This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (T ¥

. Table of Contents
. Index

. Reviews

° Reader Reviews
. Errata

Practical mod_perl

By Stas Bekman, Eric Cholet

Publisher: O'Reilly

Date. ay 2003
published’ oY

ISBN: 0-596-00227-0
Pages: 924

Mod_perl embeds the popular programming language Perl in the Apache web server, giving rise to a fast and powerful
web programming environment. Written for Perl web developers and web administrators, Practical mod_perl is an
extensive guide to the nuts and bolts of the powerful and popular combination of Apache and mod_perl. From writing
and debugging scripts to keeping your server running without failures, the techniques in this book will help you squeeze
every ounce of power out of your server. True to its title, this is the practical guide to mod_perl.

[Team LiB] I

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]

Reader Reviews
Errata

Practical mod_perl

By Stas Bekman, Eric Cholet

Publisher: O'Reilly

Date

. : May 2003
Published

ISBN: 0-596-00227-0

Pages: 924

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Part V: mod_perl 2.0

Chantar 24 mnad narl 2 N Tnctallatinn and Canfianratinn

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Qartinn D lleare CharinAa a Qinnala Marhina

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
Copyright

Copyright © 2003 O'Reilly & Associates, Inc.
Printed in the United States of America.
Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps. The association between the image of a Thoroughbred
horse and the topic of mod_perl is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

Preface

mod_perl is an Apache module that builds the power of the Perl programming language directly into the Apache web
server. With mod_perl, CGI scripts run as much as 50 times faster, and you can integrate databases with the server,
write Apache modules in Perl, embed Perl code directly into Apache configuration files, and even use Perl in server-side
includes. With mod_perl, Apache is not only a web server, it is a complete programming platform.

Getting mod_perl running is easy. Tweaking mod_perl and Apache for the best performance and reliability is much
more difficult. This book is about building mod_perl, using it, programming with it, and optimizing it.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
What You Need to Know

To use this book effectively, you need to be familiar with the day-to-day details of running a web server, and you need
to know the Perl programming language. We expect that you have already programmed in the Perl programming
language. Having written simple CGI scripts and having experience with setting up the Apache web server are definite
pluses. Knowing your way around the operating system is another plus, but not a requirement.

Most examples in the book were done on the Linux operating system, but the examples and discussions should apply
equally well to other operating systems, especially other Unix flavors. There is a dedicated section on installing
mod_perl on Windows machines in Chapter 2.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
Who This Book Is For

This book is not solely about mod_perl web development. It covers two main topics: server administration and
programming under mod_perl.

At first, you might think these two topics are unrelated. But in real life, the programmer often needs to know how to
build and maintain the server, and the administrator ends up doing much of the programming and tweaking himself.

In this book, administrators will learn:

How to build and configure the server, with emphasis on improving server performance while keeping memory
usage low.

How to make sure the server is operating nonstop and, in case of malfunction, how to get it back online in no
time.

How to maximize performance by using multiple servers and additional tools such as proxies.

How to choose the right machine and components. Often the most expensive machine isn't much faster than a
cheaper one with more carefully chosen components.

How to allow users to run custom scripts on a mod_perl server.

As for programmers, the good news is that you can be a capable mod_perl programmer while knowing very little about
it. But most of us don't want to stop at being simply capable: we want to develop code that's robust, scalable, and
blindingly fast. Here's a taste of the sort of things we cover in this book:

In CGI, it's often hard to find what's wrong with a CGI script that returns a nondescriptive error message to
your browser. You can try the error_log file, but with a complex script you have to use the -d switch and call the
Perl debugger, which can be difficult for CGI scripts that can't be run from the shell. In Chapter 22, we'll show
you how you can run the script in debug mode and control it.

Alas, mod_perl is picky about coding style—for example, it doesn't like it when you forget to close a file after
opening it. But if you ask nicely, it might enter a special mode where it will clean up for you. In Chapter 6, we'll
show you how to keep mod_perl happy and keep the error_Jlog file small.

As you may already know, mod_perl is very fast. But with a little effort you can make it even faster. The idea is
simple: the more memory (RAM) you have, the more requests you will be able to serve. However, you may be
able to serve more requests using the same amount of RAM, thanks to memory sharing. For more information,

see Chapter 10.

With mod_perl, you never need to reinvent the wheel. If you need a so-called "shelf solution," this book
includes quite a few copy-and-paste scenarios to inspire you.

Many programmers use mod_perl in conjunction with databases. We start with the simplest and most basic
databases (flat files), continue to Database Management (DBM) implementations, and finally do an in-depth
study of relational databases with SQL.

Of course, there's lots more, as you can tell from just the sheer size and weight of the book. This book is filled with
gems of information that, taken together, provide a wealth of information on how to work effectively with mod_perl.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
How This Book Is Organized

This book has four parts:
Part I: mod_perl Administration

Part I of this book focuses on the administration of mod_perl: getting it installed, configuring mod_perl and
your web site as a whole, performing upgrades, and doing maintenance.

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5

Chapter 6
Part II: mod_perl Performance

Part II of the book is about how to use mod_perl to its fullest: it covers choosing a hardware platform, writing
code, configuring the operating system, and configuring the Apache/mod_perl server itself.

Chapter 7
Chapter 8
Chapter 9

Chapter 15
Chapter 16
Part II1: Databases and mod_perl
Part III tackles how to integrate databases with mod_perl in the most effective and efficient manner.
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Part 1V: Debugging and Troubleshooting
Part IV of the book discusses how to uncover errors in mod_perl code and how to correct them.
Chapter 21
Chapter 22
Chapter 23

Part V covers the aspects of the new mod_perl 2.0.

Chapter 24

Chapter 25
Part VI

Part VI contains the following useful appendixes:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Fruvigun fwant o]
Reference Sections

At the end of almost every chapter in this book, we include lists of resources that give further detail on relevant topics.
The references are usually either URLs or book references. Unfortunately, URLs tend to change or disappear over time,
so if you read this book some time after it has been published and some of the URLs aren't valid anymore, try to use a
search engine such as Google to find the updated link. If you still can't find the listed resource, try to look it up in the

Internet archive: http://www.archive.org/.

Many chapters refer to the Request For Comments documents (RFCs), which are mirrored by hundreds of Internet sites
all around the world and are easy to find. A good starting point is http://www.rfc-editor.org/.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [vy Jlri v
Filesystem Conventions

Throughout the book, unless mentioned otherwise, we assume that all the sources are downloaded and built in the
directory /home/stas/src/. If you follow the same convention, you need only to replace stas with your username.

As you will learn in Chapter 12, most mod_perl users run one plain Apache server and one mod_perl-enabled Apache
server on the same machine. We usually install these into the directories /home/httpd/httpd_docs and
/home/httpd/httpd_perl, respectively.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [vy Jlri v
Apache and Perl Versions
We have used mod_perl 1.26 and Apache 1.3.24 in most of the examples in this book. You should be able to reproduce

all the presented examples with these or later versions of mod_perl and Apache.

We have tested all the examples with Perl 5.6.1. However, most of the examples should work the same under all Perl
versions between 5.005_03 and 5.8.0.

At the time of this writing, Apache 2.0 is very young and mod_perl 2.0 is still in development. See Part V for
information on mod_perl 2.0. While much of this book should apply to both mod_perl 1.x and mod_perl 2.0, the code
has been tested only on mod_perl 1.26.

[Team LiB] 14 raavisus fliaxt o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Typographic Conventions

The following typographic conventions are used in this book:

Italic
Used for filenames, command names, directory names, and Unix utilities. It is also used for email addresses,
URLs, and new terms where they are defined.

Constant Width

Used for code examples and for function, method, variable, and module names.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
Command Interpreter Program (Shell) Conventions

When you type a command and press the Enter key to execute this command, it's usually interpreted by some kind of
command interpreter program, known as a shell. In this book we will use this term when we refer to a command
interpreter program.

If you are running your web server on some Unix flavor, it is likely that you are using the C-style shell (e.g., csh or
tcsh) or the Bourne-style shell (e.g., sh, ksh, or bash) for starting programs from the command line. In most examples
in this book, it doesn't matter which shell program is used. In places where a different syntax should be used for
different shell programs, we will say so.

The following command-line conventions are used in this book:

panic% command

panic% is a shell prompt when you are logged on as a non-root user, usually yourself.
panic# command

panic# is a shell prompt when you are logged on as root. It implies that you have to become a root user to run the
command. One of the ways to switch to root mode is to execute the su utility and supply the root user password.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

[Team LiB] [vy Jlri v
Installing Perl Modules

mod_perl and all the various Perl modules and helper utilities mentioned in this book are available via FTP and HTTP
from any of the sites on the Comprehensive Perl Archive Network (CPAN) at http://cpan.org/. This is a list of several
hundred public FTP and HTTP sites that mirror each others' contents on a regular basis.

You can search for and install Perl modules in two ways:

® Manually, by going to http://search.cpan.org/, finding the module, then downloading, building, and installing it.
You can also browse the modules by categories or authors at http://cpan.org/.

® Automatically, by using Andreas Koenig's CPAN shell or (on MS Windows systems) the Perl Package Manager
(PPM). These tools allow you to search for available modules and install them with a single command.

Manual Installation

When you download a module manually, it's best to find the one closest to you. You can find a list of CPAN mirrors at
You can download the source packages with your browser, or, if you know the URL of the package, you can use any

command tool to do that for you. In this book, we usually use the /Iwp-download perl script (which is bundled with the
libwww-perl package, by Gisle Aas) as a client. You can use any other utility to download the files from the Internet.

Once you've downloaded the Perl module you want, you'll need to build and install it. Some modules are 100% Perl and
can just be copied to the Perl library directory. Others contain some components written in C and need to be compiled.

Let's download the CPAN shell package, which we will use shortly:

panic% Iwp-download http://www.cpan.org/authors/id/ANDK/CPAN-1.60.tar.gz
Saving to 'CPAN-1.60.tar.gz'...
115 KB received in 2 seconds (56.3 KB/sec)

Prerequisites Needed to Install Perl Modules on Windows

While Unix operating systems include standard utilities such as tar, gzip, and make, Windows systems don't. For this
reason, you will have to go through some extra steps to ensure that you can install modules from the CPAN under
Windows.

We assume here that you are using the ActivePerl distribution from ActiveState.

The first utility needed is make. On Windows, such a utility (called nmake) is distributed by Microsoft for free. You can
download a self-extracting archive from ftp://ftp.microsoft.com/Softlib/MSLFILES/nmakel5.exe. When you run this
executable, you will have three files: readme.txt, nmake.err, and nmake.exe. Copy these files into a directory in your
PATH,UJ such as C:\Windows\System, C:\Windows, or even C:\Per/\bin. You will now be able to replace any use of
make in the examples in this book with nmake.

[1] To see your PATH, run echo %PATH% from the command line.

Some examples, and the use of CPAN.pm, also require command-line utilities such as tar or gzip. There are a number of
projects that have ported such tools to Windows—for example, GhnuWin32 (http://gnuwin32.sourceforge.net/) and

UnixUtils (http://unxutils.sourceforge.net/). These toolkits allow you to use standard Unix utilities from your Windows
command line.

Another option is Cygwin (http://www.cygwin.com/), which puts a Unix layer on top of Windows. This allows you to use
many Unix-specific applications, but these must run from the Cygwin shell. If you use Cygwin, you should use the
normal Unix steps discussed in this book, not any Windows-specific ones.

There is another downside of Windows: compilation tools aren't included. This means that some modules that use C
extensions (e.g., mod_perl) can't be installed in the normal way, and you have to get precompiled distributions of
them. In such cases, it is a good idea to follow the PPM instructions given later in this Preface, which should allow you
to install binary versions of some of the modules discussed here.

Building a Perl Module

Building a Perl module and installing it is simple and usually painless. Perl modules are distributed as gzipped tar
archives. You can unpack them like this:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

panic% gunzip -c CPAN-1.60.tar.gz | tar xvf -
CPAN-1.60/

CPAN-1.60/lib/
CPAN-1.60/lib/CPAN/
CPAN-1.60/lib/CPAN/Nox.pm
CPAN-1.60/lib/CPAN/Admin.pm
CPAN-1.60/lib/CPAN/FirstTime.pm
CPAN-1.60/lib/Bundle/
CPAN-1.60/lib/Bundle/CPAN.pm
CPAN-1.60/lib/CPAN.pm
CPAN-1.60/Todo
CPAN-1.60/ChangeLog
CPAN-1.60/t/
CPAN-1.60/t/loadme.t
CPAN-1.60/t/vemp.t
CPAN-1.60/MANIFEST
CPAN-1.60/Makefile.PL
CPAN-1.60/cpan
CPAN-1.60/README

Or, if you are using a GNU tar utility, you can unpack the package in one command:
panic% tar zxvf CPAN-1.59.tzr.gz

Once the archive has been unpacked, you'll have to enter the newly created directory and issue the perl Makefile.PL,
make, make test, and make install commands. Together, these will build, test, and install the module:

panic% cd CPAN-1.60

panic% perl Makefile.PL
Checking if your kit is complete...
Looks good

Writing Makefile for CPAN

panic% make

cp lib/CPAN/Nox.pm blib/lib/CPAN/Nox.pm

cp lib/Bundle/CPAN.pm blib/lib/Bundle/CPAN.pm

cp lib/CPAN/Admin.pm blib/lib/CPAN/Admin.pm

cp lib/CPAN.pm blib/lib/CPAN.pm

cp lib/CPAN/FirstTime.pm blib/lib/CPAN/FirstTime.pm

cp cpan blib/script/cpan

/usr/bin/perl -I/usr/lib/perl5/5.6.1/i386-linux
-I/usr/lib/perl5/5.6.1 -MExtUtils::MakeMaker
-e "MY->fixin(shift)" blib/script/cpan

Manifying blib/man3/CPAN::Nox.3

Manifying blib/man3/Bundle::CPAN.3

Manifying blib/man3/CPAN::Admin.3

Manifying blib/man3/CPAN.3

Manifying blib/man3/CPAN::FirstTime.3

panic% make test

PERL_DL_NONLAZY=1 /usr/bin/perl -Iblib/arch -Iblib/lib

-I/usr/lib/perl5/5.6.1/i386-linux -I/usr/lib/perl5/5.6.1

-e 'use Test::Harness qw(&runtests $verbose);
$verbose=0; runtests @ARGV;'

t/*.t
t/loadme............ ok
t/vemp....oooeeee ok

All tests successful.
Files=2, Tests=31, 3 wallclock secs (1.22 cusr + 0.91 csys = 2.13 CPU)

Become root if you need to install the module on the whole system:

panic% su
<root password>

panic# make install

Installing /usr/lib/perl5/man/man3/CPAN::Nox.3

Installing /usr/lib/perl5/man/man3/Bundle::CPAN.3

Installing /usr/lib/perl5/man/man3/CPAN::Admin.3

Installing /usr/lib/perl5/man/man3/CPAN.3

Installing /usr/lib/perl5/man/man3/CPAN::FirstTime.3

Writing /usr/lib/perl5/5.6.1/i386-linux/auto/CPAN/.packlist

Appending installation info to /usr/lib/perl5/5.6.1/i386-linux/perllocal.pod

Using the CPAN Shell

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

A simpler way to do the same thing is to use Andreas Koenig's wonderful CPAN shell (recent Perl versions come bundled
with this module). With it, you can download, build, and install Perl modules from a simple command-line shell. The
following illustrates a typical session in which we install the Apache::VMonitor module:

panic% perl -MCPAN -e shell

cpan shell -- CPAN exploration and modules installation (v1.60)
ReadLine support enabled

cpan> install Apache::VMonitor

Running install for module Apache::VMonitor

Running make for S/ST/STAS/Apache-VMonitor-0.6.tar.gz

Fetching with LWP:
http://cpan.org/authors/id/S/ST/STAS/Apache-VMonitor-0.6.tar.gz

Fetching with LWP:
http://cpan.org/authors/id/S/ST/STAS/CHECKSUMS

Checksum for /root/.cpan/sources/authors/id/S/ST/STAS/Apache-VMonitor-0.6.tar.gz ok

Apache-VMonitor-0.6/

Apache-VMonitor-0.6/README

Apache-VMonitor-0.6/Makefile.PL

Apache-VMonitor-0.6/MANIFEST

Apache-VMonitor-0.6/CHANGES

Apache-VMonitor-0.6/VMonitor.pm

CPAN.pm: Going to build S/ST/STAS/Apache-VMonitor-0.6.tar.gz

Checking for Apache::Scoreboard...ok
Checking for GTop...ok
Checking for Time::HiRes...ok
Checking for mod_perl...ok
Checking if your kit is complete...
Looks good
Writing Makefile for Apache::VMonitor
cp VMonitor.pm blib/lib/Apache/VMonitor.pm
Manifying blib/man3/Apache::VMonitor.3
/Jusr/bin/make -- OK
Running make test
No tests defined for Apache::VMonitor extension.
Jusr/bin/make test -- OK
Running make install
Installing /usr/lib/perl5/site_perl/5.6.1/Apache/VMonitor.pm
Installing /usr/lib/perl5/man/man3/Apache::VMonitor.3
Writing /usr/lib/perl5/site_perl/5.6.1/i386-linux/auto/Apache/VMonitor/.packlist
Appending installation info to /usr/lib/perl5/5.6.1/i386-linux/perllocal.pod
Jusr/bin/make install UNINST=1 -- OK

cpan> exit

Notice that the CPAN shell fetches the CHECKSUMS file and verifies that the package hasn't been tampered with.
The latest CPAN module comes with a small utility called cpan, which you can use to start the CPAN shell:
panic% cpan

cpan shell -- CPAN exploration and modules installation (v1.60)
ReadLine support enabled

Using the Perl Package Manager

If you are using ActivePerl on Windows, or the Perl/Apache/mod_perl binary distribution discussed in Chapter 2, you will
have access to a handy utility called ppm. This program installs Perl modules from archives separate from the CPAN
that contain precompiled versions of certain modules.

For first-time configuration, do the following:

C:\> ppm

PPM interactive shell (2.1.5) - type 'help’ for available commands.

PPM> set repository theoryx5 http://theoryx5.uwinnipeg.ca/cgi-bin/ppmserver?urn:/PPMServer
PPM> set repository oi http://openinteract.sourceforge.net/ppmpackages/

PPM> set save

PPM> quit

C:\>

These steps will allow you to access a number of interesting packages not available from the ActiveState archive
(including mod_perl). To see a list of these packages, type search in the PPM interactive shell, or visit

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://openinteract.sourceforge.net/ppmpackages/ and http://theoryx5.uwinnipeg.ca/ppmpackages/.
Now, when you want to install a module, issue the following commands:

C:\> ppm

PPM> install Some::Module

PPM> quit

C:\>

It's as easy as that! Alternatively, you might want to do it directly:

C:\> ppm install Some::Module

This will have the same effect.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

To comment or ask technical questions about this book, send email to:

) . .
For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the O'Reilly web site
at:

http://www.oreilly.com

The web page for this book lists errata, examples, or any additional information. You can access this page at:
http://www.oreilly.com/catalog/pmodperl/

This book also has a companion web site at http://www.modperlbook.org/. Here you will find all the source code for the
code examples in this book. You will also find announcements, errata, supplementary examples, downloads, and links to
other sources of information about Apache, Perl, and Apache module development.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Acknowledgments

Many people have contributed to this book over the long period while it was in the works.

First things first. This book wouldn't exist without Doug MacEachern, creator of mod_perl. Doug's preliminary overview

of mod_perl 2.0 was used as the basis of Chapter 24 and Chapter 25.

We're also greatly indebted to many people who contributed chapters or appendixes to this book. Andreas Koenig
contributed Chapter 16, with helpful corrections, additions, and comments from Ask Bjorn Hansen, Frank D. Cringle,
Mark Kennedy, Doug MacEachern, Tom Hukins, and Wham Bang. Matt Sergeant contributed Appendix E, with helpful
comments from Robin Berjon. Andy Wardley contributed Appendix D.

We cannot thank enough the following reviewers, who have reviewed huge portions of the book (or the whole book)
and provided good advice: Andreas Koenig, Ged Haywood, Gunther Birznieks, Issac Goldstand, Mark Summerfield, Paul
Wilt, Per Einar Ellefsen, Philippe M. Chiasson, and Robin Berjon. Thank you, guys. Without you, this book wouldn't be
nearly as useful as it is now.

The following people also contributed much to the book: Aaron Johnson, Ask Bjérn Hansen, Brian Ingerson, David
Landgren, Doug MacEachern, Ed Philips, Geoff Young, Pat Eyler, Perrin Harkins, Philippe Bruhat, Rafael Garcia-Suarez,
Stéphane Payrard, Tatsuhiko Miyagawa, and Ken Williams. Thank you all for taking time to improve the book.

