
 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Perl 6 and Parrot Essentials, 2nd Edition

By Allison Randal, Dan Sugalski, Leopold Tötsch

Publisher: O'Reilly

Pub Date: June 2004

ISBN: 0-596-00737-X

Pages: 294

This book is an unparalleled sneak-peek of what's coming in the widely-anticipated Perl 6. It uncovers groundbreaking
new developments in Parrot--the interpreter engine that will execute code written in the new Perl 6 language and the
most revolutionary change in the language itself--Apocalypse 12 on objects. It also includes expanded coverage of
Apocalypse 5 (regular expressions) and Apocalypse 6 (subroutines).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Perl 6 and Parrot Essentials, 2nd Edition

By Allison Randal, Dan Sugalski, Leopold Tötsch

Publisher: O'Reilly

Pub Date: June 2004

ISBN: 0-596-00737-X

Pages: 294

 Copyright

 Preface

 How This Book Is Organized

 Font Conventions

 Using Code Examples

 We'd Like to Hear from You

 Acknowledgments

 Chapter 1. Project Overview

 Section 1.1. The Birth of Perl 6

 Section 1.2. In the Beginning . . .

 Section 1.3. The Continuing Mission

 Chapter 2. Project Development

 Section 2.1. Language Development

 Section 2.2. Parrot Development

 Chapter 3. Design Philosophy

 Section 3.1. Linguistic and Cognitive Considerations

 Section 3.2. Architectural Considerations

 Chapter 4. Basic Syntax

 Section 4.1. Variables

 Section 4.2. Operators

 Section 4.3. Control Structures

 Chapter 5. Subroutines

 Section 5.1. Using Subroutines

 Section 5.2. Parameters

 Section 5.3. Arguments

 Section 5.4. Subroutine Stubs

 Section 5.5. Subroutine Scope

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 5.6. Anonymous Subroutines

 Section 5.7. Multi Subroutines

 Section 5.8. Curried Subroutines

 Section 5.9. Wrapped Subroutines

 Section 5.10. Lvalue Subroutines

 Section 5.11. Macros

 Chapter 6. Objects

 Section 6.1. Using Objects

 Section 6.2. Classes

 Section 6.3. Roles

 Section 6.4. Delegation

 Section 6.5. Private and Public

 Section 6.6. Subroutines

 Section 6.7. Submethods

 Section 6.8. Multiple Dispatch

 Chapter 7. Grammars and Rules

 Section 7.1. Using Rules

 Section 7.2. Building Blocks

 Section 7.3. Modifiers

 Section 7.4. Built-in Rules

 Section 7.5. Backtracking Control

 Section 7.6. Hypothetical Variables

 Chapter 8. Parrot Internals

 Section 8.1. Core Design Principles

 Section 8.2. Parrot's Architecture

 Section 8.3. The Interpreter

 Section 8.4. I/O, Events, and Threads

 Section 8.5. Objects

 Section 8.6. Advanced Features

 Section 8.7. Conclusion

 Chapter 9. Parrot Assembly Language

 Section 9.1. Getting Started

 Section 9.2. Basics

 Section 9.3. Working with PMCs

 Section 9.4. Flow Control

 Section 9.5. Stacks and Register Frames

 Section 9.6. Lexicals and Globals

 Section 9.7. Subroutines

 Section 9.8. Exceptions and Exception Handlers

 Section 9.9. Events

 Section 9.10. Threads

 Section 9.11. Loading Bytecode

 Section 9.12. Classes and Objects

 Section 9.13. Writing Tests

 Chapter 10. Parrot Intermediate Representation

 Section 10.1. Statements

 Section 10.2. Variables and Constants

 Section 10.3. Symbol Operators

 Section 10.4. Labels

 Section 10.5. Flow Control

 Section 10.6. Subroutines

 Section 10.7. Methods

 Chapter 11. Parrot Reference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chapter 11. Parrot Reference

 Section 11.1. PASM Opcodes

 Section 11.2. PIR Directives

 Section 11.3. PIR Instructions

 Section 11.4. Parrot Command-Line Options

 Colophon

 Index

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copyright © 2004, 2003 O'Reilly Media, Inc.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales department:
(800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
Perl 6 and Parrot Essentials, the image of an aoudad, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Preface
There is nothing as scary to the average programmer (to the average human, really) as the single word "change."
Change means taking the time to learn a new way of doing things. Changes can be annoying: moving to a new home,
finding the shelves reorganized at your neighborhood computer store, or ordering your favorite beer at your favorite
pub only to be told they don't make it anymore. But changes can also be good: a vacation on the beach, a promotion, a
raise, finding the perfect shortcut to work that shaves 20 minutes off your commute. This book is all about change . . .
the good kind.

Perl 6 isn't far enough along to support a book on the level of Programming Perl. However, as development goes on,
we've found that the accumulated lore of the past few years is quite an entry barrier for new people. This book is a
snapshot of the current status, designed to ease that first step. It covers the project through Apocalypse 12 and the
0.1.0 release of Parrot. We expect that this will be the last edition of the book, but we will publish updates as needed.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

How This Book Is Organized
This book has 11 chapters:

Chapter 1 is a high-level overview of the project, with some history of how and why the project was started.

Chapter 2 provides more detail on life cycles within the project and how to get involved.

Chapter 3 explains some of the principles behind Perl 6 design work.

Chapter 4-Chapter 7 are an introduction to Perl 6 syntax.

Chapter 8 explains the overall architecture of Parrot (the virtual machine that runs Perl 6).

Chapter 9 is an introduction to Parrot assembly language.

Chapter 10 is an introduction to Parrot intermediate representation.

Chapter 11 is a reference for Parrot assembly language, Parrot intermediate representation, and command-line options
for the Parrot interpreter.

If you're a Perl programmer who is completely new to Perl 6, you'll be interested in this book to get an idea of what it'll
be like to work with Perl 6, why we're making the changes we're making, and how the project is going. You'll want to
read the first seven chapters. If you think you might be interested in getting involved in implementation, read the rest
as well.

If you're already involved in the Perl 6 project, you'll be interested in this book to see how all the pieces fit together,
and you may want to use it as a reference while you're working. If you've been involved only on the language side or
the internals side, you'll also get a chance to see what the other half is doing. In this way, the entire book is relevant to
you.

If you're interested in implementing another language on top of Parrot, you'll want to skim through the Parrot
information in Chapter 2, and then skip straight to Chapter 8 and go from there.

If you're not involved in Perl but just want to see what the "Perl 6" buzz is all about, you'll want to read Chapter 1,
Chapter 3, and Chapter 8. You'll get an overview of what we're doing and why, without all the nitty-gritty details.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Font Conventions
The following font conventions are used in this book:

Italic

Used for filenames, example URLs, and example email addresses

Constant width

Used in code listings and for function names, variable names, and other literal text

Constant width italic

Shows text that should be replaced with user-supplied values

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book in your programs and
documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For
example: "Perl 6 and Parrot Essentials, Second Edition, by Allison Randal, Dan Sugalski, and Leopold Tötsch. Copyright
2004 O'Reilly Media, Inc., 0-596-00737-X."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at
permissions@oreilly.com.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

We'd Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional information. You can access this
page at:

http://www.oreilly.com/catalog/059600737X/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web site at:

http://www.oreilly.com

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Acknowledgments
Many thanks to our reviewers for this edition of the book: Leon Brocard, Piers Cawley, Damian Conway, chromatic,
Jeffrey Dik, Simon Glover, Garrett Goebel, Trey Harris, Gregor Purdy, Jérôme Quelin, Jens Rieks, Brent Royal-Gordon,
Joseph Ryan, Hugo van der Sanden, and Melvin Smith.

This book is dedicated to the Perl community, because it wouldn't exist without them.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 1. Project Overview
Perl 6 is the next major version of Perl. It's a complete rewrite of the interpreter, and a significant update of the
language itself. The goal of Perl 6 is to add support for much-needed new features, and still be cleaner, faster, and
easier to use.

The Perl 6 project is vast and complex, but it isn't complicated. The project runs on a simple structure with very little
management overhead. That's really the only way it could run. The project doesn't have huge cash or time resources.
Its only resource is the people who believe in the project enough to spend their off-hours—their "relaxation" time—
working to see it completed. This chapter is as much about people as it is about Perl.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.1 The Birth of Perl 6
Back on July 18, 2000, the second day of the fourth Perl Conference (TPC 4), a small band of Perl geeks gathered to
prepare for a meeting of the Perl 5 Porters later that day. The topic at hand was the current state of the Perl
community. Four months had passed since the 5.6.0 release of Perl, and although it introduced some important
features, none were revolutionary.

There had been very little forward movement in the previous year. It was generally acknowledged that the Perl 5
codebase had grown difficult to maintain. At the same time, infighting on the perl5-porters list had grown so intense
that some of the best developers decided to leave. It was time for a change, but no one was quite sure what to do.
They started conservatively with plans to change the organization of Perl development.

An hour into the discussion, around the time most people nod off in any meeting, Jon Orwant (the reserved, universally
respected editor of the Perl Journal) stepped quietly into the room and snapped everyone to attention with an entirely
uncharacteristic and well-planned gesture. Smash! A coffee mug hit the wall. "We are *@$!-ed (Crash!) unless we can
come up with something that will excite the community (Pow!), because everyone's getting bored and going off and
doing other things! (Bam!)" (At least, that's basically how Larry tells it. As is usually the case with events like this, no
one remembers exactly what Jon said.)

Awakened by this display, the group started to search for a real solution. The language needed room to grow. It needed
the freedom to evaluate new features without the obscuring weight of legacy code. The community needed something
to believe in, something to get excited about.

Within a few hours the group settled on Perl 6, a complete rewrite of Perl. The plan wasn't just a language change, just
an implementation change, or just a social change. It was a paradigm shift. Perl 6 would be the community's rewrite of
Perl, and the community's rewrite of itself.

Would Perl 6, particularly Perl 6 as a complete rewrite, have happened without this meeting? Almost certainly. The
signs appeared on the lists, in conferences, and in journals months in advance. If it hadn't started that day, it would
have happened a week later, or perhaps a few months later, but it would have happened. It was a step the community
needed to take.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.2 In the Beginning . . .
Let's pause and consider Perl development up to that fateful meeting. Perl 6 is just another link in the chain. The
motivations behind it and the directions it will take are partially guided by history.

Perl was first developed in 1987 by Larry Wall while he was working as a programmer for Unisys. After creating a
configuration and monitoring system for a network that spanned the two American coasts, he was faced with the task of
assembling usable reports from log files scattered across the network. The available tools simply weren't up to the job.
A linguist at heart, Larry set out to create his own programming language, which he called perl. He released the first
version of Perl on December 18, 1987. He made it freely available on Usenet (this was before the Internet took over
the world, remember), and quickly a community of Perl programmers grew.

The early adopters of Perl were system administrators who had hit the wall with shell scripting, awk, and sed. However,
in the mid-1990s Perl's audience exploded with the advent of the Web, as Perl was tailor-made for CGI scripting and
other web-related programming.

Meantime, the Perl language itself kept growing, as Larry and others kept adding new features. Probably the most
revolutionary change in Perl (until Perl 6, of course) was the addition of modules and object-oriented programming with
Perl 5. Although this made the transition period from Perl 4 to Perl 5 unusually long, it breathed new life into the
language by providing a modern, modular interface. Before Perl 5, Perl was considered simply a scripting language;
after Perl 5, it was considered a full-fledged programming language.

Larry, meanwhile, started taking a back seat to Perl development and allowed others to take responsibility for adding
new features and fixing bugs in Perl. The Perl 5 Porters (p5p) mailing list became the central clearinghouse for bug
reports and proposed changes to the Perl language, with the "pumpkin holder" (also known as the "pumpking") being
the programmer responsible for integrating the patches and distributing them to the rest of the list for review. Larry
continued to follow Perl development, but like a parent determined not to smother his children, he stayed out of the
day-to-day development, limiting his involvement to situations in which he was truly needed.

Although you might think that the birth of the Perl 6 project would be the first nail in the coffin for Perl 5, that's far from
the case. If anything, Perl 5 has had a huge resurgence of development, with Perl 5.7.0 released only two weeks after
the initial decision to go ahead with Perl 6. Perl 5.8.0, a July 2002 release by pumpking Jarkko Hietaniemi, includes
usable Unicode support, a working threads interface, safe signals, and a significant improvement of the internals with
code cleanup, bug fixes, better documentation, and more than quadrupled test coverage. 5.8 has quarterly
maintenance releases thanks to pumpking Nicholas Clark. The 5.9-5.10 releases have Hugo van der Sanden as architect
and Rafaël Garcia-Suarez as pumpking. Plans for those releases include enhancements to the regular expression
engine, further internals cleanup and a "use perl6ish" pragma that will integrate many of the features of Perl 6. Perl 5 is
active and thriving, and will continue to be so even after the release of Perl 6.0.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.3 The Continuing Mission
Much has changed since the early days of the project. New people join and others leave in a regular "changing of the
guard" pattern. Plans change as the work progresses, and the demands of the work and the needs of the community
become clearer. Today the Perl 6 project has two major parts: language design and internals. Each branch is relatively
autonomous, though there is a healthy amount of coordination between them.

1.3.1 Language Design

As with all things Perl, the central command of the language design process is Larry Wall, the creator of the Perl
language. Larry is supported by the rest of the design team: Damian Conway, Allison Randal, Dan Sugalski, Hugo van
der Sanden, and chromatic. We speak in weekly teleconferences and also meet face-to-face a few times a year to hash
out ideas for the design documents, or to work through roadblocks standing in the way of design or implementation.
The design team is a diverse group, including programmers-for-hire, Perl trainers, and linguists with a broad spectrum
of interests and experiences. This diversity has proved quite valuable in the design process, as each member is able to
see problems in the design or potential solutions that the other members missed.

1.3.1.1 Requests For Comments (RFCs)

The first step in designing the new language was the RFC (Request For Comments) process. This spurred an initial burst
of community involvement. Anyone was free to submit an RFC on any subject, whether it was as small as adding an
operator, or as big as reworking OO syntax. Most of the proposals were really quite conservative. The RFCs followed a
standard format so they would be easier to read and easier to compare.

Each RFC was subject to peer review, carried out in an intense few weeks around October 2000. One thing the RFC
process demonstrated was that the Perl community still wasn't quite ready to move beyond the infighting that had
characterized Perl 5 Porters earlier that year.[1] Even though few RFCs have been accepted without modification, the
process identified a large number of irritants in the language. These have served as signposts for later design efforts.

[1] Mark-Jason Dominus wrote an excellent critique of the RFC process
(http://www.perl.com/pub/a/2000/11/perl6rfc.html). It may seem harsh to people accustomed to the more open
and tolerant community of today, but it's an accurate representation of the time when it was written.

1.3.1.2 Apocalypses, Synopses, Exegeses

The Apocalypses,[2] Synopses, and Exegeses[3] are an important part of the design process. Larry started the
Apocalypse series as a systematic way of answering the RFCs. Each Apocalypse corresponds to a chapter in his book
Programming Perl, and addresses the features in the chapter that are likely to change.

[2] An "apocalypse" in the sense of "revelation," not "end of the world."

[3] An "exegesis" is an explanation or interpretation of a text.

However, the Apocalypses have become much more than a simple response to RFCs. Larry has a startling knack for
looking at 12 solutions to a problem, pulling out the good bits from each one, and combining them into a solution that is
10 times better than any of the proposals alone. The Apocalypses are an excellent example of this "Larry Effect." He
addresses each relevant RFC, and gives reasons why he accepted or rejected various pieces of it. But each Apocalypse
also goes beyond a simple "yes" and "no" response to attack the roots of the problems identified in the RFCs.

The Synopses are summaries of each Apocalypse. These act as a quick reference for the current state of design, and
are more approachable than the often lengthy Apocalypses. The Synopsis series didn't start until Apocalypse 5, but
Luke Palmer is now working on the retroactive Synopses 2-4.

Damian Conway's Exegeses are extensions of each Apocalypse. The Exegeses are built around practical code examples
that apply and explain the new ideas.

1.3.1.3 The p6l mailing list

The next body of design work is the Perl 6 Language mailing list (perl6-language@perl.org), often fondly referred to as
" p6l." Piers Cawley writes a weekly summary of all the Perl 6 mailing lists. Luke Palmer has been deputized as
unofficial referee of the list. He answers questions that don't require the direct involvement of the design team or that
have been answered before. The list has approximately 40 regular contributors in any given month, as well as a large
number of occasional posters and lurkers. Some people have participated since the very beginning; others appear for a
few months and move on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

few months and move on.

Even though the individuals change, the general tone of p6l is the same. It's an open forum for any ideas on the user-
visible parts of Perl 6. In the typical pattern, one person posts an idea and 5 to 10 people respond with criticisms or
suggestions. The list periodically travels down a speculative thread like a runaway train, but these eventually run out of
steam. Then Larry picks out the golden bits and gently tells the rest that no, he never intended Perl 6 to have neo-
Vulcan mechanoid Scooby-Dooby-doos. Even when Larry doesn't post, he follows the list and the traffic serves as a
valuable catalyst for his thoughts.

1.3.2 Internals

The internals development for Perl 6 falls to the Parrot project. The heart of Parrot is a grandiose idea that turned out
to be more realistic than anyone originally could have believed: why not have a single interpreter for several
languages? Unlike the parent Perl 6 project, which was launched in a single day, the plan for Parrot formed in bits and
pieces over the period of a year.

On April 1, 2001, Simon Cozens published an article titled "Programming Parrot" as an April Fools' joke
(http://www.perl.com/pub/a/2001/04/01/parrot.htm). It was a contrived interview with Larry Wall and Guido van
Rossum detailing their plans to merge Python and Perl into a new language called Parrot. A few months later, when Perl
6 internals began to take an independent path within the larger project, they dubbed the subproject "Parrot" in a fitting
turn of life imitating art.

Early Steps Toward Perl 6 Internals
The earliest progress toward implementing Perl 6 started before the current incarnation of Perl 6 was
even conceived. The Topaz project, started in 1998, was spearheaded by Chip Salzenberg. It was a
reimplementation of Perl 5 written in C++. The project was abandoned, but many of the goals and
intended features for Topaz were adopted for Perl 6 internals, and the difficulties Topaz encountered
were also valuable guides.

Sapphire was another early prototype that influenced the shape of Perl 6 internals. It was a one-week
project in September 2000. The brainchild of Simon Cozens, Sapphire was another rewrite of Perl 5
internals. It was never intended for release, only as an experiment to see how far the idea could go in a
week, and what lessons could be learned.

The plan for Parrot was to build a language-neutral run-time environment. It would support all the features of dynamic
languages, such as Python, Ruby, Scheme, Befunge, and others. It would have threading and Unicode support (two of
the most problematic features to add into Perl 5 code) designed in from the start. It would support exceptions and
compilation to bytecode, and have clean extension and embedding mechanisms.

The language-neutral interpreter was originally just a side effect of good design. Keeping the implementation
independent of the syntax would make the code cleaner and easier to maintain. One practical advantage of this design
was that Parrot development could begin even though the Perl 6 language specification was still in flux.

The bigger win in the long term, though, was that since Parrot would support the features of the major dynamic
languages and wasn't biased to a particular syntax, it could run all these languages with little additional effort. It's
generally acknowledged that different languages are suited to different tasks. Picking which language will be used in a
large software project is a common planning problem. There's never a perfect fit. It usually boils down to picking the
language with the most advantages and the least noticeable disadvantages. The ability to easily combine multiple
languages within a project could be a huge benefit. Use well-tested libraries from one language for one task. Take
advantage of a clean way of expressing a particular problem domain in a second, without being forced to use it in areas
where it's weak.

The modular design also benefits future language designers. Instead of targeting lex/yacc and reimplementing low-level
features such as garbage collection and dynamic types, designers can write a parser that targets the Parrot virtual
machine.

Dan Sugalski leads the Parrot project as chief architect, and Leopold Tötsch is the current pumpking. The Parrot project
is largely autonomous. Dan coordinates with the rest of the design team to ensure that Parrot will be able to support
the semantics Perl 6 will require, but the language designers have very little input into the details of implementation.
Parrot isn't developed solely for Perl, but Perl 6 is entirely dependent on Parrot—it is the only interpreter for Perl 6.

The core communication line for the Parrot project is the mailing list, perl6-internals@perl.org, otherwise known as "
p6i." It's a much more business-like list than p6l. Workflow in Parrot takes the form of submitted patches. Anyone is
free to submit a patch, and contributors who consistently submit valuable patches over a long period of time are
granted check-in access to the CVS repository.

1.3.3 Ponie

Ponie is an implementation of Perl 5 on Parrot, started in July 2003. Offically, Ponie stands for " Perl On New Internal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ponie is an implementation of Perl 5 on Parrot, started in July 2003. Offically, Ponie stands for " Perl On New Internal
Engine." The name was originally derived from a running gag in the London.pm Perl Mongers group where the phrase "I
want a pony" appeared in lists of feature requests for Perl (and other unusual places).

The project, led by Artur Bergman, has taken the Perl 5 source code as a base and is gradually replacing the core
elements with Parrot equivalents. Legacy code will be one of the biggest obstacles to projects considering the move
from Perl 5 to Perl 6. Few companies have the resources to do a complete update to existing code every time a new
version of the language is released. Ponie offers a smooth migration path that ensures Perl 5 code will function as long
as it's needed. You'll even be able to use Perl 5 modules and Perl 6 modules side-by-side in the same program. The
current plan is for Ponie to be the 5.14 or 5.16 release of Perl.

The mailing list for Ponie development is ponie-dev@perl.org.

1.3.4 Supporting Structure

Last, but not least, is the glue that holds the project together. Ask Bj rn Hansen and Robert Spier manage the email,
revision control, and bug-tracking systems, as well as the web pages for Perl 6, Parrot, and Ponie (http://dev.perl.org).
Without these systems, the project would grind to a screeching halt.

Allison Randal is the project manager. As is typical of open source development projects, managing the Perl 6 project is
quite different from managing a commercial project of the same size and complexity. There are no schedules, no
deadlines, no hiring and firing, and no salaries, bonuses, or stock options. There are no employees or bosses; there is
very little hierarchy whatsoever. Management in this context isn't about giving orders, it's about making sure everyone
has what they need to keep moving forward.

In the end, it is the developers themselves who hold the project together. Individuals bear their own share of
responsibility for finding tasks that suit their skills, coordinating with others to keep duplicated effort minimal, and
making sure the job gets done.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 2. Project Development
The Perl community is rich and diverse. There are as many variations in skill sets and skill levels as there are people.
Some are coders, some are testers, some are writers, some are teachers, some are theorists. For every skill, there is a
task. It's the combination of all the skills that gets the job done. A team of workers all wielding hammers could never
build a house. Someone has to cut the wood, sand it, apply plaster, paint it, and install windows, doors, electrical
systems, and plumbing.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.1 Language Development
Theoretically, language design is the driving force behind all other parts of the project. In actual practice, Parrot
development frequently affects the direction and focus of design efforts. A design that gave no consideration to what
can be implemented efficiently wouldn't be much use. Equally, if the design work followed a strictly linear path, it would
be a waste of developer resources. The Parrot project can't afford to go on hold every time they need information from
a future area of design. For example, long before the design of OO syntax was completed, the design team took time to
define enough of the required semantics so that development could move ahead.

2.1.1 Development Cycles

Design work goes in cycles. Each cycle begins with a quiet period. During this time, the list traffic is fairly light, and
Larry is rarely seen. It can seem as if the project is stalled, but in fact, this part of the cycle is where the bulk of original
design work is done. Larry disappears when he's working on an Apocalypse. It's the most intense and creative phase.

The next phase is internal revision. Larry sends a draft of the Apocalypse to the design team for comments and makes
changes based on their suggestions. Sometimes the changes are as simple as typo fixes, but sometimes they entirely
alter the shape of the design. Larry repeats this several times before publishing the document. This is a very fast-paced
and dynamic phase, but again, low on visible results.

Next is the community review. Usually the first day or two after an Apocalypse comes out are quiet, while the ideas
soak in. Then the list begins to fly. Some people suggest changes, while others ask about the design. This phase
reflects the most visible progress, but the changes are mostly refinements. The changes introduced at community
review polish off the rough edges, add a few new tricks, or make simplifications for the average user. Here the
community takes ownership of the design, as both the design and the people change until the two are a comfortable fit.

The Synopsis, a summary released by the design team soon after each Apocalypse, assists in the community review by
breaking down the ideas from the Apocalypse into a simple list of points.

The Exegesis comes next, and its process is much like that of the Apocalypse. List traffic slows again while Damian
writes and the design team revises. The Exegesis responds to the community review. The practical examples at the
core of each Exegesis explain the parts of the Apocalypse that were hardest to understand and flesh out some of the
holes found in the community review. The list bursts into another flurry of activity as the community reviews the
Exegesis. Then the cycle starts all over again.

2.1.2 Getting Involved

The primary cycle of Apocalypses, Synopses, and Exegeses is not the only movement in design. Constant activity on
and off the list packs around the larger cycle. Old decisions are revisited; future decisions are previewed.

Getting involved in Perl 6 design work is as simple, and as difficult, as joining the p6l list. Subscribing to a list takes
almost no effort, but the most valuable contributions don't come from people who respond to an idea here and there,
though those are certainly welcome. The posts with the greatest impact come from people who take the time to learn
the system—to figure out what Perl 6 is all about.

If you want to make a valuable contribution, get on the list and listen. Work to understand the issues behind each
thread of discussion. Soon you'll find there are repetitions in the themes, guiding principles that shape the debates.

Form a mental map of the new syntax. It's not an easy task. There is is only a limited prototype interpreter available for
Perl 6, so if you forget how a particular feature works you can't just experiment. Mainly, you'll have to search through
the list archives—over, and over, and over again. And the syntax keeps changing. You'll have a perfect grasp on a
feature just before it changes. It can be frustrating, but it is well worth it.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.2 Parrot Development
Parrot development is the productive core of Perl 6 development. If you want coding action, this is the place to be.

Organization of the Parrot project is lightweight but efficient. It's a meritocracy—people who make valuable
contributions are offered more responsibility. Communication is relaxed and informal. As Dan is so fond of saying, "This
is far too important to take seriously." It's a bit like a special forces unit—the work gets done not because of tight
control from the top, but because the whole team knows the task at hand and does it.

2.2.1 Development Cycles

The cycles in Parrot development center on "point releases." A point release is a version change, such as 0.0.8 to 0.0.9.
The pumpking decides when point releases happen and what features are included. Usually one or two solid new
features trigger a release.

Development proceeds at a steady pace of bug reports, patches submitted, and patches applied. The pace isn't so much
a result of careful planning as it is the law of averages—on any given day, someone, somewhere, is working on Parrot.
A release is a spike in that activity, but since Parrot tends to follow the "release early, release often" strategy, the spike
is relatively small.

Typically, the pumpking declares a feature freeze a few days before each release and all development efforts center on
bug squashing. This periodic cleanup is one of the most valuable aspects of a release.

2.2.2 Getting Involved

Just like design work, the first step to participating in Parrot development is joining the list. The topics on p6i tend to
stick to practical matters: bug reports, patches, notifications of changes committed to CVS, and questions on coding
style. Occasionally, there are discussions about how to implement a particular feature. Generally, if you have a question
about syntax or a speculation about whether Perl 6 should support a particular feature, that question belongs on the
language list rather than the internals list.

2.2.2.1 Use the source

The second step to participating in Parrot development is to get a copy of the source code. If you just want to try it out
—experiment with a few features and see how it feels—you're probably best off downloading a tarball. For the most
stable copy, grab the latest point release from CPAN. The sure way to get the most recent release is at
http://search.cpan.org/dist/parrot/ (or search for "parrot" in "Distributions"). If you want something a little more
cutting edge than the packaged release, a new snapshot of the CVS repository is created every eight hours. The most
recent snapshot is always available at http://cvs.perl.org/snapshots/parrot/parrot-latest.tar.gz.

If you plan to get involved in development, you'll want to check out the source from the CVS repository. Anyone can get
anonymous access. Just log in as the "anonymous" user and check out the source. No password is necessary.

cvs -d :pserver:anonymous@cvs.perl.org:/cvs/public login

cvs -d :pserver:anonymous@cvs.perl.org:/cvs/public checkout parrot

There's also a web interface for viewing files in the repository at http://cvs.perl.org/cvsweb/parrot/.

Now that you've got the source, take a moment to look around. The code changes constantly, so a detailed description
of every file is impossible. But a few road signs are helpful starting out.

The most important top- level directory is docs/. The content isn't always up to date, but it is a good place to start.
parrot.pod provides a quick overview of what is in each documentation file.

The languages/ directory contains the code that implements various language compilers: Perl 6, as well as Forth,
Scheme, Befunge, BASIC, etc. Most are in various stages of partial completion. LANGUAGES.STATUS provides meta
information on the included languages, and on languages maintained outside the Parrot repository, such as Python
(Pirate) and Ruby (Cardinal). If you have a language you're particularly interested to see implemented on Parrot, you
might take a peek to see how far along it is.

The lib/ directory contains Perl 5 classes currently used in developing Parrot. The classes/ directory contains the C
source code for Parrot classes (PMCs, which you'll read more about in Chapter 9). The examples/ directory contains
some example Parrot assembler code, as well as benchmarks.

For instructions on building Parrot, see Section 9.1 in Chapter 9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For instructions on building Parrot, see Section 9.1 in Chapter 9.

2.2.2.2 Patch submission

Parrot development is a continuous stream of patches. Patches are the currency of exchange in the project—the unit of
work. They fix bugs, add features, modify features, remove features, and improve the documentation. Pretty much
anything that changes, changes via a patch.

Although anyone is free to submit a patch, a small number of people have access to commit changes to the CVS
repository. This system works well. It means the project can harness the efforts of a large group, but still keep the
same high quality as a small group of experienced developers.

Every submitted patch is automatically forwarded to the p6i list where it's subject to peer review. Patches spark little
debate. Parrot developers generally submit code that's clean and well thought-out, so there's rarely any need for
debate. Also, patches are typically small modular changes, which makes them easy to evaluate. Occasionally an entire
language implementation is submitted in a single patch, but these are the exceptions.

Submitting a patch is fairly straightforward. You create a file that lists all your changes and email it to the ticket
tracking system at bugs-parrot@bugs6.perl.org. But a few common-sense guidelines will make your patches cleaner,
better, and less likely to give the pumpking hives.

First off, create your patches from a checked-out CVS repository, not from a tarball, so your diff is running against the
latest version of the files. Then, make sure the paths listed in the patch match those in the repository. There are two
methods of creating patches that will do this for you. You can make changes directly in your checked-out copy of the
CVS repository and then create diffs using cvs diff -u. Or you can make a copy of the repository and then create diffs
between the two copies with the standard diff -u command. For example:

diff -u parrot/README parrot_changed/README

Either method is fine, and both are equally common on p6i. Your working style and the types of changes you make—
small and modular versus large and sweeping—will influence which method you choose.

Next, when you're making changes, take some extra time to consider how your patch affects the rest of the system. If
your patch adds a new file, patch the main MANIFEST file to include it. If you add a new feature, add a test for it. If you
fix a bug, add a test for it. (See Section 9.13 in Chapter 9.) Before you submit a patch, always recompile the system
with your patch included and run all tests:

make clean

perl Configure.pl

make

make test

Then consider the people who will review and apply your patch, and try to make their jobs easier. Patch filenames
should be as descriptive as possible: fix_readme_typo.patch is better than README.patch. An attached file is better
than a diff pasted into an email, because it can be applied without manual editing. The conventional extension for patch
files is .patch.

In the email message, always start the subject with "[PATCH]," and make the subject as clear as possible: "[PATCH]
misspelled aardvark in main README file" is better than "[PATCH] typo." The body of the message should clearly
explain what the patch is supposed to do and why you're submitting it. Make a note if you're adding or deleting files so
they won't be missed.

Here is a good example of a patch submission using the CVS diff method (an actual patch from p6i). It's short, sticks to
the point, and clearly expresses the problem and the solution. The patch filename and the subject of the message are
both descriptive:

Subject: [PATCH] Pointers in List_chunk not initialized

From: Bruce Gray

On Win32, these tests are segfaulting due to invalid

pointers in List_chunk structs:

t/op/string.t 97-98

t/pmc/intlist.t 3-4

t/pmc/pmc.t 80

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

t/pmc/pmc.t 80

The problem is caused by list.c/allocate_chunk not

initializing the pointers. This patch corrects the problem.

--

Hope this helps,

Bruce Gray

The following includes the attached file list_chunk_initialize.patch:

Index: list.c

=

RCS file: /cvs/public/parrot/list.c,v

retrieving revision 1.23

diff -u -r1.23 list.c

--- list.c 27 Dec 2002 09:33:11 -0000 1.23

+++ list.c 28 Dec 2002 03:37:35 -0000

@@ -187,6 +187,10 @@

 Parrot_block_GC(interpreter);

 chunk = (List_chunk *)new_bufferlike_header(interpreter, sizeof(*chunk));

 chunk->items = items;

+ chunk->n_chunks = 0;

+ chunk->n_items = 0;

+ chunk->next = NULL;

+ chunk->prev = NULL;

 Parrot_allocate_zeroed(interpreter, (Buffer *)chunk, size);

 Parrot_unblock_DOD(interpreter);

 Parrot_unblock_GC(interpreter);

2.2.2.3 Bug tracking

Bug reports go to the same address as patch submissions (bugs-parrot@bugs6.perl.org). Similar conventions apply:
make the subject and the message as clear and descriptive as possible. There's no set convention on subject lines, but
you can't go wrong starting off with something like "[BUG]" or "[P6C BUG]" to make it immediately obvious what the
message is about.

If you want to track a bug or patch you've submitted, the current queue of bugs and patches is publicly viewable at
http://bugs6.perl.org. Bug tracking for Parrot is handled by the Request Tracker (RT) ticket tracking system from Best
Practical Solutions.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 3. Design Philosophy
At the heart of every language is a core set of ideals that give the language its direction and purpose. If you really want
to understand the choices that language designers make—why they choose one feature over another or one way of
expressing a feature over another—the best place to start is with the reasoning behind the choices.

Perl 6 has a unique set of influences. It has deep roots in Unix and the children of Unix, which gives it a strong
emphasis on utility and practicality. It's grounded in the academic pursuits of computer science and software
engineering, which gives it a desire to solve problems the right way, not just the most expedient way. It's heavily
steeped in the traditions of linguistics and anthropology, which gives it the goal of comfortable adaptation to human
use. These influences and others like them define the shape of Perl and what it will become.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.1 Linguistic and Cognitive Considerations
Perl is a human language. Now, there are significant differences between Perl and languages like English, French,
German, etc. For one, it is artificially constructed, not naturally occurring. Its primary use, providing a set of
instructions for a machine to follow, covers a limited range of human existence. Even so, Perl is a language humans use
for communicating. Many of the same mental processes that go into speaking or writing are duplicated in writing code.
The process of learning to use Perl is much like learning to speak a second language. The mental processes involved in
reading are also relevant. Even though the primary audience of Perl code is a machine, humans have to read the code
while they're writing, reviewing, or maintaining it.

Many Perl design decisions have been heavily influenced by the principles of natural language. The following are some
of the most important principles, the ones we come back to over and over again while working on the design and the
ones that have had the greatest impact.

3.1.1 The Waterbed Theory of Complexity

The natural tendency in human languages is to keep overall complexity about equivalent, both from one language to
the next, and over time as a language changes. Like a waterbed, if you push down the complexity in one part of the
language, it increases complexity elsewhere. A language with a rich system of sounds (phonology) might compensate
with a simpler syntax. A language with a limited sound system might have a complex way of building words from
smaller pieces (morphology). No language is complex in every way, as that would be unusable. Likewise, no language is
completely simple, as too few distinctions would render it useless. This principle might just as well be called the
"Conservation of Complexity."

The same is true of computer languages. They require a constant balance between complexity and simplicity.
Restricting the possible operators to a small set leads to a proliferation of user-defined methods and subroutines. This is
not a bad thing, in itself, but it encourages code that is verbose and difficult to read. On the other hand, a language
with too many operators encourages code that is heavy in line noise and difficult to read. Somewhere in the middle lies
the perfect balance.

3.1.2 The Principle of Simplicity

Generally, a simple solution is preferable to a complex one. A simple syntax is easier to teach, remember, use, and
read. But this principle is in constant tension with the waterbed theory. Simplification in the wrong area is one danger
to avoid. Another is false simplicity or oversimplification. Some problems are complex and require a complex solution.
Perl 6 grammars aren't simple, but they are complex at the language level in a way that allows simpler solutions at the
user level.

3.1.3 Huffman Coding

Huffman coding is a method of compressing data that replaces each character with a variable-length sequence of bits.
To save space, frequent characters get shorter sequences and more rare characters get longer sequences.

When Larry talks about "Huffman coding" he means the idea that more commonly used features in the language
deserve the best short-cuts. For example, the very limited set of easy-to-type, single-character, plain ASCII operators
go to common operations: addition, subtraction, logical negation, etc. Less common operations get multiple character
combinations or Unicode characters. Huffman coding is one of the moderating factors between simplicity and
complexity.

3.1.4 The Principle of Adaptability

Natural languages grow and change over time. They respond to changes in the environment and to internal pressure.
New vocabulary springs up to handle new communication needs. Old idioms die off as people forget them, and newer,
more relevant idioms take their place. Complex parts of the system tend to break down and simplify over time. Change
is what keeps language active and relevant to the people who use it. Only dead languages stop changing.

The plan for Perl 6 explicitly includes plans for future language changes. No one believes that Perl 6.0.0 will be perfect,
but at the same time, no one wants another change process quite as dramatic as Perl 6. So Perl 6 will be flexible and
adaptable enough to allow gradual shifts over time. This has influenced a number of design decisions, including making
it easy to modify how the language is parsed, lowering the distinctions between core operations and user-defined
operations, and making it easy to define new operators.

3.1.5 The Principle of Prominence

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In natural languages, certain structures and stylistic devices draw attention to an important element. This could be
emphasis, as in "The dog stole my wallet" (the dog, not something else), or extra verbiage, as in "It was the dog who
stole my wallet," or a shift to an unusual word order, "My wallet was stolen by the dog" (my wallet, not my shoe, etc.),
or any number of other verbal tricks.

Perl is designed with its own set of stylistic devices to mark prominence, some within the language itself, and some that
give users flexibility to mark prominence within their code. The NAMED blocks use all capitals to draw attention to the
fact that they're outside the normal flow of control. Perl 5 has an alternate syntax for control structures like if and for,
which moves them to the end to serve as statement modifiers (the start of a line is a position of prominence). Perl 6
keeps this flexibility, and adds a few new control structures to the list.

The balance for design is to decide which features deserve to be marked as prominent, and where the syntax needs a
little flexibility so the language can be more expressive.

3.1.6 The Principle of End Weight

Natural languages place large, complex elements at the end of sentences. So, even though "I gave Mary the book" and
"I gave the book to Mary" are equally comfortable, "I gave the book about the history of development of peanut-based
products in Indonesia to Mary" is definitely less comfortable than the other way around. This is largely a mental parsing
problem. It's easier to interpret the major blocks of the sentence all at once than to start with a few, work through a
large chunk of minor information, and then go back to fill in the major sentence structure. Human memory is limited.

End weight is one of the reasons regular expression modifiers were moved to the front in Perl 6. It's easier to read a
grammar rule when you know right at the start whether the rule is case insensitive or modified some other significant
way. (It's also easier for the machine to parse, which is almost as important.)

3.1.7 The Principle of Context

Natural languages use context when interpreting meaning. The meanings of "hot" in "a hot day," "a hot stereo," "a hot
idea," and "a hot debate" are all quite different. The implied meaning of "it's wet" changes depending on whether it's a
response to "Should I take a coat?" or "Why is the dog running around the kitchen?" The surrounding context allows us
to distinguish these meanings. Context appears in other areas as well. A painting of an abstract orange sphere will be
interpreted differently depending on whether the other objects in the painting are bananas, clowns, or basketball
players. The human mind constantly tries to make sense of the universe, and it uses every available clue.

Perl has always been a context-sensitive language. It makes use of context in a number of different ways. The most
obvious use is scalar and list contexts, where a variable or expression may return a different value depending on where
and how it's used. These have been extended in Perl 6 to include string context, Boolean context, numeric context, and
others. Another use of context is the $_ defaults, like print, chomp, matches, and the new when keyword.

Context-dependent features are harder to write an interpreter for, but they're easier on the people who use the
language daily. They fit in with the way humans naturally think, which is one of Perl's top goals.

3.1.8 The Principle of DWIM

In natural languages there is a notion called "native speaker's intuition." Someone who speaks a language fluently will
be able to tell whether a sentence is correct, even if they can't consciously explain the rules. (This has little to do with
the difficulty English teachers have getting their students to use "proper" grammar. The rules of formal written English
are very different from the rules of spoken English.)

As much as possible, features should do what the user expects. This concept of DWIM, or "Do What I Mean," is largely a
matter of intuition. The user's experiences, language exposure, and cultural background all influence their expectations.
This means that intuition varies from person to person. An English speaker won't expect the same things as a Dutch
speaker, and an Ada programmer won't expect the same things as a COBOL programmer.

The trick in design is to use the programmer's intuitions instead of fighting against them. A clearly defined set of rules
will never match the power of a feature that "just seems right."

Perl 6 targets Perl programmers. What seems right to one Perl programmer may not seem right to another, so no
feature will please everyone. But it is possible to catch the majority cases.

Perl generally targets English speakers. It uses words like "given," which gives English speakers a head start in
understanding its behavior in code. Of course, not all Perl programmers are English speakers. In some cases idiomatic
English is toned down for broader appeal. In grammar rules, ordinal modifiers have the form 1st, 2nd, 3rd, 4th, etc.,
because those are most natural for native English speakers. But they also have an alternate form 1th, 2th, etc., with the
general rule Nth, because the English endings for ordinal numbers are chaotic and unfriendly to non-native speakers.

3.1.9 The Principle of Reuse

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Human languages tend to have a limited set of structures and reuse them repeatedly in different contexts.
Programming languages also employ a set of ordinary syntactic conventions. A language that used braces ({ }) to
delimit loops but paired keywords to delimit if statements (like if . . . then . . . end if) would be incredibly annoying. Too
many rules make it hard to find the pattern.

In design, if you have a certain syntax to express one feature, it's often better to use the same syntax for a related
feature than to invent something entirely new. It gives the language an overall sense of consistency, and makes the
new features easier to remember. This is part of why Perl 6 grammars are structured as classes. (For more details on
grammars, see Chapter 7.) Grammars could use any syntax, but classes already express many of the features
grammars need, like inheritance and the concept of creating an instance.

3.1.10 The Principle of Distinction

The human mind has an easier time identifying big differences than small ones. The words "cat" and "dog" are easier to
tell apart than "snore" and "shore." Usually context provides the necessary clues, but if "cats" were "togs," we would be
endlessly correcting people who heard us wrong ("No, I said the Johnsons got a new dog, not tog, dog.").

The design consideration is to build in visual clues to subtle contrasts. The language should avoid making too many
different things similar. Excessive overloading reduces readability and increases the chance for confusion. This is part of
the motivation for splitting the two meanings of eval into try and eval, the two meanings of for into for and loop, and the
two uses of sub into sub and method.

Distinction and reuse are in constant tension. If too many features are reused and overloaded, the language will begin
to blur together. Far too much time will be spent trying to figure out exactly which use is intended. But, if too many
features are entirely distinct, the language will lose all sense of consistency and coherence. Again, it's a balance.

3.1.11 Language Cannot Be Separated from Culture

A natural language without a community of speakers is a dead language. It may be studied for academic reasons, but
unless someone takes the effort to preserve the language, it will eventually be lost entirely. A language adds to the
community's sense of identity, while the community keeps the language relevant and passes it on to future
generations. The community's culture shapes the language and gives it a purpose for existence.

Computer languages are equally dependent on the community behind them. You can measure it by corporate backing,
lines of code in operation, or user interest, but it all boils down to this: a programming language is dead if it's not used.
The final sign of language death is when there are no compilers or interpreters for the language that will run on existing
hardware and operating systems.

For design work this means it's not enough to only consider how a feature fits with other features in the language. The
community's traditions and expectations also weigh in, and some changes have a cultural price.

3.1.12 The Principle of Freedom

In natural languages there is always more than one way to express an idea. The author or speaker has the freedom,
and the responsibility, to pick the best phrasing—to put just the right spin on the idea so it makes sense to their
audience.

Perl has always operated on the principle that programmers should have the freedom to choose how to express their
code. It provides easy access to powerful features and leaves it to the individuals to use them wisely. It offers customs
and conventions rather than enforcing laws. "There's more than one way to do it" (TMTOWTDI).

This principle influences design in several ways. If a feature is beneficial to the language as a whole, it won't be rejected
just because someone could use it foolishly. On the other hand, we aren't above making some features difficult to use,
if they should be used rarely.

Another part of the design challenge is to build tools that will have many uses. No one wants a cookbook that reads like
a Stephen King novel, and no one wants a one-liner with the elaborate structure of a class definition. The language has
to be flexible to accommodate freedom.

3.1.13 The Principle of Borrowing

Borrowing is common in natural languages. When a new technology (food, clothing, etc.) is introduced from another
culture, it's quite natural to adopt the original name for it. Most of the time borrowed words are adapted to the new
language. In English, no one pronounces "tortilla," "lasagna," or "champagne" exactly as in the original languages.
They've been altered to fit the English sound system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

They've been altered to fit the English sound system.

Perl has always borrowed features, and Perl 6 will too. There's no shame in acknowledging that another language did an
excellent job implementing a particular feature. It's far better to openly borrow a good feature than to pretend it's
original. Perl doesn't have to be different just for the sake of being different. However, most features won't be adopted
without any changes. Every language has its own conventions and syntax, and many aren't compatible. So, Perl
borrows features, but uses Perlish syntax to express them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.2 Architectural Considerations
The second set of principles governs the overall architecture of Perl 6. These principles are connected to the past,
present, and future of Perl, and define the fundamental purpose of Perl 6. No principle stands alone; each is balanced
against the others.

3.2.1 Perl Should Stay Perl

Everyone agrees that Perl 6 should still be Perl, but the question is, what exactly does that mean? It doesn't mean Perl
6 will have exactly the same syntax. It doesn't mean Perl 6 will have exactly the same features. If it did, Perl 6 would
just be Perl 5. So, the core of the question is what makes Perl "Perl?"

3.2.1.1 True to the original purpose

Perl will stay true to its designer's original intended purpose. Larry wanted a language that would get the job done
without getting in his way. The language had to be powerful enough to accomplish complex tasks, but still lightweight
and flexible. As Larry is fond of saying, "Perl makes the easy things easy and the hard things possible." The
fundamental design philosophy of Perl hasn't changed. In Perl 6, the easy things are a little easier and the hard things
are more possible.

3.2.1.2 Familiarity

Perl 6 will be familiar to Perl 5 users. The fundamental syntax is still the same. It's just a little cleaner and a little more
consistent. The basic feature set is still the same. It adds some powerful features that will probably change the way we
code in Perl, but they aren't required.

Learning Perl 6 will be like American English speakers learning Australian English, not English speakers learning
Japanese. Sure, there are some vocabulary changes, and the tone is a little different, but it is still—without any doubt—
English.

3.2.1.3 Translatable

Perl 6 will be mechanically translatable from Perl 5. In the long term, this isn't nearly as important as what it will be like
to write code in Perl 6. But during the transition phase, automatic translation will be important. It will allow developers
to start moving ahead before they understand every subtle nuance of every change. Perl has always been about
learning what you need now and learning more as you go.

3.2.2 Important New Features

Perl 6 will add a number of features such as exceptions, delegation, multi-method dispatch, continuations, coroutines,
and currying, to name a few. These features have proven useful in other languages and provide a great deal of power
for solving certain problems. They improve the stability and flexibility of the language.

Many of these features are traditionally difficult to understand. Perl takes the same approach as always: provide
powerful tools, make them easy to use, and leave it up to the user to decide whether and how to use them. Most users
probably won't even know they're using currying when they use the assuming method.

Features like these are an important part of preparing Perl for the future. Who knows what development paradigms
might develop in a language that has this combination of advanced features in a form easily approachable by the
average programmer? It may not be a revolution, but it's certainly evolution.

3.2.3 Long-Term Usability

Perl 6 isn't a revision intended to last a couple of years and then be tossed out. It's intended to last 20 years or more.
This long-range vision affects the shape of the language and the process of building it. We're not interested in the latest
fad or in whipping up a few exciting tricks. We want strong, dependable tools with plenty of room to grow. And we're
not afraid to take a little extra time now to get it right. This doesn't mean Perl 6.0 will be perfect, any more than any
other release has been perfect. It's just another step of progress.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 4. Basic Syntax
Perl 6 is a work in progress, so the syntax is rapidly changing. The next four chapters are likely to be outdated by the
time you read them. Even so, they provide a good baseline. If you start here, you'll only have to catch up on a few
months of changes (starting with the design documents after Apocalypse 12), instead of several years worth.

Pretend for a moment that you don't know anything about Perl. You heard the language has some neat features, so you
thought you might check it out. You go to the store and pick up a copy of Programming Perl because you think this
Larry Wall guy might know something about it. It's the latest version, put out for the 6.0.1 release of Perl. It's not a
delta document describing the changes, it's an introduction, and you dive in with the curiosity of a kid who got a
telescope for his birthday. These chapters are a glimpse down that telescope.

There's plenty of time later to analyze each feature and decide which you like and which you don't. For now, take a step
back and get a feel for the system as a whole, for what it'll be like to work in it.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.1 Variables
The most basic building blocks of a programming language are its nouns, the chunks of data that get sucked in, pushed
around, altered in various ways, and spat out to some new location. The chunks of data are values: strings, numbers,
etc., or composites of the simpler values. Variables are just named containers for those values. The three kinds of
variables in Perl 6 are scalars, arrays, and hashes. Each has an identifying symbol (or sigil) as part of the name of the
variable: $ for scalars, @ for arrays, and % for hashes. The sigils provide a valuable visual distinction by making it
immediately obvious what kinds of behavior a particular variable is likely to have. But, fundamentally, there's little
difference between the three. Each variable is essentially a container for a value, whether that value is single or
collective. (This statement is an oversimplification, as you'll soon see.)

4.1.1 Scalars

Scalars are all-purpose containers. They can hold strings, integers, floating-point numbers, and references to all kinds
of objects and built-in types. For example:

$string = "Zaphod's just this guy, you know?";

$int = 42;

$float = 3.14159;

$arrayref = ["Zaphod", "Ford", "Trillian"];

$hashref = { "Zaphod" => 362, "Ford" => 1574, "Trillian" => 28 };

$subref = sub { print $string };

$object = Android.new;

A filehandle is just an ordinary object in an ordinary scalar variable. For example:

$filehandle = open $filename;

4.1.2 Arrays

Array variables hold simple ordered collections of scalar values. Individual values are retrieved from the array by
numeric index. The 0 index holds the first value. The @ sigil is part of the name of the variable and stays the same no
matter how the variable is used:

@crew = ("Zaphod", "Ford", "Trillian");

$second_member = @crew[1]; # Ford

To get the the number of elements in an array use the .elems method. The .last method returns the index of the last
element in an array—that is, the highest index in an array.

$count_elements = @crew.elems;

$last_index = @crew.last;

4.1.3 Pairs

Pairs hold a single key and a single value. They don't have a unique sigil because they rarely appear alone, so they're
stored in scalars, arrays, or hashes. The pair constructor => forms a pair, with the key on the left and value on the
right.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

right.

$pair = 'key' => 'value';

The alternate option syntax also constructs a pair, with a colon before the key and parentheses around the value:

$pair = :key('value');

The option syntax is useful for subroutine calls, as you'll see in Section 5.3.1 in Chapter 5.

4.1.4 Hashes

Hashes are unordered collections of scalar values, stored and retrieved by a key index. The simplest way to build a
hash is by passing it a list of anonymous pair objects. For example:

%hash = ("Zaphod" => 362, "Ford" => 1574, "Trillian" => 28);

The key for each value may be a string or an object, though there are some restrictions on object keys. Hashes that
use object keys must be declared as such, for the sake of efficiency. Any object used as a hash key must have a .id
method that returns a unique value for each unique object to avoid hashing collisions. This method is provided by
default in the universal base class, so you only have to worry about uniqueness when you define your own .id methods:

$age = %hash{"Zaphod"}; # string

$age = %hash{$name}; # string variable

$age = %hash{$person}; # object

Quotes are required around literal string keys, so you can call a subroutine to retrieve a key and the subroutine name
won't act as a string key:

$age = %hash{get_key}; # subroutine call

If you really don't want to type the quotes, substitute auto-quoting brackets for the ordinary curly braces around the
key:

$age = %hash«Zaphod»; # string

$age = %hash<<Zaphod>>; # ASCII equivalent

In list context, a hash returns a list of key/value pair objects. The .kv method returns a flattened list of keys and values
from a hash. So the assignment of a hash directly to an array:

@pairs = %hash;

creates an array of pairs that looks like:

(pair1, pair2, pair3, etc . . .)

However, the assignment of the flattened key/value list:

@flat = %hash.kv;

creates an array of alternating keys and values that looks like:

(key1, value1, key2, value2, etc . . .)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(key1, value1, key2, value2, etc . . .)

The .keys method returns a flattened list of all the keys in a hash. The .values method returns a flattened list of all the
values:

@keys = %hash.keys;

@values = %hash.values;

4.1.5 References

References are largely transparent in Perl 6. There is a distinction between references and ordinary variables, but it's
minimized as much as possible in actual use, with automatic referencing and dereferencing where appropriate. Creating
a reference to an array or hash requires no special syntax. You simply assign it to a scalar variable:

$arrayref = @array;

$hashref = %hash;

References are implicitly dereferenced in many contexts, so array indexes and hash keys access individual elements
directly from hashrefs and arrayrefs, just like they do with hashes and arrays:

$arrayref[1]

$hashref{"Zaphod"}

Methods are called on arrayrefs and hashrefs just like they are on arrays and hashes. The referent—the underlying data
type or object—determines which methods can be used with a particular reference, what those methods do, and
whether the reference can support indexed access:

$arrayref.elems

$hashref.keys

References to subroutines can be executed simply by passing the reference an argument list. The list can be empty, but
the parentheses are required.

$subref($arg);

Arrayrefs and hashrefs have special syntax (@{ . . . } and %{ . . . }) for dereferencing them in contexts that normally
wouldn't:

@array = @{$arrayref};

or

@array = @$arrayref;

Ordinarily, an array reference assigned to an array would produce an array with a single arrayref element. To copy the
individual elements of $arrayref to @array you need to dereference it first.

4.1.6 Variables and Context

One of the main differences between variables with the $, @, or % sigils is that they each impose a different context.
The $ sigil imposes a scalar context, @ imposes list context, and % imposes hashlist context.[1]

[1] These three are not the only contexts in Perl 6. A complete discussion of Perl 6 contexts appears in Section
4.2.7 later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1.6.1 Scalar context

Scalar context expects a single value. Any array or list evaluated in scalar context returns an arrayref. This means that
assigning an array:

@array = ("Zaphod", "Ford", "Trillian");

$arrayref = @array;

a list:

$arrayref = ("Zaphod", "Ford", "Trillian");

or an explicit anonymous arrayref:

$arrayref = ["Zaphod", "Ford", "Trillian"];

to a scalar variable all produce exactly the same structure: a reference to an array with three elements.

The comma is the list constructor, even in scalar context. Parentheses only group. When a single element in
parentheses is assigned in scalar context, it stays a simple scalar value:

$value = (20);

If you want to create an arrayref of one element in scalar context, use square brackets ([. . .]) to explicitly construct
an anonymous array reference:

$arrayref = [20];

A hash-like list assigned to a scalar variable creates a reference to an ordered array of pairs, following the rule that a
list in scalar context is an arrayref:

$pair_list = ("Zaphod" => 362, "Ford" => 1574, "Trillian" => 28);

You have to use curly braces ({ . . . }) to explicitly construct a hash reference in scalar context:

$hashref = { "Zaphod" => 362, "Ford" => 1574, "Trillian" => 28 };

4.1.6.2 List context

Variables with the @ sigil impose flattening-list context. This means that if you assign one array to another array, the
original array is flattened—treated as if it were a simple list of values—and every element from the original array is
copied to the new array. The result is that the two array variables contain different data structures, each with identical
values:

@copy = @original;

Lists also impose flattening-list context. Assigning an array to a list flattens the array and assigns each array element to
the corresponding element in the list. If the array has more elements than the list, the remaining elements are simply
discarded:

($first, $second, $third) = @array;

A single value in list context is a one-element list, so it produces a one-element array on assignment:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A single value in list context is a one-element list, so it produces a one-element array on assignment:

@array = (20);

@array = 20; # same

The anonymous arrayref constructor [. . .] imposes flattening-list context internally. It doesn't flatten when used in list
context, though, because flattening-list context doesn't flatten references. In scalar context, a simple list and an
arrayref construct produce the same result. But in list context, a simple list is treated as a flattened list, while an
arrayref construct is treated as a list of one element, an arrayref:

@array = ("Zaphod", "Ford", "Trillian");

@array = ["Zaphod", "Ford", "Trillian"];

The first example above produces an array with three elements. The second produces an array with one element and
that element is a reference to an array with three elements. This is useful for building up complex data structures.

@array = ("Marvin", ["Zaphod", "Ford", "Trillian"], "Zarniwoop");

Similarly, in flattening-list context a list of array variables are flattened into a single list, while a list of scalar variables
are treated as a simple list, even if the scalar variables are arrayrefs:

@array = (@array1, @array2, @array3); # single flattened list

@array = ($arrayref1, $arrayref1, $arrayref3); # 3-element list

So, the first example above produces an array containing all the elements of the three arrays, while the second
produces an array of three arrayrefs.

A lone pair of parentheses is a special token representing an empty list. It produces an array structure with no elements
in both scalar and list context:

$arrayref = (); # 0-element arrayref

@array = (); # 0-element array

4.1.6.3 Hashlist context

Variables with % sigils impose hashlist context, which expects a list of pair objects. This is typically simply a list of
anonymous pairs built with the pair constructor (=>):

%hash = ("Zaphod" => 362, "Ford" => 1574, "Trillian" => 28);

A list of simple values in hashlist context is treated as a list of pairs. You can substitute two values for a pair object only
in hashlist context:

%hash = ("Zaphod", 362, "Ford", 1574, "Trillian", 28);

Curly braces { . . . } are the anonymous hash reference constructor, but they don't impose hashlist context. This is
because an ordinary structure wrapped in curly braces and assigned to a scalar variable defines an anonymous
subroutine:

a sub reference that returns a list

$subref = { "Zaphod", 362, "Ford", 1574, "Trillian", 28 };

The hash reference constructor isn't really { . . . }, but { . . . => . . . }, so you can't use commas in place of pair
constructors when assigning a hash reference to a scalar variable. It's the => that marks the structure as a hash. When
there is ambiguity, you can force the right context by specifying hash or sub before the block:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

there is ambiguity, you can force the right context by specifying hash or sub before the block:

$subref = sub { print "Lost luggage.\n"; }

$hashref = hash { "Zaphod", 362, "Ford", 1574, "Trillian", 28 };

4.1.7 Properties and Traits

Properties allow additional information to be attached to variables and values. As Damian likes to explain it, they're
much like sticky notes. You can take a note, scribble some important information on it, and slap it onto the refrigerator,
your monitor, or the dashboard of your car. When you're done, you peel it off and throw it away.

Some properties are attached at compile time. These are known as traits. Traits are still properties, just a particular
kind of property. Traits are fixed to the variable when it is declared and cannot be changed later. Compile-time traits
are set with the is keyword:

my $pi is constant = 3.14159;

The constant trait specifies that the value of the variable can't be changed.

Other properties are attached at run-time. They only modify values, not variables. They can be added and removed at
any time during the execution of the code. Run-time properties are set with the but keyword:

$true_value = 0 but true;

The true property specifies that the value will evaluate as true in a Boolean context, no matter what the actual value is.
This particular property means the Perl 6 system call can be checked with a simple conditional. It still returns the same
numeric values it always has (0 on success and a numeric error code on failure), but it flags the value with a property
as true when the call succeeds and false when it fails.

Properties and traits can also store a value. Both constant and true define their own values when they're set. Some
properties take arguments for their value:

my @array is dim(2,5,42); # specify dimensions

Properties have proven to be an incredibly useful and extensible syntax. You'll see them again and again throughout the
next few chapters. They aren't restricted to variables and values, but appear on subroutines, methods, classes,
grammars, rules, and in parameter lists.

4.1.8 Types

Perl 6 allows you to specify the types of variables and values much more precisely than Perl 5, but keep in mind that
explicit types are completely optional. If you choose to use them, you'll gain some benefits in optimization and
interfacing between languages. The design of the type system isn't complete, but the basic groundwork is in place.

Perl 6 makes a distinction between the type of a value and the type of a variable. The value type specifies what kind of
values a variable can hold. Putting an Int value type on a scalar says that the scalar can only hold an integer value:

my Int $scalar;

Putting an Int value type on an array says that the array holds integer values:

my Int @array;

And putting an Int value type on a hash says that the hash holds integer values (but says nothing about the type of the
keys):

my Int %hash;

The variable type specifies what kind of container the variable is. This is basically like a tie in Perl 5. Variable types are
defined as traits of the variable, with the is keyword. The sigils provide an implicit variable type, so a variable with no

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

defined as traits of the variable, with the is keyword. The sigils provide an implicit variable type, so a variable with no
type is just:

my $scalar is Scalar;

my @array is Array;

my %hash is Hash;

But you can also define your own classes to implement a variable type:

my $scalar is FileHandle;

my @array is Matrix;

my %hash is BerkeleyDB;

Hierarchical data structures can have a complex value type. A hash that holds integer arrays has the value type Array of
Int:

my Array of Int %hash;

The type syntax is flexible, so you could also write that as:

my %hash is Hash of Array of Int;

or

my %hash of Array of Int;

and get the same data structure. This improves readability, especially in multilevel data structures:

my Array of Hash of Array of Int %hash;

my %hash is Hash of Array of Hash of Array of Int;

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.2 Operators
Operators provide a simple syntax for manipulating values. A few characters take the place of a function call, or even
several function calls. On the positive side this makes them incredibly convenient. On the negative side they're also
sometimes difficult to learn because they pack so much meaning into a small space. Many of the Perl 6 operators will be
familiar, especially to Perl 5 programmers. The new operators either add new features to the language, or move Perl's
operator set toward a more consistent system.

4.2.1 Assignment and Binding

The = operator is for ordinary assignment. It creates a copy of the values on the righthand side and assigns them to the
variables or data structures on the lefthand side:

$copy = $original;

@copies = @originals;

$copy and $original both have the same value, and @copies has a copy of every element in @originals.

The := operator is for binding assignment. Instead of copying the value from one variable or structure to the other, it
creates an alias. An alias is an additional entry in the symbol table with a different name for the one container:

$a := $b; # $a and $b are aliases

@c := @d; # @c and @d are aliases

In this example, any change to $a also changes $b and vice versa, because they're just two separate names for the
same container. Binding assignment requires the same number of elements on both sides, so both of these would be an
error:

($a, $b) := ($c); # error

($a, $b) := ($c, $d, $e); # error

The ::= operator is a variant of the binding operator that binds at compile time.

4.2.2 Arithmetic Operators

The arithmetic operators are addition (+), subtraction (-), multiplication (*), division (/), modulus (%), and
exponentiation (**). Each has a corresponding assignment operator (+=, -=, *=, /=, %=, **=) that combines the
arithmetic operation with assignment:

$a = 3 + 5;

$a += 5; # $a = $a + 5

The unary arithmetic operators are the prefix and postfix autoincrement (++) and autodecrement (--) operators. The
prefix operators modify their argument before it's evaluated, and the postfix operators modify it afterward:

$a++;

$a--;

++$a;

--$a;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2.3 String Operators

The ~ operator concatenates strings. The corresponding ~= operator concatenates the righthand side of the assignment
to the end of the string:

$line = "The quick brown " ~ $fox ~ jumps_over() ~ " the lazy " ~ $dog;

$line ~= "Belgium"; # appends to the string

The x operator replicates strings. It always returns a string no matter whether the left side of the operation is a single
element or a list. The following example assigns the string "LintillaLintillaLintilla":

$triplet = "Lintilla" x 3;

The corresponding x= operator replicates the original string and assigns it back to the original variable:

$twin = "Lintilla";

$twin x= 2; # "LintillaLintilla"

4.2.4 List Operators

The xx operator replicates lists. It returns a list no matter whether it operates on a list of elements or a single element.
The following example assigns a list of three elements to @array, each with a copy of the value "Lintilla":

@array = "Lintilla" xx 3; # ("Lintilla", "Lintilla", "Lintilla")

The corresponding xx= operator creates a list that contains the specified number of copies of every element in the
original array and assigns it back to the array variable:

@array = (4, 2);

@array xx= 2; # now (4, 2, 4, 2)

@array = (@array, @array); # equivalent

The range operator .. returns a list of values from a starting point to an ending point:

@range = 3..7; # 3,4,5,6,7

Ranges evaluate lazily, so a range containing an infinite value won't try to calculate all the values before assigning the
list. Instead, it returns a list generator that only generates elements as they're requested.

@range = 3..Inf; # lazy

The . . . operator is equivalent to ..Inf:

@range = 3 . . . ;

4.2.5 Comparison

Each comparison operator has two forms, one for numeric comparisons and one for string comparisons. The comparison
operators are greater-than (>, gt), less-than (<, lt), greater-than-or-equal (>=, ge), less-than-or-equal (<=, le), equal
(= =, eq), and not-equal (!=, ne). The identity operator (=:=) tests whether the two arguments are aliases to the same

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(= =, eq), and not-equal (!=, ne). The identity operator (=:=) tests whether the two arguments are aliases to the same
object. Each returns a true value if the relation is true and a false value otherwise. The generic comparison operators
(<=>, cmp) return 0 if the two arguments are equal, 1 if the first is greater, and -1 if the second is greater:

if ($age > 12) { . . . }

Comparison operators can also be chained. Chained comparisons evaluate each value in the chain only once:

if (24 < $age < 42) { . . . } # 24 < $age and $age < 42

4.2.6 Logical Operators

The binary logical operators test two values and return one value or the other depending on certain truth conditions.
They're also known as the short-circuit operators because the righthand side will never be evaluated if the overall truth
value can be determined from the lefthand side. This makes them useful for conditionally assigning values or executing
code.

The AND relation has the && operator and the low-precedence and operator. If the lefthand side evaluates as false, its
value is returned. If the lefthand value is true, the righthand side is evaluated and its value is returned:

$splat = $whale && $petunia;

$splat = ($whale and $petunia);

The OR relation has the || operator and the low-precedence or operator. The lefthand value is returned if it is true;
otherwise, the righthand value is evaluated and returned:

$splat = $whale || $petunia;

$splat = ($whale or $petunia);

A variant of the OR relation tests for definedness instead of truth. It uses the // operator and the low-precedence err
operator. The lefthand value is returned if it is defined; otherwise, the righthand side is evaluated and its value
returned:

$splat = $whale // $petunia;

$splat = ($whale err $petunia);

The XOR relation has the ^^ operator and the low-precedence xor operator. It returns the value of the true operand if
any one operand is true, and a false value if both are true or neither is true. xor isn't short-circuiting like the others,
because it always has to evaluate both arguments to know if the relation is true:

$splat = $whale ^^ $petunia;

$splat = ($whale xor $petunia);

Perl 6 also has Boolean variants of the logical operators: ?& (AND), ?| (OR), and ?^ (XOR). These always return a true
or false value.

$whale = 42;

$petunia = 24;

$value = $whale || $petunia # $value is 42

$truth = $whale ?| $petunia # $truth is 1

4.2.7 Context Forcing Operators

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The context of an expression specifies the type of value it is expected to produce. An array expects to be assigned
multiple values at the same time, so assignment to an array happens in list context. A scalar variable expects to be
assigned a single value, so assignment to a scalar happens in scalar context. Perl expressions often adapt to their
context, producing values that fit with what's expected.

Contexts have proven to be valuable tools in Perl 5, so Perl 6 has a few more added. Void context still exists. Scalar
context is subdivided into Boolean, integer, numeric, string, and object contexts. List context is subdivided into
flattening-list context, nonflattening-list context, lazy list context, and hashlist context.

Void context

Expects no value.

Scalar context

Expects a single value. A composite value returns a reference to itself in scalar context.

Boolean context

Expects a true or false value. This includes the traditional definitions of truth—where 0, undef, and the empty
string are false and all other values are true—and values flagged with the properties true or false.

Integer context

Expects an integer value. Strings are treated as numeric and floating-point numbers are truncated.

Numeric context

Expects a number, whether it's an integer or floating-point, and whether it's decimal, binary, octal, hex, or
some other base.

String context

Expects a string value. It interprets any information passed to it as a string of characters.

Object context

Expects an object, or more specifically, a reference to an object. It may also expect an object of a particular
type.

List context

Expects a collection of values. Any single value in list context is treated as a one-element list.

Flattening-list context

Expects a list. Flattens out arrays and hashes into their component parts.

Nonflattening-list context

Expects a list. Treats arrays, hashes, and other composite values as discrete entities.

Lazy list context

Expects a list, just like nonflattening-list context, but doesn't require all the elements at once.

Hashlist context

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Expects a list of pairs. A simple list in hashlist context pairs up alternating elements.

The unary context operators force a particular context when it wouldn't otherwise be imposed. Generally, the default
context is the right one, but at times you might want a little more control.

The unary ? operator and its low-precedence equivalent true force Boolean context. Assignment of a scalar to a scalar
only imposes generic scalar context, so the value of $number is simply copied. With the ? operator, you can force
Boolean context and assign the truth value of the variable instead of the numeric value:

$value = $number;

$truth = ?$number;

The unary ! operator and the low-precedence not also force Boolean context, but they negate the value at the same
time. They're often used in a Boolean context, where only the negating effect is visible.

$untruth = !$number;

The unary + operator forces numeric context, and - forces numeric context and negates the number at the same time:

$number = +$string;

$negnum = -$string;

The unary ~ operator forces string context:

$string = ~$number;

You can also create a scalar, list, or hashlist context with $(. . .), @(. . .), and %(. . .).

4.2.8 Bitwise Operators

Perl 6 has two sets of bitwise operators, one for integers and one for strings. The integer bitwise operators combine the
AND, OR, and XOR relation symbols with the general numeric symbol + (the unary numeric context operator). These
are the binary +&, +|, and +^ and the unary +^ for bitwise negation (ones complement). The default integer type in
Perl 6 is a signed int, so the results are equivalent to working with the use integer pragma turned on in Perl 5:

$number = 42 +& 18; # $number is 2

$number = 42 +| 18; # $number is 58

$number = 42 +^ 18; # $number is 56

$number = +^ 42; # $number is -43

The numeric bitwise shift operators shift the value of the left operand by the number of bits in the right operand, either
to the left (<<) or to the right (>>):

$number = 4 << 1; # $number is 8

$number = 4 >> 1; # $number is 2

The string bitwise operators combine the AND, OR, and XOR relation symbols with the general string symbol ~ (the
same symbol as string concatenation and the unary string context operator). These are ~&, ~|, and ~^.

$string = 'jj' ~& 'gg'; # $string is 'bb'

$string = 'aa' ~| 'bb'; # $string is 'cc'

$string = "GG" ~^ "**"; # $string is 'mm'

Each of the binary bitwise operators has an assignment counterpart: +&=, +|=, +^=, <<=, >>=, ~&=, ~|=, and ~^=.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each of the binary bitwise operators has an assignment counterpart: +&=, +|=, +^=, <<=, >>=, ~&=, ~|=, and ~^=.

4.2.9 Conditional

The ternary ??:: operator evaluates either its second or third operand, depending on whether the first operand
evaluates as true or false. It's basically an if-then-else statement acting as an expression:

$form = ($heads = = 2) ?? "Zaphod" :: "ape-descended lifeform";

4.2.10 Hyper Operators

The hyper operators are designed to work with lists. They're simply modified versions of the standard scalar operators.
Every operator has a hyper version, even user-defined operators. They have the same basic forms as their scalar
counterparts, but are marked with the bracketing characters » and «,[2] or their plain-text equivalents >> and <<. For
example, the hyper addition operator is >>+<<.

[2] These are the Unicode RIGHT POINTING GUILLEMET (U+00BB) and LEFT POINTING GUILLEMET (U+00AB)
characters.

Hyper operators impose list context on their operands and distribute their operations across all the operands' elements.
Hyper addition takes each element from the first list and adds it to the corresponding element in the second list:

@sums = @first >>+<< @second;

The resulting array contains the sums of each pair of elements, as if each pair were added with the scalar operator:

@sums = ((@first[0] + @second[0]), (@first[1] + @second[1]), etc . . .);

If one side of a hyper operation is a simple scalar, it is distributed across the list as if it were a list of identical elements:

@sums = @numbers >>+<< 5;

@sums ((@numbers[0] + 5), (@numbers[1] + 5), etc . . .);

Unary operators may also take a one-sided hyper on the side of their single operand:

@less = @numbers >>--;

@nums = +<< @strings;

4.2.11 Junctions

At the simplest level, junction operators are no more than AND, OR, XOR, and NOT for values instead of expressions.
The binary junction operators are & (AND), | (OR), and ^ (XOR). There isn't an operator for junctive NOT, but there is a
function, as you'll see shortly. So, while || is a logical operation on two expressions:

if ($value = = 1) || ($value = = 2) { . . . }

| is the same logical relation between two values:

if $value = = 1 | 2 { . . . }

In fact, those two examples have exactly the same result: they return true when $value is 1 or 2 and false otherwise. In
the common case, that's all you'll ever need to know.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the common case, that's all you'll ever need to know.

But junctions are a good deal more powerful than that, once you learn their secrets. A junctive operation doesn't return
an ordinary single value, it returns a composite value containing all of its operands. This return value is a junction, and
it can be used anywhere a junction operation is used:

$junc = 1 | 2;

if ($value = = $junc) { . . . }

Here, the variable $junc is used in place of 1 | 2, and has exactly the same effect as the earlier example.

A junction is basically just an unordered set with a logical relation defined between its elements. Any operation on the
junction is an operation on the entire set. Table 4-1 shows the way the four different types of junctions interact with
other operators.

Table 4-1. Picture junctions
Function Operator Relation Meaning

all & AND Operation must be true for all values

any | OR Operation must be true for at least one value

one ^ XOR Operation must be true for exactly one value

none NOT Operation must be false for all values

The simplest possible example is the result of evaluating a junction in Boolean context. The operation on the set is just
"is it true?" This operation on an all junction is true if all the values are true:

true($a & $b)

true(all($a,$b))

So, if both $a and $b are true, the result is true.

On an any junction, it's true if any one value is true:

true($a | $b)

true(any($a,$b))

So, if $a or $b is true or if both are true, the result is true.

On a one junction, it's true only if exactly one value is true:

true($a ^ $b)

true(one($a,$b))

So, if either $a or $b is true, the result is true. But, if $a and $b are both true or neither is true, the result is false.

On a none junction, it's true only when none of the values are true—that is, when all the values are false:

true(none($a,$b))

So, if $a and $b are both false, the result is true.

Ordinary arithmetic operators interact with junctions much like hyper operators on arrays. A junction distributes the
operation across all of its elements:

$junc = any(1, 2);

$junc += 5; # $junc is now any(6, 7)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$junc += 5; # $junc is now any(6, 7)

Junctions can be combined to produce compact and powerful logical comparisons. If you want to test that two sets have
no intersection, you might do something like:

if all($a, $b) = = none($c, $d) { . . . }

which tests that all of the elements of the first set are equal to none of the elements of the second set. Translated to
ordinary logical operators that's:

if ($a != $c) && ($a != $d) && ($b != $c) && ($b != $d) { . . . }

If you want to get back a flat list of values from a junction, use the .values method:

$junc = all(1, 2, 3); # create a junction

$sums = $junc + 3; # add 3

@set = $sums.values(); # (4, 5, 6)

The .dump method returns a string that shows the structure of a junction:

$string = $sums.dump(); # "all(4,5,6)"

The .pick method selects one value from an any junction or a one junction that has exactly one value, and returns it as
an ordinary scalar:

$junc = any(1, 2, 3);

$single = $junc.pick(); # may be 1, 2, or 3

On an all junction, a none junction, or a one junction with more than one value, .pick returns undef. (With some levels of
error strictness, it may raise an exception.)

4.2.12 Smart Match

The binary ~~ operator makes a smart match between its two terms. It returns a true value if the match is successful
and a false value if the match fails.[3] The negated smart match operator !~ does the exact opposite: it returns true if
the match fails and false if it is successful. The kind of match a smart match does is determined by the kind of
arguments it matches. If the types of the two arguments can't be determined at compile time, the kind of match is
determined at run time. Smart match is usually a symmetric operator, so you can reverse A ~~ B to B ~~ A and it will
have the same truth value.

[3] This is an oversimplification. Some matches return a more complex value, but in Boolean context it will always
evaluate as true for a successful match, and false for a failed match.

4.2.12.1 Matching scalars

Any scalar value (or any code that results in a scalar value) matched against a string tests for string equality. The
following match is true if $string has the value "Ford":

$string ~~ "Ford"

Any scalar value matched against a numeric value tests for numeric equality. The following is true if $number has the
numeric value 42, or the string value "42":

$number ~~ 42

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An expression that results in the value 42 is also true:

((5 * 8) + 2) ~~ 42

Any scalar value matched against an undefined value checks for definedness. The following matches are true if $value is
an undefined value and false if $value is any defined value:

$value ~~ undef

$value ~~ $undefined_value

Any scalar value matched against a rule (regex) does a pattern match. The following match is true if the sequence
"towel" can be found anywhere within $string:

$string ~~ /towel/

Any scalar value matched against a substitution attempts that substitution on the value. This means the value has to be
modifiable. The following match is true if the substitution succeeds on $string and false if it fails:

$string ~~ s/weapon/towel/

Any scalar value matched against a Boolean value simply takes the truth value of the Boolean. The following match will
always be true, because the Boolean on the right is always true:[4]

[4] At the moment this relation won't seem particularly useful. It makes much more sense when you realize that
the switch statement duplicates all the smart match relations. More on that in Section 4.3.1.3 later in this chapter.

$value ~~ (1 = = 1)

The Boolean value on the right must be an actual Boolean: the result of a Boolean comparison or operation, the return
value of a not or true function, or a value forced into Boolean context by ! or ?. The Boolean value also must be on the
right; a Boolean on the left is treated as an ordinary scalar value.

4.2.12.2 Matching lists

Any scalar value matched against a list compares each element in sequence. The match is true if at least one element
of the list would match in a simple expression-to-expression match. The following match is true if $value is the same as
any of the three strings on the right:

$value ~~ ("Zaphod", "Ford", "Trillian")

This match is short-circuiting: it stops after the first successful match. It has the same truth value as a series of or-ed
matches:

($value ~~ "Zaphod") or ($value ~~ "Ford") or ($value ~~ "Trillian")

A smart-matched list can contain any combination of elements: scalar values, rules, Boolean expressions, arrays,
hashes, etc.:

$value ~~ ("Zaphod", 5, /petunias/)

A match of a list against another list sequentially compares each element in the first list to the corresponding element in
the second list. The match is true if every element of the first list matches the corresponding element in the second list.
The following match is true, because the two lists are identical:

("Zaphod", "Ford", "Trillian") ~~ ("Zaphod", "Ford", "Trillian")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

("Zaphod", "Ford", "Trillian") ~~ ("Zaphod", "Ford", "Trillian")

The two lists don't have to be identical, as long as they're the same length and their corresponding elements match:

($zaphod, $ford, $trillian) ~~ ("Zaphod", /Ford/, /^T/)

The list-to-list match is also short-circuiting. It stops after the first failed match. This has the same truth value as a
series of single-element smart matches linked by and:

($zaphod ~~ "Zaphod") and ($ford ~~ /Ford/) and ($trillian ~~ /^T/)

4.2.12.3 Matching arrays

A nonnumeric expression matched against an array sequentially searches for that value in the array. The match is true
if the value is found. If @array contains the values "Zaphod", "Ford", and "Trillian", the following match is true when
$value matches any of those three strings:

$value ~~ @array

An integer value matched against an array tests the truth of the value at that numeric index. The following match is
true if the element @array[2] exists and has a true value:

2 ~~ @array

An integer value matched against an array reference also does an index lookup:

2 ~~ ["Zaphod", "Ford", "Trillian"]

This match is true, because the third element of the array reference is a true value.

An array matches just like a list of scalar values if it's flattened with the * operator (See Section 4.2.13 later in this
chapter). So, the following example searches the array for an element with the value 2, instead of doing an index
lookup:

2 ~~ *@array

An array matched against a rule does a pattern match against every element of the array. The match is true if any
element matches the rule. If "Trillian", "Milliways", or "million" is an element of @array, the following match is true, no
matter what the other elements are:

@array ~~ /illi/

A match of an array against an array sequentially compares each element in the first array to the corresponding
element in the second array:

@humans ~~ @vogons

This match is true if the two arrays are the same length and @humans[0] matches @vogons[0], @humans[1] matches
@vogons[1], etc.

4.2.12.4 Matching hashes

A hash matched against any scalar value tests the truth value of the hash entry with that key:

$key ~~ %hash

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$key ~~ %hash

This match is true if the element %hash{$key} exists and has a true value.

A hash matched against a rule does a pattern match on the hash keys:

%hash ~~ /blue/

This match is true if at least one key in %hash matches the string "blue".

A hash matched against a hash checks for intersection between the keys of the two hashes:

%vogons ~~ %humans

So, this match is true if at least one key from %vogons is also a key of %humans. If you want to see that two hashes
have exactly the same keys, match their lists of keys:

%vogons.keys.sort ~~ %humans.keys.sort

A hash matched against an array checks a slice of a hash to see if its values are true. The match is true if any element
of the array is a key in the hash and the hash value for that key is true:

%hash ~~ @array

If @array has one element "blue" and %hash has a corresponding key "blue", the match is true if %hash{'blue'} has a true
value, but false if %hash{'blue'} has a false value.

4.2.12.5 Matching junctions

An expression matched against an any junction is a recursive disjunction. The match is true if at least one of the
elements of the list would match in a simple expression-to-expression match:

$value ~~ any("Zaphod", "Ford", "Trillian")

This example matches if $value is the same as any of the three strings on the right. The effect of this comparison is the
same as a simple comparison to a list, except that it isn't guaranteed to compare in any particular order.

A smart match of an all junction is only true when the expression matches every value in the junction:

/illi/ ~~ all("Gillian", "million", "Trillian") # match succeeds

/illi/ ~~ all("Zaphod", "Ford", "Trillian") # match fails

A smart match of a one junction is only true when the expression matches exactly one value in the junction:

/illi/ ~~ one("Zaphod", "Ford", "Trillian") # match succeeds

/illi/ ~~ one("Gillian", "million", "Trillian") # match fails

A smart match of a none junction is true when it doesn't match any values in the junction:

/illi/ ~~ none("Zaphod", "Ford", "Marvin") # match succeeds

/illi/ ~~ none("Zaphod", "Ford", "Trillian") # match fails

An any junction matched against another any junction is a recursive disjunction of every value in the first junction to
every value in the second junction. The match is true if at least one value of the first junction matches at least one
value in the second junction:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

value in the second junction:

any("Ford", "Trillian") ~~ any("Trillian", "Arthur")

This match is true, because "Trillian" is in both junctions.

4.2.12.6 Matching objects

An object matched against a class name is true if the object belongs to that class or inherits from that class. It's
essentially the same as calling the .isa method on the object:

$ship ~~ Vogon::Constructor # $ship.isa(Vogon::Constructor)

4.2.12.7 Matching subroutines

Any expression matched against a subroutine tests the return value of the subroutine. If the subroutine takes no
arguments, it is treated as a simple Boolean:

$value ~~ my_true

If the subroutine has a one argument signature and it is compatible with the variable type of the expression, the
subroutine is called with the expression as its argument:

$value ~~ &value_test # value_test($value)

@array ~~ &array_test # array_test(@array)

%hash ~~ &hash_test # hash_test(%hash)

The return value of the subroutine determines the truth of the match.

A block matches as an anonymous subroutine. The return value of the block determines the truth of the match. It's
treated as a simple Boolean if it takes no arguments, or passed the value on the left side if it uses $_ or placeholder
variables inside the block (see Section 5.2.7 in Chapter 5).

$value ~~ { $_ + 5; } # $_ is $value

%hash ~~ { $_.keys; } # $_ is \%hash

@array ~~ { @^a.elems; } # @^a is @array

4.2.13 Referencing (or Not)

The unary \ operator returns a reference to its operand. The referencing operator isn't needed very often, since scalar
context automatically generates references to arrays, hashes, and functions, but it is still needed in flattening contexts
and other contexts that don't auto-reference:

@array_of_refs = (\@a, \@b, \@c);

Ordinarily, an array assigned a list of arrays would flatten the elements of all the arrays into a single array. With the
referencing operator, @array_of_refs is assigned a list of three arrayrefs.

The unary * operator (known as the splat operator) flattens a list in a context where it would usually be taken as a
reference. On an rvalue, * causes the array to be treated as a simple list:

@combo = (\@array, \%hash);

@a := @combo; # @a is @combo

(@b, %c) := *@combo; # @b is @array, %c is %hash

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(@b, %c) := *@combo; # @b is @array, %c is %hash

Since the @combo array contains an arrayref and a hashref, an ordinary binding assignment of @combo to @a treats
@combo as a single element and binds it to @a. With the flattening operator, the @combo array is treated as a simple
list, so each of its elements are bound to a separate element on the lefthand side. @b is bound to the original @array
and %c is bound to the original %hash.

On an lvalue, * tells the array to slurp all available arguments. An ordinary binding of two arrays to two arrays simply
binds the first element on the righthand side to the first element on the lefthand side, and the second to the second.
So, @a is bound to @c, and @b is bound to @d:

(@a, @b) := (@c, @d); # @a is @c, @b is @d

With the * operator, the first element on the lefthand side flattens all the elements on the righthand side into a list
before the binding assignment. So, @a contains all the elements from @c and @d:

*@a := (@c, @d); # @a contains @c and @d

One common use for * is in defining subroutine and method signatures, as you will see in Section 5.2.3 in Chapter 5.

4.2.14 Zip Operator

The operator takes two or more lists (arrays, hash keys, etc.) and returns a single list with alternating elements from
each of the original lists. This allows loops and other iterative structures to iterate through the elements of several lists
at the same time:

@a = (1, 2, 3);

@b = (4, 5, 6);

@c = @a ¬ @b; # @c is (1, 4, 2, 5, 3, 6)

There is no equivalent ASCII operator for the zip operator, but the zip function is much more fully featured than the
operator. It is described in Section 4.3.2.3 later in this chapter.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.3 Control Structures
The simplest flow of control is linear—one statement follows the next in a straight line to the end of the program. Since
this is far too limiting for most development tasks, languages provide ways to alter the control flow.

4.3.1 Selection

Selection executes one set of actions out of many possible sets. The selection control structures are if, unless, and
given/when.

4.3.1.1 The if statement

The if statement checks a condition and executes its associated block only if that condition is true. The condition can be
any expression that evaluates to a truth value. Parentheses around the condition are optional:

if $blue {

 print "True Blue.";

}

The if statement can also have an unlimited number of elsif statements that check additional conditions when the
preceding conditions are false. The final else statement executes if all preceding if and elsif conditions are false:

if $blue {

 print "True Blue.";

} elsif $green {

 print "Green, green, green they say . . . ";

} else {

 print "Colorless green ideas sleep furiously.";

}

4.3.1.2 The unless statement

The unless statement is the logical opposite of if. Its block executes only when the tested condition is false:

unless $fire {

 print "All's well.";

}

There is no elsunless statement, though else works with unless.

4.3.1.3 The switch statement

The switch statement selects an action by comparing a given expression (the switch) to a series of when statements (the
cases). When a case matches the switch, its block is executed:

given $bugblatter {

 when Beast::Trall { close_eyes(); }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 when Beast::Trall { close_eyes(); }

 when 'ravenous' { toss('steak'); }

 when .feeding { sneak_past(); }

 when /grrr+/ { cover_ears(); }

 when 2 { run_between(); }

 when (3..10) { run_away(); }

}

If these comparisons are starting to look familiar, they should. The set of possible relationships between a given and a
when are exactly the same as the left and right side of a smart match operator (~~). The given aliases its argument to
$_. $_ is always the current topic (think "topic of conversation"), so the process of aliasing a variable to $_ is known as
topicalization. The when is a defaulting construct that does an implicit smart match on $_. The result is the same as if
you typed:

given $bugblatter {

 when $_ ~~ Beast::Trall { close_eyes(); }

 when $_ ~~ 'ravenous' { toss('steak'); }

 when $_ ~~ .feeding { sneak_past(); }

 when $_ ~~ /grrr+/ { cover_ears(); }

 when $_ ~~ 2 { run_between(); }

 when $_ ~~ (3..10) { run_away(); }

}

but more convenient. Generally, only one case is ever executed. Each when statement has an implicit break at the end.
It is possible to fall through a case and continue comparing, but since falling through is less common, it has to be
explicitly specified with a continue:

given $bugblatter {

 when Beast::Trall { close_eyes(); continue; }

 when 'ravenous' { toss('steak'); continue; }

 when 'attacking' { hurl($spear, $bugblatter); continue; }

 when 'retreating' { toss('towel'); }

}

The default case executes its block when all other cases fail:

given $bugblatter {

 when Beast::Trall { close_eyes(); }

 when 'ravenous' { toss('steak'); }

 default { run('away'); }

}

Any code within a given will execute, but a successful when skips all remaining code within the given, not just the when
statements:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

statements:

given $bugblatter {

 print "Slowly I turn . . . ";

 when Beast::Trall { close_eyes(); }

 print "Step by step . . . ";

 when 'ravenous' { toss('steak'); }

 print "Inch by inch . . . ";

}

This means the default case isn't really necessary, because any code after the final when just acts like a default. But an
explicit default case makes the intention of the code clearer in the pure switch. The difference is also significant when
trapping exceptions. More on that in Section 4.3.3.3 later in this chapter.

A when statement can also appear outside a given. When it does, it simply smart match against $_. when statements also
have a statement modifier form that doesn't have an implicit break:

print "Zaphod" when 'two heads'; # if $_ ~~ 'two heads'

4.3.2 Iteration

Iteration constructs allow you to execute a set of statements multiple times. Perl 6's loop constructs are while, until, loop,
and for.

4.3.2.1 The while loop

A while loop iterates as long as a condition is true. The condition may be complex, but the result is always a single
Boolean value because while imposes Boolean context on its condition:

while $improbability > 1 {

 print "$improbability to 1 against and falling.";

 $improbability = drive_status('power_down');

}

until is like while but continues looping as long as the condition is false:

until $improbability <= 1 {

 print "$improbability to 1 against and falling.";

 $improbability = drive_status('power_down');

}

4.3.2.2 The simple loop

In its simplest form, the loop construct is infinite. It will iterate until a statement within the loop explicitly terminates it:

loop {

 print "One more of that Ol' Janx.";

 last if enough();

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

loop is also the counter iterator. Like while, it tests a condition before executing its block each time, but it has added
expression slots for initialization and execution between iterations that make it ideal for counter loops:

loop ($counter = 1; $counter < 20; $counter++) {

 print "Try to count electric sheep . . . ";

}

The parentheses around the loop condition are optional.

4.3.2.3 The for loop

The for loop is the list iterator, so it imposes lazy list context. It takes a list or array, or any expression that produces a
list, and loops through the list's elements one at a time. On each iteration, for aliases $_ to the current loop element.
This means all the constructs that default to $_, like print and when, can default to the loop variable:

for @useful_things {

 print; # prints $_, the current loop variable

 print " You're one hoopy frood." when 'towel';

}

The arrow operator, ->, makes a named alias to the current element, in addition to the $_ alias.[5] All aliases are
lexically scoped to the block.

[5] The arrow isn't restricted to for; it also works on given and other control flow structures.

for %people.keys -> $name {

 print; # prints $_ (same as $name)

 print ":", %people{$name}{'age'};

}

The arrow operator also makes it possible to iterate over multiple loop elements at the same time:

for %ages.kv -> $name, $age {

 print "$name is now $age";

}

You can combine the arrow operator with the zip function or zip operator to loop over several lists, taking some
specified number of elements from each list on every iteration, as in the following code.

one from each array

for zip(@people,@places,@things) -> $person, $place, $thing {

 print "Are you a $person, $place, or $thing?";

}

This example iterates over three arrays, taking one element from each array on each iteration and creating named
aliases for the three elements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

aliases for the three elements.

two from each array

for zip(@animals, @things, :by(2))

 -> $animal1, $animal2, $thing1, $thing2 {

 print "The animals, they came, they came in by twosies, twosies: ";

 print "$animal1 and $animal2";

 print "Two things. And I call them, $thing1 and $thing2.";

}

This example iterates over two arrays, taking two elements from each array on each iteration and creating named
aliases for them.

two from the first array and one from the second

for zip(@colors=>2, @textures=>1) -> $color1, $color2, $texture {

 $mix = blend($color1, $color2);

 draw_circle($mix, $texture);

}

This example iterates over two arrays, taking two elements from the first array and one element from the second array
on each iteration and creating named aliases for them.

If zip is called with arrays or lists of different lengths, it will fill in undef values for the named aliases pulled from the
shorter lists.

4.3.2.4 Breaking out of loops

The next, redo, and last keywords allow you to interrupt the control flow of a loop. next skips the remaining code in the
loop and starts the next iteration. redo skips the remaining code in the loop and restarts the same iteration over again
without incrementing counters or reevaluating loop conditions. last skips the remaining code in the loop and terminates
the loop.

for @useful_things -> $item {

 next when 'towel';

 redo when .try_again;

 last when 'bomb';

 print "Are you sure you need your $item?";

}

4.3.3 Blocks

In Perl 6, every block is a closure, so you get consistent behavior throughout the language, whether the block is a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In Perl 6, every block is a closure, so you get consistent behavior throughout the language, whether the block is a
control structure, an argument passed to a subroutine, an anonymous subroutine reference, or the definition of a
named element such as a subroutine, method, or class. What is a closure? Closures are chunks of code that are tied to
the lexical scope in which they're defined. When they're stored and later executed at some point far removed from their
definition, they execute using the variables in their original scope, even if those variables are no longer accessible any
other way. It's almost as if they package up their lexical scope to make it portable. This example creates a closure that
prints a lexical variable. When the closure is executed (from some other lexical scope), it prints the variable from the
scope where it was defined, not the scope where it's executed:

my $person = "Zaphod";

$closure = { print $person; }

 . . .

my $person = "Trillian";

$closure(); # prints "Zaphod"

The fact that all blocks are closures has some implications. Every block can take arguments. This is how for creates a $_
alias for the iterator variable. Every block defines a lexical scope. Every block has the potential to be stored and
executed later. Whether a block is stored or executed immediately depends on the structure that uses it. The control
structures we've discussed so far all execute their blocks where they're defined. A bare block executes immediately
when it's alone, but is stored when it's in an assignment context or passed as a parameter:

executed immediately

{

 print "Zaphod";

}

stored

$closure = {

 print "Trillian";

}

4.3.3.1 my, our, temp, and let

my and our are different ways of declaring variables. my declares a variable in the current lexical scratchpad, while our
declares a lexical alias to a variable in the package symbol table:

my $lexical_var;

our $package_var;

state declares a lexical variable similar to my, but instead of reinitializing the value every time the block is executed it
preserves the previous value:

state $static_var;

temp and let are not declarations; they are run-time commands to store the current value of a variable so it can be
restored later. temp variables always restore their previous value on exiting the lexical scope of the temp, while let
variables keep the temporary value, unless the lexical scope of the let is exited under an error condition (an undef or
empty-list return value, or an exception):

temp $throwaway;

let $hypothetical;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

temp and let don't change the value of the variable, they only store it.

4.3.3.2 Property blocks

Every block may have a series of control flow handlers attached to it. These are called property blocks because they are
themselves blocks (i.e., closures), attached as properties on the block that contains them. Property blocks are defined
within the block they modify, by an uppercase keyword followed by a block (they're also sometimes called NAMED
blocks):

NEXT {

 print "Coming around again."

}

Property blocks aren't executed in sequential order with the other code in the enclosing block—they are stored at
compile time and executed at the appropriate point in the control flow. NEXT executes between each iteration of a loop,
LAST executes at the end of the final iteration (or simply at the end of an ordinary block). PRE executes before
everything else—before all other properties and code in an ordinary block and before the first iteration of a loop. POST
executes after everything else—after all code and properties in an ordinary block and after the last iteration of a loop.
PRE and POST are intended for assertion checking and cannot have any side effects. CATCH, KEEP, and UNDO are related
to exception handling. KEEP and UNDO are variants of LAST and execute after CATCH. KEEP executes when the block exits
with no exceptions, or when all exceptions have been trapped and handled; UNDO executes when the block exits with
untrapped exceptions. There can be only one CATCH in a block, but there's no limit on the other types of property
blocks.

This example prints out its loop variable in the body of the block:

for 1..4 {

 NEXT { print " potato, "; }

 LAST { print "." }

 print;

}

Between each iteration, the NEXT block executes, printing "potato". At the end of the final iteration, the LAST block
prints a period. So the final result is:

1 potato, 2 potato, 3 potato, 4.

Property blocks are lexically scoped within their enclosing block, so they have access to lexical variables defined there:

for 5..7 -> $count {

 my $potato = "$count potato, ";

 NEXT {

 print $potato;

 }

 LAST {

 print $potato, "more.";

 }

}

In this example, the lexical variable $potato is redefined on every iteration and then printed from within the NEXT or LAST
block. So the final result is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

block. So the final result is:

5 potato, 6 potato, 7 potato, more.

4.3.3.3 Exceptions

There are two types of exceptions: error exceptions and control flow exceptions. All exceptions are stored in the error
object $!. All exception classes inherit from the Exception class.

Error exceptions are thrown by die or (under use fatal) fail. Any block can be an error exception handler—all it needs is a
CATCH block. CATCH blocks always topicalize $!, so the simplest way to test for a particular exception is to compare it to
a class name using a when statement (see the Section 4.2.12 earlier in this chapter):

CATCH {

 when Err::Danger { warn "fly away home"; }

}

The $! object will also stringify to its text message if you match it against a pattern:

CATCH {

 when /:w I'm sorry Dave/ { warn "HAL is in the house."; }

}

If the CATCH block is exited by an explicit break statement, or by an implicit break in a when or default case, it marks the
exception as clean. A when case with a continue statement leaves the exception unhandled, since continue skips the
implicit break. If the exception isn't marked clean by the end of the CATCH block, CATCH rethrows the exception so an
outer block can catch it.

Once an exception is thrown, execution skips straight to the CATCH block and the remaining code in the block is
skipped. If the block has POST, KEEP, or UNDO property blocks, they will execute after the CATCH block.

If you want to limit the effects of an error exception, you can wrap the error throwing code in a try block. A try block
without a CATCH block provides a default CATCH that catches all exceptions and, marks them as clean, and causes the
try to return undef when any exception was caught. A try block is also a handy bit of self-documentation.

try {

 may_throw_exception();

 CATCH {

 when Error::Moof { warn "Caught a Moof error."; }

 }

}

Control flow exceptions handle alterations in the flow of control that aren't errors. When you call next to skip the
remaining code in the loop and go on to the next iteration, you're actually throwing a control exception. These
exceptions are caught by the relevant control structure: next and last exceptions are caught by loops, a return exception
is caught by a subroutine or method, etc.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 5. Subroutines
Subroutines are reusable units of code. They can be called from just about anywhere, and return control to the point of
the call when they finish executing. They can be passed zero or more arguments[1] and return zero or more results.
Subroutines can be named or anonymous. They can be lexically scoped, package scoped, or globally scoped. "Multi"
subs allow multiple subroutines to have the same name as long as they have different parameter lists.

[1] Following the example set in Apocalypse 6, throughout this chapter we'll use the term "argument" for the values
passed into a subroutine call and "parameter" for the lexical variables declared in the subroutine's signature.

Methods are significantly different from subroutines. In Perl 6, they're even distinguished by a separate keyword,
method. These differences will be discussed in Chapter 6.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.1 Using Subroutines
The most basic subroutine declaration is simply the sub keyword, followed by the name of the sub, followed by the block
that defines the sub:

sub alert {

 print "We have normality.";

}

The simplest subroutine call is just the subroutine name followed by a comma-separated list of variables or values:

$result = sum($a, $b, 42, 57);

Arguments are also sometimes passed as anonymous pairs:

$result = sum(first => 12, second => 21);

Parentheses are optional on calls to subroutines that have been predeclared, but required for all other calls. Including
the & sigil before the subroutine name in a call will not turn off signature checking. In fact, in most contexts prefixing
the subroutine name with & will return a reference to the subroutine instead of calling the subroutine.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.2 Parameters
One of the most significant additions to subroutines in Perl 6 is named formal parameters. The parameter list, often
called the signature of the subroutine, is part of the subroutine declaration:

sub standardize ($text, $method) {

 my $clean;

 given $method {

 when 'length' { $clean = wrap($text, 72); }

 when 'lower' { $clean = lowercase($text); }

 . . .

