Percent of deleted rows threshold

A threshold based on the percentage of deleted rows in the index can be used to force the
index to be rebuilt.

The idxr.conf configurationfile contains only a few parameters, as shown in Example 10-9.

Example 10-9. idxr.conf

package idxr;

use PDBA;

use vars qw{ %config };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%config = (
 # don't check indexes that have been analyzed more recently

 # than a specified number of days. The reason for this is

 # that large systems may have many thousands of indexes, more

 # than can be done in a single pass. It may take several passes

 # if you have an hour each night to run this, and it takes 20

 # hours to validate structure, rebuild and analyze your indexes,

 # you would set mostRecentlyAnalyzed to 20 and maxRunTime to 60

 # specifify maxRunTime in minutes

 maxRunTime => 60,
 # don't check indexes that have

 # been analyzed more recently than

 # mostRecentlyAnalyzed, expressed in days

 mostRecentlyAnalyzed => 0,
 # rebuild the index if percent of deleted

 # rows is greater than this

 pctDeletedThreshold => 10,
 logFile => PDBA->pdbaHome . q{/logs/idxr.log},
);
1;

Three parameters determine the runtime characteristics of the script, and one locates the log file:

maxRunTime

Time in minutes that idxr.pl is allowed to run. This time won't be exact, because it is
rechecked after each index rebuild. If 60 minutes are set, and a rebuild requiring 10 minutes
starts at 58 minutes, the script exits at 68 minutes.

mostRecentlyAnalyzed

This parameter determines how old an index must be before it will be considered for
rebuilding. If this parameter is set to 3, and the script is set to run on a Sunday, indexes
analyzed more recently than the previous Thursday will be ignored. Suppose that:

You have 500 indexes, and it takes 20 hours to rebuild them all.

You have a one-hour maintenance window each evening.

With these constraints in mind, you set mostRecentlyAnalyzed to 20 and maxRunTime to 60.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With these constraints in mind, you set mostRecentlyAnalyzed to 20 and maxRunTime to 60.
All of your indexes will be gradually rebuilt over a 20-day period.

logFile

Sets the location of the output log file.

pctDeletedThreshold

If the deleted row percentage in the index exceeds the value of this parameter, the index is
rebuilt.

10.2.2.1 Fragmentation

The idxr.pl script also determines whether the height of the b*-tree index has exceeded its optimal
value. We've ignored the standard formulas for this value and adapted our SQL from a popular
paper on Oracle fragmentation.[3] The relevant portion of idxr.pl is reproduced in Example 10-10.
The script's command-line options are summarized in Table 10-5.

[3] See " How To Stop Defragmenting and Start Living: The Definitive Word On Fragmentation" by Bhaskar Himatsingka
and Juan Loaiza at http://www.oreilly.com/catalog/oressentials/chapter/defrag.pdf

Example 10-10. Determining optimal b*-tree height

sub getStat {
 my ($self, $dbh) = @_;

 my $statSql = q{

 SELECT

 NAME INDEX_NAME

 , DECODE (

 SIGN(

 CEIL(

 LOG(

 BR_BLK_LEN/(BR_ROWS_LEN/BR_ROWS),

 LF_BLK_LEN/((LF_ROWS_LEN - DEL_LF_ROWS_LEN)

 /(LF_ROWS - DEL_LF_ROWS))

)

) + 1 - HEIGHT

)

 , -1, 'YES'

 , 'NO'

) CAN_REDUCE_LEVEL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

) CAN_REDUCE_LEVEL
 ,DEL_LF_ROWS*100/DECODE(LF_ROWS, 0, 1, LF_ROWS) PCT_DELETED

 FROM INDEX_STATS
 WHERE LF_ROWS <> 0

 AND DEL_LF_ROWS <> 0

 AND DEL_LF_ROWS_LEN <> 0

 AND LF_ROWS_LEN <> 0

 AND BR_ROWS <> 0

 AND BR_ROWS_LEN <> 0

 };

 my $statSth = $dbh->prepare($statSql);

 $statSth->execute;

 my $row = $statSth->fetchrow_hashref;

 return $row ? $row : undef;

}

Here are the steps that determine whether an index should be rebuilt:

Run ANALYZE INDEX VALIDATE STRUCTURE for each index. (If you have index partitions
and subpartitions, these will be analyzed too.)

Retrieve ANALYZE figures from the INDEX_STATS system view.

If the CAN_REDUCE_LEVEL row from the getStat method is YES, or the deleted rows
percentage exceeds pctDeleteThreshold, then rebuild.

If -compute_statistics was specified, then rebuild and compute statistics.

Table 10-5. Command-line options — idxr.pl
Option Description

-machine Server where the target database resides.
-database Target database.
-username DBA account.
-password DBA password (optional if Password server in use).
-conf Configuration file. This defaults to idxr.conf.
-target_schema Target schema on which to rebuild indexes.
-compute_statistics Compute statistics when rebuilding index. (Adds very little overhead.)

10.2.2.2 Testing idxr.pl

We'll demonstrate the use of idxr.pl with the following test:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. A single-column test table HASH_TEST is created with a HASH PARTITIONED index of
HASH_TEST_PK.

2. We insert 100,000 table rows and then immediately delete 20,000 of them.

3. For our test we set the mostRecentlyAnalyzed parameter in idxr.conf to 0. This will cause
idxr.pl to consider all indexes as candidates for rebuilding regardless of age. We also set the
pctDeletedThreshold parameter in idxr.conf to 10 so that candidate indexes with more than
10% deleted rows will be rebuilt.

4. Because this deletion exceeds the deleted rows percentage of 10% in the index hash
partition, the index partitions should all be rebuilt:

$ idxr.pl -machine sherlock -database ts01 \

 -username system -target_schema jkstill

All the output from idxr.pl is directed to a log file, so nothing should appear on the screen while it's
running. The results of the test are seen here:

20020217105027:starting

20020217105027:maxRunSeconds:3600

20020217105027:sysDate:2002/02/17 10:50

20020217105027:globalName:TS01.JKS.COM

20020217105027:schema:JKSTILL

20020217105027:checking indexes analyzed more than 0 days ago

20020217105028:checking INDEX CHILD_PK_IDX

20020217105028:checking INDEX DM_UNQ

20020217105028:checking INDEX IDX_FRAGMENT_IDX

...

20020217105030:checking INDEX PARTITION HASH_TEST_P1

20020217105032:Rebuilding INDEX PARTITION HASH_TEST_P1

20020217105032:Attempting to Rebuild Index online

20020217105032:Rebuilt INDEX PARTITION HASH_TEST_P1 online

...

20020217105035:checking INDEX PARTITION HASH_TEST_P8

20020217105035:Rebuilding INDEX PARTITION HASH_TEST_P8

20020217105035:Attempting to Rebuild Index online

20020217105036:Rebuilt INDEX PARTITION HASH_TEST_P8 online

20020217105036:exiting

Because we specified that all indexes of any age having more than 10% deleted rows should be
rebuilt, all of the indexes were rebuilt in this test.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.2.2.3 Tracking

An internal idxr.pl feature tracks how long the script has been running. We've used a form of closure
to determine when the maximum runtime is breached. In standard Perl terms, a closure is simply a
subroutine reference that preserves the value of a lexically scoped variable between calls. In this
case, it's simply an anonymous code block that accomplishes the same thing.

The closure is formed by curly braces {} on lines 10 and 29 of Example 10-11. The lexically scoped
or my variables of $maxRunSeconds and $startTimeSeconds are enclosed within this block. When
the startTimer method is called at line 1, it sets the value of $maxRunSeconds. Even when the
startTimer method returns, the value of $maxRunSeconds is maintained because the code block
containing it is never actually exited.

After each index is rebuilt, the checkTimer method at line 21 is used to determine if the maximum
allowable runtime has been reached. If so, the number of actual seconds elapsed is returned;
otherwise, zero is returned. If a nonzero value is returned by checkTimer at line 3, messages are
logged indicating the actual runtime, and the index rebuild loop is exited via the last statement. The
script then exits.

Example 10-11. Closure in idxr.pl

 1 my $maxRunSeconds = idxrp->startTimer($idxr::config{maxRunTime});

 2

 3 if (my $runSeconds = idxrp->checkTimer) {
 4 $logFh->printflush("Max seconds $maxRunSeconds reached\n");

 5 $logFh->printflush("Actual runtime was $runSeconds seconds\n");

 6 last;
 7 }

 8

 9 {
 10 my $maxRunSeconds = undef;

 11 my $startTimeSeconds = time;

 12

 13 sub startTimer {

 14 my ($self, $maxMinutes) = @_;

 15 $maxRunSeconds = $idxr::config{maxRunTime} * 60;

 16 $startTimeSeconds = time;

 17 return $maxRunSeconds;

 18 }

 19

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 20 sub checkTimer {
 21 my $self = shift;

 22 my $currTimeSeconds = time;

 23 my $runSeconds = $currTimeSeconds - $startTimeSeconds;

 24 if ($runSeconds >= $maxRunSeconds) {

 25 return $runSeconds;

 26 } else { return 0 }

 27 }

 28 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.3 Killing Sniped Sessions

A sniped session occurs when a user has exceeded his idle time. The situation has been noted in the
database, and the user's actual database session has been suspended. However, the user is still
consuming a dedicated server resource that has not yet been allocated to someone else. This
situation can have an adverse effect on overall database performance.

10.3.1 Limiting Resource Consumption

Oracle provides the ability to limit resource consumption via the user PROFILE, a collection of limits
holding resource hogs in check. We've found that some of these limits are very useful, particularly
IDLE_TIME. The IDLE_TIME limit disconnects user sessions if they remain unused for too long.
When a session is disconnected in this manner, Oracle changes the status of the session to SNIPED
in the V$SESSION system view. We've used this limit effectively — especially in data warehouse
applications where a session may be consuming large swathes of memory even it is when idling.

Here's how you create a PROFILE called IDLE_LIMIT with an IDLE_TIME of 1 minute.[4] We'll assign
it to scott:

[4] You can create an idle limit of 1 minute, but Oracle interprets it as 2 or 3 minutes, the lowest IDLE_TIME value it
recognizes. The actual value depends upon the OS platform.

SQL> create profile idle_limit limit idle_time 1;

SQL> alter user scott profile idle_limit;

This following displays all non-default profile parameters:

SELECT *

 FROM DBA_PROFILES

 WHERE PROFILE != 'DEFAULT'

 AND LIMIT != 'DEFAULT';

PROFILE RESOURCE_NAME RESOURCE LIMIT

---------- -------------------------------- -------- ----------

IDLE_LIMIT IDLE_TIME KERNEL 1

1 row selected.

This next example shows all users with nondefault profile assignments:

SELECT B.USERNAME, A.RESOURCE_NAME, A.LIMIT

 FROM DBA_PROFILES A, DBA_USERS B

 WHERE A.PROFILE = B.PROFILE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE A.PROFILE = B.PROFILE

 AND A.PROFILE != 'DEFAULT'

 AND A.LIMIT != 'DEFAULT';

USERNAME RESOURCE_NAME LIMIT

---------- --------------- ---------------

SCOTT IDLE_TIME 1

SCOTT_DUP IDLE_TIME 1

2 rows selected.

When a session has been idle for longer than IDLE_TIME, Oracle changes the session status to
SNIPED. The user typically notices this session suspension in the following way when he tries to run
some more SQL commands, perhaps after a very long lunch break:

SQL> select USER from dual;

select USER from dual

*

ERROR at line 1:
ORA-02396: exceeded maximum idle time, please connect again
Even though the session has timed out, memory resources are still being consumed, as you can see
in Example 10-12. The ps -fp18471 command shows that the Oracle dedicated session server is still
in place. The SQL used to select this information from the V$SESSION view is shown in Example 10-
13.

Example 10-12. Status of timed-out session in V$SESSION

13:24:31 SQL> /

 SRVR

USERNAME SID SERIAL# STATUS PID LOGON TIME IDLE TIME

-------- --- ------- -------- ------ ----------------- -----------

SCOTT 16 1321 INACTIVE 18471 02/17/02 13:23:53 00:00:00:41

1 row selected.

13:24:33 SQL> /

 SRVR

USERNAME SID SERIAL# STATUS PID LOGON TIME IDLE TIME

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-------- --- ------- -------- ------ ----------------- -----------

SCOTT 16 1321 SNIPED 18471 02/17/02 13:23:53 00:00:02:10

1 row selected.

13:26:02 SQL> !ps -fp18471

UID PID PPID C STIME TTY TIME CMD

oracle 18471 18470 0 13:23 ? 00:00:00 oraclets01 (DESCRIPTION=(LOCAL=YES)

13:26:11 SQL>

Example 10-13. Displaying status of sessions

SELECT S.USERNAME, S.SID, S.SERIAL#, S.STATUS,

 TO_CHAR(LOGON_TIME, 'MM/DD/YY HH24:MI:SS') LOGON_TIME,

 SUBSTR('0'||TRUNC(LAST_CALL_ET/86400),-2,2) || ':' ||

 SUBSTR('0'||TRUNC(MOD(LAST_CALL_ET,86400)/3600),-2,2) || ':' ||

 SUBSTR('0'||TRUNC(MOD(MOD(LAST_CALL_ET,86400),3600)/60),-2,2)||

 ':' ||

 SUBSTR('0'||MOD(MOD(MOD(LAST_CALL_ET,86400),3600),60),-2,2)

 IDLE_TIME

 FROM V$SESSION S, V$PROCESS P

 WHERE S.USERNAME = 'SCOTT' AND P.ADDR(+) = S.PADDR

 ORDER BY USERNAME, SID;

Notice in Example 10-12 that this is a database using dedicated server
processes. Avoid killing sniped sessions with the kss.pl script in a database
using Oracle's Multi-Threaded Server (MTS), because in such situations the
script will disconnect all sessions that are using the same MTS dispatcher.

On a busy database with frequently created sessions, lapsed memory resource consumption may be
tolerable. Sniped sessions are reused by newly logged-in sessions, minimizing resource wastage.
However, on databases with infrequently created sessions, snipes can remain with us for quite some
time. We've seen this happen in data warehouses with plenty of memory wastage, so we decided to
go snipe hunting[5] — and lo, the kss.pl (Kill Sniped Sessions) script was born.

[5] For information on snipe hunting, please see http://www.snipehunter.com.

To make use of Oracle PROFILE allocations, your database must have the
following parameter set in the INIT.ORA file: RESOURCE_LIMIT = TRUE.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following parameter set in the INIT.ORA file: RESOURCE_LIMIT = TRUE.
Using a PROFILE will have no effect otherwise. This parameter can also be
set at runtime with the command:

SQL> ALTER SYSTEM SET RESOURCE_LIMIT = TRUE;

When removing a session from Oracle, the ALTER SYSTEM KILL SESSION command is often
sufficient. In the toolkit, we've taken it one step further, though, and we actually kill[6] the session's
dedicated server process. We then use ALTER SYSTEM KILL SESSION if the session still exists
with a status of KILLED.

[6] On Unix, we kill the Oracle thread using kill -9. On Win32 we use orakill.

So why the literal overkill? On numerous occasions over the years — and through several versions of
Oracle — we've run into serious problems when killing sessions. Nearly every time, the standard
method works just fine, but every once in a while it fails. The sessions may possess a status of
KILLED, but they're never actually removed. When this happens, and the session is holding a vital
table lock, it seems that nothing less than a plasma cannon[7] is sufficient to remove these poltergeist
sessions (or a database bounce, but we'd rather avoid going there). We've seen this happen on every
version of Oracle from 7.0.16 through to 8.1.6 and on both Unix and Win32. It's sporadic enough that
we've never learned how to reproduce it, but regular enough so we've learned how to cope with it. We
cope by killing the dedicated server process on Unix (or the thread on Win32). We've never
experienced a hanging session using this method. Remember, though, that this method is
inappropriate for Multi-Threaded Servers (MTS), where you would end up disconnecting a great many
other sessions by killing the MTS dispatcher.

[7] For definitive information on plasma cannons, the following web site may be helpful:
http://www.schlockmercenary.com/d/20000829.html

Enough rationale. Now it's time to set up kss.pl and run it. Because this script runs as a daemon on
Unix and a service on Win32, we'll show you how to set it up for both.

10.3.2 Installing kss.pl on Unix

Installing this script on Unix systems is easy. Simply make sure the kss.conf file is in the right place. If
it is still uninstalled, copy it in like this from the toolkit installation directory:

$ cp /u01/build/PDBA-1.00/routine_tasks/kss.conf $PDBA_HOME

That's it — we're done! Running the kss.pl daemon is equally simple. Here's the command we used
on our Linux server; Table 10-6 summarizes the command-line options:

$ kss.pl -machine sherlock -database ts01 -username system

Without the password server (see Chapter 9), add the password argument:

$ kss.pl -machine sherlock -database ts01 -username system \

 -password manager
Table 10-6. Command-line options — kss.pl

Option Description
-machine Server where the target database resides
-database Target database
-username DBA account
-password DBA password (optional if password server in use)

The kss.pl script must run as the owner of the Oracle processes. This is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The kss.pl script must run as the owner of the Oracle processes. This is
necessary to enable the use of the kill command on dedicated Oracle server
processes.

10.3.3 Installing kss_NT.pl on Win32

Follow these steps on Win32 systems:

1. Make sure that the kss.conf configuration file is installed in PDBA_HOME, as with the other
configuration files described previously in this chapter.

2. Install kss_NT.pl as a Win32 service using kss_service.pl.

3. If you are using the password server (see Chapter 9), install kss_NT.pl like this:

DOS> C:\Perl\site\lib\PDBA\util\kss_service.pl \
 -machine database_server -database database_name \

 -username DBA account

4. Without the password server, you need to include the relevant password:

DOS> C:\Perl\site\lib\PDBA\util\kss_service.pl \

 -machine database_server -database database_name \

 -username DBA_account -password DBA_password
5. We used the following to install kss_NT.pl on our Windows 2000 server:

DOS> C:\Perl\site\lib\PDBA\util\kss_service.pl \

 -machine mycroft -database ts20 -username system

6. To start the server you need to navigate to the Services administration application. The
specifics will vary, depending on your Win32 platform:

Windows 2000: Click through Start Settings Control Panel, double-click on
Administrative Tools, and double-click on Services. Scroll down to the
Oracle_SID_kss_monitor service and highlight it. Click on Action Start from the
menu to start the service.

Windows NT: Click through Start Setting Control Panel, double-click on
Services. Scroll down to Oracle_SID_kss_monitor, highlight it with the mouse, and click
the Start button.

The service appears on Windows 2000, as shown in Figure 10-2.

Figure 10-2. The kss service on Windows 2000

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.3.4 Configuring kss.pl

The configuration file for the kss.pl script requires little editing. The contents of kss.conf are shown in
Example 10-14. Note the following about this example:

The only parameter that should be edited is sleepTime. The default is 180, which is the number
of seconds between each snipe check. Avoid setting it too low; if you do, the monitor will
consume unnecessary resources, just as snipes do.

The remaining parameters (killSql, snipeSql and killCmd) should stay as they are for the
foreseeable future. They work fine for both Unix and Win32. (The killCmd parameter uses
PDBA->osname to determine whether the Unix kill or Win32 orakill commands should be used.
The others will only need changing if Oracle itself changes significantly.)

Example 10-14. kss.conf

package kss;

use PDBA;

use File::Spec;

use vars qw(%config);

%config = (

 sleepTime => 180,

 killSql => q(ALTER SYSTEM KILL SESSION '<<SID>>,<<SERIAL>>'),

 snipeSql => Q(SELECT S.USERNAME USERNAME, S.SID SID, S.STATUS STATUS,

 S.SERIAL# SERIAL, P.SPID SPID

 FROM V$SESSION S, V$PROCESS P

 WHERE S.USERNAME IS NOT NULL

 AND P.ADDR(+) = S.PADDR

 AND S.STATUS = 'SNIPED'

 ORDER BY USERNAME, SID

),

 killCmd => PDBA->osname() eq 'unix'

 ? q(/bin/kill -9 <<PID>> >/dev/null 2>&1)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ? q(/bin/kill -9 <<PID>> >/dev/null 2>&1)

 : File::Spec->catfile(PDBA->oracleHome, 'bin','orakill')

 . q{ <<ORACLE_SID>> <<PID>> },

);

1;

After starting the Oracle_ts20_kss_monitor service, on Win32, we created an IDLE_LIMIT profile with
a one-minute threshold for IDLE_TIME. The profile was then assigned to scott. Example 10-15 shows
the action taken by kss_NT.pl after scott's session timed out. At marker 20020217184600 the thread
for scott's session is first killed with Oracle's orakill utility, then terminated with ALTER SYSTEM KILL
SESSION.

Example 10-15. scott session cleaned up by kss_NT.pl

20020217184355:attempting to load Win32::Daemon

20020217184356:password retrieved for user system

20020217184356:Service running

20020217184359:SCANNING

20020217184359:SLEEP: 30

20020217184429:Service running

20020217184430:SCANNING

20020217184430:SLEEP: 30

20020217184500:Service running

20020217184500:SCANNING

20020217184500:SLEEP: 30

20020217184530:Service running

20020217184530:SCANNING

20020217184530:SLEEP: 30

20020217184600:Service running

20020217184600:SCANNING

20020217184600:STATUS:SCOTT:8:9:1384

20020217184600:OSKILL:SCOTT:8:9:1384:D:\oracle\ora81\bin\orakill ts20 1384

20020217184600:DBKILL:SCOTT:8:9:1384:alter system kill session '8,9'

20020217184600:SLEEP: 30

20020217184630:Service running

20020217184630:SCANNING

20020217184630:SLEEP: 30

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20020217184630:SLEEP: 30

20020217184700:Service running

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.4 Managing Extent Usage

An extent in Oracle parlance is the size of the chunks of storage that are allocated to a table or index upon creation or
when that table or index needs to be extended to accommodate more data. Extent management was always a
problem in older versions of Oracle because it could never be precisely controlled.

With the advent of locally managed tablespaces (LMTs) in Oracle8i, Oracle has greatly simplified space
LMTs allow DBAs to control the extent sizes allocated for tablespace objects, regardless of their STORAGE
specifications. This eliminates the fragmentation that can occur in dictionary-managed tablespaces when objects are
created with different extent sizes. Such fragmentation is impossible when LMTs are used. With LMTs, the
can be controlled so that all tablespace extents are the same size. In this section, we'll look at the benefits of LMTs
and then see how the toolkit script maxext.pl can make this feature even more effective.

10.4.1 Locally Managed Tablespaces (LMTs)

If CREATE TABLE statements request an extent greater than the tablespace's uniform extent size, they receive
multiple smaller extents, satisfying the total storage amount requested. This is illustrated in Example 10-16
tablespace is created with locally managed extents of 128K. Even though the requested extent size for
512K, the space is allocated in 128K chunks. USER_EXTENTS shows four allocated chunks of 128K

Example 10-16. Extent allocation in a locally managed tablespace

CREATE TABLESPACE USERS DATAFILE '/u01/oradata/ts01/users.dbf' SIZE 20M

EXTENT MANAGEMENT LOCAL UNIFORM SIZE 128K;

CREATE TABLE EMPTEST (FNAME VARCHAR2(20), LNAME VARCHAR2(20))

TABLESPACE USERS STORAGE(INITIAL 512K NEXT 512K);

BREAK ON TABLESPACE_NAME SKIP 1 ON SEGMENT_TYPE SKIP 1 ON SEGMENT_NAME SKIP 1 ON REPORT

COMPUTE SUM OF BYTES ON REPORT

SELECT TABLESPACE_NAME, SEGMENT_TYPE, SEGMENT_NAME,

 DECODE(EXTENT_ID,0,'0',TO_CHAR(EXTENT_ID)) EXTENT_ID, BYTES

 FROM USER_EXTENTS

 WHERE SEGMENT_NAME = 'EMPTEST'

 ORDER BY TABLESPACE_NAME, SEGMENT_TYPE,

 SEGMENT_NAME, TO_NUMBER(EXTENT_ID);

TABLESPACE TYPE NAME ID BYTES

---------- ------ ---------- -- ------------

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

USERS TABLE EMPTEST 0 131,072

 1 131,072

 2 131,072

 3 131,072

********** ****** ********** ------------

sum 524,288

4 rows selected.

Even though fragmentation is eliminated, storage still needs monitoring. In Example 10-16 a table is created, with
empty extents. If no more tablespace extents are available, does this require an increase in tablespace size?

Increasing tablespace size may be unnecessary. Even if your table sits within a full tablespace, the table itself
contains no data. If you could determine whether all tablespace objects have a sufficient number of unused blocks to
satisfy application data needs for six months, for example, there would be no immediate need to increase
size. To figure this out, we will need to check the individual objects to determine if their free space is sufficient.
statistics of interest in determining if an object will soon need more space are the following:

EXTENTS

Total number of extents allocated for an object.

FREE_BLOCKS

Number of blocks on the freelist. Either these blocks are filled below the PCTFREE threshold, or the space
used has fallen below the PCTUSED threshold after having been above PCTFREE at some point. Free
also include UNUSED_BLOCKS, discussed next.

UNUSED_BLOCKS

Number of blocks allocated to an object which have never contained any data. All unused blocks are also
FREE_BLOCKS.

MAX_EXTENTS

Maximum number of extents an object may be allocated.

MAX_BYTES_FREE

Largest chunk of free space in the object's allocation.

NEXT_EXTENT

Size of the next extent for the object.

TOTAL_BLOCKS

Total number of database blocks consumed by an object.

10.4.2 Examining Object Space with maxext.pl

The maxext.pl script in our toolkit determines if an object may be running out of space. It follows the steps illustrated
in Figure 10-3 and listed here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It checks to see if there are any more segments in DBA_SEGMENTS.

If so, it checks to see if the current segment is nearing its maximum number of extents or will be unable to
extend .

If either of the previous conditions is true, it checks the number of UNUSED_BLOCKS with
DBMS_SPACE.UNUSED_SPACE.

It sends a warning to the DBA if UNUSED_BLOCKS is below the threshold.

Figure 10-3. Flowchart of maxext.pl operations

In maxext.pl we rely upon UNUSED_BLOCKS, rather than FREE_BLOCKS, because the amount of space available
in a used freelist block is unknown. It can be calculated, but we prefer to rely on the ratio of UNUSED_BLOCKS /
TOTAL_BLOCKS to determine if a tablespace or tablespace object needs space attention. Before running
make sure that you have a copy of the maxext.conf file stored in PDBA_HOME, as for the other configuration files
described earlier in this chapter. There are only a few parameters in this configuration file that you will need to edit,
shown in the following list. The entire file maxext.conf is reproduced in Example 10-17.

Example 10-17. maxext.conf

package maxext;

use vars qw{ %config @emailAddresses };

%config = (minExtentsCanExtend => 3, minPctBlocksUnused => 10,);

@emailAddresses = ('dba@yourdomain.com', 'dba2@yourdomain.com',);

minExtentsCanExtend

Set this to the minimum number of extents by which an object should be able to extend. In the preceding
configuration file, this is set to 3, and a table has 98 extents allocated and a MAXEXTENTS value of
case, a value of 3 will cause a check to be made with DBMS_SPACE. This is because it is only possible for two
more extents to be allocated to the table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

minPctBlocksUnused

Percentage of unused blocks that an object should have before a warning is sent to the DBA. If an index has
100 total blocks, and 11 of those are unused blocks, no warning will be issued because 11% of
is greater than the 10% minimal threshold set.

@emailAddresses

Array of email addresses to which reports should be mailed.

There are only a few command options for maxext.pl, summarized in Table 10-7.

Table 10-7. Command-line options — maxext.pl
Option Description

-machine Server where the target database resides.
-database Target database.
-username DBA account.
-password DBA password (optional if password server in use).
-email Send email to DBAs if a report is generated.
-silent Only send email, and process without printing output.

The results of running maxext.pl can be seen in Example 10-18. We forced these tables to appear in the
setting the minPctBlocksUnused parameter to 100 in the maxext.conf file.

Example 10-18. Results from maxext.pl

%oramon > maxext.pl -machine sherlock -database ts01 -username \

 system -email

 NUMBER

 EXTENTS NEXT

OWNER NAME TYPE AVAILABLE EXTENT SIZE MAX BYTES FREE

========= ============ ======== ========== =========== ===============

JKSTILL BIG_TABLE TABLE UNLIM 65536 0

JKSTILL FILL_ER_UP TABLE UNLIM 65536 0

%oramon >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.5 Extracting DDL and Data

Oracle supplies the Export (exp) and Import (imp) utilities to export Oracle database objects and then import them
back into Oracle databases. The Export utility extracts not only the data for these objects but the DDL
Definition Language) to create them.

These venerable utilities work well enough, but sometimes fall short in a number of important ways:

Performance

Exports are fairly quick, but imports can be unbearably slow. Importing more than 10 gigabytes of data can
be too time-consuming to consider.

Portability

The Import file format is proprietary to Oracle. This makes it virtually impossible to load other databases with
exported data. We suppose that's fair enough, because Oracle Corporation is, after all, in the business of
Oracle databases. What's really frustrating though, is Import's inability to work with Oracle's own superb
high-speed data handler, SQL*Loader.

Limited DDL extraction

It's possible to extract most (but not all) of the DDL from an export file via the indexfile feature of
following command, for example, extracts most of the DDL from an export file, but fails to retrieve stored
procedures:

$ imp userid=scott/tiger file=mydata.dmp indexfile=myddl.sql
Compatibility

The Oracle export utility is highly version-dependent. Trying to export data from an 8.0.5 database with an
8.1.7 export utility results in the error message:

EXP-00037: Export views not compatible with export version.

We've included two Perl/DBI scripts in the toolkit to help fill these gaps. Using sqlunldr.pl and ddl_oracle.pl
dump all schema data to comma-delimited files, generate SQL*Loader control and parameter files, and then
generate DDL for all user tablespaces and schemas.

10.5.1 Extracting Data With sqlunldr.pl

Sometimes you need raw portable data — to populate another database, build a customer's spreadsheet, or
perform some other data operation. Unfortunately, Oracle's Export utility is the wrong mousetrap. One popular
solution to such problems is to build SQL*Plus dump scripts. This approach works for single tables,
cumbersome when dumping entire schemas or even a handful of selected tables. What's needed is a single dump
utility that creates portable output. It would also be nice if the data field separators were configurable and if
enclosed quote characters were both configurable and optional. The sqlunldr.pl script fits the bill on all counts.
Here are some of its main features. In the following sections we'll include several examples that show you to use
this script.

SQL*Loader support

Generates parameter and control files for SQL*Loader.

Configurable characters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The default for field separation is a comma. The default for enclosing fields is the double quote. Each is
configurable via the command line.

LONG column support

Long columns of arbitrary length are supported.

Binary data support (with limitations)

Binary data of LONG, CHAR, VARCHAR, and VARCHAR2 types can be dumped as hexadecimal by the
script and reloaded into binary format. This feature is limited to data 32K in length. Note that the Oracle
function UTL_RAW.CAST_TO_VARCHAR2 converts data from hex to binary within the SQL*Loader control
script, which is also limited to strings of 32K.

Binary data limits

The sqlunldr.pl script only partially supports LOB (large object) data. Both CLOB (character large object) and
BLOB (binary large object) columns may be dumped to output files, but you will need to manually edit the
generated SQL*Loader control .ctl script to load the data. Binary data is subject to the 32K-byte limit
because of the Oracle software predefined limitation. This is probably fine for 95% of systems,

The script's command-line options are summarized in Table 10-8.

Table 10-8. Command-line options — sqlunldr.pl
Option Description

-machine Server where the target database resides.
-database Target database.
-username DBA account.
-password DBA password (optional if password server in use).
-owner Owner of tables to dump.
-directory Directory in which to unload data. Defaults to <owner>.dump.
-dateformat NLS_DATE_FORMAT — for example, -dateformat `mm/dd/yyyy'
-header Includes the column names as the first line of output.
-noheader Outputs without column names.

-table Dumps tables. May be repeated as often as necessary — for example, -table emp -table dept -table
salary

-
schemadump Dumps entire schema. Makes sqlunldr.pl ignore -table.

-rowlimit Limits number of rows output for each table to N rows.

-fieldsep Separates row fields, defaults to comma. If used, you probably need to escape the character — for
example, -fieldsep \|.

-quotechar Character used to enclose each field. Defaults to a double quote. A literal value of none
quotes.

-longlen Maximum length of LONG datatypes you expect to encounter. Defaults to 65535.

-bincol Columns of binary data which should be translated to hex format before dumping. Maximum length
is 32767 bytes. Specified as <table>=<column1, column2,...>, etc.

10.5.1.1 Dumping and reloading SCOTT's schema

In this first example, we'll use sqlunldr.pl to dump the entire scott schema. This time we can ignore the
option, as we'll simply reload the data straight back into the same database. However, we'd need this option if the
data were to be loaded into a database with a different NLS_DATE_FORMAT. Here's the command to dump the
scott schema:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ sqlunldr.pl -machine watson -database ts99 -username system \

 -owner scott -noheader -schemadump

Once this entirely portable command completes, you'll find all the output in the scott.dump directory.
19 displays the output on a Unix system.

Example 10-19. Dumping the SCOTT schema with sqlunldr.pl

%oramon> sqlunldr.pl -machine watson -database ts99 -username system \

 -owner scott -noheader -schemadump

-rw-r--r-- 1 jkstill dba 56 May 20 01:17 bincol_test.txt

-rw-r--r-- 1 jkstill dba 129 May 20 01:17 bonus.ctl

-rw-r--r-- 1 jkstill dba 67 May 20 01:17 bonus.par

-rw-r--r-- 1 jkstill dba 0 May 20 01:17 bonus.txt

-rw-r--r-- 1 jkstill dba 123 May 20 01:17 dept.ctl

-rw-r--r-- 1 jkstill dba 64 May 20 01:17 dept.par

-rw-r--r-- 1 jkstill dba 104 May 20 01:17 dept.txt

-rw-r--r-- 1 jkstill dba 167 May 20 01:17 emp.ctl

-rw-r--r-- 1 jkstill dba 61 May 20 01:17 emp.par

-rw-r--r-- 1 jkstill dba 661709 May 20 01:17 emp.txt

-rw-r--r-- 1 jkstill dba 132 May 20 01:17 salgrade.ctl

-rw-r--r-- 1 jkstill dba 76 May 20 01:17 salgrade.par

-rw-r--r-- 1 jkstill dba 89 May 20 01:17 salgrade.txt

%oramon>

Let's see what's going on in this code:

1. We'll delete all the table rows from SCOTT's schema in our test database:

SQL> DELETE FROM BONUS;

SQL> DELETE FROM SALGRADE;

SQL> DELETE FROM EMP;

SQL> DELETE FROM DEPT;

SQL> COMMIT;

2. We're now ready to reload the data via SQL*Loader using the control and parameter files generated by
sqlunldr.pl. Here's how to reload DEPT:

$ cd scott.dump

$ sqlldr parfile=dept.par

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ sqlldr parfile=dept.par

3. We're asked for SCOTT's password. After we supply it, SQL*Loader reloads the DEPT table and generates
dept.log. The contents of this log should be similar to what's shown in Example 10-20. We can now reload
the other tables:

$ sqlldr parfile=emp.par

$ sqlldr parfile=salgrade.par

$ sqlldr parfile=bonus.par

Example 10-20. SQL*Loader log file — dept.log

Table DEPT, loaded from every logical record.

 Column Name Position Len Term Encl Datatype

------------------------------ ---------- ----- ---- ---- ----------------

DNAME NEXT * , O(") CHARACTER

LOC NEXT * , O(") CHARACTER

Table DEPT:

 4 Rows successfully loaded.

 0 Rows not loaded due to data errors.

 0 Rows not loaded because all WHEN clauses were failed.

 0 Rows not loaded because all fields were null.

Space allocated for bind array: 49536 bytes(64 rows)

Space allocated for memory besides bind array: 0 bytes

Total logical records skipped: 0

Total logical records read: 4

Total logical records rejected: 0

Total logical records discarded: 0

Run began on Sun Feb 24 17:18:17 2002

Run ended on Sun Feb 24 17:18:24 2002

Elapsed time was: 00:00:07.40

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Elapsed time was: 00:00:07.40

CPU time was: 00:00:00.10

10.5.1.2 Dumping binary data

Now we'll look at a more complex example. We'll create a table with one column of plain text, convert it to
unreadable binary form, and then dump the table with sqlunldr.pl. We'll then delete all of the data from the table,
reload it with the generated SQL*Loader scripts, and then validate it. Example 10-21 shows a test of this operation.

Example 10-21. Binary data test

 1 DROP TABLE BINCOL_TEST;

 2 CREATE TABLE BINCOL_TEST
 3 (CLEAR_TEXT VARCHAR2(10), BINARY_DATA VARCHAR2(10));
 4

 5 INSERT INTO BINCOL_TEST(CLEAR_TEXT) VALUES('Post-Dated');
 6 INSERT INTO BINCOL_TEST(CLEAR_TEXT) VALUES('Check');
 7 INSERT INTO BINCOL_TEST(CLEAR_TEXT) VALUES('Loan');
 8 COMMIT;

 9

 10 VAR xorstr VARCHAR2(10)
 11

 12 BEGIN
 13 :xorstr := RPAD(CHR(127),10,CHR(127));
 14 END;
 15 /
 16

 17 UPDATE BINCOL_TEST
 18 SET BINARY_DATA =
 19 UTL_RAW.CAST_TO_VARCHAR2(
 20 UTL_RAW.BIT_XOR(
 21 UTL_RAW.CAST_TO_RAW(CLEAR_TEXT),
 22 UTL_RAW.CAST_TO_RAW(SUBSTR(:xorstr,1,LENGTH(CLEAR_TEXT)))
 23)
 24);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 24);
 25 COMMIT;

 26 SET TERM OFF
 27 SPOOL BINCOL_TEST.LOG
 28 SELECT * FROM BINCOL_TEST;

 29 SPOOL OFF

 30 SET TERM ON

 31

 32 ED bincol_test.log
 33 SELECT UTL_RAW.CAST_TO_VARCHAR2(
 34 UTL_RAW.BIT_XOR(
 35 UTL_RAW.CAST_TO_RAW(BINARY_DATA),
 36 UTL_RAW.CAST_TO_RAW(:XORSTR)
 37)
 38)
 39 FROM BINCOL_TEST;
You'll find the example scripts bincol_test.sql and bincol_test2.sql in the following locations, so you can run these
tests yourself if you wish:

Unix (assuming a build directory of /u01/build)

/u01/build/PDBA-1.00/routine_tasks

Win32

c:\Perl\site\lib\PDBA\sql

Let's see what's going on in this example:

1. In lines 2-3 in Example 10-21 we create BINCOL_TEST.

2. In lines 5-7 we insert "Post-Dated Check Loan" into three of its rows.

3. In lines 10-15 we build a 10-character string, :xorstr, from ASCII character 127 elements. In lines 17-24,
:xorstr is used with the Oracle built-in functions UTL_RAW.CAST_TO_VARCHAR2,
UTL_RAW.CAST_TO_RAW, and UTL_RAW.BIT_XOR to create binary data that is unreadable by
humans.[8]

[8] Except half-Vulcans and machine-code gods, of course.

4. In line 27 the data is spooled to a file, and in line 32 the output is sent to our favorite vi text editor. (Notice
that in line 26 the console output was turned off. This stops the binary data displaying to our SQL*Plus
session, possibly making it unreadable.)

5. Here is the result of this edit, as it would appear viewed safely in vi.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CLEAR_TEXT BINARY_DATA

---------- -----------

Post-Dated /^P^L^KR;^^^K^Z^[

Check <^W^Z\^T

Loan 3^P^^^Q

6. After closing the editor, the SQL script continues. Lines 33-39 convert the newly created binary data back
into human-readable form, and if you're running this test yourself, the output should be similar to that shown
here:

PL/SQL procedure successful completed.

3 rows updated.

Commit complete.

UTL_RAW.CAST_TO_VARCHAR2(UTL_RAW.BIT_XOR(UTL_RAW.CAST_TO_RAW(BINARY_DATA),UTL_RA

--

Post-Dated

Check

Loan

SQL>

7. We're now ready to dump the data, delete the rows from BINCOL_TEST, reload from the output of
sqlunldr.pl, and then validate the results. Use sqlunldr.pl to dump the table:

$ sqlunldr.pl -machine watson -database ts99 -username system \

 -owner scott -noheader -table bincol_test \

 -bincol bincol_test=binary_data

8. Now we'll delete the test rows from BINCOL_TEST:

$ SQLPLUS SCOTT/TIGER

SQL> DELETE FROM BINCOL_TEST;

SQL> COMMIT;

SQL> EXIT

9. We can now reload the table from the sqlunldr.pl dump. The data will be in directory scott.dump
below your current directory. Go there and examine the files bincol_test.par, bincol_test.ctl, and
bincol_test.txt. You can see how they appeared in our tests in Example 10-22. Notice that the binary
contained in BINCOL_TEST.BINARY_DATA has been converted to hexadecimal format. When loaded
back, the Oracle built-in procedure UTL_RAW.CAST_TO_VARCHAR2 will convert it back into binary.

Example 10-22. Files generated by sqlunldr.pl

%oramon > cat bincol_test.par

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%oramon > cat bincol_test.par
userid = scott

control = bincol_test.ctl

log = bincol_test.log

bad = bincol_test.bad

%oramon > cat bincol_test.ctl
load data

infile 'bincol_test.txt'

into table BINCOL_TEST

fields terminated by ',' optionally enclosed by '"'

(

CLEAR_TEXT,

BINARY_DATA "utl_raw.cast_to_varchar2(:BINARY_DATA)"

)

%oramon > cat bincol_test.txt
"Post-Dated","2F100C0B523B1E0B1A1B"
"Check","3C171A1C14"
"Loan","33101E11"
%oramon >

10. We can now reload the data using SQL*Loader and the parameter files generated by sqlunldr.pl

$ cd scott.dump

$ sqlldr parfile=bincol_test.par

11. The most important line to observe in bincol_test.log is the one saying 3 Rows successfully loaded

SQL*Loader: Release 8.1.7.0.1 - Production on Sun Feb 24 16:43:54 2002

(c) Copyright 2000 Oracle Corporation. All rights reserved.

...

Table BINCOL_TEST:

 3 Rows successfully loaded.

 0 Rows not loaded due to data errors.

 0 Rows not loaded because all WHEN clauses were failed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 0 Rows not loaded because all WHEN clauses were failed.

 0 Rows not loaded because all fields were null.

12. Now log back into SQL*Plus and run the script bincol_test2.sql. The output should be identical
earlier. We can now drop the test table from SCOTT's account:

$ SQLPLUS SCOTT/TIGER

SQL> DROP TABLE BINCOL_TEST;

SQL> EXIT

10.5.2 Extracting DDL with ddl_oracle.pl

Although Perl-based Oracle tools like Orac and Oracletool supply options to regenerate DDL, and although the
DDL::Oracle module was designed to explicitly perform this operation (we describe all of these applications in
Chapter 3 and Chapter 4), it would sometimes be convenient to extract DDL from a database in one easy
operation. We could then recreate all the objects in user and application schemas. Oracle's Export utility does
extract all of this information, but often in unusable form.

It is possible to use the indexfile=myddl.sql construct with the Export utility to extract the DDL for tables,
and constraints from an Oracle export file, but this utility fails to cover packages, procedures, functions, and
triggers. To fill the gap, we've developed the ddl_oracle.pl script to generate the DDL to recreate the following
schema database elements; in the list we've noted any exceptions to what can be generated:

Tablespaces

Generates DDL to recreate all tablespaces except the SYSTEM tablespace.

Rollback segments

Generates DDL to recreate all rollback segments.

Public database links

Generates DDL to recreate all public database links.

Public synonyms

Generates DDL to recreate public synonyms with the exception of public synonyms referring to a
configurable list of user accounts. This exception prevents the inclusion of public synonyms created as
of a standard database.

User profiles

Generates DDL to recreate all user profiles with the exception of DEFAULT.

Roles

Generates DDL to recreate all database roles with the exception of a configurable list of roles. This
exception prevents the script from recreating roles created as part of a standard database.

User accounts

Generates DDL to recreate all user accounts with the exception of those found in a configurable list of user
accounts.

Schemas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Generates DDL to recreate all schema objects, including PL/SQL, with the exception of objects belonging to
users in a configurable list.

Grants from schemas

Generates DDL to recreate all grants made from all user accounts.

Before going any further, let's examine the configurationfile exp_exclude.conf. This file is simply a list of user
accounts and roles that we don't care to preserve in DDL files, often because they are created for us when
creating a new database.

The file included in the PDBA distribution is shown in Example 10-23. Most of the generic Oracle database users
and roles are included.

Example 10-23. exp_exclude.conf

package expexclude;

use vars qw{ @users };

@users = qw{ SYS SYSTEM
 OUTLN DBSNMP

 TRACESVR ORDSYS

 ORDPLUGINS MDSYS

 AURORAJISUTILITY$ OSE$HTTP$ADMIN

 AURORAORBUNAUTHENTICATED };

@roles = qw { CONNECT RESOURCE
 DBA SELECT_ CATALOG_ROLE

 EXECUTE_CATALOG_ROLE DELETE_CATALOG_ROLE

 EXP_FULL_DATABASE IMP_FULL_DATABASE

 RECOVERY_CATALOG_OWNER AQ_ADMINISTRATOR_ROLE

 AQ_USER_ROLE SNMPAGENT

 OEM_MONITOR HS_ADMIN_ROLE

 JAVAUSERPRIV JAVAIDPRIV

 JAVASYSPRIV JAVADEBUGPRIV

 JAVA_ADMIN JAVA_DEPLOY

 PLUSTRACE TIMESERIES_DEVELOPER

 TIMESERIES_DBA CTXAPP };

1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1;

Make sure that the exp_exclude.conf file is in your PDBA_HOME directory, as with other configuration files
described earlier in this chapter. There's no need to edit exp_exclude.conf unless you need to edit the
lists. For instance, if you want OUTLN included in DDL generation, remove it from @users. Most of the
generation is accomplished via Richard Sutherland's DDL::Oracle module, which we discussed in Chapter 3
application is not available on your system, you will need to install it (making sure to use at least Version 1.10).
Here's a Perl one-liner to determine what version of DDL::Oracle you are using:

perl -e "use DDL::Oracle 1.10; print qq{OK!\n}"

If the proper version is installed, you'll see OK! printed on the screen; otherwise, you'll need to install the latest
version. This is easier for Win32 users. Simply start the ActiveState PPM package manager and install directly as
follows:

C:\> ppm

PPM> install DDL::Oracle

Unix users will need to download the latest version and install it. If you want to do a manual install (as we
described in Chapter 2), you can get the file at http://search.cpan.org/search?dist=DDL-Oracle. For a direct CPAN
install, do the following:

$ perl -MCPAN -e "shell"

cpan> install DDL::Oracle

...

Running make for R/RV/RVSUTHERL/DDL-Oracle-1.10.tar.gz

...

Although we make use of DDL::Oracle to generate much of the DDL output from ddl_oracle.pl, we don't use it for
all of the DDL. Let's see why.

One of the goals of the script was to be able to generate a single file of all object grants made on a schema's
objects from the perspective of the grantor, or owner, of the objects. If the SCOTT schema owns 10 tables and
SCOTT has issued SELECT grants on all of his tables to the JONES, ADAMS, and CLARK accounts, we wanted a
single script to contain all of those grants. This way, the DBA needs to issue only a single Oracle logon
SCOTT account so that the DDL script containing those grants can be run.

The DDL::Oracle module generates grants from the perspective of the grantee, or recipient of the granted
privileges. In the case of generating the DDL required to grant SELECT privileges to the JONES, ADAMS, and
CLARK accounts, this would require three separate logons by the SCOTT account to create those grants.

In our script, we crafted our own DDL generation for certain aspects to get just the output we wanted. For example,
we did this in generating the DDL to create users and roles, and in generating the GRANT statements by grantor
rather than grantee.[9]

[9] If you want to see the details of this, examine the %ddl hash and the ddl, _userPrivs, _rolePrivs, and _grantorPrivs methods in the
PDBA::DBA toolkit module.

The command line for ddl_oracle.pl is rather basic, with the usual command-line options summarized in
9.

Table 10-9. Command-line options — ddl_oracle.pl
Option Description

-machine Server where the target database resides.
-database Target database.
-username DBA account.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-password DBA password (optional if password server in use).
-conf Config file. The default is exp_exclude.conf.

Running ddl_oracle.pl is very simple, as shown here:

$ ddl_oracle.pl -machine watson -database ts99 -username system

Building List

working on profiles

working on public database links

working on public synonyms

working on rollback segments

working on tablespaces

working on users

working on SCOTT

working on COMMON

working on JKSTILL

working on PDBA_ROLE

...

The output consists of a number of SQL scripts; each script name is prefixed with a number, which indicates the
order in which the scripts need to be run (assuming that all are to be used). An abbreviated version of the
1_create.sql script is shown in Example 10-24. See Table 10-10 for all of the script names.

Table 10-10. SQL scripts generated by ddl_oracle.pl
SQL Script Description

1_create.sql Used to call all of the other scripts. See Example 10-24.
2_tbs_ddl.sql DDL for all tablespaces other than SYSTEM.
3_rbs_ddl.sql DDL for all rollback segments.
4_pub_db_link.sql DDL for all public database links.

5_pub_synonyms.sql DDL for all public synonyms for all objects other than those owned by accounts in the
@users array of exp_exclude.conf.

6_user_profiles.sql DDL for all user profiles except for DEFAULT.
7_role_ddl.sql DDL for all database roles except those listed in the @roles array of exp_exclude.conf

8_user_ddl.sql DDL to create all accounts not listed in @users. Includes grants for all privileges, roles,
profiles, and quotas.

9_schema_<USER>.sql
One file generated for each account. Includes the DDL for all database objects owned by
the account: tables, indexes, constraints, views, sequences, stored procedures, stored
functions, packages, etc.

10_grant_<USER>.sql One of these files generated for each account. It includes all grants made by the grantor
to other accounts and roles.

The output is designed so it could be run sequentially by running 1_create.sql, but you'll rarely do things this way.
By grouping objects and privileges by owner, it's a bit easier for you to recreate a single schema. This approach
also reduces the number of files you must deal with.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 10-24. The 1_create.sql script

@@2_tbs_ddl.sql

@@3_rbs_ddl.sql

@@4_pub_db_link.sql

@@5_pub_synonyms.sql

@@6_user_profiles.sql

@@7_role_ddl.sql

@@8_user_ddl.sql

PROMPT connecting to SCOTT - please enter the password

CONNECT SCOTT

@@9_schema_scott.sql

@@10_grant_scott.sql

PROMPT connecting to PDBAREP - please enter the password

CONNECT PDBAREP

@@9_schema_pdbarep.sql

@@10_grant_pdbarep.sql

...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11. Monitoring the Database with the PDBA
Toolkit
So far we have looked at a variety of scripts in the Perl DBA Toolkit and have seen how they can
help make our lives as Oracle DBAs more productive. In this chapter we're going to focus on two
particularly urgent areas of DBA activity:

Alert log monitoring

The Oracle database alert log is an important source of information about error conditions,
and DBAs need to keep a careful eye on this file. However, finding the time to do manual
monitoring is difficult for most DBAs. In this chapter, we'll create an alert log monitor that
detects Oracle errors and messages and emails them to specific addresses, all in real time.
The primary scripts used to do this monitoring are ckalert.pl, ckalert_NT.pl, and
ckalert.conf.

Connectivity monitoring

DBAs also need to constantly monitor all of their Oracle databases to ensure that
connections to these databases can be established. If a database goes down, the DBA
needs to find out about the problem — and fix it — ideally before users are even aware that
their connectivity has been affected. In this chapter we'll describe a toolkit connectivity
monitor that does this real-time monitoring using the scripts dbup.pl, dbup_NT.pl, and
dbup.conf.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.1 Monitoring the Alert Log

When an Oracle database is created, a file commonly referred to as the alert log is created. As errors and other
conditions occur during processing, messages are logged to this file. Basically, every important event
causes a record to be written to the alert log: when the database starts up, when it shuts down, and everything in
between (e.g,. creating tablespaces and datafiles, performing privileged operations). Every important error message
ends up in the alert log; in some cases, a message directs the DBA to a trace file that contains more detailed alert
information.

It is the responsibility of the DBA to monitor the alert log on a regular basis so as to deal with any problems or potential
security issues before they affect the database or its users. The sooner you find out about error conditions, the better;
unlike wine and cheese, database problems don't improve with age. Monitoring the alert log can be a challenge,
however: there is an alert log for every database, and busy DBAs have many other things to do that are
than manually scanning alert log files. As somewhat dyed-in-the-wool geeks,[1] your authors find that the
spending valuable daily minutes manually poring over database alert logs sends shivers up and down our
workstations. Frankly, trawling through alert logs makes for a great insomnia cure, but it's hard to fit into the day.

[1] If you think this is synonymous with "aging geeks," you're right. Your authors readily admit to being over 18 years old.

To automate this tedious process and help DBAs keep close watch over their databases, we've written a collection of
scripts designed to monitor the Oracle alert logs in real time and to report directly to the DBA the instant a database
problem is detected. These scripts let you configure what to look for in the alert log and the email addresses to which
to send messages. In addition, they allow messages to be mailed individually or batched up (depending on platform)
and to be sent either immediately or at particular time intervals.

11.1.1 Where is the Alert Log?

The location and name of the file containing the alert log are operating system and version-dependent;
be subject to local DBA standards or the caprice of a third-party application's enforcing its own standards for the
location of the alert log.

Given a database of the name orcl, the alert log may normally be found at either of these locations on Unix systems:

$ORACLE_HOME/admin/orcl/bdump/alert_orcl.log

$ORACLE_BASE/admin/orcl/bdump/alert_orcl.log

On Win32 systems it would likely be found at:

%ORACLE_HOME%\admin\orcl\bdump\orclALRT.log

11.1.2 Monitoring with chkalert.pl

The chkalert.pl script is at the center of the toolkit alert-monitoring application. This Perl script provides the
capabilities:

Constant monitoring

Monitors the alert log for errors and collects these into an array that is emailed automatically to the addresses
you've specified.

Multiple email address

Emails error messages to multiple email addresses if you configure them.

Message throttling

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Controls the rate at which that email is sent; this is very helpful in cases where a large number of error
messages occur simultaneously. (This feature is only available on Unix systems.)

Flexible configuration of errors to check

Allows you to specify the errors the script should check for in the alert log. You specify errors via a list of Perl
regular expressions (giving you the ultimate in flexibility).

This script runs in the background as a daemon on Unix. A version of it, ckalert_NT.pl, runs as a service on Win32.

One particularly important feature of chkalert.pl is the set of configurable controls it provides in an effort to prevent
error messages from overwhelming your mail server. You may wonder what terrible circumstances would
many error messages that it could bring a mail server to its knees! Actually, this happens more than you would
imagine. A relatively common example is an imperfectly tested program that ignores error messages and continues to
attempt the same operation over and over. For example, consider a PL/SQL routine that collects records from an
OLTP system and inserts them into a data warehouse. After a month of record-breaking sales, the warehouse table
chews through all the available space allocated for that month — suddenly, you'll run into a brick wall
Oracle error such as the following:

ORA-1653 unable to extend table MY_TABLE by 16 in tablespace OLTP_DATA.

A reasonable and well-behaved PL/SQL routine would catch this error and abort the process, notifying someone of the
problem. However, if a miscreant piece of code fails to catch an exception of this kind, it can easily generate thousands
of error messages in a very short time. This can keep a mail server very busy!

The problem is compounded when the receivers of such emails are running a mail filter, such as procmail
spawns a new process for each email received. This can easily cause your company's mail server to suddenly display
poorer performance than the old Commodore 64 you still have in your closet (don't try to deny it).

As you can well imagine, system administrators are somewhat less than amused by such denials of service, especially
when they occur in the wee hours of the morning. And let's face it, things like this always occur in the wee hours of the
morning. We like our own sysadmins, and try to avoid giving them reasons to feel otherwise about us, so we use
chkalert.pl to keep mail server disasters from occurring.

Although in almost every other case we provide a single script that operates on both Unix
and Win32 platforms, that isn't the case here. We originally designed the chkalert.pl
run on Unix and subsequently created a modified version that works on Win32. When
dealing with background daemons for Unix or services for Win32, the code base becomes
quite unwieldy if it tries to do both jobs. So in this case we achieved much better
performance out of maintaining separate Unix and Win32 versions.

In the installation procedures described later in this chapter, we cover Unix installation
followed by Win32 differences. Because most aspects of installation and configuration are
the same for the two platforms, we recommend that if you are running on Win32, you
nevertheless read the Unix section first.

11.1.3 Installing and Configuring chkalert on Unix

If you followed the installation instructions in Chapter 9, the Unix version of the alert-monitoring script,
already be installed on your system. You'll find it in the same location as the other executable scripts, most likely in
/usr/local/bin. (As long as PATH includes the script installation directory, your system will find it.) Once underway, the
Perl daemon carries out the following tasks (all of which can be configured)

11.1.3.1 chkalert.conf

The first installation step is to locate and update the chkalert.conf configuration file used by the chkalert.pl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first installation step is to locate and update the chkalert.conf configuration file used by the chkalert.pl
configuration file contains settings for the parameters used to control alert monitoring at your site. Default settings are
provided in the configuration file that is included in the toolkit when you first install it. You can then edit this file as
desired. We perform this editing process as follows:

1. Change directory to wherever you unzipped the PDBA Toolkit archive, and then move into the
directory. For example, if you unpacked PDBA-1.00.tar.gz into /tmp, you would move to /tmp/PDBA-
1.00/chkalert:

$ cd /tmp/PDBA-1.00

$ cd chkalert

$ pwd

/tmp/PDBA-1.00/chkalert

2. If you don't already have the chkalert.conf file in PDBA_HOME (perhaps you have installed it as
make sure you do, and then cd to PDBA_HOME:

$ ls $PDBA_HOME/chkalert.conf

ls: chkalert.conf: No such file or directory

$ cp chkalert.conf $PDBA_HOME

$ cd $PDBA_HOME

3. Make sure you can write to the file, and then begin to edit its configuration. (The chkalert.conf
specified in chkalert.pl, so please don't change the name of the file.)

$ chmod u+w chkalert.conf

$ cp chkalert.conf chkalert.old # Once bitten, twice shy! :-)

$ vi chkalert.conf

There are just a few parameters you'll need to modify. We've reproduced the configuration file from
distribution in Example 11-1. Following the example we describe the main parameters you can specify in the file.

Example 11-1. Configuration for chkalert.pl — chkalert.conf

package chkalert;

use vars qw{ %ckConf };

%ckConf = (

 # recipients of email for alert log errors

 dbaAddresses => [qw{ scott@tiger.com 7775551212@mobile.att.net }],
 # mail addresses for debugging

 debugDBA => [qw{someone@somewhere.com}],
 oratabFile => '/etc/oratab',

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 oratabFile => '/etc/oratab',
 # or whatever the location of your oratab file is

 # it consists of the instance name, Oracle_Home and

 # a flag field of Y or N.

 alarmTime => 300,
 # this is the number of seconds to wait before sending

 # a batch of error messages as email

 # this is batched to prevent large numbers of email

 maxLogLines => 100,
 # this is the override for alarmTime. If maxLogLines

 # of messages are received, mail them now

 watchdogLength => 5,
 # this is the max size of the array used to

 # determine if too much mail is being sent too fast

 watchdogTime => 10,
 # this is the elapsed number of seconds between email

 # batches that is used to determine if mail is being

 # sent too quickly

 # if the time between the first and last times in the

 # watchdog buffer is <

 # (watchdog[watchdogLength] - watchdog[0])

 # * (watchdogLength * watchdogTime)

 # then the mail delivery is throttled back until things slow down

 throttleDelaySeconds => 10,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throttleDelaySeconds => 10,
 # how many seconds to delay between email batches

 # when many errors are being generated

 # this is to protect the system from being choked

 # with procmail processes if you are using it

 # what is the name of this server?

 serverName => 'sherlock.jks.com',

 # list of errors to check for

 # must be a comma separated list of regular expressions

 # e.g. errorList = ^ORA-, ^TNS-, crash

 # the qw operator may also be used

 errorList => qw{^ORA- ^TNS- crash},
);

1;

Here are the configuration file parameters:

dbaAddresses

Address list to which email is sent when errors are detected. Notice that the list is included inside paired square
brackets, [], indicating an anonymous array reference (see Appendix A, for a description of anonymous arrays).
The qw (quote word) Perl operator also avoids the need to use quote punctuation, which simplifies editing.

debugDBA

Has the same form as dbaAddresses, but consists of a list of addresses for use when debugging the application.
You will only need one address for this entry.

oratabFile

An all-important directive that locates the crucial oratab file. We won't try to guess the location of this file, as it
can differ widely on various Unix flavors. Simply insert the location of your own oratab file so chkalert.pl
the proper ORACLE_HOME for each target database.

alarmTime

Number of seconds you want chkalert.pl to hold onto error messages before mailing them. Sometimes errors
come in large grape-like bunches, so you may wish to avoid separate emails being sent out for each one
(especially if the email destination happens to be your pager and it's 2:00 AM on Sunday morning). One piercing
scream from a pager is enough to wake most of us. If you really do want to receive a separate email for each
error, possibly because you own shares in the phone company, read on.

maxLogLines

Maximum number of lines chkalert.pl should buffer before mailing them out. This overrides alarmTime
default setting of 100, if 100 error messages appear in the alert log before alarmTime times out, this overrides

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

default setting of 100, if 100 error messages appear in the alert log before alarmTime times out, this overrides
the timer and causes the messages to be mailed immediately. The timer simply resets to 0 when this happens.
To see error messages immediately, just set maxLogLines to a value of 1. An email is then sent the moment the
monitor detects an error.

watchdogLength , watchdogTime, throttleDelaySeconds

These closely related parameters prevent chkalert.pl from overwhelming a mail system in the event of a
runaway error's flooding the alert log:

Whenever error messages are mailed out, the time is recorded in an array called @watchdog
entries in @watchdog is controlled by the parameter watchdogLength. The parameter watchdogTime
number of seconds and is used as a control to determine whether chkalert.pl should slow down mail deliveries.

Whenever error messages get mailed, chkalert.pl compares the current time with the oldest timestamp in
@watchdog. If the difference in seconds between these is less than (watchdogLength * watchdogTime)
chkalert.pl inserts a sleep of throttleDelaySeconds between each mailing until the incoming error message rate
slows down.

For example, if your database starts throwing errors into the alert log faster than a Tribble population can munch
its way through a star cruiser shipment of Quadrotriticale,[2] this could send your mail server into a reproductive
frenzy trying to keep up. The script tries to prevent that from happening. Let's assume these values are set as in
Example 11-1, and that chkalert.pl finds that the first batch of error messages got sent out less than 50 seconds
ago and this is the fifth batch since then. A 10-second wait will be inserted between mailings,
server time to breathe.

[2] Star Trek, season 2, episode 15. See http://www.scifi.com/startrek/episodes/42.html.

serverName

Name of the database server. This name is used purely for informational purposes whenever error messages
are emailed.

errorList

Allows us to specify exactly what we want chkalert.pl to consider as an error. This is a list of regular expressions
contained within either a comma-separated list or a list specified by Perl's qw operator. (See Appendix C
more information.)