Since the book is loosely based on the mod_perl guide, we must acknowledge the following people who have indirectly
contributed to the book by helping with the guide (about 200 names!): Aaron Johnson, Ajay Shah, Alexander Farber,
Andreas J. Koenig, Andreas Piesk, Andrei A. Voropaev, Andrew Ford, Andrew McNaughton, Anthony D. Ettinger, Artur
Zambrzycki, Ask Bjorn Hansen, Barrie Slaymaker, Bill Moseley, Boris Zentner, Brian Moseley, Carl Hansen, Chad K.
Lewis, Chris Nokleberg, Chris Winters, Christof Damian, Christophe Dupre, Cliff Rayman, Craig, Daniel Bohling, Daniel
Koch, Daniel W. Burke, Darren Chamberlain, Dave Hodgkinson, Dave Rolsky, David Harris, David Huggins-Daines,
David Landgren, David Mitchell, DeWitt Clinton, Dean Fitz, Doug Bagley, Doug Kyle, Doug MacEachern, Drew Taylor, Ed
Park, Ed Phillips, Edmund Mergl, Edwin Pratomo, Eric Cholet, Eric Strovink, Evan A. Zacks, Ewan Edwards, Frank
Cringle, Frank Schoeters, Garr Updegraff, Ged Haywood, Geoff Crawshaw, Geoffrey S. Young, Gerald Richter, Gerd
Knops, Glenn, Greg Cope, Greg Stark, Gunther Birznieks, Hailei Dai, Henrique Pantarotto, Honza Pazdziora, Howard
Jones, Hunter Monroe, Ilya Obshadko, Ime Smits, Issac Goldstand, James Furness, James G. Smith, James W. Walden,
Jan Peter Hecking, Jason Bodnar, Jason Rhinelander, Jauder Ho, Jay], Jean-Louis Guenego, Jeff Chan, Jeff Rowe,
Jeffrey W. Baker, Jens Heunemann, Jie Gao, Joao Fonseca, Joe Schaefer, Joe Slag, John Armstrong, John Deighan, John
Hyland, John Milton, John Walker, Jon Orwant, Jonathan Peterson, Joshua Chamas, Karl Olson, Kavitha, Kees Vonk, Ken
Williams, Kenny Gatdula, Kevin Murphy, Kevin Swope, Lance Cleveland, Larry Leszczynski, Leslie Mikesell, Lincoln Stein,
Louis Semprini, Lupe Christoph, Mads Toftum, Marc Lehmann, Marcel Grunauer, Mark Mills, Mark Summerfield, Marko
van der Puil, Marshall Dudley, Matt Sergeant, Matthew Darwin, Michael Blakeley, Michael Finke, Michael G. Schwern,
Michael Hall, Michael Rendell, Michael Schout, Michele Beltrame, Mike Depot, Mike Fletcher, Mike MacKenzie, Mike
Miller, Nancy Lin, Nathan Torkington, Nathan Vonnahme, Neil Conway, Nick Tonkin, Oleg Bartunov, Owen Williams,
Pascal Eeftinck, Patrick, Paul Buder, Paul Cotter, Pavel Shmidt, Per Einar Ellefsen, Perrin Harkins, Peter Galbavy, Peter
Haworth, Peter J. Schoenster, Peter Skov, Philip Jacob, Philip Newton, Radu Greab, Rafael Garcia-Suarez, Ralf
Engelschall, Randal L. Schwartz, Randy Harmon, Randy Kobes, Rauznitz Balazs, Rex Staples, Rich Bowen, Richard A.
Wells, Richard Chen, Richard Dice, Richard More, Rick Myers, Robert Mathews, Robin Berjon, Rodger Donaldson, Ron
Pero, Roy Nasser, Salve J. Nilsen, Scott Fagg, Scott Holdren, Sean Dague, Shane Nay, Stephane Benoit, Stephen Judd,
Steve Fink, Steve Reppucci, Steve Willer, Surat Singh Bhati, Terry West, Thomas Klausner, Tim Bunce, Tim Noll, Todd
Finney, Tom Brown, Tom Christiansen, Tom Hughes, Tom Mornini, Tuomas Salo, Tzvetan Stoyanov, Ulrich Neumerkel,
Ulrich Pfeifer, Vivek Khera, Ward Vandewege, Wesley Darlington, Will Trillich, Yann Kerhervé, and Yann Ramin. Thank
you all!

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

Part I: mod_perl Administration

The first part of this book is about mod_perl administration. Here you'll find everything you need to do
to get mod_perl running, from installation to configuration to the nuances of programming in a
mod_perl environment.

Chapter 1 is an introduction to mod_perl and how it works within the Apache framework.

Chapter 2 is a whirlwind description of how to get started with mod_perl quickly. Most programmers
aren't satisfied just reading a book; they want to start programming right away. This chapter helps you
build a working mod_perl environment with minimal fuss.

Chapter 3 contains everything we left out of Chapter 2.

Chapter 4 is about how to configure mod_perl for your specific needs.

Chapter 5 covers how to run a mod_perl-enabled server and keep it running smoothly.

Chapter 6 contains the essential information for programming under mod_perl.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

Chapter 1. Introducing CGIl and mod_perl

This chapter provides the foundations on which the rest of the book builds. In this chapter, we give you:

® A history of CGI and the HTTP protocol.
® An explanation of the Apache 1.3 Unix model, which is crucial to understanding how mod_perl 1.0 works.
® An overall picture of mod_perl 1.0 and its development.

® An overview of the difference between the Apache C API, the Apache Perl API (i.e., the mod_perl API), and CGI
compatibility. We will also introduce the Apache::Registry and Apache::PerlRun modules.

® An introduction to the mod_perl API and handlers.

[Team LiB] [+ Faavisvs vt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
1.1 A Brief History of CGI

When the World Wide Web was born, there was only one web server and one web client. The httpd web server was
developed by the Centre d'Etudes et de Recherche Nucléaires (CERN) in Geneva, Switzerland. httpd has since become
the generic name of the binary executable of many web servers. When CERN stopped funding the development of
httpd, it was taken over by the Software Development Group of the National Center for Supercomputing Applications
(NCSA). The NCSA also produced Mosaic, the first web browser, whose developers later went on to write the Netscape
client.

Mosaic could fetch and view static documentst] and images served by the httpd server. This provided a far better
means of disseminating information to large numbers of people than sending each person an email. However, the glut
of online resources soon made search engines necessary, which meant that users needed to be able to submit data
(such as a search string) and servers needed to process that data and return appropriate content.

[1] A static document is one that exists in a constant state, such as a text file that doesn't change.

Search engines were first implemented by extending the web server, modifying its source code directly. Rewriting the
source was not very practical, however, so the NCSA developed the Common Gateway Interface (CGI) specification.
CGI became a standard for interfacing external applications with web servers and other information servers and
generating dynamic information.

A CGI program can be written in virtually any language that can read from STDIN and write to STDOUT, regardless of
whether it is interpreted (e.g., the Unix shell), compiled (e.g., C or C++), or a combination of both (e.g., Perl). The first
CGI programs were written in C and needed to be compiled into binary executables. For this reason, the directory from
which the compiled CGI programs were executed was named cgi-bin, and the source files directory was named cgi-src.
Nowadays most servers come with a preconfigured directory for CGI programs called, as you have probably guessed,
cgi-bin.

1.1.1 The HTTP Protocol

Interaction between the browser and the server is governed by the HyperText Transfer Protocol (HTTP), now an official
Internet standard maintained by the World Wide Web Consortium (W3C). HTTP uses a simple request/response model:
the client establishes a TCPL2] connection to the server and sends a request, the server sends a response, and the

connection is closed. Requests and responses take the form of messages. A message is a simple sequence of text lines.

[21 TCP/IP is a low-level Internet protocol for transmitting bits of data, regardless of its use.

HTTP messages have two parts. First come the headers, which hold descriptive information about the request or
response. The various types of headers and their possible content are fully specified by the HTTP protocol. Headers are
followed by a blank line, then by the message body. The body is the actual content of the message, such as an HTML
page or a GIF image. The HTTP protocol does not define the content of the body; rather, specific headers are used to
describe the content type and its encoding. This enables new content types to be incorporated into the Web without any
fanfare.

HTTP is a stateless protocol. This means that requests are not related to each other. This makes life simple for CGI
programs: they need worry about only the current request.

1.1.2 The Common Gateway Interface Specification

If you are new to the CGI world, there's no need to worry—basic CGI programming is very easy. Ninety percent of CGI-
specific code is concerned with reading data submitted by a user through an HTML form, processing it, and returning
some response, usually as an HTML document.

In this section, we will show you how easy basic CGI programming is, rather than trying to teach you the entire CGI
speC|f|cat|0n There are many books and online tutorials that cover CGI in great detail (see

). Our aim is to demonstrate that if you know Perl, you can start writing CGI scripts almost
immediately. You need to learn only two things: how to accept data and how to generate output.

The HTTP protocol makes clients and servers understand each other by transferring all the information between them
using headers, where each header is a key-value pair. When you submit a form, the CGI program looks for the headers
that contain the input information, processes the received data (e.g., queries a database for the keywords supplied
through the form), and—when it is ready to return a response to the client—sends a special header that tells the client
what kind of information it should expect, followed by the information itself. The server can send additional headers,
but these are optional. Figure 1-1 depicts a typical request-response cycle.

Figure 1-1. Request-response cycle

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Sometimes CGI programs can generate a response without needing any input data from the client. For example, a news
service may respond with the latest stories without asking for any input from the client. But if you want stories for a
specific day, you have to tell the script which day's stories you want. Hence, the script will need to retrieve some input
from you.

To get your feet wet with CGI scripts, let's look at the classic "Hello world" script for CGI, shown in Example 1-1.

Example 1-1. "Hello world" script

#!/usr/bin/perl -Tw

print "Content-type: text/plain\n\n";
print "Hello world!\n";

We start by sending a Content-type header, which tells the client that the data that follows is of plain-text type. text/plain
is a Multipurpose Internet Mail Extensions (MIME) type. You can find a list of widely used MIME types in the mime.types

file, which is usually located in the directory where your web server's configuration files are stored.[3] Other examples
of MIME types are text/html (text in HTML format) and video/mpeg (an MPEG stream).

[3]1 For more information about Internet media types, refer to RFCs 2045, 2046, 2047, 2048, and 2077, accessible
from http://www.rfc-editor.org/.

According to the HTTP protocol, an empty line must be sent after all headers have been sent. This empty line indicates
that the actual response data will start at the next line.[4]

4] The protocol specifies the end of a line as the character sequence Ctrl-M and Ctrl-]J (carriage return and
newline). On Unix and Windows systems, this sequence is expressed in a Perl string as \015\012, but Apache also
honors \n, which we will use throughout this book. On EBCDIC machines, an explicit \r\n should be used instead.

Now save the code in hello.pl, put it into a cgi-bin directory on your server, make the script executable, and test the
script by pointing your favorite browser to:

http://localhost/cgi-bin/hello.pl
It should display the same output as Figure 1-2.

Figure 1-2. Hello world

A more complicated script involves parsing input data. There are a few ways to pass data to the scripts, but the most
commonly used are the GET and POST methods. Let's write a script that expects as input the user's name and prints this
name in its response. We'll use the GET method, which passes data in the request URI (uniform resource indicator):

http://localhost/cgi-bin/hello.pl?username=Doug

When the server accepts this request, it knows to split the URI into two parts: a path to the script (http://localhost/cgi-
bin/hello.pl) and the "data" part (username=Doug, called the QUERY_STRING). All we have to do is parse the data portion
of the URI and extract the key username and value Doug. The GET method is used mostly for hardcoded queries, where
no interactive input is needed. Assuming that portions of your site are dynamically generated, your site's menu might
include the following HTML code:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

News

Stories

Links

Another approach is to use an HTML form, where the user fills in some parameters. The HTML form for the "Hello user"
script that we will look at in this section can be either:

<form action="/cgi-bin/hello_user.pl" method="POST">
<input type="text" name="username">

<input type="submit">

</form>

or:

<form action="/cgi-bin/hello_user.pl" method="GET">
<input type="text" name="username">

<input type="submit">

</form>

Note that you can use either the GET or POST method in an HTML form. However, POST should be used when the query
has side effects, such as changing a record in a database, while GET should be used in simple queries like this one

(simple URL links are GET requests).qul

[5] see Axioms of Web Architecture at http://www.w3.0rg/Designlssues/Axioms.html#state.

Formerly, reading input data required different code, depending on the method used to submit the data. We can now
use Perl modules that do all the work for us. The most widely used CGI library is the CGIL.pm module, written by Lincoln
Stein, which is included in the Perl distribution. Along with parsing input data, it provides an easy API to generate the
HTML response.

Our sample "Hello user" script is shown in Example 1-2.
Example 1-2. "Hello user"” script

#!/usr/bin/perl

use CGI gw(:standard);
my $username = param('username’) || "unknown";

print "Content-type: text/plain\n\n";
print "Hello $username!\n";

Notice that this script is only slightly different from the previous one. We've pulled in the CGL.pm module, importing a
group of functions called :standard. We then used its param() function to retrieve the value of the username key. This call
will return the name submitted by any of the three ways described above (a form using either POST, GET, or a
hardcoded name with GET; the last two are essentially the same). If no value was supplied in the request, param()
returns undef.

my $username = param(‘username') || "unknown";
$username will contain either the submitted username or the string "unknown" if no value was submitted. The rest of the

script is unchanged—we send the MIME header and print the "Hello $username!" string.Le’a1

[61 All scripts shown here generate plain text, not HTML. If you generate HTML output, you have to protect the
incoming data from cross-site scripting. For more information, refer to the CERT advisory at

http://www.cert.org/advisories/CA-2000-02.html.
As we've just mentioned, CGI.pm can help us with output generation as well. We can use it to generate MIME headers by
rewriting the original script as shown in Example 1-3.

Example 1-3. "Hello user"” script using CGI.pm

#!/usr/bin/perl

use CGI gw(:standard);
my $username = param('username') || "unknown";

print header("text/plain");
print "Hello $username!\n";

To help you learn how CGI.pm copes with more than one parameter, consider the code in Example 1-4.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 1-4. CGI.pm and param() method

#!/usr/bin/perl

use CGI gw(:standard);
print header("text/plain");

print "The passed parameters were:\n";
for my $key (param()) {
print "$key => ", param($key), "\n";
Now issue the following request:

http://localhost/cgi-bin/hello_user.pl?a=foo&b=bar&c=foobar

Separating key=value Pairs

Note that & or ; usually is used to separate the key=value pairs. The former is less preferable, because if
you end up with a QUERY_STRING of this format:

id=foo®=bar

some browsers will interpret ® as an SGML entity and encode it as ®. This will result in a corrupted
QUERY_STRING:

id=foo®=bar

You have to encode & as & if it is included in HTML. You don't have this problem if you use ; as a
separator:

id=foo;reg=bar

Both separators are supported by CGL.pm, Apache::Request, and mod_perl's args() method, which we will
use in the examples to retrieve the request parameters.

Of course, the code that builds QUERY_STRING has to ensure that the values don't include the chosen
separator and encode it if it is used. (See RFC2854 for more details.)

The browser will display:

The passed parameters were:
a => foo

b => bar

¢ => foobar

Now generate this form:

<form action="/cgi-bin/hello_user.pl" method="GET">
<input type="text" name="firstname">

<input type="text" name="lastname">

<input type="submit">

</form>

If we fill in only the firstname field with the value Doug, the browser will display:

The passed parameters were:
firstname => Doug
lastname =>

If in addition the lastname field is MacEachern, you will see:

The passed parameters were:
firstname => Doug
lastname => MacEachern

These are just a few of the many functions CGIL.pm offers. Read its manpage for detailed information by typing perldoc
CGI at your command prompt.

We used this long CGL.pm example to demonstrate how simple basic CGI is. You shouldn't reinvent the wheel; use
standard tools when writing your own scripts, and you will save a lot of time. Just as with Perl, you can start creating
really cool and powerful code from the very beginning, gaining more advanced knowledge over time. There is much
more to know about the CGI specification, and you will learn about some of its advanced features in the course of your
web development practice. We will cover the most commonly used features in this book.

For now, let CGL.pm or an equivalent library handle the intricacies of the CGI specification, and concentrate your efforts
on the core functionality of your code.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

1.1.3 Apache CGI Handling with mod_cgi

The Apache server processes CGI scripts via an Apache module called mod_cgi. (See later in this chapter for more
information on request-processing phases and Apache modules.) mod_cgi is built by default with the Apache core, and
the installation procedure also preconfigures a cgi-bin directory and populates it with a few sample CGI scripts. Write
your script, move it into the cgi-bin directory, make it readable and executable by the web server, and you can start
using it right away.

Should you wish to alter the default configuration, there are only a few configuration directives that you might want to
modify. First, the ScriptAlias directive:

ScriptAlias /cgi-bin/ /home/httpd/cgi-bin/

ScriptAlias controls which directories contain server scripts. Scripts are run by the server when requested, rather than
sent as documents.

When a request is received with a path that starts with /cgi-bin, the server searches for the file in the /home/httpd/cgi-
bin directory. It then runs the file as an executable program, returning to the client the generated output, not the
source listing of the file.

The other important part of httpd.conf specifies how the files in cgi-bin should be treated:

<Directory /home/httpd/cgi-bin>
Options FollowSymLinks
Order allow,deny
Allow from all

</Directory>

The above setting allows the use of symbolic links in the /home/httpd/cgi-bin directory. It also allows anyone to access
the scripts from anywhere.

mod_cgi provides access to various server parameters through environment variables. The script in Example 1-5 will
print these environment variables.

Example 1-5. Checking environment variables

#!/usr/bin/perl

print "Content-type: text/plain\n\n";
for (keys %ENV) {
print "$_ => $ENV{$_}\n";

Save this script as env.pl in the directory cgi-bin and make it executable and readable by the server (that is, by the
username under which the server runs). Point your browser to http://localhost/cgi-bin/env.pl and you will see a list of
parameters similar to this one:

SERVER_SOFTWARE => Server: Apache/1.3.24 (Unix) mod_perl/1.26
mod_ssl/2.8.8 OpenSSL/0.9.6

GATEWAY_INTERFACE => CGI/1.1

DOCUMENT_ROQOT => /home/httpd/docs

REMOTE_ADDR => 127.0.0.1

SERVER_PROTOCOL => HTTP/1.0

REQUEST_METHOD => GET

QUERY_STRING =>

HTTP_USER_AGENT => Mozilla/5.0 Galeon/1.2.1 (X11; Linux i686; U;) Gecko/0

SERVER_ADDR => 127.0.0.1

SCRIPT_NAME => /cgi-bin/env.pl

SCRIPT_FILENAME => /home/httpd/cgi-bin/env.pl

Your code can access any of these variables with $ENV{"somekey"}. However, some variables can be spoofed by the
client side, so you should be careful if you rely on them for handling sensitive information. Let's look at some of these
environment variables.

SERVER_SOFTWARE => Server: Apache/1.3.24 (Unix) mod_perl/1.26
mod_ssl/2.8.8 OpenSSL/0.9.6

The SERVER_SOFTWARE variable tells us what components are compiled into the server, and their version numbers. In
this example, we used Apache 1.3.24, mod_perl 1.26, mod_ssl 2.8.8, and OpenSSL 0.9.6.

GATEWAY_INTERFACE => CGI/1.1

The GATEWAY_INTERFACE variable is very important; in this example, it tells us that the script is running under mod_cgi.
When running under mod_perl, this value changes to CGI-Perl/1.1.

REMOTE_ADDR => 127.0.0.1

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The REMOTE_ADDR variable tells us the remote address of the client. In this example, both client and server were
running on the same machine, so the client is localhost (whose IP is 127.0.0.1).

SERVER_PROTOCOL => HTTP/1.0

The SERVER_PROTOCOL variable reports the HTTP protocol version upon which the client and the server have agreed.
Part of the communication between the client and the server is a negotiation of which version of the HTTP protocol to
use. The highest version the two can understand will be chosen as a result of this negotiation.

REQUEST_METHOD => GET
The now-familiar REQUEST_METHOD variable tells us which request method was used (GET, in this case).
QUERY_STRING =>

The QUERY_STRING variable is also very important. It is used to pass the query parameters when using the GET method.
QUERY_STRING is empty in this example, because we didn't pass any parameters.

HTTP_USER_AGENT => Mozilla/5.0 Galeon/1.2.1 (X11; Linux i686; U;) Gecko/0

The HTTP_USER_AGENT variable contains the user agent specifications. In this example, we are using Galeon on Linux.
Note that this variable is very easily spoofed.

Spoofing HTTP_USER_AGENT

If the client is a custom program rather than a widely used browser, it can mimic its bigger brother's
signature. Here is an example of a very simple client using the LWP library:

#!/usr/bin/perl -w

use LWP::UserAgent;

my $ua = new LWP::UserAgent;

$ua->agent("Mozilla/5.0 Galeon/1.2.1 (X11; Linux i686; U;) Gecko/0");
my $req = new HTTP::Request('GET', 'http://localhost/cgi-bin/env.pl');
my $res = $ua->request($req);

print $res->content if $res->is_success;

This script first creates an instance of a user agent, with a signature identical to Galeon's on Linux. It then
creates a request object, which is passed to the user agent for processing. The response content is
received and printed.

When run from the command line, the output of this script is strikingly similar to what we obtained with
the browser. It notably prints:

HTTP_USER_AGENT => Mozilla/5.0 Galeon/1.2.1 (X11; Linux i686; U;) Gecko/0

So you can see how easy it is to fool a naive CGI programmer into thinking we've used Galeon as our
client program.

SERVER_ADDR => 127.0.0.1
SCRIPT_NAME => /cgi-bin/env.pl
SCRIPT_FILENAME => /home/httpd/cgi-bin/env.pl

The SERVER_ADDR, SCRIPT_NAME, and SCRIPT_FILENAME variables tell us (respectively) the server address, the name of
the script as provided in the request URI, and the real path to the script on the filesystem.

Now let's get back to the QUERY_STRING parameter. If we submit a new request for http://localhost/cgi-bin/env.pl?
foo=ok&bar=not_ok, the new value of the query string is displayed:

QUERY_STRING => foo=0ok&bar=not_ok
This is the variable used by CGI.pm and other modules to extract the input data.

Keep in mind that the query string has a limited size. Although the HTTP protocol itself does not place a limit on the
length of a URI, most server and client software does. Apache currently accepts a maximum size of 8K (8192)
characters for the entire URL. Some older client or proxy implementations do not properly support URIs larger than 255
characters. This is true for some new clients as well—for example, some WAP phones have similar limitations.