 }

 return $clean;

}

The subroutine standardize has two scalar parameters, $text and $method, so it is called with two arguments, each a
scalar value. The parameters are lexical variables within the body of the sub. They never need to be explicitly declared
as my, even under use strict because they're declared by the subroutine declaration.

In a sub with no parameter list, all arguments are passed in the @_ array:

sub sum {

 my $sum;

 for @_ -> $number {

 $sum += $number;

 }

 return $sum;

}

Subroutines with defined parameter lists don't get an @_ array.[2] If you want a subroutine that takes no arguments
(and complains when arguments are passed), define it with an empty parameter list ().

[2] In fact, a simple subroutine without a signature actually has an implicit signature of *@_. See Section 5.2.3
later in this chapter.

Subroutine calls normally provide a nonflattening list context, which means that any array or hash passed into a
subroutine is treated as a single argument. An array parameter in the signature expects to be passed an actual array or
arrayref argument, and a hash parameter expects a hash or hashref argument:

sub whole (@names, %flags) {

 . . .

}

whole(@array, %hash);

5.2.1 Optional Parameters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Every subroutine call checks its signature to make sure the arguments it gets match the declared parameter list. A
mismatch in the number or kind of arguments is an error. But since requiring every declared parameter to be passed in
on every call isn't nearly flexible enough for the average programmer, Perl 6 also allows optional parameters. Each
optional parameter is marked with a ? before the parameter name:

sub someopt ($required1, $required2, ?$optional1, ?$optional2) {

 . . .

}

So, someopt will accept anywhere from two to four arguments. You can have any number of required and optional
parameters, but all the required parameters must come before the first optional parameter. This is largely a common
sense restriction. If you want to leave some elements off a list of arguments, it has to be the ones at the end, because
positional arguments are bound to the parameters in strict linear order. All these calls to someopt are fine:

someopt('req1', 'req2', 'opt1', 'opt2');

someopt('req1', 'req2', 'opt1');

someopt('req1', 'req2');

5.2.2 Named Parameters

Any argument can be passed either by position with an ordered list of arguments, or by name with an unordered list of
pairs. (See Section 5.3.1 later in this chapter for more details.) Sometimes you'll want to specify that certain
parameters will be passed only by name, never by position. Named parameters are marked with a + before the
parameter name:

sub namedparams ($first, +$second, +$third) {

 . . .

}

namedparams(1, second => 2, third => 3);

Named parameters are always optional. They must come after all positional parameters—that is, after the unmarked
required parameters and the optional parameters marked with a ?. Again, this is largely a matter of common sense.
Though named parameters are completely ignored when binding a list of positional arguments, the parser and the
person maintaining your code will both be profoundly grateful they don't have to sort through a mixed bag of positional
and named parameters to find the positional parameter list.

5.2.3 Variadic Parameters

Another element of flexibility Perl developers will expect is the ability to pull a list of arguments into an array or hash
parameter. These are known as variadic parameters because they can take a variable number of arguments. In Perl 6,
an array parameter with a * before the parameter name will slurp up all the positional arguments that haven't already
been bound to another positional parameter.[3] So, the following call to transport binds $arthur to @names[0], and $ford to
@names[1]:

[3] You may notice that this is the same symbol as the flattening/slurping operator from Section 4.2.12 in Chapter
4.

sub transport ($planet, *@names) {

 . . .

}

transport('Magrathea', $arthur, $ford);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

transport('Magrathea', $arthur, $ford);

If the variadic array parameter is the only positional parameter in the signature, it will take all the positional
arguments:

sub simple (*@_) { . . . }

is the same as

sub simple { . . . }

A hash parameter with a * before the name will slurp up all the named arguments that haven't already been bound to
another parameter. So, the following call to transport binds the value of the pair argument with the key 'planet' to the
parameter $planet, but all the other pairs become part of the %flags hash (more on this in Section 5.3.1 later in this
chapter):

sub transport ($planet, *%flags) { . . . }

transport('name' => 'Arthur',

 'luggage' => 'lost',

 'planet' => 'Magrathea',

 'towel' => 'required');

When they're combined with other kinds of parameters, variadic parameters must come after all positional parameters
in the signature. They can either precede or follow the named parameters.

5.2.4 Typed Parameters

Signature checking is sensitive not only to the number of arguments and the variable type (defined by the $, @, %, or &
symbol), but also to the value type. (See Section 4.1.8 in Chapter 4 for more details on value and variable types.) The
parameter type is defined before the parameter name and before any symbols for optional, named, or variadic
parameters:

sub typedparams (Int $first, Str ?$second) { . . . }

The parameter type declares the type of argument that can be bound to it. The parameter and argument types have to
be compatible, but not identical.

Type checking happens at compile time whenever possible, because it's faster and allows for optimizations. Otherwise,
type checking happens at run time. So, if all the arguments passed to the subroutine are explicitly typed, the types will
be checked at compile time. If the arguments aren't explicitly typed, the run-time checks will make sure the scalars
contain an integer value and a string value.

5.2.5 Properties on Parameters

By default, parameters are aliases to the original arguments (pass-by-reference), but they're marked as constant so
they cannot be modified within the body of the subroutine. The is rw property marks a parameter as modifiable, so
changes to the parameter within the body of the sub modify the original variable passed in:

sub modifyparams ($first is rw, $second is rw) { . . . }

The is copy property marks a parameter as pass-by-value, so the parameter is a lexically scoped copy of the original
value passed in:

sub passbyvalue ($first is copy, $second is copy) { . . . }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2.6 Default Values for Parameters

Sometimes it is useful to be able to define a default value for an optional or named parameter. The = operator marks
the default value.[4] The parameter takes the default value only if the call doesn't pass an argument for that
parameter.

[4] This isn't an assignment; it's only a reuse of the = symbol in a different context.

sub default_vals ($required, ?$optional = 5) { . . . }

5.2.7 Placeholder Variables

Placeholder variables are a simple alternative to formal parameter lists. They have many of the advantages of ordinary
parameters, without the inconvenience of declaring a signature. You just use variables with a caret after the sigil
—$^name, @^name, %^name, or &^name—within the subroutine's block, and the arguments passed into the subroutine
are bound to them.

@sorted = sort { $^a <=> $^b } @array;

The order of the parameters is determined by the Unicode sorting order of the placeholders' names, so the following
example acts as if it has a formal parameter list of ($^milk, $^sugar, $^tealeaves):

$make_tea = {

 my $tea = boil $^tealeaves;

 combine $tea, $^sugar, $^milk;

 return $tea;

}

Placeholders are handy in short subroutines and bare blocks, but soon become unwieldy in anything more complicated.

5.2.8 Return Values

In addition to a signature for the incoming parameters to a subroutine, you can also declare a partial signature, or
siglet, for the values returned from a subroutine. Return siglets declare the type of each return value, but they don't
bind a named variable to the returned value and can't define a default value for the return. In the declaration, the
return signature goes before the sub keyword or after the parameter list attached with the returns keyword.

sub get_value (Int $incoming) returns Int { . . . }

same as

Int sub get_value (Int $incoming) { . . . }

Both syntaxes have exactly the same effect, but using the returns keyword is usually clearer when the sub has multiple
return values:

sub get_values (Str $incoming) returns (Int, Str) { . . . }

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.3 Arguments
The standard way of passing arguments is by position. The first argument passed in goes to the first parameter, the
second to the second, and so on:

sub matchparams ($first, $second) { . . . }

matchparams($one, $two); # $one is bound to $first

 # $two is bound to $second

5.3.1 Named Argument Passing

You can also pass arguments in by name, using a list of anonymous pairs. The key of each pair gives the parameter's
name and the value of the pair gives the value to be bound to the parameter. When passed by name, the arguments
can come in any order. Optional parameters can be left out, even if they come in the middle of the parameter list. This
is particularly useful for subroutines with a large number of optional parameters:

sub namedparams ($first, ?$second, ?$third is rw) { . . . }

namedparams(third => 'Trillian', first => $name);

Sometimes the option syntax for pairs is clearer than the pair constructor syntax:

namedparams :third('Trillian'), :first($name);

5.3.2 Flattening Arguments

To get the Perl 5-style behavior where the elements of an array (or the pairs of a hash) flatten out into the parameter
list, use the flattening operator in the call to the subroutine. Here, $first binds to @array[0] and $second binds to
@array[1]:

sub flat ($first, $second) { . . . }

flat(*@array);

A flattened hash argument acts as a list of pairs, which are bound to the parameters just like ordinary named
arguments. So, $first is bound to %hash{'first'}, and $second is bound to %hash{'second'}:

sub flat_hash ($first, $second) { . . . }

%hash = (first => 1, second => 2);

flat_hash(*%hash);

Flattened hash arguments are useful for building up hashes of named arguments to pass in all at once.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.3.3 Argument Order Constraints

Arguments to subroutine calls have a standard general order. Positional arguments, if there are any, always go first.
Named arguments go after any positional arguments. Variadic arguments always go at the end of the list.

order($positional, named => 1, 'va', 'ri', 'ad', 'ic');

Positional arguments are first so the parser and the person maintaining the code have an easier time associating them
with positional parameters. Variadic arguments are at the end because they're open-ended lists.

If a subroutine has only required and variadic parameters, you can always call it with a simple list of positional
arguments. In this example, 'a' is bound to $req and the rest of the arguments go to the slurpy array:

sub straight_line ($req, *@slurpy) { . . . }

straight_line('a', 'b', 'c', 'd', 'e');

If a subroutine has some optional parameters and a variadic array you can call it with a simple list of positional
arguments, but only if you have arguments for all the optional parameters. In this example, 'a' is bound to $req, 'b' is
bound to $opt, and the rest of the arguments go to the slurpy array:

sub mixed ($req, ?$opt, *@slurpy) { . . . }

mixed('a', 'b', 'c', 'd', 'e');

If you want to skip some of the optional parameters, you have two choices. When the argument list has at least one
named argument, the parser knows to start the variadic list right after the named arguments end. This example binds
'a' to $req, binds 'opt' to $opt, skips $another, and puts the rest of the arguments in the variadic array:

sub mixed ($req, ?$opt, ?$another, *@slurpy) { . . . }

mixed('a', 'opt' => 1, 'b', 'c', 'd', 'e');

If you want to skip all the optional parameters you need to use the <= = operator in place of the comma to mark where
the variadic list starts. This example binds 'a' to $req, skips $opt and $another, and puts all the rest of the arguments in
the variadic array:

mixed('a' <= = 'b', 'c', 'd', 'e');

You have to watch out for optional and variadic parameters when you modify subroutines already in use. Adding an
extra optional parameter to a signature with a variadic array will break any calls that passed all positional arguments.
You could suggest that all users call your subroutines with <= = in case you decide to change them later, or you could
just add the new parameters as named parameters instead of optional parameters. Named parameters ignore positional
arguments, so this version of the subroutine puts 'b' through 'e' in the variadic array with or without any named
arguments in the call:

sub mixed ($req, +$opt, +$another, *@slurpy) { . . . }

mixed('a', 'opt' => 1, 'b', 'c', 'd', 'e');

mixed('a', 'b', 'c', 'd', 'e');

As usual, there's more than one way to do it.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.4 Subroutine Stubs
To declare a subroutine without defining it you give it a body consisting of nothing but the . . . (or "yada, yada, yada")
operator. So, all the preceding examples that look like pseudocode with { . . . } for their body are actually valid
subroutine declarations.

sub stubbly (Str $name, Int ?$days) { . . . }

When you later define the subroutine, the signature and defined traits must exactly match the declaration.

sub stubbly (Str $name, Int ?$days) {

 print "$name hasn't shaved in $days day";

 print "s" if $days > 1;

}

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.5 Subroutine Scope
Just like variables, subroutine names are simply entries in a symbol table or lexical scratchpad. So, all subroutines live
in a particular scope, whether it's lexical, package, or global scope.

5.5.1 Package-Scoped Subroutines

Package scope is the default scope for subs. A sub that is declared without any scope marking is accessible within the
module or class where it's defined with an unqualified call, like subname(), and accessible elsewhere with a fully
qualified call using the Package::Name::subname() syntax.[5]

[5] Certain levels of strictness may require the fully qualified name everwhere.

module My::Module {

 sub firstsub ($param) { . . . }

 sub secondsub {

 mysub('arg'); # call the subroutine

 }

}

module Other::Module {

 use My::Module;

 sub thirdsub {

 My::Module::firstsub('arg');

 }

}

This example declares two modules, My::Module and Other::Module. My::Module declares a subroutine firstsub and calls it
from within secondsub. Other::Module declares a subroutine thirdsub that calls firstsub using its fully qualified name.

5.5.2 Lexically Scoped Subroutines

Subroutines can also be lexically scoped, just like variables. A myed subroutine makes an entry in the current lexical
scratchpad with a & sigil. Lexically scoped subs are called just like a normal subroutine:

if $dining {

 my sub dine ($who, $where) {

 . . .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 . . .

 }

 dine($zaphod, "Milliways");

}

dine($arthur, "Nutri-Matic"); # error

The first call to the lexically scoped dine is fine, but the second would be a compile-time error because dine doesn't exist
in the outer scope.

The our keyword declares a lexically scoped alias to a package scoped subroutine (it has an entry both in the symbol
table of the current package and in the current lexical scratchpad). This is useful under certain levels of strictness.

if $dining {

 our sub pay ($when, $what) {

 . . .

 }

 pay($tuesday, "hamburger");

}

5.5.3 Globally Scoped Subroutines

Globally scoped subroutines are visible everywhere, unless they're overridden by a lexical or package scoped subroutine
of the same name. They are declared with the * symbol before the name of the subroutine:

sub *seen_by_all ($why, $how) { . . . }

Most built-ins will be globally scoped.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.6 Anonymous Subroutines
Anonymous subroutines do everything that ordinary subroutines do. They can declare a formal parameter list with
optional and required parameters, take positional and named arguments, and do variadic slurping. The only difference
is that they don't define a name. But since you can't call a subroutine if you have no way to refer to it, they have to get
the equivalent of a name somewhere, whether they're assigned to a variable, passed as a parameter, or aliased to
another subroutine.

$make_tea = sub ($tealeaves, ?$sugar, ?$milk) { . . . }

The arrow operator used with for and given is just another way of defining anonymous subroutines. The arrow doesn't
require parentheses around its parameter list. It can't declare named subs, and can't declare a return type.

$make_tea = -> $tealeaves, ?$sugar, ?$milk { . . . }

A bare block can also define an anonymous subroutine, but it can't define a formal parameter list on the sub and can't
define a named sub:

$make_tea = {

 my $tea = boil 'tealeaves';

 combine $tea, 'sugar', 'milk';

}

You can't use the return statement within an arrow sub or bare block sub to return from an anonymous sub. Blocks and
arrow subs are commonly used for ordinary control flow, so return ignores them and only returns from subroutines
defined with sub keyword or methods.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.7 Multi Subroutines
You can define multiple routines with the same name but different signatures. These are known as "multisubs" and are
defined with the multi keyword before sub. They're useful if you want a routine that can handle different types of
arguments in different ways, but still appear as a single subroutine to the user. For example, you might define an add
multisub with different behavior for integers, floats, and certain types of numeric objects:

multi sub add (Int $first, Int $second) { . . . }

multi sub add (Num $first, Num $second) { . . . }

multi sub add (Imaginary $first, Imaginary $second) { . . . }

multi sub add (MyNum $first, MyNum $second) { . . . }

When you later call the routine:

add($apples, $oranges);

it will dispatch to the right version of add based on the types of the arguments passed to it. The parameters used for
dispatch selection are called invocants. If you want to use a limited set of parameters as invocants, mark the boundary
between invocant parameters and the rest of the signature with a semicolon:

multi sub add (Int $first, Int $second: Int $third) { . . . }

This version of add will dispatch based on the types of the first two arguments passed in, and ignore the type of the
third.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.8 Curried Subroutines

Currying[6] allows you to create a shortcut for calling a subroutine with some preset parameter values. The assuming
method takes a list of named arguments and returns a subroutine reference, with each of the named arguments bound
to the original subroutine's parameter list. If you have a subroutine multiply that multiplies two numbers, you might
create a subref $six_times that sets the value for the $multiplier parameter, so you can reuse it several times:

[6] The term "currying" is drawn from functional languages and is named in honor of logician Haskell Curry.

sub multiply ($multiplicand, $multiplier) {

 return $multiplicand * $multiplier;

}

$six_times = &multiply.assuming(multiplier => 6);

$six_times(9); # 54

$six_times(7); # 42

 . . .

You can also use binding assignment to alias a curried subroutine to an ordinary subroutine name instead of a scalar
variable:

&six_times := &multiply.assuming(multiplier => 6);

six_times(7); # 42

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.9 Wrapped Subroutines
Sometimes you might want to wrap extra functionality around a subroutine that was already defined (perhaps in a
standard module), but still call it with the same name. The .wrap method is similar to the .assuming method, but more
powerful. It takes a subroutine reference as an argument and returns an ID object. Inside the subref wrapper, the call
statement marks the point where the original subroutine will be executed.

$id = &subname.wrap ({

 # preprocess arguments

 # or execute additional code

 call;

 # postprocess return value

 # or execute additional code

})

subname(. . .); # call the wrapped subroutine

By default, the inner subroutine is passed the same arguments as the wrapping subroutine, and the wrapping
subroutine returns the same result as the inner subroutine. You can alter the arguments passed to the inner subroutine
by adding an explicit argument list to call, and alter the outer return value by capturing the result from call and explicitly
returning a value in the wrapper.

$id = &subname.wrap (sub (*@args) {

 # preprocess arguments

 $result = call('modified', 'arguments');

 # postprocess return value

 return $result;

})

A subroutine can have multiple wrappers at the same time. Each new wrapper wraps around the previous one, and the
outermost wrapper executes first. The ID object returned by .wrap allows the .unwrap method to remove a specific
wrapper:

&subname.unwrap($id);

If you'd rather not manually unwrap your sub, wrap a temped version instead. The temp automatically removes the
wrapper at the end of its scope.

{

 temp &subname.wrap ({ . . . })

 subname(. . .);

}

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.10 Lvalue Subroutines
Lvalue subroutines pretend to be assignable values, just like any ordinary variable. They do this by returning a proxy
variable which handles the lvalue behavior for the subroutine (fetch, store, etc.). You declare an lvalue subroutine with
the is rw property:

sub storage is rw { . . . }

storage() = 5;

An lvalue sub can return an ordinary variable which acts as a proxy, return the return value from another lvalue sub, or
it can return a tied proxy variable defined within the sub:

my sub assignable is rw {

 my $proxy is Proxy(

 FETCH => { . . . },

 STORE => { . . . },

 . . .

);

 return $proxy;

}

This example defines an lvalue sub named assignable. It creates a proxy variable tied to a Proxy class that defines FETCH
and STORE tie methods on the fly.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.11 Macros
Macros are a powerful way of manipulating source code at compile time. Macros must be declared before they're called.
A call to a macro routine executes as soon as it's parsed. The parser substitutes the return value from the macro into
the parse tree in place of the macro call. If a macro returns undef, it makes no entry in the parse tree. So, the macro
disappear takes a single string argument and returns undef. Any call to disappear is replaced at compile time with nothing,
just as if it were commented out.

macro disappear (Str $thinair) {

 return;

}

 . . .

disappear("Some text you'll never see");

If a macro returns a string, the string is parsed as Perl source code, and the resulting parse tree replaces the macro
call. So, anywhere the macro twice is called, it is replaced at compile time by a for modifier:

macro twice {

 return "for 1..2";

}

 . . .

print "\n" twice; # same as: print "\n" for 1..2;

If a macro returns a block, that block is parsed as a closure, and the resulting parse tree replaces the macro call. So,
when the reverse_numeric macro is called, the parser substitutes the block { $^b <=> $^a } in place of the call:

macro reverse_numeric {

 return { $^b <=> $^a };

}

 . . .

sort reverse_numeric, @values;

If a macro returns a parse tree, the parser substitutes it directly for the macro call. The returned tree may be the
original parse tree, a modified parse tree, or a manufactured parse tree.

By default, a call to a macro is parsed just like an ordinary subroutine call, so it can take no arguments or a comma-
separated list of arguments. But, macros can also modify the way their arguments are parsed, by adding an is parsed
trait. The trait takes a rule as an argument, and will parse whatever code follows using that rule instead of the normal
rule for parsing subroutine arguments. So, the macro funky essentially translates a "ValSpeak" subroutine call into an
ordinary Perl subroutine call. It takes a single string argument, which it parses as a sequence of word-forming
characters, surrounded by the strings "like" and ", you know". (For more on rules, see Chapter 7.) It then returns a
block that will call the plain subroutine with the single argument passed to funky.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

block that will call the plain subroutine with the single argument passed to funky.

macro funky (Str $whatever)

 is parsed (/:w like (\w+), you know/)

 {

 return { plain($whatever); };

 }

 . . .

 funky like whatever, you know

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 6. Objects
Objects are encapsulated chunks of data and functionality. Over the years a host of concepts have sprung up around
objects, such as data abstraction, code reuse, encapsulation, single and multiple inheritance, composition, delegation,
mixins, polymorphism, and multiple dispatch. Every language with object-oriented syntax selects a subset of these
ideas and combines them in different ways. With Perl 6 we want to provide a cleaner and simpler syntax for working
with objects, but we also want to support a larger set of object-oriented ideas. Does that sound impossible? The
solution is a classically Perl-ish one: make the easy things easy and the hard things possible.

With the release of Apocalypse 12, the syntax in this chapter is fairly solid, though it's still likely to change somewhat
before the final implementation. This chapter is only an introduction to the concepts. For complete coverage you should
read the Apocalypse itself.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.1 Using Objects
You can declare a class in one of two ways. The most familiar syntax for class declaration ends in a semicolon. The rest
of the file after the declaration defines the class. With this syntax there can be only one class or module declaration in a
file.

class Heart::Gold;

class definition follows

 . . .

The other syntax for class declaration wraps the definition in a block. You can have as many of these as you like in a
file, and even embed one class within the block of another.

class Heart::Gold {

 # class definition enclosed

 . . .

}

With a file definition, all code that follows the class declaration is defined in the Heart::Gold namespace. With a block
definition, everything within the block is defined in the class's namespace.

To create a new object from a class, simply call its new method. The default new method in the universal base class
Object creates and initializes an object.

$ship = Heart::Gold.new(length => 150);

There's a shortcut for typed variables so you don't have to give the name of the class twice:

my Heart::Gold $ship .= new(length => 150);

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.2 Classes
Classes are the "cookie cutters" that build objects. Just as a module groups subroutines in a package, a class groups
methods in a package. Classes can also contain subroutines, submethods, and multimethods. However, classes are
significantly different from modules, primarily because they construct objects. Objects don't just define functionality,
they also hold data. In Perl 5 objects were simply hashes (or arrays, or . . .) bestowed with special powers by bless.
Perl 6 objects can still be simple blessed data structures, but the default is now an object that hides the details of its
internal representation—a true opaque object.

6.2.1 Attributes

Attributes are the data at the core of an opaque object. Other languages have called them instance variables, data
members, or instance attributes. Attributes are declared with the has keyword, and generally have a "." after the sigil:

class Heart::Gold {

 has int $.length;

 has int $.height is rw;

 has @.cargo;

 has %.crew;

 ...

}

Attributes aren't directly accessible outside the class, but inside the class they act just like ordinary variables:

print $.length;

$.length = 140;

Attributes also automatically generate their own accessor method with the same name as the attribute. Accessor
methods are accessible inside or outside the class. By default, accessors are read-only, but the is rw property marks an
accessor as read/write.

$value = $obj.height; # returns the value of $.height

$obj.height = 90; # sets the value of $.height

6.2.2 Methods

Methods are similar to subroutines, but different enough to merit their own keyword, method. The most obvious
differences are that they're invoked on an object (or class), and they pass their invocant (that is, the object or class on
which they were invoked) as an implicit argument. The invocant is marked off from the other parameters in the list by a
colon:

method initiate_drive ($self: $power, $tea) {

 . . .

}

Methods topicalize their invocant, so it's always accessible as $_, even if the method doesn't include it in the parameter
list. This is particularly handy since any method called without an explicit object defaults to $_:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

list. This is particularly handy since any method called without an explicit object defaults to $_:

method shut_down ($drive) {

 if .safe {

 .powerdown($drive);

 }

 return .status;

}

Method declarations support the same syntax as subroutines for optional, named, variadic, and typed parameters,
default values for parameters, properties on parameters, and return values. Method calls support positional and named
argument passing just like subroutines. (See Chapter 5 for more details on this syntax.)

You can call a method in one of two ways. The standard method call is connected to the object with the . operator:

$ship.shut_down($infinity);

An indirect object call is an alternative to the standard method call. This syntax looks like an ordinary subroutine call,
except that the invocant is separated from the other arguments by a colon:

shut_down($ship: $infinity);

The parentheses are optional unless the method call is ambiguous without them:

shut_down $ship: $infinity;

6.2.3 Inheritance

Any class can inherit methods from another class using the is keyword in the class declaration. You may have noticed
that this is the same keyword as compile-time properties. The fact that a class inherits from some other class is really
just a trait of the inheriting class.

use Ship;

class Heart::Gold is Ship {

}

Any class can inherit from multiple parent classes:

class Heart::Gold is Ship is Improbable {

}

Within a derived class, inherited attributes are accessible only through their accessor methods:

class Ship {

 has $.height;

 has $.length;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 has $.length;

 . . .

}

class Heart::Gold is Ship {

 method dimensions ($self:){

 print "$self.length x $self.height \n";

 }

}

6.2.4 Construction, Initialization, and Destruction

The default new method provided by the Object base class constructs and initializes opaque objects. It does this by
calling bless, which calls the CREATE and BUILDALL methods. The CREATE method constructs an opaque object. The
BUILDALL method calls the initializers for all inherited classes and finally the class's own initializer. BUILDALL actually calls
the parent's BUILDALL method, which calls its parent's BUILDALL method, etc. The initializer for each class is BUILD. The
default BUILD initializes the attributes of the object with named arguments to new, matching the name of the argument
to the name of the attribute.

There are a number of ways to change the default object construction and initialization behavior. If you override new so
that it passes a data structure as the first argument to bless, it will construct a traditional blessed hash (or array, or . . .
) object instead of calling CREATE to construct an opaque object:

$class.bless({answer => '42'});

If you override the CREATE method you can alter the way objects are constructed. If you override the BUILDALL method
you can change how the initializers for inherited classes are called. If you override the BUILD method you can change
how the current class initializes objects and their attributes. Overriding BUILD will be common. Overriding CREATE and
BUILDALL will be rare, since their default behavior is designed to handle everything from the simple opaque object to
inheriting from classes written in other languages.

Object destruction traverses the inheritance hierarchy in the reverse order of object initialization. Objects are created
from least derived to most derived and destroyed from most derived to least derived. The DESTROYALL method first calls
the DESTROY method of the current class, and then calls the DESTROYALL method of the parent class (which calls its own
DESTROY and then its own parent's DESTROYALL, etc). You will rarely need to define a DESTROY method, since the
interpreter handles memory deallocation. It can be useful for class-specific cleanup, like closing a socket or filehandle.

6.2.5 Lexically Scoped Classes

Classes in Perl 6 are first class entities with entries in symbol tables or lexical scratchpads.[1] This means classes can be
lexically scoped, just like variables or subroutines:

[1] If you're curious, :: is the sigil for classes and packages, though it's rarely needed in code.

my class Infinite::Improbablity {

 . . .

}

$drive = Infinite::Improbability.new();

A lexical class works just like any other class, but is accessible by name only within the lexical scope where it's defined.

6.2.6 Anonymous Classes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also define anonymous classes and create objects from them:

$class = class {

 . . .

}

$object = $class.new();

A class's block is a closure, just like every other block, so it has access to variables from its defining scope, no matter
where it's actually used.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.3 Roles
A role is a reusable unit of class code. Much like a module exports subroutines into your program or another module, a
role exports methods and attributes into a class. If your first thought on reading this is "Isn't that just inheritance?",
then welcome to a whole new world. Inheritance is one way to reuse code, but many relationships other than isa are
possible. Various languages pick an alternative and provide syntax for it: Ruby has mixins, Java has interfaces, and
some versions of Smalltalk have traits. Perl roles go a bit beyond all of them.

You define a role using the role keyword:

role Hitchhiker { . . . }

You pull a role into a class using the does keyword:

class Arthur does Hitchhiker { . . . }

Roles cannot instantiate objects directly. To create an object that makes use of a role, you make a new object from a
class that uses that role:

$person = Arthur.new(. . .);

6.3.1 Composition

Like classes, roles can define both attributes and methods:

role Hitchhiker {

 has $.towel;

 method thumb_ride ($self: $ship) { . . . }

 . . .

}

Unlike classes, when you pull a role's methods and attributes into a class they aren't maintained in an inheritance
hierarchy to be searched later. Instead, they are composed into the class almost as if they had been defined in that
class. All methods defined in the role are accessible in the composed class, even if they wouldn't be inherited. All
attributes defined in the role are accessible in the composed class by their direct $.name, not just by their accessor
method.[2]

[2] Though you'll probably want to use the accessor methods anyway, based on the principles of encapsulation and
ease of refactoring.

One advantage of composition is that classes can reuse behavior, even if they have no connection that would justify an
inheritance relation. Suppose you want to define two classes: Arthur and Ford. Arthur inherits from Human and has all the
behaviors and qualities of a human creature. Ford, on the other hand, has the behaviors and qualities of a creature from
Betelgeuse:

class Arthur is Human does Hitchhiker { . . . }

class Ford is Betelgeusian does Hitchhiker { . . . }

Inheritance makes sense in this case—the inherited classes are core, defining characteristics of the resulting class. But
the Hitchhiker role isn't a defining part of Ford and Arthur—they weren't always hitchhikers. The role just adds some
useful behavior to the class.

6.3.1.1 Mixins

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.3.1.1 Mixins

In some situations you may want to add a role at run time instead of at compile time. Perhaps you want to choose
different roles based on how the object is used, or perhaps the role's behavior shouldn't be available until part-way
through the life of an object. The same does keyword adds roles at run time, but operates on an object instead of a
class. In this example, Arthur starts as an ordinary human, and only adds the Hitchhiker role later in life (after the Vogons
destroy his home planet):

class Arthur is Human { . . . }

$person = Arthur.new;

$person.live_quietly until $vogon_ship.arrive;

$person does Hitchhiker;

$person.thumb_ride($vogon_ship);

6.3.1.2 Interfaces

An interface is a reusable unit that defines what methods a class should support, but doesn't provide any
implementations for those methods. In Perl 6, interfaces are just roles that define only method stubs and no attributes.
This example defines an interface for products shipped by the Sirius Cybernetics corporation:

role Sirius::Cybernetics {

 method share { . . . }

 method enjoy { . . . }

}

No matter whether the product is an elevator, a nutrimatic machine, or an automatic door, it must support the share
and enjoy methods. Now, since these products are so very different, none will implement the methods in quite the same
way, but you're guaranteed the products will be able to "Share and Enjoy" in one way or another (generally in an
irritating way).

6.3.2 Conflicts

Since a class pulls in roles by composition instead of inheritance, a conflict results when two roles both have a method
with the same name. So, the Hitchhiker and Writer roles both define a lunch_break method (lunch breaks being vitally
important in both the publishing and footslogging industries):

role Hitchhiker {

 method lunch_break {

 .suck($.towel);

 .drink($old_janx);

 }

 . . .

}

role Writer {

 method lunch_break {

 my $restaurant = Jolly::Nice::Restaurant.new;

 .dine($restaurant);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 .dine($restaurant);

 }

 . . .

}

If the Ford class does the Writer role as well as the Hitchhiker role, which kind of lunch break should he take? Since roles
are composed without hierarchy or priority, both methods are equally valid choices. Rather than randomly selecting an
implementation for you, Perl 6 simply requires you to choose one. There are several ways to do this. One is to define a
method of the same name in the class itself. This method might simply call the method from one of the roles:

class Ford does Hitchhiker does Writer {

 method lunch_break { .Writer::lunch_break(@_); }

}

Or the method might select between the possible implementations based on one of the arguments or some condition in
the object. This example checks the string value returned by the .location method to find out which lunch break is
appropriate:

class Ford does Hitchhiker does Writer {

 method lunch_break ($self: $arg) {

 given (.location) {

 when "Megadodo Office" { $self.Writer::lunch_break($arg); }

 when "Ship Cargo Hold" { $self.Hitchhiker::lunch_break($arg); }

 }

 }

}

You can also get a finer-grained control over method conflict resolution using delegation syntax (explained in the next
section). This example renames Hitchhiker's lunch_break method to snack in the composed class:

class Ford does Hitchhiker handles :snack«lunch_break» does Writer { . . . }

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.4 Delegation
Delegation is yet another possible relationship between an object and another body of code. Rather than pull methods
into a class, you call methods in another object as if they were methods of the class. In Perl 6, delegation can be done
in either a class or a role. A delegated object is simply an attribute defined in the class or role. The handles keyword
specifies which methods of the delegated object will act as methods of the class. This example declares that any calls to
the thumb_ride method on an object with the Hitchhiker role, will actually call the method on its $.thumb attribute:

role Hitchhiker {

 . . .

 has Electronic::Thumb $.thumb handles 'thumb_ride';

 . . .

}

The handles keyword accepts many variations in the syntax to delegate methods. You can pass it an array reference of
multiple method names:

has Electronic::Thumb $.thumb handles ['thumb_ride', 'sub_etha'];

or a quoted list:

has Electronic::Thumb $.thumb handles «thumb_ride sub_etha»;

A pair in place of a string method name gives the method a different name in the class. This example declares a
method named hitch in the class, but any calls to it are delegated to the thumb_ride method on the $.thumb object:

has Electronic::Thumb $.thumb handles :hitch«thumb_ride»;

If the method name is given as a pattern, it's a wildcard delegation and all methods that match that pattern will be
delegated to the attribute. This example delegates all methods that start with "thumb" to $.thumb:

has Electronic::Thumb $.thumb handles /^thumb/;

If the method name is a substitution, it does wildcard method renaming. This example would delegate a method call to
hitch_ride to a method named thumb_ride in $.thumb:

has Electronic::Thumb $.thumb handles (s/^hitch/thumb/);

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.5 Private and Public
By default, all methods and attribute accessors are public methods, so they can be called anywhere. You can also
declare private methods or accessors, which can be called only within the class where they're defined, or from certain
trusted classes. A private method is declared with a colon at the start of the name:

method :inaccessible ($self: $value) { . . . }

A private attribute is declared with a colon in place of the dot (.) in the name:

has $:hidden;

You call a private method or accessor with a colon in the call:

$object.:hidden(42);

The attribute variable ($:name or $.name) is never accessible outside the class, whether the attribute is public or private.

At first glance this might look like nothing more than the "encapsulation by convention" of Perl 5. It's actually much
more than that. The colon implicitly sets a private trait on the method or attribute. The encapsulation is enforced by the
interpreter. An external call to a private method will fail as if the method simply didn't exist. External queries to the
package symbol table for private methods also fail.

Only public methods are inherited by a derived class, but inherited public methods can call private methods from their
own class. Private methods and attributes in a role are private to the composed class, as if they were defined in that
class.

The one loophole in private methods is that a class can declare that it trusts certain other classes to allow those classes
to access its private methods. Roles cannot declare a trusted class. In this example, the Friendly class declares that it
trusts the Zaphod class:

class Friendly {

 trusts Zaphod; # probably a bad idea, really

}

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.6 Subroutines
You can define ordinary subroutines within a class or role. They cannot be invoked on an object with the
$object.methodname syntax and will never pass an implicit invocant argument. They aren't inherited but can be pulled in
with role composition. They're mainly useful for utility code internal to the class:

class Answer::Young;

has $.answer;

 . . .

sub is_valid ($value) {

 return 1 if 10 < $value < 42;

}

 . . .

method set_answer ($new) {

 $.answer = $new if is_valid($new);

}

Subroutines may be exported if the class also functions as a module.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.7 Submethods
A submethod is declared like a method, but behaves more like a sub in that it's not inherited but can be pulled in with a
role. Submethods are useful for inheriting interface without inheriting implementation—you can override a method from
a parent class without inflicting the changes on any child classes.

The Frogstar::A class defines a set of methods and attributes for the Frogstar Scout robots:

class Frogstar::A {

 has Laser::Beam $.beam;

 has Antimatter::Ray $.ray;

 has Electron::Ram $.ram;

 . . .

 method zap ($target) { $.beam.fire($target); }

 method shoot ($target) { $.ray.fire($target); }

 method smash ($target) { $.ram.fire($target); }

 . . .

}

In addition to methods for navigation, propulsion, etc., the Frogstar Scouts boast an astounding number of destructive
methods (as is to be expected). The Frogstar::B class inherits all of Frogstar::A's methods and attributes, and also adds its
own additional weaponry. Instead of defining a new method for the Zenon Emitter, the Frogstar Scout B overrides the
smash method to use the emitter:

class Frogstar::B is Frogstar::A {

 has Zenon::Emitter $.emitter;

 submethod smash ($target) { $.emitter.fire($target); }

}

It still smashes the target, only faster, as you might expect from a newer model. Since the overridden method was
declared as a submethod, it has no effect on the Frogstar Scout C, which inherits from Frogstar::B:

class Frogstar::C is Frogstar::B { . . . }

 . . .

$fighter = Frogstar::C.new(. . .);

$fighter.smash($floor); # uses the Electron::Ram

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.8 Multiple Dispatch
In the previous chapter, we mentioned multi subroutines. The multi keyword actually applies to any code object:
subroutines, methods, or submethods. As we said before, multi allows you to define multiple, different routines all with
the same name but different signatures. This example dispatches to a variant of the lunch method depending on the
types of the arguments:

multi method lunch (Lunching::Friar $who, Megadodo::Office $location) {

 print "Jolly nice restaurant.";

}

multi method lunch (Hitchhiker $who, Cargo::Hold $location) {

 print "Towel again.";

}

A member of the Lunching Friars of Voondon must always eat at a nice restaurant when he visits the offices of
Megadodo Publications. A hitchhiker in a cargo hold, however, will just have to settle for the nutrient solution soaked
into the corner of his towel.

A call to a multimethod has the same syntax as a call to a subroutine—the name of the routine followed by a list of
arguments:

lunch($zaphod, $where);

This call searches outward through its lexical, package, and global scopes for a matching name. If it finds a nonmulti
sub it makes an ordinary subroutine call. Otherwise, it generates a list of multi subs, methods, or submethods with that
name and dispatches to the closest matching signature.(For more complete details on the dispatch process, see
Apocalypse 12.)

You can also call a multimethod with an ordinary single-dispatch method call:

$zaphod.lunch($where);

In this case, the call will only failover to multiple dispatch if it can't find a suitable method to call under single dispatch
to $zaphod.

6.8.1 Operator Overloading

Operator overloading makes use of multiple dispatch. An operator is just a subroutine with special call syntax.
Operators define the kind of syntax they use as part of their name: prefix, postfix, infix, circumfix, etc. This example
overloads two operators that use the + symbol—one prefix operator and one infix operator:

multi sub *prefix:+ (Time $a) { . . . } # $x = +$y;

multi sub *infix:+ (Time $a, Time $b) { . . . } # $x = $y + $z;

These operators are declared as multi subs with global scope, as most operators will be in Perl 6 (global is specified by
the leading * in the name). They're multi, so it's easy to add new behavior for new types of operands. They're global so
that any operation anywhere with the defined operand types will find the right multi variant of the operator.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 7. Grammars and Rules
Perl 6 "regular expressions" are so far beyond the formal definition of regular expressions that we decided it was time
for a more meaningful name.[1] We now call them "rules." Perl 6 rules bring the full power of recursive descent parsing
to the core of Perl, but are comfortably useful even if you don't know anything about recursive descent parsing. In the
usual case, all you'll ever need to know is that rules are patterns for matching text.

[1] Regular expressions describe regular languages, and consist of three primitives and a limited set of operations
(three or so, depending on the formulation). So even Perl 5 "regular expressions" weren't formal regular
expressions.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.1 Using Rules
Rules are a language within a language, with their own syntax and conventions. At the highest level, though, they're
just another set of Perl constructs. So the first thing to learn about rules is the Perl "glue" code for creating and using
them.

7.1.1 Immediate Matches

The simplest way to create and use a rule is an immediate match. A rule defined with the m// operator always
immediately matches. Substitutions, defined with the s/// operator also immediately match. A rule defined with the //
operator immediately matches when it's in void, Boolean, string, or numeric context, or the argument of the smart-
match operator (~~).

if ($string ~~ m/\w+/) { . . . }

if ($string ~~ s/\w+/word/) { . . . }

if ($string ~~ /\w+/) { . . . }

You can substitute other delimiters, such as # . . . #, [. . .], and { . . . }, for the standard / . . . /, though ? . . . ? and (. . .
) are not valid delimiters:

if ($string ~~ s[\w+][word]) { . . . }

7.1.2 Deferred Matches

Sometimes you want a little more flexibility than an immediate match. The rx// operator defines an anonymous rule that
can be executed later.

$digits = rx/\d+/;

The simple // operator also defines an anonymous rule in all contexts other than void, Boolean, string, or numeric, or as
an argument of ~~:

$digits = /\d+/; # store rule

You can use the unary context forcing operators, +, ?, and ~, to force the // operator to match immediately in a context
where it ordinarily wouldn't. For a Boolean value of success or failure, force Boolean context with ?//. For a count of
matches, force numeric context with +//. For the matched string value, force string context with ~//.

$truth = ?/\d+/; # match $_ and return success

$count = +/(\d+\s+)*/; # match $_ and return count

$string = ~/^\w+/; # match $_ and return string

Another option for deferred matches is a rule block. The rule keyword defines a named or anonymous rule, in much the
same way that sub declares a subroutine or method declares a method. But the code within the block of a rule is rule
syntax, not Perl syntax.

$digits = rule {\d+};

rule digits {\d+}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To match a named or anonymous rule, call it as a subrule within another rule. Subrules, whether they're named rules or
a variable containing an anonymous rule, are enclosed in assertion delimiters < . . . >. You can read more about
assertions in Section 7.2.4 later in this chapter.

$string ~~ /\d+/;

same as

$string ~~ /<$digits>/;

$string ~~ /<digits>/;

Table 7-1 summarizes the basic Perl syntax for defining rules.

Table 7-1. Rules
Syntax Meaning

m/ . . . / Match a pattern (immediate execution).

s/ . . . / . . . / Perform a substitution (immediate execution).

rx/ . . . / Define an anonymous rule (deferred execution).

/ . . . / Immediately match or define an anonymous rule, depending on the context.

rule { . . . } Define an anonymous rule.

rule name { . . . } Define a named rule.

7.1.3 Grammars

A grammar is a collection of rules, in much the same way that a class is a collection of methods. In fact, grammars are
classes, they're just classes that inherit from the universal base class Rule. This means that grammars can inherit from
other grammars, and that they define a namespace for their rules.

grammar Hitchhikers {

 rule name {Zaphod|Ford|Arthur}

 rule id {\d+}

 . . .

}

Any rule in the current grammar or in one of its parents can be called directly, but a rule from an external grammar
needs to have its package specified:

if $newsrelease ~~ /<Hitchhikers.name>/ {

 send_alert($1);

}

Grammars are especially useful for complex text or data parsing.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.2 Building Blocks
Every language has a set of basic components (words or parts of words) and a set of syntax rules for combining them.
The "words" in rules are literal characters (or symbols), some metacharacters (or metasymbols), and escape
sequences, while the combining syntax includes other metacharacters, quantifiers, bracketing characters, and
assertions.

7.2.1 Metacharacters

The "word"-like metacharacters are ., ^, ^^, $, and $$. The . matches any single character, even a newline character.
Actually, what it matches by default is a Unicode grapheme, but you can change that behavior with a pragma in your
code, or a modifier on the rule. (We'll discuss modifiers in Section 7.3 later in this chapter.) The ^ and $ metacharacters
are zero-width matches on the beginning and end of a string. They each have doubled alternates ^^ and $$ that match
at the beginning and end of every line within a string.

The |, &, \, #, and := metacharacters are all syntax structure elements. The | is an alternation between two options.
The & matches two patterns simultaneously (the patterns must be the same length). The \ turns literal characters into
metacharacters (the escape sequences) or turns metacharacters into literal characters. The # marks a comment to the
end of the line. Whitespace insensitivity (the old /x modifier) is on by default, so you can start a comment at any point
on any line in a rule. Just make sure you don't comment out the symbol that terminates the rule. The := binds a
hypothetical variable to the result of a subrule or grouped pattern. Hypotheticals are covered in Section 7.6 later in this
chapter.

The metacharacters (), [], { }, and <> are bracketing pairs. The pairs always have to be balanced within the rule,
unless they are literal characters (escaped with a \). The brackets () and [] group patterns to match as a single atom.
They're often used to capture a result, mark the boundaries of an alternation, or mark a group of patterns with a
quantifier, among other things. Parentheses (()) are capturing, and square brackets ([]) are noncapturing. The { }
brackets define a section of Perl code (a closure) within a rule. These closures are always a successful zero-width
match, unless the code explicitly calls the fail function. The < . . . > brackets mark assertions, which handle a variety of
constructs including character classes and user-defined quantifiers. Assertions are covered in Section 7.2.4 later in this
chapter.

Table 7-2 summarizes the basic set of metacharacters.

Table 7-2. Metacharacters
Symbol Meaning

. Match any single character, including a newline.

^ Match the beginning of a string.

$ Match the end of a string.

^^ Match the beginning of a line.

$$ Match the end of a line.

| Match alternate patterns (OR).

& Match multiple patterns (AND).

\ Escape a metacharacter to get a literal character, or escape a literal character to get a metacharacter.

Mark a comment (to the end of the line).

:= Bind the result of a match to a hypothetical variable.

(. . .) Group patterns and capture the result.

[. . .] Group patterns without capturing.

{ . . . } Execute a closure (Perl 6 code) within a rule.

< . . . > Match an assertion.

7.2.2 Escape Sequences

The escape sequences are literal characters acting as metacharacters, marked with the \ escape. Some escape

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The escape sequences are literal characters acting as metacharacters, marked with the \ escape. Some escape
sequences represent single characters that are difficult to represent literally, like \t for tab, or \x[. . .] for a character
specified by a hexadecimal number. Some represent limited character classes, like \d for digits or \w for word
characters. Some represent zero-width positions in a match, like \b for a word boundary. With all the escape sequences
that use brackets, (), { }, and <> work in place of [].

Note that since an ordinary variable now interpolates as a literal string by default, the \Q escape sequence is rarely
needed.

Table 7-3 shows the escape sequences for rules.

Table 7-3. Escape sequences
Escape Meaning

\0[. . .] Match a character given in octal (brackets optional).

\b Match a word boundary.

\B Match when not on a word boundary.

\c[. . .] Match a named character or control character.

\C[. . .] Match any character except the bracketed named or control character.

\d Match a digit.

\D Match a nondigit.

\e Match an escape character.

\E Match anything but an escape character.

\f Match the form feed character.

\F Match anything but a form feed.

\n Match a (logical) newline.

\N Match anything but a (logical) newline.

\h Match horizontal whitespace.

\H Match anything but horizontal whitespace.

\L[. . .] Everything within the brackets is lowercase.

\Q[. . .] All metacharacters within the brackets match as literal characters.

\r Match a return.

\R Match anything but a return.

\s Match any whitespace character.

\S Match anything but whitespace.

\t Match a tab.

\T Match anything but a tab.

\U[. . .] Everything within the brackets is uppercase.

\v Match vertical whitespace.

\V Match anything but vertical whitespace.

\w Match a word character (Unicode alphanumeric plus "_").

\W Match anything but a word character.

\x[. . .] Match a character given in hexadecimal (brackets optional).

\X[. . .] Match anything but the character given in hexadecimal (brackets optional).

7.2.3 Quantifiers

Quantifiers specify the number of times an atom (a single character, metacharacter, escape sequence, grouped pattern,
assertion, etc.) will match.

The numeric quantifiers use assertion syntax. A single number (<3>) requires exactly that many matches. A numeric
range quantifier (<3..5>) succeeds if the number of matches is between the minimum and maximum numbers. A range

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

range quantifier (<3..5>) succeeds if the number of matches is between the minimum and maximum numbers. A range
with three trailing dots (<2 . . . >) is shorthand for <n..Inf> and matches as many times as possible.

Each quantifier has a minimal alternate form, marked with a trailing ?, that matches the shortest possible sequence
first.

Table 7-4 shows the built-in quantifiers.

Table 7-4. Quantifiers
Maximal Minimal Meaning

* *? Match 0 or more times.

+ +? Match 1 or more times.

? ?? Match 0 or 1 times.

<n> <n>? Match exactly n times.

<n..m> <n..m>? Match at least n and no more than m times.

<n . . . > <n . . . >? Match at least n times.

7.2.4 Assertions

Generally, an assertion simply states that some condition or state is true and the match fails when that assertion is
false. Many different constructs with many different purposes use assertion syntax.

Assertions match named and anonymous rules, arrays, or hashes containing anonymous rules, and subroutines or
closures that return anonymous rules. You have to enclose a variable in assertion delimiters to get it to interpolate as
an anonymous rule or rules. A bare scalar in a pattern interpolates as a literal string, while a scalar variable in assertion
brackets interpolates as an anonymous rule. A bare array in a pattern matches as a series of alternate literal strings,
while an array in assertion brackets interpolates as a series of alternate anonymous rules. In the simplest case, a bare
hash in a pattern matches a word (\w+) and tries to find that word as one of its keys,[2] while a hash in assertion
brackets does the same, but then also matches the associated value as an anonymous rule.

[2] The effect is much as if it matched the keys as a series of alternates, but you're guaranteed to match the
longest possible key, instead of just the first one it hits in random order.

A bare closure in a pattern always matches (unless it calls fail), but a closure in assertion brackets <{ . . . }> must return
an anonymous rule, which is immediately matched.

An assertion with parentheses <(. . .)> is similar to a bare closure in a pattern in that it allows you to include straight
Perl code within a rule. The difference is that <(. . .)> evaluates the return value of the closure in Boolean context. The
match succeeds if the return value is true and fails if the return value is false.

Assertions match character classes, both named and enumerated. A named rule character class is often more accurate
than an enumerated character class. For example, <[a-zA-Z]> is commonly used to match alphabetic characters, but
generally, what's really needed is the built-in rule <alpha>, which matches the full set of Unicode alphabetic characters.

Table 7-5 shows the syntax for assertions.

Table 7-5. Assertions
Syntax Meaning

< . . . > Generic assertion delimiter.

<! . . . > Negate any assertion.

<name> Match a named rule or character class.

<[. . .]> Match an enumerated character class.

<- . . . > Complement a character class (named or enumerated).

<" . . . "> Match a literal string (interpolated at match time).

<' . . . '> Match a literal string (not interpolated).

<(. . .)> Boolean assertion. Execute a closure and match if it returns a true result.

<$scalar> Match an anonymous rule.

<@array> Match a series of anonymous rules as alternates.

<%hash> Match a key from the hash, then its value (which is an anonymous rule).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<&sub()> Match an anonymous rule returned by a sub.

<{code}> Match an anonymous rule returned by a closure.

<.> Match any logical grapheme, including combining character sequences.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.3 Modifiers
Modifiers alter the meaning of the pattern syntax. The standard position for modifiers is at the beginning of the rule,
right after the m, s, or rx, or after the name in a named rule. Modifiers cannot attach to the outside of a bare / . . . /. For
example:

m:i/marvin/ # case insensitive

rule names :i { marvin | ford | arthur }

The single-character modifiers can be grouped, but the others must be separated by a colon:

m:wig/ zaphod / # OK

m:words:ignorecase:globally / zaphod / # OK

m:wordsignorecaseglobally / zaphod / # Not OK

Most of the modifiers can also go inside the rule, attached to the rule delimiters or to grouping delimiters. Internal
modifiers are lexically scoped to their enclosing delimiters, so you get a temporary alteration of the pattern:

m/:w I saw [:i zaphod] / # only 'zaphod' is case insensitive

The repetition modifiers (:Nx, :Nth, :once, :globally, and :exhaustive) and the continue modifier (:cont) can't be lexically
scoped, because they alter the return value of the entire rule.

The :Nx modifier matches the rule a counted number of times. If the modifier expects more matches than the string
has, the match fails. It has an alternate form :x(N), which can take a variable in place of the number.

The :once modifier on a rule only allows it to match once. The rule will not match again until you call the .reset method
on the rule object.

The :globally modifier matches as many times as possible. The :exhaustive modifier also matches as many times as
possible, but in as many different ways as possible.

The :Nth modifier preserves one result from a particular counted match. If the rule matches fewer times than the
modifier expects, the match fails. It has several alternate forms. One form—:th(N)—can take a variable in place of the
number. The other forms—:Nst, :Nnd, and :Nrd—are for cases where it's more natural to write :1st, :2nd, :3rd than it is to
write :1th, :2th, :3th. Either way is valid, so pick the one that's most comfortable for you.

By default, rules ignore literal whitespace within the pattern. The :w modifier makes rules sensitive to literal whitespace,
but in an intelligent way. Any cluster of literal whitespace acts like an explicit \s+ when it separates two identifiers and
\s* everywhere else.

There are no modifiers to alter whether the matched string is treated as a single line or multiple lines. That's why the
"beginning of string" and "end of string" metasymbols have "beginning of line" and "end of line" counterparts.

Table 7-6 shows the current list of modifiers.

Table 7-6. Modifiers
Short Long Meaning

:i :ignorecase Case-insensitive match.

:I Case-sensitive match (on by default).

:c :cont Continue where the previous match on the string left off.

:w :words Literal whitespace in the pattern matches as \s+ or \s*.

:W Turn off intelligent whitespace matching (return to default).

 :Nx/:x(N) Match the pattern N times.

 :Nth/:nth(N) Match the Nth occurrence of a pattern.

 :once Match the pattern only once.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

:g :globally Match the pattern as many times as possible, but only possibilities that don't overlap

:e :exhaustive Match every possible occurrence of a pattern, even overlapping possibilities.

 :u0 . is a byte.

 :u1 . is a Unicode codepoint.

 :u2 . is a Unicode grapheme.

 :u3 . is language dependent.

 :p5 The pattern uses Perl 5 regex syntax.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.4 Built-in Rules
A number of named rules are provided by default, including a complete set of POSIX-style classes, and Unicode
property classes. The list isn't fully defined yet, but Table 7-7 shows a few you're likely to see.

Table 7-7. Built-in rules
Rule Meaning

<alpha> Match a Unicode alphabetic character.

<digit> Match a Unicode digit.

<sp> Match a single-space character (the same as \s).

<ws> Match any whitespace (the same as \s+).

<null> Match the null string.

<prior> Match the same thing as the previous match.

<before . . . > Zero-width lookahead. Assert that you're before a pattern.

<after . . . > Zero-width lookbehind. Assert that you're after a pattern.

<prop . . . > Match any character with the named property.

<replace(. . .)> Replace everything matched so far in the rule or subrule with the given string (under consideration).

The <null> rule matches a zero-width string (so it's always true) and <prior> matches whatever the most recent
successful rule matched. These replace the two behaviors of the Perl 5 null pattern //, which is no longer valid syntax
for rules.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.5 Backtracking Control
Backtracking is triggered whenever part of the pattern fails to match. You can also explicitly trigger backtracking by
calling the fail function within a closure. Table 7-8 shows some metacharacters and built-in rules relevant to
backtracking.

Table 7-8. Backtracking controls
Operator Meaning

: Don't retry the previous atom; fail to the next earlier atom.

:: Don't backtrack over this point; fail out of the closest enclosing group ((. . .), [. . .], or the rule
delimiters).

::: Don't backtrack over this point; fail out of the current rule or subrule.

<commit> Don't backtrack over this point; fail out of the entire match (even from within a subrule).

<cut> Like <commit>, but also cuts the string matched. The current matching position at this point becomes the
new beginning of the string.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.6 Hypothetical Variables
Hypothetical variables are a powerful way of building up data structures from within a match. Ordinary captures with ()
store the result of the captures in $1, $2, etc. The values stored in these variables will be kept if the match is successful,
but thrown away if the match fails (hence the term "hypothetical"). The numbered capture variables are accessible
outside the match, but only within the immediate surrounding lexical scope:

"Zaphod Beeblebrox" ~~ m:w/ (\w+) (\w+) /;

print $1; # prints Zaphod

You can also capture into any user-defined variable with the binding operator :=. These variables must already be
defined in the lexical scope surrounding the rule:

my $person;

"Zaphod's just this guy." ~~ / ^ $person := (\w+) /;

print $person; # prints Zaphod

Repeated matches can be captured into an array:

my @words;

"feefifofum" ~~ / @words := (f<-[f]>+)* /;

@words contains ("fee", "fi", "fo", "fum")

Pairs of repeated matches can be captured into a hash:

my %customers;

$records ~~ m:w/ %customers := [<id> =

<name> \n]* /;

If you don't need the captured value outside the rule, use a $? variable instead. These are only directly accessible within
the rule:

"Zaphod saw Zaphod" ~~ m:w/ $?name := (\w+) \w+ $?name/;

A match of a named rule stores the result in a $? variable with the same name as the rule. These variables are also
accessible only within the rule:

"Zaphod saw Zaphod" ~~ m:w/ <name> \w+ $?name /;

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 8. Parrot Internals
This chapter details the architecture and internal workings of Parrot, the interpreter behind Perl 6. Parrot is a register-
based, bytecode-driven, object-oriented, multithreaded, dynamically typed, self-modifying, asynchronous interpreter.
Though that's an awful lot of buzzwords, the design fits together remarkably well.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.1 Core Design Principles
Three main principles drive the design of Parrot—speed, abstraction, and stability.

Speed is a paramount concern. Parrot absolutely must be as fast as possible, since the engine effectively imposes an
upper limit on the speed of any program running on it. It doesn't matter how efficient your program is or how clever
your program's algorithms are if the engine it runs on limps along. While Parrot can't make a poorly written program
run fast, it could make a well-written program run slowly, a possibility we find entirely unacceptable.

Speed encompasses more than just raw execution time. It extends to resource usage. It's irrelevant how fast the
engine can run through its bytecode if it uses so much memory in the process that the system spends half its time
swapping to disk. Although we're not averse to using resources to gain speed benefits, we try not to use more than we
need, and to share what we do use.

Abstraction indicates that things are designed such that there's a limit to what anyone needs to keep in their head at
any one time. This is very important because Parrot is conceptually very large, as you'll see when you read the rest of
the chapter. There's a lot going on, too much to keep the whole thing in mind at once. The design is such that you don't
have to remember what everything does, and how it all works. This is true regardless of whether you're writing code
that runs on top of Parrot or working on one of its internal subsystems.

Parrot also uses abstraction boundaries as places to cheat for speed. As long as it looks like an abstraction is being
completely fulfilled, it doesn't matter if it actually is being fulfilled, something we take advantage of in many places
within the engine. For example, variables are required to be able to return a string representation of themselves, and
each variable type has a "give me your string representation" function we can call. That lets each class have custom
stringification code, optimized for that particular type. The engine has no idea what goes on beneath the covers and
doesn't care—it just knows to call that function when it needs the string value of a variable. Objects are another good
case in point—though they look like nice, clean black boxes on the surface, under the hood we cheat profoundly.

Stability is important for a number of reasons. We're building the Parrot engine to be a good backend for many
language compilers to target. We must maintain a stable interface so compiled programs can continue to run as time
goes by. We're also working hard to make Parrot a good interpreter for embedded languages, so we must have a stable
interface exposed to anyone who wants to embed us. Finally, we want to avoid some of the problems that Perl 5 has
had over the years that forced C extensions written to be recompiled after an upgrade. Recompiling C extensions is
annoying during the upgrade and potentially fraught with danger. Such backward-incompatible changes have
sometimes been made to Perl itself.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.2 Parrot's Architecture
The Parrot system is divided into four main parts, each with its own specific task. Figure 8-1 shows the parts, and the
way source code and control flows through Parrot. Each of the four parts of Parrot are covered briefly here, and the
features and parts of the interpreter are covered in more detail in later sections.

Figure 8-1. Parrot's flow

The flow starts with source code, which is passed into the parser module. The parser processes that source into a form
that the compiler module can handle. The compiler module takes the processed source and emits bytecode, which
Parrot can directly execute. That bytecode is passed into the optimizer module, which processes the bytecode and
produces bytecode that should be faster than what the compiler emitted. Finally, the bytecode is handed off to the
interpreter module, which interprets the bytecode. Since compilation and execution are so tightly woven in Perl, the
control may well end up back at the parser to parse more code.

Parrot's compiler module also has the capability to freeze bytecode to disk and read that frozen bytecode back again,
bypassing the parser and compilation phases entirely. The bytecode can be directly executed, or handed to the
optimizer to work on before execution. This may happen if you've loaded in a precompiled library and want Parrot to
optimize the combination of your code and the library code. The bytecode loader is interesting in its own right, and also
warrants a small section.

8.2.1 Parser

The parser module is responsible for taking source code in and turning it into an Abstract Syntax Tree (AST). An AST is
a digested form of the program, one that's much more amenable to manipulation. In some systems, this task is split
into two parts—the lexing and the parsing—but since the tasks are so closely bound, Parrot combines them into a single
module.

Lexing (or tokenizing) turns a stream of characters into a stream of tokens. It doesn't assign any meaning to those
tokens—that's the job of the parser—but it is smart enough to see that $a = 1 + 2; is composed of 6 tokens ($, a, =, 1,
+, and 2).

Parsing is the task of taking the tokens that the lexer has found and assigning some meaning to them. Sometimes the
parsed output can be directly executed.

Parsing can be a chore, as anyone who's done it before knows. In some cases it can be downright maddening—Perl 5's
parser has over ten thousand lines of C code. Utility programs such as lex and yacc are often used to automate the
generation of parser code. Perl 5 itself uses a yacc-processed grammar to handle some of the task of parsing Perl
code.[1] Rather than going with a custom-built parser for each language, Parrot provides a general-purpose parser built
on top of Perl 6's grammar engine, with hooks for calling out to special-purpose code where necessary. Perl 6
grammars are designed to be powerful enough to handle parsing Perl, so it made good sense to leverage the engine as
a general-purpose parser. Parrot provides some utility code to transform a yacc grammar into a Perl 6 grammar, so
languages that already use yacc can be moved over to Parrot's parser with a minimum amount of fuss. This allows you
to use a yacc grammar instead of a Perl 6 grammar to describe the language being parsed, both because many
languages already have their grammars described with yacc and because a yacc grammar is sometimes a more
appropriate way to describe things.

[1] yacc can handle only part of the task, though. As the saying goes, "The task of parsing Perl is divided between
lex, yacc, smoke, and mirrors."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lex, yacc, smoke, and mirrors."

Parrot does support independent parsers for cases where the Perl 6 grammar engine isn't the appropriate choice. A
language might already have an existing parser available, or different techniques might be in order. The Perl 5 parsing
engine may get embedded this way, as it's easier to embed a quirky existing parser than it is to recreate all the quirks
in a new parser.

8.2.2 Compiler

The compiler module takes the AST that the parser generates and turns it into code that the interpreter engine can
execute. This translation is very straightforward. It involves little more than flattening the AST and running the
flattened tree though a series of substitutions.

The compiler is the least interesting part of Parrot. It transforms one machine representation of your program—the AST
that the parser generated—into another machine representation of your program—the bytecode that the interpreter
needs. It's little more than a simple, rule-based filter module, albeit one that's necessary for Parrot to understand your
source code.

For many languages, the parser and compiler are essentially a single unit. Like the parser, the compiler is pluggable, so
you can load in your own compiler. When not using the Perl 6 grammar engine, the compiler and parser modules will
usually be loaded together. Parrot itself comes with two compiler modules for Parrot assembly and Parrot Intermediate
Representation (PIR) (see Chapter 11). It's likely many compilers will actually emit either assembly or PIR code, rather
than directly emitting bytecode.

8.2.3 Optimizer

The optimizer module takes the AST that the parser generated and the bytecode that the compiler generated, and
transforms the bytecode to make it run faster.

Optimizing code for dynamic languages such as Perl, Python, and Ruby is an interesting task. The languages are so
dynamic that the optimizer can't be sure how a program will actually run. For example, the code:

$a = 0;

for (1..10000) {

 $a++;

}

looks straightforward enough. The variable $a starts at 0, is incremented 10,000 times, and has an end value of 10000.
A standard optimizer would turn that code into the single line:

$a = 10000;

and remove the loop entirely. Unfortunately, that's not necessarily appropriate for Perl. $a could easily be tied, perhaps
representing the position of some external hardware. If incrementing the variable 10,000 times smoothly moves a
stepper motor from 0 to 10,000 in increments of 1, just assigning a value of 10000 to the variable might whip the
motor forward in one step, damaging the hardware. A tied variable might also keep track of the number of times it has
been accessed or modified. Either way, optimizing the loop away changes the semantics of the program in ways the
original programmer didn't want.

Because of the potential for active or tied data, especially for languages as dynamically typed as Perl, optimizing is a
nontrivial task. Other languages, such as C or Pascal, are more statically typed and lack active data, so an aggressive
optimizer is in order for them. Breaking out the optimizer into a separate module allows us to add in optimizations
piecemeal without affecting the compiler. There's a lot of exciting work going into the problem of optimizing dynamic
languages, and we fully expect to take advantage of it where we can.

Optimization is potentially an expensive operation, another good reason to have it in a separate module. Spending 10
seconds optimizing a program that will run in 5 seconds is a huge waste of time when using Perl's traditional compile-
and-go model—optimizing the code will make the program run slower. On the other hand, spending 10 seconds to
optimize a program makes sense if you save the optimized version to disk and use it over and over again. Even if you
save only 1 second per program run, it doesn't take long for the 10-second optimization time to pay off. The default is
to optimize heavily when freezing bytecode to disk and lightly when running directly, but this can be changed with a
command-line switch.

Perl 5, Python, and Ruby all lack a robust optimizer (outside their regular expression engines), so any optimizations we
add will increase their performance. This, we feel, is a good thing.

8.2.4 Interpreter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The interpreter module is the part of the engine that executes the generated bytecode. Calling it an interpreter is
something of a misnomer, since Parrot's core includes both a traditional bytecode interpreter module as well as a high-
performance JIT engine, but you can consider that an implementation detail.

All the interesting things happen inside the interpreter, and the remainder of the chapter is dedicated to the interpreter
and the functions it provides. It's not out of line to consider the interpreter as the real core of Parrot, and to consider
the parser, compiler, and optimizer as utility modules whose ultimate purpose is to feed bytecode to the interpreter.

8.2.5 Bytecode Loader

The bytecode loader isn't part of our block diagram, but it is interesting enough to warrant brief coverage.

The bytecode loader handles loading in bytecode that's been frozen to disk. The Parrot bytecode loader is clever enough
to handle loading in Parrot bytecode regardless of the sort of system that it was saved on, so we have cross-platform
portability. You can generate bytecode on a 32-bit x86 system and load it up on a 64-bit Alpha or SPARC system
without any problems.

The bytecode loading system also has a heuristic engine built into it, so it can identify the bytecode format it's reading.
This means Parrot can not only tell what sort of system Parrot bytecode was generated on so it can properly process it,
but also allows it to identify bytecode generated for other bytecode driven systems, such as .NET, the JVM, and the Z-
machine.[2]

[2] The Z-machine is the interpreter for Infocom text adventures, such as Zork and The Lurking Horror.

In addition to loading in bytecode, the loader is sufficiently clever to recognize source files for any language that has a
registered compiler. It loads and compiles that source as if it were frozen bytecode.

Together with Parrot's loadable opcode library system (something we'll talk about later), this gives Parrot the capability
to load in foreign bytecode formats and transform them into something Parrot can execute. With a sophisticated enough
loader, Parrot can load and execute Java and .NET bytecode and present Java and .NET library code to languages that
generate native Parrot bytecode. This is something of a happy accident. The original purpose of the architecture was to
allow Parrot to load and execute Z-machine bytecode, but happy accidents are the best kind.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.3 The Interpreter
The interpreter is the engine that actually runs the code emitted by the parser, compiler, and optimizer modules. The
Parrot execution engine is a virtual CPU done completely in software. We've drawn on research in CPU and interpreter
design over the past forty years to try and build the best engine to run dynamic languages.

That emphasis on dynamic languages is important. We are not trying to build the fastest C, Forth, Lisp, or Prolog
engine. Each class of languages has its own quirks and emphasis, and no single engine will handle all the different types
of languages well. Trying to design an engine that works equally well for all languages will get you an engine that
executes all of them poorly.

That doesn't mean that we've ignored languages outside our area of primary focus—far from it. We've worked hard to
make sure that we can accommodate as many languages as possible without compromising the performance of our
core language set. We feel that even though we may not run Prolog or Scheme code as fast as a dedicated engine
would, the flexibility Parrot provides to mix and match languages more than makes up for that.

Parrot's core design is that of a register rich CISC CPU, like many of the CISC machines of the past, such as the VAX,
Motorola 68000, and IBM System/3x0. Many of Parrot's basic instructions perform complex operations. It also bears
some resemblance to modern RISC CPUs such as the IBM Power series and Intel Alpha,[3] as it does all its operations
on data in registers. Using a core design similar to older systems gives us decades of compiler research to draw on.
Most compiler research since the early 1970s deals with targeting register systems of one sort or another.

[3] Formerly HP, formerly Compaq, formerly Digital Alpha.

Using a register architecture as the basis for Parrot goes against the current trends in virtual machines, which favor
stack-based approaches. Although a stack approach is simpler to implement, a register system provides a richer set of
semantics. It's also just more pleasant for us assembly old-timers to write code for. Combined with the decades of
sophisticated compiler research, we feel that it's the correct design decision.

8.3.1 Registers

Parrot has four basic types of registers: PMC, string, integer, and floating-point, one for each of the core data types in
Parrot. PMCs, short for Parrot Magic Cookies, are the structures that represent high-level variables such as arrays,
hashes, scalars, and objects. We separate the register types for ease of implementation, garbage collection, and space
efficiency. Since PMCs and strings are garbage-collectable entities, restricting what can access them—strings in string
registers and PMCs in PMC registers—makes the garbage collector a bit faster and simpler. Having integers and floats in
separate register sets makes sense from a space standpoint, since floats are normally larger than integers.

The current Parrot architecture provides 32 of each register type, for a total of 128 registers. Though this may seem
like overkill, compensating for running out of registers can be a significant speed hit, so it's in our best interests to
make sure it happens rarely. Thirty-two is a good compromise between performance and memory usage.

8.3.2 Stacks

Parrot has seven separate stacks, each with a specific purpose. The four register sets each have their own stack for
quickly saving register contents. There is a separate stack dedicated to saving and restoring individual integers, which
the regular expression system uses heavily. The control stack keeps track of control information, exception handlers,
and other such things. Finally, the general-purpose typed stack stores individual values.

The backing stacks for the register sets are somewhat special. Operations on the register stacks don't act on single
registers. The engine pushes and pops entire register sets in one operation. This may seem somewhat unusual, but it
makes the primary use of these stacks—to save registers across function calls—very fast. A save or restore operation is
essentially a single memory copy operation, something that's highly optimized just about everywhere.[4] The integer
stack is specifically designed to hold integers. Since it doesn't have to be general-purpose, integer stack operations can
be faster than operations on the general-purpose stack—a speed gain the regular expression code makes use of.
Regular expressions make heavy use of integer code, as they move back and forth within strings, and make heavy use
of the integer stack to manage backtracking information.

[4] The SPARC processor, for example, has a cache-friendly memory copy as a core operation.

The control stack is private to the interpreter, so user code can't directly access it. The interpreter engine uses it to
manage exception handlers, return locations for function calls, and track other internal data. User code can inspect the
stack through Parrot's introspective features.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

stack through Parrot's introspective features.

Finally, the general-purpose stack is used to save and restore individual registers. It's a typed stack, so it doesn't allow
you to do things like push an integer register onto the stack and pop the value into a string register. For compiled code,
this stack is used if a routine needs more than 32 registers of the same type. The extra values are pushed on and
popped off the stack in an operation called register spilling. This stack is also used when Parrot runs code designed for a
stack machine such as the JVM or .NET. Stack-based code is less efficient than register-based code, but we can still run
it.

All of Parrot's stacks are segmented—they're composed of a set of stack pieces instead of a single chunk of memory.
Segmenting has a small performance impact, but it allows us to make better usage of available memory. Traditional
stacks are composed of a single chunk of memory, since this makes it faster to read from and write to the stack.
Usually, when you run off the end of that chunk of memory your program crashes. To avoid this, most systems allocate
a large stack. This isn't much of a problem if you have only a single stack, but it doesn't work well in today's
multithreaded world, where each thread has to have its own stack.

Another pleasant benefit of segmenting the stacks is that it makes supporting coroutines and continuations much
easier. It is much easier to save off part of a segmented stack. Combined with Parrot's copy-on-write features, this
makes for efficient continuations and coroutines. It may not be a feature that many folks will use, but it's a pleasant
fall-out from other things.

Interestingly, while Parrot's stacks look and act like stacks in all but the most extreme circumstances, they're really
trees. Each subroutine (and potentially each block, as they're occasionally the same thing) gets a fresh stack frame,
linked to the stack of its caller. Those stack frames will be cleaned up by the garbage collector when there are no
outstanding references to them, though it's not guaranteed to happen immediately.

8.3.3 Strings

Text data is deceptively complex, so Parrot has strings as a fundamental data type. We do this out of sheer practicality.
We know strings are complex and error-prone, so we implement them only once. All languages that target Parrot can
share the same implementation, and don't have to make their own mistakes.

The big problem with text is the vast number of human languages and the variety of conventions around the world for
dealing with it. Long ago, 7-bit ASCII with 127 characters was sufficient. Computers were limited and mostly used in
English, regardless of the user's native language. These heavy restrictions were acceptable because the machines of the
day were so limited that any other option was too slow. Also, most people using computers at the time were fluent in
English either as their native language or a comfortable second language.

That day passed quite a few years ago. Many different ways of representing text have sprung up, from the various
multibyte Japanese and Chinese representations—designed for languages with many thousands of characters—to a half
dozen or so European representations, which take only a byte but disagree on what characters fit into that byte. The
Unicode consortium has been working for years on the Unicode standard to try and unify all the different schemes, but
full unification is still years away, if it ever happens.

In the abstract, strings are a series of integers with meaning attached to them, but getting from real-world data to
abstract integers isn't as simple as you might want. There are three important things associated with string data—
encoding, character set, and language—and Parrot's string system knows how to deal with them.

A string's encoding says how to turn data from a stream of bytes to a stream of characters represented by integers.
Something like ASCII data is simple to deal with, since each character is a single byte, and characters range in value
from 0 to 255. UTF-8, one of the Unicode encodings, is more complex—a single character can take anywhere from one
to six bytes.

The character set for a string tells Parrot what each of the integers actually represents. Parrot won't get too far if it
doesn't know that 65 is a capital "A" in an ASCII or Unicode character stream, for example.

Finally, the language for a string determines how the string behaves in some contexts. Different languages have
different rules for sorting and case-folding characters. Whether an accented character keeps its accent when upper-
cased or lowercased depends on the language that the string came from.

The capability of translating strings from one encoding to another and one character set to another, and to determine
when it's needed, is built into Parrot. The I/O and regular expression systems fully exploit Parrot's core string
capabilities, so any language that uses Parrot's built-in string functionality gets this for free. Since properly
implementing even a single system like Unicode is fraught with peril, this makes the job of people writing languages
that target Parrot (including Perl 6) much easier.

While Parrot provides these facilities, languages aren't required to make use of them. Perl 6, for example, generally
mandates that all strings will be treated as if they are Unicode. In this case Parrot's multilingual capabilities mainly act
as filters to translate to and from Unicode. Parrot presents all the data as if it were Unicode, but only translates non-
Unicode data to Unicode in situations where your program may notice.

Unicode is Parrot's character set of last resort when it needs one. We use IBM's ICU Unicode library to do all the heavy
lifting, since writing a properly done Unicode library is a nontrivial undertaking. It makes more sense to use a well-
tested and debugged library than it does to try and reimplement Unicode again.

8.3.4 Variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Variables are a fundamental construct in almost all computer languages.[5] With low-level languages such as C,
variables are straightforward—they are either basic hardware constructs like a 32-bit integer, a 64-bit IEEE floating-
point number, or the address of some location in memory, or they're a structure containing basic hardware constructs.
Exchanging variables between low-level languages is simple because all the languages operate on essentially the same
things.

[5] With the exception of functional languages, though they can be useful there as well.

Once you get to higher-level languages, variables get more interesting. Object-oriented (OO) languages have the
concept of the object as a fundamental construct, but no two OO languages seem to agree on exactly how objects
should behave or how they should be implemented. Then there are higher-level languages like Perl, with complex
constructs like hashes, arrays, and polymorphic scalars as fundamental constructs.

The first big issue that Parrot had to face was implementing these constructs. The second was doing it in a way that
allowed Perl code to use Ruby objects, Ruby code to use Python objects, and Lisp code to use both. Parrot's solution is
the PMC, or Parrot Magic Cookie.

A PMC is an abstract variable and a base data type—the same way that integers and floating-point numbers are base
data types for hardware CPUs. The languages we're working to support—Perl, Python, and Ruby—have base variables
that are far more complex than just an integer or floating-point number. If we want them to exchange any sort of real
data, they must have a common base variable type. Parrot provides that with the PMC construct. Each language can
build on this common base. More importantly, each language can make sure that their variables behave properly
regardless of which language is using them.

When you think about it, there is a large list of things that a variable should be able to do. You should, for example, be
able to load or store a value, add or subtract it from another variable, call a method or set a property on it, get its
integer or floating-point representation, and so on. What we did was make a list of these functions and make them
mandatory.

Each PMC has a virtual table (vtable) attached to it. This table of function pointers is fixed—the list of functions, and
where they are in the table, is the same for each PMC. All the common operations a program might perform on a
variable—as well as all the operators that might be overloaded for a PMC—have vtable entries.

8.3.5 Bytecode

Like any CPU, software, or hardware, Parrot needs a set of instructions to tell it what to do. For hardware, this is a
stream of executable code or machine language. For Parrot, this is bytecode. Calling it bytecode isn't strictly accurate,
since the individual instructions are 32 bits each rather than 8 bits each, but since it's the common term for most other
virtual machines, it's the term we use.

Each instruction—also known as an opcode—tells the interpreter engine what to do. Some opcodes are very low level,
such as the one to add two integers together. Others are significantly more complex, like the opcode to take a
continuation.

Parrot's bytecode is designed to be directly executable. The code on disk can be run by the interpreter without needing
any translation. This gets us a number of benefits. Loading is much faster, of course, since we don't have to do much (if
any) processing on the bytecode as it's loaded. It also means we can use special operating system calls that map a file
directly into the memory space of a process. Because of the way this is handled by the operating system,[6] the
bytecode file will be loaded into the system's memory only once, no matter how many processes use the file. This can
save a significant amount of real RAM on server systems. Files loaded this way also get their parts loaded on demand.
Since we don't need to process the bytecode in any way to execute it, if you map in a large bytecode library file, only
those bits of the file your program actually executes will get read in from disk. This can save a lot of time.

[6] Conveniently, this works the same way for all the flavors of Unix, Windows, and VMS.

Parrot creates bytecode in a format optimized for the platform it's built on, since the common case by far is executing
bytecode that's been built on the system you're using. This means that floating-point numbers are stored in the current
platform's native format, integers are in the native size, and both are stored in the byte order for the current platform.
Parrot does have the capability of executing bytecode that uses 32-bit integers and IEEE floating-point numbers on any
platform, so you can build and ship bytecode that can be run by anyone with a Parrot interpreter.

If you do use a bytecode file that doesn't match the current platform's requirements (perhaps the integers are a
different size), Parrot automatically translates the bytecode file as it reads it in. In this case, Parrot does have to read in
the entire file and process it. The sharing and load speed benefits are lost, but it's a small price to pay for the
portability. Parrot ships with a utility to turn a portable bytecode file into a native format bytecode file if the overhead is
too onerous.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.4 I/O, Events, and Threads
Parrot has comprehensive support for I/O, threads, and events. These three systems are interrelated, so we'll treat
them together. The systems we talk about in this section are less mature than other parts of the engine, so they may
change by the time we roll out the final design and implementation.

8.4.1 I/O

Parrot's base I/O system is fully asynchronous I/O with callbacks and per-request private data. Since this is massive
overkill in many cases, we have a plain vanilla synchronous I/O layer that your programs can use if they don't need the
extra power.

Asynchronous I/O is conceptually pretty simple. Your program makes an I/O request. The system takes that request
and returns control to your program, which keeps running. Meanwhile, the system works on satisfying the I/O request.
When the request is satisfied, the system notifies your program in some way. Since there can be multiple requests
outstanding, and you can't be sure exactly what your program will be doing when a request is satisfied, programs that
make use of asynchronous I/O can be complex.

Synchronous I/O is even simpler. Your program makes a request to the system and then waits until that request is
done. There can be only one request in process at a time, and you always know what you're doing (waiting) while the
request is being processed. It makes your program much simpler, since you don't have to do any sort of coordination or
synchronization.

The big benefit of asynchronous I/O systems is that they generally have a much higher throughput than a synchronous
system. They move data around much faster—in some cases three or four times faster. This is because the system can
be busy moving data to or from disk while your program is busy processing data that it got from a previous request.

For disk devices, having multiple outstanding requests—especially on a busy system—allows the system to order read
and write requests to take better advantage of the underlying hardware. For example, many disk devices have built-in
track buffers. No matter how small a request you make to the drive, it always reads a full track. With synchronous I/O,
if your program makes two small requests to the same track, and they're separated by a request for some other data,
the disk will have to read the full track twice. With asynchronous I/O, on the other hand, the disk may be able to read
the track just once, and satisfy the second request from the track buffer.

Parrot's I/O system revolves around a request. A request has three parts: a buffer for data, a completion routine, and a
piece of data private to the request. Your program issues the request, then goes about its business. When the request
is completed, Parrot will call the completion routine, passing it the request that just finished. The completion routine
extracts out the buffer and the private data, and does whatever it needs to do to handle the request. If your request
doesn't have a completion routine, then your program will have to explicitly check to see if the request was satisfied.

Your program can choose to sleep and wait for the request to finish, essentially blocking. Parrot will continue to process
events while your program is waiting, so it isn't completely unresponsive. This is how Parrot implements synchronous
I/O—it issues the asynchronous request, then immediately waits for that request to complete.

The reason we made Parrot's I/O system asynchronous by default was sheer pragmatism. Network I/O is all
asynchronous, as is GUI programming, so we knew we had to deal with asynchrony in some form. It's also far easier to
make an asynchronous system pretend to be synchronous than it is the other way around. We could have decided to
treat GUI events, network I/O, and file I/O all separately, but there are plenty of systems around that demonstrate
what a bad idea that is.

8.4.2 Events

An event is a notification that something has happened: the user has manipulated a GUI element, an I/O request has
completed, a signal has been triggered, or a timer has expired. Most systems these days have an event handler,[7]

because handling events is so fundamental to modern GUI programming. Unfortunately, the event handling system is
not integrated, or poorly integrated, with the I/O system, leading to nasty code and unpleasant workarounds to try and
make a program responsive to network, file, and GUI events simultaneously. Parrot presents a unified event handling
system, integrated with its I/O system, which makes it possible to write cross-platform programs that work well in a
complex environment.

[7] Often two or three, which is something of a problem.

Parrot's events are fairly simple. An event has an event type, some event data, an event handler, and a priority. Each
thread has an event queue, and when an event happens it's put into the right thread's queue (or the default thread
queue in those cases where we can't tell which thread an event was destined for) to wait for something to process it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

queue in those cases where we can't tell which thread an event was destined for) to wait for something to process it.

Any operation that would potentially block drains the event queue while it waits, as do a number of the cleanup opcodes
that Parrot uses to tidy up on scope exit. Parrot doesn't check each opcode for an outstanding event for pure
performance reasons, as that check gets expensive quickly. Still, Parrot generally ensures timely event handling, and
events shouldn't sit in a queue for more than a few milliseconds unless event handling has been explicitly disabled.

When Parrot does extract an event from the event queue, it calls that event's event handler, if it has one. If an event
doesn't have a handler, Parrot instead looks for a generic handler for the event type and calls it instead. If for some
reason there's no handler for the event type, Parrot falls back to the generic event handler, which throws an exception
when it gets an event it doesn't know how to handle. You can override the generic event handler if you want Parrot to
do something else with unhandled events, perhaps silently discarding them instead.

Because events are handled in mainline code, they don't have the restrictions commonly associated with interrupt-level
code. It's safe and acceptable for an event handler to throw an exception, allocate memory, or manipulate thread or
global state safely. Event handlers can even acquire locks if they need to, though it's not a good idea to have an event
handler blocking on lock acquisition.

Parrot uses the priority on events for two purposes. First, the priority is used to order the events in the event queue.
Events for a particular priority are handled in a FIFO manner, but higher-priority events are always handled before
lower-priority events. Parrot also allows a user program or event handler to set a minimum event priority that it will
handle. If an event with a priority lower than the current minimum arrives, it won't be handled, instead it will sit in the
queue until the minimum priority level is dropped. This allows an event handler that's dealing with a high-priority event
to ignore lower-priority events.

User code generally doesn't need to deal with prioritized events, so programmers should adjust event priorities with
care. Adjusting the default priority of an event, or adjusting the current minimum priority level, is a rare occurrence.
It's almost always a mistake to change them, but the capability is there for those rare occasions where it's the correct
thing to do.

8.4.3 Signals

Signals are a special form of event, based on the Unix signal mechanism. Parrot presents them as mildly special, as a
remnant of Perl's Unix heritage, but under the hood they're not treated any differently from any other event.

The Unix signaling mechanism is something of a mash, having been extended and worked on over the years by a small
legion of undergrad programmers. At this point, signals can be divided into two categories, those that are fatal, and
those that aren't.

Fatal signals are things like SIGKILL, which unconditionally kills a process, or SIGSEGV, which indicates that the process
has tried to access memory that isn't part of your process. There's no good way for Parrot to catch these signals, so
they remain fatal and will kill your process. On some systems it's possible to catch some of the fatal signals, but Parrot
code itself operates at too high a level for a user program to do anything with them—they must be handled with
special-purpose code written in C or some other low-level language. Parrot itself may catch them in special
circumstances for its own use, but that's an implementation detail that isn't exposed to a user program.

Nonfatal signals are things such as SIGCHLD, indicating that a child process has died, or SIGINT, indicating that the
user has pressed ^C on the keyboard. Parrot turns these signals into events and puts them in the event queue. Your
program's event handler for the signal will be called as soon as Parrot gets to the event in the queue, and your code
can do what it needs to with it.

SIGALRM, the timer expiration signal, is treated specially by Parrot. Generated by an expiring alarm() system call, this
signal is normally used to provide timeouts for system calls that would otherwise block forever, which is very useful.
The big downside to this is that on most systems there can only be one outstanding alarm() request, and while you can
get around this somewhat with the setitimer call (which allows up to three pending alarms) it's still quite limited.

Since Parrot's I/O system is fully asynchronous and never blocks—even what looks like a blocking request still drains
the event queue—the alarm signal isn't needed for this. Parrot instead grabs SIGALRM for its own use, and provides a
fully generic timer system which allows any number of timer events, each with their own callback functions and private
data, to be outstanding.

8.4.4 Threads

Threads are a means of splitting a process into multiple pieces that execute simultaneously. It's a relatively easy way to
get some parallelism without too much work. Threads don't solve all the parallelism problems your program may have.
Sometimes multiple processes on a single system, multiple processes on a cluster, or processes on multiple separate
systems are better. But threads do present a good solution for many common cases.

All the resources in a threaded process are shared between threads. This is simultaneously the great strength and great
weakness of threads. Easy sharing is fast sharing, making it far faster to exchange data between threads or access
shared global data than to share data between processes on a single system or on multiple systems. Easy sharing is
dangerous, though, since without some sort of coordination between threads it's easy to corrupt that shared data. And,
because all the threads are contained within a single process, if any one of them fails for some reason the entire
process, with all its threads, dies.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

process, with all its threads, dies.

With a low-level language such as C, these issues are manageable. The core data types, integers, floats, and pointers
are all small enough to be handled atomically. Composite data can be protected with mutexes, special structures that a
thread can get exclusive access to. The composite data elements that need protecting can each have a mutex
associated with them, and when a thread needs to touch the data it just acquires the mutex first. By default there's
very little data that must be shared between threads, so it's relatively easy, barring program errors, to write thread-
safe code if a little thought is given to the program structure.

Things aren't this easy for Parrot, unfortunately. A PMC, Parrot's native data type, is a complex structure, so we can't
count on the hardware to provide us atomic access. That means Parrot has to provide atomicity itself, which is
expensive. Getting and releasing a mutex isn't really that expensive in itself. It has been heavily optimized by platform
vendors because they want threaded code to run quickly. It's not free, though, and when you consider that running flat-
out Parrot does one PMC operation per 100 CPU cycles, even adding an additional 10 cycles per operation can slow
down Parrot by 10%.

For any threading scheme, it's important that your program isn't hindered by the platform and libraries it uses. This is a
common problem with writing threaded code in C, for example. Many libraries you might use aren't thread-safe, and if
you aren't careful with them your program will crash. Although we can't make low-level libraries any safer, we can
make sure that Parrot itself won't be a danger. There is very little data shared between Parrot interpreters and threads,
and access to all the shared data is done with coordinating mutexes. This is invisible to your program, and just makes
sure that Parrot itself is thread-safe.

When you think about it, there are really three different threading models. In the first one, multiple threads have no
interaction among themselves. This essentially does with threads the same thing that's done with processes. This works
very well in Parrot, with the isolation between interpreters helping to reduce the overhead of this scheme. There's no
possibility of data sharing at the user level, so there's no need to lock anything.

In the second threading model, multiple threads run and pass messages back and forth between each other. Parrot
supports this as well, via the event mechanism. The event queues are thread-safe, so one thread can safely inject an
event into another thread's event queue. This is similar to a multiple-process model of programming, except that
communication between threads is much faster, and it's easier to pass around structured data.

In the third threading model, multiple threads run and share data between themselves. Although Parrot can't guarantee
that data at the user level remains consistent, it can make sure that access to shared data is at least safe. We do this
with two mechanisms.

First, Parrot presents an advisory lock system to user code. Any piece of user code running in a thread can lock a
variable. Any attempt to lock a variable that another thread has locked will block until the lock is released. Locking a
variable only blocks other lock attempts. It does not block plain access. This may seem odd, but it's the same scheme
used by threading systems that obey the POSIX thread standard, and has been well tested in practice.

Second, Parrot forces all shared PMCs to be marked as such, and all access to shared PMCs must first acquire that
PMC's private lock. This is done by installing an alternate vtable for shared PMCs, one that acquires locks on all its
parameters. These locks are held only for the duration of the vtable function, but ensure that the PMCs affected by the
operation aren't altered by another thread while the vtable function is in progress.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.5 Objects
Perl 5, Perl 6, Python, and Ruby are all OO languages in some form or other, so Parrot has to have core support for
objects and classes. Unfortunately, all these languages have somewhat different object systems, which made the design
of Parrot's object system somewhat tricky.[8] It turns out that if you draw the abstraction lines in the right places,
support for the different systems is easily possible. This is especially true if you provide core support for things like
method dispatch, which the different object systems can use and override.

[8] As we write this, it's still in progress, though it should be done by the time this book is in print.

8.5.1 Generic Object Interfacing

Parrot's object system is very simple—in fact, a PMC only has to handle method calls to be considered an object. Just
handling methods covers well over 90% of the object functionality that most programs use, since the vast majority of
object access is via method calls. This means user code that does the following:

object = some_constructor(1, 2, "foo");

object.bar(12);

will work just fine, no matter what language the class that backs DEFANGED_object is written in, if DEFANGED_object even
has a class backing it. It could be Perl 5, Perl 6, Python, Ruby, or even Java, C#, or Common Lisp; it doesn't matter.

Objects may override other functionality as well. For example, Python objects use the basic PMC property mechanism to
implement object attributes. Both Python and Perl 6 mandate that methods and properties share the same namespace,
with methods overriding properties of the same name.

8.5.2 Parrot Objects

When we refer to Parrot objects we're really talking about Parrot's default base object system. Any PMC can have
methods called on it and act as an object, and Parrot is sufficiently flexible to allow for alternate object systems, such
as the one Perl 5 uses. However, in this section, we're talking about what we provide in our standard object system.
Parrot's standard object system is pretty traditional—it's a class-based system with multiple inheritance, interface
declarations, and slot-based objects.

Each object is a member of a class, which defines how the object behaves. Each class in an object's hierarchy can have
one or more attributes—that is, named slots that are guaranteed to be in each object of that class. The names are all
class-private so there's no chance of collision. Objects are essentially little fixed-sized arrays that know what class they
belong to. Most of the "smarts" for an object lives in that object's class. Parrot allows you to add attributes at runtime
to a class. If you do, then all objects with that class in their inheritance hierarchy will get the new attribute added into
it. Though this is potentially expensive, it's a very useful feature for languages that may extend a class at runtime.

Parrot uses a multiple inheritance scheme for classes. Each class can have two or more parent classes, and each of
those classes can have multiple parents. A class has control over how methods are searched for, but the default search
is a left-most, depth-first search, the same way that Perl 5 does it. Individual class implementers may change this if
they wish, but only the class an object is instantiated into controls the search order. Parrot also fully supports correct
method redispatch, so a method may properly call the next method in the hierarchy even in the face of multiple
parents. One limitation we place on inheritance is that a class is instantiated in the hierarchy only once, no matter how
many times it appears in class and parent class inheritance lists.

Each class has its own vtable, which all objects of that class share. This means that with the right vtable methods every
object can behave like a basic PMC type in addition to an object. For unary operations such as load or store, the default
class vtable first looks for the appropriately named method in the class hierarchy. For binary operators such as addition
and subtraction, it first looks in the multimethod dispatch table. This is only the default, and individual languages may
make different choices. Objects that implement the proper methods can also act as arrays or hashes.

Finally, Parrot implements an interface declaration scheme. You may declare that a class does one or more named
interfaces, and later query objects at runtime to see if they implement an interface. This doesn't put any methods in a
class. For that you need to either inherit from a class that does or implement them by hand. All it does is make a
declaration of what your class does. Interface declarations are inheritable as well, so if one of your parent classes
declares that it implements an interface then your class will as well. This is used in part to implement Perl 6's roles.

8.5.3 Mixed Class-Type Support

The final piece of Parrot's object system is the support for inheriting from classes of different types. This could be a Perl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The final piece of Parrot's object system is the support for inheriting from classes of different types. This could be a Perl
6 class inheriting from a Perl 5 class, or a Ruby class inheriting from a .NET class. It could even involve inheriting from
a fully compiled language such as C++ or Objective C, if proper wrapping is established.[9] As we talked about earlier,
as long as a class either descends from the base Parrot class or has a small number of required properties, Parrot can
subclass it. This potentially goes both ways, as any class system that knows how to subclass from Parrot's base class
can inherit from it.

[9] DEFANGED_Objective C is particularly simple, as it has a fully introspective class system that allows for run-
time class creation. Inheritance can go both ways between it and Parrot.

Allowing classes to inherit from other classes of a different base type does present some interesting technical issues.
The inheritance isn't 100% invisible, though you have to head off into the corner cases to find the cracks. It's an
important feature to design into Parrot, so we can subclass Perl 5 style classes, and they can subclass Parrot classes.
Being able to subclass C++ and Objective C classes is a potential bonus. Python, Ruby, and Perl 6 all share a common
(but hidden) base class in Parrot's base object type, so they can inherit from each other without difficulty.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.6 Advanced Features
Since the languages Parrot targets (like Perl and Ruby) have sophisticated concepts as core features, it's in Parrot's
best interest to have core support for them. This section covers some (but not all) of these features.

8.6.1 Garbage Collection

It's expected that modern languages have garbage collection built in. The programmer shouldn't have to worry about
explicitly cleaning up after dead variables, or even identifying them. For interpreted languages, this requires support
from the interpreter engine, so Parrot provides that support.

Parrot has two separate allocation systems built into it. Each allocation system has its own garbage collection scheme.
Parrot also has some strict rules over what can be referenced and from where. This allows it to have a more efficient
garbage collection system.

The first allocation system is responsible for PMC and string structures. These are fixed-sized objects that Parrot
allocates out of arenas, which are pools of identically sized things. Using arenas makes it easy for Parrot to find and
track them, and speeds up the detection of dead objects.

Parrot's dead object detection system works by first running through all the arenas and marking all strings and PMCs as
dead. It then runs through the stacks and registers, marking all strings and PMCs they reference as alive. Next, it
iteratively runs through all the live PMCs and strings and marks everything they reference as alive. Finally, it sweeps
through all the arenas looking for newly dead PMCs and strings, which it puts on the free list. At this point, any PMC
that has a custom destruction routine, such as an object with a DESTROY method, has its destruction routine called. The
dead object detector is triggered whenever Parrot runs out of free objects, and can be explicitly triggered by running
code. Often a language compiler will force a dead object sweep when leaving a block or subroutine.

Parrot's memory allocation system is used to allocate space for the contents of strings and PMCs. Allocations don't have
a fixed size; they come from pools of memory that Parrot maintains. Whenever Parrot runs out of memory in its
memory pools, it makes a compacting run—squeezing out unused sections from the pools. When it's done, one end of
each pool is entirely actively used memory, and the other end is one single chunk of free memory. This makes
allocating memory from the pools faster, as there's no need to walk a free list looking for a segment of memory large
enough to satisfy the request for memory. It also makes more efficient use of memory, as there's less overhead than in
a traditional memory allocation system.

Splitting memory pool compaction from dead object detection has a nice performance benefit for Perl and languages
like it. For most Perl programs, the interpreter allocates and reallocates far more memory for string and variable
contents than it does actual string and variable structures. The structures are reused over and over as their contents
change. With a traditional single-collector system, each time the interpreter runs out of memory it has to do a full scan
for dead objects and compact the pools after. With a split system, Parrot can just sweep through the variables it thinks
are live and compact their contents. This does mean that Parrot will sometimes move data for variables and strings that
are really dead because it hasn't found that out yet. That expense is normally much less than the expense of doing a
full tracing run to find out which variables are actually dead.

Parrot's allocation and collection systems have some compromises that make interfacing with low-level code easier. The
structure that describes a PMC or string is guaranteed not to move over the lifetime of the string or variable. This allows
C code to store pointers to variables in internal structures without worrying that what they're referencing may move. It
also means that the garbage collection system doesn't have to worry about updating pointers that C code might hold,
which it would have to do if PMC or string structures could move.

8.6.2 Multimethod Dispatching

Multimethod dispatching (also known as signature-based dispatching) is a powerful technique that uses the parameters
of a function or method call to help decide at runtime which function or method Parrot should call. This is one of the
new features being built into Perl 6. It allows you to have two or more subroutines or methods with the same name that
differ only in the types of their arguments.

In a standard dispatch system, each subroutine or method name must be unique within a namespace. Attempting to
create a second routine with the same name either throws an error or overlays the original one. This is certainly
straightforward, but in some circumstances it leads to code that looks like:

sub foo {

 my ($self, $arg) = @_;

 if ($arg->isa("Foo")) {

 # Do something with a Foo arg

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 } elsif ($arg->isa("Bar")) {

 # Do something with a Bar arg

 } elsif ($arg->isa("Baz")) {

 # Do something with a Baz arg

 } else {

 # . . .

 }

}

This method effectively dispatches both on the type of the object and on the type of the argument to the method. This
sort of thing is common, especially in operator overloading functions. Manually checking the types of the arguments to
select an action is both error-prone and difficult to extend. Multimethod dispatch solves this problem.

With multimethod dispatch, there can be more than one method or subroutine with the same name as long as each
variant has different parameters in its declaration. When code calls a method or subroutine that participates in multiple
dispatch, the system chooses the variant that most closely matches the types of the parameters in the call.

One very notable thing about subs and methods that do multimethod dispatch is that the named subroutines and
methods live outside of any namespace. By default, when searching for a method or subroutine, Parrot first looks for an
explict sub or method of that name in the current namespace (or the inheritance hierarchy of an object), then for the
default subroutine or method (AUTOLOAD or its equivalent) in the inheritance hierarchy, and only when those fail will it
look for a multimethod dispatch version of the subroutine or method. Since Parrot allows individual PMC classes to
control how their dispatching is done, this sequence may be changed on a per-class basis if need be.

Parrot itself makes heavy use of multimethod dispatch, with most of the core PMC classes using it to provide operator
overloading. The only reason we don't use it for all our operator dispatching is that some of the languages we're
interested in require a left-side wins scheme. It's so heavily used for operator overloading, in fact, that we actually have
two separate versions of multiple dispatch built into Parrot, one specially tailored to operator overloading and a more
general version for normal subroutine and method dispatch.

8.6.3 Continuations

Continuations are possibly the most powerful high-level flow control construct. Originating with lambda calculus, and
built into Lisp over thirty years ago, continuations can be thought of as a closure for control flow. They not only capture
their lexical scope, which gets restored when they're invoked, but also capture their call stack, so when they're invoked
it's as if you never left the spot where they were created. Like closures, though, while they capture the variables in
scope when the continuation is taken, they don't capture the values of the variables. When you invoke a continuation
it's not like rolling back a transaction.