11.1.3.2 Running chkalert.pl

We're now ready to run chkalert.pl to see how it works. Let's test it first, on a copy of an alert log in which we've
generated our own error messages:

1. Our test database is ts01, and we copy its alert log to /tmp:

cp $ORACLE_HOME/admin/ts01/bdump/alert_ts01.log /tmp

2. We can now start running chkalert.pl against this test log copy:

$ chkalert.pl -debug -database ts01 -alertlog /tmp/alert_ts01.log
oratab: ts01:/u02/app/oracle/product/8.1.7:Y

ORACLE_HOME: /u02/app/oracle/product/8.1.7

DATABASE: ts01

ALERT LOG: /tmp/alert_ts01.log
DBA's : someone@somewhere.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DBA's : someone@somewhere.com

3. In another shell, we add an error message onto the end of our test log:

$ echo "ORA-20000: this is a chkalert test error" >> /tmp/alert_ts01.log

The content of the message is unimportant, as long as it begins with ORA-. The output in the first window should
now gain an extra line:

$ chkalert.pl -debug -database ts01 -alertlog /tmp/alert_ts01.log

oratab: ts01:/u02/app/oracle/product/8.1.7:Y

ORACLE_HOME: /u02/app/oracle/product/8.1.7

DATABASE: ts01

ALERT LOG: /tmp/alert_ts01.log

DBA's : someone@somewhere.com

ORA-20000: this is a chkalert test error
4. We've now confirmed that monitoring is properly configured, so let's ensure that the mailing works.

chkalert.pl with a Ctrl-C, and then restart it with a new -sendmail switch added:

$ chkalert.pl -debug -sendmail -database ts01 \
 -alertlog /tmp/alert_ts01.log

oratab: ts01:/u02/app/oracle/product/8.1.7:Y

ORACLE_HOME: /u02/app/oracle/product/8.1.7

DATABASE: ts01

ALERT LOG: /tmp/alert_ts01.log

DBA's : someone@somewhere.com

5. Add another fake error message to the end of the test alert log, and then sit back with your feet up, sipping a
quick coffee. The default configuration waits five minutes before sending out the following Alarm Time

ORA-20000: this is a chkalert test error

Alarm Time: 2002/12/02 - 14:26

SUBJ: ts01 Database - Alert Log Errors -

ORA-20000: this is a chkalert test error encountered in ts01 at 2002/12/02 - 14:26

sending email

After chkalert.pl says it's sent the email, check to see that we've actually received it. If not, you may need to
verify that the mail server specified in $PDBA_HOME/pdba.conf is valid. (If necessary, see Chapter 9
on the mail server configuration.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.1.3.3 Testing with a real alert log

This time we'll execute chkalert.pl against a real alert log without the previous -debug option. This forces
run as a daemon process:

$ chkalert.pl -sendmail -database ts01 \

 -alertlog $ORACLE_HOME/admin/ts01/bdump/alert_ts01.log

DATABASE: ts01

ALERT LOG: /u02/app/oracle/product/8.1.7/admin/ts01/bdump/alert_ts01.log

DBA's : oradba@yourdomain.com 7775551212@mobile.att.net

We're set. If you've included your cell phone or pager number as one of the email addresses and if the
sudden problem at 2:00 AM, you'll get the call first so you can deal with it. You'll then be able to stroll casually into your
office at 8:45 AM without anyone ever knowing there was a problem. No more angry mobs ambushing you in the car
park, no more smirkers loafing round the coffee machine waiting for the DBA to fix the database, no more
surprises.[3]

[3] OK, so we're the first to agree that restful slumber's being broken is a long way from being good, but performance reviews where share
may go up, rather than down, should provide adequate compensation.

Just to maintain this blissful nirvana moment and help ensure that chkalert.pl is always running, you might want to
schedule it to start periodically via your system scheduler (often cron on Unix systems).

When chkalert.pl starts, it creates a lock on a temporary baton file of the form /tmp/chkalert.$ORACLE_SID
Subsequent attempts to run chkalert.pl on the same database will fail when the file lock operation is attempted. This is
harmless, because chkalert.pl merely exits when it's unable to lock the temporary baton file.

If you need to terminate the chkalert.pl daemon, it's easily done via chkalert.pl's own -kill option. When
starts, it creates a temporary file containing its own process ID — sort of like an Apache .pid file. The
chkalert.pl to open that file, in read-only mode, and use its artificial intelligence, glowing red eyes, and liquid metal, to
locate the PID of the running process. Once tracked down, the process is terminated.

The file containing the process ID is always named chkalert.<database>. On our Unix server for instance, the database
is named ts01. When chkalert.pl is started, a file named chkalert.ts01 is created. On Unix systems this
the /tmp directory, and on Win32 servers it's created in C:\TEMP. The contents of this file are fairly simple:

$ cat /tmp/chkalert.ts01

15575
The following is an example of stopping a currently running chkalert.pl daemon. All of the command-line
summarized in Table 11-1:

oramon > chkalert.pl -database ts01 -kill
DATABASE: ts01

ALERT LOG: /u02/app/oracle/product/8.1.7/admin/ts01/bdump/alert_ts01.log

DBA's : someone@somewhere.com 7775551212@mobile.att.net

chkalert process 3790 killed
Table 11-1. Command-line options — chkalert.pl

Option Description
-alertlog Full path to the database alert log file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-database ORACLE_SID of database to check
-debug Runs in console mode and prints debugging messages
-kill Used with -database option to stop the chkalert.pl daemon
-sendmail Error messages mailed to DBA addresses in configuration file

11.1.4 Installing and Configuring chkalert_NT.pl for Win32

So far, we've been focusing on how to do alert monitoring on Unix systems. The methods for handling background
processes differ significantly for Win32, and as we mentioned, there is a separate script for Win32. That script,
chkalert_NT.pl, was installed along with the rest of the toolkit. This script is dependent on the Win32::Daemon
module, also installed in Chapter 9, which allows chkalert_NT.pl to run as a service. These are the main configuration
steps. Note that in many cases, the installation is the same for Unix and Win32, so we'll refer to the earlier Unix
discussion where appropriate:

1. When the PDBA Toolkit was installed, a number of configuration files were installed along with it in a temporary
location. Copy the chkalert_NT.conf file from this temporary location to the PDBA_HOME directory. As in
Chapter 9, we'll assume that Perl is installed on your C: drive and that PDBA_HOME is set to
need to alter the following command appropriately if your installation is different:

C:> copy C:\Perl\site\lib\PDBA\conf\chkalert_NT.conf C:\pdba

2. Now edit[4] PDBA_HOME\chkalert_NT.conf and set the required parameter values, as discussed earlier for Unix
chkalert.pl configuration (see the parameters in Example 11-1, such as dbaAddresses and serverName
Example 11-2 is an example of how this file will appear with comment lines removed.

[4] Both authors of this book are Bruce-Willis-style die-hard vi fanatics. We won't give it up. We used gvim, the windowing version of
improved version of the vi text editor, for much of the code editing in this book. It's available at http://www.vim.org.

3. We recommend that you leave the default values of alarmTime, maxLogLines, watchdogLength
and throttleDelaySeconds. Changing the watchdog values currently has no effect on Win32 platforms. They
have been retained for future use when the alarm() call may be available in Perl on Win32. In the meantime, the
watchdog functionality found in chkalert.pl on Unix systems is not available in chkalert_NT.pl.

4. Because alarm() is unavailable, keep the default alarmTime parameter.

5. You must also leave maxLogLines set to 1 on Win32; the timeout method for periodic mailing of error messages
is not available on Win32.

Example 11-2. Editing chkalert_NT.conf on Win32 platforms

package chkalert;

 maxLogLines => 1,

 watchdogLength => 5,

 watchdogTime => 10,

 throttleDelaySeconds => 10,

 serverName => 'mail.yourdomain.com',

 errorList => qw{^ORA- ^TNS- crash},

);

1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. To install the chkalert_NT.pl service, navigate to the install directory:

C:> cd C:\perl\site\lib\pdba\util

7. Now run the chkalert_service.pl utility. The following command assumes that our database server is Oracle 8.1.x
on Drive D: and that the target database is ts20. Your mileage may vary. (The following command must be
entered on one line; we've split it only for formatting purposes):

C:> chkalert_service.pl -install -database ts20 -alertlog \
 d:\ora81\admin\bdump\ts20\ts20alrt.log

8. If you need to remove the service, replace -install with -remove:

C:> chkalert_service.pl -remove -database ts20 -alertlog \
 d:\ora81\admin\bdump\ts20\ts20alrt.log

Table 11-2 summarizes the command-line options for chkalert_service.pl.

Table 11-2. Command-line options — chkalert_service.pl
Option Description

-install Installs the alert log monitor service
-remove Removes the alert log monitor service
-database Supplies the SID of the database
-alertlog Provides the full path to the alert log

11.1.4.1 Starting the service

Now that chkalert_NT.pl has been installed, we fire up the Win32 Service Manager to start the service. You can
navigate to this tool with one of the following sets of keystrokes. (Note that Service Manager works much the same on
the two platforms.)

Windows NT

Start Settings Control Panel, click Services

Windows 2000

Start Settings Control Panel, click Administrative Tools, click Services

Figure 11-1 is an example of what you should see in Service Manager after successfully installing chkalert_NT.pl
new service appears as Oracle_ts20_AlertLogMon. Simply click on the Start button, and your alert log monitor should
be off and running. (If this install fails to go smoothly the first time around, check Chapter 9 for all the modules
by chkalert_NT.pl.)

Figure 11-1. The new Oracle_ts20_AlertLogMon service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the install should have the temerity to run imperfectly first time out, you may see a screen like that shown in
11-2. You will need to go to the command line to try to sort it out. Check to see if Perl can compile the script:

C:> perl -cw c:\perl\bin\chkalert_NT.pl

You can see the results of that in the following:

Can't locate Win32/Daemon.pm in @INC (@INC contains: C:/Perl/lib

C:/Perl/site/lib .) at c:\perl\bin\chkalert_NT.pl line 10.

BEGIN failed--compilation aborted at c:\perl\bin\chkalert_NT.pl line 10.

It appears that we missed installing the Win32::Daemon module. Should something like this happen, go back and
review the installation instructions in Chapter 9 to make sure that all the required elements were installed.

Figure 11-2. Oracle_ts20_AlertLogMon service failure

After re-installing Win32::Daemon to its former glory (we kept removing it in our test runs), the compile was
producing this output:

c:\perl\bin\chkalert_NT.pl syntax OK

If you continue to experience difficulties in running the service, make sure that the fully qualified file name, specified for
the alert log during chkalert_service.pl installation, is correct. If it is incorrect, it won't cause an error
restart the service.

11.1.4.2 Testing Oracle_SID_AlertLogMon

Now that we have the Oracle_SID_AlertLogMon service running, we can verify that it's working as expected. Carry out
this test only while a test database is down, as we need to directly edit its alert log.

1. Use your favorite text editor to edit the database's alert log:

C:> vi c:\oracle\admin\ts20\bdump\ts20alrt.log # Just say vi! :-)

2. Navigate to the last line of the file. We've displayed a fragment of our own alert log seen here. The last line
begins with ORA-20000. Add a similar line at the end of your own alert log.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Current log# 3 seq# 918 mem# 0: D:\ORACLE\ORADATA\TS20\REDO03.LOG

Successful open of redo thread 1.

Tue Aug 21 21:45:02 2001S

MON: enabling cache recovery

Tue Aug 21 21:45:02 2001

ARC0: Beginning to archive log# 2 seq# 917

ARC0: Completed archiving log# 2 seq# 917

Tue Aug 21 21:45:07 2001

SMON: enabling tx recovery

Tue Aug 21 21:46:28 2001

Completed: alter database open

ORA-20000: chkalert test error
3. Enter a RETURN at the end of the line, and then save the file.

4. When chkalert_NT.pl was installed earlier, the logging feature was turned on. To access this log, we navigate to
the C:\temp directory in Explorer.

5. Sort the entries by date so the newest files appear at the top of the window. You just need to click twice on the
Modified column in the file detail pane. (Note that this is not a double-click. The first click will sort the files
date in ascending order, and the second click will sort by date in descending order.) Your display should be
similar to that shown in Figure 11-3.

Figure 11-3. Locating the chkalert_NT.pl log file

6. The logging files are created with the process ID embedded in them. If we start and stop the alert checking
service a few times, we'll therefore see several files of the form chkalert_daemon_PID.log. Choose the newest
one, and open it with your favorite editor. Here's ours; notice that the ORA-20000 error appears in the
the file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waiting for service...Service started, ready to change stateService state changed

to SERVICE_RUNNUNG

Options loaded from command line

DATABASE: ts20

ALERT LOG: d:\oracle\admin\ts20\bdump\ts20alrt.log

DBA's : someone@somewhere.com 7775551212@mobile.att.net

Top of main loop

Top of main loop

Top of main loop

Error: ORA-20000: chkalert test error
Top of MailMsgs

Mail To: someone@somewhere.com:7775551212@mobile.att.net

Mail Subject: Alert Log Errors in ts20 on sherlock.jks.com

Mail Message:

ORA-20000: chkalert test error encountered in ts20 at 2001/12/03 - 20:47

Top of main loop

Top of main loop

Top of main loop

Stopping Service

exiting - files cleaned up

7. The log file should prove two things:

The fake error was detected.

The fake error was mailed to the configured email addresses.

8. That's it. We're done installing and verifying chkalert_NT.pl. Now we can go back to the Services Manager
application and stop the Oracle_PID_AlertLogMon service. We should also remove the fake error message from
the alert log. Once this is done, restart the database and then restart the Oracle_PID_AlertLogMon

The command-line options for chkalert_NT.pl are listed in Table 11-3; note that they differ somewhat from the earlier
Unix list. If you want to change any of these, you will need to remove the alert checking service, modify
chkalert_service.pl and then reinstall the service.

Table 11-3. Command-line options — chkalert_NT.pl
Option Description

-alertlog Full path to the database alert log file
-database ORACLE_SID of the database to check
-debug Indicates debugging messages to be included in log file
-logging Turns on the logging feature

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-sendmail Error messages mailed to the configured DBA addresses

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.2 Monitoring the Databases

Another very high priority for Oracle DBAs is the monitoring of database connectivity. You need to constantly poll all
of the databases at your site to make sure they are up and running. If a database is unavailable for any reason, you
must be proactive and check out the problem as soon as possible. It is definitely not good practice to wait until
users discover a connectivity problem before you take care of it. It's far better to deal with such problems as
they occur in order to minimize the impact on users. Much as we dislike the dissonant refrains of a pager in the small
hours, we still prefer that to having users inform us of database problems as we stroll innocently into the office the
next morning! As databases grow more critical to business, the importance of uptime continues to grow too. It's clear
that we need a tool to help us maintain 24x7 connectivity, or at least edge us closer to this ideal state.

We've included a collection of database monitoring scripts in our PDBA Toolkit that will help you keep track of
database connectivity and alert you when something goes wrong. The scripts described in the following sections
continually poll databases to make sure they're up and running. When a database is unavailable, the on-call DBA is
immediately emailed and paged, and every member of the DBA team also receives an email. Using our
can configure the emailing and timing to meet your specific needs.

11.2.1 Monitoring Database Connectivity with dbup.pl and dbpu_NT.pl

We've written a pair of connectivity monitoring scripts: dbup.pl for Unix and dbup_NT.pl for Win32. Both are highly
configurable and offer these features:

Database uptime

You specify the time periods that a specific database should be up. If the database goes down outside these
hours, the DBA gets emailed but is not paged.

DBA rotation

You can create an on-call rotation for DBAs, and you can specify a default DBA to cover any exposed gaps
you may choose to leave. We'll show a sample DBA schedule later.

Supervisor notification

You may optionally page a supervisor (or anyone else) when a database fails, regardless of the DBA that is
on call. You can also email the supervisor.

Connection test interval

You can configure the intervals between database connection attempts.

Delayed paging

You can also delay paging during off-duty hours. The configuration parameter hoursToPageImmediate
determines the hour range when paging is suspended. The parameter maxConnectRetries determines the
number of connection attempts before the on-call DBA is paged. This prevents the DBA or supervisor from
being paged during the night if database connectivity is restored within a preset number of reconnection
attempts. This is useful for situations that disrupt database connectivity for a few minutes without causing a
true problem — for example, evening reboots that occur on a standard schedule. Email and event logging still
take place.

Impressing your system administrators

OK, this is hardly built into the system, but it does tend to happen anyway. When one of your database
servers decides to head for the land of dreams, you're naturally going to get paged when the connectivity
monitor cannot connect to the database server. If you configure dbup.pl to connect to each database every

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

monitor cannot connect to the database server. If you configure dbup.pl to connect to each database every
five minutes, it won't be long before you're aware that the database server itself is down. Sysadmins are
always somewhat amazed to find out that you know about a server outage before they do. We've found
goes a long way towards maintaining cordial relations with our own systadmins.

11.2.2 Installing Additional Modules

In order to properly manipulate dates in our dbup.pl monitoring script, we've chosen to use Sullivan Beck's
Date::Manip module, an incredibly flexible pure Perl module used for parsing and comparing dates. It allows you to
specify a date in literally hundreds of formats, recognizing them automagically and parsing them into its own internal
operational format.[5] This module allows dbup.pl to handle the time intervals you specify.

[5] Appendix D, also describes Date::Calc, a more rapid, less diverse, C-based date-manipulation module.

Because the Data::Manip module is not part of the regular Perl distribution, you will need to install it before
continuing with the configuration of dbup.pl.

11.2.2.1 Installing Date::Manip on Unix

Download the latest version of Date::Manip from a CPAN site near you:

http://www.cpan.org/authors/id/SBECK

Follow the usual drill to unpack its tarball and install it, or alternatively use the CPAN shell as follows:

$ perl -MCPAN -e "shell"

cpan> install Date::Manip

cpan> quit

11.2.2.2 Installing Date::Manip on Win32

Connect to the Internet and perform the usual ActivePerl maneuver:

C:> ppm

PPM> install Date::Manip

PPM> quit

Up until now, most of the Win32 Perl modules we've installed via PPM have been fairly simple to install.
is a bit more complex. We don't have to compile anything, but we do need to do some editing, as we'll describe in
the next section.

11.2.2.3 TZ — Time Zones

The Date::Manip module needs to be able to get time zone information from the machine it's running on.
a problem on Unix platforms, which give up time zone data quite readily. However, obtaining this information on
Win32 is a little more involved. The Date::Manip documentation describes a number of methods for setting the
attributes of the time zone environment variable, TZ, but we've found only one reliable way on Win32 platforms, and
that's to use the Date::Manip configuration file, Manip.cnf. This file is not normally configured when you install the
Date::Manip module with PPM. Follow these steps to obtain and edit this file:

1. Copy a Date::Manip configuration file to PDBA_HOME. There are two ways to obtain this file. The first and
easiest way is to copy it from the PDBA Toolkit distribution as we've already included it for you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C:> copy C:\perl\site\lib\PDBA\conf\Manip.conf C:\pdba

2. The other way is to download the Date::Manip tarball from CPAN. The current version of Date::Manip
this writing, was 5.40. If the version installed on your system is different, you may wish to install the
configuration file from the latest version of Date::Manip, which can be found at
http://www.cpan.org/authors/id/SBECK. Open the archive file, locate the file Manip.cnf, and save it to
PDBA_HOME as shown in Figure 11-4.

Figure 11-4. Extracting Manip.cnf from the archive

3. Rename the file from Manip.cnf to Manip.conf. (This is simply to stay consistent when naming configuration
files and thus avoiding later confusion.) You can rename the file by right-clicking on the file in Windows
Explorer, and clicking on Rename. Alternatively, do this from the command line:

C:> move C:\pdba\Manip.cnf C:\pdba\Manip.conf

4. Next up sports fans, edit the file:

C:> vi C:\pdba\Manip.conf

There are two entries for TZ that you may need to edit: TZ and ConvTZ. The following example shows where
they're usually located in the Manip.conf file. If your time zone[6] happens to be PST (Pacific Standard Time),
you can save the file the way it came out of the box (which is nice, if you live in Oregon, USA, but less nice if
you live in Oxfordshire, England). If you're not sure of your exact time zone, you can check the full
documentation for yourself via perldoc Date::Manip, on both Unix and Win32. Once you do have the
zone data set correctly, save the file and close the editor.

[6] You can learn more about the time zones defined in Date::Manip by reading section 5 of RFC 822 on the "Standard for ARPA
Internet Text Messages" at http://www.faqs.org/rfcs/rfc822.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

################################ CONFIG VARIABLES###############################

See Date::Manip man page for a description of all config variables.

EraseHolidays =

PersonalCnf = Manip.cnf

PersonalCnfPath = t:.

Language = English

DateFormat = US

TZ = PST
ConvTZ = PST
Internal = 0

FirstDay = 1

WorkWeekBeg = 1

WorkWeekEnd = 5

...

5. Date::Manip must be told where to find the configuration file. To do this, you'll need to edit the actual
Manip.pm module file. Assuming that our Perl installation is under C:\Perl, this will be found as
C:\Perl\lib\Date\Manip.pm.

6. You won't be able to edit this file with Notepad.exe because the file lines end with an <LF> Unix-style line
terminator instead of the expected MS-DOS <CR><LF> combination. Oh dear, you'll have to use

7. OK, we admit that you can use Wordpad.exe, as it's more resilient, but vi is still best. Wordpad.exe
accessed from the Windows Start button via Start Run, Wordpad. Open the file with File
navigate to the C:\Perl\lib\Date\ directory before opening Manip.pm.

8. We just need to edit the global configuration file location for Date::Manip. The appropriate directive can be
found near the top of the Manip.pm file by searching for GlobalCnf. We've highlighted this line in the following
example and set the value to c:/pdba/Manip.conf. Your own value may differ.

###

CUSTOMIZATION

##

#

See the following POD documentation section CUSTOMIZING DATE::MANIP

for a complete description of each of these variables.

Location of the global config file. Tilde (~) expansions are allowed.

This should be set in Date_Init arguments.

$Cnf{"GlobalCnf"}="c:/pdba/Manip.conf";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$Cnf{"GlobalCnf"}="c:/pdba/Manip.conf";
$Cnf{"IgnoreGlobalCnf"}="";

...

9. We now need to save the file, and be sure to save it as a text file. Wordpad.exe has the disconcerting habit of
adding a .txt file extension to any file when you do this, but save it that way anyway.

10. We have to ensure that the file name is correct. The Manip.pm file has a read-only attribute, so
before renaming the file. Open a command window and adapt the following commands, depending on what
your edited file is called:

C:> attrib -r C:\perl\site\lib\Date\Manip.pm

C:> del C:\perl\site\lib\Date\Manip.pm

C:> move C:\perl\site\lib\Date\Manip.pm.txt C:\perl\site\lib\Date\Manip.pm

C:> perl -cw C:\perl\site\lib\Date\Manip.pm
Notice our use of the perl -cw switch. The -c switch causes Perl to check the syntax of a script without actually
executing it, and the -w switch enables warnings that will catch many common errors. Using these switches
ensures that the changes we made to the file are syntactically correct. Checking regularly when making
changes to Perl files can save many headaches later down the road.

The Date::Manip Win32 configuration is now complete.

11.2.3 Using the PDBA::OPT and PDBA::PWC Modules

When we installed the PDBA Toolkit, it included a number of background modules, all of which are described in
Chapter 9. These modules provide code that is used to support the operations of many of the Perl scripts in the
toolkit. Two modules that are particularly important to the connectivity monitoring discussed in the following sections
are the PDBA::OPT and PDBA::PWC modules. The purpose of the PDBA::OPT module is to scan the command line
for options that may be intended for the password server; it then feeds the security information found on the
command line to the PDBA::PWC module, which retrieves a password.

In the following sections, we'll delve into the guts of the toolkit in order to explain why you need PDBA::OPT
PDBA::PWC and how they work. Most readers won't need to know this information. But if you are interested in how
we've put the toolkit together and may want to extend it some day, read on.

11.2.3.1 The password server

You may recall that back in Chapter 9 we set up the password server and experimented with the password client
pwc.pl, which makes use of the PDBA::PWC module. This script can be used on the command line to retrieve
passwords from the server, and the same interface is used in most of our toolkit scripts. Fortunately,
configuration file allows us to make use of the password server while keeping the number of command-line options
to a minimum.[7] The password server is required if you wish to use the dbup.pl connectivity monitor.
PWD::OPT module that works behind the scenes to allow us to eliminate a great deal of related code. Here's how it
works:

[7] The only options normally needed at the command line in order to use the password server are -machine, -database, and -username
we'll cover soon.

1. Getopt::Long is a standard Perl module used for parsing command line arguments. We need
Getopt::Long module to allow extra command-line options, which it doesn't recognize by default. Here's an
excerpt from dbup.pl with the new Getopt::Long configuration clearly shown:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use Getopt::Long;

our %optctl=();

passthrough allows additional command line options

to be passed to PDBA::OPT if needed

Getopt::Long::Configure(qw{pass_through});
GetOptions(\%optctl, "conf=s", "debug!",

 "kill!", "mail!",

 "daemon!", "h|z|help");

The Getopt::Long::Configure(qw{pass_through}) statement tells Getopt::Long to ignore any extra
line arguments it may soon see via @ARGV. These will be passed onto PDBA::OPT.

2. The dbup.pl script loops through a hash data structure, %dbup::uptime, which lists the databases to which
dbup.pl should attempt to connect. For each target database, it calls the PDBA::OPT module. This module, in
turn, uses pwc.conf to help connect to the password server. Here's a simplified example of the call to
PDBA::OPT:

for my $db (keys %dbup::uptime) {

 my $password =
 PDBA::OPT->pwcOptions (INSTANCE => $db,
 MACHINE => $dbup::uptime{$db}->{machine}
 USERNAME => $dbup::uptime{$db}->{username});
}

What isn't apparent in this short example is the volume of hard work that PDBA::OPT is doing in
background. It looks up the pwc.conf configuration file, loads its entire contents, and then makes sure
parameters input via the command line take precedence over those just found in pwc.conf. With the required
information, PDBA::OPT then retrieves the necessary password from the password server.

We've reproduced the working portion of PDBA::OPT in Example 11-3. Configuration is unnecessary because it
uses the password client setup we created in Chapter 9. It's important, though, to understand how PDBA::OPT
makes use of command-line parameters to override values found in the pwc.conf file. We'll work through the
important code lines after Example 11-3.

Example 11-3. PDBA::OPT

 1 package PDBA::OPT;

 2

 3 $VERSION = '1.00';

 4

 5 use strict;

 6 no strict 'vars';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 6 no strict 'vars';

 7

 8 use Getopt::Long;

 9 use PDBA::ConfigFile;

 10 use Carp;

 11 %optctl = ();

 12

 13 sub pwcOptions {

 14

 15 my $self = shift;

 16 my %args = @_;

 17

 18 Getopt::Long::Configure(qw{pass_through});
 19

 20 use PDBA::PWC;

 21

 22 $optctl{pwc_conf} = 'pwc.conf';

 23

 24 # specified directly on the command line
 25 GetOptions(\%optctl,

 26 "pwc_host=s", # remote password server host

 27 "pwc_port=i", # port to connect to

 28 "pwc_machine=s", # database server

 29 "pwc_instance=s", # database instance

 30 "pwc_username=s", # database username

 31 "pwc_conf=s", # configuration file

 32 "pwc_key=s", # encryption key

 33 "pwc_my_username=s", # your password server username

 34 "pwc_my_password=s", # your password server password

 35 "pwc_debug!" # turn debug on

 36);

 37

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 38 # overrides from the config file
 39 if (exists($optctl{pwc_conf})) {

 40 use PDBA::ConfigFile;

 41 unless (new PDBA::ConfigLoad(FILE => $optctl{pwc_conf})) {
 42 croak "could not load config file $optctl{pwc_conf}\n";

 43 }

 44

 45 for my $key (keys %pwc::optctl) {

 46 $optctl{'pwc_' . $key} = $pwc::optctl{$key}

 47 unless exists $optctl{'pwc_' . $key};

 48 }

 49 }

 50

 51 # overrides from args passed to pwcOptions
 52 # just a bunch of ifs

 53 if (defined($args{HOST})){ $optctl{pwc_host} = $args{HOST} }
 54 if (defined($args{PORT})){ $optctl{pwc_port} = $args{PORT} }
 55 if (defined($args{MACHINE}))
 56 { $optctl{pwc_machine} = $args{MACHINE} }
 57 if (defined($args{INSTANCE}))
 58 { $optctl{pwc_instance} = $args{INSTANCE} }
 59 if (defined($args{USERNAME}))
 60 { $optctl{pwc_username} = $args{USERNAME} }
 61 if (defined($args{CONF})){ $optctl{pwc_conf} = $args{CONF} }
 62 if (defined($args{KEY})){ $optctl{pwc_key} = $args{KEY} }
 63 if (defined($args{PWD_USERNAME}))
 64 { $optctl{pwc_my_username} = $args{PWD_USERNAME} }
 65 if (defined($args{PWD_PASSWORD}))
 66 { $optctl{pwc_my_password} = $args{PWD_PASSWORD} }
 67 if (defined($args{DEBUG})){ $optctl{pwc_debug} = $args{DEBUG} }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 67 if (defined($args{DEBUG})){ $optctl{pwc_debug} = $args{DEBUG} }
 68

 69 if (

 70 ! defined($optctl{pwc_host})

 71 || ! defined($optctl{pwc_port})

 72 || ! defined($optctl{pwc_machine})

 73 || ! defined($optctl{pwc_instance})

 74 || ! defined($optctl{pwc_username})

 75 || ! defined($optctl{pwc_key})

 76 || ! defined($optctl{pwc_my_username})

 77 || ! defined($optctl{pwc_my_password})

 78) {

 79 croak qq/usage: $0 with PDBA::OPT

 80 --pwc_host <password server>

 81 --pwc_port <tcp port>

 82 --pwc_machine <database server>

 83 --pwc_instance <database instance>

 84 --pwc_username <database username>

 85 --pwc_conf <configuration file - optional but recommended >

 86 --pwc_key <encryption key>

 87 --pwc_my_username <password server username>

 88 --pwc_my_password <password server password

 89 /;

 90 }

 91

 92 my $remote_host=$optctl{pwc_host};
 93 my $remote_port=$optctl{pwc_port};
 94 my $machine=$optctl{pwc_machine};
 95 my $instance=$optctl{pwc_instance};
 96 my $username=$optctl{pwc_username};
 97 my $myusername=$optctl{pwc_my_username};
 98 my $mypassword=$optctl{pwc_my_password};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 98 my $mypassword=$optctl{pwc_my_password};
 99 my $key=$optctl{pwc_key};
100

101 $optctl{pwc_debug} =
102 exists $optctl{pwc_debug} ? $optctl{pwc_debug} : 0;
103

104 my $client = new PDBA::PWC(
105 host => $remote_host,
106 port => $remote_port
107);
108

109 $client->authenticate(
110 username => $myusername,
111 password => $mypassword,
112 key => $key,
113 debug => $optctl{pwc_debug}
114);
115

116 # get response
117 my $password = $client->getPassword(
118 machine => $machine,
119 instance => $instance,
120 username => $username,
121 key => $key,
122 debug => $optctl{pwc_debug}
123);
124

125 return $password;
126 };

127 1;

11.2.3.2 Configuring Getopt::Long for pass-through mode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's look at the code and see what's going on here. In the example, at line 18, you'll see Getopt::Long
into pass-through mode. This prevents it from complaining about unrecognized @ARGV options. Line 25 is the
GetOptions call used to retrieve additional arguments from the command line, which may be used to override
parameters in pwc.conf.

Let's consider an example to see how this works. The script my_script.pl relies on PDBA::PWC to retrieve
passwords from the password server so a database connection can be made. A typical call to the script might look
like this:

$ my_script.pl -machine sherlock -database ts01 -username scott

The script relies on the password server on Unix server watson to retrieve the password for user scott
ts01. The ts01 database is itself housed on Unix server sherlock. The password server running on watson
normally transparent to the user. This is because the nitty-gritty details are hidden away in the pwc.conf
configuration file, and PDBA::OPT is taking care of all of that for you.

What happens though, if the server watson is inaccessible for some reason? We still need to run our script, but
because the password server is unavailable, we'll see an error like the code snippet here:

Uncaught exception from user code:

 Couldn't connect to watson:1579 : IO::Socket::INET: Timeout
...

 PDBA::OPT::pwcOptions('PDBA::OPT', 'INSTANCE', 'ts01', 'MACHINE',

'sherlock', 'USERNAME', 'scott') called at ./my_script.pl line 39

Further investigation reveals that the server itself is down and won't be up for another two hours. But we do know
that an identically configured password server is also running on server mycroft as shown in Figure 11-5
PDBA::OPT allows us to override the parameters in pwc.conf with those stipulated on the command line, you rerun
the command to execute my_script.pl, this time redirecting PDBA::OPT to connect to the password server on
mycroft:

$ my_script.pl -machine sherlock -database ts01

 -username scott -pwc_host mycroft
This successfully outputs:

GLOBAL_NAME: TS01.JKS.COM

The script my_script.pl is a simple one; all it does is retrieve the GLOBAL_NAME of the database from the system
view GLOBAL_NAME. The important point, however, is that it succeeded in doing so.

Figure 11-5. Use of an alternative password server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.2.3.3 Loading the password client parameters

At line 41, in Example 11-3, the parameters from pwc.conf are loaded. These are used to load the %optctl
keys that begin with pwc_, in lines 45-48. This code will only set parameters that have not already been set with
command line parameters.

In lines 53-67, the hash reference $args is checked for explicit overrides passed to PDBA::OPT by the caller. If any
values are found, they replace the corresponding keys in the %optctl hash. For example, the following code
fragment always directs PDBA::OPT to try to connect via the password server on host moriarty, regardless of what is
contained in pwc.conf or directed to by the command-line option -pwc_host.

my $password = PDBA::OPT->pwcOptions (

 INSTANCE => $db,

 MACHINE => $dbup::uptime{$db}->{machine},

 USERNAME => $dbup::uptime{$db}->{username},

 HOST => 'moriarty');
In lines 92-127 these final values are used to set up a session with the password server and retrieve the requested
password.

Although we've provided quite a bit of detail here, you'll be relieved to hear that most Oracle DBAs never need to
worry about this level of detail. As we mentioned earlier, we've exposed this implementation information for those
who might want to modify our scripts or create your own. (We'll say more about doing that in Chapter 13
contains a listing of all command-line overrides available to PDBA::OPT.

Table 11-4. Command-line overrides for PDBA::OPT
Option Description

-pwc_host Password server host
-pcw_port TCP connection port
-pcw_machine Database server
-pcw_instance Database instance
-pcw_username Database username needing retrieved password
-pcw_conf Password client configuration file
-pcw_key Password server encryption key
-pcw_my_username Password client username
-pcw_my_password Password client password
-pcw_debug Turns on debug code

11.2.4 Configuring dbup.pl and dbup_NT.pl

After our skirmish with the black box forces of PDBA::OPT, let's get back to the task at hand. We need to periodically
check our database connectivity and get notified immediately if there's a problem. Fortunately, we have the
technology. We'll discuss the Unix and Win32 configurations together because although the two scripts differ
internally, they are configured identically. However, there is a bit of preparation that is platform-specific.

11.2.4.1 Win32 preparation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Before configuring dbup_NT.pl on Win32, you need to do the following:

1. First, place a copy of the supplied dbup.conf config file into PDBA_HOME:

C:> copy C:\perl\site\lib\PDBA\conf\dbup_NT.conf C:\pdba

2. Now we have to install the dbup service. As luck would have it, you should find a pre-supplied Perl script,
dbup_service.pl, available for just this purpose. Navigate to the directory where the PDBA utilities are
and run the install script:

C:> dbup_service.pl -install

Install

Successfully added.

Finished.

11.2.4.2 Unix preparation

Change to the directory where the PDBA Toolkit was installed. Make sure that the configuration file exists
PDBA_HOME if you've changed Unix users and it's not already there:

$ cd /u01/build/PDBA-1.00

$ cp dbup2/dbup.conf $PDBA_HOME

11.2.4.3 Configuration on both platforms

The only real difference between the two systems is that dbup_NT.conf has had each line terminated with
<LF>, enabling us to edit this config file with Notepad.exe. The first section of the file is displayed in

Example 11-4. dbup.conf

this line is required

package dbup;
use PDBA;

use vars qw($dateFormat $ignoreFile
 %parms %uptime %addresses

 %onCallList @supervisors);

format of date in ignoreFile

$dateFormat = "%Y/%m/%d-%H:%M:%S";

$ignoreFile = 'dbignore.conf';

Here's what's happening in this code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. The first code line establishes the Perl package name as dbup.

2. The use vars statement prevents runtime warnings from occurring whenever a variable is referenced only
once.

3. $dateFormat and $ignoreFile are used later on to notify the monitor whenever you wish to remove a
database from these regular connectivity checks until a specified date and time.

The rest of the module is then loaded. Example 11-5 shows some operational parameters that we may need to edit.

Example 11-5. Operational parameters -- dbup.conf

%parms = (

 mailServer => 'mail.yourdomain.com',
 fromAddress => 'oracle@yourdomain.com',

 # how often to check database connectivity

 # measured in seconds

 # low value used for testing

 # connectInterval => 30,

 connectInterval => 300,
 # hours are 0 - 23

 # these are the hours to page immediately without

 # retrying the connection. outside of these hours,

 # retry a configurable number of times before paging

 hoursToPageImmediate => [6..18],
 # use a limited range for testing during the day

 #hoursToPageImmediate => [19..20],

 # don't page DBA during lunch. :)

 #hoursToPageImmediate => [6..11, 13..18],

 # how many times to retry a connection when the time

 # is outside the range of hoursToPage

 maxConnectRetries => 3,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 maxConnectRetries => 3,
 # *everything* is logged

 # will use PDBA_HOME

 logfile => PDBA->pdbaHome() . q{/logs/dbup.log},
);

The following summarizes these parameters; some of them may be familiar from our earlier discussion of alert
monitoring:

mailServer

You need to change the default value of mail.yourdomain.com to your local mail server. If your domain is
acme.com, this might be mail.acme.com. Talk to your friendly sysadmin about this if you're unsure.

fromAddress

Used in the sent from part of the mail header for all mail dispatched from dbup. This needn't necessarily be a
real email address. Continuing with the domain of acme.com, you could set this to oracle_dba@acme.com

connectInterval

Determines how much time, in seconds, passes between database connection attempts. The default of 300
allows five minutes between attempts, though on Unix you may wish to alter this value. On Win32,
a lower value, such as 180, which is explained in the following note. Keep in mind that when a database is
down, we'll be emailed, or paged whenever a connection attempt fails. The lower the value for
connectInterval, the more often this will happen until the situation is remedied.

Win32 services are stopped and started via the Service Manager. This presents a problem
with dbup_NT.pl if the connectInterval parameter is set too high. The monitor runs in a
loop, and at the end of each iteration a sleep call is made, for a period of
$dbup::parms::connectInterval seconds. The dbup service fails to respond to the Service
Manager's request for termination until the sleep call is completed. If connectInterval
to 600, the service will ignore termination requests for 10 minutes. We therefore
recommend a lower value, such as 180.

The next two parameters work in concert, determining if the on-call DBA will be paged immediately or if the page call
will be deferred:

hoursToPageImmediate

In Example 11-5, hoursToPageImmediate is set to a value of [6..18]. These numbers refer to a 24-hour clock.
From 6:00 AM, until 6:59 PM (18:59), the DBA is paged immediately if a connection error occurs.

maxConnectRetries

If a connection error does occur outside of the hoursToPageImmediate time frame, dbup makes
maxConnectRetries reconnect attempts before paging the DBA. We particularly appreciate this feature when
servers are rebooted in the middle of the night after a minor hardware glitch, and paging is avoided because
the target server and all its databases are back up within a few minutes. All failures-to-connect
recorded in the log, however, and an email is sent regardless of whether the on-call DBA was paged.

Let's thank the two Larrys for small mercies. Because this is Perl, we're allowed enormous flexibility in defining
the hoursToPageImmediate hourly range. You may have noticed a commented-out section in
where we'd previously specified the DBA paging hours as [6..11, 13..18]. If you feel that you deserve a two-
hour lunch window between 11:00 AM and 1:00 PM, when the dbup secretary should place all calls
the opportunity is there!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

logfile

Full path file name for the log of all dbup operations. The default displayed in the example should work fine as
is, unless you wish to place the log somewhere else. Because the config files are executed as code in the
PDBA::ConfigLoad module, you can use the PDBA->pdbaHome method to place the file, as shown in
Example 11-5.

11.2.4.4 Examining uptime requirements

Let's examine Example 11-6 to determine the database uptime requirements.

Example 11-6. Database uptime requirements -- dbup.conf

%uptime = (

 ts01 => {

 machine => 'sherlock',
 upDays => [0..6],
 upHours => [0..23],
 username => 'system',
 alertLevel => 3 },
 ts20 => {

 machine => 'mycroft',
 upDays => [0..6],
 upHours => [0..23],
 username => 'system',
 alertLevel => 3 },
 ts99 => {

 machine => 'watson',
 upDays => [1..5],
 upHours => [6..18],
 username => 'system',
 alertLevel => 2 },
);

The %uptime hash specifies five parameters for each database needing testing:

machine

Name of the server hosting the database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

upDays

This value range specifies the weekdays that the database is in live production mode. The values are
which means from Sunday through Saturday. Let's look at a few examples; see the following section for more
details:

A value of [0..6] means that the database is required 7 days a week.

A value of [1..5] means that the database is required Monday through Friday.

A value of [1..3, 5,6] tells dbup that this database needs to be up Monday through Wednesday, and
then Friday through Saturday.

upHours

Just as you can specify weekday requirements, you can also set the daily hours of required uptime. Let's look
at a few examples; see the following section for more details:

A value of [0..23] indicates a database that's required 24 hours a day.

A value of [8..17] means that the database is only required to be up from 8:00 AM until 6:00 PM; this
sets the time of operation from 8:00 AM to 5:59 PM (the granularity of this parameter is 1 hour, and at
6:00 PM the hour becomes 18:00). In practice we'd set these parameters to [6..18] (see the next
section).

username

Database account used to attempt the database connection.

alertLevel

A strictly informational field. When the on-call DBA is paged, it includes a line detailing alertLevel
example, we use alert levels of 1 through 3, with 3 being Ace-high. We'll see an email like this on our cell
phones:

2002/12/29 - 03:45 DB Down: ts20

From: oracle@jks.com

To: dba@yourcompany.com

Failed to connect to database ts20 at 2002/12/29 - 03:45

 Alert Level: 3

If we see this one, we know that we'd better stop hugging that pillow, get out of bed, and take care of that
database right away!

11.2.4.5 Looking at upDays and upHours parameters

Before moving on, let's take a moment to discuss how DBA paging is impacted by the upDays and upHours
parameters. If dbup.pl or dbup_NT.pl is unable to connect to a database outside of the time specified by these
parameters, the on-call DBA avoids being paged. This is useful for systems without 24x7 uptime requirements.

Let's see what the best parameter settings would be for this type of system. Given a database requiring uptime from
Monday through Friday and from 8:00 AM until 6:00 PM each day, we'd set the upHours parameter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Monday through Friday and from 8:00 AM until 6:00 PM each day, we'd set the upHours parameter
specification has the effect of notifying the on-call DBA of any problems at 6:00 AM, allowing time to rectify
problems before 8:00 AM when users will typically expect the database to be available. This also allows an extra
hour after the 6:00 PM end of uptime. At this point, the DBA can correct any errors that might have occurred during
that dangerous time of day when machine operators are ending their shifts (and possibly rushing to go
introducing errors in the process).

11.2.4.6 Setting up pager and email addresses

Example 11-7 shows the section of the configuration file that is used to set up the pager and email addresses for the
DBA Manager, the Operations Manager, and the DBAs themselves.

Example 11-7. Email addresses — dbup.conf

%addresses = (

 'dbamgr' => {
 pager => '7775551212@mobile.att.net',

 emailWork => 'atwork@yourdomain.com',

 emailHome => 'athome@yourdomain.com' },

 'opsmgr' => {
 pager => '7775551212@mobile.att.net',

 emailWork => 'atwork@yourdomain.com',

 emailHome => 'athome@yourdomain.com' },

 'dba_1' => {

 pager => '7775551212@mobile.att.net',
 emailWork => 'atwork@yourdomain.com',
 emailHome => 'athome@yourdomain.com' },
 'dba_2' => {

 pager => '7775551212@mobile.att.net',

 emailWork => 'atwork@yourdomain.com',

 emailHome => 'athome@yourdomain.com' }

);

these need to be the names of standard address

entries in the %addresses hash.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if these exist, supervisors will be paged at

all times a DBA is paged, and will be sent

all mail sent to the oncall DBA

if you don't want this feature to be enabled,

set it to an empty list.

e.g.

@supervisors=();

or just comment it out.

@supervisors = ('opsmgr','dbamgr');
Note the following guidelines:

There should be a single entry for each of the dbamgr and opsmgr entries.

The DBA entries may be repeated for as many DBAs as you want to include.

If you don't want the Operations or DBA Managers to be paged in the event of database failure, just leave
those entries as they are. We'll demonstrate shortly how to disable them.

Each entry has three parameters — one for a pager and two more for emails.

pager

Email address for a pager or cell phone. This must be a valid email address — simply using a phone number
will not work, as all communications from dbup are done via email. Many cellular phone companies offer an
email address for cellular phones, similar to those shown in Example 11-7.

emailWork

Valid email address for the nominated person's workplace.

emailHome

Valid email address for the nominated person's home email.

Be aware of the following rules:

The pager parameter is strictly unnecessary. If you wish to disable it, just set the value to an empty pair of
quotes:

pager => '',

The emailWork and emailHome parameters are required. Set them both to the same email address if
necessary.

The last entry in the %addresses section is the @supervisors array. This determines which extra entries will be
paged and emailed, in addition to the on-call DBA, in case of database failure. You disable this feature by
commenting out the line with a hash # character or by creating an empty list:

@supervisors=();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.2.4.7 Who's on Third?

The last thing we need to do before putting our connectivity monitor into action is to determine which
during any given week. Example 11-8 contains the start and the end of the default entries you'll find in the
%onCallList hash, in the dbup configuration file. These abbreviated entries cover the time period from October 3,
2001, through October 2, 2002; each date is a Wednesday. If your schedule requires a different day as the
switchover day of the on-call week, you need to edit these dates. Be sure to retain the YYYYMMDD
shown.

Example 11-8. DBA on-call schedule — dbup.conf

%onCallList = (
 '20011003' => 'dba_1',

 '20011010' => 'dba_2',

 '20011017' => 'dba_1',

 '20011024' => 'dba_2',

 ...

 '20020911' => 'dba_2',

 '20020918' => 'dba_1',

 '20020925' => 'dba_2',

 '20021002' => 'dba_1',

 'default' => 'dba_1');
Note the following about this example:

1. Simply change our dba_1 and dba_2 values to those corresponding to the DBAs specified within the section
shown in Example 11-7.

2. The final entry in the %onCallList hash is default. This is the DBA (or manager) who is paged when dates fall
outside the date range specified.

3. There is some latitude possible when setting the %onCallList hash. If you use a single physical
on-call DBA, and pass it around among those in the DBA group, you can delete all of the dated entries and
leave just the default entry. This entry will thus always be the one paged in the case of a database failure.
Even though only one DBA entry in the configuration file will now be paged, email will still be sent to all
in the %addresses hash. Example 11-9 is an example of just such a setup.

Example 11-9. Configuring for a single pager — dbup.conf

%addresses = (

 'dbamgr' => { pager => '7775551212@mobile.att.net',

 emailWork => 'atwork@yourdomain.com',

 emailHome => 'athome@yourdomain.com' },

 'dba_1' => { pager => '7775551212@mobile.att.net',

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'dba_1' => { pager => '7775551212@mobile.att.net',

 emailWork => 'atwork@yourdomain.com',

 emailHome => 'athome@yourdomain.com' },

 'dba_2' => { pager => '7775551212@mobile.att.net',

 emailWork => 'atwork@yourdomain.com',

 emailHome => 'athome@yourdomain.com' },

 'dbaPager' = > { pager => '7775551212@mobile.att.net',
 emailWork => 'oracle@yourdomain.com',

 emailHome => 'oracle@yourdomain.com' }

);

@supervisors = ('dbamgr');

%onCallList = ('default' => 'dbaPager');
Now that we're finished editing the dbup configuration file, we can check it for syntax. On Unix, specify:

$ perl -cw $PDBA_HOME/dbup.conf

On Win32 you'll need to specify the full path to the file:

C:\> perl -cw c:\pdba\dbup_NT.conf

If the syntax is valid, Perl responds with dbup.conf syntax OK (or a similar message). If invalid, you need to correct
the error in your configuration file before continuing.

11.2.5 Running the Connectivity Monitor

We're now ready to run the fully loaded dbup monitor. For Unix, simply enter the following at the command line:

$ dbup.pl -daemon

For Win32, we'll need to start the Windows Service Manager application and then the Oracle_dbup_Monitor
as shown earlier for chkalert_NT.pl.

11.2.5.1 Testing the monitor

Now we'll actually run the dbup monitor under varying conditions and examine the logfile output. The tests shown in
this section were run under a Windows 2000 system. The configuration file we'll use is the one shown in
11-10. The only changes made for testing purposes were the substitution of real phone numbers and email
addresses. Of the three databases to be checked, one of them, ts20, will be unavailable. We'll examine the log
entries on a standard 24x7 schedule and then modify the entry for ts20 to ensure that the required uptime is Monday
through Friday. We'll then look again at the log entries.

Example 11-10. Test configuration — dbup.conf

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package dbup;

use PDBA;

 fromAddress => 'oracle@jks.com',

 connectionTimeout => 10,

 connectInterval => 120,

 hoursToPageImmediate => [0..23],

 maxConnectRetries => 3,

 logfile => PDBA->pdbaHome() . q{/logs/dbup.log});

%uptime = (

 ts01 => { machine => 'sherlock',

 upDays => [0..6],

 upHours => [0..23],

 username => 'system',

 alertLevel => 3 },

 ts20 => { machine => 'mycroft',

 upDays => [0..6],
 upHours => [0..23],

 username => 'system',

 alertLevel => 3 },

 ts99 => { machine => 'watson',

 upDays => [0..6],

 upHours => [0..23],

 username => 'system',

 alertLevel => 2 },

);

%addresses = (

 'dbamgr' => { pager => '7775551212@mobile.att.net',

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 emailWork => 'myboss@thecompanycom',

 emailHome => 'myboss@herhome.com' },

 'jkstill' => { pager => '7775551213@mobile.att.net',

 emailWork => 'jkstill@somewhere.com',

 emailHome => 'jkstill@somewhere.com' },

 'andyd' => { pager => '7775551214@mobile.att.net',

 emailWork => 'andyd@somewhere.com',

 emailHome => 'andyd@somewhere.com' }

);

#@supervisors = ('opsmgr','dbamgr');

%onCallList = ('20011107' => 'andyd',

 '20011114' => 'jkstill',

 '20011121' => 'andyd',

 '20011128' => 'jkstill',

 '20011205' => 'andyd',

 '20011212' => 'jkstill',

 '20011219' => 'andyd',

 '20011226' => 'jkstill',

 'default' => 'jkstill');

1;

We let the Oracle_dbup_Monitor service run for about five minutes before stopping it. Example 11-11
contents of the log file.

Example 11-11. dbup test #1

20011209163103:Service Starting - State is: 2

20011209163103:Service Started - State is: 4

20011209163103:Service running

20011209163103:Main Loop

20011209163104:Check database: ts01

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20011209163105:Connection to ts01 successful

20011209163105:Check database: ts99

20011209163105:Connection to ts99 successful

20011209163105:Check database: ts20

20011209163106:Database ts20 down during required uptime
20011209163106:On call DBA is: andyd

20011209163106:Sent email to andyd@somewhere.com, jkstill@somewhere.com

20011209163106:Database ts20 is down - paging DBA: andyd

20011209163107:Sent page to 7775551214@mobile.att.net
20011209163307:Service running

20011209163307:Main Loop

20011209163308:Check database: ts01

20011209163308:Connection to ts01 successful

20011209163308:Check database: ts99

20011209163308:Connection to ts99 successful

20011209163308:Check database: ts20

20011209163309:Database ts20 down during required uptime

20011209163309:On call DBA is: andyd

20011209163309:Sent email to andyd@somewhere.com, jkstill@somewhere.com

20011209163309:Database ts20 is down - paging DBA: andyd

20011209163310:Sent page to 7775551214@mobile.att.net
20011209163510:Stopping Service

Let's examine a few of the high points found in the logfile.

1. At 04:31:06 PM, on December 9, 2001, dbup found that ts20 was unavailable.

2. Because the dbup_NT.conf file determined that this database was on a 24x7 schedule, the on-call DBA was
paged at 04:31:07 PM.

3. Two minutes later, the database was still unavailable, so the on-call DBA was again paged at 04:33:10 PM.

4. At this point, the Oracle_dbup_Monitor service was stopped.

We then changed the following dbup_NT.conf file, indicating that we only required the ts20 database to be up from
Monday through Friday. The Oracle_dbup_Monitor service was restarted, allowed to run for five minutes, and then
stopped:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ts20 => { machine => 'mycroft',

 upDays => [1..5],
 upHours => [6..18],

 username => 'system',

 alertLevel => 3 },

The results of this change are seen in Example 11-12.

Example 11-12. dbup test #2

20011209164456:Service Starting - State is:

220011209164456:Service Started - State is:

420011209164456:Service running20011209164456:Main Loop20011209164457:Check database:

ts0120011209164458:Connection to ts01 successful

20011209164458:Check database: ts99

20011209164458:Connection to ts99 successful

20011209164458:Check database: ts20

20011209164459:Database ts20 down during off hours
20011209164459:On call DBA is: andyd

20011209164500:Sent email to andyd@somewhere.com, jkstill@somewhere.com
20011209164700:Service running

20011209164700:Main Loop

20011209164701:Check database: ts01

20011209164701:Connection to ts01 successful

20011209164701:Check database: ts99

20011209164701:Connection to ts99 successful

20011209164701:Check database: ts20

20011209164702:Database ts20 down during off hours

20011209164702:On call DBA is: andyd

20011209164703:Sent email to andyd@somewhere.com, jkstill@somewhere.com
20011209164903:Stopping Service

Please note the following highlights from Example 11-12:

1. At 04:44:59 PM, and again at 04:47:02 PM, ts20 was unavailable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Because this occurred outside of the required uptime for this database, the on-call DBA was emailed, but not
paged.

3. If ts20 remains unavailable after 06:00 AM on one day of required uptime, the on-call DBA is paged.

We've found this utility to be very useful, and we hope you do too. The ability to catch database connectivity
problems before they have an effect on the users of the live database goes a long way toward maintaining good
customer relations.

11.2.5.2 Command-line options

Only a few command-line options are available for dbup.pl and dbup_NT.pl; they are summarized in

If you change an option for Win32, you must remove the Oracle_dbup_Monitor service via dbup_service.pl
dbup_service.pl, and then re-install the service at the command line to put the changes into effect. The reason for
this is that the monitor is started and stopped via the Win32 Service Manager, and any command-line arguments to
the dbup monitor are stored in the Win32 Registry. You may take comfort in the fact that the defaults are probably
fine for most systems.

Table 11-5. Command-line options — dbup.pl and dbup_NT.pl
Option Description
-conf Name of the configuration file. This defaults to dbup.conf. You do not need to specify a full
-
daemon

On Unix, causes dbup.pl to run in the background as a daemon. This option is not available for
dbup_NT.pl on Win32.

-debug
On Unix, causes additional information to be placed in the logfile. If you are running in console mode,
informational debug messages will be printed to the terminal. On Win32 systems, this option causes
additional information to be placed in the logfile only.

-mail Causes mail to be sent to the DBAs.
-nomail Prevents email from being sent to the DBAs. (The default between -mail and -nomail is -mail
-help Prints a help message on the terminal console.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12. Building a Database Repository with the
PDBA Toolkit
This chapter focuses on another important Oracle database administration requirement: the need
to keep track of the many changes made to an Oracle database — changes to tables, indexes,
roles, schemas, and other database objects. As part of building the Perl toolkit, we decided to
create a repository, a central place in which to store all kinds of database changes. By
centralizing the storage of changes in this way, we can easily perform such administrative tasks
as tracking table changes over time, restoring last week's user passwords, recreating database
roles as they appeared last month, determining the effect of major index changes on SQL
execution plans, and comparing a schema against itself from a month ago. By providing a way to
go back in time to compare today's database with last week's or last month's, we can often
determine why programs that ran efficiently last week are now crawling — we can achieve
something that looks a lot like time travel!

Using the PDBA repository does impose some additional overhead on
your use of the toolkit. You will need to install it separately and perform
some customization, as described in this chapter. If you don't want to use
the repository — at least at this point in time — you can simply skip this
chapter. (But we hope you'll consider coming back to it in the future: using
the repository does provide Oracle DBAs with very helpful information.)

The repository uses the Oracle data dictionary as the source of much of its information, freezing
certain dictionary images on a regular basis and storing them over time. This chapter describes
how to install the repository scripts and tables, load the repository with data, and use it to report
on a variety of different kinds of database changes. We'll divide the discussion as follows:

Structure of the repository

We will introduce the tables required to hold database information in the repository.

Installing the repository

We'll describe how to install the repository for both Unix and Win32 systems (in both
standard form and for Oracle's locally managed tablespaces — LMTs).

Loading the repository with data

We'll show how to collect the baseline data needed for the repository via the baseline.pl
script and run some tests on the archived dictionary data.

Reporting on database changes

We'll show a number of different reports illustrating how you can use the spdrvr.pl script to
detect changes in database parameters and objects such as indexes and sequences over
time.

Reporting on SQL execution plans

We'll also show reports illustrating how you figure out why database performance problems
are occurring by retrieving SQL from a previous period and comparing the old execution
plan against the latest version. We'll describe the sxp.pl, sxpcmp.pl, and sxprpt.pl scripts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.1 Repository Table Structure

The toolkit repository contains two sets of tables. The first is a set of tables containing information
we copy from the Oracle data dictionary on a regular basis. We don't copy the entire dictionary, by
any means, but we do copy the most interesting and changeable data. The second set of tables is
our own group of specialized tables containing information that allows us to track SQL and
generate explain plans.

12.1.1 Tables from the Oracle Data Dictionary

Table 12-1 lists the repository tables that mirror the contents of certain Oracle data dictionary
tables, and summarizes the types of database objects stored in those tables. The names of the
tables are derived from the names of the corresponding data dictionary tables. For example, our
PDBA_INDEXES table pulls data from the Oracle's DBA_INDEXES data dictionary view. In the
later section, Section 12.4, we'll show how we use the data in these tables to analyze changes to
database objects.

The repository itself is compatible with the data dictionary provided in Oracle Versions 8.0 and
later.

Table 12-1. Main PDBA repository tables
Table Contents

PDBA_INDEXES Index information, statistics, storage information, and a number of other
parameters.

PDBA_IND_COLUMNS Index columns, statistics, storage information, and other related items.
PDBA_PARAMETERS V$PARAMETER initialization parameters.
PDBA_PROFILES DBA_PROFILES data.

PDBA_SNAP_DATES
Database dictionary image and the date it was taken. The primary key
of this table is used as a foreign key in most of the other tables in the
repository; in this way, it ties information into the proper databases.

PDBA_SYS_PRIVS System privileges, as granted to users and roles.
PDBA_TAB_PRIVS Object and stored procedure privileges.
PDBA_ROLE_PRIVS Role grants from DBA_ROLE_PRIVS.
PDBA_ROLES Role definitions from DBA_ROLES.
PDBA_SEQUENCES DBA_SEQUENCES sequence definitions.

PDBA_TABLES Tables, table statistics, table storage information, and related
information.

PDBA_TAB_COLUMNS Table columns, column statistics, and related information.
PDBA_TABLESPACES DBA_TABLESPACES definitions.

PDBA_USERS Usernames, passwords, default tablespaces, temporary tablespaces,
creation dates, and other information from DBA_USERS.

12.1.2 Specialized Repository Tables

In addition to the tables described in the previous section that mirror the Oracle data dictionary
tables, the repository contains another set of more specialized tables. The purpose of these
tables is to track the SQL found in the V$SQLTEXT data dictionary table and generate execution
plans from that SQL. In these tables we'll store Oracle SQL and EXPLAIN PLAN information so
we can perform comparisons on it at a later date. We'll describe the scripts that perform these
comparisons in the later section, Section 12.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use of the data in these tables will help to answer a common complaint from users — that their
SQL, which worked perfectly last week, has slowed down significantly. This isn't necessarily a
figment of our users' imaginations! It's often obvious to all, including the troubleshooting DBA, that
something has changed in the database since last week. It just isn't always clear what has
changed:

Was an index dropped?
Was a new index created?
Were statistics available on this table last week?
What did the execution plan look like last week?

All of these things can have a major impact on SQL execution and overall database performance.

Having read Stephen Hawking's Universe in a Nutshell (Bantam Press, 2001), we know that
travelling backwards in time is impossible (unless you're Mr. Spock), so the last two questions in
the list are usually quite difficult to answer. We've often thought, though, that if we could answer
them, it would be very interesting. At last, such a thing is possible. All we need is the SXP (Sql
eXplain Plan) repository tables, which track the objects listed in Table 12-2.

Table 12-2. SQL explain plan repository tables
Table Contents

PDBA_SXP_DATES Database dates for SQL statements.
PDBA_SXP_EXP Execution plans for SQL statements.
PDBA_SXP_SQL Actual SQL statements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.2 Installing the Repository

Before installing the repository, we need to create two tablespaces. We've included templates of
the necessary scripts for both Oracle 8.0 and 8.1 (and higher). The only difference between them
is that version 8.1 uses Oracle's locally managed tablespaces (LMTs).

LMTs provide several advantages — in particular, the removal of object
extent management from the Oracle data dictionary and the elimination of
wasted space due to fragmentation. If you don't need these features or if
they seem overkill for your site, however, use the 8.0 script.

The location of the scripts depends on your operating system:

Unix

Unix users will find the scripts by doing a chdir to the directory where the PDBA archive
was installed, and then doing a chdir to the pdbarep directory. Ours was installed in
/u01/build:

$ cd /u01/build/PDBA-1.00/pdbarep

Win32

Win32 users will find the scripts in the c:\perl\site\lib\PDBA\sql directory.

All of the repository scripts run identically on both Win32 and Unix. There
is no need for separate versions.

It is very likely that you won't be able to use the repository creation scripts on your own system
without first editing them. Your filesystem layout is probably different from ours, so you'll need to
edit the datafile paths. For example, let's take the pdba_tbs8i.sql script and modify it for Oracle8i
use on Win32. Example 12-1 shows what the file looks like initially.

Example 12-1. Unix version — pdba_tbs81.sql

-- pdba_tbs8i.sql

-- create tablespaces for PDBA repository

-- as Locally Managed Tablespaces

create tablespace pdba_data

datafile '/u01/oradata/ts01/pdba_data_01.dbf' size 20m
extent management local uniform size 128k

/

create tablespace pdba_idx

datafile '/u01/oradata/ts01/pdba_idx_01.dbf' size 20m

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

datafile '/u01/oradata/ts01/pdba_idx_01.dbf' size 20m
extent management local uniform size 128k

/

These datafile names won't work on Win32, so we need to change them to something more
appropriate, as shown in Example 12-2.

Example 12-2. Win32 version — pdba_tbs81.sql

-- pdba_tbs8i.sql

-- create tablespaces for PDBA repository

-- as Locally Managed Tablespaces

create tablespace pdba_data

datafile 'E:\oradata\ts01\pdba_data_01.dbf' size 20m
extent management local uniform size 128k

/

create tablespace pdba_idx

datafile 'F:\oradata\ts01\pdba_idx_01.dbf' size 20m
extent management local uniform size 128k

/

Storing all of the SQL from Oracle's SQL cache can consume a fair
amount of disk storage on databases with a large SQL cache. It's good
practice to be generous with the amount of space allotted to the PDBA
repository if your database caches a large number of SQL statements.
We've used up to 100 megabytes of storage storing all the SQL from a
database that had approximately 65,000 cached SQL statements in
memory, athough this may be an extreme example.

Now we're ready to install the repository:

1. The first step is to actually create the PDBA tablespaces. If your repository is to be installed
on Oracle8i or later, use the pdba_tbs8i.sql script; on Oracle 8.0, choose pdba_tbs.sql.
(We'll install our repository with version 8.0.)

2. To create the tablespaces, log in to the database as a DBA user. (Although sys should
rarely be used and is unnecessary for creating tablespaces, we do recommend it here; we'll
explain why in step 5.)