Larger chunks of information, such as complex forms, are passed to the script using the POST method. Your CGI script
should check the REQUEST_METHOD environment variable, which is set to POST when a request is submitted with the
POST method. The script can retrieve all submitted data from the STDIN stream. But again, let CGL.pm or similar modules
handle this process for you; whatever the request method, you won't have to worry about it because the key/value
parameter pairs will always be handled in the right way.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
1.2 The Apache 1.3 Server Model

Now that you know how CGI works, let's talk about how Apache implements mod_cgi. This is important because it will
help you understand the limitations of mod_cgi and why mod_perl is such a big improvement. This discussion will also
build a foundation for the rest of the performance chapters of this book.

1.2.1 Forking

Apache 1.3 on all Unix flavors uses the forking model.[Z] When you start the server, a single process, called the parent
process, is started. Its main responsibility is starting and killing child processes as needed. Various Apache configuration
directives let you control how many child processes are spawned initially, the number of spare idle processes, and the
maximum number of processes the parent process is allowed to fork.

[711n Chapter 24 we talk about Apache 2.0, which introduces a few more server models.

Each child process has its own lifespan, which is controlled by the configuration directive MaxRequestsPerChild. This
directive specifies the number of requests that should be served by the child before it is instructed to step down and is
replaced by another process. Figure 1-3 illustrates.

Figure 1-3. The Apache 1.3 server lifecycle

When a client initiates a request, the parent process checks whether there is an idle child process and, if so, tells it to
handle the request. If there are no idle processes, the parent checks whether it is allowed to fork more processes. If it
is, a new process is forked to handle the request. Otherwise, the incoming request is queued until a child process
becomes available to handle it.

The maximum number of queued requests is configurable by the ListenBacklog configuration directive. When this number
is reached, a client issuing a new request will receive an error response informing it that the server is unreachable.

This is how requests for static objects, such as HTML documents and images, are processed. When a CGI request is
received, an additional step is performed: mod_cgi in the child Apache process forks a new process to execute the CGI
script. When the script has completed processing the request, the forked process exits.

1.2.2 CGI Scripts Under the Forking Model

One of the benefits of this model is that if something causes the child process to die (e.g., a badly written CGI script), it
won't cause the whole service to fail. In fact, only the client that initiated the request will notice there was a problem.

Many free (and non-free) CGI scripts are badly written, but they still work, which is why no one tries to improve them.
Examples of poor CGI programming practices include forgetting to close open files, using uninitialized global variables,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

ignoring the warnings Perlrgeneratés, and forgetting to turn on taint checks (thus creatihg huge security holes that are
happily used by crackers to break into online systems).

Why do these sloppily written scripts work under mod_cgi? The reason lies in the way mod_cgi invokes them: every
time a Perl CGI script is run, a new process is forked, and a new Perl interpreter is loaded. This Perl interpreter lives for
the span of the request's life, and when the script exits (no matter how), the process and the interpreter exit as well,
cleaning up on the way. When a new interpreter is started, it has no history of previous requests. All the variables are
created from scratch, and all the files are reopened if needed. Although this detail may seem obvious, it will be of
paramount importance when we discuss mod_perl.

1.2.3 Performance Drawbacks of Forking

There are several drawbacks to mod_cgi that triggered the development of improved web technologies. The first
problem lies in the fact that a new process is forked and a new Perl interpreter is loaded for each CGI script invocation.
This has several implications:

® Tt adds the overhead of forking, although this is almost insignificant on modern Unix systems.
® | oading the Perl interpreter adds significant overhead to server response times.

® The script's source code and the modules that it uses need to be loaded into memory and compiled each time
from scratch. This adds even more overhead to response times.

® Process termination on the script's completion makes it impossible to create persistent variables, which in turn
prevents the establishment of persistent database connections and in-memory databases.

® Starting a new interpreter removes the benefit of memory sharing that could be obtained by preloading code
modules at server startup. Also, database connections can't be pre-opened at server startup.

Another drawback is limited functionality: mod_cgi allows developers to write only content handlers within CGI scripts.
If you need to access the much broader core functionality Apache provides, such as authentication or URL rewriting,
you must resort to third-party Apache modules written in C, which sometimes make the production server environment
somewhat cumbersome. More components require more administration work to keep the server in a healthy state.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
1.3 The Development of mod_perl 1.0

Of the various attempts to improve on mod_cgi's shortcomings, mod_perl has proven to be one of the better solutions
and has been widely adopted by CGI developers. Doug MacEachern fathered the core code of this Apache module and
licensed it under the Apache Software License, which is a certified open source license.

mod_perl does away with mod_cgi's forking by embedding the Perl interpreter into Apache's child processes, thus
avoiding the forking mod_cgi needed to run Perl programs. In this new model, the child process doesn't exit when it has
processed a request. The Perl interpreter is loaded only once, when the process is started. Since the interpreter is
persistent throughout the process's lifetime, all code is loaded and compiled only once, the first time it is needed. All
subsequent requests run much faster, because everything is already loaded and compiled. Response processing is
reduced to simply running the code, which improves response times by a factor of 10-100, depending on the code being
executed.

But Doug's real accomplishment was adding a mod_perl API to the Apache core. This made it possible to write complete
Apache modules in Perl, a feat that used to require coding in C. From then on, mod_perl enabled the programmer to
handle all phases of request processing in Perl.

The mod_perl API also allows complete server configuration in Perl. This has made the lives of many server
administrators much easier, as they now benefit from dynamically generating the configuration and are freed from

hunting for bugs in huge configuration files full of similar directives for virtual hosts and the like.[8]
[8] mod_vhost_alias offers similar functionality.

To provide backward compatibility for plain CGI scripts that used to be run under mod_cgi, while still benefiting from a
preloaded Perl interpreter and modules, a few special handlers were written, each allowing a different level of proximity
to pure mod_perl functionality. Some take full advantage of mod_perl, while others do not.

mod_perl embeds a copy of the Perl interpreter into the Apache httpd executable, providing complete access to Perl
functionality within Apache. This enables a set of mod_perl-specific configuration directives, all of which start with the
string Perl. Most, but not all, of these directives are used to specify handlers for various phases of the request.

It might occur to you that sticking a large executable (Perl) into another large executable (Apache) creates a very, very
large program. mod_perl certainly makes httpd significantly bigger, and you will need more RAM on your production
server to be able to run many mod_perl processes. However, in reality, the situation is not as bad as it first appears.
mod_perl processes requests much faster, so the number of processes needed to handle the same request rate is much
lower relative to the mod_cgi approach. Generally, you need slightly more available memory, but the speed
improvements you will see are well worth every megabyte of memory you can add. Techniques that can reduce
memory requirements are covered in Chapter 10.

According to http://netcraft.com/, as of January 2003, mod_perl has been used on more than four million web sites.
Some of these sites have been using mod_perl since its early days. You can see an extensive list of sites that use
mod_perl at http://perl.apache.org/outstanding/sites.html or http://perl.apache.org/outstanding/success_stories/. The
latest usage statistics can be viewed at http://perl.apache.org/outstanding/stats/.

1.3.1 Running CGI Scripts with mod_perl

Since many web application developers are interested in the content delivery phase and come from a CGI background,
mod_perl includes packages designed to make the transition from CGI simple and painless. Apache::PerlRun and

Apache::Registry run unmodified CGI scripts, albeit much faster than mod_cgi.m

[9] Apache::RegistryNG and Apache::RegistryBB are two new experimental modules that you may want to try as
well.

The difference between Apache::Registry and Apache::PerlRun is that Apache::Registry caches all scripts, and Apache::PerlRun
doesn't. To understand why this matters, remember that if one of mod_perl's benefits is added speed, another is
persistence. Just as the Perl interpreter is loaded only once, at child process startup, your scripts are loaded and
compiled only once, when they are first used. This can be a double-edged sword: persistence means global variables
aren't reset to initial values, and file and database handles aren't closed when the script ends. This can wreak havoc in
badly written CGI scripts.

Whether you should use Apache::Registry or Apache::PerlRun for your CGI scripts depends on how well written your
existing Perl scripts are. Some scripts initialize all variables, close all file handles, use taint mode, and give only polite
error messages. Others don't.

Apache::Registry compiles scripts on first use and keeps the compiled scripts in memory. On subsequent requests, all the
needed code (the script and the modules it uses) is already compiled and loaded in memory. This gives you enormous
performance benefits, but it requires that scripts be well behaved.

Apache::PerlRun, on the other hand, compiles scripts at each request. The script's namespace is flushed and is fresh at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

the start of every request. This allows scripts to enjoy the basic benefit of mod_perl (i.é., not having to load the Perl
interpreter) without requiring poorly written scripts to be rewritten.

A typical problem some developers encounter when porting from mod_cgi to Apache::Registry is the use of uninitialized
global variables. Consider the following script:

use CGI;

$q = CGI->new();

$topsecret = 1 if $g->param("secret") eq 'Muahaha’;
#

if ($topsecret) {
display_topsecret_data();

else {
security_alert();

This script will always do the right thing under mod_cgi: if secret=Muahaha is supplied, the top-secret data will be
displayed via display_topsecret_data(), and if the authentication fails, the security_alert() function will be called. This works
only because under mod_cgi, all globals are undefined at the beginning of each request.

Under Apache::Registry, however, global variables preserve their values between requests. Now imagine a situation
where someone has successfully authenticated, setting the global variable $topsecret to a true value. From now on,
anyone can access the top-secret data without knowing the secret phrase, because $topsecret will stay true until the
process dies or is modified elsewhere in the code.

This is an example of sloppy code. It will do the right thing under Apache::PerlRun, since all global variables are
undefined before each iteration of the script. However, under Apache::Registry and mod_perl handlers, all global variables
must be initialized before they can be used.

The example can be fixed in a few ways. It's a good idea to always use the strict mode, which requires the global
variables to be declared before they are used:

use strict;

use CGI;

use vars qw($top $q);

init globals

$top = 0;

$g = undef;

code

$q = CGI->new();

$topsecret = 1 if $g->param("secret") eq 'Muahaha’;
...

But of course, the simplest solution is to avoid using globals where possible. Let's look at the example rewritten without
globals:

use strict;

use CGI;

my $q = CGI->new();

my $topsecret = $q->param("secret") eq 'Muahaha' ? 1 : 0;
..

The last two versions of the example will run perfectly under Apache::Registry.

Here is another example that won't work correctly under Apache::Registry. This example presents a simple search engine
script:

use CGI;
my $q = CGI->new();
print $g->header('text/plain’);
my @data = read_data()
my $pat = $g->param("keyword");
foreach (@data) {
print if /$pat/o;

The example retrieves some data using read_data() (e.g., lines in the text file), tries to match the keyword submitted by
a user against this data, and prints the matching lines. The /o regular expression modifier is used to compile the regular
expression only once, to speed up the matches. Without it, the regular expression will be recompiled as many times as
the size of the @data array.

Now consider that someone is using this script to search for something inappropriate. Under Apache::Registry, the pattern
will be cached and won't be recompiled in subsequent requests, meaning that the next person using this script (running
in the same process) may receive something quite unexpected as a result. Oops.

The proper solution to this problem is discussed in Chapter 6, but Apache::PerlRun provides an immediate workaround,
since it resets the regular expression cache before each request.

So why bother to keep your code clean? Why not use Apache::PerlRun all the time? As we mentioned earlier, the
convenience provided by Apache::PerlRun comes at a price of performance deterioration.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In Chapter 9, we show in detail how to benchmark the code and server configuration. Based on the results of the
benchmark, you can tune the service for the best performance. For now, let's just show the benchmark of the short

script in Example 1-6.
Example 1-6. readdir.pl

use strict;

use CGI ();
use 10::Dir ();

my $q = CGI->new;

print $g->header("text/plain");
my $dir = 10::Dir->new(".");
print join "\n", $dir->read;

The script loads two modules (CGI and IO::Dir), prints the HTTP header, and prints the contents of the current directory.
If we compare the performance of this script under mod_cgi, Apache::Registry, and Apache::PerlRun, we get the following
results:

Mode Requests/sec

Apache::Registry 473
Apache::PerlRun 289
mod_cgi 10

Because the script does very little, the performance differences between the three modes are very significant.
Apache::Registry thoroughly outperforms mod_cgi, and you can see that Apache::PerlRun is much faster than mod_cgi,
although it is still about twice as slow as Apache::Registry. The performance gap usually shrinks a bit as more code is
added, as the overhead of fork() and code compilation becomes less significant compared to execution times. But the
benchmark results won't change significantly.

Jumping ahead, if we convert the script in Example 1-6 into a mod_perl handler, we can reach 517 requests per second
under the same conditions, which is a bit faster than Apache::Registry. In Chapter 13, we discuss why running the code
under the Apache::Registry handler is a bit slower than using a pure mod_perl content handler.

It can easily be seen from this benchmark that Apache::Registry is what you should use for your scripts to get the most
out of mod_perl. But Apache::PerlRun is still quite useful for making an easy transition to mod_perl. With Apache::PerlRun,
you can get a significant performance improvement over mod_cgi with minimal effort.

Later, we will see that Apache::Registry's caching mechanism is implemented by compiling each script in its own
namespace. Apache::Registry builds a unique package name using the script's name, the current URI, and the current
virtual host (if any). Apache::Registry prepends a package statement to your script, then compiles it using Perl's eval
function. In Chapter 6, we will show how exactly this is done.

What happens if you modify the script's file after it has been compiled and cached? Apache::Registry checks the file's last-
modification time, and if the file has changed since the last compile, it is reloaded and recompiled.

In case of a compilation or execution error, the error is logged to the server's error log, and a server error is returned
to the client.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
1.4 Apache 1.3 Request Processing Phases

To understand mod_perl, you should understand how request processing works within Apache. When Apache receives a
request, it processes it in 11 phases. For every phase, a standard default handler is supplied by Apache. You can also
write your own Perl handlers for each phase; they will override or extend the default behavior. The 11 phases

(illustrated in Figure 1-4) are:

Figure 1-4. Apache 1.3 request processing phases

Post-read-request

This phase occurs when the server has read all the incoming request's data and parsed the HTTP header.
Usually, this stage is used to perform something that should be done once per request, as early as possible.
Modules' authors usually use this phase to initialize per-request data to be used in subsequent phases.

URI translation

In this phase, the requested URI is translated to the name of a physical file or the name of a virtual document
that will be created on the fly. Apache performs the translation based on configuration directives such as
ScriptAlias. This translation can be completely modified by modules such as mod_rewrite, which register
themselves with Apache to be invoked in this phase of the request processing.

Header parsing

During this phase, you can examine and modify the request headers and take a special action if needed—e.g.,
blocking unwanted agents as early as possible.

Access control

This phase allows the server owner to restrict access to specific resources based on various rules, such as the
client's IP address or the day of week.

Authentication

Sometimes you want to make sure that a user really is who he claims to be. To verify his identity, challenge
him with a question that only he can answer. Generally, the question is a login name and password, but it can
be any other challenge that allows you to distinguish between users.

Authorization

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The service might have various restricted areas, and you might want to allow the user to access some of these
areas. Once a user has passed the authentication process, it is easy to check whether a specific location can be
accessed by that user.

MIME type checking

Apache handles requests for different types of files in different ways. For static HTML files, the content is simply
sent directly to the client from the filesystem. For CGI scripts, the processing is done by mod_cgi, while for
mod_perl programs, the processing is done by mod_perl and the appropriate Perl handler. During this phase,
Apache actually decides on which method to use, basing its choice on various things such as configuration
directives, the filename's extension, or an analysis of its content. When the choice has been made, Apache
selects the appropriate content handler, which will be used in the next phase.

Fixup

This phase is provided to allow last-minute adjustments to the environment and the request record before the
actual work in the content handler starts.

Response

This is the phase where most of the work happens. First, the handler that generates the response (a content
handler) sends a set of HTTP headers to the client. These headers include the Content-type header, which is
either picked by the MIME-type-checking phase or provided dynamically by a program. Then the actual content
is generated and sent to the client. The content generation might entail reading a simple file (in the case of
static files) or performing a complex database query and HTML-ifying the results (in the case of the dynamic
content that mod_perl handlers provide).

This is where mod_cgi, Apache::Registry, and other content handlers run.
Logging

By default, a single line describing every request is logged into a flat file. Using the configuration directives, you
can specify which bits of information should be logged and where. This phase lets you hook custom logging
handlers—for example, logging into a relational database or sending log information to a dedicated master
machine that collects the logs from many different hosts.

Cleanup

At the end of each request, the modules that participated in one or more previous phases are allowed to
perform various cleanups, such as ensuring that the resources that were locked but not freed are released
(e.g., a process aborted by a user who pressed the Stop button), deleting temporary files, and so on.

Each module registers its cleanup code, either in its source code or as a separate configuration entry.

At almost every phase, if there is an error and the request is aborted, Apache returns an error code to the client using
the default error handler (or a custom one, if provided).

1.4.1 Apache 1.3 Modules and the mod_perl 1.0 API

The advantage of breaking up the request process into phases is that Apache gives a programmer the opportunity to
"hook" into the process at any of those phases. Apache has been designed with modularity in mind. A small set of core
functions handle the basic tasks of dealing with the HTTP protocol and managing child processes. Everything else is
handled by modules. The core supplies an easy way to plug modules into Apache at build time or runtime and enable
them at runtime.

Modules for the most common tasks, such as serving directory indexes or logging requests, are supplied and compiled
in by default. mod_cgi is one such module. Other modules are bundled with the Apache distribution but are not
compiled in by default: this is the case with more specialized modules such as mod_rewrite or mod_proxy. There are
also a vast number of third-party modules, such as mod_perl, that can handle a wide variety of tasks. Many of these

can be found in the Apache Module Registry (http://modules.apache.org/).

Modules take control of request processing at each of the phases through a set of well-defined hooks provided by
Apache. The subroutine or function in charge of a particular request phase is called a handler. These include
authentication handlers such as mod_auth_dbi, as well as content handlers such as mod_cgi. Some modules, such as
mod_rewrite, install handlers for more than one request phase.

Apache also provides modules with a comprehensive set of functions they can call to achieve common tasks, including
file I/0, sending HTTP headers, or parsing URIs. These functions are collectively known as the Apache Application
Programming Interface (API).

Apache is written in C and currently requires that modules be written in the same language. However, as we will see,

mod_perl provides the full Apache API in Perl, so modules can be written in Perl as well, although mod_perl must be
installed for them to run.

1.4.2 mod_perl 1.0 and the mod_perl API

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Like other Apache modules, mod_perl is written in C, registers handlers for request phases, and uses the Apache API.
However, mod_perl doesn't directly process requests. Rather, it allows you to write handlers in Perl. When the Apache
core yields control to mod_perl through one of its registered handlers, mod_perl dispatches processing to one of the
registered Perl handlers.

Since Perl handlers need to perform the same basic tasks as their C counterparts, mod_perl exposes the Apache API
through a mod_perl API, which is a set of Perl functions and objects. When a Perl handler calls such a function or
method, mod_perl translates it into the appropriate Apache C function.

Perl handlers extract the last drop of performance from the Apache server. Unlike mod_cgi and Apache::Registry, they
are not restricted to the content generation phase and can be tied to any phase in the request loop. You can create
your own custom authentication by writing a PerlAuthenHandler, or you can write specialized logging code in a
PerlLogHandler.

Handlers are not compatible with the CGI specification. Instead, they use the mod_perl API directly for every aspect of
request processing.

mod_perl provides access to the Apache API for Perl handlers via an extensive collection of methods and variables
exported by the Apache core. This includes methods for dealing with the request (such as retrieving headers or posted
content), setting up the response (such as sending HTTP headers and providing access to configuration information
derived from the server's configuration file), and a slew of other methods providing access to most of Apache's rich
feature set.

Using the mod_perl API is not limited to mod_perl handlers. Apache::Registry scripts can also call API methods, at the
price of forgoing CGI compatibility.

We suggest that you refer to the book Writing Apache Modules with Perl and C, by Lincoln Stein and Doug MacEachern
(O'Reilly), if you want to learn more about API methods.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
1.5 References

® The CGI specification: http://hoohoo.ncsa.uiuc.edu/cgi/

® The HTTP/1.1 standard: http://www.w3.org/Protocols/rfc2616/rfc2616.html
® Various information about CGI at the W3C site: http://www.w3.org/CGI/

® MIME Media Types: http://www.ietf.org/rfc/rfc2046.txt

® The Apache Modules Registry: http://modules.apache.org/

® Writing Apache Modules with Perl and C, by Lincoln Stein and Doug MacEachern (O'Reilly); selected chapters
available online at http://www.modperl.com/

® mod_perl Developer's Cookbook, by Geoffrey Young, Paul Lindner, and Randy Kobes (Sams Publishing);
selected chapters available online at http://www.modperlcookbook.org/.

® CGI Programming with Perl, by Scott Guelich, Shishir Gundavaram, Gunther Birznieks (O'Reilly)

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [vy Jlri v
Chapter 2. Getting Started Fast

This chapter is about getting started with mod_perl, for the very impatient. If all you want is to run your existing CGI
scripts in @ mod_perl-enabled environment, we'll try to make this as easy for you as possible. Of course, we hope that
you'll read the rest of the book too. But first, we want to show you how simple it is to harness the power of mod_perl.

On a decent machine, it should take half an hour or less to compile and configure a mod_perl-based Apache server and
get it running. Although there are binary distributions of mod_perl-enabled Apache servers available for various
platforms, we recommend that you always build mod_perl from source. It's simple to do (provided you have all the
proper tools on your machine), and building from source circumvents possible problems with binary distributions, such
as those reported for the RPM packages built for Red Hat Linux.

The mod_perl installation that follows has been tested on many mainstream Unix and Linux platforms. Unless you're
using a very nonstandard system, you should have no problems when building the basic mod_perl server.

For Windows users, the simplest solution is to use the binary package available from

http://perl.apache.org/download/binaries.html. Windows users may skip to Section 2.4.

Before we continue, however, we have one important bit of advice: while you're learning mod_perl, be sure that you
experiment on a private machine and not on a production server.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
2.1 Installing mod_perl 1.0 in Three Steps

You can install mod_perl in three easy steps: obtain the source files required to build mod_perl, build mod_perl, and
install it.