Continuations are phenomenally powerful, and have the undeserved reputation of being bizarre and mind-warping
things. This turns out not to be the case. Originally we put continuations into Parrot to support Ruby, which has them.
This decision turned out to be fortuitous.

In a simple call/return system, which many languages use, when you make a subroutine call the return address is
pushed onto a stack somewhere. When the subroutine is done it takes the address off the stack and returns there. This
is a simple and straightforward operation, and quite fast. The one disadvantage is that with a secure system the calling
routine needs to preserve any information that is important before making the call and restore it on return.

An alternative calling scheme is called Continuation Passing Style (CPS). With CPS, rather than pushing a return address
onto the stack you create a return continuation and pass that into the subroutine as a parameter. When the subroutine
is done it invokes the return continuation, effectively returning to the caller with the caller's environment automatically
restored. This includes not only things like the call stack and lexical variables, but also meta-information like security
credentials.

When we were originally designing Parrot we'd planned on the simpler call/return style, with the caller preserving
everything important before the call, and restoring it afterwards. Three things soon became clear: we were saving and
restoring a lot of individual pieces; we were going to have to add new pieces in the future; and there wasn't any
difference between what we were doing for a call and what we were doing for a continuation, except that the call was a
lot more manual.

The future-proofing was what finally made the decision. Parrot is making a strong guarantee of backward compatibility,
which means that code compiled to Parrot bytecode once we've released will run safely and unchanged on all future
version of Parrot. If we require all the individual pieces of the environment (registers, lexical pads, nested namespaces,
opcode libraries, stack pointers, exception handlers, and assorted things) to be saved manually for a subroutine call, it
means that we can't add any new pieces in the future, as then old code would no longer work properly. We briefly toyed
with the idea of an opcode to package up the entire environment in one go. Then we realized that package was a
continuation, and as such we might as well just go all the way and use them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

continuation, and as such we might as well just go all the way and use them.

As a result, Parrot implements a full CPS system internally, and uses it for all subroutine and method calls. We also
have the simpler call/return style of flow control available for languages that don't need the heavier-weight call system,
as well as for compilers to use for internal processing and optimization. We do go to some lengths to hide the
continuations. PIR code, for example, allows compiler writers to create subroutines and methods (and calls to them)
that conform to Parrot's CPS mechanism without ever touching continuations directly. We then have the benefits of
what appears to be a simple calling scheme, secure future-proofing, and the full power of continuations for languages
that want them.

8.6.4 Coroutines

A coroutine is a subroutine or method that can suspend itself partway through, then later pick up where it left off. This
isn't quite the same thing as a continuation, though it may seem so at first. Coroutines are often used to implement
iterators and generators, as well as threads on systems that don't have native threading support. Since they are so
useful, and since Perl 6 and Python provide them either directly or as generators, Parrot has support for them built in.

Coroutines present some interesting technical challenges. Calling into an existing coroutine requires reestablishing not
only the lexical state and potentially the hypothetical state of variables, but also the control state for just the routine. In
the presence of exceptions they're a bit more complex than plain subroutines and continuations, but they're still very
useful things, and as such we've given them our full support.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.7 Conclusion
We've touched on much of Parrot's core functionality, but certainly not all. We hope we've given you enough of a feel
for how Parrot works to expand your knowledge with the Parrot documentation and source.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 9. Parrot Assembly Language
Parrot assembly (PASM) is an assembly language written for Parrot's virtual CPU. PASM has an interesting mix of
features. Because it's an assembly language, it has many low-level features, such as flow control based on branches
and jumps, and direct manipulation of values in the software registers and on the stacks. Basic register operations or
branches are generally a single CPU instruction.[1] On the other hand, because it's designed to implement dynamic
high-level languages, it has support for many advanced features, such as lexical and global variables, objects, garbage
collection, continuations, coroutines, and much more.

[1] This means the JIT run-time has a performance of up to one PASM instruction per processor cycle.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.1 Getting Started
The first step before you start playing with PASM code is to get a copy of the source code and compile it. There is some
information on this in Section 2.2.2.1 in Chapter 2. For more information and updates, see http://www.parrotcode.org
and the documentation in the distributed code.

The basic steps are:[2]

[2] Not all operating systems have make. Check the documentation for instructions for systems that aren't Unix-
based.

$ perl Configure.pl

$ make

$ make test

Once you've compiled Parrot, create a small test file in the main parrot directory. We'll call it fjord.pasm.

print "He's pining for the fjords.\n"

end

.pasm is the standard extension for Parrot assembly language source files. Now you can run this file with:

$./parrot fjord.pasm

And watch the result of the program execution. Instead of executing the program immediately, you could also compile
it to bytecode:

$./parrot --output fjord.pbc fjord.pasm

You specify the name of the output bytecode file with the --output (or -o) switch. .pbc is the standard extension for
Parrot bytecode. To execute the compiled bytecode, run it through the parrot interpreter:

$./parrot fjord.pbc

That's all there is to it.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.2 Basics
PASM has a simple syntax. Each statement stands on its own line. Statements begin with a Parrot instruction code
(commonly referred to as an "opcode"). Arguments follow the opcode, separated by commas:

[label] opcode dest, source, source . . .

If the opcode returns a result, it is stored in the first argument. Sometimes the first register is both a source value and
the destination of the result. The arguments are either registers or constants, though only source arguments can be
constants:

LABEL:

 print "The answer is: "

 print 42

 print "\n"

 end # halt the interpreter

A label names a line of code so other instructions can refer to it. Label names consist of letters, numbers, and
underscores. Simple labels are often all caps to make them stand out more clearly. A label definition is simply the name
of the label followed by a colon. It can be on its own line:

LABEL:

 print "Norwegian Blue\n"

or before a statement on the same line:

LABEL: print "Norwegian Blue\n"

Comments are marked with the hash sign (#) and continue to the end of the line.

POD (plain old documentation) markers are ignored by Parrot. An equals sign in the first column marks the start of a
POD block, and a =cut marks the end of a POD block.

=head1

 . . .

=cut

9.2.1 Constants

Integer constants are signed integers.[3] Integer constants can have a positive (+) or negative (-) sign in front. Binary
integers are preceded by 0b or 0B, and hexadecimal integers are preceded by 0x or 0X:

[3] The size of integers is defined when Parrot is configured. It's typically 32 bits on 32-bit machines (a range of -
231 to +231-1) and twice that size on 64-bit processors.

print 42 # integer constant

print 0x2A # hexadecimal integer

print 0b1101 # binary integer

print -0b101 # binary integer with sign

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

print -0b101 # binary integer with sign

Floating-point constants can also be positive or negative. Scientific notation provides an exponent, marked with e or E
(the sign of the exponent is optional):

print 3.14159 # floating point constant

print 1.e6 # scientific notation

print -1.23e+45

String constants are wrapped in single or double quotation marks. Quotation marks inside the string must be escaped
by a backslash. Other special characters also have escape sequences. These are the same as for Perl 5's qq() operator:
\t (tab), \n (newline), \r (return), \f (form feed), \\ (literal slash), \" (literal double quote), etc.

print "string\n" # string constant with escaped newline

print "\\" # a literal backslash

print 'that\'s it' # escaped single quote

print 'a\n' # three chars: 'a', a backslash, and a 'n'

9.2.2 Working with Registers

Parrot is a register-based virtual machine. It has four types of register sets with 32 registers in each set. The types are
integers, floating-point numbers, strings, and PMCs (Parrot Magic Cookies). Register names consist of a capital letter
indicating the register set and the number of the register, between 0 and 31. For example:

I0 integer register #0

N11 number or floating point register #11

S2 string register #2

P31 PMC register #31

Integer and number registers hold values, while string and PMC registers contain pointers to allocated memory for a
string header or a PMC.

The length of strings is limited only by your system's virtual memory and by the size of integers on the particular
platform. Parrot can work with strings of different character types and encodings. It automatically converts string
operands with mixed characteristics to Unicode.[4] PMCs are Parrot's low-level objects. They can represent data of any
arbitrary type. The operations (methods) for each PMC class are defined in a fixed vtable, which is a structure
containing function pointers that implement each operation.

[4] This conversion isn't fully implemented yet.

9.2.2.1 Register assignment

The most basic operation on registers is assignment using the set opcode:

set I0, 42 # set integer register #0 to the integer value 42

set N3, 3.14159 # set number register #3 to an approximation of

set I1, I0 # set register I1 to what I0 contains

set I2, N3 # truncate the floating point number to an integer

PASM uses registers where a high-level language would use variables. The exchange opcode swaps the contents of two
registers of the same type:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

registers of the same type:

exchange I1, I0 # set register I1 to what I0 contains

 # and set register I0 to what I1 contains

As we mentioned before, string and PMC registers are slightly different because they hold a pointer instead of directly
holding a value. Assigning one string register to another:

set S0, "Ford"

set S1, S0

set S0, "Zaphod"

print S1 # prints "Ford"

end

doesn't make a copy of the string; it makes a copy of the pointer. Just after set S1, S0, both S0 and S1 point to the same
string. But assigning a constant string to a string register allocates a new string. When "Zaphod" is assigned to S0, the
pointer changes to point to the location of the new string, leaving the old string untouched. So strings act like simple
values on the user level, even though they're implemented as pointers.

Unlike strings, assignment to a PMC doesn't automatically create a new object; it only calls the PMC's vtable method for
assignment. So, rewriting the same example using a PMC has a completely different result:

new P0, .PerlString

set P0, "Ford"

set P1, P0

set P0, "Zaphod"

print P1 # prints "Zaphod"

end

The new opcode creates an instance of the .PerlString class. The class's vtable methods define how the PMC in P0
operates. The first set statement calls P0's vtable method set_string_native, which assigns the string "Ford" to the PMC.
When P0 is assigned to P1:

set P1, P0

it copies the pointer, so P1 and P0 are both aliases to the same PMC. Then, assigning the string "Zaphod" to P0 changes
the underlying PMC, so printing P1 or P0 prints "Zaphod".[5]

[5] Contrast this with assign (in Section 9.3.2 later in this chapter).

9.2.2.2 PMC object types

Internally, PMC types are represented by positive integers, and built-in types by negative integers. PASM provides two
opcodes to deal with types. Use typeof to look up the name of a type from its integer value or to look up the named type
of a PMC. Use find_type to look up the integer value of a named type.

When the source argument is a PMC and the destination is a string register, typeof returns the name of the type:

new P0, .PerlString

typeof S0, P0 # S0 is "PerlString"

print S0

print "\n"

end

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

end

In this example, typeof returns the type name "PerlString".

When the source argument is a PMC and the destination is an integer register, typeof returns the integer representation
of the type:

new P0, .PerlString

typeof I0, P0 # I0 is 36

print I0

print "\n"

end

This example returns the integer representation of PerlString, which is 36.

When typeof's source argument is an integer, it returns the name of the type represented by that integer:

set I1, -100

typeof S0, I1 # S0 is "INTVAL"

print S0

print "\n"

end

In this example typeof returns the type name "INTVAL" because the integer representation of a built-in integer value is -
100.

The source argument to find_type is always a string containing a type name, and the destination register is always an
integer. It returns the integer representation of the type with that name:

find_type I1, "PerlString" # I1 is 36

print I1

print "\n"

find_type I2, "INTVAL" # I2 is -100

print I2

print "\n"

end

Here, the name "PerlString" returns 36, and the name "INTVAL" returns -100.

All Parrot classes inherit from the class default, which has the type number 0. The default class provides some default
functionality, but mainly throws exceptions when the default variant of a method is called (meaning the subclass didn't
define the method). Type number 0 returns the type name "illegal", since no object should ever be created from the
default class:

find_type I1, "fancy_super_long_double" # I1 is 0

print I1

print "\n"

typeof S0, I1 # S0 is "illegal"

print S0

print "\n"

end

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

end

The type numbers are not fixed values. They change whenever a new class is added to Parrot or when the class
hierarchy is altered. An include file containing an enumeration of PMC types (runtime/parrot/include/pmctypes.pasm) is
generated during the configuration of the Parrot source tree. Internal data types and their names are specified in
runtime/parrot/include/datatypes.pasm.

You can generate a complete and current list of valid PMC types by running this command within the main Parrot source
directory:

$ perl classes/pmc2c2.pl --tree classes/*.pmc

which produces output like:

Array

 default

Boolean

 PerlInt

 perlscalar

 scalar

 default

Closure

 Sub

 default

 . . .

The output traces the class hierarchy for each class: Boolean inherits from PerlInt, which is derived from the abstract
perlscalar, scalar, and default classes (abstract classes are listed in lowercase). The actual classnames and their hierarchy
may have changed by the time you read this.

9.2.2.3 Type morphing

The classes PerlUndef, PerlInt, PerlNum, and PerlString implement Perl's polymorphic scalar behavior. Assigning a string to
a number PMC morphs it into a string PMC. Assigning an integer value morphs it to a PerlInt, and assigning undef morphs
it to PerlUndef:

new P0, .PerlString

set P0, "Ford\n"

print P0 # prints "Ford\n"

set P0, 42

print P0 # prints 42

print "\n"

typeof S0, P0

print S0 # prints "PerlInt"

print "\n"

end

P0 starts as a PerlString, but when set assigns it an integer value 42 (replacing the old string value "Ford"), it changes
type to PerlInt.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

type to PerlInt.

9.2.3 Math Operations

PASM has a full set of math instructions. These work with integers, floating-point numbers, and PMCs that implement
the vtable methods of a numeric object. Most of the major math opcodes have two- and three-argument forms:

add I0, I1 # I0 += I1

add I10, I11, I2 # I10 = I11 + I2

The three-argument form of add stores the sum of the last two registers in the first register. The two-argument form
adds the first register to the second and stores the result back in the first register.

The source arguments can be Parrot registers or constants, but they must be compatible with the type of the
destination register. Generally, "compatible" means that the source and destination have to be the same type, but there
are a few exceptions:

sub I0, I1, 2 # I0 = I1 - 2

sub N0, N1, 1.5 # N0 = N1 - 1.5

If the destination register is an integer register, like I0, the other arguments must be integer registers or integer
constants. A floating-point destination, like N0, usually requires floating-point arguments, but many math opcodes also
allow the final argument to be an integer. Opcodes with a PMC destination register may take an integer, floating-point,
or PMC final argument:

mul P0, P1 # P0 *= P1

mul P0, I1

mul P0, N1

mul P0, P1, P2 # P0 = P1 * P2

mul P0, P1, I2

mul P0, P1, N2

Operations on a PMC are implemented by the vtable method of the destination (in the two-argument form) or the left-
source argument (in the three argument form). The result of an operation is entirely determined by the PMC. A class
implementing imaginary number operations might return an imaginary number, for example.

We won't list every math opcode here, but we'll list some of the most common ones. You can get a complete list in
Section 11.1 in Chapter 11.

9.2.3.1 Unary math opcodes

The unary opcodes have either a destination argument and a source argument, or a single argument as destination and
source. Some of the most common unary math opcodes are inc (increment), dec (decrement), abs (absolute value), neg
(negate), and fact (factorial):

abs N0, -5.0 # the absolute value of -5.0 is 5.0

fact I1, 5 # the factorial of 5 is 120

inc I1 # 120 incremented by 1 is 121

9.2.3.2 Binary math opcodes

Binary opcodes have two source arguments and a destination argument. As we mentioned before, most binary math
opcodes have a two-argument form in which the first argument is both a source and the destination. Parrot provides
add (addition), sub (subtraction), mul (multiplication), div (division), and pow (exponent) opcodes, as well as two
different modulus operations. mod is Parrot's implementation of modulus, and cmod is the % operator from the C library.
It also provides gcd (greatest common divisor) and lcm (least common multiple).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It also provides gcd (greatest common divisor) and lcm (least common multiple).

div I0, 12, 5 # I0 = 12 / 5

mod I0, 12, 5 # I0 = 12 % 5

9.2.3.3 Floating-point operations

Although most of the math operations work with both floating-point numbers and integers, a few require floating-point
destination registers. Among these are ln (natural log), log2 (log base 2), log10 (log base 10), and exp (ex), as well as a
full set of trigonometric opcodes such as sin (sine), cos (cosine), tan (tangent), sec (secant), cosh (hyperbolic cosine),
tanh (hyperbolic tangent), sech (hyperbolic secant), asin (arc sine), acos (arc cosine), atan (arc tangent), asec (arc
secant), exsec (exsecant), hav (haversine), and vers (versine). All angle arguments for the trigonometric functions are in
radians:

sin N1, N0

exp N1, 2

The majority of the floating-point operations have a single source argument and a single destination argument. Even
though the destination must be a floating-point register, the source can be either an integer or floating-point number.

The atan opcode also has a three-argument variant that implements C's atan2():

atan N0, 1, 1

9.2.4 Working with Strings

The string operations work with string registers and with PMCs that implement a string class.

Most operations on string registers generate new strings in the destination register. Some operations have an optimized
form that modifies an existing string in place. These are denoted by an _r suffix, as in substr_r.

String operations on PMC registers require all their string arguments to be PMCs.

9.2.4.1 Concatenating strings

Use the concat opcode to concatenate strings. With string register or string constant arguments, concat has both a two-
argument and a three-argument form. The first argument is a source and a destination in the two-argument form:

set S0, "ab"

concat S0, "cd" # S0 has "cd" appended

print S0 # prints "abcd"

print "\n"

concat S1, S0, "xy" # S1 is the string S0 with "xy" appended

print S1 # prints "abcdxy"

print "\n"

end

The first concat concatenates the string "cd" onto the string "ab" in S0. It generates a new string "abcd" and changes S0
to point to the new string. The second concat concatenates "xy" onto the string "abcd" in S0 and stores the new string in
S1.

For PMC registers, concat has only a three-argument form with separate registers for source and destination:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For PMC registers, concat has only a three-argument form with separate registers for source and destination:

new P0, .PerlString

new P1, .PerlString

new P2, .PerlString

set P0, "ab"

set P1, "cd"

concat P2, P0, P1

print P2 # prints abcd

print "\n"

end

Here, concat concatenates the strings in P0 and P1 and stores the result in P2.

9.2.4.2 Repeating strings

The repeat opcode repeats a string a certain number of times:

set S0, "x"

repeat S1, S0, 5 # S1 = S0 x 5

print S1 # prints "xxxxx"

print "\n"

end

In this example, repeat generates a new string with "x" repeated five times and stores a pointer to it in S1.

9.2.4.3 Length of a string

The length opcode returns the length of a string in characters. This won't be the same as the length in bytes for
multibyte encoded strings:

set S0, "abcd"

length I0, S0 # the length is 4

print I0

print "\n"

end

Currently, length doesn't have an equivalent for PMC strings, but it probably will be implemented in the future.

9.2.4.4 Substrings

The simplest version of the substr opcode takes four arguments: a destination register, a string, an offset position, and a
length. It returns a substring of the original string, starting from the offset position (0 is the first character) and
spanning the length:

substr S0, "abcde", 1, 2 # S0 is "bc"

This example extracts a two-character string from "abcde" at a one-character offset from the beginning of the string
(starting with the second character). It generates a new string, "bc", in the destination register S0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(starting with the second character). It generates a new string, "bc", in the destination register S0.

When the offset position is negative, it counts backward from the end of the string. So an offset of -1 starts at the last
character of the string.

substr also has a five-argument form, where the fifth argument is a string to replace the substring. This modifies the
second argument and returns the removed substring in the destination register.

set S1, "abcde"

substr S0, S1, 1, 2, "XYZ"

print S0 # prints "bc"

print "\n"

print S1 # prints "aXYZde"

print "\n"

end

This replaces the substring "bc" in S1 with the string "XYZ", and returns "bc" in S0.

When the offset position in a replacing substr is one character beyond the original string length, substr appends the
replacement string just like the concat opcode. If the replacement string is an empty string, the characters are just
removed from the original string.

When you don't need to capture the replaced string, there's an optimized version of substr that just does a replace
without returning the removed substring.

set S1, "abcde"

substr S1, 1, 2, "XYZ"

print S1 # prints "aXYZde"

print "\n"

end

The PMC versions of substr are not yet implemented.

9.2.4.5 Chopping strings

The chopn opcode removes characters from the end of a string. It takes two arguments: the string to modify and the
count of characters to remove.

set S0, "abcde"

chopn S0, 2

print S0 # prints "abc"

print "\n"

end

This example removes two characters from the end of S0. If the count is negative, that many characters are kept in the
string.

set S0, "abcde"

chopn S0, -2

print S0 # prints "ab"

print "\n"

end

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

end

This keeps the first two characters in S0 and removes the rest. chopn also has a three-argument version that stores the
chopped string in a separate destination register, leaving the original string untouched:

set S0, "abcde"

chopn S1, S0, 1

print S1 # prints "abcd"

print "\n"

end

9.2.4.6 Copying strings

The clone opcode makes a deep copy of a string or PMC. Instead of just copying the pointer, as normal assignment
would, it recursively copies the string or object underneath.

new P0, .PerlString

set P0, "Ford"

clone P1, P0

set P0, "Zaphod"

print P1 # prints "Ford"

end

This example creates an identical, independent clone of the PMC in P0 and puts a pointer to it in P1. Later changes to P0
have no effect on P1.

With simple strings, the copy created by clone, as well as the results from substr, are copy-on-write (COW). These are
rather cheap in terms of memory usage because the new memory location is only created when the copy is assigned a
new value. Cloning is rarely needed with ordinary string registers since they always create a new memory location on
assignment.

9.2.4.7 Converting characters

The chr opcode takes an integer value and returns the corresponding character as a one-character string, while the ord
opcode takes a single character string and returns the integer that represents that character in the string's encoding:

chr S0, 65 # S0 is "A"

ord I0, S0 # I0 is 65

ord has a three-argument variant that takes a character offset to select a single character from a multicharacter string.
The offset must be within the length of the string:

ord I0, "ABC", 2 # I0 is 67

A negative offset counts backward from the end of the string, so -1 is the last character:

ord I0, "ABC", -1 # I0 is 67

9.2.4.8 Formatting strings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.2.4.8 Formatting strings

The sprintf opcode generates a formatted string from a series of values. It takes three arguments: the destination
register, a string specifying the format, and an ordered aggregate PMC (like a PerlArray) containing the values to be
formatted. The format string and the destination register can be either strings or PMCs:

sprintf S0, S1, P2

sprintf P0, P1, P2

The format string is similar to the one for C's sprintf function, but with some extensions for Parrot data types. Each
format field in the string starts with a % and ends with a character specifying the output format. The output format
characters are listed in Table 9-1.

Table 9-1. Format characters
Format Meaning

%c A character

%d A decimal integer

%i A decimal integer

%u An unsigned integer

%o An octal integer

%x A hex integer, preceded by (0x when # is specified)

%X A hex integer with a capital X (when # is specified)

%b A binary integer, preceded by 0b (when # is specified)

%B A binary integer with a capital B (when # is specified)

%p A pointer address in hex

%f A floating-point number

%e A floating-point number in scientific notation (displayed with a lowercase e).

%E The same as %e, but displayed with an uppercase E

%g The same as either %e or %f, whichever fits best.

%G The same as %g, but displayed with an uppercase E

%s A string

Each format field can be specified with several options: flags, width, precision, and size. The format flags are listed in
Table 9-2.

Table 9-2. Format flags
Flag Meaning

0 Pad with zeros.

<space> Pad with spaces.

+ Prefix numbers with a sign.

- Align left.

Prefix a leading 0 for octal, 0x for hex, or force a decimal point.

The width is a number defining the minimum width of the output from a field. The precision is the maximum width for
strings or integers, and the number of decimal places for floating-point fields. If either width or precision is an asterisk
(*), it takes its value from the next argument in the PMC.

The size modifier defines the type of the argument the field takes. The flags are listed in Table 9-3.

Table 9-3. Size flags

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 9-3. Size flags
Character Meaning

h Short or float

l Long

H Huge value (long long or long double)

v INTVAL or FLOATVAL

O opcode_t

P PMC

S String

The values in the aggregate PMC must have a type compatible with the specified size.

Here's a short illustration of string formats:

new P2, .PerlArray

new P0, .PerlInt

set P0, 42

push P2, P0

new P1, .PerlNum

set P1, 10

push P2, P1

sprintf S0, "int %#Px num %+2.3Pf\n", P2

print S0 # prints "int 0x2a num +10.000"

print "\n"

end

The first eight lines create a PerlArray with two elements: a PerlInt and a PerlNum. The format string of the sprintf has two
format fields. The first, %#Px, takes a PMC argument from the aggregate (P) and formats it as a hexadecimal integer
(x), with a leading 0x (#). The second format field, %+2.3Pf, takes a PMC argument (P) and formats it as a floating-
point number (f), with a minimum of two whole digits and a maximum of three decimal places (2.3) and a leading sign
(+).

The test files t/op/string.t and t/src/sprintf.t have many more examples of format strings.

9.2.4.9 Testing for substrings

The index opcode searches for a substring within a string. If it finds the substring, it returns the position where the
substring was found as a character offset from the beginning of the string. If it fails to find the substring, it returns -1:

index I0, "Beeblebrox", "eb"

print I0 # prints 2

print "\n"

index I0, "Beeblebrox", "Ford"

print I0 # prints -1

print "\n"

end

index also has a four-argument version, where the fourth argument defines an offset position for starting the search:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

index also has a four-argument version, where the fourth argument defines an offset position for starting the search:

index I0, "Beeblebrox", "eb", 3

print I0 # prints 5

print "\n"

end

This finds the second "eb" in "Beeblebrox" instead of the first, because the search skips the first three characters in the
string.

9.2.4.10 Joining strings

The join opcode joins the elements of an array PMC into a single string. The second argument separates the individual
elements of the PMC in the final string result.

new P0, .PerlArray

push P0, "hi"

push P0, 0

push P0, 1

push P0, 0

push P0, "parrot"

join S0, "_ _", P0

print S0 # prints "hi_ _0_ _1_ _0_ _parrot"

end

This example builds a PerlArray in P0 with the values "hi", 0, 1, 0, and "parrot". It then joins those values (separated by
the string "_ _") into a single string, and stores it in S0.

9.2.4.11 Splitting strings

Splitting a string yields a new array containing the resulting substrings of the original string. Since regular expressions
aren't implemented yet, the current implementation of the split opcode just splits individual characters, much like Perl
5's split with an empty pattern.

split P0, "", "abc"

set P1, P0[0]

print P1 # 'a'

set P1, P0[2]

print P1 # 'c'

end

This example splits the string "abc" into individual characters and stores them in an array in P0. It then prints out the
first and third elements of the array. For now, the split pattern (the second argument to the opcode) is ignored except
for a test to make sure that its length is zero.

9.2.5 I/O Operations

The I/O subsystem has at least one set of significant revisions ahead, so you can expect this section to change. It's
worth an introduction, though, because the basic set of opcodes is likely to stay the same, even if their arguments and
underlying functionality change.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

underlying functionality change.

9.2.5.1 Open and close a file

The open opcode opens a file for access. It takes three arguments: a destination register, the name of the file, and a
modestring. It returns a ParrotIO object on success and a PerlUndef object on failure. The ParrotIO object hides operating-
system-specific details.

open P0, "people.txt", "<"

The modestring specifies whether the file is opened in read-only (<), write-only (>), read/write (+<), or append mode
(>>).

The close opcode closes a ParrotIO object:

close P0 # close a PIO

9.2.5.2 Output operations

We already saw the print opcode in several examples above. The one-argument form prints a register or constant to
stdout. It also has a two-argument form: the first argument is the ParrotIO object where the value is printed.

print P0, "xxx" # print to PIO in P0

The getstdin, getstdout, and getstderr opcodes return ParrotIO objects for the stdio streams:

getstdin P0

gestdout P0

getstderr P0

Printing to stderr has a shortcut:

printerr "troubles"

getstderr P10

print P10, "troubles" # same

9.2.5.3 Reading from files

The read opcode reads a specified number of bytes from stdin or from a ParrotIO object:

read S0, I0 # read from stdin up to I0 bytes into S0

read S0, P0, I0 # read from the PIO in P0 up to I0 bytes

readline is a variant of read that works with ParrotIO objects. It reads a whole line at a time, terminated by the newline
character:

getstdin P0

readline S0, P0 # read a line from stdin

The seek opcode sets the current file position on a ParrotIO object. It takes four arguments: a destination register, a
ParrotIO object, an offset, and a flag specifying the origin point:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ParrotIO object, an offset, and a flag specifying the origin point:

seek I0, P0, I1, I2

In this example, the position of P0 is set by an offset (I1) from an origin point (I2). 0 means the offset is from the start
of the file, 1 means the offset is from the current position, and 2 means the offset is from the end of the file. The return
value (in I0) is 0 when the position is successfully set and -1 when it fails. seek also has a five-argument form that seeks
with a 64-bit offset, constructed from two 32-bit arguments.

9.2.6 Logical and Bitwise Operations

The logical opcodes evaluate the truth of their arguments. They're often used to make decisions on control flow. Logical
operations are implemented for integers and PMCs. Numeric values are false if they're 0 and true otherwise. Strings are
false if they're the empty string or a single character "0" and true otherwise. PMCs are true when their get_bool vtable
method returns a nonzero value.

The and opcode returns the second argument if it's false and the third argument otherwise:

and I0, 0, 1 # returns 0

and I0, 1, 2 # returns 2

The or opcode returns the second argument if it's true and the third argument otherwise:

or I0, 1, 0 # returns 1

or I0, 0, 2 # returns 2

or P0, P1, P2

Both and and or are short-circuiting. If they can determine what value to return from the second argument, they'll never
evaluate the third. This is significant only for PMCs, as they might have side effects on evaluation.

The xor opcode returns the second argument if it is the only true value, returns the third argument if it is the only true
value, and returns false if both values are true or both are false:

xor I0, 1, 0 # returns 1

xor I0, 0, 1 # returns 1

xor I0, 1, 1 # returns 0

xor I0, 0, 0 # returns 0

The not opcode returns a true value when the second argument is false, and a false value if the second argument is
true:

not I0, I1

not P0, P1

The bitwise opcodes operate on their values a single bit at a time. band, bor, and bxor return a value that is the logical
AND, OR, or XOR of each bit in the source arguments. They each take a destination register and two source registers.
They also have two-argument forms where the destination is also a source. bnot is the logical NOT of each bit in a
single-source argument.

bnot I0, I1

band P0, P1

bor I0, I1, I2

bxor P0, P1, I2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bxor P0, P1, I2

The bitwise opcodes also have string variants for AND, OR, and XOR: bors, bands, and bxors. These take string register
or PMC string source arguments and perform the logical operation on each byte of the strings to produce the final
string.

bors S0, S1

bands P0, P1

bors S0, S1, S2

bxors P0, P1, I2

The bitwise string opcodes only have meaningful results when they're used with simple ASCII strings because the
bitwise operation is done per byte.

The logical and arithmetic shift operations shift their values by a specified number of bits:

shl I0, I1, I2 # shift I1 left by count I2 giving I0

shr I0, I1, I2 # arithmetic shift right

lsr P0, P1, P2 # logical shift right

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.3 Working with PMCs
In most of the examples we've shown so far, PMCs just duplicate the functionality of integers, numbers, and strings.
They wouldn't be terribly useful if that's all they did, though. PMCs offer several advanced features, each with its own
set of operations.

9.3.1 Aggregates

PMCs can define complex types that hold multiple values. These are commonly called "aggregates." The most important
feature added for aggregates is keyed access. Elements within an aggregate PMC can be stored and retrieved by a
numeric or string key. PASM also offers a full set of operations for manipulating aggregate data types.

Since PASM is intended to implement Perl, the two most fully featured aggregates already in operation are arrays and
hashes. Any aggregate defined for any language could take advantage of the features described here.

9.3.1.1 Arrays

The PerlArray PMC is an ordered aggregate with zero-based integer keys. The syntax for keyed access to a PMC puts the
key in square brackets after the register name:

new P0, .PerlArray # obtain a new array object

set P0, 2 # set its length

set P0[0], 10 # set first element to 10

set P0[1], I31 # set second element to I31

set I0, P0[0] # get the first element

set I1, P0 # get array length

A key on the destination register of a set operation sets a value for that key in the aggregate. A key on the source
register of a set returns the value for that key. If you set P0 without a key, you set the length of the array, not one of its
values.[6] And if you assign the PerlArray to an integer, you get the length of the array.

[6] PerlArray is an autoextending array, so you never need to set its length. Other array types may require the
length to be set explicitly.

By the time you read this, the syntax for getting and setting the length of an array may have changed. The change
would separate array allocation (how much storage the array provides) from the actual element count. The currently
proposed syntax uses set to set or retrieve the allocated size of an array, and an elements opcode to set or retreive the
count of elements stored in the array.

set P0, 100 # allocate store for 100 elements

elements P0, 5 # set element count to 5

set I0, P0 # obtain current allocation size

elements I0, P0 # get element count

Some other useful instructions for working with arrays are push, pop, shift, and unshift (you'll find them in Section 11.1 in
Chapter 11).

9.3.1.2 Hashes

The PerlHash PMC is an unordered aggregate with string keys:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The PerlHash PMC is an unordered aggregate with string keys:

new P1, .PerlHash # generate a new hash object

set P1["key"], 10 # set key and value

set I0, P1["key"] # obtain value for key

set I1, P1 # number of entries in hash

The exists opcode tests whether a keyed value exists in an aggregate. It returns 1 if it finds the key in the aggregate
and returns 0 if it doesn't. It doesn't care if the value itself is true or false, only that the key has been set:

new P0, .PerlHash

set P0["key"], 0

exists I0, P0["key"] # does a value exist at "key"

print I0 # prints 1

print "\n"

end

The delete opcode is also useful for working with hashes: it removes a key/value pair.

9.3.1.3 Iterators

Iterators extract values from an aggregate PMC. You create an iterator by creating a new Iterator PMC, and passing the
array to new as an additional parameter:

new P1, .Iterator, P2

The include file iterator.pasm defines some constants for working with iterators. The .ITERATE_FROM_START and
.ITERATE_FROM_END constants are used to select whether an array iterator starts from the beginning or end of the
array. The shift opcode extracts values from the array. An iterator PMC is true as long as it still has values to be
retrieved (tested by unless in the following):

.include "iterator.pasm"

 new P2, .PerlArray

 push P2, "a"

 push P2, "b"

 push P2, "c"

 new P1, .Iterator, P2

 set P1, .ITERATE_FROM_START

iter_loop:

 unless P1, iter_end

 shift P5, P1

 print P5 # prints "a", "b", "c"

 branch iter_loop

iter_end:

 end

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 end

Hash iterators work similarly to array iterators, but they extract keys. With hashes it's only meaningful to iterate in one
direction, since they don't define any order for their keys.

.include "iterator.pasm"

 new P2, .PerlHash

 set P2["a"], 10

 set P2["b"], 20

 set P2["c"], 30

 new P1, .Iterator, P2

 set P1, .ITERATE_FROM_START_KEYS

iter_loop:

 unless P1, iter_end

 shift S5, P1 # one of the keys "a", "b", "c"

 set I9, P2[S5]

 print I9 # prints e.g. 20, 10, 30

 branch iter_loop

iter_end:

 end

9.3.1.4 Data structures

Arrays and hashes can hold any data type, including other aggregates. Accessing elements deep within nested data
structures is a common operation, so PASM provides a way to do it in a single instruction. Complex keys specify a series
of nested data structures, with each individual key separated by a semicolon:

new P0, .PerlHash

new P1, .PerlArray

set P1[2], 42

set P0["answer"], P1

set I1, 2

set I0, P0["answer";I1] # $i = %hash{"answer"}[2]

print I0

print "\n"

end

This example builds up a data structure of a hash containing an array. The complex key P0["answer";I1] retrieves an
element of the array within the hash. You can also set a value using a complex key:

set P0["answer";0], 5 # %hash{"answer"}[0] = 5

The individual keys are integers or strings, or registers with integer or string values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The individual keys are integers or strings, or registers with integer or string values.

9.3.2 PMC Assignment

We mentioned before that set on two PMCs simply aliases them both to the same object, and that clone creates a
complete duplicate object. But if you just want to assign the value of one PMC to another PMC, you need the assign
opcode:

new P0, .PerlInt

new P1, .PerlInt

set P0, 42

set P2, P0

assign P1, P0 # note: P1 has to exist already

inc P0

print P0 # prints 43

print "\n"

print P1 # prints 42

print "\n"

print P2 # prints 43

print "\n"

end

This example creates two PerlInt PMCs: P0 and P1. It gives P0 a value of 42. It then uses set to give the same value to
P2, but uses assign to give the value to P1. When P0 is incremented, P2 also changes, but P1 doesn't. The destination
register for assign must have an existing object of the right type in it, since assign doesn't create a new object (as with
clone) or reuse the source object (as with set).

9.3.3 Properties

PMCs can have additional values attached to them as "properties" of the PMC. What these properties do is entirely up to
the language being implemented. Perl 6 uses them to store extra information about a variable: whether it's a constant,
if it should always be interpreted as a true value, etc.

The setprop opcode sets the value of a named property on a PMC. It takes three arguments: the PMC to be set with a
property, the name of the property, and a PMC containing the value of the property. The getprop opcode returns the
value of a property. It also takes three arguments: the PMC to store the property's value, the name of the property,
and the PMC from which the property value is to be retrieved:

new P0, .PerlString

set P0, "Zaphod"

new P1, .PerlInt

set P1, 1

setprop P0, "constant", P1 # set a property on P0

getprop P3, "constant", P0 # retrieve a property on P0

print P3 # prints 1

print "\n"

end

This example creates a PerlString object in P0, and a PerlInt object with the value 1 in P1. setprop sets a property named
"constant" on the object in P0 and gives the property the value in P1.[7] getprop retrieves the value of the property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"constant" on the object in P0 and gives the property the value in P1.[7] getprop retrieves the value of the property
"constant" on P0 and stores it in P3.

[7] The "constant" property is ignored by PASM, but is significant to the Perl 6 code running on top of it.

Properties are kept in a separate hash for each PMC. Property values are always PMCs, but only references to the actual
PMCs. Trying to fetch the value of a property that doesn't exist returns a PerlUndef.

delprop deletes a property from a PMC:

delprop P1, "constant" # delete property

You can also return a complete hash of all properties on a PMC with prophash:

prophash P0, P1 # set P0 to the property hash of P1

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.4 Flow Control
Although it has many advanced features, at heart PASM is an assembly language. All flow control in PASM—as in most
assembly languages—is done with branches and jumps.

Branch instructions transfer control to a relative offset from the current instruction. The rightmost argument to every
branch opcode is a label, which the assembler converts to the integer value of the offset. You can also branch on a
literal integer value, but there's rarely any need to do so. The simplest branch instruction is branch:

 branch L1 # branch 4

 print "skipped\n"

L1:

 print "after branch\n"

 end

This example unconditionally branches to the location of the label L1, skipping over the first print statement.

Jump instructions transfer control to an absolute address. The jump opcode doesn't calculate an address from a label, so
it's used together with set_addr:

 set_addr I0, L1

 jump I0

 print "skipped\n"

 end

L1:

 print "after jump\n"

 end

The set_addr opcode takes a label or an integer offset and returns an absolute address.

You've probably noticed the end opcode as the last statement in many examples above. This terminates the execution
of the current run loop. Terminating the main bytecode segment (the first run loop) stops the interpreter. Without the
end statement, execution just falls off the end of the bytecode segment, with a good chance of crashing the interpreter.

9.4.1 Conditional Branches

Unconditional jumps and branches aren't really enough for flow control. What you need to implement the control
structures of high-level languages is the ability to select different actions based on a set of conditions. PASM has
opcodes that conditionally branch based on the truth of a single value or the comparison of two values. The following
example has if and unless conditional branches:

 set I0, 0

 if I0, TRUE

 unless I0, FALSE

 print "skipped\n"

 end

TRUE:

 print "shouldn't happen\n"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print "shouldn't happen\n"

 end

FALSE:

 print "the value was false\n"

 end

if branches if its first argument is a true value, and unless branches if its first argument is a false value. In this case, the
if doesn't branch because I0 is false, but the unless does branch. The comparison branching opcodes compare two values
and branch if the stated relation holds true. These are eq (branch when equal), ne (when not equal), lt (when less than),
gt (when greater than), le (when less than or equal), and ge (when greater than or equal). The two compared
arguments must be the same register type:

 set I0, 4

 set I1, 4

 eq I0, I1, EQUAL

 print "skipped\n"

 end

EQUAL:

 print "the two values are equal\n"

 end

This compares two integers, I0 and I1, and branches if they're equal. Strings of different character sets or encodings are
converted to Unicode before they're compared. PMCs have a cmp vtable method. This gets called on the left argument
to perform the comparison of the two objects.

The comparison opcodes don't specify if a numeric or string comparison is intended. The type of the register selects for
integers, floats, and strings. With PMCs, the vtable method cmp or is_equal of the first argument is responsible for
comparing the PMC meaningfully with the other operand. If you need to force a numeric or string comparison on two
PMCs, use the alternate comparison opcodes that end in the _num and _str suffixes.

eq_str P0, P1, label # always a string compare

gt_num P0, P1, label # always numerically

Finally, the eq_addr opcode branches if two PMCs or strings are actually the same object (have the same address), and
the is_null opcode branches if a PMC is NULL (has no assigned address):

eq_addr P0, P1, same_pmcs_found

is_null P2, the_pmc_is_null

9.4.2 Iteration

PASM doesn't define high-level loop constructs. These are built up from a combination of conditional and unconditional
branches. A do while-style loop can be constructed with a single conditional branch:

 set I0, 0

 set I1, 10

REDO:

 inc I0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 inc I0

 print I0

 print "\n"

 lt I0, I1, REDO

 end

This example prints out the numbers 1 to 10. The first time through, it executes all statements up to the lt statement. If
the condition evaluates as true (I0 is less than I1) it branches to the REDO label and runs the three statements in the
loop body again. The loop ends when the condition evaluates as false.

Conditional and unconditional branches can build up quite complex looping constructs, as follows:

 # loop ($i=1; $i<=10; $i++) {

 # print "$i\n";

 # }

loop_init:

 set I0, 1

 branch loop_test

loop_body:

 print I0

 print "\n"

 branch loop_continue

loop_test:

 le I0, 10, loop_body

 branch out

loop_continue:

 inc I0

 branch loop_test

out:

 end

This example emulates a counter-controlled loop like Perl 6's loop keyword or C's for. The first time through the loop it
sets the initial value of the counter in loop_init, tests that the loop condition is met in loop_test, and then executes the
body of the loop in loop_body. If the test fails on the first iteration, the loop body will never execute. The end of
loop_body branches to loop_continue, which increments the counter and then goes to loop_test again. The loop ends when
the condition fails, and it branches to out. The example is more complex than it needs to be just to count to 10, but it
nicely shows the major components of a loop.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.5 Stacks and Register Frames
Parrot provides 32 registers of each type: integer, floating-point number, string, and PMC. This is a generous number of
registers, but it's still too restrictive for the average use. You can hardly limit your code to 32 integers at a time. This is
especially true when you start working with subroutines and need a way to store the caller's values and the subroutine's
values. So, Parrot also provides stacks for storing values outside the 32 registers. Parrot has seven basic stacks, each
used for a different purpose: the user stack, the control stack, the pad stack, and the four register-backing stacks.

9.5.1 User Stack

The user stack, also known as the general-purpose stack, stores individual values. The two main opcodes for working
with the user stack are save , to push a value onto the stack, and restore, to pop one off the stack:

save 42 # push onto user stack

restore I1 # pop off user stack

The one argument to save can be either a constant or a register. The user stack is a typed stack, so restore will only pop
a value into a register of the same type as the original value:

save 1

set I0, 4

restore I0

print I0 # prints 1

end

If that restore were restore N0 instead of an integer register, you'd get an exception, "Wrong type on top of stack!"

A handful of other instructions are useful for manipulating the user stack. rotate_up rotates a given number of elements
on the user stack to put a different element on the top of the stack. The depth opcode returns the number of entries
currently on the stack. The entrytype opcode returns the type of the stack entry at a given depth, and lookback returns
the value of the element at the given depth without popping the element off the stack:

save 1

save 2.3

set S0, "hi\n"

save S0

save P0

entrytype I0, 0

print I0 # prints 4 (PMC)

entrytype I0, 1

print I0 # prints 3 (STRING)

entrytype I0, 2

print I0 # prints 2 (FLOATVAL)

entrytype I0, 3

print I0 # prints 1 (INTVAL)

print "\n"

depth I2 # get entries

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

depth I2 # get entries

print I2 # prints 4

print "\n"

lookback S1, 1 # get entry at depth 1

print S1 # prints "hi\n"

depth I2 # unchanged

print I2 # prints 4

print "\n"

end

This example pushes four elements onto the user stack: an integer, a floating-point number, a string, and a PMC. It
checks the entrytype of all four elements and prints them out. It then checks the depth of the stack, gets the value of the
second element with a lookback, and checks that the number of elements hasn't changed.

9.5.2 Control Stack

The control stack, also known as the call stack, stores return addresses for subroutines called by bsr and exception
handlers. There are no instructions for directly manipulating the control stack.

9.5.3 Register Frames

The final set of stacks are the register backing stacks. Parrot has four backing stacks, one for each type of register.
Instead of saving and restoring individual values, the backing stacks work with register frames. Each register frame is
the full set of 32 registers for one type. Each frame is separated into two halves: the bottom half (registers 0-15) and
the top half (registers 16-32). Some opcodes work with full frames while others work with half-frames. The backing
stacks are commonly used for saving the contents of all the registers (or just the top half of each frame) before a
subroutine call, so they can be restored when control returns to the caller.

PASM has five opcodes for storing full register frames, one for each register type and one that saves all four at once:

pushi # copy I-register frame

pushn # copy N-register frame

pushs # copy S-register frame

pushp # copy P-register frame

saveall # copy all register frames

Each pushi, pushn, pushs, or pushp pushes a register frame containing all the current values of one register type onto the
backing stack of that type. saveall simply calls pushi, pushn, pushs, and pushp.

PASM also has five opcodes to restore full register frames. Again, it has one for each register type and one that restores
all four at once:

popi # restore I-register frame

popn # restore N-register frame

pops # restore S-register frame

popp # restore P-register frame

restoreall # restore all register frames

The popi, popn, pops, and popp opcodes pop a single register frame off a particular stack and replace the values in all 32
registers of that type with the values in the restored register frame. restoreall calls popi, popn, pops, and popp, restoring
every register of every type to values saved earlier.

Saving a register frame to the backing stack doesn't alter the values stored in the registers; it simply copies the values:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Saving a register frame to the backing stack doesn't alter the values stored in the registers; it simply copies the values:

set I0, 1

print I0 # prints 1

pushi # copy away I0..I31

print I0 # unchanged, still 1

inc I0

print I0 # now 2

popi # restore registers to state of previous pushi

print I0 # old value restored, now 1

print "\n"

end

This example sets the value of I0 to 1 and stores the complete set of integer registers. Before I0 is incremented, it has
the same value as before the pushi.

In Section 9.2.2 earlier in this chapter, we mentioned that string and PMC registers hold pointers to the actual objects.
When string or PMC register frames are saved, only the pointers are copied, not the actual contents of the strings or
PMCs. The same is true when string or PMC register frames are restored:

set S0, "hello" # set S0 to "hello"

pushs

substr S0, 0, 5, "world" # alter the string in S0

set S0, "test" # set S0 to a new string

pops # restores the first string pointer

print S0 # prints "world"

end

In this example, we first use the pushs opcode to copy the string pointer to the string register frame stack. This gives us
two pointers to the same underlying string, with one currently stored in S0, and the other saved in the string register
frame stack. If we then use substr to alter the contents of the string, both pointers will now point to the altered string,
and so restoring our original pointer using pops does not restore the original string value.

Each of the above pushX and popX opcodes has a variant that will save or restore only the top or bottom half of one
register set or all the register sets:

pushtopi # save I16..I31

popbottoms # restore S0..S15

savetop # save regs 16-31 in each frame

restoretop # restore regs 16-31 in each frame

PASM also has opcodes to clear individual register frames: cleari, clearn, clears, and clearp. These reset the numeric
registers to 0 values and the string and PMC registers to null pointers, which is the same state that they have when the
interpreter first starts.

The user stack can be useful for holding onto some values that would otherwise be obliterated by a restoreall:

. . . coming from a subroutine

save I5 # Push some registers

save I6 # holding the return values

save N5 # of the sub.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

save N5 # of the sub.

restoreall # restore registers to state before calling subroutine

restore N0 # pop off last pushed

restore I0 # pop 2nd

restore I1 # and so on

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.6 Lexicals and Globals
So far, we've been treating Parrot registers like the variables of a high-level language. This is fine, as far as it goes, but
it isn't the full picture. The dynamic nature and introspective features of languages like Perl make it desirable to
manipulate variables by name, instead of just by register or stack location. These languages also have global variables,
which are visible throughout the entire program. Storing a global variable in a register would either tie up that register
for the lifetime of the program or require unwieldy manipulation of the user stack.

Parrot provides structures for storing both global and lexically scoped named variables. Lexical and global variables
must be PMC values. PASM provides instructions for storing and retrieving variables from these structures so the PASM
opcodes can operate on their values.

9.6.1 Globals

Global variables are stored in a PerlHash, so every variable name must be unique. PASM has two opcodes for globals,
store_global and find_global:

new P10, .PerlInt

set P10, 42

store_global "$foo", P10

. . .

find_global P0, "$foo"

print P0 # prints 42

end

The first two statements create a PerlInt in the PMC register P10 and give it the value 42. In the third statement,
store_global stores that PMC as the named global variable $foo. At some later point in the program, find_global retrieves
the PMC from the global variable by name, and stores it in P0 so it can be printed.

The store_global opcode only stores a reference to the object. If we add an increment statement:

inc P10

after the store_global, it increments the stored global, printing 43. If that's not what you want, you can clone the PMC
before you store it. Leaving the global variable as an alias does have advantages, though. If you retrieve a stored
global into a register and modify it as follows:

find_global P0, "varname"

inc P0

the value of the stored global is directly modified, so you don't need to call store_global again.

The two-argument forms of store_global and find_global store or retrieve globals from the outermost namespace (what
Perl users will know as the "main" namespace). A simple flat global namespace isn't enough for most languages, so
Parrot also needs to support hierarchical namespaces for separating packages (classes and modules in Perl 6). The
three-argument versions of store_global and find_global add an argument to select a nested namespace:

store_global "Foo", "var", P0 # store P0 as var in the Foo namespace

find_global P1, "Foo", "var" # get Foo::var

Eventually, the global opcodes will have variants that take a PMC to specify the namespace, but the design and
implementation of these aren't finished yet.

9.6.2 Lexicals

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Lexical variables are stored in a lexical scratchpad. There's one pad for each lexical scope. Every pad has both a hash
and an array, so elements can be stored either by name or by numeric index. Parrot stores the scratchpads for nested
lexical scopes in a pad stack.

9.6.2.1 Basic instructions

The instructions for manipulating lexical scratchpads are new_pad to create a new pad, store_lex to store a variable in a
pad, find_lex to retrieve a variable from a pad, push_pad to push a pad onto the pad stack, and pop_pad to remove a pad
from the stack:

new_pad 0 # create and push a pad with depth 0

new P0, .PerlInt # create a variable

set P0, 10 # assign value to it

store_lex 0, "$foo", P0 # store the var at depth 0 by name

. . .

find_lex P1, 0, "$foo" # get the var into P1

print P1

print "\n" # prints 10

pop_pad # remove pad

end

The first statement creates a new scratchpad and pushes it onto the pad stack. It's created with depth 0, which is the
outermost lexical scope. The next two statements create a new PMC object in P0, and give it a value. The store_lex
opcode stores the object in P0 as the named variable $foo in the scratchpad at depth 0. At some later point in the
program, the find_lex opcode retrieves the value of $foo in the pad at depth 0 and stores it in the register P1 so it can be
printed. At the very end, pop_pad removes the pad from the pad stack.

The new_pad opcode has two forms, one that creates a new scratchpad and stores it in a PMC, and another that creates
a new scratchpad and immediately pushes it onto the pad stack. If the pad were stored in a PMC, you would have to
push it onto the pad stack before you could use it:

new_pad P10, 0 # create a new pad in P10

push_pad P10 # push it onto the pad stack

In a simple case like this, it really doesn't make sense to separate out the two instructions, but you'll see later in
Section 9.7 why it's valuable to have both.

The store_lex and find_lex opcodes can take an integer index in place of a name for the variable:

store_lex 0, 0, P0 # store by index

. . .

find_lex P1, 0 # retrieve by index

With an index, the variable is stored in the scratchpad array, instead of the scratchpad hash.

9.6.2.2 Nested scratchpads

To create a nested scope, you create another scratchpad with a higher depth number and push it onto the pad stack.
The outermost scope is always depth 0, and each nested scope is one higher. The pad stack won't allow you to push on
a scratchpad that's more than one level higher than the current depth of the top of the stack:

new_pad 0 # outer scope

new_pad 1 # inner scope

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

new_pad 1 # inner scope

new P0, .PerlInt

set P0, 10

store_lex -1, "$foo", P0 # store in top pad

new P1, .PerlInt

set P1, 20

store_lex -2, "$foo", P1 # store in next outer scope

find_lex P2, "$foo" # find in all scopes

print P2 # prints 10

print "\n"

find_lex P2, -1, "$foo" # find in top pad

print P2 # prints 10

print "\n"

find_lex P2, -2, "$foo" # find in next outer scope

print P2 # prints 20

print "\n"

pop_pad

pop_pad

end

The first two statements create two new scratchpads, one at depth 0 and one at depth 1, and push them onto the pad
stack. When store_lex and find_lex have a negative number for the depth specifier, they count backward from the top pad
on the stack, so -1 is the top pad, and -2 is the second pad back. In this case, the pad at depth 1 is the top pad, and
the pad at depth 0 is the second pad. So:

store_lex -1, "$foo", P0 # store in top pad

stores the object in P0 as the named variable $foo in the pad at depth 1. Then:

store_lex -2, "$foo", P1 # store in next outer scope

stores the object in P1 as the named variable $foo in the pad at depth 0.

A find_lex statement with no depth specified searches every scratchpad in the stack from the top of the stack to the
bottom:

find_lex P2, "$foo" # find in all scopes

Both pad 0 and pad 1 have variables named $foo, but only the value from the top pad is returned. store_lex also has a
version with no depth specified, but it only works if the named lexical has already been created at a particular depth. It
searches the stack from top to bottom and stores the object in the first lexical it finds with the right name.

The peek_pad instruction retrieves the top entry on the pad stack into a PMC register, but doesn't pop it off the stack.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.7 Subroutines
Subroutines and methods are the basic building blocks of larger programs. At the heart of every subroutine call are two
fundamental actions: it has to store the current location so it can come back to it, and it has to transfer control to the
subroutine. The bsr opcode does both. It pushes the address of the next instruction onto the control stack, and then
branches to a label that marks the subroutine:

 print "in main\n"

 bsr _sub

 print "and back\n"

 end

_sub:

 print "in sub\n"

 ret

At the end of the subroutine, the ret instruction pops a location back off the control stack and goes there, returning
control to the caller. The jsr opcode pushes the current location onto the call stack and jumps to a subroutine. Just like
the jump opcode, it takes an absolute address in an integer register, so the address has to be calculated first with the
set_addr opcode:

 print "in main\n"

 set_addr I0, _sub

 jsr I0

 print "and back\n"

 end

_sub:

 print "in sub\n"

 ret

9.7.1 Calling Conventions

A bsr or jsr is fine for a simple subroutine call, but few subroutines are quite that simple. The biggest issues revolve
around register usage. Parrot has 32 registers of each type, and the caller and the subroutine share the same set of
registers. How does the subroutine keep from destroying the caller's values? More importantly, who is responsible for
saving and restoring registers? Where are arguments for the subroutine stored? Where are the subroutine's return
values stored? A number of different answers are possible. You've seen how many ways Parrot has of storing values.
The critical point is that the caller and the called subroutine have to agree on all the answers.

9.7.1.1 Reserved registers

A very simple system would be to declare that the caller uses registers through 15, and the subroutine uses 16-31. This
works in a small program with light register usage. But what about a subroutine call from within another subroutine or a
recursive call? The solution doesn't extend to a large scale.

9.7.1.2 Callee saves

Another possibility is to make the subroutine responsible for saving the caller's registers:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Another possibility is to make the subroutine responsible for saving the caller's registers:

 set I0, 42

 save I0 # pass args on stack

 bsr _inc # j = inc(i)

 restore I1 # restore args from stack

 print I1

 print "\n"

 end

_inc:

 saveall # preserve all registers

 restore I0 # get argument

 inc I0 # do all the work

 save I0 # push return value

 restoreall # restore caller's registers

 ret

This example stores arguments to the subroutine and return values from the subroutine on the user stack. The first
statement in the _inc subroutine is a saveall to save all the caller's registers onto the backing stacks, and the last
statement before the return restores them.

One advantage of this approach is that the subroutine can choose to save and restore only the register frames it
actually uses, for a small speed gain. The example above could use pushi and popi instead of saveall and restoreall
because it uses only integer registers. One disadvantage is that it doesn't allow optimization of tail calls, where the last
statement of a recursive subroutine is a call to itself.

9.7.1.3 Parrot-calling conventions

Internal subroutines can use whatever calling convention serves them best. Externally visible subroutines and methods
need stricter rules. Since these routines may be called as part of an included library or module and even from a
different high-level language, it's important to have a consistent interface.

Under the Parrot-calling conventions the caller is responsible for preserving its own registers. The first 11 arguments of
each register type are passed in Parrot registers, as are several other pieces of information. Register usage for
subroutine calls is listed in Table 9-4.

Table 9-4. Calling and return conventions
Register Usage

P0 Subroutine/method object

P1 Return continuation if applicable

P2 Object for a method call (invocant) or NULL for a subroutine call

P3 Array with overflow parameters/return values

S0 Fully qualified method name, if it's a method call

I0 True for prototyped parameters

I1 Number of integer arguments/return results

I2 Number of string arguments/return results

I3 Number of PMC arguments/return results

I4 Number of float arguments/return results

I5 . . . I15 First 11 integer arguments/return results

N5 . . . N15 First 11 float arguments/return results

S5 . . . S15 First 11 string arguments/return results

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

P5 . . . P15 First 11 PMC arguments/return results

If there are more than 11 arguments or return values of one type for the subroutine, overflow parameters are passed in
an array in P3. Subroutines without a prototype pass all their arguments or return values in P registers and if needed in
the overflow array.[8]

[8] Prototyped subroutines have a defined signature.

The _inc subroutine from above can be rewritten as a prototyped subroutine:

 set I16, 42 # use local regs from 16..31

 newsub P0, .Sub, _inc # create a new Sub object

 set I5, I16 # first integer argument

 set I0, 1 # prototype used

 set I1, 1 # one integer argument

 null I2 # no string arguments

 null I3 # no PMC arguments

 null I4 # no numeric arguments

 null P2 # no object (invocant)

 pushtopi # preserve top I register frame

 invokecc # call function object in P0

 poptopi # restore registers

 print I5

 print "\n"

 # I16 is still valid here, whatever the subroutine did

 end

.pcc_sub _inc:

 inc I5 # do all the work

 set I0, 1 # prototyped return

 set I1, 1 # one retval in I5

 null I2 # nothing else

 null I3

 null I4

 invoke P1 # return from the sub

Instead of using a simple bsr, this set of conventions uses a subroutine object. There are several kinds of subroutine-
like objects, but Sub is a class for PASM subroutines.

The .pcc_sub directive defines globally accessible subroutine objects. The _inc function above can be found as:

find_global P20, "_inc"

Subroutine objects of all kinds can be called with the invoke opcode. With no arguments, it calls the subroutine in P0,
which is the standard for the Parrot-calling conventions. There is also an invoke Px instruction for calling objects held in a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

which is the standard for the Parrot-calling conventions. There is also an invoke Px instruction for calling objects held in a
different register.

The invokecc opcode is like invoke, but it also creates and stores a new return continuation in P1. When the called
subroutine invokes this return continuation, it returns control to the instruction after the function call. This kind of call is
known as Continuation Passing Style (CPS).

In a simple example like this, it isn't really necessary to set up all the registers to obey to the Parrot-calling
conventions. But when you call into library code, the subroutine is likely to check the number and type of arguments
passed to it. So it's always a good idea to follow the full conventions. This is equally true for return values. The caller
might check how many arguments the subroutine really returned.

Setting all these registers for every subroutine call might look wasteful at first glance, and it does increase the size of
the bytecode, but you don't need to worry about execution time: the JIT system executes each register setup opcode in
one CPU cycle.

9.7.2 Native Call Interface

A special version of the Parrot-calling conventions are used by the Native Call Interface (NCI) for calling subroutines
with a known prototype in shared libraries. This is not really portable across all libraries, but it's worth a short example.
This is a simplified version of the first test in t/pmc/nci.t:

 loadlib P1, "libnci" # get library object for a shared lib

 print "loaded\n"

 dlfunc P0, P1, "nci_dd", "dd" # obtain the function object

 print "dlfunced\n"

 set I0, 1 # prototype used - unchecked

 set N5, 4.0 # first argument

 invoke # call nci_dd

 ne N5, 8.0, nok_1 # the test functions returns 2*arg

 print "ok 1\n"

 end

nok_1:

 . . .

This example shows two new instructions: loadlib and dlfunc. The loadlib opcode obtains a handle for a shared library. It
searches for the shared library in the current directory, in runtime/parrot/dynext, and in a few other configured
directories. It also tries to load the provided filename unaltered and with appended extensions like .so or .dll. Which
extensions it tries depends on the operating system on which Parrot is running.

The dlfunc opcode gets a function object from a previously loaded library (second argument) of a specified name (third
argument) with a known function signature (fourth argument). The function signature is a string where the first
character is the return value and the rest of the parameters are the function parameters. The characters used in NCI
function signatures are listed in Table 9-5.

Table 9-5. Function signature letters
Character Register set C type

v - void (no return value)

c I char

s I short

i I int

l I long

f N float

d N double

t S char *

p P void * (or other pointer)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I - Parrot_Interp * interpreter

C - A callback function pointer

D - A callback function pointer

Y P The subroutine into which C or D calls

Z P The argument for Y

For more information on callback functions, read the documentation in docs/pdds/pdd16_native_call.pod and
docs/pmc/struct.pod.

9.7.3 Closures

A closure is a subroutine that retains values from the lexical scope where it was defined, even when it's called from an
entirely different scope. The closure shown here is equivalent to this Perl 5 code snippet:

 # sub foo {

 # my ($n) = @_;

 # sub {$n += shift}

 # }

 # my $closure = foo(10);

 # print &$closure(3), "\n";

 # print &$closure(20), "\n";

 # call _foo

 newsub P16, .Sub, _foo # new subroutine object at address _foo

 new P17, .PerlInt # value for $n

 set P17, 10 # we use local vars from P16 . . .

 set P0, P16 # the subroutine

 set P5, P17 # first argument

 pushtopp # save registers

 invokecc # call foo

 poptopp # restore registers

 set P18, P5 # the returned closure

 # call _closure

 new P19, .PerlInt # argument to closure

 set P19, 3

 set P0, P18 # the closure

 set P5, P19 # one argument

 pushtopp # save registers

 invokecc # call closure(3)

 poptopp

 print P5 # prints 13

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print P5 # prints 13

 print "\n"

 # call _closure

 set P19, 20 # and again

 set P5, P19

 set P0, P18

 pushtopp

 invokecc # call closure(20)

 poptopp

 print P5 # prints 33

 print "\n"

 end

_foo:

 new_pad 0 # push a new pad

 store_lex -1, "$n", P5 # store $n

 newsub P5, .Closure, _closure

 # P5 has the lexical "$n" in the pad

 invoke P1 # return

_closure:

 find_lex P16, "$n" # invoking the closure pushes the lexical pad

 # of the closure on the pad stack

 add P16, P5 # $n += shift

 set P5, P16 # set return value

 invoke P1 # return

That's quite a lot of PASM code for such a little bit of Perl 5 code, but anonymous subroutines and closures hide a lot of
magic under that simple interface. The core of this example is that when the new subroutine is created in _foo with:

newsub P5, .Closure, _closure

it inherits and stores the current lexical scratchpad—the topmost scratchpad on the pad stack at the time. Later, when
_closure is invoked from the main body of code, the stored pad is automatically pushed onto the pad stack. So, all the
lexical variables that were available when _closure was defined are available when it's called.

9.7.4 Coroutines

As we mentioned in Chapter 8, coroutines are subroutines that can suspend themselves and return control to the caller
—and then pick up where they left off the next time they're called, as if they never left.

In PASM, coroutines are subroutine-like objects:

newsub P0, .Coroutine, _co_entry

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

newsub P0, .Coroutine, _co_entry

The Coroutine object has its own user stack, register frame stacks, control stack, and pad stack. The pad stack is
inherited from the caller. The coroutine's control stack has the caller's control stack prepended, but is still distinct.
When the coroutine invokes itself, it returns to the caller and restores the caller's context (basically swapping all
stacks). The next time the coroutine is invoked, it continues to execute from the point at which it previously returned:

 new_pad 0 # push a new lexical pad on stack

 new P0, .PerlInt # save one variable in it

 set P0, 10

 store_lex -1, "var", P0

 newsub P0, .Coroutine, _cor

 # make a new coroutine object

 saveall # preserve environment

 invoke # invoke the coroutine

 restoreall

 print "back\n"

 saveall

 invoke # invoke coroutine again

 restoreall

 print "done\n"

 pop_pad

 end

_cor:

 find_lex P1, "var" # inherited pad from caller

 print "in cor "

 print P1

 print "\n"

 inc P1 # var++

 saveall

 invoke # yield()

 restoreall

 print "again "

 branch _cor # next invocation of the coroutine

This prints out the result:

in cor 10

back

again in cor 11

done

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

done

The invoke inside the coroutine is commonly referred to as yield. The coroutine never ends. When it reaches the bottom,
it branches back up to _cor and executes until it hits invoke again.

The interesting part about this example is that the coroutine yields in the same way that a subroutine is called. This
means that the coroutine has to preserve its own register values. This example uses saveall but it could have only stored
the registers the coroutine actually used. Saving off the registers like this works because coroutines have their own
register frame stacks.

9.7.5 Continuations

A continuation is a subroutine that gets a complete copy of the caller's context, including its own copy of the call stack.
Invoking a continuation starts or restarts it at the entry point:

 new P1, .PerlInt

 set P1, 5

 newsub P0, .Continuation, _con

_con:

 print "in cont "

 print P1

 print "\n"

 dec P1

 unless P1, done

 invoke # P0

done:

 print "done\n"

 end

This prints:

in cont 5

in cont 4

in cont 3

in cont 2

in cont 1

done

9.7.6 Evaluating a Code String

This isn't really a subroutine operation, but it does produce a code object that can be invoked. In this case, it's a
bytecode segment object.

The first step is to get an assembler or compiler for the target language:

compreg P1, "PASM"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Within the Parrot interpreter there are currently three registered languages: PASM, PIR, and PASM1. The first two are for
Parrot assembly language and Parrot intermediate represention code. The third is for evaluating single statements in
PASM. Parrot automatically adds an end opcode at the end of PASM1 strings before they're compiled.

This example places a bytecode segment object into the destination register P0 and then invokes it with invoke:

compreg P1, "PASM1" # get compiler

set S1, "in eval\n"

compile P0, P1, "print S1"

invoke # eval code P0

print "back again\n"

end

You can register a compiler or assembler for any language inside the Parrot core and use it to compile and invoke code
from that language. These compilers may be written in PASM or reside in shared libraries.

compreg "MyLanguage", P10

In this example the compreg opcode registers the subroutine-like object P10 as a compiler for the language
"MyLanguage". See examples/compilers and examples/japh/japh16.pasm for an external compiler in a shared library.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.8 Exceptions and Exception Handlers
Exceptions provide a way of calling a piece of code outside the normal flow of control. They are mainly used for error
reporting or cleanup tasks, but sometimes exceptions are just a funny way to branch from one code location to another
one. The design and implementation of exceptions in Parrot isn't complete yet, but this section will give you an idea
where we're headed.

Exceptions are objects that hold all the information needed to handle the exception: the error message, the severity
and type of the error, etc. The class of an exception object indicates the kind of exception it is.

Exception handlers are derived from continuations. They are ordinary subroutines that follow the Parrot-calling
conventions, but are never explicitly called from within user code. User code pushes an exception handler onto the
control stack with the set_eh opcode. The system calls the installed exception handler only when an exception is thrown
(perhaps because of code that does division by zero or attempts to retrieve a global that wasn't stored.)

 newsub P20, .Exception_Handler, _handler

 set_eh P20 # push handler on control stack

 null P10 # set register to null

 find_global P10, "none" # may throw exception

 clear_eh # pop the handler off the stack

 . . .

_handler: # if not, execution continues here

 is_null P10, not_found # test P10

 . . .

This example creates a new exception handler subroutine with the newsub opcode and installs it on the control stack
with the set_eh opcode. It sets the P10 register to a null value (so it can be checked later) and attempts to retrieve the
global variable named none. If the global variable is found, the next statement (clear_eh) pops the exception handler off
the control stack and normal execution continues. If the find_global call doesn't find none, it throws an exception by
pushing an exception object onto the control stack. When Parrot sees that it has an exception, it pops it off the control
stack and calls the exception handler _handler.

The first exception handler in the control stack sees every exception thrown. The handler has to examine the exception
object and decide whether it can handle it (or discard it) or whether it should rethrow the exception to pass it along to
an exception handler deeper in the stack. The rethrow opcode is only valid in exception handlers. It pushes the
exception object back onto the control stack so Parrot knows to search for the next exception handler in the stack. The
process continues until some exception handler deals with the exception and returns normally, or until there are no
more exception handlers on the control stack. When the system finds no installed exception handlers it defaults to a
final action, which normally means it prints an appropriate message and terminates the program.

When the system installs an exception handler, it creates a return continuation with a snapshot of the current
interpreter context. If the exception handler just returns (that is, if the exception is cleanly caught) the return
continuation restores the control stack back to its state when the exception handler was called, cleaning up the
exception handler and any other changes that were made in the process of handling the exception.

Exceptions thrown by standard Parrot opcodes (like the one thrown by find_global above or by the throw opcode) are
always resumable, so when the exception handler function returns normally it continues execution at the opcode
immediately after the one that threw the exception. Other exceptions at the run-loop level are also generally
resumable.

new P10, Exception # create new Exception object

set P10["_message"], "I die" # set message attribute

throw P10 # throw it

Exceptions are designed to work with the Parrot-calling conventions. Since the return addresses of bsr subroutine calls
and exception handlers are both pushed onto the control stack, it's generally a bad idea to combine the two.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.9 Events
An event is a notification that something has happened: a timer expired, an I/O operation finished, a thread sent a
message to another thread, or the user pressed Ctrl-C to interrupt program execution.

What all of these events have in common is that they arrive asynchronously. It's generally not safe to interrupt
program flow at an arbitrary point and continue at a different position, so the event is placed in the interpreter's task
queue. The run-loop code regularly checks whether an event needs to be handled. Event handlers may be an internal
piece of code or a user-defined event handler subroutine.

Events are still experimental in Parrot, so the implementation and design is subject to change.

9.9.1 Timers

Timer objects are the replacement for Perl 5's alarm handlers. They are also a significant improvement. Timers can fire
once or repeatedly, and multiple timers can run independently. The precision of a timer is limited by the operating
system on which Parrot runs, but it is always more fine-grained then a whole second. The final syntax isn't yet fixed, so
please consult the documentation for examples.

9.9.2 Signals

Signal handling is related to events. When Parrot gets a signal it needs to handle from the operating system, it converts
that signal into an event and broadcasts it to all running threads. Each thread independently decides if it's interested in
this signal and, if so, how to respond to it.

 newsub P20, .Exception_Handler, _handler

 set_eh P20 # establish signal handler

 print "send SIGINT:\n"

 sleep 2 # press ^C after you saw start

 print "no SIGINT\n"

 end

_handler:

 .include "signal.pasm" # get signal definitions

 print "caught "

 set I0, P5["_type"] # if _type is negative, the . . .

 neg I0, I0 # . . . negated type is the signal

 ne I0, .SIGINT, nok

 print "SIGINT\n"

nok:

 end

This example creates a signal handler and pushes it on to the control stack. It then prompts the user to send a SIGINT
from the shell (this is usually Ctrl-C, but it varies in different shells), and waits for two seconds. If the user doesn't send
a SIGINT in two seconds, the example just prints "no SIGINT" and ends. If the user does send a SIGINT, the signal
handler catches it, prints out "caught SIGINT" and ends.[9]

[9] Currently, only Linux installs a SIGINT sigaction handler, so this example won't work on other platforms.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.10 Threads
Threads allow multiple pieces of code to run in parallel. This is useful when you have multiple physical CPUs to share
the load of running individual threads. With a single processor, threads still provide the feeling of parallelism, but
without any improvement in execution time. Even worse, sometimes using threads on a single processor will actually
slow down your program.

Still, many algorithms can be expressed more easily in terms of parallel running pieces of code and many applications
profit from taking advantage of multiple CPUs. Threads can vastly simplify asynchronous programs like internet servers:
a thread splits off, waits for some I/O to happen, handles it, and relinquishes the processor again when it's done.

Parrot compiles in thread support by default (at least, if the platform provides some kind of support for it). Unlike Perl
5, compiling with threading support doesn't impose any execution time penalty for a non-threaded program. Like
exceptions and events, threads are still under development, so you can expect significant changes in the near future.

As outlined in the previous chapter, Parrot implements three different threading models. The following example uses
the third model, which takes advantage of shared data. It uses a TQueue (thread-safe queue) object to synchronize the
two parallel running threads. This is only a simple example to illustrate threads, not a typical usage of threads (no one
really wants to spawn two threads just to print out a simple string).

 find_global P5, "_th1" # locate thread function

 new P2, .ParrotThread # create a new thread

 find_method P0, P2, "thread3" # a shared thread's entry

 new P7, .TQueue # create a Queue object

 new P8, .PerlInt # and a PerlInt

 push P7, P8 # push the PerlInt onto queue

 new P6, .PerlString # create new string

 set P6, "Js nte artHce\n"

 set I3, 3 # thread function gets 3 args

 invoke # _th1.run(P5,P6,P7)

 new P2, .ParrotThread # same for a second thread

 find_global P5, "_th2"

 set P6, "utaohrPro akr" # set string to 2nd thread's

 invoke # . . . data, run 2nd thread too

 end # Parrot joins both

.pcc_sub _th1: # 1st thread function

w1: sleep 0.001 # wait a bit and schedule

 defined I1, P7 # check if queue entry is . . .

 unless I1, w1 # . . . defined, yes: it's ours

 set S5, P6 # get string param

 substr S0, S5, I0, 1 # extract next char

 print S0 # and print it

 inc I0 # increment char pointer

 shift P8, P7 # pull item off from queue

 if S0, w1 # then wait again, if todo

 invoke P1 # done with string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 invoke P1 # done with string

.pcc_sub _th2: # 2nd thread function

w2: sleep 0.001

 defined I1, P7 # if queue entry is defined

 if I1, w2 # then wait

 set S5, P6

 substr S0, S5, I0, 1 # if not print next char

 print S0

 inc I0

 new P8, .PerlInt # and put a defined entry

 push P7, P8 # onto the queue so that

 if S0, w2 # the other thread will run

 invoke P1 # done with string

This example creates a ParrotThread object and calls its thread3 method, passing three arguments: a PMC for the _th1
subroutine in P5, a string argument in P6, and a TQueue object in P7 containing a single integer. Remember from the
earlier Section 9.7.1.3 that registers 5-15 hold the arguments for a subroutine or method call, and I3 stores the number
of arguments. The thread object is passed in P2.

This call to the thread3 method spawns a new thread to run the _th1 subroutine. The main body of the code then creates
a second ParrotThread object in P2, stores a different subroutine in P5, sets P6 to a new string value, and then calls the
thread3 method again, passing it the same TQueue object as the first thread. This method call spawns a second thread.
The main body of code then ends, leaving the two threads to do the work.

At this point the two threads have already started running. The first thread (_th1) starts off by sleeping for .001
seconds. It then checks if the TQueue object contains a value. Since it contains a value when the thread is first called, it
goes ahead and runs the body of the subroutine. The first thing this does is pull one character off a copy of the string
parameter using substr and print the character. It then increments the current position (I0) in the string, shifts the
element off the TQueue, and loops back to the w1 label and sleeps. Since the queue doesn't have any elements now, the
subroutine keeps sleeping.

Meanwhile, the second thread (_th2) also starts off by sleeping for .001 seconds. It checks if the shared TQueue object
contains a defined value but unlike the first thread it only continues sleeping if the queue does contain a value. Since
the queue contains a value when the second thread is first called, the subroutine loops back to the w2 label and
continues sleeping. It keeps sleeping until the first thread shifts the integer off the queue, then runs the body of the
subroutine. The body pulls one character off a copy of the string parameter using substr, prints the character, and
increments the current position in the string. It then creates a new PerlInt, pushes it onto the shared queue, and loops
back to the w2 label again to sleep. The queue has an element now, so the second thread keeps sleeping, but the first
thread runs through its loop again.

The two threads alternate like this, printing a character and marking the queue so the next thread can run, until there
are no more characters in either string. At the end, each subroutine invokes the return continuation in P1 which
terminates the thread. The interpreter waits for all threads to terminate in the cleanup phase after the end in the main
body of code.

The final printed result (as you might have guessed) is:

Just another Parrot Hacker

The syntax for threads isn't carved in stone and the implementation still isn't finished but as this example shows,
threads are working now and already useful.

Several methods are useful when working with threads. The join method belongs to the ParrotThread class. When it's
called on a ParrotThread object, the calling code waits until the thread terminates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

called on a ParrotThread object, the calling code waits until the thread terminates.

new P2, .ParrotThread # create a new thread

set I5, P2 # get thread ID

find_method P0, P2, "join" # get the join method . . .

invoke # . . . and join (wait for) the thread

set P16, P5 # the return result of the thread

kill and detach are interpreter methods, so you have to grab the current interpreter object before you can look up the
method object:

set I5, P2 # get thread ID of thread P2

getinterp P3 # get this interpreter object

find_method P0, P3, "kill" # get kill method

invoke # kill thread with ID I5

find_method P0, P3, "detach"

invoke # detach thread with ID I5

By the time you read this, some of these combinations of statements and much of the threading syntax above may be
reduced to a simpler set of opcodes.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.11 Loading Bytecode
In addition to running Parrot bytecode on the command line, you can also load precompiled bytecode directly into your
PASM source file. The load_bytecode opcode takes a single argument: the name of the bytecode file to load. So, if you
create a file named file.pasm containing a single subroutine:

file.pasm

.pcc_sub _sub2: # .pcc_sub stores a global sub

 print "in sub2\n"

 invoke P1

and compile it to bytecode using the -o command-line switch:

$ parrot -o file.pbc file.pasm

You can then load the compiled bytecode into main.pasm and directly call the subroutine defined in file.pasm:

main.pasm

_main:

 load_bytecode "file.pbc" # compiled file.pasm

 find_global P0, "_sub2"

 invokecc

 end

The load_bytecode opcode also works with source files, as long as Parrot has a compiler registered for that type of file:

main2.pasm

_main:

 load_bytecode "file.pasm" # PASM source code

 find_global P0, "_sub2"

 invokecc

 end

Subroutines marked with @LOAD run as soon as they're loaded (before load_bytecode returns), rather than waiting to be
called. A subroutine marked with @MAIN will always run first, no matter what name you give it or where you define it in
the file.

file3.pasm

.pcc_sub @LOAD _entry: # mark the sub as to be run

 print "file3\n"

 invoke P1 # return

main3.pasm

_first: # first is never invoked

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

_first: # first is never invoked

 print "never\n"

 invoke P1

.pcc_sub @MAIN _main: # because _main is marked as the

 print "main\n" # MAIN entry of program execution

 load_bytecode "file3.pasm"

 print "back\n"

 end

This example uses both @LOAD and @MAIN. Because the _main subroutine is defined with @MAIN it will execute first
even though another subroutine comes before it in the file. _main prints a line, loads the PASM source file, and then
prints another line. Because _entry in file3.pasm is marked with @LOAD it runs before load_bytecode returns, so the final
output is:

main

file3

back

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.12 Classes and Objects
Parrot's object system is a new addition in version 0.1.0. Objects still have some rough edges (for example, you
currently can't add new attributes to a class after it has been instantiated), but they're functional for basic use.

This section revolves around one complete example that defines a class, instantiates objects, and uses them. The whole
example is included at the end of the section.

9.12.1 Class Declaration

The newclass opcode defines a new class. It takes two arguments, the name of the class and the destination register for
the class PMC. All classes (and objects) inherit from the ParrotClass PMC, which is the core of the Parrot object system.

newclass P1, "Foo"

To instantiate a new object of a particular class, you first look up the integer value for the class type with the find_type
opcode, then create an object of that type with the new opcode:

find_type I1, "Foo"

new P3, I1

The new opcode also checks to see if the class defines a method named "_ _init" and calls it if it exists.

9.12.2 Attributes

The addattribute opcode creates a slot in the class for an attribute (sometimes known as an instance variable) and
associates it with a name:

addattribute P1, ".i" # Foo.i

This chunk of code from the _ _init method looks up the position of the first attribute, creates a PerlInt PMC, and stores it
as the first attribute:

classoffset I0, P2, "Foo" # first "Foo" attribute of object P2

new P6, .PerlInt # create storage for the attribute

setattribute P2, I0, P6 # store the first attribute

The classoffset opcodetakes a PMC containing an object and the name of its class, and returns an integer index for the
position of the first attribute. The setattribute opcode uses the integer index to store a PMC value in one of the object's
attribute slots. This example initializes the first attribute. The second attribute would be at I0 + 1, the third attribute at
I0 + 2, etc.:

inc I0

setattribute P2, I0, P7 # store next attribute

 . . .

There is also support for named parameters with fully qualified parameter names (although this is a little bit slower
than getting the class offset once and accessing several attributes by index):

new P6, .PerlInt

setattribute P2, "Foo\x0.i", P6 # store the attribute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setattribute P2, "Foo\x0.i", P6 # store the attribute

You use the same integer index to retrieve the value of an attribute. The getattribute opcode takes an object and an
index as arguments and returns the attribute PMC at that position:

classoffset I0, P2, "Foo" # first "Foo" attribute of object P2

getattribute P10, P2, I0 # indexed get of attribute

or:

getattribute P10, P2, "Foo\x0.i" # named get

To set the value of an attribute PMC, first retrieve it with getattribute and then assign to the returned PMC. Because PMC
registers are only pointers to values, you don't need to store the PMC again after you modify its value:

getattribute P10, P2, I0

set P10, I5

9.12.3 Methods

Methods in PASM are just subroutines installed in the namespace of the class. You define a method with the .pcc_sub
directive before the label:

.pcc_sub _half:

 classoffset I0, P2, "Foo"

 getattribute P10, P2, I0

 set I5, P10 # get value

 div I5, 2

 invoke P1

This routine returns half of the value of the first attribute of the object. Method calls use the Parrot-calling conventions
so they always pass the invocant object (often called self) in P2. Invoking the return continuation in P1 returns control
to the caller.

The .pcc_sub directive automatically stores the subroutine as a global in the current namespace. The .namespace directive
sets the current namespace:

.namespace ["Foo"]

If no namespace is set, or if the namespace is explicitly set to an empty string, then the subroutine is stored in the
outermost namespace.

The callmethodcc opcode makes a method call. It follows the Parrot-calling conventions, so it expects to find the invocant
object in P2, the method object in P0, etc. It adds one bit of magic, though. If you pass the name of the method in S0,
callmethodcc looks up that method name in the invocant object and stores the method object in P0 for you:

set S0, "_half" # set method name

set P2, P3 # the object

savetop # preserve registers

callmethodcc # create return continuation, call

restoretop

print I5 # result of method call

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

print I5 # result of method call

print "\n"

The callmethodcc opcode also generates a return continuation and stores it in P1. The callmethod opcode doesn't generate
a return continuation, but is otherwise identical to callmethodcc. Just like ordinary subroutine calls, you have to preserve
and restore any registers you want to keep after a method call. Whether you store individual registers, register frames,
or half register frames is up to you.

9.12.3.1 Overriding vtable functions

Every object inherits a default set of vtable functions from the ParrotObject PMC, but you can also override them with
your own methods. The vtable functions have predefined names that start with a double underscore (_ _). The following
code defines a method named _ _init in the Foo class that initializes the first attribute of the object with an integer:

.pcc_sub _ _init:

 classoffset I0, P2, "Foo" # lookup first attribute position

 new P6, .PerlInt # create storage for the attribute

 setattribute P2, I0, P6 # store the first attribute

 invoke P1 # return

Ordinary methods have to be called explicitly, but the vtable functions are called implicitly in many different contexts.
Parrot saves and restores registers for you in these calls. The _ _init method is called whenever a new object is
constructed:

find_type I1, "Foo"

new P3, I1 # call _ _init if it exists

A few other vtable functions in the complete code example for this section are _ _set_integer_native, _ _add, _ _get_integer,
_ _get_string, and _ _increment. The set opcode calls Foo's _ _set_integer_native vtable function when its destination register
is a Foo object and the source register is a native integer:

set P3, 30 # call _ _set_integer_native method

The add opcode calls Foo's _ _add vtable function when it adds two Foo objects:

new P4, I1 # same with P4

set P4, 12

new P5, I1 # create a new store for add

add P5, P3, P4 # _ _add method

The inc opcode calls Foo's _ _increment vtable function when it increments a Foo object:

inc P3 # _ _increment

Foo's _ _get_integer and _ _get_string vtable functions are called whenever an integer or string value is retrieved from a
Foo object:

set I10, P5 # _ _get_integer

 . . .

print P5 # calls _ _get_string, prints 'fortytwo'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.12.4 Inheritance

The subclass opcode creates a new class that inherits methods and attributes from another class. It takes three
arguments: the destination register for the new class, a register containing the parent class, and the name of the new
class:

subclass P3, P1, "Bar"

For multiple inheritance, the addparent opcode adds additional parents to a subclass.

newclass P4, "Baz"

addparent P3, P4

To override an inherited method, define a method with the same name in the namespace of the subclass. The following
code overrides Bar's _ _increment method so it decrements the value instead of incrementing it:

.namespace ["Bar"]

.pcc_sub _ _increment:

 classoffset I0, P2, "Foo" # get Foo's attribute slot offset

 getattribute P10, P2, I0 # get the first Foo attribute

 dec P10 # the evil line

 invoke P1

Notice that the attribute inherited from Foo can be looked up only with the Foo class name, not the Bar class name. This
preserves the distinction between attributes that belong to the class and inherited attributes.

Object creation for subclasses is the same as for ordinary classes:

find_type I1, "Bar"

new P5, I1

Calls to inherited methods are just like calls to methods defined in the class:

set P5, 42 # inherited _ _set_integer_native

inc P5 # overridden _ _increment

print P5 # prints 41 as Bar's _ _increment decrements

print "\n"

set S0, "_half" # set method name

set P2, P5 # the object

savetop # preserve registers

callmethodcc # create return continuation, call

restoretop

print I5

print "\n"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

print "\n"

9.12.5 Additional Object Opcodes

The isa and can opcodes are also useful when working with objects. isa checks whether an object belongs to or inherits
from a particular class. can checks whether an object has a particular method. Both return a true or false value.

isa I0, P3, "Foo" # 1

isa I0, P3, "Bar" # 1

can I0, P3, "_ _add" # 1

9.12.6 Complete Example

 newclass P1, "Foo"

 addattribute P1, "$.i" # Foo.i

 find_type I1, "Foo"

 new P3, I1 # call _ _init if it exists

 set P3, 30 # call _ _set_integer_native method

 new P4, I1 # same with P4

 set P4, 12

 new P5, I1 # create a new LHS for add

 add P5, P3, P4 # _ _add method

 set I10, P5 # _ _get_integer

 print I10

 print "\n"

 print P5 # calls _ _get_string prints 'fortytwo'

 print "\n"

 inc P3 # _ _increment

 add P5, P3, P4

 print P5 # calls _ _get_string prints '43'

 print "\n"

 subclass P3, P1, "Bar"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 find_type I1, "Bar"

 new P3, I1

 set P3, 100

 new P4, I1

 set P4, 200

 new P5, I1

 add P5, P3, P4

 print P5 # prints 300

 print "\n"

 set P5, 42

 print P5 # prints 'fortytwo'

 print "\n"

 inc P5

 print P5 # prints 41 as Bar's

 print "\n" # _ _increment decrements

 set S0, "_half" # set method name

 set P2, P3 # the object

 savetop # preserve registers

 callmethodcc # create return continuation, call

 restoretop

 print I5 # prints 50

 print "\n"

 end

 .namespace ["Foo"]

.pcc_sub _ _init:

 classoffset I0, P2, "Foo" # lookup first attribute position

 new P6, .PerlInt # create a store for the attribute

 setattribute P2, I0, P6 # store the first attribute

 invoke P1 # return

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 invoke P1 # return

.pcc_sub _ _set_integer_native:

 classoffset I0, P2, "Foo"

 getattribute P10, P2, I0

 set P10, I5 # assign passed in value

 invoke P1

.pcc_sub _ _get_integer:

 classoffset I0, P2, "Foo"

 getattribute P10, P2, I0

 set I5, P10 # return value

 invoke P1

.pcc_sub _ _get_string:

 classoffset I0, P2, "Foo"

 getattribute P10, P2, I0

 set I5, P10

 set S5, P10 # get stringified value

 ne I5, 42, ok

 set S5, "fortytwo" # or return modified one

ok:

 invoke P1

.pcc_sub _ _increment:

 classoffset I0, P2, "Foo"

 getattribute P10, P2, I0 # as with all aggregates, this

 inc P10 # has reference semantics - no

 invoke P1 # setattribute needed

.pcc_sub _ _add:

 classoffset I0, P2, "Foo"

 getattribute P10, P2, I0 # object

 getattribute P11, P5, I0 # argument

 getattribute P12, P6, I0 # destination

 add P12, P10, P11

 invoke P1

.pcc_sub _half: # I5 = _half(self)

 classoffset I0, P2, "Foo"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 classoffset I0, P2, "Foo"

 getattribute P10, P2, I0

 set I5, P10 # get value

 div I5, 2

 invoke P1

 .namespace ["Bar"]

.pcc_sub _ _increment:

 classoffset I0, P2, "Foo" # get Foo's attribute slot offset

 getattribute P10, P2, I0 # get the first Foo attribute

 dec P10 # the evil line

 invoke P1

 # end of object example

This example prints out:

42

fortytwo

43

300

fortytwo

41

50

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.13 Writing Tests
As we mentioned earlier, contributions to the Parrot project are welcome. Contributing tests is a good place to start.
You don't have to understand the code behind a PASM opcode (or IMCC instruction) to test it, you only have to
understand what it's supposed to do. If you're working on some code and it doesn't do what the documentation
advertises, you can isolate the problem in a test or series of tests and send them to the bug tracking system. There's a
good chance the problem will be fixed before the next release. Writing tests makes it a lot easier for the developer to
know when they've solved your problem—it's solved when your tests pass. It also prevents that problem from
appearing again, because it's checked every time anyone runs make test. As you move along, you'll want to write tests
for every bug you fix or new feature you add.

The Perl 5 testing framework is at the core of Parrot tests, particularly Test::Builder. Parrot's Parrot::Test module is an
interface to Test::Builder and implements the extra features needed for testing Parrot, like the fact that PASM code has
to be compiled to bytecode before it runs.

The main Parrot tests are in the top-level t/ directory of the Parrot source tree. t/op contains tests for basic opcodes
and t/pmc has tests for PMCs. The names of the test files indicate the functionality tested, like integer.t, number.t, and
string.t. Part of the make test target is the command perl t/harness, which runs all the .t files in the subdirectories
under /t. You can run individual test files by passing their names to the harness script:

$ perl t/harness t/op/string.t t/op/integer.t

Here's a simple example that tests the set opcode with integer registers, taken from t/op/integer.t:

output_is(<<CODE, <<OUTPUT, "set_i");

 set I0, 42

 set I1, I0

 print I1

 print "\\n"

 end

CODE

42

OUTPUT

The code here sets integer register I0 to the value 42, sets I1 to the value of I0, and then prints the value in I1. The test
passes if the value printed was 42 and fails otherwise.

The output_is subroutine takes three strings: the code to run, the expected output, and a description of the test. The
first two strings can be quite long, so the convention is to use Perl 5 here-documents. If you look into the code section,
you'll see that the literal \n has to be escaped as \\n. Many tests use the noninterpolating (<<"CODE") form of here-
documents to avoid that problem. The description can be any text. In this case, it's the fully qualified name of the set
opcode for integer registers, but it could have been "set a native integer register."

If you look up at the top of integer.t, you'll see the line:

use Parrot::Test tests => 38;

(although the actual number may be larger if more tests have been added since this book went to press).

The use line for the Parrot::Test module imports a set of subroutines into the test file, including output_is. The end of the
line gives the number of tests contained in the file.

The output_is subroutine looks for an exact match between the expected result and the actual output of the code. When
the test result can't be compared exactly, you want output_like instead. It takes a Perl 5 regular expression for the
expected output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

expected output:

output_like(<<'CODE', <<'OUTPUT', "testing for text match");

 . . .

CODE

/^Output is some \d+ number\n$/

OUTPUT

Parrot::Test also exports output_isnt, which tests that the actual output of the code doesn't match a particular value.

There are a few guidelines to follow when you're writing a test for a new opcode or checking that an existing opcode
has full test coverage. Tests should cover the opcode's standard operation, corner cases, and illegal input. The first
tests should always cover the basic functionality of an opcode. Further tests can cover more complex operations and
the interactions between opcodes. If the test program is complex or obscure, it helps to add comments. Tests should be
self-contained to make it easy to identify where and why a test is failing.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 10. Parrot Intermediate Representation
The Parrot intermediate representation (PIR) is an overlay on top of Parrot assembly language, designed to make the
developer's life easier. It has many high-level features that ease the pain of working with PASM code, but it still isn't a
high-level language.

Internally, Parrot works a little differently with PASM and PIR source code, so each has different restrictions. The default
is to run in a mixed mode that allows PASM code to combine with the higher-level syntax unique to PIR.

A file with a .pasm extension is treated as pure PASM code, as is any file run with the -a command-line option. This
mode is mainly used for running pure PASM tests. Parrot treats any extension other than .pasm as a PIR file. For
historical reasons, files containing PIR code generally have a .imc extension, but this is gradually shifting to a .pir
extension.

The documentation in imcc/docs/ or docs/ and the test suite in imcc/t are good starting points for digging deeper into
the PIR syntax and functionality.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.1 Statements
The syntax of statements in PIR is much more flexible than PASM. All PASM opcodes are valid PIR code, so the basic
syntax is the same. The statement delimiter is a newline \n, so each statement has to be on its own line. Any statement
can start with a label. Comments are marked by a hash sign (#) and PIR allows POD blocks.

But unlike PASM, PIR has some higher-level constructs, including symbol operators:

I1 = 5 # set I1, 5

named variables:

count = 5

and complex statements built from multiple keywords and symbol operators:

if I1 <= 5 goto LABEL # le I1, 5, LABEL

We'll get into these in more detail as we go.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.2 Variables and Constants
Literal constants in PIR are the same as constants in PASM. Integers and floating-point numbers are numeric literals
and strings are enclosed in quotes. PIR strings use the same escape sequences as PASM.

10.2.1 Parrot Registers

PIR code has a variety of ways to store values while you work with them. The most basic way is to use Parrot registers
directly. PASM register names always start with a single character that shows whether it is an integer, numeric, string,
or PMC register, and end with the number of the register (between 0 and 31):

S0 = "Hello, Polly.\n"

print S0

When you work directly with Parrot registers, you can only have 32 registers of any one type at a time.[1] If you have
more than that, you have to start shuffling stored values on and off the user stack. You also have to manually track
when it's safe to reuse a register. This kind of low-level access to the Parrot registers is handy when you need it, but
it's pretty unwieldy for large sections of code.

[1] Only 31 for PMC registers, because P31 is reserved for spilling.

10.2.2 Temporary Registers

PIR provides an easier way to work with Parrot registers. The temporary register variables are named like the PASM
registers—with a single character for the type of register and a number—but they start with a $ character:

set $S42, "Hello, Polly.\n"

print $S42

The most obvious difference between Parrot registers and temporary register variables is that you have an unlimited
number of temporaries. Parrot handles register allocation for you. It keeps track of how long a value in a Parrot register
is needed and when that register can be reused.

The previous example used the $S42 temporary. When the code is compiled, that temporary is allocated to a Parrot
register. As long as the temporary is needed, it is stored in the same register. When it's no longer needed, the Parrot
register is re-allocated to some other value. This example uses two temporary string registers:

$S42 = "Hello, "

print $S42

$S43 = "Polly.\n"

print $S43

Since they don't overlap, Parrot allocates both to the S16 register. If you change the order a little so both temporaries
are needed at the same time, they're allocated to different registers:

$S42 = "Hello, " # allocated to S17

$S43 = "Polly.\n" # allocated to S16

print $S42

print $S43

In this case, $S42 is allocated to S17 and $S43 is allocated to S16.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this case, $S42 is allocated to S17 and $S43 is allocated to S16.

Parrot allocates temporary variables[2] to Parrot registers in ascending order of their score. The score is based on a
number of factors related to variable usage. Variables used in a loop have a higher score than variables outside a loop.
Variables that span a long range have a lower score than ones that are used only briefly.

[2] As well as named variables, which we talk about next.

If you want to peek behind the curtain and see how Parrot is allocating registers, you can run it with the -d switch to
turn on debugging output:

$ parrot -d1000 hello.imc

If hello.imc contains this code from the previous example (wrapped in a subroutine definition so it will compile):

.sub _main

 $S42 = "Hello, " # allocated to S17

 $S43 = "Polly.\n" # allocated to S16

 print $S42

 print $S43

 end

.end

it produces this output:

code_size(ops) 11 oldsize 0

0 set_s_sc 17 1 set S17, "Hello, "

3 set_s_sc 16 0 set S16, "Polly.\n"

6 print_s 17 print S17

8 print_s 16 print S16

10 end end

Hello, Polly.

That's probably a lot more information than you wanted if you're just starting out. You can also generate a PASM file
with the -o switch and have a look at how the PIR code translates:

$ parrot -o hello.pasm hello.imc

or just:

$ parrot -o- hello.imc

to see resulting PASM on stdout.

You'll find more details on these options and many others in Section 11.4 in Chapter 11.

10.2.3 Named Variables

Named variables can be used anywhere a register or temporary register is used. They're declared with the .local
statement or the equivalent .sym statement, which require a variable type and a name:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

statement or the equivalent .sym statement, which require a variable type and a name:

.local string hello

set hello, "Hello, Polly.\n"

print hello

This snippet defines a string variable named hello, assigns it the value "Hello, Polly.\n", and then prints the value.

The valid types are int, float, string, and pmc or any Parrot class name (like PerlInt or PerlString). It should come as no
surprise that these are the same divisions as Parrot's four register types. Named variables are valid from the point of
their definition to the end of the compilation unit.

The name of a variable must be a valid PIR identifier. It can contain letters, digits, and underscores, but the first
character has to be a letter or underscore. Identifiers don't have any limit on length yet, but it's a safe bet they will
before the production release. Parrot opcode names are normally not allowed as variable names, though there are
some exceptions.

10.2.3.1 PMC variables

PMC registers and variables act much like any integer, floating-point number, or string register or variable, but you
have to instantiate a new PMC object before you use it. The new instruction creates a new PMC. Unlike PASM, PIR
doesn't use a dot in front of the class name.

P0 = new PerlString # same as new P0, .PerlString

P0 = "Hello, Polly.\n"

print P0

This example creates a PerlString object, stores it in the PMC register P0, assigns the value "Hello, Polly.\n" to it, and
prints it. The syntax is exactly the same for temporary register variables:

$P4711 = new PerlString

$P4711 = "Hello, Polly.\n"

print $P4711

With named variables, the type passed to the .local directive is either the generic pmc or a type compatible with the type
passed to new:

.local PerlString hello # or .local pmc hello

hello = new PerlString

hello = "Hello, Polly.\n"

print hello

10.2.4 Named Constants

The .const directive declares a named constant. It's very similar to .local and requires a type and a name. The value of a
constant must be assigned in the declaration statement. As with named variables, named constants are visible only
within the compilation unit where they're declared. This example declares a named string constant hello and prints the
value:

.const string hello = "Hello, Polly.\n"

print hello

Named constants function in all the same places as literal constants, but have to be declared beforehand:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Named constants function in all the same places as literal constants, but have to be declared beforehand:

.const int the_answer = 42 # integer constant

.const string mouse = "Mouse" # string constant

.const float pi = 3.14159 # floating point constant

10.2.5 Register Spilling

As we mentioned earlier, Parrot allocates all temporary register variables and named variables to Parrot registers. When
Parrot runs out of registers to allocate, it has to store some of the variables elsewhere. This is known as spilling. Parrot
spills the variables with the lowest score and stores them in a PerlArray object while they aren't used, then restores them
to a register the next time they're needed. Consider an example that creates 33 integer variables, all containing values
that are used later:

set $I1, 1

set $I2, 2

 . . .

set $I33, 33

 . . .

print $I1

print $I2

 . . .

print $I33

Parrot allocates the 32 available integer registers to variables with a higher score and spills the variables with a lower
score. In this example, it picks $I1 and $I2. Behind the scenes, Parrot generates code to store the values:

new P31, .PerlArray

 . . .

set I0, 1 # I0 allocated to $I1

set P31[0], I0 # spill $I1

set I0, 2 # I0 reallocated to $I2

set P31[1], I0 # spill $I2

It creates a PerlArray object and stores it in register P31.[3] The set instruction is the last time $I1 is used for a while, so
immediately after that, Parrot stores its value in the spill array and frees up I0 to be reallocated.