3. Once logged into the sys account, you can start installing the repository. The following
shows our successful tablespace creation on the 8.0.5 database, ts99. You should see
similar results when creating your own tablespaces:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL> set echo on

SQL> @pdba_tbs

SQL> -- pdba_tbs.sql

SQL> -- create tablespaces for PDBA repository

SQL>

SQL> create tablespace pdba_data

 datafile '/u05/oradata/ts99/pdba_data_01.dbf' size 2

 default storage (initial 128k next 128k

 pctincrease 0 maxextents unlimited)

/

Tablespace created.
SQL> create tablespace pdba_idx

 datafile '/u06/oradata/ts99/pdba_idx_01.dbf' size 20m

 default storage (initial 128k next 128k

 pctincrease 0 maxextents unlimited)

/

Tablespace created.
4. After tablespace creation is complete, it's time to create the PDBAREP repository owner.

Run the pdbarep_user.sql script as follows:

SQL> set echo on

SQL> @pdbarep_user
SQL> create user pdbarep identified by pdbarep

 default tablespace pdba_data

 temporary tablespace temp

/

User created.

SQL> alter user pdbarep quota unlimited on pdba_data;

User altered.

SQL> alter user pdbarep quota unlimited on pdba_idx;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

User altered.

Now run pdbarep_grants.sql to give PDBAREP permission to create objects and gain other
vital database permissions:

SQL> @pdbarep_grants

5. This is where we have to be the sys user. To function properly, PDBAREP must have
SELECT privileges on a pair of data dictionary views that are normally invisible to users.
These are V_$PARAMETER and V_$INSTANCE, more commonly known via synonyms as
V$PARAMETER and V$INSTANCE. Only sys can grant the necessary permissions.

6. We simply execute the script to grant the proper privileges, and then exit SQL*Plus. (A lot
of output will be generated.)

SQL> connect sys/change_on_install

SQL> @pdbarep_grants

...

7. Now log back into the database as PDBAREP. The password is set to PDBAREP; this
password must be changed as soon as the installation completes.

8. To ensure that the direct grants to see the data dictionary views succeeded, try to view
them with the DESCRIBE command.

If you see results similar to those in Example 12-3, you're ready to create the repository
tables and indexes.

Example 12-3. Access to V$PARAMETER and V$INSTANCE

pdbarep@ts99 SQL> desc v$parameter

 NUM NUMBER

 NAME VARCHAR2(64)

 TYPE NUMBER

 VALUE VARCHAR2(512)

 ISDEFAULT VARCHAR2(9)

 ISSES_MODIFIABLE VARCHAR2(5)

 ISSYS_MODIFIABLE VARCHAR2(9)

 ISMODIFIED VARCHAR2(10)

 ISADJUSTED VARCHAR2(5)

 DESCRIPTION VARCHAR2(64)

pdbarep@ts99 SQL> desc v$instance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pdbarep@ts99 SQL> desc v$instance

 Name Null? Type

 ----------------------------- -------- --------------------

 INSTANCE_NUMBER NUMBER

 INSTANCE_NAME VARCHAR2(16)

 HOST_NAME VARCHAR2(64)

 VERSION VARCHAR2(17)

 STARTUP_TIME DATE

 STATUS VARCHAR2(7)

 PARALLEL VARCHAR2(3)

 THREAD# NUMBER

 ARCHIVER VARCHAR2(7)

 LOG_SWITCH_WAIT VARCHAR2(11)

 LOGINS VARCHAR2(10)

 SHUTDOWN_PENDING VARCHAR2(3)

pdbarep@ts99 SQL>

9. While still logged in as PDBAREP, run the script pdbarep_create.sql. This is the final step
in the creation of the PDBA repository.

SQL> @pdbarep_create

There's a lot of output here. As long as there are no errors, the output will consist of a
series of lines of text such as Table created, Index created, Sequence created, and Trigger
created.

10. If you encounter errors, these will be recorded in the pdbarep_create.log file. Once the
script completes, you should examine this file for any errors. Should you need to correct
any problems, and rerun the creation script, you may wish to run pdbarep_drop.sql first to
drop objects successfully created. This makes it easier to examine pdbarep_create.log later
for errors:

SQL> @pdbarep_drop

SQL> @pdbarep_create

If you don't drop existing objects before rerunning the creation script, the log file will be
cluttered with errors such as ORA-955: name is already used by an existing object. This
clutter makes it difficult to find the important errors that we really need to be concerned
about.

11. The final step is to copy the configuration file pdbarepq.conf to PDBA_HOME. You may
need to make a minor edit to this file, but only if you wish to change the date format shown
in the repository reports from YYYY/MM/DD HH24:MI:SS. We'll show you how to change
this default shortly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On Unix, navigate to the PDBA installation directory, and copy the file:

$ cd /u01/build/PDBA-1.00

$ cd pdbarep

$ cp pdbarepq.conf $PDBA_HOME

On Win32, do the equivalent:

C:> cd c:\perl\site\lib\PDBA\conf

C:> copy pdbarepq.conf c:\pdba

12. If you wish to change the date format that will be used in the repository reports, you'll need
to edit pdbarepq.conf and find the following lines near the top of the file:

uncomment the appropriate line for your preferred date format

#

$calendar = 'International'; # YYYY/MM/DD HH24:MI:SS
#$calendar = 'American'; # MM/DD/YYYY HH24:MI:SS

#$calendar = 'European'; # DD/MM/YYYY HH24:MI:SS

If you want to change the default date format to either European or American, comment out
the International line and uncomment appropriately, as for European here:

uncomment the appropriate line for your preferred date format

#

#$calendar = 'International'; # YYYY/MM/DD HH24:MI:SS

#$calendar = 'American'; # MM/DD/YYYY HH24:MI:SS

$calendar = 'European'; # DD/MM/YYYY HH24:MI:SS

If you're running the DBD::Oracle module on Win32 (as discussed in
Chapter 2), you will need to make sure that you have a version installed
that was compiled with Oracle libraries of Version 8 or higher. The
repository relies on certain features that were introduced in Oracle8, such
as the CLOB (character large object) datatype. ActiveState is often
several versions behind the latest Unix release of DBD::Oracle. However,
if you visit Ilya Sterin's PPD site (also described in Chapter 2), you'll
usually find the very latest DBD-Oracle PPDs and binary downloads.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.3 Loading the Repository with Data

It won't be long until we see the fruits of our labors. Once you install the repository and build the tables,
you'll be all set to track database changes. The next time someone changes a column or an index outside
of your established change control procedures, you'll know what the database looked like before inside
the original Oracle data dictionary.

In this section we'll demonstrate how to load baseline data dictionary data into the PDBA repository using
the baseline.pl script, and we'll run some tests on that data. As changes are made to the database
objects and new baseline data is collected from the data dictionary, we'll show the effects of running
several reports comparing current objects with the previous incarnations of those objects. We'll pay
special attention to the repository reporting script spdrvr.pl (a unique hybrid of Perl and Oracle's
SQL*Plus).

12.3.1 Collecting Baseline Data

To kick things off, we need to collect our first baseline set of data. We'll collect it from the data dictionary
in database ts99 on server watson using the baseline.pl script, and we'll place it in our repository. The
command-line options for baseline.pl are listed in Table 12-3.

Table 12-3. Command-line options — baseline.pl
Option Description

-machine Target database server
-database Target database
-username DBA account user name
-password DBA's password (optional if password server in use)
-rep_machine Repository database server
-rep_database Repository database
-rep_username Repository owner
-rep_password Repository owner's password (optional if Password server in use)

Invoke the baseline.pl script as follows:

$ baseline.pl -machine watson -database ts99 -username system \

 -rep_machine sherlock -rep_database ts01

Notice the absence of passwords in this example. Here we're making use of the password server to fill in
the blanks for us. Otherwise, we would have needed the -password and -rep_password options, with the
appropriate passwords. When you run baseline.pl, the output should be similar to that shown in Example
12-4.

We strongly encourage you to make use of the password server for use with the
repository. While this server is optional for collecting data dictionary information
for insertion into the repository, it will be required for scripts that parse and store
SQL from the V$SQLTEXT system view.

Example 12-4. Output from baseline.pl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%oramon> baseline.pl -machine sherlock -database ts01 -username system \

.

Working on Baseline for Table: PDBA_ROLE_PRIVS

..

Working on Baseline for Table: PDBA_ROLES

.

Working on Baseline for Table: PDBA_PARAMETERS

...

Working on Baseline for Table: PDBA_TAB_COLUMNS

..

................

Working on Baseline for Table: PDBA_TABLESPACES

.

Working on Baseline for Table: PDBA_SYS_PRIVS

.....

Working on Baseline for Table: PDBA_TAB_PRIVS

...

Working on Baseline for Table: PDBA_USERS.

Working on Baseline for Table: PDBA_TABLES

......

Working on Baseline for Table: PDBA_INDEXES

.................

Working on Baseline for Table: PDBA_SEQUENCES.

Working on Baseline for Table: PDBA_IND_COLUMNS

...........................

12.3.2 Viewing Repository Data

We can now view some of our collected data via the spdrvr.pl[1] script. Enter the following command to
produce a report showing the table information collected from the data dictionary:

[1] The name spdrvr.pl is shorthand for SQL*Plus Driver.

$ spdrvr.pl -machine sherlock -database ts01 -username pdbarep \

 -rep_report table_rpt -rep_instance ts99% -rep_shema scott

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -rep_report table_rpt -rep_instance ts99% -rep_shema scott
Notice the use of the SQL wildcard % for the -rep_instance argument. The argument in this case refers to
the database's global name, so we used the wildcard character instead of a full global name.
Alternatively, if the database global name had been TS99.OREILLY.COM, we could have specified this
command instead:

$ spdrvr.pl -machine sherlock -database ts01 -username pdbarep \

 -rep_report table_rpt -rep_instance ts99.oreilly.com -rep_shema scott
The spdrvr.pl script will take care of converting the name to the correct case. The output should be similar
to that shown in Example 12-5.

Example 12-5. Output from the initial table report

%oramon> spdrvr.pl -machine sherlock -database ts01 -username pdbarep \

RPT: start pk 1000000

PDBAREP Table report for Page: 1

TS99.JKS.COM

 NUMBER

OWNER TABLE NAME SNAPSHOT DATE BLOCKS OF ROWS

--------------- ------------ -------------------- ------------ -----------

SCOTT BONUS 2001/10/05 18:29:05

 DEPT 2001/10/05 18:29:05

 DUMMY 2001/10/05 18:29:05

 EMP 2001/10/05 18:29:05

 SALGRADE 2001/10/05 18:29:05

5 rows selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.4 Reporting on Database Changes

The remaining sections in this chapter describe the various kinds of reports you can produce once you have
necessary baseline database data. This section focuses on database changes resulting from changes to database objects
and parameters. The next section focuses on changes to the SQL execution plan.

After collecting our first set of baseline data, we made some changes to the database, collected additional baseline data,
made some more changes, and then collected even more baseline data. We did this for several weeks.

12.4.1 Database Changes

The details and times of the changes made to the database are summarized in Table 12-4.

Table 12-4. Baseline changes made to the test database
Date Changes made since previous baseline
5 Oct Initial baseline data collected for database ts99

13
Oct

Added a few hundred rows to SCOTT.EMP

Analyzed tables for SCOTT

Changed values for database initialization parameters: SHARED_POOL_SIZE, DB_BLOCK_BUFFERS, and
JOB_QUEUE_PROCESSES

19
Oct

Added a few hundred rows to SCOTT.EMP

Added an EMAIL column to SCOTT.EMP

Updated the value in the EMP table

Dropped the column LOSAL from SALGRADE

Analyzed tables for SCOTT

Created a new user, PDBAREP, and granted it several privileges

Granted SELECT on V_$INSTANCE, to SCOTT

28
Oct

Added a few hundred rows to SCOTT.EMP

Created an index on SCOTT.EMP

Analyzed tables for SCOTT

Gave SCOTT UNLIMITED quota on USERS tablespace

Dropped index IDXTEST_3_1_IDX

8
Nov

Added a few hundred rows to SCOTT.EMP

Analyzed tables for SCOTT

Revoked SELECT privileges on JKSTILL.LCL_1 from SCOTT

Granted SELECT, INSERT on JKSTILL.PRIMES table to SCOTT

12.4.2 Reporting on Parameter Changes with spdrvr.pl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now let's see how we can use the repository to engage in a form of time travel. Although less exciting than as H.G. Wells
envisioned it, you'll effectively be able to go back in time to find elusive missing columns and corner privilege revocations.
Pretend for a moment that the date is October 15. We've just become aware that the initialization file
databases was recently modified and that, coincidentally, the server is now a little low on memory. We know
was correct a week ago, on October 8, but how do we determine what the settings were back then?

Without our repository, there would be no easy way to determine the correct values, except by restoring a tape backup of
the file as it appeared last week. This would probably be neither practical nor desirable.

Of course, if you are using a version control system, you'll be able to detect every authorized
database change to your database and therefore be able to track official changes. However,
experience teaches us, in vivid Technicolor, that such a system is of little use if people bypass it,
ignore it, and then deny they've done anything when things go awry. "What? Me? That index? I
was fishing. Honest."

But with the repository, you can find these values as they appeared prior to the change. Because you know that the values
from October 8 are correct, let's see which parameters have been changed since then. Let's produce a report detailing
difference. We can do that with the -rep_report parameter_diff_rpt command:

$ spdrvr.pl -machine sherlock -database ts01 -username pdbarep \

 -rep_report parameter_diff_rpt -rep_instance ts99.jks.com \
 -rep_start_date '10/08/2001' -rep_end_date '10/15/2001'
Even though the first baseline was actually run on October 5, the spdrvr.pl script determines which baseline to
searching for the most recent baseline date that is less than or equal to the date specified. The same type of operation takes
place with the end date specified in the example by the following switch:

-rep_end_date

When using this switch, and its complement -rep_start_date, be sure to use a date format matching the setting in the
pdbarepq.conf configuration file. If the parameter_diff_report were run with the International date format, the command line
would look like this:

$ spdrvr.pl -machine sherlock -database ts01 -username pdbarep \

 -rep_report parameter_diff_rpt -rep_instance ts99.jks.com \
 -rep_start_date '2001/10/08' -rep_end_date '2001/10/15'
The output from the parameter_diff_report report appears in Example 12-6. Note that data appears only
differences within values associated with the database parameters, as stored in PDBA_PARAMETERS. If, for example,
there have been no changes to the Oracle initialization parameters between October 5 and October 13, there will be nothing
to report. A parameter comparison on these two dates will reveal that nothing has changed.

Example 12-6. Output from the parameter_diff_rpt report

PDBAREP Parameter Differences report Page: 1

as of 2001/10/13 03:09:37 compared to 2001/10/05 18:29:05

TS99.JKS.COM 2002/05/19 21:55:40

 S S

 E Y

 S S

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 S S

 D M M M A

 E O O O D

PARAMETER DESCRIPTION VALUE F D D D J

-------------------- -------------------- ---------- - - - - -

db_block_buffers Number of database b 1000 N N N N N

 locks cached in memo

 ry

job_queue_processes number of job queue 2 Y N I N N

 processes to start

shared_pool_size size in bytes of sha 3145728 N N N N N

 red pool

3 rows selected.

PDBAREP Parameter Differences report Page: 1

as of 2001/10/05 18:29:05 compared to 2001/10/13 03:09:37

TS99.JKS.COM 2002/05/19 21:55:40

 S S

 E Y

 S S

 D M M M A

 E O O O D

PARAMETER DESCRIPTION VALUE F D D D J

-------------------- -------------------- ---------- - - - - -

db_block_buffers Number of database b 500 N N N N N

 locks cached in memo

 ry

job_queue_processes number of job queue 0 Y N I N N

 processes to start

shared_pool_size size in bytes of sha 2097152 N N N N N

 red pool

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 red pool

3 rows selected.

On the other hand, suppose that sometime between October 5 and October 13 you changed the database initialization
parameters DB_BLOCK_BUFFERS, JOB_QUEUE_PROCESSES, and SHARED_POOL_SIZE. When you
parameter_diff_rpt report, it would show the values of these parameters as they appeared on October 13,
values as they appeared on October 5. Looking again at Example 12-6, you'll see that the report appears in two parts:

The first part shows the parameters on October 13.

The second part shows that the parameters were indeed different on October 5 and October 13. The values of the
parameters were all increased after October 5.

We now know what the correct settings were eight days ago, and we can change them back to the former values if
necessary.

The pdbarepq.conf configuration file contains templates of the SQL for each of the available repository reports.
command-line options of spdrvr.pl are used with these templates to generate the actual SQL used. Typical
SQL used to create this kind of report is shown in Example 12-7.

Example 12-7. Sample query for spdrvr.pl

select

 s.global_name cinstance

 , p.name parm_name

 , p.description parm_description

 , p.value parm_value

 , decode(

 nvl(p.isdefault,'FALSE'),

 'FALSE','N',

 'TRUE','Y',

 substr(nvl(p.isdefault,'F'),1,1)

) isdefault

 , decode(

 nvl(p.isses_modifiable,'FALSE'),

 'FALSE','N',

 'TRUE','Y',

 substr(nvl(p.isses_modifiable,'F'),1,1)

) isses_modifiable

 , decode(

 nvl(p.issys_modifiable,'FALSE'),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 nvl(p.issys_modifiable,'FALSE'),

 'FALSE','N',

 'TRUE','Y',

 substr(nvl(p.issys_modifiable,'F'),1,1)

) issys_modifiable

 , decode(

 nvl(p.ismodified,'FALSE'),

 'FALSE','N',

 'TRUE','Y',

 substr(nvl(p.ismodified,'F'),1,1)

) ismodified

 , decode(

 nvl(p.isadjusted,'FALSE'),

 'FALSE','N',

 'TRUE','Y',

 substr(nvl(p.isadjusted,'F'),1,1)

) isadjusted

from pdba_parameters p, pdba_snap_dates s

where s.global_name like 'TS99.JKS.COM'

and s.pk = 1000000

and s.pk = p.snap_date_pk

minus

select

 s.global_name cinstance

 , p.name parm_name

 , p.description parm_description

 , p.value parm_value

 , decode(

 nvl(p.isdefault,'FALSE'),

 'FALSE','N',

 'TRUE','Y',

 substr(nvl(p.isdefault,'F'),1,1)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 substr(nvl(p.isdefault,'F'),1,1)

) isdefault

 , decode(

 nvl(p.isses_modifiable,'FALSE'),

 'FALSE','N',

 'TRUE','Y',

 substr(nvl(p.isses_modifiable,'F'),1,1)

) isses_modifiable

 , decode(

 nvl(p.issys_modifiable,'FALSE'),

 'FALSE','N',

 'TRUE','Y',

 substr(nvl(p.issys_modifiable,'F'),1,1)

) issys_modifiable

 , decode(

 nvl(p.ismodified,'FALSE'),

 'FALSE','N',

 'TRUE','Y',

 substr(nvl(p.ismodified,'F'),1,1)

) ismodified

 , decode(

 nvl(p.isadjusted,'FALSE'),

 'FALSE','N',

 'TRUE','Y',

 substr(nvl(p.isadjusted,'F'),1,1)

) isadjusted

from pdba_parameters p, pdba_snap_dates s

where s.global_name like 'TS99.JKS.COM'

and s.pk = 1001570

and s.pk = p.snap_date_pk

order by 1,2;

12.4.3 More Report Examples

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On October 25, we decided to run some additional reports to see what might have changed in the ts99
time that we started capturing repository metadata.[2] Example 12-8 shows different variants on the commands you can
specify in order to view the data in different ways.

[2] Metadata is data about data. An example of metadata is the statistics stored in the Oracle data dictionary when the ANALYZE TABLE command is use.
It is data about the data in the specified table.

Example 12-8. Reports on database changes as of October 19

$ spdrvr.pl -machine sherlock -database ts01 -username pdbarep \

 -rep_report table_rpt -rep_instance ts99% -rep_schema scott \
 -rep_end_date '10/25/2001'

$ spdrvr.pl -machine sherlock -database ts01 -username pdbarep \

 -rep_report column_diff_rpt -rep_instance ts99% -rep_schema scott \
 -rep_end_date '10/25/2001'

$ spdrvr.pl -machine sherlock -database ts01 -username pdbarep \

 -rep_report table_privs_diff_rpt -rep_instance ts99% \
 -rep_grantee scott -rep_end_date '10/25/2001'

$ spdrvr.pl -machine sherlock -database ts01 -username pdbarep \

 -rep_report user_rpt -rep_instance ts99%
The reports table_rpt, column_diff_rpt, and table_privs_diff_rpt produce the outputs summarized here:

Tables and indexes need to be periodically analyzed via the ANALYZE command to provide
statistics for Oracle's cost-based optimizer (CBO). The CBO is the part of the database engine
that determines how best to join indexes and tables when querying the database.

table_rpt

In Example 12-9 we see that the number of employees in the EMP table has dramatically increased since the time
when the repository was first populated. By implication, we can also tell that EMP was unanalyzed
the ANALYZE command) when its first baseline was taken, because BLOCKS and NUMBER OF ROWS have no
values for October 5.

Example 12-9. The table_rpt report, as of October 19

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%oramon> spdrvr.pl -machine sherlock -database ts01 -username pdbarep \

-rep_report table_rpt -rep_database ts99% -rep_schema scott

PDBAREP Table report for Page: 1

TS99.JKS.COM

 NUMBER

OWNER TABLE NAME SNAPSHOT DATE BLOCKS OF ROWS

------ ---------- -------------------- ------ -------

SCOTT BONUS 2001/10/05 18:29:05

 2001/10/19 04:11:23 1 4

 DUMMY 2001/10/05 18:29:05

 2001/10/13 03:09:37 1 1

 2001/10/19 04:11:23 1 1

 EMP 2001/10/05 18:29:05
 2001/10/13 03:09:37 3 224
 2001/10/19 04:11:23 29 1,792

 SALGRADE 2001/10/05 18:29:05

 2001/10/13 03:09:37 1 5

 2001/10/19 04:11:23 1 5

15 rows selected.

column_diff_rpt

In Example 12-10, the Column Differences report, we find that two column changes have been made between
October 5 and October 19. The EMAIL column has been added to the EMP table during this time, and the column
LOSAL no longer appears in SALGRADE.

Example 12-10. The column_diff_rpt report as of October 19

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%oramon> spdrvr.pl -machine sherlock -database ts01 -username pdbarep \

 -rep_report column_diff_rpt -rep_database ts99% -rep_schema scott \

 -rep_end_date '2001/10/19'

PDBAREP Table Column Differences report Page: 1

as of 2001/10/19 04:11:23 compared to 2001/10/05 18:29:05

 TS99.JKS.COM 2002/05/19 22:19:51

 COL DATA DATA DATA

OWNER TABLE NAME COLUMN ID DATA_TYPE LENGTH PRECISION SCALE NULL

------ ----------- -------- ---- ---------- ------ --------- ------ ----

SCOTT EMP EMAIL 9 VARCHAR2 40 Y

1 row selected.

PDBAREP Table Column Differences report Page: 1

as of 2001/10/05 18:29:05 compared to 2001/10/19 04:11:23

TS99.JKS.COM 2002/05/19 22:19:51

 COL DATA DATA DATA

OWNER TABLE NAME COLUMN ID DATA_TYPE LENGTH PRECISION SCALE NULL

------ ----------- -------- ---- ---------- ------ --------- ------ ----

SCOTT SALGRADE LOSAL 2 NUMBER 22 Y

1 row selected.

table_privs_diff_rpt

In Example 12-11 we're surprised to see that scott has been granted SELECT privilege on V_$INSTANCE.
this view contains non-sensitive information, we believe in granting direct privileges on dictionary objects
DBAs. Maybe in another life we'll reconsider our conservative views! Based on this report, you decide
scott, to find out how he stumbled upon this privilege.

Example 12-11. The table_privs_diff_rpt as of October19

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%oramon> spdrvr.pl -machine sherlock -database ts01 -username pdbarep \

 -rep_report table_privs_diff_rpt -rep_database ts99% \

 -rep_grantee scott -rep_end_date '2001/10/19'

PDBAREP Table Privileges Differences report Page: 1

as of 2001/10/13 03:09:37 compared to 2001/10/05 18:29:05

TS99.JKS.COM 2002/05/19 22:46:27

GRANTEE TABLE NAME PRIVILEGE OWNER GRANTOR GRANTABLE

1 row selected.

no rows selected

12.4.4 spdrvr.pl Implementation

Before we look further at the kinds of reports you can produce with the spdrvr.pl script, let's dig down and take a quick look
at its implementation and see why, despite our abiding love for Perl, we've also used SQL*Plus in our implementation.

Have you ever had a household tool you love so much that you find yourself exploring the house from attic to basement,
looking for ways to make use of it? That's the way we feel about Perl. However, as Clint Eastwood said once of a
belief in himself, we've got to recognize its limitations. A screwdriver may sometimes get called up for reserve duty as a
chisel, but that usage will impact its longevity as a screwdriver. And if you trim the hedges around your home with a circular
power-saw, people are going to talk.

We've come to realize, somewhat sadly, that Perl does indeed have its limits. The most glaring one we've noticed emerges
when we're writing ad hoc SQL reports. Perl is a good choice when writing reports that demand lots
fails to do things easily that long-time users of SQL*Plus take for granted. Here are a few examples:

Column breaks and report breaks

The SQL*Plus BREAK command formats reports to make them easier to interpret:

break on username skip 1 page on table name skip 1

Column and report totals

SQL*Plus calculates totals with simplicity:

break on custid skip 1 on invoice_id skip 1 on report

compute sum of invoice_amt on custid

compute sum of invoice_item_amt on invoice_id

compute sum of invoice_amt on custid

Report headers and footers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SQL*Plus ttitle and btitle commands can create report headers and footers:

ttitle 'PDBAREP Parameter Differences report ' RIGHT 'Page: ' SQL.PNO -

 skip 'as of <<END_DATE>> compared to <<START_DATE>>' -

 right uinstance ' ' usysdate skip 2

All of the above features can be duplicated in Perl, but it takes a while. And being the virtuously lazy programmers we
are, we can't really justify writing all the necessary code when SQL*Plus already handles these features so well.
What we've done, therefore, is to create a Perl/SQL*Plus hybrid that uses the best features from each tool to
accomplish our goal. In this case, the goal is to produce nice reports with a minimum amount of effort. Before we
begin, let's take a look at some of the pros and cons of both tools:

[3] You might want to take a look at the Senora tool described in Chapter 3; this tool, which is based on DDL::Oracle (also described in
provides a SQL*Plus clone written entirely in Perl, along with several other interactive Perl DBI tools such as dbish.

With SQL*Plus we get nicely formatted reports that are easy to produce.

With Perl we can make up for some of the serious cross-platform liabilities of SQL*Plus, take advantage of
Perl's strong command-line processing, use Perl's many modules, and easily redirect output. Perl also
possesses a command-line interface that is infinitely flexible.

12.4.5 Predefined spdrvr.pl Reports

The spdrvr.pl repository script allows you to invoke a number of predefined database reports simply by specifying the
appropriate command-line options. Several reports are predefined for you.

column_diff_rpt

Report on differences in table columns in the repository. This report may be delimited by a date range. If dates are not
supplied, the oldest and newest dates from the repository will be used.

column_rpt

Report on table columns in repository.

index_column_diff_rpt

Report on differences in index columns in the repository. This report may be delimited by a date range. If dates are
not supplied, the oldest and newest dates from the repository will be used.

index_column_rpt

Report on indexed columns in the repository.

index_rpt

Report on indexes in the repository.

master_priv_rpt

Report on database privilege grants in the repository.

parameter_diff_rpt

Report on database initialization parameter differences in the repository. This report may be delimited by a date
range. If dates are not supplied, the oldest and newest dates from the repository will be used.

parameter_rpt

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Report on database initialization parameters in the repository.

profile_rpt

Report on profiles in the repository.

role_privs_diff_rpt

Report on differences in role privileges in the repository.

role_privs_rpt

Report on role privileges in the repository.

role_rpt

Report on database roles in the repository.

sequence_rpt

Report on sequences in the repository.

sys_privs_diff_rpt

Report on differences in system privileges in the repository.

sys_privs_rpt

Report on system privileges in the repository.

table_privs_diff_rpt

Report on differences in table privileges in the repository.

table_privs_rpt

Report on table privileges in the repository.

table_rpt

Report on tables in the repository.

tablespace_rpt

Report on tablespaces in the repository.

user_rpt

Report on users in the repository.

12.4.6 Command-line Options for spdrvr.pl

You can request the reports listed in the previous section by including the appropriate command-line
invoke the spdrvr.pl repository script. Table 12-5 and Table 12-6 summarize these options.

12.4.6.1 Common command-line options

You will need to include most of the options in Table 12-5 regardless of what report you want to produce.
list of available reports and their required command-line options by typing:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ spdrvr.pl -report_list

We'll show the output from this command a little later in this section.

Table 12-5. Common command-line options — spdrvr.pl
Option Description

-machine Server where the repository database resides.
-database Database where the PDBAREP user is installed.
-username Repository schema owner.
-file Optional parameter that specifies output to a file.
-verbose Optional parameter that prints the SQL as it is executed.
-report_list Outputs a list of available reports to the console
-rep_report Specifies which report to run.
-rep_database Specifies which database (global_name) to report on.

The arguments for -machine, -database, -username, and -rep_report are always required. The argument
is optional but recommended. The use of -rep_database really depends on the nature of the report. If you want to find out
what changes have been made to a table on a specific database between two dates, you'll need to specify which database
the report should be querying on. If you omit this option, any tables from other databases with the same name will be
included in the output. (This is probably not what you want.)

Let's suppose you want to run the report table_rpt for the database ts99.jks.com and that the repository owned by
is in database ts01 on server sherlock. The minimal command line needed to run this report would be:

$ spdrvr.pl -machine sherlock -database ts01 -username pdbarep \
 -rep_instance 'ts99%' -rep_report table_rpt
To include only tables with "PSAP" as the first four characters of their name, within accounts that begin with "SAP," the
command line would look like this:

$ spdrvr.pl -machine sherlock -database ts01 -username pdbarep \

 -rep_instance 'ts99%' -rep_report table_rpt \

 -rep_schema 'sap%' -rep_table_name 'psap%'

12.4.6.2 Report-specific command-line options

Table 12-6 lists the report-specific command-line options. For example, you might use the -rep_privilege
requesting the table_privs_rpt report, but that option would have no effect on the parameter_rpt that lists
initialization parameters.

Table 12-6. Report-specific command-line options — spdrvr.pl
Report Specific parameters

-rep_end_date End date for report (unnecessary for some reports).
-rep_grantee Grantee of privileges. Use this option to report on the privileges granted to a particular user or role.
-rep_grantor Grantor of privileges. This will limit the report to privileges granted by this user.
-rep_granted_role Roles granted. This will limit the report to a role or roles that have been granted.
-rep_index_name Index to report on.
-rep_object_owner Owner of database object to report on.
-rep_object_name Name of database object to report on.
-rep_pagesize Controls the SQL*Plus pagesize.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-rep_parm_name Name of database parameter to report on.
-rep_parm_value Value of database parameter value to report on.
-rep_privilege Database privileges granted.
-rep_profile Database profile name to report on.
-rep_resource_type Profile resource type to report on.
-rep_resource_name Profile resource name to report on.
-rep_role Role to report on.
-rep_schema Schema to report on.
-rep_sequence_name Name of sequence to report on.
-rep_start_date Start date for report (unnecessary for some reports).
-rep_table_name Table to report on.
-rep_table_owner Table owner to report on.
-rep_tablespace_name Tablespace to report on.
-rep_username Username to report on.

No single report makes use of all of these switches, although some are used in several reports.

12.4.6.3 Using the -report_list option

The first time you run the spdrvr.pl script, you should use the -report_list option, which prints out a list of
reports along with the report-specific command-line options that may be used with it:

$ sprdrvr.pl -report_list

Go ahead and try it. The output should be similar to that displayed in Example 12-12 (although we've cut
output, as it can run to several pages).

Example 12-12. Partial output from "spdrvr.pl -report_list"

 column_diff_rpt :
 report on differences in table columns in repository
 may be delimited by a date range.
 if dates not supplied, the oldest and newest dates
 from the repository will be used
 may be limited by the following tags:
 <<GLOBAL_NAME>> -rep_instance
 <<OWNER>> -rep_schema
 <<TABLE_NAME>> -rep_table_name
 <<START_DATE_PK>> -rep_start_date
 <<END_DATE_PK>> -rep_end_date

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <<END_DATE_PK>> -rep_end_date

 master_priv_rpt :

 report on privileges granted in repository

 may be limited by the following tags:

 <<GLOBAL_NAME>> -rep_instance

 <<GRANTEE>> -rep_grantee

 <<PRIVILEGE>> -rep_privilege

 <<OBJECT_OWNER>> -rep_object_owner

 <<OBJECT_NAME>> -rep_object_name

 <<GRANTED_ROLE>> -rep_granted_role

 parameter_diff_rpt :

 report on database parameter differences in repository

 may be delimited by a date range.

 if dates not supplied, the oldest and newest dates

 from the repository will be used

 may be limited by the following tags:

 <<GLOBAL_NAME>> -rep_instance

 <<START_DATE_PK>> -rep_start_date

 <<END_DATE_PK>> -rep_end_date

 sys_privs_diff_rpt :

 report on differences in system privileges in repository

 may be limited by the following tags:

 <<GLOBAL_NAME>> -rep_instance

 <<GRANTEE>> -rep_grantee

 <<PRIVILEGE>> -rep_privilege

 <<START_DATE_PK>> -rep_start_date

 <<END_DATE_PK>> -rep_end_date

 table_rpt :

 report on tables in repository

 may be limited by the following tags:

 <<GLOBAL_NAME>> -rep_instance

 <<OWNER>> -rep_schema

 <<TABLE_NAME>> -rep_table_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <<TABLE_NAME>> -rep_table_name

12.4.7 Options and Tags

Each command-line option shown in Example 12-12 is associated with a tag enclosed in a double set of angle brackets:
<<TAG>>. The column_diff_rpt report has these tags associated with the following command-line options:

<<GLOBAL_NAME>> -rep_instance

<<OWNER>> -rep_schema

<<TABLE_NAME>> -rep_table_name

<<START_DATE_PK>> -rep_start_date
<<END_DATE_PK>> -rep_end_date
These tags are used internally within spdrvr.pl to replace values in a SQL script, values that will later get sent to SQL*Plus.
The tags are divided into two types, date and text, as discussed in the following sections.

12.4.7.1 Date options

The -rep_start_date and -rep_end_date command-line options are the only date-style options. The tags usually associated
with these options are <<START_DATE_PK>> and <<END_DATE_PK>>.

-rep_start_date

Used to specify a particular date on the command line; however, this is used internally by spdrvr.pl
primary key of the row in PDBA_SNAP_DATES, the one corresponding to the requested date. The value of that
primary key is used to replace the value of <<START_DATE_PK>> in the actual query.

If -rep_start_date date is missing from the repository, the most recent date, up to the date specified, is used.
the following dates, the first date in PDBA_SNAP_DATES is October 5, the second is October 13, and the third is
October 19. If you specified the report to start from October 15, the spdrvrl.pl script would find no data collected
that date, and would then choose the closest date that's less than October 15, which is October 13. (We promise that
this will make more sense when you run the actual reports.):

GLOBAL_NAME SNAP_DATE

--------------- -------------------

TS99.JKS.COM 2001/10/05 18:29:05

TS99.JKS.COM 2001/10/13 03:09:37
TS99.JKS.COM 2001/10/19 04:11:23

TS99.JKS.COM 2001/10/28 23:13:25

TS99.JKS.COM 2001/11/08 12:18:36

If you specified a date less than any in the repository, the first available date in the repository will be used, which is
October 5. This will also be used if -rep_start_date is not specified.

-rep_end_date

Works in similar fashion. If you specify an end date of October 25, the actual end date used will be October 19, as
is the latest one that's less than the date specified. If the specified date is greater than the latest one in the repository,
or if the -rep_end_date switch remains unused, the latest repository date will be used in reports; that is, November 8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This logic may seem rather convoluted, but trust us, it does make reports easier to run. Let's look at an example.
that midway through November you suspect that changes have been made to the HELP_DESK schema. You know that last
month everything worked fine — but now there's a problem. To figure out what's going on, you won't need to check every
date in the repository. You can simply enter the approximate range and let spdrvr.pl determine the actual
following reports all changes:

$ spdrvr.pl -machine sherlock -database ts01 -username pdbarep \

 -rep_report column_diff_rpt -rep_instance ts99% \
 -rep_schema help_desk \
 -rep_start_date '2001/10/01' \
 -rep_end_date '2001/11/12'
The actual report dates used would be October 5 and November 8.

12.4.7.2 Text options

Most of the command-line options on the spdrvr.pl script are text options. These include all the database
tables, tablespaces, indexes, and so on. We can be somewhat inexact in specifying these text strings. Most of the SQL
queries found in pdbarepq.conf use the LIKE operator, rather than the = equality operator. This allows the use of the
wildcard for text-based columns, used in WHERE clauses.

The following command requests a report on which roles have been granted to which users, where
begins with an S:

spdrvr.pl -machine sherlock -database ts01 \

 -username pdbarep -rep_database ts99% \

 -rep_report role_privs_rpt -rep_grantee s%
If you wish to see the actual SQL generating the report, add the -verbose option to the command line. In our
SQL looks like this:

select

 s.global_name cinstance

 , p.grantee

 , p.granted_role

 , p.admin_option

 , p.default_role

 , s.snap_date

from pdba_role_privs p, pdba_snap_dates s

where s.global_name like 'TS99%'
and p.grantee like 'S%'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and p.grantee like 'S%'
and s.pk between 1000000 and 1006331

and s.pk = p.snap_date_pk

order by global_name, grantee, granted_role, snap_date;

Notice how the switches -rep_database ts99% and -rep_grantee s% uppercase their corresponding
statement. (The % wildcard may be used in any of the non-date command-line arguments.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.5 Reporting on SQL Execution Plans

If you've been a DBA for more than 15 nanoseconds, you've no doubt received an urgent phone call that
goes something like this:

"I have a critical SQL statement that's running very slowly! You need to fix the database!"

The next sentence is almost always: "It worked fine, last week!"

As you try desperately to determine why this critical piece of SQL is suddenly running slower than a three-
toed sloth taking a nap, you may think to yourself:

"It would be nice if I could see the execution plan for this SQL from when it was working
properly."

We've had that exact same thought any number of times ourselves. And so the SXP portion of the PDBA
repository was born.

12.5.1 SXP (SQL EXecution Plan) Scripts and Tables

The scripts and tables that make up SXP come in threes — we've designed a triumvirate of tables
described earlier in this chapter in Table 12-2 (and shown graphically in Figure 12-1) used to store SQL
and its corresponding execution plans, and we've designed a triumvirate of Perl scripts that populate these
tables and report on the results. The scripts are:

sxp.pl

Collects SQL statements from the V_$SQLTEXT data dictionary view and stores them unformatted
within the PDBA_SXP_SQL table. The script logs in as the user who originally parsed the SQL, and
generates an execution plan for the statement with the EXPLAIN PLAN SQL statement. The
resulting execution plan is then stored in the PDBA_SXP_EXP repository table.

sxprpt.pl

Generates reports on the stored SQL and execution plans.

sxpcmp.pl

Examines the current SQL statements, as contained in V_$SQLTEXT, generating execution plans
for each statement. When a matching SQL statement is found in the repository, the execution plans
are compared. If the plans differ, the SQL statement and its varying execution plans are included in
the report.

Figure 12-1. The SPX table system

12.5.2 SXP Limitations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Helpful as the SXP scripts are, they do have a few limitations:

Type of SQL

Only SELECT, INSERT, DELETE, and UPDATE statements are retrieved from the SQL cache.
PL/SQL anonymous blocks, packages, procedures, and functions are ignored.

Formatting of SQL

The only interface to the cached SQL statements is through either the V_$SQLTEXT or
V_$SQLTEXT_WITH_NEWLINES system views. The SQL in these Oracle views is broken into 64-
character chunks, often with breaks appearing right in the middle of words. We've chosen to store
the SQL as a single line of text, as that's the way it appears after joining the various 64-character
chunks together.

As it appears in these views, the SQL is often non-executable, because of comments included in
them. Including an embedded comment in a single line of SQL often renders the rest of the
statement as a comment too.

To generate an execution plan for the SQL, it must first be preformatted. We do this via the PDBA-
>formatSql method. The goal of this method is to format the SQL and get it into an executable form
that's suitable for use with SQL's EXPLAIN PLAN statement. Most of the time it succeeds, but
sometimes it fails, for reasons we'll explain shortly. When that happens, the error is reported and
skipped over by the SXP scripts.

Limit on users

As with many EXPLAIN PLAN tools, the SQL generated by the SYS user is ignored.

Passwords

To generate an execution plan for a SQL statement, it's necessary to log in as the same user who
parsed the SQL. In addition, the password for that user must be set up in the password server. If the
password is unavailable, the SXP scripts report an error and continue on to the next user. If the
wrong password is supplied, the scripts terminate.

An alternative approach you might already be familiar with is to store the encrypted form of the
user's password, as found in DBA_USERS, then temporarily change the user's password and log in
to the account to run EXPLAIN PLAN. The stored and encrypted form of the original password
then be used to restore it back to its previous value.

Even though this method will work,[4] using it is probably a security violation in many organizations.
It's also inconvenient for the actual user: if the user tries to log on to his own account, he may find
himself locked out because of a temporarily changed password. If at all possible, we'd rather avoid
the extra work involved in dealing with the complaints that we're likely to hear if this kind of thing
occurs!

[4] We sometimes use this method to log in to a user's account for administrative reasons. This is usually in an emergency,
however, and is therefore outside the scope of our automated tool.

12.5.3 Collecting SQL with sxp.pl

With those caveats out of the way, let's go about the business of actually using this utility. You'll use the
sxp.pl script to collect SQL from the database and store it in the repository.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We suggest that you restrict your initial excursions into the Oracle SQL cache,
using only test or development databases until you're familiar with the process.
Querying the V_$SYSTEM view can be a resource-intensive task, and doing so
multiple times, while you learn to use these tools on a production database, may
lead to unfriendly relations with regular users.

On our test database, this script runs in less than a minute. We also employ this tool on several production
databases where it can take several minutes[5] to complete.

[5] One of these databases had a very large SQL cache and resulted in 122,829 new entries in the PDBA_SXP_SQL table,
requiring 98 MB of storage and taking more than 20 minutes to complete. We've hit the old quantum mechanics limit again. It's
impossible to measure an event without causing an effect within the area under test. Who shall guard the guards? (We avoid
running sxp.pl on that database too often!)

You can enter the following command to collect SQL from database ts01 on server sherlock.
(Coincidentally, this is the same database on which the repository resides.) Table 12-7 lists the command-
line options for this script.

$ sxp.pl -machine sherlock -database ts01 -username system \

 -rep_machine sherlock -rep_database ts01 \

 -rep_username pdbarep

Table 12-7. Command-line options — sxp.pl
Option Description

-machine Server where the target database resides
-database Target database
-username DBA account
-password Password for the DBA account (optional)
-rep_machine Server where the repository database resides
-rep_database Database the PDBA repository is in
-rep_username Repository schema owner
-rep_password Repository owner password (optional)

12.5.3.1 Unique constraint error

Example 12-13 contains the actual output from sxp.pl, as it was run on one of our test databases. You'll
notice that there is an Oracle error:

ORA-00001: unique constraint (PDBAREP.PDBA_SXP_UK_IDX) violated

This error occurred about halfway through processing. This happens occasionally when there are
syntactically identical SQL statements in the database cache that have been formatted somewhat
differently. When sxp.pl encounters these paired statements, they're reformatted identically for our
EXPLAIN PLAN statement. That results in sxp.pl trying to save the same SQL statement twice during the
same session. This was a design decision on our part. Rather than search the PDBA_SXP_SQL table
looking for duplicates each time we save SQL to the repository, we simply let the database catch it with a
unique constraint. The sxp.pl script traps this error, reports it, and continues onto the next SQL statement.

Example 12-13. Output from sxp.pl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%oramon> sxp.pl -machine sherlock -database ts01 -username system \

-rep_machine sherlock -rep_database ts01 -rep_username pdbarep

.......DBD::Oracle::st execute failed: ORA-00001: unique constraint

 (PDBAREP.PDBA_SXP_SQL_UK_IDX) violated (DBD ERROR: OCIStmtExecute) at

 /usr/local/bin/sxp.pl line 283

...no password available from PWD for ORADES

....%oramon>

12.5.3.2 Password and privilege messages

You'll note another message in the sxp.pl output, but this one is simply informational:

no password available from PWD for ORADES
This means that there are SQL statements within the cache for the user ORADES, but that their password
was not available from the password server, and thus processing moved onto the next user.

Another error that may appear is:

ORA-01039: insufficient privileges on underlying objects of the view

We encounter this error when attempts are made to generate execution plans for a SELECT statement on
a view. Although the user may have SELECT privileges on the view, Oracle requires that we also have
SELECT privileges on the view's underlying tables in order to generate an execution plan. There is nothing
we can do about that, so we report the error and move onto the next SQL statement.

12.5.4 Reporting Execution Plans

The sxprpt.pl script reports on the SQL and execution plans now stored within the PDBA repository.
12-8 lists the command-line options for this script.

Table 12-8. Command-line options — sxprpt.pl
Option Description

-machine Server where the target database resides
-database Target database
-username DBA account
-password Password for the DBA account (optional)
-verbose Prints parameters and the SQL used to query the repository
-rpt_machine Server where the repository database resides
-rpt_start_date Optional date on which to begin reporting
-rpt_end_date Optional date on which to end reporting

Now that we have some data loaded into the repository, let's get a report of what's in there. Because our
test database already contains a number of data collections, we'll limit the report by specifying a date range
constraint in the following command:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ sxprpt.pl -machine sherlock -database ts01 \

 -username pdbarep -rpt_database 'ts01%' \

 -rpt_start_date '11/25/2001' -rpt_end_date '11/27/2001'

The resulting report will contain the following:

The username of the account that parsed the SQL originally

A checksum for the SQL text

A reformatted version of the SQL

The execution plan for the SQL

If all goes well, there will be:

A copy of the execution plan

The checksum for the execution plan

In the event that an error occurs while generating the execution plan, the error will be displayed instead of
the execution plan.

12.5.5 Checksums

This might be a good time to explain the way checksums work within our scripts. Whenever a SQL
statement or execution plan is stored in the repository, the Perl security module Digest::MD5 is drafted into
action to generate a unique 32-character "message digest" of the data. Because this digest will be unique
for each SQL statement and execution plan, it serves as a unique key that we can use to search for
identical SQL statements and compare execution plans. Using a checksum results in better performance
— much smaller indexes and faster search times.

12.5.6 Example SPX Report

For your edification and delight, we've reproduced a portion of an SPX report from one of our test
databases. In Example 12-14 you'll note that the first SQL statement failed to parse because of Oracle
error ORA-00936. This error was the result of the SQL formatting problem mentioned earlier. (This is not a
very common error, but worth being aware of.)

The second SQL statement in Example 12-14 also failed during the generation of the execution plan. This
was because the user had insufficient privileges on a view's underlying objects. In this case, the PDBAREP
user has the SELECT privilege granted on the system view ALL_TABLES, but lacks privileges on the data
dictionary tables used in that particular view.

The third and fourth SQL statements shown in Example 12-14 were both successfully submitted to the
Oracle parser for the generation of execution plans via the EXPLAIN PLAN statement.

Example 12-14. Example report — sxprpt.pl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Instance: TS01.JKS.COM

sqlUsername: PDBAREP

SQL Check Sum: 3413C8988F25F181D463272348F404D4

SnapShot Date: 11/27/2001 12:57:01

SQL Text:

SELECT TO_CHAR(SYSDATE

 ,'MM/DD/YY') TODAY

 , TO_CHAR(SYSDATE

 ,'HH:MI AM') TIME

 ,

--DATABASE||' Database' DATABASE

 ,

--rtrim(database) passout name||' Database' DATABASE

 , lower(rtrim(name)) passout

FROM v$database

Explain Check Sum:

Explain Plan:

Explain Error: ORA-00936: missing expression (DBD ERROR: OCIStmtExecute)
 at ./sxp.pl line 345. eval {...} called at
==

sqlUsername: PDBAREP

SQL Check Sum: 3A0D45C0E2E730555B413F17A7E41E95

SnapShot Date: 11/25/2001 12:56:24

SQL Text:

SELECT Table_Name

FROM ALL_TABLES

WHERE OWNER = :f1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORDER BY Table_Name

Explain Check Sum:

Explain Plan:

Explain Error: ORA-01039: insufficient privileges on underlying objects
 of the view (DBD ERROR: OCIStmtExecute) at
==

Instance: TS01.JKS.COM

sqlUsername: PDBAREP

SQL Check Sum: 07BF585D872E136C7341FF573CAD8FCD

SnapShot Date: 11/27/2001 12:57:01

SQL Text:

select s.global_name cinstance

 , t.owner

 , t.table_name

 , t.column_name

 , t.column_id

 , t.data_type

 , t.data_length

 , t.data_precision

 , t.data_scale

 , t.nullable

from pdba_snap_dates s

 , pdba_tab_columns t

where s.global_name like '%' and t.owner like '%'

and t.table_name like '%'

-- here is how to get a range of dates

and s.pk = 1009436

and s.pk = t.snap_date_pk

minus

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

select s.global_name cinstance

 , t.owner

 , t.table_name

 , t.column_name

 , t.column_id

 , t.data_type

 , t.data_length

 , t.data_precision

 , t.data_scale

 , t.nullable

from pdba_snap_dates s

 , pdba_tab_columns t

where s.global_name like '%' and t.owner like '%'

and t.table_name like '%'

-- here is how to get a range of dates

and s.pk = 1000000

and s.pk = t.snap_date_pk

order by 1,2,3,4

Explain Check Sum: 3D9734F45B31736AB7DF5B69FB8DA713
Explain Plan: TOTAL
POS OPERATION OBJECT_NAME COST ROWS BYTES OPTIMIZER
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 29 SELECT STATEMENT 29 5K 294203 CHOOSE
 1 MERGE JOIN 29 5K 294203
 1 TABLE ACCESS FULL PDBA_SNAP_DATES 1 7 84 ANALYZED
 2 SORT JOIN 28 793 32513
 1 TABLE ACCESS FULL PDBA_TAB_COLUMNS 4 793 32513 ANALYZED

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1 TABLE ACCESS FULL PDBA_TAB_COLUMNS 4 793 32513 ANALYZED
Explain Error:

==

Instance: TS01.JKS.COM

sqlUsername: PDBAREP

SQL Check Sum: 3BE4FE5486D11246DA2A358A27A0CE92

SnapShot Date: 11/27/2001 12:57:01

SQL Text:

select *

from PDBA_SNAP_DATES

where snap_date < trunc(to_date('01/01/1700'

 ,'mm/dd/yyyy')+1)

order by snap_date

Explain Check Sum: 2C7545806582F6D3EC95AA2F48212C6D
Explain Plan: TOTAL
POS OPERATION OBJECT_NAME COST ROWS BYTES OPTIMIZER
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 2 SELECT STATEMENT 2 1 24 CHOOSE
 1 TABLE ACCESS ROWID PDBA_SNAP_DATES 2 1 24 ANALYZED
 1 INDEX RANGE SCAN PDBA_SNAP_DATES_UK_IDX 1 1 0 ANALYZED
Explain Error:

12.5.6.1 Comparing execution plans

Now let's take a look at the sxpcmp.pl script. This script scans the SQL buffer via the V_$SQLTEXT view
and prepares execution plans and SQL checksums in the buffer. Next, it searches the PDBA repository for
a SQL statement with a matching checksum. If more than one match is found in the repository, the most
recent one is used. This behavior may be modified with the -rep_report_date option. (See Table 12-9
of the command-line options.) If a matching SQL statement is found, the script compares the checksums
for the current execution plan and the stored execution plan. If these match, nothing is reported and the
next SQL statement is checked. If the checksums for the execution plans don't match, this indicates that
some database change has taken place, thus altering the way the SQL executes. The SQL and both
execution plans are reported.

Table 12-9. Command-line options — sxpcmp.pl
Option Description

-machine Server where the target database resides

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-database Target database
-username DBA account
-password Password for the DBA account (optional)
-rep_machine Server where the target repository resides
-rep_database Repository database
-rep_username DBA account password
-rep_password Password for the DBA account (optional)
-
rep_report_date

Date of SQL data to which to compare current SQL. Defaults to the most recent copy of
an identical SQL statement.

Example 12-15 contains a sample report generated from sxpcmp.pl. The command used to generate this
report looks like this:

$ sxpcmp.pl -machine sherlock -database ts01 \

 -username system -rep_machine sherlock \

 -rep_database ts01 -rep_username pdbarep \

 -rep_report_date '12/15/2001' > sxpcmp.txt

12.5.6.2 Looking at the output

It's a good idea to redirect the output of sxpcmp.pl to a file, as we've done via this command, because a
fair number of pop-up warnings may end up cluttering the screen on a run through a complex database.
Typically, all of the warnings are sent to STDERR, so redirecting STDOUT to a file will often provide a
cleaner report.

Example 12-15. Output from sxpcmp.pl

Active SQL From Data Dictionary Matching SQL In Repository Page: 1

But With Different Execution Paths

Database: TS01.JKS.COM Date: 12/16/2001
==

SQL Username: SCOTT

SQL Check Sum: 75125F4AD88511A11D3C12AF83BE8F4C

SnapShot Date: 12/15/2001 14:27:57

SQL Text:

select /*+ index(e emp_deptno) */ *
from dept d
, emp e
where d.deptno = e.deptno

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

where d.deptno = e.deptno
Current Explain Plan:

 TOTAL

POS OPERATION OBJECT_NAME COST ROWS BYTES OPTIMIZER

--

 4 SELECT STATEMENT 4 14 700 CHOOSE

 1 HASH JOIN 4 14 700

 1 TABLE ACCESS BY INDEX EMP 2 14 448 ANALYZED

 1 INDEX FULL SCAN EMP_DEPTNO 1 14 0 ANALYZED

 2 TABLE ACCESS FULL DEPT 1 4 72 ANALYZED

Stored Explain Plan:

 TOTAL

POS OPERATION OBJECT_NAME COST ROWS BYTES OPTIMIZER

--

 3 SELECT STATEMENT 3 14 700 CHOOSE

 1 HASH JOIN 3 14 700

 1 TABLE ACCESS FULL DEPT 1 4 72 ANALYZED

 2 TABLE ACCESS FULL EMP 1 14 448 ANALYZED

Note the following about this output:

1. You can see that the report was run on December 16. One SQL statement had a different execution
plan on the day of the report than it did on the previous day, December 15.

2. The execution plan for December 15 demonstrates that the SQL statement joining the EMP and
DEPT tables, called by user SCOTT, was employing a full table scan (TABLE ACCESS FULL) on
each table.

3. The execution plan for December 16 shows a different execution plan for the same SQL. Rather
than scanning the full EMP table, the script uses the index EMP_DEPTNO to identify the rows to
include within the join.

4. We deduce that the execution plan change occurred because of the addition of the EMP_DEPTNO
index to the EMP table on December 16. Creating this index allowed the Oracle SQL engine to use
the index hint in the SQL statement (TABLE ACCESS BY INDEX).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13. Extending the PDBA Toolkit
In the preceding chapters we've introduced the Perl DBA Toolkit and tried to impress you with all
the wonderful ways it can help make Oracle database administration more effective and efficient.
But every site, and every DBA, is different. You will undoubtedly find that some of the scripts and
supporting modules in the toolkit don't operate quite as you would like them to. You may also find
that some of the scripts give you good ideas for other scripts you wish we had included.[1] Here
are a few examples of PDBA Toolkit behavior that you may decide you want to modify:

[1] Following Vilfredo Pareto's 80-20 rule, most people end up being happy with 80% of a code library written by
someone else but discover that the other 20% could stand improvement. The code might fail to fit the way we work, or
we might just succumb to a moonlight programming urge and find tweaking irresistible. Tweaking is fine, but the
particular way you tweak is quite important. A little forethought and planning can save you a lot of time later on. That's
what this chapter is all about.

Formatting

You may want to change the way that data is displayed in the dba_jobsm.pl script, which
reports on the DBA_JOBS view from multiple databases.

Logging

You may want to change the PDBA::LogFile module to create a unique file name at each
invocation.

Data retrieval

You may want to change the default return type in PDBA::GQ from a hash reference to an
array reference

Configuration files

You may want to modify the PDBA::ConfigFile module to alter the paths where it searches
for configuration files.

Security

You may want to use a different form of cryptography in the PDBA::PWD module (it
currently uses Crypt::RC4).

In writing the software in the toolkit, and in describing the scripts and modules in this book, we've
tried to "expose the code" — show you as clearly as possible how we've implemented the logic.
One of our goals in developing this toolkit was to provide a ready-to-run set of DBA scripts, of
course. But another goal was to supply a framework for you to improve our scripts and to write
your own. In this chapter, we'll go a step further with the toolkit. We'll work through two extended
examples, showing you some existing scripts and modules and demonstrating how you can
change them to suit your specific needs.

The script example

In this example, we'll look at the problem of checking on scheduled jobs in an Oracle
database and providing an easy way to report on those jobs. We'll work through the
dba_jobsm.pl script in detail, showing our solution, and we'll suggest ways for you to
change the script until it suits you.

The module example

In this example, we'll look at two different modules, PDBA and PDBA::GQ. For PDBA, we'll
show how you can add a method. For PDBA::GQ, we'll show how you can write code that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

show how you can add a method. For PDBA::GQ, we'll show how you can write code that
deals with NULL values returned by Oracle. Both modifications help make processing more
efficient.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.1 Modifying a Script in the Toolkit

Let's look at a typical task you'll often perform as part of your Oracle database administration duties: checking on the jobs
scheduled via Oracle's built-in scheduling package, DBMS_JOBS. First, we'll see how DBAs typically check on these
examining the DBA_JOBS data dictionary view. Then we'll take a look at a script we've developed to make your checking
easier and more efficient. And finally we'll make a few modifications to that script and its supporting files in order to
demonstrate how easy it can be to customize and extend the scripts in our toolkit.

13.1.1 The Standard Approach

The Oracle job scheduler is easy to use. You submit a PL/SQL job and Oracle runs it at specified intervals. Here's a
example that illustrates how it works:

1. The ANALYZE_SCOTT procedure will analyze all of SCOTT's objects at 3:00 AM each morning. We create

create or replace procedure analyze_scott

is

begin

 dbms_utility.analyze_schema('SCOTT','COMPUTE');

end;

/

show errors procedure analyze_scott

2. Then we submit the job:

declare

 jobno integer;

begin

 dbms_job.submit(

 job => jobno

 , what => 'analyze_scott;'

 , next_date => (sysdate + (1/1440)) /* Start in 1 min

 , interval => '(trunc(sysdate) + 1) + (3/24)' /* Then at 3AM */

);

 commit;

end;

/

3. The following SQL on the DBA_JOBS view tells you which jobs are scheduled:

select schema_user, job, last_date, next_date, broken,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

select schema_user, job, last_date, next_date, broken,
 interval, failures, what

 from dba_jobs
 order by schema_user, next_date;

4. Our newly created procedure appears like this:

USER JOB LAST DATE NEXT DATE B INTERVAL FAILURES WHAT
----- --- ------------ ------------ - ----------- -------- --------------
SCOTT 42 mar-17 15:50 mar-18 03:00 N (trunc(sys 0 analyze_scott;
 date) + 1)

 + (3/24)

1 row selected.

That's pretty easy. And if you're checking on only a handful of jobs in one or two databases, this approach works just fine. It
becomes unwieldy, however, if you need to check a large number of databases on a regular basis.

13.1.2 Checking on Scheduled Jobs with the dba_jobsm.pl Script

We've provided a script in our toolkit that makes checking on scheduled jobs a lot more flexible and efficient. Using the
dba_jobsm.pl script, you can check on several databases in succession and combine the output into a single report. The script
can also email this report to us so we can easily scan it for BROKEN jobs. (A Y in DBA_JOBS's BROKEN column indicates
that a job has failed 16 times or has been manually disabled via DBMS_JOB's BROKEN procedure.)

13.1.2.1 Configuring dba_jobsm.pl

The dba_jobsm.pl script is installed automatically when you install the toolkit (see Chapter 9). You'll find it in Perl's script
installation directory. On Unix systems, this is /usr/local/bin/ (or another location, depending on your
configuration). It will also be found in the PDBA installation directory:

PDBA-1.00/routine_tasks/dba_jobsm.pl

On Win32, you'll find the script as C:\Perl\bin\dba_jobsm.pl.

There is also a configuration file that stores the parameters for the dba_jobsm.pl script (see Example 13-1
dba_jobs.conf configuration file is:

PDBA-1.00/routine_tasks/dba_jobs.conf

On Win32 it is:

C:\Perl\site\lib\PDBA\conf\dba_jobs.conf

Example 13-1. dba_jobs.conf

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package dbajobs;

use vars qw{ $emailAddresses %databases };

$emailAddresses = [qw{yourname@yourdomain.com}];

%databases = (sherlock => { ts01 => 'system', },

 watson => { ts98 => 'system', ts99 => 'system', });

1;

The configuration file is very straightforward. It contains two hashes: one for the email address to which the final report will be
sent, and one for the servers we wish to check, broken down by machine and database.

An example of a final report generated by this script is displayed in Figure 13-1; this particular example was generated with
-noemail option specified.

Figure 13-1. Output from dba_jobsm.pl

13.1.2.2 dba_jobsm.pl: A walkthrough of the main script

The following may look daunting, but we thought we'd walk through at least one complete PDBA Toolkit script in this book, just
to show you its low-level wiring. We expect that some readers will find sufficient inspiration in these
our code) to decide to customize our scripts or create their own. When creating your own scripts, you can
something of an artist's palette from which you can cut and paste the elements you require.

With that rationalization out of the way, let's plunge into a no-holds-barred familiarization exercise before you
own missions into no-man's-land. We'll focus on one group of lines at a time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

01: #!/usr/bin/perl

02:

03: =head1 dba_jobsm.pl

04:

05: like dba_jobs.pl, but connects to multiple servers

06: as specified in the configuration file

07:

08: =cut

09:

10: use warnings;

11: use strict;

12: use PDBA;

13: use PDBA::CM;

14: use PDBA::GQ;

15: use PDBA::OPT;

16: use PDBA::ConfigFile;

17: use PDBA::LogFile;

18: use Getopt::Long;

Line 1

Informs the command shell that this script runs with the /usr/bin/perl binary program. The #! shebang is recognized by
Unix command shells as an identifier indicating which executable to run the script with. This magic cookie
sometimes known, must be on line 1. On Win32 the #! line is simply treated as just another comment.

Lines 3 to 8

Inline documentation. (The perldoc FULL_PATH/dba_jobsm.pl command displays all of the documentation.)

[2] (The perldoc -f function_name utility provides online documentation for all of Perl's hundreds of built-in functions.)

Lines 10 to 18

Specify the modules needed for this script:

use warnings

Makes Perl detect and flag program warnings as well as errors. Alternatively, use the -w flag switch on line 1.
show an example a bit later.)

use strict

Enforces coding discipline. For instance, you must name package variables explicitly. (See Appendix A
about variable scoping.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The next few lines load up the necessary PDBA Toolkit modules; these include the PDBA mother-ship module, the Connection
Manager, the Generic Query module, the Options password retriever, the Config File loader, and the Log File creator. (See
Chapter 9 for a discussion of all these modules.)

Line 20

Sets the date format for retrieving date columns from Oracle. (We'll say more about configuring this in a later

Line 22

Declares our intended use of the %optctl hash.

Line 26

Sets the pass-through option for Getopt::Long. We can then specify extra options via the command line to pass
to PDBA::OPT. Example 13-2 demonstrates why we need this.

Example 13-2. passthrough.pl

#!/usr/bin/perl -w

use Getopt::Long;

my %optctl=();

Getopt::Long::Configure(qw{pass_through});

GetOptions(\%optctl, "database=s", "username=s",);

print join(":", @ARGV);

The following script call processes the command line options created by GetOptions, including database
leaves the -pwc_conf option and its argument in the @ARGV program parameters array printed by passthrough.pl

$ passthrough.pl -database orcl -username system -pwc_conf test.conf
-pwc_conf:test.conf
If you remove the pass_through directive, GetOptions raises an error, because the -pwc_conf flag is unspecified, unlike
database and username.