Building mod_perl from source requires a machine with basic development tools. In particular, you will need an ANSI-
compliant C compiler (such as gcc) and the make utility. All standard Unix-like distributions include these tools. If a
required tool is not already installed, you can install it with the package manager that is provided with the system (rpm,
apt, yast, etc.).

A recent version of Perl (5.004 or higher) is also required. Perl is available as an installable package, although most
Unix-like distributions will have Perl installed by default. To check that the tools are available and to learn about their
version numbers, try:

panic% make -v
panic% gcc -v
panic% perl -v

If any of these responds with Command not found, the utility will need to be installed.

Once all the tools are in place, the installation can begin. Experienced Unix users will need no explanation of the
commands that follow and can simply type them into a terminal window.

Get the source code distrubutions of Apache and mod_perl using your favorite web browser or a command-line client

such as wget or Iwp-download. These two distributions are available from http://www.apache.org/dist/httpd/ and
http://perl.apache.org/dist/, respectively.

The two packages are named apache_1.3.xx.tar.gz and mod_perl-1.xx.tar.gz, where 1.3.xx and 1.xx should be
replaced with the real version numbers of Apache and mod_perl, respectively. Although 2.0 development versions of
Apache and mod_perl are available, this book covers the mod_perl 1.0 and Apache 1.3 generation, which were the
stable versions when this book was written. See Chapter 24 and Chapter 25 for more information on the Apache 2.0
and mod_perl 2.0 generation.

Move the downloaded packages into a directory of your choice (for example, /home/stas/src/), proceed with the
following steps, and mod_perl will be installed:

panic% cd /home/stas/src

panic% tar -zvxf apache_1.3.xx.tar.gz

panic% tar -zvxf mod_perl-1.xx.tar.gz

panic% cd mod_perl-1.xx

panic% perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src \
APACHE_PREFIX=/home/httpd DO_HTTPD=1 USE_APACI=1 EVERYTHING=1

panic% make && make test

panic% su

panic# make install

All that remains is to add a few configuration lines to the Apache configuration file (/usr/local/apache/conf/httpd.conf),
start the server, and enjoy mod_perl.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
2.2 Installing mod_perl on Unix Platforms

Now let's go over the installation again, this time with each step explained in detail and with some troubleshooting
advice. If the build worked and you are in a hurry to boot your new httpd, you may skip to Section 2.4.

Before installing Apache and mod_perl, you usually have to become root so that the files can be installed in a protected
area. However, users without root access can still install all files under their home directories by building Apache in an
unprivileged location; you need root access only to install it. We will talk about the nuances of this approach in Chapter
3.

2.2.1 Obtaining and Unpacking the Source Code

The first step is to obtain the source code distributions of Apache and mod_perl. These distributions can be retrieved

from http://www.apache.org/dist/httpd/ and http://perl.apache.org/dist/ and are also available from mirror sites. Even
if you have the Apache server running on your machine, you'll need its source distribution to rebuild it from scratch with
mod_perl.

The source distributions of Apache and mod_perl should be downloaded into a directory of your choice. For the sake of
consistency, we assume throughout the book that all builds are being done in the /home/stas/src directory. Just
remember to substitute /home/stas/src in the examples with the actual path being used.

The next step is to move to the directory containing the source archives:
panic% cd /home/stas/src
Uncompress and untar both sources. GNU tar allows this using a single command per file:

panic% tar -zvxf apache_1.3.xx.tar.gz
panic% tar -zvxf mod_perl-1.xx.tar.gz

For non-GNU tars, you may need to do this with two steps (which you can combine via a pipe):

panic% gzip -dc apache_1.3.xx.tar.gz | tar -xvf -
panic% gzip -dc mod_perl-1.xx.tar.gz | tar -xvf -

Linux distributions supply tar and gzip and install them by default. If your machine doesn't have these utilities already
installed, you can get tar and gzip from http://www.gnu.org/, among other sources. The GNU versions are available for
every platform that Apache supports.

2.2.2 Building mod_perl

Move into the /home/stas/src/mod_perl-1.xx/ source distribution directory:
panic% cd mod_perl-1.xx

The next step is to create the Makefile. This is no different in principle from the creation of the Makefile for any other
Perl module.

panic% perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src \
DO_HTTPD=1 USE_APACI=1 EVERYTHING=1

mod_perl accepts a variety of parameters. The options specified above will enable almost every feature that mod_perl
offers. There are many other options for fine-tuning mod_perl to suit particular circumstances; these are explained in

detail in Chapter 3.

Running Makefile.PL will cause Perl to check for prerequisites and identify any required software packages that are
missing. If it reports missing Perl packages, they will have to be installed before proceeding. Perl modules are available
from CPAN (http://cpan.org/) and can easily be downloaded and installed.

An advantage of installing mod_perl with the help of the CPAN.pm module is that all the missing modules will be installed
with the Bundle::Apache bundle:

panic% perl -MCPAN -e 'install("Bundle::Apache")'
We will talk in depth about using CPAN.pm in Chapter 3.

Running Makefile.PL also transparently executes the ./configure script from Apache's source distribution directory,
which prepares the Apache build configuration files. If parameters must be passed to Apache's ./configure script, they
can be passed as options to Makefile.PL. Chapter 3 covers all this in detail.

The httpd executable can now be built by using the make utility (note that the current working directory is still
/home/stas/src/mod_perl-1.xx/):

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

panic% make

This command prepares the mod_perl extension files, installs them in the Apache source tree, and builds the httpd
executable (the web server itself) by compiling all the required files. Upon completion of the make process, the working
directory is restored to /home/stas/src/mod_perl-1.xx/.

Running make test will execute various mod_perl tests on the newly built httpd executable:
panic% make test

This command starts the server on a nonstandard port (8529) and tests whether all parts of the built server function
correctly. The process will report anything that does not work properly.

2.2.3 Installing mod_perl

Running make install completes the installation process by installing all the Perl files required for mod_perl to run. It
also installs the mod_perl documentation (manpages). Typically, you need to be root to have permission to do this, but
another user account can be used if the appropriate options are set on the perl/ Makefile.PL command line (see Chapter
3). To become root, use the su command.

panic% su
panic# make install

If you have the proper permissions, you can also chain all three make commands into a single command line:
panic# make && make test && make install

The single-line version simplifies the installation, since there is no need to wait for each command to complete before
starting the next one. Of course, if you need to become root in order to run make install, you'll either need to run make
install as a separate command or become root before running the single-line version.

If you choose the all-in-one approach and any of the make commands fail, execution will stop at that point. For
example, if make alone fails, then make test and make install will not be attempted. Similarly, if make test fails, then
make install will not be attempted.

Finally, change to the Apache source distribution directory and run make install to create the Apache directory tree and
install Apache's header files (*.h), default configuration files (*.conf), the httpd executable, and a few other programs:

panic# cd ../apache_1.3.xx
panic# make install

Note that, as with a plain Apache installation, any configuration files left from a previous installation will not be
overwritten by this process. Although backing up is never unwise, it's not actually necessary to back up the previously
working configuration files before the installation.

At the end of the make install process, the installation program will list the path to the apachect/ utility, which you can
use to start and stop the server, and the path to the installed configuration files. It is important to write down these
pathnames, as they will be needed frequently when maintaining and configuring Apache. On our machines, these two
important paths are:

/usr/local/apache/bin/apachectl
/usr/local/apache/conf/httpd.conf

The mod_perl Apache server is now built and installed. All that needs to be done before it can be run is to edit the
configuration file httpd.conf and write a test script.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
2.3 Configuring and Starting the mod_perl Server

Once you have mod_perl installed, you need to configure the server and test it.

The first thing to do is ensure that Apache was built correctly and that it can serve plain HTML files. This helps to
minimize the number of possible problem areas: once you have confirmed that Apache can serve plain HTML files, you
know that any problems with mod_perl are related to mod_perl itself.

Apache should be configured just as you would configure it without mod_perl. Use the defaults as suggested,
customizing only when necessary. Values that will probably need to be customized are ServerName, Port, User, Group,
ServerAdmin, DocumentRoot, and a few others. There are helpful hints preceding each directive in the configuration files
themselves, with further information in Apache's documentation. Follow the advice in the files and documentation if in
doubt.

When the configuration file has been edited, start the server. One of the ways to start and stop the server is to use the
apachectl utility. To start the server with apachect/, type:

panic# /usr/local/apache/bin/apachectl start
To stop the server, type:

panic# /usr/local/apache/bin/apachectl stop

Note that if the server will listen on port 80 or another privileged port,U-l the user executing apachect! must be root.
(1] privileged ports are 0-1023. Only the programs running as root are allowed to bind to these.

After the server has started, check in the error_log file (/usr/local/apache/logs/error_log, by default) to see if the
server has indeed started. Do not rely on the apachect/ status reports. The error_log should contain something like the
following:

[Thu Jun 22 17:14:07 2000] [notice] Apache/1.3.12 (Unix)
mod_perl/1.24 configured -- resuming normal operations

Now point your browser to http://localhost/ or http://example.com/, as configured with the ServerName directive. If the
Port directive has been set with a value other than 80, add this port number to the end of the server name. For
example, if the port is 8080, test the server with http://localhost:8080/ or http://example.com:8080/. The "It Worked!"
page, which is an index.html file that is installed automatically when running make install in the Apache source tree,
should appear in the browser. If this page does not appear, something went wrong and the contents of the
logs/error_log file should be checked. The path to the error log file is specified by the ErrorLog directive in httpd.conf. (It
is usually specified relative to the ServerRoot, so a value of logs/error_log usually means
/usr/local/apache/logs/error_log if Apache is installed into /usr/local/apache.)

If everything works as expected, shut down the server, open httpd.conf with a text editor, and scroll to the end of the
file. The mod_perl configuration directives are conventionally added to the end of httpd.conf. It is possible to place
mod_perl's configuration directives anywhere in httpd.conf, but adding them at the end seems to work best in practice.

Assuming that all the scripts that should be executed by the mod_perl-enabled server are located in the
/home/stas/modperl directory, add the following configuration directives:

Alias /perl/ /home/stas/modperl/

PerlModule Apache::Registry
<Location /perl/>
SetHandler perl-script
PerlHandler Apache::Registry
Options +ExecCGI
PerlSendHeader On
Allow from all
</Location>

Save the modified file.

This configuration causes every URI starting with /per/ to be handled by the Apache mod_perl module with the handler
from the Perl module Apache::Registry.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
2.4 Installing mod_perl for Windows

Apache runs on many flavors of Unix and Unix-like operating systems. Version 1.3 introduced a port to the Windows
family of operating systems, often named Win32 after the name of the common API. Because of the many differences
between Unix and Windows, the Win32 port of Apache is still branded as beta quality—it hasn't yet reached the stability
and performance levels of the native Unix counterpart.

Another hindrance to using mod_perl on Windows is that current versions of Perl are not thread-safe on Win32. As a
consequence, mod_perl calls to the embedded Perl interpreter must be serialized (i.e., executed one at a time). For
these reasons, we recommend that mod_perl on Windows be used only for testing purposes, not in production.

Building mod_perl from source on Windows is a bit of a challenge. Development tools such as a C compiler are not
bundled with the operating system, and most users expect a point-and-click installation, as with most Windows
software. Additionally, all software packages need to be built with the same compiler and compile options. This means
building Perl, Apache, and mod_perl from source, which is quite a daunting task.

Fortunately, Randy Kobes maintains a Windows distribution of mod_perl that includes all the necessary tools, including
Perl, Apache, and a host of useful CPAN modules. Using this distribution provides an out-of-the-box Apache + mod_perl
combo in minutes.

The distribution comes with extensive documentation. Take the time to read it, particularly if you want to install the
software in a location different from the default. In the following installation, we'll use the default locations and options.

Here are the steps for installing mod_perl:

1. Download the Windows distribution. Download per/-win32-bin-x.x.exe from

http://perl.apache.org/download/binaries.html. This self-extracting archive yields four directories: Apache/,

Perl/, openssl/, and readmes/.

2. Install the software. Move the Apache/ and Perl/ directories to C:\. Edit C:\AUTOEXEC.BAT to install the Perl
executable directories in your system's search path:

SET PATH=C:\Perl\5.6.1\bin;C:\Perl\5.6.1\bin\MSWin32-x86;"%PATH%"
Then restart Windows for this change to take effect.

3. Test the Perl installation. Open a DOS prompt window to verify that Perl is installed correctly and learn the
version number:

C:\> perl -v
This is perl, v5.6.1 built for MSWin32-x86
Copyright 1987-2000, Larry Wall

4. Start Apache. The distribution comes with a ready-made configuration file for mod_perl, which we'll use to start
Apache. From the C:\Apache directory, start Apache:

C:\Apache> apache.exe -f conf\httpd.conf
Now, issuing a request for http://localhost/ displays the usual Apache "It Worked!" page.

5. Test mod_perl. The distribution comes with a preconfigured mod_perl handler and Apache::Registry directory. We
can test our mod_perl-enabled server by issuing the following requests:

http://localhost/hello
http://localhost/mod_perl/printenv

We now have a fully functional mod_perl server. The example scripts described in the rest of this chapter can be used
with minor modifications to file paths and URIs. In particular, change all instances of /home/stas to C:\Apache\, and
change all instances of http://localhost/perl to http://localhost/mod_perl.

2.4.1 Installing mod_perl with the Perl Package Manager

If you are already a Perl developer on Windows, it is likely that you have ActivePerl (see http://www.activestate.com/)
installed. In that case, you can get a mod_perl distribution that takes advantage of your existing Perl installation.

First of all, you will need to get the latest Apache distribution. Go to :

and get the latest version of apache_1.3.xx-win32-no_src.msi, which is a graphical installer. Read the notes on that
page about the MSI Binary distribution carefully if you are using Windows NT 4.0 or Windows 9x, as there may be some
prerequisites.

There is a lot of documentation at http://httpd.apache.org/ about installing Apache on Windows, so we won't repeat it
here. But for the purposes of this example, let's suppose that your Apache directory is C:\Apache, which means you

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

chose C:\ as the installation directory during the installation of Apache, and it created a subdirectory named Apabhe
there.

Once Apache is installed, we can install mod_perl. mod_perl is distributed as a PPM file, which is the format used by the
ActivePerl ppm command-line utility. mod_perl isn't available from ActiveState, but it has been made available from a

separate archive, maintained by Randy Kobes.[2] To install mod_perl, do the following from a DOS prompt:
[2] see the Preface for more information about PPM installation.

C:\> ppm

PPM> install mod_perl
PPM> quit

C:\>

When install mod_perl completes, a post-installation script will run, asking you where to install mod_perl.so, the
mod_perl dynamic link library (DLL) that's used by Apache. Look over the suggested path and correct it if necessary, or
press Enter if it's correct; it should be the C:\Apache\modules directory if you used C:\Apache as an installation
directory.

Please note that the version of mod_perl provided in that archive is always the latest version of mod_perl compiled
against the latest version of Apache, so you will need to make sure you have the latest Apache (of the 1.3.x series)
installed before proceeding. Furthermore, you will need an ActivePerl installation from the 6xx series, based on Perl
5.6.x, or mod_perl won't work.

The next step is to enable mod_perl in your httpd.conf file. If you installed Apache in C:\Apache, this will be
C:\Apache\conf\httpd.conf.

Add this line together with any other LoadModule directives:
LoadModule perl_module modules/mod_perl.so

Furthermore, if you have a ClearModuleList directive in the same file, add the following line with the other AddModule
directives:

AddModule mod_perl.c

For more information, see the Apache documentation for these two directives, and see Chapter 3 for more information
on using mod_perl as a dynamic shared object (DSO).

With this installation, you can start Apache as described in its documentation, and try out the examples in this book.
However, the mod_perl test scripts cited above aren't provided, and you will have to configure mod_perl yourself. See
Chapter 4 for more information about configuring mod_perl. For example:

Alias /perl/ C:/Apache/perl/

PerlModule Apache::Registry
<Location /perl/>
SetHandler perl-script
PerlHandler Apache::Registry
Options +ExecCGI
PerlSendHeader On
Allow from all
</Location>

This will allow you to run Apache::Registry scripts placed in the directory C:\Apache\per/. As you may have noticed, we
use forward slashes instead of the backslashes that are used on Windows (i.e., C:/Apache/perl/ instead of
C:\Apache\perl\), to be compatible with Unix notation.

[Team LiB] B B

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
2.5 Preparing the Scripts Directory

Now you have to select a directory where all the mod_perl scripts and modules will be placed. We usually create a
directory called modper/ under our home directory for this purpose (e.g., /home/stas/modperl), but it is also common
to create a directory called per/ under your Apache server root, such as /usr/local/apache/perl.

First create this directory if it doesn't yet exist:

panic% mkdir /home/stas/modper!

Next, set the file permissions. Remember that when scripts are executed from a shell, they are being executed with the
permissions of the user's account. Usually, you want to have read, write, and execute access for yourself, but only read
and execute permissions for the server. When the scripts are run by Apache, however, the server needs to be able to
read and execute them. Apache runs under an account specified by the User directive, typically nobody. You can modify
the User directive to run the server under your username, for example:

User stas

Since the permissions on all files and directories should usually be rwx------ ,Lﬂ set the directory permissions to:
[3] see the chmod manpage for more information regarding octal modes.

panic% chmod 0700 /home/stas/modperl
Now no one but you and the server can access the files in this directory. You should set the same permissions for all the
files you place under this directory. 4]

[4] You don't need to set the X bit for files that aren't going to be executed; mode 0600 is sufficient for those files.

If the server is running under the nobody account, you have to set the permissions to rwxr-xr-x or 0755 for your files and
directories. This is insecure, because other users on the same machine can read your files.

panic# chmod 0755 /home/stas/modperl

If you aren't running the server with your username, you have to set these permissions for all the files created under
this directory so Apache can read and execute them.

In the following examples, we assume that you run the server under your username, and hence we set the scripts'
permissions to 0700.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
2.6 A Sample Apache::Registry Script

One of mod_perl's benefits is that it can run existing CGI scripts written in Perl that were previously used under
mod_cgi (the standard Apache CGI handler). Indeed, mod_perl can be used for running CGI scripts without taking
advantage of any of mod_perl's special features, while getting the benefit of the potentially huge performance boost.
Example 2-1 gives an example of a very simple CGI-style mod_perl script.

Example 2-1. mod_perl_rules1.pl
print "Content-type: text/plain\n\n";
print "mod_perl rules!\n";

Save this script in the /home/stas/modperl/mod_perl_rules1.pl file. Notice that the #! line (colloquially known as the
shebang line) is not needed with mod_perl, although having one causes no problems, as can be seen in Example 2-2.

Example 2-2. mod_perl_rulesl.pl with shebang line

#!/usr/bin/perl

print "Content-type: text/plain\n\n";

print "mod_perl rules!\n";

Now make the script executable and readable by the server, as explained in the previous section:
panic% chmod 0700 /home/stas/modperl/mod_perl_rules1.pl

The mod_perl_rules1.pl script can be tested from the command line, since it is essentially a regular Perl script:
panic% perl /home/stas/modperl/mod_per|_rules1.pl

This should produce the following output:

Content-type: text/plain

mod_perl rules!

Make sure the server is running and issue these requests using a browser:
http://localhost/perl/mod_perl_rules1.pl

If the port being used is not 80 (e.g., 8080), the port number should be included in the URL:
http://localhost:8080/perl/mod_perl_rules1.pl

Also, the localhost approach will work only if the browser is running on the same machine as the server. If not, use the
real server name for this test. For example:

http://example.com/perl/mod_perl_rules1.pl

The page rendered should be similar to the one in Figure 2-1.

Figure 2-1. Testing the newly configured server

If you see it, congratulations! You have a working mod_perl server.

If something went wrong, go through the installation process again, making sure that none of the steps are missed and
that each is completed successfully. You might also look at the error_Jlog file for error messages. If this does not solve
the problem, Chapter 3 will attempt to salvage the situation.

Jumping a little bit ahead, Example 2-3 shows the same CGI script written with the mod_perl API.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 2-3. mod_perl_rules2.pl

my $r = Apache->request;
$r->send_http_header('text/plain');
$r->print("mod_perl rules'\n");

The mod_perl API needs a request object, $r, to communicate with Apache. The script retrieves this object and uses it
to send the HTTP header and print the irrefutable fact about mod_perl's coolness.

This script generates the same output as the previous one.

As you can see, it's not much harder to write your code using the mod_perl API. You need to learn the API, but the
concepts are the same. As we will show in the following chapters, usually you will want to use the mod_perl API for
better performance or when you need functionality that CGI doesn't provide.

2.6.1 Porting Existing CGlI Scripts to mod_perl

Now it's time to move any existing CGI scripts from the /somewhere/cgi-bin directory to /home/stas/modperl. Once
moved, they should run much faster when requested from the newly configured base URL (/perl/). For example, a CGI
script called test.pl that was previously accessed as /cgi-bin/test.pl can now be accessed as /peri/test.pl under
mod_perl and the Apache::Registry module.

Some of the scripts might not work immediately and may require some minor tweaking or even a partial rewrite to
work properly with mod_perl. We will talk in depth about these issues in Chapter 6. Most scripts that have been written
with care and developed with warnings enabled and the strict pragmam will probably work without any modifications at
all.

[5] warnings and strict abort your script if you have written sloppy code, so that you won't be surprised by
unknown, hidden bugs. Using them is generally considered a good thing in Perl and is very important in mod_perl.