[3] P31 is reserved for register spilling in PIR code, so generally it shouldn't be accessed directly.

Just before $I1 and $I2 are accessed to be printed, Parrot generates code to fetch the values from the spill array:

 . . .

set I0, P31[0] # fetch $I1

print I0

You cannot rely on any particular register assignment for temporary variables or named variables. The register allocator
does follow a set of precedence rules for allocation, but these rules may change. Also, if two variables have the same
score, Parrot may assign registers based on the hashed value of the variable name. Parrot randomizes the seed to the
hash function to guarantee you never get a consistent order.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.3 Symbol Operators
You probably noticed the = assignment operator in some of the earlier examples:

$S2000 = "Hello, Polly.\n"

print $S2000

Standing alone, it's the same as the PASM set opcode. In fact, if you run parrot in bytecode debugging mode (as in
Section 11.4.2 in Chapter 11), you'll see it really is just a set opcode underneath.

PIR has many other symbol operators: arithmetic, concatenation, comparison, bitwise, and logical. Many of these
combine with assignment to produce the equivalent of a PASM opcode:

.local int sum

sum = $I42 + 5

print sum

print "\n"

The statement sum = $I42 + 5 translates to something like add I16, I17, 5.

PIR also provides +=, -=, >>=, . . . that map to the two-argument forms like add I16, I17.

Many PASM opcodes that return a single value also have an alternate syntax in PIR with the assignment operator:

$I0 = length str # length $I0, str

$I0 = isa PerlInt, "scalar" # isa $I0, PerlInt, "scalar"

$I0 = exists hash["key"] # exists $I0, hash["key"]

$N0 = sin $N1

$N0 = atan $N1, $N2

$S0 = repeat "x", 20

$P0 = newclass "Foo"

 . . .

A complete list of PIR operators is available in Chapter 11. We'll discuss the comparison operators in Section 10.5 later
in this chapter.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.4 Labels
Like PASM, any line can start with a label definition like LABEL:, but label definitions can also stand on their own line.

PIR code has both local and global labels. Global labels start with an underscore. The name of a global label has to be
unique, since it can be called at any point in the program. Local labels start with a letter. A local label is accessible only
in the compilation unit where it's defined. (We'll discuss compilation units in the next section.)The name has to be
unique there, but it can be reused in a different compilation unit.

branch L1 # local label

bsr _L2 # global label

Labels are most often used in branching instructions and in subroutine calls.

10.4.1 Compilation Units

Compilation units in PIR are roughly equivalent to the subroutines or methods of a high-level language. Though they
will be explained in more detail later, we introduce them here because all code in a PIR source file must be defined in a
compilation unit. The simplest syntax for a PIR compilation unit starts with the .sub directive and ends with the .end
directive:

.sub _main

 print "Hello, Polly.\n"

 end

.end

This example defines a compilation unit named _main that prints a string. The name is actually a global label for this
piece of code. If you generate a PASM file from the PIR code (see the Section 10.2.2 earlier in this chapter), you'll see
that the name translates to an ordinary label:

_main:

 print "Hello, Polly.\n"

 end

The first compilation unit in a file is normally executed first, but as in PASM, you can flag any compilation unit as the
first one to execute with the @MAIN marker. The convention is to name the first compilation unit _main, but the name
isn't critical.

.sub _first

 print "Polly want a cracker?\n"

 end

.end

.sub _main @MAIN

 print "Hello, Polly.\n"

 end

.end

This code prints out "Hello, Polly." but not "Polly want a cracker?".

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This code prints out "Hello, Polly." but not "Polly want a cracker?".

Section 10.6 later in this chapter goes into much more detail about compilation units and their uses.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.5 Flow Control
As in PASM, flow control in PIR is done entirely with conditional and unconditional branches. This may seem simplistic,
but remember that PIR is a thin overlay on the assembly language of a virtual processor. For the average assembly
language, jumps are the fundamental unit of flow control.

Any PASM branch instruction is valid, but PIR has some high-level constructs of its own. The most basic is the
unconditional branch: goto.

.sub _main

 goto L1

 print "never printed"

L1:

 print "after branch\n"

 end

.end

The first print statement never runs because the goto always skips over it to the label L1.

The conditional branches combine if or unless with goto:

.sub _main

 $I0 = 42

 if $I0 goto L1

 print "never printed"

L1: print "after branch\n"

 end

.end

In this example, the goto branches to the label L1 only if the value stored in $I0 is true. The unless statement is quite
similar, but branches when the tested value is false. An undefined value, 0, or an empty string are all false values. The
if . . . goto statement translates directly to the PASM if, and unless translates to the PASM unless.

The comparison operators (<, <=, = =, !=, >, >=) can combine with if . . . goto. These branch when the comparison is
true:

.sub _main

 $I0 = 42

 $I1 = 43

 if $I0 < $I1 goto L1

 print "never printed"

L1:

 print "after branch\n"

 end

.end

This example compares $I0 to $I1 and branches to the label L1 if $I0 is less than $I1. The if $I0 < $I1 goto L1 statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This example compares $I0 to $I1 and branches to the label L1 if $I0 is less than $I1. The if $I0 < $I1 goto L1 statement
translates directly to the PASM lt branch operation.

The rest of the comparison operators are summarized in Section 11.3 in Chapter 11.

PIR has no special loop constructs. A combination of conditional and unconditional branches handle iteration:

.sub _main

 $I0 = 1 # product

 $I1 = 5 # counter

REDO: # start of loop

 $I0 = $I0 * $I1

 dec $I1

 if $I1 > 0 goto REDO # end of loop

 print $I0

 print "\n"

 end

.end

This example calculates the factorial 5!. Each time through the loop it multiplies $I0 by the current value of the counter
$I1, decrements the counter, and then branches to the start of the loop. The loop ends when $I1 counts down to 0 so
that the if doesn't branch to REDO. This is a do while-style loop with the condition test at the end, so the code always
runs the first time through.

For a while-style loop with the condition test at the start, use a conditional branch together with an unconditional
branch:

.sub _main

 $I0 = 1 # product

 $I1 = 5 # counter

REDO: # start of loop

 if $I1 <= 0 goto LAST

 $I0 = $I0 * $I1

 dec $I1

 goto REDO

LAST: # end of loop

 print $I0

 print "\n"

 end

.end

This example tests the counter $I1 at the start of the loop. At the end of the loop, it unconditionally branches back to
the start of the loop and tests the condition again. The loop ends when the counter $I1 reaches 0 and the if branches to
the LAST label. If the counter isn't a positive number before the loop, the loop never executes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the LAST label. If the counter isn't a positive number before the loop, the loop never executes.

Any high-level flow control construct can be built from conditional and unconditional branches.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.6 Subroutines
A calculation like "the factorial of a number" may be used several times in a large program. Subroutines allow this kind
of functionality to be abstracted into a unit. It's a benefit for code reuse and maintainability. Even though PASM is just
an assembly language for a virtual processor, it has a number of features to support high-level subroutine calls. PIR
offers a smoother interface to those features.

PIR provides several different sets of syntax for subroutine calls. This is a language designed to implement other
languages, and every language does subroutine calls a little differently. What's needed is a set of building blocks and
tools, not a single prepackaged solution.

10.6.1 Parrot-Calling Conventions

As we mentioned in Chapter 9, Parrot defines a set of calling conventions for externally visible subroutines. In these
calls, the caller is responsible for preserving its own registers, and arguments and return values are passed in a
predefined set of Parrot registers. The calling conventions use the Continuation Passing Style to pass control to
subroutines and back again.

The fact that the Parrot-calling conventions are clearly defined also makes it possible to provide some higher-level
syntax for it. Manually setting up all the registers for each subroutine call isn't just tedious, it's also prone to bugs
introduced by typos. PIR's simplest subroutine call syntax looks much like a high-level language. This example calls the
subroutine _fact with two arguments and assigns the result to $I0:

($I0, $I1) = _fact(count, product)

This simple statement hides a great deal of complexity. It generates a subroutine object and stores it in P0. It assigns
the arguments to the appropriate registers, assigning any extra arguments to the overflow array in P3. It also sets up
the other registers to mark whether this is a prototyped call and how many arguments it passes of each type. It calls
the subroutine stored in P0, saving and restoring the top half of all register frames around the call. And finally, it assigns
the result of the call to the given temporary register variables (for a single result you can drop the parentheses). If the
one line above were written out in basic PIR it would be something like:

newsub P0, .Sub, _fact

I5 = count

I6 = product

I0 = 1

I1 = 2

I2 = 0

I3 = 0

I4 = 0

savetop

invokecc

restoretop

$I0 = I5

$I1 = I6

The PIR code actually generates an invokecc opcode internally. It not only invokes the subroutine in P0, but also
generates a new return continuation in P1. The called subroutine invokes this continuation to return control to the caller.

The single-line subroutine call is incredibly convenient, but it isn't always flexible enough. So PIR also has a more
verbose call syntax that is still more convenient than manual calls. This example pulls the subroutine _fact out of the
global symbol table and calls it:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

global symbol table and calls it:

find_global $P1, "_fact"

.pcc_begin prototyped

 .arg count

 .arg product

 .pcc_call $P1

 .result $I0

.pcc_end

The whole chunk of code from .pcc_begin to .pcc_end acts as a single unit. The .pcc_begin directive can be marked as
prototyped or unprototyped, which corresponds to the flag I0 in the calling conventions. The .arg directive sets up
arguments to the call. The .pcc_call directive saves top register frames, calls the subroutine, and restores the top
registers. The .result directive retrieves return values from the call.

In addition to syntax for subroutine calls, PIR provides syntax for subroutine definitions. The .param directive pulls
parameters out of the registers and creates local named variables for them:

.param int c

The .pcc_begin_return and .pcc_end_return directives act as a unit much like the .pcc_begin and .pcc_end directives:

.pcc_begin_return

 .return p

.pcc_end_return

The .return directive sets up return values in the appropriate registers. After all the registers are set up, the unit invokes
the return continuation in P1 to return control to the caller.

Here's a complete code example that reimplements the factorial code from the previous section as an independent
subroutine. The subroutine _fact is a separate compilation unit, assembled and processed after the _main function.
Parrot resolves global symbols like the _fact label between different units.

factorial.imc

.sub _main

 .local int count

 .local int product

 count = 5

 product = 1

 $I0 = _fact(count, product)

 print $I0

 print "\n"

 end

.end

.sub _fact

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 .param int c

 .param int p

loop:

 if c <= 1 goto fin

 p = c * p

 dec c

 branch loop

fin:

 .pcc_begin_return

 .return p

 .pcc_end_return

.end

This example defines two local named variables, count and product, and assigns them the values 1 and 5. It calls the
_fact subroutine passing the two variables as arguments. In the call, the two arguments are assigned to consecutive
integer registers, because they're stored in typed integer variables. The _fact subroutine uses .param and the return
directives for retrieving parameters and returning results. The final printed result is 120.

You may want to generate a PASM source file for this example to look at the details of how the PIR code translates to
PASM:

$ parrot -o- factorial.imc

10.6.2 Stack-Based Subroutine Calls

The Parrot-calling conventions are PIR's default for subroutine calls, but it does also provide some syntax for stack-
based calls. Stack-based calls are fast, so they're sometimes useful for purely internal code. To turn on support for
stack-based calls, you have to set the fastcall pragma:

.pragma fastcall # turn on stack calling conventions

The standard calling conventions are set by the prototyped pragma. You'll rarely need to explicitly set prototyped since it's
on by default. You can mix stack-based subroutines and prototyped subroutines in the same file, but you really
shouldn't—stack-based calls interfere with exception handling, and don't interoperate well with prototyped calls.

When the fastcall pragma is on, the .arg, .result, .param, and .return directives push and pop on the user stack instead of
setting registers. Internally, they are just the PASM save and restore opcodes. Because of this, you have to reverse the
order of your arguments. You push the final argument onto the user stack first, because it'll be the last parameter
popped off the stack on the other end:

.arg y # save args in reverse order

.arg x

call _foo # (r, s) = _foo(x,y)

.result r

.result s # restore results in order

Multiple return values are also passed in reverse order for the same reason. Often the first parameter or result in a
stack-based call will be a count of values passed in, especially when the number of arguments can vary.

Another significant difference is that instead of the single-line call or a .pcc_call, stack-based calls use the call instruction.
This is the same as PASM's bsr opcode. It branches to a subroutine label and pushes the current location onto the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is the same as PASM's bsr opcode. It branches to a subroutine label and pushes the current location onto the
control stack so it can return to it later.

This example reworks the factorial code above to use stack-based calls:

.pragma fastcall # turn on stack calling conventions

.sub _main

 .local int count

 .local int product

 count = 5

 product = 1

 .arg product # second argument

 .arg count # first argument

 call _fact # call the subroutine

 .result $I0 # retrieve the result

 print $I0

 print "\n"

 end

.end

.sub _fact

 saveall # save caller's registers

 .param int c # retrieve the parameters

 .param int p

loop:

 if c <= 1 goto fin

 p = c * p

 dec c

 branch loop

fin:

 .return p # return the result

 restoreall # restore caller's registers

 ret # back to the caller

.end

The _main compilation unit sets up two local variables and pushes them onto the user stack in reverse order using the
.arg directive. It then calls _fact with the call instruction. The .result directive pops a return value off the user stack.

This example uses the callee save convention, so the first statement in the _fact subroutine is saveall. (See Section
9.7.1.2 in Chapter 9 for more details on this convention.) With callee save in PIR, Parrot can ignore the subroutine's
register usage when it allocates registers for the calling routine.

The .param directive pops a function parameter off the user stack as an integer and creates a new named local variable
for the parameter. Parrot does check the types of the parameters to make sure they match what the caller passes to
the subroutine, but the amount of parameters isn't checked, so both sides have to agree on the argument count.

The .return statement at the end pushes the final value of p onto the user stack, so .result can retrieve it after the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The .return statement at the end pushes the final value of p onto the user stack, so .result can retrieve it after the
subroutine ends. restoreall restores the caller's register values, and ret pops the top item off the control stack—in this
case, the location of the call to _fact—and returns to it.

10.6.3 Compilation Units Revisited

The previous example could have been written using simple labels instead of separate compilation units:

.sub _main

 $I1 = 5 # counter

 call fact # same as bsr fact

 print $I0

 print "\n"

 $I1 = 6 # counter

 call fact

 print $I0

 print "\n"

 end

fact:

 $I0 = 1 # product

L1:

 $I0 = $I0 * $I1

 dec $I1

 if $I1 > 0 goto L1

 ret

.end

The unit of code from the fact label definition to ret is a reusable routine. There are several problems with this simple
approach. First, the caller has to know to pass the argument to fact in $I1 and to get the result from $I0. Second,
neither the caller nor the function itself preserves any registers. This is fine for the example above, because very few
registers are used. But if this same bit of code were buried deeply in a math routine package, you would have a high
risk of clobbering the caller's register values.

Another disadvantage of this approach is that _main and fact share the same compilation unit, so they're parsed and
processed as one piece of code. When Parrot does register allocation, it calculates the data flow graph (DFG) of all
symbols,[4] looks at their usage, calculates the interference between all possible combinations of symbols, and then
assigns a Parrot register to each symbol. This process is less efficient for large compilation units than it is for several
small ones, so it's better to keep the code modular. The optimizer will decide whether register usage is light enough to
merit combining two compilation units, or even inlining the entire function.

[4] The operation to calculate the DFG has a quadratic cost or better. It depends on n_lines * n_symbols.

A Short Note on the Optimizer
The optimizer isn't powerful enough to inline small subroutines yet. But it already does other simpler
optimizations. You may recall that the PASM opcode mul (multiply) has a two-argument version that uses
the same register for the destination and the first operand. When Parrot comes across a PIR statement
like $I0 = $I0 * $I1, it can optimize it to the two-argument mul $I0, $I1 instead of mul $I0, $I0, $I1. This
kind of optimization is enabled by the -O1 command-line option.

So you don't need to worry about finding the shortest PASM instruction, calculating constant terms, or
avoiding branches to speed up your code. Parrot does it already.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.6.4 PASM Subroutines

PIR code can include pure PASM compilation units. These are wrapped in the .emit and .eom directives instead of .sub
and .end. The .emit directive doesn't take a name, it only acts as a container for the PASM code. These primitive
compilation units can be useful for grouping PASM functions or function wrappers. Subroutine entry labels inside .emit
blocks have to be global labels:

.emit

_substr:

 . . .

 ret

_grep:

 . . .

 ret

.eom

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.7 Methods
PIR provides syntax to simplify writing methods and method calls. These calls follow the Parrot-calling conventions. The
basic syntax is similar to the single-line subroutine call above, but instead of a subroutine label name it takes a variable
for the invocant PMC and a string with the name of the method:

object."methodname"(arguments)

The invocant can be a variable or register, and the method name can be a literal string, string variable, or method
object register. This tiny bit of code sets up all the registers for a method call and makes the call, saving and restoring
the top half of the register frames around the call. Internally, the call is a callmethodcc opcode, so it also generates a
return continuation.

This example defines two methods in the Foo class. It calls one from the main body of the subroutine and the other
from within the first method:

.sub _main

 .local pmc class

 .local pmc obj

 newclass class, "Foo" # create a new Foo class

 find_type $I0, "Foo" # find its dynamic type number

 new obj, $I0 # instantiate a Foo object

 obj."_meth"() # call obj."_meth" which is actually

 print "done\n" # "_meth" in the "Foo" namespace

 end

.end

.namespace ["Foo"] # start namespace "Foo"

.sub _meth method # define Foo::_meth global

 print "in meth\n"

 $S0 = "_other_meth" # method names can be in a register too

 self.$S0() # self is the invocant

.end

.sub _other_meth method # define another method

 print "in other_meth\n" # as above Parrot provides a return

.end # statement

Each method call looks up the method name in the symbol table of the object's class. Like .pcc_sub in PASM, .sub makes
a symbol table entry for the subroutine in the current namespace.

When a .sub is declared as a method, it automatically creates a local variable named self and assigns it the object passed
in P2.

You can pass multiple arguments to a method and retrieve multiple return values just like a single-line subroutine call:

(res1, res2) = obj."method"(arg1, arg2)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(res1, res2) = obj."method"(arg1, arg2)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 11. Parrot Reference
This chapter contains a condensed list of PASM opcodes, PIR directives and instructions, and Parrot command-line
options, sorted alphabetically for easy reference. Any PASM opcode is valid in PIR code, so if you're looking up PIR
syntax, you should check Section 11.1, Section 11.2, and Section 11.3.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.1 PASM Opcodes
For complete details on each opcode and the latest changes, read the documentation in docs/ops/, or look at all the
.ops files in the ops/ directory.

We've followed a few conventions. DEST is always the register where the result of the operation is stored. Sometimes
the original value of DEST is one of the source values. VAL indicates that the actual value might be a literal integer, float,
or string, or a register containing an integer, float, string, or PMC. See the .ops files for the combinations allowed with a
particular operation.

abs

abs DEST

abs DEST, VAL

Return the absolute value of a number. If VAL is left out, DEST gets the absolute value of itself.

Arguments: IR or NR or IR, I or IR, N or NR, I or NR, N

acos

acos DEST, VAL

The arc cosine of VAL in radians.

Arguments: NR, N or NR, I

add

add DEST, VAL

add DEST, VAL, VAL

Add two values and return the sum. If only one VAL, add VAL to DEST.

Arguments: IR, I or NR, I or NR, N or P, I or P, N or P, P or IR, I, I or NR, N, I or NR, N, N or P, P, I or P, P, N or P, P, P

addattribute

addattribute CLASS, ATTR

Add the attribute name ATTR to class CLASS.

Arguments: P, S

addparent

addparent CLASS1, CLASS2

Add class CLASS2 to the list of parent classes for CLASS1.

Arguments: P, P

and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and DEST, VAL1, VAL2

Logical AND. Return VAL1 if it's false. Otherwise, return VAL2.

Arguments: IR, I, I or P, P, P

asec

asec DEST, VAL

The arc secant of VAL in radians.

Arguments: NR, I or NR, N

asin

asin DEST, VAL

The arc sine of VAL in radians.

Arguments: NR, I or NR, N

assign

assign DEST, VAL

Assign a value to a PMC.

Arguments: SR, S or P, I or P, N or P, S or P, P

atan

atan DEST, VAL

atan DEST, VAL1, VAL2

The arc tangent of VAL1/VAL2 in radians (sign significant). If VAL2 is omitted, then just the arc tangent of VAL.

Arguments: NR, I or NR, N or NR, I, I or NR, I, N or NR, N, I or NR, N, N

band

band DEST, VAL

band DEST, VAL, VAL

Bitwise AND on two values. If only one VAL, bitwise AND on DEST and VAL.

Arguments: IR, I or P, I or P, P or IR, I, I or P, P, I or P, P, P

bands

bands DEST, VAL

bands DEST, VAL, VAL

Bitwise AND on two strings. If only one VAL, bitwise AND on DEST and VAL.

Arguments: SR, S or P, S or P, P or SR, S, S or P, P, S or P, P, P

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arguments: SR, S or P, S or P, P or SR, S, S or P, P, S or P, P, P

bnot

bnot DEST, VAL

Bitwise NOT on VAL.

Arguments: IR, I or P, P

bnots

bnots DEST, VAL

Bitwise NOT on string VAL.

Arguments: SR, S or P, P

bor

bor DEST, VAL, VAL

Bitwise OR on two values. If only one VAL, bitwise OR on DEST and VAL.

Arguments: IR, I or P, I or P, P or IR, I, I or P, P, I or P, P, P

bors

bor DEST, VAL, VAL

Bitwise OR on two strings. If only one VAL, bitwise OR on DEST and VAL.

Arguments: SR, S or P, S or P, P or SR, S, S or P, P, S or P, P, P

bounds

bounds INT

Toggle bytecode bounds checking in the interpreter (0 for off, any other value for on).

Argument: I

branch

branch LABEL

Branch to a label. The label is calculated as a relative offset.

Argument: I

branch_cs

branch_cs FIXUP_ENTRY

Intersegment branch to the location of the given fixup table entry.

Argument: S

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bsr

bsr LABEL

Branch to a label, like branch, but also push the current location onto the call stack so ret can return to it.

Argument: I

bxor

bxor DEST, VAL

bxor DEST, VAL, VAL

Bitwise XOR on two values. If only one VAL, bitwise XOR on DEST and VAL.

Arguments: IR, I or P, I or P, P or IR, I, I or P, P, I or P, P, P

bxors

bxors DEST, VAL

bxors DEST, VAL, VAL

Bitwise XOR on two strings. If only one VAL, bitwise XOR on DEST and VAL.

Arguments: SR, S or P, S or P, P or SR, S, S or P, P, S or P, P, P

callmethod

callmethod

callmethod METHODNAME

Call the method named METHODNAME on the object stored in P2 according to the Parrot-Calling Conventions. If no
method name, pull the name from S0.

Argument: S

callmethodcc

callmethodcc

callmethodcc METHODNAME

Call the method named METHODNAME on the object stored in P2 according to the Parrot-Calling Conventions. If no
method name, pull the name from S0. Also create a return continuation and store it in P1.

Argument: S

can

can DEST, OBJECT, METHODNAME

Return a true value if OBJECT can do the METHODNAME method. Otherwise, return a false value.

Arguments: IR, P, S

ceil

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ceil

ceil DEST

ceil DEST, VAL

Set DEST to the smallest integral value less than or equal to VAL (if present) or itself (if not).

Arguments: NR or IR, N or NR, N

checkevents

checkevents

Check the interpreter's task queue for unhandled events and run the associated event handlers.

chopn

chopn DEST, VAL1

chopn DEST, VAL1, VAL2

Remove VAL2 number of characters from string VAL1. If no VAL2, remove VAL number of characters from string DEST.

Arguments: SR, I or SR, S, I

chr

chr DEST, INT

Return the character represented by the given number.

Arguments: SR, I

class

class CLASS, OBJECT

Return the CLASS of the given OBJECT.

Arguments: P, P

classname

classname NAME, CLASS

Set NAME to the classname of CLASS.

Arguments: SR, P

classoffset

classoffset OFFSET, OBJECT, CLASS

Return the offset OFFSET of the first attribute of class CLASS in object OBJECT.

Arguments: IR, P, S

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

clear_eh

clear_eh

Clear the most recent exception handler.

See also: set_eh, throw

clearX

cleari

clearn

clearp

clears

Clear all registers of the given type ("i" = integer, "n" = float, "p" = PMC, "s" = string). Integer and float registers clear
to zero; string and PMC registers clear to NULL.

clone

clone DEST, VAL

Clone (deep copy) a string or PMC and return the result.

Arguments: SR, S or P, P

close

close DEST

Close the filehandle in the given register.

Argument: P

cmod

cmod DEST, VAL1, VAL2

C's built-in mod operator.

Arguments: IR, I, I or NR, N, N or P, P, I or P, P, N or P, P, P

See also: mod

cmp

cmp DEST, VAL1, VAL2

Set DEST to 1 if VAL1 is greater then VAL2, to -1 if it's less then VAL2 or to 0 if both are equal. If VAL1 and VAL2 are both
PMCs, then the type of comparison depends on VAL1.

Arguments: IR, I, I or IR, N, N or IR, S, S or IR, P, I or IR, P, N IR, P, S or IR, P, P

cmp_num

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cmp_num DEST, VAL1, VAL2

Like cmp, but forces numeric comparison.

Arguments: IR, P, P

cmp_str

cmp_str DEST, VAL1, VAL2

Like cmp, but forces string comparison.

Arguments: IR, P, P

collect

collect

Trigger a garbage collection (GC) run.

collectoff

collectoff

Disable garbage collection runs (nestable).

collecton

collecton

Reenable garbage collection runs.

compile

compile DEST, COMPILER, SOURCE

Compile a string of source code with a given compiler PMC and store the result.

Arguments: P, P, S

compreg

compreg DEST, TYPE

Return a compiler PMC for a particular type of source code.

Arguments: P, S compreg TYPE, SUB

Register SUB as a compiler for language TYPE.

Arguments: S, P

concat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

concat DEST, VAL

concat DEST, VAL, VAL

Concatenate two strings. If only one VAL, concatenate VAL onto DEST.

Arguments: SR, S or SR, S, S or P, P, S or P, P, P

conv_*

conv_i1 DEST, VAL

conv_i1_ovf DEST, VAL

Convert value to integer or number of given type i1, i2, i4, i8, u1, u2, u4, r4, r8. i corresponds to a signed integer, u to an
unsigned integer, and r to a float; the number indicates the size (in bytes) of the type. The variants with _ovf throw an
exception if the conversion would overflow.

cos

cos DEST, VAL

The cosine of VAL in radians.

Arguments: NR, I or NR, N

cosh

cosh DEST, VAL

The hyperbolic cosine of VAL in radians.

Arguments: NR, I or NR, N

debug

debug FLAG

Toggle debugging in the interpreter (0 for off; any other value for on).

Arguments: I

dec

dec DEST

Decrement a value by 1.

Arguments: I or N or P

decodelocaltime

decodelocaltime DEST, VAL

Set DEST to a new array which represents the decoded time of the given epoch-seconds value shifted to local time.

Arguments: P, I

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arguments: P, I

decodetime

decodetime DEST, VAL

Set DEST to a new array which represents the decoded time of the given epoch-seconds value.

Arguments: P, I

defined

defined DEST, PMC

defined DEST, PMC[KEY]

Test a keyed PMC value for definedness. If no KEY, test a PMC for definedness.

Arguments: IR, P

delete

delete DEST[KEY]

Delete a keyed value from an aggregate PMC.

Argument: P

delprop

delprop PMC, NAME

Delete a named property from a PMC.

Arguments: P, S

See also: setprop, getprop

depth

depth DEST

Return the depth of the user stack.

Argument: I

deref

deref DEST, REF

Set DEST to the PMC that REF refers to.

Arguments: P, P

die_hard

die_hard LEVEL, ERROR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Die at a given level of severity, and with the given error code.

Arguments: I, I

See also: exit

div

div DEST, VAL

div DEST, VAL1, VAL2

Divide VAL1 by VAL2. If VAL2 is left out, divide DEST by VAL.

Arguments: IR, I or NR, I or NR, N or P, I or P, N or P, P or IR, I, I or NR, N, I or NR, N, N or P, P, I or P, P, N or P, P, P

dlfunc

dlfunc DEST, LIBRARY, SYMBOL, SIGNATURE

Look up a symbol in a dynamic link library PMC and create a subroutine PMC for that symbol with the given signature.

Arguments: P, P, S, S

dlvar

dlvar DEST, LIBRARY, SYMBOL

Look up a symbol in a dynamic link library PMC and create a PMC for that symbol.

Arguments: P, P, S

does

does DEST, OBJECT, VAL

Return a true value if OBJECT does provide the interface VAL. Otherwise, return a false value.

Arguments: I, P, S

downcase

downcase DEST

downcase DEST, VAL

Create a copy of the string in VAL with all characters converted to lowercase, and store it in DEST. If VAL is omitted,
convert and replace the string in DEST.

Arguments: S or S, S

See also: upcase, titlecase

end

end

End execution within the current code segment or halt the interpreter if in the main code segment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enternative

enternative

Run the run_native C function.

entrytype

entrytype DEST, INT

Return the type of an entry on the user stack. INT specifies the position on the stack.

Arguments: I, I

eq

eq VAL, VAL, LABEL

Jump to a label if the two values are equal.

Arguments: I, I, IC or N, N, IC or S, S, IC or P, I, IC or P, N, IC or P, S, IC or P, P, IC

eq_addr

eq_addr VAL1, VAL2, LABEL

Jump to a label if VAL1 and VAL2 point to the same string or PMC. Note that this op compares the addresses of the two
strings or PMCs, not simply their values.

Arguments: S, S, IC or P, P, IC

eq_num

eq_num VAL, VAL, LABEL

Jump to a label if the two values are numerically equal.

Arguments: P, P, IC

eq_str

eq_str VAL, VAL, LABEL

Jump to a label if the two strings are equal.

Arguments: P, P, IC

err

err DEST

err DEST, CODE

Return the system error code to an integer destination or the system error message to a string destination. The two-
argument version returns the system error message for a given code.

Arguments: IR or SR or SR, I

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arguments: IR or SR or SR, I

errorsoff

errorsoff VAL

Turn off errors of type VAL.

Argument: I

errorson

errorson VAL

Turn on errors of type VAL.

Argument: I

exchange

exchange REG, REG

Exchange the contents of two registers.

Arguments: IR, IR or NR, NR or SR, SR or P, P

exists

exists DEST, PMC[KEY]

Test a PMC key for existence.

Arguments: IR, P

exit

exit STATUS

Exit the interpreter with a given STATUS. (For extended exit status, throw an exception with severity EXCEPT_exit.)

Argument: I

See also: throw, die_hard

exp

exp DEST, VAL

Base of the natural logarithm, e, to the power of VAL.

Arguments: NR, I or NR, N

exsec

exsec DEST, VAL

The exsecant of VAL in radians.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The exsecant of VAL in radians.

Arguments: NR, N

fact

fact DEST, INT

Return the factorial of INT.

Arguments: IR, I or NR, I

fdopen

fdopen DEST, INT, MODE

Get a ParrotIO object for handle INT with open mode MODE.

Arguments: P, I, S

find_chartype

find_chartype DEST, NAME

Find the chartype named NAME and return its number in DEST.

Arguments: IR, S

find_encoding

find_encoding DEST, NAME

Find the encoding named NAME and return its number in DEST.

Arguments: IR, S

find_global

find_global DEST, NAME

Return a global variable with the given name.

Arguments: P, S find_global DEST, NAMESPACE, NAME

Return a global variable with the given name from the given namespace.

Arguments: P, S, S or P, P, S

See also: store_global

find_lex

find_lex DEST, NAME

find_lex DEST, DEPTH, NAME

find_lex DEST, DEPTH, POSITION

Return the lexical variable of the given name from a lexical scratchpad. If DEPTH is provided, return only a variable from
the scratchpad at that depth. A find by position returns the variable at a particular position in the scratchpad.

Arguments: P, S or P, I, S or P, I, I

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arguments: P, S or P, I, S or P, I, I

See also: store_lex

find_method

find_method DEST, PMC, NAME

Look up a method by name in a PMC's vtable. Return a method PMC.

Arguments: P, P, S

find_type

find_type DEST, NAME

Find the integer identifier for a PMC type or native Parrot datatype by name.

Arguments: IR, S

See also: typeof

findclass

findclass DEST, NAME

Return 1 if the class NAME exists, and 0 otherwise.

Arguments: IR, S

See also: typeof

floor

floor DEST

floor DEST, VAL

Return the largest integral value less than or equal to VAL (if present) or itself (if not).

Arguments: NR or IR, N or NR, N

foldup

foldup DEST

foldup DEST, SKIP

Return a new array holding all passed subroutine parameters. SKIP defines an optional offset.

Arguments: P or P, I

freeze

freeze DEST, VAL

Create a frozen image DEST from PMC VAL.

Arguments: SR, P

See also: thaw

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

gc_debug

gc_debug INT

Toggle garbage collection debugging in the interpreter (0 for off, any other value for on).

Argument: I

gcd

gcd DEST, VAL, VAL

Return the greatest common divisor of two values.

Arguments: IR, I, I or IR, N, N

ge

ge VAL1, VAL2, LABEL

Jump to a label if VAL1 is greater than or equal to VAL2.

Arguments: I, I, IC or N, N, IC or S, S, IC or P, I, IC or P, N, IC or P, S, IC or P, P, IC

ge_num

ge_num VAL1, VAL2, LABEL

Jump to a label if VAL1 is numerically greater than or equal to VAL2.

Arguments: P, P, IC

ge_str

ge_str VAL1, VAL2, LABEL

Jump to a label if VAL1 is stringwise greater than or equal to VAL2.

Arguments: P, P, IC

get_addr

get_addr DEST, SUB

Get the absolute address of a subroutine PMC.

Arguments: IR, P

See also: set_addr

getattribute

getattribute DEST, OBJECT, OFFS

Get a reference to attribute number OFFS from object OBJECT.

Arguments: P, P, I

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arguments: P, P, I

See also: setattribute, classoffset

getclass

getclass DEST, NAME

Return the class PMC of the given name.

Arguments: P, S

getfd

getfd DEST, PIO

Return the file descriptor for the given ParrotIO object.

Arguments: IR, P

getfile

getfile DEST

Return the name of the current file.

Argument: SR

getinterp

getinterp DEST

Get a PMC representing the current interpreter.

Argument: P

getline

getline DEST

Return the current line number.

Argument: IR

getpackage

getpackage DEST

Return the current package name.

Argument: SR

getprop

getprop DEST, NAME, PMC

Return the value of a named property on a PMC.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Return the value of a named property on a PMC.

Arguments: P, S, P

See also: setprop, prophash

getstd*

getstderr DEST

getstdin DEST

getstdout DEST

Get a ParrotIO object for the given standard handle.

Argument: P

gmtime

gmtime DEST, VAL

Take the integer, which represents GMT epoch-seconds, and turn it into a formatted string.

Arguments: SR, I

See also: localtime

gt

gt VAL1, VAL2, LABEL

Jump to a label if VAL1 is greater than VAL2.

Arguments: I, I, IC or N, N, IC or S, S, IC or P, I, IC or P, N, IC or P, S, IC or P, P, IC

gt_num

gt_num VAL1, VAL2, LABEL

Jump to a label if VAL1 is numerically greater than VAL2.

Arguments: P, P, IC

gt_str

gt_str VAL1, VAL2, LABEL

Jump to a label if VAL1 is stringwise greater than VAL2.

Arguments: P, P, IC

hav

hav DEST, VAL

The haversine of VAL in radians.

Arguments: NR, N

if

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if

if CONDITION, LABEL

Jump to a label if the condition is a true value.

Arguments: I, IC or N, IC or S, IC or P, IC

inc

inc DEST

Increment a value by one.

Arguments: IR or NR or P

index

index DEST, STRING, SEARCH

index DEST, STRING, SEARCH, POS

Return the position of the first occurrence of the string SEARCH in the string STRING, starting at the position POS. If the
starting position is unspecified, start at the beginning of the string.

Arguments: IR, S, S or IR, S, S, I

interpinfo

interpinfo DEST, FLAG

Return information about the interpreter. An integer flag selects which information to return, as listed in Table 11-1.

Arguments: IR, I

Table 11-1. Interpinfo flags
Flag Returns

1 Allocated memory, in bytes

2 Number of DOD sweeps performed

3 Number of GC runs performed

4 Number of active PMCs

5 Number of active buffers

6 Number of allocated PMCs

7 Number of allocated buffers

8 Number of new PMC or buffer headers allocated since last DOD run

9 Number of memory blocks allocated since last GC run

10 Amount of memory copied during GC runs, in bytes

invoke

invoke

invoke SUB

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Call a subroutine, coroutine, or continuation stored in a PMC. If no PMC register is specified, it calls the subroutine in P0
and uses the standard calling conventions. Otherwise, no calling convention is defined. Also yield from a coroutine.

Argument: P

invokecc

invokecc

invokecc SUB

Call a subroutine like invoke, but also generate a return continuation in P1.

Argument: P

See also: updatecc

isa

isa DEST, OBJECT, CLASS

Return a true value if OBJECT is a member of class CLASS, or of one of its subclasses. Otherwise, return a false value.

Arguments: IR, P, S

isnull

isnull VAL, LABEL

Jump to LABEL if the given PMC is a NULL PMC.

Arguments: P, IC

join

join DEST, DELIM, ARRAY

Create a new string by joining all elements from array with the given delimiter.

Arguments: SR, S, P

jsr

jsr ADDRESS

Jump to an address, like jump, but also push the current location onto the call stack so ret can return to it.

Argument: I

jump

jump ADDRESS

Jump to a specified absolute address.

Argument: I

See also: set_addr

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lcm

lcm DEST, VAL, VAL

Return the least common multiple of two values.

Arguments: IR, I, I or NR, I, I

le

le VAL1, VAL2, LABEL

Jump to a label if VAL1 is less than or equal to VAL2.

Arguments: I, I, IC or N, N, IC or S, S, IC or P, I, IC or P, N, IC or P, S, IC or P, P, IC

le_num

le_num VAL1, VAL2, LABEL

Jump to a label if VAL1 is numerically less than or equal to VAL2.

Arguments: P, P, IC

le_str

le_str VAL1, VAL2, LABEL

Jump to a label if VAL1 is stringwise less than or equal to VAL2.

Arguments: P, P, IC

length

length DEST, STRING

Return the character length of a string.

Arguments: IR, S

ln

ln DEST, VAL

The natural logarithm of VAL.

Arguments: NR, I or NR, N

load_bytecode

load_bytecode FILE

Load Parrot bytecode from a file.

Argument: S

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

loadlib

loadlib DEST, LIBRARY

Load a dynamic link library by name and store it in a PMC.

Arguments: P, S

See also: dlfunc

localtime

localtime DEST, VAL

Take the integer, which represents GMT epoch-seconds, and turn it into a formatted string after adjusting to localtime.

Arguments: SR, I

See also: gmtime

log10

log10 DEST, VAL

The base-10 logarithm of VAL.

Arguments: NR, I or NR, N

log2

log2 DEST, VAL

The base-2 logarithm of VAL.

Arguments: NR, I or NR, N

lookback

lookback DEST, OFFSET

Retrieve an entry from the user stack by position. A positive offset counts from the top of the stack; a negative offset
counts from the bottom.

Arguments: IR, I or NR, I or SR, I or P, I

lsr

lsr DEST, BITS

lsr DEST, VAL, BITS

Logically shift a value right by a given number of bits.

Arguments: IR, I or IR, I, I

lt

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lt VAL1, VAL2, LABEL

Jump to a label if VAL1 is less than VAL2.

Arguments: I, I, IC or N, N, IC or S, S, IC or P, I, IC or P, N, IC or P, S, IC or P, P, IC

lt_num

lt_num VAL1, VAL2, LABEL

Jump to a label if VAL1 is numerically less than VAL2.

Arguments: P, P, IC

lt_str

lt_str VAL1, VAL2, LABEL

Jump to a label if VAL1 is stringwise less than VAL2.

Arguments: P, P, IC

mmdvtfind

mmdvtfind DEST, FUNC, LEFT, RIGHT

Get the subroutine PMC for the multimethod vtable function FUNC for the two given PMC types.

Arguments: P, I, I, I

mmdvtregister

mmdvtregister FUNC, LEFT, RIGHT, SUB

Register the subroutine SUB as the multimethod vtable function FUNC for the two given PMC types.

Arguments: I, I, I, P

mod

mod DEST, VAL

mod DEST, VAL1, VAL2

Divide VAL1 by VAL2 and return the remainder. If VAL2 is omitted, divide DEST by VAL. The operation is defined as:

x mod y = x - y * floor(x / y)

Arguments: P, I or IR, I, I or NR, N, N or P, P, I or P, P, N

See also: cmod

mul

mul DEST, VAL

mul DEST, VAL, VAL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mul DEST, VAL, VAL

Multiply two values and return the result. If only one VAL, multiply DEST by VAL.

Arguments: IR, I or NR, I or NR, N or P, I or P, N or P, P or IR, I, I or NR, N, I or NR, N, N or P, P, I or P, P, N or P, P, P

ne

ne VAL, VAL, LABEL

Jump to a label if the two values are not equal.

Arguments: I, I, IC or N, N, IC or S, S, IC or P, I, IC or P, N, IC or P, S, IC or P, P, IC

ne_addr

ne_addr VAL, VAL, LABEL

Jump to a label if VAL1 and VAL2 do not point to the same string or PMC.

Arguments: S, S, IC or P, P, IC

ne_num

ne_num VAL, VAL, LABEL

Jump to a label if the two values are numerically different.

Arguments: P, P, IC

ne_str

ne_str VAL, VAL, LABEL

Jump to a label if the two strings are not equal.

Arguments: P, P, IC

needs_destroy

needs_destroy PMC

Mark the PMC as requiring timely destruction.

Argument: P

See also: sweep

neg

neg DEST

neg DEST, VAL

Return the negative of a number. If there is no VAL, DEST is the negative of itself.

Arguments: IR or NR or P or IR, I or NR, N or P, P

new

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

new DEST, TYPE

new DEST, TYPE, INITIALIZE

new DEST, TYPE, INITIALIZE, PROPS

Create a new PMC of type TYPE. INITIALIZE is an array PMC containing initialization data for the new PMC. PROPS is a
propety hash.

Arguments: P, I or P, I, P or P, I, P, P

new DEST

new DEST, LENGTH

new DEST, LENGTH, ENCODING

new DEST, LENGTH, ENCODING, TYPE

Allocate a new empty string with a given LENGTH, ENCODING, and TYPE.

Arguments: SR or SR, I or SR, I, I or SR, I, I, I

new_callback

new_callback DEST, SUB, DATA, SIG

Create a callback stub DEST for a PASM subroutine SUB with user data DATA and function signature SIG.

Arguments: P, P, P, S

new_pad

new_pad DEPTH

new_pad DEST, DEPTH

Create a new lexical scratchpad. If a destination PMC is provided, store the pad in the PMC. Otherwise, push it onto the
pad stack. DEPTH specifies the static nesting depth for the pad (lower static depths are copied from the current static
nesting).

Arguments: I or P, I

newclass

newclass DEST, NAME

Create a new class with the given name.

Arguments: P, S

newsub

newsub DEST, CLASS, LABEL

Generate a new subroutine object of the given CLASS, located at the given LABEL, and store the object in the destination
PMC.

Arguments: P, I, IC

newsub CLASS, RETCLASS, LABEL, RETADDR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

newsub CLASS, RETCLASS, LABEL, RETADDR

Generate a new subroutine object of the given CLASS, located at the given LABEL, and store the object in P0. Also
generate a return continuation of class RETCLASS with the return address RETADDR and store it in P1.

Arguments: I, I, IC, IC

noop

noop

Do nothing.

not

not DEST, VAL

Logical NOT. True if VAL is false.

Arguments: IR, I or P, P

null

null DEST

Set DEST (which must be a register) to 0, 0.0, or a NULL pointer, depending on its type.

Arguments: IR or NR or SR or P

open

open DEST, FILENAME

open DEST, FILENAME, MODE

Open a file in the specified mode ("<", ">", etc.) and return a filehandle. Without the mode it defaults to read/write.

Arguments: P, S, S or P, S

or

or DEST, VAL1, VAL2

Logical OR. Return VAL1 if it's true. Otherwise, return VAL2.

Arguments: IR, I, I or P, P, P

ord

ord DEST, STRING

ord DEST, STRING, POS

Return the character at position POS in STRING. If POS isn't specified, return the 0th character.

Arguments: IR, S or IR, S, I

peek

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

peek

peek DEST

peek DEST, PIO

Read the next byte from the given ParrotIO object or from stdin but don't remove it.

Arguments: SR or SR, P

peek_pad

peek_pad DEST

Store the current lexical scope pad in a PMC.

Argument: P

pin

pin DEST

Make the string in DEST immobile. This prevents the garbage collector from moving it to a different location in memory
(which it otherwise may choose to do).

Argument: SR

See also: unpin

pioctl

pioctl DEST, PIO, VAL, VAL

Perform an operation on an I/O object. This is a general purpose hook for setting various flags, modes, etc.

Arguments: IR, P, I, I

pop

pop DEST, PMC

Pop the last entry off an aggregate PMC and return it.

Arguments: IR, P or NR, P or SR, P or P, P

pop_pad

pop_pad

Pop the current lexical scope pad off the lexical scope stack.

See also: peek_pad

popX

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

popi

popn

popp

pops

Restore all the registers of one type from the stack ("i" = integer, "n" = float, "p" = PMC, "s" = string).

popbottomi

popbottomn

popbottomp

popbottoms

Restore registers in the range 0..15.

poptopi

poptopn

poptopp

poptops

Restore registers in the range 16..31.

See also: pushX

pow

pow DEST, VAL1, VAL2

Return VAL1 raised to the power of VAL2.

Arguments: NR, I, I or NR, I, N or NR, N, I or NR, N, N

print

print VAL

print IO, VAL

Print a value to an I/O object or file descriptor. If no IO is given, print the value to standard output.

Arguments: I or N or S or P or P, I or P, N or P, S or P, P

printerr

printerr VAL

Print a value to stderr.

Arguments: I or N or S or P

profile

profile INT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

profile INT

Toggle profiling in the interpreter (0 for off, any other value for on).

Argument: I

prophash

prophash DEST, PMC

Return a hash containing all the properties from a PMC.

Arguments: P, P

See also: getprop

push

push PMC, VAL

Push a value onto the end of an aggregate PMC.

Arguments: P, I or P, N or P, S or P, P

push_pad

push_pad PAD

Push a scratchpad stored in a PMC onto the lexical scope stack.

Argument: P

pushX

pushi

pushn

pushp

pushs

Save all the registers of one type to the stack ("i" = integer, "n" = float, "p" = PMC, "s" = string). Restore with popX.

pushbottomi

pushbottomn

pushbottomp

pushbottoms

Push registers 0..15.

pushtopi

pushtopn

pushtopp

pushtops

Push registers 16..31.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Push registers 16..31.

read

read DEST, BYTES

read DEST, IO, BYTES

Read the specified number of bytes from a ParrotIO object. Read from stdin if no IO is provided.

Arguments: SR, I or SR, P, I

readline

readline DEST, IO

Read a line from a ParrotIO object.

Arguments: SR, P

register

register PMC

Register the given PMC in the interpreter's root set, so that it's visible during DOD.

Argument: P

See also: unregister

removeparent

removeparent CLASS1, CLASS2

Remove CLASS2 from class CLASS1's list of parents.

Arguments: P, P

repeat

repeat DEST, VAL, REPEAT

Repeat a string REPEAT number of times.

Arguments: SR, S, I or P, P, I or P, P, P

restore

restore DEST

Restore a register from the user stack.

Arguments: IR or NR or SR or P

restoreall

restoreall

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Restore all the registers. Does a popX for every type.

restoretop

restoretop

Restore registers 16..31. Does a popX for every type.

See also: savetop

ret

ret

Pop a location off the top of the call stack, and go there. Often used with bsr and jsr.

rethrow

rethrow EXCEPTION

Rethrow an exception. Only valid inside an exception handler.

Argument: P

See also: throw

rotate_up

rotate_up COUNT

Rotate the top COUNT entries on the user stack. A positive number rotates up: the top entry becomes the COUNTth
entry, and the others move up one (the second entry becomes first, the third becomes the second, etc.). A negative
number rotates down: the COUNTth entry becomes the top, and the others move down (the first becomes second, etc.).

Argument: I

runinterp

runinterp INTERPRETER, OFFSET

Use an interpreter stored in PMC to run code starting at a given offset.

Arguments: P, I

See also: newinterp

save

save VAL

Save a value onto the user stack.

Arguments: I or N or S or P

saveall

saveall

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

saveall

Save all the registers. Does a pushX for every type.

savec

savec VAL

Save a clone of a value onto the user stack.

Arguments: S or P

savetop

savetop

Save registers 16..31. Does a pushX for every type.

sec

sec DEST, VAL

The secant of VAL in radians.

Arguments: NR, I or NR, N

sech

sech DEST, VAL

The hyperbolic secant of VAL in radians.

Arguments: NR, I or NR, N

seek

seek DEST, IO, OFFSET, STARTFLAG

seek DEST, IO, UPPER32, LOWER32, STARTFLAG

Set the file position of a ParrotIO object to a given offset from a starting position (STARTFLAG: 0 is the beginning of the
file, 1 is current the position, 2 is the end of the file). DEST is the success or failure of the seek.

64-bit seek combines UPPER32 and LOWER32 to get one 64-bit OFFSET.

Arguments: P, I, I or P, I, I, I

set

set DEST, VAL

Set a register to a value.

Arguments: IR, I or IR, N or IR, S or IR, P or NR, I or NR, N or NR, S or NR, P or SR, I or SR, N or SR, S or SR, P or P, I
or P, N or P, S or P, P

set DEST[KEY], VAL

A keyed set operation on a PMC.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A keyed set operation on a PMC.

Arguments: P, I or P, N or P, S or P, P

set DEST, PMC[KEY]

A keyed get operation on a PMC.

Arguments: I, P or N, P or S, P or P, P

setX_ind

seti_ind REG, VAL

setn_ind REG, VAL

sets_ind REG, VAL

setp_ind REG, VAL

Set register number REG of the specified type to VAL. Bypasses the register allocator, so use with care.

Arguments: I, I or I, S or I, N or I, P

set_addr

set_addr DEST, LABEL

Return the current address plus the offset to LABEL. Often used to calculate absolute addresses for jump or jsr.

Arguments: IR, IC

set_addr SUB, LABEL

Set the subroutine address pointing to the given label.

Arguments: P, I

set_chartype

set_chartype STRING, CHARTYPE

Set the chartype of a string.

Arguments: S, I

set_eh

set_eh HANDLER

Push an exception handler on the control stack.

Argument: P

See also: clear_eh, throw

set_encoding

set_encoding STRING, ENCODING

Set the encoding of a string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set the encoding of a string.

Arguments: S, I

setattribute

setattribute OBJECT, OFFSET, ATTRIBUTE

Set the given attribute at OFFSET for object OBJECT.

Arguments: P, I, P

See also: getattribute, classoffset

setprop

setprop PMC, NAME, VALUE

Set the value of a named property on a PMC.

Arguments: P, S, P

See also: getprop and delprop

shift

shift DEST, PMC

Shift a value off the front of an aggregate PMC.

Arguments: IR, P or NR, P or SR, P or P, P

shl

shl DEST, VAL, BITS

Bitwise shift a value left by a given number of bits.

Arguments: IR, I or P, I or P, P or IR, I, I or P, P, I or P, P, P

shr

shr DEST, VAL, BITS

Bitwise shift a value right by a given number of bits.

Arguments: IR, I or P, I or P, P or IR, I, I or P, P, I or P, P, P

sin

sin DEST, VAL

The sine of VAL in radians.

Arguments: NR, I or NR, N

singleton

singleton DEST

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

singleton DEST

Take the given object and put it into its own singleton class.

Argument: P

sinh

sinh DEST, VAL

The hyperbolic sine of VAL in radians.

Arguments: NR, I or NR, N

sizeof

sizeof DEST, TYPE

Set DEST to the size in bytes of the given natural type.

Arguments: IR, I

sleep

sleep SECONDS

Sleep for the given number of seconds.

Arguments: I or N

spanw

spawnw DEST, COMMAND

Spawn a subprocess to run the given COMMAND, wait for it to finish, and return the result.

Arguments: IR, S

splice

splice DEST, REPLACE, OFFSET, COUNT

Starting at OFFSET, replace COUNT number of values in the destination PMC with values provided in the REPLACE PMC.

Arguments: P, P, I, I

sprintf

sprintf DEST, FORMAT, ARGS

Format arguments in an aggregate PMC, using format string FORMAT.

Arguments: SR, S, P or P, P, P

store_global

store_global NAME, OBJECT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

store_global NAME, OBJECT

store_global NAME, NAMESPACE, OBJECT

Store a global variable as a named symbol.

Arguments: S, P or S, S, P or P, S, P

See also: find_global

store_lex

store_lex NAME, OBJECT

store_lex DEPTH, NAME, OBJECT

store_lex DEPTH, POSITION, OBJECT

Store an object as a lexical variable with a given name. If the symbol doesn't exist, it will be created in the lexical
scratchpad at the specified depth (a negative depth counts back from the current scope). If DEPTH isn't provided, the
symbol must already exist. If a position is provided instead of a name, the symbol will be stored at the given position in
the scratchpad.

Arguments: S, P or I, I, P or I, S, P

See also: find_lex

string_chartype

string_chartype DEST, STRING

Return the chartype of the string.

Arguments: IR, S

string_encoding

string_encoding DEST, STRING

Return the encoding of the string.

Arguments: IR, S

stringinfo

stringinfo DEST, STRING, FLAG

Return information about a string. An integer flag selects which information to return, as listed in Table 11-2.

Arguments: IR, S, I

Table 11-2. stringinfo arguments
Flag Returns

1 Location of string buffer header

2 Location of start of string memory

3 Allocated length, in bytes

4 String flags

5 Length of string buffer currently used, in bytes

6 String length, in characters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sub

sub DEST, VAL

sub DEST, VAL1, VAL2

Subtract VAL2 from VAL1. If no VAL2, subtract VAL from DEST.

Arguments: IR, I or NR, I or NR, N or P, I or P, N or P, P or IR, I, I or NR, N, I or NR, N, N or P, P, I or P, P, N or P, P, P

subclass

subclass DEST, CLASS

subclass DEST, CLASS, NAME

Create a sublass of CLASS. Without NAME an anonymous subclass is created.

Arguments: P, S or P, P or P, S, S or P, P, S

substr

substr DEST, STRING, OFFSET

substr DEST, STRING, OFFSET, LENGTH

Return a substring of STRING, beginning at OFFSET and with length LENGTH.

Arguments: SR, S, I or SR, S, I, I or SR, P, I, I

substr DEST, STRING, OFFSET, LENGTH, REPLACE

If REPLACE is given, use it to replace the returned substring in STRING.

Arguments: SR, S, I, I, S

substr DEST, OFFSET, LENGTH, REPLACE

If STRING is omitted, operate on the string in DEST.

Arguments: SR, I, I, S

substr_r

substr_r DEST, STRING, OFFSET, LENGTH

Acts like substr, but reuses the destination string instead of creating a new string.

Arguments: SR, S, I, I

sweep

sweep LAZY

Trigger a dead object detection (DOD) sweep. If LAZY is set to 1, only objects that need timely destruction may be
destroyed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

destroyed.

Argument: IC

sweepoff

sweepoff

Disable DOD sweeps (nestable).

sweepon

sweepon

Reenable DOD sweeps.

sysinfo

sysinfo DEST, ITEM

Return operating-system-specific details given by ITEM.

Arguments: IR, I or SR, I

tan

tan DEST, VAL

The tangent of VAL in radians.

Arguments: NR, I or NR, N

tanh

tanh DEST, VAL

The hyperbolic tangent of VAL in radians.

Arguments: NR, I or NR, N

tell

tell DEST, PIO

tell UPPER32, LOWER32, PIO

Return the file position of the given ParrotIO object.

Arguments: IR, P or IR, I, P

See also: seek

thaw

thaw DEST, STR

Create a new PMC representing the frozen image.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Create a new PMC representing the frozen image.

Arguments: P, S

See also: freeze

throw

throw EXCEPTION

Throw an exception.

Argument: P

See also: rethrow, set_eh, clear_eh

time

time DEST

Return the current system time.

Arguments: IR or NR

titlecase

titlecase DEST

titlecase DEST, VAL

Create a copy of the string in VAL with all characters converted to title case, and store it in DEST. If VAL is omitted,
convert and replace the string in DEST.

Arguments: SR or SR, S

See also: upcase, downcase

trace

trace INT

Toggle tracing in the interpreter (0 for off, any other value for on).

Argument: I

transcode

transcode DEST, ENCODING

transcode DEST, SOURCE, ENCODING

transcode DEST, SOURCE, ENCODING, CHARTYPE

Transcode a string to the given CHARTYPE and ENCODING. If CHARTYPE is omitted, it is assumed to be the same as the
original.

Arguments: SR, I or SR, S, I or SR, S, I, I

typeof

typeof DEST, VAL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typeof DEST, VAL

typeof DEST, PMC[KEY]

Return the type of a PMC or Parrot data type, either its class name (to a string destination) or integer identifier (to an
integer destination).

Arguments: IR, P or SR, I or SR, P

unless

unless CONDITION, LABEL

Jump to a label unless the condition is a true value.

Arguments: I, IC or N, IC or S, IC or P, IC

unpin

unpin DEST

Make the string in DEST movable again. This is the default, so unpin is a no-op unless the string has been pinned with
pin.

Argument: SR

See also: pin

unregister

unregister PMC

Remove one reference to PMC from the root set registry.

Argument: P

See also: register

unshift

unshift DEST, VAL

Unshift a value onto the front of an aggregate PMC.

Arguments: P, I or P, N or P, S or P, P

upcase

upcase DEST

upcase DEST, VAL

Create a copy of the string in VAL with all characters converted to uppercase, and store it in DEST. If VAL is omitted,
convert and replace the string in DEST.

Arguments: SR or SR, S

See also: downcase, titlecase

updatecc

updatecc

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

updatecc

Update the state of a return continuation stored in P1. Used when context information changes after the return
continuation is created but before it's invoked.

See also: invokecc

valid_type

valid_type DEST, TYPE

Check whether a PMC type or native Parrot datatype is a valid one.

Arguments: IR, I

vers

vers DEST, VAL

The versine of VAL in radians.

Arguments: NR, N

warningsoff

warningsoff CATEGORY

Turn off a particular category of warnings by category number. Turning off one category will not affect the status of
other warnings categories. See warningson for the list of categories.

Argument: I

warningson

warningson CATEGORY

Turn on a particular category of warnings by category number. The default is all warnings off. Turning on one category
will not turn off other categories. Combine category numbers with a bitwise OR to turn on more than one at a time. If
you include warnings.pasm, the category numbers are available by name as:

.PARROT_WARNINGS_ALL_FLAG

.PARROT_WARNINGS_UNDEF_FLAG

.PARROT_WARNINGS_IO_FLAG

.PARROT_WARNINGS_PLATFORM_FLAG

Argument: I

xor

xor DEST, VAL1, VAL2

Logical XOR. If VAL1 is true and VAL2 is false, return VAL1. If VAL1 is false and VAL2 is true, return VAL2. Otherwise,
return a false value.

Arguments: IR, I, I or P, P, P
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.2 PIR Directives
This is a summary of PIR directives. Directives are preprocessed by the Parrot interpreter. Since PIR and PASM run on
the same interpreter, many of the directives listed here are also valid in PASM code.

.arg

.arg VAL

Push a value onto the user stack or set it according to PCC.

.const

.const TYPENAME = VALUE

Define a named constant.

.constant

.constant NAMEVALUE

Define a named macro that expands to a given value. Macros are called as directives—i.e., .NAME (PASM code only).

.emit

.emit

Define a compilation unit of PASM code. Always paired with .eom.

.end

.end

End a compilation unit. Always paired with .sub.

.endm

.endm

End a macro definition. Always paired with .macro.

.eom

.eom

End a compilation unit of PASM code. Always paired with .emit.

.flatten_arg

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.flatten_arg PArray

Flatten the passed array PMC and provide args for PCC calls.

.globalconst

.globalconst TYPENAME = VALUE

Define a named, file visible constant.

.include

.include " FILENAME "

Include the contents of an external file by inserting it in place.

.invocant

.invocant OBJ

Set the invocant for a method call.

.local

.local TYPENAME

Define a local named variable.

.macro

.macro NAME (PARAMS)

Define a named macro with a list of parameters. The macro is called as:

.NAME(arg1,arg2, . . .)

This directive is always paired with .endm.

.meth_call

.meth_call SUB

.meth_call SUB, RETCONT

Create a method call.

.namespace

.namespace ["namespace"]

Define a namespace.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.nci_call

.nci_call SUB

Create an NCI call.

.param

.param DEST

.param TYPENAME

Pop a value off the user stack into a register or typed identifier.

.pcc_begin

Start a call sequence. Always paired with .pcc_end.

.pcc_begin_return

Start a return sequence. Always paired with .pcc_end_return.

.pcc_begin_yield

Start a return of a coroutine sequence. Always paired with .pcc_end_yield.

.pcc_call

.pcc_call SUB

.pcc_call SUB, RETCONT

Create a subroutine call.

.pcc_sub

.pcc_sub _LABEL

Create a symbol entry for subroutine at the _LABEL. This directive is for PASM code only.

.pragma

.pragma fastcall

.pragma prototyped

Set default calling conventions.

.result

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.result

.result DEST

Pop a value off the user stack or get it according to PCC.

.return

.return VAL

Return a value to the calling subroutine by pushing it onto the user stack or set it according to PCC.

.sub

.sub NAME

Define a compilation unit. Always paired with .end. Names begin with _ by convention.

.sym

.sym TYPE NAME

Same as .local.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.3 PIR Instructions
This section is a quick reference to PIR instructions. For more details and the latest changes, see imcc/docs/syntax.pod
or dive into the source code in imcc/imcc.l and imcc/imcc.y.

=

DEST = VAL

Assign a value to a particular register, temporary register, or named variable.

+, +=

DEST = VAL + VAL

DEST += VAL

Add two numbers or PMCs.

-, -=

DEST = VAL1 - VAL2

DEST -= VAL1

DEST = - VAL

Subtract VAL1 from VAL2. The unary - negates a number.

*, *=

DEST = VAL * VAL

DEST *= VAL

Multiply two numbers or PMCs.

/, /=

DEST = VAL1 / VAL2DEST /= VAL1

Divide VAL1 by VAL2.

**

DEST = VAL1 ** VAL2

Raise VAL1 to the power of VAL2.

%, %=

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DEST = VAL1 % VAL2

DEST %= VAL1

Divide VAL1 by VAL2 and return the (mod) remainder.

., .=

DEST = VAL . VAL

DEST .= VAL

Concatenate two strings. The concat operator must be surrounded by whitespace.

<

if VAL1 < VAL2 goto LABEL

Conditionally branch to a label if VAL1 is less than VAL2.

<=

if VAL1 <= VAL2 goto LABEL

Conditionally branch to a label if VAL1 is less than or equal to VAL2.

>

if VAL1 > VAL2 goto LABEL

Conditionally branch to a label if VAL1 is greater than VAL2.

>=

if VAL1 >= VAL2 goto LABEL

Conditionally branch to a label if VAL1 is greater than or equal to VAL2.

= =

if VAL1 = = VAL2 goto LABEL

Conditionally branch to a label if VAL1 is equal to VAL2.

!=

if VAL1 != VAL2 goto LABEL

Conditionally branch to a label if VAL1 is not equal to VAL2.

&&

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DEST = VAL1 && VAL2

Logical AND. Return VAL1 if it's false. Otherwise, return VAL2.

||

DEST = VAL1 || VAL2

Logical OR. Return VAL1 if it's true. Otherwise, return VAL2.

~~

DEST = VAL1 ~~ VAL2

Logical XOR. If VAL1 is true and VAL2 is false, return VAL1. If VAL1 is false and VAL2 is true, return VAL2. Otherwise,
return a false value.

!

DEST = ! VAL

Logical NOT. Return a true value if VAL is false.

&, &=

DEST = VAL & VAL

DEST &= VAL

Bitwise AND on two values.

|, |=

DEST = VAL | VAL

DEST |= VAL

Bitwise OR on two values.

~, ~=

DEST = VAL ~ VAL

DEST ~= VAL

DEST = ~ VAL

Bitwise XOR on two values. The unary form is a bitwise NOT on a value.

<<, <<=

DEST = VAL1 << VAL2

DEST <<= VAL2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bitwise shift VAL1 left by VAL2 number of bits.

>>, >>=

DEST = VAL1 >> VAL2

DEST >>= VAL2

Bitwise shift VAL1 right by VAL2 number of bits.

>>>, >>>=

DEST = VAL1 >>> VAL2

DEST >>>= VAL2

Logically shift VAL1 right by VAL2 number of bits.

[]

DEST = PMC [KEY]

PMC [KEY] = VAL

Indexed access to a PMC and indexed assignment to a PMC.

DEST = STRING [OFFSET]

STRING [OFFSET] = VAL

Access a one-character substring on a string, starting at a particular offset, or assign to that substring.

addr

DEST = addr LABEL

Return the address of a label.

call

call NAME

Call the named subroutine (a .sub label).

global

DEST = global NAME

global NAME = VAL

Access a global variable for read or write.

goto

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

goto NAME

Jump to the named identifier (label or subroutine name).

if

if EXPR goto NAME

If the value or expression evaluates as true, jump to the named identifier.

unless

unless VAL goto NAME

Unless the value evaluates as true, jump to the named identifier.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.4 Parrot Command-Line Options
Since Parrot is both an assembler and a bytecode interpreter, it has options to control both behaviors. Some options
may have changed by the time you read this, especially options related to debugging and optimization. The document
imcc/docs/running.pod should have the latest details. Or just run parrot —help.

11.4.1 General Usage

parrot [options] file [arguments]

The file is either an .imc (.pir) or .pasm source file or a Parrot bytecode file. Parrot creates an Array object to hold the
command-line arguments and stores it in P5 on program start.

11.4.2 Assembler Options

-a, --pasm

Assume PASM input on stdin. When Parrot runs a source file with a .pasm extension, it parses the file as pure
PASM code. This switch turns on PASM parsing (instead of the default PIR parsing) when a source file is read
from stdin.

-c,--pbc

Assume PBC file on stdin. When Parrot runs a bytecode file with a .pbc extension, it immediately executes the
file. This option tells Parrot to immediately execute a bytecode file piped in on stdin.

-d ,--debug [hexbits]

Turn on debugging output. The -d switch takes an optional argument, which is a hex value of debug bits. (The
individual bits are shown in Table 11-3.) When hexbits isn't specified, the default debugging level is 0001. If
hexbits is separated from the -d switch by whitespace, it has to start with a number.

Table 11-3. Debug bits
Description Debug bit

DEBUG_PARROT 0001

DEBUG_LEXER 0002

DEBUG_PARSER 0004

DEBUG_IMC 0008

DEBUG_CFG 0010

DEBUG_OPT1 0020

DEBUG_OPT2 0040

DEBUG_PBC 1000

DEBUG_PBC_CONST 2000

DEBUG_PBC_FIXUP 4000

To produce a huge output on stderr, turn on all the debugging bits:

$ parrot -d 0ffff . . .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

--help-debug

Show debug option bits.

-h,--help

Print a short summary of options to stdout and exit.

-o outputfile

Act like an assembler. With this switch, Parrot won't run code unless it's combined with the -r switch. If the
name of outputfile ends with a .pbc extension, Parrot writes a Parrot bytecode file. If outputfile ends with a .pasm
extension, Parrot writes a PASM source file, even if the input file was also PASM. This can be handy to check
various optimizations when you run Parrot with the -Op switch.

If the extension is .o or equivalent, Parrot generates an object file from the JITed program code, which can be
used to create a standalone executable program. This isn't available on all platforms yet; see PLATFORMS for
which platforms support this.

-r,--run-pbc

Immediately execute bytecode. This is the default unless -o is present. The combination of -r -o output.pbc writes
a bytecode file and executes the generated PBC.

-v,--verbose

One -v switch (imcc -v) shows which files are worked on and prints a summary of register usage and
optimization statistics. Two -v switches (imcc -v -v) also prints a line for each individual processing step.

-y,--yydebug

Turn on yydebug for yacc/bison.

-E,--pre-process-only

Show output of macro expansions and quit.

-V,--version

Print the program version to stdout and exit.

-Ox

Turn on optimizations. The flags currently implemented are shown in Table 11-4.

Table 11-4. Optimizations
Flag Meaning

-O0 No optimization (default).

-O1 Optimizations without life info (e.g., branches and constants).

-O2 Optimizations with life info.

-Oc Optimize function call sequence.

-Op Rearrange PASM registers with the most-used first.

11.4.3 Bytecode Interpreter Options

The interpreter options are mainly for selecting which run-time core to use for interpreting bytecode. The current
default is the computed goto core if it's available. Otherwise, the fast core is used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

default is the computed goto core if it's available. Otherwise, the fast core is used.

-b,--bounds-checks

Activate bounds checking. This also runs with the slow core as a side effect.

-f,--fast-core

Run with the fast core.

-g,--computed-goto-core

Run the computed goto core (CGoto).

-j,--jit-core

Run with the JIT core if available.

-p,--profile

Activate profiling. This prints a summary of opcode usage and execution times after the program stops. It also
runs within the slow core.

-C,--CGP-core

Run with the CGoto-Prederefed core.

-P,--predereferenced-core

Run with the Prederefed core.

-S,--switched-core

Run with the Switched core.

-t,--trace

Trace execution. This also turns on the slow core.

-w,--warnings

Turn on warnings.

-G,--no-gc

Turn off DOD/GC. This is for debugging only.

-.,--wait

Wait for a keypress before running.

--leak-test,--destroy-at-end

Clean up allocated memory when the final interpreter is destroyed. Parrot destroys created interpreters (e.g.,
threads) on exit but doesn't normally free all memory for the last terminating interpreter, since the operating
system will do this anyway. This can create false positives when Parrot is run with a memory leak detector. To
prevent this, use this option.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of Perl 6 and Parrot Essentials, Second Edition, is an aoudad (ammotragus lervia). Commonly
known as Barbary sheep, aoudads originated in the arid mountainous regions of northern Africa and have stout, sturdy
bodies, standing 30-40 inches at the shoulder and weighing from 65-320 pounds. The aoudad has a bristly reddish-
brown coat and is distinguished by a heavy, fringed mane covering its chest and legs. Both males and females have
thick, triangular-shaped horns that curve back in a semicircle. A male aoudad's horns can grow up to 2.5 feet.

Aoudads are herbivores and are most active at dawn and dusk, avoiding the desert heat of midday. They will drink
water if it is available, but can obtain sufficient moisture from dew and vegetation. Aoudads are incredible jumpers, able
to clear 6 feet from a standstill. So well suited are they to their surroundings that newborns have the ability to navigate
rocky slopes just hours after birth.

Despite being endangered in their native environment, aoudads are flourishing in the United States. Introduced to
western Texas and southern New Mexico in the 1940s, aoudads are now so populous that it is feared that their
presence may threaten the native desert bighorn sheep. Aoudads are considered native game in the desert mountains
of their adopted home, where the rugged landscape is dotted with ranches catering to recreational hunters.

Matt Hutchinson was the production editor for Perl 6 and Parrot Essentials, Second Edition. Octal Publishing, Inc.
provided production services. Darren Kelly, Genevieve d'Entremont, and Emily Quill provided quality control.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The cover image is a
19th-century engraving from Animate Creations, Volume II. Maureen McMahon produced the cover layout with
QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Joe Wizda to FrameMaker 5.5.6 with a format
conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans
Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. This colophon was written by Emily Quill.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Ellie
Cutler) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, Ellie Cutler, and Jeff Liggett.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

. (concatenation) instruction (PIR)
! (bang) 2nd
! (not)
!= (not equal)
(hash sign)
$ sigil
% (modulus) operator 2nd
% (percent sign) 2nd
% sigil
%= (modulus assignment)
%flags hash
& (ampersand) 2nd 3rd
& (bitwise AND) instruction (PIR)
&& (logical AND)
 opcode
 operator
&= (bitwise AND assignment) instruction (PIR)
> (greater than)
> (right angle bracket) 2nd 3rd 4th 5th 6th
>> (bitwise right shift)
>>> (logical right shift)
>>>= (logical right shift assignment)
>>= (bitwise right shift assignment)
>= (greater than or equal)
< (left angle bracket) 2nd 3rd 4th
< (less than)
<< (bitwise left shift)
<<= (bitwise left shift assignment)
<. . .> (assertion delimiters)
<= (less than or equal)
/ (division)
 opcode
* (asterisk) 2nd 3rd
* (multiplication)
 opcode
 operator
** (exponentiation)
 opcode
 operator
*= (multiplication assignment)
+ (addition)
 opcode
 operator
+ (plus sign) 2nd
++ (postfix autoincrement) operators
+= (addition assignment)
- (hyphen) 2nd 3rd
- (negation)
- (subtraction)
 opcode
 operator
- - (autodecrement) operators
-= (subtraction assignment)
. (dot)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/ (division)
 operator
/ (slash)
// operator
:= (binding) operator
= (assignment) instruction (PIR)
= (assignment) operator
.= (concatenation assignment) instruction (PIR)
/= (division assignment)
= (equal sign) 2nd
== (equality) instruction (PIR)
@ sigil
[. . .] (brackets)
^ (caret), placeholder variables
^^ operator
_ _ (double underscore)
| (bitwise AND) instruction (PIR)
| (pipe) 2nd 3rd
|= (bitwise AND) instruction (PIR)
|| (logical OR)
 opcode
 operator
~ (bitwise XOR) instruction (PIR)
~ (tilde) 2nd 3rd
~ operator (string concatenation)
~= (bitwise XOR assignment) instruction (PIR)
~~ (logical XOR) instruction (PIR)
~~ (smart-match) operators
 syntax

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

abs opcode (PASM)
absolute addresses
Abstract Syntax Tree (AST)
abstraction
accessibility
 attributes
 numbered capture variables
acos opcode (PASM)
adaptability, principle of
add opcode 2nd
addattribute opcode 2nd
addition (+) operator
addparent opcode (PASM)
addr instruction (PIR)
addresses
aggregates, PMCs
alarm() request
allocation
 garbage collection
 registers, spilling
alternate option syntax pairs 2nd [See also syntax]
and opcode 2nd
AND relation
anonymous arrayref constructor ([...])
anonymous classes
anonymous hash reference constructor ({...})
anonymous pairs, named argument passing
anonymous rules matching 2nd [See also rules]
anonymous subroutines
Apocalypse
architecture
 bytecode loader
 compiler module
 continuations
 coroutines
 design
 events
 garbage collection
 I/O
 interpreter module 2nd
 multimethod dispatching
 objects
 optimizer module
 parser module
 signals
 threads
.arg directive
arguments
 floating-point operations
 pairs, passing as
 positional
 subroutines
 use of ^ (caret)
arithmetic operators

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 junctions
arrays
 assertions
 list context
 matching
 one-element
 PMCs
 strings, splitting
arrow operator
asec opcode (PASM)
asin opcode (PASM)
assembler code
assembly compiler module 2nd [See also PASM]
assertions
 delimiters (< . . .>)
 rules
assign opcode (PASM)
assignment
 = operator
 arrays to lists
 binding, curried subroutines
 PMCs
 registers
AST (Abstract Syntax Tree)
asynchronous I/O
atan opcode (PASM)
attributes
 classes, PASM
 objects
 private
autodecrement (- -) operators
automatic referencing

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

backtracking patterns
band opcode (PASM)
bands opcode (PASM)
bare blocks
BASIC
Befunge
benchmarks
Bergman, Artur
binary junction operators
binary logical operators
binary math opcodes
binding
 curried subroutines
 operators
bitwise operations, PASM
bitwise operators
blocks
 bare
 class declarations
 control structures
 definitions
 macros
bnot opcode (PASM)
bnots opcode (PASM)
Boolean context
bor opcode (PASM)
borrowing, principles of
bors opcode (PASM)
bounds opcode (PASM)
branch opcode (PASM)
branch_cs opcode (PASM)
branches, flow control
bsr opcode 2nd
bug tracking
bugs, reporting
BUILD method
BUILDALL method
built-in quantifiers
built-in rules
built-in types, scalars
bxor opcode (PASM)
bxors opcode (PASM)
bytecode
 interpreter options (Parrot)
 loader
 PASM

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C extensions
call instruction (PIR)
calling
 conventions, PASM
 fail function
callmethod opcode (PASM)
callmethodcc opcode (PASM)
calls
 indirect objects
 lexically scoped subroutines
 Parrot-calling conventions
 private attributes
 stack-based subroutine
 subroutines
 anonymous
 curried
 Lvalue
 multiple
 wrapped
can opcode (PASM)
caret (^), placeholder variables
CATCH block
ceil opcode (PASM)
.cglobalonst directive
chained comparison operators
characters
 assertions
 compression, Huffman coding
 converting
 escape sequences
 metacharacters
 backtracking
 escape sequences
 sets
checkevents opcode (PASM)
chopn opcode 2nd
chr opcode 2nd
class opcode (PASM)
classes
 anonymous
 attributes, PASM
 built-in rules
 characters, assertions
 composition
 conflicts
 declarations
 objects
 PASM
 defining
 delegation
 inheritance 2nd
 lexically scoped
 methods, PASM
 mixed class-type support

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 package-scoped subroutines
 private/public methods
 roles
classes/ directory
classname opcode (PASM)
classoffset opcode 2nd
clear_eh
cleari opcode (PASM)
clearn opcode (PASM)
clearp opcode (PASM)
clears opcode (PASM)
clone opcode 2nd
close opcode (PASM)
closing files
closures, PASM
cmod opcode (PASM)
cmp (comparison)
cmp_num opcode (PASM)
cmp_str opcode (PASM)
code
 bytecode
 cognitive/linguistic considerations
 exceptions
 Huffman coding
 object delegation
 obtaining
 optimizing
 PIR
 constants
 flow control
 labels
 methods
 statements
 subroutines
 symbol operators
 strings, PASM
cognitive language design considerations
collect opcode (PASM)
collections, hashes
collectoff opcode (PASM)
collecton opcode (PASM)
command-line options (Parrot)
commands, diff -u
community review (development cycle)
comparison operators
compilation units, PIR 2nd
compile opcode (PASM)
compile-time traits
compilers
 directories
 module
compiling source code
composition, classes
compreg opcode (PASM)
compression, Huffman coding
computed goto core
concat opcode 2nd
concatenation 2nd
conditional branches

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

conditional operators
conflicts, classes
.const directive 2nd
.constant directive
constants
 PASM
 PIR
 traits
constraints, ordering arguments
construction, objects
containers, scalars
context
 forcing operators
 principle of
 unary context forcing operators
 variables
Continuation Passing Style (CPS)
continuations
continuations, PASM
continue modifier
control stacks 2nd
control structures (syntax)
conventions
 calling, PASM
 Parrot-calling
conversion, characters
Conway, Damian
copy-on-write (COW)
copying strings
coroutines
 PASM
cos opcode (PASM)
cosh opcode (PASM)
COW (copy-on-write)
Cozens, Simon
CPAN, obtaining source code
CPS (Continuation Passing Style)
CREATE method
curried subroutines
CVS repositories, snapshots of
cycles
 development
 Parrot

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

data members [See attributes]
data structures, PMCs
debug opcode (PASM)
debugging bits (Parrot)
dec opcode (PASM)
declarations
 classes, PASM
 objects, classes
 private/public methods
 siglets
 subroutines
 anonymous
 curried
 Lvalue
 multiple
 signatures
 stubs
 wrapped
decodelocaltime opcode (PASM)
decodetime opcode (PASM)
default values, parameters
deferred matches, rules
defined opcode (PASM)
definitions
 anonymous classes
 blocks
 files, class declarations
 private/public methods
 roles
delegation, objects
delete opcode 2nd
delimiters, grouping
delprop opcode (PASM)
depth opcode (PASM)
deref opcode (PASM)
dereferencing
design 2nd
 bytecode loader
 compiler module
 continuations
 coroutines
 cycles
 events
 garbage collection
 I/O
 interpreter module 2nd
 languages 2nd 3rd
 architecture
 cognitive/linguistic considerations
 cultural influences of
 Huffman coding
 principle of adaptability
 principle of borrowing
 principle of context

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 principle of distinction
 principle of DWIM
 principle of end weight
 principle of freedom
 principle of prominence
 principle of reuse
 principle of simplicity
 syntax [See syntax]
 waterbed theory of complexity
 modular
 multimethod dispatching
 objects
 optimizer module
 parser module
 PIR 2nd 3rd 4th 5th
 signals
 threads
destination registers
destruction, objects
development
 cycles 2nd 3rd
 internals
 languages
 p61 mailing list, joining
 Parrot
die_hard opcode (PASM)
diff -u command
directories
dispatches, subroutines
distinction, principle of
div opcode (PASM)
division (/) operator
dlfunc opcode 2nd
dlvar opcode (PASM)
docs/ directory
does opcode (PASM)
Dominus, Mark-Jason
double underscore (_ _)
downcase opcode (PASM)
.dump method
DWIM, principle of
dynamic languages 2nd [See also languages]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

elements
 arrays
 copying
.elems method
.emit directive
encapsulation [See also objects]
 objects
encoding 2nd 3rd
encoding strings
.end directive
end opcode 2nd
end weight, principle of
.endm directive
enternative opcode (PASM)
entrytype opcode (PASM)
enumeration, assertions
.eom directive
eq opcode (PASM)
eq_addr opcode 2nd
eq_num opcode (PASM)
eq_str opcode (PASM)
err opcode (PASM)
errors, exceptions
errorsoff opcode (PASM)
errorson opcode (PASM)
escape sequences
events
 PASM
 signals
examples/ directory
exceptions
 PASM
exchange opcode (PASM)
Exegeses
Exegesis, development cycle
exists opcode (PASM)
existsopcode
exit opcode (PASM)
exp opcode (PASM)
explicit types [See also types]2nd
exponentiation (**) operator
exsec opcode (PASM)
extensions
 C
 .pasm

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

fact opcode (PASM)
fail function
familiarity
fast core
fdopen opcode (PASM)
filenames, patches
files
 bytecode
 closing
 definitions, class declarations
 MANIFEST
 opening
 reading from
find_chartype opcode (PASM)
find_encoding opcode (PASM)
find_global opcode (PASM)
find_lex opcode 2nd
find_method opcode (PASM)
find_type opcode (PASM)
findclass opcode (PASM)
flags, formatting strings
.flatten_arg directive
flattening arguments
flattening-list context 2nd
floating-point constants
floating-point numbers, scalars
floating-point operations
floor opcode (PASM)
flow control
 continuations
 exceptions 2nd
 PASM
 PIR
foldup opcode (PASM)
for loop
formal parameters subroutines 2nd [See also parameters]
formatting strings
Forth
frames, registers
freedom, principles of
freeze opcode (PASM)
functions
 fail
 NCI
 vtable, overriding

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

garbage collection
gc_debug opcode (PASM)
gcd opcode (PASM)
ge (greater than or equal)
ge_num opcode (PASM)
ge_str opcode (PASM)
generic object interfacing
get_addr opcode (PASM)
getattribute opcode (PASM)
getclass opcode (PASM)
getfd opcode (PASM)
getfile opcode (PASM)
getinterp opcode (PASM)
getline opcode (PASM)
getpackage opcode (PASM)
getprop opcode 2nd
getstderr opcode (PASM)
getstdin opcode (PASM)
getstdout opcode (PASM)
global instruction (PIR)
global labels
global variables, PASM
globally scoped subroutines
gmtime opcode (PASM)
goto command (PIR)
grammars
 yacc
grouping single-character modifiers
gt opcode (PASM)
gt_num opcode (PASM)
gt_str opcode (PASM)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

handles keyword
handling
 exceptions
 signals
Hansen, Ask Bj¿rn
has keyword, attribute declarations
hash sign (#)
hashes
 assertions
 matching
 parameters
 PMCs
hashlist context 2nd
hav opcode (PASM)
hierarchical data structures, value types
Huffman coding
hyper operators
hypothetical variables

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

I/O, PASM
if (conditional)
 instruction (PIR)
 opcode (PASM)
if statement
immediate matches, rules
implicit variable types
inc opcode (PASM) 2nd
_inc subroutine
.include directive
include files, iterator.pasm
index opcode (PASM)
indexed access to PMC (PIR)
indexes
 arrays
 hashes
 variables, storing
indirect objects
inheritance
 classes, PASM
 objects
 public methods
_ _init method
initialization, objects
instance variables [See attributes]
instruction (PIR) 2nd
Int value types
integers
 bitwise operators
 context
 PASM
 registers
 registers
 scalars
interfaces 2nd
 generic objects
 NCI
internal modifiers
internal revision (development cycle)
internals development
interpinfo opcode (PASM)
interpolation, syntax rules
interpreter module 2nd
.invocant directive
invocants
 objects
 passing
invoke opcode (PASM)
invokecc opcode 2nd
is_null opcode
isa opcode (PASM)
isnull opcode (PASM)
iteration
 control structures

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 flow control
iterators, PMCs

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

join opcode 2nd
jsr opcode (PASM)
jump opcode 2nd
jumps, flow control
junctions
 matching
 operators

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

.keys method
keywords
 handles
 has
 multi
 returns
 role
 sub 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

labels
languages 2nd [See also PASM]
 design 2nd
 architecture
 cognitive/linguistic considerations
 cultural influences of
 Huffman coding
 principle of adaptability
 principle of borrowing
 principle of context
 principle of distinction
 principle of DWIM
 principle of end weight
 principle of freedom
 principle of prominence
 principle of reuse
 principle of simplicity
 syntax [See syntax]
 waterbed theory of complexity
 development
 modular design
 OO (object-oriented)
 optimizing
 rules
 yacc grammars
LANGUAGES.STATUS file
languages/directory
lazy list context
lcm opcode (PASM)
le (less than or equal) opcode (PASM)
le_num opcode (PASM)
le_str opcode (PASM)
length opcode 2nd
let blocks
lexical scope, closures
lexical variables, PASM 2nd
lexically scoped classes
lexically scoped subroutines
lexing
lib/ directory
linguistic language design considerations
lists
 context 2nd
 for loops
 hyper operators
 matching
 operators
 pairs, named argument passing
 parameters
ln opcode (PASM)
load_bytecode
loading bytecode 2nd
loadlib opcode (PASM)
.local directive

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

local labels
.local statement
localtime opcode (PASM)
log10 opcode (PASM)
log2 opcode (PASM)
logical operations, PASM
logical operators
long-term usability
lookback opcode (PASM)
loops
 breaking out of
 flow control
 for
 simple
 while
lsr opcode (PASM)
lt (less than) opcode (PASM)
lt_num opcode (PASM)
lt_str opcode (PASM)
Lvalue subroutines

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

m// operator
.macro directive
macros
mailing lists
 p61 2nd 3rd
 joining
 patch submissions
 Ponie
MANIFEST file
matching
 arrays
 assertions
 bytecode
 deferred matches, rules
 hashes
 hypothetical variables
 immediate matches, rules
 junctions
 lists
 objects
 quantifiers
 scalar values
 ~~ (smart-match) operator
 subroutines
math operations, PASM
memory
 bytecode
 garbage collection
metacharacters
 backtracking
 escape sequences
.meth_call directive
methods
 BUILD
 BUILDALL
 classes, PASM
 coroutines
 CREATE
 .dump
 .elems
 _ _init
 .keys
 multi keyword
 multimethod dispatching
 new
 objects
 overriding
 pick
 PIR
 private
 public
 thread3
 .values
 .wrap

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

migration, Ponie
mixed class-type support
mixins 2nd
mmdvtfind opcode (PASM)
mmdvtregister opcode (PASM)
mod opcode (PASM)
modifiers, size
modular design
modules
 compiler
 interpreter 2nd
 optimizer
 package-scoped subroutines
 parser
modulus (%) operator
morphing, type
mul opcode (PASM)
multi keyword
multicharacter strings, converting
multimethod dispatching
multiple dispatch, objects
multiple subroutines
multiplication (*) operator
my blocks

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

named arguments
 passing
named constants, PIR
named parameters
 default values
named variables, PIR
names
 patches
 subroutines
.namespace directive
namespaces, block definitions
Native Call Interface (NCI)
NCI (Native Call Interface)
.nci_call directive
ne (not equal) opcode (PASM)
ne_addr opcode (PASM)
ne_num opcode (PASM)
ne_str opcode (PASM)
needs_destroy opcode (PASM)
neg opcode (PASM)
nested scope
.NET
new features
new method
new opcode 2nd
new_callback opcode (PASM)
new_pad opcode (PASM)
new_padopcode
newclass opcode 2nd
newsub opcode (PASM)
nonflattening-list context
noop opcode (PASM)
not opcode 2nd
null opcode (PASM)
<null> rule
numeric bitwise shift operators
numeric context
numeric quantifiers

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

object-oriented (OO) languages
objects
 attributes
 construction
 context
 declarations
 delegation
 design
 destruction
 indirect
 inheritance
 initialization
 matching
 methods
 multiple dispatch
 opcodes
 pairs, hashlist context
 Parrot
 ParrotIO
 ParrotThread
 PerlUndef
 private/public methods
 scalars
 submethods
 subroutines
 timers
 TQueue
one-element lists
OO (object-oriented) languages
opcodes
 bitwise
 branches
 PASM 2nd
open opcode (PASM) 2nd
opening files
operators
 % (modulus)
 && (logical AND)
 * (multiplication)
 ** (exponentiation)
 + (addition)
 ++ (autoincrement)
 - (subtraction)
 - - (autodecrement)
 / (division)
 // (match)
 := (binding)
 = (assignment)
 ^^ (logical XOR)
 || (logical OR)
 ~ (string concatenation)
 arithmetic
 arrow
 m// (match)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 overloading
 range
 s/// (substitution)
 ~~ (smart-match)
 symbol
 PIR
 syntax
 arithmetic
 assignment
 binding
 bitwise
 comparison
 conditional
 context forcing
 hyper
 junctions
 lists
 logical
 references
 smart-match (~~)
 strings
 zip
 unary context forcing
 x (string replication)
 xx (list replication)
 xx= (specified number of elements copies)
optimizations (Parrot)
optimizer
 module
 PIR
option syntax [See also syntax]2nd
optional parameters, subroutines
or opcode 2nd
OR relation
ord opcode 2nd
ordering
 argument constraints
 parameters
our blocks
output
overloading operators
overriding
 methods
 vtable functions

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

p61 mailing list 2nd 3rd
 joining
 patch submissions
packaged-scoped subroutines
pad stack
pairs
 arguments
 hashlist context
 named argument passing
.param directive
parameters
 arguments, passing
 subroutines
 anonymous
 curried
 Lvalue
 multiple
 wrapped
Parrot 2nd
 assembler options
 bug tracking
 bytecode interpreter options
 command-line options
 debugging bits
 development
 objects
 optimization
 registers
Parrot Assembly Language [See PASM]
Parrot Magic Cookies [See PMCs]
Parrot-calling conventions 2nd
ParrotIO object
ParrotThread objects
parser module
parsing
 macros
 principle of end weight
partial signatures
PASM
 strings
PASM (Parrot Assembly Language)
 bitwise operations
 bytecode
 calling conventions
 classes
 attributes
 declarations
 inheritance
 methods
 closures
 code string evaluation
 constants
 continuations
 coroutines

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 events
 exceptions
 flow control
 global variables
 I/O
 lexical variables 2nd
 logical operations
 math operations
 NCI
 opcodes 2nd
 PMCs
 registers
 stacks
 subroutines
 testing
 threads
passing
 arguments, subroutines
 invocants
patches
 filenames
 submissions
patterns, backtracking
.pcc_begin directive
.pcc_begin_return directive
.pcc_begin_yield directive
.pcc_call directive
.pcc_sub directive 2nd
peek opcode (PASM)
peek_pad opcode (PASM)
Perl
 current state of
 history of
Perl On New Internal Engine (Ponie)
PerlArray PMC
PerlHash PMC
PerlUndef object
pick method
pin opcode (PASM)
pioctl opcode (PASM)
PIR (Parrot intermediate representation)
 constants
 directives
 flow control
 instructions
 label
 methods
 statements
 subroutines
 symbol operators
placeholder variables
PMCs (Parrot Magic Cookies) 2nd
 object types
 PASM
 registers
 variables
Ponie (Perl On New Internal Engine)
pop opcode (PASM)
pop_pad opcode (PASM)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

popi opcode (PASM)
popn opcode (PASM)
popp opcode (PASM)
pops opcode (PASM)
positional arguments
 order constraints
POSIX-style classes, built-in rules
postfix autoincrement (++) operators
pow opcode (PASM)
.pragma directive
prefix operators
principles
 adaptability
 architecture
 borrowing
 context
 design
 bytecode loader
 compiler module
 continuations
 coroutines
 events
 garbage collection
 I/O
 interpreter module 2nd
 multimethod dispatching
 objects
 optimizer module
 parser module
 signals
 threads
 distinction
 DWIM
 end weight
 freedom
 prominence
 reuse
 simplicity
print opcode (PASM)
printerr opcode (PASM)
printopcode
<prior> rule
private methods
profile opcode (PASM)
prominence, principle of
properties
 attaching
 parameters
 PMCs
 rw, declaring lvalue subroutines
 Unicode classes, built-in rules
 variables
property blocks
prophash opcode (PASM)
prototyped subroutines
public methods
push opcode (PASM)
push_pad opcode (PASM)
pushi opcode 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pushn opcode 2nd
pushp opcode 2nd
pushs opcode 2nd
Python (Pirate)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

quantifiers

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Randal, Allison 2nd
range operator
read opcode 2nd
readline opcode (PASM)
references
 operators
 scalars
register opcode (PASM)
registers
 architecture 2nd [See also architecture]
 frames
 integers
 PASM
 strings
 PIR
 reserved
 saving
 spilling
removeparent opcode (PASM)
repeat opcode 2nd
repeating strings
repetition modifiers
replication
 lists
 strings
reporting bugs
Request Tracker (RT)
requests
 alarm()
 I/O
Requests For Comments (RFCs)
reserved registers
restore opcode 2nd
restoreall opcode (PASM)
restoretop opcode (PASM)
.result directive
ret opcode (PASM)
rethrow opcode (PASM)
.return directive
return values, parameters
returning macros
returns keyword
reuse, principle of
RFCs (Requests For Comments)
roles
 classes
 conflicts
 delegation
rotate_up opcode (PASM)
routines [See also subroutines]
 macros
 multi keyword
 multiple subroutines
RT (Request Tracker)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ruby (Cardinal)
rules
 assertions
 backtracking
 built-in
 escape sequences
 grammars
 hypothetical variables
 languages
 quantifiers
 syntax 2nd
runinterp opcode (PASM)
running.pod file
runtime, attaching properties
rw property

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

s/// operator
save opcode 2nd
saveall opcode 2nd
savec opcode (PASM)
savetop opcode (PASM)
saving registers
scalars
 context 2nd 3rd
 values, matching
Scheme
scope
 lexical, closures
 nested
 subroutines
scratchpads, nested
sec opcode (PASM)
sech opcode (PASM)
seek opcode 2nd
selection control structures
sequences
 escape
 Huffman coding
set opcode 2nd 3rd
set_addr opcode
set_addr opcode (PASM)
set_addrop code
set_chartype opcode (PASM)
set_eh opcode (PASM)
set_encoding opcode (PASM)
setattribute opcode (PASM)
seti_ind opcode (PASM)
setn_ind opcode (PASM)
setp_ind opcode (PASM)
setprop opcode (PASM)
setpropopcode
sets_ind opcode (PASM)
shift opcode (PASM)
shl opcode (PASM)
shortcuts
 curried subroutines
 printing
 typed variables
shr opcode (PASM)
SIGALRM
SIGCHLD
sigils
 $
 %
 @
SIGINT
SIGKILL
siglets
signals 2nd
signatures

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 multi keyword
 NCI functions
 subroutines
SIGSEGV
simple loops
simplicity, principle of
sin opcode (PASM)
single values, scalar context
single-character modifiers
singleton opcode (PASM)
sinh opcode (PASM)
size modifier
sizeof opcode (PASM)
sleep opcode (PASM)
smart-match (~~) operators 2nd
snapshots, CVS repositories
source code 2nd [See also code]
 compiler module
 compiling
 interpreter module 2nd
 macros
 obtaining
 optimizer module
 parser module
spawnw opcode (PASM)
speed
Spier, Robert
spilling, registers
splice opcode (PASM)
splitting strings
sprintf opcode 2nd
stability
stack-based subroutine calls
stacks
 PASM
statements
 if
 .local
 PIR
 switch
 unless
store_global opcode (PASM)
store_lex opcode 2nd
string_chartype opcode (PASM)
string_encoding opcode (PASM)
stringinfo opcode (PASM)
strings 2nd 3rd 4th
 bitwise operators
 chopping
 code, evaluating
 concatenation 2nd
 context
 copying
 formatting
 joining
 length of
 PASM
 repeating
 scalars

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 splitting
 substrings
 testing
structures, control (syntax)
stubs, subroutines
.sub directive 2nd
sub keyword
sub opcode (PASM)
subclass opcode 2nd
submethods
 multi keyword
 objects
submissions, patches
subroutines 2nd
 anonymous
 arguments
 assertions
 closures
 continuations
 coroutines 2nd
 curried
 dispatches
 Lvalue
 macros
 matching
 multi keyword
 multiple
 objects
 parameters
 PASM
 PIR
 scope
 stubs
 wrapped
substr opcode 2nd
substr_r opcode (PASM)
subtraction (-) operator
Sugalski, Dan
sweep opcode (PASM)
sweepoff opcode (PASM)
sweepon opcode (PASM)
switch statement
.sym directive
symbol operators 2nd
 PIR
synchronous I/O
Synopses
Synopsis (development cycle)
syntax
 AST
 control structures
 handles keyword
 object declaration
 operators
 arithmetic
 assignment
 binding
 bitwise
 comparison

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 conditional
 context forcing
 hyper
 junctions
 lists
 logical
 references
 smart-match (~~)
 strings
 zip
 PASM
 principle of reuse
 rules 2nd 3rd
 assertions
 backtracking
 built-in
 escape sequences
 hypothetical variables
 quantifiers
 variables
 arrays
 context
 hashes
 pairs
 properties
 references
 scalars
 types
sysinfo opcode (PASM)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

tan opcode (PASM)
tanh opcode (PASM)
tell opcode (PASM)
temp blocks
temporary registers, PIR
testing
 PASM
 substrings
text strings 2nd [See also strings]
thaw opcode (PASM)
thread3 method
threads
 PASM
throw opcode (PASM)
ticket tracking system
time opcode (PASM)
timers
titlecase opcode (PASM)
tokenizing
top-level directories
Tötsch, Leopold
TQueue object
trace opcode (PASM)
tracking bugs
traits
 subroutines, defining
 variables
transcode opcode (PASM)
translatable versioning
translation, strings
trees
 AST
 parse, returning macros
trigonometric opcodes
typed parameters
typed variables, shortcuts
typeof opcode (PASM)
types
 morphing
 variables

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

unary arithmetic operators
unary context forcing operators
unary math opcodes
Unicode encodings
Unicode property classes, built-in rules
Unix signals
unless (conditional)
 instruction (PIR)
 opcode (PASM)
unless statement
unordered collections, hashed
unpin opcode (PASM)
unregister opcode (PASM)
unshift opcode (PASM)
upcase opcode (PASM)
updatecc
usability, long-term
user stacks 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

valid_type opcode (PASM)
values
 default, parameters
 hashlist context
 list context
 Lvalue subroutines
 operators
 arithmetic
 assignment
 binding
 bitwise
 comparison
 conditional
 context forcing
 hyper
 junctions
 lists
 logical
 references
 smart-match (~~)
 strings
 zip
 properties
 return, parameters
 scalar
 context
 matching
 types
.values method
van der Sanden, Hugo
van Rossum, Guido
variable-length sequences, Huffman coding
variables 2nd 3rd
 arrays
 context
 global, PASM
 hashes
 hypothetical
 lexical, PASM 2nd
 pairs
 placeholder
 PMCs
 properties
 references
 scalars
 typed, shortcuts
 types
variadic arguments, order constraints
variadic parameters 2nd
vers opcode (PASM)
versions, translatable
virtual table (vtable)
void context
vtable functions, overriding

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

vtable functions, overriding

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Wall, Larry
warningsoff opcode (PASM)
warningson opcode (PASM)
waterbed theory of complexity
while loop
wildcards, delegation
.wrap method
wrapped subroutines