$ passthrough.pl -database orcl -username system -pwc_conf test.conf
Unknown option: pwc_conf
test.conf
Let's continue with the next group of lines in dba_jobsm.pl:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

28: GetOptions(\%optctl,

29: "help!",

30: "conf=s",
31: "confpath=s",

32: "logfile=s",

33: "logcolumns!",

34: "email!",
35: "verbose!",

36: "debug!",

37:);

Lines 28 to 37

Calls the GetOptions function from the Getopt::Long module, passing the expected command line option names and
processing them as they appear on the command line. Those specified with =s, such as conf=s
The following command makes Getopt::Long assign the string -logfile as the argument to -conf
explicitly requires an argument:

$ dba_jobsm.pl -conf -logfile test.log
Unknown exception from user code:

 Could not load config file -logfile

A configured exclamation point following a GetOptions parameter, such as email!, tells Getopt::Long
Boolean switch (1 or 0). These options switch to false with a no prefix, as in dba_jobs.pl -conf dbatest.conf -noemail
(For much more on Getopt::Long, try perldoc Getopt::Long.)

39: if ($optctl{help}) { usage(1) }
Line 39

Employs the usage subroutine. We'll discuss this in lines 212-229.

Let's move on to the next group of lines:

41: # config is required

42: my $configFile = $optctl{conf}

43: ? $optctl{conf}
44: : 'dba_jobs.conf';
Lines 42 to 44

Determine which configuration file to use. If the expression before ? is true, the expression following
expression before ? is false, the expression following : is returned. Therefore, if the -conf option value fills
line 43 assigns this value to $configFile. Otherwise, line 44 assigns it to a default of dba_jobs.conf

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

46: # load the configuration file

47: unless (

48: new PDBA::ConfigLoad(

49: FILE => $configFile,

50: DEBUG => $optctl{debug},

51: PATH => $optctl{confpath},

52:)

53:) {

54: die "could not load config file $configFile\n";
55: }

Lines 46 to 55

Load the configuration file. Lines 48 to 52 invoke PDBA::ConfigLoad's new method, passing values for FILE, DEBUG,
and PATH. The PDBA::ConfigLoad module ignores PATH if it is undefined or if it is an empty string. If the configuration
file fails to load, the program exits on line 54 with a die command.

57: # setup and open the log file

58: my $logFile = $optctl{logfile}

59: ? $optctl{logfile}

60: : PDBA->pdbaHome . q{/logs/dba_jobsm.log};
61:

62: my $logFh = new PDBA::LogFile($logFile);

Lines 57 to 60

Determine the name and location of the logfile. As with the configuration file, the name is supplied by the
The default dba_jobsm.log file is placed in PDBA_HOME/logs directory. (Note that the forward slash is acceptable to
Win32, which uses it internally anyway.)

Line 62

Creates a new PDBA::LogFile object, $logFh, and the program writes to this object handle when sending audit
messages to the logfile.

64: if ($optctl{debug}) {
65:

66: foreach my $machine (keys %dbajobs::databases) {

67: print "machine: $machine\n";

68: foreach my $database (keys %{$dbajobs::databases{$machine}}) {

69: print "\tdb: $database\n";

70: print

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "\t\tusername: $dbajobs::databases{$machine}->{$database}\n";

71: }

72: }

73: exit;

74: }

Lines 64 to 74

Execute only if the -debug program option is specified. Line 66 sets up a loop which iterates through each
the %dbajobs::databases hash. This is loaded from the configuration file, with each machine, database, and username
being printed to the screen.

76: my $instanceName = undef;

77: my $machineName = undef;

78: my $systemDate = undef;

79: my $row = {};

80: my $tmpFile;

Lines 76 to 80

Simply declare some variables for later use.

82: if ($optctl{email}) {

83:

84: use POSIX;

85:

86: if ('unix' eq PDBA->osname) {

87: $tmpFile = POSIX::tmpnam();

88: } else {

89: $tmpFile = 'C:\TEMP' . POSIX::tmpnam() . 'tmp';

90: }

91:

92: print "TMPFILE: $tmpFile\n" if $optctl{verbose};

93:

94: open(FILE,"> $tmpFile") || die "cannot create $tmpFile\n";

95: select(FILE);

96:

97: # reset the format and format_top names, as using select(FILE)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

97: # reset the format and format_top names, as using select(FILE)

98: # will cause Perl to look for FILE and FILE_TOP

99: $~ = 'STDOUT';

100: $^ = 'STDOUT_TOP';

101:

102: }

Line 82

Gatekeeper for the next code body. It only runs if the -email flag was set.

Line 84

Loads the POSIX module because we need a temporary file for email formatting purposes later on.

Lines 86 to 90

Name this temporary file via the POSIX::tmpnam function. On Unix, this defaults to something like
Win32, POSIX::tmpname returns a \random_value. string. We want all of our temporary files stored in the same location
on Win32, and we ensure this on line 89. If POSIX::tmpnam returns a filename of \wpo., this is converted into
C:\TEMP\wpo.tmp.

Line 94

Creates and opens the temporary file.

Line 95

Uses Perl's main select operator and sets the default output filehandle to be the temporary file. All
statements without specific filehandle parameters will now go to the temporary file.

Lines 99 to 100

Set the print format names for the write operator. The $^ built-in Perl variable sets the name for the header format. The
$~ variable sets the equivalent for the body format.

You can avoid using built-in Perl variable names like $~ and $^ if you use the
This makes all such variables readable to English speakers:

use English;

Use English names so your code won't

look like an obscure Klingon dialect! :-)

$FORMAT_TOP_NAME = 'STDOUT_TOP'; # $~

$FORMAT_TOP = 'STDOUT'; # $^

For more information about such variables, invoke perldoc perlvar.

The default names for these are STDOUT and STDOUT_TOP, which is what our code uses
too. The default usually works fine for console output, but when we changed
filehandle to FILE the default formats changed too, into FILE and FILE_TOP
want to use STDOUT and STDOUT_TOP, we need to explicitly reset them both back again.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

104: foreach my $machine (keys %dbajobs::databases) {

105:

106: foreach my $database (keys %{$dbajobs::databases{$machine}}) {

107:

108: my $username = $dbajobs::databases{$machine}->{$database};

109:

110: # retrieve the password from the password server

111: my $password = PDBA::OPT->pwcOptions (

112: INSTANCE => $database,

113: MACHINE => $machine,

114: USERNAME => $username

115:);

Line 104

Begins the loop where the real work begins. As with line 66, this line begins looping through the machines defined in the
configuration file.

Line 106

Iterates through each database as defined for each machine.

Line 108

Retrieves the current loop iteration's DBA username.

Lines 111 to 115

Retrieve the password for the username from the password server. (You could modify the dba_jobsm.pl
using the password server, but this would require a fair amount of work and would also necessitate giving up all the
security and ease-of-use the server delivers. However, we will demonstrate how this is possible in a later section.)

117: # create a database connection

118: my $dbh = new PDBA::CM(

119: DATABASE => $database,

120: USERNAME => $username,

121: PASSWORD => $password,

122:);

123:

124: $dbh->do(qq{alter session set nls_date_format = '$nlsDateFormat'});

Lines 117 to 122

Create the database connection via PDBA::CM's Connection Manager. One of the advantages of using

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Create the database connection via PDBA::CM's Connection Manager. One of the advantages of using
rather than DBI, is the use of the cm.conf configuration file. This contains a default ORACLE_HOME
$ENV{ORACLE_HOME} environment variable, making it unnecessary to set the Oracle environment before running a
script.

Line 124

Sets NLS_DATE_FORMAT for your current database session.

126: # get the host and instance name

127: my $gn = new PDBA::GQ($dbh,'v$instance');

128: my $gnHash = $gn->next;

129: $instanceName = $gnHash->{INSTANCE_NAME};

130: $machineName = $gnHash->{HOST_NAME};

131: undef $gn;

132: undef $gnHash;

133:

134: print "Instance Name: $instanceName\n" if $optctl{verbose};

135: print "Host Name: $machineName\n" if $optctl{verbose};

136:

137: # get the system date

138: $systemDate = PDBA->sysdate($dbh, NLS_DATE_FORMAT => $nlsDateFormat);

139: print "System Date: $systemDate\n" if $optctl{verbose};

Line 127

Uses PDBA::GQ to execute a SQL statement of select * from v$instance. The PDBA::GQ module also prepares the SQL
statement. Because we failed to specify any columns, it assumes we want all of them. To select specific columns you
can use PDBA::GQ like this:

my $gn = new PDBA::GQ($dbh,'vinstance',

 { COLUMNS => [qw(host_name instance_name)] });
Line 128

Retrieves the first row from query object $gn via PDBA::GQ's next method. Its default return value is a hash
On lines 129 and 130 we assign $instanceName and $machineName. The sharp-eyed among you may be
why we haven't followed line 128 with the following:

$gn->finish;

All open cursors must be finished before database disconnection. Fortunately V$INSTANCE only holds one row, so the
$gn cursor finished automatically.

Lines 131 to 132

Undefine $gn and $gnHash, as we're done with them in this particular loop iteration and we should clear them out before
the next one.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Line 138

Sets $systemDate to the current database SYSDATE value.

141: my $gq = new PDBA::GQ ($dbh, 'dba_jobs',

142: {

143: COLUMNS => [

144: qw(schema_user job last_date next_date

 interval failures what),

145: q{round(total_time,2) total_time},

146: q{decode(broken,'N','NO','Y','YES','UNKNOWN') broken},

147:],

148: ORDER_BY => q{schema_user, next_date}

149: }

150:);

Line 141

Begins a complex instantiation of a database query via PDBA::GQ.

Line 143

Begins specifying the columns to include in the query.

There is a difference between the q{} and qq{} operators. They're identical in use to either
single quotes (` ') or double quotes (" ") in Perl. Variables only interpolate within the
braces. For instance, let's run the following code:

my $str = 'this is Earth calling';

print qq{$str\n};

print q{$str\n};

The second printed line remains uninterpolated:

this is Earth calling

$str\n

The use of these and other quoting functions such as qw{} makes Perl code formatting much
plainer to the eye. Check out perldoc perlop for much more detail.

Lines 145 to 146

Perform column manipulation. We use Oracle's ROUND function to format TOTAL_TIME, and its DECODE function to
return YES or NO from the BROKEN column, rather than Y or N (see Figure 13-1).

Line 148

Supplies the ORDER BY clause to the SQL query.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

152: # print the column names in the log

153: my $colHash = $gq->getColumns;

154: $logFh->printflush(

155: join('~', (

156: $machine, $database,

157: map {$_} sort keys %{$colHash}

158:)

159:) . "\n") if $optctl{logcolumns};

Line 153

Uses PDBA::GQ's getColumns method to return the SQL query's column names into the hash reference,
this kind of form:

$colHash = { 'BROKEN' => 8,

 'LAST_DATE' => 2,

 'FAILURES' => 5,

 'TOTAL_TIME' => 7,

 'WHAT' => 6,

 'JOB' => 1,

 'INTERVAL' => 4,

 'NEXT_DATE' => 3,

 'SCHEMA_USER' => 0 };

Lines 154 to 159

We need to consider these lines together. Line 159 allows the printing of columns only if the -logcolumns
included on the command line. We want these column names printed in the database specified order. That's what
157 does with the map function. The columns retrieved into $colHash have no particular order, because hashes lack any
guarantee as to the order in which keys are stored (see Appendix A). To get them in the $gq query order, we employ a
little Perl magic. We sort the keys into alphabetical order, we then map them to an array, and then
elements together with the machine and the database strings to form a ~ delimited superstring. To read about these
functions, try the following:

$ perldoc -f map

$ perldoc -f sort

$ perldoc -f join

161: while ($row = $gq->next({})) {

162: $logFh->printflush(

163: join("~", (

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

164: $machine ,

165: $database ,

166: # the map function is used to place all values from the

167: # $row hash ref into an array. The ternary ?: operator

168: # is used with 'defined()' to avoid warnings on undefined

169: # values. These occur when a NULL is returned from a

170: # SQL statement

171: map { defined($row->{$_}) ? $row->{$_} : '' }

 sort keys %$row

172:)

173:) . "\n"

174:);

175: write;
176: }

Lines 161 to 185

Retrieve the data from our query object. Line 161 retrieves a row at a time into the hash reference,

Lines 162 to 174

Begin the process of retrieving the query data. The column values in the $row hash reference are printed to the
Notice the use of Perl's defined operator, which traps potential NULLs.

Line 175

Consists of a write statement. We'll come back to this at line 231.

178: $dbh->disconnect;

179:

180: # set number of lines on page left to 0

181: # forcing a form feed

182: $- = 0;

183:

184: }

185: }

Line 178

Terminates the connection to this database before the next loop.

Line 182

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Issues a form feed via the $- built-in Perl variable. This is known as $FORMAT_LINES_LEFT
and it's the number of lines left on a page of the currently selected output channel.

187: if ($optctl{email}) {

188:

189: #email here

190: close FILE;

191: select(STDOUT);

192:

193: open(FILE, "$tmpFile") ||

 die "cannot open $tmpFile for read - $!\n";

194: my @msg = <FILE>;

195: close FILE;

196: my $msg = join('',@msg);

197:

198: my $subject = qq{DBA Jobs Report For All Servers};

199:

200: unless (PDBA->email($dbajobs::emailAddresses,$msg,$subject)) {

201: warn "Error Sending Email\n";

202: }

203:

204: unlink $tmpFile;

205:

206: $logFh->printflush(("report mailed to ",

 @$dbajobs::emailAddresses, "\n"));

207: }

208:

209:

210: ## end of main
Line 187

Follows the main loop exit. If -email was set, we execute the following code body.

Lines 190 to 191

Close the FILE opened earlier and reset STDOUT to be the default output filehandle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Line 193

Opens the temporary email file, which has been filled by the write function on line 175 (we'll discuss
line 231).

Lines 194 to 196

Read the entire contents of this temporary file into the @msg array before closing the file. Line 196
scalar $msg, from @msg, by joining all of its elements together, including their embedded newlines.

Line 198

Creates the email $subject header.

Lines 200 to 202

Mail the recipients designated in the dba_jobs.conf configuration file via the PDBA module's mail

Lines 204 to 206

Remove the temporary file and write one last audit message, with line 210 marking the end of the main program section.

13.1.2.3 dba_jobsm.pl: A walkthrough of functions and formats

We've finished looking at the main logic of the script. Now we've reached the script's functions and print formats.
orientation, you might like to revisit line 39 in the main program to check its context before looking at the

39: if ($optctl{help}) { usage(1) }

The usage routine is called when the -help command option is flagged. It accepts one argument, $exitVal
The usage subroutine outputs a help message, then exits Perl with $exitVal returned to the command

212: sub usage {

213: my $exitVal = shift;
214: use File::Basename;

215: my $basename = basename($0);

216: print qq/

217: usage: $basename

218:

219: -help show help and exit

220: -conf configuration file (needed for email)

221: -confpath path to configuration file (optional)

222: -logfile logfile - may include path (optional)

223: -logcolumns include column names in logfile

224: -email send email to users in config file

225: -verbose verbosity on

226:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

226:

227: /;

228: exit $exitVal;
229: };

Lines 214 to 215

Determine the name of the current script with File::Basename. Even if the script's name changes,
correct.

Lines 216 to 227

Use Perl's qq// operator to print the help information. The use of qq// is much neater than a series of
and much easier to edit.

Line 228

Exits the program.

231: no warnings;

232: format STDOUT_TOP =

233:

234: DBA Jobs Status

235: Database: @<<<<<<<<<<<<<<<

236: $instanceName

237: Machine : @<<<<<<<<<<<<<<<

238: $machineName

239: Date : @<<<<<<<<<<<<<<<<<<<<

240: $systemDate

241:

242: SCHEMA TOTAL

 FAIL

243: USER JOB LAST DATE NEXT DATE TIME BROKEN

 INTERVAL URES WHAT

244: ---------- ----- ---------------- ---------------- --------- ------

 --------------- ---- -------------------------

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 --------------- ---- -------------------------

245:

246: .

247:

248:

249: format STDOUT =

250: @<<<<<<<<< @#### @<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<< @######## @<<<<<

 ^<<<<<<<<<<<<<< @### @<<<<<<<<<<<<<<<<<<<<<<<<

251: $row->{SCHEMA_USER}, $row->{JOB}, $row->{LAST_DATE},

 $row->{NEXT_DATE}, $row->{TOTAL_TIME}, $row->{BROKEN},

 $row->{INTERVAL}, $row->{FAILURES}, $row->{WHAT}

252: ~~

 ^<<<<<<<<<<<<<<

253:

 $row->{INTERVAL}

254: .

Line 231

Begins the print formatting section for the earlier write command:

175: write;

A no warnings call is made at line 231 to prevent Perl from overreacting to acceptable difficulties such as
returning from Oracle.

Lines 232 to 246

Create the STDOUT_TOP header format, which appears at the top of each page. Perl formats use literal text, variables,
and field holders to determine how data will be printed (with much of the original layout borrowed from FORTRAN and
the nroff program). You can learn more about Perl formats by invoking:

$ perldoc perlform

Line 235

Contains the literal text of `Database: ' followed by a field holder of @<<<<<<<<<<. This tells Perl that the print data
should be left justified.

Lines 242 to 244

Print the literal text of the column names.

Line 246

Terminates the STDOUT_TOP format with a period.

Lines 249 to 253

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Define the STDOUT body of the report.

Line 254

Terminates the STDOUT format and brings us to the end of the script.

13.1.3 Modifying the dba_jobsm.pl Script

By now you should have a good understanding of the structure and logic of the existing version of the
its dba_jobs.conf configuration file. Now let's talk about how you might want to modify the script and file to provide some code
flexibility. In addition to showing specific modifications for this particular case, the following sections should give you the
background necessary to be able to examine and modify additional scripts to suit your own requirements.

13.1.3.1 Configuring parameters

The first change we'll make involves Oracle's NLS_DATE_FORMAT, a setting used within the database to set the
format in which date column data will be returned. This format is currently hard-coded into the script at line 20:

20: my $nlsDateFormat = q{yyyy/mm/dd hh24:mi};

If we ever want to change this value, we'll have to edit the script each time. It's much better to specify this value as a
configurable item in the dba_jobs.conf configuration file. So let's comment out line 20 of the script with a
follows:

20: #my $nlsDateFormat = q{yyyy/mm/dd hh24:mi};
Now find lines 124 and 138. They look like the following:

124:$dbh->do(qq{alter session set nls_date_format = '$nlsDateFormat' });
...

138: $systemDate = PDBA->sysdate($dbh, NLS_DATE_FORMAT => $nlsDateFormat);
You need to change these lines to this:

124: $dbh->do(qq{alter session set nls_date_format = '$dbajobs::nlsDateFormat'
...

138: $systemDate = PDBA->sysdate($dbh, NLS_DATE_FORMAT => $dbajobs::nlsDateFormat
Save the dba_jobsm.pl file and open dba_jobs.conf. Now we'll add an entry for NLS_DATE_FORMAT. We've displayed the
relevant code snippet that adds the $nlsDateFormat variable. Notice that this variable name has also been added to the
vars statement. Doing so prevents use warnings from raising a message about the single use of a variable.

package dbajobs;

use vars qw{ $emailAddresses $nlsDateFormat %databases };
$nlsDateFormat = q{yyyy/mm/dd hh24:mi};
$emailAddresses = [qw{yourname@yourdomain.com}];

...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

...

Now simply run dba_jobsm.pl to test it. Be sure to change the value of the $nlsDateFormat variable so you can verify the
results.

13.1.3.2 Adding passwords to the configuration file

Although we encourage you to use the password server, we'll show you how to work around it just in case you're unable to use
it for some reason. While putting passwords in configuration files is workable, it is both a security risk and more work to
maintain. However, given those caveats, let's begin with the configuration file by creating data constructs that can hold DBA
passwords as well as usernames:

package dbajobs;

use vars qw{ $emailAddresses $nlsDateFormat %databases };

$nlsDateFormat = q{yyyy/mm/dd hh24:mi};

$emailAddresses = [qw{yourname@yourdomain.com}];

%databases = (sherlock => { ts01 => [qw{system manager}], },
 watson => { ts98 => [qw{system manager}],
 ts99 => [qw{system manager}], });
1;

The DBA user and its password are placed inside array references. The user is element 0 of each array reference, and the
password is element 1.

Now it's time to change the script. Open dba_jobsm.pl and locate the following lines:

15: use PDBA::OPT;

...

70: print

 "\t\tusername: $dbajobs::databases{$machine}->{$database}\n";

...

108: my $username = $dbajobs::databases{$machine}->{$database};

...

111: my $password = PDBA::OPT->pwcOptions (

112: INSTANCE => $database,

113: MACHINE => $machine,

114: USERNAME => $username

115:);

Change these lines so they appear like those in Example 13-3:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 13-3. Results of changes to dba_jobsm.pl for password usage.

15: #use PDBA::OPT; --- Commented out, array references used below! :-)
...

70: print

 "\t\tusername: $dbajobs::databases{$machine}->{$database}[0]\n";
...

108: my $username = $dbajobs::databases{$machine}->{$database}[0];
...

111: my $password = $dbajobs::databases{$machine}->{$database}[1];
112: #INSTANCE => $database,
113: #MACHINE => $machine,
114: #USERNAME => $username
115: #);
Once again, run the script to validate the changes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.2 Modifying a Module in the Toolkit

In Chapter 9 we introduced the supporting modules included in the Perl DBA Toolkit and described briefly
what they do. Just as you might wish to modify or extend the toolkit's scripts, as we described earlier in
this chapter, you might also find a good reason to modify the modules. In an effort to anticipate the kinds
of changes you might want to make to these modules, in the following sections we'll provide a quick
guide on how to modify the modules in the toolkit. We'll show two examples here and hope you can
extrapolate to many more:

Adding a method

We'll add a usage method to the PDBA module. This will allow us to define a scalar variable
containing help screen information, which can then be passed into the usage method. This will
save us from having to code individual usage subroutines in each separate script.

Dealing with NULL columns returned by Oracle

We'll deal with NULLs returned by Oracle when printing output. This is a useful thing to do because
NULL values raise undefined value errors when included in certain Perl statements.

13.2.1 Modifying the PDBA Module to Add a Method

In this section we'll essentially modify the PDBA module in order to add a method that will help us in
doing our work. In reality, though, rather than modifying the existing code, we're going to create our own
parallel, modified module. We'll explain why we've taken this approach as we work through the example.

We've created a separate downloadable module, called PDBAx, for "PDBA Extensions," that contains the
code we describe in this section. If you want to do so, you can download and install this code in the same
manner as you would the ordinary PDBA module. There's no absolute need to download and install
PDBAx, but you may wish to do so to help follow the rest of this chapter or simply for your own
experimentation. You can download PDBAx-1.00.tar.gz, or its latest derivative, from our book's page on
the O'Reilly site:

http://www.oreilly.com/catalog/oracleperl/pdbatoolkit

Installation is straightforward, as we describe in the following sections.

13.2.1.1 Installing PDBAx on Unix

Run the following to install PDBAx on Unix systems:

$ gunzip -c PDBAx-1.00.tar.gz | tar xvf -

$ cd PDBAx-1.00

$ perl Makefile.PL

$ make install

There are no tests to run for this module.

13.2.1.2 Installing PDBAx on Win32

Download the PDBAx.ppd PPM file from the web site and save it in a location such as C:\TEMP. You
probably know the rest of the drill:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DOS> ppm

PPM> install --location c:\temp PDBAx

13.2.2 Adding a Usage Method

Most of the scripts included in our toolkit employ a usage subroutine that is called for various reasons.
Perhaps the -help option was included on the command line, or perhaps required options were missing.
The usage routine generally looks something like this:

sub usage {

 my $exitVal = shift;

 use File::Basename;

 my $basename = basename($0);

 print qq/

$basename

usage: $basename

 -machine database_server

 -database database_instance

 -username account

/;

 exit $exitVal;

};

A common PDBA.pm method would eliminate the need for this subroutine in other scripts. Writing such a
method is one approach to solving your problem. Some suggested code for such a method is shown in
Example 13-4.

Example 13-4. The PDBA usage method

sub usage {

 my ($exitVal,$helpStrRef) = @_;

 use File::Basename;

 my $basename = basename($0);

 print qq{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print qq{

usage: $basename

${$helpStrRef}

};

 exit $exitVal;

};

Here's how you might use it in a script:

use PDBA;

my $help = q{

 -database database to connect to

 -username database account

 -password password for the account

};

...

if ($optctl{help}) { PDBA::usage(1,\$help) }
...

So now you place your new usage method in the PDBA.pm file and try it out in a few scripts. And it works
great. However, there's one small problem. What happens if you install a newer version of the PDBA
Toolkit module library? That's right — your carefully crafted usage method will no longer be in the PDBA
module, and all of your scripts calling PDBA::usage will break. Ouch!

Rather than modifying the PDBA module, why not create your own subclassed module? Doing so will
allow you to extend the PDBA module without fear of breaking scripts that use it in its current incarnation.
Creating your own module also eliminates the problems that would occur if you download a new version
of the PDBA module and it overwrites your carefully crafted extensions.

Perl lets you do this with relative ease, and we'll show you how.[3] Let's call our new subclassed module
PDBAx. This module will take the place of PDBA in your scripts. The full code for PDBAx appears in
Example 13-5.

[3] We're using the simplest features of Perl's object orientation, as described in Appendix A. For a more definitive description,
refer to Object Oriented Perl, by Damian Conway (Manning 2000).

Example 13-5. The entire PDBAx module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package PDBAx;

our $VERSION=1.00;

use PDBA;
our @ISA = qw{PDBA};
sub usage {

 my ($exitVal,$helpStrRef) = @_;

 use File::Basename;

 my $basename = basename($0);

 print qq{

usage: $basename

${$helpStrRef}

};

 exit $exitVal;

};

1;

You may be surprised at how little code there is in Example 13-5. Yet all the features of the PDBA
module are available through PDBAx. That's because of the magic of the @ISA array. The methods and
attributes of modules placed in @ISA are inherited by calling modules — in this case, PDBAx. Try
running the code shown in Example 13-6. The PDBAx osname method is inherited directly from the
PDBA module.

Example 13-6. Testing PDBAx

#!/usr/bin/perl -w

use warnings;

use strict;

use PDBAx;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use PDBAx;
print "$PDBA::VERSION\n";

print PDBAx->osname, "\n";

my $help = q{

 -database database to connect to

 -username user to connect as

 -password password for user

};

PDBAx::usage(1,\$help);

The benefit of extending PDBA in this way is that when your intrepid authors release the latest version of
the PDBA Toolkit, your usage method will be safely encapsulated within its own PDBAx module. Even if
we come up with similarly named methods, yours will override them. It's a kind of magic.

13.2.3 Modifying the PDBA::GQ Module to Deal with NULL Columns

In the following sections we'll describe how you can modify the PDBA::GQ module to deal with Oracle
NULL values. First, though, let's take a look at the problems involved in using NULLs.

13.2.3.1 Oracle and NULL values

When you first start using the Oracle database, NULL values may take a little getting used to. A NULL is
never equivalent to any other value, including another NULL. The truth table in Table 13-1 sums up the
results of comparing NULL to NULL, with various SQL operators. Note that only one True is returned with
the special IS NULL comparison.

Table 13-1. Null truth table
Option Description

NULL = NULL False
NULL <> NULL False
NULL < NULL False
NULL > NULL False
NULL IS NOT NULL False
NULL BETWEEN NULL AND NULL False
NULL = '' False
NULL IS NULL True

One problem you discover when dealing with NULLs in an Oracle database is that Oracle treats empty
strings and NULL values the same way. This is different from other databases, and is readily apparent
when you use NULLs with Perl. We'll see this in the next section.

13.2.3.2 Testing the use of NULLs

The null_test.pl script in Example 13-7 builds a table, NULL_TEST, and populates it with two rows of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The null_test.pl script in Example 13-7 builds a table, NULL_TEST, and populates it with two rows of
data.

Example 13-7. null_test.pl

01: #!/usr/bin/perl

02:

03: use warnings;

04: use strict;

05: use PDBA::CM;

06: use PDBA::GQ;

07: use PDBA::DBA;

08:

09: my ($database, $username, $password) = qw{ts01 scott tiger};

10:

11: my $dbh = new PDBA::CM(

12: DATABASE => $database,

13: USERNAME => $username,

14: PASSWORD => $password

15:);

16:

17: eval {

18: local $dbh->{PrintError} = 0;

19: $dbh->do(q{drop table null_test});

20: };

21:

22: $dbh->do(q{create table null_test

23: (

24: first_name varchar2(20) not null,

25: middle_initial varchar2(1) null,

26: last_name varchar2(20) not null

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26: last_name varchar2(20) not null

27:)

28: });

29:

30: my $insHandle = $dbh->prepare(q{insert into null_test values(?,?,?)});

31:

32: $insHandle->execute('Alfred','E','Neuman');

33: $insHandle->execute('Peter',undef,'Parker');

34: $insHandle->execute('Clark','','Kent');

35: $dbh->commit;

36:

37: my $gq = new PDBA::GQ ($dbh, 'null_test');

38:

39: while (my $row = $gq->next) {

40: printf("Last: %-20s First: %-20s MI: %1s\n",

41: $row->{LAST_NAME},

42: $row->{FIRST_NAME},

43: $row->{MIDDLE_INITIAL}

44:);

45: }

46: $dbh->disconnect;

Note the following about this example:

Lines 22 to 28

The CREATE TABLE statement defines two columns, FIRST_NAME and LAST_NAME, which are
both required, while the MIDDLE_INITIAL column is nullable.

Line 32

The first row insert places values in all three columns.

Line 33

Only the FIRST_NAME and LAST_NAME columns are populated. The value for the
MIDDLE_INITIAL column is defined as undef. This causes the MIDDLE_INITIAL value to be NULL.

Line 35

Inserts another row, but this time the MIDDLE_INITIAL column is populated with an empty string.

Using the following SQL, we can now prove that Oracle treats both the empty string and undef as NULL
values:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL> select * from null_test where middle_initial is null;

FIRST_NAME M LAST_NAME

-------------------- - --------------------

Peter Parker

Clark Kent

2 rows selected.

This problem becomes apparent in Perl when a NULL column is retrieved from a database and an
attempt is made to reference the value in a statement. You can see this in lines 40 to 44 of Example 13-
7, which we reproduce here:

40: printf("Last: %-20s First: %-20s MI: %1s\n",

41: $row->{LAST_NAME},

42: $row->{FIRST_NAME},

43: $row->{MIDDLE_INITIAL}

44:);

Line 40 to 44

Line 40 is the first line of a multi-line printf statement. Line 41 references the LAST_NAME, line 42
the FIRST_NAME, and line 43 the MIDDLE_INITIAL. Printing the first row presents no problem,
because all three columns are populated. That changes with the second row when the script is
executed, as seen here:

Last: Neuman First: Alfred MI: E

Use of uninitialized value in printf at ./null_test.pl line 40 (#1)

 (W uninitialized) An undefined value was used as if it were already

 defined. It was interpreted as a "" or a 0, but maybe it was a mistake.

 To suppress this warning assign a defined value to your variables.

...

Last: Parker First: Peter MI:

Whoa! The second row returned a NULL for MIDDLE_INITIAL, which is treated by Perl as an undef. This
threw out a warning because of the use warnings pragma at the top of the script.

13.2.3.3 Considering changes to the script

The warning output we saw in the previous section could be eliminated by turning off the warning
mechanism temporarily as follows:

38: no warnings;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

38: no warnings;
39: while (my $row = $gq->next) {

40: printf("Last: %-20s First: %-20s MI: %1s\n",

41: $row->{LAST_NAME},

42: $row->{FIRST_NAME},

43: $row->{MIDDLE_INITIAL}

44:);

45: }

46: use warnings
However, this sweeps potentially difficult problems under the rug, which will almost always re-surface to
bite us later. A better solution would ensure that all of the row elements get a guaranteed value before
they get pumped into printf:

39: while (my $row = $gq->next) {

 foreach my $key (keys %$row)
 { $row->{$key} = '' unless defined $row->{$key} }
40: printf("Last: %-20s First: %-20s MI: %1s\n",

41: $row->{LAST_NAME},

42: $row->{FIRST_NAME},

43: $row->{MIDDLE_INITIAL}

44:);

45: }

The foreach loop added between lines 39 and 40 assigns empty strings to any undefined values in the
$row hash reference, thereby preventing warnings.

13.2.3.4 Modifying the PDBA::GQ module

An even better solution would extend the PDBA::GQ (Generic Query) module so your scripts would
automatically deal with NULL column data. However, as we learned earlier, modifying a module presents
its own problems. What we need is a modified version of the PDBA::GQ module. More specifically, we
should modify the PDBA::GQ->next method. Example 13-8 shows one way to do this.

Example 13-8. PDBAx::GQ

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

01: package PDBAx::GQ;

02:

03: our $VERSION=1.0;

04:

05: use Carp;

06: use warnings;

07: use strict;

08:

09: use PDBA::GQ;

10: our @ISA = qw{PDBA::GQ};

11:

12: sub next {

13: my $self = shift;

14: my ($ref) = @_;

15: $ref ||= [];

16:

17: my $refType = ref $ref;

18:

19: my $data;

20:

21: $data = $self->SUPER::next($ref);

22: return unless $data;

23:

24: # transform NULL columns to a defined value

25: # to avoid problems with undefined values

26: if ('ARRAY' eq $refType) {

27: foreach(@$data){ $_ = '' unless defined }

28: } elsif ('HASH' eq $refType) {

29: foreach my $key (keys %$data)

30: { $data->{$key} = '' unless defined $data->{$key} }

31: } else {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

31: } else {

32: croak "invalid ref type of $refType " .

33: "used to call PDBAx::GQ->next\n"

34: }

35: return $data;

36: }

37: 1;

Lines 1 to 10

Set up the new module as a subclass of the original PDBA::GQ module.

Line 13

Picks up the object's reference in the $self variable.

Lines 14 to 17

Here we set up our subclassed next method to use an array reference as its default datatype. Line
14 assigns the next argument (if it exists) to the $ref variable. Line 15 assigns an empty array to
$ref if the assignment failed in line 14. (We've also changed this default to an ordinary array
reference in this extension, rather than a hash array reference, as with the older PDBA::GQ.) Line
17 sets the $refType scalar to the type of reference in use. This will be used later when assigning a
value to NULL columns. (See Appendix A for more information about references and the related
ref operator.)

Line 21

Calls the next method in the parent class via the SUPER pseudoclass. This accesses methods in
parent classes and lets you modify the behavior of the base class without rewriting all of its code.

Line 22

Returns if no data was found.

Lines 26 to 31

Here the contents of the returned data are checked for NULL values. We first need to determine if
the data is in a hash reference or an array reference. This is done via the $refType variable
created earlier. If the data is in an array reference, each element is checked to see if it is defined. If
it is undefined, an empty string is assigned. This is done in line 27. The same is done for data
returned as a hash reference. Lines 29 and 30 assign empty strings to keys with undefined values.
Because an empty string is a valid defined value in Perl, we have eliminated our warnings.

We need to change just two of the lines in the null_test.pl script we first encountered in Example 13-8

...

06: use PDBAx::GQ;

...

37: my $gq = new PDBAx::GQ ($dbh, 'null_test');

...

All of the functionality of the PDBA::GQ module is still available, but your modifications allow you to stop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All of the functionality of the PDBA::GQ module is still available, but your modifications allow you to stop
thinking about referencing NULL values.

13.2.3.5 Taking one more step

The PDBAx::GQ extension still has a shortcoming. It assigns an empty string to numeric columns that are
NULL, and this may be unsuitable for some purposes. Financial reporting may require that these NULL
columns be assigned a numeric zero. While this can be done, the complexity of the code required to do it
increases significantly, as we'll see in the code supplied via the downloaded PDBAx::GQ module in
Example 13-9.

Example 13-9. Assigning zero to NULL numeric columns in PDBAx::GQ

01: package PDBAx::GQ;

02:

03: our $VERSION=1.00;

04:

05: use Carp;

06: use warnings;

07: use strict;

08:

09: use PDBA::GQ;

10: our @ISA = qw{PDBA::GQ};

11:

12: my @columnTypes;

13: my %columnTypes;

14:

15: sub new {

16: my $self = shift;

17: my ($dbh) = $_[0];

18: my $qobj = $self->SUPER::new(@_);

19:

20: # get column types for array refs

21: @columnTypes =

 map {scalar $dbh->type_info($_)->{TYPE_NAME}} @{$qobj->{TYPE}};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 map {scalar $dbh->type_info($_)->{TYPE_NAME}} @{$qobj->{TYPE}};
22:

23: # get column types for hash refs

24:

25: # get an array of data type numbers

26: my @types = @{$qobj->{TYPE}};

27:

28: # get a hash ref of column names and position

29: my $nameHash = $qobj->{NAME_uc_hash};

30:

31: # create a reverse hash with the column number as the key and

32: # the column name as the value

33: my %colnumHash = map { $nameHash->{$_} => $_ } keys %$nameHash;

34:

35: # create an array of the type names (VARCHAR2, DATE, etc) from the

36: # type info method

37: my @columnTypeNames =

 map { scalar $dbh->type_info($_)->{TYPE_NAME} } @types;

38:

39: # create a hash with column name as the key and

 data type as the value

40: %columnTypes =

 map { $colnumHash{$_} =>

 $columnTypeNames[$_] } 0..$#columnTypeNames;

41:

42: $qobj->{private_PDBA_DATA_TYPES_ARRAY} = \@columnTypes;
43: $qobj->{private_PDBA_DATA_TYPES_HASH} = \%columnTypes;
44: return $qobj;

45: }

46:

47: sub next {

48: my $self = shift;

49: my ($ref) = @_;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

49: my ($ref) = @_;

50: $ref ||= [];

51:

52: my $refType = ref $ref;

53:

54: my $data;

55:

56: $data = $self->SUPER::next($ref);

57: return unless $data;

58:

59: # transform NULL columns to a defined value

60: # to avoid problems with undefined values

61: if ('ARRAY' eq $refType) {

62: foreach my $el (0..$#{$data}) {

63: unless (defined $data->[$el]) {

64: if ($self->{private_PDBA_DATA_TYPES_ARRAY}[$el] =~ /CHAR/) {

65: $data->[$el] = '';

66: } elsif ($self->{private_PDBA_DATA_TYPES_ARRAY}[$el] =~

 /DOUBLE|NUMBER/) {

67: $data->[$el] = 0;

68: } else { $data->[$el] = '' }

69: }

70: }

71: } elsif ('HASH' eq $refType) {

72: foreach my $key (keys %$data) {

73: unless (defined $data->{$key}) {

74: if ($self->{private_PDBA_DATA_TYPES_HASH}{$key} =~ /CHAR/) {

75: $data->{$key} = '';

76: } elsif ($self->{private_PDBA_DATA_TYPES_HASH}{$key} =~

 /DOUBLE|NUMBER/) {

77: $data->{$key} = 0;

78: } else { $data->{$key} = '' }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

79: }

80: }

81: } else {

 croak

 "invalid ref type of $refType used to call PDBAx::GQ->next\n"}

82:

83: return $data;

84: }

85:

86: 1;

In this example we subclass the new method of PDBA::GQ. We do this so we can determine the
datatypes for each column selected in a query.

Line 21

Uses DBI's type_info method to retrieve query column datatypes.

Lines 26 to 40

Store the datatypes for each column in both an array and a hash, so we're prepared for whatever
the next method throws at us.

Lines 42 to 43

Take advantage of a seldom-used Perl DBI feature, the private_ attributes that may be assigned to
a database handle. The DBI documentation states that we're allowed to assign new attributes to a
statement handle as long as they begin with the private_ prefix. These private attributes are used
in the PDBAx::GQ->next method to determine if the value returned for a column is undefined. If so,
it determines the datatype of each of those columns. Once known, a zero is assigned to returned
columns with a numeric type, and an empty string to all other undefined columns. This is
admittedly more complex than the situation we had before, because of our new requirement to
assign zeroes to unassigned numeric columns. However, the added effort is worth it for the
convenience of remaining unconcerned about the side effects of NULL columns.

The script in Example 13-10 uses the all-new PDBAx::GQ module. Both numeric and character columns
are inserted into a test table with NULL values, and then later printed out without any need to check to
see if they're undefined. The script is stored in the PDBAx distribution as pdba_ext2.pl.

Example 13-10. Using the PDBAx:GQ module with numeric and character values

#!/usr/bin/perl

use warnings;

use strict;

use PDBA::CM;

use PDBAx::GQ;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use PDBA::OPT;

use Getopt::Long;

use PDBAx;

my %optctl=();

my $help=q{

 -machine database server

 -database database SID

 -username account name

 -password password for account

};

passthrough allows additional command line options

to be passed to PDBA::OPT if needed

Getopt::Long::Configure(qw{pass_through});

GetOptions(\%optctl, "help!", "machine=s",

 "database=s", "username=s",

 "password=s",);

if ($optctl{help}) { PDBAx::usage(1,\$help) }

lookup the password if not on the command line

my $password = '';

if (defined($optctl{password})) {

 $password = $optctl{password};

} else {

 if (

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (

 ! defined($optctl{machine})

 || ! defined($optctl{database})

 || ! defined($optctl{username})

) { PDBAx::usage(1,\$help) }

 $password = PDBA::OPT->pwcOptions (

 INSTANCE => $optctl{database},

 MACHINE => $optctl{machine},

 USERNAME => $optctl{username}

);

}

my $dbh = new PDBA::CM(DATABASE => $optctl{database},

 USERNAME => $optctl{username},

 PASSWORD => $password,);

drop test table

eval { $dbh->do(q{drop table star_trek}); };

$dbh->do(q{create table star_trek(title varchar2(50)

 , year_released varchar2(4)

 , viewings number(4))});

my $insHandle = $dbh->prepare(q{ insert into star_trek values(?,?,?) });

$insHandle->execute('Star Trek - The Motion Picture','1979',1);

$insHandle->execute('Star Trek II - The Wrath of Khan','1982',4);

$insHandle->execute('Star Trek III - The Search for Spock','1984',undef);

$insHandle->execute('Star Trek IV - The Voyage Home','1986',8);

$insHandle->execute('Star Trek V - The Final Frontier','1989',1);

$insHandle->execute('Star Trek VI - The Undiscovered Country','1991',3);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$insHandle->execute('Star Trek VI - The Undiscovered Country','1991',3);

$insHandle->execute('Star Trek Generations','1994',1);

$insHandle->execute('Star Trek - First Contact','1996',4);

$insHandle->execute('Star Trek - Insurrection','1998',2);

$insHandle->execute('Star Trek: Nemesis',undef,undef);

$dbh->commit;

my $gq = new PDBAx::GQ($dbh, 'star_trek', {ORDER_BY=>'year_released'});

my $colHash = $gq->getColumns;

while (my $row = $gq->next) {

 print "TITLE: $row->[$colHash->{TITLE}]\n";

 print "\tYEAR: $row->[$colHash->{YEAR_RELEASED}]\n";

 print "\tVIEWINGS: $row->[$colHash->{VIEWINGS}]\n";

}

$dbh->disconnect;

Previously, printing values returned from NULL columns would have required checking the return values
within each script; now, we can safely ignore them:

$ pdba_ext2.pl -machine sherlock -database ts01 -username jkstill

TITLE: Star Trek - The Motion Picture

YEAR: 1979

VIEWINGS: 1

TITLE: Star Trek II - The Wrath of Khan

YEAR: 1982

VIEWINGS: 4

TITLE: Star Trek III - The Search for Spock

YEAR: 1984

VIEWINGS: 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VIEWINGS: 0
TITLE: Star Trek IV - The Voyage Home

YEAR: 1986

VIEWINGS: 8

TITLE: Star Trek V - The Final Frontier

YEAR: 1989

VIEWINGS: 1

TITLE: Star Trek VI - The Undiscovered Country

YEAR: 1991

VIEWINGS: 3

TITLE: Star Trek Generations

YEAR: 1994

VIEWINGS: 1

TITLE: Star Trek - First Contact

YEAR: 1996

VIEWINGS: 4

TITLE: Star Trek - Insurrection

YEAR: 1998

VIEWINGS: 2

TITLE: Star Trek: Nemesis

YEAR:
VIEWINGS: 0

Notice that one of the entries has a blank year of release, and two of them have zero viewings. These
values are actually stored as NULL in the database, but now, because of our implementation of
PDBAx::GQ, they may be referenced with impunity — without invoking the wrath of Perl and use
warnings. Revenge is a dish best eaten without undefined values!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part IV: Appendixes
This fourth part of the book provides quick references to various aspects of the Perl
language. It is designed to supply additional background information for those new to
Perl. It consists of the following appendixes:

Appendix A summarizes basic Perl syntax, including object-oriented features.

Appendix B presents the main Perl DBI application programming interface (API)
functions.

Appendix C describes the basics of regular expressions (regexes), patterns of literals
and meta-characters used extensively by Perl for pattern matching.

Appendix D summarizes the Perl data-munging modules that are helpful in
formatting and transforming data for data warehouses and other such Oracle
applications; it includes sections on numeric, date, conversion, and XML modules.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A. The Essential Guide to Perl
In Chapter 1, we briefly explored the history and culture of Perl without examining the language
itself in any detail. In this appendix we'll describe just enough of the language to allow you to
understand how Perl DBI works and how you can take advantage of the Oracle applications
described in this book. We'll focus on the following:

Getting information about Perl

Running Perl scripts

Variable types

Program context

Program and subroutine parameters

References

Object orientation

We'll also briefly describe how to get information about Perl and how to invoke it. This will be a
roller coaster ride, so hang onto your bitmaps!

Of course, there is much more to learn about Perl. Consult the online and offline references listed
in Chapter 1 for additional and much more complete resources.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Obtaining Online Information

Perl is one the most heavily documented languages in the known Universe! This appendix only
scratches the surface. Fortunately, there exists a wealth of online information that comes
automatically with Perl. To get going, type the following command:

$ perldoc perl

This will provide you with a complete list of the many available Perl manpages. The most
important of these, besides perldoc perl itself, are listed in Table A-1.

Table A-1. The main Perl manpage documents
Manpage Description

perltoc Table of contents for the manpages
perlsyn Perl syntax
perldata Data structures
perlop Operators and precedence
perlrequick, perlretut, perlre Regular expressions; see Appendix C
perlvar Predefined variables
perlsub Subroutines
perlfunc Built-in functions
perlreftut, perlref Perl references
perlmod, perlobj Modules and objects
perlipc Inter-process communication
perlrun Perl execution and options
perldebug, perldiag Debugging and diagnostics
perlsec Perl security
perlstyle The Perl style guide
perltrap Traps for the unwary

There used to be only a single perlfaq page, listing all the Frequently Asked Questions for Perl,
but although this page still exists, its original information has been greatly expanded into the nine
FAQs detailed in Table A-2. Again, access these with the perldoc perlfaq syntax.

Table A-2. The Perl FAQ documents
Manpage Description

perlfaq An FAQ overview
perlfaq1 General questions about Perl
perlfaq2 Obtaining and learning about Perl
perlfaq3 Programming tools
perlfaq4 Data manipulation
perlfaq5 Files and formats
perlfaq6 Regular expressions; see Appendix C
perlfaq7 Perl language issues
perlfaq8 System interaction
perlfaq9 Networking

There are also various notes for different operating systems. The main platforms covered are
listed in Table A-3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table A-3. Operating system documentation
Manpage Description

perlaix Notes for AIX
perlsolaris Notes for Solaris
perlhpux Notes for HP-UX
perlcygwin Notes for Cygwin
perlvms Notes for VMS
perldos Notes for DOS
perlwin32 Notes for Windows
perlos2 Notes for OS/2
perlos390 Notes for OS/390

Virtually every CPAN module author also provides his or her own self-installing perldoc notes for
the manpage library. As an example, let's look at the first few rows of the documentation provided
for DBD::Oracle:

$ perldoc DBD::Oracle

NAME

 DBD::Oracle - Oracle database driver for the DBI module

SYNOPSIS

 use DBI;

 $dbh = DBI->connect("dbi:Oracle:$dbname", $user, $passwd);

...

Finally, if there's a particular built-in function you're interested in, you can run perldoc with the -f
function switch, to interrogate it:

$ perldoc -f printf

printf FILEHANDLE FORMAT, LIST

printf FORMAT, LIST

 Equivalent to "print FILEHANDLE sprintf(FORMAT, LIST)", except

 that "$\" (the output record separator) is not appended. The

 first argument of the list will be interpreted as the "printf"

 format. If "use locale" is in effect, the character used for the

 decimal point in formatted real numbers is affected by the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 LC_NUMERIC locale. See the perllocale manpage.

 Don't fall into the trap of using a "printf" when a simple

 "print" would do. The "print" is more efficient and less error

 prone.

For more online information, try http://www.perl.com or http://www.cpan.org.

Of course, there are also many excellent printed books describing the Perl language for both
beginners and advanced developers. See Chapter 1 for some suggestions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Running Perl Scripts

You can run your Perl scripts in several ways on Unix. For example, you can invoke the perl
program directly on the command line as follows:

$ perl my_unix_perl_script.pl
Alternatively, make your script executable and then install a full path call to your chosen version of
Perl on the first line of your script. This is done using the shebang #! syntax familiar to shell
programmers:

#!/usr/local/bin/perl

use warnings;

use strict;

Rest of my script

You can now run the program directly:

$ chmod +x my_unix_perl_script.pl

$./my_unix_perl_script.pl

On most Win32 systems, the .pl suffix is usually associated with the Perl interpreter; it should
work correctly if you double-click on your script or if you call it directly. Alternatively just call perl
directly again and specify the script name:

C:\> perl my_win32_perl_script.pl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Perl Variable Types: Scalars, Arrays, and Hashes

There are three basic variable types in Perl, the last two of which are merely collections of the first
arranged in specific patterns. These three variable types are illustrated in Figure A-1; note that
we've substituted a Perl camel for any kind of scalar element, such as a string, an integer, or a
float.

Figure A-1. Perl's three main variable types

Scalars

Scalars are single-valued entities — numbers (floats, decimals, hexadecimals, etc.), strings, or
references. (We'll describe references later in this appendix.) Scalars, which are prefixed with the
dollar sign ($), are the basic building blocks of Perl, the indivisible atom from classical Greek
science. Everything in Perl reduces to scalars, which bear names up to 251 characters in length.
Because Perl is a weakly typed language,[1] scalar types also change "automagically" between
strings and numbers as you use them:

[1] A weakly typed language is one in which variables do not have to have their datatypes strictly defined (as integers,
floats, strings, and so on). On the other hand, a strongly typed language is one in which all variables must be
predeclared with their datatypes.

$harpo = "1"; # A previously unmentioned $harpo is

 # set to a string value of "1"

$harpo++; # Perl recognizes that you wish to turn "1" into 1, and

 # then add one on, to get to 2

$harpo = "Groucho"; # The $harpo variable turns dynamically

 # back into a string, from a numeric 2

Arrays

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arrays (or list arrays) are simply lists of scalars indexed by number, starting from zero (the second
element is one away from the beginning). A typical array can be set up in the following way:

@video_collection =

 ("Day at the Races", "Duck Soup", "A Night at the Opera");

The @video_collection array has three string elements. However, an array can consist of any
mixture of atomic scalar types:

@casablanca_items = ("Rick's", 2, 4000.00, "A Beautiful Friendship");
You can think of an array as being like an ice hockey team wearing shirt numbers, but no names.
Each player is still an individual, but he or she is accessible within the team (or array) by number.
To access an individual array element, we precede the array name with a scalar $ symbol, and
follow it with the numeric position of the scalar within the array. This position, or shirt number, is
held within square brackets.

Whenever you see [] square brackets in Perl, outside of regular
expressions, you should think immediately in terms of arrays, array slices,
anonymous arrays, or lists. There is almost certainly something array-like
going on!

To demonstrate scalar notation of array elements, let's introduce a simple foreach loop in Perl to
iterate through a list, from 0 to 3:

foreach $i (0..3) {

 print $i, " ", $casablanca_items[$i], "\n";
}

This prints out:

0 Rick's

1 2

2 4000
3 A Beautiful Friendship

Notice how 4000 printed out, rather than 4000.00. If it can, Perl reduces floats to integers in
memory, to save space. It turns them back again as necessary.

There are two ways of finding out the size of an array. The first way is to use the $# notation in
front of the array name. This provides the highest array index (the size of the array minus one).
The other is to assign an array to a scalar. Perl interprets this in scalar context, and gives us the
size of the array. The following code generates the two different types of figures:

$highest_index = $#casablanca_items; # Watch out for comment confusion!
$size_of_array = @casablanca_items;

print "highest_index >", $highest_index, "<\n";

print "size_of_array >", $size_of_array, "<\n";

This code produces the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

highest_index >3<

size_of_array >4<

Some people avoid using the $# syntax for the highest current array
index. Because # is also a Perl symbol that is used to begin a comment
(which extends to the end of the line), the various # symbols can become
confusing within complicated code blocks.

Hashes

Hashes (or associative arrays) are collections of scalars indexed by string names rather than
integers. Think of the ice hockey team, in the second period, now wearing shirts displaying only
their names, without the numbers. In Figure A-1, the three scalar values are represented by
"Fred," "Barney," and "Wilma." Although at first the concept of hashes may seem a bit confusing,
you'll find that you'll tend to use it for most things in Perl once you're used to it (especially with
object orientation, as we'll see later). A hash can be constructed via the following flat list
initialization technique:

%middle_earth_leaders =

 ('Saruman', 'Orthanc', 'Sauron', 'Mordor',

 'Bombadil', 'The Old Forest');

This pattern goes in a key=>value order. To make this visually clearer, we can add some
syntactic sugar, indent a little more, and rewrite:

%middle_earth_leaders =

 (Saruman => 'Orthanc',
 Sauron => 'Mordor',
 Bombadil => 'The Old Forest');
The => aliases as a comma, while making it clear that the left-hand values are key strings, without
the need for the now unnecessary quote marks.

The other main difference between ordinary arrays and hash arrays is that you can always work
out where the individual scalars are inside an array by knowing their numeric position. Imagine
our ice hockey team lining up in a numeric order before the start of the game. Hashes are
different. We can never be sure in what order the key/value pairs will come out. This time,
imagine the entire team mobbing the crucial goal scorer just after the final whistle. There's no
predefined order. To access each scalar, we generally iterate the unordered string index names,
and then sort them out, before re-accessing the hash:

foreach $key (sort keys %middle_earth_leaders) {
 print $key, " => ", $middle_earth_leaders{$key}, "\n";
}

Notice again that we use $ in front of the hash array name to get the scalar value. However, we
know we're dealing with hashes because the clue is curly brackets ({ }), which contain the index
string name. The above code produces the following output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bombadil => The Old Forest

Saruman => Orthanc

Sauron => Mordor

Incidentally, this is where we can use our $_ pronoun for the first time, as a sort of "it." Instead of
using the $key variable explicitly, we could use the following code:

foreach (sort keys %middle_earth_leaders) {

 print $_, " => ", $middle_earth_leaders{$_}, "\n";
}

Notice that there is no scalar variable following the foreach, in the first line of code, as earlier.
However, $_ is being used in the same position of $key inside the loop. What's going on? Perl
takes the preceding code and assumes that because foreach has no associated scalar, we really
meant to use the "it" pronoun, $_. Perl therefore translates the above code into the following
logical snippet before executing it. Notice the assumed first appearance of $_:

for $_ (sort keys %middle_earth_leaders) {
 print $_, " => ", $middle_earth_leaders{$_}, "\n";
}

Revenge of the Mnemonics
Here are some easy ways to remember our Perl definitions:

Scalars

To remember scalars, think of the $ dollar sign preceding the variable name — it
looks a bit like an "S" for "Scalar."

Arrays

The simplest way to remember the @ array notation, is that @ has an "A" in the
middle, which stands for "Array."

Hashes

To try to remember the hash symbol, think of the % character, with its slash and
two small opposed circular elements, as standing for key/value. Imagine that key
and value each represents one circle from the percentage division sign, with the
slash dividing them into the key/value pair. (OK, it's not great, but this is the
"Revenge of the Mnemonics"!)

Array and Hash Array Slices

In case you're having trouble imagining arrays and hashes in terms of hockey teams accessed by
number or name, try thinking of them in more traditional pie shapes. This can make it easier to
imagine array slices, which are discrete collections of scalars. The two different pie types, and
slice patterns, are displayed in Figure A-2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure A-2. Array slices in Perl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Perl Contexts: Void, Scalar, List, and Boolean

There are three main lvalue (left-hand value) contexts in Perl; void context, scalar context, and list
context. They typically operate when subroutines are called or when an lvalue assignment is
made:

localtime(); # Step 1: Void context, nothing returned

$this_time = localtime(); # Step 2: Scalar context, scalar returned
print "$this_time \n";

@array_time = localtime(); # Step 3: Array (or list) context, array
print "@array_time \n"; # returned.

This code produces:

Wed Mar 6 22:40:40 2002

40 40 22 6 2 102 3 64 0

Let's look at the three contexts illustrated here.

Void

In void context the localtime() function fails to return anything. Otherwise Perl uses a built-in
wantarray operator in the background to return whether the function is supposed to return a
scalar value or an array list.

Scalar

When the lvalue is a scalar, as with $this_time, we know a scalar is required, so localtime()
supplies us with a single string of information:

Wed Mar 6 22:40:40 2002

List

In our last code line, wantarray tells us that an array is required in list context, so localtime() gives
us an array of different time-based variables supplying seconds, minutes, hours, day of the
month, month, number of years since 1900, the weekday, the day of the year, and a daylight
savings time flag:

40 40 22 6 2 102 3 64 0

Boolean

There is no boolean variable type in Perl, just Boolean context. In essence, if a scalar is a string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There is no boolean variable type in Perl, just Boolean context. In essence, if a scalar is a string
and it is either empty "", or set to "0", then it is interpreted as false. If it is numeric and 0 or 0.0, it
is interpreted as false. Absolutely everything else, except the special undef value, is interpreted
as true. (This can go against the grain for shell programmers, where 0 is true and everything else
is false, but is natural for C programmers from the ol' country.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Program and Subroutine Parameters

The main part of any Perl script is sometimes known as package main, and just like any Perl package it
can have subroutines. Calling these routines is straightforward. An example, displayed in Figure A-3
broken down as follows:

1. You can deliver any number of parameters directly into a Perl script via the special built-in @ARGV
array. The script's own file name is stored in another special scalar variable, $0. For instance, in
Figure A-3, if the script was called doctor_yes.pl and had three parameters, we could run it like
this:

$ perl doctor_yes.pl '007' 'James' 'Bond'

In the background, Perl would set the following values for us before the rest of the script was
executed:

$0 = 'doctor_yes.pl';

@ARGV = ('007', 'James', 'Bond');

We're then free to use these values throughout the rest of the program, as if we're accessing
ordinary variables.

2. There is a kind of mini-@ARGV for subroutines, and each subroutine gets its own one. This is the
@_ array, which dynamically expands depending on how many parameters we decide to send in.
When we call funcOneTakesTwoParams() in Figure A-3, with two parameters Laurel and Hardy,
this fills the @_ array, dedicated to funcOneTakesTwoParams(), with the two appropriate strings.

3. In funcTwoTakesSixParams() the six parameters are sent in here to fill another totally separate
@_ array. This has absolutely nothing to do with the totally separate @_ array owned by
funcOneTakesTwoParams().

Figure A-3. @ARGV and @_

Environmental Variable Access

A Perl script can also make use of environmental variables. These are stored within the built-in %ENV

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Perl script can also make use of environmental variables. These are stored within the built-in %ENV
hash:

$old_oracle_home = $ENV{ORACLE_HOME}; # Store latest ORACLE_HOME

$ENV{ORACLE_HOME} = "C:\ORANT"; # Now set new ORACLE_HOME

Variable Types

Production Perl code generally starts off with the following line:

use strict;

This pragma disciplines the naming of Perl's two main types of variable:

Package variables

These are your typical global variables. We've seen how the main Perl script is known as package
main. When we use other packages, we'll see that each one has an entirely different namespace;
in this way, different package variables avoid naming clashes. What use strict does is to ensure
that we fully qualify these variable names, so $friendly_variable in a small script must be used as
$main::friendly_variable in a script employing the use strict pragma. You can localize package
variables, within a code block, by the local operator, but only temporarily until the code block ends.

Lexical variables

Prefixed by my, these variables only exist within an appropriate code block, unless referred to from
the outside. They disappear when the code block ends. In the following code the $timeString only
exists within the while loop:

while($flag == 1){

 my $timeString = some_time_function(); # $timeString my'ed
 $flag = some_validation_function($timeString);

}

Think of package variables as being the major chess pieces, one set for the black package and one set
for the white, with $black::king being entirely different from $white::king. Think of the lexical my variables
as being more like pawns, useful to a particular package but generally disposable. However, as we'll see
later in our discussion of object orientation, even humble my variables can be vital for object orientation -
in the same way that a lowly pawn can decide chess games by reaching the opposite package's back line
and becoming a knight or a queen.

The our prefix, introduced in Perl 5.6, mimics the my syntax, but defines globals rather than lexically
scoped variables. It's a way of disguising package variables from the discipline of the use strict pragma,
often to make your code look cleaner by avoiding full package name qualification. Aside from instances
like this, where it is assumed that you know what you're doing, the use strict pragma will insist that you
employ either fully qualified package variable names or lexically declared variables. Think of our as being
like a bishop disguised as a pawn. Because it takes other pieces diagonally, a bishop is sometimes used
to hold up pawn defenses, but is still a major piece possessing lethal power.[2]

[2] At least one of your authors has forgotten this more than once, and has suffered the consequences when the big pawn thing
has turned the game, with an unexpected backwards corner-to-corner diagonal move, to take a queen.

Taint Mode

As well as use strict, you can also run your program with extra warnings to detect syntax ambiguities,
unused variables, and that sort of thing. You can turn these warnings on via either the -w flag, or (in Perl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unused variables, and that sort of thing. You can turn these warnings on via either the -w flag, or (in Perl
Version 5.6 onwards) the use warnings pragma. For instance, the following code at the top of a program
will turn on extra warnings:

#!/usr/local/bin/perl -w
use strict;

Alternatively, use the more modern form:

#!/usr/local/bin/perl

use warnings;
use strict;

To go beyond warnings in certain classes of programs, you must use taint mode. This mode works on the
simple principle that nothing derived from outside your program should be allowed to change anything
else held outside your program. All data is checked in taint mode, and the tainted variety usually includes
@ARGV program parameters, %ENV environmental variables, and any file input. Anything else that uses
tainted data also becomes tainted. You turn taint mode on with the following -T switch:

#!/usr/local/bin/perl -T
There are many mechanisms within Perl for laundering tainted data, but they all work on the basic
assumption that you know what you're doing before you untaint such data. All CGI scripts should use
taint mode, as should any other program being accessed remotely, especially via the Internet. You
should also consider taint mode for any kind of daemon, or indeed any other kind of program that deals
with external users or sensitive data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Perl References

The big difference between Perl 4 and Perl 5 was the introduction of references, which made object
orientation possible. You can think of references as being a kind of pointers, locators, or remote
tracking devices. They are the glue spot trails sticking Perl 5 data structures together. Think of ET
pointing the way home, Indiana Jones standing on the X marking the spot in Venice, or James Bond
trailing Goldfinger's car with a remote tracking device. The bony finger, the X, or the beeper are all
references to remote information. So how does Perl point to its own vital information? In structure,
references are simple scalars holding two vital pieces of information:

What kind of thing am I pointing at?

Where is the thing I'm pointing at located (in hexadecimal memory)?

These two pieces of information can be seen in Figure A-4, stored under each of our three
references. The first refers to a scalar, the second to an array, and the third to a hash. Each
reference holds the variable type it's referring to and its memory address. We can see this for
ourselves if we create three similar references, and then print them out:

$camel = "Asimov";

@camel = ("Foundation and Earth", "I, Robot", "Nightfall");

%camel = (Emperor => "Cleon",

 CouncilMan => "Trevize",

 Robot => "R. Daneel Olivaw");

$scalar_ref = \$camel; # References created by backslashing

$array_ref = \@camel; # the original variable.