A quick solution that avoids most rewriting or editing of existing scripts that do not run properly under Apache::Registry is
to run them under Apache::PerlRun. This can be achieved by simply replacing Apache::Registry with Apache::PerlRun in
httpd.conf. Put the following configuration directives instead in httpd.conf and restart the server:

Alias /perl/ /home/stas/modperl/
PerlModule Apache::PerlRun
<Location /perl/>
SetHandler perl-script
PerlHandler Apache::PerlRun
Options ExecCGI
PerlSendHeader On
Allow from all
</Location>

Almost every script should now run without problems; the few exceptions will almost certainly be due to the few minor
limitations that mod_perl or its handlers have, but these are all solvable and covered in Chapter 6.

As we saw in Chapter 1, Apache::PerlRun is usually useful while transitioning scripts to run properly under
Apache::Registry. However, we don't recommend using Apache::PerlRun in the long term; although it is significantly faster
than mod_cgi, it's still not as fast as Apache::Registry and mod_perl handlers.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
2.7 A Simple mod_perl Content Handler

As we mentioned in the beginning of this chapter, mod_perl lets you run both scripts and handlers. The previous
example showed a script, which is probably the most familiar approach to web programming, but the more advanced
use of mod_perl involves writing handlers. Have no fear; writing handlers is almost as easy as writing scripts and offers
a level of access to Apache's internals that is simply not possible with conventional CGI scripts.

To create a mod_perl handler module, all that is necessary is to wrap the code that would have been the body of a
script into a handler subroutine, add a statement to return the status to the server when the subroutine has successfully
completed, and add a package declaration at the top of the code.

Just as with scripts, the familiar CGI API may be used. Example 2-4 shows an example.

Example 2-4. ModPerl/Rulesl.pm

package ModPerl::Rules1;
use Apache::Constants qw(:common);

sub handler {
print "Content-type: text/plain\n\n";
print "mod_perl rules!\n";
return OK; # We must return a status to mod_perl

}

1; # This is a perl module so we must return true to perl

Alternatively, the mod_perl API can be used. This API provides almost complete access to the Apache core. In the
simple example used here, either approach is fine, but when lower-level access to Apache is required, the mod_perl API

shown in Example 2-5 must be used.
Example 2-5. ModPerl/Rules2.pm

package ModPerl::Rules2;
use Apache::Constants qw(:common);

sub handler {
my $r = shift;
$r->send_http_header('text/plain');
$r->print("mod_perl rules!\n");
return OK; # We must return a status to mod_perl

}

1; # This is a perl module so we must return true to perl

Create a directory called ModPerl under one of the directories in @INC (e.g., under /usr/lib/perl5/site_perl/5.6.1), and
put Rules1.pm and Rules2.pm into it. (Note that you will need root access in order to do this.) The files should include
the code from the above examples. To find out what the @INC directories are, execute:

panic% perl -le 'print join "\n", @INC'
On our machine it reports:

/usr/lib/perl5/5.6.1/i386-linux
/usr/lib/perl5/5.6.1
/usr/lib/per|5/site_perl/5.6.1/i386-linux
/usr/lib/perl5/site_perl/5.6.1
/Jusr/lib/perl5/site_perl

Therefore, on our machine, we might place the files in the directory /usr/lib/perl5/site_perl/5.6.1/ModPerl. By default,
when you work as root, the files are created with permissions allowing everybody to read them, so here we don't have
to adjust the file permissions (the server only needs to be able to read those).

Now add the following snippet to /usr/local/apache/conf/httpd.conf, to configure mod_perl to execute the
ModPerl::Rules1::handler subroutine whenever a request to mod_per/_rules1 is made:

PerIModule ModPerl::Rules1
<Location /mod_perl_rules1>
SetHandler perl-script
PerlHandler ModPerl::Rules1
PerlSendHeader On
</Location>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Now issue a request to:

http://localhost/mod_perl_rulesl

and, just as with the mod_per/_rules.pl scripts, the following should be rendered as a response:
mod_perl rules!

Don't forget to include the port number if not using port 80 (e.g., http://localhost:8080/mod_per|_rules1); from now
on, we will assume you know this.

To test the second module, ModPerl::Rules2, add a similar configuration, while replacing all 1s with 2s:

PerlModule ModPerl::Rules2
<Location /mod_perl_rules2>
SetHandler perl-script
PerlHandler ModPerl::Rules2
</Location>

In Chapter 4 we will explain why the PerlSendHeader directive is not needed for this particular module.
To test, use the URI:
http://localhost/mod_perl_rules2

You should see the same response from the server that we saw when issuing a request for the former mod_perl
handler.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
2.8 Is This All We Need to Know About mod_perl?

So do you need to know more about mod_perl? The answer is, "Yes and no."

Just as with Perl, effective scripts can be written even with very little mod_perl knowledge. With the basic unoptimized
setup presented in this chapter, visitor counters and guestbooks and any other CGI scripts you use will run much faster
and amaze your friends and colleagues, usually without your changing a single line of code.

However, although a 50 times improvement in guestbook response times is great, a very heavy service with thousands
of concurrent users will suffer under a delay of even a few milliseconds. You might lose a customer, or even many of
them.

When testing a single script with the developer as the only user, squeezing yet another millisecond from the response
time seems unimportant. But it becomes a real issue when these milliseconds add up at the production site, with
hundreds or thousands of users concurrently generating requests to various scripts on the site. Users are not merciful
nowadays. If there is another site that provides the same kind of service significantly faster, chances are that users will
switch to the competing site.

Testing scripts on an unloaded machine can be very misleading—everything might seem so perfect. But when they are
moved into a production environment, chances are that the scripts will not behave as well as they did on the
development box. For example, the production machine may run out of memory on very busy services. In Chapter 10,
we will explain how to optimize code to use less memory and how to make as much memory as possible shared.

Debugging is something that some developers prefer not to think about, because the process can be very tedious.
Learning how to make the debugging process simpler and more efficient is essential for web programmers. This task
can be difficult enough when debugging CGI scripts, but it can be even more complicated with mod_perl. Chapter 21
explains how to approach debugging in the mod_perl environment.

mod_perl has many features unavailable under mod_cgi for working with databases. Some of the most important are
persistent database connections. Persistent database connections require a slightly different approach, explained in

Chapter 20.

Most web services, especially those aimed at an international audience, must run nonstop, 24 x 7. But at the same
time, new scripts may need to be added and old ones removed, and the server software will need upgrades and
security fixes. And if the server goes down, fast recovery is essential. These issues are considered in Chapter 5.

Finally, the most important aspect of mod_perl is the mod_perl API, which allows intervention at any or every stage of
request processing. This provides incredible flexibility, allowing the creation of scripts and processes that would simply
be impossible with mod_cgi.

There are many more things to learn about mod_perl and web programming in general. The rest of this book will
attempt to provide as much information as possible about these and other related matters.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
2.9 References

® The Apache home page: http://www.apache.org/.
® The mod_perl home page: http://perl.apache.org/.

® The CPAN home page: http://cpan.org/

CPAN is the Comprehensive Perl Archive Network. Its aim is to contain all the Perl material you will need. The
archive is close to a gigabyte in size at the time of this writing, and CPAN is mirrored at more than 100 sites
around the world.

® The libwww-perl home page: http://www.linpro.no/lwp/.

The libwww-perl distribution is a collection of Perl modules and programs that provide a simple and consistent
programming interface (API) to the World Wide Web. The main focus of the library is to provide classes and
functions that facilitate writing WWW clients; thus, libwww-perl is said to be a WWW client library. The library
also contains modules that are of more general use, as well as some useful programs.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [vy Jlri v
Chapter 3. Installing mod_perl

In Chapter 2, we presented a basic mod_perl installation. In this chapter, we will talk about various ways in which
mod_perl can be installed (using a variety of installation parameters), as well as prepackaged binary installations, and
more.

Chapter 2 showed you the following commands to build and install a basic mod_perl-enabled Apache server on almost
any standard flavor of Unix.

First, download http://www.apache.org/dist/httpd/apache_1.3.xx.tar.gz and http://perl.apache.org/dist/mod_perl-
1.xx.tar.gz. Then, issue the following commands:

panic% cd /home/stas/src

panic% tar xzvf apache_1.3.xx.tar.gz

panic% tar xzvf mod_perl-1.xx.tar.gz

panic% cd mod_perl-1.xx

panic% perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src \
DO_HTTPD=1 USE_APACI=1 EVERYTHING=1

panic% make && make test

panic# make install

panic# cd ../apache_1.3.xx

panic# make install

As usual, replace 1.xx and 1.3.xx with the real version numbers of mod_perl and Apache, respectively.

You can then add a few configuration lines to httpd.conf (the Apache configuration file), start the server, and enjoy
mod_perl. This should work just fine. Why, then, are you now reading a 50-page chapter on installing mod_perl?

You're reading this chapter for the same reason you bought this book. Sure, the instructions above will get you a
working version of mod_perl. But the average reader of this book won't want to stop there. If you're using mod_perl,
it's because you want to improve the performance of your web server. And when you're concerned with performance,
you're always looking for ways to eke a little bit more out of your server. In essence, that's what this book is about:
getting the most out of your mod_perl-enabled Apache server. And it all starts at the beginning, with the installation of
the software.

In the basic mod_perl installation, the parameter EVERYTHING=1 enables a lot of options for you, whether you actually
need them or not. You may want to enable only the required options, to squeeze even more juice out of mod_perl. You
may want to build mod_perl as a loadable object instead of compiling it into Apache, so that it can be upgraded without
rebuilding Apache itself. You may also want to install other Apache components, such as PHP or mod_ssl, alongside
mod_perl.

To accomplish any of these tasks, you will need to understand various techniques for mod_perl configuration and
building. You need to know what configuration parameters are available to you and when and how to use them.

As with Perl, in mod_perl simple things are simple. But when you need to accomplish more complicated tasks, you may
have to invest some time to gain a deeper understanding of the process. In this chapter, we will take the following
route. We'll start with a detailed explanation of the four stages of the mod_perl installation process, then continue on
with the different paths each installation might take according to your goal, followed by a few copy-and-paste real-
world installation scenarios. Toward the end of the chapter we will show you various approaches that might make the
installation easier, by automating most of the steps. Finally, we'll cover some of the general issues that new users
might stumble on while installing mod_perl.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

3.1 Configuring the Source

Before building and installing mod_perl you will have to configure it, as you would configure any other Perl module:

panic% perl Makefile.PL [parameters].

Perl Installation Requirements

Make sure you have Perl installed! Use the latest stable version, if possible. To determine your version of
Perl, run the following command on the command line:

panic% perl -v

You will need at least Perl Version 5.004. If you don't have it, install it. Follow the instructions in the
distribution's INSTALL file. The only thing to watch for is that during the configuration stage (while running
./Configure) you make sure you can dynamically load Perl module extensions. That is, answer YES to the
following question:

Do you wish to use dynamic loading? [y]

In this section, we will explain each of the parameters accepted by the Makefile.PL file for mod_perl First, however, lets
talk about how the mod_perl configuration dovetails with Apache's configuration. The source configuration mechanism
in Apache 1.3 provides four major features (which of course are available to mod_perl):

® Apache modules can use per-module configuration scripts to link themselves into the Apache configuration

process. This feature lets you automatically adjust the configuration and build parameters from the Apache
module sources. It is triggered by ConfigStart/ConfigEnd sections inside modulename.module files (e.g., see the
file libperl.module in the mod_perl distribution).

The APache AutoConf-style Interface (APACI) is the top-level configure script from Apache 1.3; it provides a
GNU Autoconf-style interface to the Apache configuration process. APACI is useful for configuring the source
tree without manually editing any src/Configuration files. Any parameterization can be done via command-line
options to the configure script. Internally, this is just a nifty wrapper over the old src/Configure script.

Since Apache 1.3, APACI is the best way to install mod_perl as cleanly as possible. However, the complete
Apache 1.3 source configuration mechanism is available only under Unix at this writing—it doesn't work on
Win32.

Dynamic shared object (DSO) support is one of the most interesting features in Apache 1.3. It allows Apache
modules to be built as so-called DSOs (usually named modulename.so), which can be loaded via the LoadModule
directive in Apache's httpd.conf file. The benefit is that the modules become part of the httpd executable only
on demand; they aren't loaded into the address space of the httpd executable until the user asks for them to
be. The benefits of DSO support are most evident in relation to memory consumption and added flexibility (in
that you won't have to recompile your httpd each time you want to add, remove, or upgrade a module).

The DSO mechanism is provided by Apache's mod_so module, which needs to be compiled into the httpd binary
with:

panic% ./configure --enable-module=so

The usage of any —enable-shared option automatically implies an —enable-module=so option, because the
bootstrapping module mod_so is always needed for DSO support. So if, for example, you want the module
mod_dir to be built as a DSO, you can write:

panic% ./configure --enable-shared=dir
and the DSO support will be added automatically.

The APache eXtension Support tool (APXS) is a tool from Apache 1.3 that can be used to build an Apache

module as a DSO even outside the Apache source tree. APXS is to Apache what MakeMaker and XS are to Perl.[11
It knows the platform-dependent build parameters for making DSO files and provides an easy way to run the
build commands with them.

[1] MakeMaker allows easy, automatic configuration, building, testing, and installation of Perl modules,
while XS allows you to call functions implemented in C/C++ from Perl code.

|Pros and Cons of Building mod_perl as a DSO |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

As of Apache 1.3, the configuration system supports two optional features for taking advantage of the
modular DSO approach: compilation of the Apache core program into a DSO library for shared usage, and
compilation of the Apache modules into DSO files for explicit loading at runtime.

Should you build mod_perl as a DSO? Let's study the pros and cons of this installation method, so you can
decide for yourself.

Pros:

® The server package is more flexible because the actual server executable can be assembled at
runtime via LoadModule configuration commands in httpd.conf instead of via AddModule commands
in the Configuration file at build time. This allows you to run different server instances (e.g.,
standard and SSL servers, or servers with and without mod_perl) with only one Apache
installation; the only thing you need is different configuration files (or, by judicious use of IfDefine,
different startup scripts).

® The server package can easily be extended with third-party modules even after installation. This is
especially helpful for vendor package maintainers who can create an Apache core package and
additional packages containing extensions such as PHP, mod_perl, mod_fastcgi, etc.

® DSO support allows easier Apache module prototyping, because with the DSO/APXS pair you can
work outside the Apache source tree and need only an apxs -i command followed by an apachect/
restart to bring a new version of your currently developed module into the running Apache server.

Cons:

® The DSO mechanism cannot be used on every platform, because not all operating systems support
shared libraries.

® The server starts up approximately 20% slower because of the overhead of the symbol-resolving
the Unix loader now has to do.

® The server runs approximately 5% slower on some platforms, because position-independent code
(PIC) sometimes needs complicated assembler tricks for relative addressing, which are not
necessarily as fast as those for absolute addressing.

® Because DSO modules cannot be linked against other DSO-based libraries (/d -/foo) on all
platforms (for instance, a.out-based platforms usually don't provide this functionality, while ELF-
based platforms do), you cannot use the DSO mechanism for all types of modules. In other words,
modules compiled as DSO files are restricted to use symbols only from the Apache core, from the
C library (/ibc) and from any other dynamic or static libraries used by the Apache core, or from
static library archives (libfoo.a) containing position-independent code. The only way you can use
other code is to either make sure the Apache core itself already contains a reference to it, load the
code yourself via dlopen(), or enable the SHARED_CHAIN rule while building Apache (if your platform
supports linking DSO files against DSO libraries). This, however, won't be of much significance to
you if you're writing modules only in Perl.

® Under some platforms (e.g., many SVR4 systems), there is no way to force the linker to export all
global symbols for use in DSOs when linking the Apache httpd executable program. But without
the visibility of the Apache core symbols, no standard Apache module could be used as a DSO. The
only workaround here is to use the SHARED_CORE feature, because in this way the global symbols
are forced to be exported. As a consequence, the Apache src/Configure script automatically
enforces SHARED_CORE on these platforms when DSO features are used in the Configuration file or
on the configure command line.

Together, these four features provide a way to integrate mod_perl into Apache in a very clean and smooth way. No
patching of the Apache source tree is usually required, and for APXS support, not even the Apache source tree is
needed.

To benefit from the above features, a hybrid build environment was created for the Apache side of mod_perl. See
Section 3.5, later in this chapter, for details.

Once the overview of the four building steps is complete, we will return to each of the above configuration mechanisms
when describing different installation passes.

3.1.1 Controlling the Build Process

The configuration stage of the build is performed by the command per/ Makefile.PL, which accepts various parameters.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

This section covers all of the configuration parameters, grouped by their functionality.

Of course, you should keep in mind that these options are cumulative. We display only one or two options being used at
once, but you should use the ones you want to enable all at once, in one call to perl Makefile.PL.

APACHE_SRC, DO_HTTPD, NO_HTTPD, PREP_HTTPD

These four parameters are tightly interconnected, as they control the way in which the Apache source is
handled.

Typically, when you want mod_perl to be compiled statically with Apache without adding any extra components,
you specify the location of the Apache source tree using the APACHE_SRC parameter and use the DO_HTTPD=1
parameter to tell the installation script to build the httpd executable:

panic% perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src DO_HTTPD=1

If no APACHE_SRC is specified, Makefile.PL makes an intelligent guess by looking at the directories at the same
level as the mod_perl sources and suggesting a directory with the highest version of Apache found there.

By default, the configuration process will ask you to confirm whether the location of the source tree is correct
before continuing. If you use DO_HTTPD=1 or NO_HTTPD=1, the first Apache source tree found or the one you
specified will be used for the rest of the build process.

If you don't use DO_HTTPD=1, you will be prompted by the following question:
Shall I build httpd in ../apache_1.3.xx/src for you?

Note that if you set DO_HTTPD=1 but do not use APACHE_SRC=../apache_1.3.xx/src, the first Apache source tree
found will be used to configure and build against. Therefore, you should always use an explicit APACHE_SRC
parameter, to avoid confusion.

If you don't want to build the httpd in the Apache source tree because you might need to add extra third-party
modules, you should use NO_HTTPD=1 instead of DO_HTTPD=1. This option will install all the files that are
needed to build mod_perl in the Apache source tree, but it will not build httpd itself.

PREP_HTTPD=1 is similar to NO_HTTPD=1, but if you set this parameter you will be asked to confirm the location
of the Apache source directory even if you have specified the APACHE_SRC parameter.

If you choose not to build the binary, you will have to do that manually. Building an httpd binary is covered in
an upcoming section. In any case, you will need to run make install in the mod_perl source tree so the Perl side
of mod_perl will be installed. Note that mod_perl's make test won't work until you have built the server.

APACHE_HEADER_INSTALL

When Apache and mod_perl are installed, you may need to build other Perl modules that use Apache C
functions, such as HTML::Embperl or Apache::Peek. These modules usually will fail to build if Apache header files
aren't installed in the Perl tree. By default, the Apache source header files are installed into the
$Config{sitearchexp}/auto/Apache/include directory.Lzl If you don't want or need these headers to be installed,
you can change this behavior by using the APACHE_HEADER_INSTALL=0 parameter.

(2] 95Config is defined in the Config.pm file in your Perl installation.

USE_APACI

The USE_APACI parameter tells mod_perl to configure Apache using the flexible APACI. The alternative is the
older system, which required a file named src/Configuration to be edited manually. To enable APACI, use:

panic% perl Makefile.PL USE_APACI=1

APACI_ARGS

When you use the USE_APACI=1 parameter, you can tell Makefile.PL to pass any arguments you want to the
Apache ./configure utility. For example:

panic% perl Makefile.PL USE_APACI=1 \
APACI_ARGS="--sbindir=/home/httpd/httpd_perl/sbin, \
--sysconfdir=/home/httpd/httpd_perl/etc'

Note that the APACI_ARGS argument must be passed as a single long line if you work with a C-style shell (such
as csh or tcsh), as those shells seem to corrupt multi-lined values enclosed inside single quotes.

Of course, if you want the default Apache directory layout but a different root directory
(/home/httpd/httpd_perl/, in our case), the following is the simplest way to do so:

panic% perl Makefile.PL USE_APACI=1 \
APACI_ARGS="--prefix=/home/httpd/httpd_perl'

ADD_MODULE

This parameter enables building of built-in Apache modules. For example, to enable the mod_rewrite and
mod_proxy modules, you can do the following:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

panic% perl Makefile.PL ADD_MODULE=proxy,rewrite
If you are already using APACI_ARGS, you can add the usual Apache ./configure directives as follows:

panic% perl Makefile.PL USE_APACI=1 \
APACI_ARGS="--enable-module=proxy --enable-module=rewrite'

APACHE_PREFIX
As an alternative to:
APACI_ARGS="--prefix=/home/httpd/httpd_per!'

you can use the APACHE_PREFIX parameter. When USE_APACI is enabled, this attribute specifies the same —prefix
option.