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

x operator (string replication)
xor opcode (PASM)
XOR relation
xx operator (list replication)
xx= operator (specified number of element copies)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

yacc grammar

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Z-machine
zip operators

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

abs opcode (PASM)
absolute addresses
Abstract Syntax Tree (AST)
abstraction
accessibility
 attributes
 numbered capture variables
acos opcode (PASM)
adaptability, principle of
add opcode 2nd
addattribute opcode 2nd
addition (+) operator
addparent opcode (PASM)
addr instruction (PIR)
addresses
aggregates, PMCs
alarm() request
allocation
 garbage collection
 registers, spilling
alternate option syntax pairs 2nd [See also syntax]
and opcode 2nd
AND relation
anonymous arrayref constructor ([...])
anonymous classes
anonymous hash reference constructor ({...})
anonymous pairs, named argument passing
anonymous rules matching 2nd [See also rules]
anonymous subroutines
Apocalypse
architecture
 bytecode loader
 compiler module
 continuations
 coroutines
 design
 events
 garbage collection
 I/O
 interpreter module 2nd
 multimethod dispatching
 objects
 optimizer module
 parser module
 signals
 threads
.arg directive
arguments
 floating-point operations
 pairs, passing as
 positional
 subroutines
 use of ^ (caret)
arithmetic operators

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 junctions
arrays
 assertions
 list context
 matching
 one-element
 PMCs
 strings, splitting
arrow operator
asec opcode (PASM)
asin opcode (PASM)
assembler code
assembly compiler module 2nd [See also PASM]
assertions
 delimiters (< . . .>)
 rules
assign opcode (PASM)
assignment
 = operator
 arrays to lists
 binding, curried subroutines
 PMCs
 registers
AST (Abstract Syntax Tree)
asynchronous I/O
atan opcode (PASM)
attributes
 classes, PASM
 objects
 private
autodecrement (- -) operators
automatic referencing

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

backtracking patterns
band opcode (PASM)
bands opcode (PASM)
bare blocks
BASIC
Befunge
benchmarks
Bergman, Artur
binary junction operators
binary logical operators
binary math opcodes
binding
 curried subroutines
 operators
bitwise operations, PASM
bitwise operators
blocks
 bare
 class declarations
 control structures
 definitions
 macros
bnot opcode (PASM)
bnots opcode (PASM)
Boolean context
bor opcode (PASM)
borrowing, principles of
bors opcode (PASM)
bounds opcode (PASM)
branch opcode (PASM)
branch_cs opcode (PASM)
branches, flow control
bsr opcode 2nd
bug tracking
bugs, reporting
BUILD method
BUILDALL method
built-in quantifiers
built-in rules
built-in types, scalars
bxor opcode (PASM)
bxors opcode (PASM)
bytecode
 interpreter options (Parrot)
 loader
 PASM

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C extensions
call instruction (PIR)
calling
 conventions, PASM
 fail function
callmethod opcode (PASM)
callmethodcc opcode (PASM)
calls
 indirect objects
 lexically scoped subroutines
 Parrot-calling conventions
 private attributes
 stack-based subroutine
 subroutines
 anonymous
 curried
 Lvalue
 multiple
 wrapped
can opcode (PASM)
caret (^), placeholder variables
CATCH block
ceil opcode (PASM)
.cglobalonst directive
chained comparison operators
characters
 assertions
 compression, Huffman coding
 converting
 escape sequences
 metacharacters
 backtracking
 escape sequences
 sets
checkevents opcode (PASM)
chopn opcode 2nd
chr opcode 2nd
class opcode (PASM)
classes
 anonymous
 attributes, PASM
 built-in rules
 characters, assertions
 composition
 conflicts
 declarations
 objects
 PASM
 defining
 delegation
 inheritance 2nd
 lexically scoped
 methods, PASM
 mixed class-type support

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 package-scoped subroutines
 private/public methods
 roles
classes/ directory
classname opcode (PASM)
classoffset opcode 2nd
clear_eh
cleari opcode (PASM)
clearn opcode (PASM)
clearp opcode (PASM)
clears opcode (PASM)
clone opcode 2nd
close opcode (PASM)
closing files
closures, PASM
cmod opcode (PASM)
cmp (comparison)
cmp_num opcode (PASM)
cmp_str opcode (PASM)
code
 bytecode
 cognitive/linguistic considerations
 exceptions
 Huffman coding
 object delegation
 obtaining
 optimizing
 PIR
 constants
 flow control
 labels
 methods
 statements
 subroutines
 symbol operators
 strings, PASM
cognitive language design considerations
collect opcode (PASM)
collections, hashes
collectoff opcode (PASM)
collecton opcode (PASM)
command-line options (Parrot)
commands, diff -u
community review (development cycle)
comparison operators
compilation units, PIR 2nd
compile opcode (PASM)
compile-time traits
compilers
 directories
 module
compiling source code
composition, classes
compreg opcode (PASM)
compression, Huffman coding
computed goto core
concat opcode 2nd
concatenation 2nd
conditional branches

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

conditional operators
conflicts, classes
.const directive 2nd
.constant directive
constants
 PASM
 PIR
 traits
constraints, ordering arguments
construction, objects
containers, scalars
context
 forcing operators
 principle of
 unary context forcing operators
 variables
Continuation Passing Style (CPS)
continuations
continuations, PASM
continue modifier
control stacks 2nd
control structures (syntax)
conventions
 calling, PASM
 Parrot-calling
conversion, characters
Conway, Damian
copy-on-write (COW)
copying strings
coroutines
 PASM
cos opcode (PASM)
cosh opcode (PASM)
COW (copy-on-write)
Cozens, Simon
CPAN, obtaining source code
CPS (Continuation Passing Style)
CREATE method
curried subroutines
CVS repositories, snapshots of
cycles
 development
 Parrot

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

data members [See attributes]
data structures, PMCs
debug opcode (PASM)
debugging bits (Parrot)
dec opcode (PASM)
declarations
 classes, PASM
 objects, classes
 private/public methods
 siglets
 subroutines
 anonymous
 curried
 Lvalue
 multiple
 signatures
 stubs
 wrapped
decodelocaltime opcode (PASM)
decodetime opcode (PASM)
default values, parameters
deferred matches, rules
defined opcode (PASM)
definitions
 anonymous classes
 blocks
 files, class declarations
 private/public methods
 roles
delegation, objects
delete opcode 2nd
delimiters, grouping
delprop opcode (PASM)
depth opcode (PASM)
deref opcode (PASM)
dereferencing
design 2nd
 bytecode loader
 compiler module
 continuations
 coroutines
 cycles
 events
 garbage collection
 I/O
 interpreter module 2nd
 languages 2nd 3rd
 architecture
 cognitive/linguistic considerations
 cultural influences of
 Huffman coding
 principle of adaptability
 principle of borrowing
 principle of context

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 principle of distinction
 principle of DWIM
 principle of end weight
 principle of freedom
 principle of prominence
 principle of reuse
 principle of simplicity
 syntax [See syntax]
 waterbed theory of complexity
 modular
 multimethod dispatching
 objects
 optimizer module
 parser module
 PIR 2nd 3rd 4th 5th
 signals
 threads
destination registers
destruction, objects
development
 cycles 2nd 3rd
 internals
 languages
 p61 mailing list, joining
 Parrot
die_hard opcode (PASM)
diff -u command
directories
dispatches, subroutines
distinction, principle of
div opcode (PASM)
division (/) operator
dlfunc opcode 2nd
dlvar opcode (PASM)
docs/ directory
does opcode (PASM)
Dominus, Mark-Jason
double underscore (_ _)
downcase opcode (PASM)
.dump method
DWIM, principle of
dynamic languages 2nd [See also languages]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

elements
 arrays
 copying
.elems method
.emit directive
encapsulation [See also objects]
 objects
encoding 2nd 3rd
encoding strings
.end directive
end opcode 2nd
end weight, principle of
.endm directive
enternative opcode (PASM)
entrytype opcode (PASM)
enumeration, assertions
.eom directive
eq opcode (PASM)
eq_addr opcode 2nd
eq_num opcode (PASM)
eq_str opcode (PASM)
err opcode (PASM)
errors, exceptions
errorsoff opcode (PASM)
errorson opcode (PASM)
escape sequences
events
 PASM
 signals
examples/ directory
exceptions
 PASM
exchange opcode (PASM)
Exegeses
Exegesis, development cycle
exists opcode (PASM)
existsopcode
exit opcode (PASM)
exp opcode (PASM)
explicit types [See also types]2nd
exponentiation (**) operator
exsec opcode (PASM)
extensions
 C
 .pasm

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

fact opcode (PASM)
fail function
familiarity
fast core
fdopen opcode (PASM)
filenames, patches
files
 bytecode
 closing
 definitions, class declarations
 MANIFEST
 opening
 reading from
find_chartype opcode (PASM)
find_encoding opcode (PASM)
find_global opcode (PASM)
find_lex opcode 2nd
find_method opcode (PASM)
find_type opcode (PASM)
findclass opcode (PASM)
flags, formatting strings
.flatten_arg directive
flattening arguments
flattening-list context 2nd
floating-point constants
floating-point numbers, scalars
floating-point operations
floor opcode (PASM)
flow control
 continuations
 exceptions 2nd
 PASM
 PIR
foldup opcode (PASM)
for loop
formal parameters subroutines 2nd [See also parameters]
formatting strings
Forth
frames, registers
freedom, principles of
freeze opcode (PASM)
functions
 fail
 NCI
 vtable, overriding

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

garbage collection
gc_debug opcode (PASM)
gcd opcode (PASM)
ge (greater than or equal)
ge_num opcode (PASM)
ge_str opcode (PASM)
generic object interfacing
get_addr opcode (PASM)
getattribute opcode (PASM)
getclass opcode (PASM)
getfd opcode (PASM)
getfile opcode (PASM)
getinterp opcode (PASM)
getline opcode (PASM)
getpackage opcode (PASM)
getprop opcode 2nd
getstderr opcode (PASM)
getstdin opcode (PASM)
getstdout opcode (PASM)
global instruction (PIR)
global labels
global variables, PASM
globally scoped subroutines
gmtime opcode (PASM)
goto command (PIR)
grammars
 yacc
grouping single-character modifiers
gt opcode (PASM)
gt_num opcode (PASM)
gt_str opcode (PASM)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

handles keyword
handling
 exceptions
 signals
Hansen, Ask Bj¿rn
has keyword, attribute declarations
hash sign (#)
hashes
 assertions
 matching
 parameters
 PMCs
hashlist context 2nd
hav opcode (PASM)
hierarchical data structures, value types
Huffman coding
hyper operators
hypothetical variables

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

I/O, PASM
if (conditional)
 instruction (PIR)
 opcode (PASM)
if statement
immediate matches, rules
implicit variable types
inc opcode (PASM) 2nd
_inc subroutine
.include directive
include files, iterator.pasm
index opcode (PASM)
indexed access to PMC (PIR)
indexes
 arrays
 hashes
 variables, storing
indirect objects
inheritance
 classes, PASM
 objects
 public methods
_ _init method
initialization, objects
instance variables [See attributes]
instruction (PIR) 2nd
Int value types
integers
 bitwise operators
 context
 PASM
 registers
 registers
 scalars
interfaces 2nd
 generic objects
 NCI
internal modifiers
internal revision (development cycle)
internals development
interpinfo opcode (PASM)
interpolation, syntax rules
interpreter module 2nd
.invocant directive
invocants
 objects
 passing
invoke opcode (PASM)
invokecc opcode 2nd
is_null opcode
isa opcode (PASM)
isnull opcode (PASM)
iteration
 control structures

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 flow control
iterators, PMCs

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

join opcode 2nd
jsr opcode (PASM)
jump opcode 2nd
jumps, flow control
junctions
 matching
 operators

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

.keys method
keywords
 handles
 has
 multi
 returns
 role
 sub 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

labels
languages 2nd [See also PASM]
 design 2nd
 architecture
 cognitive/linguistic considerations
 cultural influences of
 Huffman coding
 principle of adaptability
 principle of borrowing
 principle of context
 principle of distinction
 principle of DWIM
 principle of end weight
 principle of freedom
 principle of prominence
 principle of reuse
 principle of simplicity
 syntax [See syntax]
 waterbed theory of complexity
 development
 modular design
 OO (object-oriented)
 optimizing
 rules
 yacc grammars
LANGUAGES.STATUS file
languages/directory
lazy list context
lcm opcode (PASM)
le (less than or equal) opcode (PASM)
le_num opcode (PASM)
le_str opcode (PASM)
length opcode 2nd
let blocks
lexical scope, closures
lexical variables, PASM 2nd
lexically scoped classes
lexically scoped subroutines
lexing
lib/ directory
linguistic language design considerations
lists
 context 2nd
 for loops
 hyper operators
 matching
 operators
 pairs, named argument passing
 parameters
ln opcode (PASM)
load_bytecode
loading bytecode 2nd
loadlib opcode (PASM)
.local directive

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

local labels
.local statement
localtime opcode (PASM)
log10 opcode (PASM)
log2 opcode (PASM)
logical operations, PASM
logical operators
long-term usability
lookback opcode (PASM)
loops
 breaking out of
 flow control
 for
 simple
 while
lsr opcode (PASM)
lt (less than) opcode (PASM)
lt_num opcode (PASM)
lt_str opcode (PASM)
Lvalue subroutines

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

m// operator
.macro directive
macros
mailing lists
 p61 2nd 3rd
 joining
 patch submissions
 Ponie
MANIFEST file
matching
 arrays
 assertions
 bytecode
 deferred matches, rules
 hashes
 hypothetical variables
 immediate matches, rules
 junctions
 lists
 objects
 quantifiers
 scalar values
 ~~ (smart-match) operator
 subroutines
math operations, PASM
memory
 bytecode
 garbage collection
metacharacters
 backtracking
 escape sequences
.meth_call directive
methods
 BUILD
 BUILDALL
 classes, PASM
 coroutines
 CREATE
 .dump
 .elems
 _ _init
 .keys
 multi keyword
 multimethod dispatching
 new
 objects
 overriding
 pick
 PIR
 private
 public
 thread3
 .values
 .wrap

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

migration, Ponie
mixed class-type support
mixins 2nd
mmdvtfind opcode (PASM)
mmdvtregister opcode (PASM)
mod opcode (PASM)
modifiers, size
modular design
modules
 compiler
 interpreter 2nd
 optimizer
 package-scoped subroutines
 parser
modulus (%) operator
morphing, type
mul opcode (PASM)
multi keyword
multicharacter strings, converting
multimethod dispatching
multiple dispatch, objects
multiple subroutines
multiplication (*) operator
my blocks

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

named arguments
 passing
named constants, PIR
named parameters
 default values
named variables, PIR
names
 patches
 subroutines
.namespace directive
namespaces, block definitions
Native Call Interface (NCI)
NCI (Native Call Interface)
.nci_call directive
ne (not equal) opcode (PASM)
ne_addr opcode (PASM)
ne_num opcode (PASM)
ne_str opcode (PASM)
needs_destroy opcode (PASM)
neg opcode (PASM)
nested scope
.NET
new features
new method
new opcode 2nd
new_callback opcode (PASM)
new_pad opcode (PASM)
new_padopcode
newclass opcode 2nd
newsub opcode (PASM)
nonflattening-list context
noop opcode (PASM)
not opcode 2nd
null opcode (PASM)
<null> rule
numeric bitwise shift operators
numeric context
numeric quantifiers

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

object-oriented (OO) languages
objects
 attributes
 construction
 context
 declarations
 delegation
 design
 destruction
 indirect
 inheritance
 initialization
 matching
 methods
 multiple dispatch
 opcodes
 pairs, hashlist context
 Parrot
 ParrotIO
 ParrotThread
 PerlUndef
 private/public methods
 scalars
 submethods
 subroutines
 timers
 TQueue
one-element lists
OO (object-oriented) languages
opcodes
 bitwise
 branches
 PASM 2nd
open opcode (PASM) 2nd
opening files
operators
 % (modulus)
 && (logical AND)
 * (multiplication)
 ** (exponentiation)
 + (addition)
 ++ (autoincrement)
 - (subtraction)
 - - (autodecrement)
 / (division)
 // (match)
 := (binding)
 = (assignment)
 ^^ (logical XOR)
 || (logical OR)
 ~ (string concatenation)
 arithmetic
 arrow
 m// (match)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 overloading
 range
 s/// (substitution)
 ~~ (smart-match)
 symbol
 PIR
 syntax
 arithmetic
 assignment
 binding
 bitwise
 comparison
 conditional
 context forcing
 hyper
 junctions
 lists
 logical
 references
 smart-match (~~)
 strings
 zip
 unary context forcing
 x (string replication)
 xx (list replication)
 xx= (specified number of elements copies)
optimizations (Parrot)
optimizer
 module
 PIR
option syntax [See also syntax]2nd
optional parameters, subroutines
or opcode 2nd
OR relation
ord opcode 2nd
ordering
 argument constraints
 parameters
our blocks
output
overloading operators
overriding
 methods
 vtable functions

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

p61 mailing list 2nd 3rd
 joining
 patch submissions
packaged-scoped subroutines
pad stack
pairs
 arguments
 hashlist context
 named argument passing
.param directive
parameters
 arguments, passing
 subroutines
 anonymous
 curried
 Lvalue
 multiple
 wrapped
Parrot 2nd
 assembler options
 bug tracking
 bytecode interpreter options
 command-line options
 debugging bits
 development
 objects
 optimization
 registers
Parrot Assembly Language [See PASM]
Parrot Magic Cookies [See PMCs]
Parrot-calling conventions 2nd
ParrotIO object
ParrotThread objects
parser module
parsing
 macros
 principle of end weight
partial signatures
PASM
 strings
PASM (Parrot Assembly Language)
 bitwise operations
 bytecode
 calling conventions
 classes
 attributes
 declarations
 inheritance
 methods
 closures
 code string evaluation
 constants
 continuations
 coroutines

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 events
 exceptions
 flow control
 global variables
 I/O
 lexical variables 2nd
 logical operations
 math operations
 NCI
 opcodes 2nd
 PMCs
 registers
 stacks
 subroutines
 testing
 threads
passing
 arguments, subroutines
 invocants
patches
 filenames
 submissions
patterns, backtracking
.pcc_begin directive
.pcc_begin_return directive
.pcc_begin_yield directive
.pcc_call directive
.pcc_sub directive 2nd
peek opcode (PASM)
peek_pad opcode (PASM)
Perl
 current state of
 history of
Perl On New Internal Engine (Ponie)
PerlArray PMC
PerlHash PMC
PerlUndef object
pick method
pin opcode (PASM)
pioctl opcode (PASM)
PIR (Parrot intermediate representation)
 constants
 directives
 flow control
 instructions
 label
 methods
 statements
 subroutines
 symbol operators
placeholder variables
PMCs (Parrot Magic Cookies) 2nd
 object types
 PASM
 registers
 variables
Ponie (Perl On New Internal Engine)
pop opcode (PASM)
pop_pad opcode (PASM)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

popi opcode (PASM)
popn opcode (PASM)
popp opcode (PASM)
pops opcode (PASM)
positional arguments
 order constraints
POSIX-style classes, built-in rules
postfix autoincrement (++) operators
pow opcode (PASM)
.pragma directive
prefix operators
principles
 adaptability
 architecture
 borrowing
 context
 design
 bytecode loader
 compiler module
 continuations
 coroutines
 events
 garbage collection
 I/O
 interpreter module 2nd
 multimethod dispatching
 objects
 optimizer module
 parser module
 signals
 threads
 distinction
 DWIM
 end weight
 freedom
 prominence
 reuse
 simplicity
print opcode (PASM)
printerr opcode (PASM)
printopcode
<prior> rule
private methods
profile opcode (PASM)
prominence, principle of
properties
 attaching
 parameters
 PMCs
 rw, declaring lvalue subroutines
 Unicode classes, built-in rules
 variables
property blocks
prophash opcode (PASM)
prototyped subroutines
public methods
push opcode (PASM)
push_pad opcode (PASM)
pushi opcode 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pushn opcode 2nd
pushp opcode 2nd
pushs opcode 2nd
Python (Pirate)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

quantifiers

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Randal, Allison 2nd
range operator
read opcode 2nd
readline opcode (PASM)
references
 operators
 scalars
register opcode (PASM)
registers
 architecture 2nd [See also architecture]
 frames
 integers
 PASM
 strings
 PIR
 reserved
 saving
 spilling
removeparent opcode (PASM)
repeat opcode 2nd
repeating strings
repetition modifiers
replication
 lists
 strings
reporting bugs
Request Tracker (RT)
requests
 alarm()
 I/O
Requests For Comments (RFCs)
reserved registers
restore opcode 2nd
restoreall opcode (PASM)
restoretop opcode (PASM)
.result directive
ret opcode (PASM)
rethrow opcode (PASM)
.return directive
return values, parameters
returning macros
returns keyword
reuse, principle of
RFCs (Requests For Comments)
roles
 classes
 conflicts
 delegation
rotate_up opcode (PASM)
routines [See also subroutines]
 macros
 multi keyword
 multiple subroutines
RT (Request Tracker)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ruby (Cardinal)
rules
 assertions
 backtracking
 built-in
 escape sequences
 grammars
 hypothetical variables
 languages
 quantifiers
 syntax 2nd
runinterp opcode (PASM)
running.pod file
runtime, attaching properties
rw property

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

s/// operator
save opcode 2nd
saveall opcode 2nd
savec opcode (PASM)
savetop opcode (PASM)
saving registers
scalars
 context 2nd 3rd
 values, matching
Scheme
scope
 lexical, closures
 nested
 subroutines
scratchpads, nested
sec opcode (PASM)
sech opcode (PASM)
seek opcode 2nd
selection control structures
sequences
 escape
 Huffman coding
set opcode 2nd 3rd
set_addr opcode
set_addr opcode (PASM)
set_addrop code
set_chartype opcode (PASM)
set_eh opcode (PASM)
set_encoding opcode (PASM)
setattribute opcode (PASM)
seti_ind opcode (PASM)
setn_ind opcode (PASM)
setp_ind opcode (PASM)
setprop opcode (PASM)
setpropopcode
sets_ind opcode (PASM)
shift opcode (PASM)
shl opcode (PASM)
shortcuts
 curried subroutines
 printing
 typed variables
shr opcode (PASM)
SIGALRM
SIGCHLD
sigils
 $
 %
 @
SIGINT
SIGKILL
siglets
signals 2nd
signatures

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 multi keyword
 NCI functions
 subroutines
SIGSEGV
simple loops
simplicity, principle of
sin opcode (PASM)
single values, scalar context
single-character modifiers
singleton opcode (PASM)
sinh opcode (PASM)
size modifier
sizeof opcode (PASM)
sleep opcode (PASM)
smart-match (~~) operators 2nd
snapshots, CVS repositories
source code 2nd [See also code]
 compiler module
 compiling
 interpreter module 2nd
 macros
 obtaining
 optimizer module
 parser module
spawnw opcode (PASM)
speed
Spier, Robert
spilling, registers
splice opcode (PASM)
splitting strings
sprintf opcode 2nd
stability
stack-based subroutine calls
stacks
 PASM
statements
 if
 .local
 PIR
 switch
 unless
store_global opcode (PASM)
store_lex opcode 2nd
string_chartype opcode (PASM)
string_encoding opcode (PASM)
stringinfo opcode (PASM)
strings 2nd 3rd 4th
 bitwise operators
 chopping
 code, evaluating
 concatenation 2nd
 context
 copying
 formatting
 joining
 length of
 PASM
 repeating
 scalars

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 splitting
 substrings
 testing
structures, control (syntax)
stubs, subroutines
.sub directive 2nd
sub keyword
sub opcode (PASM)
subclass opcode 2nd
submethods
 multi keyword
 objects
submissions, patches
subroutines 2nd
 anonymous
 arguments
 assertions
 closures
 continuations
 coroutines 2nd
 curried
 dispatches
 Lvalue
 macros
 matching
 multi keyword
 multiple
 objects
 parameters
 PASM
 PIR
 scope
 stubs
 wrapped
substr opcode 2nd
substr_r opcode (PASM)
subtraction (-) operator
Sugalski, Dan
sweep opcode (PASM)
sweepoff opcode (PASM)
sweepon opcode (PASM)
switch statement
.sym directive
symbol operators 2nd
 PIR
synchronous I/O
Synopses
Synopsis (development cycle)
syntax
 AST
 control structures
 handles keyword
 object declaration
 operators
 arithmetic
 assignment
 binding
 bitwise
 comparison

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 conditional
 context forcing
 hyper
 junctions
 lists
 logical
 references
 smart-match (~~)
 strings
 zip
 PASM
 principle of reuse
 rules 2nd 3rd
 assertions
 backtracking
 built-in
 escape sequences
 hypothetical variables
 quantifiers
 variables
 arrays
 context
 hashes
 pairs
 properties
 references
 scalars
 types
sysinfo opcode (PASM)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

. (concatenation) instruction (PIR)
! (bang) 2nd
! (not)
!= (not equal)
(hash sign)
$ sigil
% (modulus) operator 2nd
% (percent sign) 2nd
% sigil
%= (modulus assignment)
%flags hash
& (ampersand) 2nd 3rd
& (bitwise AND) instruction (PIR)
&& (logical AND)
 opcode
 operator
&= (bitwise AND assignment) instruction (PIR)
> (greater than)
> (right angle bracket) 2nd 3rd 4th 5th 6th
>> (bitwise right shift)
>>> (logical right shift)
>>>= (logical right shift assignment)
>>= (bitwise right shift assignment)
>= (greater than or equal)
< (left angle bracket) 2nd 3rd 4th
< (less than)
<< (bitwise left shift)
<<= (bitwise left shift assignment)
<. . .> (assertion delimiters)
<= (less than or equal)
/ (division)
 opcode
* (asterisk) 2nd 3rd
* (multiplication)
 opcode
 operator
** (exponentiation)
 opcode
 operator
*= (multiplication assignment)
+ (addition)
 opcode
 operator
+ (plus sign) 2nd
++ (postfix autoincrement) operators
+= (addition assignment)
- (hyphen) 2nd 3rd
- (negation)
- (subtraction)
 opcode
 operator
- - (autodecrement) operators
-= (subtraction assignment)
. (dot)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/ (division)
 operator
/ (slash)
// operator
:= (binding) operator
= (assignment) instruction (PIR)
= (assignment) operator
.= (concatenation assignment) instruction (PIR)
/= (division assignment)
= (equal sign) 2nd
== (equality) instruction (PIR)
@ sigil
[. . .] (brackets)
^ (caret), placeholder variables
^^ operator
_ _ (double underscore)
| (bitwise AND) instruction (PIR)
| (pipe) 2nd 3rd
|= (bitwise AND) instruction (PIR)
|| (logical OR)
 opcode
 operator
~ (bitwise XOR) instruction (PIR)
~ (tilde) 2nd 3rd
~ operator (string concatenation)
~= (bitwise XOR assignment) instruction (PIR)
~~ (logical XOR) instruction (PIR)
~~ (smart-match) operators
 syntax

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

tan opcode (PASM)
tanh opcode (PASM)
tell opcode (PASM)
temp blocks
temporary registers, PIR
testing
 PASM
 substrings
text strings 2nd [See also strings]
thaw opcode (PASM)
thread3 method
threads
 PASM
throw opcode (PASM)
ticket tracking system
time opcode (PASM)
timers
titlecase opcode (PASM)
tokenizing
top-level directories
Tötsch, Leopold
TQueue object
trace opcode (PASM)
tracking bugs
traits
 subroutines, defining
 variables
transcode opcode (PASM)
translatable versioning
translation, strings
trees
 AST
 parse, returning macros
trigonometric opcodes
typed parameters
typed variables, shortcuts
typeof opcode (PASM)
types
 morphing
 variables

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

unary arithmetic operators
unary context forcing operators
unary math opcodes
Unicode encodings
Unicode property classes, built-in rules
Unix signals
unless (conditional)
 instruction (PIR)
 opcode (PASM)
unless statement
unordered collections, hashed
unpin opcode (PASM)
unregister opcode (PASM)
unshift opcode (PASM)
upcase opcode (PASM)
updatecc
usability, long-term
user stacks 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

valid_type opcode (PASM)
values
 default, parameters
 hashlist context
 list context
 Lvalue subroutines
 operators
 arithmetic
 assignment
 binding
 bitwise
 comparison
 conditional
 context forcing
 hyper
 junctions
 lists
 logical
 references
 smart-match (~~)
 strings
 zip
 properties
 return, parameters
 scalar
 context
 matching
 types
.values method
van der Sanden, Hugo
van Rossum, Guido
variable-length sequences, Huffman coding
variables 2nd 3rd
 arrays
 context
 global, PASM
 hashes
 hypothetical
 lexical, PASM 2nd
 pairs
 placeholder
 PMCs
 properties
 references
 scalars
 typed, shortcuts
 types
variadic arguments, order constraints
variadic parameters 2nd
vers opcode (PASM)
versions, translatable
virtual table (vtable)
void context
vtable functions, overriding

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

vtable functions, overriding

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Wall, Larry
warningsoff opcode (PASM)
warningson opcode (PASM)
waterbed theory of complexity
while loop
wildcards, delegation
.wrap method
wrapped subroutines

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

x operator (string replication)
xor opcode (PASM)
XOR relation
xx operator (list replication)
xx= operator (specified number of element copies)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

yacc grammar

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Z-machine
zip operators

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Perl 6 and Parrot Essentials, 2nd Edition

By Allison Randal, Dan Sugalski, Leopold Tötsch

Publisher: O'Reilly

Pub Date: June 2004

ISBN: 0-596-00737-X

Pages: 294

This book is an unparalleled sneak-peek of what's coming in the widely-anticipated Perl 6. It uncovers groundbreaking
new developments in Parrot--the interpreter engine that will execute code written in the new Perl 6 language and the
most revolutionary change in the language itself--Apocalypse 12 on objects. It also includes expanded coverage of
Apocalypse 5 (regular expressions) and Apocalypse 6 (subroutines).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.1 The Birth of Perl 6
Back on July 18, 2000, the second day of the fourth Perl Conference (TPC 4), a small band of Perl geeks gathered to
prepare for a meeting of the Perl 5 Porters later that day. The topic at hand was the current state of the Perl
community. Four months had passed since the 5.6.0 release of Perl, and although it introduced some important
features, none were revolutionary.

There had been very little forward movement in the previous year. It was generally acknowledged that the Perl 5
codebase had grown difficult to maintain. At the same time, infighting on the perl5-porters list had grown so intense
that some of the best developers decided to leave. It was time for a change, but no one was quite sure what to do.
They started conservatively with plans to change the organization of Perl development.

An hour into the discussion, around the time most people nod off in any meeting, Jon Orwant (the reserved, universally
respected editor of the Perl Journal) stepped quietly into the room and snapped everyone to attention with an entirely
uncharacteristic and well-planned gesture. Smash! A coffee mug hit the wall. "We are *@$!-ed (Crash!) unless we can
come up with something that will excite the community (Pow!), because everyone's getting bored and going off and
doing other things! (Bam!)" (At least, that's basically how Larry tells it. As is usually the case with events like this, no
one remembers exactly what Jon said.)

Awakened by this display, the group started to search for a real solution. The language needed room to grow. It needed
the freedom to evaluate new features without the obscuring weight of legacy code. The community needed something
to believe in, something to get excited about.

Within a few hours the group settled on Perl 6, a complete rewrite of Perl. The plan wasn't just a language change, just
an implementation change, or just a social change. It was a paradigm shift. Perl 6 would be the community's rewrite of
Perl, and the community's rewrite of itself.

Would Perl 6, particularly Perl 6 as a complete rewrite, have happened without this meeting? Almost certainly. The
signs appeared on the lists, in conferences, and in journals months in advance. If it hadn't started that day, it would
have happened a week later, or perhaps a few months later, but it would have happened. It was a step the community
needed to take.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.2 In the Beginning . . .
Let's pause and consider Perl development up to that fateful meeting. Perl 6 is just another link in the chain. The
motivations behind it and the directions it will take are partially guided by history.

Perl was first developed in 1987 by Larry Wall while he was working as a programmer for Unisys. After creating a
configuration and monitoring system for a network that spanned the two American coasts, he was faced with the task of
assembling usable reports from log files scattered across the network. The available tools simply weren't up to the job.
A linguist at heart, Larry set out to create his own programming language, which he called perl. He released the first
version of Perl on December 18, 1987. He made it freely available on Usenet (this was before the Internet took over
the world, remember), and quickly a community of Perl programmers grew.

The early adopters of Perl were system administrators who had hit the wall with shell scripting, awk, and sed. However,
in the mid-1990s Perl's audience exploded with the advent of the Web, as Perl was tailor-made for CGI scripting and
other web-related programming.

Meantime, the Perl language itself kept growing, as Larry and others kept adding new features. Probably the most
revolutionary change in Perl (until Perl 6, of course) was the addition of modules and object-oriented programming with
Perl 5. Although this made the transition period from Perl 4 to Perl 5 unusually long, it breathed new life into the
language by providing a modern, modular interface. Before Perl 5, Perl was considered simply a scripting language;
after Perl 5, it was considered a full-fledged programming language.

Larry, meanwhile, started taking a back seat to Perl development and allowed others to take responsibility for adding
new features and fixing bugs in Perl. The Perl 5 Porters (p5p) mailing list became the central clearinghouse for bug
reports and proposed changes to the Perl language, with the "pumpkin holder" (also known as the "pumpking") being
the programmer responsible for integrating the patches and distributing them to the rest of the list for review. Larry
continued to follow Perl development, but like a parent determined not to smother his children, he stayed out of the
day-to-day development, limiting his involvement to situations in which he was truly needed.

Although you might think that the birth of the Perl 6 project would be the first nail in the coffin for Perl 5, that's far from
the case. If anything, Perl 5 has had a huge resurgence of development, with Perl 5.7.0 released only two weeks after
the initial decision to go ahead with Perl 6. Perl 5.8.0, a July 2002 release by pumpking Jarkko Hietaniemi, includes
usable Unicode support, a working threads interface, safe signals, and a significant improvement of the internals with
code cleanup, bug fixes, better documentation, and more than quadrupled test coverage. 5.8 has quarterly
maintenance releases thanks to pumpking Nicholas Clark. The 5.9-5.10 releases have Hugo van der Sanden as architect
and Rafaël Garcia-Suarez as pumpking. Plans for those releases include enhancements to the regular expression
engine, further internals cleanup and a "use perl6ish" pragma that will integrate many of the features of Perl 6. Perl 5 is
active and thriving, and will continue to be so even after the release of Perl 6.0.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.3 The Continuing Mission
Much has changed since the early days of the project. New people join and others leave in a regular "changing of the
guard" pattern. Plans change as the work progresses, and the demands of the work and the needs of the community
become clearer. Today the Perl 6 project has two major parts: language design and internals. Each branch is relatively
autonomous, though there is a healthy amount of coordination between them.

1.3.1 Language Design

As with all things Perl, the central command of the language design process is Larry Wall, the creator of the Perl
language. Larry is supported by the rest of the design team: Damian Conway, Allison Randal, Dan Sugalski, Hugo van
der Sanden, and chromatic. We speak in weekly teleconferences and also meet face-to-face a few times a year to hash
out ideas for the design documents, or to work through roadblocks standing in the way of design or implementation.
The design team is a diverse group, including programmers-for-hire, Perl trainers, and linguists with a broad spectrum
of interests and experiences. This diversity has proved quite valuable in the design process, as each member is able to
see problems in the design or potential solutions that the other members missed.

1.3.1.1 Requests For Comments (RFCs)

The first step in designing the new language was the RFC (Request For Comments) process. This spurred an initial burst
of community involvement. Anyone was free to submit an RFC on any subject, whether it was as small as adding an
operator, or as big as reworking OO syntax. Most of the proposals were really quite conservative. The RFCs followed a
standard format so they would be easier to read and easier to compare.

Each RFC was subject to peer review, carried out in an intense few weeks around October 2000. One thing the RFC
process demonstrated was that the Perl community still wasn't quite ready to move beyond the infighting that had
characterized Perl 5 Porters earlier that year.[1] Even though few RFCs have been accepted without modification, the
process identified a large number of irritants in the language. These have served as signposts for later design efforts.

[1] Mark-Jason Dominus wrote an excellent critique of the RFC process
(http://www.perl.com/pub/a/2000/11/perl6rfc.html). It may seem harsh to people accustomed to the more open
and tolerant community of today, but it's an accurate representation of the time when it was written.

1.3.1.2 Apocalypses, Synopses, Exegeses

The Apocalypses,[2] Synopses, and Exegeses[3] are an important part of the design process. Larry started the
Apocalypse series as a systematic way of answering the RFCs. Each Apocalypse corresponds to a chapter in his book
Programming Perl, and addresses the features in the chapter that are likely to change.

[2] An "apocalypse" in the sense of "revelation," not "end of the world."

[3] An "exegesis" is an explanation or interpretation of a text.

However, the Apocalypses have become much more than a simple response to RFCs. Larry has a startling knack for
looking at 12 solutions to a problem, pulling out the good bits from each one, and combining them into a solution that is
10 times better than any of the proposals alone. The Apocalypses are an excellent example of this "Larry Effect." He
addresses each relevant RFC, and gives reasons why he accepted or rejected various pieces of it. But each Apocalypse
also goes beyond a simple "yes" and "no" response to attack the roots of the problems identified in the RFCs.

The Synopses are summaries of each Apocalypse. These act as a quick reference for the current state of design, and
are more approachable than the often lengthy Apocalypses. The Synopsis series didn't start until Apocalypse 5, but
Luke Palmer is now working on the retroactive Synopses 2-4.

Damian Conway's Exegeses are extensions of each Apocalypse. The Exegeses are built around practical code examples
that apply and explain the new ideas.

1.3.1.3 The p6l mailing list

The next body of design work is the Perl 6 Language mailing list (perl6-language@perl.org), often fondly referred to as
" p6l." Piers Cawley writes a weekly summary of all the Perl 6 mailing lists. Luke Palmer has been deputized as
unofficial referee of the list. He answers questions that don't require the direct involvement of the design team or that
have been answered before. The list has approximately 40 regular contributors in any given month, as well as a large
number of occasional posters and lurkers. Some people have participated since the very beginning; others appear for a
few months and move on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

few months and move on.

Even though the individuals change, the general tone of p6l is the same. It's an open forum for any ideas on the user-
visible parts of Perl 6. In the typical pattern, one person posts an idea and 5 to 10 people respond with criticisms or
suggestions. The list periodically travels down a speculative thread like a runaway train, but these eventually run out of
steam. Then Larry picks out the golden bits and gently tells the rest that no, he never intended Perl 6 to have neo-
Vulcan mechanoid Scooby-Dooby-doos. Even when Larry doesn't post, he follows the list and the traffic serves as a
valuable catalyst for his thoughts.

1.3.2 Internals

The internals development for Perl 6 falls to the Parrot project. The heart of Parrot is a grandiose idea that turned out
to be more realistic than anyone originally could have believed: why not have a single interpreter for several
languages? Unlike the parent Perl 6 project, which was launched in a single day, the plan for Parrot formed in bits and
pieces over the period of a year.

On April 1, 2001, Simon Cozens published an article titled "Programming Parrot" as an April Fools' joke
(http://www.perl.com/pub/a/2001/04/01/parrot.htm). It was a contrived interview with Larry Wall and Guido van
Rossum detailing their plans to merge Python and Perl into a new language called Parrot. A few months later, when Perl
6 internals began to take an independent path within the larger project, they dubbed the subproject "Parrot" in a fitting
turn of life imitating art.

Early Steps Toward Perl 6 Internals
The earliest progress toward implementing Perl 6 started before the current incarnation of Perl 6 was
even conceived. The Topaz project, started in 1998, was spearheaded by Chip Salzenberg. It was a
reimplementation of Perl 5 written in C++. The project was abandoned, but many of the goals and
intended features for Topaz were adopted for Perl 6 internals, and the difficulties Topaz encountered
were also valuable guides.

Sapphire was another early prototype that influenced the shape of Perl 6 internals. It was a one-week
project in September 2000. The brainchild of Simon Cozens, Sapphire was another rewrite of Perl 5
internals. It was never intended for release, only as an experiment to see how far the idea could go in a
week, and what lessons could be learned.

The plan for Parrot was to build a language-neutral run-time environment. It would support all the features of dynamic
languages, such as Python, Ruby, Scheme, Befunge, and others. It would have threading and Unicode support (two of
the most problematic features to add into Perl 5 code) designed in from the start. It would support exceptions and
compilation to bytecode, and have clean extension and embedding mechanisms.

The language-neutral interpreter was originally just a side effect of good design. Keeping the implementation
independent of the syntax would make the code cleaner and easier to maintain. One practical advantage of this design
was that Parrot development could begin even though the Perl 6 language specification was still in flux.

The bigger win in the long term, though, was that since Parrot would support the features of the major dynamic
languages and wasn't biased to a particular syntax, it could run all these languages with little additional effort. It's
generally acknowledged that different languages are suited to different tasks. Picking which language will be used in a
large software project is a common planning problem. There's never a perfect fit. It usually boils down to picking the
language with the most advantages and the least noticeable disadvantages. The ability to easily combine multiple
languages within a project could be a huge benefit. Use well-tested libraries from one language for one task. Take
advantage of a clean way of expressing a particular problem domain in a second, without being forced to use it in areas
where it's weak.

The modular design also benefits future language designers. Instead of targeting lex/yacc and reimplementing low-level
features such as garbage collection and dynamic types, designers can write a parser that targets the Parrot virtual
machine.

Dan Sugalski leads the Parrot project as chief architect, and Leopold Tötsch is the current pumpking. The Parrot project
is largely autonomous. Dan coordinates with the rest of the design team to ensure that Parrot will be able to support
the semantics Perl 6 will require, but the language designers have very little input into the details of implementation.
Parrot isn't developed solely for Perl, but Perl 6 is entirely dependent on Parrot—it is the only interpreter for Perl 6.

The core communication line for the Parrot project is the mailing list, perl6-internals@perl.org, otherwise known as "
p6i." It's a much more business-like list than p6l. Workflow in Parrot takes the form of submitted patches. Anyone is
free to submit a patch, and contributors who consistently submit valuable patches over a long period of time are
granted check-in access to the CVS repository.

1.3.3 Ponie

Ponie is an implementation of Perl 5 on Parrot, started in July 2003. Offically, Ponie stands for " Perl On New Internal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ponie is an implementation of Perl 5 on Parrot, started in July 2003. Offically, Ponie stands for " Perl On New Internal
Engine." The name was originally derived from a running gag in the London.pm Perl Mongers group where the phrase "I
want a pony" appeared in lists of feature requests for Perl (and other unusual places).

The project, led by Artur Bergman, has taken the Perl 5 source code as a base and is gradually replacing the core
elements with Parrot equivalents. Legacy code will be one of the biggest obstacles to projects considering the move
from Perl 5 to Perl 6. Few companies have the resources to do a complete update to existing code every time a new
version of the language is released. Ponie offers a smooth migration path that ensures Perl 5 code will function as long
as it's needed. You'll even be able to use Perl 5 modules and Perl 6 modules side-by-side in the same program. The
current plan is for Ponie to be the 5.14 or 5.16 release of Perl.

The mailing list for Ponie development is ponie-dev@perl.org.

1.3.4 Supporting Structure

Last, but not least, is the glue that holds the project together. Ask Bj rn Hansen and Robert Spier manage the email,
revision control, and bug-tracking systems, as well as the web pages for Perl 6, Parrot, and Ponie (http://dev.perl.org).
Without these systems, the project would grind to a screeching halt.

Allison Randal is the project manager. As is typical of open source development projects, managing the Perl 6 project is
quite different from managing a commercial project of the same size and complexity. There are no schedules, no
deadlines, no hiring and firing, and no salaries, bonuses, or stock options. There are no employees or bosses; there is
very little hierarchy whatsoever. Management in this context isn't about giving orders, it's about making sure everyone
has what they need to keep moving forward.

In the end, it is the developers themselves who hold the project together. Individuals bear their own share of
responsibility for finding tasks that suit their skills, coordinating with others to keep duplicated effort minimal, and
making sure the job gets done.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 1. Project Overview
Perl 6 is the next major version of Perl. It's a complete rewrite of the interpreter, and a significant update of the
language itself. The goal of Perl 6 is to add support for much-needed new features, and still be cleaner, faster, and
easier to use.

The Perl 6 project is vast and complex, but it isn't complicated. The project runs on a simple structure with very little
management overhead. That's really the only way it could run. The project doesn't have huge cash or time resources.
Its only resource is the people who believe in the project enough to spend their off-hours—their "relaxation" time—
working to see it completed. This chapter is as much about people as it is about Perl.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.1 Statements
The syntax of statements in PIR is much more flexible than PASM. All PASM opcodes are valid PIR code, so the basic
syntax is the same. The statement delimiter is a newline \n, so each statement has to be on its own line. Any statement
can start with a label. Comments are marked by a hash sign (#) and PIR allows POD blocks.

But unlike PASM, PIR has some higher-level constructs, including symbol operators:

I1 = 5 # set I1, 5

named variables:

count = 5

and complex statements built from multiple keywords and symbol operators:

if I1 <= 5 goto LABEL # le I1, 5, LABEL

We'll get into these in more detail as we go.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.2 Variables and Constants
Literal constants in PIR are the same as constants in PASM. Integers and floating-point numbers are numeric literals
and strings are enclosed in quotes. PIR strings use the same escape sequences as PASM.

10.2.1 Parrot Registers

PIR code has a variety of ways to store values while you work with them. The most basic way is to use Parrot registers
directly. PASM register names always start with a single character that shows whether it is an integer, numeric, string,
or PMC register, and end with the number of the register (between 0 and 31):

S0 = "Hello, Polly.\n"

print S0

When you work directly with Parrot registers, you can only have 32 registers of any one type at a time.[1] If you have
more than that, you have to start shuffling stored values on and off the user stack. You also have to manually track
when it's safe to reuse a register. This kind of low-level access to the Parrot registers is handy when you need it, but
it's pretty unwieldy for large sections of code.

[1] Only 31 for PMC registers, because P31 is reserved for spilling.

10.2.2 Temporary Registers

PIR provides an easier way to work with Parrot registers. The temporary register variables are named like the PASM
registers—with a single character for the type of register and a number—but they start with a $ character:

set $S42, "Hello, Polly.\n"

print $S42

The most obvious difference between Parrot registers and temporary register variables is that you have an unlimited
number of temporaries. Parrot handles register allocation for you. It keeps track of how long a value in a Parrot register
is needed and when that register can be reused.

The previous example used the $S42 temporary. When the code is compiled, that temporary is allocated to a Parrot
register. As long as the temporary is needed, it is stored in the same register. When it's no longer needed, the Parrot
register is re-allocated to some other value. This example uses two temporary string registers:

$S42 = "Hello, "

print $S42

$S43 = "Polly.\n"

print $S43

Since they don't overlap, Parrot allocates both to the S16 register. If you change the order a little so both temporaries
are needed at the same time, they're allocated to different registers:

$S42 = "Hello, " # allocated to S17

$S43 = "Polly.\n" # allocated to S16

print $S42

print $S43

In this case, $S42 is allocated to S17 and $S43 is allocated to S16.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this case, $S42 is allocated to S17 and $S43 is allocated to S16.

Parrot allocates temporary variables[2] to Parrot registers in ascending order of their score. The score is based on a
number of factors related to variable usage. Variables used in a loop have a higher score than variables outside a loop.
Variables that span a long range have a lower score than ones that are used only briefly.

[2] As well as named variables, which we talk about next.

If you want to peek behind the curtain and see how Parrot is allocating registers, you can run it with the -d switch to
turn on debugging output:

$ parrot -d1000 hello.imc

If hello.imc contains this code from the previous example (wrapped in a subroutine definition so it will compile):

.sub _main

 $S42 = "Hello, " # allocated to S17

 $S43 = "Polly.\n" # allocated to S16

 print $S42

 print $S43

 end

.end

it produces this output:

code_size(ops) 11 oldsize 0

0 set_s_sc 17 1 set S17, "Hello, "

3 set_s_sc 16 0 set S16, "Polly.\n"

6 print_s 17 print S17

8 print_s 16 print S16

10 end end

Hello, Polly.

That's probably a lot more information than you wanted if you're just starting out. You can also generate a PASM file
with the -o switch and have a look at how the PIR code translates:

$ parrot -o hello.pasm hello.imc

or just:

$ parrot -o- hello.imc

to see resulting PASM on stdout.

You'll find more details on these options and many others in Section 11.4 in Chapter 11.

10.2.3 Named Variables

Named variables can be used anywhere a register or temporary register is used. They're declared with the .local
statement or the equivalent .sym statement, which require a variable type and a name:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

statement or the equivalent .sym statement, which require a variable type and a name:

.local string hello

set hello, "Hello, Polly.\n"

print hello

This snippet defines a string variable named hello, assigns it the value "Hello, Polly.\n", and then prints the value.

The valid types are int, float, string, and pmc or any Parrot class name (like PerlInt or PerlString). It should come as no
surprise that these are the same divisions as Parrot's four register types. Named variables are valid from the point of
their definition to the end of the compilation unit.

The name of a variable must be a valid PIR identifier. It can contain letters, digits, and underscores, but the first
character has to be a letter or underscore. Identifiers don't have any limit on length yet, but it's a safe bet they will
before the production release. Parrot opcode names are normally not allowed as variable names, though there are
some exceptions.

10.2.3.1 PMC variables

PMC registers and variables act much like any integer, floating-point number, or string register or variable, but you
have to instantiate a new PMC object before you use it. The new instruction creates a new PMC. Unlike PASM, PIR
doesn't use a dot in front of the class name.

P0 = new PerlString # same as new P0, .PerlString

P0 = "Hello, Polly.\n"

print P0

This example creates a PerlString object, stores it in the PMC register P0, assigns the value "Hello, Polly.\n" to it, and
prints it. The syntax is exactly the same for temporary register variables:

$P4711 = new PerlString

$P4711 = "Hello, Polly.\n"

print $P4711

With named variables, the type passed to the .local directive is either the generic pmc or a type compatible with the type
passed to new:

.local PerlString hello # or .local pmc hello

hello = new PerlString

hello = "Hello, Polly.\n"

print hello

10.2.4 Named Constants

The .const directive declares a named constant. It's very similar to .local and requires a type and a name. The value of a
constant must be assigned in the declaration statement. As with named variables, named constants are visible only
within the compilation unit where they're declared. This example declares a named string constant hello and prints the
value:

.const string hello = "Hello, Polly.\n"

print hello

Named constants function in all the same places as literal constants, but have to be declared beforehand:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Named constants function in all the same places as literal constants, but have to be declared beforehand:

.const int the_answer = 42 # integer constant

.const string mouse = "Mouse" # string constant

.const float pi = 3.14159 # floating point constant

10.2.5 Register Spilling

As we mentioned earlier, Parrot allocates all temporary register variables and named variables to Parrot registers. When
Parrot runs out of registers to allocate, it has to store some of the variables elsewhere. This is known as spilling. Parrot
spills the variables with the lowest score and stores them in a PerlArray object while they aren't used, then restores them
to a register the next time they're needed. Consider an example that creates 33 integer variables, all containing values
that are used later:

set $I1, 1

set $I2, 2

 . . .

set $I33, 33

 . . .

print $I1

print $I2

 . . .

print $I33

Parrot allocates the 32 available integer registers to variables with a higher score and spills the variables with a lower
score. In this example, it picks $I1 and $I2. Behind the scenes, Parrot generates code to store the values:

new P31, .PerlArray

 . . .

set I0, 1 # I0 allocated to $I1

set P31[0], I0 # spill $I1

set I0, 2 # I0 reallocated to $I2

set P31[1], I0 # spill $I2

It creates a PerlArray object and stores it in register P31.[3] The set instruction is the last time $I1 is used for a while, so
immediately after that, Parrot stores its value in the spill array and frees up I0 to be reallocated.

[3] P31 is reserved for register spilling in PIR code, so generally it shouldn't be accessed directly.

Just before $I1 and $I2 are accessed to be printed, Parrot generates code to fetch the values from the spill array:

 . . .

set I0, P31[0] # fetch $I1

print I0

You cannot rely on any particular register assignment for temporary variables or named variables. The register allocator
does follow a set of precedence rules for allocation, but these rules may change. Also, if two variables have the same
score, Parrot may assign registers based on the hashed value of the variable name. Parrot randomizes the seed to the
hash function to guarantee you never get a consistent order.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.3 Symbol Operators
You probably noticed the = assignment operator in some of the earlier examples:

$S2000 = "Hello, Polly.\n"

print $S2000

Standing alone, it's the same as the PASM set opcode. In fact, if you run parrot in bytecode debugging mode (as in
Section 11.4.2 in Chapter 11), you'll see it really is just a set opcode underneath.

PIR has many other symbol operators: arithmetic, concatenation, comparison, bitwise, and logical. Many of these
combine with assignment to produce the equivalent of a PASM opcode:

.local int sum

sum = $I42 + 5

print sum

print "\n"

The statement sum = $I42 + 5 translates to something like add I16, I17, 5.

PIR also provides +=, -=, >>=, . . . that map to the two-argument forms like add I16, I17.

Many PASM opcodes that return a single value also have an alternate syntax in PIR with the assignment operator:

$I0 = length str # length $I0, str

$I0 = isa PerlInt, "scalar" # isa $I0, PerlInt, "scalar"

$I0 = exists hash["key"] # exists $I0, hash["key"]

$N0 = sin $N1

$N0 = atan $N1, $N2

$S0 = repeat "x", 20

$P0 = newclass "Foo"

 . . .

A complete list of PIR operators is available in Chapter 11. We'll discuss the comparison operators in Section 10.5 later
in this chapter.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.4 Labels
Like PASM, any line can start with a label definition like LABEL:, but label definitions can also stand on their own line.

PIR code has both local and global labels. Global labels start with an underscore. The name of a global label has to be
unique, since it can be called at any point in the program. Local labels start with a letter. A local label is accessible only
in the compilation unit where it's defined. (We'll discuss compilation units in the next section.)The name has to be
unique there, but it can be reused in a different compilation unit.

branch L1 # local label

bsr _L2 # global label

Labels are most often used in branching instructions and in subroutine calls.

10.4.1 Compilation Units

Compilation units in PIR are roughly equivalent to the subroutines or methods of a high-level language. Though they
will be explained in more detail later, we introduce them here because all code in a PIR source file must be defined in a
compilation unit. The simplest syntax for a PIR compilation unit starts with the .sub directive and ends with the .end
directive:

.sub _main

 print "Hello, Polly.\n"

 end

.end

This example defines a compilation unit named _main that prints a string. The name is actually a global label for this
piece of code. If you generate a PASM file from the PIR code (see the Section 10.2.2 earlier in this chapter), you'll see
that the name translates to an ordinary label:

_main:

 print "Hello, Polly.\n"

 end

The first compilation unit in a file is normally executed first, but as in PASM, you can flag any compilation unit as the
first one to execute with the @MAIN marker. The convention is to name the first compilation unit _main, but the name
isn't critical.

.sub _first

 print "Polly want a cracker?\n"

 end

.end

.sub _main @MAIN

 print "Hello, Polly.\n"

 end

.end

This code prints out "Hello, Polly." but not "Polly want a cracker?".

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This code prints out "Hello, Polly." but not "Polly want a cracker?".

Section 10.6 later in this chapter goes into much more detail about compilation units and their uses.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.5 Flow Control
As in PASM, flow control in PIR is done entirely with conditional and unconditional branches. This may seem simplistic,
but remember that PIR is a thin overlay on the assembly language of a virtual processor. For the average assembly
language, jumps are the fundamental unit of flow control.

Any PASM branch instruction is valid, but PIR has some high-level constructs of its own. The most basic is the
unconditional branch: goto.

.sub _main

 goto L1

 print "never printed"

L1:

 print "after branch\n"

 end

.end

The first print statement never runs because the goto always skips over it to the label L1.

The conditional branches combine if or unless with goto:

.sub _main

 $I0 = 42

 if $I0 goto L1

 print "never printed"

L1: print "after branch\n"

 end

.end

In this example, the goto branches to the label L1 only if the value stored in $I0 is true. The unless statement is quite
similar, but branches when the tested value is false. An undefined value, 0, or an empty string are all false values. The
if . . . goto statement translates directly to the PASM if, and unless translates to the PASM unless.

The comparison operators (<, <=, = =, !=, >, >=) can combine with if . . . goto. These branch when the comparison is
true:

.sub _main

 $I0 = 42

 $I1 = 43

 if $I0 < $I1 goto L1

 print "never printed"

L1:

 print "after branch\n"

 end

.end

This example compares $I0 to $I1 and branches to the label L1 if $I0 is less than $I1. The if $I0 < $I1 goto L1 statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This example compares $I0 to $I1 and branches to the label L1 if $I0 is less than $I1. The if $I0 < $I1 goto L1 statement
translates directly to the PASM lt branch operation.

The rest of the comparison operators are summarized in Section 11.3 in Chapter 11.

PIR has no special loop constructs. A combination of conditional and unconditional branches handle iteration:

.sub _main

 $I0 = 1 # product

 $I1 = 5 # counter

REDO: # start of loop

 $I0 = $I0 * $I1

 dec $I1

 if $I1 > 0 goto REDO # end of loop

 print $I0

 print "\n"

 end

.end

This example calculates the factorial 5!. Each time through the loop it multiplies $I0 by the current value of the counter
$I1, decrements the counter, and then branches to the start of the loop. The loop ends when $I1 counts down to 0 so
that the if doesn't branch to REDO. This is a do while-style loop with the condition test at the end, so the code always
runs the first time through.

For a while-style loop with the condition test at the start, use a conditional branch together with an unconditional
branch:

.sub _main

 $I0 = 1 # product

 $I1 = 5 # counter

REDO: # start of loop

 if $I1 <= 0 goto LAST

 $I0 = $I0 * $I1

 dec $I1

 goto REDO

LAST: # end of loop

 print $I0

 print "\n"

 end

.end

This example tests the counter $I1 at the start of the loop. At the end of the loop, it unconditionally branches back to
the start of the loop and tests the condition again. The loop ends when the counter $I1 reaches 0 and the if branches to
the LAST label. If the counter isn't a positive number before the loop, the loop never executes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the LAST label. If the counter isn't a positive number before the loop, the loop never executes.

Any high-level flow control construct can be built from conditional and unconditional branches.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.6 Subroutines
A calculation like "the factorial of a number" may be used several times in a large program. Subroutines allow this kind
of functionality to be abstracted into a unit. It's a benefit for code reuse and maintainability. Even though PASM is just
an assembly language for a virtual processor, it has a number of features to support high-level subroutine calls. PIR
offers a smoother interface to those features.

PIR provides several different sets of syntax for subroutine calls. This is a language designed to implement other
languages, and every language does subroutine calls a little differently. What's needed is a set of building blocks and
tools, not a single prepackaged solution.

10.6.1 Parrot-Calling Conventions

As we mentioned in Chapter 9, Parrot defines a set of calling conventions for externally visible subroutines. In these
calls, the caller is responsible for preserving its own registers, and arguments and return values are passed in a
predefined set of Parrot registers. The calling conventions use the Continuation Passing Style to pass control to
subroutines and back again.

The fact that the Parrot-calling conventions are clearly defined also makes it possible to provide some higher-level
syntax for it. Manually setting up all the registers for each subroutine call isn't just tedious, it's also prone to bugs
introduced by typos. PIR's simplest subroutine call syntax looks much like a high-level language. This example calls the
subroutine _fact with two arguments and assigns the result to $I0:

($I0, $I1) = _fact(count, product)

This simple statement hides a great deal of complexity. It generates a subroutine object and stores it in P0. It assigns
the arguments to the appropriate registers, assigning any extra arguments to the overflow array in P3. It also sets up
the other registers to mark whether this is a prototyped call and how many arguments it passes of each type. It calls
the subroutine stored in P0, saving and restoring the top half of all register frames around the call. And finally, it assigns
the result of the call to the given temporary register variables (for a single result you can drop the parentheses). If the
one line above were written out in basic PIR it would be something like:

newsub P0, .Sub, _fact

I5 = count

I6 = product

I0 = 1

I1 = 2

I2 = 0

I3 = 0

I4 = 0

savetop

invokecc

restoretop

$I0 = I5

$I1 = I6

The PIR code actually generates an invokecc opcode internally. It not only invokes the subroutine in P0, but also
generates a new return continuation in P1. The called subroutine invokes this continuation to return control to the caller.

The single-line subroutine call is incredibly convenient, but it isn't always flexible enough. So PIR also has a more
verbose call syntax that is still more convenient than manual calls. This example pulls the subroutine _fact out of the
global symbol table and calls it:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

global symbol table and calls it:

find_global $P1, "_fact"

.pcc_begin prototyped

 .arg count

 .arg product

 .pcc_call $P1

 .result $I0

.pcc_end

The whole chunk of code from .pcc_begin to .pcc_end acts as a single unit. The .pcc_begin directive can be marked as
prototyped or unprototyped, which corresponds to the flag I0 in the calling conventions. The .arg directive sets up
arguments to the call. The .pcc_call directive saves top register frames, calls the subroutine, and restores the top
registers. The .result directive retrieves return values from the call.

In addition to syntax for subroutine calls, PIR provides syntax for subroutine definitions. The .param directive pulls
parameters out of the registers and creates local named variables for them:

.param int c

The .pcc_begin_return and .pcc_end_return directives act as a unit much like the .pcc_begin and .pcc_end directives:

.pcc_begin_return

 .return p

.pcc_end_return

The .return directive sets up return values in the appropriate registers. After all the registers are set up, the unit invokes
the return continuation in P1 to return control to the caller.

Here's a complete code example that reimplements the factorial code from the previous section as an independent
subroutine. The subroutine _fact is a separate compilation unit, assembled and processed after the _main function.
Parrot resolves global symbols like the _fact label between different units.

factorial.imc

.sub _main

 .local int count

 .local int product

 count = 5

 product = 1

 $I0 = _fact(count, product)

 print $I0

 print "\n"

 end

.end

.sub _fact

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 .param int c

 .param int p

loop:

 if c <= 1 goto fin

 p = c * p

 dec c

 branch loop

fin:

 .pcc_begin_return

 .return p

 .pcc_end_return

.end

This example defines two local named variables, count and product, and assigns them the values 1 and 5. It calls the
_fact subroutine passing the two variables as arguments. In the call, the two arguments are assigned to consecutive
integer registers, because they're stored in typed integer variables. The _fact subroutine uses .param and the return
directives for retrieving parameters and returning results. The final printed result is 120.

You may want to generate a PASM source file for this example to look at the details of how the PIR code translates to
PASM:

$ parrot -o- factorial.imc

10.6.2 Stack-Based Subroutine Calls

The Parrot-calling conventions are PIR's default for subroutine calls, but it does also provide some syntax for stack-
based calls. Stack-based calls are fast, so they're sometimes useful for purely internal code. To turn on support for
stack-based calls, you have to set the fastcall pragma:

.pragma fastcall # turn on stack calling conventions

The standard calling conventions are set by the prototyped pragma. You'll rarely need to explicitly set prototyped since it's
on by default. You can mix stack-based subroutines and prototyped subroutines in the same file, but you really
shouldn't—stack-based calls interfere with exception handling, and don't interoperate well with prototyped calls.

When the fastcall pragma is on, the .arg, .result, .param, and .return directives push and pop on the user stack instead of
setting registers. Internally, they are just the PASM save and restore opcodes. Because of this, you have to reverse the
order of your arguments. You push the final argument onto the user stack first, because it'll be the last parameter
popped off the stack on the other end:

.arg y # save args in reverse order

.arg x

call _foo # (r, s) = _foo(x,y)

.result r

.result s # restore results in order

Multiple return values are also passed in reverse order for the same reason. Often the first parameter or result in a
stack-based call will be a count of values passed in, especially when the number of arguments can vary.

Another significant difference is that instead of the single-line call or a .pcc_call, stack-based calls use the call instruction.
This is the same as PASM's bsr opcode. It branches to a subroutine label and pushes the current location onto the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is the same as PASM's bsr opcode. It branches to a subroutine label and pushes the current location onto the
control stack so it can return to it later.

This example reworks the factorial code above to use stack-based calls:

.pragma fastcall # turn on stack calling conventions

.sub _main

 .local int count

 .local int product

 count = 5

 product = 1

 .arg product # second argument

 .arg count # first argument

 call _fact # call the subroutine

 .result $I0 # retrieve the result

 print $I0

 print "\n"

 end

.end

.sub _fact

 saveall # save caller's registers

 .param int c # retrieve the parameters

 .param int p

loop:

 if c <= 1 goto fin

 p = c * p

 dec c

 branch loop

fin:

 .return p # return the result

 restoreall # restore caller's registers

 ret # back to the caller

.end

The _main compilation unit sets up two local variables and pushes them onto the user stack in reverse order using the
.arg directive. It then calls _fact with the call instruction. The .result directive pops a return value off the user stack.

This example uses the callee save convention, so the first statement in the _fact subroutine is saveall. (See Section
9.7.1.2 in Chapter 9 for more details on this convention.) With callee save in PIR, Parrot can ignore the subroutine's
register usage when it allocates registers for the calling routine.

The .param directive pops a function parameter off the user stack as an integer and creates a new named local variable
for the parameter. Parrot does check the types of the parameters to make sure they match what the caller passes to
the subroutine, but the amount of parameters isn't checked, so both sides have to agree on the argument count.

The .return statement at the end pushes the final value of p onto the user stack, so .result can retrieve it after the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The .return statement at the end pushes the final value of p onto the user stack, so .result can retrieve it after the
subroutine ends. restoreall restores the caller's register values, and ret pops the top item off the control stack—in this
case, the location of the call to _fact—and returns to it.

10.6.3 Compilation Units Revisited

The previous example could have been written using simple labels instead of separate compilation units:

.sub _main

 $I1 = 5 # counter

 call fact # same as bsr fact

 print $I0

 print "\n"

 $I1 = 6 # counter

 call fact

 print $I0

 print "\n"

 end

fact:

 $I0 = 1 # product

L1:

 $I0 = $I0 * $I1

 dec $I1

 if $I1 > 0 goto L1

 ret

.end

The unit of code from the fact label definition to ret is a reusable routine. There are several problems with this simple
approach. First, the caller has to know to pass the argument to fact in $I1 and to get the result from $I0. Second,
neither the caller nor the function itself preserves any registers. This is fine for the example above, because very few
registers are used. But if this same bit of code were buried deeply in a math routine package, you would have a high
risk of clobbering the caller's register values.

Another disadvantage of this approach is that _main and fact share the same compilation unit, so they're parsed and
processed as one piece of code. When Parrot does register allocation, it calculates the data flow graph (DFG) of all
symbols,[4] looks at their usage, calculates the interference between all possible combinations of symbols, and then
assigns a Parrot register to each symbol. This process is less efficient for large compilation units than it is for several
small ones, so it's better to keep the code modular. The optimizer will decide whether register usage is light enough to
merit combining two compilation units, or even inlining the entire function.

[4] The operation to calculate the DFG has a quadratic cost or better. It depends on n_lines * n_symbols.

A Short Note on the Optimizer
The optimizer isn't powerful enough to inline small subroutines yet. But it already does other simpler
optimizations. You may recall that the PASM opcode mul (multiply) has a two-argument version that uses
the same register for the destination and the first operand. When Parrot comes across a PIR statement
like $I0 = $I0 * $I1, it can optimize it to the two-argument mul $I0, $I1 instead of mul $I0, $I0, $I1. This
kind of optimization is enabled by the -O1 command-line option.

So you don't need to worry about finding the shortest PASM instruction, calculating constant terms, or
avoiding branches to speed up your code. Parrot does it already.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.6.4 PASM Subroutines

PIR code can include pure PASM compilation units. These are wrapped in the .emit and .eom directives instead of .sub
and .end. The .emit directive doesn't take a name, it only acts as a container for the PASM code. These primitive
compilation units can be useful for grouping PASM functions or function wrappers. Subroutine entry labels inside .emit
blocks have to be global labels:

.emit

_substr:

 . . .

 ret

_grep:

 . . .

 ret

.eom

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.7 Methods
PIR provides syntax to simplify writing methods and method calls. These calls follow the Parrot-calling conventions. The
basic syntax is similar to the single-line subroutine call above, but instead of a subroutine label name it takes a variable
for the invocant PMC and a string with the name of the method:

object."methodname"(arguments)

The invocant can be a variable or register, and the method name can be a literal string, string variable, or method
object register. This tiny bit of code sets up all the registers for a method call and makes the call, saving and restoring
the top half of the register frames around the call. Internally, the call is a callmethodcc opcode, so it also generates a
return continuation.

This example defines two methods in the Foo class. It calls one from the main body of the subroutine and the other
from within the first method:

.sub _main

 .local pmc class

 .local pmc obj

 newclass class, "Foo" # create a new Foo class

 find_type $I0, "Foo" # find its dynamic type number

 new obj, $I0 # instantiate a Foo object

 obj."_meth"() # call obj."_meth" which is actually

 print "done\n" # "_meth" in the "Foo" namespace

 end

.end

.namespace ["Foo"] # start namespace "Foo"

.sub _meth method # define Foo::_meth global

 print "in meth\n"

 $S0 = "_other_meth" # method names can be in a register too

 self.$S0() # self is the invocant

.end

.sub _other_meth method # define another method

 print "in other_meth\n" # as above Parrot provides a return

.end # statement

Each method call looks up the method name in the symbol table of the object's class. Like .pcc_sub in PASM, .sub makes
a symbol table entry for the subroutine in the current namespace.

When a .sub is declared as a method, it automatically creates a local variable named self and assigns it the object passed
in P2.

You can pass multiple arguments to a method and retrieve multiple return values just like a single-line subroutine call:

(res1, res2) = obj."method"(arg1, arg2)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(res1, res2) = obj."method"(arg1, arg2)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 10. Parrot Intermediate Representation
The Parrot intermediate representation (PIR) is an overlay on top of Parrot assembly language, designed to make the
developer's life easier. It has many high-level features that ease the pain of working with PASM code, but it still isn't a
high-level language.

Internally, Parrot works a little differently with PASM and PIR source code, so each has different restrictions. The default
is to run in a mixed mode that allows PASM code to combine with the higher-level syntax unique to PIR.

A file with a .pasm extension is treated as pure PASM code, as is any file run with the -a command-line option. This
mode is mainly used for running pure PASM tests. Parrot treats any extension other than .pasm as a PIR file. For
historical reasons, files containing PIR code generally have a .imc extension, but this is gradually shifting to a .pir
extension.

The documentation in imcc/docs/ or docs/ and the test suite in imcc/t are good starting points for digging deeper into
the PIR syntax and functionality.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.1 PASM Opcodes
For complete details on each opcode and the latest changes, read the documentation in docs/ops/, or look at all the
.ops files in the ops/ directory.

We've followed a few conventions. DEST is always the register where the result of the operation is stored. Sometimes
the original value of DEST is one of the source values. VAL indicates that the actual value might be a literal integer, float,
or string, or a register containing an integer, float, string, or PMC. See the .ops files for the combinations allowed with a
particular operation.

abs

abs DEST

abs DEST, VAL

Return the absolute value of a number. If VAL is left out, DEST gets the absolute value of itself.

Arguments: IR or NR or IR, I or IR, N or NR, I or NR, N

acos

acos DEST, VAL

The arc cosine of VAL in radians.

Arguments: NR, N or NR, I

add

add DEST, VAL

add DEST, VAL, VAL

Add two values and return the sum. If only one VAL, add VAL to DEST.

Arguments: IR, I or NR, I or NR, N or P, I or P, N or P, P or IR, I, I or NR, N, I or NR, N, N or P, P, I or P, P, N or P, P, P

addattribute

addattribute CLASS, ATTR

Add the attribute name ATTR to class CLASS.

Arguments: P, S

addparent

addparent CLASS1, CLASS2

Add class CLASS2 to the list of parent classes for CLASS1.

Arguments: P, P

and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and DEST, VAL1, VAL2

Logical AND. Return VAL1 if it's false. Otherwise, return VAL2.

Arguments: IR, I, I or P, P, P

asec

asec DEST, VAL

The arc secant of VAL in radians.

Arguments: NR, I or NR, N

asin

asin DEST, VAL

The arc sine of VAL in radians.

Arguments: NR, I or NR, N

assign

assign DEST, VAL

Assign a value to a PMC.

Arguments: SR, S or P, I or P, N or P, S or P, P

atan

atan DEST, VAL

atan DEST, VAL1, VAL2

The arc tangent of VAL1/VAL2 in radians (sign significant). If VAL2 is omitted, then just the arc tangent of VAL.

Arguments: NR, I or NR, N or NR, I, I or NR, I, N or NR, N, I or NR, N, N

band

band DEST, VAL

band DEST, VAL, VAL

Bitwise AND on two values. If only one VAL, bitwise AND on DEST and VAL.

Arguments: IR, I or P, I or P, P or IR, I, I or P, P, I or P, P, P

bands

bands DEST, VAL

bands DEST, VAL, VAL

Bitwise AND on two strings. If only one VAL, bitwise AND on DEST and VAL.

Arguments: SR, S or P, S or P, P or SR, S, S or P, P, S or P, P, P

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arguments: SR, S or P, S or P, P or SR, S, S or P, P, S or P, P, P

bnot

bnot DEST, VAL

Bitwise NOT on VAL.

Arguments: IR, I or P, P

bnots

bnots DEST, VAL

Bitwise NOT on string VAL.

Arguments: SR, S or P, P

bor

bor DEST, VAL, VAL

Bitwise OR on two values. If only one VAL, bitwise OR on DEST and VAL.

Arguments: IR, I or P, I or P, P or IR, I, I or P, P, I or P, P, P

bors

bor DEST, VAL, VAL

Bitwise OR on two strings. If only one VAL, bitwise OR on DEST and VAL.

Arguments: SR, S or P, S or P, P or SR, S, S or P, P, S or P, P, P

bounds

bounds INT

Toggle bytecode bounds checking in the interpreter (0 for off, any other value for on).

Argument: I

branch

branch LABEL

Branch to a label. The label is calculated as a relative offset.

Argument: I

branch_cs

branch_cs FIXUP_ENTRY

Intersegment branch to the location of the given fixup table entry.

Argument: S

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bsr

bsr LABEL

Branch to a label, like branch, but also push the current location onto the call stack so ret can return to it.

Argument: I

bxor

bxor DEST, VAL

bxor DEST, VAL, VAL

Bitwise XOR on two values. If only one VAL, bitwise XOR on DEST and VAL.

Arguments: IR, I or P, I or P, P or IR, I, I or P, P, I or P, P, P

bxors

bxors DEST, VAL

bxors DEST, VAL, VAL

Bitwise XOR on two strings. If only one VAL, bitwise XOR on DEST and VAL.

Arguments: SR, S or P, S or P, P or SR, S, S or P, P, S or P, P, P

callmethod

callmethod

callmethod METHODNAME

Call the method named METHODNAME on the object stored in P2 according to the Parrot-Calling Conventions. If no
method name, pull the name from S0.

Argument: S

callmethodcc

callmethodcc

callmethodcc METHODNAME

Call the method named METHODNAME on the object stored in P2 according to the Parrot-Calling Conventions. If no
method name, pull the name from S0. Also create a return continuation and store it in P1.

Argument: S

can

can DEST, OBJECT, METHODNAME

Return a true value if OBJECT can do the METHODNAME method. Otherwise, return a false value.

Arguments: IR, P, S

ceil

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ceil

ceil DEST

ceil DEST, VAL

Set DEST to the smallest integral value less than or equal to VAL (if present) or itself (if not).

Arguments: NR or IR, N or NR, N

checkevents

checkevents

Check the interpreter's task queue for unhandled events and run the associated event handlers.

chopn

chopn DEST, VAL1

chopn DEST, VAL1, VAL2

Remove VAL2 number of characters from string VAL1. If no VAL2, remove VAL number of characters from string DEST.

Arguments: SR, I or SR, S, I

chr

chr DEST, INT

Return the character represented by the given number.

Arguments: SR, I

class

class CLASS, OBJECT

Return the CLASS of the given OBJECT.

Arguments: P, P

classname

classname NAME, CLASS

Set NAME to the classname of CLASS.

Arguments: SR, P

classoffset

classoffset OFFSET, OBJECT, CLASS

Return the offset OFFSET of the first attribute of class CLASS in object OBJECT.

Arguments: IR, P, S

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

clear_eh

clear_eh

Clear the most recent exception handler.

See also: set_eh, throw

clearX

cleari

clearn

clearp

clears

Clear all registers of the given type ("i" = integer, "n" = float, "p" = PMC, "s" = string). Integer and float registers clear
to zero; string and PMC registers clear to NULL.

clone

clone DEST, VAL

Clone (deep copy) a string or PMC and return the result.

Arguments: SR, S or P, P

close

close DEST

Close the filehandle in the given register.

Argument: P

cmod

cmod DEST, VAL1, VAL2

C's built-in mod operator.

Arguments: IR, I, I or NR, N, N or P, P, I or P, P, N or P, P, P

See also: mod

cmp

cmp DEST, VAL1, VAL2

Set DEST to 1 if VAL1 is greater then VAL2, to -1 if it's less then VAL2 or to 0 if both are equal. If VAL1 and VAL2 are both
PMCs, then the type of comparison depends on VAL1.

Arguments: IR, I, I or IR, N, N or IR, S, S or IR, P, I or IR, P, N IR, P, S or IR, P, P

cmp_num

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cmp_num DEST, VAL1, VAL2

Like cmp, but forces numeric comparison.

Arguments: IR, P, P

cmp_str

cmp_str DEST, VAL1, VAL2

Like cmp, but forces string comparison.

Arguments: IR, P, P

collect

collect

Trigger a garbage collection (GC) run.

collectoff

collectoff

Disable garbage collection runs (nestable).

collecton

collecton

Reenable garbage collection runs.

compile

compile DEST, COMPILER, SOURCE

Compile a string of source code with a given compiler PMC and store the result.

Arguments: P, P, S

compreg

compreg DEST, TYPE

Return a compiler PMC for a particular type of source code.

Arguments: P, S compreg TYPE, SUB

Register SUB as a compiler for language TYPE.

Arguments: S, P

concat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

concat DEST, VAL

concat DEST, VAL, VAL

Concatenate two strings. If only one VAL, concatenate VAL onto DEST.

Arguments: SR, S or SR, S, S or P, P, S or P, P, P

conv_*

conv_i1 DEST, VAL

conv_i1_ovf DEST, VAL

Convert value to integer or number of given type i1, i2, i4, i8, u1, u2, u4, r4, r8. i corresponds to a signed integer, u to an
unsigned integer, and r to a float; the number indicates the size (in bytes) of the type. The variants with _ovf throw an
exception if the conversion would overflow.

cos

cos DEST, VAL

The cosine of VAL in radians.

Arguments: NR, I or NR, N

cosh

cosh DEST, VAL

The hyperbolic cosine of VAL in radians.

Arguments: NR, I or NR, N

debug

debug FLAG

Toggle debugging in the interpreter (0 for off; any other value for on).

Arguments: I

dec

dec DEST

Decrement a value by 1.

Arguments: I or N or P

decodelocaltime

decodelocaltime DEST, VAL

Set DEST to a new array which represents the decoded time of the given epoch-seconds value shifted to local time.

Arguments: P, I

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arguments: P, I

decodetime

decodetime DEST, VAL

Set DEST to a new array which represents the decoded time of the given epoch-seconds value.

Arguments: P, I

defined

defined DEST, PMC

defined DEST, PMC[KEY]

Test a keyed PMC value for definedness. If no KEY, test a PMC for definedness.

Arguments: IR, P

delete

delete DEST[KEY]

Delete a keyed value from an aggregate PMC.

Argument: P

delprop

delprop PMC, NAME

Delete a named property from a PMC.

Arguments: P, S

See also: setprop, getprop

depth

depth DEST

Return the depth of the user stack.

Argument: I

deref

deref DEST, REF

Set DEST to the PMC that REF refers to.

Arguments: P, P

die_hard

die_hard LEVEL, ERROR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Die at a given level of severity, and with the given error code.

Arguments: I, I

See also: exit

div

div DEST, VAL

div DEST, VAL1, VAL2

Divide VAL1 by VAL2. If VAL2 is left out, divide DEST by VAL.

Arguments: IR, I or NR, I or NR, N or P, I or P, N or P, P or IR, I, I or NR, N, I or NR, N, N or P, P, I or P, P, N or P, P, P

dlfunc

dlfunc DEST, LIBRARY, SYMBOL, SIGNATURE

Look up a symbol in a dynamic link library PMC and create a subroutine PMC for that symbol with the given signature.

Arguments: P, P, S, S

dlvar

dlvar DEST, LIBRARY, SYMBOL

Look up a symbol in a dynamic link library PMC and create a PMC for that symbol.

Arguments: P, P, S

does

does DEST, OBJECT, VAL

Return a true value if OBJECT does provide the interface VAL. Otherwise, return a false value.

Arguments: I, P, S

downcase

downcase DEST

downcase DEST, VAL

Create a copy of the string in VAL with all characters converted to lowercase, and store it in DEST. If VAL is omitted,
convert and replace the string in DEST.

Arguments: S or S, S

See also: upcase, titlecase

end

end

End execution within the current code segment or halt the interpreter if in the main code segment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enternative

enternative

Run the run_native C function.

entrytype

entrytype DEST, INT

Return the type of an entry on the user stack. INT specifies the position on the stack.

Arguments: I, I

eq

eq VAL, VAL, LABEL

Jump to a label if the two values are equal.

Arguments: I, I, IC or N, N, IC or S, S, IC or P, I, IC or P, N, IC or P, S, IC or P, P, IC

eq_addr

eq_addr VAL1, VAL2, LABEL

Jump to a label if VAL1 and VAL2 point to the same string or PMC. Note that this op compares the addresses of the two
strings or PMCs, not simply their values.

Arguments: S, S, IC or P, P, IC

eq_num

eq_num VAL, VAL, LABEL

Jump to a label if the two values are numerically equal.

Arguments: P, P, IC

eq_str

eq_str VAL, VAL, LABEL

Jump to a label if the two strings are equal.

Arguments: P, P, IC

err

err DEST

err DEST, CODE

Return the system error code to an integer destination or the system error message to a string destination. The two-
argument version returns the system error message for a given code.

Arguments: IR or SR or SR, I

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arguments: IR or SR or SR, I

errorsoff

errorsoff VAL

Turn off errors of type VAL.

Argument: I

errorson

errorson VAL

Turn on errors of type VAL.

Argument: I

exchange

exchange REG, REG

Exchange the contents of two registers.

Arguments: IR, IR or NR, NR or SR, SR or P, P

exists

exists DEST, PMC[KEY]

Test a PMC key for existence.

Arguments: IR, P

exit

exit STATUS

Exit the interpreter with a given STATUS. (For extended exit status, throw an exception with severity EXCEPT_exit.)

Argument: I

See also: throw, die_hard

exp

exp DEST, VAL

Base of the natural logarithm, e, to the power of VAL.

Arguments: NR, I or NR, N

exsec

exsec DEST, VAL

The exsecant of VAL in radians.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The exsecant of VAL in radians.

Arguments: NR, N

fact

fact DEST, INT

Return the factorial of INT.

Arguments: IR, I or NR, I

fdopen

fdopen DEST, INT, MODE

Get a ParrotIO object for handle INT with open mode MODE.

Arguments: P, I, S

find_chartype

find_chartype DEST, NAME

Find the chartype named NAME and return its number in DEST.

Arguments: IR, S

find_encoding

find_encoding DEST, NAME

Find the encoding named NAME and return its number in DEST.

Arguments: IR, S

find_global

find_global DEST, NAME

Return a global variable with the given name.

Arguments: P, S find_global DEST, NAMESPACE, NAME

Return a global variable with the given name from the given namespace.

Arguments: P, S, S or P, P, S

See also: store_global

find_lex

find_lex DEST, NAME

find_lex DEST, DEPTH, NAME

find_lex DEST, DEPTH, POSITION

Return the lexical variable of the given name from a lexical scratchpad. If DEPTH is provided, return only a variable from
the scratchpad at that depth. A find by position returns the variable at a particular position in the scratchpad.

Arguments: P, S or P, I, S or P, I, I

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arguments: P, S or P, I, S or P, I, I

See also: store_lex

find_method

find_method DEST, PMC, NAME

Look up a method by name in a PMC's vtable. Return a method PMC.

Arguments: P, P, S

find_type

find_type DEST, NAME

Find the integer identifier for a PMC type or native Parrot datatype by name.

Arguments: IR, S

See also: typeof

findclass

findclass DEST, NAME

Return 1 if the class NAME exists, and 0 otherwise.

Arguments: IR, S

See also: typeof

floor

floor DEST

floor DEST, VAL

Return the largest integral value less than or equal to VAL (if present) or itself (if not).

Arguments: NR or IR, N or NR, N

foldup

foldup DEST

foldup DEST, SKIP

Return a new array holding all passed subroutine parameters. SKIP defines an optional offset.

Arguments: P or P, I

freeze

freeze DEST, VAL

Create a frozen image DEST from PMC VAL.

Arguments: SR, P

See also: thaw

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

gc_debug

gc_debug INT

Toggle garbage collection debugging in the interpreter (0 for off, any other value for on).

Argument: I

gcd

gcd DEST, VAL, VAL

Return the greatest common divisor of two values.

Arguments: IR, I, I or IR, N, N

ge

ge VAL1, VAL2, LABEL

Jump to a label if VAL1 is greater than or equal to VAL2.

Arguments: I, I, IC or N, N, IC or S, S, IC or P, I, IC or P, N, IC or P, S, IC or P, P, IC

ge_num

ge_num VAL1, VAL2, LABEL

Jump to a label if VAL1 is numerically greater than or equal to VAL2.

Arguments: P, P, IC

ge_str

ge_str VAL1, VAL2, LABEL

Jump to a label if VAL1 is stringwise greater than or equal to VAL2.

Arguments: P, P, IC

get_addr

get_addr DEST, SUB

Get the absolute address of a subroutine PMC.

Arguments: IR, P

See also: set_addr

getattribute

getattribute DEST, OBJECT, OFFS

Get a reference to attribute number OFFS from object OBJECT.

Arguments: P, P, I

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arguments: P, P, I

See also: setattribute, classoffset

getclass

getclass DEST, NAME

Return the class PMC of the given name.

Arguments: P, S

getfd

getfd DEST, PIO

Return the file descriptor for the given ParrotIO object.

Arguments: IR, P

getfile

getfile DEST

Return the name of the current file.

Argument: SR

getinterp

getinterp DEST

Get a PMC representing the current interpreter.

Argument: P

getline

getline DEST

Return the current line number.

Argument: IR

getpackage

getpackage DEST

Return the current package name.

Argument: SR

getprop

getprop DEST, NAME, PMC

Return the value of a named property on a PMC.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Return the value of a named property on a PMC.

Arguments: P, S, P

See also: setprop, prophash

getstd*

getstderr DEST

getstdin DEST

getstdout DEST

Get a ParrotIO object for the given standard handle.

Argument: P

gmtime

gmtime DEST, VAL

Take the integer, which represents GMT epoch-seconds, and turn it into a formatted string.

Arguments: SR, I

See also: localtime

gt

gt VAL1, VAL2, LABEL

Jump to a label if VAL1 is greater than VAL2.

Arguments: I, I, IC or N, N, IC or S, S, IC or P, I, IC or P, N, IC or P, S, IC or P, P, IC

gt_num

gt_num VAL1, VAL2, LABEL

Jump to a label if VAL1 is numerically greater than VAL2.

Arguments: P, P, IC

gt_str

gt_str VAL1, VAL2, LABEL

Jump to a label if VAL1 is stringwise greater than VAL2.

Arguments: P, P, IC

hav

hav DEST, VAL

The haversine of VAL in radians.

Arguments: NR, N

if

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if

if CONDITION, LABEL

Jump to a label if the condition is a true value.

Arguments: I, IC or N, IC or S, IC or P, IC

inc

inc DEST

Increment a value by one.

Arguments: IR or NR or P

index

index DEST, STRING, SEARCH

index DEST, STRING, SEARCH, POS

Return the position of the first occurrence of the string SEARCH in the string STRING, starting at the position POS. If the
starting position is unspecified, start at the beginning of the string.

Arguments: IR, S, S or IR, S, S, I

interpinfo

interpinfo DEST, FLAG

Return information about the interpreter. An integer flag selects which information to return, as listed in Table 11-1.

Arguments: IR, I

Table 11-1. Interpinfo flags
Flag Returns

1 Allocated memory, in bytes

2 Number of DOD sweeps performed

3 Number of GC runs performed

4 Number of active PMCs

5 Number of active buffers

6 Number of allocated PMCs

7 Number of allocated buffers

8 Number of new PMC or buffer headers allocated since last DOD run

9 Number of memory blocks allocated since last GC run

10 Amount of memory copied during GC runs, in bytes

invoke

invoke

invoke SUB

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Call a subroutine, coroutine, or continuation stored in a PMC. If no PMC register is specified, it calls the subroutine in P0
and uses the standard calling conventions. Otherwise, no calling convention is defined. Also yield from a coroutine.

Argument: P

invokecc

invokecc

invokecc SUB

Call a subroutine like invoke, but also generate a return continuation in P1.

Argument: P

See also: updatecc

isa

isa DEST, OBJECT, CLASS

Return a true value if OBJECT is a member of class CLASS, or of one of its subclasses. Otherwise, return a false value.

Arguments: IR, P, S

isnull

isnull VAL, LABEL

Jump to LABEL if the given PMC is a NULL PMC.

Arguments: P, IC

join

join DEST, DELIM, ARRAY

Create a new string by joining all elements from array with the given delimiter.

Arguments: SR, S, P

jsr

jsr ADDRESS

Jump to an address, like jump, but also push the current location onto the call stack so ret can return to it.

Argument: I

jump

jump ADDRESS

Jump to a specified absolute address.

Argument: I

See also: set_addr

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lcm

lcm DEST, VAL, VAL

Return the least common multiple of two values.

Arguments: IR, I, I or NR, I, I

le

le VAL1, VAL2, LABEL

Jump to a label if VAL1 is less than or equal to VAL2.

Arguments: I, I, IC or N, N, IC or S, S, IC or P, I, IC or P, N, IC or P, S, IC or P, P, IC

le_num

le_num VAL1, VAL2, LABEL

Jump to a label if VAL1 is numerically less than or equal to VAL2.

Arguments: P, P, IC

le_str

le_str VAL1, VAL2, LABEL

Jump to a label if VAL1 is stringwise less than or equal to VAL2.

Arguments: P, P, IC

length

length DEST, STRING

Return the character length of a string.

Arguments: IR, S

ln

ln DEST, VAL

The natural logarithm of VAL.

Arguments: NR, I or NR, N

load_bytecode

load_bytecode FILE

Load Parrot bytecode from a file.

Argument: S

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

loadlib

loadlib DEST, LIBRARY

Load a dynamic link library by name and store it in a PMC.

Arguments: P, S

See also: dlfunc

localtime

localtime DEST, VAL

Take the integer, which represents GMT epoch-seconds, and turn it into a formatted string after adjusting to localtime.

Arguments: SR, I

See also: gmtime

log10

log10 DEST, VAL

The base-10 logarithm of VAL.

Arguments: NR, I or NR, N

log2

log2 DEST, VAL

The base-2 logarithm of VAL.

Arguments: NR, I or NR, N

lookback

lookback DEST, OFFSET

Retrieve an entry from the user stack by position. A positive offset counts from the top of the stack; a negative offset
counts from the bottom.

Arguments: IR, I or NR, I or SR, I or P, I

lsr

lsr DEST, BITS

lsr DEST, VAL, BITS

Logically shift a value right by a given number of bits.

Arguments: IR, I or IR, I, I

lt

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lt VAL1, VAL2, LABEL

Jump to a label if VAL1 is less than VAL2.

Arguments: I, I, IC or N, N, IC or S, S, IC or P, I, IC or P, N, IC or P, S, IC or P, P, IC

lt_num

lt_num VAL1, VAL2, LABEL

Jump to a label if VAL1 is numerically less than VAL2.

Arguments: P, P, IC

lt_str

lt_str VAL1, VAL2, LABEL

Jump to a label if VAL1 is stringwise less than VAL2.

Arguments: P, P, IC

mmdvtfind

mmdvtfind DEST, FUNC, LEFT, RIGHT

Get the subroutine PMC for the multimethod vtable function FUNC for the two given PMC types.

Arguments: P, I, I, I

mmdvtregister

mmdvtregister FUNC, LEFT, RIGHT, SUB

Register the subroutine SUB as the multimethod vtable function FUNC for the two given PMC types.

Arguments: I, I, I, P

mod

mod DEST, VAL

mod DEST, VAL1, VAL2

Divide VAL1 by VAL2 and return the remainder. If VAL2 is omitted, divide DEST by VAL. The operation is defined as:

x mod y = x - y * floor(x / y)

Arguments: P, I or IR, I, I or NR, N, N or P, P, I or P, P, N

See also: cmod

mul

mul DEST, VAL

mul DEST, VAL, VAL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mul DEST, VAL, VAL

Multiply two values and return the result. If only one VAL, multiply DEST by VAL.

Arguments: IR, I or NR, I or NR, N or P, I or P, N or P, P or IR, I, I or NR, N, I or NR, N, N or P, P, I or P, P, N or P, P, P

ne

ne VAL, VAL, LABEL

Jump to a label if the two values are not equal.

Arguments: I, I, IC or N, N, IC or S, S, IC or P, I, IC or P, N, IC or P, S, IC or P, P, IC

ne_addr

ne_addr VAL, VAL, LABEL

Jump to a label if VAL1 and VAL2 do not point to the same string or PMC.

Arguments: S, S, IC or P, P, IC

ne_num

ne_num VAL, VAL, LABEL

Jump to a label if the two values are numerically different.

Arguments: P, P, IC

ne_str

ne_str VAL, VAL, LABEL

Jump to a label if the two strings are not equal.

Arguments: P, P, IC

needs_destroy

needs_destroy PMC

Mark the PMC as requiring timely destruction.

Argument: P

See also: sweep

neg

neg DEST

neg DEST, VAL

Return the negative of a number. If there is no VAL, DEST is the negative of itself.

Arguments: IR or NR or P or IR, I or NR, N or P, P

new

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

new DEST, TYPE

new DEST, TYPE, INITIALIZE

new DEST, TYPE, INITIALIZE, PROPS

Create a new PMC of type TYPE. INITIALIZE is an array PMC containing initialization data for the new PMC. PROPS is a
propety hash.

Arguments: P, I or P, I, P or P, I, P, P

new DEST

new DEST, LENGTH

new DEST, LENGTH, ENCODING

new DEST, LENGTH, ENCODING, TYPE

Allocate a new empty string with a given LENGTH, ENCODING, and TYPE.

Arguments: SR or SR, I or SR, I, I or SR, I, I, I

new_callback

new_callback DEST, SUB, DATA, SIG

Create a callback stub DEST for a PASM subroutine SUB with user data DATA and function signature SIG.

Arguments: P, P, P, S

new_pad

new_pad DEPTH

new_pad DEST, DEPTH

Create a new lexical scratchpad. If a destination PMC is provided, store the pad in the PMC. Otherwise, push it onto the
pad stack. DEPTH specifies the static nesting depth for the pad (lower static depths are copied from the current static
nesting).

Arguments: I or P, I

newclass

newclass DEST, NAME

Create a new class with the given name.

Arguments: P, S

newsub

newsub DEST, CLASS, LABEL

Generate a new subroutine object of the given CLASS, located at the given LABEL, and store the object in the destination
PMC.

Arguments: P, I, IC

newsub CLASS, RETCLASS, LABEL, RETADDR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

newsub CLASS, RETCLASS, LABEL, RETADDR

Generate a new subroutine object of the given CLASS, located at the given LABEL, and store the object in P0. Also
generate a return continuation of class RETCLASS with the return address RETADDR and store it in P1.

Arguments: I, I, IC, IC

noop

noop

Do nothing.

not

not DEST, VAL

Logical NOT. True if VAL is false.

Arguments: IR, I or P, P

null

null DEST

Set DEST (which must be a register) to 0, 0.0, or a NULL pointer, depending on its type.

Arguments: IR or NR or SR or P

open

open DEST, FILENAME

open DEST, FILENAME, MODE

Open a file in the specified mode ("<", ">", etc.) and return a filehandle. Without the mode it defaults to read/write.

Arguments: P, S, S or P, S

or

or DEST, VAL1, VAL2

Logical OR. Return VAL1 if it's true. Otherwise, return VAL2.

Arguments: IR, I, I or P, P, P

ord

ord DEST, STRING

ord DEST, STRING, POS

Return the character at position POS in STRING. If POS isn't specified, return the 0th character.

Arguments: IR, S or IR, S, I

peek

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

peek

peek DEST

peek DEST, PIO

Read the next byte from the given ParrotIO object or from stdin but don't remove it.

Arguments: SR or SR, P

peek_pad

peek_pad DEST

Store the current lexical scope pad in a PMC.

Argument: P

pin

pin DEST

Make the string in DEST immobile. This prevents the garbage collector from moving it to a different location in memory
(which it otherwise may choose to do).

Argument: SR

See also: unpin

pioctl

pioctl DEST, PIO, VAL, VAL

Perform an operation on an I/O object. This is a general purpose hook for setting various flags, modes, etc.

Arguments: IR, P, I, I

pop

pop DEST, PMC

Pop the last entry off an aggregate PMC and return it.

Arguments: IR, P or NR, P or SR, P or P, P

pop_pad

pop_pad

Pop the current lexical scope pad off the lexical scope stack.

See also: peek_pad

popX

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

popi

popn

popp

pops

Restore all the registers of one type from the stack ("i" = integer, "n" = float, "p" = PMC, "s" = string).

popbottomi

popbottomn

popbottomp

popbottoms

Restore registers in the range 0..15.

poptopi

poptopn

poptopp

poptops

Restore registers in the range 16..31.

See also: pushX

pow

pow DEST, VAL1, VAL2

Return VAL1 raised to the power of VAL2.

Arguments: NR, I, I or NR, I, N or NR, N, I or NR, N, N

print

print VAL

print IO, VAL

Print a value to an I/O object or file descriptor. If no IO is given, print the value to standard output.

Arguments: I or N or S or P or P, I or P, N or P, S or P, P

printerr

printerr VAL

Print a value to stderr.

Arguments: I or N or S or P

profile

profile INT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

profile INT

Toggle profiling in the interpreter (0 for off, any other value for on).

Argument: I

prophash

prophash DEST, PMC

Return a hash containing all the properties from a PMC.

Arguments: P, P

See also: getprop

push

push PMC, VAL

Push a value onto the end of an aggregate PMC.

Arguments: P, I or P, N or P, S or P, P

push_pad

push_pad PAD

Push a scratchpad stored in a PMC onto the lexical scope stack.

Argument: P

pushX

pushi

pushn

pushp

pushs

Save all the registers of one type to the stack ("i" = integer, "n" = float, "p" = PMC, "s" = string). Restore with popX.

pushbottomi

pushbottomn

pushbottomp

pushbottoms

Push registers 0..15.

pushtopi

pushtopn

pushtopp

pushtops

Push registers 16..31.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Push registers 16..31.

read

read DEST, BYTES

read DEST, IO, BYTES

Read the specified number of bytes from a ParrotIO object. Read from stdin if no IO is provided.

Arguments: SR, I or SR, P, I

readline

readline DEST, IO

Read a line from a ParrotIO object.

Arguments: SR, P

register

register PMC

Register the given PMC in the interpreter's root set, so that it's visible during DOD.

Argument: P

See also: unregister

removeparent

removeparent CLASS1, CLASS2

Remove CLASS2 from class CLASS1's list of parents.

Arguments: P, P

repeat

repeat DEST, VAL, REPEAT

Repeat a string REPEAT number of times.

Arguments: SR, S, I or P, P, I or P, P, P

restore

restore DEST

Restore a register from the user stack.

Arguments: IR or NR or SR or P

restoreall

restoreall

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Restore all the registers. Does a popX for every type.

restoretop

restoretop

Restore registers 16..31. Does a popX for every type.

See also: savetop

ret

ret

Pop a location off the top of the call stack, and go there. Often used with bsr and jsr.

rethrow

rethrow EXCEPTION

Rethrow an exception. Only valid inside an exception handler.

Argument: P

See also: throw

rotate_up

rotate_up COUNT

Rotate the top COUNT entries on the user stack. A positive number rotates up: the top entry becomes the COUNTth
entry, and the others move up one (the second entry becomes first, the third becomes the second, etc.). A negative
number rotates down: the COUNTth entry becomes the top, and the others move down (the first becomes second, etc.).

Argument: I

runinterp

runinterp INTERPRETER, OFFSET

Use an interpreter stored in PMC to run code starting at a given offset.

Arguments: P, I

See also: newinterp

save

save VAL

Save a value onto the user stack.

Arguments: I or N or S or P

saveall

saveall

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

saveall

Save all the registers. Does a pushX for every type.

savec

savec VAL

Save a clone of a value onto the user stack.

Arguments: S or P

savetop

savetop

Save registers 16..31. Does a pushX for every type.

sec

sec DEST, VAL

The secant of VAL in radians.

Arguments: NR, I or NR, N

sech

sech DEST, VAL

The hyperbolic secant of VAL in radians.

Arguments: NR, I or NR, N

seek

seek DEST, IO, OFFSET, STARTFLAG

seek DEST, IO, UPPER32, LOWER32, STARTFLAG

Set the file position of a ParrotIO object to a given offset from a starting position (STARTFLAG: 0 is the beginning of the
file, 1 is current the position, 2 is the end of the file). DEST is the success or failure of the seek.