$hash_ref = \%camel;

print $scalar_ref, " ", $array_ref, " ", $hash_ref, "\n";

Figure A-4. The glue of Perl references

Notice that each original variable is named camel, but this causes absolutely no clash in Perl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice that each original variable is named camel, but this causes absolutely no clash in Perl
because scalars, arrays, and hashes are all different variable types, in the same way that Homer
Simpson, Springfield philosopher, and Homer the Greek, Trojan chronicler, are different types of
people, despite possessing the same name. When executed, the print statement shown above
produced memory address traces like these:

SCALAR(0x457c3f4) ARRAY(0x457f420) HASH(0x457f468)

We can now take these three references and go back along their arrows, to get the original
information back out again:

print "SCALAR: ${$scalar_ref} \n"; # Isolate reference with braces
 # then dereference with a $ symbol.

print "ARRAY: @{$array_ref} \n"; # Isolate reference with braces,
 # then dereference with a @ symbol.

%copy_camel = %{$hash_ref}; # Isolate reference with braces, and then

 # dereference with a % to create hash copy.

foreach $key (keys %copy_camel) {

 print "HASH VALUE: $copy_camel{$key} \n"; # Get key, then value.
}

This code produces:

SCALAR: Asimov
ARRAY: Foundation and Earth I, Robot Nightfall
HASH VALUE: Cleon
HASH VALUE: Trevize
HASH VALUE: R. Daneel Olivaw

Arrow Notation

If you work carefully through the above code you'll see how the references are isolated by curly
braces. The variable symbols, $, @, and %, are then used to dereference the data to the appropriate
variable type. If this notation looks a little clumsy, relax, because you're among friends. For hashes
and arrays, the arrow operator may ride to the rescue. Let's rewrite that code for the two array types:

for $index (0..$#{$array_ref}) { # Work out size of array

 print "ARRAY $index: $array_ref->[$index] \n"; # Drill down arrow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print "ARRAY $index: $array_ref->[$index] \n"; # Drill down arrow
}

for $key (keys %{$hash_ref}) { # Work out original keys

 print "HASH $key: $hash_ref->{$key} \n"; # Drill down arrow
}

The arrow operator can make life easier, because it makes the diagrammatic arrows in Figure A-4
come alive directly within the code:

ARRAY 0: Foundation and Earth

ARRAY 1: I, Robot

ARRAY 2: Nightfall

HASH Emperor: Cleon

HASH CouncilMan: Trevize

HASH Robot: R. Daneel Olivaw

The ref Operator

References are simply ordinary scalars, meaning that they can be stored in both arrays and hashes.
We illustrate this in Figure A-5, where from a single $binary_tree_root_ref scalar we spider through a
binary tree, made up of anonymous hashes, to quickly find ROWID information.

Figure A-5. Binary tree built from hashes

In dynamic coding like this, however, there is a problem. We're often unaware of what variable types
our references are pointing to, which is information required for accurate de-referencing. The solution
is then to use the ref operator. This returns the type of variable being pointed to. The main values
returned by ref are detailed in Table A-4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table A-4. The main return values of ref
Return value Description

undef ref was supplied with a non-reference scalar
SCALAR Points to a scalar
ARRAY Points to an array
HASH Points to a hash
CODE Points to a subroutine
REF Points to another scalar reference

We can now use ref to navigate our way around any data structure held together by references, with
blocks of code such as the following:

if ((ref($this_ref) eq "SCALAR") || (ref($this_ref) eq "REF")) {

 # This reference is either pointing to an ordinary scalar,

 # or a scalar reference. Deal with accordingly...

} elsif (ref($this_ref) eq "ARRAY") {

 # This reference is pointing to an array...

} elsif (ref($this_ref) eq "HASH") {

 # Pointing to a hash...

} elsif (not ref $this_ref) {

 # $this_ref is an ordinary scalar...

}

Anonymous Arrays and Hashes

In addition to generating named arrays and hashes, we can also generate anonymous arrays and
hashes in Perl. Think of an anonymous array as being like an amateur ice hockey team being
created spontaneously by a group of friends on a visit to a local ice rink. There's simply no need for a
team name. This ability to create unnamed arrays on the fly creates enormous dynamism within our
code, and is especially good for the creation of multidimensional arrays (think of a series of wooden
Russian dolls opening up to reveal more dolls inside).

Here are the basics of creating anonymous arrays:

1. To create a reference to a named array, we could use the following code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

@le_carre = ('Tinker', 'Tailor', 'Soldier', 'Spy');

$array_ref = \@le_carre;

2. To refer to an anonymous array, we can just cut out the middleman:

$array_ref = ['Tinker', 'Tailor', 'Soldier', 'Spy'];
Think of the leading [square bracket as being a scalar array reference in disguise, with
everything up to the] square bracket being inside the anonymous array.

3. We can now create multidimensional arrays, extending the basic idea to create an outer array
and two inner ones:

$chess_ref = [["Black King", "Black Queen"],
 ["White Bishop", "White Knight", "White Rook"]
];

4. We now have a two-dimensional array accessible from the $chess_ref scalar reference. For
instance, to access "White Rook" we'd use:

print $chess_ref->[1]->[2]; # 2nd inner array, 3rd element.

(Remember that array indexes start from zero.)

5. To dig out "Black King", we'd use the following:

print $chess_ref->[0]->[0]; # 1st inner array, 1st element.

6. We can also use more than two dimensions. So if between Oracle projects you're a part-time
professor of astrophysics, specializing in 11-dimensional M-theory, Perl is the language for
you.

You can create anonymous hashes in the same basic way:

1. This time we use curly braces:

$planets_ref = { Mercury =>
 { Temp => 'Ridiculously Hot', Position => 1 },
 Mars =>

 { Temp => 'Blisteringly Cold', Position => 4 } };
2. To get the position of Mars, relative to the sun, we would use:

print $planets_ref->{Mars}->{Position}; # Key Mars, then Key Position.

3. The temperature of Mercury would be:

print $planets_ref->{Mercury}->{Temp}; # Key Mercury, then Key Temp

You can also mix and match your anonymous hash and array elements.

1. Take a look at the following devil's advocate example:

$stars_ref = { Aldebaran =>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$stars_ref = { Aldebaran =>
 [{ LightYears => 60 },
 { Constellation =>
 ['Taurus', 'Hyades', 'Crab Nebula'] }] } ;

2. We want to get the third element of interest, under the Constellation flag, for the star
Aldebaran, home of the Emperor Zurg. Can we find it?:

print $stars_ref->{Aldebaran}->[1]->{Constellation}->[2];

3. In the words of Buzz Lightyear, "yes, we can!"

Crab Nebula

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Perl's Object Orientation

So far, we've covered the whole of basic Perl in fewer than 20 pages (Perl purists will be horrified
at how much we've skipped over!) Now we're ready to engage hyper-drive and head toward Perl's
object orientation zone.

Packages

In order to provide the Holy Grail of code reusability, Perl provides plenty of scope for the creation
of software packages. These packages are generally held in a Perl module file, such as
MyPackage.pm, which can be accessed from a main script like this:

use MyPackage;

A basic package skeleton can look as simple as this:

package MyPackage;

use strict;

sub doSomeStuff { # Some subroutine code here }

sub doSomeOtherStuff { # Some other subroutine code here }

To create our package, all we needed to do was name it and create some methods. And that was
it.

Bless this Object

To go beyond packages and into object territory, we use the wizardry of the bless command. We'll
extend our earlier skeleton and make it into a real class by adding a new constructor containing
this most magical of commands:

package MyPackage;

use strict;

sub new {
 my($class) = @_;
 my $self = {}; # Anonymous hash! :-)
 bless $self, $class;
 return $self;
}
sub doSomeStuff { # Some subroutine code here }

sub doSomeOtherStuff { # Some other subroutine code here }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sub doSomeOtherStuff { # Some other subroutine code here }

There's an awful lot going on within those few lines of code in the new method. We've broken it
down into 11 life-cycle steps, listed below and illustrated in Figure A-6.

Figure A-6. Object-oriented life cycle in Perl

1. To initiate the life cycle we call the use MyPackage command to import the package from
the Perl library.

2. The package imports into memory and stands ready for action.

3. If it were a more complex package, MyPackage could multiply inherit from other objects in
the Perl library.

4. The new method is called in the main script, requesting that a key be returned to a brand
new object generated by the packaged class constructor:

$key = MyPackage->new();

5. As we've seen, this new method contains the following code:

my($class) = @_;

my $self = {};

bless $self, $class;

return $self

When the arrow notation is used with a package name to call a method, such as new, the
package name gets sent automatically into the method as the first parameter of the special
@_ subroutine parameter array. We take this string `MyPackage' and assign it to the
$class scalar variable. We then create an anonymous hash with the {} notation. This
effectively becomes the object for the rest of the life cycle, and is used later to store
important object state information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. We take a reference key to this anonymous hash object and store it in the lexically scoped
$self variable:

my $self = {};

7. The magical bless command now associates the object with the class name:

bless $self, $class;

8. With the class name firmly labeled to the object, the referential key is returned to the calling
program. The anonymous hash will continue to exist as long as at least one reference is
pointing to it:

return $self;

9. The program can now use the returned key to drill down to the object's class and call its
various methods to do useful work.

10. The calling program eventually undefines the key or lets it go out of scope.

11. With a reference count of zero, the original object has become a bubble of memory entirely
disconnected from the outside world. Because it's of no more use to anyone, it is quickly
gobbled up by Perl's garbage memory collector. The object's life cycle is complete.

After this lightning tour of basic Perl, we're now ready to start using Perl's object-oriented
packages with confidence, including Perl DBI (whose features are summarized in Appendix B).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B. The Essential Guide to Perl DBI
In this appendix we'll examine the main elements of the application programming interface (API)
for Perl DBI, the Perl module that's responsible for communication between Perl and the Oracle
database. Of course, there is much more to learn about Perl DBI. Consult the online and offline
references listed in Chapter 1, for additional and much more complete resources.

As with virtually all CPAN modules, you can generate the full online documentation for both Perl
DBI and DBD::Oracle (the Oracle-dependent driver for Perl DBI), with the two following
commands:

$ perldoc DBI

$ perldoc DBD::Oracle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DBI Class Methods

Before we connect to Oracle, we must establish a few DBI variable-naming conventions (listed in
Table B-1).

Table B-1. Conventional Perl DBI variable names
Name Description

$dbh The database handle created on database connection.
$sth The SQL statement handle.
$drh The driver handle, mostly used internally by the Perl DBI package.
$h Can represent any of the three main handles above.
$rc A general DBI return code, mostly used in a Boolean context.
$rv A general DBI return value, often used numerically.
@ary A list of returned scalars, or a row fetched from the database.
$rows The number of rows processed.
$fh A file handle, often used to change any default output from STDOUT.
undef Perl's generic undefined value is used in DBI for NULLs.
%attr A general name for hashes used to store various attributes.

connect

The connect Perl DBI constructor method generates our main database handle, $dbh:

use DBI;

my $data_source = "dbi:Oracle:orcl";
my $user = "scott";

my $password = "tiger";

my %attr = (RaiseError => 0, AutoCommit => 1);

my $dbh = DBI->connect($data_source, $username, $password, \%attr)
 or die $DBI::errstr;

Note the following characteristics of the connection string held above in $data_source:

$data_source is composed of three elements separated by colons. However if
$data_source is undefined, the connect method will replace it with the environmental
variable DBI_DSN, making the following possible:

DBI->connect(undef, $username, $password)

This becomes interpreted as:

DBI->connect($ENV{DBI_DSN}, $username, $password)
Sometimes the "Oracle" driver part of the connection string may be missing, as in:

DBI->connect("dbi::orcl", $username, $password)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DBI->connect("dbi::orcl", $username, $password)

In this case, the environmental variable DBI_DRIVER is assumed, as if the code actually
looked like this:

DBI->connect("dbi:$ENV{DBI_DRIVER}:orcl", $username, $password)
Sometimes, the actual target database string, such as orcl, may be missing:

DBI->connect("dbi:Oracle:", $username, $password)

In this case TWO_TASK, or subsequently ORACLE_SID, is assumed:

DBI->connect("dbi:Oracle:$ENV{TWO_TASK}", $username, $password)

Looking inside the $dbh variable

Assuming that everything goes well, we should now have a valid database handle stored in the
$dbh variable. But what's actually inside this? Let's find out:

my $dbh = DBI->connect('dbi:Oracle:orcl', 'scott', 'tiger');

print "dbh >", $dbh, "<\n";

Blessed references give us both the class label and an object reference:

dbh >DBI::db=HASH(0x466cd40)<

What we have in $dbh is the key to a DBI::db object. However, Perl DBI is unusual in Perl. It
operates within a hierarchy of objects rather than just one. As well as having DBI::db objects, we
later hang SQL statement objects off these objects (like baubles from a Christmas tree). Each
database handle gets its own collection of statement handles. This hierarchy can be seen in
Figure B-1.

Figure B-1. Database handles and statement handles

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each of these handles can also be assigned its own collection of initial and modifiable attributes.
Let's see that connection code again:

my %attr = (RaiseError => 0, AutoCommit => 1);
$dbh = DBI->connect($data_source, $username, $password, \%attr);
You'll often see variations on this theme, with anonymous hashes used instead:

$dbh = DBI->connect($data_source, $username, $password,

 {RaiseError => 0, AutoCommit => 1}); # Anon. Hash
We cover the main generic handle attributes in Table B-2 (many of these are read-only) and the
database handle specific attributes in Table B-3. Reading and occasionally resetting these
attributes is straightforward:

$old_value = $h->{AttributeName}; # Reading

$h->{AttributeName} = $some_new_value; # Setting

Table B-2. Main generic handle attributes
Attribute Description

PrintError Forces errors to generate warnings. Default is on.

RaiseError Forces errors to make the program die. PrintError runs before RaiseError,
if both are on. Default is off.

Warn Enabled by default to generate useful warnings.

ShowErrorStatement Appends DBI statement text to the end of other error messages usually
generated by the database.

Kids For driver handles Kids is the current number of related database handles.
For database handles it's the number of associated statement handles.

CachedKids
For a driver handle, references database connections created by
connect_cached. For database handles, this references prepare_cached
statements.

Taint If switched on, all "fetched" data is tainted if Perl is in taint mode and
method arguments are checked for taintedness.

LongReadLen
Controls the maximum length of long fields such as the various LOBs
(large objects). The default LongReadLen value of 80 returns undef for all
long fields.

LongTruncOk If any long data exceeds the LongReadLen value, the fetch will fail. If set to
true, the long data is truncated appropriately. Default is off.

FetchHashKeyName
Used with the fetchrow_hashref method and defaulted to NAME, which
may return column names in a mixture of upper and lowercase. Set to
NAME_uc or NAME_lc to force uppercase or lowercase, respectively.

ChopBlanks For fixed-width fields, controls blanks trimming.

Table B-3. Main database handle attributes
Attribute Description

Automatically commits DML statements when set to true. Defaults to true in
order to line up with JDBC and ODBC standards. Robust transactions in
production code should switch this attribute off and use the eval operator, which

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AutoCommit

production code should switch this attribute off and use the eval operator, which
fills the $@ variable with relevant information if RaiseError throws the eval
statement (if switched on; see earlier). This behavior is used to create try-catch[1]

structures:

$dbh->{AutoCommit} = 0; # Turn off! :-)

$dbh->{RaiseError} = 1; # Turn on! 8-)

eval { # try

 do_some_stuff();

 do_some_other_stuff();

 $dbh->commit;

};

if ($@) { # catch

 warn "Transaction failed: $@";

 $dbh->rollback;

 do_some_other_cleanup_stuff();

}

Driver
Holds the parent driver's handle. Useful for finding the name of the driver on a
multi-driver system:

print $dbh->{Driver}->{Name}, "\n";

Name Holds the TNSNAME of the database, where TNSNAME is part of the
connection string, dbi:Oracle:TNSNAME.

Statement Holds the latest prepared or executed statement string.

RowCacheSize A driver hint for row cache sizes for SELECT statements. Very useful for
speeding up DBI.

[1] See Pete Jordan's Exception.pm module for more explicit try-catch structures:
http://www.cpan.org/authors/id/P/PJ/PJORDAN/

Alternative Oracle connection scenarios

There are several alternatives for connecting to Oracle. You can use the first alternative, shown in
the following example, if you don't have access to a tnsnames.ora file:

$dbh = DBI->connect("dbi:Oracle:host=myhost.com;sid=orcl",

 $username, $password);

You can specify the port number in the connection, as shown in the next example. If you don't
specify the port number, DBD::Oracle will try ports 1526 and 1521 in that order. Other variations,
which are particularly appropriate for older SQL*Net systems, can be used if TWO_TASK or
ORACLE_SID have not been set:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$dbh = DBI->connect('dbi:Oracle:T:Machine:sid','username','password');

$dbh = DBI->connect('dbi:Oracle:','username@T:Machine:sid','password');

$dbh = DBI->connect('dbi:Oracle:','username@orcl','password');

$dbh = DBI->connect('dbi:Oracle:orcl','username','password');

$dbh = DBI->connect('dbi:Oracle:orcl','username/password','');

$dbh = DBI->connect('dbi:Oracle:host=foobar;sid=orcl;port=1521',

 'scott/tiger', '');

$dbh = DBI->connect('dbi:Oracle:',

q{scott/tiger@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=myhost)

(PORT=1521))(CONNECT_DATA=(SID=orcl)))}, "");

Oracle-specific connection attributes

You can select three connection attributes especially for Oracle:

ora_session_mode

Used to connect with SYSDBA or SYSOPER authorization:

DBI->connect($data_source, $username, $password,

 { ora_session_mode => 2 }); # SYSDBA

DBI->connect($data_source, $username, $password,

 { ora_session_mode => 4 }); # SYSOPER
ora_oratab_orahome

Set this attribute to true when you are using a DBD::Oracle version built against Oracle7.
Doing so changes $ENV{ORACLE_HOME} to the Oracle home directory specified in
/etc/oratab, if the database is listed there:

DBI->connect($data_source, $username, $password,

 { ora_oratab_orahome => 1 }); # True
ora_module_name

Passed to the SET_MODULE function in the DBMS_APPLICATION_INFO package, which
identifies this calling Perl application for monitoring and performance tuning purposes. In
the following example, $0 is the built-in Perl scalar variable holding the name of the Perl
script.:

DBI->connect($dsn, $user, $passwd, { ora_module_name => $0 });

connect_cached

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The connect_cached method is virtually identical in appearance to connect, described in the
previous section:

$dbh = DBI->connect_cached($data_source, $username, $password, \%attr);

New database handles are cached. Whenever another call is now made to connect_cached using
identical connection parameters, the cached database handle is returned if it is still available. If
the handle is not available, a new one is created, as with connect.

available_drivers

The available_drivers method lets us know which DBD drivers (such as DBD::Oracle) are
available on the system:

@ary = DBI->available_drivers;

data_sources

The data_sources method lists the available database targets. This method is useful for
populating drop-down CGI or Perl/Tk boxes to choose a target database before connection. If no
`Oracle' parameter is supplied, the environmental variable DBI_DRIVER is assumed:

@ary = DBI->data_sources('Oracle');

(DBD::Oracle reads oratab and tnsnames.ora to get this information.)

trace

The trace method lets you set the desired debug trace level. Various debug trace levels (shown in
Table B-4) are possible under DBI. The default is to turn off tracing.

Table B-4. Tracing levels
Level Description

0 Tracing is disabled.
1 Useful for overviews.
2 For more serious debug work.
3, 4, 5... Ever more complex detail for hard-core developers.

Typical calls might look like this:

DBI->trace(0); # Turn tracing off.

DBI->trace(1); # Turn tracing on, STDERR output.

DBI->trace(2, "my_trace_file.txt"); # Increase trace level, and

 # redirect to named file.

You can use another method in conjunction with trace for your own debug
messages, as shown here:

DBI->trace_msg($message) ;

DBI->trace_msg($message, $min_level) ;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DBI->trace_msg($message, $min_level) ;

If the trace level is greater than 0, this will write $message to either
STDERR or any other nominated trace file, or you can specify the
minimum level it should report on.

For further trace ability, Perl DBI also holds the very latest handle information in the following
handles:

$DBI::err:

Holds the Oracle error code from the last method called.

$DBI::errstr:

Returns the latest Oracle error message.

Let's test this by setting up a piece of code we know will go wrong:

$sth = $dbh->prepare('SELECT Should_go_wrong" from dual'); # Quote! :)

print "DBI::err: >", $DBI::err, "<\n";

print "DBI::errstr: >", $DBI::errstr, "<\n";

This produces the following output:

DBI->err: >1740<

DBI->errstr: >ORA-01740: missing double quote in identifier
(DBD ERROR: OCIStmtPrepare)<

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Database Handles — Preparation

There are two groups of database handle methods. The methods in the first group help prepare
SQL statement handles or check that they can be prepared. The methods in the second group
work with SQL statement executions or clean up afterward. In this section, we'll work through the
first group, those that help prepare the SQL statement handles. Later in this chapter, after
covering the statement handles themselves, we'll discuss the second group of database handle
methods. Think of these two groups as being like artillery troops and assault troops. They're all
wearing the same uniform, but some prepare the ground while others go in and do the real work.

ping

The ping method checks to see if the target database server is still running. It is useful for batch
programs. If this function fails to return true, there is little point trying to use the handle. You need
to reconnect to the database:

$rc = $dbh->ping;

prepare

The prepare method creates and prepares a statement handle for later execution:

$sth = $dbh->prepare("SELECT SYSDATE FROM DUAL");

prepare_cached

The prepare_cached method is similar in concept to connect_cached, as described earlier:

$sth = $dbh->prepare_cached($statement);

If the same parameters are re-sent to prepare_cached, it tries to use a cached $sth statement
handle instead of creating a new one.

quote

The quote method provides an excellent utility for preparing DML statements:

$quoteString = $dbh->quote("Let's buy O'Reilly books!"); # :-)

print "quoteString >", $quoteString, "<\n";

This produces the following output:

quoteString >'Let''s buy O''Reilly books!'<

Notice the doubled single-quotes which make this string ideal for inserting into an Oracle table.
Here's one we created earlier:

create table test_table (message_col varchar2(50));

The following code is now possible:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$dbh->{AutoCommit} = 0; # Turning AutoCommit off! :)

eval {

 $quoteString = $dbh->quote("Let's buy O'Reilly books!");
 $sth = $dbh->prepare("INSERT INTO test_table

 VALUES ($quoteString)");
 $sth->execute;

 $dbh->commit;

};

if ($@) {

 warn "Transaction failed: $@";

 $dbh->rollback;

}

The row inserts neatly into the database:

SQL> SELECT * from test_table;

MESSAGE_COL

--

Let's buy O'Reilly books!

SQL>

An undefined value, such as $dbh->quote($an_undefined_value), will be returned as the string
NULL (without single quotation marks) to match how NULLs are represented in SQL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Statement Handle Methods

Before we execute prepared statements, we can bind IN and OUT parameters using the methods
described in this section.

bind_param

The bind_param method binds parameters to SQL statements. Placeholders are numbered from 1
upwards. For example:

$sth = $dbh->prepare("SELECT * FROM emp

 WHERE ename LIKE ? OR ename LIKE ?");

$sth->bind_param(1, "MILLER");

$sth->bind_param(2, "K%");

$sth->execute;

You can also use named parameters, described at the end of the next section.

bind_param_inout

The bind_param_inout method, available under DBD::Oracle, helps us with PL/SQL. This method
allows us to call procedures with OUT parameters. Let's see how it works.

1. First of all, let's create a simple Oracle procedure:

CREATE OR REPLACE PROCEDURE oracle_power (in_base IN NUMBER,

 in_power IN NUMBER,

 out_result OUT NUMBER) IS

BEGIN

 out_result := POWER(in_base, in_power);

END;

2. Avoiding Perl's own 9**4 notation, we can now run the following code to work out 9 to the power
of 4:

$sth = $dbh->prepare("BEGIN oracle_power(?, ?, ?); END;");

$sth->bind_param(1, 9); # 1st parameter, value 9
$sth->bind_param(2, 4); # 2nd parameter, value 4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$sth->bind_param_inout(3, \$got_the_power, 50); # Notice reference! :)

$sth->execute;

print "got_the_power >", $got_the_power, "<\n";

3. We must supply bind_param_inout with an extra parameter, in this case 50, which is the
maximum length of data we're expecting to receive back. If in doubt, opt for an XXL size here,
as long as you have sufficient memory. The Perl code shown above returns the following result:

got_the_power >6561<

As an alternative to using question marks, you can also use named bound parameters with
DBD::Oracle. In the following example, the procedure has been predefined like this:

CREATE OR REPLACE PROCEDURE

 squarer (in_number IN NUMBER, inout_result IN OUT NUMBER) IS

BEGIN

 inout_result := POWER(in_number, 2);

END;

Perl DBI code to use this procedure would look something like this:

my $in_number = 3;

my $inout_result;

$sth = $db->prepare(q{

 BEGIN

 squarer(:in_number, :inout_result);

 END;

 });

We bind here, then execute the call.

$sth->bind_param(":in_number", $in_number);

$sth->bind_param_inout(":inout_result", \$inout_result, 1);

$sth->execute;

print $inout_result;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

execute

We've already strewn the execute method liberally throughout this chapter. It's used to execute
prepared statements. It returns an undef on failure, or the number of rows affected if this information
can be determined. Otherwise, it returns -1.

$rv = $sth->execute;

If bind variables are being used, we can send these in as an array, rather than binding them all
explicitly with separate bind_param calls:

$rv = $sth->execute(@bound_values);

fetchrow_array

The fetchrow_array method fetches rows from an array. A popular FETCH command is illustrated in
Figure B-2.

Figure B-2. A simple fetchrow_array example

Let's see what's going on here.

1. Working through Figure B-2, we first create our object with the connect method. (The diagram
displays internal objects, but we never need to concern ourselves with these in our coding
work.)

2. Next we prepare our statement handle.

3. We're then able to loop around the statement handle object using the fetchrow_array method,
which creates a copy of each data row selected.

4. We finally disconnect the database handle, which leads to the destruction of associated DBI
objects by the garbage memory collector.

fetchrow_arrayref

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Going a step beyond fetchrow_array, the fetchrow_arrayref method is more efficient because instead
of copying data rows into a local array, it provides a reference to the row of data already stored within
the driver. It's a fairly straightforward operation to drill down from the reference into this remote array,
as shown in Figure B-3.

Figure B-3. fetchrow_arrayref

fetchrow_hashref

In a similar manner, the fetchrow_hashref method (shown in Figure B-4) returns a reference to an
anonymous hash for each row. This time the data is keyed on column name, rather than numeric
index. It's best to give this method an optional string parameter of either NAME_uc or NAME_lc to
ensure that column names are always in a preferred case; otherwise, they may be in mixed case,
especially if you're using Perl DBI in a portable manner across different database types.

Figure B-4. fetchrow_hashref

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fetchall_arrayref

Instead of accessing data one row at a time, you can get a single reference to access all of the data in
one go (if you have the available memory). Use the fetchall_arrayref method, as shown in Figure B-5
which demonstrates the default use of fetchall_arrayref. A single key accesses a first-level array
composed of reference keys to second-level arrays. There is one of these for each row of data found
by the SELECT statement.

Figure B-5. fetchall_arrayref with array batches

Figure B-6 demonstrates a variation on this theme. An optional hash marks out the various column
names required. This transforms the second-level arrays into hashes, accessed by column name
rather than numeric index.

Figure B-6. fetchall_arrayref with hashes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fetchall_hashref

The fetchall_hashref method can only be used with SELECT statements containing unique key data
combinations, such as single-column primary keys. This method creates a first-level hash possessing
as many index keys as there are uniquely keyed rows. We can then drill down from this hash into
second-level hashes, which contain all of the row data by column name. Figure B-7 illustrates the use
of this method.

Figure B-7. fetchall_hashref with its key requirement

finish

The finish method deactivates an active SELECT statement handle, thus causing any pending
unfetched data to be discarded. This can free up resources in the server, especially for large GROUP
BY or ORDER BY queries. It is rarely used, however, because statement handles deactivate anyway
after a last row is fetched. Nevertheless, you may want to use this method if you're only fetching a
fixed number of rows from a statement (see the selectrow_array method mentioned later). You should
also finish active statements before disconnecting from a database:

$rc = $sth->finish;

rows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The rows method holds the number of rows processed by the statement; it returns -1 if it is unable to
determine a figure. When you use this method with a SELECT statement, wait until all of the rows
have been fetched before calling it, to get accurate results:

$rv = $sth->rows;

bind_col

For a more efficient way to access data, you can use the bind_col method and its partner,
bind_columns. We simply bind in the variables we need to associate selected columns with, before
calling a simple fetch command:

Let's examine the following code:

$sth = $dbh->prepare(" SELECT deptno, dname, loc FROM dept ");

$sth->execute;

$sth->bind_col(1, \$deptno); # Notice the use of referencing! :)
$sth->bind_col(2, \$dname);
$sth->bind_col(3, \$loc);
while ($sth->fetch) { # Simple fetch
 printf "%2d %14s %13s \n", $deptno, $dname, $loc;

}

When executed, this prints the following:

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

bind_columns

Using the bind_columns method, you can shrink those three bind_col lines into a single bind_columns
call. Simply ensure that you have the same number of variables in the bind_columns call as there are
fields to be selected, and also make sure you then get them in the right order. For example:

$sth->bind_columns(\$deptno, \$dname, \$loc); # List of references

dump_results

This prototyping method fetches all the selected rows out from a statement, as comma-separated
values, and prints them to STDOUT:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$sth->dump_results;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Database Handles — SQL and Cleanup

To save coding, we often combine database and statement handles using the methods described
in this section. When we are finished executing SQL statements, we clean up with a database
disconnection, also described in this section.

do

The do method is typically used to prepare and execute DML statements in one call. We can also
use it in combination with bind parameters, as shown in the following example:

$dbh->{AutoCommit} = 0; # Turn it off! :)

$sth = $dbh->do("DELETE FROM test_table"); # Binds unnecessary

$dbh->commit;

$sth =

 $dbh->do("INSERT INTO test_table values (?)",

 undef, # <= Can be Attributes

 "It's worse than that Jim"); # Binding this 1st value

$dbh->commit;

Let's just check that:

SQL> select * from test_table;

MESSAGE_COL

--

It's worse than that Jim

SQL>

If the statement will be executed several times, it is often more efficient to carry out a single
prepare, followed by many execute commands, to avoid constantly re-preparing the same DML
statement.

selectrow_array

The selectrow_array method is a super-method that combines the prepare, execute, and
fetchrow_array entries — all in one go. It generates an array consisting of the first row found:

@row_ary = $dbh->selectrow_array($statement);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

@row_ary = $dbh->selectrow_array($statement);

selectall_arrayref

The selectall_arrayref alternative method uses fetchall_arrayref and thereby generates a
reference to a first-level array containing references to however many second-level arrays are
necessary to hold every row returned by the SELECT statement. It's a head twister — but in a
good way. Here's an example; see the earlier Figure B-5 for more details.

$ary_ref = $dbh->selectall_arrayref($statement);

selectall_hashref

We use the fetchall_hashref method, this time as the final link in the selection chain, with
selectall_hashref. You must supply a column key, as illustrated in the following example. See the
earlier Figure B-7 for more details.

$hash_ref = $dbh->selectall_hashref($statement, $key); # Use key! :)

selectcol_arrayref

The selectcol_arrayref method returns a reference to an array containing the first field from each
row:

$ary_ref = $dbh->selectcol_arrayref($statement);

Other columns can be pushed into the array via the Columns attribute. Groovy!

$ary_ref =

 $dbh->selectcol_arrayref($select_statement, { Columns => [1,2] });

commit

The commit method commits transactions when AutoCommit is set to false:

$rc = $dbh->commit;

rollback

The rollback method rolls back transactions:

$rc = $dbh->rollback;

begin_work

This method switches AutoCommit off until either a commit or a rollback is encountered, thus
completing a single explicit transaction. The AutoCommit behavior then reverts back to what it
was previously.

disconnect

The disconnect method is typically seen just before the end of a program. It neatly closes down

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The disconnect method is typically seen just before the end of a program. It neatly closes down
the database connection.

$rc = $dbh->disconnect or warn $dbh->errstr;

If you're using transactions, it is good practice to explicitly call either commit or rollback before
disconnecting in order to keep your code clean and reliable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Metadata

There are several metadata-related method calls associated with the main database handle.
These are summarized in Table B-5. (There will be an increasing amount of metadata in future
versions of DBI. Check perldoc DBI for the latest details.)

Table B-5. Database handle metadata methods
Method Description

table_info Lists schemas, tables, and other object metadata.
tables A simpler interface to the tables_info method.
primary_key_info Provides primary key metadata.
primary_key A simpler interface to the primary_key_info method.

type_info_all Returns a reference to a read-only array used to drill down on all type
information in the database.

type_info Returns information on a particular data type.
foreign_key_info Returns foreign key information.
column_info Returns column information.

Statement Handle Metadata

There are many read-only attributes you can access via the statement handle. Rather than
describe all of them individually, we've provided the following piece of code as a good guide to the
main ones used. Note that some are straightforward string values, whereas others are array
references to columnar information:

use DBI;

my $dbh = DBI->connect('dbi:Oracle:orcl', 'scott', 'tiger',

 {RaiseError => 1, AutoCommit => 0});

my $sth = $dbh->prepare("SELECT empno, hiredate

 FROM emp

 WHERE ename = ? ");

$sth->bind_param(1, 'MILLER'); # SQL uses 1 bound parameter

$sth->execute;

print "Number of Fields : ", $sth->{NUM_OF_FIELDS}, "\n";
print "Bound parameters : ", $sth->{NUM_OF_PARAMS}, "\n\n";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

print "Bound parameters : ", $sth->{NUM_OF_PARAMS}, "\n\n";

for $column (0..($sth->{NUM_OF_FIELDS} - 1)) { # Columns, 0 - N

 print "Column Name : ", $sth->{NAME}->[$column], "\n",
 "SQL Data Type : ", $sth->{TYPE}->[$column], "\n",
 "Precision : ", $sth->{PRECISION}->[$column], "\n",
 "Scale : ", $sth->{SCALE}->[$column], "\n",
 "Nullable? (1=yes): ", $sth->{NULLABLE}->[$column], "\n\n";
}

print "SQL Statement : ", $sth->{Statement}, "\n";
When the above code is run, it generates the following listing:

Number of Fields : 2

Bound parameters : 1

Column Name : EMPNO

SQL Data Type : 3

Precision : 4

Scale : 0

Nullable? (1=yes):

Column Name : HIREDATE

SQL Data Type : 9

Precision : 75
Scale : 0

Nullable? (1=yes): 1

SQL Statement : SELECT empno, hiredate

 FROM emp

 WHERE ename = ?

You can see that some figures included above are unreliable when used with irrelevant data
types, such as 75 for the Precision of the HIREDATE column.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle-Specific Methods

There are a number of special Perl DBI methods that support the use of DBD::Oracle and its
handling of particular Oracle datatypes and operations.

DBMS_OUTPUT Methods

Four additional functions, available within DBD::Oracle, are provided for use in accessing Oracle's
DBMS_OUTPUT built-in package; they are listed in Table B-6.

Table B-6. DBD::Oracle's private methods for Perl DBI
DBD::Oracle function Description

plsql_errstr Provides debug text from potential PL/SQL compilation errors
dbms_output_enable Enables the DBMS_OUTPUT package for use with Perl
dbms_output_get Provides access to the DBMS_OUTPUT.GET_LINE function
dbms_output_put Provides access to the DBMS_OUTPUT.PUT_LINE function

The following code illustrates the use of some of these private methods:

#! perl -w

use strict;

use DBI;

Step 1: Connect to orcacle database, orcl.

my $dbh = DBI->connect('dbi:Oracle:orcl', 'scott', 'tiger'),

 {RaiseError => 1, AutoCommit => 0});

Step 2: Enable the later collection of DBMS_OUTPUT information.

$dbh->func(1_000_000, 'dbms_output_enable');

Step 3: Prepare and run some anonymous PL/SQL containing some

output from DBMS_OUTPUT.

my $sth = $dbh->prepare(q{

 DECLARE

 hello_string VARCHAR2(50);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 BEGIN

 SELECT 'Hello ' || USER || '! :-)'
 INTO hello_string
 FROM DUAL;
 dbms_output.put_line(hello_string);

 END;

 });

$sth->execute;

Step 4: Get the output and print it out.

print $dbh->func('dbms_output_get'), "\n";

$dbh->disconnect;

Let's see what's going on here.

1. First of all, set up the connection to the target database.

2. Now we use our private dbms_output_enable method to adjust the memory necessary to pick
up DBMS_OUTPUT.PUT_LINE calls later.

3. We prepare a very simple piece of anonymous PL/SQL to print out a message from our
sponsor.

4. Now we use a second private method, dbms_output_get, to pick up the relevant message via
DBD::Oracle so we can print it out:

$ perl hello_dbd.pl

Hello SCOTT! :-)

Handling LOBs

When DBD::Oracle fetches LOBs (large objects), they are treated as LONGs and are subject to the
LongReadLen and LongTruncOk handle attributes described earlier. Note that at the time of this
writing, only single-row LOB updates were supported, and the ability to pass LOBS to PL/SQL blocks
was not available. Consider the following examples:

To insert or update a large LOB, DBD::Oracle has to know about this operation in advance. To
do this in Oracle8 you need to set the ora_type attribute — for example:

$sth->bind_param($field_num, $lob_value, { ora_type => ORA_CLOB });
The ORA_CLOB or alternative ORA_BLOB constants are imported with:

use DBD::Oracle qw(:ora_types);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use DBD::Oracle qw(:ora_types);

To make scripts work for both Oracle7 and Oracle8 (and later), Oracle7's DBD::Oracle treats
the LOBs as LONGs without error. Specify them as ORA_CLOB or ORA_BLOB, as above,
and DBI will be able to handle the LOBs properly.

In inserts or update, where there are multiple LOB fields of the same type in a particular table,
you must tell DBD::Oracle which field the LOB parameter relates to:

$sth->bind_param(1, $myLobValue,

 { ora_type => ORA_CLOB, ora_field= > 'my_column1' });

At the time of this writing there is no direct way to write LOBs in chunks via DBD::Oracle. The
official back-door workaround is to use DBMS_LOB.WRITEAPPEND or, with some earlier
versions of Perl DBI, the undocumented feature blob_read. Note, though, that it is always
better to stick with documented DBI functions to remain on the safe side. (See Chapter 7, for
mention of a possible future solution to this LOB problem via Oracle::OCI.)

Binding Cursors

DBD::Oracle returns cursors from PL/SQL blocks as shown here:

use DBI;

use DBD::Oracle qw(:ora_types);

my $dbh = DBI->connect('dbi:Oracle:orcl', 'scott', 'tiger'),

 {RaiseError => 1, AutoCommit => 0});

my $sth = $dbh->prepare(q{

 BEGIN OPEN :cursor FOR

 SELECT deptno, dname, loc

 FROM dept

 FROM user_tables WHERE loc = :loc;

 END; });

$sth->bind_param(":loc", "BOSTON");

my $sth_curs;

$sth->bind_param_inout(":cursor", \$sth_curs, 0,

 { ora_type => ORA_RSET });

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 { ora_type => ORA_RSET });
$sth->execute;

$sth_curs can now be used like any other statement handle...

while (@row = $sth_curs->fetchrow_array) {

...

Notice how ora_type is set to ORA_SET; this is mandatory. See the curref.pl script in the Oracle.ex
directory in DBD::Oracle's source distribution for more examples.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix C. The Essential Guide to Regular Expressions
The concept of regular expressions (or regexes as they're often known) is central to the Perl
language. Regular expressions have been available for a long time in Unix tools such as grep,
sed, awk, and egrep, and they have also made their way into Java and Python. But they are most
closely associated with Perl where they are used extensively for pattern matching. They are also
very important for data munging, as we describe in Appendix D.

Regular expressions are patterns of literals and metacharacters that match target combinations of
characters embedded within input data. Although the simplest regular expression can be very
simple indeed (it's simply a literal string), regexes can also be very complex. They can provide
amazing efficiency, but can also lead to great frustration. We have found that unless you live in
the same universe as Spock or Data, where regexes compete with music and chess for sublime
mathematical resonance, they most likely mean pain, bashed foreheads, and late-night viewings
of Casablanca and The Matrix to calm the nerves. It's only really by writing a million and one
regexes that most people do eventually figure out what the heck is going on — and even then,
there's more to learn.

In this appendix, we'll look at the origins of regular expressions and the main concepts underlying
their use. We'll also examine Perl's built-in string-handling functions, which often supply enough
functionality that you won't need to use regexes at all. We'll discuss the basics of constructing
regular expressions and will pay special attention to the use of metacharacters and suffixes.
Metacharacters are special characters such as the asterisk (*) that can be used to drive fuzzy
nonliteral matching. Suffixes are special switches at the end of matches and substitutions that
change their exact operation — for example, by making them replace strings globally across an
entire input, rather than just substituting the first one.

Obviously, in this short appendix we can only scratch the surface of regular expressions. We
strongly recommend that you consult the definitive reference on regular expressions, Jeffrey
Friedl's excellent Mastering Regular Expressions (O'Reilly & Associates); because of its cover
design, it's known as the Owl Book. You can also generate the full online documentation for Perl
regular expressions with the following command:

$ perldoc perlre

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Origins of Regular Expressions

Where did regular expressions come from and why the funny name? Rather interestingly, they
grew from original research work on artificial intelligence, dating back nearly 60 years and
preceding the era of computing.

The Early History

In the 1940s, Warren McCulloch and Walter Pitts modeled neuron-like finite state machines to
mimic the human nervous system in an effort to help build a Turing machine. After being
introduced to this research by John von Neumann, mathematician Stephen Kleene later
described these models in a notation that he called regular sets. The actual term regular
expression made its initial debut in Kleene's 1951 paper, from the University of Wisconsin at
Madison, titled "Representation of events in nerve nets and finite automata."

Regexes supplemented Kleene's Princeton University doctoral work, dating from the 1930s, on
recursive algorithms,[1] a fundamental contribution which helped make electronic computing
directly possible in the first place. Kleene's work also complemented related work by the more
famous British scientist Alan Turing, who like Kleene was a doctoral student (1936-1938) of
Professor Alonzo Church, the enigmatic head of Princeton's mathematics department. Church
himself had extended the earlier recursive work of Vienna's Gödel, who'd briefly lectured Kleene
at Princeton in 1934 before returning to Austria. Gödel later escaped from Hitler's Germany and
came back to Princeton in 1940, via Russia and Japan, after World War II broke out. After Turing
completed his own doctorate, and some hurried studies on ciphers, he returned to England in
1938 to successfully crack the Nazi's ENIGMA code via the use of repetitive symbolic
manipulations. In these various ways, an early form of regular expressions grew from the
mathematical culture dish of Princeton.

[1] There's a good joke on recursion: You can only learn how it works if you understand it already. (You'll be pleased to
hear that's all we're going to say about recursion.)

After the war ended, research continued towards regular expressions proper and the creation of
their backbone components. The most famous of these is the asterisk wildcard, still technically
known as the Kleene Star, which was heavily adopted by many different computing applications.
From these beginnings, Kleene's regular expressions gradually made their way into a wide range
of programming languages, helping develop many other different technologies along the way.

qed, ed, and vi

Jumping ahead a number of decades, MIT's Ken Thompson incorporated Kleene's regular sets
notation into Butler Lampson and Peter Deutsch's original Berkeley qed editor program. This was
the distant ancestor of Thompson's ed and Bill Joy's personal interpretation of vi. With the help of
Dennis Ritchie, regexes were also popularized via the Unix grep program, and from this historical
point, regexes inveigled their way into sed, lex, awk, nawk, gawk, and a host of other programs,
including the venerable CHANGE command line editor within SQL*Plus.

Enter Perl

When Perl bubbled spontaneously from its primeval soup in 1987, consisting mainly of amino
acids stripped from sed and awk, the rest was pure biological determinism, swimming along in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

acids stripped from sed and awk, the rest was pure biological determinism, swimming along in the
moonlight with the general tide of Unix. If you add Larry Wall's linguistic origins to this tidal churn,
the strong relationship between Perl and regexes was an almost inevitable development (or a
successful pre-adaptation, as Darwinist Stephen J. Gould might have put it). And the relationship
with regexes has remained central to Perl ever since, as Figure C-1 illustrates.

Perl vs. grep

Regular expressions are found within many Unix tools to pattern-match groups of characters
within input data. Such data usually comes in through files, though it can be any kind of data held
within a scalar zvariable. Although many such tools exist — for example, grep and awk[2] — for
finding patterns of characters, it's within Perl that pattern matching has been most strongly
developed. Perl contains the greatest range of operators and metacharacters for finding and
substituting patterns into something else. Compared to grep, regexes in Perl have three major
advantages:

[2] grep itself stands for Global Regular Expression Print. awk is named after the surnames of its creators, Alfred V.
Aho, Peter J. Weinberger, and Brian W. Kernighan. (Alfred Aho also invented egrep. The roots of regexes go deep.)

1. They pulsate strongly within the beating heart of the Perl core engine. You can therefore
program far more complex regular expressions in Perl than you could ever imagine doing
with grep, and you can then immediately wrap them within programming constructs.

2. Regexes in Perl can deal with binary data, without turning your xterm screen into a mass of
Klingon ideographs. This can all too easily happen when you do an ordinary grep on a
binary file.

3. Because Perl is available on virtually every operating system, regexes written in Perl can
be equally widespread. This is especially comforting for sysadmins operating across an
entire range of OS quadrants. And because Perl works seamlessly on Win32, you therefore
get regexes there too.

Figure C-1. Languages within languages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Built-in String Handling Functions

Lending the power of regular expressions to some simple data-handling operations is a bit like
giving a Kalashnikov to a small fish. It's simply overkill. To prevent ourselves from getting carried
away and throwing away potential speed, we'll summarize the more useful of Perl's built-in string
handling functions in Table C-1. Repeat after us:

We're only allowed to use regular expressions if the built-in functions won't hack it.

In this table, the Perl function is shown in lowercase (e.g., index) and its replaceable parameters
in uppercase (e.g., STRING). As with most things in Perl, many of the functions in Table C-1 use
$_ as a default EXPRESSION value, if no EXPRESSION value is supplied.

Table C-1. Built-in Perl string-handling functions
Function Description

index STRING,
SUBSTRING
[,OFFSET]

Returns the position of the first SUBSTRING in STRING, where the first
position is zero. If OFFSET is given, it tells index how many characters to
skip before searching:

index('Toad of Toad Hall', 'Toad') gives 0

index('Toad of Toad Hall', 'Toad', 1) gives 8

(-1 is returned if no match is found)

join
EXPRESSION,
LIST

Joins a LIST of strings into a single string, each separated by EXPRESSION
(which can be an empty string, ""):

join ":", "Badger", "Ratty", "Mole" gives Badger:Ratty:Mole

lc EXPRESSION
Lowercases EXPRESSION:

lc "The Stoats took the Hall" gives the stoats took the hall

lcfirst
EXPRESSION

Lowercases the first letter of EXPRESSION:

lcfirst "MyBeautifulMind" gives myBeautifulMind

length
EXPRESSION

Gives the length of EXPRESSION:

length "Washerwoman" gives 11

reverse
EXPRESSION

When used in a scalar context and with a single scalar, this reverses
EXPRESSION:

reverse "Poop poop, said Toad" gives daoT dias ,poop pooP

(reverse is also often used in a list context to reverse arrays, hashes, and
other listy type things.)

rindex STRING,
SUBSTRING
[,POSITION]

Similar to index, this returns the position of the rightmost SUBSTRING in
STRING. The optional POSITION is the rightmost position which is
acceptable:

rindex "Toad of Toad Hall", "Toad" gives 8

rindex "Toad of Toad Hall", "Toad", 7 gives 0

(-1 is returned if no match is found.)

split /PATTERN/,
This function is the black sheep of the built-in string handling world, because
it rather naughtily uses regular expressions to process the /PATTERN/

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

split /PATTERN/,
EXPRESSION,
LIMIT

it rather naughtily uses regular expressions to process the /PATTERN/
match, to split EXPRESSION strings into lists. After we've covered regular
expressions proper, we'll come back to split, one of the most useful of the
Perl munge operators.

sprintf FORMAT,
LIST

Returns a formatted string in the manner of the ubiquitous printf conventions
from the C programming language. The main sprintf Perl formatters are
described in Table C-2. This is highly useful for reports.

substr
EXPRESSION,
OFFSET
[,LENGTH]
[,REPLACEMENT]

Extracts a substring out of EXPRESSION, starting at OFFSET, where the
first position is zero: substr "Messing about in boats", 8 gives about in boats

If OFFSET is negative, the count starts from the right-hand side of the string:
substr "Messing about in boats", -8 gives in boats

If LENGTH is omitted, everything to the end of the string is returned.
Otherwise, LENGTH determines the length of the string returned: substr
"Messing about in boats", 8, 5 gives about

If LENGTH is negative, this is how many characters are left off the end of the
substring: substr "Messing about in boats", 8, -5 gives about in

The optional REPLACEMENT will replace the substring it finds in
EXPRESSION:

$stoat1 = "Messing about in boats";

$stoat2 = substr $stoat1, 0, 16, "Wonderful";

print $stoat1, "\n";

print $stoat2, "\n";

This produces:

Wonderful boats

Messing about in

An alternative to using REPLACEMENT is to use substr on the left-hand side
of an assignment operation:

$stoat = "Messing about in boats";

substr ($stoat, 0, 16) = "Wonderful";

print $stoat, "\n";

This produces:

Wonderful boats

uc EXPRESSION
Uppercases EXPRESSION:

uc "canal barge" gives CANAL BARGE

ucfirst
EXPRESSION

Uppercases the first character of EXPRESSION:

ucfirst "railway engine" gives Railway engine

Table C-2. Perl formats for sprintf
Formatter Description
%c A character with the given number
%s A string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%d A signed integer, in decimal
%u An unsigned integer, in decimal
%o An unsigned integer, in octal
%x An unsigned integer, in hexadecimal
%e A floating-point number, in scientific notation (e.g., 1.00e+09 for 1 billion)
%f A floating-point number, in fixed decimal notation
%g A floating-point number, in either %e or %f notation
%X Like %x, but using upper-case letters
%E Like %e, but using an upper-case "E" (e.g., 1.00E+09)
%G Like %g, but with an upper-case "E" (if applicable)
%b An unsigned integer, in binary
%p A pointer (outputs the Perl value's address in hexadecimal)

%n This is a special formatter which stores the number of characters output so far into
the next variable in the parameter list

%% An ordinary percent sign

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Regular Expression Concepts

As we mentioned earlier, regular expressions are patterns of literals and metacharacters that
match target combinations of characters embedded within input data:

Literal character

A plain honest-to-goodness character, which mostly means no harm to anyone and which
goes about under the motto, "What you see is what you get". So when you see the letter n
by itself, without a mischievous backslash nearby, it means "please match the letter n at
this position, and nothing else".

Metacharacter

A nonalphabetic keyboard character, such as ^, *, $, and so on, which either has a special
meaning or can give special meaning to surrounding characters. For instance, the \
metacharacter backslash gives a special meaning to the letter n, making it into the newline
character, \n.

Matching, Substitution, and Translation

There are three main types of regular expression. All three work only on scalars, usually strings:

m// is for match

At the basic level, m// simply tells you whether the required regular expression is matched,
or exists, within the input data. Because matching is so ubiquitous within Perl, just the
simple use of // will indicate to Perl that you're performing a match. If you change the
delimiters, however, you do need to explicitly use the m prefix, as in m%my match%. (We'll
say more about delimiters shortly.)

s/// is for substitute

If you want to replace the located matches with something else, you call up the substitution
operator. You always need to use the s prefix.

tr/// is for translate

Although St. Peter at the Perly gates would fail to recognize tr/// as a definitive regular
expression operator, it's so close in form and function that we can usually get away with
fudging the issue. The translate operator takes a range of characters on its left side, and
replaces them with another range of specified characters on its right side. Its typical use is
to capitalize a passage of text, or shift some number ranges. To keep old sed users happy,
tr/// also possesses a synonym, the y/// operator, which behaves in an identical fashion. A
typical translation program to uppercase every line of an input file would look like this:

while(<>){

 tr/a-z/A-Z/;

 print;

}

Regular expression input

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A special double character is used to indicate the scalar value the regex should work on. This is
the =~ pattern binding operator. Although this looks a lot like an = assignment operator, try to
think of it being more like the word "contains":[3]

[3] The =~ operator originates from the ~ and !~ regex operators in awk.

print "I have found a match" if $target_string =~ /corleone/;

This translates into English, as follows:

Print out the phrase, `I have found a match' if the variable $target_string contains the
matching word `corleone'.

As with awk, the good angel of =~ has a naughty devil partner-in-crime for negative assertions, !~:

print "I have failed to find a match" if $target_string !~ /michael/;

This translates to:

Print out the phrase `I have failed to find a match' if $target_string fails to contain the
word `michael'.

You can use any nonalphanumeric or non-space character as a delimiter
within Perl regexes. This is particularly useful when you're matching
strings that contain / Unix slash characters, which you need to otherwise
escape with a \ backslash character. A typically required match pattern
string might be "/etc/passwd". When using the standard match syntax, this
would become /\/etc\/passwd/, a process known as toothpicking. You can
avoid this unsightly use by changing the delimiter character directly
following from the now compulsory match function character, m, thus
m#/etc/passwd#. No more fangs!

You can also use four sets of brackets, m<...>, m{...}, m(...), and m[...].
The first two are usually preferred because their bracket characters are
less frequently used within regexes. You can also mix and match brackets
for substitutions, s{...}<...>, though you may still prefer s(...)(...) or even
s#...#...#. As a rule of thumb, use delimiters that aren't going to appear in
your regex to keep everything clean. For example s<><> is a good one if
you're not dealing with XML or HTML.

The implicit use of $_

As with many other places in Perl, if no scalar variable is supplied to our regular expression via
the =~ or !~ constructs, it's assumed that the scalar value under consideration is the $_ default
value. The good angel of =~ is also assumed:

$_ = "Who is greater, Von Mises or Hayek?";

print if /greater/;
The print statement here could be fully expanded to:

print $_ if $_ =~ m/greater/;
Either of the two preceding print statements would translate to:

Print the full contents of the $_ variable, if $_ contains a match for the word `greater'.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Implicit Left-to-Right Assumption

Some rules are so implicit in Perl (and in regular expressions in general) that it's hard to spot
them as assumptions as opposed to incontrovertible facts of life. The important one to watch out
for is that regular expressions work in a left-to-right fashion. This may seem obvious to native
English speakers, but if you're a fluent writer of right-to-left Arabic or Hebrew script, or you're
trying to match right-to-left Unicode data, the importance of this assumption becomes more
significant. If there are two or more matches on a single line, it is the left-most one that is matched
first. Without the special /g global suffix, which we'll talk about later, it is only this first match that is
either then validated, recorded, or substituted. (As with all computer languages that ultimately
originate from the English language, Perl goes left-to-right, following the left-to-right convention of
Latin, which followed the left-to-right tradition of fourth century BC classical Greek.)

Let's run our first regular expression to take a look at this concept. Try to keep an open mind on
the following syntactical details, just for the moment; we promise to get to the meaty details of
regular bracketing, curly bracketing, list context, and so on, a bit later. All we need to know for
now is that we're looking for a seven-character phrase, in the supplied text, starting with the word
"Bag," and we're going to store this in the $seven_letter_Bag_phrase variable. As we'll also cover
later, the .{4} notation picks up any four characters, except \n newlines:

#!/usr/bin/perl

use strict;

my $party_text =

 "When Mr. Bilbo Baggins of Bag End announced that " .
 "he would shortly be celebrating his eleventy-first " .

 "birthday with a party of special magnificence, there " .

 "was much talk and excitement in Hobbiton.";

my ($seven_letter_Bag_phrase) = ($party_text =~ m/(Bag.{4})/);
So what got stored inside the $seven_letter_Bag_phrase variable?:

print "Seven Letter Bag Phrase: >", $seven_letter_Bag_phrase, "<\n";

This provides an output of:

Seven Letter Bag Phrase: >Baggins<

This may be a surprise. Our clever plan was to get you to guess "Bag End," as this may seem at
first glance the slightly more obvious match within the supplied $party_text variable. However
using our left-to-right rule, the first match found was in fact "Baggins." As soon as we'd matched
this, it was game over. To get the actual word "Bag," followed by a space and then a three-letter
word, we'd have to tune our regular expression accordingly. For instance, we could re-tune our
original code like this, to make sure there is an \s for space character after the word "Bag":

my ($seven_letter_Bag_phrase) = ($party_text =~ m/(Bag\s.{3})/);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my ($seven_letter_Bag_phrase) = ($party_text =~ m/(Bag\s.{3})/);

print "Seven Letter Bag Phrase: >", $seven_letter_Bag_phrase, "<\n";

This produces:

Seven Letter Bag Phrase: >Bag End<

(We'll also explain more about \s later.)

Planning regular expressions is like planning killer attack moves in chess. It's easy to go forward
with all bishops blazing, but we've got to leave ourselves covered at the back. Let's summarize
the rules we followed here:

1. In the first case, we were after "Bag End," so we played a quick Bag.{4} move to go and
grab it.

2. We then got punished for our hastiness, because this matched the more left "Baggins," too.

3. By replaying the move with Bag\s.{3}, we got the desired result.

4. Our regex opponent had to concede to us the "Bag End" phrase we were after originally.
Fantastic!

Regular expressions can also be likened to the perfect jury. They must always get the guilty party
(or match), and must always release the innocent bystander (or fail to match an unwanted
pattern). Of course in the real world, perfect juries are uncommon, and we therefore tend to err on
the side of letting the odd guilty person go (or miss the odd match), in order to make sure
innocent bystanders (or false matches) are never wrongly convicted. Getting regular expressions
to match exact requirements can be equally troublesome. It is only through fine-tuning and the
constant honing of regex common law that we're able to achieve ultimate grand regex mastery.

Regular Expression Architectures

There are two major regular expression engine types.

The DFA (Deterministic Finite Automaton)

With a name taking us back to Kleene's 1951 paper on neural nerve nets, the DFA engine
powers many regex tools, including most versions of Alfred Aho's egrep, and awk, as well
as lex and flex. Basically, while the DFA filters the input text, it simultaneously holds every
single possible combination of text the regex could be searching for. Think of a police cell
filling with the usual suspects, until the guilty party is recognized or the match found. The
DFA engine therefore provides fast, consistent matches.

The NFA (Nondeterministic Finite Automaton)

The alternative backtracker NFA engine drives Perl, sed, vi, and most versions of grep. It is
controlled much more by the actual regex. It works by bumping and grinding through the
input text one character at a time. If it goes up a blind alley, it backtracks to the last position
that still makes sense (the saved state), and then begins working through the regex again,
bumping and grinding once more through the text. It's a bit like a mad genius film editor,
checking out a film sequence one frame at a time, and then cutting backwards and
forwards until the Holy Grail's final cut is discovered. The NFA approach is illustrated in
Figure C-2, where the Witch King of Angmar has crafted a regex to try to find Baggins.

Figure C-2. Bump 'n' grind backtrack matching

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although the NFA is logically slower than the DFA engine at finding matches, it has two major
advantages which often overcome this speed gap:

Its backtracking architecture allows the NFA to save and store marked snippets of
information as it works through the text. Think of Theseus trying to locate the Cretan
Minotaur in the labyrinth at Knossos. He could use Ariadne's ball of silken thread to retrace
his way out from blind alleys and dead ends, until in the end he found and slaughtered the
Minotaur (or got his match). He could then get out of the maze, once again using the
thread, bringing with him his life and his sword. The DFA would approach the situation
differently. If there were 99 blind alleys, it would send in 100 gladiators, only one of which
would find and kill the Minotaur (or get the match). Then all 100 gladiators would stay
where they were (99 stuck up blind alleys, 1 in the central chamber), all incapable of going
anywhere except forwards into the nearest wall. The task would be achieved, and the
Minotaur would be dead, but no gladiators would be able to re-emerge into the light. This is
illustrated in Figure C-3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The other disadvantage of the DFA engine is that its swordsmen slaves would never
benefit from a map. Their orders are always to just keep piling into the Labyrinth, like the
Roman soldiers in The Life of Brian, until every possible cubby-hole, including the central
chamber, is covered. In other words whatever regex you provide, as long as it's logically
similar to another regex looking for the same match, it makes no speed difference to the
match. The same 100 gladiators will always end up in the same 100 locations, one of which
will happen to be the final match in the central chamber. NFA regexes, on the other hand,
are very different. If you become skilled at regexes (or skilled at solving mazes), you can
begin directing the route of Theseus beforehand by drawing him a map (or a better regex).
And the better your map-drawing or predictive skills become, the fewer blind alleys
Theseus will hit, the less backtracking he'll have to do, and the quicker he'll find the
Minotaur. Because you can craft your regex in this way to speed up the game, the NFA
appeals to code crafters and Perl hackers everywhere.

Figure C-3. DFA and NFA engines compared

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Metacharacters

Most regular expressions rarely look for exact literal matches (such as m/Saruman/) but more often for
matches, as in our earlier Baggins code snippet. For example, suppose we have possession of a secret file
listOfPowers.txt. This was discovered within the bowels of Orthanc by Gandalf before he left for the
Realm. It consists of the following names:

Saruman

Aragorn, son of Arathorn

Frodo Baggins

Mithrandir

Sauron

Bombadill

Durin's Bane

Smaug

Elrond

Galadriel

Witch-King

Celeborn

Radagast

Dain Ironfoot

Denethor

We'd like to find all the Powers known to have existed within Middle-Earth in the Third Age, whose names begin
with an "S" and end with an "n." Example C-1 is the program we use.

Using regex metacharacters — findTheBaddies.pl

#!perl

while(<>){

 print if /S.*n/;
}

Notice the use of two special metacharacters, the . (dot) and the * (Kleene Star), within our main match expression.
Before we explain how these are being used, let's see what we get:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ perl findTheBaddies.pl listOfPowers.txt

Saruman

Sauron

The results seem appropriate, but notice how we failed to pick up Smaug or anything else that nearly
how are these two metacharacters combining? Before we answer this question, let's examine all of Perl's main
regex metacharacters in Table C-3.

Table C-3. Perl's main regular expression metacharacters
Metacharacter Description

\...

The backslash giveth and the backslash taketh away. If the next character is special (for example,
a $, *, or even another \), the backslash character takes away its specialness and makes it just
another character (so \\ means "match a single backslash"). If the backslashed character is
ordinary (e.g., a straightforward "n", "b", or "w" keyboard letter), \ usually gives it special meaning
(\n for a newline character).

...|...
This is used for alternation, matching either one expression or the other, as in:

m/Merry|Pippin/ for a match that contains either "Merry" or "Pippin."

(...)

This has two concurrent meanings:

It can group various matches, usually in combination with the alternation just shown, as in
m/(Sam|Frodo|Gollum) bore the ring in Mordor/.

At the same time, it will store or return whatever is found within the brackets, usually into
backreference variables, so we can make use of this information elsewhere in the program
say more about this later).

[...]
The character class brackets allow you to provide a range of match characters, so [abc]fg
match afg, bfg or cfg. You can also use a character class range, so that [0-9] is equivalent to
[0123456789].

[^...]
A slight variation on [...]. If the first character encountered within a character class is a
negates the whole thing. So [^abc]fg will match dfg, efg, and every character in the known
Unicode universe preceding the fg string, except an "a" or a "b" or a "c."

* The Kleene Star — match the preceding item zero or more times, up to infinity. See the Kleene
Star and the other regex multipliers at work in Figure C-4.

+ Match the preceding item one or more times.
? Match the preceding item zero times or once only.

{Exact Count} Match the preceding item an exact number of times. For instance, a{4} means "Find exactly four
"a" characters within the pattern, so they look like aaaa."