Additionally, the APACHE_PREFIX option automatically executes make install in the Apache source directory,
which makes the following commands:

panic% perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src \
DO_HTTPD=1 USE_APACI=1 EVERYTHING=1 \
APACI_ARGS="--prefix=/home/httpd/httpd_perl'

panic% make && make test

panic# make install

panic# cd ../apache_1.3.xx

panic# make install

equivalent to these commands:

panic% perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src \
DO_HTTPD=1 USE_APACI=1 EVERYTHING=1 \
APACHE_PREFIX=/home/httpd/httpd_perl

panic% make && make test

panic# make install

PERL_STATIC_EXTS

Normally, if a C code extension is statically linked with Perl, it is listed in Config.pm's $Config{static_exts}, in
which case mod_perl will also statically link this extension with httpd. However, if an extension is statically
linked with Perl after it is installed, it will not be listed in Config.pm. You can either edit Config.pm and add
these extensions, or configure mod_perl like this:

panic% perl Makefile.PL "PERL_STATIC_EXTS=DBI DBD::Oracle"
DYNAMIC

This option tells mod_perl to build the Apache::* API extensions as shared libraries. The default is to link these
modules statically with the httpd executable. This can save some memory if you use these API features only
occasionally. To enable this option, use:

panic% perl Makefile.PL DYNAMIC=1
USE_APXS

If this option is enabled, mod_perl will be built using the APXS tool. This tool is used to build C API modules in a
way that is independent of the Apache source tree. mod_perl will look for the apxs executable in the location
specified by WITH_APXS; otherwise, it will check the bin and sbin directories relative to APACHE_PREFIX. To enable
this option, use:

panic% perl Makefile.PL USE_APXS=1
WITH_APXS

This attribute tells mod_perl the location of the apxs executable. This is necessary if the binary cannot be found
in the command path or in the location specified by APACHE_PREFIX. For example:

panic% perl Makefile.PL USE_APXS=1 WITH_APXS=/home/httpd/bin/apxs
USE_DSO

This option tells mod_perl to build itself as a DSO. Although this reduces the apparent size of the httpd
executable on disk, it doesn't actually reduce the memory consumed by each httpd process. This is
recommended only if you are going to be using the mod_perl API only occasionally, or if you wish to experiment
with its features before you start using it in a production environment. To enable this option, use:

panic% perl Makefile.PL USE_DSO=1
SSL_BASE

When building against a mod_ssl-enabled server, this option will tell Apache where to look for the SSL include
and /ib subdirectories. For example:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

panic% perl Makefile.PL SSL_BASE=/usr/share/ss|
PERL_DESTRUCT_LEVEL={1,2}

When the Perl interpreter shuts down, this level enables additional checks during server shutdown to make sure
the interpreter has done proper bookkeeping. The default is 0. A value of 1 enables full destruction, and 2
enables full destruction with checks. This value can also be changed at runtime by setting the environment
variable PERL_DESTRUCT_LEVEL. We will revisit this parameter in Chapter 5.

PERL_TRACE
To enable mod_perl debug tracing, configure mod_perl with the PERL_TRACE option:
panic% perl Makefile.PL PERL_TRACE=1
To see the diagnostics, you will also need to set the MOD_PERL_TRACE environment variable at runtime.

We will use mod_perl configured with this parameter enabled to show a few debugging techniques in Chapter
21.

PERL_DEBUG

This option builds mod_perl and the Apache server with C source code debugging enabled (the -g switch). It
also enables PERL_TRACE, sets PERL_DESTRUCT_LEVEL to 2, and links against the debuggable libperld Perl
interpreter if one has been installed. You will be able to debug the Apache executable and each of its modules
with a source-level debugger, such as the GNU debugger gdb. To enable this option, use:

panic% perl Makefile.PL PERL_DEBUG=1

We will discuss this option in Chapter 21, as it is extremely useful to track down bugs or report problems.

3.1.2 Activating Callback Hooks

A callback hook (also known simply as a callback) is a reference to a subroutine. In Perl, we create subroutine
references with the following syntax:

$callback = \&subroutine;

In this example, $callback contains a reference to the subroutine called subroutine. Another way to create a callback is to
use an anonymous subroutine:

$callback = sub { 'some code' };

Here, $callback contains a reference to the anonymous subroutine. Callbacks are used when we want some action
(subroutine call) to occur when some event takes place. Since we don't know exactly when the event will take place, we
give the event handler a reference to the subroutine we want to be executed. The handler will call our subroutine at the
right time, effectively calling back that subroutine.

By default, most of the callback hooks except for Perl[Handler, PerlChildInitHandler, PerlChildExitHandler, PerlConnectionApi, and
PerlServerApi are turned off. You may enable them via options to Makefile.PL.

Here is the list of available hooks and the parameters that enable them. The Apache request prcessing phases were

explained in Chapter 1.

Directive/Hook Configuration Option

PerlPostReadRequestHandler PERL_POST_READ_REQUEST

PerlTransHandler PERL_TRANS
PerlInitHandler PERL_INIT
PerlHeaderParserHandler =~ PERL_HEADER_PARSER
PerlAuthenHandler PERL_AUTHEN
PerlAuthzHandler PERL_AUTHZ
PerlAccessHandler PERL_ACCESS
Per|TypeHandler PERL_TYPE
PerlFixupHandler PERL_FIXUP
PerlHandler PERL_HANDLER
PerlLogHandler PERL_LOG
PerlCleanupHandler PERL_CLEANUP

PerIChildInitHandler PERL_CHILD_INIT

PerlChildExitHandler PERL_CHILD_EXIT

PerlDispatchHandler PERL_DISPATCH

As with any parameters that are either defined or not, use OPTION_FOO=1 to enable them (e.g., PERL_AUTHEN=1).
To enable all callback hooks, use:

ALL_HOOKS=1

There are a few more hooks that won't be enabled by default, because they are experimental.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If you are using:
panic% perl Makefile.PL EVERYTHING=1 ...

it already includes the ALL_HOOKS=1 option.

3.1.3 Activating Standard API Features

The following options enable various standard features of the mod_perl API. While not absolutely needed, they're very
handy and there's little penalty in including them. Unless specified otherwise, these options are all disabled by default.
The EVERYTHING=1 or DYNAMIC=1 options will enable them en masse. If in doubt, include these.

PERL_FILE_API=1
Enables the Apache::File class, which helps with the handling of files under mod_perl.
PERL_TABLE_API=1

Enables the Apache::Table class, which provides tied access to the Apache Table structure (used for HTTP
headers, among others).

PERL_LOG_API=1
Enables the Apache::Log class. This class allows you to access Apache's more advanced logging features.
PERL_URI_API=1

Enables the Apache::URI class, which deals with the parsing of URIs in a similar way to the Perl URI::URL module,
but much faster.

PERL_UTIL_API=1

Enables the Apache::Util class, allowing you to use various functions such as HTML escaping or date parsing, but
implemented in C.

PERL_CONNECTION_API=1

Enables the Apache::Connection class. This class is enabled by default. Set the option to 0 to disable it.
PERL_SERVER_API=1

Enables the Apache::Server class. This class is enabled by default. Set the option to 0 to disable it.

Please refer to Lincoln Stein and Doug MacEachern's Writing Apache Modules with Perl and C (O'Reilly) for more
information about the Apache APIL.

3.1.4 Enabling Extra Features

mod_perl comes with a number of other features. Most of them are disabled by default. This is the list of features and
options to enable them:

® <Perl> sections give you a way to configure Apache using Perl code in the httpd.conf file itself. See Chapter 4
for more information.

panic% perl Makefile.PL PERL_SECTIONS=1 ...

® \With the PERL_SSI option, the mod_include module can be extended to include a #perl directive.
panic% perl Makefile.PL PERL_SSI=1

By enabling PERL_SSI, a new #perl element is added to the standard mod_include functionality. This element
allows server-side includes to call Perl subroutines directly. This feature works only when mod_perl is not built
as a DSO (i.e., when it's built statically).

® If you develop an Apache module in Perl and you want to create custom configuration directives[3] to be
recognized in httpd.conf, you need to use Apache::ModuleConfig and Apache::CmdParms. For these modules to
work, you will need to enable this option:

[3] see Chapters 8 and 9 of Writing Apache Modules with Perl and C (O'Reilly).
panic% perl Makefile.PL PERL_DIRECTIVE_HANDLERS=1

® The stacked handlers feature explained in Chapter 4 requires this parameter to be enabled:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

panic% perl Makefile.PL PERL_STACKED_HANDLERS=1

® The method handlers feature discussed in Chapter 4 requires this parameter to be enabled:

panic% perl Makefile.PL PERL_METHOD_HANDLERS=1

® To enable all phase callback handlers, all API modules, and all miscellaneous features, use the "catch-all" option
we used when we first compiled mod_perl:

panic% perl Makefile.PL EVERYTHING=1

3.1.5 Reusing Configuration Parameters

When you have to upgrade the server, it's sometimes hard to remember what parameters you used in the previous
mod_perl build. So it's a good idea to save them in a file.

One way to save parameters is to create a file (e.qg., ~/.mod_perl_build_options) with the following contents:

APACHE_SRC=../apache_1.3.xx/src DO_HTTPD=1 USE_APACI=1 \
EVERYTHING=1

Then build the server with the following command:

panic% perl Makefile.PL " cat ~/.mod_perl_build_options"
panic% make && make test
panic# make install

But mod_perl has a standard method to perform this trick. If a file named makepl_args.mod_perl is found in the same
directory as the mod_perl build location, it will be read in by Makefile.PL. Parameters supplied at the command line will
override the parameters given in this file.

The makepl_args.mod_perl file can also be located in your home directory or in the ../ directory relative to the
mod_perl distribution directory. The filename can also start with a dot (.makepl_args.mod_perl), so you can keep it
nicely hidden along with the rest of the dot files in your home directory. So, Makefile.PL will look for the following files
(in this order), using the first one it comes across:

./makepl_args.mod_perl
../makepl_args.mod_perl
./.makepl_args.mod_perl
../.makepl_args.mod_perl
$ENV{HOME}/.makepl_args.mod_perl

For example:

panic% lIs -1 /home/stas/src
apache_1.3.xx/
makepl_args.mod_perl
mod_perl-1.xx/

panic% cat makepl_args.mod_perl
APACHE_SRC=../apache_1.3.xx/src
DO_HTTPD=1

USE_APACI=1

EVERYTHING=1

panic% cd mod_perl-1.xx
panic% perl Makefile.PL
panic% make && make test
panic# make install

Now the parameters from the makepl_args.mod_perl! file will be used automatically, as if they were entered directly.

In the sample makepl_args.mod_perl file in the eg/ directory of the mod_perl distribution package, you might find a
few options enabling some experimental features for you to play with, too!

If you are faced with a compiled Apache and no trace of the parameters used to build it, you can usually still find them
if make clean was not run on the sources. You will find the Apache-specific parameters in apache_1.3.xx/config.status
and the mod_perl| parameters in mod_perl-1.xx/apaci/mod_perl.config.

3.1.6 Discovering Whether a Feature Was Enabled

mod_perl Version 1.25 introduced Apache::MyConfig, which provides access to the various hooks and features set when
mod_perl was built. This circumvents the need to set up a live server just to find out if a certain callback hook is
available.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To see whether some feature was built in or not, check the %Apache::MyConfig::Setup hash. For example, suppose we
install mod_perl with the following options:

panic% perl Makefile.PL EVERYTHING=1

but the next day we can't remember which callback hooks were enabled. We want to know whether the PERL_LOG
callback hook is available. One of the ways to find an answer is to run the following code:

panic% perl -MApache::MyConfig -e 'print $Apache::MyConfig::Setup{PERL_LOG}'
If it prints 1, that means the PERL_LOG callback hook is enabled (which it should be, as EVERYTHING=1 enables them all).

Another approach is to configure Apache::Status (see Chapter 9) and run http://localhost/peri-status?hooks to check for
enabled hooks.

If you want to check for the existence of various hooks within your handlers, you can use the script shown in Example
3-1.

Example 3-1. test_hooks.pl

use mod_perl_hooks;
for my $hook (mod_perl::hooks()) {
if (mod_perl::hook($hook)) {
print "$hook is enabled\n";

else {
print "$hook is not enabled\n";

}

You can also try to look at the symbols inside the httpd executable with the help of nm(1) or a similar utility. For
example, if you want to see whether you enabled PERL_LOG=1 while building mod_perl, you can search for a symbol
with the same name but in lowercase:

panic% nm httpd | grep perl_log
08071724 T perl_logger

This shows that PERL_LOG=1 was enabled. But this approach will work only if you have an unstripped httpd binary. By
default, make install strips the binary before installing it, thus removing the symbol hames to save space. Use the —

without-execstrip ./configure option to prevent stripping during the make install phase. 4]
(41 You might need the unstripped version for debugging reasons too.

Yet another approach that will work in most cases is to try to use the feature in question. If it wasn't configured,
Apache will give an error message.

3.1.7 Using an Alternative Configuration File

By default, mod_perl provides its own copy of the Configuration file to Apache's configure utility. If you want to pass it
your own version, do this:

panic% perl Makefile.PL CONFIG=Configuration.custom

where Configuration.custom is the pathname of the file relative to the Apache source tree you build against.

3.1.8 perl Makefile.PL Troubleshooting

During the configuration (per! Makefile.PL) stage, you may encounter some of these problems. To help you avoid them,
let's study them, find out why they happened, and discuss how to fix them.

3.1.8.1 A test compilation with your Makefile configuration failed...

When you see the following error during the perl Makefile.PL stage:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

** A test compilation with your Makefile configuration

** failed. This is most likely because your C compiler

** js not ANSI. Apache requires an ANSI C Compiler, such
** as gcc. The above error message from your compiler
** will also provide a clue.

Aborting!

it's possible that you have a problem with a compiler. It may be improperly installed or not installed at all. Sometimes
the reason is that your Perl executable was built on a different machine, and the software installed on your machine is
not the same. Generally this happens when you install prebuilt packages, such as rpm or deb. You may find that the
dependencies weren't properly defined in the Perl binary package and you were allowed to install it even though some
essential packages were not installed.

The most frequent pitfall is a missing gdbm library (see the next section).

But why guess, when we can actually see the real error message and understand what the real problem is? To get a
real error message, edit the Apache src/Configure script. Around line 2140, you should see a line like this:

if ./helpers/TestCompile sanity; then
Add the -v option, as follows:
if ./helpers/TestCompile -v sanity; then

and try again. Now you should get a useful error message.

3.1.8.2 Missing or misconfigured libgdbm.so

On some Red Hat Linux systems, you might encounter a problem during the per/ Makefile.PL stage, when Perl was
installed from an rpm package built with the gdbm library, but libgdbm isn't actually installed. If this happens to you,
make sure you install it before proceeding with the build process.

You can check how Perl was built by running the per/ -V command:

panic% perl -V | grep libs

You should see output similar to this:

libs=-Insl -Indbm -Igdbm -Idb -IdI -Im -Ic -Iposix -lcrypt

Sometimes the problem is even more obscure: you do have libgdbm installed, but it's not installed properly. Do this:
panic% Is /usr/lib/libgdbm.so*

If you get at least three lines, like we do:

Irwxrwxrwx /usr/lib/libgdbm.so -> libgdbm.s0.2.0.0

Irwxrwxrwx /usr/lib/libgdbm.so.2 -> libgdbm.s0.2.0.0

-rw-r--r-- /usr/lib/libgdbm.s0.2.0.0

you are all set. On some installations, the libgdbm.so symbolic link is missing, so you get only:

Irwxrwxrwx /usr/lib/libgdbm.so.2 -> libgdbm.s0.2.0.0
-rw-r--r-- /usr/lib/libgdbm.s0.2.0.0

To fix this problem, add the missing symbolic link:

panic% cd /usr/lib
panic% In -s libgdbm.s0.2.0.0 libgdbm.so

Now you should be able to build mod_perl without any problems.

Note that you might need to prepare this symbolic link as well:

Irwxrwxrwx /usr/lib/libgdbm.so.2 -> libgdbm.s0.2.0.0

with the command:

panic% In -s libgdbm.s0.2.0.0 libgdbm.so.2

Of course, if a new version of the libgdbm library was released between the moment we wrote this sentence and the

moment you're reading it, you will have to adjust the version numbers. We didn't use the usual xx.xx version
replacement here, to make it easier to understand how the symbolic links should be set.

About the gdbm, db, and ndbm Libraries

If you need to have the dbm library linked in, you should know that both the gdbm and db libraries offer

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

ndbm emulation, which is the interface that Apache actually uses. So when you build mod_perl, you end up
using whichever library was linked first by the Perl compilation. If you build Apache without mod_perl, you
end up with whatever appears to be be your ndbm library, which will vary between systems, and especially
Linux distributions. So you may have to work a bit to get both Apache and Perl to use the same library,
and you are likely to have trouble copying the dbm file from one system to another or even using it after
an upgrade.

3.1.8.3 Undefined reference to " PL_perl_destruct_level'

When manually building mod_perl using the shared library:

panic% cd mod_perl-1.xx

panic% perl Makefile.PL PREP_HTTPD=1
panic% make && make test

panic# make install

panic% cd ../apache_1.3.xx
panic% ./configure --with-layout=RedHat --target=perlhttpd
--activate-module=src/modules/perl/libperl.a

you might see the following output:

gcc -c -L./os/unix -I./include -DLINUX=2 -DTARGET=\"perlhttpd\"
-DUSE_HSREGEX -DUSE_EXPAT -1./lib/expat-lite *./apaci’ buildmark.c
gcc -DLINUX=2 -DTARGET=\"perlhttpd\" -DUSE_HSREGEX -DUSE_EXPAT
-1./lib/expat-lite *./apaci® '\

-0 perlhttpd buildmark.o modules.o modules/perl/libperl.a
modules/standard/libstandard.a main/libmain.a ./os/unix/libos.a ap/libap.a
regex/libregex.a lib/expat-lite/libexpat.a -Im -lcrypt
modules/perl/libperl.a(mod_perl.o): In function " perl_shutdown":
mod_perl.o(.text+0xf8): undefined reference to " PL_perl_destruct_level'
mod_perl.o(.text+0x102): undefined reference to *PL_perl_destruct_level'
mod_perl.o(.text+0x10c): undefined reference to *PL_perl_destruct_level'
mod_perl.o(.text+0x13b): undefined reference to Perl_av_undef'

[more errors snipped]

This happens when Perl was built statically linked, with no shared libperl.a. Build a dynamically linked Perl (with libperl.a)
and the problem will disappear.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
3.2 Building mod_perl (make)

After completing the configuration, it's time to build the server by simply calling:
panic% make

The make program first compiles the source files and creates a mod_perl library file. Then, depending on your
configuration, this library is either linked with httpd (statically) or not linked at all, allowing you to dynamically load it at
runtime.

You should avoid putting the mod_perl source directory inside the Apache source directory, as this confuses the build
process. The best choice is to put both source directories under the same parent directory.

3.2.1 What Compiler Should Be Used to Build mod_perl?

All Perl modules that use C extensions must be compiled using the compiler with which your copy of Perl was built.

When you run perl Makefile.PL, a Makefile is created. This Makefile includes the same compilation options that were
used to build Perl itself. They are stored in the Config.pm module and can be displayed with the Per/ -V command. All
these options are reapplied when compiling Perl modules.

If you use a different compiler to build Perl extensions, chances are that the options this compiler uses won't be the
same, or they might be interpreted in a completely different way. So the code may not compile, may dump core, or
may behave in unexpected ways.

Since Perl, Apache, and third-party modules all work together under mod_perl, it's essential to use the same compiler
while building each of the components.

If you compile a non-Perl component separately, you should make sure to use both the same compiler and the same
options used to build Perl. You can find much of this information by running per/ -V.

3.2.2 make Troubleshooting

The following errors are the ones that frequently occur during the make process when building mod_perl.

3.2.2.1 Undefined reference to " Perl_newAV'

This and similar error messages may show up during the make process. Generally it happens when you have a broken
Perl installation. If it's installed from a broken rpm or another precompiled binary package, build Perl from source or use
another properly built binary package. Run per/ -V to learn what version of Perl you are using and other important
details.

3.2.2.2 Unrecognized format specifier for...

This error is usually reported due to the problems with some versions of the SFIO library. Try to use the latest version to
get around this problem or, if you don't really need SFIO, rebuild Perl without this library.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
3.3 Testing the Server (make test)

After building the server, it's a good idea to test it throughly by calling:
panic% make test

Fortunately, mod_perl comes with a big collection of tests, which attempt to exercise all the features you asked for at
the configuration stage. If any of the tests fails, the make test step will fail.

Running make test will start the freshly built httpd on port 8529 (an unprivileged port), running under the UID (user ID)
and GID (group ID) of the perl Makefile.PL process. The httpd will be terminated when the tests are finished.

To change the default port (8529) used for the tests, do this:
panic% perl Makefile.PL PORT=xxxx

Each file in the testing suite generally includes more than one test, but when you do the testing, the program will report
only how many tests were passed and the total number of tests defined in the test file. To learn which ones failed, run
the tests in verbose mode by using the TEST_VERBOSE parameter:

panic% make test TEST_VERBOSE=1

As of mod_perl v1.23, you can use the environment variables APACHE_USER and APACHE_GROUP to override the default
User and Group settings in the httpd.conf file used for make test. These two variables should be set before the Makefile
is created to take effect during the testing stage. For example, if you want to set them to httpd, you can do the
following in the Bourne-style shell:

panic% export APACHE_USER=httpd
panic% export APACHE_GROUP=httpd
panic% perl Makefile.PL ...

3.3.1 Manual Testing

Tests are invoked by running the ./TEST script located in the ./t directory. Use the -v option for verbose tests. You
might run an individual test like this:

panic% perl t/TEST -v modules/file.t
or all tests in a test subdirectory:
panic% perl t/TEST modules

The TEST script starts the server before the test is executed. If for some reason it fails to start, use make start_httpd to
start it manually:

panic% make start_httpd
To shut down Apache when the testing is complete, use make kill_httpd:

panic% make kill_httpd

3.3.2 make test Troubleshooting

The following sections cover problems that you may encounter during the testing stage.

3.3.2.1 make test fails

make test requires Apache to be running already, so if you specified NO_HTTPD=1 during the per/ Makefile.PL stage, you'll
have to build httpd independently before running make test. Go to the Apache source tree and run make, then return to
the mod_perl source tree and continue with the server testing.

If you get an error like this:
still waiting for server to warm up............... not ok

you may want to examine the t/logs/error_log file, where all the make test-stage errors are logged. If you still cannot
find the problem or this file is completely empty, you may want to run the test with strace (or truss) in the following
way (assumming that you are located in the root directory of the mod_perl source tree):

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

panic% make start_httpd

panic% strace -f -s1024 -o strace.out -p " cat t/logs/httpd.pid” &
panic% make run_tests

panic% make kill_httpd

where the strace -f option tells strace to trace child processes as they are created, -s1024 allows trace strings of a
maximum of 1024 characters to be printed (it's 32 by default), -o gives the name of the file to which the output should
be written, -p supplies the PID of the parent process, and & puts the job in the background.