64-bit seek combines UPPER32 and LOWER32 to get one 64-bit OFFSET.

Arguments: P, I, I or P, I, I, I

set

set DEST, VAL

Set a register to a value.

Arguments: IR, I or IR, N or IR, S or IR, P or NR, I or NR, N or NR, S or NR, P or SR, I or SR, N or SR, S or SR, P or P, I
or P, N or P, S or P, P

set DEST[KEY], VAL

A keyed set operation on a PMC.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A keyed set operation on a PMC.

Arguments: P, I or P, N or P, S or P, P

set DEST, PMC[KEY]

A keyed get operation on a PMC.

Arguments: I, P or N, P or S, P or P, P

setX_ind

seti_ind REG, VAL

setn_ind REG, VAL

sets_ind REG, VAL

setp_ind REG, VAL

Set register number REG of the specified type to VAL. Bypasses the register allocator, so use with care.

Arguments: I, I or I, S or I, N or I, P

set_addr

set_addr DEST, LABEL

Return the current address plus the offset to LABEL. Often used to calculate absolute addresses for jump or jsr.

Arguments: IR, IC

set_addr SUB, LABEL

Set the subroutine address pointing to the given label.

Arguments: P, I

set_chartype

set_chartype STRING, CHARTYPE

Set the chartype of a string.

Arguments: S, I

set_eh

set_eh HANDLER

Push an exception handler on the control stack.

Argument: P

See also: clear_eh, throw

set_encoding

set_encoding STRING, ENCODING

Set the encoding of a string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set the encoding of a string.

Arguments: S, I

setattribute

setattribute OBJECT, OFFSET, ATTRIBUTE

Set the given attribute at OFFSET for object OBJECT.

Arguments: P, I, P

See also: getattribute, classoffset

setprop

setprop PMC, NAME, VALUE

Set the value of a named property on a PMC.

Arguments: P, S, P

See also: getprop and delprop

shift

shift DEST, PMC

Shift a value off the front of an aggregate PMC.

Arguments: IR, P or NR, P or SR, P or P, P

shl

shl DEST, VAL, BITS

Bitwise shift a value left by a given number of bits.

Arguments: IR, I or P, I or P, P or IR, I, I or P, P, I or P, P, P

shr

shr DEST, VAL, BITS

Bitwise shift a value right by a given number of bits.

Arguments: IR, I or P, I or P, P or IR, I, I or P, P, I or P, P, P

sin

sin DEST, VAL

The sine of VAL in radians.

Arguments: NR, I or NR, N

singleton

singleton DEST

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

singleton DEST

Take the given object and put it into its own singleton class.

Argument: P

sinh

sinh DEST, VAL

The hyperbolic sine of VAL in radians.

Arguments: NR, I or NR, N

sizeof

sizeof DEST, TYPE

Set DEST to the size in bytes of the given natural type.

Arguments: IR, I

sleep

sleep SECONDS

Sleep for the given number of seconds.

Arguments: I or N

spanw

spawnw DEST, COMMAND

Spawn a subprocess to run the given COMMAND, wait for it to finish, and return the result.

Arguments: IR, S

splice

splice DEST, REPLACE, OFFSET, COUNT

Starting at OFFSET, replace COUNT number of values in the destination PMC with values provided in the REPLACE PMC.

Arguments: P, P, I, I

sprintf

sprintf DEST, FORMAT, ARGS

Format arguments in an aggregate PMC, using format string FORMAT.

Arguments: SR, S, P or P, P, P

store_global

store_global NAME, OBJECT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

store_global NAME, OBJECT

store_global NAME, NAMESPACE, OBJECT

Store a global variable as a named symbol.

Arguments: S, P or S, S, P or P, S, P

See also: find_global

store_lex

store_lex NAME, OBJECT

store_lex DEPTH, NAME, OBJECT

store_lex DEPTH, POSITION, OBJECT

Store an object as a lexical variable with a given name. If the symbol doesn't exist, it will be created in the lexical
scratchpad at the specified depth (a negative depth counts back from the current scope). If DEPTH isn't provided, the
symbol must already exist. If a position is provided instead of a name, the symbol will be stored at the given position in
the scratchpad.

Arguments: S, P or I, I, P or I, S, P

See also: find_lex

string_chartype

string_chartype DEST, STRING

Return the chartype of the string.

Arguments: IR, S

string_encoding

string_encoding DEST, STRING

Return the encoding of the string.

Arguments: IR, S

stringinfo

stringinfo DEST, STRING, FLAG

Return information about a string. An integer flag selects which information to return, as listed in Table 11-2.

Arguments: IR, S, I

Table 11-2. stringinfo arguments
Flag Returns

1 Location of string buffer header

2 Location of start of string memory

3 Allocated length, in bytes

4 String flags

5 Length of string buffer currently used, in bytes

6 String length, in characters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sub

sub DEST, VAL

sub DEST, VAL1, VAL2

Subtract VAL2 from VAL1. If no VAL2, subtract VAL from DEST.

Arguments: IR, I or NR, I or NR, N or P, I or P, N or P, P or IR, I, I or NR, N, I or NR, N, N or P, P, I or P, P, N or P, P, P

subclass

subclass DEST, CLASS

subclass DEST, CLASS, NAME

Create a sublass of CLASS. Without NAME an anonymous subclass is created.

Arguments: P, S or P, P or P, S, S or P, P, S

substr

substr DEST, STRING, OFFSET

substr DEST, STRING, OFFSET, LENGTH

Return a substring of STRING, beginning at OFFSET and with length LENGTH.

Arguments: SR, S, I or SR, S, I, I or SR, P, I, I

substr DEST, STRING, OFFSET, LENGTH, REPLACE

If REPLACE is given, use it to replace the returned substring in STRING.

Arguments: SR, S, I, I, S

substr DEST, OFFSET, LENGTH, REPLACE

If STRING is omitted, operate on the string in DEST.

Arguments: SR, I, I, S

substr_r

substr_r DEST, STRING, OFFSET, LENGTH

Acts like substr, but reuses the destination string instead of creating a new string.

Arguments: SR, S, I, I

sweep

sweep LAZY

Trigger a dead object detection (DOD) sweep. If LAZY is set to 1, only objects that need timely destruction may be
destroyed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

destroyed.

Argument: IC

sweepoff

sweepoff

Disable DOD sweeps (nestable).

sweepon

sweepon

Reenable DOD sweeps.

sysinfo

sysinfo DEST, ITEM

Return operating-system-specific details given by ITEM.

Arguments: IR, I or SR, I

tan

tan DEST, VAL

The tangent of VAL in radians.

Arguments: NR, I or NR, N

tanh

tanh DEST, VAL

The hyperbolic tangent of VAL in radians.

Arguments: NR, I or NR, N

tell

tell DEST, PIO

tell UPPER32, LOWER32, PIO

Return the file position of the given ParrotIO object.

Arguments: IR, P or IR, I, P

See also: seek

thaw

thaw DEST, STR

Create a new PMC representing the frozen image.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Create a new PMC representing the frozen image.

Arguments: P, S

See also: freeze

throw

throw EXCEPTION

Throw an exception.

Argument: P

See also: rethrow, set_eh, clear_eh

time

time DEST

Return the current system time.

Arguments: IR or NR

titlecase

titlecase DEST

titlecase DEST, VAL

Create a copy of the string in VAL with all characters converted to title case, and store it in DEST. If VAL is omitted,
convert and replace the string in DEST.

Arguments: SR or SR, S

See also: upcase, downcase

trace

trace INT

Toggle tracing in the interpreter (0 for off, any other value for on).

Argument: I

transcode

transcode DEST, ENCODING

transcode DEST, SOURCE, ENCODING

transcode DEST, SOURCE, ENCODING, CHARTYPE

Transcode a string to the given CHARTYPE and ENCODING. If CHARTYPE is omitted, it is assumed to be the same as the
original.

Arguments: SR, I or SR, S, I or SR, S, I, I

typeof

typeof DEST, VAL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typeof DEST, VAL

typeof DEST, PMC[KEY]

Return the type of a PMC or Parrot data type, either its class name (to a string destination) or integer identifier (to an
integer destination).

Arguments: IR, P or SR, I or SR, P

unless

unless CONDITION, LABEL

Jump to a label unless the condition is a true value.

Arguments: I, IC or N, IC or S, IC or P, IC

unpin

unpin DEST

Make the string in DEST movable again. This is the default, so unpin is a no-op unless the string has been pinned with
pin.

Argument: SR

See also: pin

unregister

unregister PMC

Remove one reference to PMC from the root set registry.

Argument: P

See also: register

unshift

unshift DEST, VAL

Unshift a value onto the front of an aggregate PMC.

Arguments: P, I or P, N or P, S or P, P

upcase

upcase DEST

upcase DEST, VAL

Create a copy of the string in VAL with all characters converted to uppercase, and store it in DEST. If VAL is omitted,
convert and replace the string in DEST.

Arguments: SR or SR, S

See also: downcase, titlecase

updatecc

updatecc

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

updatecc

Update the state of a return continuation stored in P1. Used when context information changes after the return
continuation is created but before it's invoked.

See also: invokecc

valid_type

valid_type DEST, TYPE

Check whether a PMC type or native Parrot datatype is a valid one.

Arguments: IR, I

vers

vers DEST, VAL

The versine of VAL in radians.

Arguments: NR, N

warningsoff

warningsoff CATEGORY

Turn off a particular category of warnings by category number. Turning off one category will not affect the status of
other warnings categories. See warningson for the list of categories.

Argument: I

warningson

warningson CATEGORY

Turn on a particular category of warnings by category number. The default is all warnings off. Turning on one category
will not turn off other categories. Combine category numbers with a bitwise OR to turn on more than one at a time. If
you include warnings.pasm, the category numbers are available by name as:

.PARROT_WARNINGS_ALL_FLAG

.PARROT_WARNINGS_UNDEF_FLAG

.PARROT_WARNINGS_IO_FLAG

.PARROT_WARNINGS_PLATFORM_FLAG

Argument: I

xor

xor DEST, VAL1, VAL2

Logical XOR. If VAL1 is true and VAL2 is false, return VAL1. If VAL1 is false and VAL2 is true, return VAL2. Otherwise,
return a false value.

Arguments: IR, I, I or P, P, P
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.2 PIR Directives
This is a summary of PIR directives. Directives are preprocessed by the Parrot interpreter. Since PIR and PASM run on
the same interpreter, many of the directives listed here are also valid in PASM code.

.arg

.arg VAL

Push a value onto the user stack or set it according to PCC.

.const

.const TYPENAME = VALUE

Define a named constant.

.constant

.constant NAMEVALUE

Define a named macro that expands to a given value. Macros are called as directives—i.e., .NAME (PASM code only).

.emit

.emit

Define a compilation unit of PASM code. Always paired with .eom.

.end

.end

End a compilation unit. Always paired with .sub.

.endm

.endm

End a macro definition. Always paired with .macro.

.eom

.eom

End a compilation unit of PASM code. Always paired with .emit.

.flatten_arg

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.flatten_arg PArray

Flatten the passed array PMC and provide args for PCC calls.

.globalconst

.globalconst TYPENAME = VALUE

Define a named, file visible constant.

.include

.include " FILENAME "

Include the contents of an external file by inserting it in place.

.invocant

.invocant OBJ

Set the invocant for a method call.

.local

.local TYPENAME

Define a local named variable.

.macro

.macro NAME (PARAMS)

Define a named macro with a list of parameters. The macro is called as:

.NAME(arg1,arg2, . . .)

This directive is always paired with .endm.

.meth_call

.meth_call SUB

.meth_call SUB, RETCONT

Create a method call.

.namespace

.namespace ["namespace"]

Define a namespace.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.nci_call

.nci_call SUB

Create an NCI call.

.param

.param DEST

.param TYPENAME

Pop a value off the user stack into a register or typed identifier.

.pcc_begin

Start a call sequence. Always paired with .pcc_end.

.pcc_begin_return

Start a return sequence. Always paired with .pcc_end_return.

.pcc_begin_yield

Start a return of a coroutine sequence. Always paired with .pcc_end_yield.

.pcc_call

.pcc_call SUB

.pcc_call SUB, RETCONT

Create a subroutine call.

.pcc_sub

.pcc_sub _LABEL

Create a symbol entry for subroutine at the _LABEL. This directive is for PASM code only.

.pragma

.pragma fastcall

.pragma prototyped

Set default calling conventions.

.result

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.result

.result DEST

Pop a value off the user stack or get it according to PCC.

.return

.return VAL

Return a value to the calling subroutine by pushing it onto the user stack or set it according to PCC.

.sub

.sub NAME

Define a compilation unit. Always paired with .end. Names begin with _ by convention.

.sym

.sym TYPE NAME

Same as .local.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.3 PIR Instructions
This section is a quick reference to PIR instructions. For more details and the latest changes, see imcc/docs/syntax.pod
or dive into the source code in imcc/imcc.l and imcc/imcc.y.

=

DEST = VAL

Assign a value to a particular register, temporary register, or named variable.

+, +=

DEST = VAL + VAL

DEST += VAL

Add two numbers or PMCs.

-, -=

DEST = VAL1 - VAL2

DEST -= VAL1

DEST = - VAL

Subtract VAL1 from VAL2. The unary - negates a number.

*, *=

DEST = VAL * VAL

DEST *= VAL

Multiply two numbers or PMCs.

/, /=

DEST = VAL1 / VAL2DEST /= VAL1

Divide VAL1 by VAL2.

**

DEST = VAL1 ** VAL2

Raise VAL1 to the power of VAL2.

%, %=

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DEST = VAL1 % VAL2

DEST %= VAL1

Divide VAL1 by VAL2 and return the (mod) remainder.

., .=

DEST = VAL . VAL

DEST .= VAL

Concatenate two strings. The concat operator must be surrounded by whitespace.

<

if VAL1 < VAL2 goto LABEL

Conditionally branch to a label if VAL1 is less than VAL2.

<=

if VAL1 <= VAL2 goto LABEL

Conditionally branch to a label if VAL1 is less than or equal to VAL2.

>

if VAL1 > VAL2 goto LABEL

Conditionally branch to a label if VAL1 is greater than VAL2.

>=

if VAL1 >= VAL2 goto LABEL

Conditionally branch to a label if VAL1 is greater than or equal to VAL2.

= =

if VAL1 = = VAL2 goto LABEL

Conditionally branch to a label if VAL1 is equal to VAL2.

!=

if VAL1 != VAL2 goto LABEL

Conditionally branch to a label if VAL1 is not equal to VAL2.

&&

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DEST = VAL1 && VAL2

Logical AND. Return VAL1 if it's false. Otherwise, return VAL2.

||

DEST = VAL1 || VAL2

Logical OR. Return VAL1 if it's true. Otherwise, return VAL2.

~~

DEST = VAL1 ~~ VAL2

Logical XOR. If VAL1 is true and VAL2 is false, return VAL1. If VAL1 is false and VAL2 is true, return VAL2. Otherwise,
return a false value.

!

DEST = ! VAL

Logical NOT. Return a true value if VAL is false.

&, &=

DEST = VAL & VAL

DEST &= VAL

Bitwise AND on two values.

|, |=

DEST = VAL | VAL

DEST |= VAL

Bitwise OR on two values.

~, ~=

DEST = VAL ~ VAL

DEST ~= VAL

DEST = ~ VAL

Bitwise XOR on two values. The unary form is a bitwise NOT on a value.

<<, <<=

DEST = VAL1 << VAL2

DEST <<= VAL2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bitwise shift VAL1 left by VAL2 number of bits.

>>, >>=

DEST = VAL1 >> VAL2

DEST >>= VAL2

Bitwise shift VAL1 right by VAL2 number of bits.

>>>, >>>=

DEST = VAL1 >>> VAL2

DEST >>>= VAL2

Logically shift VAL1 right by VAL2 number of bits.

[]

DEST = PMC [KEY]

PMC [KEY] = VAL

Indexed access to a PMC and indexed assignment to a PMC.

DEST = STRING [OFFSET]

STRING [OFFSET] = VAL

Access a one-character substring on a string, starting at a particular offset, or assign to that substring.

addr

DEST = addr LABEL

Return the address of a label.

call

call NAME

Call the named subroutine (a .sub label).

global

DEST = global NAME

global NAME = VAL

Access a global variable for read or write.

goto

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

goto NAME

Jump to the named identifier (label or subroutine name).

if

if EXPR goto NAME

If the value or expression evaluates as true, jump to the named identifier.

unless

unless VAL goto NAME

Unless the value evaluates as true, jump to the named identifier.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.4 Parrot Command-Line Options
Since Parrot is both an assembler and a bytecode interpreter, it has options to control both behaviors. Some options
may have changed by the time you read this, especially options related to debugging and optimization. The document
imcc/docs/running.pod should have the latest details. Or just run parrot —help.

11.4.1 General Usage

parrot [options] file [arguments]

The file is either an .imc (.pir) or .pasm source file or a Parrot bytecode file. Parrot creates an Array object to hold the
command-line arguments and stores it in P5 on program start.

11.4.2 Assembler Options

-a, --pasm

Assume PASM input on stdin. When Parrot runs a source file with a .pasm extension, it parses the file as pure
PASM code. This switch turns on PASM parsing (instead of the default PIR parsing) when a source file is read
from stdin.

-c,--pbc

Assume PBC file on stdin. When Parrot runs a bytecode file with a .pbc extension, it immediately executes the
file. This option tells Parrot to immediately execute a bytecode file piped in on stdin.

-d ,--debug [hexbits]

Turn on debugging output. The -d switch takes an optional argument, which is a hex value of debug bits. (The
individual bits are shown in Table 11-3.) When hexbits isn't specified, the default debugging level is 0001. If
hexbits is separated from the -d switch by whitespace, it has to start with a number.

Table 11-3. Debug bits
Description Debug bit

DEBUG_PARROT 0001

DEBUG_LEXER 0002

DEBUG_PARSER 0004

DEBUG_IMC 0008

DEBUG_CFG 0010

DEBUG_OPT1 0020

DEBUG_OPT2 0040

DEBUG_PBC 1000

DEBUG_PBC_CONST 2000

DEBUG_PBC_FIXUP 4000

To produce a huge output on stderr, turn on all the debugging bits:

$ parrot -d 0ffff . . .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

--help-debug

Show debug option bits.

-h,--help

Print a short summary of options to stdout and exit.

-o outputfile

Act like an assembler. With this switch, Parrot won't run code unless it's combined with the -r switch. If the
name of outputfile ends with a .pbc extension, Parrot writes a Parrot bytecode file. If outputfile ends with a .pasm
extension, Parrot writes a PASM source file, even if the input file was also PASM. This can be handy to check
various optimizations when you run Parrot with the -Op switch.

If the extension is .o or equivalent, Parrot generates an object file from the JITed program code, which can be
used to create a standalone executable program. This isn't available on all platforms yet; see PLATFORMS for
which platforms support this.

-r,--run-pbc

Immediately execute bytecode. This is the default unless -o is present. The combination of -r -o output.pbc writes
a bytecode file and executes the generated PBC.

-v,--verbose

One -v switch (imcc -v) shows which files are worked on and prints a summary of register usage and
optimization statistics. Two -v switches (imcc -v -v) also prints a line for each individual processing step.

-y,--yydebug

Turn on yydebug for yacc/bison.

-E,--pre-process-only

Show output of macro expansions and quit.

-V,--version

Print the program version to stdout and exit.

-Ox

Turn on optimizations. The flags currently implemented are shown in Table 11-4.

Table 11-4. Optimizations
Flag Meaning

-O0 No optimization (default).

-O1 Optimizations without life info (e.g., branches and constants).

-O2 Optimizations with life info.

-Oc Optimize function call sequence.

-Op Rearrange PASM registers with the most-used first.

11.4.3 Bytecode Interpreter Options

The interpreter options are mainly for selecting which run-time core to use for interpreting bytecode. The current
default is the computed goto core if it's available. Otherwise, the fast core is used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

default is the computed goto core if it's available. Otherwise, the fast core is used.

-b,--bounds-checks

Activate bounds checking. This also runs with the slow core as a side effect.

-f,--fast-core

Run with the fast core.

-g,--computed-goto-core

Run the computed goto core (CGoto).

-j,--jit-core

Run with the JIT core if available.

-p,--profile

Activate profiling. This prints a summary of opcode usage and execution times after the program stops. It also
runs within the slow core.

-C,--CGP-core

Run with the CGoto-Prederefed core.

-P,--predereferenced-core

Run with the Prederefed core.

-S,--switched-core

Run with the Switched core.

-t,--trace

Trace execution. This also turns on the slow core.

-w,--warnings

Turn on warnings.

-G,--no-gc

Turn off DOD/GC. This is for debugging only.

-.,--wait

Wait for a keypress before running.

--leak-test,--destroy-at-end

Clean up allocated memory when the final interpreter is destroyed. Parrot destroys created interpreters (e.g.,
threads) on exit but doesn't normally free all memory for the last terminating interpreter, since the operating
system will do this anyway. This can create false positives when Parrot is run with a memory leak detector. To
prevent this, use this option.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 11. Parrot Reference
This chapter contains a condensed list of PASM opcodes, PIR directives and instructions, and Parrot command-line
options, sorted alphabetically for easy reference. Any PASM opcode is valid in PIR code, so if you're looking up PIR
syntax, you should check Section 11.1, Section 11.2, and Section 11.3.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.1 Language Development
Theoretically, language design is the driving force behind all other parts of the project. In actual practice, Parrot
development frequently affects the direction and focus of design efforts. A design that gave no consideration to what
can be implemented efficiently wouldn't be much use. Equally, if the design work followed a strictly linear path, it would
be a waste of developer resources. The Parrot project can't afford to go on hold every time they need information from
a future area of design. For example, long before the design of OO syntax was completed, the design team took time to
define enough of the required semantics so that development could move ahead.

2.1.1 Development Cycles

Design work goes in cycles. Each cycle begins with a quiet period. During this time, the list traffic is fairly light, and
Larry is rarely seen. It can seem as if the project is stalled, but in fact, this part of the cycle is where the bulk of original
design work is done. Larry disappears when he's working on an Apocalypse. It's the most intense and creative phase.

The next phase is internal revision. Larry sends a draft of the Apocalypse to the design team for comments and makes
changes based on their suggestions. Sometimes the changes are as simple as typo fixes, but sometimes they entirely
alter the shape of the design. Larry repeats this several times before publishing the document. This is a very fast-paced
and dynamic phase, but again, low on visible results.

Next is the community review. Usually the first day or two after an Apocalypse comes out are quiet, while the ideas
soak in. Then the list begins to fly. Some people suggest changes, while others ask about the design. This phase
reflects the most visible progress, but the changes are mostly refinements. The changes introduced at community
review polish off the rough edges, add a few new tricks, or make simplifications for the average user. Here the
community takes ownership of the design, as both the design and the people change until the two are a comfortable fit.

The Synopsis, a summary released by the design team soon after each Apocalypse, assists in the community review by
breaking down the ideas from the Apocalypse into a simple list of points.

The Exegesis comes next, and its process is much like that of the Apocalypse. List traffic slows again while Damian
writes and the design team revises. The Exegesis responds to the community review. The practical examples at the
core of each Exegesis explain the parts of the Apocalypse that were hardest to understand and flesh out some of the
holes found in the community review. The list bursts into another flurry of activity as the community reviews the
Exegesis. Then the cycle starts all over again.

2.1.2 Getting Involved

The primary cycle of Apocalypses, Synopses, and Exegeses is not the only movement in design. Constant activity on
and off the list packs around the larger cycle. Old decisions are revisited; future decisions are previewed.

Getting involved in Perl 6 design work is as simple, and as difficult, as joining the p6l list. Subscribing to a list takes
almost no effort, but the most valuable contributions don't come from people who respond to an idea here and there,
though those are certainly welcome. The posts with the greatest impact come from people who take the time to learn
the system—to figure out what Perl 6 is all about.

If you want to make a valuable contribution, get on the list and listen. Work to understand the issues behind each
thread of discussion. Soon you'll find there are repetitions in the themes, guiding principles that shape the debates.

Form a mental map of the new syntax. It's not an easy task. There is is only a limited prototype interpreter available for
Perl 6, so if you forget how a particular feature works you can't just experiment. Mainly, you'll have to search through
the list archives—over, and over, and over again. And the syntax keeps changing. You'll have a perfect grasp on a
feature just before it changes. It can be frustrating, but it is well worth it.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.2 Parrot Development
Parrot development is the productive core of Perl 6 development. If you want coding action, this is the place to be.

Organization of the Parrot project is lightweight but efficient. It's a meritocracy—people who make valuable
contributions are offered more responsibility. Communication is relaxed and informal. As Dan is so fond of saying, "This
is far too important to take seriously." It's a bit like a special forces unit—the work gets done not because of tight
control from the top, but because the whole team knows the task at hand and does it.

2.2.1 Development Cycles

The cycles in Parrot development center on "point releases." A point release is a version change, such as 0.0.8 to 0.0.9.
The pumpking decides when point releases happen and what features are included. Usually one or two solid new
features trigger a release.

Development proceeds at a steady pace of bug reports, patches submitted, and patches applied. The pace isn't so much
a result of careful planning as it is the law of averages—on any given day, someone, somewhere, is working on Parrot.
A release is a spike in that activity, but since Parrot tends to follow the "release early, release often" strategy, the spike
is relatively small.

Typically, the pumpking declares a feature freeze a few days before each release and all development efforts center on
bug squashing. This periodic cleanup is one of the most valuable aspects of a release.

2.2.2 Getting Involved

Just like design work, the first step to participating in Parrot development is joining the list. The topics on p6i tend to
stick to practical matters: bug reports, patches, notifications of changes committed to CVS, and questions on coding
style. Occasionally, there are discussions about how to implement a particular feature. Generally, if you have a question
about syntax or a speculation about whether Perl 6 should support a particular feature, that question belongs on the
language list rather than the internals list.

2.2.2.1 Use the source

The second step to participating in Parrot development is to get a copy of the source code. If you just want to try it out
—experiment with a few features and see how it feels—you're probably best off downloading a tarball. For the most
stable copy, grab the latest point release from CPAN. The sure way to get the most recent release is at
http://search.cpan.org/dist/parrot/ (or search for "parrot" in "Distributions"). If you want something a little more
cutting edge than the packaged release, a new snapshot of the CVS repository is created every eight hours. The most
recent snapshot is always available at http://cvs.perl.org/snapshots/parrot/parrot-latest.tar.gz.

If you plan to get involved in development, you'll want to check out the source from the CVS repository. Anyone can get
anonymous access. Just log in as the "anonymous" user and check out the source. No password is necessary.

cvs -d :pserver:anonymous@cvs.perl.org:/cvs/public login

cvs -d :pserver:anonymous@cvs.perl.org:/cvs/public checkout parrot

There's also a web interface for viewing files in the repository at http://cvs.perl.org/cvsweb/parrot/.

Now that you've got the source, take a moment to look around. The code changes constantly, so a detailed description
of every file is impossible. But a few road signs are helpful starting out.

The most important top- level directory is docs/. The content isn't always up to date, but it is a good place to start.
parrot.pod provides a quick overview of what is in each documentation file.

The languages/ directory contains the code that implements various language compilers: Perl 6, as well as Forth,
Scheme, Befunge, BASIC, etc. Most are in various stages of partial completion. LANGUAGES.STATUS provides meta
information on the included languages, and on languages maintained outside the Parrot repository, such as Python
(Pirate) and Ruby (Cardinal). If you have a language you're particularly interested to see implemented on Parrot, you
might take a peek to see how far along it is.

The lib/ directory contains Perl 5 classes currently used in developing Parrot. The classes/ directory contains the C
source code for Parrot classes (PMCs, which you'll read more about in Chapter 9). The examples/ directory contains
some example Parrot assembler code, as well as benchmarks.

For instructions on building Parrot, see Section 9.1 in Chapter 9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For instructions on building Parrot, see Section 9.1 in Chapter 9.

2.2.2.2 Patch submission

Parrot development is a continuous stream of patches. Patches are the currency of exchange in the project—the unit of
work. They fix bugs, add features, modify features, remove features, and improve the documentation. Pretty much
anything that changes, changes via a patch.

Although anyone is free to submit a patch, a small number of people have access to commit changes to the CVS
repository. This system works well. It means the project can harness the efforts of a large group, but still keep the
same high quality as a small group of experienced developers.

Every submitted patch is automatically forwarded to the p6i list where it's subject to peer review. Patches spark little
debate. Parrot developers generally submit code that's clean and well thought-out, so there's rarely any need for
debate. Also, patches are typically small modular changes, which makes them easy to evaluate. Occasionally an entire
language implementation is submitted in a single patch, but these are the exceptions.

Submitting a patch is fairly straightforward. You create a file that lists all your changes and email it to the ticket
tracking system at bugs-parrot@bugs6.perl.org. But a few common-sense guidelines will make your patches cleaner,
better, and less likely to give the pumpking hives.

First off, create your patches from a checked-out CVS repository, not from a tarball, so your diff is running against the
latest version of the files. Then, make sure the paths listed in the patch match those in the repository. There are two
methods of creating patches that will do this for you. You can make changes directly in your checked-out copy of the
CVS repository and then create diffs using cvs diff -u. Or you can make a copy of the repository and then create diffs
between the two copies with the standard diff -u command. For example:

diff -u parrot/README parrot_changed/README

Either method is fine, and both are equally common on p6i. Your working style and the types of changes you make—
small and modular versus large and sweeping—will influence which method you choose.

Next, when you're making changes, take some extra time to consider how your patch affects the rest of the system. If
your patch adds a new file, patch the main MANIFEST file to include it. If you add a new feature, add a test for it. If you
fix a bug, add a test for it. (See Section 9.13 in Chapter 9.) Before you submit a patch, always recompile the system
with your patch included and run all tests:

make clean

perl Configure.pl

make

make test

Then consider the people who will review and apply your patch, and try to make their jobs easier. Patch filenames
should be as descriptive as possible: fix_readme_typo.patch is better than README.patch. An attached file is better
than a diff pasted into an email, because it can be applied without manual editing. The conventional extension for patch
files is .patch.

In the email message, always start the subject with "[PATCH]," and make the subject as clear as possible: "[PATCH]
misspelled aardvark in main README file" is better than "[PATCH] typo." The body of the message should clearly
explain what the patch is supposed to do and why you're submitting it. Make a note if you're adding or deleting files so
they won't be missed.

Here is a good example of a patch submission using the CVS diff method (an actual patch from p6i). It's short, sticks to
the point, and clearly expresses the problem and the solution. The patch filename and the subject of the message are
both descriptive:

Subject: [PATCH] Pointers in List_chunk not initialized

From: Bruce Gray

On Win32, these tests are segfaulting due to invalid

pointers in List_chunk structs:

t/op/string.t 97-98

t/pmc/intlist.t 3-4

t/pmc/pmc.t 80

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

t/pmc/pmc.t 80

The problem is caused by list.c/allocate_chunk not

initializing the pointers. This patch corrects the problem.

--

Hope this helps,

Bruce Gray

The following includes the attached file list_chunk_initialize.patch:

Index: list.c

=

RCS file: /cvs/public/parrot/list.c,v

retrieving revision 1.23

diff -u -r1.23 list.c

--- list.c 27 Dec 2002 09:33:11 -0000 1.23

+++ list.c 28 Dec 2002 03:37:35 -0000

@@ -187,6 +187,10 @@

 Parrot_block_GC(interpreter);

 chunk = (List_chunk *)new_bufferlike_header(interpreter, sizeof(*chunk));

 chunk->items = items;

+ chunk->n_chunks = 0;

+ chunk->n_items = 0;

+ chunk->next = NULL;

+ chunk->prev = NULL;

 Parrot_allocate_zeroed(interpreter, (Buffer *)chunk, size);

 Parrot_unblock_DOD(interpreter);

 Parrot_unblock_GC(interpreter);

2.2.2.3 Bug tracking

Bug reports go to the same address as patch submissions (bugs-parrot@bugs6.perl.org). Similar conventions apply:
make the subject and the message as clear and descriptive as possible. There's no set convention on subject lines, but
you can't go wrong starting off with something like "[BUG]" or "[P6C BUG]" to make it immediately obvious what the
message is about.

If you want to track a bug or patch you've submitted, the current queue of bugs and patches is publicly viewable at
http://bugs6.perl.org. Bug tracking for Parrot is handled by the Request Tracker (RT) ticket tracking system from Best
Practical Solutions.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 2. Project Development
The Perl community is rich and diverse. There are as many variations in skill sets and skill levels as there are people.
Some are coders, some are testers, some are writers, some are teachers, some are theorists. For every skill, there is a
task. It's the combination of all the skills that gets the job done. A team of workers all wielding hammers could never
build a house. Someone has to cut the wood, sand it, apply plaster, paint it, and install windows, doors, electrical
systems, and plumbing.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.1 Linguistic and Cognitive Considerations
Perl is a human language. Now, there are significant differences between Perl and languages like English, French,
German, etc. For one, it is artificially constructed, not naturally occurring. Its primary use, providing a set of
instructions for a machine to follow, covers a limited range of human existence. Even so, Perl is a language humans use
for communicating. Many of the same mental processes that go into speaking or writing are duplicated in writing code.
The process of learning to use Perl is much like learning to speak a second language. The mental processes involved in
reading are also relevant. Even though the primary audience of Perl code is a machine, humans have to read the code
while they're writing, reviewing, or maintaining it.

Many Perl design decisions have been heavily influenced by the principles of natural language. The following are some
of the most important principles, the ones we come back to over and over again while working on the design and the
ones that have had the greatest impact.

3.1.1 The Waterbed Theory of Complexity

The natural tendency in human languages is to keep overall complexity about equivalent, both from one language to
the next, and over time as a language changes. Like a waterbed, if you push down the complexity in one part of the
language, it increases complexity elsewhere. A language with a rich system of sounds (phonology) might compensate
with a simpler syntax. A language with a limited sound system might have a complex way of building words from
smaller pieces (morphology). No language is complex in every way, as that would be unusable. Likewise, no language is
completely simple, as too few distinctions would render it useless. This principle might just as well be called the
"Conservation of Complexity."

The same is true of computer languages. They require a constant balance between complexity and simplicity.
Restricting the possible operators to a small set leads to a proliferation of user-defined methods and subroutines. This is
not a bad thing, in itself, but it encourages code that is verbose and difficult to read. On the other hand, a language
with too many operators encourages code that is heavy in line noise and difficult to read. Somewhere in the middle lies
the perfect balance.

3.1.2 The Principle of Simplicity

Generally, a simple solution is preferable to a complex one. A simple syntax is easier to teach, remember, use, and
read. But this principle is in constant tension with the waterbed theory. Simplification in the wrong area is one danger
to avoid. Another is false simplicity or oversimplification. Some problems are complex and require a complex solution.
Perl 6 grammars aren't simple, but they are complex at the language level in a way that allows simpler solutions at the
user level.

3.1.3 Huffman Coding

Huffman coding is a method of compressing data that replaces each character with a variable-length sequence of bits.
To save space, frequent characters get shorter sequences and more rare characters get longer sequences.

When Larry talks about "Huffman coding" he means the idea that more commonly used features in the language
deserve the best short-cuts. For example, the very limited set of easy-to-type, single-character, plain ASCII operators
go to common operations: addition, subtraction, logical negation, etc. Less common operations get multiple character
combinations or Unicode characters. Huffman coding is one of the moderating factors between simplicity and
complexity.

3.1.4 The Principle of Adaptability

Natural languages grow and change over time. They respond to changes in the environment and to internal pressure.
New vocabulary springs up to handle new communication needs. Old idioms die off as people forget them, and newer,
more relevant idioms take their place. Complex parts of the system tend to break down and simplify over time. Change
is what keeps language active and relevant to the people who use it. Only dead languages stop changing.

The plan for Perl 6 explicitly includes plans for future language changes. No one believes that Perl 6.0.0 will be perfect,
but at the same time, no one wants another change process quite as dramatic as Perl 6. So Perl 6 will be flexible and
adaptable enough to allow gradual shifts over time. This has influenced a number of design decisions, including making
it easy to modify how the language is parsed, lowering the distinctions between core operations and user-defined
operations, and making it easy to define new operators.

3.1.5 The Principle of Prominence

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In natural languages, certain structures and stylistic devices draw attention to an important element. This could be
emphasis, as in "The dog stole my wallet" (the dog, not something else), or extra verbiage, as in "It was the dog who
stole my wallet," or a shift to an unusual word order, "My wallet was stolen by the dog" (my wallet, not my shoe, etc.),
or any number of other verbal tricks.

Perl is designed with its own set of stylistic devices to mark prominence, some within the language itself, and some that
give users flexibility to mark prominence within their code. The NAMED blocks use all capitals to draw attention to the
fact that they're outside the normal flow of control. Perl 5 has an alternate syntax for control structures like if and for,
which moves them to the end to serve as statement modifiers (the start of a line is a position of prominence). Perl 6
keeps this flexibility, and adds a few new control structures to the list.

The balance for design is to decide which features deserve to be marked as prominent, and where the syntax needs a
little flexibility so the language can be more expressive.

3.1.6 The Principle of End Weight

Natural languages place large, complex elements at the end of sentences. So, even though "I gave Mary the book" and
"I gave the book to Mary" are equally comfortable, "I gave the book about the history of development of peanut-based
products in Indonesia to Mary" is definitely less comfortable than the other way around. This is largely a mental parsing
problem. It's easier to interpret the major blocks of the sentence all at once than to start with a few, work through a
large chunk of minor information, and then go back to fill in the major sentence structure. Human memory is limited.

End weight is one of the reasons regular expression modifiers were moved to the front in Perl 6. It's easier to read a
grammar rule when you know right at the start whether the rule is case insensitive or modified some other significant
way. (It's also easier for the machine to parse, which is almost as important.)

3.1.7 The Principle of Context

Natural languages use context when interpreting meaning. The meanings of "hot" in "a hot day," "a hot stereo," "a hot
idea," and "a hot debate" are all quite different. The implied meaning of "it's wet" changes depending on whether it's a
response to "Should I take a coat?" or "Why is the dog running around the kitchen?" The surrounding context allows us
to distinguish these meanings. Context appears in other areas as well. A painting of an abstract orange sphere will be
interpreted differently depending on whether the other objects in the painting are bananas, clowns, or basketball
players. The human mind constantly tries to make sense of the universe, and it uses every available clue.

Perl has always been a context-sensitive language. It makes use of context in a number of different ways. The most
obvious use is scalar and list contexts, where a variable or expression may return a different value depending on where
and how it's used. These have been extended in Perl 6 to include string context, Boolean context, numeric context, and
others. Another use of context is the $_ defaults, like print, chomp, matches, and the new when keyword.

Context-dependent features are harder to write an interpreter for, but they're easier on the people who use the
language daily. They fit in with the way humans naturally think, which is one of Perl's top goals.

3.1.8 The Principle of DWIM

In natural languages there is a notion called "native speaker's intuition." Someone who speaks a language fluently will
be able to tell whether a sentence is correct, even if they can't consciously explain the rules. (This has little to do with
the difficulty English teachers have getting their students to use "proper" grammar. The rules of formal written English
are very different from the rules of spoken English.)

As much as possible, features should do what the user expects. This concept of DWIM, or "Do What I Mean," is largely a
matter of intuition. The user's experiences, language exposure, and cultural background all influence their expectations.
This means that intuition varies from person to person. An English speaker won't expect the same things as a Dutch
speaker, and an Ada programmer won't expect the same things as a COBOL programmer.

The trick in design is to use the programmer's intuitions instead of fighting against them. A clearly defined set of rules
will never match the power of a feature that "just seems right."

Perl 6 targets Perl programmers. What seems right to one Perl programmer may not seem right to another, so no
feature will please everyone. But it is possible to catch the majority cases.

Perl generally targets English speakers. It uses words like "given," which gives English speakers a head start in
understanding its behavior in code. Of course, not all Perl programmers are English speakers. In some cases idiomatic
English is toned down for broader appeal. In grammar rules, ordinal modifiers have the form 1st, 2nd, 3rd, 4th, etc.,
because those are most natural for native English speakers. But they also have an alternate form 1th, 2th, etc., with the
general rule Nth, because the English endings for ordinal numbers are chaotic and unfriendly to non-native speakers.

3.1.9 The Principle of Reuse

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Human languages tend to have a limited set of structures and reuse them repeatedly in different contexts.
Programming languages also employ a set of ordinary syntactic conventions. A language that used braces ({ }) to
delimit loops but paired keywords to delimit if statements (like if . . . then . . . end if) would be incredibly annoying. Too
many rules make it hard to find the pattern.

In design, if you have a certain syntax to express one feature, it's often better to use the same syntax for a related
feature than to invent something entirely new. It gives the language an overall sense of consistency, and makes the
new features easier to remember. This is part of why Perl 6 grammars are structured as classes. (For more details on
grammars, see Chapter 7.) Grammars could use any syntax, but classes already express many of the features
grammars need, like inheritance and the concept of creating an instance.

3.1.10 The Principle of Distinction

The human mind has an easier time identifying big differences than small ones. The words "cat" and "dog" are easier to
tell apart than "snore" and "shore." Usually context provides the necessary clues, but if "cats" were "togs," we would be
endlessly correcting people who heard us wrong ("No, I said the Johnsons got a new dog, not tog, dog.").

The design consideration is to build in visual clues to subtle contrasts. The language should avoid making too many
different things similar. Excessive overloading reduces readability and increases the chance for confusion. This is part of
the motivation for splitting the two meanings of eval into try and eval, the two meanings of for into for and loop, and the
two uses of sub into sub and method.

Distinction and reuse are in constant tension. If too many features are reused and overloaded, the language will begin
to blur together. Far too much time will be spent trying to figure out exactly which use is intended. But, if too many
features are entirely distinct, the language will lose all sense of consistency and coherence. Again, it's a balance.

3.1.11 Language Cannot Be Separated from Culture

A natural language without a community of speakers is a dead language. It may be studied for academic reasons, but
unless someone takes the effort to preserve the language, it will eventually be lost entirely. A language adds to the
community's sense of identity, while the community keeps the language relevant and passes it on to future
generations. The community's culture shapes the language and gives it a purpose for existence.

Computer languages are equally dependent on the community behind them. You can measure it by corporate backing,
lines of code in operation, or user interest, but it all boils down to this: a programming language is dead if it's not used.
The final sign of language death is when there are no compilers or interpreters for the language that will run on existing
hardware and operating systems.

For design work this means it's not enough to only consider how a feature fits with other features in the language. The
community's traditions and expectations also weigh in, and some changes have a cultural price.

3.1.12 The Principle of Freedom

In natural languages there is always more than one way to express an idea. The author or speaker has the freedom,
and the responsibility, to pick the best phrasing—to put just the right spin on the idea so it makes sense to their
audience.

Perl has always operated on the principle that programmers should have the freedom to choose how to express their
code. It provides easy access to powerful features and leaves it to the individuals to use them wisely. It offers customs
and conventions rather than enforcing laws. "There's more than one way to do it" (TMTOWTDI).

This principle influences design in several ways. If a feature is beneficial to the language as a whole, it won't be rejected
just because someone could use it foolishly. On the other hand, we aren't above making some features difficult to use,
if they should be used rarely.

Another part of the design challenge is to build tools that will have many uses. No one wants a cookbook that reads like
a Stephen King novel, and no one wants a one-liner with the elaborate structure of a class definition. The language has
to be flexible to accommodate freedom.

3.1.13 The Principle of Borrowing

Borrowing is common in natural languages. When a new technology (food, clothing, etc.) is introduced from another
culture, it's quite natural to adopt the original name for it. Most of the time borrowed words are adapted to the new
language. In English, no one pronounces "tortilla," "lasagna," or "champagne" exactly as in the original languages.
They've been altered to fit the English sound system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

They've been altered to fit the English sound system.

Perl has always borrowed features, and Perl 6 will too. There's no shame in acknowledging that another language did an
excellent job implementing a particular feature. It's far better to openly borrow a good feature than to pretend it's
original. Perl doesn't have to be different just for the sake of being different. However, most features won't be adopted
without any changes. Every language has its own conventions and syntax, and many aren't compatible. So, Perl
borrows features, but uses Perlish syntax to express them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.2 Architectural Considerations
The second set of principles governs the overall architecture of Perl 6. These principles are connected to the past,
present, and future of Perl, and define the fundamental purpose of Perl 6. No principle stands alone; each is balanced
against the others.

3.2.1 Perl Should Stay Perl

Everyone agrees that Perl 6 should still be Perl, but the question is, what exactly does that mean? It doesn't mean Perl
6 will have exactly the same syntax. It doesn't mean Perl 6 will have exactly the same features. If it did, Perl 6 would
just be Perl 5. So, the core of the question is what makes Perl "Perl?"

3.2.1.1 True to the original purpose

Perl will stay true to its designer's original intended purpose. Larry wanted a language that would get the job done
without getting in his way. The language had to be powerful enough to accomplish complex tasks, but still lightweight
and flexible. As Larry is fond of saying, "Perl makes the easy things easy and the hard things possible." The
fundamental design philosophy of Perl hasn't changed. In Perl 6, the easy things are a little easier and the hard things
are more possible.

3.2.1.2 Familiarity

Perl 6 will be familiar to Perl 5 users. The fundamental syntax is still the same. It's just a little cleaner and a little more
consistent. The basic feature set is still the same. It adds some powerful features that will probably change the way we
code in Perl, but they aren't required.

Learning Perl 6 will be like American English speakers learning Australian English, not English speakers learning
Japanese. Sure, there are some vocabulary changes, and the tone is a little different, but it is still—without any doubt—
English.

3.2.1.3 Translatable

Perl 6 will be mechanically translatable from Perl 5. In the long term, this isn't nearly as important as what it will be like
to write code in Perl 6. But during the transition phase, automatic translation will be important. It will allow developers
to start moving ahead before they understand every subtle nuance of every change. Perl has always been about
learning what you need now and learning more as you go.

3.2.2 Important New Features

Perl 6 will add a number of features such as exceptions, delegation, multi-method dispatch, continuations, coroutines,
and currying, to name a few. These features have proven useful in other languages and provide a great deal of power
for solving certain problems. They improve the stability and flexibility of the language.

Many of these features are traditionally difficult to understand. Perl takes the same approach as always: provide
powerful tools, make them easy to use, and leave it up to the user to decide whether and how to use them. Most users
probably won't even know they're using currying when they use the assuming method.

Features like these are an important part of preparing Perl for the future. Who knows what development paradigms
might develop in a language that has this combination of advanced features in a form easily approachable by the
average programmer? It may not be a revolution, but it's certainly evolution.

3.2.3 Long-Term Usability

Perl 6 isn't a revision intended to last a couple of years and then be tossed out. It's intended to last 20 years or more.
This long-range vision affects the shape of the language and the process of building it. We're not interested in the latest
fad or in whipping up a few exciting tricks. We want strong, dependable tools with plenty of room to grow. And we're
not afraid to take a little extra time now to get it right. This doesn't mean Perl 6.0 will be perfect, any more than any
other release has been perfect. It's just another step of progress.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 3. Design Philosophy
At the heart of every language is a core set of ideals that give the language its direction and purpose. If you really want
to understand the choices that language designers make—why they choose one feature over another or one way of
expressing a feature over another—the best place to start is with the reasoning behind the choices.

Perl 6 has a unique set of influences. It has deep roots in Unix and the children of Unix, which gives it a strong
emphasis on utility and practicality. It's grounded in the academic pursuits of computer science and software
engineering, which gives it a desire to solve problems the right way, not just the most expedient way. It's heavily
steeped in the traditions of linguistics and anthropology, which gives it the goal of comfortable adaptation to human
use. These influences and others like them define the shape of Perl and what it will become.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.1 Variables
The most basic building blocks of a programming language are its nouns, the chunks of data that get sucked in, pushed
around, altered in various ways, and spat out to some new location. The chunks of data are values: strings, numbers,
etc., or composites of the simpler values. Variables are just named containers for those values. The three kinds of
variables in Perl 6 are scalars, arrays, and hashes. Each has an identifying symbol (or sigil) as part of the name of the
variable: $ for scalars, @ for arrays, and % for hashes. The sigils provide a valuable visual distinction by making it
immediately obvious what kinds of behavior a particular variable is likely to have. But, fundamentally, there's little
difference between the three. Each variable is essentially a container for a value, whether that value is single or
collective. (This statement is an oversimplification, as you'll soon see.)

4.1.1 Scalars

Scalars are all-purpose containers. They can hold strings, integers, floating-point numbers, and references to all kinds
of objects and built-in types. For example:

$string = "Zaphod's just this guy, you know?";

$int = 42;

$float = 3.14159;

$arrayref = ["Zaphod", "Ford", "Trillian"];

$hashref = { "Zaphod" => 362, "Ford" => 1574, "Trillian" => 28 };

$subref = sub { print $string };

$object = Android.new;

A filehandle is just an ordinary object in an ordinary scalar variable. For example:

$filehandle = open $filename;

4.1.2 Arrays

Array variables hold simple ordered collections of scalar values. Individual values are retrieved from the array by
numeric index. The 0 index holds the first value. The @ sigil is part of the name of the variable and stays the same no
matter how the variable is used:

@crew = ("Zaphod", "Ford", "Trillian");

$second_member = @crew[1]; # Ford

To get the the number of elements in an array use the .elems method. The .last method returns the index of the last
element in an array—that is, the highest index in an array.

$count_elements = @crew.elems;

$last_index = @crew.last;

4.1.3 Pairs

Pairs hold a single key and a single value. They don't have a unique sigil because they rarely appear alone, so they're
stored in scalars, arrays, or hashes. The pair constructor => forms a pair, with the key on the left and value on the
right.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

right.

$pair = 'key' => 'value';

The alternate option syntax also constructs a pair, with a colon before the key and parentheses around the value:

$pair = :key('value');

The option syntax is useful for subroutine calls, as you'll see in Section 5.3.1 in Chapter 5.

4.1.4 Hashes

Hashes are unordered collections of scalar values, stored and retrieved by a key index. The simplest way to build a
hash is by passing it a list of anonymous pair objects. For example:

%hash = ("Zaphod" => 362, "Ford" => 1574, "Trillian" => 28);

The key for each value may be a string or an object, though there are some restrictions on object keys. Hashes that
use object keys must be declared as such, for the sake of efficiency. Any object used as a hash key must have a .id
method that returns a unique value for each unique object to avoid hashing collisions. This method is provided by
default in the universal base class, so you only have to worry about uniqueness when you define your own .id methods:

$age = %hash{"Zaphod"}; # string

$age = %hash{$name}; # string variable

$age = %hash{$person}; # object

Quotes are required around literal string keys, so you can call a subroutine to retrieve a key and the subroutine name
won't act as a string key:

$age = %hash{get_key}; # subroutine call

If you really don't want to type the quotes, substitute auto-quoting brackets for the ordinary curly braces around the
key:

$age = %hash«Zaphod»; # string

$age = %hash<<Zaphod>>; # ASCII equivalent

In list context, a hash returns a list of key/value pair objects. The .kv method returns a flattened list of keys and values
from a hash. So the assignment of a hash directly to an array:

@pairs = %hash;

creates an array of pairs that looks like:

(pair1, pair2, pair3, etc . . .)

However, the assignment of the flattened key/value list:

@flat = %hash.kv;

creates an array of alternating keys and values that looks like:

(key1, value1, key2, value2, etc . . .)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(key1, value1, key2, value2, etc . . .)

The .keys method returns a flattened list of all the keys in a hash. The .values method returns a flattened list of all the
values:

@keys = %hash.keys;

@values = %hash.values;

4.1.5 References

References are largely transparent in Perl 6. There is a distinction between references and ordinary variables, but it's
minimized as much as possible in actual use, with automatic referencing and dereferencing where appropriate. Creating
a reference to an array or hash requires no special syntax. You simply assign it to a scalar variable:

$arrayref = @array;

$hashref = %hash;

References are implicitly dereferenced in many contexts, so array indexes and hash keys access individual elements
directly from hashrefs and arrayrefs, just like they do with hashes and arrays:

$arrayref[1]

$hashref{"Zaphod"}

Methods are called on arrayrefs and hashrefs just like they are on arrays and hashes. The referent—the underlying data
type or object—determines which methods can be used with a particular reference, what those methods do, and
whether the reference can support indexed access:

$arrayref.elems

$hashref.keys

References to subroutines can be executed simply by passing the reference an argument list. The list can be empty, but
the parentheses are required.

$subref($arg);

Arrayrefs and hashrefs have special syntax (@{ . . . } and %{ . . . }) for dereferencing them in contexts that normally
wouldn't:

@array = @{$arrayref};

or

@array = @$arrayref;

Ordinarily, an array reference assigned to an array would produce an array with a single arrayref element. To copy the
individual elements of $arrayref to @array you need to dereference it first.

4.1.6 Variables and Context

One of the main differences between variables with the $, @, or % sigils is that they each impose a different context.
The $ sigil imposes a scalar context, @ imposes list context, and % imposes hashlist context.[1]

[1] These three are not the only contexts in Perl 6. A complete discussion of Perl 6 contexts appears in Section
4.2.7 later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1.6.1 Scalar context

Scalar context expects a single value. Any array or list evaluated in scalar context returns an arrayref. This means that
assigning an array:

@array = ("Zaphod", "Ford", "Trillian");

$arrayref = @array;

a list:

$arrayref = ("Zaphod", "Ford", "Trillian");

or an explicit anonymous arrayref:

$arrayref = ["Zaphod", "Ford", "Trillian"];

to a scalar variable all produce exactly the same structure: a reference to an array with three elements.

The comma is the list constructor, even in scalar context. Parentheses only group. When a single element in
parentheses is assigned in scalar context, it stays a simple scalar value:

$value = (20);

If you want to create an arrayref of one element in scalar context, use square brackets ([. . .]) to explicitly construct
an anonymous array reference:

$arrayref = [20];

A hash-like list assigned to a scalar variable creates a reference to an ordered array of pairs, following the rule that a
list in scalar context is an arrayref:

$pair_list = ("Zaphod" => 362, "Ford" => 1574, "Trillian" => 28);

You have to use curly braces ({ . . . }) to explicitly construct a hash reference in scalar context:

$hashref = { "Zaphod" => 362, "Ford" => 1574, "Trillian" => 28 };

4.1.6.2 List context

Variables with the @ sigil impose flattening-list context. This means that if you assign one array to another array, the
original array is flattened—treated as if it were a simple list of values—and every element from the original array is
copied to the new array. The result is that the two array variables contain different data structures, each with identical
values:

@copy = @original;

Lists also impose flattening-list context. Assigning an array to a list flattens the array and assigns each array element to
the corresponding element in the list. If the array has more elements than the list, the remaining elements are simply
discarded:

($first, $second, $third) = @array;

A single value in list context is a one-element list, so it produces a one-element array on assignment:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A single value in list context is a one-element list, so it produces a one-element array on assignment:

@array = (20);

@array = 20; # same

The anonymous arrayref constructor [. . .] imposes flattening-list context internally. It doesn't flatten when used in list
context, though, because flattening-list context doesn't flatten references. In scalar context, a simple list and an
arrayref construct produce the same result. But in list context, a simple list is treated as a flattened list, while an
arrayref construct is treated as a list of one element, an arrayref:

@array = ("Zaphod", "Ford", "Trillian");

@array = ["Zaphod", "Ford", "Trillian"];

The first example above produces an array with three elements. The second produces an array with one element and
that element is a reference to an array with three elements. This is useful for building up complex data structures.

@array = ("Marvin", ["Zaphod", "Ford", "Trillian"], "Zarniwoop");

Similarly, in flattening-list context a list of array variables are flattened into a single list, while a list of scalar variables
are treated as a simple list, even if the scalar variables are arrayrefs:

@array = (@array1, @array2, @array3); # single flattened list

@array = ($arrayref1, $arrayref1, $arrayref3); # 3-element list

So, the first example above produces an array containing all the elements of the three arrays, while the second
produces an array of three arrayrefs.

A lone pair of parentheses is a special token representing an empty list. It produces an array structure with no elements
in both scalar and list context:

$arrayref = (); # 0-element arrayref

@array = (); # 0-element array

4.1.6.3 Hashlist context

Variables with % sigils impose hashlist context, which expects a list of pair objects. This is typically simply a list of
anonymous pairs built with the pair constructor (=>):

%hash = ("Zaphod" => 362, "Ford" => 1574, "Trillian" => 28);

A list of simple values in hashlist context is treated as a list of pairs. You can substitute two values for a pair object only
in hashlist context:

%hash = ("Zaphod", 362, "Ford", 1574, "Trillian", 28);

Curly braces { . . . } are the anonymous hash reference constructor, but they don't impose hashlist context. This is
because an ordinary structure wrapped in curly braces and assigned to a scalar variable defines an anonymous
subroutine:

a sub reference that returns a list

$subref = { "Zaphod", 362, "Ford", 1574, "Trillian", 28 };

The hash reference constructor isn't really { . . . }, but { . . . => . . . }, so you can't use commas in place of pair
constructors when assigning a hash reference to a scalar variable. It's the => that marks the structure as a hash. When
there is ambiguity, you can force the right context by specifying hash or sub before the block:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

there is ambiguity, you can force the right context by specifying hash or sub before the block:

$subref = sub { print "Lost luggage.\n"; }

$hashref = hash { "Zaphod", 362, "Ford", 1574, "Trillian", 28 };

4.1.7 Properties and Traits

Properties allow additional information to be attached to variables and values. As Damian likes to explain it, they're
much like sticky notes. You can take a note, scribble some important information on it, and slap it onto the refrigerator,
your monitor, or the dashboard of your car. When you're done, you peel it off and throw it away.

Some properties are attached at compile time. These are known as traits. Traits are still properties, just a particular
kind of property. Traits are fixed to the variable when it is declared and cannot be changed later. Compile-time traits
are set with the is keyword:

my $pi is constant = 3.14159;

The constant trait specifies that the value of the variable can't be changed.

Other properties are attached at run-time. They only modify values, not variables. They can be added and removed at
any time during the execution of the code. Run-time properties are set with the but keyword:

$true_value = 0 but true;

The true property specifies that the value will evaluate as true in a Boolean context, no matter what the actual value is.
This particular property means the Perl 6 system call can be checked with a simple conditional. It still returns the same
numeric values it always has (0 on success and a numeric error code on failure), but it flags the value with a property
as true when the call succeeds and false when it fails.

Properties and traits can also store a value. Both constant and true define their own values when they're set. Some
properties take arguments for their value:

my @array is dim(2,5,42); # specify dimensions

Properties have proven to be an incredibly useful and extensible syntax. You'll see them again and again throughout the
next few chapters. They aren't restricted to variables and values, but appear on subroutines, methods, classes,
grammars, rules, and in parameter lists.

4.1.8 Types

Perl 6 allows you to specify the types of variables and values much more precisely than Perl 5, but keep in mind that
explicit types are completely optional. If you choose to use them, you'll gain some benefits in optimization and
interfacing between languages. The design of the type system isn't complete, but the basic groundwork is in place.

Perl 6 makes a distinction between the type of a value and the type of a variable. The value type specifies what kind of
values a variable can hold. Putting an Int value type on a scalar says that the scalar can only hold an integer value:

my Int $scalar;

Putting an Int value type on an array says that the array holds integer values:

my Int @array;

And putting an Int value type on a hash says that the hash holds integer values (but says nothing about the type of the
keys):

my Int %hash;

The variable type specifies what kind of container the variable is. This is basically like a tie in Perl 5. Variable types are
defined as traits of the variable, with the is keyword. The sigils provide an implicit variable type, so a variable with no

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

defined as traits of the variable, with the is keyword. The sigils provide an implicit variable type, so a variable with no
type is just:

my $scalar is Scalar;

my @array is Array;

my %hash is Hash;

But you can also define your own classes to implement a variable type:

my $scalar is FileHandle;

my @array is Matrix;

my %hash is BerkeleyDB;

Hierarchical data structures can have a complex value type. A hash that holds integer arrays has the value type Array of
Int:

my Array of Int %hash;

The type syntax is flexible, so you could also write that as:

my %hash is Hash of Array of Int;

or

my %hash of Array of Int;

and get the same data structure. This improves readability, especially in multilevel data structures:

my Array of Hash of Array of Int %hash;

my %hash is Hash of Array of Hash of Array of Int;

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.2 Operators
Operators provide a simple syntax for manipulating values. A few characters take the place of a function call, or even
several function calls. On the positive side this makes them incredibly convenient. On the negative side they're also
sometimes difficult to learn because they pack so much meaning into a small space. Many of the Perl 6 operators will be
familiar, especially to Perl 5 programmers. The new operators either add new features to the language, or move Perl's
operator set toward a more consistent system.

4.2.1 Assignment and Binding

The = operator is for ordinary assignment. It creates a copy of the values on the righthand side and assigns them to the
variables or data structures on the lefthand side:

$copy = $original;

@copies = @originals;

$copy and $original both have the same value, and @copies has a copy of every element in @originals.

The := operator is for binding assignment. Instead of copying the value from one variable or structure to the other, it
creates an alias. An alias is an additional entry in the symbol table with a different name for the one container:

$a := $b; # $a and $b are aliases

@c := @d; # @c and @d are aliases

In this example, any change to $a also changes $b and vice versa, because they're just two separate names for the
same container. Binding assignment requires the same number of elements on both sides, so both of these would be an
error:

($a, $b) := ($c); # error

($a, $b) := ($c, $d, $e); # error

The ::= operator is a variant of the binding operator that binds at compile time.

4.2.2 Arithmetic Operators

The arithmetic operators are addition (+), subtraction (-), multiplication (*), division (/), modulus (%), and
exponentiation (**). Each has a corresponding assignment operator (+=, -=, *=, /=, %=, **=) that combines the
arithmetic operation with assignment:

$a = 3 + 5;

$a += 5; # $a = $a + 5

The unary arithmetic operators are the prefix and postfix autoincrement (++) and autodecrement (--) operators. The
prefix operators modify their argument before it's evaluated, and the postfix operators modify it afterward:

$a++;

$a--;

++$a;

--$a;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2.3 String Operators

The ~ operator concatenates strings. The corresponding ~= operator concatenates the righthand side of the assignment
to the end of the string:

$line = "The quick brown " ~ $fox ~ jumps_over() ~ " the lazy " ~ $dog;

$line ~= "Belgium"; # appends to the string

The x operator replicates strings. It always returns a string no matter whether the left side of the operation is a single
element or a list. The following example assigns the string "LintillaLintillaLintilla":

$triplet = "Lintilla" x 3;

The corresponding x= operator replicates the original string and assigns it back to the original variable:

$twin = "Lintilla";

$twin x= 2; # "LintillaLintilla"

4.2.4 List Operators

The xx operator replicates lists. It returns a list no matter whether it operates on a list of elements or a single element.
The following example assigns a list of three elements to @array, each with a copy of the value "Lintilla":

@array = "Lintilla" xx 3; # ("Lintilla", "Lintilla", "Lintilla")

The corresponding xx= operator creates a list that contains the specified number of copies of every element in the
original array and assigns it back to the array variable:

@array = (4, 2);

@array xx= 2; # now (4, 2, 4, 2)

@array = (@array, @array); # equivalent

The range operator .. returns a list of values from a starting point to an ending point:

@range = 3..7; # 3,4,5,6,7

Ranges evaluate lazily, so a range containing an infinite value won't try to calculate all the values before assigning the
list. Instead, it returns a list generator that only generates elements as they're requested.

@range = 3..Inf; # lazy

The . . . operator is equivalent to ..Inf:

@range = 3 . . . ;

4.2.5 Comparison

Each comparison operator has two forms, one for numeric comparisons and one for string comparisons. The comparison
operators are greater-than (>, gt), less-than (<, lt), greater-than-or-equal (>=, ge), less-than-or-equal (<=, le), equal
(= =, eq), and not-equal (!=, ne). The identity operator (=:=) tests whether the two arguments are aliases to the same

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(= =, eq), and not-equal (!=, ne). The identity operator (=:=) tests whether the two arguments are aliases to the same
object. Each returns a true value if the relation is true and a false value otherwise. The generic comparison operators
(<=>, cmp) return 0 if the two arguments are equal, 1 if the first is greater, and -1 if the second is greater:

if ($age > 12) { . . . }

Comparison operators can also be chained. Chained comparisons evaluate each value in the chain only once:

if (24 < $age < 42) { . . . } # 24 < $age and $age < 42

4.2.6 Logical Operators

The binary logical operators test two values and return one value or the other depending on certain truth conditions.
They're also known as the short-circuit operators because the righthand side will never be evaluated if the overall truth
value can be determined from the lefthand side. This makes them useful for conditionally assigning values or executing
code.

The AND relation has the && operator and the low-precedence and operator. If the lefthand side evaluates as false, its
value is returned. If the lefthand value is true, the righthand side is evaluated and its value is returned:

$splat = $whale && $petunia;

$splat = ($whale and $petunia);

The OR relation has the || operator and the low-precedence or operator. The lefthand value is returned if it is true;
otherwise, the righthand value is evaluated and returned:

$splat = $whale || $petunia;

$splat = ($whale or $petunia);

A variant of the OR relation tests for definedness instead of truth. It uses the // operator and the low-precedence err
operator. The lefthand value is returned if it is defined; otherwise, the righthand side is evaluated and its value
returned:

$splat = $whale // $petunia;

$splat = ($whale err $petunia);

The XOR relation has the ^^ operator and the low-precedence xor operator. It returns the value of the true operand if
any one operand is true, and a false value if both are true or neither is true. xor isn't short-circuiting like the others,
because it always has to evaluate both arguments to know if the relation is true:

$splat = $whale ^^ $petunia;

$splat = ($whale xor $petunia);

Perl 6 also has Boolean variants of the logical operators: ?& (AND), ?| (OR), and ?^ (XOR). These always return a true
or false value.

$whale = 42;

$petunia = 24;

$value = $whale || $petunia # $value is 42

$truth = $whale ?| $petunia # $truth is 1

4.2.7 Context Forcing Operators

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The context of an expression specifies the type of value it is expected to produce. An array expects to be assigned
multiple values at the same time, so assignment to an array happens in list context. A scalar variable expects to be
assigned a single value, so assignment to a scalar happens in scalar context. Perl expressions often adapt to their
context, producing values that fit with what's expected.

Contexts have proven to be valuable tools in Perl 5, so Perl 6 has a few more added. Void context still exists. Scalar
context is subdivided into Boolean, integer, numeric, string, and object contexts. List context is subdivided into
flattening-list context, nonflattening-list context, lazy list context, and hashlist context.

Void context

Expects no value.

Scalar context

Expects a single value. A composite value returns a reference to itself in scalar context.

Boolean context

Expects a true or false value. This includes the traditional definitions of truth—where 0, undef, and the empty
string are false and all other values are true—and values flagged with the properties true or false.

Integer context

Expects an integer value. Strings are treated as numeric and floating-point numbers are truncated.

Numeric context

Expects a number, whether it's an integer or floating-point, and whether it's decimal, binary, octal, hex, or
some other base.

String context

Expects a string value. It interprets any information passed to it as a string of characters.

Object context

Expects an object, or more specifically, a reference to an object. It may also expect an object of a particular
type.

List context

Expects a collection of values. Any single value in list context is treated as a one-element list.

Flattening-list context

Expects a list. Flattens out arrays and hashes into their component parts.

Nonflattening-list context

Expects a list. Treats arrays, hashes, and other composite values as discrete entities.

Lazy list context

Expects a list, just like nonflattening-list context, but doesn't require all the elements at once.

Hashlist context

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Expects a list of pairs. A simple list in hashlist context pairs up alternating elements.

The unary context operators force a particular context when it wouldn't otherwise be imposed. Generally, the default
context is the right one, but at times you might want a little more control.

The unary ? operator and its low-precedence equivalent true force Boolean context. Assignment of a scalar to a scalar
only imposes generic scalar context, so the value of $number is simply copied. With the ? operator, you can force
Boolean context and assign the truth value of the variable instead of the numeric value:

$value = $number;

$truth = ?$number;

The unary ! operator and the low-precedence not also force Boolean context, but they negate the value at the same
time. They're often used in a Boolean context, where only the negating effect is visible.

$untruth = !$number;

The unary + operator forces numeric context, and - forces numeric context and negates the number at the same time:

$number = +$string;

$negnum = -$string;

The unary ~ operator forces string context:

$string = ~$number;

You can also create a scalar, list, or hashlist context with $(. . .), @(. . .), and %(. . .).

4.2.8 Bitwise Operators

Perl 6 has two sets of bitwise operators, one for integers and one for strings. The integer bitwise operators combine the
AND, OR, and XOR relation symbols with the general numeric symbol + (the unary numeric context operator). These
are the binary +&, +|, and +^ and the unary +^ for bitwise negation (ones complement). The default integer type in
Perl 6 is a signed int, so the results are equivalent to working with the use integer pragma turned on in Perl 5:

$number = 42 +& 18; # $number is 2

$number = 42 +| 18; # $number is 58

$number = 42 +^ 18; # $number is 56

$number = +^ 42; # $number is -43

The numeric bitwise shift operators shift the value of the left operand by the number of bits in the right operand, either
to the left (<<) or to the right (>>):

$number = 4 << 1; # $number is 8

$number = 4 >> 1; # $number is 2

The string bitwise operators combine the AND, OR, and XOR relation symbols with the general string symbol ~ (the
same symbol as string concatenation and the unary string context operator). These are ~&, ~|, and ~^.

$string = 'jj' ~& 'gg'; # $string is 'bb'

$string = 'aa' ~| 'bb'; # $string is 'cc'

$string = "GG" ~^ "**"; # $string is 'mm'

Each of the binary bitwise operators has an assignment counterpart: +&=, +|=, +^=, <<=, >>=, ~&=, ~|=, and ~^=.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each of the binary bitwise operators has an assignment counterpart: +&=, +|=, +^=, <<=, >>=, ~&=, ~|=, and ~^=.

4.2.9 Conditional

The ternary ??:: operator evaluates either its second or third operand, depending on whether the first operand
evaluates as true or false. It's basically an if-then-else statement acting as an expression:

$form = ($heads = = 2) ?? "Zaphod" :: "ape-descended lifeform";

4.2.10 Hyper Operators

The hyper operators are designed to work with lists. They're simply modified versions of the standard scalar operators.
Every operator has a hyper version, even user-defined operators. They have the same basic forms as their scalar
counterparts, but are marked with the bracketing characters » and «,[2] or their plain-text equivalents >> and <<. For
example, the hyper addition operator is >>+<<.

[2] These are the Unicode RIGHT POINTING GUILLEMET (U+00BB) and LEFT POINTING GUILLEMET (U+00AB)
characters.

Hyper operators impose list context on their operands and distribute their operations across all the operands' elements.
Hyper addition takes each element from the first list and adds it to the corresponding element in the second list:

@sums = @first >>+<< @second;

The resulting array contains the sums of each pair of elements, as if each pair were added with the scalar operator:

@sums = ((@first[0] + @second[0]), (@first[1] + @second[1]), etc . . .);

If one side of a hyper operation is a simple scalar, it is distributed across the list as if it were a list of identical elements:

@sums = @numbers >>+<< 5;

@sums ((@numbers[0] + 5), (@numbers[1] + 5), etc . . .);

Unary operators may also take a one-sided hyper on the side of their single operand:

@less = @numbers >>--;

@nums = +<< @strings;

4.2.11 Junctions

At the simplest level, junction operators are no more than AND, OR, XOR, and NOT for values instead of expressions.
The binary junction operators are & (AND), | (OR), and ^ (XOR). There isn't an operator for junctive NOT, but there is a
function, as you'll see shortly. So, while || is a logical operation on two expressions:

if ($value = = 1) || ($value = = 2) { . . . }

| is the same logical relation between two values:

if $value = = 1 | 2 { . . . }

In fact, those two examples have exactly the same result: they return true when $value is 1 or 2 and false otherwise. In
the common case, that's all you'll ever need to know.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the common case, that's all you'll ever need to know.

But junctions are a good deal more powerful than that, once you learn their secrets. A junctive operation doesn't return
an ordinary single value, it returns a composite value containing all of its operands. This return value is a junction, and
it can be used anywhere a junction operation is used:

$junc = 1 | 2;

if ($value = = $junc) { . . . }

Here, the variable $junc is used in place of 1 | 2, and has exactly the same effect as the earlier example.

A junction is basically just an unordered set with a logical relation defined between its elements. Any operation on the
junction is an operation on the entire set. Table 4-1 shows the way the four different types of junctions interact with
other operators.

Table 4-1. Picture junctions
Function Operator Relation Meaning

all & AND Operation must be true for all values

any | OR Operation must be true for at least one value

one ^ XOR Operation must be true for exactly one value

none NOT Operation must be false for all values

The simplest possible example is the result of evaluating a junction in Boolean context. The operation on the set is just
"is it true?" This operation on an all junction is true if all the values are true:

true($a & $b)

true(all($a,$b))

So, if both $a and $b are true, the result is true.

On an any junction, it's true if any one value is true:

true($a | $b)

true(any($a,$b))

So, if $a or $b is true or if both are true, the result is true.

On a one junction, it's true only if exactly one value is true:

true($a ^ $b)

true(one($a,$b))

So, if either $a or $b is true, the result is true. But, if $a and $b are both true or neither is true, the result is false.

On a none junction, it's true only when none of the values are true—that is, when all the values are false:

true(none($a,$b))

So, if $a and $b are both false, the result is true.

Ordinary arithmetic operators interact with junctions much like hyper operators on arrays. A junction distributes the
operation across all of its elements:

$junc = any(1, 2);

$junc += 5; # $junc is now any(6, 7)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$junc += 5; # $junc is now any(6, 7)

Junctions can be combined to produce compact and powerful logical comparisons. If you want to test that two sets have
no intersection, you might do something like:

if all($a, $b) = = none($c, $d) { . . . }

which tests that all of the elements of the first set are equal to none of the elements of the second set. Translated to
ordinary logical operators that's:

if ($a != $c) && ($a != $d) && ($b != $c) && ($b != $d) { . . . }

If you want to get back a flat list of values from a junction, use the .values method:

$junc = all(1, 2, 3); # create a junction

$sums = $junc + 3; # add 3

@set = $sums.values(); # (4, 5, 6)

The .dump method returns a string that shows the structure of a junction:

$string = $sums.dump(); # "all(4,5,6)"

The .pick method selects one value from an any junction or a one junction that has exactly one value, and returns it as
an ordinary scalar:

$junc = any(1, 2, 3);

$single = $junc.pick(); # may be 1, 2, or 3

On an all junction, a none junction, or a one junction with more than one value, .pick returns undef. (With some levels of
error strictness, it may raise an exception.)

4.2.12 Smart Match

The binary ~~ operator makes a smart match between its two terms. It returns a true value if the match is successful
and a false value if the match fails.[3] The negated smart match operator !~ does the exact opposite: it returns true if
the match fails and false if it is successful. The kind of match a smart match does is determined by the kind of
arguments it matches. If the types of the two arguments can't be determined at compile time, the kind of match is
determined at run time. Smart match is usually a symmetric operator, so you can reverse A ~~ B to B ~~ A and it will
have the same truth value.

[3] This is an oversimplification. Some matches return a more complex value, but in Boolean context it will always
evaluate as true for a successful match, and false for a failed match.

4.2.12.1 Matching scalars

Any scalar value (or any code that results in a scalar value) matched against a string tests for string equality. The
following match is true if $string has the value "Ford":

$string ~~ "Ford"

Any scalar value matched against a numeric value tests for numeric equality. The following is true if $number has the
numeric value 42, or the string value "42":

$number ~~ 42

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An expression that results in the value 42 is also true:

((5 * 8) + 2) ~~ 42

Any scalar value matched against an undefined value checks for definedness. The following matches are true if $value is
an undefined value and false if $value is any defined value:

$value ~~ undef

$value ~~ $undefined_value

Any scalar value matched against a rule (regex) does a pattern match. The following match is true if the sequence
"towel" can be found anywhere within $string:

$string ~~ /towel/

Any scalar value matched against a substitution attempts that substitution on the value. This means the value has to be
modifiable. The following match is true if the substitution succeeds on $string and false if it fails:

$string ~~ s/weapon/towel/

Any scalar value matched against a Boolean value simply takes the truth value of the Boolean. The following match will
always be true, because the Boolean on the right is always true:[4]

[4] At the moment this relation won't seem particularly useful. It makes much more sense when you realize that
the switch statement duplicates all the smart match relations. More on that in Section 4.3.1.3 later in this chapter.

$value ~~ (1 = = 1)

The Boolean value on the right must be an actual Boolean: the result of a Boolean comparison or operation, the return
value of a not or true function, or a value forced into Boolean context by ! or ?. The Boolean value also must be on the
right; a Boolean on the left is treated as an ordinary scalar value.

4.2.12.2 Matching lists

Any scalar value matched against a list compares each element in sequence. The match is true if at least one element
of the list would match in a simple expression-to-expression match. The following match is true if $value is the same as
any of the three strings on the right:

$value ~~ ("Zaphod", "Ford", "Trillian")

This match is short-circuiting: it stops after the first successful match. It has the same truth value as a series of or-ed
matches:

($value ~~ "Zaphod") or ($value ~~ "Ford") or ($value ~~ "Trillian")

A smart-matched list can contain any combination of elements: scalar values, rules, Boolean expressions, arrays,
hashes, etc.:

$value ~~ ("Zaphod", 5, /petunias/)

A match of a list against another list sequentially compares each element in the first list to the corresponding element in
the second list. The match is true if every element of the first list matches the corresponding element in the second list.
The following match is true, because the two lists are identical:

("Zaphod", "Ford", "Trillian") ~~ ("Zaphod", "Ford", "Trillian")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

("Zaphod", "Ford", "Trillian") ~~ ("Zaphod", "Ford", "Trillian")

The two lists don't have to be identical, as long as they're the same length and their corresponding elements match:

($zaphod, $ford, $trillian) ~~ ("Zaphod", /Ford/, /^T/)

The list-to-list match is also short-circuiting. It stops after the first failed match. This has the same truth value as a
series of single-element smart matches linked by and:

($zaphod ~~ "Zaphod") and ($ford ~~ /Ford/) and ($trillian ~~ /^T/)

4.2.12.3 Matching arrays

A nonnumeric expression matched against an array sequentially searches for that value in the array. The match is true
if the value is found. If @array contains the values "Zaphod", "Ford", and "Trillian", the following match is true when
$value matches any of those three strings:

$value ~~ @array

An integer value matched against an array tests the truth of the value at that numeric index. The following match is
true if the element @array[2] exists and has a true value:

2 ~~ @array

An integer value matched against an array reference also does an index lookup:

2 ~~ ["Zaphod", "Ford", "Trillian"]

This match is true, because the third element of the array reference is a true value.

An array matches just like a list of scalar values if it's flattened with the * operator (See Section 4.2.13 later in this
chapter). So, the following example searches the array for an element with the value 2, instead of doing an index
lookup:

2 ~~ *@array

An array matched against a rule does a pattern match against every element of the array. The match is true if any
element matches the rule. If "Trillian", "Milliways", or "million" is an element of @array, the following match is true, no
matter what the other elements are:

@array ~~ /illi/

A match of an array against an array sequentially compares each element in the first array to the corresponding
element in the second array:

@humans ~~ @vogons

This match is true if the two arrays are the same length and @humans[0] matches @vogons[0], @humans[1] matches
@vogons[1], etc.

4.2.12.4 Matching hashes

A hash matched against any scalar value tests the truth value of the hash entry with that key:

$key ~~ %hash

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$key ~~ %hash

This match is true if the element %hash{$key} exists and has a true value.

A hash matched against a rule does a pattern match on the hash keys:

%hash ~~ /blue/

This match is true if at least one key in %hash matches the string "blue".

A hash matched against a hash checks for intersection between the keys of the two hashes:

%vogons ~~ %humans

So, this match is true if at least one key from %vogons is also a key of %humans. If you want to see that two hashes
have exactly the same keys, match their lists of keys:

%vogons.keys.sort ~~ %humans.keys.sort

A hash matched against an array checks a slice of a hash to see if its values are true. The match is true if any element
of the array is a key in the hash and the hash value for that key is true:

%hash ~~ @array

If @array has one element "blue" and %hash has a corresponding key "blue", the match is true if %hash{'blue'} has a true
value, but false if %hash{'blue'} has a false value.

4.2.12.5 Matching junctions

An expression matched against an any junction is a recursive disjunction. The match is true if at least one of the
elements of the list would match in a simple expression-to-expression match:

$value ~~ any("Zaphod", "Ford", "Trillian")

This example matches if $value is the same as any of the three strings on the right. The effect of this comparison is the
same as a simple comparison to a list, except that it isn't guaranteed to compare in any particular order.

A smart match of an all junction is only true when the expression matches every value in the junction:

/illi/ ~~ all("Gillian", "million", "Trillian") # match succeeds

/illi/ ~~ all("Zaphod", "Ford", "Trillian") # match fails

A smart match of a one junction is only true when the expression matches exactly one value in the junction:

/illi/ ~~ one("Zaphod", "Ford", "Trillian") # match succeeds

/illi/ ~~ one("Gillian", "million", "Trillian") # match fails

A smart match of a none junction is true when it doesn't match any values in the junction:

/illi/ ~~ none("Zaphod", "Ford", "Marvin") # match succeeds

/illi/ ~~ none("Zaphod", "Ford", "Trillian") # match fails

An any junction matched against another any junction is a recursive disjunction of every value in the first junction to
every value in the second junction. The match is true if at least one value of the first junction matches at least one
value in the second junction:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

value in the second junction:

any("Ford", "Trillian") ~~ any("Trillian", "Arthur")

This match is true, because "Trillian" is in both junctions.

4.2.12.6 Matching objects

An object matched against a class name is true if the object belongs to that class or inherits from that class. It's
essentially the same as calling the .isa method on the object:

$ship ~~ Vogon::Constructor # $ship.isa(Vogon::Constructor)

4.2.12.7 Matching subroutines

Any expression matched against a subroutine tests the return value of the subroutine. If the subroutine takes no
arguments, it is treated as a simple Boolean:

$value ~~ my_true

If the subroutine has a one argument signature and it is compatible with the variable type of the expression, the
subroutine is called with the expression as its argument:

$value ~~ &value_test # value_test($value)

@array ~~ &array_test # array_test(@array)

%hash ~~ &hash_test # hash_test(%hash)

The return value of the subroutine determines the truth of the match.

A block matches as an anonymous subroutine. The return value of the block determines the truth of the match. It's
treated as a simple Boolean if it takes no arguments, or passed the value on the left side if it uses $_ or placeholder
variables inside the block (see Section 5.2.7 in Chapter 5).

$value ~~ { $_ + 5; } # $_ is $value

%hash ~~ { $_.keys; } # $_ is \%hash

@array ~~ { @^a.elems; } # @^a is @array

4.2.13 Referencing (or Not)

The unary \ operator returns a reference to its operand. The referencing operator isn't needed very often, since scalar
context automatically generates references to arrays, hashes, and functions, but it is still needed in flattening contexts
and other contexts that don't auto-reference:

@array_of_refs = (\@a, \@b, \@c);

Ordinarily, an array assigned a list of arrays would flatten the elements of all the arrays into a single array. With the
referencing operator, @array_of_refs is assigned a list of three arrayrefs.

The unary * operator (known as the splat operator) flattens a list in a context where it would usually be taken as a
reference. On an rvalue, * causes the array to be treated as a simple list:

@combo = (\@array, \%hash);

@a := @combo; # @a is @combo

(@b, %c) := *@combo; # @b is @array, %c is %hash

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(@b, %c) := *@combo; # @b is @array, %c is %hash

Since the @combo array contains an arrayref and a hashref, an ordinary binding assignment of @combo to @a treats
@combo as a single element and binds it to @a. With the flattening operator, the @combo array is treated as a simple
list, so each of its elements are bound to a separate element on the lefthand side. @b is bound to the original @array
and %c is bound to the original %hash.

On an lvalue, * tells the array to slurp all available arguments. An ordinary binding of two arrays to two arrays simply
binds the first element on the righthand side to the first element on the lefthand side, and the second to the second.
So, @a is bound to @c, and @b is bound to @d:

(@a, @b) := (@c, @d); # @a is @c, @b is @d

With the * operator, the first element on the lefthand side flattens all the elements on the righthand side into a list
before the binding assignment. So, @a contains all the elements from @c and @d:

*@a := (@c, @d); # @a contains @c and @d

One common use for * is in defining subroutine and method signatures, as you will see in Section 5.2.3 in Chapter 5.

4.2.14 Zip Operator

The operator takes two or more lists (arrays, hash keys, etc.) and returns a single list with alternating elements from
each of the original lists. This allows loops and other iterative structures to iterate through the elements of several lists
at the same time:

@a = (1, 2, 3);

@b = (4, 5, 6);

@c = @a ¬ @b; # @c is (1, 4, 2, 5, 3, 6)

There is no equivalent ASCII operator for the zip operator, but the zip function is much more fully featured than the
operator. It is described in Section 4.3.2.3 later in this chapter.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.3 Control Structures
The simplest flow of control is linear—one statement follows the next in a straight line to the end of the program. Since
this is far too limiting for most development tasks, languages provide ways to alter the control flow.

4.3.1 Selection

Selection executes one set of actions out of many possible sets. The selection control structures are if, unless, and
given/when.

4.3.1.1 The if statement

The if statement checks a condition and executes its associated block only if that condition is true. The condition can be
any expression that evaluates to a truth value. Parentheses around the condition are optional:

if $blue {

 print "True Blue.";

}

The if statement can also have an unlimited number of elsif statements that check additional conditions when the
preceding conditions are false. The final else statement executes if all preceding if and elsif conditions are false:

if $blue {

 print "True Blue.";

} elsif $green {

 print "Green, green, green they say . . . ";

} else {

 print "Colorless green ideas sleep furiously.";

}

4.3.1.2 The unless statement

The unless statement is the logical opposite of if. Its block executes only when the tested condition is false:

unless $fire {

 print "All's well.";

}

There is no elsunless statement, though else works with unless.

4.3.1.3 The switch statement

The switch statement selects an action by comparing a given expression (the switch) to a series of when statements (the
cases). When a case matches the switch, its block is executed:

given $bugblatter {

 when Beast::Trall { close_eyes(); }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 when Beast::Trall { close_eyes(); }

 when 'ravenous' { toss('steak'); }

 when .feeding { sneak_past(); }

 when /grrr+/ { cover_ears(); }

 when 2 { run_between(); }

 when (3..10) { run_away(); }

}

If these comparisons are starting to look familiar, they should. The set of possible relationships between a given and a
when are exactly the same as the left and right side of a smart match operator (~~). The given aliases its argument to
$_. $_ is always the current topic (think "topic of conversation"), so the process of aliasing a variable to $_ is known as
topicalization. The when is a defaulting construct that does an implicit smart match on $_. The result is the same as if
you typed:

given $bugblatter {

 when $_ ~~ Beast::Trall { close_eyes(); }

 when $_ ~~ 'ravenous' { toss('steak'); }

 when $_ ~~ .feeding { sneak_past(); }

 when $_ ~~ /grrr+/ { cover_ears(); }

 when $_ ~~ 2 { run_between(); }

 when $_ ~~ (3..10) { run_away(); }

}

but more convenient. Generally, only one case is ever executed. Each when statement has an implicit break at the end.
It is possible to fall through a case and continue comparing, but since falling through is less common, it has to be
explicitly specified with a continue:

given $bugblatter {

 when Beast::Trall { close_eyes(); continue; }

 when 'ravenous' { toss('steak'); continue; }

 when 'attacking' { hurl($spear, $bugblatter); continue; }

 when 'retreating' { toss('towel'); }

}

The default case executes its block when all other cases fail:

given $bugblatter {

 when Beast::Trall { close_eyes(); }

 when 'ravenous' { toss('steak'); }

 default { run('away'); }

}

Any code within a given will execute, but a successful when skips all remaining code within the given, not just the when
statements:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

statements:

given $bugblatter {

 print "Slowly I turn . . . ";

 when Beast::Trall { close_eyes(); }

 print "Step by step . . . ";

 when 'ravenous' { toss('steak'); }

 print "Inch by inch . . . ";

}

This means the default case isn't really necessary, because any code after the final when just acts like a default. But an
explicit default case makes the intention of the code clearer in the pure switch. The difference is also significant when
trapping exceptions. More on that in Section 4.3.3.3 later in this chapter.

A when statement can also appear outside a given. When it does, it simply smart match against $_. when statements also
have a statement modifier form that doesn't have an implicit break:

print "Zaphod" when 'two heads'; # if $_ ~~ 'two heads'

4.3.2 Iteration

Iteration constructs allow you to execute a set of statements multiple times. Perl 6's loop constructs are while, until, loop,
and for.

4.3.2.1 The while loop

A while loop iterates as long as a condition is true. The condition may be complex, but the result is always a single
Boolean value because while imposes Boolean context on its condition:

while $improbability > 1 {

 print "$improbability to 1 against and falling.";

 $improbability = drive_status('power_down');

}

until is like while but continues looping as long as the condition is false:

until $improbability <= 1 {

 print "$improbability to 1 against and falling.";

 $improbability = drive_status('power_down');

}

4.3.2.2 The simple loop

In its simplest form, the loop construct is infinite. It will iterate until a statement within the loop explicitly terminates it:

loop {

 print "One more of that Ol' Janx.";

 last if enough();

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

loop is also the counter iterator. Like while, it tests a condition before executing its block each time, but it has added
expression slots for initialization and execution between iterations that make it ideal for counter loops:

loop ($counter = 1; $counter < 20; $counter++) {

 print "Try to count electric sheep . . . ";

}

The parentheses around the loop condition are optional.

4.3.2.3 The for loop

The for loop is the list iterator, so it imposes lazy list context. It takes a list or array, or any expression that produces a
list, and loops through the list's elements one at a time. On each iteration, for aliases $_ to the current loop element.
This means all the constructs that default to $_, like print and when, can default to the loop variable:

for @useful_things {

 print; # prints $_, the current loop variable

 print " You're one hoopy frood." when 'towel';

}

The arrow operator, ->, makes a named alias to the current element, in addition to the $_ alias.[5] All aliases are
lexically scoped to the block.

[5] The arrow isn't restricted to for; it also works on given and other control flow structures.

for %people.keys -> $name {

 print; # prints $_ (same as $name)

 print ":", %people{$name}{'age'};

}

The arrow operator also makes it possible to iterate over multiple loop elements at the same time:

for %ages.kv -> $name, $age {

 print "$name is now $age";

}

You can combine the arrow operator with the zip function or zip operator to loop over several lists, taking some
specified number of elements from each list on every iteration, as in the following code.

one from each array

for zip(@people,@places,@things) -> $person, $place, $thing {

 print "Are you a $person, $place, or $thing?";

}

This example iterates over three arrays, taking one element from each array on each iteration and creating named
aliases for the three elements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

aliases for the three elements.

two from each array

for zip(@animals, @things, :by(2))

 -> $animal1, $animal2, $thing1, $thing2 {

 print "The animals, they came, they came in by twosies, twosies: ";

 print "$animal1 and $animal2";

 print "Two things. And I call them, $thing1 and $thing2.";

}

This example iterates over two arrays, taking two elements from each array on each iteration and creating named
aliases for them.

two from the first array and one from the second

for zip(@colors=>2, @textures=>1) -> $color1, $color2, $texture {

 $mix = blend($color1, $color2);

 draw_circle($mix, $texture);

}

This example iterates over two arrays, taking two elements from the first array and one element from the second array
on each iteration and creating named aliases for them.

If zip is called with arrays or lists of different lengths, it will fill in undef values for the named aliases pulled from the
shorter lists.

4.3.2.4 Breaking out of loops

The next, redo, and last keywords allow you to interrupt the control flow of a loop. next skips the remaining code in the
loop and starts the next iteration. redo skips the remaining code in the loop and restarts the same iteration over again
without incrementing counters or reevaluating loop conditions. last skips the remaining code in the loop and terminates
the loop.

for @useful_things -> $item {

 next when 'towel';

 redo when .try_again;

 last when 'bomb';

 print "Are you sure you need your $item?";

}

4.3.3 Blocks

In Perl 6, every block is a closure, so you get consistent behavior throughout the language, whether the block is a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In Perl 6, every block is a closure, so you get consistent behavior throughout the language, whether the block is a
control structure, an argument passed to a subroutine, an anonymous subroutine reference, or the definition of a
named element such as a subroutine, method, or class. What is a closure? Closures are chunks of code that are tied to
the lexical scope in which they're defined. When they're stored and later executed at some point far removed from their
definition, they execute using the variables in their original scope, even if those variables are no longer accessible any
other way. It's almost as if they package up their lexical scope to make it portable. This example creates a closure that
prints a lexical variable. When the closure is executed (from some other lexical scope), it prints the variable from the
scope where it was defined, not the scope where it's executed:

my $person = "Zaphod";

$closure = { print $person; }

 . . .

my $person = "Trillian";

$closure(); # prints "Zaphod"

The fact that all blocks are closures has some implications. Every block can take arguments. This is how for creates a $_
alias for the iterator variable. Every block defines a lexical scope. Every block has the potential to be stored and
executed later. Whether a block is stored or executed immediately depends on the structure that uses it. The control
structures we've discussed so far all execute their blocks where they're defined. A bare block executes immediately
when it's alone, but is stored when it's in an assignment context or passed as a parameter:

executed immediately

{

 print "Zaphod";

}

stored

$closure = {

 print "Trillian";

}

4.3.3.1 my, our, temp, and let

my and our are different ways of declaring variables. my declares a variable in the current lexical scratchpad, while our
declares a lexical alias to a variable in the package symbol table:

my $lexical_var;

our $package_var;

state declares a lexical variable similar to my, but instead of reinitializing the value every time the block is executed it
preserves the previous value:

state $static_var;

temp and let are not declarations; they are run-time commands to store the current value of a variable so it can be
restored later. temp variables always restore their previous value on exiting the lexical scope of the temp, while let
variables keep the temporary value, unless the lexical scope of the let is exited under an error condition (an undef or
empty-list return value, or an exception):

temp $throwaway;

let $hypothetical;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

temp and let don't change the value of the variable, they only store it.

4.3.3.2 Property blocks

Every block may have a series of control flow handlers attached to it. These are called property blocks because they are
themselves blocks (i.e., closures), attached as properties on the block that contains them. Property blocks are defined
within the block they modify, by an uppercase keyword followed by a block (they're also sometimes called NAMED
blocks):

NEXT {

 print "Coming around again."

}

Property blocks aren't executed in sequential order with the other code in the enclosing block—they are stored at
compile time and executed at the appropriate point in the control flow. NEXT executes between each iteration of a loop,
LAST executes at the end of the final iteration (or simply at the end of an ordinary block). PRE executes before
everything else—before all other properties and code in an ordinary block and before the first iteration of a loop. POST
executes after everything else—after all code and properties in an ordinary block and after the last iteration of a loop.
PRE and POST are intended for assertion checking and cannot have any side effects. CATCH, KEEP, and UNDO are related
to exception handling. KEEP and UNDO are variants of LAST and execute after CATCH. KEEP executes when the block exits
with no exceptions, or when all exceptions have been trapped and handled; UNDO executes when the block exits with
untrapped exceptions. There can be only one CATCH in a block, but there's no limit on the other types of property
blocks.

This example prints out its loop variable in the body of the block:

for 1..4 {

 NEXT { print " potato, "; }

 LAST { print "." }

 print;

}

Between each iteration, the NEXT block executes, printing "potato". At the end of the final iteration, the LAST block
prints a period. So the final result is:

1 potato, 2 potato, 3 potato, 4.

Property blocks are lexically scoped within their enclosing block, so they have access to lexical variables defined there:

for 5..7 -> $count {

 my $potato = "$count potato, ";

 NEXT {

 print $potato;

 }

 LAST {

 print $potato, "more.";

 }

}

In this example, the lexical variable $potato is redefined on every iteration and then printed from within the NEXT or LAST
block. So the final result is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

block. So the final result is:

5 potato, 6 potato, 7 potato, more.

4.3.3.3 Exceptions

There are two types of exceptions: error exceptions and control flow exceptions. All exceptions are stored in the error
object $!. All exception classes inherit from the Exception class.

Error exceptions are thrown by die or (under use fatal) fail. Any block can be an error exception handler—all it needs is a
CATCH block. CATCH blocks always topicalize $!, so the simplest way to test for a particular exception is to compare it to
a class name using a when statement (see the Section 4.2.12 earlier in this chapter):

CATCH {

 when Err::Danger { warn "fly away home"; }

}

The $! object will also stringify to its text message if you match it against a pattern:

CATCH {

 when /:w I'm sorry Dave/ { warn "HAL is in the house."; }

}

If the CATCH block is exited by an explicit break statement, or by an implicit break in a when or default case, it marks the
exception as clean. A when case with a continue statement leaves the exception unhandled, since continue skips the
implicit break. If the exception isn't marked clean by the end of the CATCH block, CATCH rethrows the exception so an
outer block can catch it.

Once an exception is thrown, execution skips straight to the CATCH block and the remaining code in the block is
skipped. If the block has POST, KEEP, or UNDO property blocks, they will execute after the CATCH block.

If you want to limit the effects of an error exception, you can wrap the error throwing code in a try block. A try block
without a CATCH block provides a default CATCH that catches all exceptions and, marks them as clean, and causes the
try to return undef when any exception was caught. A try block is also a handy bit of self-documentation.

try {

 may_throw_exception();

 CATCH {

 when Error::Moof { warn "Caught a Moof error."; }

 }

}

Control flow exceptions handle alterations in the flow of control that aren't errors. When you call next to skip the
remaining code in the loop and go on to the next iteration, you're actually throwing a control exception. These
exceptions are caught by the relevant control structure: next and last exceptions are caught by loops, a return exception
is caught by a subroutine or method, etc.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 4. Basic Syntax
Perl 6 is a work in progress, so the syntax is rapidly changing. The next four chapters are likely to be outdated by the
time you read them. Even so, they provide a good baseline. If you start here, you'll only have to catch up on a few
months of changes (starting with the design documents after Apocalypse 12), instead of several years worth.

Pretend for a moment that you don't know anything about Perl. You heard the language has some neat features, so you
thought you might check it out. You go to the store and pick up a copy of Programming Perl because you think this
Larry Wall guy might know something about it. It's the latest version, put out for the 6.0.1 release of Perl. It's not a
delta document describing the changes, it's an introduction, and you dive in with the curiosity of a kid who got a
telescope for his birthday. These chapters are a glimpse down that telescope.

There's plenty of time later to analyze each feature and decide which you like and which you don't. For now, take a step
back and get a feel for the system as a whole, for what it'll be like to work in it.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.1 Using Subroutines
The most basic subroutine declaration is simply the sub keyword, followed by the name of the sub, followed by the block
that defines the sub:

sub alert {

 print "We have normality.";

}

The simplest subroutine call is just the subroutine name followed by a comma-separated list of variables or values:

$result = sum($a, $b, 42, 57);

Arguments are also sometimes passed as anonymous pairs:

$result = sum(first => 12, second => 21);

Parentheses are optional on calls to subroutines that have been predeclared, but required for all other calls. Including
the & sigil before the subroutine name in a call will not turn off signature checking. In fact, in most contexts prefixing
the subroutine name with & will return a reference to the subroutine instead of calling the subroutine.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.10 Lvalue Subroutines
Lvalue subroutines pretend to be assignable values, just like any ordinary variable. They do this by returning a proxy
variable which handles the lvalue behavior for the subroutine (fetch, store, etc.). You declare an lvalue subroutine with
the is rw property:

sub storage is rw { . . . }

storage() = 5;

An lvalue sub can return an ordinary variable which acts as a proxy, return the return value from another lvalue sub, or
it can return a tied proxy variable defined within the sub:

my sub assignable is rw {

 my $proxy is Proxy(

 FETCH => { . . . },

 STORE => { . . . },

 . . .

);

 return $proxy;

}

This example defines an lvalue sub named assignable. It creates a proxy variable tied to a Proxy class that defines FETCH
and STORE tie methods on the fly.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.11 Macros
Macros are a powerful way of manipulating source code at compile time. Macros must be declared before they're called.
A call to a macro routine executes as soon as it's parsed. The parser substitutes the return value from the macro into
the parse tree in place of the macro call. If a macro returns undef, it makes no entry in the parse tree. So, the macro
disappear takes a single string argument and returns undef. Any call to disappear is replaced at compile time with nothing,
just as if it were commented out.

macro disappear (Str $thinair) {

 return;

}

 . . .

disappear("Some text you'll never see");

If a macro returns a string, the string is parsed as Perl source code, and the resulting parse tree replaces the macro
call. So, anywhere the macro twice is called, it is replaced at compile time by a for modifier:

macro twice {

 return "for 1..2";

}

 . . .

print "\n" twice; # same as: print "\n" for 1..2;

If a macro returns a block, that block is parsed as a closure, and the resulting parse tree replaces the macro call. So,
when the reverse_numeric macro is called, the parser substitutes the block { $^b <=> $^a } in place of the call:

macro reverse_numeric {

 return { $^b <=> $^a };

}

 . . .

sort reverse_numeric, @values;

If a macro returns a parse tree, the parser substitutes it directly for the macro call. The returned tree may be the
original parse tree, a modified parse tree, or a manufactured parse tree.