{Min,}

(Note the comma.) Find at least the specified number of the previous item, up to infinity. For
example, a{3,} greedily matches aaa, aaaa, aaaaa, and so on. (We'll say more about "greediness"
shortly.) Incidentally {0,} is exactly equivalent to *, the Kleene Star shorthand version, and
exactly equivalent to +.

{Min, Max}

Match an exact range of the preceding item. For instance, a{4,5} fails to match a, aa
completely match aaaa and aaaaa. Under greedy conditions, it will match the first five characters
of aaaaaa, aaaaaaa, and so on. The {0,1} construct is exactly equivalent to the ? metacharacter
above, as you can see in Figure C-4.

^
Anchors the beginning of a string, and sometimes follows the \n newline character depending on
the /m match suffix discussed later. This means that m/^Angmar/ will match "Angmar
the realm of the Witch-King" but fails to match "The Witch-King of Angmar."

$

Anchors the end of a string before any \n newline, if there is one. It can occasionally precede other
embedded \n newlines, depending on suffixes (described later). This means that m/Minas
Morgul$/ will match "Dreadful was the vale of Minas Morgul," but refuses to match "Minas Morgul

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Morgul$/ will match "Dreadful was the vale of Minas Morgul," but refuses to match "Minas Morgul
was once the fair moonlit valley of Minas Ithil."

. The dot character matches any character except the \n newline, although this behavior can be
modified slightly with the /s suffix, as we'll see later.

Figure C-4. Variable numeric character requirements

To answer our original question, we can now see how the /S.*n/ match worked its magic on the listOfPowers.txt

1. It looked for a capital "S." (No prizes so far.)

2. The . dot character then meant it looked for any character, except \n newlines, and the * meant it looked for
zero or more of them.

3. The regex then looked for an "n" to terminate the name, which ensured that Smaug was pulled at the last
hurdle because it didn't comply with this condition.

4. Only Saruman and Sauron matched all three of these requirements in full, with aruma and auro
.* multiplier.

In the following sections, we'll examine how we can further refine such munge requirements to search for other
fuzzy data, while keeping track of what falls within our fuzzy requirements and what falls outside them.

Character Class Shortcuts

If you've ever used character class ranges with an older version of grep, you may have used a command like the
following one to find words of at least one character in length:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ grep '[a-zA-Z0-9][a-zA-Z0-9]*' myFile.txt

This seems reasonable enough, and the ranges are nice because they've cut out the typing in of many alphabetical
characters. But this is still too much work for a Perlhead; a similar match in Perl would involve just three
keystrokes:

\w+

There are many other such regex shortcuts in Perl for other character class ranges. To illustrate these, including
\w, we'll first detail some double-quotish characters which are recognized within Perl regexes, in Table C-4
C-5 will then display some of the best-known character class shortcuts. (Fortunately, many of these have now
made their way into more modern versions of grep and egrep, too.)

Table C-4. Escaped characters
Escape Description

\0 Null character
\a Alarm (often producing an OS bell ring)
\e Escape character
\f Form feed
\n Newline
\r Return
\t Tab
\cX Control character, where Control-C is \cC
\N{NAME} Named character, such as \N{greek:Alpha}
\x{abcd} Hexadecimal character, where \x{263a} is a smiley face

The . (dot) character is normally used to represent any character, except \n newline.
However, it has no such special meaning within character classes. Therefore [.]+ literally
means one or more . dot characters, such as full-stops, periods, or decimal points.

Table C-5. Character class shortcuts
Symbol Description Fully expanded version
\d Any digit. [0-9]
\D Anything except a digit. [^0-9]

\s Whitespace, including spaces, tabs, line feeds,
form feeds and newlines.

[\t\n\r\f] (Note that the first character in
single ordinary spacebar character.)

\S

Non-whitespace.

(You have to be careful when using shortcuts such
as \s and \S. They can easily look like each other
within large code blocks, or even within small
ones.)

[^ \t\n\r\f]

\w A word, or alphanumeric character (includes
underscores, typically found in file names).

[a-zA-Z0-9_] (Note that this also depends upon
locale settings — for example, ö in a German
matched by \w; see perldoc perllocale for more
details.)

\W

Non-word character.

(The ends and beginnings of strings, as marked
by the ^ and $ string anchors, are often honorary
\W characters for the devilish purposes of
regexes.)

[^a-zA-Z0-9_]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Boundaries

In addition to the ^ (caret) and $ (dollar) string anchors, there are two other special boundary assertions commonly
used in Perl regexes. These are described in Table C-6.

Table C-6. Positions and boundaries
Symbol Description

\b

This matches any boundary between a \w word character, and a \W non-word character, in
\w\W or \W\w order. It is a zero-width assertion and can be seen matching various word boundaries in
Figure C-5. For the purposes of \b boundary matches, the ^ and $ anchors count as honorary
word characters.

\B Simply the opposite of \b. This is the boundary between either a \w\w or \W\W pairing.

\A
This is like a strict ^. It matches at the beginning of the string. We'll see later in this appendix how
also match just after embedded \n characters, if it is used with the /m match suffix. However,
matches right at the start of the string, come what may.

\z Again, this is like a super-strict $. The \z symbol only matches at the end of a string, with or without
newlines, and with or without the /m match suffix (described later).

\Z
This usually means the same as $ — that is, it comes either before the \n newline at the end
(if there is one) or right at the end (if there isn't). With the /m match suffix, the $ character can then come
before \n characters embedded within the string, whereas \Z cannot.

Beware of punctuation within words such as "Let's", as in Figure C-5. Remember that \w is both for alphanumerics
and the underscore, but it never covers punctuation marks, such as apostrophes. Sometimes it's better to use
matches, such as the following, to pick up words containing punctuation:

m/\s+\S+\s+/

Figure C-5. Word boundaries

This means: "Some spaces, followed by some nonspaces, followed by some more spaces." The sequential non-
space characters can be a word containing apostrophes. Notice how it may also be difficult, at first glance, to pick
out the difference between the \s and the \S shortcuts.

Greediness

If the first great principle of Perl regexes is the left-most match wins, the second great principle is that by
any match will try to take as much text as it can. More specifically, the mass character quantifiers will always try to
grab the maximal possible match. These quantifiers include:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

* (or {0,})
+ (or {1,})
? (or {0,1})
{Min,}
{Exact Count}(see Table C-7 for the special case created by this quantifier)
{Min,Max}

Particularly when they're used in combination with the . (dot) character, they will always try to eat as much as they
can, unless we tell them otherwise. For instance, let's take a typical line out of an /etc/passwd file line:

andyd:fruitbat:/home/andyd:dba,apache,users:/bin/ksh
You might expect the substitution s/.*:/jkstill:/ to produce the following:

jkstill:fruitbat:/home/andyd:dba,apache,users:/bin/ksh
You might have thought the .* would only take the andyd, and allow the colon character to match the first colon. But
this doesn't happen. Instead, the .* will try and grab as much as it possibly can get away with. Remember that the
dot character can match anything, except \n newlines, and that includes colons. What the preceding substitution
actually produces is:

jkstill:/bin/ksh

This may go against common sense, but it is the result of default greedy behavior. Perl regexes operate greedily
via the NFA mechanism of backtracking and by saving success states. This is illustrated in Figure C-6
broken down into seven steps:.

1. The first step establishes that there is at least one possible solution involving a trailing colon. The regex
saves this state and will only come back to it later if it's forced to by the turn of events.

2. Being greedy, the regex decides to march on and go for another bridge over the river into the enemy's
territory. It assigns the colon it has just found to being part of the .* match and moves on until it can (if
lucky) find a second save state and another colon.

3. Continuing the greedy pattern, the regex has another go to see if it can feed yet more bridge-head territory
into the .* multiplier. It finds a third save state.

4. Once again, the regex moves on to greedily acquire a fourth save state. This is the last one it will
successfully find, but it has yet to learn this.

5. The regex goes for glory and attempts to acquire a fifth save state, but crashes and burns instead, running
out of text and failing to find a fifth colon to complete its target match. It has gone a colon too far.

6. Using the NFA architecture, the regex can now backtrack to the latest save state.

7. It hands this save state result onto the rest of the substitution program, which will then go on to complete the
operation by replacing andyd:fruitbat:/home/andyd:dba,apache,users: with jkstill:. Mission accomplished.

Figure C-6. Greedy matching, save states and backtracking

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you're munging large quantities of data, be sure to take this greedy behavior into account when crafting your
regular expressions.

Now that we know how the NFA works on greediness, we can think about the regex pathways that will take up the
least amount of work. However, sometimes we would rather avoid this maximally greedy behavior — perhaps we
want just the bare minimum. In the case under consideration, all we really wanted to do was to replace
jkstill:. So how do we do this? With the multiply useful ? (question mark character), summarized in Figure C-7
What we have in the top portion of Figure C-7 is a maximally greedy regex, which eats as much it can, while
ultimately producing the match. In the bottom half, the regex has been limited by the shackles of the extra question
mark suffix. It is now a minimalist regex, and will match as little as it can to find a successful match. It
than happy about this, but what can it do?

Figure C-7. The question mark and its effect on greediness

In our earlier example, if we use a substitution regex of s/.*?:/jkstill:/, we now get the result of:

jkstill:fruitbat:/home/andyd:dba,apache,users:/bin/ksh
Incidentally, the greediness-restraining ? (question mark) suffix is, in addition to the other main use of ?, a
quantifier in its own right equivalent to {0,1}. All the multiple quantifiers are similarly restrained, as in

Table C-7. Minimizing greediness
Syntax Description

{Min,Max}? Will match at least Min of the preceding character, and up to Max in order to make the match work,
but will try to only match Min if it can get away with it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

but will try to only match Min if it can get away with it.

{Min,}? Will match at least Min of the preceding character, and up to infinity of them in order to make the
match work, but again will try to only match Min.

{Exact
Count}?

Although minimization is logically available here, this match always has to get an Exact Count
regardless of whether it's greedy or otherwise. There may be processing implications by making this
non-greedy, but these constantly vary depending on whatever else you're doing.

*? From zero to infinity of the preceding character, and as close as possible to zero, to make the match
work.

+? From one to infinity of the preceding characters, and as close as possible to one, to make the match
work.

?? This match will try to find zero to one of the preceding character, but will prefer to find zero characters,
if that will make the match work.

Interpolated Strings

Variables found within Perl regexes behave similarly to interpolated strings within print statements. This is because
of two levels of parsing:

1. The first parse interpolates, or expands, any possible variables.

2. The second parse works out the actual regular expression, and how to process it.

For instance:

$orginal_Gandalf = "Olorin";

$wizard_String = "Olorin or Mithrandir? ";

if ($wizard_String =~ m/$original_Gandalf/)

{

 print "Wizard found! <|:-))))"

}

This interpolates the $original_Gandalf variable inside the match, which expands to Olorin and then processes the
regex on the $wizard_String input data to see if it contains Olorin. The resultant output is:

Wizard found! <|:-))))

However, although regexes can generally be treated in the same way double-quoted interpolated strings are
treated, this varies slightly with the special use of metacharacters. For instance, Example C-2 will fail.

almostInterpolated.pl — Checking interpolation in regexes

#!perl -w

use strict;

my $regex_pattern = "[*Casablanca";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $regex_pattern = "[*Casablanca";

my $input_film = "[*Casablanca";

if ($input_film =~ m/$regex_pattern/)

{

 print "Is the Maltese Falcon just as good?\n";

}

If we run almostInterpolated.pl, we get a rude awakening:

$ perl almostInterpolated.pl

Unmatched [before HERE mark in regex m/[<< HERE *Casablanca/ at almostInterpolated.

pl line 10.

This is because [is a special regex metacharacter for character classes, as described in Table C-3, which needs a
matching] dancing partner. Because we're looking for the [square bracket opener as an actual literal
string, we need to backslash it to escape its special meaning. Fortunately, we can avoid pasting backslashes
everywhere into our pattern. We can use the quotemeta() built-in function instead. What this does is return the
input string value with all nonalphanumeric characters, including the underscore, backslashed for our convenience:

my $regex_pattern = quotemeta('[*Casablanca');

my $input_film = "[*Casablanca";

if ($input_film =~ m/$regex_pattern/)

{

 print "Is the Maltese Falcon just as good?\n";

}

Now we get:

$ perl almostInterpolated.pl

Is the Maltese Falcon just as good?

Scalar or List Context Results

A match in a scalar setting will generally produce either a 1 for true (if it finds a match) or an empty string
false (if it fails to find the required match):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Scalar context on the LHS, left hand side.

$my_string = "Galadriel and Celeborn";

Note below how the =~ symbol takes precedence over the = symbol.

What happens in the following, is that the $my_string =~ m/Galad/

operation takes place, and then the $result = (match operation)

comes second.

$result = $my_string =~ m/Galad/;

print "Expecting 1: result: >", $result, "<\n";

$result = $my_string =~ /Legolas and Gimli/;

print "Expecting Empty String: result: >", $result, "<\n";

Fingers crossed, we get the results we're after:

Expecting 1: result: >1<

Expecting Empty String: result: ><

Excellent. This behavior of returning 1 or "" differs if Perl detects that a list array is required on the left-hand side of
the equation (i.e., whether it is in scalar context or list context). In this case, if anything within a match is marked for
storage with parentheses, these values are copied across into the list array elements on the left-hand side. If no
valid match is found, these array elements are left empty:

Array context on the LHS

$my_string = "Galadriel and Celeborn";

Once again, the =~ operation takes precedence over the = operation,

and the wantarray() function detects that a list is required on the

left-hand side.

($queen, $king) = $my_string =~ m/(Galad\w+)\s+\w+\s+(\w+)/;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

($queen, $king) = $my_string =~ m/(Galad\w+)\s+\w+\s+(\w+)/;

Valid results expected

print "Value Expected, Queen: >", $queen, "<\n";

print "Value Expected, King: >", $king, "<\n";

($queen, $king) = $my_string =~ m/(Legolas\w+)\s+\w+\s+(\w+)/;

print "Empty String Expected, Queen: >", $queen, "<\n";

print "Empty String Expected, King: >", $king, "<\n";

When executed, this provides:

Value Expected, Queen: >Galadriel<

Value Expected, King: >Celeborn<

Empty String Expected, Queen: ><

Empty String Expected, King: ><

This is a bit fiddly, but if you work through a few examples of your own, it should begin to make sense.

Alternation and Memory

We promised earlier, when we were discussing list contexts and the internal use of the wantarray() function, that
we'd cover backreferences. So what's the mechanism behind backreference memory storage?

Capturing backreferences

As we explained earlier, backreferences are made possible by the architecture of the NFA engine, which always
leaves a ball of string back into the labyrinth. Think of the bracketing as paired knots in the string, which tell the
regular expression what to retrieve. We can see this in action in Figure C-8, where we're using backreferences to
store the noted values in special built-in variables, rather than returning them as part of a list. Note also
the /i regex suffix in Figure C-8, which ignores the alphabetic case of the target string under scrutiny.

Figure C-8. Capturing backreferences and ignoring case

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note the following:

These special built-in variables start from $1, and move up to $n, depending on how many bracketed
elements you have (which always start from the left).

This is why we are prohibited from starting the name of a normal Perl scalar value with a number. Such
names are reserved for built-in regex backreferences.

A value, like $1, will continue to exist within your program until another regular expression is executed that
successfully matches. (Such values are dynamically scoped until the end of the innermost block, until the
end of the current file, until the eval statement, or until the next successful match, whichever comes first.)

You can nest your brackets as much as you dare.

Let's run through Example C-3, with a range from $1 to $12.

Capturing multi-bracketed values — roundDozen.pl

#!perl -w

Start with a large match, involving twelve captures

$_ = "abcdefghijklmnopqrstuvwxyz";

a b c d e f g h i j k l m n o p q r s t u v w x y z

m/(.(.(.(.(.(.(.(.(.(.(.(.).).).).).).).).).).).)/;
1 2 3 4 5 6 7 8 9 t e w w e t 9 8 7 6 5 4 3 2 1 backreferences

t = ten, e = eleven, w = twelve

print '$1 :', $1, "\n";

print '$2 :', $2, "\n";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

print '$2 :', $2, "\n";

print '$3 :', $3, "\n";

print '$4 :', $4, "\n";

print '$5 :', $5, "\n";

print '$6 :', $6, "\n";

print '$7 :', $7, "\n";

print '$8 :', $8, "\n";

print '$9 :', $9, "\n";

print '$10 :', $10, "\n";

print '$11 :', $11, "\n";

print '$12 :', $12, "\n";

Now let's go for a small match, which only fills

up $1, $2 and $3

$_ = "1234567890";

1 2 3 4 5 6 7 8 9 0

m/(.(.(.).).)/;
1 2 3 3 2 1 backreferences

print '$1 :', $1, "\n";

print '$2 :', $2, "\n";

print '$3 :', $3, "\n";

print '$4 :', $4, "\n";

print '$5 :', $5, "\n";

print '$6 :', $6, "\n";

print '$7 :', $7, "\n";

print '$8 :', $8, "\n";

print '$9 :', $9, "\n";

print '$10 :', $10, "\n";

print '$11 :', $11, "\n";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

print '$11 :', $11, "\n";

print '$12 :', $12, "\n";

Running this script produces the following results:

$ perl roundDozen.pl

$1 :abcdefghijklmnopqrstuvw

$2 :bcdefghijklmnopqrstuv

$3 :cdefghijklmnopqrstu

$4 :defghijklmnopqrst

$5 :efghijklmnopqrs

$6 :fghijklmnopqr

$7 :ghijklmnopq

$8 :hijklmnop

$9 :ijklmno

$10 :jklmn

$11 :klm

$12 :l

$1 :12345

$2 :234

$3 :3

Use of uninitialized value in print at roundDozen.pl line 32.

$4 :

Use of uninitialized value in print at roundDozen.pl line 33.

$5 :

Use of uninitialized value in print at roundDozen.pl line 34.

$6 :

Use of uninitialized value in print at roundDozen.pl line 35.

$7 :

Use of uninitialized value in print at roundDozen.pl line 36.

$8 :

Use of uninitialized value in print at roundDozen.pl line 37.

$9 :

Use of uninitialized value in print at roundDozen.pl line 38.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use of uninitialized value in print at roundDozen.pl line 38.

$10 :

Use of uninitialized value in print at roundDozen.pl line 39.

$11 :

Use of uninitialized value in print at roundDozen.pl line 40.

$12 :

Note the following:

On the first set of printouts, we got $1 to $12 printed out neatly, following the left-to-right bracketing rule.

However, on the second print run, after the second regular expression the values, $1, $2, and $3 printed out
OK, but $4 to $12 are now completely undefined.

You may have expected $4 to $12 to remain the same as they were after the first regex, but to keep a
logically consistent picture, the entire board is swept clean if a successful match is found. As soon
run another matching regex, the whole $1 to $n shooting match begins again, all the way up to infinity.

You can also use backreferences within the actual matches. The rule is that if these are used on the left side of the
substitution or within an ordinary match, you must use the \1 style notation (instead of $1). On the other hand, on
the right-hand side of the substitution you can use the straight $1 notation. For instance, you might be trying
replace all double-word typos in a piece of text with equivalent single words:

#!perl -w

Our input string has two double-word typos,

"work work", and "was was". We'd like to remove both of them.

$_ = "Ludwig von Mises greatest work work was Human Action, " .
 "and F.A. Hayek's greatest work was was the Road to Serfdom.";

On the left side of the substitution, to pick up

the double-word, we have to use \1 in the match,
and on the right side substitution we use $1 to replace
both instances of the same word with a single string value.

s#\b(\w+)\b\s+\1\b#$1#g; # Substitute double-word typos

print;

Note the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We've used the # character to delineate the substitution, to prevent eye-strain among all those shooting-star
slashes.

We've also used the global suffix, g, which we'll talk about shortly, to ensure that we substitute the first match
found, work work, and the second one too, was was.

The use of the \b word boundary ensures that we're only picking up real individual words, and
phrase combinations such as:

the theocracy
lathe the
bathe their

Our solution code produces the following output text:

Ludwig von Mises greatest work was Human Action, and F.A. Hayek's
greatest work was the Road to Serfdom.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Match Suffixes

We'll complete this appendix by looking at how we can alter the operation of regexes with the
various suffixes listed in Table C-8, including /g used in the double-word substitution in the
previous section.

Table C-8. Match and substitution suffix modifiers
Suffix Description

/i Matches ignore alphabetic case, so m/http/i will pick up http, Http, HTTp, and HTTP, as
well as every other possible combination of these letters.

/g

Matches: Used in matches for globally parsing strings into sub-units.

Substitutions: Used within substitutions for globally replacing all matches found, as well as
the first one found in the left-most position.

/s

Most often used with data that contains embedded \n newline characters. The /s suffix
allows the . (dot) character to match \n newlines in addition to everything else. All input
therefore effectively becomes a single line. (Use this suffix with care, especially in
combination with greedy multipliers.)

/m

Often used in combination with /s. The /m suffix modifies the behavior of the ^ and $ end
anchors. Instead of being fixed to the ends of the match, /m allows these anchors to occur
wrapped around \n newlines, with $ coming just before \n, and ^ coming just after \n. This
allows a single-line data entry to be treated as multiple lines. An extended example of this,
in combination with /s, can be found in Figure C-9.

/o

There are usually two parse operations associated with each regular expression. The first
expands any embedded variables that may make up the matches and replacements. The
second then computes the actual regular expression. Both of these operations possess a
processing hit, which you may wish to avoid on a regex within a million-row loop. To
compile a regex only once, the first time it is used you can use the /o suffix.

/e Only used within substitutions. This evaluates the replacement on the right-hand side, as if
it were an ordinary code expression.

/x Used to make regexes clearer. This suffix ignores most whitespace, allowing indentation,
and also allows comments within the match pattern.

/i — Ignore Case

The /i suffix simply makes the match ignore the alphabetic case on the match side of the equation.
Consider the following example.

We have the following file to process:

http

Http

HTtp

HTTp

HTTP

hTTP

htTP

httP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

httP

We'll work this through following code snippet, which has yet to use the /i suffix:

while(<>){

 print if /http/; # No /i suffix

}

This processes the file to produce:

http

Now we'll change the code snippet to include the /i suffix:

while(<>){

 print if /http/i; # /i suffix in place

}

The code now totally ignores case, and prints the following list:

http

Http

HTtp

HTTp

HTTP

hTTP

htTP

httP

/g — Global Matching

When used with the match operator, the global suffix /g will gradually break down a string into
parsed components, as shown in Example C-4.

Global matching — parseGlobal.pl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#!perl -w

$_ = "/usr/local/apache/conf/httpd.conf";

while (m#/([\w.]+)#g){

 print $1, "\n";

}

When executed, parseGlobal.pl breaks down the input string into its wordy components:

$ perl parser.pl

usr

local

apache

conf

httpd.conf

Let's look at some examples of global replacements:

The global suffix is more often used with substitution, as with its sed program ancestor, to
replace all matches found. This usually occurs in the following way:

s/$match/$replacement/g
The following code snippet has yet to use the global suffix to deal with the two major
fortresses of Morgoth, Sauron's old master, in the First Age of Middle-Earth:

$_ = "Angband Angband Angband";

s/Angband/Utumno/;

print;

When executed, this returns:

Utumno Angband Angband
The following code is identical, except for the addition of the /g suffix:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$_ = "Angband Angband Angband";

s/Angband/Utumno/g;

print;

This returns:

Utumno Utumno Utumno

/s & /m — Single- and Multiple-Line Matching

The /s and /m suffixes are often used in combination, especially when many lines of data have
been packed into a single scalar variable. Their combined use can best be seen in Figure C-9.

Figure C-9. Single- and multiple-line suffixes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/o — Compile Only Once

To avoid recompiling regexes unnecessarily, you can use the /o suffix. A typical usage of /o is
shown in the following example:

1. We have the following constantly changing diary file:

Wed: Mow Lawn

Mon: Sell Donuts

Sun: Meet President

Sat: Save World

Tue: This must be Belgium

Thu: Shred Evidence

Sun: Change Oil on Car

Fri: Buy Monkey Nuts

2. Every day we run the following program to work out our daily routine. This had been taking
three nanoseconds too long, so we added the /o suffix to get the regex compile time down a
bit, as the regex needs compiling only once within the loop:

#!perl -w

@time_array = localtime;

@day_array = ('Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat');

$today_match = $day_array[$time_array[6]];

print "Appointments for ", $today_match, "day\n\n";

while(<>){

 print if /$today_match/o;

}

3. Today happens to be Sunday, so let's find out what we'll be doing later by executing the
program on the appointments file:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appointments for Sunday

Sun: Meet President

Sun: Change Oil on Car

This leaves us with an interesting clothing choice!

It's often tempting to spice up many Perl programs via a liberal use of the /o suffix, but beware.
Many Perl programmers have spent many long hours tracking down impossible "I-must-be-going-
mad" bugs, finally realizing that they should have removed the /o suffixes. No matter what value
$today_match goes to in the previous example, the regular expression will continue to search for
Sun until the cows come home in the twenty-third century.

/e — Evaluations

Often overlooked, /e is a rough diamond of a suffix and is especially useful for mathematical and
scientific munge purposes. Basically it takes the right side of a substitution and evaluates it as a
code expression, as if embedded in a do{...} code block. Let's run through a quick example:

1. We have a file containing two columns of numbers for working out gravitational firing points
for the Mars Lander project:

34.5 87.33

99300.3002 459020

17777.3 2

32.880993 999999999999.3314

13.4 26.42140

2. We need to add all these figures together to work out our analysis, and the buttons on our
calculator are getting a bit wobbly. We need to make sure that our results are right, so we
write the following Perl snippet:

while(<>){

 s/([\d.]+)\s+([\d.]+)/$1 + $2/e;

 printf("-> %20s + %20s = %20s", $1, $2, $_);

}

3. The crucial regex is:

s/([\d.]+)\s+([\d.]+)/$1 + $2/e
Breaking this down, the first thing we do is to pick out one or more digits or decimal points,
and save these into $1 via the use of backreference brackets:[4]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[4] Remember that . (dot) characters within class ranges lose their specialness, and become mere full-stops or
decimal points.

([\d.]+)
We then look for one or more spaces, so we can throw them away:

\s+

We now look for a second number, which may contain a decimal point. We save this into
$2:

([\d.]+)
The /e suffix then wraps a do{...} block around the $1 + $2 expression. Logically, the
expression now looks like this:

s/([\d.]+)\s+([\d.]+)/ do { $1 + $2 } /e
4. The expression can now be evaluated. We substitute the sum into the $_ variable, which

previously consisted of the two numbers separated by spaces. Running the code snippet
over the file, we get the following results.

-> 34.5 + 87.33 = 121.83

-> 99300.3002 + 459020 = 558320.3002

-> 17777.3 + 2 = 17779.3

-> 32.880993 + 999999999999.3314 = 1000000000032.21

-> 13.4 + 26.42140 = 39.8214

We can now begin our Mars Lander rocket firing pattern analysis with confidence.

You may think /e is pretty clever, but it gets better. You can wrap unending amounts of eval{...}
commands around the original do{...} code block by adding an extra evaluation command to the
suffix, /ee. This will take whatever the first expression evaluation gives you, and then evaluate it,
so that the following two lines are equivalent:

s/PATTERN/CODE/ee

s/PATTERN/eval(CODE)/e

Let's work through another example to cover it:

1. This time we have the following three-column file:

134.5 + 87.33

99.3 - 45.3

17.3 + 2

100.03 - 4.12

100 + 9

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Notice that the mathematical operation we wish to use on the two numbers is the second
column within the file. Unfortunately, we only find out what each one is when we're actually
processing the line. We therefore have to select this operator out from the file, build up the
code string, and then evaluate its outcome before printing the formatted results. We do this
via the following code snippet:

while(<>){

 s/([\d.]+)\s+([+-])\s+([\d.]+)/"\$result = $1 $2 $3"/ee;

 printf("-> %8s %1s %-8s = %9s\n", $1, $2, $3, $result);

}

3. Let's break down the regular expression:

s/([\d.]+)\s+([+-])\s+([\d.]+)/"\$result = $1 $2 $3"/ee
On the left side, we once again store the first number into $1:

([\d.]+)
We then throw away some spaces on either side of the mathematical operation we wish to
perform.[5] The calculation will either be an addition or a subtraction, and will be stored in $2:

[5] Notice how we have the hyphen, indicating the minus sign, as the second character inside the class range
[+-]. This prevents Perl from marking it as some kind of a class range.

\s+([+-])\s+
We then pick up the second number and store it into $3:

([\d.]+)
4. On the right-hand side of the regex, we build up a string that will perform the required

operation upon our two numbers, and then store the calculated number into the $result
variable. We've backslashed $result to prevent it from being interpreted as an empty string,
within the string evaluation:

"\$result = $1 $2 $3"
This code is then evaluated via the eval{...} double-e suffix:

/ee
5. The results can now be printed out:

-> 134.5 + 87.33 = 221.83

-> 99.3 - 45.3 = 54

-> 17.3 + 2 = 19.3

-> 100.03 - 4.12 = 95.91

-> 100 + 9 = 109

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-> 100 + 9 = 109

/x — The Expressive Modifier

You may have noticed that some of the regexes we've talked about were starting to get rather long
and trickier to follow until we broke them down across several lines. This is where /x steps out from
behind the curtain.

Some years ago, Jeffrey Friedl, author of Mastering Regular Expressions, was replying to a regex
question on comp.lang.perl.misc when he pretty-printed a very large regular expression to make it
easier to read. Larry Wall saw the post and liked it so much that he immediately added the /x suffix
to Perl. This made it possible for everyone to create indented regexes containing embedded
comments.

Essentially, within /x regexes you can use any amount of whitespace, and the regex will ignore it.
You can also put comments within the regex, prefixed by the usual Perl # hash comment
character. If you do want to include spaces or # hashes within the actual regex, you merely
backslash them, or use the \s escape for spaces. Let's work through a regex problem and see how
we can help solve it more clearly with the assistance of /x:

We have an Oracle PL/SQL program file, mars_rocket.sql, which has some C-style comments
within it which we wish to remove. There is a reason for this, but it's classified:

/*

|| Create this procedure to fire the positioning rockets when

|| we approach the Martian surface.

*/

CREATE OR REPLACE PROCEDURE mars_rocket (v_thrust_in IN NUMBER)

AS

 v_momentum NUMBER; /* Adjustment factor */

 v_twist NUMBER; /* Rotational factor */

BEGIN

 /*

 || Loop and then fire.

 */

 LOOP

 EXIT WHEN v_thrust_in = 0;

 v_twist := v_thrust_in + mars_env.gravi_bind; /* Newton :-) */

 v_momentum := v_thrust_in + mars_env.mass_emc; /* Einstein :-) */

 mars_env.fire_retros(v_twist, v_momentum); /* Fire in the hole */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mars_env.fire_retros(v_twist, v_momentum); /* Fire in the hole */

 END LOOP;

 /* Fired and forgotten. */

END mars_rocket;

/

Example C-5 shows our program to remove these comments, making use of the /x suffix.

Removing C-style comments with the /x suffix — xErase.pl

#!perl -w

Open the target file, and the target.

open(MARS_IN, $ARGV[0]) or die "Could not read $ARGV[0]";

open(MARS_OUT, ">$ARGV[1]")

 or die "Could not open $ARGV[1], to write to";

Slurp the entire file

$/ = undef; # Houston, - Undefining the input record separator.

$_ = <MARS_IN>; # Entire file slurped into

 # the single default $_ variable.

The main substitution begins:
s{
 # The search pattern brackets are {},
 # and the replacement brackets are [].
 # We're removing all C-style comments, so
 # the replacement is completely empty.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 # the replacement is completely empty.
 /* # We're looking for the C-style comment
 # start marker. We have to escape the
 # Kleene Star, to make it a normal asterisk.
 .*? # We're then looking for any character,
 # including the \n newline, though we're
 # doing this minimally, to avoid stripping
 # out everything between the first comment
 # and the last.
 */ # We then find the first C-style comment
 # terminator. Once again, we've had to
 # backslash the asterisk.
 }
 []gsx;
The gsx suffixes mean:

#

g: We're replacing every match we find within the file.

s: Because we've slurped the entire file into a single variable,

including \n newlines, we need to treat the entire thing as a

single line, so . dot will match \n newlines, and catch comments

which spread over more than one line.

x: The "expressive" syntax means we can break down a potentially

confusing regex, over many lines, and use comments :-)

Now print out the new file without C-style comments and close down.

print MARS_OUT $_;

close(MARS_IN);

close(MARS_OUT);

Because of the /x suffix within the program, we can now fully expand the match pattern with white
space, and pepper it with plenty of comments. This will help our Marsonauts figure out what our
regex is trying to do when they come to maintain the script halfway through on the trip out.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now we test run the program, to create the mars_bar.sql output file:

$ perl xErase.pl mars_rocket.sql mars_bar.sql
The mars.bar.sql output file has now had all of its C-style comments removed:

CREATE OR REPLACE PROCEDURE mars_rocket (v_thrust_in IN NUMBER)

AS

 v_momentum NUMBER;

 v_twist NUMBER;

BEGIN

 LOOP

 EXIT WHEN v_thrust_in = 0;

 v_twist := v_thrust_in + mars_env.gravi_bind;

 v_momentum := v_thrust_in + mars_env.mass_emc;

 mars_env.fire_retros(v_twist, v_momentum);

 END LOOP;

END mars_rocket;

/

We can almost see Tom Hanks, getting excited about this in the follow-up movie.

Splitting Up is Easy To Do
As promised, we need to dissect the split operator, which basically splits up strings into
array lists with the following differing input patterns:

split /PATTERN/, EXPRESSION, LIMIT

split /PATTERN/, EXPRESSION

split /PATTERN/

split

The operator takes a regex /PATTERN/, and then splits the EXPRESSION string value
by it into a list (usually an array). If LIMIT is specified, the maximum size of the list will
be this value; otherwise, the list will be as long as it needs to be. For instance:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

@a = split /:/, "andyd:banana:/bin/ksh:dba";

print scalar @a, "\n"; # Size of array

print "@a", "\n"; # Prints interpolated array

Notice how the LIMIT value of 3 above changes the output below, retaining the : colon
within the third and last element:

3

andyd banana /bin/ksh:dba

If EXPRESSION is omitted, the current value contained within $_ is used. If /PATTERN/
itself is omitted, the regex split pattern assumed is /\s+/, for a split on any amount of
white space. This is particularly useful for splitting up columnar output:

$_ = "-rw-r--r-- 1 jkstill 766 22:49 sqlnet.log";

@a = split; # => split /\s+/, $_;

print scalar @a, "\n"; # Size of array

print "@a", "\n"; # Prints interpolated array

This produces the following interpolated output, showing the size of the new @a array
and then its six discrete elements:

6

-rw-r--r-- 1 jkstill 766 22:49 sqlnet.log

This appendix barely touches upon Perl's regular expression capabilities. There is much more to
discover. (The Camel and Owl books are good places to start, as is the online perldoc perlre
command.) Nobody ever stops learning about regexes. Just when you think you possess a
complete knowledge, another little wrinkle turns up. This is especially true today with the growing
use of Unicode. But hey, where would life be if every day were utterly predictable? As Mithrandir
said to Sam, Merry, and Pippin at the Grey Havens, on the last day of Middle-Earth's Third Age:

Well, here at last, dear friends, on the shores of the Sea comes the end of our
fellowship in Middle-Earth. Go in peace! I will not say: do not weep; for not all regexes
are an evil.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix D. The Essential Guide to Perl Data Munging
Oracle DBAs spend a great deal of time handling data that for one reason or another needs to be
cleaned, transformed, and/or formatted. They need to fill Oracle data warehouses with customer
data from multiple sources, import data into Oracle databases from non-Oracle data streams, and
convert and format source material of all kinds. Whether it's an XML stream from a web page, a
SQL*Loader feed from a telecom switch, or a snapshot transfer from another database, DBAs
must ensure that these data transfers are clean, accurate, and timely. Unfortunately, the raw data
they're given to work with is often dirty, inaccurate, behind schedule, and unfit for SQL*Loader.
This is a job for Perl and its wonderful world of data munging!

Data munging, the process of transforming data as it is transferred from one place to another, is a
topic that is increasingly important for Oracle DBAs to understand. It is also an operation that Perl
is particularly good at. Perl DBI's innate ability to deal with multiple database types simultaneously
also makes the transfer of data from one database to another as simple as lining up dominoes!

This appendix presents the basics of data munging and illustrates a typical data-munging
operation — importing a MySQL data stream into an Oracle database, transforming it as
necessary. We'll also describe the many Perl data-munging modules that you can download from
CPAN and use in conjunction with Oracle databases. We'll examine these modules in several
major categories:

Numeric modules

The modules in this category deal with numeric data and handle mathematical operations
used in data munging. We'll pay special attention to the very useful Number::Format
module.

Date modules

The modules in this category deal with the special requirements of dates and their
formatting and conversion. Because speed is often important in data munging, we'll focus
on the very efficient C-based Date::Calc module.

Conversion modules

The modules in this category perform conversions of data from one text format to another.
We'll take a special look at Convert::Recode, a popular Perl data conversion module that
can convert between many different kinds of character sets — for example, between ASCII
and EBCDIC mainframe formats.

Perl XML modules

The modules in this category use XML in performing data munging. We'll focus on the
XML::XMLtoDBMS module, part of the XML-DBMS middleware project, which is especially
effective at transferring variable data between XML documents and relational databases.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What Is Data Munging?

Data munging means taking data that's stored in one format and changing it into another format.
The term "data munging" has an ironically mixed etymological origin. The following definition is
taken from version 4.3.0 of the Jargon file:[1]

[1] See http://www.tuxedo.org/~esr/jargon/html/entry/munge.html.Used with permission. Available in print, as The New
Hacker's Dictionary, edited by Eric S. Raymond, 3rd ed. (MIT Press, 1996), http://www-mitpress.mit.edu.

munge /muhnj/ vt.

1. [derogatory] To imperfectly transform information. 2. A comprehensive rewrite of a
routine, data structure or the whole program. 3. To modify data in some way the
speaker doesn't need to go into right now or cannot describe succinctly (compare
mumble). 4. To add spamblock to an email address.

This term is often confused with mung, which probably was derived from it. However,
it also appears the word `munge' was in common use in Scotland in the 1940s, and
in Yorkshire in the 1950s, as a verb, meaning to munch up into a masticated mess,
and as a noun, meaning the result of munging something up (the parallel with the
kluge/kludge pair is amusing). The OED[2] reports `munge' as an archaic verb
meaning "to wipe (a person's nose)".

[2] Oxford English Dictionary: http://www.oed.com

Perl, with its excellent text-processing capabilities and high performance, is ideally suited to the
task of data munging. In this chapter we'll focus on those munging capabilities most relevant to
processing Oracle data. If you want to learn more, we recommend the book, Data Munging With
Perl, by David Cross (Manning, 2001), which we've found to be invaluable in our own data-
munging efforts:

How Data Munging Works

Figure D-1 illustrates graphically how data munging works. As shown in the figure, there are
several distinct components and steps involved in a data-munging operation:

Figure D-1. Basic data-munging principles

The data source

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On one side of the munging equation is our data source, or initial wellspring of data. This
can be anything from a raw binary file to a stream of digital output from a remote MySQL
database. Because Perl was designed from the start to be one of the fastest text-
processing languages available, it is able to process and transform data at a very high
speed. For this reason, Perl is an ideal language for data munging.

The munge operation

Once the source data is extracted, we begin our munge operation. This operation can be
any kind of transformation. We can reverse data, expand data, and recombine data. We
can munge it through regular expressions or sprintf style commands, as in Appendix C, or
we can parse it through complex data trees. Although Perl abounds with such techniques,
there are three controlling paradigms:

Sort algorithms

Some of the world's brightest mathematicians have created sort algorithms, and all
of these algorithms can be programmed in Perl. The language is also packed with
built-in commands, such as sort and map, and Perl-specific sort techniques, such as
the Schwartzian transform.[3]

[3] http://www.perlfaq.com/cgi-bin/view?view_by_category=sorting

Data structure and design

The central munge operation must be able to represent the data structures for both
the source and the sink (which is essentially the destination), no matter how
complex. It must also be able to transform data from one structure into the other.
Because Perl's referenced structures are virtually unbounded in extent, Perl is a
perfect language for handling such transformations.

Business rules

We can easily encapsulate business rules within Perl modules, and can thus provide
reusable, business-specific data transformations.

The data sink

Our transformed data is finally deposited within a chosen data sink. A data sink works
conceptually the same way as a "heat sink" does in engineering; it sucks away the final
output from a processing operation. In data munging, this output is the final data generated,
rather than the unwanted "heat" in the process. (In engineering, the heat would be
generated by a piece of electrical equipment such as a satellite or a laptop computer.)[4]

[4] Another analogy is that of sinking a putt in golf. Getting the data in the right hole is the final process
destination in our data-munging operation.

The Art of Algorithms

There are legions of algorithms used with data munging. The most venerable source for all of
them is Donald Knuth's The Art of Computer Programming, volumes 1-3 (Addison-Wesley, 1998).
Professor Knuth began writing this magnum opus in 1962, and it is divided into several volumes
as follows:

Volume 1: Fundamental Algorithms
Volume 2: Seminumerical Algorithms
Volume 3: Sorting and Searching

We make use of his Soundex algorithm, from volume 3, later in this appendix, and you can check

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We make use of his Soundex algorithm, from volume 3, later in this appendix, and you can check
out Professor Knuth's own home page here:

http://www-cs-faculty.stanford.edu/~knuth

Those who already have volumes 1 through 3 will be happy to know that Professor Knuth is also
aiming to complete the following volumes:

Volume 4: Combinatorial Algorithms
Volume 5: Syntactic Algorithms

For a more Perl-based approach, check out the following excellent book, written by several of the
main authors behind perldoc:

Mastering Algorithms with Perl, by Jon Orwant, John Macdonald, and Jarkko Hietaniemi
(O'Reilly & Associates, 1999)[5]

Enter the Real World

You may have spotted a problem with Figure D-1. Yes, it's just too spotless and clean for the real
world. One data source, one munge operation, and one data sink. How convenient. If you've ever
carried out telecom call transfers, share deal transfers, or any other major corporate data transfer,
you'll know that data-munging operations often tend to look a bit more like Figure D-2.

Figure D-2. A real-world data-munging operation

But this is no problem for Perl. Although Figure D-2 is complex, that's just fine, because Perl is
also designed to be complex. That allows it to map itself to the real world's necessary complexity.
Or, in the words of Mr. Wall himself:[6]

[6] Second State of the Onion address, from the 1998 Perl Conference,
http://www.perl.com/pub/a/1998/08/show/onion.html

You have a deep desire to turn the complex into the simple, and Perl is just another
tool to help you do that — just as I am using English right now to try to simplify
reality. I can use English for that because English is a mess.

This is important, and a little hard to understand. English is useful because it's a
mess. Since English is a mess, it maps well onto the problem space, which is also a
mess, which we call reality. Similarly, Perl was designed to be a mess (though in the
nicest of possible ways).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is counterintuitive, so let me explain. If you've been educated as any kind of an
engineer, it has been pounded into your skull that great engineering is simple
engineering. We are taught to admire suspension bridges more than railroad
trestles. We are taught to value simplicity and beauty. That's nice. I like circles too.

However, complexity is not always the enemy. What's important is not simplicity or
complexity, but how you bridge the two.

In the next section, we'll take a look at a real-world Oracle data transfer and illustrate how Perl
can help munge the data. We'll later point you towards the many Perl modules that you can use to
invoke the specific conversion or formatting operations you need in order to transform your data
appropriately.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Data-Munging Example: An Inter-Database Transfer

People often think of SQL*Loader as being the answer to all their data loading needs. But the reality is
that running SQL*Loader might be the last step in a data load, not the only step. You might need to
perform a number of additional steps to get data in a state fit for use by SQL*Loader. And sometimes
you might not need SQL*Loader at all; often, Perl DBI works equally well as the last process stage for
finally inserting data into a database. This is particularly true if you've used Perl exclusively to get to
that last stage. Why add another process to manage, even one as good as SQL*Loader? Let's keep
that data load as simple as possible.

We'll discuss the respective roles of Perl DBI and SQL*Loader later on in more detail. For now though,
we'll introduce data munging conceptually by providing a very basic source-to-sink example in a single
munge operation. This example emphasizes Perl DBI's ability to munge data across from one
database type to another within a single Perl script. In this example, MySQL is the source and Oracle
is the sink. We're going to munge the data from one datatype (MySQL) into another (Oracle), plus do a
little date format munging on the side.

The MySQL Source

We'll assume in this example that the data you are loading into an Oracle database comes from a
MySQL database. You can find out more about MySQL at the following sites:

http://www.mysql.com
http://sourceforge.net/projects/mysql

You might also like to check out Jochen Wiedmann's DBD::mysql driver; this driver is the interface that
allows Perl programs to connect to MySQL databases via Perl DBI:

http://www.cpan.org/authors/id/JWIED

Assuming that a MySQL test database has already been created, let's go ahead and create the source
data and prepare to transfer it to our Oracle database, orcl. These are the steps we followed:

1. We entered MySQL, and switched to the test database:

$ mysql --user=irish --password=lion
...

mysql> use test;
Database changed

2. We then created a new clone EMP table, emp_store:

mysql> create table emp_store (
 -> empno numeric(4) not null,

 -> ename varchar(10),

 -> job varchar(9),

 -> mgr numeric(4),

 -> hiredate date,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -> hiredate date,
 -> sal numeric(7,2),

 -> comm numeric(7,2),

 -> deptno numeric(2));

Query OK, 0 rows affected (0.02 sec)

mysql> describe emp_store;
+----------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+--------------+------+-----+---------+-------+

| empno | decimal(4,0) | | | 0 | |

| ename | varchar(10) | YES | | NULL | |

| job | varchar(9) | YES | | NULL | |

| mgr | decimal(4,0) | YES | | NULL | |

| hiredate | date | YES | | NULL | |
| sal | decimal(7,2) | YES | | NULL | |

| comm | decimal(7,2) | YES | | NULL | |

| deptno | decimal(2,0) | YES | | NULL | |

+----------+--------------+------+-----+---------+-------+

8 rows in set (0.00 sec)

3. Three test rows were inserted into our MySQL table, using the MySQL default date format of
YYYY-MM-DD. (This is going to be the extra thing we'll have to munge, later, to smoothly
transfer data from one database type to another.):

mysql> insert into emp_store

 -> values (1001, 'Groucho', 'Professor', 1,

 -> '2001-01-01', 100, 10, 10);
Query OK, 1 row affected (0.00 sec)

mysql> insert into emp_store

 -> values (1002, 'Chico', 'Minister', 2,

 -> '2001-01-02', 200, 20, 20);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -> '2001-01-02', 200, 20, 20);
Query OK, 1 row affected (0.00 sec)

mysql> insert into emp_store

 -> values (1003, 'Harpo', 'Stowaway', 3,

-> '2001-01-03', 300, 30, 30);
Query OK, 1 row affected (0.00 sec)

mysql> select * from emp_store;

+------+---------+----------+-----+-----------+-------+------+--------+

| empno| ename | job | mgr | hiredate | sal | comm | deptno |
+------+---------+----------+-----+-----------+-------+------+--------+

1001	Groucho	Professor	1	2001-01-01	100.00	10.00	10
1002	Chico	Minister	2	2001-01-02	200.00	20.00	20
1003	Harpo	Stowaway	3	2001-01-03	300.00	30.00	30
+------+---------+----------+-----+-----------+-------+------+--------+

3 rows in set (0.00 sec)

4. Finally, we quit out of MySQL:

mysql> quit

Bye

The Oracle Sink

We'd like to transfer these three rows across to the EMP table under Oracle's orcl database. We'll do
this via the munge script in Example D-1.

Inter-database transfers into Oracle — mySQLtoOracle.pl

#!perl -w

use strict;

use DBI;

Step 1: Establish a MySQL source database handle, and

an Oracle sink database handle. Notice we can connect to two

different databases, and database types, at the same time,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

different databases, and database types, at the same time,

in one Perl script. Code Simplicities 'R' Us! :-)

my $mysql_dbh = DBI->connect('DBI:mysql:database=test;host=localhost',
 'irish', 'lion')

 or die "Couldn't connect to MySQL database: " .

 DBI->errstr;

my $oracle_dbh = DBI->connect('DBI:Oracle:orcl', 'scott', 'tiger',
 { RaiseError=>1, AutoCommit=>0 });

Step 2: Prepare and execute the selection statement taking

data from our MySQL source. Bind the columns, for efficiency.

my $select_sql = qq { SELECT empno, ename,

 job, mgr,

 hiredate, sal,
 comm, deptno

 FROM emp_store };

my $mysql_sth = $mysql_dbh->prepare($select_sql)

 or die "Couldn't prepare selection statement: " .

 $mysql_dbh->errstr;

$mysql_sth->execute;

Create the munge bind variables
my ($empno, $ename, $job, $mgr, $hiredate, $sal, $comm, $deptno);
$mysql_sth->bind_columns(\$empno, \$ename,
 \$job, \$mgr,
 \$hiredate, \$sal,
 \$comm, \$deptno);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 \$comm, \$deptno);
Step 3: Prepare our Oracle insert statement.

my $insert_sql =

 qq{ INSERT

 INTO emp (empno, ename,

 job, mgr,

 hiredate, sal,
 comm, deptno)

 VALUES (?, ?,

 ?, ?,

 to_date(? , 'YYYY-MM-DD'), ?,
 ?, ?) };

my $oracle_sth = $oracle_dbh->prepare($insert_sql);

Step 4: Select from MySQL and fill bound array, before populating

Oracle EMP table.

while ($mysql_sth->fetch) {

 $oracle_sth->bind_param(1, $empno);

 $oracle_sth->bind_param(2, $ename);

 $oracle_sth->bind_param(3, $job);

 $oracle_sth->bind_param(4, $mgr);

 $oracle_sth->bind_param(5, $hiredate);
 $oracle_sth->bind_param(6, $sal);

 $oracle_sth->bind_param(7, $comm);

 $oracle_sth->bind_param(8, $deptno);

 # Insert!
 $oracle_sth->execute;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $oracle_sth->execute;
}

Step 5: Clean up, commit the transaction, and finish.

$oracle_dbh->commit();

$mysql_dbh->disconnect();

$oracle_dbh->disconnect();

Let's see what's going on in this code:

1. We create our two database handles, one to draw data from the MySQL source and the other to
pour the munged data into the Oracle sink.

2. We prepare the main selection statement to draw information from the source. This will fill our
first known data structure.

3. Next, we prepare the matching Oracle INSERT statement, using our second data structure,
which will push the data into the sink. Notice the to_date() function for munging the hiredate
column. As we're mixing Perl and Oracle, we're unconcerned as to who does the munging, as
long as the job gets done.

Note that there are several other ways we could have performed this date column munge
operation in Perl. For instance, the following code could have been adapted to produce an
"Oracle-friendly" date string that could be inserted directly into the database:

@date_array = reverse split /-/, '2001-01-02';
$date_array[1] =

 ('JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN',

 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC')[$date_array[1]--1];

$oracle_insert_date = join '-', @date_array;
print 'oracle_insert_date: >', $oracle_insert_date, "\n";
This code snippet would produce:

Oracle_insert_date: >02-JAN-2001<
However, we're not zealots. The munge problem Perl is helping us overcome here is the
transformation of MySQL data into Oracle data. Because it's easier to let the Oracle database
engine do the extra date column munge work in this particular case, that's the route we'll choose
here. (Note that the join and split functions are mentioned in Appendix C; for more on these
functions, try perldoc -f join and perldoc -f split. You can also try perldoc -f reverse for an
explanation of this other built-in Perl function.)

4. Once everything's set, we begin the munge. As each row is drawn from the MySQL source, we
pump it straight down into the Oracle sink, using the $oracle_sth->execute statement and the
to_date() data transformation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. When the task is finished, we clean up and shut down the munge.

Running the script itself is straightforward:

$ perl mySQLtoOracle.pl

We can then check the orcl database. Notice that our earlier to_date() operation has given us the
dates in the more usual Oracle-style DD-MON-YY format:

$ sqlplus scott/tiger@orcl

ORCL> select * from emp where empno < 2000;

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
--------- ---------- --------- --- --------- ------ ------ ---------
 1001 Groucho Professor 1 01-JAN-01 100 10 10
 1002 Chico Minister 2 02-JAN-01 200 20 20
 1003 Harpo Stowaway 3 03-JAN-01 300 30 30

3 rows selected.

ORCL>

That concludes our simple example -- but wait a minute! There seems to be precious little in the way of
actual data transformation going on except for the date munge. The main transformation here was
from MySQL data to Oracle data, and the fact is that this transformation is extraordinarily simple to do
in Perl. Nevertheless, the reality is that very few other languages could have managed this
transformation so trivially, in so few lines of code.

We can add onto this simple example by layering on additional data-munging operations, depending
on specific processing requirements. For instance, we could pull information from other databases to
get hold of department descriptions, drag in other personnel information from remote HR databases,
aggregate the salaries, substitute some of the data to match agreed-upon business rules, and so on.
And all of this is easily done in Perl. For many more data-munging examples, refer to the more
detailed sources mentioned at the beginning of this chapter.

The use of Perl for data munging gives us something else in addition to the excellent resources of Perl
DBI. We also get the ability to use the 200-plus built-in operators, such as split, join, and reverse,
binary-capable functions such as read, regular expressions (covered in Appendix C), and the 2000-
plus object-oriented Perl modules available from www.cpan.org (or www.activestate.com). We can
make use of all of these resources, in conjunction with Perl DBI, to carry out a wide range of the most
difficult data-munging operations. In the rest of this appendix, we'll summarize what we consider to be
the best of these 2000-plus data-munging modules. Whether you're regularly filling data warehouses
with difficult-to-extrapolate aggregated data, managing the ever-increasing complexity of XML
information transfer, or just moving small pieces of fiddly DBA data from one place to another, Perl is a
comprehensive one-stop shop full of data-munging functionality.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Numeric Modules

Many Perl data-munging modules are available on CPAN that you can use to convert and
otherwise manipulate numeric data, analogous to Oracle functions such as TO_NUMBER or
TO_CHAR, but often going beyond these with increased specialization (an example is
Number::Latin). Those we consider to be the most useful in pre-handling Oracle database data
are summarized in Table D-1.

You can obtain these modules and many others from both the CPAN (for Unix) and ActiveState
(for Win32) archives. You can check for the latest status of PPM packages at:

http://aspn.activestate.com/ASPN/Downloads/ActivePerl/PPM/Packages

Table D-1. Numeric modules
CPAN module Description/CPAN address

Number::Encode

Written by Luis Muñoz; converts bit strings into numeric strings, in a similar
manner to Oracle's BIN_TO_NUM.

http://www.cpan.org/authors/id/L/LU/LUISMUNOZ/

Number::Format

Written by William R. Ward; a popular number formatting package, which
performs a variety of numeric operations and is described in the next
section.

http://www.cpan.org/authors/id/WRW/

Number::Latin

Written by Sean M. Burke and going beyond Oracle function capabilities,
this module converts numbers to and from the W3C Latin numbering
system. This system uses the 'a'..'z', 'aa'..'az', 'ba'..'zz' notation, often seen
in spreadsheets.

http://www.cpan.org/authors/id/S/SB/SBURKE/

Number::Phone::US
Written by Hugh Kennedy; validates US telephone numbers.

http://www.cpan.org/authors/id/K/KE/KENNEDYH/

Number::Spice

Written by Wim Verhaegen; reformats to the Spice notation for integrated
circuit design[7] -- for example, 225 picofarads becomes 225p.

http://www.cpan.org/authors/id/W/WI/WIMV/

Number::Spell

Written by Les Howard; spells out integers in words — for example,
print(spell_number(777)) outputs seven hundred seventy seven.

http://www.cpan.org/authors/id/L/LH/LHOWARD/

[7] The Simulation Program for Integrated Circuits Emphasis. Check out the classic Berkeley Spice circuit design tool
at http://freshmeat.net/projects/berkeleyspice/

Let's take a look at one of these modules, Number::Format, and how you might use it to format
Oracle database data.

Number::Format

Number::Format is a very useful Perl module that offers a variety of useful conversion methods,
which produce results similar to Oracle's built-in TO_NUMBER and TO_CHAR functions.
Number::Format also adds a few features that aren't available in the Oracle functions, such as the
wide range of negative number formats you can adopt. We illustrate a typical usage of
Number::Format's format_number, format_price, and format_bytes in Example D-2. (This

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Number::Format's format_number, format_price, and format_bytes in Example D-2. (This
particular example deals with the Altairian Dollar currency favored by recent Galactic President,
Zaphod Beeblebrox.)

The Number::Format module — numberFormat.pl

#!perl -w

use strict;

use Number::Format;
The neg_account key uses an "x" to represent the number, and then

whatever other formatting you require.

my $Altarian =

 new Number::Format(-thousands_sep => ',',

 -decimal_point => '.',

 -int_curr_symbol => 'ALT',

 -decimal_digits => 4,

 -decimal_fill => 2,

 -neg_format => '(x)', # Accounting Style Negs
 -kilo_suffix => ' KiloAlt',

 -mega_suffix => ' MegaAlt',

 -giga_suffix => ' PanGalacticGargle');

my $finiteProbability = 6666666666.66;

We've used a negative currency amount for format_price() to
demonstrate the regular collapses of the Altairian Dollar! :-)
print $Altarian->format_number($finiteProbability), "\n",

 $Altarian->format_price (-$finiteProbability, 3), "\n",
 $Altarian->format_bytes ($finiteProbability);

Running the numberFormat.pl script produces the following output. Notice that the accounting-
style neg_format method has enclosed our negative figure in brackets:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ perl numberFormat.pl

6,666,666,666.6600

(ALT 6,666,666,666.660)
6.2088 PanGalacticGargle

You can download the Number::Format tarball from:

http://www.cpan.org/authors/id/WRW

You can install the Win32 ActivePerl package as follows:

C:\>ppm

PPM> install Number-Format

Mathematics Modules

There are four mathematical modules bundled with Perl (summarized in Table D-2) that you can
use to handle most of the mathematical data-munging operations you are likely to perform. For
less common operations, check CPAN; you will find many unbundled modules there that provide
mathematical support for data-munging operations on data ranging from Fibonaci[8] numbers
through financial annuities.

[8] The Fibonaci numbers are an inductive sequence of numbers in which each term is generated by the two previous
terms. The first two terms are both assigned the value of 1 and all other terms are created by adding the last two
numbers together. The first few terms of the sequence is 1, 1, 2, 3, 5, 8, 13, 21, 34, 55. This number pattern is often
useful for mathematical and financial analysis, and is also used within Mother Nature to determine many different
growth patterns. For instance, we may have five fingers, and vine leaves may have five fronds, because both are using
the Fibonaci number sequence.

Table D-2. Mathematics modules bundled with Perl
Module Description

Mark::BigFloat Written by Mark Biggar; used for operations on arbitrary-length floating-point
numbers.

Math::BigInt Also written by Mark Biggar; a related module used for operations on integers of
any length.

Math::Complex Written by Raphael Manfredi and Jarkko Hietaniemi; used for operations on
complex numbers.

Math::Trig Also written by Manfredi and Hietaniemi; used to provide trigonometric support,
including a definition of the pi constant ().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date Modules

There are a large number of Perl modules that you can use to format and convert data that represents
dates. Date handling has traditionally been a challenge for Oracle DBAs and developers. The fact is
that dates are, well, confusing. After 100,000 years of Neolithic Sky watching, with some heavy input
from the Babylonians, dates have become more twisted in their logic than a boat full of lawyers
arguing over a politician's expense account. Although Oracle provides a number of built-in functions
for date handling (TO_DATE, TO_CHAR, etc.), you may find these functions cumbersome or
inefficient. This is particularly true if you're working with time intervals (NUMTODSINTERVAL,
NUMTOYMINTERVAL, TO_DSINTERVAL etc.). The Perl data modules described in this section
provide easier ways to handle data conversion. You will also find them helpful if you simply want to
pre-clean data in Perl before overloading the Oracle SQL engine with calls to Oracle's own date
functions.

The date-related modules listed in Table D-3 are available on both CPAN (for Unix) and ActiveState
(for Win32). Some of them are dependent on each other, so we've listed them out in the appropriate
installation order (least dependent first). Some also require additional modules, which are listed in
Table D-3 (also in installation order wherever possible).

Table D-3. Date-based modules
CPAN module Description/CPAN address

Date::Business
Written by Richard DeSimine; calculates business dates.

http://www.cpan.org/authors/id/D/DE/DESIMINER

Date::Calc

Written by Steffen Beyer; a C-based date formatting masterpiece, described in
detail in the following section.

http://www.cpan.org/authors/id/STBEY

Date::Pcalc
Written by J. David Eisenberg; a pure Perl version of Date::Calc.

http://www.cpan.org/authors/id/STBEY

Date::Christmas

Written by Elaine M. Ashton; returns Christmas day for any Gregorian year
following 1600 AD — for example, christmasday(2002) => Wednesday.

http://www.cpan.org/authors/id/H/HF/HFB

Date::Decade

Written by Michael Diekmann; provides decade-based date calculations; relies
on either Date::Calc or Date::Pcalc.

http://www.cpan.org/authors/id/M/MI/MIDI

Date::Easter

Written by Rich Bowen; requires several extra modules, listed in Table D-4.
Date::Easter provides both Gregorian and Orthodox Easter information.

http://www.cpan.org/authors/id/RBOW

Date::Handler
Written by Benoit Beausejour; handles time zones and locales.

http://www.cpan.org/authors/id/B/BB/BBEAUSEJ

Date::Japanese::Era

Written by Tatsuhiko Miyagawa; converts dates between the Japanese Era and
Gregorian calendar; requires two modules, listed in Table D-4.

http://www.cpan.org/authors/id/M/MI/MIYAGAWA

Date::Simple

Written by John Tobey; this speed-driven module validates dates, calculates
date-time intervals, performs day-of-week arithmetic, and much more.

http://www.cpan.org/authors/id/JTOBEY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date::Range

Written by Tony Bowden; calculates date ranges and analyzes date patterns;
relies on Date::Simple and Test::Simple (see Table D-4).

http://www.cpan.org/authors/id/T/TM/TMTM

Date::Manip

Written by Sullivan Beck; a pure-Perl module for dates and times, which is
recommended when the faster Date::Calc fails to provide the required options or
when you need some really clever date string parsing. Date::Manip is the Daisy-
Cutter date module in the Perl world; when all else fails, you can rely on
Date::Manip to provide that extra bit of functionality.

http://www.cpan.org/authors/id/SBECK

DateTime::Precise

Written by Blair Zajac; this object-oriented module deals with the usual date and
time suspects, plus GPS operations and fractional seconds.

http://www.cpan.org/authors/id/B/BZ/BZAJAC

Table D-4. Required modules for date-based formatting
CPAN module Reliant module Description/CPAN address

Mime::Base64 Date::Japanese::Era Written by Gisle Aas; used for Base64 strings.
http://www.cpan.org/authors/id/GAAS

Jcode Date::Japanese::Era Written by Dan Kogai; code for the Japanese character set.
http://www.cpan.org/authors/id/D/DA/DANKOGAI

Devel::CoreStack Date::Easter Written by Alligator Descartes; used for debuggers.
http://www.cpan.org/authors/id/ADESC

Test::Harness Date::Easter Written by Michael G. Schwern; a test harness for Perl
modules. http://www.cpan.org/authors/id/MSCHWERN

Test::Simple Date::Easter,
Date::Range

Also written by Michael G. Schwern; provides basic utilities for
writing Perl tests.http://www.cpan.org/authors/id/MSCHWERN

In the following sections we'll look at Date::Calc, the module we consider the most powerful in the Perl
date munging world because of its high speed.

Date::Calc and Date::Calendar

Perl's most useful and efficient date formatting module is Steffen Beyer's Date::Calc. Although this
module offers fewer methods than does the Date::Manip module, Date::Calc's C library greatly
enhances its munge processing speed. You can obtain this module from:

http://www.cpan.org/authors/id/STBEY

We'll also look at Date::Calendar, which comes with Date::Calc and provides some handy methods for
dealing with business calendars. To use Date::Calendar, you may have to install the Bit::Vector
module, also available from Steffen Beyer's CPAN site.