When the tests are complete, you can examine the generated strace.out file and hopefully find the problem. We talk
about creating and analyzing trace outputs in Chapter 21.

3.3.2.2 mod_perl.c is incompatible with this version of Apache

If you had a stale Apache header layout in one of the include paths during the build process, you will see the message
"mod_perl.c is incompatible with this version of Apache" when you try to execute httpd. Find the file ap_mmn.h using
find, locate, or another utility. Delete this file and rebuild Apache. The Red Hat Linux distribution usually installs it in
/usr/local/include.

Before installing mod_perl-enabled Apache from scratch, it's a good idea to remove all the pre-installed Apache
modules, and thus save the trouble of looking for files that mess up the build process. For example, to remove the
precompiled Apache installed as a Red Hat Package Manager (RPM) package, as root you should do:

panic# rpm -e apache

There may be other RPM packages that depend on the Apache RPM package. You will be notified about any other
dependent packages, and you can decide whether to delete them, too. You can always supply the —nodeps option to
tell the RPM manager to ignore the dependencies.

apt users would do this instead:

panic# apt-get remove apache

3.3.2.3 make test......skipping test on this platform

make test may report some tests as skipped. They are skipped because you are missing the modules that are needed
for these tests to pass. You might want to peek at the contents of each test; you will find them all in the ./t directory.
It's possible that you don't need any of the missing modules to get your work done, in which case you shouldn't worry
that the tests are skipped.

If you want to make sure that all tests pass, you will need to figure out what modules are missing from your
installation. For example, if you see:

modules/cookie......skipping test on this platform
you may want to install the Apache::Cookie module. If you see:

modules/request.....skipping test on this platform

Apache::Request is missing.[2] If you see:
[5] Apache::Cookie and Apache::Request are both part of the /ibapreq distribution.

modules/psections...skipping test on this platform
Devel::Symdump and Data::Dumper are needed.

Chances are that all of these will be installed if you use CPAN.pm to install Bundle::Apache. We talk about CPAN
installations later in this chapter.

3.3.2.4 make test fails due to misconfigured localhost entry

The make test suite uses localhost to run the tests that require a network. Make sure you have this entry in /etc/hosts:
127.0.0.1 localhost.localdomain localhost

Also make sure you have the loopback device /o configured. If you aren't sure, run:

panic% /sbin/ifconfig lo

This will tell you whether the loopback device is configured.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [vy Jlri v
3.4 Installation (make install)

After testing the server, the last step is to install it. First install all the Perl files (usually as root):
panic# make install

Then go to the Apache source tree and complete the Apache installation (installing the configuration files, httpd, and
utilities):

panic# cd ../apache_1.3.xx
panic# make install

Of course, if you have used the APACHE_PREFIX option as explained earlier in this chapter, you can skip this step.

Now the installation should be considered complete. You may now configure your server and start using it.

3.4.1 Manually Building a mod_perl-Enabled Apache

If you want to build httpd separately from mod_perl, you should use the NO_HTTPD=1 option during the perl Makefile.PL
(mod_perl build) stage. Then you will have to configure various things by hand and proceed to build Apache. You
shouldn't run per/ Makefile.PL before following the steps described in this section.

If you choose to manually build mod_perl, there are three things you may need to set up before the build stage:
mod_perl's Makefile

When perl Makefile.PL is executed, $APACHE_SRC/modules/perl/Makefile may need to be modified to enable
various options (e.g., ALL_HOOKS=1).

Optionally, instead of tweaking the options during the perl Makefile.PL stage, you can edit mod_perl-
1.xx/src/modules/perl/Makefile before running perl Makefile.PL.

Configuration
Add the following to apache_1.3.xx/src/Configuration:
AddModule modules/perl/libperl.a

We suggest you add this entry at the end of the Configuration file if you want your callback hooks to have
precedence over core handlers.

Add the following to EXTRA_LIBS:
EXTRA_LIBS="perl -MExtUtils::Embed -e Idopts"
Add the following to EXTRA_CFLAGS:
EXTRA_CFLAGS="perl -MExtUtils::Embed -e ccopts”
mod_perl source files
Return to the mod_perl directory and copy the mod_perl source files into the Apache build directory:
panic% cp -r src/modules/perl apache_1.3.xx/src/modules/
When you are done with the configuration parts, run:

panic% perl Makefile.PL NO_HTTPD=1 DYNAMIC=1 EVERYTHING=1\
APACHE_SRC=../apache_1.3.xx/src

DYNAMIC=1 enables a build of the shared mod_perl library. Add other options if required.
panic# make install

Now you may proceed with the plain Apache build process. Note that in order for your changes to the
apache_1.3.xx/src/Configuration file to take effect, you must run apache_1.3.xx/src/Configure instead of the default
apache_1.3.xx/configure script:

panic% cd ../apache_1.3.xx/src
panic% ./Configure

panic% make

panic# make install

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
3.5 Installation Scenarios for Standalone mod_perl

When building mod_perl, the mod_perl C source files that have to be compiled into the httpd executable usually are
copied to the subdirectory src/modules/perl/ in the Apache source tree. In the past, to integrate this subtree into the
Apache build process, a lot of adjustments were done by mod_perl's Makefile.PL. Makefile.PL was also responsible for
the Apache build process.

This approach is problematic in several ways. It is very restrictive and not very clean, because it assumes that
mod_perl is the only third-party module that has to be integrated into Apache.

A new hybrid build environment was therefore created for the Apache side of mod_perl, to avoid these problems. It
prepares only the src/modules/perl/ subtree inside the Apache source tree, without adjusting or editing anything else.
This way, no conflicts can occur. Instead, mod_perl is activated later (via APACI calls when the Apache source tree is
configured), and then it configures itself.

There are various ways to build Apache with the new hybrid build environment (using USE_APACI=1):

® Build Apache and mod_perl together, using the default configuration.
® Build Apache and mod_perl separately, allowing you to plug in other third-party Apache modules as needed.
® Build mod_perl as a DSO inside the Apache source tree using APACI.

® Build mod_perl as a DSO outside the Apache source tree with APXS.

3.5.1 The All-in-One Way

If your goal is just to build and install Apache with mod_perl out of their source trees, and you have no interest in
further adjusting or enhancing Apache, proceed as we described in Chapter 2:

panic% tar xzvf apache_1.3.xx.tar.gz

panic% tar xzvf mod_perl-1.xx.tar.gz

panic% cd mod_perl-1.xx

panic% perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src \
DO_HTTPD=1 USE_APACI=1 EVERYTHING=1

panic% make && make test

panic# make install

panic# cd ../apache_1.3.xx

panic# make install

This builds Apache statically with mod_perl, installs Apache under the default /usr/local/apache tree, and installs
mod_perl into the site_per/ hierarchy of your existing Perl installation.

3.5.2 Building mod_perl and Apache Separately

However, sometimes you might need more flexibility while building mod_perl. If you build mod_perl into the Apache
binary (httpd) in separate steps, you'll also have the freedom to include other third-party Apache modules. Here are the
steps:

1. Prepare the Apache source tree.
As before, first extract the distributions:

panic% tar xvzf apache_1.3.xx.tar.gz
panic% tar xzvf mod_perl-1.xx.tar.gz

g

Install mod_perl's Perl side and prepare the Apache side.

Next, install the Perl side of mod_perl into the Perl hierarchy and prepare the src/modules/peri/ subdirectory
inside the Apache source tree:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

panic% cd mod_perl-1.xx

panic% perl Makefile.PL \
APACHE_SRC=../apache_1.3.xx/src \
NO_HTTPD=1 \
USE_APACI=1 \
PREP_HTTPD=1\
EVERYTHING=1 \
[..]

panic% make

panic# make install

The APACHE_SRC option sets the path to your Apache source tree, the NO_HTTPD option forces this path and only
this path to be used, the USE_APACI option triggers the new hybrid build environment, and the PREP_HTTPD
option forces preparation of the $APACHE_SRC/modules/perl/ tree but no automatic build.

This tells the configuration process to prepare the Apache side of mod_perl in the Apache source tree, but
doesn't touch anything else in it. It then just builds the Perl side of mod_perl and installs it into the Perl
installation hierarchy.

Note that if you use PREP_HTTPD as described above, to complete the build you must go into the Apache source
directory and run make and make install.

Prepare other third-party modules.

Now you have a chance to prepare any other third-party modules you might want to include in Apache. For
instance, you can build PHP separately, as you did with mod_perl.

Build the Apache package.

Now it's time to build Apache, including the Apache side of mod_perl and any other third-party modules you've
prepared:

panic% cd apache_1.3.xx

panic% ./configure \
--prefix=/path/to/install/of/apache \
--activate-module=src/modules/perl/libperl.a \
[..]

panic% make

panic# make install

You must use the —prefix option if you want to change the default target directory of the Apache installation.
The —activate-module option activates mod_perl for the configuration process and thus also for the build
process. If you choose —prefix=/usr/share/apache, the Apache directory tree will be installed in
/usr/share/apache.

If you add other third-party components, such as PHP, include a separate —activate-module option for each of
them. (See the module's documentation for the actual path to which —activate-module should point.) For
example, for mod_php4:

--activate-module=src/modules/php4/libphp4.a

Note that the files activated by —activate-module do not exist at this time. They will be generated during
compilation.

You may also want to go back to the mod_perl source tree and run make test (to make sure that mod_perl is
working) before running make install inside the Apache source tree.

For more detailed examples on building mod_perl with other components, see Section 3.6.

3.5.3 When DSOs Can Be Used

If you want to build mod_perl as a DSO, you must make sure that Perl was built with the system's native malloc(). If
Perl was built with its own malloc() and -Dbincompat5005, it pollutes the main httpd program with free and malloc
symbols. When httpd starts or restarts, any references in the main program to free and malloc become invalid, causing
memory leaks and segfaults.

Notice that mod_perl's build system warns about this problem.

With Perl 5.6.0+ this pollution can be prevented by using -Ubincompat5005 or -Uusemymalloc for any version of Perl.
However, there's a chance that -Uusemymalloc might hurt performance on your platform, so -Ubincompat5005 is likely
a better choice.

If you get the following reports with Perl version 5.6.0+:

% perl -V:usemymalloc
usemymalloc="y";

% perl -V:bincompat5005
bincompat5005="define’;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

rebuild Perl with -Ubincompat5005.
For pre-5.6.x Perl versions, if you get:

% perl -V:usemymalloc
usemymalloc='y";

rebuild Perl with -Uusemymalloc.

Now rebuild mod_perl.

3.5.4 Building mod_perl as a DSO via APACI

We have already mentioned that the new mod_perl build environment (with USE_APACI) is a hybrid. What does that
mean? It means, for instance, that you can use the same src/modules/perl/ configuration to build mod_perl as a DSO
or not, without having to edit any files. To build libperl.so, just add a single option, depending on which method you used
to build mod_perl.

libperl.so and libperl.a

The static mod_perl library is called libperl.a, and the shared mod_perl library is called libperl.so. Of
course, libmodper! would have been a better prefix, but /ibperl was used because of prehistoric Apache
issues. Be careful that you don't confuse mod_perl's libperl.a and libperl.so files with the ones that are
built with the standard Perl installation.

If you choose the "standard" all-in-one way of building mod_perl, add:
USE_DSO=1

to the perl Makefile.PL options.

If you choose to build mod_perl and Apache separately, add:
--enable-shared=perl

to Apache's configure options when you build Apache.

As you can see, whichever way you build mod_perl and Apache, only one additional option is needed to build mod_perl
as a DSO. Everything else is done automatically: mod_so is automatically enabled, the Makefiles are adjusted, and the
install target from APACI installs libperl.so into the Apache installation tree. Additionally, the LoadModule and AddModule
directives (which dynamically load and insert mod_perl into httpd) are automatically added to httpd.conf.

3.5.5 Building mod_perl as a DSO via APXS

We've seen how to build mod_perl as a DSO inside the Apache source tree, but there is a nifty alternative: building
mod_perl as a DSO outside the Apache source tree via the new Apache 1.3 support tool called APXS. The advantage is
obvious: you can extend an already installed Apache with mod_perl even if you don't have the sources (for instance,
you may have installed an Apache binary package from your vendor or favorite distribution).

Here are the build steps:

panic% tar xzvf mod_perl-1.xx.tar.gz

panic% cd mod_perl-1.xx

panic% perl Makefile.PL \
USE_APXS=1\
WITH_APXS=/path/to/bin/apxs \
EVERYTHING=1 \
[..]

panic% make && make test

panic# make install

This will build the DSO libperl.so outside the Apache source tree and install it into the existing Apache hierarchy.

[Team LiB] 14 raavisus [l o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
3.6 Building mod_perl with Other Components

mod_perl is often used with other components that plug into Apache, such as PHP and SSL. In this section, we'll show
you a build combining mod_perl with PHP. We'll also show how to build a secure version of Apache with mod_perl
support using each of the SSL options available for Apache today (mod_ssl, Apache-SSL, Stronghold, and Covalent).

Since you now understand how the build process works, we'll present these scenarios without much explanation (unless
they involve something we haven't discussed yet).

All these scenarios were tested on a Linux platform. You might need to refer to the specific component's documentation
if something doesn't work for you as described here. The intention of this section is not to show you how to install other
non-mod_perl components alone, but how to do this in a bundle with mod_perl.

Also, notice that the links we've used are very likely to have changed by the time you read this document. That's why
we have used the x.xx convention instead of using hardcoded version numbers. Remember to replace the x.xx
placeholders with the version numbers of the distributions you are going to use. To find out the latest stable version
number, visit the components' sites—e.g., if we say http://perl.apache.org/dist/mod_perl-1.xx.tar.gz, go to
http://perl.apache.org/download/ to learn the version number of the latest stable release of mod_perl 1, and download
the appropriate file.

Unless otherwise noted, all the components install themselves into a default location. When you run make install, the
installation program tells you where it's going to install the files.

3.6.1 Installing mod_perl with PHP

The following is a simple installation scenario of a combination mod_perl and PHP build for the Apache server. We aren't
going to use a custom installation directory, so Apache will use the default /usr/local/apache directory.

1. Download the latest stable source releases:

Apache: http://www.apache.org/dist/httpd/
mod_perl: http://perl.apache.org/download/
PHP: http://www.php.net/downloads.php

2. Unpack them:

panic% tar xvzf mod_perl-1.xx
panic% tar xvzf apache_1.3.xx.tar.gz
panic% tar xvzf php-x.x.xx.tar.gz

3. Configure Apache:

panic% cd apache_1.3.xx
panic% ./configure

4. Build mod_perl:

panic% cd ../mod_perl-1.xx

panic% perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src NO_HTTPD=1\
USE_APACI=1 PREP_HTTPD=1 EVERYTHING=1

panic% make

5. Build mod_php:

panic% cd ../php-x.x.xx

panic% ./configure --with-apache=../apache_1.3.xx \
--with-mysq| --enable-track-vars

panic% make

panic# make install

(mod_php doesn't come with a make test suite, so we don't need to run one.)
6. Reconfigure Apache to use mod_perl and PHP, and then build it:
panic% cd ../apache_1.3.xx
panic% ./configure \
--activate-module=src/modules/perl/libperl.a \
--activate-module=src/modules/php4/libphp4.a
panic% make

Note that if you are building PHP3, you should use php3/libphp3.a. Also remember that libperl.a and libphp4.a
do not exist at this time. They will be generated during compilation.

7. Test and install mod_perl:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

panic% cd ../mod_perl-1.xx
panic% make test
panic# make install

Complete the Apache installation:

panic# cd ../apache_1.3.xx
panic# make install

Now when you start the server:

panic# /usr/local/apache/bin/apachectl start

you should see something like this in /usr/local/apache/logs/error_log:

[Sat May 18 11:10:31 2002] [notice]
Apache/1.3.24 (Unix) PHP/4.2.0 mod_perl/1.26
configured -- resuming normal operations

If you need to build mod_ssl as well, make sure that you add the mod_ssl component first (see the next section).

3.6.2 Installing mod_perl with mod_ssl (+openssl)

mod_ssl provides strong cryptography for the Apache 1.3 web server via the Secure Sockets Layer (SSL v2/v3) and
Transport Layer Security (TLS v1) protocols. mod_ssl uses the open source SSL/TLS toolkit OpenSSL, which is based on
SSLeay, by Eric A. Young and Tim J. Hudson. As in the previous installation scenario, the default installation directory is
used in this example.

1.

Download the latest stable source releases. For mod_ssl, make sure that the version matches your version of
Apache (e.g., get mod_ssl-2.8.8-1.3.24.tar.gz if you have Apache 1.3.24).

Apache: http://www.apache.org/dist/httpd/
mod_perl: http://perl.apache.org/download/
mod_ssl: http://www.modssl.org/source/
openssl: http://www.openssl.org/source/

Unpack the sources:

panic% tar xvzf mod_perl-1.xx.tar.gz
panic% tar xvzf apache_1.3.xx.tar.gz
panic% tar xvzf mod_ssl-x.x.x-1.3.xx.tar.gz
panic% tar xvzf openssl-x.x.x.tar.gz

Configure, build, test, and install openss! if it isn't already installed:

panic% cd openss|-X.x.x
panic% ./config

panic% make && make test
panic# make install

(If you already have the openss/ development environment installed, you can skip this stage.)
Configure mod_ssl:

panic% cd mod_ssl-x.x.x-1.3.xx
panic% ./configure --with-apache=../apache_1.3.xx

Configure, build, test, and install mod_perl:

panic% cd ../mod_perl-1.xx

panic% perl Makefile.PL USE_APACI=1 EVERYTHING=1 \
DO_HTTPD=1 SSL_BASE=/usr/local/ssl \
APACHE_SRC=../apache_1.3.xx/src \
APACI_ARGS="--enable-module=ssl'

panic% make && make test

panic# make install

Create an SSL certificate and install Apache and certificate files:

panic% cd ../apache_1.3.xx
panic% make certificate
panic# make install

Now proceed with the mod_ssl and mod_perl parts of the server configuration in httpd.conf. The next chapter
provides in-depth information about mod_perl configuration. For mod_ssl configuration, please refer to the

mod_ssl documentation available from http://www.modssl.org/.

Now when you start the server:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

panic# /usr/local/apache/bin/apachectl startssl
you should see something like this in /usr/local/apache/logs/error_log:

[Fri May 18 11:10:31 2001] [notice]
Apache/1.3.24 (Unix) mod_perl/1.26 mod_ss|/2.8.8
OpenSSL/0.9.6¢ configured -- resuming normal operations

If you used the default configuration, the SSL part won't be loaded if you use apachect! start and not apachect! startssl.

This scenario also demonstrates the fact that some third-party Apache modules can be added to Apache by just
enabling them (as with mod_ssl), while others need to be separately configured and built (as with mod_perl and PHP).

3.6.3 Installing mod_perl with Apache-SSL (+openssl)

Apache-SSL is a secure web server based on Apache and SSLeay/OpenSSL. It is licensed under a BSD-style license,
which means that you are free to use it for commercial or non-commercial purposes as long as you retain the copyright
notices.

Apache-SSL provides similar functionality to mod_ssl. mod_ssl is what is known as a split—i.e., it was originally derived
from Apache-SSL but has been extensively redeveloped so the code now bears little relation to the original. We cannot
advise you to use one over another—both work fine with mod_perl, so choose whichever you want. People argue about
which one to use all the time, so if you are interested in the finer points, you may want to check the mailing list

archives of the two projects (http://www.apache-ssl.org/#Mailing_List and http://www.modssl.org/support/).
To install mod_perl with Apache-SSL:
1. Download the sources. You'll need to have matching Apache-SSL and Apache versions.

Apache: http://www.apache.org/dist/httpd/
mod_perl: http://perl.apache.org/download/
openssl: http://www.openssl.org/source/
Apache-SSL: http://www.apache-ssl.org/#Download

2. Unpack the sources:

panic% tar xvzf mod_perl-1.xx
panic% tar xvzf apache_1.3.xx.tar.gz
panic% tar xvzf openssl-x.x.x.tar.gz

3. Configure and install openssl/, if necessary:

panic% cd openssl-x.x.x
panic% ./config

panic% make && make test
panic# make install

If you already have the openss/ development environment installed, you can skip this stage.

4. Apache-SSL comes as a patch to Apache sources. First unpack the Apache-SSL sources inside the Apache
source tree and make sure that the Apache source is clean (in case you've used this source to build Apache
before). Then run ./FixPatch and answer y to proceed with the patching of Apache sources:

panic% cd apache_1.3.xx

panic% make clean

panic% tar xzvf ../apache_1.3.xx+ssl_x.xx.tar.gz

panic% ./FixPatch

Do you want me to apply the fixed-up Apache-SSL patch for you? [n] y

5. Proceed with mod_perl configuration. The notable addition to the usual configuration parameters is that we use
the SSL_BASE parameter to point to the directory in which openssl/ is installed:

panic% cd ../mod_perl-1.xx

panic% perl Makefile.PL USE_APACI=1 EVERYTHING=1 \
DO_HTTPD=1 SSL_BASE=/usr/local/ssl \
APACHE_SRC=../apache_1.3.xx/src

6. Build, test, and install mod_perl:

panic% make && make test
panic# make install

7. Create an SSL certificate and install Apache and the certificate files:

panic# cd ../apache_1.3.xx
panic# make certificate
panic# make install

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

8. Now proceed with the configuration of the Apache-SSL and mod_perl parts of the server configuration files
before starting the server. Refer to the Apache-SSL documentation to learn how to configure the SSL section of
httpd.conf.

Now start the server:

panic# /usr/local/apache/bin/httpsdctl start

Note that by default, Apache-SSL uses httpsdctl instead of apachect!.