By default, a call to a macro is parsed just like an ordinary subroutine call, so it can take no arguments or a comma-
separated list of arguments. But, macros can also modify the way their arguments are parsed, by adding an is parsed
trait. The trait takes a rule as an argument, and will parse whatever code follows using that rule instead of the normal
rule for parsing subroutine arguments. So, the macro funky essentially translates a "ValSpeak" subroutine call into an
ordinary Perl subroutine call. It takes a single string argument, which it parses as a sequence of word-forming
characters, surrounded by the strings "like" and ", you know". (For more on rules, see Chapter 7.) It then returns a
block that will call the plain subroutine with the single argument passed to funky.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

block that will call the plain subroutine with the single argument passed to funky.

macro funky (Str $whatever)

 is parsed (/:w like (\w+), you know/)

 {

 return { plain($whatever); };

 }

 . . .

 funky like whatever, you know

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.2 Parameters
One of the most significant additions to subroutines in Perl 6 is named formal parameters. The parameter list, often
called the signature of the subroutine, is part of the subroutine declaration:

sub standardize ($text, $method) {

 my $clean;

 given $method {

 when 'length' { $clean = wrap($text, 72); }

 when 'lower' { $clean = lowercase($text); }

 . . .

 }

 return $clean;

}

The subroutine standardize has two scalar parameters, $text and $method, so it is called with two arguments, each a
scalar value. The parameters are lexical variables within the body of the sub. They never need to be explicitly declared
as my, even under use strict because they're declared by the subroutine declaration.

In a sub with no parameter list, all arguments are passed in the @_ array:

sub sum {

 my $sum;

 for @_ -> $number {

 $sum += $number;

 }

 return $sum;

}

Subroutines with defined parameter lists don't get an @_ array.[2] If you want a subroutine that takes no arguments
(and complains when arguments are passed), define it with an empty parameter list ().

[2] In fact, a simple subroutine without a signature actually has an implicit signature of *@_. See Section 5.2.3
later in this chapter.

Subroutine calls normally provide a nonflattening list context, which means that any array or hash passed into a
subroutine is treated as a single argument. An array parameter in the signature expects to be passed an actual array or
arrayref argument, and a hash parameter expects a hash or hashref argument:

sub whole (@names, %flags) {

 . . .

}

whole(@array, %hash);

5.2.1 Optional Parameters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Every subroutine call checks its signature to make sure the arguments it gets match the declared parameter list. A
mismatch in the number or kind of arguments is an error. But since requiring every declared parameter to be passed in
on every call isn't nearly flexible enough for the average programmer, Perl 6 also allows optional parameters. Each
optional parameter is marked with a ? before the parameter name:

sub someopt ($required1, $required2, ?$optional1, ?$optional2) {

 . . .

}

So, someopt will accept anywhere from two to four arguments. You can have any number of required and optional
parameters, but all the required parameters must come before the first optional parameter. This is largely a common
sense restriction. If you want to leave some elements off a list of arguments, it has to be the ones at the end, because
positional arguments are bound to the parameters in strict linear order. All these calls to someopt are fine:

someopt('req1', 'req2', 'opt1', 'opt2');

someopt('req1', 'req2', 'opt1');

someopt('req1', 'req2');

5.2.2 Named Parameters

Any argument can be passed either by position with an ordered list of arguments, or by name with an unordered list of
pairs. (See Section 5.3.1 later in this chapter for more details.) Sometimes you'll want to specify that certain
parameters will be passed only by name, never by position. Named parameters are marked with a + before the
parameter name:

sub namedparams ($first, +$second, +$third) {

 . . .

}

namedparams(1, second => 2, third => 3);

Named parameters are always optional. They must come after all positional parameters—that is, after the unmarked
required parameters and the optional parameters marked with a ?. Again, this is largely a matter of common sense.
Though named parameters are completely ignored when binding a list of positional arguments, the parser and the
person maintaining your code will both be profoundly grateful they don't have to sort through a mixed bag of positional
and named parameters to find the positional parameter list.

5.2.3 Variadic Parameters

Another element of flexibility Perl developers will expect is the ability to pull a list of arguments into an array or hash
parameter. These are known as variadic parameters because they can take a variable number of arguments. In Perl 6,
an array parameter with a * before the parameter name will slurp up all the positional arguments that haven't already
been bound to another positional parameter.[3] So, the following call to transport binds $arthur to @names[0], and $ford to
@names[1]:

[3] You may notice that this is the same symbol as the flattening/slurping operator from Section 4.2.12 in Chapter
4.

sub transport ($planet, *@names) {

 . . .

}

transport('Magrathea', $arthur, $ford);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

transport('Magrathea', $arthur, $ford);

If the variadic array parameter is the only positional parameter in the signature, it will take all the positional
arguments:

sub simple (*@_) { . . . }

is the same as

sub simple { . . . }

A hash parameter with a * before the name will slurp up all the named arguments that haven't already been bound to
another parameter. So, the following call to transport binds the value of the pair argument with the key 'planet' to the
parameter $planet, but all the other pairs become part of the %flags hash (more on this in Section 5.3.1 later in this
chapter):

sub transport ($planet, *%flags) { . . . }

transport('name' => 'Arthur',

 'luggage' => 'lost',

 'planet' => 'Magrathea',

 'towel' => 'required');

When they're combined with other kinds of parameters, variadic parameters must come after all positional parameters
in the signature. They can either precede or follow the named parameters.

5.2.4 Typed Parameters

Signature checking is sensitive not only to the number of arguments and the variable type (defined by the $, @, %, or &
symbol), but also to the value type. (See Section 4.1.8 in Chapter 4 for more details on value and variable types.) The
parameter type is defined before the parameter name and before any symbols for optional, named, or variadic
parameters:

sub typedparams (Int $first, Str ?$second) { . . . }

The parameter type declares the type of argument that can be bound to it. The parameter and argument types have to
be compatible, but not identical.

Type checking happens at compile time whenever possible, because it's faster and allows for optimizations. Otherwise,
type checking happens at run time. So, if all the arguments passed to the subroutine are explicitly typed, the types will
be checked at compile time. If the arguments aren't explicitly typed, the run-time checks will make sure the scalars
contain an integer value and a string value.

5.2.5 Properties on Parameters

By default, parameters are aliases to the original arguments (pass-by-reference), but they're marked as constant so
they cannot be modified within the body of the subroutine. The is rw property marks a parameter as modifiable, so
changes to the parameter within the body of the sub modify the original variable passed in:

sub modifyparams ($first is rw, $second is rw) { . . . }

The is copy property marks a parameter as pass-by-value, so the parameter is a lexically scoped copy of the original
value passed in:

sub passbyvalue ($first is copy, $second is copy) { . . . }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2.6 Default Values for Parameters

Sometimes it is useful to be able to define a default value for an optional or named parameter. The = operator marks
the default value.[4] The parameter takes the default value only if the call doesn't pass an argument for that
parameter.

[4] This isn't an assignment; it's only a reuse of the = symbol in a different context.

sub default_vals ($required, ?$optional = 5) { . . . }

5.2.7 Placeholder Variables

Placeholder variables are a simple alternative to formal parameter lists. They have many of the advantages of ordinary
parameters, without the inconvenience of declaring a signature. You just use variables with a caret after the sigil
—$^name, @^name, %^name, or &^name—within the subroutine's block, and the arguments passed into the subroutine
are bound to them.

@sorted = sort { $^a <=> $^b } @array;

The order of the parameters is determined by the Unicode sorting order of the placeholders' names, so the following
example acts as if it has a formal parameter list of ($^milk, $^sugar, $^tealeaves):

$make_tea = {

 my $tea = boil $^tealeaves;

 combine $tea, $^sugar, $^milk;

 return $tea;

}

Placeholders are handy in short subroutines and bare blocks, but soon become unwieldy in anything more complicated.

5.2.8 Return Values

In addition to a signature for the incoming parameters to a subroutine, you can also declare a partial signature, or
siglet, for the values returned from a subroutine. Return siglets declare the type of each return value, but they don't
bind a named variable to the returned value and can't define a default value for the return. In the declaration, the
return signature goes before the sub keyword or after the parameter list attached with the returns keyword.

sub get_value (Int $incoming) returns Int { . . . }

same as

Int sub get_value (Int $incoming) { . . . }

Both syntaxes have exactly the same effect, but using the returns keyword is usually clearer when the sub has multiple
return values:

sub get_values (Str $incoming) returns (Int, Str) { . . . }

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.3 Arguments
The standard way of passing arguments is by position. The first argument passed in goes to the first parameter, the
second to the second, and so on:

sub matchparams ($first, $second) { . . . }

matchparams($one, $two); # $one is bound to $first

 # $two is bound to $second

5.3.1 Named Argument Passing

You can also pass arguments in by name, using a list of anonymous pairs. The key of each pair gives the parameter's
name and the value of the pair gives the value to be bound to the parameter. When passed by name, the arguments
can come in any order. Optional parameters can be left out, even if they come in the middle of the parameter list. This
is particularly useful for subroutines with a large number of optional parameters:

sub namedparams ($first, ?$second, ?$third is rw) { . . . }

namedparams(third => 'Trillian', first => $name);

Sometimes the option syntax for pairs is clearer than the pair constructor syntax:

namedparams :third('Trillian'), :first($name);

5.3.2 Flattening Arguments

To get the Perl 5-style behavior where the elements of an array (or the pairs of a hash) flatten out into the parameter
list, use the flattening operator in the call to the subroutine. Here, $first binds to @array[0] and $second binds to
@array[1]:

sub flat ($first, $second) { . . . }

flat(*@array);

A flattened hash argument acts as a list of pairs, which are bound to the parameters just like ordinary named
arguments. So, $first is bound to %hash{'first'}, and $second is bound to %hash{'second'}:

sub flat_hash ($first, $second) { . . . }

%hash = (first => 1, second => 2);

flat_hash(*%hash);

Flattened hash arguments are useful for building up hashes of named arguments to pass in all at once.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.3.3 Argument Order Constraints

Arguments to subroutine calls have a standard general order. Positional arguments, if there are any, always go first.
Named arguments go after any positional arguments. Variadic arguments always go at the end of the list.

order($positional, named => 1, 'va', 'ri', 'ad', 'ic');

Positional arguments are first so the parser and the person maintaining the code have an easier time associating them
with positional parameters. Variadic arguments are at the end because they're open-ended lists.

If a subroutine has only required and variadic parameters, you can always call it with a simple list of positional
arguments. In this example, 'a' is bound to $req and the rest of the arguments go to the slurpy array:

sub straight_line ($req, *@slurpy) { . . . }

straight_line('a', 'b', 'c', 'd', 'e');

If a subroutine has some optional parameters and a variadic array you can call it with a simple list of positional
arguments, but only if you have arguments for all the optional parameters. In this example, 'a' is bound to $req, 'b' is
bound to $opt, and the rest of the arguments go to the slurpy array:

sub mixed ($req, ?$opt, *@slurpy) { . . . }

mixed('a', 'b', 'c', 'd', 'e');

If you want to skip some of the optional parameters, you have two choices. When the argument list has at least one
named argument, the parser knows to start the variadic list right after the named arguments end. This example binds
'a' to $req, binds 'opt' to $opt, skips $another, and puts the rest of the arguments in the variadic array:

sub mixed ($req, ?$opt, ?$another, *@slurpy) { . . . }

mixed('a', 'opt' => 1, 'b', 'c', 'd', 'e');

If you want to skip all the optional parameters you need to use the <= = operator in place of the comma to mark where
the variadic list starts. This example binds 'a' to $req, skips $opt and $another, and puts all the rest of the arguments in
the variadic array:

mixed('a' <= = 'b', 'c', 'd', 'e');

You have to watch out for optional and variadic parameters when you modify subroutines already in use. Adding an
extra optional parameter to a signature with a variadic array will break any calls that passed all positional arguments.
You could suggest that all users call your subroutines with <= = in case you decide to change them later, or you could
just add the new parameters as named parameters instead of optional parameters. Named parameters ignore positional
arguments, so this version of the subroutine puts 'b' through 'e' in the variadic array with or without any named
arguments in the call:

sub mixed ($req, +$opt, +$another, *@slurpy) { . . . }

mixed('a', 'opt' => 1, 'b', 'c', 'd', 'e');

mixed('a', 'b', 'c', 'd', 'e');

As usual, there's more than one way to do it.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.4 Subroutine Stubs
To declare a subroutine without defining it you give it a body consisting of nothing but the . . . (or "yada, yada, yada")
operator. So, all the preceding examples that look like pseudocode with { . . . } for their body are actually valid
subroutine declarations.

sub stubbly (Str $name, Int ?$days) { . . . }

When you later define the subroutine, the signature and defined traits must exactly match the declaration.

sub stubbly (Str $name, Int ?$days) {

 print "$name hasn't shaved in $days day";

 print "s" if $days > 1;

}

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.5 Subroutine Scope
Just like variables, subroutine names are simply entries in a symbol table or lexical scratchpad. So, all subroutines live
in a particular scope, whether it's lexical, package, or global scope.

5.5.1 Package-Scoped Subroutines

Package scope is the default scope for subs. A sub that is declared without any scope marking is accessible within the
module or class where it's defined with an unqualified call, like subname(), and accessible elsewhere with a fully
qualified call using the Package::Name::subname() syntax.[5]

[5] Certain levels of strictness may require the fully qualified name everwhere.

module My::Module {

 sub firstsub ($param) { . . . }

 sub secondsub {

 mysub('arg'); # call the subroutine

 }

}

module Other::Module {

 use My::Module;

 sub thirdsub {

 My::Module::firstsub('arg');

 }

}

This example declares two modules, My::Module and Other::Module. My::Module declares a subroutine firstsub and calls it
from within secondsub. Other::Module declares a subroutine thirdsub that calls firstsub using its fully qualified name.

5.5.2 Lexically Scoped Subroutines

Subroutines can also be lexically scoped, just like variables. A myed subroutine makes an entry in the current lexical
scratchpad with a & sigil. Lexically scoped subs are called just like a normal subroutine:

if $dining {

 my sub dine ($who, $where) {

 . . .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 . . .

 }

 dine($zaphod, "Milliways");

}

dine($arthur, "Nutri-Matic"); # error

The first call to the lexically scoped dine is fine, but the second would be a compile-time error because dine doesn't exist
in the outer scope.

The our keyword declares a lexically scoped alias to a package scoped subroutine (it has an entry both in the symbol
table of the current package and in the current lexical scratchpad). This is useful under certain levels of strictness.

if $dining {

 our sub pay ($when, $what) {

 . . .

 }

 pay($tuesday, "hamburger");

}

5.5.3 Globally Scoped Subroutines

Globally scoped subroutines are visible everywhere, unless they're overridden by a lexical or package scoped subroutine
of the same name. They are declared with the * symbol before the name of the subroutine:

sub *seen_by_all ($why, $how) { . . . }

Most built-ins will be globally scoped.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.6 Anonymous Subroutines
Anonymous subroutines do everything that ordinary subroutines do. They can declare a formal parameter list with
optional and required parameters, take positional and named arguments, and do variadic slurping. The only difference
is that they don't define a name. But since you can't call a subroutine if you have no way to refer to it, they have to get
the equivalent of a name somewhere, whether they're assigned to a variable, passed as a parameter, or aliased to
another subroutine.

$make_tea = sub ($tealeaves, ?$sugar, ?$milk) { . . . }

The arrow operator used with for and given is just another way of defining anonymous subroutines. The arrow doesn't
require parentheses around its parameter list. It can't declare named subs, and can't declare a return type.

$make_tea = -> $tealeaves, ?$sugar, ?$milk { . . . }

A bare block can also define an anonymous subroutine, but it can't define a formal parameter list on the sub and can't
define a named sub:

$make_tea = {

 my $tea = boil 'tealeaves';

 combine $tea, 'sugar', 'milk';

}

You can't use the return statement within an arrow sub or bare block sub to return from an anonymous sub. Blocks and
arrow subs are commonly used for ordinary control flow, so return ignores them and only returns from subroutines
defined with sub keyword or methods.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.7 Multi Subroutines
You can define multiple routines with the same name but different signatures. These are known as "multisubs" and are
defined with the multi keyword before sub. They're useful if you want a routine that can handle different types of
arguments in different ways, but still appear as a single subroutine to the user. For example, you might define an add
multisub with different behavior for integers, floats, and certain types of numeric objects:

multi sub add (Int $first, Int $second) { . . . }

multi sub add (Num $first, Num $second) { . . . }

multi sub add (Imaginary $first, Imaginary $second) { . . . }

multi sub add (MyNum $first, MyNum $second) { . . . }

When you later call the routine:

add($apples, $oranges);

it will dispatch to the right version of add based on the types of the arguments passed to it. The parameters used for
dispatch selection are called invocants. If you want to use a limited set of parameters as invocants, mark the boundary
between invocant parameters and the rest of the signature with a semicolon:

multi sub add (Int $first, Int $second: Int $third) { . . . }

This version of add will dispatch based on the types of the first two arguments passed in, and ignore the type of the
third.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.8 Curried Subroutines

Currying[6] allows you to create a shortcut for calling a subroutine with some preset parameter values. The assuming
method takes a list of named arguments and returns a subroutine reference, with each of the named arguments bound
to the original subroutine's parameter list. If you have a subroutine multiply that multiplies two numbers, you might
create a subref $six_times that sets the value for the $multiplier parameter, so you can reuse it several times:

[6] The term "currying" is drawn from functional languages and is named in honor of logician Haskell Curry.

sub multiply ($multiplicand, $multiplier) {

 return $multiplicand * $multiplier;

}

$six_times = &multiply.assuming(multiplier => 6);

$six_times(9); # 54

$six_times(7); # 42

 . . .

You can also use binding assignment to alias a curried subroutine to an ordinary subroutine name instead of a scalar
variable:

&six_times := &multiply.assuming(multiplier => 6);

six_times(7); # 42

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.9 Wrapped Subroutines
Sometimes you might want to wrap extra functionality around a subroutine that was already defined (perhaps in a
standard module), but still call it with the same name. The .wrap method is similar to the .assuming method, but more
powerful. It takes a subroutine reference as an argument and returns an ID object. Inside the subref wrapper, the call
statement marks the point where the original subroutine will be executed.

$id = &subname.wrap ({

 # preprocess arguments

 # or execute additional code

 call;

 # postprocess return value

 # or execute additional code

})

subname(. . .); # call the wrapped subroutine

By default, the inner subroutine is passed the same arguments as the wrapping subroutine, and the wrapping
subroutine returns the same result as the inner subroutine. You can alter the arguments passed to the inner subroutine
by adding an explicit argument list to call, and alter the outer return value by capturing the result from call and explicitly
returning a value in the wrapper.

$id = &subname.wrap (sub (*@args) {

 # preprocess arguments

 $result = call('modified', 'arguments');

 # postprocess return value

 return $result;

})

A subroutine can have multiple wrappers at the same time. Each new wrapper wraps around the previous one, and the
outermost wrapper executes first. The ID object returned by .wrap allows the .unwrap method to remove a specific
wrapper:

&subname.unwrap($id);

If you'd rather not manually unwrap your sub, wrap a temped version instead. The temp automatically removes the
wrapper at the end of its scope.

{

 temp &subname.wrap ({ . . . })

 subname(. . .);

}

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 5. Subroutines
Subroutines are reusable units of code. They can be called from just about anywhere, and return control to the point of
the call when they finish executing. They can be passed zero or more arguments[1] and return zero or more results.
Subroutines can be named or anonymous. They can be lexically scoped, package scoped, or globally scoped. "Multi"
subs allow multiple subroutines to have the same name as long as they have different parameter lists.

[1] Following the example set in Apocalypse 6, throughout this chapter we'll use the term "argument" for the values
passed into a subroutine call and "parameter" for the lexical variables declared in the subroutine's signature.

Methods are significantly different from subroutines. In Perl 6, they're even distinguished by a separate keyword,
method. These differences will be discussed in Chapter 6.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.1 Using Objects
You can declare a class in one of two ways. The most familiar syntax for class declaration ends in a semicolon. The rest
of the file after the declaration defines the class. With this syntax there can be only one class or module declaration in a
file.

class Heart::Gold;

class definition follows

 . . .

The other syntax for class declaration wraps the definition in a block. You can have as many of these as you like in a
file, and even embed one class within the block of another.

class Heart::Gold {

 # class definition enclosed

 . . .

}

With a file definition, all code that follows the class declaration is defined in the Heart::Gold namespace. With a block
definition, everything within the block is defined in the class's namespace.

To create a new object from a class, simply call its new method. The default new method in the universal base class
Object creates and initializes an object.

$ship = Heart::Gold.new(length => 150);

There's a shortcut for typed variables so you don't have to give the name of the class twice:

my Heart::Gold $ship .= new(length => 150);

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.2 Classes
Classes are the "cookie cutters" that build objects. Just as a module groups subroutines in a package, a class groups
methods in a package. Classes can also contain subroutines, submethods, and multimethods. However, classes are
significantly different from modules, primarily because they construct objects. Objects don't just define functionality,
they also hold data. In Perl 5 objects were simply hashes (or arrays, or . . .) bestowed with special powers by bless.
Perl 6 objects can still be simple blessed data structures, but the default is now an object that hides the details of its
internal representation—a true opaque object.

6.2.1 Attributes

Attributes are the data at the core of an opaque object. Other languages have called them instance variables, data
members, or instance attributes. Attributes are declared with the has keyword, and generally have a "." after the sigil:

class Heart::Gold {

 has int $.length;

 has int $.height is rw;

 has @.cargo;

 has %.crew;

 ...

}

Attributes aren't directly accessible outside the class, but inside the class they act just like ordinary variables:

print $.length;

$.length = 140;

Attributes also automatically generate their own accessor method with the same name as the attribute. Accessor
methods are accessible inside or outside the class. By default, accessors are read-only, but the is rw property marks an
accessor as read/write.

$value = $obj.height; # returns the value of $.height

$obj.height = 90; # sets the value of $.height

6.2.2 Methods

Methods are similar to subroutines, but different enough to merit their own keyword, method. The most obvious
differences are that they're invoked on an object (or class), and they pass their invocant (that is, the object or class on
which they were invoked) as an implicit argument. The invocant is marked off from the other parameters in the list by a
colon:

method initiate_drive ($self: $power, $tea) {

 . . .

}

Methods topicalize their invocant, so it's always accessible as $_, even if the method doesn't include it in the parameter
list. This is particularly handy since any method called without an explicit object defaults to $_:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

list. This is particularly handy since any method called without an explicit object defaults to $_:

method shut_down ($drive) {

 if .safe {

 .powerdown($drive);

 }

 return .status;

}

Method declarations support the same syntax as subroutines for optional, named, variadic, and typed parameters,
default values for parameters, properties on parameters, and return values. Method calls support positional and named
argument passing just like subroutines. (See Chapter 5 for more details on this syntax.)

You can call a method in one of two ways. The standard method call is connected to the object with the . operator:

$ship.shut_down($infinity);

An indirect object call is an alternative to the standard method call. This syntax looks like an ordinary subroutine call,
except that the invocant is separated from the other arguments by a colon:

shut_down($ship: $infinity);

The parentheses are optional unless the method call is ambiguous without them:

shut_down $ship: $infinity;

6.2.3 Inheritance

Any class can inherit methods from another class using the is keyword in the class declaration. You may have noticed
that this is the same keyword as compile-time properties. The fact that a class inherits from some other class is really
just a trait of the inheriting class.

use Ship;

class Heart::Gold is Ship {

}

Any class can inherit from multiple parent classes:

class Heart::Gold is Ship is Improbable {

}

Within a derived class, inherited attributes are accessible only through their accessor methods:

class Ship {

 has $.height;

 has $.length;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 has $.length;

 . . .

}

class Heart::Gold is Ship {

 method dimensions ($self:){

 print "$self.length x $self.height \n";

 }

}

6.2.4 Construction, Initialization, and Destruction

The default new method provided by the Object base class constructs and initializes opaque objects. It does this by
calling bless, which calls the CREATE and BUILDALL methods. The CREATE method constructs an opaque object. The
BUILDALL method calls the initializers for all inherited classes and finally the class's own initializer. BUILDALL actually calls
the parent's BUILDALL method, which calls its parent's BUILDALL method, etc. The initializer for each class is BUILD. The
default BUILD initializes the attributes of the object with named arguments to new, matching the name of the argument
to the name of the attribute.

There are a number of ways to change the default object construction and initialization behavior. If you override new so
that it passes a data structure as the first argument to bless, it will construct a traditional blessed hash (or array, or . . .
) object instead of calling CREATE to construct an opaque object:

$class.bless({answer => '42'});

If you override the CREATE method you can alter the way objects are constructed. If you override the BUILDALL method
you can change how the initializers for inherited classes are called. If you override the BUILD method you can change
how the current class initializes objects and their attributes. Overriding BUILD will be common. Overriding CREATE and
BUILDALL will be rare, since their default behavior is designed to handle everything from the simple opaque object to
inheriting from classes written in other languages.

Object destruction traverses the inheritance hierarchy in the reverse order of object initialization. Objects are created
from least derived to most derived and destroyed from most derived to least derived. The DESTROYALL method first calls
the DESTROY method of the current class, and then calls the DESTROYALL method of the parent class (which calls its own
DESTROY and then its own parent's DESTROYALL, etc). You will rarely need to define a DESTROY method, since the
interpreter handles memory deallocation. It can be useful for class-specific cleanup, like closing a socket or filehandle.

6.2.5 Lexically Scoped Classes

Classes in Perl 6 are first class entities with entries in symbol tables or lexical scratchpads.[1] This means classes can be
lexically scoped, just like variables or subroutines:

[1] If you're curious, :: is the sigil for classes and packages, though it's rarely needed in code.

my class Infinite::Improbablity {

 . . .

}

$drive = Infinite::Improbability.new();

A lexical class works just like any other class, but is accessible by name only within the lexical scope where it's defined.

6.2.6 Anonymous Classes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also define anonymous classes and create objects from them:

$class = class {

 . . .

}

$object = $class.new();

A class's block is a closure, just like every other block, so it has access to variables from its defining scope, no matter
where it's actually used.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.3 Roles
A role is a reusable unit of class code. Much like a module exports subroutines into your program or another module, a
role exports methods and attributes into a class. If your first thought on reading this is "Isn't that just inheritance?",
then welcome to a whole new world. Inheritance is one way to reuse code, but many relationships other than isa are
possible. Various languages pick an alternative and provide syntax for it: Ruby has mixins, Java has interfaces, and
some versions of Smalltalk have traits. Perl roles go a bit beyond all of them.

You define a role using the role keyword:

role Hitchhiker { . . . }

You pull a role into a class using the does keyword:

class Arthur does Hitchhiker { . . . }

Roles cannot instantiate objects directly. To create an object that makes use of a role, you make a new object from a
class that uses that role:

$person = Arthur.new(. . .);

6.3.1 Composition

Like classes, roles can define both attributes and methods:

role Hitchhiker {

 has $.towel;

 method thumb_ride ($self: $ship) { . . . }

 . . .

}

Unlike classes, when you pull a role's methods and attributes into a class they aren't maintained in an inheritance
hierarchy to be searched later. Instead, they are composed into the class almost as if they had been defined in that
class. All methods defined in the role are accessible in the composed class, even if they wouldn't be inherited. All
attributes defined in the role are accessible in the composed class by their direct $.name, not just by their accessor
method.[2]

[2] Though you'll probably want to use the accessor methods anyway, based on the principles of encapsulation and
ease of refactoring.

One advantage of composition is that classes can reuse behavior, even if they have no connection that would justify an
inheritance relation. Suppose you want to define two classes: Arthur and Ford. Arthur inherits from Human and has all the
behaviors and qualities of a human creature. Ford, on the other hand, has the behaviors and qualities of a creature from
Betelgeuse:

class Arthur is Human does Hitchhiker { . . . }

class Ford is Betelgeusian does Hitchhiker { . . . }

Inheritance makes sense in this case—the inherited classes are core, defining characteristics of the resulting class. But
the Hitchhiker role isn't a defining part of Ford and Arthur—they weren't always hitchhikers. The role just adds some
useful behavior to the class.

6.3.1.1 Mixins

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.3.1.1 Mixins

In some situations you may want to add a role at run time instead of at compile time. Perhaps you want to choose
different roles based on how the object is used, or perhaps the role's behavior shouldn't be available until part-way
through the life of an object. The same does keyword adds roles at run time, but operates on an object instead of a
class. In this example, Arthur starts as an ordinary human, and only adds the Hitchhiker role later in life (after the Vogons
destroy his home planet):

class Arthur is Human { . . . }

$person = Arthur.new;

$person.live_quietly until $vogon_ship.arrive;

$person does Hitchhiker;

$person.thumb_ride($vogon_ship);

6.3.1.2 Interfaces

An interface is a reusable unit that defines what methods a class should support, but doesn't provide any
implementations for those methods. In Perl 6, interfaces are just roles that define only method stubs and no attributes.
This example defines an interface for products shipped by the Sirius Cybernetics corporation:

role Sirius::Cybernetics {

 method share { . . . }

 method enjoy { . . . }

}

No matter whether the product is an elevator, a nutrimatic machine, or an automatic door, it must support the share
and enjoy methods. Now, since these products are so very different, none will implement the methods in quite the same
way, but you're guaranteed the products will be able to "Share and Enjoy" in one way or another (generally in an
irritating way).

6.3.2 Conflicts

Since a class pulls in roles by composition instead of inheritance, a conflict results when two roles both have a method
with the same name. So, the Hitchhiker and Writer roles both define a lunch_break method (lunch breaks being vitally
important in both the publishing and footslogging industries):

role Hitchhiker {

 method lunch_break {

 .suck($.towel);

 .drink($old_janx);

 }

 . . .

}

role Writer {

 method lunch_break {

 my $restaurant = Jolly::Nice::Restaurant.new;

 .dine($restaurant);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 .dine($restaurant);

 }

 . . .

}

If the Ford class does the Writer role as well as the Hitchhiker role, which kind of lunch break should he take? Since roles
are composed without hierarchy or priority, both methods are equally valid choices. Rather than randomly selecting an
implementation for you, Perl 6 simply requires you to choose one. There are several ways to do this. One is to define a
method of the same name in the class itself. This method might simply call the method from one of the roles:

class Ford does Hitchhiker does Writer {

 method lunch_break { .Writer::lunch_break(@_); }

}

Or the method might select between the possible implementations based on one of the arguments or some condition in
the object. This example checks the string value returned by the .location method to find out which lunch break is
appropriate:

class Ford does Hitchhiker does Writer {

 method lunch_break ($self: $arg) {

 given (.location) {

 when "Megadodo Office" { $self.Writer::lunch_break($arg); }

 when "Ship Cargo Hold" { $self.Hitchhiker::lunch_break($arg); }

 }

 }

}

You can also get a finer-grained control over method conflict resolution using delegation syntax (explained in the next
section). This example renames Hitchhiker's lunch_break method to snack in the composed class:

class Ford does Hitchhiker handles :snack«lunch_break» does Writer { . . . }

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.4 Delegation
Delegation is yet another possible relationship between an object and another body of code. Rather than pull methods
into a class, you call methods in another object as if they were methods of the class. In Perl 6, delegation can be done
in either a class or a role. A delegated object is simply an attribute defined in the class or role. The handles keyword
specifies which methods of the delegated object will act as methods of the class. This example declares that any calls to
the thumb_ride method on an object with the Hitchhiker role, will actually call the method on its $.thumb attribute:

role Hitchhiker {

 . . .

 has Electronic::Thumb $.thumb handles 'thumb_ride';

 . . .

}

The handles keyword accepts many variations in the syntax to delegate methods. You can pass it an array reference of
multiple method names:

has Electronic::Thumb $.thumb handles ['thumb_ride', 'sub_etha'];

or a quoted list:

has Electronic::Thumb $.thumb handles «thumb_ride sub_etha»;

A pair in place of a string method name gives the method a different name in the class. This example declares a
method named hitch in the class, but any calls to it are delegated to the thumb_ride method on the $.thumb object:

has Electronic::Thumb $.thumb handles :hitch«thumb_ride»;

If the method name is given as a pattern, it's a wildcard delegation and all methods that match that pattern will be
delegated to the attribute. This example delegates all methods that start with "thumb" to $.thumb:

has Electronic::Thumb $.thumb handles /^thumb/;

If the method name is a substitution, it does wildcard method renaming. This example would delegate a method call to
hitch_ride to a method named thumb_ride in $.thumb:

has Electronic::Thumb $.thumb handles (s/^hitch/thumb/);

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.5 Private and Public
By default, all methods and attribute accessors are public methods, so they can be called anywhere. You can also
declare private methods or accessors, which can be called only within the class where they're defined, or from certain
trusted classes. A private method is declared with a colon at the start of the name:

method :inaccessible ($self: $value) { . . . }

A private attribute is declared with a colon in place of the dot (.) in the name:

has $:hidden;

You call a private method or accessor with a colon in the call:

$object.:hidden(42);

The attribute variable ($:name or $.name) is never accessible outside the class, whether the attribute is public or private.

At first glance this might look like nothing more than the "encapsulation by convention" of Perl 5. It's actually much
more than that. The colon implicitly sets a private trait on the method or attribute. The encapsulation is enforced by the
interpreter. An external call to a private method will fail as if the method simply didn't exist. External queries to the
package symbol table for private methods also fail.

Only public methods are inherited by a derived class, but inherited public methods can call private methods from their
own class. Private methods and attributes in a role are private to the composed class, as if they were defined in that
class.

The one loophole in private methods is that a class can declare that it trusts certain other classes to allow those classes
to access its private methods. Roles cannot declare a trusted class. In this example, the Friendly class declares that it
trusts the Zaphod class:

class Friendly {

 trusts Zaphod; # probably a bad idea, really

}

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.6 Subroutines
You can define ordinary subroutines within a class or role. They cannot be invoked on an object with the
$object.methodname syntax and will never pass an implicit invocant argument. They aren't inherited but can be pulled in
with role composition. They're mainly useful for utility code internal to the class:

class Answer::Young;

has $.answer;

 . . .

sub is_valid ($value) {

 return 1 if 10 < $value < 42;

}

 . . .

method set_answer ($new) {

 $.answer = $new if is_valid($new);

}

Subroutines may be exported if the class also functions as a module.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.7 Submethods
A submethod is declared like a method, but behaves more like a sub in that it's not inherited but can be pulled in with a
role. Submethods are useful for inheriting interface without inheriting implementation—you can override a method from
a parent class without inflicting the changes on any child classes.

The Frogstar::A class defines a set of methods and attributes for the Frogstar Scout robots:

class Frogstar::A {

 has Laser::Beam $.beam;

 has Antimatter::Ray $.ray;

 has Electron::Ram $.ram;

 . . .

 method zap ($target) { $.beam.fire($target); }

 method shoot ($target) { $.ray.fire($target); }

 method smash ($target) { $.ram.fire($target); }

 . . .

}

In addition to methods for navigation, propulsion, etc., the Frogstar Scouts boast an astounding number of destructive
methods (as is to be expected). The Frogstar::B class inherits all of Frogstar::A's methods and attributes, and also adds its
own additional weaponry. Instead of defining a new method for the Zenon Emitter, the Frogstar Scout B overrides the
smash method to use the emitter:

class Frogstar::B is Frogstar::A {

 has Zenon::Emitter $.emitter;

 submethod smash ($target) { $.emitter.fire($target); }

}

It still smashes the target, only faster, as you might expect from a newer model. Since the overridden method was
declared as a submethod, it has no effect on the Frogstar Scout C, which inherits from Frogstar::B:

class Frogstar::C is Frogstar::B { . . . }

 . . .

$fighter = Frogstar::C.new(. . .);

$fighter.smash($floor); # uses the Electron::Ram

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.8 Multiple Dispatch
In the previous chapter, we mentioned multi subroutines. The multi keyword actually applies to any code object:
subroutines, methods, or submethods. As we said before, multi allows you to define multiple, different routines all with
the same name but different signatures. This example dispatches to a variant of the lunch method depending on the
types of the arguments:

multi method lunch (Lunching::Friar $who, Megadodo::Office $location) {

 print "Jolly nice restaurant.";

}

multi method lunch (Hitchhiker $who, Cargo::Hold $location) {

 print "Towel again.";

}

A member of the Lunching Friars of Voondon must always eat at a nice restaurant when he visits the offices of
Megadodo Publications. A hitchhiker in a cargo hold, however, will just have to settle for the nutrient solution soaked
into the corner of his towel.

A call to a multimethod has the same syntax as a call to a subroutine—the name of the routine followed by a list of
arguments:

lunch($zaphod, $where);

This call searches outward through its lexical, package, and global scopes for a matching name. If it finds a nonmulti
sub it makes an ordinary subroutine call. Otherwise, it generates a list of multi subs, methods, or submethods with that
name and dispatches to the closest matching signature.(For more complete details on the dispatch process, see
Apocalypse 12.)

You can also call a multimethod with an ordinary single-dispatch method call:

$zaphod.lunch($where);

In this case, the call will only failover to multiple dispatch if it can't find a suitable method to call under single dispatch
to $zaphod.

6.8.1 Operator Overloading

Operator overloading makes use of multiple dispatch. An operator is just a subroutine with special call syntax.
Operators define the kind of syntax they use as part of their name: prefix, postfix, infix, circumfix, etc. This example
overloads two operators that use the + symbol—one prefix operator and one infix operator:

multi sub *prefix:+ (Time $a) { . . . } # $x = +$y;

multi sub *infix:+ (Time $a, Time $b) { . . . } # $x = $y + $z;

These operators are declared as multi subs with global scope, as most operators will be in Perl 6 (global is specified by
the leading * in the name). They're multi, so it's easy to add new behavior for new types of operands. They're global so
that any operation anywhere with the defined operand types will find the right multi variant of the operator.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 6. Objects
Objects are encapsulated chunks of data and functionality. Over the years a host of concepts have sprung up around
objects, such as data abstraction, code reuse, encapsulation, single and multiple inheritance, composition, delegation,
mixins, polymorphism, and multiple dispatch. Every language with object-oriented syntax selects a subset of these
ideas and combines them in different ways. With Perl 6 we want to provide a cleaner and simpler syntax for working
with objects, but we also want to support a larger set of object-oriented ideas. Does that sound impossible? The
solution is a classically Perl-ish one: make the easy things easy and the hard things possible.

With the release of Apocalypse 12, the syntax in this chapter is fairly solid, though it's still likely to change somewhat
before the final implementation. This chapter is only an introduction to the concepts. For complete coverage you should
read the Apocalypse itself.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.1 Using Rules
Rules are a language within a language, with their own syntax and conventions. At the highest level, though, they're
just another set of Perl constructs. So the first thing to learn about rules is the Perl "glue" code for creating and using
them.

7.1.1 Immediate Matches

The simplest way to create and use a rule is an immediate match. A rule defined with the m// operator always
immediately matches. Substitutions, defined with the s/// operator also immediately match. A rule defined with the //
operator immediately matches when it's in void, Boolean, string, or numeric context, or the argument of the smart-
match operator (~~).

if ($string ~~ m/\w+/) { . . . }

if ($string ~~ s/\w+/word/) { . . . }

if ($string ~~ /\w+/) { . . . }

You can substitute other delimiters, such as # . . . #, [. . .], and { . . . }, for the standard / . . . /, though ? . . . ? and (. . .
) are not valid delimiters:

if ($string ~~ s[\w+][word]) { . . . }

7.1.2 Deferred Matches

Sometimes you want a little more flexibility than an immediate match. The rx// operator defines an anonymous rule that
can be executed later.

$digits = rx/\d+/;

The simple // operator also defines an anonymous rule in all contexts other than void, Boolean, string, or numeric, or as
an argument of ~~:

$digits = /\d+/; # store rule

You can use the unary context forcing operators, +, ?, and ~, to force the // operator to match immediately in a context
where it ordinarily wouldn't. For a Boolean value of success or failure, force Boolean context with ?//. For a count of
matches, force numeric context with +//. For the matched string value, force string context with ~//.

$truth = ?/\d+/; # match $_ and return success

$count = +/(\d+\s+)*/; # match $_ and return count

$string = ~/^\w+/; # match $_ and return string

Another option for deferred matches is a rule block. The rule keyword defines a named or anonymous rule, in much the
same way that sub declares a subroutine or method declares a method. But the code within the block of a rule is rule
syntax, not Perl syntax.

$digits = rule {\d+};

rule digits {\d+}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To match a named or anonymous rule, call it as a subrule within another rule. Subrules, whether they're named rules or
a variable containing an anonymous rule, are enclosed in assertion delimiters < . . . >. You can read more about
assertions in Section 7.2.4 later in this chapter.

$string ~~ /\d+/;

same as

$string ~~ /<$digits>/;

$string ~~ /<digits>/;

Table 7-1 summarizes the basic Perl syntax for defining rules.

Table 7-1. Rules
Syntax Meaning

m/ . . . / Match a pattern (immediate execution).

s/ . . . / . . . / Perform a substitution (immediate execution).

rx/ . . . / Define an anonymous rule (deferred execution).

/ . . . / Immediately match or define an anonymous rule, depending on the context.

rule { . . . } Define an anonymous rule.

rule name { . . . } Define a named rule.

7.1.3 Grammars

A grammar is a collection of rules, in much the same way that a class is a collection of methods. In fact, grammars are
classes, they're just classes that inherit from the universal base class Rule. This means that grammars can inherit from
other grammars, and that they define a namespace for their rules.

grammar Hitchhikers {

 rule name {Zaphod|Ford|Arthur}

 rule id {\d+}

 . . .

}

Any rule in the current grammar or in one of its parents can be called directly, but a rule from an external grammar
needs to have its package specified:

if $newsrelease ~~ /<Hitchhikers.name>/ {

 send_alert($1);

}

Grammars are especially useful for complex text or data parsing.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.2 Building Blocks
Every language has a set of basic components (words or parts of words) and a set of syntax rules for combining them.
The "words" in rules are literal characters (or symbols), some metacharacters (or metasymbols), and escape
sequences, while the combining syntax includes other metacharacters, quantifiers, bracketing characters, and
assertions.

7.2.1 Metacharacters

The "word"-like metacharacters are ., ^, ^^, $, and $$. The . matches any single character, even a newline character.
Actually, what it matches by default is a Unicode grapheme, but you can change that behavior with a pragma in your
code, or a modifier on the rule. (We'll discuss modifiers in Section 7.3 later in this chapter.) The ^ and $ metacharacters
are zero-width matches on the beginning and end of a string. They each have doubled alternates ^^ and $$ that match
at the beginning and end of every line within a string.

The |, &, \, #, and := metacharacters are all syntax structure elements. The | is an alternation between two options.
The & matches two patterns simultaneously (the patterns must be the same length). The \ turns literal characters into
metacharacters (the escape sequences) or turns metacharacters into literal characters. The # marks a comment to the
end of the line. Whitespace insensitivity (the old /x modifier) is on by default, so you can start a comment at any point
on any line in a rule. Just make sure you don't comment out the symbol that terminates the rule. The := binds a
hypothetical variable to the result of a subrule or grouped pattern. Hypotheticals are covered in Section 7.6 later in this
chapter.

The metacharacters (), [], { }, and <> are bracketing pairs. The pairs always have to be balanced within the rule,
unless they are literal characters (escaped with a \). The brackets () and [] group patterns to match as a single atom.
They're often used to capture a result, mark the boundaries of an alternation, or mark a group of patterns with a
quantifier, among other things. Parentheses (()) are capturing, and square brackets ([]) are noncapturing. The { }
brackets define a section of Perl code (a closure) within a rule. These closures are always a successful zero-width
match, unless the code explicitly calls the fail function. The < . . . > brackets mark assertions, which handle a variety of
constructs including character classes and user-defined quantifiers. Assertions are covered in Section 7.2.4 later in this
chapter.

Table 7-2 summarizes the basic set of metacharacters.

Table 7-2. Metacharacters
Symbol Meaning

. Match any single character, including a newline.

^ Match the beginning of a string.

$ Match the end of a string.

^^ Match the beginning of a line.

$$ Match the end of a line.

| Match alternate patterns (OR).

& Match multiple patterns (AND).

\ Escape a metacharacter to get a literal character, or escape a literal character to get a metacharacter.

Mark a comment (to the end of the line).

:= Bind the result of a match to a hypothetical variable.

(. . .) Group patterns and capture the result.

[. . .] Group patterns without capturing.

{ . . . } Execute a closure (Perl 6 code) within a rule.

< . . . > Match an assertion.

7.2.2 Escape Sequences

The escape sequences are literal characters acting as metacharacters, marked with the \ escape. Some escape

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The escape sequences are literal characters acting as metacharacters, marked with the \ escape. Some escape
sequences represent single characters that are difficult to represent literally, like \t for tab, or \x[. . .] for a character
specified by a hexadecimal number. Some represent limited character classes, like \d for digits or \w for word
characters. Some represent zero-width positions in a match, like \b for a word boundary. With all the escape sequences
that use brackets, (), { }, and <> work in place of [].

Note that since an ordinary variable now interpolates as a literal string by default, the \Q escape sequence is rarely
needed.

Table 7-3 shows the escape sequences for rules.

Table 7-3. Escape sequences
Escape Meaning

\0[. . .] Match a character given in octal (brackets optional).

\b Match a word boundary.

\B Match when not on a word boundary.

\c[. . .] Match a named character or control character.

\C[. . .] Match any character except the bracketed named or control character.

\d Match a digit.

\D Match a nondigit.

\e Match an escape character.

\E Match anything but an escape character.

\f Match the form feed character.

\F Match anything but a form feed.

\n Match a (logical) newline.

\N Match anything but a (logical) newline.

\h Match horizontal whitespace.

\H Match anything but horizontal whitespace.

\L[. . .] Everything within the brackets is lowercase.

\Q[. . .] All metacharacters within the brackets match as literal characters.

\r Match a return.

\R Match anything but a return.

\s Match any whitespace character.

\S Match anything but whitespace.

\t Match a tab.

\T Match anything but a tab.

\U[. . .] Everything within the brackets is uppercase.

\v Match vertical whitespace.

\V Match anything but vertical whitespace.

\w Match a word character (Unicode alphanumeric plus "_").

\W Match anything but a word character.

\x[. . .] Match a character given in hexadecimal (brackets optional).

\X[. . .] Match anything but the character given in hexadecimal (brackets optional).

7.2.3 Quantifiers

Quantifiers specify the number of times an atom (a single character, metacharacter, escape sequence, grouped pattern,
assertion, etc.) will match.

The numeric quantifiers use assertion syntax. A single number (<3>) requires exactly that many matches. A numeric
range quantifier (<3..5>) succeeds if the number of matches is between the minimum and maximum numbers. A range

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

range quantifier (<3..5>) succeeds if the number of matches is between the minimum and maximum numbers. A range
with three trailing dots (<2 . . . >) is shorthand for <n..Inf> and matches as many times as possible.

Each quantifier has a minimal alternate form, marked with a trailing ?, that matches the shortest possible sequence
first.

Table 7-4 shows the built-in quantifiers.

Table 7-4. Quantifiers
Maximal Minimal Meaning

* *? Match 0 or more times.

+ +? Match 1 or more times.

? ?? Match 0 or 1 times.

<n> <n>? Match exactly n times.

<n..m> <n..m>? Match at least n and no more than m times.

<n . . . > <n . . . >? Match at least n times.

7.2.4 Assertions

Generally, an assertion simply states that some condition or state is true and the match fails when that assertion is
false. Many different constructs with many different purposes use assertion syntax.

Assertions match named and anonymous rules, arrays, or hashes containing anonymous rules, and subroutines or
closures that return anonymous rules. You have to enclose a variable in assertion delimiters to get it to interpolate as
an anonymous rule or rules. A bare scalar in a pattern interpolates as a literal string, while a scalar variable in assertion
brackets interpolates as an anonymous rule. A bare array in a pattern matches as a series of alternate literal strings,
while an array in assertion brackets interpolates as a series of alternate anonymous rules. In the simplest case, a bare
hash in a pattern matches a word (\w+) and tries to find that word as one of its keys,[2] while a hash in assertion
brackets does the same, but then also matches the associated value as an anonymous rule.

[2] The effect is much as if it matched the keys as a series of alternates, but you're guaranteed to match the
longest possible key, instead of just the first one it hits in random order.

A bare closure in a pattern always matches (unless it calls fail), but a closure in assertion brackets <{ . . . }> must return
an anonymous rule, which is immediately matched.

An assertion with parentheses <(. . .)> is similar to a bare closure in a pattern in that it allows you to include straight
Perl code within a rule. The difference is that <(. . .)> evaluates the return value of the closure in Boolean context. The
match succeeds if the return value is true and fails if the return value is false.

Assertions match character classes, both named and enumerated. A named rule character class is often more accurate
than an enumerated character class. For example, <[a-zA-Z]> is commonly used to match alphabetic characters, but
generally, what's really needed is the built-in rule <alpha>, which matches the full set of Unicode alphabetic characters.

Table 7-5 shows the syntax for assertions.

Table 7-5. Assertions
Syntax Meaning

< . . . > Generic assertion delimiter.

<! . . . > Negate any assertion.

<name> Match a named rule or character class.

<[. . .]> Match an enumerated character class.

<- . . . > Complement a character class (named or enumerated).

<" . . . "> Match a literal string (interpolated at match time).

<' . . . '> Match a literal string (not interpolated).

<(. . .)> Boolean assertion. Execute a closure and match if it returns a true result.

<$scalar> Match an anonymous rule.

<@array> Match a series of anonymous rules as alternates.

<%hash> Match a key from the hash, then its value (which is an anonymous rule).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<&sub()> Match an anonymous rule returned by a sub.

<{code}> Match an anonymous rule returned by a closure.

<.> Match any logical grapheme, including combining character sequences.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.3 Modifiers
Modifiers alter the meaning of the pattern syntax. The standard position for modifiers is at the beginning of the rule,
right after the m, s, or rx, or after the name in a named rule. Modifiers cannot attach to the outside of a bare / . . . /. For
example:

m:i/marvin/ # case insensitive

rule names :i { marvin | ford | arthur }

The single-character modifiers can be grouped, but the others must be separated by a colon:

m:wig/ zaphod / # OK

m:words:ignorecase:globally / zaphod / # OK

m:wordsignorecaseglobally / zaphod / # Not OK

Most of the modifiers can also go inside the rule, attached to the rule delimiters or to grouping delimiters. Internal
modifiers are lexically scoped to their enclosing delimiters, so you get a temporary alteration of the pattern:

m/:w I saw [:i zaphod] / # only 'zaphod' is case insensitive

The repetition modifiers (:Nx, :Nth, :once, :globally, and :exhaustive) and the continue modifier (:cont) can't be lexically
scoped, because they alter the return value of the entire rule.

The :Nx modifier matches the rule a counted number of times. If the modifier expects more matches than the string
has, the match fails. It has an alternate form :x(N), which can take a variable in place of the number.

The :once modifier on a rule only allows it to match once. The rule will not match again until you call the .reset method
on the rule object.

The :globally modifier matches as many times as possible. The :exhaustive modifier also matches as many times as
possible, but in as many different ways as possible.

The :Nth modifier preserves one result from a particular counted match. If the rule matches fewer times than the
modifier expects, the match fails. It has several alternate forms. One form—:th(N)—can take a variable in place of the
number. The other forms—:Nst, :Nnd, and :Nrd—are for cases where it's more natural to write :1st, :2nd, :3rd than it is to
write :1th, :2th, :3th. Either way is valid, so pick the one that's most comfortable for you.

By default, rules ignore literal whitespace within the pattern. The :w modifier makes rules sensitive to literal whitespace,
but in an intelligent way. Any cluster of literal whitespace acts like an explicit \s+ when it separates two identifiers and
\s* everywhere else.

There are no modifiers to alter whether the matched string is treated as a single line or multiple lines. That's why the
"beginning of string" and "end of string" metasymbols have "beginning of line" and "end of line" counterparts.

Table 7-6 shows the current list of modifiers.

Table 7-6. Modifiers
Short Long Meaning

:i :ignorecase Case-insensitive match.

:I Case-sensitive match (on by default).

:c :cont Continue where the previous match on the string left off.

:w :words Literal whitespace in the pattern matches as \s+ or \s*.

:W Turn off intelligent whitespace matching (return to default).

 :Nx/:x(N) Match the pattern N times.

 :Nth/:nth(N) Match the Nth occurrence of a pattern.

 :once Match the pattern only once.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

:g :globally Match the pattern as many times as possible, but only possibilities that don't overlap

:e :exhaustive Match every possible occurrence of a pattern, even overlapping possibilities.

 :u0 . is a byte.

 :u1 . is a Unicode codepoint.

 :u2 . is a Unicode grapheme.

 :u3 . is language dependent.

 :p5 The pattern uses Perl 5 regex syntax.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.4 Built-in Rules
A number of named rules are provided by default, including a complete set of POSIX-style classes, and Unicode
property classes. The list isn't fully defined yet, but Table 7-7 shows a few you're likely to see.

Table 7-7. Built-in rules
Rule Meaning

<alpha> Match a Unicode alphabetic character.

<digit> Match a Unicode digit.

<sp> Match a single-space character (the same as \s).

<ws> Match any whitespace (the same as \s+).

<null> Match the null string.

<prior> Match the same thing as the previous match.

<before . . . > Zero-width lookahead. Assert that you're before a pattern.

<after . . . > Zero-width lookbehind. Assert that you're after a pattern.

<prop . . . > Match any character with the named property.

<replace(. . .)> Replace everything matched so far in the rule or subrule with the given string (under consideration).

The <null> rule matches a zero-width string (so it's always true) and <prior> matches whatever the most recent
successful rule matched. These replace the two behaviors of the Perl 5 null pattern //, which is no longer valid syntax
for rules.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.5 Backtracking Control
Backtracking is triggered whenever part of the pattern fails to match. You can also explicitly trigger backtracking by
calling the fail function within a closure. Table 7-8 shows some metacharacters and built-in rules relevant to
backtracking.

Table 7-8. Backtracking controls
Operator Meaning

: Don't retry the previous atom; fail to the next earlier atom.

:: Don't backtrack over this point; fail out of the closest enclosing group ((. . .), [. . .], or the rule
delimiters).

::: Don't backtrack over this point; fail out of the current rule or subrule.

<commit> Don't backtrack over this point; fail out of the entire match (even from within a subrule).

<cut> Like <commit>, but also cuts the string matched. The current matching position at this point becomes the
new beginning of the string.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.6 Hypothetical Variables
Hypothetical variables are a powerful way of building up data structures from within a match. Ordinary captures with ()
store the result of the captures in $1, $2, etc. The values stored in these variables will be kept if the match is successful,
but thrown away if the match fails (hence the term "hypothetical"). The numbered capture variables are accessible
outside the match, but only within the immediate surrounding lexical scope:

"Zaphod Beeblebrox" ~~ m:w/ (\w+) (\w+) /;

print $1; # prints Zaphod

You can also capture into any user-defined variable with the binding operator :=. These variables must already be
defined in the lexical scope surrounding the rule:

my $person;

"Zaphod's just this guy." ~~ / ^ $person := (\w+) /;

print $person; # prints Zaphod

Repeated matches can be captured into an array:

my @words;

"feefifofum" ~~ / @words := (f<-[f]>+)* /;

@words contains ("fee", "fi", "fo", "fum")

Pairs of repeated matches can be captured into a hash:

my %customers;

$records ~~ m:w/ %customers := [<id> =

<name> \n]* /;

If you don't need the captured value outside the rule, use a $? variable instead. These are only directly accessible within
the rule:

"Zaphod saw Zaphod" ~~ m:w/ $?name := (\w+) \w+ $?name/;

A match of a named rule stores the result in a $? variable with the same name as the rule. These variables are also
accessible only within the rule:

"Zaphod saw Zaphod" ~~ m:w/ <name> \w+ $?name /;

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 7. Grammars and Rules
Perl 6 "regular expressions" are so far beyond the formal definition of regular expressions that we decided it was time
for a more meaningful name.[1] We now call them "rules." Perl 6 rules bring the full power of recursive descent parsing
to the core of Perl, but are comfortably useful even if you don't know anything about recursive descent parsing. In the
usual case, all you'll ever need to know is that rules are patterns for matching text.

[1] Regular expressions describe regular languages, and consist of three primitives and a limited set of operations
(three or so, depending on the formulation). So even Perl 5 "regular expressions" weren't formal regular
expressions.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.1 Core Design Principles
Three main principles drive the design of Parrot—speed, abstraction, and stability.

Speed is a paramount concern. Parrot absolutely must be as fast as possible, since the engine effectively imposes an
upper limit on the speed of any program running on it. It doesn't matter how efficient your program is or how clever
your program's algorithms are if the engine it runs on limps along. While Parrot can't make a poorly written program
run fast, it could make a well-written program run slowly, a possibility we find entirely unacceptable.

Speed encompasses more than just raw execution time. It extends to resource usage. It's irrelevant how fast the
engine can run through its bytecode if it uses so much memory in the process that the system spends half its time
swapping to disk. Although we're not averse to using resources to gain speed benefits, we try not to use more than we
need, and to share what we do use.

Abstraction indicates that things are designed such that there's a limit to what anyone needs to keep in their head at
any one time. This is very important because Parrot is conceptually very large, as you'll see when you read the rest of
the chapter. There's a lot going on, too much to keep the whole thing in mind at once. The design is such that you don't
have to remember what everything does, and how it all works. This is true regardless of whether you're writing code
that runs on top of Parrot or working on one of its internal subsystems.

Parrot also uses abstraction boundaries as places to cheat for speed. As long as it looks like an abstraction is being
completely fulfilled, it doesn't matter if it actually is being fulfilled, something we take advantage of in many places
within the engine. For example, variables are required to be able to return a string representation of themselves, and
each variable type has a "give me your string representation" function we can call. That lets each class have custom
stringification code, optimized for that particular type. The engine has no idea what goes on beneath the covers and
doesn't care—it just knows to call that function when it needs the string value of a variable. Objects are another good
case in point—though they look like nice, clean black boxes on the surface, under the hood we cheat profoundly.

Stability is important for a number of reasons. We're building the Parrot engine to be a good backend for many
language compilers to target. We must maintain a stable interface so compiled programs can continue to run as time
goes by. We're also working hard to make Parrot a good interpreter for embedded languages, so we must have a stable
interface exposed to anyone who wants to embed us. Finally, we want to avoid some of the problems that Perl 5 has
had over the years that forced C extensions written to be recompiled after an upgrade. Recompiling C extensions is
annoying during the upgrade and potentially fraught with danger. Such backward-incompatible changes have
sometimes been made to Perl itself.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.2 Parrot's Architecture
The Parrot system is divided into four main parts, each with its own specific task. Figure 8-1 shows the parts, and the
way source code and control flows through Parrot. Each of the four parts of Parrot are covered briefly here, and the
features and parts of the interpreter are covered in more detail in later sections.

Figure 8-1. Parrot's flow

The flow starts with source code, which is passed into the parser module. The parser processes that source into a form
that the compiler module can handle. The compiler module takes the processed source and emits bytecode, which
Parrot can directly execute. That bytecode is passed into the optimizer module, which processes the bytecode and
produces bytecode that should be faster than what the compiler emitted. Finally, the bytecode is handed off to the
interpreter module, which interprets the bytecode. Since compilation and execution are so tightly woven in Perl, the
control may well end up back at the parser to parse more code.

Parrot's compiler module also has the capability to freeze bytecode to disk and read that frozen bytecode back again,
bypassing the parser and compilation phases entirely. The bytecode can be directly executed, or handed to the
optimizer to work on before execution. This may happen if you've loaded in a precompiled library and want Parrot to
optimize the combination of your code and the library code. The bytecode loader is interesting in its own right, and also
warrants a small section.

8.2.1 Parser

The parser module is responsible for taking source code in and turning it into an Abstract Syntax Tree (AST). An AST is
a digested form of the program, one that's much more amenable to manipulation. In some systems, this task is split
into two parts—the lexing and the parsing—but since the tasks are so closely bound, Parrot combines them into a single
module.

Lexing (or tokenizing) turns a stream of characters into a stream of tokens. It doesn't assign any meaning to those
tokens—that's the job of the parser—but it is smart enough to see that $a = 1 + 2; is composed of 6 tokens ($, a, =, 1,
+, and 2).

Parsing is the task of taking the tokens that the lexer has found and assigning some meaning to them. Sometimes the
parsed output can be directly executed.

Parsing can be a chore, as anyone who's done it before knows. In some cases it can be downright maddening—Perl 5's
parser has over ten thousand lines of C code. Utility programs such as lex and yacc are often used to automate the
generation of parser code. Perl 5 itself uses a yacc-processed grammar to handle some of the task of parsing Perl
code.[1] Rather than going with a custom-built parser for each language, Parrot provides a general-purpose parser built
on top of Perl 6's grammar engine, with hooks for calling out to special-purpose code where necessary. Perl 6
grammars are designed to be powerful enough to handle parsing Perl, so it made good sense to leverage the engine as
a general-purpose parser. Parrot provides some utility code to transform a yacc grammar into a Perl 6 grammar, so
languages that already use yacc can be moved over to Parrot's parser with a minimum amount of fuss. This allows you
to use a yacc grammar instead of a Perl 6 grammar to describe the language being parsed, both because many
languages already have their grammars described with yacc and because a yacc grammar is sometimes a more
appropriate way to describe things.

[1] yacc can handle only part of the task, though. As the saying goes, "The task of parsing Perl is divided between
lex, yacc, smoke, and mirrors."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lex, yacc, smoke, and mirrors."

Parrot does support independent parsers for cases where the Perl 6 grammar engine isn't the appropriate choice. A
language might already have an existing parser available, or different techniques might be in order. The Perl 5 parsing
engine may get embedded this way, as it's easier to embed a quirky existing parser than it is to recreate all the quirks
in a new parser.

8.2.2 Compiler

The compiler module takes the AST that the parser generates and turns it into code that the interpreter engine can
execute. This translation is very straightforward. It involves little more than flattening the AST and running the
flattened tree though a series of substitutions.

The compiler is the least interesting part of Parrot. It transforms one machine representation of your program—the AST
that the parser generated—into another machine representation of your program—the bytecode that the interpreter
needs. It's little more than a simple, rule-based filter module, albeit one that's necessary for Parrot to understand your
source code.

For many languages, the parser and compiler are essentially a single unit. Like the parser, the compiler is pluggable, so
you can load in your own compiler. When not using the Perl 6 grammar engine, the compiler and parser modules will
usually be loaded together. Parrot itself comes with two compiler modules for Parrot assembly and Parrot Intermediate
Representation (PIR) (see Chapter 11). It's likely many compilers will actually emit either assembly or PIR code, rather
than directly emitting bytecode.

8.2.3 Optimizer

The optimizer module takes the AST that the parser generated and the bytecode that the compiler generated, and
transforms the bytecode to make it run faster.

Optimizing code for dynamic languages such as Perl, Python, and Ruby is an interesting task. The languages are so
dynamic that the optimizer can't be sure how a program will actually run. For example, the code:

$a = 0;

for (1..10000) {

 $a++;

}

looks straightforward enough. The variable $a starts at 0, is incremented 10,000 times, and has an end value of 10000.
A standard optimizer would turn that code into the single line:

$a = 10000;

and remove the loop entirely. Unfortunately, that's not necessarily appropriate for Perl. $a could easily be tied, perhaps
representing the position of some external hardware. If incrementing the variable 10,000 times smoothly moves a
stepper motor from 0 to 10,000 in increments of 1, just assigning a value of 10000 to the variable might whip the
motor forward in one step, damaging the hardware. A tied variable might also keep track of the number of times it has
been accessed or modified. Either way, optimizing the loop away changes the semantics of the program in ways the
original programmer didn't want.

Because of the potential for active or tied data, especially for languages as dynamically typed as Perl, optimizing is a
nontrivial task. Other languages, such as C or Pascal, are more statically typed and lack active data, so an aggressive
optimizer is in order for them. Breaking out the optimizer into a separate module allows us to add in optimizations
piecemeal without affecting the compiler. There's a lot of exciting work going into the problem of optimizing dynamic
languages, and we fully expect to take advantage of it where we can.

Optimization is potentially an expensive operation, another good reason to have it in a separate module. Spending 10
seconds optimizing a program that will run in 5 seconds is a huge waste of time when using Perl's traditional compile-
and-go model—optimizing the code will make the program run slower. On the other hand, spending 10 seconds to
optimize a program makes sense if you save the optimized version to disk and use it over and over again. Even if you
save only 1 second per program run, it doesn't take long for the 10-second optimization time to pay off. The default is
to optimize heavily when freezing bytecode to disk and lightly when running directly, but this can be changed with a
command-line switch.

Perl 5, Python, and Ruby all lack a robust optimizer (outside their regular expression engines), so any optimizations we
add will increase their performance. This, we feel, is a good thing.

8.2.4 Interpreter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The interpreter module is the part of the engine that executes the generated bytecode. Calling it an interpreter is
something of a misnomer, since Parrot's core includes both a traditional bytecode interpreter module as well as a high-
performance JIT engine, but you can consider that an implementation detail.

All the interesting things happen inside the interpreter, and the remainder of the chapter is dedicated to the interpreter
and the functions it provides. It's not out of line to consider the interpreter as the real core of Parrot, and to consider
the parser, compiler, and optimizer as utility modules whose ultimate purpose is to feed bytecode to the interpreter.

8.2.5 Bytecode Loader

The bytecode loader isn't part of our block diagram, but it is interesting enough to warrant brief coverage.

The bytecode loader handles loading in bytecode that's been frozen to disk. The Parrot bytecode loader is clever enough
to handle loading in Parrot bytecode regardless of the sort of system that it was saved on, so we have cross-platform
portability. You can generate bytecode on a 32-bit x86 system and load it up on a 64-bit Alpha or SPARC system
without any problems.

The bytecode loading system also has a heuristic engine built into it, so it can identify the bytecode format it's reading.
This means Parrot can not only tell what sort of system Parrot bytecode was generated on so it can properly process it,
but also allows it to identify bytecode generated for other bytecode driven systems, such as .NET, the JVM, and the Z-
machine.[2]

[2] The Z-machine is the interpreter for Infocom text adventures, such as Zork and The Lurking Horror.

In addition to loading in bytecode, the loader is sufficiently clever to recognize source files for any language that has a
registered compiler. It loads and compiles that source as if it were frozen bytecode.

Together with Parrot's loadable opcode library system (something we'll talk about later), this gives Parrot the capability
to load in foreign bytecode formats and transform them into something Parrot can execute. With a sophisticated enough
loader, Parrot can load and execute Java and .NET bytecode and present Java and .NET library code to languages that
generate native Parrot bytecode. This is something of a happy accident. The original purpose of the architecture was to
allow Parrot to load and execute Z-machine bytecode, but happy accidents are the best kind.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.3 The Interpreter
The interpreter is the engine that actually runs the code emitted by the parser, compiler, and optimizer modules. The
Parrot execution engine is a virtual CPU done completely in software. We've drawn on research in CPU and interpreter
design over the past forty years to try and build the best engine to run dynamic languages.

That emphasis on dynamic languages is important. We are not trying to build the fastest C, Forth, Lisp, or Prolog
engine. Each class of languages has its own quirks and emphasis, and no single engine will handle all the different types
of languages well. Trying to design an engine that works equally well for all languages will get you an engine that
executes all of them poorly.

That doesn't mean that we've ignored languages outside our area of primary focus—far from it. We've worked hard to
make sure that we can accommodate as many languages as possible without compromising the performance of our
core language set. We feel that even though we may not run Prolog or Scheme code as fast as a dedicated engine
would, the flexibility Parrot provides to mix and match languages more than makes up for that.

Parrot's core design is that of a register rich CISC CPU, like many of the CISC machines of the past, such as the VAX,
Motorola 68000, and IBM System/3x0. Many of Parrot's basic instructions perform complex operations. It also bears
some resemblance to modern RISC CPUs such as the IBM Power series and Intel Alpha,[3] as it does all its operations
on data in registers. Using a core design similar to older systems gives us decades of compiler research to draw on.
Most compiler research since the early 1970s deals with targeting register systems of one sort or another.

[3] Formerly HP, formerly Compaq, formerly Digital Alpha.

Using a register architecture as the basis for Parrot goes against the current trends in virtual machines, which favor
stack-based approaches. Although a stack approach is simpler to implement, a register system provides a richer set of
semantics. It's also just more pleasant for us assembly old-timers to write code for. Combined with the decades of
sophisticated compiler research, we feel that it's the correct design decision.

8.3.1 Registers

Parrot has four basic types of registers: PMC, string, integer, and floating-point, one for each of the core data types in
Parrot. PMCs, short for Parrot Magic Cookies, are the structures that represent high-level variables such as arrays,
hashes, scalars, and objects. We separate the register types for ease of implementation, garbage collection, and space
efficiency. Since PMCs and strings are garbage-collectable entities, restricting what can access them—strings in string
registers and PMCs in PMC registers—makes the garbage collector a bit faster and simpler. Having integers and floats in
separate register sets makes sense from a space standpoint, since floats are normally larger than integers.

The current Parrot architecture provides 32 of each register type, for a total of 128 registers. Though this may seem
like overkill, compensating for running out of registers can be a significant speed hit, so it's in our best interests to
make sure it happens rarely. Thirty-two is a good compromise between performance and memory usage.

8.3.2 Stacks

Parrot has seven separate stacks, each with a specific purpose. The four register sets each have their own stack for
quickly saving register contents. There is a separate stack dedicated to saving and restoring individual integers, which
the regular expression system uses heavily. The control stack keeps track of control information, exception handlers,
and other such things. Finally, the general-purpose typed stack stores individual values.

The backing stacks for the register sets are somewhat special. Operations on the register stacks don't act on single
registers. The engine pushes and pops entire register sets in one operation. This may seem somewhat unusual, but it
makes the primary use of these stacks—to save registers across function calls—very fast. A save or restore operation is
essentially a single memory copy operation, something that's highly optimized just about everywhere.[4] The integer
stack is specifically designed to hold integers. Since it doesn't have to be general-purpose, integer stack operations can
be faster than operations on the general-purpose stack—a speed gain the regular expression code makes use of.
Regular expressions make heavy use of integer code, as they move back and forth within strings, and make heavy use
of the integer stack to manage backtracking information.

[4] The SPARC processor, for example, has a cache-friendly memory copy as a core operation.

The control stack is private to the interpreter, so user code can't directly access it. The interpreter engine uses it to
manage exception handlers, return locations for function calls, and track other internal data. User code can inspect the
stack through Parrot's introspective features.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

stack through Parrot's introspective features.

Finally, the general-purpose stack is used to save and restore individual registers. It's a typed stack, so it doesn't allow
you to do things like push an integer register onto the stack and pop the value into a string register. For compiled code,
this stack is used if a routine needs more than 32 registers of the same type. The extra values are pushed on and
popped off the stack in an operation called register spilling. This stack is also used when Parrot runs code designed for a
stack machine such as the JVM or .NET. Stack-based code is less efficient than register-based code, but we can still run
it.

All of Parrot's stacks are segmented—they're composed of a set of stack pieces instead of a single chunk of memory.
Segmenting has a small performance impact, but it allows us to make better usage of available memory. Traditional
stacks are composed of a single chunk of memory, since this makes it faster to read from and write to the stack.
Usually, when you run off the end of that chunk of memory your program crashes. To avoid this, most systems allocate
a large stack. This isn't much of a problem if you have only a single stack, but it doesn't work well in today's
multithreaded world, where each thread has to have its own stack.

Another pleasant benefit of segmenting the stacks is that it makes supporting coroutines and continuations much
easier. It is much easier to save off part of a segmented stack. Combined with Parrot's copy-on-write features, this
makes for efficient continuations and coroutines. It may not be a feature that many folks will use, but it's a pleasant
fall-out from other things.

Interestingly, while Parrot's stacks look and act like stacks in all but the most extreme circumstances, they're really
trees. Each subroutine (and potentially each block, as they're occasionally the same thing) gets a fresh stack frame,
linked to the stack of its caller. Those stack frames will be cleaned up by the garbage collector when there are no
outstanding references to them, though it's not guaranteed to happen immediately.

8.3.3 Strings

Text data is deceptively complex, so Parrot has strings as a fundamental data type. We do this out of sheer practicality.
We know strings are complex and error-prone, so we implement them only once. All languages that target Parrot can
share the same implementation, and don't have to make their own mistakes.

The big problem with text is the vast number of human languages and the variety of conventions around the world for
dealing with it. Long ago, 7-bit ASCII with 127 characters was sufficient. Computers were limited and mostly used in
English, regardless of the user's native language. These heavy restrictions were acceptable because the machines of the
day were so limited that any other option was too slow. Also, most people using computers at the time were fluent in
English either as their native language or a comfortable second language.

That day passed quite a few years ago. Many different ways of representing text have sprung up, from the various
multibyte Japanese and Chinese representations—designed for languages with many thousands of characters—to a half
dozen or so European representations, which take only a byte but disagree on what characters fit into that byte. The
Unicode consortium has been working for years on the Unicode standard to try and unify all the different schemes, but
full unification is still years away, if it ever happens.

In the abstract, strings are a series of integers with meaning attached to them, but getting from real-world data to
abstract integers isn't as simple as you might want. There are three important things associated with string data—
encoding, character set, and language—and Parrot's string system knows how to deal with them.

A string's encoding says how to turn data from a stream of bytes to a stream of characters represented by integers.
Something like ASCII data is simple to deal with, since each character is a single byte, and characters range in value
from 0 to 255. UTF-8, one of the Unicode encodings, is more complex—a single character can take anywhere from one
to six bytes.

The character set for a string tells Parrot what each of the integers actually represents. Parrot won't get too far if it
doesn't know that 65 is a capital "A" in an ASCII or Unicode character stream, for example.

Finally, the language for a string determines how the string behaves in some contexts. Different languages have
different rules for sorting and case-folding characters. Whether an accented character keeps its accent when upper-
cased or lowercased depends on the language that the string came from.

The capability of translating strings from one encoding to another and one character set to another, and to determine
when it's needed, is built into Parrot. The I/O and regular expression systems fully exploit Parrot's core string
capabilities, so any language that uses Parrot's built-in string functionality gets this for free. Since properly
implementing even a single system like Unicode is fraught with peril, this makes the job of people writing languages
that target Parrot (including Perl 6) much easier.

While Parrot provides these facilities, languages aren't required to make use of them. Perl 6, for example, generally
mandates that all strings will be treated as if they are Unicode. In this case Parrot's multilingual capabilities mainly act
as filters to translate to and from Unicode. Parrot presents all the data as if it were Unicode, but only translates non-
Unicode data to Unicode in situations where your program may notice.

Unicode is Parrot's character set of last resort when it needs one. We use IBM's ICU Unicode library to do all the heavy
lifting, since writing a properly done Unicode library is a nontrivial undertaking. It makes more sense to use a well-
tested and debugged library than it does to try and reimplement Unicode again.

8.3.4 Variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Variables are a fundamental construct in almost all computer languages.[5] With low-level languages such as C,
variables are straightforward—they are either basic hardware constructs like a 32-bit integer, a 64-bit IEEE floating-
point number, or the address of some location in memory, or they're a structure containing basic hardware constructs.
Exchanging variables between low-level languages is simple because all the languages operate on essentially the same
things.

[5] With the exception of functional languages, though they can be useful there as well.

Once you get to higher-level languages, variables get more interesting. Object-oriented (OO) languages have the
concept of the object as a fundamental construct, but no two OO languages seem to agree on exactly how objects
should behave or how they should be implemented. Then there are higher-level languages like Perl, with complex
constructs like hashes, arrays, and polymorphic scalars as fundamental constructs.

The first big issue that Parrot had to face was implementing these constructs. The second was doing it in a way that
allowed Perl code to use Ruby objects, Ruby code to use Python objects, and Lisp code to use both. Parrot's solution is
the PMC, or Parrot Magic Cookie.

A PMC is an abstract variable and a base data type—the same way that integers and floating-point numbers are base
data types for hardware CPUs. The languages we're working to support—Perl, Python, and Ruby—have base variables
that are far more complex than just an integer or floating-point number. If we want them to exchange any sort of real
data, they must have a common base variable type. Parrot provides that with the PMC construct. Each language can
build on this common base. More importantly, each language can make sure that their variables behave properly
regardless of which language is using them.

When you think about it, there is a large list of things that a variable should be able to do. You should, for example, be
able to load or store a value, add or subtract it from another variable, call a method or set a property on it, get its
integer or floating-point representation, and so on. What we did was make a list of these functions and make them
mandatory.

Each PMC has a virtual table (vtable) attached to it. This table of function pointers is fixed—the list of functions, and
where they are in the table, is the same for each PMC. All the common operations a program might perform on a
variable—as well as all the operators that might be overloaded for a PMC—have vtable entries.

8.3.5 Bytecode

Like any CPU, software, or hardware, Parrot needs a set of instructions to tell it what to do. For hardware, this is a
stream of executable code or machine language. For Parrot, this is bytecode. Calling it bytecode isn't strictly accurate,
since the individual instructions are 32 bits each rather than 8 bits each, but since it's the common term for most other
virtual machines, it's the term we use.

Each instruction—also known as an opcode—tells the interpreter engine what to do. Some opcodes are very low level,
such as the one to add two integers together. Others are significantly more complex, like the opcode to take a
continuation.

Parrot's bytecode is designed to be directly executable. The code on disk can be run by the interpreter without needing
any translation. This gets us a number of benefits. Loading is much faster, of course, since we don't have to do much (if
any) processing on the bytecode as it's loaded. It also means we can use special operating system calls that map a file
directly into the memory space of a process. Because of the way this is handled by the operating system,[6] the
bytecode file will be loaded into the system's memory only once, no matter how many processes use the file. This can
save a significant amount of real RAM on server systems. Files loaded this way also get their parts loaded on demand.
Since we don't need to process the bytecode in any way to execute it, if you map in a large bytecode library file, only
those bits of the file your program actually executes will get read in from disk. This can save a lot of time.

[6] Conveniently, this works the same way for all the flavors of Unix, Windows, and VMS.

Parrot creates bytecode in a format optimized for the platform it's built on, since the common case by far is executing
bytecode that's been built on the system you're using. This means that floating-point numbers are stored in the current
platform's native format, integers are in the native size, and both are stored in the byte order for the current platform.
Parrot does have the capability of executing bytecode that uses 32-bit integers and IEEE floating-point numbers on any
platform, so you can build and ship bytecode that can be run by anyone with a Parrot interpreter.

If you do use a bytecode file that doesn't match the current platform's requirements (perhaps the integers are a
different size), Parrot automatically translates the bytecode file as it reads it in. In this case, Parrot does have to read in
the entire file and process it. The sharing and load speed benefits are lost, but it's a small price to pay for the
portability. Parrot ships with a utility to turn a portable bytecode file into a native format bytecode file if the overhead is
too onerous.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.4 I/O, Events, and Threads
Parrot has comprehensive support for I/O, threads, and events. These three systems are interrelated, so we'll treat
them together. The systems we talk about in this section are less mature than other parts of the engine, so they may
change by the time we roll out the final design and implementation.

8.4.1 I/O

Parrot's base I/O system is fully asynchronous I/O with callbacks and per-request private data. Since this is massive
overkill in many cases, we have a plain vanilla synchronous I/O layer that your programs can use if they don't need the
extra power.

Asynchronous I/O is conceptually pretty simple. Your program makes an I/O request. The system takes that request
and returns control to your program, which keeps running. Meanwhile, the system works on satisfying the I/O request.
When the request is satisfied, the system notifies your program in some way. Since there can be multiple requests
outstanding, and you can't be sure exactly what your program will be doing when a request is satisfied, programs that
make use of asynchronous I/O can be complex.

Synchronous I/O is even simpler. Your program makes a request to the system and then waits until that request is
done. There can be only one request in process at a time, and you always know what you're doing (waiting) while the
request is being processed. It makes your program much simpler, since you don't have to do any sort of coordination or
synchronization.

The big benefit of asynchronous I/O systems is that they generally have a much higher throughput than a synchronous
system. They move data around much faster—in some cases three or four times faster. This is because the system can
be busy moving data to or from disk while your program is busy processing data that it got from a previous request.

For disk devices, having multiple outstanding requests—especially on a busy system—allows the system to order read
and write requests to take better advantage of the underlying hardware. For example, many disk devices have built-in
track buffers. No matter how small a request you make to the drive, it always reads a full track. With synchronous I/O,
if your program makes two small requests to the same track, and they're separated by a request for some other data,
the disk will have to read the full track twice. With asynchronous I/O, on the other hand, the disk may be able to read
the track just once, and satisfy the second request from the track buffer.

Parrot's I/O system revolves around a request. A request has three parts: a buffer for data, a completion routine, and a
piece of data private to the request. Your program issues the request, then goes about its business. When the request
is completed, Parrot will call the completion routine, passing it the request that just finished. The completion routine
extracts out the buffer and the private data, and does whatever it needs to do to handle the request. If your request
doesn't have a completion routine, then your program will have to explicitly check to see if the request was satisfied.

Your program can choose to sleep and wait for the request to finish, essentially blocking. Parrot will continue to process
events while your program is waiting, so it isn't completely unresponsive. This is how Parrot implements synchronous
I/O—it issues the asynchronous request, then immediately waits for that request to complete.

The reason we made Parrot's I/O system asynchronous by default was sheer pragmatism. Network I/O is all
asynchronous, as is GUI programming, so we knew we had to deal with asynchrony in some form. It's also far easier to
make an asynchronous system pretend to be synchronous than it is the other way around. We could have decided to
treat GUI events, network I/O, and file I/O all separately, but there are plenty of systems around that demonstrate
what a bad idea that is.

8.4.2 Events

An event is a notification that something has happened: the user has manipulated a GUI element, an I/O request has
completed, a signal has been triggered, or a timer has expired. Most systems these days have an event handler,[7]

because handling events is so fundamental to modern GUI programming. Unfortunately, the event handling system is
not integrated, or poorly integrated, with the I/O system, leading to nasty code and unpleasant workarounds to try and
make a program responsive to network, file, and GUI events simultaneously. Parrot presents a unified event handling
system, integrated with its I/O system, which makes it possible to write cross-platform programs that work well in a
complex environment.

[7] Often two or three, which is something of a problem.

Parrot's events are fairly simple. An event has an event type, some event data, an event handler, and a priority. Each
thread has an event queue, and when an event happens it's put into the right thread's queue (or the default thread
queue in those cases where we can't tell which thread an event was destined for) to wait for something to process it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

queue in those cases where we can't tell which thread an event was destined for) to wait for something to process it.

Any operation that would potentially block drains the event queue while it waits, as do a number of the cleanup opcodes
that Parrot uses to tidy up on scope exit. Parrot doesn't check each opcode for an outstanding event for pure
performance reasons, as that check gets expensive quickly. Still, Parrot generally ensures timely event handling, and
events shouldn't sit in a queue for more than a few milliseconds unless event handling has been explicitly disabled.

When Parrot does extract an event from the event queue, it calls that event's event handler, if it has one. If an event
doesn't have a handler, Parrot instead looks for a generic handler for the event type and calls it instead. If for some
reason there's no handler for the event type, Parrot falls back to the generic event handler, which throws an exception
when it gets an event it doesn't know how to handle. You can override the generic event handler if you want Parrot to
do something else with unhandled events, perhaps silently discarding them instead.

Because events are handled in mainline code, they don't have the restrictions commonly associated with interrupt-level
code. It's safe and acceptable for an event handler to throw an exception, allocate memory, or manipulate thread or
global state safely. Event handlers can even acquire locks if they need to, though it's not a good idea to have an event
handler blocking on lock acquisition.

Parrot uses the priority on events for two purposes. First, the priority is used to order the events in the event queue.
Events for a particular priority are handled in a FIFO manner, but higher-priority events are always handled before
lower-priority events. Parrot also allows a user program or event handler to set a minimum event priority that it will
handle. If an event with a priority lower than the current minimum arrives, it won't be handled, instead it will sit in the
queue until the minimum priority level is dropped. This allows an event handler that's dealing with a high-priority event
to ignore lower-priority events.

User code generally doesn't need to deal with prioritized events, so programmers should adjust event priorities with
care. Adjusting the default priority of an event, or adjusting the current minimum priority level, is a rare occurrence.
It's almost always a mistake to change them, but the capability is there for those rare occasions where it's the correct
thing to do.

8.4.3 Signals

Signals are a special form of event, based on the Unix signal mechanism. Parrot presents them as mildly special, as a
remnant of Perl's Unix heritage, but under the hood they're not treated any differently from any other event.

The Unix signaling mechanism is something of a mash, having been extended and worked on over the years by a small
legion of undergrad programmers. At this point, signals can be divided into two categories, those that are fatal, and
those that aren't.

Fatal signals are things like SIGKILL, which unconditionally kills a process, or SIGSEGV, which indicates that the process
has tried to access memory that isn't part of your process. There's no good way for Parrot to catch these signals, so
they remain fatal and will kill your process. On some systems it's possible to catch some of the fatal signals, but Parrot
code itself operates at too high a level for a user program to do anything with them—they must be handled with
special-purpose code written in C or some other low-level language. Parrot itself may catch them in special
circumstances for its own use, but that's an implementation detail that isn't exposed to a user program.

Nonfatal signals are things such as SIGCHLD, indicating that a child process has died, or SIGINT, indicating that the
user has pressed ^C on the keyboard. Parrot turns these signals into events and puts them in the event queue. Your
program's event handler for the signal will be called as soon as Parrot gets to the event in the queue, and your code
can do what it needs to with it.

SIGALRM, the timer expiration signal, is treated specially by Parrot. Generated by an expiring alarm() system call, this
signal is normally used to provide timeouts for system calls that would otherwise block forever, which is very useful.
The big downside to this is that on most systems there can only be one outstanding alarm() request, and while you can
get around this somewhat with the setitimer call (which allows up to three pending alarms) it's still quite limited.

Since Parrot's I/O system is fully asynchronous and never blocks—even what looks like a blocking request still drains
the event queue—the alarm signal isn't needed for this. Parrot instead grabs SIGALRM for its own use, and provides a
fully generic timer system which allows any number of timer events, each with their own callback functions and private
data, to be outstanding.

8.4.4 Threads

Threads are a means of splitting a process into multiple pieces that execute simultaneously. It's a relatively easy way to
get some parallelism without too much work. Threads don't solve all the parallelism problems your program may have.
Sometimes multiple processes on a single system, multiple processes on a cluster, or processes on multiple separate
systems are better. But threads do present a good solution for many common cases.

All the resources in a threaded process are shared between threads. This is simultaneously the great strength and great
weakness of threads. Easy sharing is fast sharing, making it far faster to exchange data between threads or access
shared global data than to share data between processes on a single system or on multiple systems. Easy sharing is
dangerous, though, since without some sort of coordination between threads it's easy to corrupt that shared data. And,
because all the threads are contained within a single process, if any one of them fails for some reason the entire
process, with all its threads, dies.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

process, with all its threads, dies.

With a low-level language such as C, these issues are manageable. The core data types, integers, floats, and pointers
are all small enough to be handled atomically. Composite data can be protected with mutexes, special structures that a
thread can get exclusive access to. The composite data elements that need protecting can each have a mutex
associated with them, and when a thread needs to touch the data it just acquires the mutex first. By default there's
very little data that must be shared between threads, so it's relatively easy, barring program errors, to write thread-
safe code if a little thought is given to the program structure.

Things aren't this easy for Parrot, unfortunately. A PMC, Parrot's native data type, is a complex structure, so we can't
count on the hardware to provide us atomic access. That means Parrot has to provide atomicity itself, which is
expensive. Getting and releasing a mutex isn't really that expensive in itself. It has been heavily optimized by platform
vendors because they want threaded code to run quickly. It's not free, though, and when you consider that running flat-
out Parrot does one PMC operation per 100 CPU cycles, even adding an additional 10 cycles per operation can slow
down Parrot by 10%.

For any threading scheme, it's important that your program isn't hindered by the platform and libraries it uses. This is a
common problem with writing threaded code in C, for example. Many libraries you might use aren't thread-safe, and if
you aren't careful with them your program will crash. Although we can't make low-level libraries any safer, we can
make sure that Parrot itself won't be a danger. There is very little data shared between Parrot interpreters and threads,
and access to all the shared data is done with coordinating mutexes. This is invisible to your program, and just makes
sure that Parrot itself is thread-safe.

When you think about it, there are really three different threading models. In the first one, multiple threads have no
interaction among themselves. This essentially does with threads the same thing that's done with processes. This works
very well in Parrot, with the isolation between interpreters helping to reduce the overhead of this scheme. There's no
possibility of data sharing at the user level, so there's no need to lock anything.

In the second threading model, multiple threads run and pass messages back and forth between each other. Parrot
supports this as well, via the event mechanism. The event queues are thread-safe, so one thread can safely inject an
event into another thread's event queue. This is similar to a multiple-process model of programming, except that
communication between threads is much faster, and it's easier to pass around structured data.

In the third threading model, multiple threads run and share data between themselves. Although Parrot can't guarantee
that data at the user level remains consistent, it can make sure that access to shared data is at least safe. We do this
with two mechanisms.

First, Parrot presents an advisory lock system to user code. Any piece of user code running in a thread can lock a
variable. Any attempt to lock a variable that another thread has locked will block until the lock is released. Locking a
variable only blocks other lock attempts. It does not block plain access. This may seem odd, but it's the same scheme
used by threading systems that obey the POSIX thread standard, and has been well tested in practice.

Second, Parrot forces all shared PMCs to be marked as such, and all access to shared PMCs must first acquire that
PMC's private lock. This is done by installing an alternate vtable for shared PMCs, one that acquires locks on all its
parameters. These locks are held only for the duration of the vtable function, but ensure that the PMCs affected by the
operation aren't altered by another thread while the vtable function is in progress.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.5 Objects
Perl 5, Perl 6, Python, and Ruby are all OO languages in some form or other, so Parrot has to have core support for
objects and classes. Unfortunately, all these languages have somewhat different object systems, which made the design
of Parrot's object system somewhat tricky.[8] It turns out that if you draw the abstraction lines in the right places,
support for the different systems is easily possible. This is especially true if you provide core support for things like
method dispatch, which the different object systems can use and override.

[8] As we write this, it's still in progress, though it should be done by the time this book is in print.

8.5.1 Generic Object Interfacing

Parrot's object system is very simple—in fact, a PMC only has to handle method calls to be considered an object. Just
handling methods covers well over 90% of the object functionality that most programs use, since the vast majority of
object access is via method calls. This means user code that does the following:

object = some_constructor(1, 2, "foo");

object.bar(12);

will work just fine, no matter what language the class that backs DEFANGED_object is written in, if DEFANGED_object even
has a class backing it. It could be Perl 5, Perl 6, Python, Ruby, or even Java, C#, or Common Lisp; it doesn't matter.

Objects may override other functionality as well. For example, Python objects use the basic PMC property mechanism to
implement object attributes. Both Python and Perl 6 mandate that methods and properties share the same namespace,
with methods overriding properties of the same name.

8.5.2 Parrot Objects

When we refer to Parrot objects we're really talking about Parrot's default base object system. Any PMC can have
methods called on it and act as an object, and Parrot is sufficiently flexible to allow for alternate object systems, such
as the one Perl 5 uses. However, in this section, we're talking about what we provide in our standard object system.
Parrot's standard object system is pretty traditional—it's a class-based system with multiple inheritance, interface
declarations, and slot-based objects.

Each object is a member of a class, which defines how the object behaves. Each class in an object's hierarchy can have
one or more attributes—that is, named slots that are guaranteed to be in each object of that class. The names are all
class-private so there's no chance of collision. Objects are essentially little fixed-sized arrays that know what class they
belong to. Most of the "smarts" for an object lives in that object's class. Parrot allows you to add attributes at runtime
to a class. If you do, then all objects with that class in their inheritance hierarchy will get the new attribute added into
it. Though this is potentially expensive, it's a very useful feature for languages that may extend a class at runtime.

Parrot uses a multiple inheritance scheme for classes. Each class can have two or more parent classes, and each of
those classes can have multiple parents. A class has control over how methods are searched for, but the default search
is a left-most, depth-first search, the same way that Perl 5 does it. Individual class implementers may change this if
they wish, but only the class an object is instantiated into controls the search order. Parrot also fully supports correct
method redispatch, so a method may properly call the next method in the hierarchy even in the face of multiple
parents. One limitation we place on inheritance is that a class is instantiated in the hierarchy only once, no matter how
many times it appears in class and parent class inheritance lists.

Each class has its own vtable, which all objects of that class share. This means that with the right vtable methods every
object can behave like a basic PMC type in addition to an object. For unary operations such as load or store, the default
class vtable first looks for the appropriately named method in the class hierarchy. For binary operators such as addition
and subtraction, it first looks in the multimethod dispatch table. This is only the default, and individual languages may
make different choices. Objects that implement the proper methods can also act as arrays or hashes.

Finally, Parrot implements an interface declaration scheme. You may declare that a class does one or more named
interfaces, and later query objects at runtime to see if they implement an interface. This doesn't put any methods in a
class. For that you need to either inherit from a class that does or implement them by hand. All it does is make a
declaration of what your class does. Interface declarations are inheritable as well, so if one of your parent classes
declares that it implements an interface then your class will as well. This is used in part to implement Perl 6's roles.

8.5.3 Mixed Class-Type Support

The final piece of Parrot's object system is the support for inheriting from classes of different types. This could be a Perl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The final piece of Parrot's object system is the support for inheriting from classes of different types. This could be a Perl
6 class inheriting from a Perl 5 class, or a Ruby class inheriting from a .NET class. It could even involve inheriting from
a fully compiled language such as C++ or Objective C, if proper wrapping is established.[9] As we talked about earlier,
as long as a class either descends from the base Parrot class or has a small number of required properties, Parrot can
subclass it. This potentially goes both ways, as any class system that knows how to subclass from Parrot's base class
can inherit from it.

[9] DEFANGED_Objective C is particularly simple, as it has a fully introspective class system that allows for run-
time class creation. Inheritance can go both ways between it and Parrot.

Allowing classes to inherit from other classes of a different base type does present some interesting technical issues.
The inheritance isn't 100% invisible, though you have to head off into the corner cases to find the cracks. It's an
important feature to design into Parrot, so we can subclass Perl 5 style classes, and they can subclass Parrot classes.
Being able to subclass C++ and Objective C classes is a potential bonus. Python, Ruby, and Perl 6 all share a common
(but hidden) base class in Parrot's base object type, so they can inherit from each other without difficulty.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.6 Advanced Features
Since the languages Parrot targets (like Perl and Ruby) have sophisticated concepts as core features, it's in Parrot's
best interest to have core support for them. This section covers some (but not all) of these features.

8.6.1 Garbage Collection

It's expected that modern languages have garbage collection built in. The programmer shouldn't have to worry about
explicitly cleaning up after dead variables, or even identifying them. For interpreted languages, this requires support
from the interpreter engine, so Parrot provides that support.

Parrot has two separate allocation systems built into it. Each allocation system has its own garbage collection scheme.
Parrot also has some strict rules over what can be referenced and from where. This allows it to have a more efficient
garbage collection system.

The first allocation system is responsible for PMC and string structures. These are fixed-sized objects that Parrot
allocates out of arenas, which are pools of identically sized things. Using arenas makes it easy for Parrot to find and
track them, and speeds up the detection of dead objects.

Parrot's dead object detection system works by first running through all the arenas and marking all strings and PMCs as
dead. It then runs through the stacks and registers, marking all strings and PMCs they reference as alive. Next, it
iteratively runs through all the live PMCs and strings and marks everything they reference as alive. Finally, it sweeps
through all the arenas looking for newly dead PMCs and strings, which it puts on the free list. At this point, any PMC
that has a custom destruction routine, such as an object with a DESTROY method, has its destruction routine called. The
dead object detector is triggered whenever Parrot runs out of free objects, and can be explicitly triggered by running
code. Often a language compiler will force a dead object sweep when leaving a block or subroutine.

Parrot's memory allocation system is used to allocate space for the contents of strings and PMCs. Allocations don't have
a fixed size; they come from pools of memory that Parrot maintains. Whenever Parrot runs out of memory in its
memory pools, it makes a compacting run—squeezing out unused sections from the pools. When it's done, one end of
each pool is entirely actively used memory, and the other end is one single chunk of free memory. This makes
allocating memory from the pools faster, as there's no need to walk a free list looking for a segment of memory large
enough to satisfy the request for memory. It also makes more efficient use of memory, as there's less overhead than in
a traditional memory allocation system.

Splitting memory pool compaction from dead object detection has a nice performance benefit for Perl and languages
like it. For most Perl programs, the interpreter allocates and reallocates far more memory for string and variable
contents than it does actual string and variable structures. The structures are reused over and over as their contents
change. With a traditional single-collector system, each time the interpreter runs out of memory it has to do a full scan
for dead objects and compact the pools after. With a split system, Parrot can just sweep through the variables it thinks
are live and compact their contents. This does mean that Parrot will sometimes move data for variables and strings that
are really dead because it hasn't found that out yet. That expense is normally much less than the expense of doing a
full tracing run to find out which variables are actually dead.

Parrot's allocation and collection systems have some compromises that make interfacing with low-level code easier. The
structure that describes a PMC or string is guaranteed not to move over the lifetime of the string or variable. This allows
C code to store pointers to variables in internal structures without worrying that what they're referencing may move. It
also means that the garbage collection system doesn't have to worry about updating pointers that C code might hold,
which it would have to do if PMC or string structures could move.

8.6.2 Multimethod Dispatching

Multimethod dispatching (also known as signature-based dispatching) is a powerful technique that uses the parameters
of a function or method call to help decide at runtime which function or method Parrot should call. This is one of the
new features being built into Perl 6. It allows you to have two or more subroutines or methods with the same name that
differ only in the types of their arguments.

In a standard dispatch system, each subroutine or method name must be unique within a namespace. Attempting to
create a second routine with the same name either throws an error or overlays the original one. This is certainly
straightforward, but in some circumstances it leads to code that looks like:

sub foo {

 my ($self, $arg) = @_;

 if ($arg->isa("Foo")) {

 # Do something with a Foo arg

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 } elsif ($arg->isa("Bar")) {

 # Do something with a Bar arg

 } elsif ($arg->isa("Baz")) {

 # Do something with a Baz arg

 } else {

 # . . .

 }

}

This method effectively dispatches both on the type of the object and on the type of the argument to the method. This
sort of thing is common, especially in operator overloading functions. Manually checking the types of the arguments to
select an action is both error-prone and difficult to extend. Multimethod dispatch solves this problem.

With multimethod dispatch, there can be more than one method or subroutine with the same name as long as each
variant has different parameters in its declaration. When code calls a method or subroutine that participates in multiple
dispatch, the system chooses the variant that most closely matches the types of the parameters in the call.

One very notable thing about subs and methods that do multimethod dispatch is that the named subroutines and
methods live outside of any namespace. By default, when searching for a method or subroutine, Parrot first looks for an
explict sub or method of that name in the current namespace (or the inheritance hierarchy of an object), then for the
default subroutine or method (AUTOLOAD or its equivalent) in the inheritance hierarchy, and only when those fail will it
look for a multimethod dispatch version of the subroutine or method. Since Parrot allows individual PMC classes to
control how their dispatching is done, this sequence may be changed on a per-class basis if need be.

Parrot itself makes heavy use of multimethod dispatch, with most of the core PMC classes using it to provide operator
overloading. The only reason we don't use it for all our operator dispatching is that some of the languages we're
interested in require a left-side wins scheme. It's so heavily used for operator overloading, in fact, that we actually have
two separate versions of multiple dispatch built into Parrot, one specially tailored to operator overloading and a more
general version for normal subroutine and method dispatch.

8.6.3 Continuations

Continuations are possibly the most powerful high-level flow control construct. Originating with lambda calculus, and
built into Lisp over thirty years ago, continuations can be thought of as a closure for control flow. They not only capture
their lexical scope, which gets restored when they're invoked, but also capture their call stack, so when they're invoked
it's as if you never left the spot where they were created. Like closures, though, while they capture the variables in
scope when the continuation is taken, they don't capture the values of the variables. When you invoke a continuation
it's not like rolling back a transaction.

Continuations are phenomenally powerful, and have the undeserved reputation of being bizarre and mind-warping
things. This turns out not to be the case. Originally we put continuations into Parrot to support Ruby, which has them.
This decision turned out to be fortuitous.

In a simple call/return system, which many languages use, when you make a subroutine call the return address is
pushed onto a stack somewhere. When the subroutine is done it takes the address off the stack and returns there. This
is a simple and straightforward operation, and quite fast. The one disadvantage is that with a secure system the calling
routine needs to preserve any information that is important before making the call and restore it on return.

An alternative calling scheme is called Continuation Passing Style (CPS). With CPS, rather than pushing a return address
onto the stack you create a return continuation and pass that into the subroutine as a parameter. When the subroutine
is done it invokes the return continuation, effectively returning to the caller with the caller's environment automatically
restored. This includes not only things like the call stack and lexical variables, but also meta-information like security
credentials.

When we were originally designing Parrot we'd planned on the simpler call/return style, with the caller preserving
everything important before the call, and restoring it afterwards. Three things soon became clear: we were saving and
restoring a lot of individual pieces; we were going to have to add new pieces in the future; and there wasn't any
difference between what we were doing for a call and what we were doing for a continuation, except that the call was a
lot more manual.