For Win32 users, the latest Bit::Vector and Date::Calc versions are available from ActiveState
(although Date::Calc is already pre-installed with ActivePerl):

C:\>ppm

PPM> install Bit-Vector

PPM> install Date-Calc # To get the latest version! :-)

The Date-Calc-5.0 API

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the following list we've described every nondeprecated method in the Date::Calc 5.0 API:

Days_in_Year

The days in the year, up to the supplied month (1..12), in the given year:

$days = Days_in_Year($year, $month);

Days_in_Month

The number of days in a month for a given year. The year is required, although it's logically only
necessary for February's leap-year variations:

$days = Days_in_Month($year, $month);

Weeks_in_Year

Fetches the number of weeks in a given year (either 52 or 53) (see Figure D-3):

Figure D-3. ISO 8601 — Which year owns which week?

$weeks = Weeks_in_Year($year);

eap_year

Returns 1 for true, in a leap year, otherwise 0 for false:

$leap_year_flag = leap_year($year);

check_date

Returns 1 if the year, month, day combination is a real date, otherwise 0:

$valid_date_flag = check_date($year, $month, $day);

check_time

Returns 1 if the hour, minute, second combination is valid, otherwise 0:

$valid_time_flag = check_time($hour, $min, $sec); # 24 hour clock! :-)

check_business_date

Returns 1, for valid business dates (e.g., Year 2002, Week 47, Day 3), otherwise 0:

$valid_business_flag = check_business_date($year, $week, $day_of_week);

Day_of_Year

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the year day from 1. . . 366 (with 366 for leap years):

$day_of_year = Day_of_Year($year, $month, $day);

Date_to_Days

Starting from 1 Jan 1 AD, which is day one,[9] returns the number of days since that date, such
that Date_to_Days(1, 1, 1) returns 1:

[9] The Gregorian calendar goes from 31 Dec 1 BC, to 1 Jan 1 AD. There's no year zero.

$days = Date_to_Days($year, $month, $day);

Day_of_Week

Returns the weekday of the supplied date (1 = Monday, .., 7 = Sunday):

$weekday = Day_of_Week($year, $month, $day); # Returns 1..7

Week_Number

Returns the year's week number; Week_Number(2002, 12, 25) gives 52:

$week = Week_Number($year, $month, $day);

Week_of_Year

Using ISO 8601, decides which year owns a week split over a New Year cusp by calculating
which year has the Thursday. The first week containing it (and therefore four days) is the first
week in any year:

($week, $year) = Week_of_Year($year, $month, $day);

Monday_of_Week

Generates the date on the first day of the given year's week:

($year, $month, $day) = Monday_of_Week($week, $year);

Nth_Weekday_of_Month_Year

For recurring dates. You can calculate the third Tuesday's date in May, using
Nth_Weekday_of_Month_Year(2003, 5, 2, 3) to return (2003, 5, 20):

($year, $month, $day) =

 Nth_Weekday_of_Month_Year($year,$month,$day_of_week,$nth_weekday);

Standard_to_Business

Converts a given date to a business format of year, week, and day:

($year,$week,$day_of_week) = Standard_to_Business($year,$month,$day);

Business_to_Standard

The dark half of Standard_to_Business. This performs a reverse operation:

($year,$month,$day) = Business_to_Standard($year,$week,$day_of_week);

Delta_Days

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The number of days between dates. A greater second date makes this positive:

$diff_days = Delta_Days($year1,$month1,$day1,$year2,$month2,$day2);

Delta_DHMS

The days, hours, minutes, and seconds difference between two date-times:

($diff_days, $diff_hours, $diff_mins, $diff_sec) =

 Delta_DHMS($year1, $month1, $day1, $hour1, $min1, $sec1,

 $year2, $month2, $day2, $hour2, $min2, $sec2);

Add_Delta_DHMS

Performs complex date and time addition in many permutations, the most usual of which is to
take a date and time, add on some differences, and then see what new date and time is
generated:

($year, $month, $day, $hour, $min, $sec) =

 Add_Delta_DHMS($year, $month, $day, $hour, $min, $sec,

 $diff_day, $diff_hour, $diff_min, $diff_sec);

Delta_YMD

Creates an array: ($year2 -- $year1,$mnth2 -- $mnth1,$day2 -- $day1):

($diff_year, $diff_mnth, $diff_day) =

 Delta_YMD($year1, $mnth1, $day1, $year2, $mnth2, $day2);

Delta_YMDHMS

Similar to Delta_YMD, but with the extra time element:

($diff_year,$diff_month,$diff_day,$diff_hour,$diff_min,$diff_sec) =

 Delta_YMDHMS($year1, $month1, $day1, $hour1, $min1, $sec1,

 $year2, $month2, $day2, $hour2, $min2, $sec2);

Normalize_DHMS

Takes four different time elements, days, hours, minutes, and seconds, negative or positive
relative to right now. It then combines them into a smoothed-out figure:

use Date::Calc qw (Normalize_DHMS) ;

Take away 3 days from right now, add on 120 hours, take away

750 minutes, and add on 3645 seconds. We should end up

with 1 day, 12 hours, 30 minutes and 45 seconds as the

smoothed out computed result, in relation to right now.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

smoothed out computed result, in relation to right now.

($diff_day, $diff_hour, $diff_min, $diff_sec) =

 Normalize_DHMS(-3, +120, -750, +3645); # days, hours, mins, secs

We're expecting 1 day, 12 hours, 30 minutes and 45 seconds! :-)
print "$diff_day day, $diff_hour hrs, $diff_min min $diff_sec sec\n";

Executing this code produces the following result:

$ perl normalizeDHMS.pl

1 day, 12 hrs, 30 min, 45 sec
Add_Delta_Days

Answers questions such as "What's the date 30 days from today?":

($year, $month, $day) = Add_Delta_Days($year, $month, $day, $diff_day);

Add_Delta_DHMS

Answers questions like "What's the date-time if we add on 30 hours?":

($year, $month, $day, $hour, $min, $sec) =

 Add_Delta_DHMS($year, $month, $day, $hour, $min, $sec,

 $diff_day, $diff_hour, $diff_min, $diff_sec);

Add_Delta_YM

Returns the date, when provided with a date, plus a year and month offset:

($year, $month, $day) =

 Add_Delta_YM($year, $month, $day, $diff_year, $diff_month);

Add_Delta_YMD

Extends Add_Delta_YM by allowing the addition of an offset days figure:

($year, $month, $day) =

 Add_Delta_YMD($year,$month,$day,$diff_year,$diff_month,$diff_days);

Add_Delta_YMDHMS

Another extension to Add_Delta_YMD, this time allowing a time offset:

($year, $month, $day, $hour, $min, $sec) = Add_Delta_YMDHMS(

 $year,$month,$day,$hour,$min,$sec,

 $diff_year,$diff_month,$diff_day,$diff_hour,$diff_min,$diff_sec);

System_Clock

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the list of values displayed in Table D-5, with localtime() being used by default. An
optional true flag calls gmtime() instead, to get the GMT (Greenwich Mean Time) or UTC
(Universal Time Coordinated), depending on your system:[10]

[10] For a discussion of Julian dates and Julian days, try the following web page:
http://aa.usno.navy.mil/data/docs/JulianDate.html

($year, $month, $day, $hour, $min, $sec, $Julian_day_of_year,

 $day_of_week, $daylight_savings) = System_Clock([$gmt_flag]);

Table D-5. Figures provided by Date::Calc's system_clock
Figure type Range Comments

Year 1970..2038+ Your OS determines the maximum value
Month 1..12 January = 1, .., December = 12
Day of month 1..31 Notice that this is not 0..n format, as with hours below
Hour 0..23 The 24-hour clock is used
Minute 0..59 Notice that this is not 1..60
Second 0..59 Range may be 0..61, to cope with leap seconds
Day of year 1..366 The 366 figure is for leap years
Day of week 1..7 Monday = 1, .., Sunday = 7

Daylight Savings -1..1

-1 = daylight savings info unavailable,

0 = daylight savings currently out of use,

1 = daylight savings in use

Leap seconds slip into the calendar every 500 days or so at the end of
December or June. Our globe spins 2 milliseconds a day slower than it did in
1900 because of the moon's tidal braking effect. Therefore, GMT gradually
diverges from the atomic clocks measuring UTC. Leap seconds bring
everything together again.

Note that tidal braking has already stopped the moon's face rotating relative to
the Earth, giving rise to Pink Floyd's album, The Dark Side of the Moon. One
day, a single face of the Earth will oppose a more distant Moon. However, by
then the Sun will have expanded, giving us something even more interesting
to experience — a Floyd album called Jolly Red Giant perhaps?

For more information (not about Pink Floyd, promise), see:
http://www.npl.co.uk/npl/ctm/leap_second.html.

Today

Returns a subset from System_Clock: the year, month and day:

($year, $month, $day) = Today([$gmt]);

Now

Another System_Clock subset returns the current hour, minute, and second:

($hour, $min, $sec) = Now([$gmt_flag]);

Today_and_Now

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the current year, month, day, hour, minute, and second:

($year, $month, $day, $hour, $min, $sec) = Today_and_Now([$gmt]);

This_Year

Returns the current year:

$year = This_Year([$gmt_flag]);

Gmtime

Returns the GMT values displayed in Table D-6 according to the optional parameter, the
number of seconds since midnight, 1 Jan 1970. This is the start of the Unix epoch. If absent,
current time() value is used:

($year, $month, $day, $hour, $min, $sec, $doy, $dow, $dst) =

 Gmtime([$time_in_seconds_since_1970]);

Localtime

The local time equivalent to Gmtime:

($year,$mnth,$day,$hour,$min,$sec,$doy,$dow,$dst) = Localtime([$time]);

Mktime

Generates the number of seconds since the 1970 epoch:

$time = Mktime($year, $month, $day, $hour, $min, $sec);

Timezone

Generates differential time offsets between local time and GMT. Those to the east of
Greenwich, England receive positive offsets. Those to the west receive negative ones. A
daylight savings flag is also returned:

($diff_year, $diff_month, $diff_day,

 $diff_hour, $diff_min, $diff_sec, $dst) = Timezone([$time]);

Date_to_Time

This is similar to Mktime, but faster because it avoids system calls:

$time = Date_to_Time($year, $month, $day, $hour, $min, $sec);

Time_to_Date

Returns the GMT date-time values when supplied with the appropriate number of seconds since
1970. Uses the built-in time() function as the default:

($year, $month, $day, $hour, $min, $sec) = Time_to_Date([$time]);

Easter_Sunday

Calculates the Gregorian Easter Sunday date for the years 1583 to 2299, via the Gauss
algorithm. The original Easter was agreed to by the early Christians in 325 AD. This held firm
until 1582 AD when the Gregorian Easter, which now differs from the Orthodox one, became the
first Sunday following the first full moon preceding a Sunday after the Spring equinox:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

($year, $month, $day) = Easter_Sunday($year);

For Orthodox functionality, try the Date::Easter module in Table D-3.

Decode_Month

Requires a string to uniquely identify a month in the current Date::Calc language. For example,
the parameters `N', `nov', and `November' all return 11. Zero is returned if Decode_Month fails
to work out the month:

$month = Decode_Month($string);

Decode_Day_of_Week

As with Decode_Month, a string able to identify a day will return 1 to 7:

$day_of_week = Decode_Day_of_Week($string);

Decode_Language

Returns Date::Calc's internal ID for a supported language, if uniquely identified from a string.
Otherwise, zero is returned. Eleven languages come automatically with Date::Calc, as detailed
in Table D-6. Others can be added by following the instructions in INSTALL.txt:

$lang = Decode_Language($string);

Table D-6. Languages supplied with Date::Calc 5.0
Internal ID Language Comments/English translation

1 English Default language for Date::Calc
2 Français French
3 Deutsch German
4 Español Spanish
5 Português Portuguese
6 Nederlands Dutch
7 Italiano Italian
8 Norsk Norwegian
9 Svenska Swedish
10 Dansk Danish
11 Suomi Finnish

Decode_Date_EU

One of the cleverest Perl functions we've ever seen. Feed it a string, with some kind of
embedded date, and if Decode_Date_EU can identify three lucky numbers inside it, in the
European date order of day, month, and year, it returns this list. An empty list is returned if no
date can be found.

($year,$month,$day) = Decode_Date_EU($string);

Decode_Date_US

Behaves identically to Decode_Date_EU above, except it tries to find a valid date in the North
American date format of month, day, year:

($year,$month,$day) = Decode_Date_US($string);

Fixed_Window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Takes a two-digit number and turns it into a four-digit year, dependent on a fixed window
centered around 1970. All numbers from 70 to 99 are converted in the range 1970 to 1999. All
numbers below 70 are converted upwards. For example, 69 goes to 2069:

$year = Fixed_Window($non_negative_number_less_than_100);

Moving_Window

Imposes a 100-year window, cross-haired upon today's date, to go back 50 years and forward
50 years. The two-digit entry is initially mapped to the current century. If more than 50 years
ago, 100 years are added to the total. If 50 years or more into the future, 100 years are taken
off:

$year = Moving_Window($non_negative_number_less_than_100);

Date_to_Text

Translates year, month, and day into a short piece of text, dependent on the currently selected
language. For example, with the English default language, Date_to_Text(2002, 12, 25) creates
Wed 25-Dec-2002:

$string = Date_to_Text($year,$month,$day);

Date_to_Text_Long

Provides a longer date-string, dependent on language; Date_to_Text_Long(2002,12,25) creates
Wednesday, December 25th 2002:

$string = Date_to_Text_Long($year,$month,$day);

English_Ordinal

Takes a cardinal number and turns it into an English ordinal abbreviation, so
English_Ordinal(101) produces 101st:

$string = English_Ordinal($number);

Calendar

Produces a calendar string:

$string = Calendar($year,$month[,$orthodox]);

The optional $orthodox flag, if set to true, returns a calendar starting on a Sunday, rather than a
Monday, so Calendar(2002, 12, 1) produces:

 December 2002

Sun Mon Tue Wed Thu Fri Sat

 1 2 3 4 5 6 7

 8 9 10 11 12 13 14

 15 16 17 18 19 20 21

 22 23 24 25 26 27 28

 29 30 31

Month_to_Text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Provides the full month name, in the current language, when supplied with a number in the
range 1 to 12. Month_to_Text(11) outputs November:

$string = Month_to_Text($month);

Day_of_Week_to_Text

With a day range of 1..7, Day_of_Week_to_Text(2) returns Tuesday:

$string = Day_of_Week_to_Text($day_of_week);

Day_of_Week_Abbreviation

Returns day of the week abbreviations, such as Mon for 1:

$abbrev_string = Day_of_Week_Abbreviation($day_of_week);

Language_to_Text

When given a valid internal ID, returns the name of the language:

$string = Language_to_Text($lang);

Language

Works out the internal ID for the current language, or changes it:

$lang = Language();

Language($lang);

$oldlang = Language($newlang);

Languages

Returns the total number of languages Date::Calc is currently supporting:

$max_lang = Languages();

Parse_Date

Does its best to parse a date string for you:

($year, $month, $day) = Parse_Date($string);

ISO_LC

Returns a string in which all ISO-Latin-1 characters are lower-cased:

$lower = ISO_LC($string);

ISO_UC

Returns a string in which all ISO-Latin-1 characters are upper-cased:

$upper = ISO_UC($string);

Version

And finally, this one provides the current version of Date::Calc — for example, 5.0 :

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$string = Date::Calc::Version();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conversion Modules

Perl provides a variety of modules that you can use to convert from one data format to another. In
Table D-7 we list what we think are the most useful conversion modules available from CPAN. All
of them should also be available via ActivePerl's PPM, except possibly Convert::Recode, which
requires the use of the GNU recode program; we'll describe that one shortly.

Table D-7. Perl conversion modules
CPAN module Description/CPAN Address

Convert::EBCDIC
Written by Chris Leach; converts between EBCDIC and ASCII format.

http://www.cpan.org/authors/id/CXL

Convert::Recode

Written by Ed Avis, built upon work from Gisle Aas; creates a Perl front end to
the GNU recode library (described in the next section).

http://www.cpan.org/authors/id/E/ED/EDAVIS

Convert::SciEng

Written by Colin Kuskie; converts numbers with scientific- and engineering-
style suffixes.

http://www.cpan.org/authors/id/COLINK

Convert::Translit
Written by Genji Schmeder; converts between 8-bit character sets.

http://www.cpan.org/authors/id/GENJISCH

Convert::Units

Written by Robert Rothenberg; converts unit measurements, such as meters,
to other units, such as inches.

http://www.cpan.org/authors/id/R/RR/RRWO

Convert::UU
Written by Andreas J. König; used for uuencode and uudecode work.

http://www.cpan.org/authors/id/ANDK

Convert::Recode and GNU recode

The Convert::Recode module provides a front end to the GNU recode library, which is a
powerhouse of conversion operations. You can download this library, which was written by
François Pinard, from:

http://www.gnu.org/software/recode/recode.html
ftp://ftp.gnu.org/gnu/recode

The recode library converts between more than 300 different character sets, depending on what's
possible upon your operating system. The following command tells you what sets you have
access to, once you've installed recode:

$ recode -l

On SuSE 7.3 Linux, we had 281 character sets, from arabic7 to MacGreek.

You can install this library as follows:

1. Once you have the tarball downloaded, unpack as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ gzip -d recode-3.6.tar.gz

$ tar xvf recode-3.6.tar

$ cd recode-3.6

2. Before configuring, take a look at the INSTALL file:

$ vi README INSTALL
$./configure

$ make

3. Instead of make test, as with Perl modules, use make check instead:

$ make check

...

============================

All 95 tests were successful

============================

...

4. Now we can install:

$ make install

5. Once the recode install completes, we're ready to install Perl's Convert::Recode module,
which is a standard Perl install.

Convert::Recode is unusual in that you roll your own methods directly from it. Simply identify the
two character sets you wish to convert between, such as ascii and ebcdic, and then decide the
conversion direction. Once you've decided, just add a _to_ string between the two character set
names and then import the final method via Convert::Recode. For example:

use Convert::Recode qw(ascii_to_ebcdic);

or:

use Convert::Recode qw(ebcdic_to_ ascii);

We've created two short programs; recodeAscEbc.pl in Example D-3, and recodeEbcAsc.pl in
Example D-4. We're going to use these to:

Convert feedRecode.txt into an EBCDIC equivalent, ebcdicRecode.txt

Then re-convert this back into an ASCII file called outRecode.txt

ASCII to EBCDIC — recodeAscEbc.pl

#!perl -w

use Convert::Recode qw(ascii_to_ebcdic);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use Convert::Recode qw(ascii_to_ebcdic);

while (<>) {

 print ascii_to_ebcdic($_);

}

EBCDIC to ASCII — recodeEbcAsc.pl

#!perl -w

use Convert::Recode qw(ebcdic_to_ascii);

while (<>) {

 print ebcdic_to_ascii($_);

}

The original feedRecode.txt file looks like this:

To sit in solemn silence,

In a dull dank dock,

In a pestilential prison,

With a life long lock,

Awaiting the sensation of a short sharp shock,

From a cheap and chippy chopper,

On a big black block

The execution run, which converts this file from ASCII into EBCDIC and then back again, looks
like this:

$ perl recodeAscEbc.pl feedRecode.txt > ebcdicRecode.txt

$ perl recodeEbcAsc.pl ebcdicRecode.txt > outRecode.txt

This conversion run is displayed in the ASCII-based vi editor in Figure D-4.

Figure D-4. Convert::Recode at work

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Text Conversion Modules

Perl comes with a number of text-based conversion modules bundled into it. These are listed in
Table D-8.

Table D-8. Perl-bundled text processing modules
Module Description

Text::Abbrev
Written by the Perl 5 porters; when supplied with an array, Text::Abbrev
returns a hash of keyed abbreviations and original string values (see Example
D-5).

Text::ParseWords Written by Hal Pomeranz; parses text into token arrays or arrays of arrays
(see Example D-6).

Text::Soundex Written by Mike Stok; a Perl implementation of Donald Knuth's Soundex
algorithm (see Example D-7).

Text::Tabs

Written by David Muir Sharnoff; does what the Unix utilities expand() and
unexpand() do. Given a line with tabs, expand replaces them with a specified
number of spaces. The unexpand method adds tabs to a line when it can
save bytes by doing so.

Text::Wrap Written by David Muir Sharnoff; this line wrapper forms simple paragraphs
from munged lines.

Let's take a look at some of these modules in action.

Text::Abbrev

Example D-5 takes a list of amino acids, creates an abbreviation hash, and then iterates over it,
creating a uniquely sorted hash of the smallest possible abbreviations before displaying it.

Text list abbreviations — textAbbrev.pl

#!perl -w

use strict;

use Text::Abbrev('abbrev');

The Stuff of Life

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Stuff of Life

my %h1 = abbrev qw(Alanine Cysteine Aspartic_Acid Glutamic_Acid

 Phenylalanine Glycine Histidine Isoleucine Lysine

 Leucine Methionine Asparagine Proline Glutamine

 Arginine Serine Threonine Valine Tryptophan Tyrosine);

my %h2;

for my $abb_key (keys %h1) {

 # Iterate through the hash, producing all keys and values.

 # Build up a 2nd hash, with the smallest possible abbreviations.

 # Have we started filling the 2nd hash yet, with reversed data?

 if (defined ($h2{ $h1{$abb_key} })){

 # Yes, we already have an abbreviation. Is the current one

 # longer than the new one? If so, replace it.

 if (length($h2{ $h1{$abb_key} }) > length($abb_key)){

 # This abbreviation is shorter, so we replace.

 $h2{ $h1{$abb_key} } = $abb_key;

 }

 } else {

 # Provide our first value, for hash 2. Reverse the sense

 # of the hash. The value becomes key, the key becomes the value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 # of the hash. The value becomes key, the key becomes the value.

 $h2{ $h1{$abb_key} } = $abb_key;

 }

}

Now we've built up our reduced hash, print it out.

for my $min_key (sort keys %h2) {

 printf("%15s : %15s\n", $min_key, $h2{$min_key});

}

The results are as follows:

$ perl textAbbrev.pl
 Alanine : Al

 Arginine : Ar

 Asparagine : Aspara

 Aspartic_Acid : Aspart

 Cysteine : C

 Glutamic_Acid : Glutamic

 Glutamine : Glutamin

 Glycine : Gly

 Histidine : H

 Isoleucine : I

 Leucine : Le

 Lysine : Ly

 Methionine : M

 Phenylalanine : Ph

 Proline : Pr

 Serine : S

 Threonine : Th

 Tryptophan : Tr

 Tyrosine : Ty

 Valine : V

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Valine : V

Text::ParseWords

This time, in Example D-6, we'll split a list of words into separate elements via a regular
expression splitting on white space. You may sometimes want to include spaces inside the
strings, and we can do this with either quote characters or backslash escapes. We'll then create a
tagged list of values, in XML format, to send them further down a potential munge chain.

Text list parsing — textParseWords.pl

#!perl -w

use strict;

use Text::ParseWords('quotewords');

We want to keep the spaces within Aspartic Acid, and Glutamic acid.
We can do this in two ways, either by using non-escaped quote marks,

or escaped space characters. To cut things down a bit, we'll only

use amino acids beginning with "A" or "G".

my @amino_acids =

 quotewords('\s+', # Regular Expression to split on white space

 0,

 q{ Alanine "Aspartic Acid" Glutamic\ Acid
 Glycine Asparagine Glutamine Arginine});

print '<?xml version="1.0"?>', "\n";

print '<!DOCTYPE Genetics SYSTEM "genetics.dtd">', "\n";

for my $array_element (sort @amino_acids) {

 printf("<Amino_Acid>%s</Amino_Acid>\n", $array_element);

}

This produces the following XML-style output. All the spaces have gone, except the ones we
wanted to keep. Mission accomplished:

$ perl textParseWords.pl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ perl textParseWords.pl
<?xml version="1.0"?>

<!DOCTYPE Genetics SYSTEM "genetics.dtd">

<Amino_Acid>Alanine</Amino_Acid>

<Amino_Acid>Arginine</Amino_Acid>

<Amino_Acid>Asparagine</Amino_Acid>

<Amino_Acid>Aspartic Acid</Amino_Acid>
<Amino_Acid>Glutamic Acid</Amino_Acid>
<Amino_Acid>Glutamine</Amino_Acid>

<Amino_Acid>Glycine</Amino_Acid>

Text::Soundex

In Example D-7 we want to find all the sound-alike amino acids. This is so we can put checks into
a later munge process and avoid word confusion, as in John le Carré's spy novel, Tinker, Tailor,
Soldier, Spy, where "Tinker," "Tailor," "Soldier," and "Poor Man" (for George Smiley) were used
as codes for possible traitorous moles. This avoided "Tailor" getting confused with the more usual
"Sailor." (You may notice the similarity between Text::Soundex, and Oracle's SOUNDEX function
which is based on exactly the same Knuthian algorithm — see the first part of this appendix for
more on such algorithms.)

Identifying soundalikes — textSoundex.pl

#!perl -w

use strict;

use Text::Soundex('soundex');

Yet More Stuff of Life. We want to find out the amino acids

which sound the same.

my @amino_array =

 ('Alanine', 'Cysteine', 'Aspartic Acid', 'Glutamic Acid',

 'Phenylalanine', 'Glycine', 'Histidine', 'Isoleucine', 'Lysine',

 'Leucine', 'Methionine', 'Asparagine', 'Proline', 'Glutamine',

 'Arginine', 'Serine', 'Threonine', 'Valine', 'Tryptophan',

 'Tyrosine'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

);

Build up all the Soundex codes, for the array above.

my @soundex_codes = soundex @amino_array;

Now we want to build up a hash of amino acids that sound

like each other. We'll do this by going through the Sortex codes,

and add up counters on a temporary hash.

my %soundex_count_hash;

for my $soundex_element (sort @soundex_codes) {

 $soundex_count_hash{$soundex_element}++;

}

Now if anything in the @soundex_codes list, has at least a double,

it is going to have a value of at least 2, in the %soundex_count_hash

variable. So now we can go through that, and when we find the double+

values, we'll whizz through the @amino_array, and add to our new

%doubles_hash.

my %doubles_hash;

for my $soundex_key (keys %soundex_count_hash) {

 if ($soundex_count_hash{$soundex_key} > 1) {

 # Ah, we've found a code that had at least 2 ++ operations

 # performed on it, earlier. Find the amino acids, which

 # produced this code, and add them to the final hash.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 # produced this code, and add them to the final hash.

 for my $amino_element (@amino_array) {

 # Regenerate the code for the amino acid and compare.

 if ($soundex_key eq soundex $amino_element) {

 # The soundex codes are the same. Hurrah! :-)

 $doubles_hash{$amino_element} = $soundex_key;

 }

 }

 }

}

Finally, print out the soundalike list, with soundex codes first.

for my $amino_element (sort keys %doubles_hash) {

 printf("%10s : %s\n",$doubles_hash{$amino_element},$amino_element);

}

Here are the results:

$ perl textSoundex.pl
 A216 : Asparagine

 A216 : Aspartic Acid

 G435 : Glutamic Acid

 G435 : Glutamine

 L250 : Leucine

 L250 : Lysine

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML Modules

XML (eXtensible Markup Language) is becoming increasingly important in the Oracle world. The language most
associated with XML is Java, but there's plenty of XML-related Perl functionality as well, and we'll explore that in
the context of data munging in this section.

Perl's XML facilities are surprisingly powerful. Some would even claim they go beyond Java, with more than 300
CPAN modules, SAX2 support, DOM support, and machine facilities allowing the pipelining of XML and XSLT
transformations.

Good Perl XML resources include:

http://www.xml.com/pub/q/perlxml:

Main xml.com portal page for articles on Perl and XML.

http://www.perlxml.net:

One of the central Perl XML portals.

http://www.xmlproj.com/perl-xml-faq.dkb:

Main Perl XML FAQ.

http://xmlxslt.sourceforge.net:

XML::XSLT home page.

http://perl.apache.org:

Main Perl Apache portal, mostly related to mod_perl.

http://xml.sergeant.org:

For the latest razor-sharp detail, go to Matt Sergeant's place.

http://sourceforge.net/projects/expat:

James Clark's expat XML parser C library, as accessed by the venerable XML::Parser module written by
Larry Wall and Clark Cooper.

http://www.xmlsoft.org:

Home of the libxml2 XML C library, used by the XML::LibXML parser.

http://www.cpan.org/modules/by-module/XML:

The main CPAN page, for Perl XML projects.

http://sourceforge.net/projects/perl-xml:

The main SourceForge site, for Perl XML projects.

Many different XML modules are also on ActiveState. Most of those covered in this section also have a
complementary ActivePerl package:

http://www.activestate.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We'll concentrate in this chapter on the Unix side of life, because this is where we need the more detailed
installation instructions. The actual scripts and XML file outputs should be identical for ActivePerl PPM loads.

General Perl XML Parsers

There are two main XML parsers employed by the majority of Perl XML users:

XML::Parser

This was the first major Perl XML parser, and it relies upon expat. As XML has matured, many
supplementary modules have been created for it to deal with DOM and SAX issues. XML::Parser
automatically with ActiveState, and we'll be installing it shortly on Unix.

XML::LibXML

Created by Matt Sergeant and Christian Glahn, this is Perl's interface to Daniel Velliard's libxml2
library. Unlike XML::Parser, this was written after most of the major XML standards had become settled. At
the time of writing, there was no ActiveState binary available for XML::LibXML; however, one is sure to
come soon. We'll also demonstrate installing this system on Unix, as we need it for the XML::XMLtoDBMS
munge described at the end of this section.

XML::Parser

You can obtain the latest XML::Parser from the following CPAN address:

http://www.cpan.org/authors/id/C/CO/COOPERCL

You may also want to pre-install Gisle Aas's LWP World Wide Web library bundle, libwww-perl, and
to provide XML::Parser's make test step with extra tests. See Chapter 5, for the required LWP installation details.

The expat C program download is also available from:

http://sourceforge.net/projects/expat

Follow these steps:

1. We start with the expat tarball:

$ gzip -d expat-1.95.2.tar.gz

$ tar xvf expat-1.95.2.tar

$ cd expat-1.95.2

2. The README file is the best place to go next:

$ vi README

3. Useful help for the configuration is available via the following command:

$./configure -help
4. The default installation directories and files are as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/usr/local/lib/libexpat

/usr/local/include/expat.h

/usr/local/bin/xmlwf

If you'd like to change these, do the following:

$./configure --prefix=/home/oracle/xml
This will create:

/home/oracle/xml/lib/libexpat
/home/oracle/xml/include/expat.h
/home/oracle/xml/bin/xmlwf

5. We were happy with the default:

$./configure

6. Now we can build and install expat:

$ make

$ make install

7. In a triumphant burst of heroic action glory, we install XML::Parser:

$ gzip -d XML-Parser.2.30.tar.gz

$ tar xvf XML-Parser.2.30.tar

$ cd XML-Parser.2.30

$ vi README

With a clean expat install, the following should be straightforward:

$ perl Makefile.PL

$ make

You may get some messages about the absence of LWP and URI — you can safely ignore these if you left
them out deliberately.

$ make test

...

All tests successful.

Files=13,Tests=113,6 wallclock secs (2.93 cusr + 0.24 csys = 3.17 CPU)

$ make install

XML::Parser is now well and truly on board. Next up is XML::LibXML.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML::LibXML

The latest XML::LibXML download is available from CPAN. We also need the XML::SAX module from the
place:

http://www.cpan.org/modules/by-module/XML

XML::LibXML is based on the libxml2 C library, which is available from:

http://www.xmlsoft.org

Follow these steps:

1. We start with the libxml2 tarball:

$ gzip -d libxml2-2.4.10.tar.gz

$ tar xvf libxml2-2.4.10.tar

$ cd libxml2-2.4.10

$ vi README INSTALL

You'll find much fuller documentation online at http://xmlsoft.org.

2. The actual installation should be very similar to expat as described in the previous section. Configuration
help can also be found via the following command:

$./configure --help

We were happy with the defaults and went for the simplest route:

$./configure

$ make

$ make install

3. Once installation completes, you can run a large test suite, which deviates slightly from our usual Perl
pattern by coming after the installation:

$ make tests

...

Testing catal

Add and del operations on XML Catalogs

Some of these regression tests may fail because of a tiny number of platform incompatibilities. If the
warnings look acceptable, move on.

4. We can now come to grips with the actual XML::LibXML Perl module. Before we install this, though (come
on, you knew there'd be a catch), we have to install Matt Sergeant's XML::SAX module. This is a
straightforward typical Perl installation.

5. The same goes for XML::LibXML. Just unpack the tarball and install with the usual perl Makefile.PL
installation run.

XML::LibXSLT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you are interested in XSLT (Extensible Stylesheet Language Transformations), the Gemini twin of
is XML::LibXSLT, and now's a good time to install it, because it relies on XML::LibXML. We'll require
Veillard's libxslt C library. For more information try the following:

http://www.w3.org/TR/xslt
http://xmlsoft.org/XSLT

To get hold of XML::LibXSLT and libxslt go here:

http://www.cpan.org/authors/id/M/MS/MSERGEANT
http://xmlsoft.org/XSLT/downloads.html

Follow these steps:

1. The installation follows the usual pattern. First, libxslt:

$ gzip -d libxslt-1.0.9.tar.gz

$ tar xvf libxslt-1.0.9.tar

$ cd libxslt-1.0.9

$./configure

$ make

$ make install

2. Next, unpack XML::LibXSLT and run through its perl Makefile.PL steps.

Do you need XML::LibXSLT? Not really, but if you're a completist as we are, you'll feel that it's nice to be
loaded with XML::LibXSLT. The ability to transform data with XSLT enables us to cope with XML files that fail
match our exact requirements. This way, we can feed XML through a transformation operation, as in
to make it fit our munging needs.

Figure D-5. Transforming data with XSLT

Let's see what's going on here.

1. Suppose that we wish to pump out XML-ized news data from our corporate public relations database. This
news could include the following data file, horsefeather.xml:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0"?>

<news>

 <item>

 <title>Hackenbush Speaks Out</title>

 <publication>Horsefeather Gazette</publication>

 <url>http://www.horse.feather</url>

 <date>20021225</date>
 <quote>"That's no Lady. That's my Wife."</quote>

 </item>

</news>

2. For web browsers, we need to transform this presentation slightly with the XSLT code in Example D-8
stored in horsefeather.xsl. Notice, particularly, the date transformation code, which can take a string like
20021225 and turn it into the corresponding 25 December 2002: string.

XSLT code — horsefeather.xsl

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="html"/>

 <xsl:template match="/">

 <HTML>

 <HEAD>

 <TITLE>Horsefeather News - World Latest</TITLE>

 </HEAD>

 <BODY>

 <xsl:apply-templates select="//item">

 <xsl:sort order="descending" data-type="text" select="date"/>

 </xsl:apply-templates>

 </BODY>

 </HTML>

 </xsl:template>

 <xsl:template match="item">

 <P>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <CITE><xsl:value-of select="publication"/></CITE>,

 <xsl:apply-templates select="date"/>

 "<xsl:value-of select="title"/>"

 </P>

 <BLOCKQUOTE>

 <xsl:value-of select="comment"/>

 <xsl:value-of select="quote"/>

 </BLOCKQUOTE>

 </xsl:template>

 <xsl:template match="date">
 <xsl:param name="date" select="."/>
 <xsl:variable name="day" select="number(substring($date,7,2))"/>
 <xsl:variable name="month" select="number(substring($date,5,2))"/>
 <xsl:variable name="year" select="number(substring($date,1,4))"/>

 <xsl:if test="$day>0">
 <xsl:value-of select="$day" />
 <xsl:text> </xsl:text>
 </xsl:if>

 <xsl:choose>
 <xsl:when test="$month= 1">January</xsl:when>
 <xsl:when test="$month= 2">February</xsl:when>
 <xsl:when test="$month= 3">March</xsl:when>
 <xsl:when test="$month= 4">April</xsl:when>
 <xsl:when test="$month= 5">May</xsl:when>
 <xsl:when test="$month= 6">June</xsl:when>
 <xsl:when test="$month= 7">July</xsl:when>
 <xsl:when test="$month= 8">August</xsl:when>
 <xsl:when test="$month= 9">September</xsl:when>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:when test="$month= 9">September</xsl:when>
 <xsl:when test="$month=10">October</xsl:when>
 <xsl:when test="$month=11">November</xsl:when>
 <xsl:when test="$month=12">December</xsl:when>
 </xsl:choose>
 <xsl:if test="$year>0">
 <xsl:text> </xsl:text>
 <xsl:value-of select="$year" />
 <xsl:text>: </xsl:text>
 </xsl:if>
 </xsl:template>
</xsl:stylesheet>

3. We then need the Perl code in Example D-9 to transform our original XML into viewable HTML.

Transforming news output — xmlLibXSLT.pl

#!perl -w

use strict;

use XML::LibXSLT;

use XML::LibXML;

my $parser = XML::LibXML->new();

my $xslt = XML::LibXSLT->new();

my $source = $parser->parse_file('horsefeather.xml');
my $style_doc = $parser->parse_file('horsefeather.xsl');

my $stylesheet = $xslt->parse_stylesheet($style_doc);

my $results = $stylesheet->transform($source);

print $stylesheet->output_string($results);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

print $stylesheet->output_string($results);

4. We simulate the online running of xmlLibXSLT.pl with this command:

$ perl xmlLibXSLT.pl > horsefeather.html
5. The resultant horsefeather.html file now pops out of the transformation:

<HTML>

<HEAD>

<meta content="text/html; charset=UTF-8" http-equiv="Content-Type">

<TITLE>Horsefeather News - World Latest</TITLE>

</HEAD>

<BODY>

<P><CITE>Horsefeather Gazette</CITE>,

 25 December 2002:
 "

 Hackenbush Speaks Out"

 </P>

<BLOCKQUOTE>

"That's no Lady. That's my Wife."

</BLOCKQUOTE>

</BODY>

</HTML>

This can be viewed in Figure D-6.

Figure D-6. XSLT transformation from XML to HTML

XML Database Facilities

Now that we have our parsers loaded, we can start racking up our XML weapon toolset prior to battle. In
following sections we'll look at the following Perl XML modules:

XML::Generator::DBI
XML::XPath

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML::XMLtoDBMS

In addition to these, there are many other Perl XML modules available from CPAN. If you have XML needs that
these modules don't satisfy, just visit cpan.org, and type in "XML" via the search page. Prepare to be bombarded
by 1001 different XML responses. The same goes for the XML-based PPM packages on ActiveState.com
seems that all the world has been writing XML modules for Perl. Enjoy!

XML::Generator::DBI

XML::Generator::DBI, written by Matt Sergeant, transforms database calls to XML SAX events. It is useful for
quickly generating XML files directly from SQL statements. It's also the replacement for the earlier
DBIx::XML_RDB, another module from the prolific Mr. Sergeant. Check it out at:

http://www.cpan.org/authors/id/M/MS/MSERGEANT

For testing purposes, and general usage, we also require the services of Michael Koehne's
XML::Handler::YAWriter (Yet Another Writer, for Perl SAX):

http://www.cpan.org/authors/id/K/KR/KRAEHE

This, in turn, requires the talents of Ken MacLeod's XML::Parser::PerlSAX, which comes as part of his
package. It consists of a general cornucopia of productivity tools, designed originally for use with XML::Parser

http://www.cpan.org/authors/id/KMACLEOD

Then it's time for that ol' Potomac two-step, with bundle unpacking and Makefile.PL:

1. First, install libxml-perl.

2. Now install XML::Handler::YAWriter:

3. If up until now you've avoided installing MIME::Base64, as described in Chapter 5, you'll need to do it here.
This is another prerequisite module:

http://www.cpan.org/authors/id/GAAS

4. Paratroopers having established a beachhead, we send in the heavy armor:

$ gzip -d XML-Generator-DBI-0.01.tar.gz

$ tar xvf XML-Generator-DBI-0.01.tar

$ cd XML-Generator-DBI-0.01

5. Before building and testing XML::Generator::DBI, we need to edit the PWD file, which comes with
tarball. The PWD information is needed to verify make test investigations. Our PWD file looked like this:

user name

UID=scott

password

PWD=tiger

Driver to use (as in dbi:Driver)

DRIVER=Oracle

Extra stuff (as in dbi:Driver:extra_stuff)

EXTRA=ORCL.WORLD

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EXTRA=ORCL.WORLD

Query to use - Get Groucho! :-)
QUERY=SELECT ename, hiredate FROM EMP WHERE empno = 1001

6. Once PWD is ready, restart the dance band:

$ perl Makefile.PL

$ make

7. The make test step uses the PWD information to generate quite a bit of test information. We're expecting
to see hiredate data on Groucho from the test rows we originally loaded into EMP:

$ make test

...

 <select query="SELECT ename, hiredate FROM EMP WHERE empno = 1001">
 <row>

 <ENAME>Groucho</ENAME>
 <HIREDATE>01-JAN-01</HIREDATE>
 </row>

 </select>

...

t/01yawriter....ok

All tests successful.

Files=2, Tests=7, 1 wallclock secs (0.49 cusr + 0.03 csys = 0.52 CPU)

8. Once the tests look good, install:

$ make install

We're now ready to run our XML script to produce ducksoup.xml in Example D-10.

First attempt linking XML to DBI — xmlGenDBI.pl

#!perl -w

use XML::Generator::DBI;

use XML::Handler::YAWriter;

use DBI;

my $writer = XML::Handler::YAWriter->new(AsFile => "ducksoup.xml");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $writer = XML::Handler::YAWriter->new(AsFile => "ducksoup.xml");

my $dbh = DBI->connect("dbi:Oracle:ORCL.WORLD", "scott", "tiger");

my $xml_generator = XML::Generator::DBI->new(Handler => $writer,

 dbh => $dbh);

$xml_generator->execute('select * from emp where empno < 2000');
$dbh->disconnect;

What Example D-10 should do, in a mere handful of lines, is to take a SELECT statement, and turn it into an XML
file. You might recall the data we added to the EMP table earlier in this chapter:

SQL> select * from EMP where empno < 2000;

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

---------- ---------- --------- ------ --------- ------ ------- ------

1001 Groucho Professor 1 01-JAN-01 100 10 10

1002 Chico Minister 2 02-JAN-01 200 20 20

1003 Harpo Stowaway 3 03-JAN-01 300 30 30

Let's run the script and see what happens:

$ perl xmlGenDBI.pl

We've taken just the first <row> output from our generated ducksoup.xml file:

<?xml version="1.0" encoding="UTF-8"?><database>

 <select query="select * from emp where empno < 2000">

 <row>

 <EMPNO>1001</EMPNO>

 <ENAME>Groucho</ENAME>
 <JOB>Professor</JOB>

 <MGR>1</MGR>

 <HIREDATE>01-JAN-01</HIREDATE>

 <SAL>100</SAL>

 <COMM>10</COMM>

 <DEPTNO>10</DEPTNO>

 </row>

 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </select>

</database>

We can now munge data out of an Oracle database, into XML format, but what about going the other way? This
is where XML::XPath comes in.

XML::XPath

The XML::Xpath module follows all of the XPath standards you may have seen with other XML toolsets. This XML
package is also from:

http://www.cpan.org/modules/by-module/XML

You can learn more about XPath at:

http://www.w3.org/TR/xpath

We're going to use XML::XPath to read XML file data and then pump it into the database to reverse
direction from XML::Generator::DBI. There are other ways of doing this — with XLST transformations
— but we'll use XML::XPath because of its flexibility, its appropriateness for munge-style operations, and its
simplicity.

Follow these steps:

1. XML::XPath requires XML::Parser, as installed earlier, but nothing else:

$ gzip -d XML-XPath-1.12.tar.gz

$ tar xvf XML-XPath-1.12.tar

$ cd XML-XPath-1.12

$ perl Makefile.PL

$ make

2. You'll get lots of output, from 187 tests (we counted 'em) in version 1.12:

$ make test

$ make install

You may recall that there were two other Marx brothers in addition to the main three: Zeppo, who appeared in
most of the earlier films, and Gummo, who quit the act while it was still on Broadway. However, we do rather
coincidentally have their information stored in an XML file, in Example D-11, nightopera.xml. We'll show how
feed XML into Oracle here.

Feeding XML into Oracle — nightopera.xml

<?xml version="1.0" encoding="UTF-8"?>

<database>

 <select>

 <row>

 <EMPNO>1004</EMPNO>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <EMPNO>1004</EMPNO>
 <ENAME>Zeppo</ENAME>
 <JOB>President</JOB>
 <MGR>1</MGR>
 <HIREDATE>04-JAN-01</HIREDATE>
 <SAL>400</SAL>
 <COMM>40</COMM>
 <DEPTNO>20</DEPTNO>
 </row>

 <row>

 <EMPNO>1005</EMPNO>
 <ENAME>Gummo</ENAME>
 <JOB>Tenor</JOB>
 <MGR>1</MGR>
 <HIREDATE>05-JAN-01</HIREDATE>
 <SAL>500</SAL>
 <COMM>50</COMM>
 <DEPTNO>10</DEPTNO>
 </row>

 </select>

</database>

We uploaded it to EMP with the XML::XPath script in Example D-12. We've worked through this script
immediately following the example:

Feeding XML into Oracle — dbiXPATH.pl

#!perl -w

use strict;

use DBI;

use XML::XPath;

Step 1: Connect up to the sink database.

my $dbh = DBI->connect('dbi:Oracle:ORCL.WORLD', 'scott', 'tiger') ||

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $dbh = DBI->connect('dbi:Oracle:ORCL.WORLD', 'scott', 'tiger') ||
 die $DBI::errstr;

Step 2: Locate the source XML data.

my $xpath = XML::XPath->new(filename => 'nightopera.xml');

Step 3: Prepare the insertion DML.

my $insert_dml = qq{ INSERT

 INTO emp (empno, ename,

 job, mgr,

 hiredate, sal,

 comm, deptno)

 VALUES (to_number(?), ?,

 ?, to_number (?),

 to_date(? , 'DD-MON-YY'), to_number (?),

 to_number (?), to_number (?)) };

my $sth = $dbh->prepare($insert_dml);

Step 4: Extract the XML records one by one, through the loop,

and insert into database.

 my $mgr = $row->find('MGR')->string_value;
 my $hiredate = $row->find('HIREDATE')->string_value;
 my $sal = $row->find('SAL')->string_value;
 my $comm = $row->find('COMM')->string_value;
 my $deptno = $row->find('DEPTNO')->string_value;
 # Line inserted into the sink.

 $sth->execute($empno,

 $ename,

 $job,

 $mgr,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $mgr,

 $hiredate,

 $sal,

 $comm,

 $deptno) || die $DBI::errstr;

}

Step 5: Clean up, and disconnect.

$dbh->disconnect;

Let's see what's going on here.

1. There are two parallel pathways moving through this script. The first is DBI-based, and our first step with it
is to open up a database connection.

2. In our second path, we locate the XML source input file, nightopera.xml.

3. Getting back to the first track, we prepare an INSERT statement.

4. The XML process then uses the findnodes() and find() methods, to whizz through nightopera.xml
out the relevant information before plugging it straight down into the data sink.

5. Once through the loop, we disconnect and clean up (as per union rules).

We can see the results here, from the SCOTT.EMP table.

SQL> select * from emp where empno in (1004, 1005);

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

--------- ---------- --------- ------ --------- ------ -------- ------

 1004 Zeppo President 1 04-JAN-32 400 40 20

 1005 Gummo Tenor 1 05-JAN-33 500 50 10

A combination of XML::Generator::DBI and XML::XPath may be all you require to carry out whatever munging
operations you require, both to and from the Oracle database, especially if you want access to all the other Perl
modules at the same time. However, as with all things in Perl, there is another way to do it.

XML::XMLtoDBMS

Let's suppose that we want to extract data from our database into an XML file. We'd like to then beam this across
the galaxy to Betelgeuse, via the local StarGate at Vega, and load it there into a Betelgeusian database. We'd
like to do all this with a single Perl module. Step forward XML::XMLtoDBMS, a module specially blended with DBI
to provide an all-purpose alternative. This module springs directly from its XML-DBMS middleware parent project,
which also provides a Java-based alternative. Assuming that we've loaded every XML module discussed so far,
except the optional XML::LibXSLT, we have everything we need except for one last module, Graham Barr's
TimeDate bundle:

http://www.cpan.org/authors/id/GBARR/

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once installed, we also have Date::Format and Date::Parse on board; these came with TimeDate. We're now
ready for the green light.

The parent project, XML-DBMS, is Ronald Bourret's Java-based middleware for transferring data between XML
documents and relational databases. It deals with many of the coding inconveniences in-between and is ideal for
data munging purposes. Check it out at:

http://www.rpbourret.com/xmldbms/index.htm

From here you'll be directed to the Perl download of XML::XMLtoDBMS, by Nick Semenov. This is ported
from Ronald Bourret's XML-DBMS software, which is itself written in Java. Before we install XML::XMLtoDBMS
however, let's run through a quick checklist of everything we need:

expat
XML::Parser
XML::Parser::PerlSAX (via libxml-perl)
libxml2
XML::SAX
XML::LibXML
Date::Format (via TimeDate)
Date::Parse (via TimeDate)

Once you have these modules and the XML::XMLtoDBMS tarball, it's time for that new dance, the Chesapeake
bay whirl:

$ gzip -d perl-xml-dbms-1.03.tgz

$ tar xvf perl-xml-dbms-1.03.tar

$ cd XML-DBMS

$ vi README

We really ought to read the README file this time, as XML::XMLtoDBMS can be challenging to understand. But
once we've got our head round it, the actual installation is straightforward. However, we do need one
adjustment.

To cope with the standard Oracle date format, DD-MON-YY, we're going to introduce a one-line adjustment to the
XMLtoDBMS.pm module for the 1.03 version, which is an open source product under constant development.
(This may very well have been amended in later versions.) Add the marked line to the convertFormat
We need this line because it will be difficult to re-insert XML date information back into Oracle, via
XML::XMLtoDBMS, if the data is not in DD-MON-YY format:

sub convertFormat

{

 my $formatString = shift;

 $formatString =~ s/YYYY/%Y/g;

 $formatString =~ s/YY/%y/g;

 $formatString =~ s/MM/%m/g;

 $formatString =~ s/MON/%b/g; # Typical Oracle month format.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $formatString =~ s/MON/%b/g; # Typical Oracle month format.
 $formatString =~ s/DD/%d/g;

 $formatString =~ s/hh/%H/g;

 $formatString =~ s/mm/%M/g;

 $formatString =~ s/ss/%S/g;

 return $formatString;

}

A small aside, for those who may think that the fact that this module expects a different date format points out a
conceptual weakness of open source software. We disagree. This, we believe, is its greatest strength. If you find
that something fails to work exactly the way you expect, you can fix the source code directly, to make
you want.

Once we've made this small adjustment, installation is routine:

$ perl Makefile.PL

$ make

$ make test

$ make install

Take a look at the eventual results in Figure D-7.

Figure D-7. One Perl XML module to munge them all

The target data-sink table, on Betelgeuse, was created many centuries ago with the following statement:

SQL> create table FordPrefectus

 2 (TimeLord number(4) not null,

 3 Role varchar2(10),

 4 Mission varchar2(9),

 5 Master number(4),

 6 Origin date,

 7 Altairian$ number(7,2),

 8 Credits number(7,2),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 8 Credits number(7,2),

 9 Quadrant number(2));

Table created.

OK, it is rather remarkable that they have Oracle-type databases on Betelgeuse, but Professor Hawking tells us
it's something to do with the infinite pathway effect of those quantum-type particles which make black holes
evaporate. The eagle-eyed among you may have also noted that the FORDPREFECTUS table on Betelgeuse is
remarkably similar to SCOTT's EMP table back here on Earth. This too is mere quantum coincidence.

Even more fortuitously, the most popular entertainment stars on Betelgeuse are the Marx Brothers, as televised
transmissions of their films have only started reaching the Betelgeusian quadrant in the last five years. They
would therefore like more information on these black-and-white magicians of the silver screen. As a
consequence, we recently received an XML-encoded 3-D message cube, asking us to send the requisite details.

Source mapping

We have agreed upon an XML mapping with the Betelgeusians to facilitate the requested information transfer. At
our end, we need a mapping file to construct the XML output. We'll work through this following Example D-13

The primary benefit for using XML-DBMS over other XML tools such as
XML::Generator::DBI and XML::XPath, is that it can treat XML data as arbitrarily nested
groups of tables. Other tools with less overhead tend to treat everything as a single
table, which can provide bottlenecks with some of the necessarily complex data sets
you may encounter. In the extended example below, we've covered only a very small
segment of what is possible via the mapping facilities within XML-DBMS. See Ronald
Bourret's web site (listed earlier) for much more information on how XML-DBMS can
help to solve your own particular XML needs when other Perl XML modules are
insufficient.

Source mapping for XML::XMLtoDBMS — emp.map

<?xml version="1.0" ?>

<XMLToDBMS Version="1.0">

 <Options>
 <DateTimeFormats><Patterns Date="DD-MON-YY"/>
 </DateTimeFormats>
 </Options>
 <Maps>

 <IgnoreRoot>
 <ElementType Name="employees"/>
 <PseudoRoot>
 <ElementType Name="emp"/>
 <CandidateKey Generate="No"><Column Name="empno"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <CandidateKey Generate="No"><Column Name="empno"/>
 </CandidateKey>
 </PseudoRoot>
 </IgnoreRoot>
 <ClassMap>
 <ElementType Name="emp"/>
 <ToClassTable><Table Name="emp"/>
 </ToClassTable>
 <PropertyMap>
 <ElementType Name="empno"/>
 <ToColumn><Column Name="empno"/>
 </ToColumn>
 </PropertyMap>
 <PropertyMap>

 <ElementType Name="ename"/>

 <ToColumn><Column Name="ename"/>

 </ToColumn>

 </PropertyMap>

 <PropertyMap>

 <ElementType Name="job"/>

 <ToColumn><Column Name="job"/>

 </ToColumn>

 </PropertyMap>

 <PropertyMap>

 <ElementType Name="mgr"/>

 <ToColumn><Column Name="mgr"/>

 </ToColumn>

 </PropertyMap>

 <PropertyMap>

 <ElementType Name="hiredate"/>

 <ToColumn><Column Name="hiredate"/>

 </ToColumn>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </PropertyMap>

 <PropertyMap>

 <ElementType Name="sal"/>

 <ToColumn><Column Name="sal"/>

 </ToColumn>

 </PropertyMap>

 <PropertyMap>

 <ElementType Name="comm"/>

 <ToColumn><Column Name="comm"/>

 </ToColumn>

 </PropertyMap>

 <PropertyMap>

 <ElementType Name="deptno"/>

 <ToColumn><Column Name="deptno"/>

 </ToColumn>

 </PropertyMap>

 </ClassMap>
 </Maps>

</XMLToDBMS>

Let's see what's happening here:

1. There are four particularly interesting nodes within the emp.map XML file. The first is the <Options>
which details the date format we're going to use, DD-MON-YY, which is possible after our earlier
adjustment.

2. The second is the <IgnoreRoot> node, containing two important elements:

a. The first is the initial <ElementType>, which sets the conceptual name for the whole XML-ised
of information as employees.

b. The second, is the <CandidateKey> node, which tells us that the primary key for emp is
<Column> value, empno.

3. The next important node grouping is the one marked by <ToClassTable>, which contains the
node, confirming to us that our table name is indeed emp. This may seem to be duplication, but it's
important, as we'll see later. Also notice the <ClassMap> and <ElementType> mapping just above. The
point here is that we've chosen to map some elements to tables, with <ClassMap>, and some other
elements to columns, with <PropertyMap>.

4. The next node group, under <PropertyMap>, is significant. It gives us a conceptual name for each column,
under <ElementType>, but supplies us with an actual column name, under the <Column> node.

There are far more complex things possible with the mappings available in XML::XMLtoDBMS — for example,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are far more complex things possible with the mappings available in XML::XMLtoDBMS — for example,
table pairs with different primary and foreign key constraints, varying numbers of columns, date and time format
differences, and much more. You name it, it's probably in the mapping language. As you can see from
D-13, however, even a relatively simple exchange of data can generate a large mapping file. But once you've got
the basic structure, the rest is just plugging in the numbers.

You might wish to examine the DTD file, xmldbms.dtd, which comes with the download, as well as visit the web
pages:

Source output

Now that we have the mapping, we can generate the XML in Example D-14.

Creating our source data — outXMLDBMS.pl

#!perl -w

use strict;

use DBI;

use XML::XMLtoDBMS;

Step 1: Connect to Oracle, as usual.

Then use the database handle to feed XML::XMLtoDBMS.

my $dbh = DBI->connect('dbi:Oracle:ORCL.WORLD', 'scott', 'tiger') ||

 die $DBI::errstr;

my $xmlToDbms = new XML::XMLtoDBMS($dbh);

$xmlToDbms->setMap('emp.map');

Step 2: Get hold of the data. Use the primary keys of our

required rows, to isolate them.

my $xmlOut = $xmlToDbms->retrieveDocument(

 'emp',

 [['1001'],['1002'],['1003'],['1004'],['1005']]);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [['1001'],['1002'],['1003'],['1004'],['1005']]);
Step 3: Output the data to XML.

open (XML, ">emp.xml");
Prettify printing with format 1 line break
print XML $xmlOut->toString(1);
close XML;
Step 4: It's important to clean up the acquired DOM memory,

as well as disconnecting from the Oracle server.

$xmlToDbms->destroy;

$dbh->disconnect;

Let's work through the code.

1. We acquire a database connection via DBI. Once this is done, we can forget about DBI entirely, as
XML::XMLtoDBMS takes the database handle and does all the work, based on the emp.map instructions
created earlier.

2. Once we have the appropriate handles in place, we retrieve the required data from the SCOTT.EMP table
using retrieveDocument(). Notice the use of the EMPNO primary keys to get the five rows required. There
are several other filter techniques also available.

3. The next step is simple. We produce the emp.xml file we'll be sending through the Vegan StarGate.

4. Once we're done, we clean up, both destroying the memory used to create the XML file and disconnecting
from the database.

Let's run the script:

$ perl outXMLDBMS.pl

A snippet of the resultant output file, emp.xml, is displayed here, with one of the <emp> records:

<?xml version="1.0" encoding="UTF-8"?>

<employees>

 <emp>

 <mgr>1</mgr>

 <sal>100</sal>

 <ename>Groucho</ename>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ename>Groucho</ename>
 <job>Professor</job>

 <empno>1001</empno>

 <deptno>10</deptno>

 <comm>10</comm>

 <hiredate>01-Jan-01</hiredate>

 </emp>

 ...

</employees>

Notice that we have Groucho embedded, like a nugget of gold, within the XML.

Sink mapping

Once emp.xml is beamed across to Betelgeuse by hyperwave-relay, we're going to need another mapping file.
This one will cope with the different column names in FORDPREFECTUS. We've detailed this mapping in
Example D-15.

Mapping the data into the sink — timelord.map

<?xml version="1.0" ?><XMLToDBMS Version="1.0">

 <Options>
 <DateTimeFormats><Patterns Date="DD-MON-YY"/>
 </DateTimeFormats>
 </Options>
 </CandidateKey>
 </PseudoRoot>

 </IgnoreRoot>

 <ClassMap>

 <ElementType Name="emp"/>
 <ToClassTable><Table Name="fordprefectus"/>
 </ToClassTable>
 <PropertyMap>

 <ElementType Name="empno"/>
 <ToColumn><Column Name="timelord"/>
 </ToColumn>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </ToColumn>
 </PropertyMap>

 <PropertyMap>

 <ElementType Name="ename"/>
 <ToColumn><Column Name="role"/>
 </ToColumn>

 </PropertyMap>

 <PropertyMap>

 <ElementType Name="job"/>
 <ToColumn><Column Name="mission"/>
 </ToColumn>

 </PropertyMap>

 <PropertyMap>

 <ElementType Name="mgr"/>
 <ToColumn><Column Name="master"/>
 </ToColumn>

 </PropertyMap>

 <PropertyMap>

 <ElementType Name="hiredate"/>
 <ToColumn><Column Name="origin"/>
 </ToColumn>

 </PropertyMap>

 <PropertyMap>

 <ElementType Name="sal"/>
 <ToColumn><Column Name="altairian$"/>
 </ToColumn>

 </PropertyMap>

 <PropertyMap>

 <ElementType Name="comm"/>
 <ToColumn><Column Name="credits"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ToColumn><Column Name="credits"/>
 </ToColumn>

 </PropertyMap>

 <PropertyMap>

 <ElementType Name="deptno"/>
 <ToColumn><Column Name="quadrant"/>
 </ToColumn>

 </PropertyMap>

 </ClassMap>

 </Maps>

</XMLToDBMS>

Let's see what's going on in this example.

1. Notice the date format in the <Options> node near the start of the file.

2. Notice also that the <CandidateKey> column name for the primary key is timelord.

3. The <ToClassTable> mapping also varies slightly. We have all the emp data mapped to the table
fordprefectus.

4. Within each <PropertyMap> node, we also have each <ElementType>, such as empno, being mapped
across to a new <Column> name value, such as timelord. This pattern repeats throughout the

Sink input

Meanwhile on Betelgeuse, the XML from Earth has arrived and our friends have the requisite mapping file.
that needs to be done, in Example D-16, is to run a universal Perloid script, operating on the galactic standard
Traalix operating system and load it up into the database. Let's go.

Inputting into the sink — inXMLDBMS.pl

#!perl -w

use strict;

use DBI;

use XML::XMLtoDBMS;

Step 1: Connect to our remote Oracle database on Betelgeuse :-)

Use the connection acquired to create our XML::XMLtoDBMS object.

my $dbh = DBI->connect('dbi:Oracle:BETELGEUSE.WORLD',

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'zaphod', 'b33b13br0x') || die $DBI::errstr;

my $xmlToDbms = new XML::XMLtoDBMS($dbh);

$xmlToDbms->setMap('timelord.map');

Step 2: Acquire the XML file, and then store it in the datasink.

my $xmlIn =

 $xmlToDbms->storeDocument(Source => {File => "emp.xml"});

Step 3: Disconnect and clean up memory.

$xmlToDbms->destroy;

$dbh->disconnect;

Here's what's happening:

1. We open the database connection and use it to prime XML::XMLtoDBMS before setting the configuration
via timelord.map.

2. Using storeDocument(), we pump the emp.xml file into the data sink.

3. Finally, we wrap up the memory, disconnect, and exit.

Results

The table data folds neatly into FORDPREFECTUS. Mission accomplished:

SQL> select * from FordPrefectus ;

TIMELORD ROLE MISSION MASTER ORIGIN ALTAIRIAN$ CREDITS QUADRANT

-------- ------- --------- ------ --------- ---------- ------- --------

 1001 Groucho Professor 1 01-JAN-01 100 10 10

 1002 Chico Minister 2 02-JAN-01 200 20 20

 1003 Harpo Stowaway 3 03-JAN-01 300 30 30

 1004 Zeppo President 1 04-JAN-01 400 40 20

 1005 Gummo Tenor 1 05-JAN-01 500 50 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What's Coming in XML::DBMS?
Features coming in Version 2.0 of XML-DBMS include the following:

Updates and deletes, as well as further selection filters

Heterogeneous joins

Additional mapping language features, such as per-column formatting and limited
transformation

The generation of map files from the database

Support for database-generated keys

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.

The animals on the cover of Perl for Oracle DBAs are thread-winged lacewings. Lacewings can
be found all over the world, primarily in warmer climates. They live mostly in sheltered, sandy
areas such as wooded dunes, forest floors, and riverbanks, until they reach adult form, at which
time their wings enable them to roam more freely.

In their larvae state, lacewings prey voraciously on such unsuspecting victims as aphids, mites,
and scale insects. They hide under pieces of wood or debris, wait for insects to pass, then attack
with their pincer-like mandibles.

Lacewings undergo full metamorphosis throughout their lives. The adult form is characterized by
two sets of wings, a long, slender abdomen, and clubbed antennae. Lacewings are one type of
many nerve-winged insects because of the intricate pattern of lines (nerves) running through their
transparent wings.