The future-proofing was what finally made the decision. Parrot is making a strong guarantee of backward compatibility,
which means that code compiled to Parrot bytecode once we've released will run safely and unchanged on all future
version of Parrot. If we require all the individual pieces of the environment (registers, lexical pads, nested namespaces,
opcode libraries, stack pointers, exception handlers, and assorted things) to be saved manually for a subroutine call, it
means that we can't add any new pieces in the future, as then old code would no longer work properly. We briefly toyed
with the idea of an opcode to package up the entire environment in one go. Then we realized that package was a
continuation, and as such we might as well just go all the way and use them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

continuation, and as such we might as well just go all the way and use them.

As a result, Parrot implements a full CPS system internally, and uses it for all subroutine and method calls. We also
have the simpler call/return style of flow control available for languages that don't need the heavier-weight call system,
as well as for compilers to use for internal processing and optimization. We do go to some lengths to hide the
continuations. PIR code, for example, allows compiler writers to create subroutines and methods (and calls to them)
that conform to Parrot's CPS mechanism without ever touching continuations directly. We then have the benefits of
what appears to be a simple calling scheme, secure future-proofing, and the full power of continuations for languages
that want them.

8.6.4 Coroutines

A coroutine is a subroutine or method that can suspend itself partway through, then later pick up where it left off. This
isn't quite the same thing as a continuation, though it may seem so at first. Coroutines are often used to implement
iterators and generators, as well as threads on systems that don't have native threading support. Since they are so
useful, and since Perl 6 and Python provide them either directly or as generators, Parrot has support for them built in.

Coroutines present some interesting technical challenges. Calling into an existing coroutine requires reestablishing not
only the lexical state and potentially the hypothetical state of variables, but also the control state for just the routine. In
the presence of exceptions they're a bit more complex than plain subroutines and continuations, but they're still very
useful things, and as such we've given them our full support.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.7 Conclusion
We've touched on much of Parrot's core functionality, but certainly not all. We hope we've given you enough of a feel
for how Parrot works to expand your knowledge with the Parrot documentation and source.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 8. Parrot Internals
This chapter details the architecture and internal workings of Parrot, the interpreter behind Perl 6. Parrot is a register-
based, bytecode-driven, object-oriented, multithreaded, dynamically typed, self-modifying, asynchronous interpreter.
Though that's an awful lot of buzzwords, the design fits together remarkably well.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.1 Getting Started
The first step before you start playing with PASM code is to get a copy of the source code and compile it. There is some
information on this in Section 2.2.2.1 in Chapter 2. For more information and updates, see http://www.parrotcode.org
and the documentation in the distributed code.

The basic steps are:[2]

[2] Not all operating systems have make. Check the documentation for instructions for systems that aren't Unix-
based.

$ perl Configure.pl

$ make

$ make test

Once you've compiled Parrot, create a small test file in the main parrot directory. We'll call it fjord.pasm.

print "He's pining for the fjords.\n"

end

.pasm is the standard extension for Parrot assembly language source files. Now you can run this file with:

$./parrot fjord.pasm

And watch the result of the program execution. Instead of executing the program immediately, you could also compile
it to bytecode:

$./parrot --output fjord.pbc fjord.pasm

You specify the name of the output bytecode file with the --output (or -o) switch. .pbc is the standard extension for
Parrot bytecode. To execute the compiled bytecode, run it through the parrot interpreter:

$./parrot fjord.pbc

That's all there is to it.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.10 Threads
Threads allow multiple pieces of code to run in parallel. This is useful when you have multiple physical CPUs to share
the load of running individual threads. With a single processor, threads still provide the feeling of parallelism, but
without any improvement in execution time. Even worse, sometimes using threads on a single processor will actually
slow down your program.

Still, many algorithms can be expressed more easily in terms of parallel running pieces of code and many applications
profit from taking advantage of multiple CPUs. Threads can vastly simplify asynchronous programs like internet servers:
a thread splits off, waits for some I/O to happen, handles it, and relinquishes the processor again when it's done.

Parrot compiles in thread support by default (at least, if the platform provides some kind of support for it). Unlike Perl
5, compiling with threading support doesn't impose any execution time penalty for a non-threaded program. Like
exceptions and events, threads are still under development, so you can expect significant changes in the near future.

As outlined in the previous chapter, Parrot implements three different threading models. The following example uses
the third model, which takes advantage of shared data. It uses a TQueue (thread-safe queue) object to synchronize the
two parallel running threads. This is only a simple example to illustrate threads, not a typical usage of threads (no one
really wants to spawn two threads just to print out a simple string).

 find_global P5, "_th1" # locate thread function

 new P2, .ParrotThread # create a new thread

 find_method P0, P2, "thread3" # a shared thread's entry

 new P7, .TQueue # create a Queue object

 new P8, .PerlInt # and a PerlInt

 push P7, P8 # push the PerlInt onto queue

 new P6, .PerlString # create new string

 set P6, "Js nte artHce\n"

 set I3, 3 # thread function gets 3 args

 invoke # _th1.run(P5,P6,P7)

 new P2, .ParrotThread # same for a second thread

 find_global P5, "_th2"

 set P6, "utaohrPro akr" # set string to 2nd thread's

 invoke # . . . data, run 2nd thread too

 end # Parrot joins both

.pcc_sub _th1: # 1st thread function

w1: sleep 0.001 # wait a bit and schedule

 defined I1, P7 # check if queue entry is . . .

 unless I1, w1 # . . . defined, yes: it's ours

 set S5, P6 # get string param

 substr S0, S5, I0, 1 # extract next char

 print S0 # and print it

 inc I0 # increment char pointer

 shift P8, P7 # pull item off from queue

 if S0, w1 # then wait again, if todo

 invoke P1 # done with string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 invoke P1 # done with string

.pcc_sub _th2: # 2nd thread function

w2: sleep 0.001

 defined I1, P7 # if queue entry is defined

 if I1, w2 # then wait

 set S5, P6

 substr S0, S5, I0, 1 # if not print next char

 print S0

 inc I0

 new P8, .PerlInt # and put a defined entry

 push P7, P8 # onto the queue so that

 if S0, w2 # the other thread will run

 invoke P1 # done with string

This example creates a ParrotThread object and calls its thread3 method, passing three arguments: a PMC for the _th1
subroutine in P5, a string argument in P6, and a TQueue object in P7 containing a single integer. Remember from the
earlier Section 9.7.1.3 that registers 5-15 hold the arguments for a subroutine or method call, and I3 stores the number
of arguments. The thread object is passed in P2.

This call to the thread3 method spawns a new thread to run the _th1 subroutine. The main body of the code then creates
a second ParrotThread object in P2, stores a different subroutine in P5, sets P6 to a new string value, and then calls the
thread3 method again, passing it the same TQueue object as the first thread. This method call spawns a second thread.
The main body of code then ends, leaving the two threads to do the work.

At this point the two threads have already started running. The first thread (_th1) starts off by sleeping for .001
seconds. It then checks if the TQueue object contains a value. Since it contains a value when the thread is first called, it
goes ahead and runs the body of the subroutine. The first thing this does is pull one character off a copy of the string
parameter using substr and print the character. It then increments the current position (I0) in the string, shifts the
element off the TQueue, and loops back to the w1 label and sleeps. Since the queue doesn't have any elements now, the
subroutine keeps sleeping.

Meanwhile, the second thread (_th2) also starts off by sleeping for .001 seconds. It checks if the shared TQueue object
contains a defined value but unlike the first thread it only continues sleeping if the queue does contain a value. Since
the queue contains a value when the second thread is first called, the subroutine loops back to the w2 label and
continues sleeping. It keeps sleeping until the first thread shifts the integer off the queue, then runs the body of the
subroutine. The body pulls one character off a copy of the string parameter using substr, prints the character, and
increments the current position in the string. It then creates a new PerlInt, pushes it onto the shared queue, and loops
back to the w2 label again to sleep. The queue has an element now, so the second thread keeps sleeping, but the first
thread runs through its loop again.

The two threads alternate like this, printing a character and marking the queue so the next thread can run, until there
are no more characters in either string. At the end, each subroutine invokes the return continuation in P1 which
terminates the thread. The interpreter waits for all threads to terminate in the cleanup phase after the end in the main
body of code.

The final printed result (as you might have guessed) is:

Just another Parrot Hacker

The syntax for threads isn't carved in stone and the implementation still isn't finished but as this example shows,
threads are working now and already useful.

Several methods are useful when working with threads. The join method belongs to the ParrotThread class. When it's
called on a ParrotThread object, the calling code waits until the thread terminates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

called on a ParrotThread object, the calling code waits until the thread terminates.

new P2, .ParrotThread # create a new thread

set I5, P2 # get thread ID

find_method P0, P2, "join" # get the join method . . .

invoke # . . . and join (wait for) the thread

set P16, P5 # the return result of the thread

kill and detach are interpreter methods, so you have to grab the current interpreter object before you can look up the
method object:

set I5, P2 # get thread ID of thread P2

getinterp P3 # get this interpreter object

find_method P0, P3, "kill" # get kill method

invoke # kill thread with ID I5

find_method P0, P3, "detach"

invoke # detach thread with ID I5

By the time you read this, some of these combinations of statements and much of the threading syntax above may be
reduced to a simpler set of opcodes.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.11 Loading Bytecode
In addition to running Parrot bytecode on the command line, you can also load precompiled bytecode directly into your
PASM source file. The load_bytecode opcode takes a single argument: the name of the bytecode file to load. So, if you
create a file named file.pasm containing a single subroutine:

file.pasm

.pcc_sub _sub2: # .pcc_sub stores a global sub

 print "in sub2\n"

 invoke P1

and compile it to bytecode using the -o command-line switch:

$ parrot -o file.pbc file.pasm

You can then load the compiled bytecode into main.pasm and directly call the subroutine defined in file.pasm:

main.pasm

_main:

 load_bytecode "file.pbc" # compiled file.pasm

 find_global P0, "_sub2"

 invokecc

 end

The load_bytecode opcode also works with source files, as long as Parrot has a compiler registered for that type of file:

main2.pasm

_main:

 load_bytecode "file.pasm" # PASM source code

 find_global P0, "_sub2"

 invokecc

 end

Subroutines marked with @LOAD run as soon as they're loaded (before load_bytecode returns), rather than waiting to be
called. A subroutine marked with @MAIN will always run first, no matter what name you give it or where you define it in
the file.

file3.pasm

.pcc_sub @LOAD _entry: # mark the sub as to be run

 print "file3\n"

 invoke P1 # return

main3.pasm

_first: # first is never invoked

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

_first: # first is never invoked

 print "never\n"

 invoke P1

.pcc_sub @MAIN _main: # because _main is marked as the

 print "main\n" # MAIN entry of program execution

 load_bytecode "file3.pasm"

 print "back\n"

 end

This example uses both @LOAD and @MAIN. Because the _main subroutine is defined with @MAIN it will execute first
even though another subroutine comes before it in the file. _main prints a line, loads the PASM source file, and then
prints another line. Because _entry in file3.pasm is marked with @LOAD it runs before load_bytecode returns, so the final
output is:

main

file3

back

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.12 Classes and Objects
Parrot's object system is a new addition in version 0.1.0. Objects still have some rough edges (for example, you
currently can't add new attributes to a class after it has been instantiated), but they're functional for basic use.

This section revolves around one complete example that defines a class, instantiates objects, and uses them. The whole
example is included at the end of the section.

9.12.1 Class Declaration

The newclass opcode defines a new class. It takes two arguments, the name of the class and the destination register for
the class PMC. All classes (and objects) inherit from the ParrotClass PMC, which is the core of the Parrot object system.

newclass P1, "Foo"

To instantiate a new object of a particular class, you first look up the integer value for the class type with the find_type
opcode, then create an object of that type with the new opcode:

find_type I1, "Foo"

new P3, I1

The new opcode also checks to see if the class defines a method named "_ _init" and calls it if it exists.

9.12.2 Attributes

The addattribute opcode creates a slot in the class for an attribute (sometimes known as an instance variable) and
associates it with a name:

addattribute P1, ".i" # Foo.i

This chunk of code from the _ _init method looks up the position of the first attribute, creates a PerlInt PMC, and stores it
as the first attribute:

classoffset I0, P2, "Foo" # first "Foo" attribute of object P2

new P6, .PerlInt # create storage for the attribute

setattribute P2, I0, P6 # store the first attribute

The classoffset opcodetakes a PMC containing an object and the name of its class, and returns an integer index for the
position of the first attribute. The setattribute opcode uses the integer index to store a PMC value in one of the object's
attribute slots. This example initializes the first attribute. The second attribute would be at I0 + 1, the third attribute at
I0 + 2, etc.:

inc I0

setattribute P2, I0, P7 # store next attribute

 . . .

There is also support for named parameters with fully qualified parameter names (although this is a little bit slower
than getting the class offset once and accessing several attributes by index):

new P6, .PerlInt

setattribute P2, "Foo\x0.i", P6 # store the attribute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setattribute P2, "Foo\x0.i", P6 # store the attribute

You use the same integer index to retrieve the value of an attribute. The getattribute opcode takes an object and an
index as arguments and returns the attribute PMC at that position:

classoffset I0, P2, "Foo" # first "Foo" attribute of object P2

getattribute P10, P2, I0 # indexed get of attribute

or:

getattribute P10, P2, "Foo\x0.i" # named get

To set the value of an attribute PMC, first retrieve it with getattribute and then assign to the returned PMC. Because PMC
registers are only pointers to values, you don't need to store the PMC again after you modify its value:

getattribute P10, P2, I0

set P10, I5

9.12.3 Methods

Methods in PASM are just subroutines installed in the namespace of the class. You define a method with the .pcc_sub
directive before the label:

.pcc_sub _half:

 classoffset I0, P2, "Foo"

 getattribute P10, P2, I0

 set I5, P10 # get value

 div I5, 2

 invoke P1

This routine returns half of the value of the first attribute of the object. Method calls use the Parrot-calling conventions
so they always pass the invocant object (often called self) in P2. Invoking the return continuation in P1 returns control
to the caller.

The .pcc_sub directive automatically stores the subroutine as a global in the current namespace. The .namespace directive
sets the current namespace:

.namespace ["Foo"]

If no namespace is set, or if the namespace is explicitly set to an empty string, then the subroutine is stored in the
outermost namespace.

The callmethodcc opcode makes a method call. It follows the Parrot-calling conventions, so it expects to find the invocant
object in P2, the method object in P0, etc. It adds one bit of magic, though. If you pass the name of the method in S0,
callmethodcc looks up that method name in the invocant object and stores the method object in P0 for you:

set S0, "_half" # set method name

set P2, P3 # the object

savetop # preserve registers

callmethodcc # create return continuation, call

restoretop

print I5 # result of method call

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

print I5 # result of method call

print "\n"

The callmethodcc opcode also generates a return continuation and stores it in P1. The callmethod opcode doesn't generate
a return continuation, but is otherwise identical to callmethodcc. Just like ordinary subroutine calls, you have to preserve
and restore any registers you want to keep after a method call. Whether you store individual registers, register frames,
or half register frames is up to you.

9.12.3.1 Overriding vtable functions

Every object inherits a default set of vtable functions from the ParrotObject PMC, but you can also override them with
your own methods. The vtable functions have predefined names that start with a double underscore (_ _). The following
code defines a method named _ _init in the Foo class that initializes the first attribute of the object with an integer:

.pcc_sub _ _init:

 classoffset I0, P2, "Foo" # lookup first attribute position

 new P6, .PerlInt # create storage for the attribute

 setattribute P2, I0, P6 # store the first attribute

 invoke P1 # return

Ordinary methods have to be called explicitly, but the vtable functions are called implicitly in many different contexts.
Parrot saves and restores registers for you in these calls. The _ _init method is called whenever a new object is
constructed:

find_type I1, "Foo"

new P3, I1 # call _ _init if it exists

A few other vtable functions in the complete code example for this section are _ _set_integer_native, _ _add, _ _get_integer,
_ _get_string, and _ _increment. The set opcode calls Foo's _ _set_integer_native vtable function when its destination register
is a Foo object and the source register is a native integer:

set P3, 30 # call _ _set_integer_native method

The add opcode calls Foo's _ _add vtable function when it adds two Foo objects:

new P4, I1 # same with P4

set P4, 12

new P5, I1 # create a new store for add

add P5, P3, P4 # _ _add method

The inc opcode calls Foo's _ _increment vtable function when it increments a Foo object:

inc P3 # _ _increment

Foo's _ _get_integer and _ _get_string vtable functions are called whenever an integer or string value is retrieved from a
Foo object:

set I10, P5 # _ _get_integer

 . . .

print P5 # calls _ _get_string, prints 'fortytwo'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.12.4 Inheritance

The subclass opcode creates a new class that inherits methods and attributes from another class. It takes three
arguments: the destination register for the new class, a register containing the parent class, and the name of the new
class:

subclass P3, P1, "Bar"

For multiple inheritance, the addparent opcode adds additional parents to a subclass.

newclass P4, "Baz"

addparent P3, P4

To override an inherited method, define a method with the same name in the namespace of the subclass. The following
code overrides Bar's _ _increment method so it decrements the value instead of incrementing it:

.namespace ["Bar"]

.pcc_sub _ _increment:

 classoffset I0, P2, "Foo" # get Foo's attribute slot offset

 getattribute P10, P2, I0 # get the first Foo attribute

 dec P10 # the evil line

 invoke P1

Notice that the attribute inherited from Foo can be looked up only with the Foo class name, not the Bar class name. This
preserves the distinction between attributes that belong to the class and inherited attributes.

Object creation for subclasses is the same as for ordinary classes:

find_type I1, "Bar"

new P5, I1

Calls to inherited methods are just like calls to methods defined in the class:

set P5, 42 # inherited _ _set_integer_native

inc P5 # overridden _ _increment

print P5 # prints 41 as Bar's _ _increment decrements

print "\n"

set S0, "_half" # set method name

set P2, P5 # the object

savetop # preserve registers

callmethodcc # create return continuation, call

restoretop

print I5

print "\n"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

print "\n"

9.12.5 Additional Object Opcodes

The isa and can opcodes are also useful when working with objects. isa checks whether an object belongs to or inherits
from a particular class. can checks whether an object has a particular method. Both return a true or false value.

isa I0, P3, "Foo" # 1

isa I0, P3, "Bar" # 1

can I0, P3, "_ _add" # 1

9.12.6 Complete Example

 newclass P1, "Foo"

 addattribute P1, "$.i" # Foo.i

 find_type I1, "Foo"

 new P3, I1 # call _ _init if it exists

 set P3, 30 # call _ _set_integer_native method

 new P4, I1 # same with P4

 set P4, 12

 new P5, I1 # create a new LHS for add

 add P5, P3, P4 # _ _add method

 set I10, P5 # _ _get_integer

 print I10

 print "\n"

 print P5 # calls _ _get_string prints 'fortytwo'

 print "\n"

 inc P3 # _ _increment

 add P5, P3, P4

 print P5 # calls _ _get_string prints '43'

 print "\n"

 subclass P3, P1, "Bar"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 find_type I1, "Bar"

 new P3, I1

 set P3, 100

 new P4, I1

 set P4, 200

 new P5, I1

 add P5, P3, P4

 print P5 # prints 300

 print "\n"

 set P5, 42

 print P5 # prints 'fortytwo'

 print "\n"

 inc P5

 print P5 # prints 41 as Bar's

 print "\n" # _ _increment decrements

 set S0, "_half" # set method name

 set P2, P3 # the object

 savetop # preserve registers

 callmethodcc # create return continuation, call

 restoretop

 print I5 # prints 50

 print "\n"

 end

 .namespace ["Foo"]

.pcc_sub _ _init:

 classoffset I0, P2, "Foo" # lookup first attribute position

 new P6, .PerlInt # create a store for the attribute

 setattribute P2, I0, P6 # store the first attribute

 invoke P1 # return

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 invoke P1 # return

.pcc_sub _ _set_integer_native:

 classoffset I0, P2, "Foo"

 getattribute P10, P2, I0

 set P10, I5 # assign passed in value

 invoke P1

.pcc_sub _ _get_integer:

 classoffset I0, P2, "Foo"

 getattribute P10, P2, I0

 set I5, P10 # return value

 invoke P1

.pcc_sub _ _get_string:

 classoffset I0, P2, "Foo"

 getattribute P10, P2, I0

 set I5, P10

 set S5, P10 # get stringified value

 ne I5, 42, ok

 set S5, "fortytwo" # or return modified one

ok:

 invoke P1

.pcc_sub _ _increment:

 classoffset I0, P2, "Foo"

 getattribute P10, P2, I0 # as with all aggregates, this

 inc P10 # has reference semantics - no

 invoke P1 # setattribute needed

.pcc_sub _ _add:

 classoffset I0, P2, "Foo"

 getattribute P10, P2, I0 # object

 getattribute P11, P5, I0 # argument

 getattribute P12, P6, I0 # destination

 add P12, P10, P11

 invoke P1

.pcc_sub _half: # I5 = _half(self)

 classoffset I0, P2, "Foo"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 classoffset I0, P2, "Foo"

 getattribute P10, P2, I0

 set I5, P10 # get value

 div I5, 2

 invoke P1

 .namespace ["Bar"]

.pcc_sub _ _increment:

 classoffset I0, P2, "Foo" # get Foo's attribute slot offset

 getattribute P10, P2, I0 # get the first Foo attribute

 dec P10 # the evil line

 invoke P1

 # end of object example

This example prints out:

42

fortytwo

43

300

fortytwo

41

50

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.13 Writing Tests
As we mentioned earlier, contributions to the Parrot project are welcome. Contributing tests is a good place to start.
You don't have to understand the code behind a PASM opcode (or IMCC instruction) to test it, you only have to
understand what it's supposed to do. If you're working on some code and it doesn't do what the documentation
advertises, you can isolate the problem in a test or series of tests and send them to the bug tracking system. There's a
good chance the problem will be fixed before the next release. Writing tests makes it a lot easier for the developer to
know when they've solved your problem—it's solved when your tests pass. It also prevents that problem from
appearing again, because it's checked every time anyone runs make test. As you move along, you'll want to write tests
for every bug you fix or new feature you add.

The Perl 5 testing framework is at the core of Parrot tests, particularly Test::Builder. Parrot's Parrot::Test module is an
interface to Test::Builder and implements the extra features needed for testing Parrot, like the fact that PASM code has
to be compiled to bytecode before it runs.

The main Parrot tests are in the top-level t/ directory of the Parrot source tree. t/op contains tests for basic opcodes
and t/pmc has tests for PMCs. The names of the test files indicate the functionality tested, like integer.t, number.t, and
string.t. Part of the make test target is the command perl t/harness, which runs all the .t files in the subdirectories
under /t. You can run individual test files by passing their names to the harness script:

$ perl t/harness t/op/string.t t/op/integer.t

Here's a simple example that tests the set opcode with integer registers, taken from t/op/integer.t:

output_is(<<CODE, <<OUTPUT, "set_i");

 set I0, 42

 set I1, I0

 print I1

 print "\\n"

 end

CODE

42

OUTPUT

The code here sets integer register I0 to the value 42, sets I1 to the value of I0, and then prints the value in I1. The test
passes if the value printed was 42 and fails otherwise.

The output_is subroutine takes three strings: the code to run, the expected output, and a description of the test. The
first two strings can be quite long, so the convention is to use Perl 5 here-documents. If you look into the code section,
you'll see that the literal \n has to be escaped as \\n. Many tests use the noninterpolating (<<"CODE") form of here-
documents to avoid that problem. The description can be any text. In this case, it's the fully qualified name of the set
opcode for integer registers, but it could have been "set a native integer register."

If you look up at the top of integer.t, you'll see the line:

use Parrot::Test tests => 38;

(although the actual number may be larger if more tests have been added since this book went to press).

The use line for the Parrot::Test module imports a set of subroutines into the test file, including output_is. The end of the
line gives the number of tests contained in the file.

The output_is subroutine looks for an exact match between the expected result and the actual output of the code. When
the test result can't be compared exactly, you want output_like instead. It takes a Perl 5 regular expression for the
expected output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

expected output:

output_like(<<'CODE', <<'OUTPUT', "testing for text match");

 . . .

CODE

/^Output is some \d+ number\n$/

OUTPUT

Parrot::Test also exports output_isnt, which tests that the actual output of the code doesn't match a particular value.

There are a few guidelines to follow when you're writing a test for a new opcode or checking that an existing opcode
has full test coverage. Tests should cover the opcode's standard operation, corner cases, and illegal input. The first
tests should always cover the basic functionality of an opcode. Further tests can cover more complex operations and
the interactions between opcodes. If the test program is complex or obscure, it helps to add comments. Tests should be
self-contained to make it easy to identify where and why a test is failing.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.2 Basics
PASM has a simple syntax. Each statement stands on its own line. Statements begin with a Parrot instruction code
(commonly referred to as an "opcode"). Arguments follow the opcode, separated by commas:

[label] opcode dest, source, source . . .

If the opcode returns a result, it is stored in the first argument. Sometimes the first register is both a source value and
the destination of the result. The arguments are either registers or constants, though only source arguments can be
constants:

LABEL:

 print "The answer is: "

 print 42

 print "\n"

 end # halt the interpreter

A label names a line of code so other instructions can refer to it. Label names consist of letters, numbers, and
underscores. Simple labels are often all caps to make them stand out more clearly. A label definition is simply the name
of the label followed by a colon. It can be on its own line:

LABEL:

 print "Norwegian Blue\n"

or before a statement on the same line:

LABEL: print "Norwegian Blue\n"

Comments are marked with the hash sign (#) and continue to the end of the line.

POD (plain old documentation) markers are ignored by Parrot. An equals sign in the first column marks the start of a
POD block, and a =cut marks the end of a POD block.

=head1

 . . .

=cut

9.2.1 Constants

Integer constants are signed integers.[3] Integer constants can have a positive (+) or negative (-) sign in front. Binary
integers are preceded by 0b or 0B, and hexadecimal integers are preceded by 0x or 0X:

[3] The size of integers is defined when Parrot is configured. It's typically 32 bits on 32-bit machines (a range of -
231 to +231-1) and twice that size on 64-bit processors.

print 42 # integer constant

print 0x2A # hexadecimal integer

print 0b1101 # binary integer

print -0b101 # binary integer with sign

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

print -0b101 # binary integer with sign

Floating-point constants can also be positive or negative. Scientific notation provides an exponent, marked with e or E
(the sign of the exponent is optional):

print 3.14159 # floating point constant

print 1.e6 # scientific notation

print -1.23e+45

String constants are wrapped in single or double quotation marks. Quotation marks inside the string must be escaped
by a backslash. Other special characters also have escape sequences. These are the same as for Perl 5's qq() operator:
\t (tab), \n (newline), \r (return), \f (form feed), \\ (literal slash), \" (literal double quote), etc.

print "string\n" # string constant with escaped newline

print "\\" # a literal backslash

print 'that\'s it' # escaped single quote

print 'a\n' # three chars: 'a', a backslash, and a 'n'

9.2.2 Working with Registers

Parrot is a register-based virtual machine. It has four types of register sets with 32 registers in each set. The types are
integers, floating-point numbers, strings, and PMCs (Parrot Magic Cookies). Register names consist of a capital letter
indicating the register set and the number of the register, between 0 and 31. For example:

I0 integer register #0

N11 number or floating point register #11

S2 string register #2

P31 PMC register #31

Integer and number registers hold values, while string and PMC registers contain pointers to allocated memory for a
string header or a PMC.

The length of strings is limited only by your system's virtual memory and by the size of integers on the particular
platform. Parrot can work with strings of different character types and encodings. It automatically converts string
operands with mixed characteristics to Unicode.[4] PMCs are Parrot's low-level objects. They can represent data of any
arbitrary type. The operations (methods) for each PMC class are defined in a fixed vtable, which is a structure
containing function pointers that implement each operation.

[4] This conversion isn't fully implemented yet.

9.2.2.1 Register assignment

The most basic operation on registers is assignment using the set opcode:

set I0, 42 # set integer register #0 to the integer value 42

set N3, 3.14159 # set number register #3 to an approximation of

set I1, I0 # set register I1 to what I0 contains

set I2, N3 # truncate the floating point number to an integer

PASM uses registers where a high-level language would use variables. The exchange opcode swaps the contents of two
registers of the same type:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

registers of the same type:

exchange I1, I0 # set register I1 to what I0 contains

 # and set register I0 to what I1 contains

As we mentioned before, string and PMC registers are slightly different because they hold a pointer instead of directly
holding a value. Assigning one string register to another:

set S0, "Ford"

set S1, S0

set S0, "Zaphod"

print S1 # prints "Ford"

end

doesn't make a copy of the string; it makes a copy of the pointer. Just after set S1, S0, both S0 and S1 point to the same
string. But assigning a constant string to a string register allocates a new string. When "Zaphod" is assigned to S0, the
pointer changes to point to the location of the new string, leaving the old string untouched. So strings act like simple
values on the user level, even though they're implemented as pointers.

Unlike strings, assignment to a PMC doesn't automatically create a new object; it only calls the PMC's vtable method for
assignment. So, rewriting the same example using a PMC has a completely different result:

new P0, .PerlString

set P0, "Ford"

set P1, P0

set P0, "Zaphod"

print P1 # prints "Zaphod"

end

The new opcode creates an instance of the .PerlString class. The class's vtable methods define how the PMC in P0
operates. The first set statement calls P0's vtable method set_string_native, which assigns the string "Ford" to the PMC.
When P0 is assigned to P1:

set P1, P0

it copies the pointer, so P1 and P0 are both aliases to the same PMC. Then, assigning the string "Zaphod" to P0 changes
the underlying PMC, so printing P1 or P0 prints "Zaphod".[5]

[5] Contrast this with assign (in Section 9.3.2 later in this chapter).

9.2.2.2 PMC object types

Internally, PMC types are represented by positive integers, and built-in types by negative integers. PASM provides two
opcodes to deal with types. Use typeof to look up the name of a type from its integer value or to look up the named type
of a PMC. Use find_type to look up the integer value of a named type.

When the source argument is a PMC and the destination is a string register, typeof returns the name of the type:

new P0, .PerlString

typeof S0, P0 # S0 is "PerlString"

print S0

print "\n"

end

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

end

In this example, typeof returns the type name "PerlString".

When the source argument is a PMC and the destination is an integer register, typeof returns the integer representation
of the type:

new P0, .PerlString

typeof I0, P0 # I0 is 36

print I0

print "\n"

end

This example returns the integer representation of PerlString, which is 36.

When typeof's source argument is an integer, it returns the name of the type represented by that integer:

set I1, -100

typeof S0, I1 # S0 is "INTVAL"

print S0

print "\n"

end

In this example typeof returns the type name "INTVAL" because the integer representation of a built-in integer value is -
100.

The source argument to find_type is always a string containing a type name, and the destination register is always an
integer. It returns the integer representation of the type with that name:

find_type I1, "PerlString" # I1 is 36

print I1

print "\n"

find_type I2, "INTVAL" # I2 is -100

print I2

print "\n"

end

Here, the name "PerlString" returns 36, and the name "INTVAL" returns -100.

All Parrot classes inherit from the class default, which has the type number 0. The default class provides some default
functionality, but mainly throws exceptions when the default variant of a method is called (meaning the subclass didn't
define the method). Type number 0 returns the type name "illegal", since no object should ever be created from the
default class:

find_type I1, "fancy_super_long_double" # I1 is 0

print I1

print "\n"

typeof S0, I1 # S0 is "illegal"

print S0

print "\n"

end

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

end

The type numbers are not fixed values. They change whenever a new class is added to Parrot or when the class
hierarchy is altered. An include file containing an enumeration of PMC types (runtime/parrot/include/pmctypes.pasm) is
generated during the configuration of the Parrot source tree. Internal data types and their names are specified in
runtime/parrot/include/datatypes.pasm.

You can generate a complete and current list of valid PMC types by running this command within the main Parrot source
directory:

$ perl classes/pmc2c2.pl --tree classes/*.pmc

which produces output like:

Array

 default

Boolean

 PerlInt

 perlscalar

 scalar

 default

Closure

 Sub

 default

 . . .

The output traces the class hierarchy for each class: Boolean inherits from PerlInt, which is derived from the abstract
perlscalar, scalar, and default classes (abstract classes are listed in lowercase). The actual classnames and their hierarchy
may have changed by the time you read this.

9.2.2.3 Type morphing

The classes PerlUndef, PerlInt, PerlNum, and PerlString implement Perl's polymorphic scalar behavior. Assigning a string to
a number PMC morphs it into a string PMC. Assigning an integer value morphs it to a PerlInt, and assigning undef morphs
it to PerlUndef:

new P0, .PerlString

set P0, "Ford\n"

print P0 # prints "Ford\n"

set P0, 42

print P0 # prints 42

print "\n"

typeof S0, P0

print S0 # prints "PerlInt"

print "\n"

end

P0 starts as a PerlString, but when set assigns it an integer value 42 (replacing the old string value "Ford"), it changes
type to PerlInt.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

type to PerlInt.

9.2.3 Math Operations

PASM has a full set of math instructions. These work with integers, floating-point numbers, and PMCs that implement
the vtable methods of a numeric object. Most of the major math opcodes have two- and three-argument forms:

add I0, I1 # I0 += I1

add I10, I11, I2 # I10 = I11 + I2

The three-argument form of add stores the sum of the last two registers in the first register. The two-argument form
adds the first register to the second and stores the result back in the first register.

The source arguments can be Parrot registers or constants, but they must be compatible with the type of the
destination register. Generally, "compatible" means that the source and destination have to be the same type, but there
are a few exceptions:

sub I0, I1, 2 # I0 = I1 - 2

sub N0, N1, 1.5 # N0 = N1 - 1.5

If the destination register is an integer register, like I0, the other arguments must be integer registers or integer
constants. A floating-point destination, like N0, usually requires floating-point arguments, but many math opcodes also
allow the final argument to be an integer. Opcodes with a PMC destination register may take an integer, floating-point,
or PMC final argument:

mul P0, P1 # P0 *= P1

mul P0, I1

mul P0, N1

mul P0, P1, P2 # P0 = P1 * P2

mul P0, P1, I2

mul P0, P1, N2

Operations on a PMC are implemented by the vtable method of the destination (in the two-argument form) or the left-
source argument (in the three argument form). The result of an operation is entirely determined by the PMC. A class
implementing imaginary number operations might return an imaginary number, for example.

We won't list every math opcode here, but we'll list some of the most common ones. You can get a complete list in
Section 11.1 in Chapter 11.

9.2.3.1 Unary math opcodes

The unary opcodes have either a destination argument and a source argument, or a single argument as destination and
source. Some of the most common unary math opcodes are inc (increment), dec (decrement), abs (absolute value), neg
(negate), and fact (factorial):

abs N0, -5.0 # the absolute value of -5.0 is 5.0

fact I1, 5 # the factorial of 5 is 120

inc I1 # 120 incremented by 1 is 121

9.2.3.2 Binary math opcodes

Binary opcodes have two source arguments and a destination argument. As we mentioned before, most binary math
opcodes have a two-argument form in which the first argument is both a source and the destination. Parrot provides
add (addition), sub (subtraction), mul (multiplication), div (division), and pow (exponent) opcodes, as well as two
different modulus operations. mod is Parrot's implementation of modulus, and cmod is the % operator from the C library.
It also provides gcd (greatest common divisor) and lcm (least common multiple).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It also provides gcd (greatest common divisor) and lcm (least common multiple).

div I0, 12, 5 # I0 = 12 / 5

mod I0, 12, 5 # I0 = 12 % 5

9.2.3.3 Floating-point operations

Although most of the math operations work with both floating-point numbers and integers, a few require floating-point
destination registers. Among these are ln (natural log), log2 (log base 2), log10 (log base 10), and exp (ex), as well as a
full set of trigonometric opcodes such as sin (sine), cos (cosine), tan (tangent), sec (secant), cosh (hyperbolic cosine),
tanh (hyperbolic tangent), sech (hyperbolic secant), asin (arc sine), acos (arc cosine), atan (arc tangent), asec (arc
secant), exsec (exsecant), hav (haversine), and vers (versine). All angle arguments for the trigonometric functions are in
radians:

sin N1, N0

exp N1, 2

The majority of the floating-point operations have a single source argument and a single destination argument. Even
though the destination must be a floating-point register, the source can be either an integer or floating-point number.

The atan opcode also has a three-argument variant that implements C's atan2():

atan N0, 1, 1

9.2.4 Working with Strings

The string operations work with string registers and with PMCs that implement a string class.

Most operations on string registers generate new strings in the destination register. Some operations have an optimized
form that modifies an existing string in place. These are denoted by an _r suffix, as in substr_r.

String operations on PMC registers require all their string arguments to be PMCs.

9.2.4.1 Concatenating strings

Use the concat opcode to concatenate strings. With string register or string constant arguments, concat has both a two-
argument and a three-argument form. The first argument is a source and a destination in the two-argument form:

set S0, "ab"

concat S0, "cd" # S0 has "cd" appended

print S0 # prints "abcd"

print "\n"

concat S1, S0, "xy" # S1 is the string S0 with "xy" appended

print S1 # prints "abcdxy"

print "\n"

end

The first concat concatenates the string "cd" onto the string "ab" in S0. It generates a new string "abcd" and changes S0
to point to the new string. The second concat concatenates "xy" onto the string "abcd" in S0 and stores the new string in
S1.

For PMC registers, concat has only a three-argument form with separate registers for source and destination:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For PMC registers, concat has only a three-argument form with separate registers for source and destination:

new P0, .PerlString

new P1, .PerlString

new P2, .PerlString

set P0, "ab"

set P1, "cd"

concat P2, P0, P1

print P2 # prints abcd

print "\n"

end

Here, concat concatenates the strings in P0 and P1 and stores the result in P2.

9.2.4.2 Repeating strings

The repeat opcode repeats a string a certain number of times:

set S0, "x"

repeat S1, S0, 5 # S1 = S0 x 5

print S1 # prints "xxxxx"

print "\n"

end

In this example, repeat generates a new string with "x" repeated five times and stores a pointer to it in S1.

9.2.4.3 Length of a string

The length opcode returns the length of a string in characters. This won't be the same as the length in bytes for
multibyte encoded strings:

set S0, "abcd"

length I0, S0 # the length is 4

print I0

print "\n"

end

Currently, length doesn't have an equivalent for PMC strings, but it probably will be implemented in the future.

9.2.4.4 Substrings

The simplest version of the substr opcode takes four arguments: a destination register, a string, an offset position, and a
length. It returns a substring of the original string, starting from the offset position (0 is the first character) and
spanning the length:

substr S0, "abcde", 1, 2 # S0 is "bc"

This example extracts a two-character string from "abcde" at a one-character offset from the beginning of the string
(starting with the second character). It generates a new string, "bc", in the destination register S0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(starting with the second character). It generates a new string, "bc", in the destination register S0.

When the offset position is negative, it counts backward from the end of the string. So an offset of -1 starts at the last
character of the string.

substr also has a five-argument form, where the fifth argument is a string to replace the substring. This modifies the
second argument and returns the removed substring in the destination register.

set S1, "abcde"

substr S0, S1, 1, 2, "XYZ"

print S0 # prints "bc"

print "\n"

print S1 # prints "aXYZde"

print "\n"

end

This replaces the substring "bc" in S1 with the string "XYZ", and returns "bc" in S0.

When the offset position in a replacing substr is one character beyond the original string length, substr appends the
replacement string just like the concat opcode. If the replacement string is an empty string, the characters are just
removed from the original string.

When you don't need to capture the replaced string, there's an optimized version of substr that just does a replace
without returning the removed substring.

set S1, "abcde"

substr S1, 1, 2, "XYZ"

print S1 # prints "aXYZde"

print "\n"

end

The PMC versions of substr are not yet implemented.

9.2.4.5 Chopping strings

The chopn opcode removes characters from the end of a string. It takes two arguments: the string to modify and the
count of characters to remove.

set S0, "abcde"

chopn S0, 2

print S0 # prints "abc"

print "\n"

end

This example removes two characters from the end of S0. If the count is negative, that many characters are kept in the
string.

set S0, "abcde"

chopn S0, -2

print S0 # prints "ab"

print "\n"

end

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

end

This keeps the first two characters in S0 and removes the rest. chopn also has a three-argument version that stores the
chopped string in a separate destination register, leaving the original string untouched:

set S0, "abcde"

chopn S1, S0, 1

print S1 # prints "abcd"

print "\n"

end

9.2.4.6 Copying strings

The clone opcode makes a deep copy of a string or PMC. Instead of just copying the pointer, as normal assignment
would, it recursively copies the string or object underneath.

new P0, .PerlString

set P0, "Ford"

clone P1, P0

set P0, "Zaphod"

print P1 # prints "Ford"

end

This example creates an identical, independent clone of the PMC in P0 and puts a pointer to it in P1. Later changes to P0
have no effect on P1.

With simple strings, the copy created by clone, as well as the results from substr, are copy-on-write (COW). These are
rather cheap in terms of memory usage because the new memory location is only created when the copy is assigned a
new value. Cloning is rarely needed with ordinary string registers since they always create a new memory location on
assignment.

9.2.4.7 Converting characters

The chr opcode takes an integer value and returns the corresponding character as a one-character string, while the ord
opcode takes a single character string and returns the integer that represents that character in the string's encoding:

chr S0, 65 # S0 is "A"

ord I0, S0 # I0 is 65

ord has a three-argument variant that takes a character offset to select a single character from a multicharacter string.
The offset must be within the length of the string:

ord I0, "ABC", 2 # I0 is 67

A negative offset counts backward from the end of the string, so -1 is the last character:

ord I0, "ABC", -1 # I0 is 67

9.2.4.8 Formatting strings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.2.4.8 Formatting strings

The sprintf opcode generates a formatted string from a series of values. It takes three arguments: the destination
register, a string specifying the format, and an ordered aggregate PMC (like a PerlArray) containing the values to be
formatted. The format string and the destination register can be either strings or PMCs:

sprintf S0, S1, P2

sprintf P0, P1, P2

The format string is similar to the one for C's sprintf function, but with some extensions for Parrot data types. Each
format field in the string starts with a % and ends with a character specifying the output format. The output format
characters are listed in Table 9-1.

Table 9-1. Format characters
Format Meaning

%c A character

%d A decimal integer

%i A decimal integer

%u An unsigned integer

%o An octal integer

%x A hex integer, preceded by (0x when # is specified)

%X A hex integer with a capital X (when # is specified)

%b A binary integer, preceded by 0b (when # is specified)

%B A binary integer with a capital B (when # is specified)

%p A pointer address in hex

%f A floating-point number

%e A floating-point number in scientific notation (displayed with a lowercase e).

%E The same as %e, but displayed with an uppercase E

%g The same as either %e or %f, whichever fits best.

%G The same as %g, but displayed with an uppercase E

%s A string

Each format field can be specified with several options: flags, width, precision, and size. The format flags are listed in
Table 9-2.

Table 9-2. Format flags
Flag Meaning

0 Pad with zeros.

<space> Pad with spaces.

+ Prefix numbers with a sign.

- Align left.

Prefix a leading 0 for octal, 0x for hex, or force a decimal point.

The width is a number defining the minimum width of the output from a field. The precision is the maximum width for
strings or integers, and the number of decimal places for floating-point fields. If either width or precision is an asterisk
(*), it takes its value from the next argument in the PMC.

The size modifier defines the type of the argument the field takes. The flags are listed in Table 9-3.

Table 9-3. Size flags

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 9-3. Size flags
Character Meaning

h Short or float

l Long

H Huge value (long long or long double)

v INTVAL or FLOATVAL

O opcode_t

P PMC

S String

The values in the aggregate PMC must have a type compatible with the specified size.

Here's a short illustration of string formats:

new P2, .PerlArray

new P0, .PerlInt

set P0, 42

push P2, P0

new P1, .PerlNum

set P1, 10

push P2, P1

sprintf S0, "int %#Px num %+2.3Pf\n", P2

print S0 # prints "int 0x2a num +10.000"

print "\n"

end

The first eight lines create a PerlArray with two elements: a PerlInt and a PerlNum. The format string of the sprintf has two
format fields. The first, %#Px, takes a PMC argument from the aggregate (P) and formats it as a hexadecimal integer
(x), with a leading 0x (#). The second format field, %+2.3Pf, takes a PMC argument (P) and formats it as a floating-
point number (f), with a minimum of two whole digits and a maximum of three decimal places (2.3) and a leading sign
(+).

The test files t/op/string.t and t/src/sprintf.t have many more examples of format strings.

9.2.4.9 Testing for substrings

The index opcode searches for a substring within a string. If it finds the substring, it returns the position where the
substring was found as a character offset from the beginning of the string. If it fails to find the substring, it returns -1:

index I0, "Beeblebrox", "eb"

print I0 # prints 2

print "\n"

index I0, "Beeblebrox", "Ford"

print I0 # prints -1

print "\n"

end

index also has a four-argument version, where the fourth argument defines an offset position for starting the search:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

index also has a four-argument version, where the fourth argument defines an offset position for starting the search:

index I0, "Beeblebrox", "eb", 3

print I0 # prints 5

print "\n"

end

This finds the second "eb" in "Beeblebrox" instead of the first, because the search skips the first three characters in the
string.

9.2.4.10 Joining strings

The join opcode joins the elements of an array PMC into a single string. The second argument separates the individual
elements of the PMC in the final string result.

new P0, .PerlArray

push P0, "hi"

push P0, 0

push P0, 1

push P0, 0

push P0, "parrot"

join S0, "_ _", P0

print S0 # prints "hi_ _0_ _1_ _0_ _parrot"

end

This example builds a PerlArray in P0 with the values "hi", 0, 1, 0, and "parrot". It then joins those values (separated by
the string "_ _") into a single string, and stores it in S0.

9.2.4.11 Splitting strings

Splitting a string yields a new array containing the resulting substrings of the original string. Since regular expressions
aren't implemented yet, the current implementation of the split opcode just splits individual characters, much like Perl
5's split with an empty pattern.

split P0, "", "abc"

set P1, P0[0]

print P1 # 'a'

set P1, P0[2]

print P1 # 'c'

end

This example splits the string "abc" into individual characters and stores them in an array in P0. It then prints out the
first and third elements of the array. For now, the split pattern (the second argument to the opcode) is ignored except
for a test to make sure that its length is zero.

9.2.5 I/O Operations

The I/O subsystem has at least one set of significant revisions ahead, so you can expect this section to change. It's
worth an introduction, though, because the basic set of opcodes is likely to stay the same, even if their arguments and
underlying functionality change.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

underlying functionality change.

9.2.5.1 Open and close a file

The open opcode opens a file for access. It takes three arguments: a destination register, the name of the file, and a
modestring. It returns a ParrotIO object on success and a PerlUndef object on failure. The ParrotIO object hides operating-
system-specific details.

open P0, "people.txt", "<"

The modestring specifies whether the file is opened in read-only (<), write-only (>), read/write (+<), or append mode
(>>).

The close opcode closes a ParrotIO object:

close P0 # close a PIO

9.2.5.2 Output operations

We already saw the print opcode in several examples above. The one-argument form prints a register or constant to
stdout. It also has a two-argument form: the first argument is the ParrotIO object where the value is printed.

print P0, "xxx" # print to PIO in P0

The getstdin, getstdout, and getstderr opcodes return ParrotIO objects for the stdio streams:

getstdin P0

gestdout P0

getstderr P0

Printing to stderr has a shortcut:

printerr "troubles"

getstderr P10

print P10, "troubles" # same

9.2.5.3 Reading from files

The read opcode reads a specified number of bytes from stdin or from a ParrotIO object:

read S0, I0 # read from stdin up to I0 bytes into S0

read S0, P0, I0 # read from the PIO in P0 up to I0 bytes

readline is a variant of read that works with ParrotIO objects. It reads a whole line at a time, terminated by the newline
character:

getstdin P0

readline S0, P0 # read a line from stdin

The seek opcode sets the current file position on a ParrotIO object. It takes four arguments: a destination register, a
ParrotIO object, an offset, and a flag specifying the origin point:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ParrotIO object, an offset, and a flag specifying the origin point:

seek I0, P0, I1, I2

In this example, the position of P0 is set by an offset (I1) from an origin point (I2). 0 means the offset is from the start
of the file, 1 means the offset is from the current position, and 2 means the offset is from the end of the file. The return
value (in I0) is 0 when the position is successfully set and -1 when it fails. seek also has a five-argument form that seeks
with a 64-bit offset, constructed from two 32-bit arguments.

9.2.6 Logical and Bitwise Operations

The logical opcodes evaluate the truth of their arguments. They're often used to make decisions on control flow. Logical
operations are implemented for integers and PMCs. Numeric values are false if they're 0 and true otherwise. Strings are
false if they're the empty string or a single character "0" and true otherwise. PMCs are true when their get_bool vtable
method returns a nonzero value.

The and opcode returns the second argument if it's false and the third argument otherwise:

and I0, 0, 1 # returns 0

and I0, 1, 2 # returns 2

The or opcode returns the second argument if it's true and the third argument otherwise:

or I0, 1, 0 # returns 1

or I0, 0, 2 # returns 2

or P0, P1, P2

Both and and or are short-circuiting. If they can determine what value to return from the second argument, they'll never
evaluate the third. This is significant only for PMCs, as they might have side effects on evaluation.

The xor opcode returns the second argument if it is the only true value, returns the third argument if it is the only true
value, and returns false if both values are true or both are false:

xor I0, 1, 0 # returns 1

xor I0, 0, 1 # returns 1

xor I0, 1, 1 # returns 0

xor I0, 0, 0 # returns 0

The not opcode returns a true value when the second argument is false, and a false value if the second argument is
true:

not I0, I1

not P0, P1

The bitwise opcodes operate on their values a single bit at a time. band, bor, and bxor return a value that is the logical
AND, OR, or XOR of each bit in the source arguments. They each take a destination register and two source registers.
They also have two-argument forms where the destination is also a source. bnot is the logical NOT of each bit in a
single-source argument.

bnot I0, I1

band P0, P1

bor I0, I1, I2

bxor P0, P1, I2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bxor P0, P1, I2

The bitwise opcodes also have string variants for AND, OR, and XOR: bors, bands, and bxors. These take string register
or PMC string source arguments and perform the logical operation on each byte of the strings to produce the final
string.

bors S0, S1

bands P0, P1

bors S0, S1, S2

bxors P0, P1, I2

The bitwise string opcodes only have meaningful results when they're used with simple ASCII strings because the
bitwise operation is done per byte.

The logical and arithmetic shift operations shift their values by a specified number of bits:

shl I0, I1, I2 # shift I1 left by count I2 giving I0

shr I0, I1, I2 # arithmetic shift right

lsr P0, P1, P2 # logical shift right

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.3 Working with PMCs
In most of the examples we've shown so far, PMCs just duplicate the functionality of integers, numbers, and strings.
They wouldn't be terribly useful if that's all they did, though. PMCs offer several advanced features, each with its own
set of operations.

9.3.1 Aggregates

PMCs can define complex types that hold multiple values. These are commonly called "aggregates." The most important
feature added for aggregates is keyed access. Elements within an aggregate PMC can be stored and retrieved by a
numeric or string key. PASM also offers a full set of operations for manipulating aggregate data types.

Since PASM is intended to implement Perl, the two most fully featured aggregates already in operation are arrays and
hashes. Any aggregate defined for any language could take advantage of the features described here.

9.3.1.1 Arrays

The PerlArray PMC is an ordered aggregate with zero-based integer keys. The syntax for keyed access to a PMC puts the
key in square brackets after the register name:

new P0, .PerlArray # obtain a new array object

set P0, 2 # set its length

set P0[0], 10 # set first element to 10

set P0[1], I31 # set second element to I31

set I0, P0[0] # get the first element

set I1, P0 # get array length

A key on the destination register of a set operation sets a value for that key in the aggregate. A key on the source
register of a set returns the value for that key. If you set P0 without a key, you set the length of the array, not one of its
values.[6] And if you assign the PerlArray to an integer, you get the length of the array.

[6] PerlArray is an autoextending array, so you never need to set its length. Other array types may require the
length to be set explicitly.

By the time you read this, the syntax for getting and setting the length of an array may have changed. The change
would separate array allocation (how much storage the array provides) from the actual element count. The currently
proposed syntax uses set to set or retrieve the allocated size of an array, and an elements opcode to set or retreive the
count of elements stored in the array.

set P0, 100 # allocate store for 100 elements

elements P0, 5 # set element count to 5

set I0, P0 # obtain current allocation size

elements I0, P0 # get element count

Some other useful instructions for working with arrays are push, pop, shift, and unshift (you'll find them in Section 11.1 in
Chapter 11).

9.3.1.2 Hashes

The PerlHash PMC is an unordered aggregate with string keys:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The PerlHash PMC is an unordered aggregate with string keys:

new P1, .PerlHash # generate a new hash object

set P1["key"], 10 # set key and value

set I0, P1["key"] # obtain value for key

set I1, P1 # number of entries in hash

The exists opcode tests whether a keyed value exists in an aggregate. It returns 1 if it finds the key in the aggregate
and returns 0 if it doesn't. It doesn't care if the value itself is true or false, only that the key has been set:

new P0, .PerlHash

set P0["key"], 0

exists I0, P0["key"] # does a value exist at "key"

print I0 # prints 1

print "\n"

end

The delete opcode is also useful for working with hashes: it removes a key/value pair.

9.3.1.3 Iterators

Iterators extract values from an aggregate PMC. You create an iterator by creating a new Iterator PMC, and passing the
array to new as an additional parameter:

new P1, .Iterator, P2

The include file iterator.pasm defines some constants for working with iterators. The .ITERATE_FROM_START and
.ITERATE_FROM_END constants are used to select whether an array iterator starts from the beginning or end of the
array. The shift opcode extracts values from the array. An iterator PMC is true as long as it still has values to be
retrieved (tested by unless in the following):

.include "iterator.pasm"

 new P2, .PerlArray

 push P2, "a"

 push P2, "b"

 push P2, "c"

 new P1, .Iterator, P2

 set P1, .ITERATE_FROM_START

iter_loop:

 unless P1, iter_end

 shift P5, P1

 print P5 # prints "a", "b", "c"

 branch iter_loop

iter_end:

 end

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 end

Hash iterators work similarly to array iterators, but they extract keys. With hashes it's only meaningful to iterate in one
direction, since they don't define any order for their keys.

.include "iterator.pasm"

 new P2, .PerlHash

 set P2["a"], 10

 set P2["b"], 20

 set P2["c"], 30

 new P1, .Iterator, P2

 set P1, .ITERATE_FROM_START_KEYS

iter_loop:

 unless P1, iter_end

 shift S5, P1 # one of the keys "a", "b", "c"

 set I9, P2[S5]

 print I9 # prints e.g. 20, 10, 30

 branch iter_loop

iter_end:

 end

9.3.1.4 Data structures

Arrays and hashes can hold any data type, including other aggregates. Accessing elements deep within nested data
structures is a common operation, so PASM provides a way to do it in a single instruction. Complex keys specify a series
of nested data structures, with each individual key separated by a semicolon:

new P0, .PerlHash

new P1, .PerlArray

set P1[2], 42

set P0["answer"], P1

set I1, 2

set I0, P0["answer";I1] # $i = %hash{"answer"}[2]

print I0

print "\n"

end

This example builds up a data structure of a hash containing an array. The complex key P0["answer";I1] retrieves an
element of the array within the hash. You can also set a value using a complex key:

set P0["answer";0], 5 # %hash{"answer"}[0] = 5

The individual keys are integers or strings, or registers with integer or string values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The individual keys are integers or strings, or registers with integer or string values.

9.3.2 PMC Assignment

We mentioned before that set on two PMCs simply aliases them both to the same object, and that clone creates a
complete duplicate object. But if you just want to assign the value of one PMC to another PMC, you need the assign
opcode:

new P0, .PerlInt

new P1, .PerlInt

set P0, 42

set P2, P0

assign P1, P0 # note: P1 has to exist already

inc P0

print P0 # prints 43

print "\n"

print P1 # prints 42

print "\n"

print P2 # prints 43

print "\n"

end

This example creates two PerlInt PMCs: P0 and P1. It gives P0 a value of 42. It then uses set to give the same value to
P2, but uses assign to give the value to P1. When P0 is incremented, P2 also changes, but P1 doesn't. The destination
register for assign must have an existing object of the right type in it, since assign doesn't create a new object (as with
clone) or reuse the source object (as with set).

9.3.3 Properties

PMCs can have additional values attached to them as "properties" of the PMC. What these properties do is entirely up to
the language being implemented. Perl 6 uses them to store extra information about a variable: whether it's a constant,
if it should always be interpreted as a true value, etc.

The setprop opcode sets the value of a named property on a PMC. It takes three arguments: the PMC to be set with a
property, the name of the property, and a PMC containing the value of the property. The getprop opcode returns the
value of a property. It also takes three arguments: the PMC to store the property's value, the name of the property,
and the PMC from which the property value is to be retrieved:

new P0, .PerlString

set P0, "Zaphod"

new P1, .PerlInt

set P1, 1

setprop P0, "constant", P1 # set a property on P0

getprop P3, "constant", P0 # retrieve a property on P0

print P3 # prints 1

print "\n"

end

This example creates a PerlString object in P0, and a PerlInt object with the value 1 in P1. setprop sets a property named
"constant" on the object in P0 and gives the property the value in P1.[7] getprop retrieves the value of the property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"constant" on the object in P0 and gives the property the value in P1.[7] getprop retrieves the value of the property
"constant" on P0 and stores it in P3.

[7] The "constant" property is ignored by PASM, but is significant to the Perl 6 code running on top of it.

Properties are kept in a separate hash for each PMC. Property values are always PMCs, but only references to the actual
PMCs. Trying to fetch the value of a property that doesn't exist returns a PerlUndef.

delprop deletes a property from a PMC:

delprop P1, "constant" # delete property

You can also return a complete hash of all properties on a PMC with prophash:

prophash P0, P1 # set P0 to the property hash of P1

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.4 Flow Control
Although it has many advanced features, at heart PASM is an assembly language. All flow control in PASM—as in most
assembly languages—is done with branches and jumps.

Branch instructions transfer control to a relative offset from the current instruction. The rightmost argument to every
branch opcode is a label, which the assembler converts to the integer value of the offset. You can also branch on a
literal integer value, but there's rarely any need to do so. The simplest branch instruction is branch:

 branch L1 # branch 4

 print "skipped\n"

L1:

 print "after branch\n"

 end

This example unconditionally branches to the location of the label L1, skipping over the first print statement.

Jump instructions transfer control to an absolute address. The jump opcode doesn't calculate an address from a label, so
it's used together with set_addr:

 set_addr I0, L1

 jump I0

 print "skipped\n"

 end

L1:

 print "after jump\n"

 end

The set_addr opcode takes a label or an integer offset and returns an absolute address.

You've probably noticed the end opcode as the last statement in many examples above. This terminates the execution
of the current run loop. Terminating the main bytecode segment (the first run loop) stops the interpreter. Without the
end statement, execution just falls off the end of the bytecode segment, with a good chance of crashing the interpreter.

9.4.1 Conditional Branches

Unconditional jumps and branches aren't really enough for flow control. What you need to implement the control
structures of high-level languages is the ability to select different actions based on a set of conditions. PASM has
opcodes that conditionally branch based on the truth of a single value or the comparison of two values. The following
example has if and unless conditional branches:

 set I0, 0

 if I0, TRUE

 unless I0, FALSE

 print "skipped\n"

 end

TRUE:

 print "shouldn't happen\n"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print "shouldn't happen\n"

 end

FALSE:

 print "the value was false\n"

 end

if branches if its first argument is a true value, and unless branches if its first argument is a false value. In this case, the
if doesn't branch because I0 is false, but the unless does branch. The comparison branching opcodes compare two values
and branch if the stated relation holds true. These are eq (branch when equal), ne (when not equal), lt (when less than),
gt (when greater than), le (when less than or equal), and ge (when greater than or equal). The two compared
arguments must be the same register type:

 set I0, 4

 set I1, 4

 eq I0, I1, EQUAL

 print "skipped\n"

 end

EQUAL:

 print "the two values are equal\n"

 end

This compares two integers, I0 and I1, and branches if they're equal. Strings of different character sets or encodings are
converted to Unicode before they're compared. PMCs have a cmp vtable method. This gets called on the left argument
to perform the comparison of the two objects.

The comparison opcodes don't specify if a numeric or string comparison is intended. The type of the register selects for
integers, floats, and strings. With PMCs, the vtable method cmp or is_equal of the first argument is responsible for
comparing the PMC meaningfully with the other operand. If you need to force a numeric or string comparison on two
PMCs, use the alternate comparison opcodes that end in the _num and _str suffixes.

eq_str P0, P1, label # always a string compare

gt_num P0, P1, label # always numerically

Finally, the eq_addr opcode branches if two PMCs or strings are actually the same object (have the same address), and
the is_null opcode branches if a PMC is NULL (has no assigned address):

eq_addr P0, P1, same_pmcs_found

is_null P2, the_pmc_is_null

9.4.2 Iteration

PASM doesn't define high-level loop constructs. These are built up from a combination of conditional and unconditional
branches. A do while-style loop can be constructed with a single conditional branch:

 set I0, 0

 set I1, 10

REDO:

 inc I0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 inc I0

 print I0

 print "\n"

 lt I0, I1, REDO

 end

This example prints out the numbers 1 to 10. The first time through, it executes all statements up to the lt statement. If
the condition evaluates as true (I0 is less than I1) it branches to the REDO label and runs the three statements in the
loop body again. The loop ends when the condition evaluates as false.

Conditional and unconditional branches can build up quite complex looping constructs, as follows:

 # loop ($i=1; $i<=10; $i++) {

 # print "$i\n";

 # }

loop_init:

 set I0, 1

 branch loop_test

loop_body:

 print I0

 print "\n"

 branch loop_continue

loop_test:

 le I0, 10, loop_body

 branch out

loop_continue:

 inc I0

 branch loop_test

out:

 end

This example emulates a counter-controlled loop like Perl 6's loop keyword or C's for. The first time through the loop it
sets the initial value of the counter in loop_init, tests that the loop condition is met in loop_test, and then executes the
body of the loop in loop_body. If the test fails on the first iteration, the loop body will never execute. The end of
loop_body branches to loop_continue, which increments the counter and then goes to loop_test again. The loop ends when
the condition fails, and it branches to out. The example is more complex than it needs to be just to count to 10, but it
nicely shows the major components of a loop.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.5 Stacks and Register Frames
Parrot provides 32 registers of each type: integer, floating-point number, string, and PMC. This is a generous number of
registers, but it's still too restrictive for the average use. You can hardly limit your code to 32 integers at a time. This is
especially true when you start working with subroutines and need a way to store the caller's values and the subroutine's
values. So, Parrot also provides stacks for storing values outside the 32 registers. Parrot has seven basic stacks, each
used for a different purpose: the user stack, the control stack, the pad stack, and the four register-backing stacks.

9.5.1 User Stack

The user stack, also known as the general-purpose stack, stores individual values. The two main opcodes for working
with the user stack are save , to push a value onto the stack, and restore, to pop one off the stack:

save 42 # push onto user stack

restore I1 # pop off user stack

The one argument to save can be either a constant or a register. The user stack is a typed stack, so restore will only pop
a value into a register of the same type as the original value:

save 1

set I0, 4

restore I0

print I0 # prints 1

end

If that restore were restore N0 instead of an integer register, you'd get an exception, "Wrong type on top of stack!"

A handful of other instructions are useful for manipulating the user stack. rotate_up rotates a given number of elements
on the user stack to put a different element on the top of the stack. The depth opcode returns the number of entries
currently on the stack. The entrytype opcode returns the type of the stack entry at a given depth, and lookback returns
the value of the element at the given depth without popping the element off the stack:

save 1

save 2.3

set S0, "hi\n"

save S0

save P0

entrytype I0, 0

print I0 # prints 4 (PMC)

entrytype I0, 1

print I0 # prints 3 (STRING)

entrytype I0, 2

print I0 # prints 2 (FLOATVAL)

entrytype I0, 3

print I0 # prints 1 (INTVAL)

print "\n"

depth I2 # get entries

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

depth I2 # get entries

print I2 # prints 4

print "\n"

lookback S1, 1 # get entry at depth 1

print S1 # prints "hi\n"

depth I2 # unchanged

print I2 # prints 4

print "\n"

end

This example pushes four elements onto the user stack: an integer, a floating-point number, a string, and a PMC. It
checks the entrytype of all four elements and prints them out. It then checks the depth of the stack, gets the value of the
second element with a lookback, and checks that the number of elements hasn't changed.

9.5.2 Control Stack

The control stack, also known as the call stack, stores return addresses for subroutines called by bsr and exception
handlers. There are no instructions for directly manipulating the control stack.

9.5.3 Register Frames

The final set of stacks are the register backing stacks. Parrot has four backing stacks, one for each type of register.
Instead of saving and restoring individual values, the backing stacks work with register frames. Each register frame is
the full set of 32 registers for one type. Each frame is separated into two halves: the bottom half (registers 0-15) and
the top half (registers 16-32). Some opcodes work with full frames while others work with half-frames. The backing
stacks are commonly used for saving the contents of all the registers (or just the top half of each frame) before a
subroutine call, so they can be restored when control returns to the caller.

PASM has five opcodes for storing full register frames, one for each register type and one that saves all four at once:

pushi # copy I-register frame

pushn # copy N-register frame

pushs # copy S-register frame

pushp # copy P-register frame

saveall # copy all register frames

Each pushi, pushn, pushs, or pushp pushes a register frame containing all the current values of one register type onto the
backing stack of that type. saveall simply calls pushi, pushn, pushs, and pushp.

PASM also has five opcodes to restore full register frames. Again, it has one for each register type and one that restores
all four at once:

popi # restore I-register frame

popn # restore N-register frame

pops # restore S-register frame

popp # restore P-register frame

restoreall # restore all register frames

The popi, popn, pops, and popp opcodes pop a single register frame off a particular stack and replace the values in all 32
registers of that type with the values in the restored register frame. restoreall calls popi, popn, pops, and popp, restoring
every register of every type to values saved earlier.

Saving a register frame to the backing stack doesn't alter the values stored in the registers; it simply copies the values:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Saving a register frame to the backing stack doesn't alter the values stored in the registers; it simply copies the values:

set I0, 1

print I0 # prints 1

pushi # copy away I0..I31

print I0 # unchanged, still 1

inc I0

print I0 # now 2

popi # restore registers to state of previous pushi

print I0 # old value restored, now 1

print "\n"

end

This example sets the value of I0 to 1 and stores the complete set of integer registers. Before I0 is incremented, it has
the same value as before the pushi.

In Section 9.2.2 earlier in this chapter, we mentioned that string and PMC registers hold pointers to the actual objects.
When string or PMC register frames are saved, only the pointers are copied, not the actual contents of the strings or
PMCs. The same is true when string or PMC register frames are restored:

set S0, "hello" # set S0 to "hello"

pushs

substr S0, 0, 5, "world" # alter the string in S0

set S0, "test" # set S0 to a new string

pops # restores the first string pointer

print S0 # prints "world"

end

In this example, we first use the pushs opcode to copy the string pointer to the string register frame stack. This gives us
two pointers to the same underlying string, with one currently stored in S0, and the other saved in the string register
frame stack. If we then use substr to alter the contents of the string, both pointers will now point to the altered string,
and so restoring our original pointer using pops does not restore the original string value.

Each of the above pushX and popX opcodes has a variant that will save or restore only the top or bottom half of one
register set or all the register sets:

pushtopi # save I16..I31

popbottoms # restore S0..S15

savetop # save regs 16-31 in each frame

restoretop # restore regs 16-31 in each frame

PASM also has opcodes to clear individual register frames: cleari, clearn, clears, and clearp. These reset the numeric
registers to 0 values and the string and PMC registers to null pointers, which is the same state that they have when the
interpreter first starts.

The user stack can be useful for holding onto some values that would otherwise be obliterated by a restoreall:

. . . coming from a subroutine

save I5 # Push some registers

save I6 # holding the return values

save N5 # of the sub.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

save N5 # of the sub.

restoreall # restore registers to state before calling subroutine

restore N0 # pop off last pushed

restore I0 # pop 2nd

restore I1 # and so on

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.6 Lexicals and Globals
So far, we've been treating Parrot registers like the variables of a high-level language. This is fine, as far as it goes, but
it isn't the full picture. The dynamic nature and introspective features of languages like Perl make it desirable to
manipulate variables by name, instead of just by register or stack location. These languages also have global variables,
which are visible throughout the entire program. Storing a global variable in a register would either tie up that register
for the lifetime of the program or require unwieldy manipulation of the user stack.

Parrot provides structures for storing both global and lexically scoped named variables. Lexical and global variables
must be PMC values. PASM provides instructions for storing and retrieving variables from these structures so the PASM
opcodes can operate on their values.

9.6.1 Globals

Global variables are stored in a PerlHash, so every variable name must be unique. PASM has two opcodes for globals,
store_global and find_global:

new P10, .PerlInt

set P10, 42

store_global "$foo", P10

. . .

find_global P0, "$foo"

print P0 # prints 42

end

The first two statements create a PerlInt in the PMC register P10 and give it the value 42. In the third statement,
store_global stores that PMC as the named global variable $foo. At some later point in the program, find_global retrieves
the PMC from the global variable by name, and stores it in P0 so it can be printed.

The store_global opcode only stores a reference to the object. If we add an increment statement:

inc P10

after the store_global, it increments the stored global, printing 43. If that's not what you want, you can clone the PMC
before you store it. Leaving the global variable as an alias does have advantages, though. If you retrieve a stored
global into a register and modify it as follows:

find_global P0, "varname"

inc P0

the value of the stored global is directly modified, so you don't need to call store_global again.

The two-argument forms of store_global and find_global store or retrieve globals from the outermost namespace (what
Perl users will know as the "main" namespace). A simple flat global namespace isn't enough for most languages, so
Parrot also needs to support hierarchical namespaces for separating packages (classes and modules in Perl 6). The
three-argument versions of store_global and find_global add an argument to select a nested namespace:

store_global "Foo", "var", P0 # store P0 as var in the Foo namespace

find_global P1, "Foo", "var" # get Foo::var

Eventually, the global opcodes will have variants that take a PMC to specify the namespace, but the design and
implementation of these aren't finished yet.

9.6.2 Lexicals

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Lexical variables are stored in a lexical scratchpad. There's one pad for each lexical scope. Every pad has both a hash
and an array, so elements can be stored either by name or by numeric index. Parrot stores the scratchpads for nested
lexical scopes in a pad stack.

9.6.2.1 Basic instructions

The instructions for manipulating lexical scratchpads are new_pad to create a new pad, store_lex to store a variable in a
pad, find_lex to retrieve a variable from a pad, push_pad to push a pad onto the pad stack, and pop_pad to remove a pad
from the stack:

new_pad 0 # create and push a pad with depth 0

new P0, .PerlInt # create a variable

set P0, 10 # assign value to it

store_lex 0, "$foo", P0 # store the var at depth 0 by name

. . .

find_lex P1, 0, "$foo" # get the var into P1

print P1

print "\n" # prints 10

pop_pad # remove pad

end

The first statement creates a new scratchpad and pushes it onto the pad stack. It's created with depth 0, which is the
outermost lexical scope. The next two statements create a new PMC object in P0, and give it a value. The store_lex
opcode stores the object in P0 as the named variable $foo in the scratchpad at depth 0. At some later point in the
program, the find_lex opcode retrieves the value of $foo in the pad at depth 0 and stores it in the register P1 so it can be
printed. At the very end, pop_pad removes the pad from the pad stack.

The new_pad opcode has two forms, one that creates a new scratchpad and stores it in a PMC, and another that creates
a new scratchpad and immediately pushes it onto the pad stack. If the pad were stored in a PMC, you would have to
push it onto the pad stack before you could use it:

new_pad P10, 0 # create a new pad in P10

push_pad P10 # push it onto the pad stack

In a simple case like this, it really doesn't make sense to separate out the two instructions, but you'll see later in
Section 9.7 why it's valuable to have both.

The store_lex and find_lex opcodes can take an integer index in place of a name for the variable:

store_lex 0, 0, P0 # store by index

. . .

find_lex P1, 0 # retrieve by index

With an index, the variable is stored in the scratchpad array, instead of the scratchpad hash.

9.6.2.2 Nested scratchpads

To create a nested scope, you create another scratchpad with a higher depth number and push it onto the pad stack.
The outermost scope is always depth 0, and each nested scope is one higher. The pad stack won't allow you to push on
a scratchpad that's more than one level higher than the current depth of the top of the stack:

new_pad 0 # outer scope

new_pad 1 # inner scope

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

new_pad 1 # inner scope

new P0, .PerlInt

set P0, 10

store_lex -1, "$foo", P0 # store in top pad

new P1, .PerlInt

set P1, 20

store_lex -2, "$foo", P1 # store in next outer scope

find_lex P2, "$foo" # find in all scopes

print P2 # prints 10

print "\n"

find_lex P2, -1, "$foo" # find in top pad

print P2 # prints 10

print "\n"

find_lex P2, -2, "$foo" # find in next outer scope

print P2 # prints 20

print "\n"

pop_pad

pop_pad

end

The first two statements create two new scratchpads, one at depth 0 and one at depth 1, and push them onto the pad
stack. When store_lex and find_lex have a negative number for the depth specifier, they count backward from the top pad
on the stack, so -1 is the top pad, and -2 is the second pad back. In this case, the pad at depth 1 is the top pad, and
the pad at depth 0 is the second pad. So:

store_lex -1, "$foo", P0 # store in top pad

stores the object in P0 as the named variable $foo in the pad at depth 1. Then:

store_lex -2, "$foo", P1 # store in next outer scope

stores the object in P1 as the named variable $foo in the pad at depth 0.

A find_lex statement with no depth specified searches every scratchpad in the stack from the top of the stack to the
bottom:

find_lex P2, "$foo" # find in all scopes

Both pad 0 and pad 1 have variables named $foo, but only the value from the top pad is returned. store_lex also has a
version with no depth specified, but it only works if the named lexical has already been created at a particular depth. It
searches the stack from top to bottom and stores the object in the first lexical it finds with the right name.

The peek_pad instruction retrieves the top entry on the pad stack into a PMC register, but doesn't pop it off the stack.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.7 Subroutines
Subroutines and methods are the basic building blocks of larger programs. At the heart of every subroutine call are two
fundamental actions: it has to store the current location so it can come back to it, and it has to transfer control to the
subroutine. The bsr opcode does both. It pushes the address of the next instruction onto the control stack, and then
branches to a label that marks the subroutine:

 print "in main\n"

 bsr _sub

 print "and back\n"

 end

_sub:

 print "in sub\n"

 ret

At the end of the subroutine, the ret instruction pops a location back off the control stack and goes there, returning
control to the caller. The jsr opcode pushes the current location onto the call stack and jumps to a subroutine. Just like
the jump opcode, it takes an absolute address in an integer register, so the address has to be calculated first with the
set_addr opcode:

 print "in main\n"

 set_addr I0, _sub

 jsr I0

 print "and back\n"

 end

_sub:

 print "in sub\n"

 ret

9.7.1 Calling Conventions

A bsr or jsr is fine for a simple subroutine call, but few subroutines are quite that simple. The biggest issues revolve
around register usage. Parrot has 32 registers of each type, and the caller and the subroutine share the same set of
registers. How does the subroutine keep from destroying the caller's values? More importantly, who is responsible for
saving and restoring registers? Where are arguments for the subroutine stored? Where are the subroutine's return
values stored? A number of different answers are possible. You've seen how many ways Parrot has of storing values.
The critical point is that the caller and the called subroutine have to agree on all the answers.

9.7.1.1 Reserved registers

A very simple system would be to declare that the caller uses registers through 15, and the subroutine uses 16-31. This
works in a small program with light register usage. But what about a subroutine call from within another subroutine or a
recursive call? The solution doesn't extend to a large scale.

9.7.1.2 Callee saves

Another possibility is to make the subroutine responsible for saving the caller's registers:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Another possibility is to make the subroutine responsible for saving the caller's registers:

 set I0, 42

 save I0 # pass args on stack

 bsr _inc # j = inc(i)

 restore I1 # restore args from stack

 print I1

 print "\n"

 end

_inc:

 saveall # preserve all registers

 restore I0 # get argument

 inc I0 # do all the work

 save I0 # push return value

 restoreall # restore caller's registers

 ret

This example stores arguments to the subroutine and return values from the subroutine on the user stack. The first
statement in the _inc subroutine is a saveall to save all the caller's registers onto the backing stacks, and the last
statement before the return restores them.

One advantage of this approach is that the subroutine can choose to save and restore only the register frames it
actually uses, for a small speed gain. The example above could use pushi and popi instead of saveall and restoreall
because it uses only integer registers. One disadvantage is that it doesn't allow optimization of tail calls, where the last
statement of a recursive subroutine is a call to itself.

9.7.1.3 Parrot-calling conventions

Internal subroutines can use whatever calling convention serves them best. Externally visible subroutines and methods
need stricter rules. Since these routines may be called as part of an included library or module and even from a
different high-level language, it's important to have a consistent interface.

Under the Parrot-calling conventions the caller is responsible for preserving its own registers. The first 11 arguments of
each register type are passed in Parrot registers, as are several other pieces of information. Register usage for
subroutine calls is listed in Table 9-4.

Table 9-4. Calling and return conventions
Register Usage

P0 Subroutine/method object

P1 Return continuation if applicable

P2 Object for a method call (invocant) or NULL for a subroutine call

P3 Array with overflow parameters/return values

S0 Fully qualified method name, if it's a method call

I0 True for prototyped parameters

I1 Number of integer arguments/return results

I2 Number of string arguments/return results

I3 Number of PMC arguments/return results

I4 Number of float arguments/return results

I5 . . . I15 First 11 integer arguments/return results

N5 . . . N15 First 11 float arguments/return results

S5 . . . S15 First 11 string arguments/return results

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

P5 . . . P15 First 11 PMC arguments/return results

If there are more than 11 arguments or return values of one type for the subroutine, overflow parameters are passed in
an array in P3. Subroutines without a prototype pass all their arguments or return values in P registers and if needed in
the overflow array.[8]

[8] Prototyped subroutines have a defined signature.

The _inc subroutine from above can be rewritten as a prototyped subroutine:

 set I16, 42 # use local regs from 16..31

 newsub P0, .Sub, _inc # create a new Sub object

 set I5, I16 # first integer argument

 set I0, 1 # prototype used

 set I1, 1 # one integer argument

 null I2 # no string arguments

 null I3 # no PMC arguments

 null I4 # no numeric arguments

 null P2 # no object (invocant)

 pushtopi # preserve top I register frame

 invokecc # call function object in P0

 poptopi # restore registers

 print I5

 print "\n"

 # I16 is still valid here, whatever the subroutine did

 end

.pcc_sub _inc:

 inc I5 # do all the work

 set I0, 1 # prototyped return

 set I1, 1 # one retval in I5

 null I2 # nothing else

 null I3

 null I4

 invoke P1 # return from the sub

Instead of using a simple bsr, this set of conventions uses a subroutine object. There are several kinds of subroutine-
like objects, but Sub is a class for PASM subroutines.

The .pcc_sub directive defines globally accessible subroutine objects. The _inc function above can be found as:

find_global P20, "_inc"

Subroutine objects of all kinds can be called with the invoke opcode. With no arguments, it calls the subroutine in P0,
which is the standard for the Parrot-calling conventions. There is also an invoke Px instruction for calling objects held in a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

which is the standard for the Parrot-calling conventions. There is also an invoke Px instruction for calling objects held in a
different register.

The invokecc opcode is like invoke, but it also creates and stores a new return continuation in P1. When the called
subroutine invokes this return continuation, it returns control to the instruction after the function call. This kind of call is
known as Continuation Passing Style (CPS).

In a simple example like this, it isn't really necessary to set up all the registers to obey to the Parrot-calling
conventions. But when you call into library code, the subroutine is likely to check the number and type of arguments
passed to it. So it's always a good idea to follow the full conventions. This is equally true for return values. The caller
might check how many arguments the subroutine really returned.

Setting all these registers for every subroutine call might look wasteful at first glance, and it does increase the size of
the bytecode, but you don't need to worry about execution time: the JIT system executes each register setup opcode in
one CPU cycle.

9.7.2 Native Call Interface

A special version of the Parrot-calling conventions are used by the Native Call Interface (NCI) for calling subroutines
with a known prototype in shared libraries. This is not really portable across all libraries, but it's worth a short example.
This is a simplified version of the first test in t/pmc/nci.t:

 loadlib P1, "libnci" # get library object for a shared lib

 print "loaded\n"

 dlfunc P0, P1, "nci_dd", "dd" # obtain the function object

 print "dlfunced\n"

 set I0, 1 # prototype used - unchecked

 set N5, 4.0 # first argument

 invoke # call nci_dd

 ne N5, 8.0, nok_1 # the test functions returns 2*arg

 print "ok 1\n"

 end

nok_1:

 . . .

This example shows two new instructions: loadlib and dlfunc. The loadlib opcode obtains a handle for a shared library. It
searches for the shared library in the current directory, in runtime/parrot/dynext, and in a few other configured
directories. It also tries to load the provided filename unaltered and with appended extensions like .so or .dll. Which
extensions it tries depends on the operating system on which Parrot is running.

The dlfunc opcode gets a function object from a previously loaded library (second argument) of a specified name (third
argument) with a known function signature (fourth argument). The function signature is a string where the first
character is the return value and the rest of the parameters are the function parameters. The characters used in NCI
function signatures are listed in Table 9-5.

Table 9-5. Function signature letters
Character Register set C type

v - void (no return value)

c I char

s I short

i I int

l I long

f N float

d N double

t S char *

p P void * (or other pointer)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I - Parrot_Interp * interpreter

C - A callback function pointer

D - A callback function pointer

Y P The subroutine into which C or D calls

Z P The argument for Y

For more information on callback functions, read the documentation in docs/pdds/pdd16_native_call.pod and
docs/pmc/struct.pod.

9.7.3 Closures

A closure is a subroutine that retains values from the lexical scope where it was defined, even when it's called from an
entirely different scope. The closure shown here is equivalent to this Perl 5 code snippet:

 # sub foo {

 # my ($n) = @_;

 # sub {$n += shift}

 # }

 # my $closure = foo(10);

 # print &$closure(3), "\n";

 # print &$closure(20), "\n";

 # call _foo

 newsub P16, .Sub, _foo # new subroutine object at address _foo

 new P17, .PerlInt # value for $n

 set P17, 10 # we use local vars from P16 . . .

 set P0, P16 # the subroutine

 set P5, P17 # first argument

 pushtopp # save registers

 invokecc # call foo

 poptopp # restore registers

 set P18, P5 # the returned closure

 # call _closure

 new P19, .PerlInt # argument to closure

 set P19, 3

 set P0, P18 # the closure

 set P5, P19 # one argument

 pushtopp # save registers

 invokecc # call closure(3)

 poptopp

 print P5 # prints 13

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print P5 # prints 13

 print "\n"

 # call _closure

 set P19, 20 # and again

 set P5, P19

 set P0, P18

 pushtopp

 invokecc # call closure(20)

 poptopp

 print P5 # prints 33

 print "\n"

 end

_foo:

 new_pad 0 # push a new pad

 store_lex -1, "$n", P5 # store $n

 newsub P5, .Closure, _closure

 # P5 has the lexical "$n" in the pad

 invoke P1 # return

_closure:

 find_lex P16, "$n" # invoking the closure pushes the lexical pad

 # of the closure on the pad stack

 add P16, P5 # $n += shift

 set P5, P16 # set return value

 invoke P1 # return

That's quite a lot of PASM code for such a little bit of Perl 5 code, but anonymous subroutines and closures hide a lot of
magic under that simple interface. The core of this example is that when the new subroutine is created in _foo with:

newsub P5, .Closure, _closure

it inherits and stores the current lexical scratchpad—the topmost scratchpad on the pad stack at the time. Later, when
_closure is invoked from the main body of code, the stored pad is automatically pushed onto the pad stack. So, all the
lexical variables that were available when _closure was defined are available when it's called.

9.7.4 Coroutines

As we mentioned in Chapter 8, coroutines are subroutines that can suspend themselves and return control to the caller
—and then pick up where they left off the next time they're called, as if they never left.

In PASM, coroutines are subroutine-like objects:

newsub P0, .Coroutine, _co_entry

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

newsub P0, .Coroutine, _co_entry

The Coroutine object has its own user stack, register frame stacks, control stack, and pad stack. The pad stack is
inherited from the caller. The coroutine's control stack has the caller's control stack prepended, but is still distinct.
When the coroutine invokes itself, it returns to the caller and restores the caller's context (basically swapping all
stacks). The next time the coroutine is invoked, it continues to execute from the point at which it previously returned:

 new_pad 0 # push a new lexical pad on stack

 new P0, .PerlInt # save one variable in it

 set P0, 10

 store_lex -1, "var", P0

 newsub P0, .Coroutine, _cor

 # make a new coroutine object

 saveall # preserve environment

 invoke # invoke the coroutine

 restoreall

 print "back\n"

 saveall

 invoke # invoke coroutine again

 restoreall

 print "done\n"

 pop_pad

 end

_cor:

 find_lex P1, "var" # inherited pad from caller

 print "in cor "

 print P1

 print "\n"

 inc P1 # var++

 saveall

 invoke # yield()

 restoreall

 print "again "

 branch _cor # next invocation of the coroutine

This prints out the result:

in cor 10

back

again in cor 11

done

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

done

The invoke inside the coroutine is commonly referred to as yield. The coroutine never ends. When it reaches the bottom,
it branches back up to _cor and executes until it hits invoke again.

The interesting part about this example is that the coroutine yields in the same way that a subroutine is called. This
means that the coroutine has to preserve its own register values. This example uses saveall but it could have only stored
the registers the coroutine actually used. Saving off the registers like this works because coroutines have their own
register frame stacks.

9.7.5 Continuations

A continuation is a subroutine that gets a complete copy of the caller's context, including its own copy of the call stack.
Invoking a continuation starts or restarts it at the entry point:

 new P1, .PerlInt

 set P1, 5

 newsub P0, .Continuation, _con

_con:

 print "in cont "

 print P1

 print "\n"

 dec P1

 unless P1, done

 invoke # P0

done:

 print "done\n"

 end

This prints:

in cont 5

in cont 4

in cont 3

in cont 2

in cont 1

done

9.7.6 Evaluating a Code String

This isn't really a subroutine operation, but it does produce a code object that can be invoked. In this case, it's a
bytecode segment object.

The first step is to get an assembler or compiler for the target language:

compreg P1, "PASM"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Within the Parrot interpreter there are currently three registered languages: PASM, PIR, and PASM1. The first two are for
Parrot assembly language and Parrot intermediate represention code. The third is for evaluating single statements in
PASM. Parrot automatically adds an end opcode at the end of PASM1 strings before they're compiled.

This example places a bytecode segment object into the destination register P0 and then invokes it with invoke:

compreg P1, "PASM1" # get compiler

set S1, "in eval\n"

compile P0, P1, "print S1"

invoke # eval code P0

print "back again\n"

end

You can register a compiler or assembler for any language inside the Parrot core and use it to compile and invoke code
from that language. These compilers may be written in PASM or reside in shared libraries.

compreg "MyLanguage", P10

In this example the compreg opcode registers the subroutine-like object P10 as a compiler for the language
"MyLanguage". See examples/compilers and examples/japh/japh16.pasm for an external compiler in a shared library.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.8 Exceptions and Exception Handlers
Exceptions provide a way of calling a piece of code outside the normal flow of control. They are mainly used for error
reporting or cleanup tasks, but sometimes exceptions are just a funny way to branch from one code location to another
one. The design and implementation of exceptions in Parrot isn't complete yet, but this section will give you an idea
where we're headed.

Exceptions are objects that hold all the information needed to handle the exception: the error message, the severity
and type of the error, etc. The class of an exception object indicates the kind of exception it is.

Exception handlers are derived from continuations. They are ordinary subroutines that follow the Parrot-calling
conventions, but are never explicitly called from within user code. User code pushes an exception handler onto the
control stack with the set_eh opcode. The system calls the installed exception handler only when an exception is thrown
(perhaps because of code that does division by zero or attempts to retrieve a global that wasn't stored.)

 newsub P20, .Exception_Handler, _handler

 set_eh P20 # push handler on control stack

 null P10 # set register to null

 find_global P10, "none" # may throw exception

 clear_eh # pop the handler off the stack

 . . .

_handler: # if not, execution continues here

 is_null P10, not_found # test P10

 . . .

This example creates a new exception handler subroutine with the newsub opcode and installs it on the control stack
with the set_eh opcode. It sets the P10 register to a null value (so it can be checked later) and attempts to retrieve the
global variable named none. If the global variable is found, the next statement (clear_eh) pops the exception handler off
the control stack and normal execution continues. If the find_global call doesn't find none, it throws an exception by
pushing an exception object onto the control stack. When Parrot sees that it has an exception, it pops it off the control
stack and calls the exception handler _handler.

The first exception handler in the control stack sees every exception thrown. The handler has to examine the exception
object and decide whether it can handle it (or discard it) or whether it should rethrow the exception to pass it along to
an exception handler deeper in the stack. The rethrow opcode is only valid in exception handlers. It pushes the
exception object back onto the control stack so Parrot knows to search for the next exception handler in the stack. The
process continues until some exception handler deals with the exception and returns normally, or until there are no
more exception handlers on the control stack. When the system finds no installed exception handlers it defaults to a
final action, which normally means it prints an appropriate message and terminates the program.

When the system installs an exception handler, it creates a return continuation with a snapshot of the current
interpreter context. If the exception handler just returns (that is, if the exception is cleanly caught) the return
continuation restores the control stack back to its state when the exception handler was called, cleaning up the
exception handler and any other changes that were made in the process of handling the exception.

Exceptions thrown by standard Parrot opcodes (like the one thrown by find_global above or by the throw opcode) are
always resumable, so when the exception handler function returns normally it continues execution at the opcode
immediately after the one that threw the exception. Other exceptions at the run-loop level are also generally
resumable.

new P10, Exception # create new Exception object

set P10["_message"], "I die" # set message attribute

throw P10 # throw it

Exceptions are designed to work with the Parrot-calling conventions. Since the return addresses of bsr subroutine calls
and exception handlers are both pushed onto the control stack, it's generally a bad idea to combine the two.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.9 Events
An event is a notification that something has happened: a timer expired, an I/O operation finished, a thread sent a
message to another thread, or the user pressed Ctrl-C to interrupt program execution.

What all of these events have in common is that they arrive asynchronously. It's generally not safe to interrupt
program flow at an arbitrary point and continue at a different position, so the event is placed in the interpreter's task
queue. The run-loop code regularly checks whether an event needs to be handled. Event handlers may be an internal
piece of code or a user-defined event handler subroutine.

Events are still experimental in Parrot, so the implementation and design is subject to change.

9.9.1 Timers

Timer objects are the replacement for Perl 5's alarm handlers. They are also a significant improvement. Timers can fire
once or repeatedly, and multiple timers can run independently. The precision of a timer is limited by the operating
system on which Parrot runs, but it is always more fine-grained then a whole second. The final syntax isn't yet fixed, so
please consult the documentation for examples.

9.9.2 Signals

Signal handling is related to events. When Parrot gets a signal it needs to handle from the operating system, it converts
that signal into an event and broadcasts it to all running threads. Each thread independently decides if it's interested in
this signal and, if so, how to respond to it.

 newsub P20, .Exception_Handler, _handler

 set_eh P20 # establish signal handler

 print "send SIGINT:\n"

 sleep 2 # press ^C after you saw start

 print "no SIGINT\n"

 end

_handler:

 .include "signal.pasm" # get signal definitions

 print "caught "

 set I0, P5["_type"] # if _type is negative, the . . .

 neg I0, I0 # . . . negated type is the signal

 ne I0, .SIGINT, nok

 print "SIGINT\n"

nok:

 end

This example creates a signal handler and pushes it on to the control stack. It then prompts the user to send a SIGINT
from the shell (this is usually Ctrl-C, but it varies in different shells), and waits for two seconds. If the user doesn't send
a SIGINT in two seconds, the example just prints "no SIGINT" and ends. If the user does send a SIGINT, the signal
handler catches it, prints out "caught SIGINT" and ends.[9]

[9] Currently, only Linux installs a SIGINT sigaction handler, so this example won't work on other platforms.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 9. Parrot Assembly Language
Parrot assembly (PASM) is an assembly language written for Parrot's virtual CPU. PASM has an interesting mix of
features. Because it's an assembly language, it has many low-level features, such as flow control based on branches
and jumps, and direct manipulation of values in the software registers and on the stacks. Basic register operations or
branches are generally a single CPU instruction.[1] On the other hand, because it's designed to implement dynamic
high-level languages, it has support for many advanced features, such as lexical and global variables, objects, garbage
collection, continuations, coroutines, and much more.

[1] This means the JIT run-time has a performance of up to one PASM instruction per processor cycle.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of Perl 6 and Parrot Essentials, Second Edition, is an aoudad (ammotragus lervia). Commonly
known as Barbary sheep, aoudads originated in the arid mountainous regions of northern Africa and have stout, sturdy
bodies, standing 30-40 inches at the shoulder and weighing from 65-320 pounds. The aoudad has a bristly reddish-
brown coat and is distinguished by a heavy, fringed mane covering its chest and legs. Both males and females have
thick, triangular-shaped horns that curve back in a semicircle. A male aoudad's horns can grow up to 2.5 feet.

Aoudads are herbivores and are most active at dawn and dusk, avoiding the desert heat of midday. They will drink
water if it is available, but can obtain sufficient moisture from dew and vegetation. Aoudads are incredible jumpers, able
to clear 6 feet from a standstill. So well suited are they to their surroundings that newborns have the ability to navigate
rocky slopes just hours after birth.

Despite being endangered in their native environment, aoudads are flourishing in the United States. Introduced to
western Texas and southern New Mexico in the 1940s, aoudads are now so populous that it is feared that their
presence may threaten the native desert bighorn sheep. Aoudads are considered native game in the desert mountains
of their adopted home, where the rugged landscape is dotted with ranches catering to recreational hunters.

Matt Hutchinson was the production editor for Perl 6 and Parrot Essentials, Second Edition. Octal Publishing, Inc.
provided production services. Darren Kelly, Genevieve d'Entremont, and Emily Quill provided quality control.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The cover image is a
19th-century engraving from Animate Creations, Volume II. Maureen McMahon produced the cover layout with
QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Joe Wizda to FrameMaker 5.5.6 with a format
conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans
Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. This colophon was written by Emily Quill.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Ellie
Cutler) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, Ellie Cutler, and Jeff Liggett.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copyright © 2004, 2003 O'Reilly Media, Inc.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales department:
(800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
Perl 6 and Parrot Essentials, the image of an aoudad, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

How This Book Is Organized
This book has 11 chapters:

Chapter 1 is a high-level overview of the project, with some history of how and why the project was started.

Chapter 2 provides more detail on life cycles within the project and how to get involved.

Chapter 3 explains some of the principles behind Perl 6 design work.

Chapter 4-Chapter 7 are an introduction to Perl 6 syntax.

Chapter 8 explains the overall architecture of Parrot (the virtual machine that runs Perl 6).

Chapter 9 is an introduction to Parrot assembly language.

Chapter 10 is an introduction to Parrot intermediate representation.

Chapter 11 is a reference for Parrot assembly language, Parrot intermediate representation, and command-line options
for the Parrot interpreter.

If you're a Perl programmer who is completely new to Perl 6, you'll be interested in this book to get an idea of what it'll
be like to work with Perl 6, why we're making the changes we're making, and how the project is going. You'll want to
read the first seven chapters. If you think you might be interested in getting involved in implementation, read the rest
as well.

If you're already involved in the Perl 6 project, you'll be interested in this book to see how all the pieces fit together,
and you may want to use it as a reference while you're working. If you've been involved only on the language side or
the internals side, you'll also get a chance to see what the other half is doing. In this way, the entire book is relevant to
you.

If you're interested in implementing another language on top of Parrot, you'll want to skim through the Parrot
information in Chapter 2, and then skip straight to Chapter 8 and go from there.

If you're not involved in Perl but just want to see what the "Perl 6" buzz is all about, you'll want to read Chapter 1,
Chapter 3, and Chapter 8. You'll get an overview of what we're doing and why, without all the nitty-gritty details.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Font Conventions
The following font conventions are used in this book:

Italic

Used for filenames, example URLs, and example email addresses

Constant width

Used in code listings and for function names, variable names, and other literal text

Constant width italic

Shows text that should be replaced with user-supplied values

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book in your programs and
documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For
example: "Perl 6 and Parrot Essentials, Second Edition, by Allison Randal, Dan Sugalski, and Leopold Tötsch. Copyright
2004 O'Reilly Media, Inc., 0-596-00737-X."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at
permissions@oreilly.com.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

We'd Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional information. You can access this
page at:

http://www.oreilly.com/catalog/059600737X/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web site at:

http://www.oreilly.com

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Acknowledgments
Many thanks to our reviewers for this edition of the book: Leon Brocard, Piers Cawley, Damian Conway, chromatic,
Jeffrey Dik, Simon Glover, Garrett Goebel, Trey Harris, Gregor Purdy, Jérôme Quelin, Jens Rieks, Brent Royal-Gordon,
Joseph Ryan, Hugo van der Sanden, and Melvin Smith.

This book is dedicated to the Perl community, because it wouldn't exist without them.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Preface
There is nothing as scary to the average programmer (to the average human, really) as the single word "change."
Change means taking the time to learn a new way of doing things. Changes can be annoying: moving to a new home,
finding the shelves reorganized at your neighborhood computer store, or ordering your favorite beer at your favorite
pub only to be told they don't make it anymore. But changes can also be good: a vacation on the beach, a promotion, a
raise, finding the perfect shortcut to work that shaves 20 minutes off your commute. This book is all about change . . .
the good kind.

Perl 6 isn't far enough along to support a book on the level of Programming Perl. However, as development goes on,
we've found that the accumulated lore of the past few years is quite an entry barrier for new people. This book is a
snapshot of the current status, designed to ease that first step. It covers the project through Apocalypse 12 and the
0.1.0 release of Parrot. We expect that this will be the last edition of the book, but we will publish updates as needed.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Perl 6 and Parrot Essentials, 2nd Edition

By Allison Randal, Dan Sugalski, Leopold Tötsch

Publisher: O'Reilly

Pub Date: June 2004

ISBN: 0-596-00737-X

Pages: 294

 Copyright

 Preface

 How This Book Is Organized

 Font Conventions

 Using Code Examples

 We'd Like to Hear from You

 Acknowledgments

 Chapter 1. Project Overview

 Section 1.1. The Birth of Perl 6

 Section 1.2. In the Beginning . . .

 Section 1.3. The Continuing Mission

 Chapter 2. Project Development

 Section 2.1. Language Development

 Section 2.2. Parrot Development

 Chapter 3. Design Philosophy

 Section 3.1. Linguistic and Cognitive Considerations

 Section 3.2. Architectural Considerations

 Chapter 4. Basic Syntax

 Section 4.1. Variables

 Section 4.2. Operators

 Section 4.3. Control Structures

 Chapter 5. Subroutines

 Section 5.1. Using Subroutines

 Section 5.2. Parameters

 Section 5.3. Arguments

 Section 5.4. Subroutine Stubs

 Section 5.5. Subroutine Scope

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 5.6. Anonymous Subroutines

 Section 5.7. Multi Subroutines

 Section 5.8. Curried Subroutines

 Section 5.9. Wrapped Subroutines

 Section 5.10. Lvalue Subroutines

 Section 5.11. Macros

 Chapter 6. Objects

 Section 6.1. Using Objects

 Section 6.2. Classes

 Section 6.3. Roles

 Section 6.4. Delegation

 Section 6.5. Private and Public

 Section 6.6. Subroutines

 Section 6.7. Submethods

 Section 6.8. Multiple Dispatch

 Chapter 7. Grammars and Rules

 Section 7.1. Using Rules

 Section 7.2. Building Blocks

 Section 7.3. Modifiers

 Section 7.4. Built-in Rules

 Section 7.5. Backtracking Control

 Section 7.6. Hypothetical Variables

 Chapter 8. Parrot Internals

 Section 8.1. Core Design Principles

 Section 8.2. Parrot's Architecture

 Section 8.3. The Interpreter

 Section 8.4. I/O, Events, and Threads

 Section 8.5. Objects

 Section 8.6. Advanced Features

 Section 8.7. Conclusion

 Chapter 9. Parrot Assembly Language

 Section 9.1. Getting Started

 Section 9.2. Basics

 Section 9.3. Working with PMCs

 Section 9.4. Flow Control

 Section 9.5. Stacks and Register Frames

 Section 9.6. Lexicals and Globals

 Section 9.7. Subroutines

 Section 9.8. Exceptions and Exception Handlers

 Section 9.9. Events

 Section 9.10. Threads

 Section 9.11. Loading Bytecode

 Section 9.12. Classes and Objects

 Section 9.13. Writing Tests

 Chapter 10. Parrot Intermediate Representation

 Section 10.1. Statements

 Section 10.2. Variables and Constants

 Section 10.3. Symbol Operators

 Section 10.4. Labels

 Section 10.5. Flow Control

 Section 10.6. Subroutines

 Section 10.7. Methods

 Chapter 11. Parrot Reference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chapter 11. Parrot Reference

 Section 11.1. PASM Opcodes

 Section 11.2. PIR Directives

 Section 11.3. PIR Instructions

 Section 11.4. Parrot Command-Line Options

 Colophon

 Index

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