Darren Kelly was the production editor for Perl for Oracle DBAs. Nancy Crumpton provided
production services and wrote the index. Jan Fehler was the copyeditor. Tatiana Apandi Diaz and
Claire Cloutier provided quality control.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from The Riverside Natural History: Volume 2. Emma
Colby produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted to FrameMaker 5.5.6 with a
format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses
Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that
appear in the book were produced by Robert Romano and Jessamyn Read using Macromedia
FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing.
This colophon was written by Linley Dolby.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written
and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

!~ (exclamation point-tilde), Perl pattern-binding operator
$ (dollar sign)
 Perl hashes
 Perl regex metacharacter
 Perl scalars
 Perl variable notation
$# (dollar sign-number sign) Perl syntax
$_ (dollar sign-underscore)
 implicit use in regexes
 pronoun in Perl hashes
$dbh variable (Perl DBI)
% (percent sign)
 Perl in Mason template
 Perl variable notation
%ENV hash (Perl)
<% . . . %> (angle brackets-percent signs), Perl in Embperl template
<%perl> . . . </%perl> (angle brackets-percent signs)
<> (angle brackets)
 mucr8.pl file
 spdrvr.pl
<<END_DATE_PK>> tag (spdrvr.pl)
<<START_DATE_PK>> tag (spdrvr.pl)
() (parentheses), Perl regex metacharacter
* (asterisk), Perl regex metacharacter 2nd
*? (asterisk-question mark), Perl regex metacharacter
+ (plus sign), Perl regex metacharacter 2nd
+? (plus sign-question mark), Perl regex metacharacter
-> (arrow notation), Perl
-dryrun option (mucr8.pl)[dryrun option (mucr8.pl)
. (dot character), Perl regex metacharacter 2nd
=~ (equal sign-tilde), Perl pattern-binding operator
? (question mark), Perl regex metacharacter 2nd
?? (question mark-question mark), Perl regex metacharacter
@ (at sign), Perl variable notation
@emailAddresses parameter (maxext.conf)[atemailAddresses parameter (maxext.conf)
[! . . . !] (square brackets-exclamation points), Perl in Embperl template
[+ . . . +] (square brackets-plus signs), Perl in Embperl template
[- . . . -] (square brackets-hyphens), Perl in Embperl template
[] (square brackets)
 Perl arrays
 Perl regex metacharacter
[^] (square brackets-caret sign), Perl regex metacharacter
\ (backslash), Perl regex metacharacter
^ (caret sign), Perl regex metacharacter
{} (curly braces)
 Embperl
 idxr.pl
| (vertical bar), Perl regex metacharacter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

accounts
 creating multiuser with mucr8.pl 2nd
 creating single user
 with create_user.pl
 with dup_user.pl
 with PDBA::DBA
 dropping 2nd 3rd
 duplicating with PDBA Toolkit scripts
 granting privileges while creating
 managing
 with PDBA Toolkit scripts
 reports on users
 setting quotas while creating
 specifying tablespaces
Active Server Pages [See ASP]
ActivePerl
 CGI scripts
 downloading latest build of
 installing Perl on Win32 and
 loading DBD::Chart for
 package for DDL::Oracle
ActiveState
 date-related modules on
AIX, installing Perl from prebuilt package
alarmTime parameter (chkalert.pl)
alert log
 filename
 Karma email error notification
 location of
 monitoring
 with chkalert.pl
 PDBA Toolkit scripts
 with PDBA Toolkit scripts
alert_orcl.log
alertLevel parameter (dbup.conf)
algorithms
 compression, lossless vs. lossy
 data munging, resources
all method (PDBA::GQ)
 retrieving all rows simultaneously
ALTER INDEX REBUILD statement (Oracle)
ANALYZE command (Oracle)
angle brackets (<>)
 mucr8.pl file
 spdrvr.pl
angle brackets-percent signs (<% . . . %>), Perl in Embperl template
angle brackets-percent signs (<%perl> . . . </%perl>)
Apache
 building with Perl
 CGI scripts
 ActivePerl and
 directory for
 configuring Mason for
 downloading
 Unix version

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Win32 version
 embedding Perl into [See mod_perl]
 Embperl and 2nd
 installing
 on Unix
 on Win32
 interface with Storable.pm
 mod_perl modules, table of
 ORACLE_HOME variable and
 Perl and
 zzz [See also mod_perl][See also mod_perl]
 Perl modules
 running httpd servers as root
 server functions, rewriting CGI scripts into
 using DBD::Chart with
 web resource for
Apache AutoConf Interface (APACI)
Apache Run Time Configuration Directives, web resource
Apache Software Foundation (ASF)
APACHE variable, installing Mason
Apache::AuthDBI
Apache::DBI 2nd 3rd
 Apache::OWA and
 downloading
Apache::OWA 2nd
 Apache::DBI and
 configuring
 downloading
 installing
 on Unix
 on Win32
 web resources for
Apache::Registry 2nd 3rd
 "my" variables and
Apache::Request
Apache::Session
 Embperl and
Apache::SessionX
APACI (Apache AutoConf Interface)
applications
 data warehouse, limiting resource consumption
 described in this book, download sites
 Perl
 open source
 servicing users/requests
arguments, parsing command-line
arrays
 anonymous, in Perl
 fetching rows from
 generating
 generating references to
 Perl
 determining size of
arrow notation (->), Perl
ASF (Apache Software Foundation)
ASP (Active Server Pages) 2nd
associative arrays [See hashes]
asterisk (*), Perl regex metacharacter 2nd
asterisk-question mark (*?), Perl regex metacharacter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

at sign (@), Perl variable notation
@ARGV array (Perl)
@_ array (Perl)
attributes
 in mucr8.msg file
 Perl DBI database handle
@video_collection array (Perl)
Authen::ACE
authentication
AutoCommit attribute, connecting to Oracle databases via PDBA::CM
AUTOEXEC.BAT file, Orac and
available_drivers method (Perl DBI)
AxKit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

backreferences, capturing
backslash (\), Perl regex metacharacter
bandwidth, Perl and
baseline.pl
 command-line options, table of
 example output
batch processor, DDL::Oracle as
begin_work method (Perl DBI)
binary data, extracting with sqlunldr.pl
binary large objects (BLOBs), fine-grained access to
bind_col method (Perl DBI)
bind_columns method (Perl DBI)
bind_param method (Perl DBI)
bind_param_inout method (DBD::Oracle)
Bit::Vector
bless command (Perl)
BLOBs (binary large objects), fine-grained access to
Blowfish
boolean variable type, Perl and
./boot test compilation errors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

C language
 embedding Perl in
 files, scanning for constructs
 Oracle::OCI vs.
C libraries
 connecting with
 Perl and
C::Scan, required by Oracle::OCI
caret sign (^), Perl regex metacharacter
carriage return/line feed [See CR/LF]
case sensitivity
 inline Perl in Mason
 Perl string-handling functions
 suffix for enabling regex match to ignore
CBO (cost-based optimizer)
CGI (Common Gateway Interface)
 scripts [See CGI scripts]
CGI environment variables, Apache::Registry and
CGI scripts 2nd
 with ActivePerl on Apache
 disadvantages of
 improving performance of 2nd [See also Apache::Registry]
 managing [See Apache::Registry Apache::DBI]2nd [See Apache::Registry Apache::DBI]
 mod_perl and
 Oracletool and
 rewriting into Apache server functions
 web resources for
cgi.pm resource
character large objects (CLOBs)
charts, for performance statistics [See DBD::Chart]
checksums, PDBA Toolkit scripts and
chkalert.conf
chkalert.pl 2nd
 command-line option, table of
 configuring on Unix
 features of
 installing on Unix
 -kill option
 modifying configuration parameters
 on Win32 [See chkalert_NT.pl]
 running
 testing
 Unix/Win32 versions
chkalert_NT.pl
 command-line options, table of
 installing on Win32
 Oracle_SID_AlertLogMon, testing
 starting monitoring service
chkalert_service.pl
 command-line options
CLOBs (character large objects)
cm.conf
 overriding ignoring of by PDBA::CM
column_diff_rpt, reporting changes to table columns 2nd
column_info method (Perl DBI)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

column_rpt, reporting on table columns
command line, scanning for options intended for password server 2nd [See also PDBA::OPT/PDBA::PWC]
command-line arguments, parsing
commit method (Perl DBI)
Common Gateway Interface [See CGI]
Comprehensive Perl Archive Network [See CPAN]
compression algorithms, lossless vs. lossy
configuration files
 adding passwords to
 creating for PDBA password client
 driving scripts, changing
 PDBA Unix, installing
configuration variables, referring to by package name
configuring
 Apache::OWA
 chkalert.pl on Unix
 dba_jobsm.pl
 dbup.pl on Unix
 dbup.pl/dbup_NT.pl
 setting DBA on call
 setting pager and email addresses
 upDays/upHours parameters
 uptime requirements
 Karma
 on Unix
 on Win32
 kss.pl
 Mason for Apache
 mod_perl on Win32
 PDBA Toolkit
 password client
 password server
 PDBA module
 PDBA::CM
connect method (Perl DBI)
connect PDBA role
connect_cached method (Perl DBI)
connectInterval parameter (dbup.conf) 2nd
Connection Manager [See PDBA::CM]
conversion data-munging modules
Convert::Recode
cost-based optimizer (CBO)
CPAN (Comprehensive Perl Archive Network)
 data-munging modules
 conversion
 date
 mathematics
 numeric
 text conversion
 XML
 downloading source from
CPAN module
 installing Perl modules
 from command line
 interactive CPAN shell
 unreliability of 2nd
CPAN packages, LWP.pm and
CR/LF (carriage return/line feed)
 configuring dbup.pl/dbup_NT.pl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

create method (PDBA::DBA)
create_user.conf
create_user.pl 2nd
 command-line options, table of
creating
 charts for performance statistics [See DBD::Chart]
 GUI-driven applications in Perl [See Perl/Tk]
 Internet Perl clients with LWP.pm
 log files
 multiuser accounts with mucr8.pl
 objects
 with PDBA Toolkit
 oracle user from command line
 PROFILEs
 single user accounts
 with create_user.pl
 with dup_user.pl
 statement handles
 tablespaces, PDBA repository installation
 user accounts
 with PDBA::DBA
 tablespaces and
creating Internet Perl clients
Crypt::Beowulf
Crypt::Blowfish
Crypt::IDEA
Crypt::RC4 2nd
 PDBA password server and
Crypt::SSLeay
Crypt::Twofish2
curly braces ({})
 Embperl
 idxr.pl
cursors, binding
Cygwin 2nd
 downloading
 installing DBD::Oracle under
 accessing Oracle client libraries 2nd
 installing Perl DBI under
 installing Perl under
 packages required
 security and
 web resource for
CYGWIN variable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

DAD (Database Access Descriptor)
Data Definition Language [See DDL]
data dictionary, Oracle
 loading baseline data into PDBA repository
 PDBA repository and
Data Manipulation Language (DML)
data munging
 components of
 conversion methods
 CPAN modules
 conversion
 date
 mathematic
 numeric
 text conversion
 XML
 guide to
 how it works
 inter-database transfer
 MySQL source
 Oracle target
 regexes and
 resource for further information
data warehouse applications, limiting resource consumption
Data::Dumper, required by Mason
Data::Flow, required by Oracle::OCI
data_sources method (Perl DBI)
Database Access Descriptor (DAD)
database connectivity
 monitoring with dbup.pl/dbup_NT.pl
 %uptime hash parameters
 monitoring with PDBA Toolkit scripts
 polling
Database Driver for Oracle [See DBD::Oracle]
database handles
 attributes, Perl DBI
 Perl DBI
 SQL and cleanup
 statement handle methods
database repository, building with DBA Toolkit
database server, checking on
databases
 administering
 cutting/pasting scripts, avoiding [See DDL::Oracle]
 with PDBA Toolkit scripts [See PDBA Toolkit scripts]
 Unix system administration and [See StatsView]
 zzz [See also Oracletool][See also Oracletool]
 automating administration tasks
 checking availability of
 connections
 zzz [See also Apache::DBI database connectivity][See also Apache::DBI database connectivity]
 closing down
 pooling
 monitoring [See also Karma]2nd
 with Oracletool

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 with PDBA Toolkit scripts
 Oracle
 limiting resource consumption
 NULL values and
 space problems on
 Oracle DDL from Oracle8i, reverse-engineering [See DDL::Oracle]
 relational, operations of [See OCI, relational functions]
 reporting status of jobs in
 schemas [See also SchemaDiff; sqlunldr.pl]
 comparing
 dumping
 examining/saving [See SchemaView-Plus]
 targets, retrieving list of
 tracking changes to [See PDBA repository reports, of database changes]
 transfering among
 example of data munging
 MySQL source
 Oracle target
datatypes, cookie manipulation
date/time information
 -dateformat option
 leap seconds in calendar
 modules
 Oracle date format, XML::XMLtoDBMS and
 parsing 2nd 3rd
 PDBA repository reports, changing in
date/time utilities
Date::Calc
 Date-Calc 5.0 API
 languages supplied with
 methods in
 system_clock method, figures provided by
Date::Calendar
Date::Format, XML::XMLtoDBMS and
Date::Manip
 installing
 on Unix
 on Win32
 Manip.cnf
Date::Parse, XML::XMLtoDBMS and
-dateformat option (sqlunldr.pl)
DB_BLOCK_BUFFERS parameter (Oracle)
dba_jobs.conf
dba_jobs.pl
dba_jobsm.pl 2nd
 configuring
 example report generated by
 functions/formats description
 modifying
 adding passwords to config file
 configuring parameters
 script description
dbaAddresses parameter (chkalert.pl)
DBD drivers, retrieving list of
DBD::Chart 2nd
 downloading
 installing
 on Unix
 on Win32

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 libraries required
 loading for ActivePerl
 modules required
 preparing
 Unix downloads required
 using Apache with
 using Perl/Tk applications with
DBD::mysql driver
DBD::Oracle
 architecture compared to Oracle::OCI
 cursors, binding
 documentation provided for
 downloading 2nd
 extproc_perl and
 handling LOBs
 installing
 under Cygwin
 environment variables
 error hit list
 limitation of
 methods for Perl DBI
 online documentation for
 patch provided with extproc_perl download 2nd
 patching
 setting variables
 PDBA repository and
 Perl DBI and
 coding with Oracle::OCI
 relationship to Oracle::OCI
 versions of 2nd
 zzz [See also Perl DBI][See also Perl DBI]
DBD::Proxy
dbdimp.c file, patching DBD::Oracle
dbgextp.sql file, debugging external procedure setup
DBI::ProxyServer
 packages required
dbignore.pl
dbiproxy daemon
 running Perl DBI by proxy
dbish/dbishell programs
DBMS_OUTPUT package
dbms_output_enable method (DBD::Oracle)
dbms_output_get method (DBD::Oracle)
dbms_output_put method DBD::Oracle)
dbup.conf
 DBA on-call schedule
 email addresses
 operational parameters
 test configuration
dbup.pl
dbup.pl/dbup_NT.pl
 command-line options, table of
 configuring
 setting DBA on call
 setting pager and email addresses
 upDays/upHours parameters
 uptime requirements
 Date::Manip and
 password server and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 testing monitor
dbup_NT.pl
dbup_service.pl 2nd
DDL (Data Definition Language)
 extracting
 with ddl_oracle.pl
 generating
 Oracle and
 time boundaries and
DDL::Oracle 2nd 3rd
 as batch and list processor
 download example scripts, table of
 downloading
 installing
 on Win32
 on Unix
 mailing list
 using as batch and list processor, defrag.pl
 using Orac with
 example program
ddl_oracle.pl 2nd
 command-line options, table of
 scripts generated by, table of
DEBUG_EXTPROC package
debugging
 external procedure listeners
 gdb program and
 installing Oracle::OCI on Unix
 Perl GUI debuggers
 Perl GUI tools for, download sites
 Perl scripts
 setting tracing level
defrag.pl command
 parameters, files created by
 scripts created by
Deterministic Finite Automaton (DFA)
developer PDBA role
DFA (Deterministic Finite Automaton)
Digest::MD5
directory paths
 for PDBA Toolkit
 supporting modules/scripts on Unix
 alert log
 create_user.conf
 creating to log files
 dba_jobsm.pl
 installing Perl on Unix
 for PDBA Toolkit
 with configuration files on Win32
 scripts
 Win32 CGI scripts
disconnect method (Perl DBI)
DJ Delorie's GNU Programming Platform (DJGPP)
DJGPP (DJ Delorie's GNU Programming Platform)
DML (Data Manipulation Language)
DML statements, preparing
do . . . until loops, Embperl syntax
do method (Perl DBI)
dollar sign ($)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Perl hashes
 Perl regex metacharacter
 Perl scalars
 Perl variable notation
dollar sign-number sign ($#) Perl syntax
dollar sign-underscore ($_)
 implicit use in regexes
 pronoun in Perl
dot character (.), Perl regex metacharacter 2nd
downloading
 ActivePerl, latest build
 Apache
 Unix version
 Win32 version
 Apache::DBI
 Apache::OWA
 Apache::Request
 Apache::Session
 Apache::SessionX
 Bit::Vector
 C::Scan
 Crypt::Blowfish
 Crypt::IDEA
 Crypt::RC4
 Cygwin
 Cygwin packages
 Data::Flow
 Date::Calc
 Date::Calendar
 Date::Manip
 DBD::Chart
 DBD::Oracle 2nd
 DDL::Oracle
 expat program
 extproc_perl
 FreezeThaw
 Karma
 libapreq
 libnet library
 libxml2
 libxslt
 LWP.pm
 Mail::Sendmail
 Mason
 MIME::Base64
 MLDBM
 mod_perl
 Number::Format
 Open Perl IDE
 ora_explain.PL
 Orac
 Params::Validate
 PDBA Toolkit
 PDBA.ppd
 PDBAx
 Perl
 source from CPAN
 Perl DBI 2nd
 Perl/Tk

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PNG
 recode library
 SchemaDiff
 Senora
 StatsView
 gnuplot installation
 PNG installation
 PNG, need for
 zlib installation
 Storable 2nd
 Time::HiRes
 TimeDate
 Tk::GBARR
 Win32::Daemon
 XML::Dumper
 XML::LibXML
 XML::LibXSLT
 XML::Parser
 XML::SAX
 XML::XMLtoDBMS
 XML::XPath
 zlib
drop method (PDBA::DBA)
drop_user.pl 2nd
dump_results method (Perl DBI)
dup_user.pl 2nd
dynamic SQL utilities

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

ebugDBA parameter (chkalert.pl)
ed program, regular expressions and
email
 in Karma via MailTools.pm
 error notification
 Perl and
 sending from Perl scripts 2nd
email method (PDBA module) 2nd
emailHome parameter (dbup.conf)
emailWork parameter (dbup.conf)
embedded web scripting [See also Embperl; Mason]2nd
 web resources for
Embperl
 Apache and
 Apache::Session and
 deploying
 forms handling
 installing
 on Unix
 on Win32
 latest release of
 modules required by
 syntax
 controlling template-driven program flow
 embedding Perl in Embperl templates
 variable naming
 web resources for
EMBPERL_DEBUG variable
encryption
 Oracletool security levels
 passwords [See password encryption]
 PDBA password server and
 Perl and
%encryption data structure (pwd.conf)
<<END_DATE_PK>> tag (spdrvr.pl)
environment variables
 cm.conf and
 Oracle
 DBD::Oracle and
 predefining
 Perl scripts and
 specifying
 Win32
 PPM and
 web resource for
equal sign-tilde (=~), Perl pattern-binding operator
error conditions, PDBA Toolkit monitoring scripts
errorList parameter (chkalert.pl)
errors
 ./boot test compilation, avoiding when installing Oracle::OCI
 insufficient privileges on underlying objects and sxp.pl
 no password available and sxp.pl
 ORACLE not available
 unique constraint error and sxp.pl
exclamation point-tilde (!~), Perl pattern-binding operator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

execute method
 PDBA::GQ
 Perl DBI
exp_exclude.conf
expat program
Export utility (Oracle)
extensibility, Senora vs. SQL*Plus
Extensible Markup Language [See XML]
Extensible Stylesheet Language Transformations (XSLT)
extents
 allocating in LMTs
 dictionary-managed
 managing usage of 2nd
 zzz [See also LMTs][See also LMTs]
external procedures
 Oracle, resources
 setting up
EXTPROC listener
 PL/SQL broadcasts to
 restrictive privileges for
 tnsnames.ora entry for
EXTPROC program
 case sensitivity when referring to
 directory for
 security alerts about
ExtProc.pm
extproc_perl 2nd
 building Perl
 new Perl 2nd [See also oracle user, building Perl for]
 connecting to host database
 DBD::Oracle patch provided with 2nd
 debugging external procedure listeners
 deploying
 destroying Perl interpreter and Perl data
 downloading
 functions
 installing
 linking header files
 ora_perl_boot.pl
 obtaining version of
 Perl and DBD::Oracle, patching DBD::Oracle
 Perl DBI and DBD::Oracle
 OCIExtProcContext
 setting up external procedures
 testing
 Win32 and
extproc_plsql, connecting with
extracting
 binary data with sqlunldr.pl
 data with sqlunldr.pl
 DDL and data with PDBA Toolkit scripts
 DDL with ddl_oracle.pl
ExtUtils::Embed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

%fdat variable
fetchall_arrayref method (Perl DBI)
fetchall_arrayref method (Perl)
fetchall_hashref method (Perl DBI)
fetchrow_array method (Perl DBI)
fetchrow_arrayref method (Perl DBI)
fetchrow_hashref method (Perl DBI)
fetchrow_hashref method (Perl)
Fibonaci numbers
files
 C language, scanning for constructs
 parameter, created by defrag.pl command
finish method (Perl DBI)
_flush function (extproc_perl)
FORCE_CONFIG attribute, overriding ignoring of cm.conf
foreach loops, Embperl syntax
foreign_key_info method (Perl DBI)
FreeType
FreezeThaw, required by Mason
FreshMeat.net, Perl open source resource
fromAddress parameter (dbup.conf)
function calls
 extracting DDL from [See ddl_oracle.pl]
 validating parameters
functions
 cookie manipulation
 OCI
 categories of
 one-to-one mapping with Oracle::OCI

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

gathering statistics [See StatsView]
gcc compiler, Cygwin and
gd library, DBD::Chart and
GD.pm, DBD::Chart and 2nd
gdb program
getColumns method (PDBA::GQ)
Getopt::Long
 configuring for pass-through mode
getptrdef.h
GNU recode library
gnuplot program
 gd and
 graphics formats and
 installing
 PATH variable and
 Statsview and
 web resources for
grep program, Perl regexes and
GUI extensions to Perl
guides to
 Perl
 Perl data munging
 Perl DBI
 regular expressions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

%Hash data structure (pwd.pl), attributes of
hash reference, retrieving
hashes
 anonymous
 returning references to
Hello World example, Perl DBI script
hoursToPageImmediate parameter (dbup.conf)
HP-UX, installing Perl from from prebuilt package
HTF package
HTML
 generating via HTP
 image maps, manipulating
 utilities
HTML-SimpleParse
HTML::Mason [See Mason]
HTML::Parser
HTML::Tagset
HTML::Template
HTP package
HTTP_proxy/HTTP_proxy_* variables, PPM and
httpd.conf
 Apache::DBI and
 Apache::Registry and
 configuring Apache::OWA
 configuring Mason for Apache
 configuring mod_perl on Win32
 environment variables, specifying

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

%idat variable
IDE (integrated development environment)
IDEA algorithm
IDLE_TIME (Oracle)
idxr.conf
 command-line options, table of
 fragmentation and
 parameters
idxr.pl 2nd
 testing
 tracking
image maps
 manipulating
 for statistics [See DBD::Chart]
Import utility (Oracle)
index function (Perl)
index_column_diff_rpt, reporting changes to index columns
index_column_rpt, reporting changes to index columns
index_rpt, reporting on indexes
indexes
 analyzing via ANALYZE command
 checking/rebuilding
 determining whether rebuild required
 maintaining
 with PDBA Toolkit scripts
 rebuilding with idxr.pl
 tracking changes to [See PDBA repository reports, of database changes]
info method (PDBA::DBA)
installing
 Apache
 on Unix
 on Win32
 Apache::OWA
 on Unix
 on Win32
 chkalert.pl on Unix
 chkalert_NT.pl on Win32
 Date::Manip
 on Unix
 on Win32
 DBD::Chart
 on Unix
 on Win32
 DBD::Oracle
 under Cygwin
 environment variables
 error hit list
 DDL::Oracle
 on Win32
 on Unix
 Embperl
 on Unix
 on Win32
 extproc_perl
 linking header files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ora_perl_boot.pl
 gnuplot
 Karma
 on Unix
 on Win32
 kss.pl
 kss_NT.pl
 MailTools.pm
 Mason
 on Unix
 on Win32
 mod_perl
 on Unix
 on Win32
 modules
 via CPAN
 methods for
 traditional method for 2nd
 modules on Win32, web resource for
 Open Perl IDE
 Orac
 Oracle::OCI
 on Unix
 on Win32
 Oracletool
 on Unix
 on Win32
 PDBA repository
 access to V$PARAMETER/V$INSTANCE parameters
 copying pdbarepq.conf
 editing pdba_tbs8i.sql
 tablespace creation
 PDBA Toolkit
 on Unix
 on Win32
 PDBA Toolkit scripts
 PDBA Unix configuration files
 PDBAx
 Perl
 under Cygwin
 on Unix
 on Win32
 Perl DBI
 under Cygwin
 on Unix
 on Win32
 Perl/Tk
 on Unix
 on Win32
 PNG
 recode library
 SchemaDiff
 SchemaView-Plus
 on Unix
 on Win32
 Senora
 StatsView
 sv program
 TermReadKey.pm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Tk::GBARR
 XML::Dumper
 XML::Generator::DBI on Unix
 XML::LibXML on Unix
 XML::LibXSLT
 XML::Parser
 XML::XMLtoDBMS on Unix
 zlib
%instanceAuth data structure (pwd.conf)
integrated development environment (IDE)
Internet Perl clients, creating
Internet, connecting to, Perl and
IO::Socket::SSL
IRIX, installing Perl from from prebuilt package

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Java
 Perl and
 Perl port of XML-DBMS from
Java Server Pages (JSP)
JOB_QUEUE_PROCESSES parameter (Oracle)
join function (Perl)
Joint Photographic Experts Group (see JPEG)
JPEG (Joint Photographic Experts Group)
 DBD::Chart and
JSP (Java Server Pages)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Kake Pad (Perl IDE)
Karma
 configuring
 on Unix
 on Win32
 downloading
 installing
 on Unix
 on Win32
 modules required by
 OS monitor agent
 running on Win32
 Perl modules, extra
 web resources for
KARMA_HOME variable
karmad program [See Win32, installing Karma]
-kill option (chkalert.pl)
Komodo (Perl IDE)
kss.conf
kss.pl
 avoiding running on databases using MTS
 command-line options, table of
 configuring
 installing
 on Win32 [See kss_NT.pl]
 running as owner of Oracle processes
kss_NT.pl
 installing
kss_service.pl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

large objects (LOBs), handling
lc function (Perl)
lcfirst function (Perl)
LD_LIBRARY_PATH variable
 DBD::Chart and
 Karma and
 running Perl scripts on Unix
Lempel Ziv Welch (LZW) algorithm
length function (Perl)
lexical variables, Perl
libapreq library
libnet library
 downloading
 modules in
libnet module
liboci.a file, installing DBD::Oracle under Cygwin
libperl, shared, determining whether running Perl distribution with
libperl.a archive
libraries
 C, Perl and
 gd
 GNU recode
 libxml2
 libxslt
 mod_perl Apache, specifying
 PERL_LIB
libwww-perl, XML::Parser and
libxml2 library
 downloading
 interface to
libxslt library
line endings 2nd [See also CR/LF]
Linux
 installing Perl from from prebuilt package
 installing StatsView on
 Solaris ps -ef command
 zzz [See also StatsView, installing][See also StatsView, installing]
 Red Hat Linux [See Red Hat Linux, installing Apache::OWA]
 zzz [See also Unix][See also Unix]
Linux Red Hat 6
Linux SuSE 7.3
 character sets
 installing Oracle::OCI on, ORACLE not available errors with Oracle9i
 Oracletool connection options
list processor, DDL::Oracle as
 defrag.pl
lists in Perl
LMTs (locally managed tablespaces)
 advantages of
LOBs (large objects), handling
locally managed tablespaces [See LMTs]
locks, locking strategies
log files
 automating reading of
 creating

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 independent of platforms
 creating path to
 peforming buffered/nonbuffered prints to
logfile parameter (dbup.conf)
logFile parameter (idxr.conf)
logging by PDBA Toolkit scripts
lossless vs. lossy compression
ls option (Senora DataDictionary plug-in)
ls() subroutine, as example of security risk
LWP Library for WWW access in Perl [See LWP.pm]
LWP.pm
 CPAN packages used with
 Embperl and
 modules required by
 optional SSL modules used with
 required for mod_perl installation
 running make test in mod_perl installation
LZW (Lempel Ziv Welch) algorithm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

machine parameter (dbup.conf)
Mail::Sendmail 2nd
mailServer parameter (dbup.conf)
MailTools.pm
 error notification in Karma
 installing
makepath method (PDBA::LogFile)
Manip.cnf, obtaining/configuring
Mason 2nd
 configuring for Apache
 downloading
 embedding Perl in template
 error browser reporting
 features, table of
 inline use of Perl, example program
 installing
 on Unix
 on Win32
 modules required by
 performance of
master_priv_rpt, reporting on database privilege grants
matching regular expressions
mathematic operations
maxConnectRetries parameter (dbup.conf)
maxext.conf
maxext.pl 2nd
 command-line options, table of
maxLogLines parameter (chkalert.pl)
maxRunTime parameter (idxr.conf)
%mdat variable
metacharacters 2nd
 regexes
 boundaries
 character class shortcuts
 escaped characters
methods
 accessing DBMS_OUTPUT package
 adding to PDBA module
 usage method
 PDBA module
 PDBA::LogFile
 Perl built-in string-handling
 Perl DBI
 metadata-related
 Oracle-specific
 used by PDBA Toolkit
MIME::Base64 2nd
minExtentsCanExtend parameter (maxext.conf)
minPctBlocksUnused parameter (maxext.conf)
MLDBM (Multi-Level DBM), required by Mason
mod_perl
 Apache mod_perl modules, table of
 build options
 CGI scripts and
 configuring on Win32

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 downloading
 Embperl and
 independent distribution of
 installing
 on Unix
 on Win32
 PL/SQL Web Toolkit and
 specifying mod_perl Apache library
 testing on Win32
 web resources for
 writing modules
modifying
 PDBA module
 adding usage method
 PDBA Toolkit modules
 PDBA Toolkit scripts
 dba_jobsm.pl
 PDBA::GQ
modules
 as tools for DBAs
 adding
 Apache mod_perl, table of
 Apache Perl
 combining with PDBA Toolkit
 CPAN
 conversion
 date
 mathematics
 numeric
 text conversion
 XML
 for data munging
 described in this book, download sites
 evolution of
 installing
 via CPAN
 methods for
 traditional method for 2nd
 on Win32, web resource for
 in libnet library
 LWP.pm, required for mod_perl installation
 PDBA Toolkit 2nd 3rd
 modifying
 password control
 PDBA module
 PDBA::CM
 PDBA::ConfigFile
 PDBA::ConfigLoad
 PDBA::Daemon
 PDBA::DBA
 PDBA::GQ
 PDBA::LogFile
 PDBA::OPT
 PDBA::PidFile
 PDBA::PWC
 PDBA::PWD
 PDBA::PWDNT
 Win32::Daemon
 required by DBD::Chart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 required by Embperl
 required by Karma
 required by LWP.pm
 required by Mason
 required by Oracle::OCI
 required by SchemaView-Plus
 required by XML::XMLtoDBMS
 required for PDBA Toolkit
 Tuning.pm
 upgrading
 writing Win32 Perl Apache
mostRecentlyAnalyzed parameter (idxr.conf)
MSI Microsoft Windows installer
MTS (Multi-Threaded Server), avoiding running kss.pl on databases using
mucr7.msg
mucr8.conf, privileges in
mucr8.msg, attributes
mucr8.pl 2nd
 command-line options, table of
Multi-Level DBM [See MLDBM]
Multi-Threaded Server [See MTS]
multilevel hashes, serializing
"my" variables, Apache::Registry and
my_script.pl
MySQL
 transfering data from
 web resources for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Net::Daemon
Net::SSLeay
Net8 listener process
new method
 PDBA::DBA
 PDBA::GQ
 PDBA::LogFile
next method (PDBA::GQ)
 Perl fetchrow_hashref method and
NFA (Nondeterministic Finite Automaton)
NLS_DATE_FORMAT parameter (dba_jobsm.pl), modifying
Nondeterministic Finite Automaton (NFA)
NULL values
 Oracle databases and
 testing use of
null_test.pl 2nd
Number::Format
numberFormat.pl, code example
numeric operations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

object orientation, in Perl
objects
 creating
 with PDBA Toolkit script
 dropping
 examining space of with maxext.pl
 gathering information about
 monitoring size/number of extents in
OCI (Oracle Call Interface) 2nd
 datatype mapping functions
 DML capabilities in
 features
 functions
 categories of
 one-to-one mapping with Oracle::OCI
 table of
 installing Perl DBI and
 invoking with Oracle::OCI
 navigational functions
 Oracle::PLSQL, future availability
 Perl DBI and, code example illustrating integration of
 procedure functions
 relational functions
 type functions
 Version 8.1 demonstration programs, table of
 web resources for
OCIExtProcContext
 using Perl DBI for host callbacks
Open Perl IDE
OpenBSD, installing Perl from from prebuilt package
OpenSSL program
operating system commands, Perl and
operating systems
operating systems documentation, regarding Perl
OPS$ Oracle accounts, security of
OptiPerl (Perl IDE)
.ora files, configuration of, setting up external procedures
ora_explain.PL
ora_module_name attribute (Perl DBI)
ora_oratab_orahome attribute (Perl DBI)
ora_perl_boot.pl bootstrap file 2nd
 using after installation
ora_session_mode attribute (Perl DBI)
Orac 2nd
 directories for storing personal options
 downloading
 installing
 personalizing
 running
 user options, table of
 using DDL::Oracle with
 example program
orac_dba.pl program icon
Oracle
 client libraries, Cygwin installation under DBD::Oracle installation 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 data dictionary
 PDBA repository and
 tables in PDBA repository
 database server, connecting to [See OCI]
 databases
 limiting resource consumption
 NULL values and
 space problems on
 transfering data to
 date format, XML::XMLtoDBMS and
 DDL and
 embedding Perl into
 environment variables
 DBD::Oracle and
 predefining
 external procedures, resources
 schemas, comparing [See SchemaDiff]
 server, parallel server management [See OCI]
 user privileges, Oracletool selection reports
 versions of
 XML and
Oracle Call Interface [See OCI]
Oracle DDL from Oracle8i databases, reverse-engineering [See DDL::Oracle]
Oracle Enterprise database server
 mapping datatypes [See OCI, datatype mapping functions]
 navigating between objects supplied by [See OCI, navigational functions]
ORACLE not available errors, on Linux SuSE 7.73 with Oracle9i
Oracle Technology Network (OTN)
oracle user
 building Perl for
 resetting PATH variable
 creating from command line
 HOME directory
Oracle/Perl
 architecture
 tools for DBAs
Oracle::OCI
 architecture compared to Perl DBD::Oracle
 C language vs.
 coding with
 mixing modules, code example
 Perl DBI and DBD::Oracle code example
 pure Oracle::OCI code example
 requirement
 future of
 installation directories
 installing
 on Unix
 on Win32
 invoking OCI with
 mail archive
 relationship to Perl DBD::Oracle
 resources for further information
 setting environment
 troubleshooting installation
 versions of
Oracle::OCI Project, contributing to
Oracle::PLSQL, future availability
ORACLE_BASE variable, cm.conf and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORACLE_HOME variable
 Apache and
 cm.conf and
 DBD::Oracle and
 Karma and
 Orac and
 Oracletool and 2nd
 PDBA Toolkit and
 Perl DBI Hello World example
 SchemaView-Plus and
 setting up external procedures
ORACLE_SID variable
 DBD::Oracle and
 Oracle::OCI and
 PDBA Toolkit and
Oracle_SID_AlertLogMon, testing
ORACLE_USERID variable
 DBD::Oracle and 2nd
 Oracle::OCI and
 PDBA Toolkit installation
Oracle8, data dictionary tables, PDBA repository and
Oracle8i
 editing pdba_tbs8i.sql
 LMTs in
Oracle9i
 installing Oracle::OCI on
 ./boot test compilation errors
 installing Oracle::OCI on Linux SuSE 7.73, ORACLE not available errors
 Oracletool connection options
 patching DBD::Oracle
 setting up external procedures with PLExtProc
Oracle9i Application HTTP Server (iAS), web resource
OracleNet
Oracletool
 adding SQL scripts to
 connection options
 initialization parameters
 installing
 on Unix
 on Win32
 monitoring databases with
 Preferences/privileges
 security
 selection reports, Oracle user privileges
 v2.0 features
 web resource for 2nd
OraExplain 2nd
oramon account, PDBA Toolkit installation
oratabFile parameter (chkalert.pl)
orclALRT.log
osname method (PDBA module)
OTN (Oracle Technology Network)
OWA package
OWA_COOKIE package
OWA_IMAGE package
OWA_OPT_LOCK package
OWA_PATTERN package
OWA_TEXT package
OWA_UTIL package

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OWA_UTIL package

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

package variables, Perl
packages
 ActivePerl for DDL::Oracle
 extracting DDL from [See ddl_oracle.pl]
 Perl
 PPM ActivePerl, advantages of
 prebuilt, installing Perl on Unix from
 .gz suffix and
 required by Cygwin
 downloading
pager parameter (dbup.conf)
parameter files, created by defrag.pl command
parameter_diff_rpt
 example output
 reporting changes to initialization parameters
parameter_rpt, reporting on initialization parameters
parameters
 binding to SQL statements
 configuring
 initialization, reporting changes to
 reporting changes to
Params::Validate
 installing on Win32
 Mason and 2nd
parentheses (()), Perl regex metacharacter
password encryption
 via TCP socket, pwd.pl
password server
 client module communicating with
 installing as Unix daemon or Win32 service
 installing kss_NT.pl
 loading parameters
 PDBA [See PDBA password server]
 PDBA repository and
 scanning command line for options intended for
passwords
 batch, problems with
 encrypted, retrieving
 encrypting [See also password encryption]
 PDBA Toolkit scripts
 generating in PDBA::DBA
 inherent problems with
 Karma security, TermReadKey.pm
 managing via pwd.pl
 Oracletool security levels
 PDBA Toolkit password-control modules
 security of
PATH variable
 gnuplot and
 installing Perl and
 resetting when building Perl for oracle user
 separator in, determining
pathsep method (PDBA module)
PDBA Extensions (PDBAx)
PDBA module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 adding usage method to
 configuring
 methods
PDBA password client
 configuring
 creating configuration file for
PDBA password server
 configuring
 encrypting passwords
 securing pwd.conf
 setting passwords
 setting TCP port
 setting up password server users
 setting up per-account authorization
 running on Unix
 running on Win32
 Windows NT 4.0/2000
PDBA repository
 allotting storage space for
 changing date format in reports
 creating baseline for
 DBD::Oracle and
 installing
 access to V$PARAMETER/V$INSTANCE parameters
 copying pdbarepq.conf
 editing pdba_tbs8i.sql
 tablespace creation
 loading with data
 Oracle data dictionary and
 tables in
 overhead
 password server and
 specialized tables in
 table structure
 viewing data
 zzz [See also reports, of database changes][See also reports, of database changes]
PDBA Toolkit (Perl DBA Toolkit)
 building database repository with 2nd [See also PDBA repository]
 configuring
 password client
 password server
 PDBA module
 PDBA::CM
 connection manager
 downloading
 example behaviors to modify
 extending 2nd
 zzz [See also PDBA::OPT PDBA::PWC][See also PDBA::OPT PDBA::PWC]
 installing
 on Unix
 on Win32
 methods [See PDBA::DBA]
 modules 2nd 3rd
 modifying
 PDBA module
 PDBA::CM
 PDBA::ConfigFile
 PDBA::ConfigLoad
 PDBA::Daemon

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PDBA::DBA
 PDBA::GQ
 PDBA::LogFile
 PDBA::OPT
 PDBA::PidFile
 PDBA::PWC
 PDBA::PWD
 PDBA::PWDNT
 Win32::Daemon
 password client [See PDBA::PWC]
 password client for NT [See PDBA::PWDNT]
 passwords, managing [See PDBA::PWD]
 programs in
 repository [See PDBA repository]
 required modules, directory for on Unix
 security, script installation order
 utilities [See PDBA module]
 utilities logging [See PDBA::LogFile]
PDBA Toolkit scripts 2nd
 baseline.pl, collecting baseline data dictionary data
 checksums and
 chkalert.pl, monitoring alert log with
 create_user.pl
 database administration 2nd
 dba_jobsm.pl
 configuring
 functions/formats description
 modifying
 script description
 dbup.pl/dbup_NT.pl
 monitoring database connections
 testing monitor
 ddl_oracle.pl
 directory for on Unix
 directory paths for
 dropping user accounts
 dup_user.pl
 extending toolkit
 extracting DDL and data
 functions/formats, line-by-line description of
 idxr.pl, rebuilding indexes
 installing
 killing sniped sessions
 kss.pl
 installing on Unix
 installing on Win32
 line-by-line description of
 logging by
 maintaining indexes
 managing extent usage
 managing user accounts
 maxext.pl
 modifying
 monitoring
 monitoring alert log with
 monitoring database connections
 monitoring databases
 mucr8.pl
 password encryption

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pdba_tbs8i.sql
 repository
 spdrvr.pl
 command-line options
 implementation of
 options and tags
 parameters
 PDBA-generated SQL used with
 predefined reports
 reporting parameter changes
 viewing repository data
 sqlunldr.pl
 SXP
 sxp.pl
 command-line options
 password/privilege messages
 unique constraint error
 sxpcmp.pl
 example output
 sxprpt.pl
 tablespace creation
pdba.conf
PDBA.ppd
PDBA::CM
 configuration file [See cm.conf]
 configuring
 RaiseError/AutoCommit
 SYSDBA/SYSOPER, login cases for
PDBA::ConfigFile
 simplifying configuration
PDBA::ConfigLoad
 loading script configuration files
 referring to config variables by package name
PDBA::Daemon
 creating Unix daemon in Perl
 using Unix daemons in Perl
PDBA::DBA
 creating user accounts
 generating passwords in
PDBA::GQ
 modifying
PDBA::LogFile
 methods
 PERMS attribute
PDBA::OPT 2nd 3rd
 command-line overrides for
 password server and
PDBA::PidFile
PDBA::PWC 2nd
 password server and
 using in Perl scripts
 on Win32 [See PDBA::PWDNT]
PDBA::PWD
 PDBA password server and
PDBA::PWDNT
PDBA_HOME variable
 PDBA Toolkit and
 default on Unix
 installing on Win32

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Unix configuration files
 retrieving value of
 code example
 setting from command line
pdba_tbs8i.sql
pdbaHome method (PDBA module)
 code example
pdbarep_create.log
pdbarep_create.sql
pdbarepq.conf 2nd
PDBAx (PDBA Extensions)
percent sign (%)
 Perl in Mason template
 Perl variable notation
performance
 Apache::DBI and
 Apache::Registry and
 CGI scripts 2nd 3rd [See also Apache::Registry]
 limiting resource consumption
 Mason and
 Perl and
 perl_mod
 sniped sessions and 2nd
 statistics, reporting via DBD::Chart
Perl
 "use strict" line in
 advantages of
 Apache and
 zzz [See also mod_perl][See also mod_perl]
 applications, servicing users/requests
 arrays
 determining size of
 boolean variable type and
 built-in functions
 built-in string-handling functions
 communicating with PL/SQL
 connectivity with PL/SQL
 contexts
 list
 scalar
 void
 corporate world and
 creating Unix daemon
 creating Win32 daemon 2nd
 data munging [See data munging]
 data parsing [See SchemaView-Plus]
 data structures, converting to/from strings
 debuggers
 distribution with shared libperl, determining whether running
 documentation
 perldoc command
 resources
 downloading
 from CPAN
 driver for SQL*Plus
 embedding into
 Apache [See mod_perl]
 C
 Embperl templates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Mason template
 Oracle
 PL/SQL
 FAQ documents
 finding installation of
 GUI extensions
 guide to [See also Perl scripts, program\/subroutine parameters]2nd
 hash structures, saving in platform-independent files
 hashes
 installing
 under Cygwin
 on Unix
 on Win32
 limitations of
 manpage documents
 modules [See modules]
 object orientation in
 obtaining online information
 operating system documentation
 origins of
 references
 anonymous arrays\/hashes
 arrow notation
 ref operator
 regexes
 alternation/memory
 delimiters in
 greediness of
 grep vs.
 history of
 interpolated strings
 metacharacters
 scalar/list context results
 string-handling functions and
 resources for futher information
 scalars
 scripts [See Perl scripts]
 security, web resource for modules
 source, installing Perl on Unix from
 storing data structures in
 tools for DBAs
 connectivity tools
 modules and applications
 scripts
 table of
 upgrading
 using Unix daemons
 using Win32 services
 versions of
 web access in [See LWP.pm]
 web extensions
 on Win32
 writing ad hoc SQL reports
 XML and
 XML parsers
perl -MCPAN command
 PDBA Toolkit, installing modules required by
Perl C library, calling
Perl Database Interface [See Perl DBI]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Perl DBA Toolkit [See PDBA Toolkit]
Perl DBI (Database Interface)
 API
 class methods
 combining with Perl/Tk
 connecting to
 Oracle
 as SYSDBA/SYSOPER
 database handles
 SQL and cleanup
 statement handle methods
 DBD::Oracle and
 coding with Oracle::OCI
 documentation
 downloading 2nd
 extproc_perl and
 functions, table of
 guide to
 installing
 under Cygwin
 on Unix
 on Win32
 limitations of
 methods
 metadata-related
 Oracle-specific
 OCI and, code example illustrating integration of
 OCIExtProcContext and
 online documentation for
 origins of
 running
 Hello World example
 by proxy
 using in loop-back mode
 variable naming conventions
 versions of
Perl IDEs (integrated development environments), web resources for
Perl integrated development environments (IDEs), web resources for
Perl Interactive Query Tool (PIQT)
perl -MCPAN command
 interactive CPAN shell
 loading LWP-related modules
 loading mod_perl and related modules
perl orac_dbal.pl command
Perl Package Description [See PPD]
Perl Package Manager [See PPM]
Perl scripts
 calling subroutines
 debugging
 environment variables
 lexical
 package
 package main
 PDBA Toolkit and
 program\/subroutine parameters
 running
 on Unix
 on Win32
 sending email from 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 taint mode
 using PDBA::PWC in
perl -v command
Perl/Oracle
 architecture
 use by DBAs
Perl/Oracle architecture
 DBD::Oracle
 OCI
 functions, table of
 Perl DBI
Perl/Tk
 combining with Perl DBI
 downloading
 example programs 2nd
 installing
 on Unix
 on Win32
 programs, basic structure of
 resources for further information
PERL_LIB library, creating during extproc_perl deployment
perldbgui program
perldoc command, accessing Perl documentation
perldoc ExtUtils::MakeMaker command
PerlFreshRestart option
PERMS attribute (PDBA::LogFile)
persistent connections
pie charts, for performance statistics [See DBD::Chart]
ping method (Perl DBI)
PIQT (Perl Interactive Query Tool)
PIRPC package
PL/SQL
 advantages of Perl
 communicating with Perl
 connectivity with Perl
 embedding Perl into
 features
 limitations of
 zzz [See also Perl, embedding into PL/SQL][See also Perl, embedding into PL/SQL]
PL/SQL Runtime Engine
PL/SQL Server Pages (PSPs)
PL/SQL Web Toolkit
 mod_perl and
 packages in
 zzz [See also Apache::OWA][See also Apache::OWA]
platforms
 Apache runs on
 creating log files independent of
 for Perl/Oracle
 porting Unix applications to Win32 [See Cygwin]
 retrieving types of
PLSExtProc
 alternative use of for database context
 patching DBD::Oracle
plsql_errstr method (DBD::Oracle)
plug-ins, Senora
 DataDictionary, ls option
 SQL*Plus vs.
 table of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PluginMgr register command (Senora)
plus sign (+), Perl regex metacharacter 2nd
plus sign-question mark (+?), Perl regex metacharacter
PNG (Portable Network Graphics)
 DBD::Chart and
 installing
 StatsView and
$port data structure (pwd.conf)
portability, exporting/importing objects into Oracle databases
Portable Network Graphics [See PNG]
POSIX commands, Mason and
PPD (Perl Package Description)
 obtaining latest files
PPM (Perl Package Manager)
 Perl DBI and
 running
ppm command
ppm utility
 zzz [See also PPM][See also PPM]
prepare method
 PDBA::GQ
 Perl DBI
prepare_cached method (Perl DBI)
primary_key method (Perl DBI)
primary_key_info method (Perl DBI)
print method (PDBA::LogFile)
printflush method (PDBA::LogFile) 2nd
printif method (PDBA::LogFile)
privileges
 developer account
 granting while creating user accounts
 in mucr8.conf file
 reporting on database privilege grants
 system, reporting on changes to
procedures
 calling with OUT parameters
 cookie manipulation
 extracting DDL from [See ddl_oracle.pl]
profile_rpt, reporting on profiles
PROFILEs
 creating
 setting RESOURCE_LIMIT parameter (Oracle)
PROFILEs (Oracle)
programs
 background [See PDBA::Daemon Win32::Daemon]
 concurrent, preventing running of
 Perl scripts
PSPs (PL/SQL Server Pages)
ptkdb program
pwc.pl 2nd
 command-line options for
 zzz [See also PDBA password client][See also PDBA password client]
%pwd data structure (pwd.conf)
pwd.conf
 data structures
 securing
 zzz [See also PDBA password server][See also PDBA password server]
pwd.pl
 password management in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pwd_service.pl
 locating on Win32

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

qed program, regular expressions and
queries, generic [See PDBA::GQ]
question mark (?), Perl regex metacharacter 2nd
question mark-question mark (??), Perl regex metacharacter
quotas, setting while creating user accounts
quote method (Perl DBI)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

RaiseError attribute, connecting to Oracle databases via PDBA::CM
recode library
Red Hat Linux, installing Apache::OWA
ref operator in Perl
 main return values of
regexes [See regular expressions]
registry, PDBA settings
regular expressions 2nd
 altering operation of
 architectures
 capturing backreferences
 concepts
 data munging and
 guide to
 history of
 implicit use of $_
 input
 left-to-right assumption
 match suffixes
 matching/Substitutin/translating
 metacharacters
 boundaries
 character class shortcuts
 escaped characters
 Perl and
 PL/SQL Web Toolkit
 qed\/ed\/vi
 resource for further information
 split operator
-rep_report parameter_diff_rpt command
-rep_start_date/-rep_end_date switches
-report_list option (spdrvr.pl)
reports
 comparing SQL execution plans
 of database changes
 predefined in spdrvr.pl
 performance statistics via DBD::Chart
 writing SQL, comparing Perl and SQL*Plus
reverse function (Perl)
rindex (Perl)
role_privs_diff_rpt, reporting on changes to privileges
role_privs_rpt, reporting on privileges
role_rpt, reporting on roles
roles, reports on
rollback method (Perl DBI)
rows
 fetching from arrays
 retrieving
rows method (Perl DBI)
RPC::PlClient
RPC::PlServer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

scalability, mod_perl
scalar values, in Perl 2nd
scheduled jobs, checking on
SchemaDiff 2nd
 downloading
 installing
 running
schemas
 comparing/generating
 zzz [See also SchemaDiff][See also SchemaDiff]2nd
 dumping, example of
 zzz [See also sqlunldr.pl][See also sqlunldr.pl]
 examining/saving [See SchemaView-Plus]
 tracking changes to [See PDBA repository reports, of database changes]
SchemaView-Plus 2nd
 installing on Unix
 installing on Win32
scripts
 CGI [See CGI scripts]
 configuration files
 changing [See PDBA::ConfigLoad PDBA::ConfigFile]
 loading 2nd
 locating
 created by defrag.pl command
 for DBA tasks, avoiding cutting/pasting [See DDL::Oracle]
 PDBA Toolkit [See PDBA Toolkit scripts]
 Perl [See Perl scripts]
 web [See embedded web scripting]
Secure Sockets Layer (SSL), modules used with LWP.pm
security [See also passwords]
 batch job passwords and
 Cygwin and
 EXTPROC and
 ls() subroutine as example of risk
 OPS$ Oracle accounts
 Oracletool 2nd
 passwords and
 PDBA password server and
 PDBA Toolkit, script installation order
 Perl, web resource for security modules
 pwd.conf
 %instanceAuth data structure
SELECT statements (Oracle)
selectall_arrayref method (Perl DBI)
selectall_hashref method (Perl DBI)
selectcol_arrayref method (Perl DBI)
selectrow_array method (Perl DBI)
Senora 2nd
 DataDictionary plug-in, ls option
 downloading
 flexibility of
 installing
 options, Unix-style
 plug-ins, table of
 running

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SQL*Plus and
sequence_rpt, reporting on sequences
serverName parameter (chkalert.pl)
sessions
 limiting resource consumption
 sniped, killing
 with PDBA Toolkit scripts
SHARED_POOL_SIZE parameter (Oracle)
sleepTime parameter (kss.conf)
Solaris
 installing Perl from prebuilt package
 installing StatsView on, ps -ef command
 zzz [See also StatsView, installing][See also StatsView, installing]
Solaris 8
 installing Apache::OWA
SourceForge.net, Perl open source resource
spdrvr.pl
 command-line options
 date options
 options and tags
 report-specific options
 -report_list option
 text options
 implementation of
 parameters
 PDBA-generated SQL used with, example of
 predefined reports
 reporting parameter changes
 viewing repository data
split function (Perl)
split operator (regex)
sprintf function (Perl)
 formats for
SPX report, comparing execution plans
SQL
 cache, warning about excursions into
 collecting for PDBA repository
 execution plans [See SQL execution plans]
 execution, troubleshooting slowdown 2nd
 scripts [See SQL scripts]
 statements [See SQL statements]
 tracking in V$SQLTEXT data dictionary view 2nd
SQL execution plans
 and cache examination [See OraExplain]
 comparing
 reporting on 2nd
SQL explain plan [See SXP]
SQL Query Tool
SQL scripts
 adding to Oracletool
 created by defrag.pl command
 repository of [See Orac]
SQL statements
 binding parameters to
 collecting/storing from data dictionary
 examining 2nd
 generating XML files from
 number of rows processed by
SQL*Loader

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL*Net
SQL*Plus
 alternative to [See Senora]
 dropping user accounts, limitations of
 Perl compared to
 Perl DBI tools
 Perl driver for
 Senora and
 writing ad hoc SQL reports
SQL*Plus Driver [See spdrvr.pl]
sqlunldr.pl 2nd
 command-line options, table of
 features of
square brackets ([])
 Perl
 Perl regex metacharacter
square brackets-caret sign ([^]), Perl regex metacharacter
square brackets-exclamation points ([! . . . !]), Perl in Embperl template
square brackets-hyphens ([- . . . -]), Perl in Embperl template
square brackets-plus signs ([+ . . . +]), Perl in Embperl template
SSL (Secure Sockets Layer), modules used with LWP.pm
<<START_DATE_PK>> tag (spdrvr.pl)
STARTUP_EXTPROC_AGENT, debugging external procedures setup
statement handle metadata, Perl DBI
statement handles, creating
statistics, gathering [See StatsView]
StatsView 2nd
 downloading
 gnuplot installation
 PNG installation
 PNG, need for
 zlib installation
 installing
 ps -ef command
 sv program
 installing Tk::GBARR
Storable
 downloading
Storable package 2nd
 required by Mason
Storable.pm
 Embperl on Unix, storing data structures in Perl
 interface with Apache
strings
 functions for handling in Perl
 interpolated in Perl regexes
subroutines, Perl scripts
substitution operator, regexes
substr function (Perl)
suffixes of regexes
sv program (StatsView)
svplus program
SXP (SQL explain plan)
 repository tables
 scripts
sxp.pl 2nd 3rd
 command-line options
 password/privilege messages
 unique constraint error

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sxpcmp.pl 2nd 3rd
 example output
sxprpt.pl 2nd 3rd
sys_privs_diff_rpt, reporting on changes to system privileges
sys_privs_rpt, reporting on system privileges
SYSDBA/SYSOPER, login cases for with PDBA::CM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

table_info method (Perl DBI)
table_privs_diff_rpt, reporting changes to table privileges 2nd
table_privs_rpt, reporting on table privileges
table_rpt, reporting on tables 2nd
tables
 analyzing via ANALYZE command
 dumping several [See sqlunldr.pl]
 indexes on [See indexes]
 in PDBA repository, structure of
 Oracle data dictionary tables
 reporting on [See also reports, of database changes]2nd 3rd
 SXP repository
 tracking changes to [See PDBA repository]
tables method (Perl DBI)
tablespace_rpt, reporting on tablespaces
tablespaces
 creating, PDBA repository installation
 locally managed
 reporting on
taint mode in Perl scripts
Template Toolkit
templating [See embedded web scripting]
TermReadKey.pm
 installing
testing
 extproc_perl
 mod_perl on Win32
text processing, modules for
Text::Abbrev
Text::ParseWords
Text::Soundex
throttleDelaySeconds parameter (chkalert.pl)
time/date information
 -dateformat option
 leap seconds in calendar
 modules
 parsing 2nd 3rd
 PDBA repository reports, changing in
time/date utilities
Time::HiRes, required by Mason
TimeDate module 2nd
 XML::XMLtoDBMS and
Tk::GBARR, installing
Tk::JPEG
 DBD::Chart installation
 using Perl/Tk canvas applications with
Tk::PNG, DBD::Chart installation
TNS_ADMIN variable
 cm.conf and
 Oracletool and 2nd
 PDBA Toolkit and
tnsnames.ora, setting up external procedures
trace method (Perl DBI)
tracing levels, table of
translate operator, regular expressions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

troubleshooting
 developer PDBA role/connect PDBA role
 SQL execution slowdown
 zzz [See also debugging][See also debugging]
Tuning.pm module
TWO_TASK variable
 Oracle::OCI and
 PDBA Toolkit and
type_info method (Perl DBI)
type_info_all method (Perl DBI)
TZ variable, Date::Manip and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

uc\/ucfirst functions (Perl)
%udat variable
UltraEdit (Perl IDE)
Unix
 administering [See StatsView]
 alert log on
 background programs
 configuring chkalert.pl on
 configuring dbup.pl on
 configuring Karma on
 Karma OS monitor agent
 daemons
 creating in Perl
 resource for further information
 using in Perl
 directory for PDBA Toolkit scripts
 installing Apache on
 APACI installation
 directory for CGI scripts
 installing Apache::OWA on
 installing chkalert.pl on
 locating/updating chkalert.conf
 installing Date::Manip on
 installing DBD::Chart on
 gd library and
 GD.pm
 JPEG and
 required downloads
 required libraries
 required modules
 Tk::JPEG
 Tk::PNG
 installing DDL::Oracle on 2nd
 installing Embperl on
 LWP.pm installation
 modules required
 installing Karma on
 MailTools.pm installation
 TermReadKey.pm installation
 installing kss.pl on
 installing Mason on
 modules required
 installing mod_perl on
 build options
 include paths
 LWP.pm
 modules required by LWP.pm
 optional SSL modules
 preinstallation security measure
 specifying mod_perl Apache library
 installing Oracle::OCI on
 errors in build, troubleshooting
 installing Oracletool on
 installing password server as daemon
 installing PDBA Toolkit on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 account to install from
 Perl modules/scripts installation
 setting PDBA environment
 installing PDBAx on
 installing Perl DBI on
 installing Perl on
 from prebuilt package
 from source
 installing Perl/Tk on
 X Windows server access
 installing SchemaView-Plus on
 installing XML::Generator::DBI on
 installing XML::LibXML on
 installing XML::Parser on
 installing XML::XMLtoDBMS on
 running PDBA password server on
 running Perl scripts on
 shared objects
upDays parameter (dbup.conf)
upHours parameter (dbup.conf)
URI module
 XML::Parser and
"use strict" line in Perl code
user accounts [See accounts]
user_rpt, reporting on users
username parameter (dbup.conf)
%users data structure (pwd.conf)
utilities
 in PDBA Toolkit [See PDBA module]
 development [See Oracletool]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

V$INSTANCE parameter (pdbarep_grants.sql)
V$PARAMETER parameter (pdbarep_grants.sql)
V$SQLTEXT data dictionary table, tracking SQL in
variables
 CGI environment, Apache::Registry and
 config, referring to by package name
 naming, Embperl syntax
 Perl DBI naming conventions
 Perl hash
 uninitialized lexical, Apache::Registry and
version control system, reporting database changes and
_version function (extproc_perl)
vertical bar (|), Perl regex metacharacter
vi program, regular expressions and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

wantarray function (Perl)
watchdogLength/Time parameter (chkalert.pl)
web data, storing persistent
web extensions to Perl
web forms
 handling via Embperl
 storing data associated with
web servers [See Apache]
web sites for downloading Perl, modules, tarballs, and items related to this book [See downloading]
while loops, Embperl syntax
Win32
 alert log on
 background programs
 CGI scripts
 configuring dbup_NT.pl on
 configuring Karma on
 configuring mod_perl on
 creating daemon in Perl 2nd
 DDLs
 directory for PDBA Toolkit scripts
 environment variables
 PPM and
 web resource for
 extproc_perl and
 installing Apache on
 directory for CGI scripts
 running Apache as console application
 installing Apache::OWA on
 installing chkalert_NT.pl on
 installing Date::Manip on
 TZ variable
 installing DBD::Chart on
 loading DBD::Chart for ActivePerl
 installing DDL::Oracle on
 installing Embperl on
 installing Karma
 installing kss_NT.pl on
 installing Mason on
 installing mod_perl on
 installing Number::Format on
 installing Oracle::OCI on
 ORACLE not available errors on Linux SuSE 7.3
 precursor modules required
 installing Oracletool on
 securing oracletool.pl
 installing password server as service
 installing PDBA Toolkit on
 additional Perl modules installation
 registry settings
 installing PDBAx on
 installing Perl DBI on
 installing Perl on
 local drives
 installing Perl/Tk on
 installing SchemaView-Plus on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Perl and
 Perl Apache modules, writing
 porting Unix applications to [See Cygwin]
 running Karma on
 Perl modules, extra
 running PDBA password server
 running PDBA password server on
 Windows NT 4.0/2000
 running Perl on, Cygwin and
 running Perl scripts on
 service control application, Perl services
 sniped sessions, killing
 testing mod_perl on
 using services in Perl
 web resource for Apache
Win32::Daemon 2nd 3rd
 chkalert_NT.pl and
 creating Win32 daemon in Perl
 PDBA password server and
 using Win32 services in Perl
Windows 2000
 installing kss_NT.pl on
 PDBA password server on
 starting alert log monitoring service
 starting kill sniped session service on
Windows 95/98
 MSI Microsoft Windows program installer
Windows NT
 MSI Microsoft Windows program installer
 starting alert log monitoring service
 starting kill sniped session service
Windows NT 4.0
 PDBA password server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

X PixMap (XPM), support for
X Windows server, Perl/Tk Unix installation and
XML (Extensible Markup Language)
 data parsing [See SchemaView-Plus]
 database facilities
 modules
 database facilities
 parsers
 XML::XMLtoDBMS
XML-DBMS Version 2.0, forthcoming features
XML::Dumper
 downloading
 installing
XML::Generator::DBI
 installing on Unix
XML::Handler::YAWriter
XML::LibXML
 installing on Unix
XML::LibXSLT
XML::Parser
XML::Parser::PerlSAX
XML::XMLtoDBMS
 installing on Unix
 modules required by
 Oracle date format and
 XML sink input
 XML sink mapping
 XML source mapping
 XML source output
XML::XPath
xmlGenDBI.pl
XPM (X PixMap), support for
XSLT (Extensible Stylesheet Language Transformations)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

zlib program
 DBD::Chart and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