You should see something like this in /usr/local/apache/logs/httpsd_error_log:
[Sat May 18 14:14:12 2002] [notice]

Apache/1.3.24 (Unix) mod_perl/1.26 Ben-SSL/1.48 (Unix)
configured -- resuming normal operations

3.6.4 Installing mod_perl with Stronghold

Stronghold is a secure SSL web server for Unix that allows you to give your web site full-strength, 128-bit encryption.

It's a commercial product provided by Red Hat. See http://www.redhat.com/software/apache/stronghold/ for more

information.
To install Stronghold:
1. First, build and install Stronghold without mod_perl, following Stronghold's installation procedure.
2. Having done that, download the mod_perl sources:
panic% Iwp-download http://perl.apache.org/dist/mod_perl-1.xx.tar.gz
3. Unpack mod_perl:
panic% tar xvzf mod_perl-1.xx.tar.gz

4. Configure mod_perl with Stronghold (assuming that you have the Stronghold sources extracted to
/usr/local/stronghold):

panic% cd mod_perl-1.xx
panic% perl Makefile.PL APACHE_SRC=/usr/local/stronghold/src \
DO_HTTPD=1 USE_APACI=1 EVERYTHING=1
5. Build mod_perl:
panic% make

6. Before running make test, add your StrongholdKey to t/conf/httpd.conf. If you are configuring by hand, be sure
to edit src/modules/perl/Makefile and uncomment the #APACHE_SSL directive.

7. Test and install mod_perl:

panic% make test
panic# make install

8. Install Stronghold:

panic# cd /usr/local/stronghold
panic# make install

Note for Solaris 2.5 Users

There has been a report that after building Apache with mod_perl, the the REGEX library that comes with
Stronghold produces core dumps. To work around this problem, change the following line in
$STRONGHOLD/src/Configuration:

Rule WANTHSREGEX=default

to:

Rule WANTHSREGEX=no

Now start the server:
panic# /usr/local/stronghold/bin/start-server
It's possible that the start script will have a different name on your platform.

You should see something like this in /usr/local/stronghold/logs/error_log:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Sun May 19 11:54:39 2002] [notice]
StrongHold/3.0 Apache/1.3.24 (Unix) mod_perl/1.26
configured -- resuming normal operations

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [ravisus] it o]
3.7 Installing mod_perl with the CPAN.pm Interactive Shell

Installation of mod_perl and all the required packages is much easier with the help of the CPAN.pm module, which
provides, among other features, a shell interface to the CPAN repository (see the Preface).

First, download the Apache source code and unpack it into a directory (the name of which you will need very soon).
Now execute:

panic% perl -MCPAN -eshell

You will see the cpan prompt:

cpan>

All you need to do to install mod_perl is to type:

cpan> install mod_perl

You will see something like the following:

Running make for DOUGM/mod_perl-1.xx.tar.gz
Fetching with LWP:
http://www.cpan.org/authors/id/DOUGM/mod_perl-1.xx.tar.gz

CPAN.pm: Going to build DOUGM/mod_perl-1.xx.tar.gz

(As with earlier examples in this book, we use x.xx as a placeholder for real version numbers, because these change
very frequently.)

CPAN.pm will search for the latest Apache sources and suggest a directory. If the CPAN shell did not find your version of
Apache and suggests the wrong directory name, type the name of the directory into which you unpacked Apache:

Enter 'q' to stop search
Please tell me where I can find your apache src
[../apache_1.3.xx/src]

Answer yes to the following questions, unless you have a good reason not to:

Configure mod_perl with /home/stas/src/apache_1.3.xx/src ? [y]
Shall T build httpd in /home/stas/src/apache_1.3.xx/src for you? [y]

After you have built mod_perl and Apache, tested mod_perl, and installed its Perl modules, you can quit the CPAN shell
and finish the installation. Go to the Apache source root directory and run:

cpan> quit

panic% cd /home/stas/src/apache_1.3.xx

panic% make install

This will complete the installation by installing Apache's headers and the httpd binary into the appropriate directories.

The only caveat of the process we've just described is that you don't have control over the configuration process. But
that problem is easy to solve—you can tell CPAN.pm to pass whatever parameters you want to per/ Makefile.PL. You do
this with the o conf makepl_arg command:

cpan> o conf makepl_arg 'DO_HTTPD=1 USE_APACI=1 EVERYTHING=1'

If you had previously set makepl_arg to some value, you will probably want to save it somewhere so that you can
restore it when you have finished with the mod_perl installation. In that case, type the following command first:

cpan> o conf makepl_arg
and copy its value somewhere before unsetting the variable.

List all the parameters as if you were passing them to the familiar perl Makefile.PL. If you add the
APACHE_SRC=/home/stas/src/apache_1.3.xx/src and DO_HTTPD=1 parameters, you will not be asked a single question.

Now proceed with install mod_perl as before. When the installation is complete, remember to reset the makepl_arg
variable by executing:

cpan> o conf makepl_arg "

Note that if there was a previous value, use that instead of . You can now install all the modules you want to use with
mod_perl. You can install them all at once with a single command:

cpan> install Bundle::Apache

This will install mod_perl if hasn't already been installed. It will also install many other packages, such as ExtUtils::Embed,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

MIME::Base64, URI::URL, Digest::MD5, Net::i—"I'P, LWP, HTML::TreeBuilder, CGI, Devel::Symdump, Apa(fhe::DB, Tie::IxHash,
Data::Dumper, and so on.

Bundling Modules

If you have a system that's already configured with all the Perl modules you use, making your own bundle
is a way to replicate them on another system without worrying about binary incompatibilities. To
accomplish this, the command autobundle can be used on the CPAN shell command line. This command
writes a bundle definition file for all modules that are installed for the currently running Perl interpreter.

With the clever bundle file you can then simply say:

cpan> install Bundle::my_bundle

and, after answering a few questions, go out for a coffee.

[Team LiB] [« Fruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
3.8 Installing mod_perl on Multiple Machines

You may want to build httpd once and then copy it to other machines. But the Perl side of mod_perl needs the Apache
header files to compile. To avoid dragging and build Apache on all your other machines, there are a few Makefile targets
in mod_perl to help you out:

panic% make tar_Apache

This will make a tar file (Apache.tar) of all the files mod_perl installs in your Perl's site_per!/ directory. You can then
unpack this under the site_perl directory on another machine:

panic% make offsite-tar

This will copy all the header files from the Apache source directory against which you configured mod_perl. It will then
run make dist, which creates a mod_perl-1.xx.tar.gz file, ready to unpack on another machine to compile and install the
Perl side of mod_ perl.

If you really want to make your life easy, you should use one of the more advanced packaging systems. For example,
almost all Linux distributions use packaging tools on top of plain tar.gz, allowing you to track prerequisites for each
package and providing for easy installation, upgrade, and cleanup. One of the most widely used packagers is the Red
Hat Package Manager (RPM). See http://www.rpm.org/ for more information.

Under RPM, all you have to do is prepare a source distribution package (SRPM) and then build a binary release. The
binary can be installed on any number of machines in a matter of seconds.

RPM will even work on live production machines. Suppose you have two identical machines (with identical software and
hardware, although, depending on your setup, identical hardware may be less critical). Let's say that one is a live
server and the other is for development. You build an RPM with a mod_perl binary distribution, install it on the
development machine, and make sure that it is working and stable. You can then install the RPM package on the live
server without any fear. Make sure that httpd.conf is correct, since it generally specifies parameters that are unique to
the live machine (for example, the hostname).

When you have installed the package, just restart the server. It's a good idea to keep a package of the previous

system, in case something goes wrong. You can then easily remove the installed package and put the old one back in
case of problems.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
3.9 Installation into a Nonstandard Directory

There are situations when you need to install mod_perl-enabled Apache and other components (such as Perl libraries)
into nonstandard locations. For example, you might work on a system to which you don't have root access, or you
might need to install more than one set of mod_perl-enabled Apache and Perl modules on the same machine (usually
when a few developers are using the same server and want to have their setups isolated from each other, or when you
want to test a few different setups on the same machine).

We have already seen that you can install mod_perl-enabled Apache into different directories on the system (using the
APACHE_PREFIX parameter of Makefile.PL). Until now, all our scenarios have installed the Perl files that are part of the
mod_perl package into the same directory as the system Perl files (usually /usr/lib/perl5).

Now we are going to show how can you install both the Apache and the Perl files into a nonstandard directory. We'll
show a complete installation example using stas as a username, assuming that /home/stas is the home directory of that
user.

3.9.1 Installing Perl Modules into a Nonstandard Directory

Before we proceed, let's look at how to install any Perl module into a nonstandard directory. For an example, let's use
the package that includes CGL.pm and a few other CGIL::* modules.

First, you have to decide where to install the modules. The simplest approach is to simulate the portion of the /
filesystem relevant to Perl under your home directory. Actually, we need only two directories:

/home/stas/bin
/home/stas/lib

We don't have to create them, as they are created automatically when the first module is installed. Ninety-nine percent
of the files will go into the /ib directory. Only occasionally does a module distribution come with Perl scripts that are
installed into the bin directory, at which time bin will be created if it doesn't exist.

As usual, download the package from the CPAN repository (CGI.pm-x.xx.tar.gz), unpack it, and chdir to the newly
created directory.

Now do a standard per/ Makefile.PL to create the Makefile, but this time make use of your nonstandard Perl installation
directory instead of the default one:

panic% perl Makefile.PL PREFIX=/home/stas

Specifying PREFIX=/home/stas is the only part of the installation process that is different from usual. Note that if you
don't like how Makefile.PL chooses the rest of the directories, or if you are using an older version of it that requires an
explicit declaration of all the target directories, you should do this:

panic% perl Makefile.PL PREFIX=/home/stas \
INSTALLPRIVLIB=/home/stas/lib/perl5 \
INSTALLSCRIPT=/home/stas/bin \
INSTALLSITELIB=/home/stas/lib/perl|5/site_perl \
INSTALLBIN=/home/stas/bin \
INSTALLMAN1DIR=/home/stas/lib/perl5/man \
INSTALLMAN3DIR=/home/stas/lib/perl5/man3

The rest is as usual:

panic% make
panic% make test
panic% make install

make install installs all the files in the private repository. Note that all the missing directories are created automatically,
so you don't need to create them beforehand. Here is what it does (slightly edited):

Installing /home/stas/lib/perl5/CGI/Cookie.pm

Installing /home/stas/lib/perl5/CGL.pm

Installing /home/stas/lib/perl5/man3/CGI.3

Installing /home/stas/lib/perl5/man3/CGI::Cookie.3

Writing /home/stas/lib/perl5/auto/CGI/.packlist

Appending installation info to /home/stas/lib/perl5/perllocal.pod

If you have to use explicit target parameters instead of a single PREFIX parameter, you will find it useful to create a file
called something like ~/.perl_dirs (where ~ is /home/stas in our example), containing:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

PREFIX=/home/stas \
INSTALLPRIVLIB=/home/stas/lib/perl5 \
INSTALLSCRIPT=/home/stas/bin \
INSTALLSITELIB=/home/stas/lib/perl5/site_perl \
INSTALLBIN=/home/stas/bin \
INSTALLMAN1DIR=/home/stas/lib/perl5/man \
INSTALLMAN3DIR=/home/stas/lib/perl5/man3

From now on, any time you want to install Perl modules locally, simply execute:

panic% perl Makefile.PL " cat ~/.perl_dirs"
panic% make

panic% make test

panic% make install

Using this technique, you can easily maintain several Perl module repositories. For example, you could have one for
production and another for development:

panic% perl Makefile.PL " cat ~/.perl_dirs.production”
or:

panic% perl Makefile.PL " cat ~/.perl_dirs.develop”

3.9.2 Finding Modules Installed in Nonstandard Directories

Installing Perl modules into nonstandard directories is only half the battle. We also have to let Perl know what these
directories are.

Perl modules are generally placed in four main directories. To find these directories, execute:
panic% perl -V
The output contains important information about your Perl installation. At the end you will see:

Characteristics of this binary (from libperl):

Built under linux

Compiled at Oct 14 2001 17:59:15

@INC:
/Jusr/lib/perl5/5.6.1/i386-linux
/Jusr/lib/perl5/5.6.1
/Jusr/lib/perl5/site_perl/5.6.1/i386-linux
/usr/lib/perl5/site_perl/5.6.1
/usr/lib/perl5/site_perl

This shows us the content of the Perl special variable @INC, which is used by Perl to look for its modules. It is equivalent
to the PATH environment variable, used to find executable programs in Unix shells.

Notice that Perl looks for modules in the . directory too, which stands for the current directory. It's the last entry in the
above output.

This example is from Perl Version 5.6.1, installed on our x86 architecture PC running Linux. That's why you see i386-
linux and 5.6.1. If your system runs a different version of Perl, or a different operating system, processor, or chipset
architecture, then some of the directories will have different names.

All the platform-specific files (such as compiled C files glued to Perl with XS, or some .h header files) are supposed to go
into the i386-linux-like directories. Pure Perl modules are stored in the non-platform-specific directories.

As mentioned earlier, you find the exact directories used by your version of Perl by executing per/ -V and replacing the
global Perl installation's base directory with your home directory. Assuming that we use Perl 5.6.1, in our example the
directories are:

/home/stas/lib/perl5/5.6.1/i386-linux
/home/stas/lib/perl5/5.6.1
/home/stas/lib/perl5/site_perl/5.6.1/i386-linux
/home/stas/lib/perl5/site_perl/5.6.1
/home/stas/lib/perl5/site_perl

There are two ways to tell Perl about the new directories: you can either modify the @INC variable in your scripts or set
the PERL5LIB environment variable.

3.9.2.1 Modifying @INC

Modifying @INC is quite easy. The best approach is to use the lib module (pragma) by adding the following snippet at
the top of any of your scripts that require the locally installed modules:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

use lib qw(/home/stas/lib/perl5/5.6.1/
/home/stas/lib/perl5/site_perl/5.6.1
/home/stas/lib/perl5/site_perl

)i

Another way is to write code to modify @INC explicitly:

BEGIN {
unshift @INC,
qw(/home/stas/lib/perl5/5.6.1/i386-linux

/home/stas/lib/perl5/5.6.1
/home/stas/lib/perl5/site_perl/5.6.1/i386-linux
/home/stas/lib/perl5/site_perl/5.6.1
/home/stas/lib/perl5/site_perl

)
b

Note that with the lib module, we don't have to list the corresponding architecture-specific directories—it adds them
automatically if they exist (to be exact, when $dir/$archname/auto exists). It also takes care of removing any
duplicated entries.

Also, notice that both approaches prepend the directories to be searched to @INC. This allows you to install a more
recent module into your local repository, which Perl will then use instead of the older one installed in the main system
repository.

Both approaches modify the value of @INC at compilation time. The lib module uses the BEGIN block internally.

3.9.2.2 Using the PERL5LIB environment variable

Now, let's assume the following scenario. We have installed the LWP package in our local repository. Now we want to
install another module (e.g., mod_perl), and it has LWP listed in its prerequisites list. We know that we have LWP
installed, but when we run perl Makefile.PL for the module we're about to install, we're told that we don't have LWP
installed.

There is no way for Perl to know that we have some locally installed modules. All it does is search the directories listed
in @INC, and because @INC contains only the default four directories (plus the . directory), it cannot find the locally
installed LWP package. We cannot solve this problem by adding code to modify @INC, but changing the PERL5LIB
environment variable will do the trick.

How to define an environment variable varies according to which shell you use. Bourne-style shell users can split a long
line using the backslash (\):

panic% export PERL5LIB=/home/stas/lib/perl5/5.6.1:\
/home/stas/lib/perl5/site_perl/5.6.1:\
/home/stas/lib/perl5/site_perl

In the C-style shells, however, you'll have to make sure that the value of the PERL5LIB environment variable is specified
as one continuous line with no newlines or spaces:

panic% setenv PERL5LIB /home/stas/lib/perl5/5.6.1:
/home/stas/lib/perl5/site_perl/5.6.1:
/home/stas/lib/perl5/site_perl

(In this example, the lines were split to make them fit on the page.)
As with use lib, Perl automatically prepends the architecture-specific directories to @INC if those exist.

When you have done this, verify the value of the newly configured @INC by executing per/ -V as before. You should see
the modified value of @INC:

panic% perl -V

Characteristics of this binary (from libperl):

Built under linux

Compiled at Apr 6 1999 23:34:07

%ENV:
PERL5LIB="/home/stas/lib/perl5/5.6.1:
/home/stas/lib/perl5/site_perl/5.6.1:
/home/stas/lib/perl5/site_perl"

@INC:
/home/stas/lib/perl5/5.6.1/i386-linux
/home/stas/lib/perl5/5.6.1
/home/stas/lib/perl5/site_perl/5.6.1/i386-linux
/home/stas/lib/perl5/site_perl/5.6.1

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

/home/stas/lib/perl5/site_perl
/Jusr/lib/perl5/5.6.1/i386-linux
/Jusr/lib/perl5/5.6.1
/Jusr/lib/perl5/site_perl/5.6.1/i386-linux
/Jusr/lib/perl5/site_perl/5.6.1
/usr/lib/perl5/site_perl

When everything works as you want it to, add these commands to your .tcshrc, .bashrc, C:\autoexec.bat or another

equivalent file.L6] The next time you start a shell, the environment will be ready for you to work with the new Perl
directories.

[6] These files are run by the shell at startup and allow you to set environment variables that might be useful every
time you use your shell.

Note that if you have a PERL5LIB setting, you don't need to alter the @INC value in your scripts. But if someone else
(who doesn't have this setting in the shell) tries to execute your scripts, Perl will fail to find your locally installed
modules. This includes cron scripts, which might use a different shell environment (in which case the PERL5LIB setting
won't be available).

The best approach is to have both the PERLSLIB environment variable and the explicit @INC extension code at the
beginning of the scripts, as described above.

3.9.3 Using the CPAN.pm Shell with Nonstandard Installation Directories

As we saw previously in this chapter, using the CPAN.pm shell to install mod_perl saves a great deal of time. It does the
job for us, even detecting the missing modules listed in prerequisites, fetching them, and installing them. So you might
wonder whether you can use CPAN.pm to maintain your local repository as well.

When you start the CPAN interactive shell, it searches first for the user's private configuration file and then for the
system-wide one. For example, for a user stas and Perl Version 5.6.1, it will search for the following configuration files:

/home/stas/.cpan/CPAN/MyConfig.pm
/usr/lib/perl5/5.6.1/CPAN/Config.pm

If there is no CPAN shell configured on your system, when you start the shell for the first time it will ask you a dozen
configuration questions and then create the Config.pm file for you.

If the CPAN shell is already configured system-wide, you should already have a /usr/lib/perl5/5.6.1/CPAN/Config.pm
file. (As always, if you have a different Perl version, the path will include a different version number.) Create the
directory for the local configuration file as well:

panic% mkdir -p /home/stas/.cpan/CPAN

(On many systems, mkdir -p creates the whole path at once.)

Now copy the system-wide configuration file to your local one:

panic% cp /usr/lib/perl5/5.6.1/CPAN/Config.pm /home/stas/.cpan/CPAN/MyConfig.pm

The only thing left is to change the base directory of .cpan in your local file to the one under your home directory. On
our machine, we replace /root/.cpan (which is where our system's .cpan directory resides) with /home/stas. Of course,
we use Perl to edit the file:

panic% perl -pi -e 's|/root|/home/stas|' \
/home/stas/.cpan/CPAN/MyConfig.pm

Now that you have the local configuration file ready, you have to tell it what special parameters you need to pass when
executing perl Makefile.PL. Open the file in your favorite editor and replace the following line:

'makepl_arg' =>q[1,
with:
'makepl_arg' => q[PREFIX=/home/stas],

Now you've finished the configuration. Assuming that you are logged in with the same username used for the local
installation (stas in our example), start it like this:

panic% perl -MCPAN -e shell

From now on, any module you try to install will be installed locally. If you need to install some system modules, just
become the superuser and install them in the same way. When you are logged in as the superuser, the system-wide
configuration file will be used instead of your local one.

If you have used more than just the PREFIX variable, modify MyConfig.pm to use the other variables. For example, if
you have used these variables during the creation of the Makefile:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

panic% perl Makefile.PL PREFIX=/home/stas \
INSTALLPRIVLIB=/home/stas/lib/perl5 \
INSTALLSCRIPT=/home/stas/bin \
INSTALLSITELIB=/home/stas/lib/perl|5/site_perl \
INSTALLBIN=/home/stas/bin \
INSTALLMAN1DIR=/home/stas/lib/perl5/man \
INSTALLMAN3DIR=/home/stas/lib/perl5/man3

replace PREFIX=/home/stas in the line:
'makepl_arg' => q[PREFIX=/home/stas],
with all the variables from above, so that the line becomes:

'makepl_arg' => q[PREFIX=/home/stas \
INSTALLPRIVLIB=/home/stas/lib/perl5 \
INSTALLSCRIPT=/home/stas/bin \
INSTALLSITELIB=/home/stas/lib/perl|5/site_perl \
INSTALLBIN=/home/stas/bin \
INSTALLMAN1DIR=/home/stas/lib/perl5/man \
INSTALLMAN3DIR=/home/stas/lib/perl5/man3

]I

If you arrange all the above parameters in one line, you can remove the backslashes (\).

3.9.4 Making a Local Apache Installation

Just as with Perl modules, if you don't have the permissions required to install Apache into the system area, you have
to install them locally under your home directory. It's almost the same as a plain installation, but you have to run the
server listening to a port number greater than 1024 (only root processes can listen to lower-numbered ports).

Another important issue you have to resolve is how to add startup and shutdown scripts to the directories used by the
rest of the system services. Without root access, you won't be able to do this yourself; you'll have to ask your system
administrator to assist you.

To install Apache locally, all you have to do is to tell ./configure in the Apache source directory what target directories
to use. If you are following the convention that we use, which makes your home directory look like the / (base)
directory, the invocation parameters will be:

panic% ./configure --prefix=/home/stas

Apache will use the prefix for the rest of its target directories, instead of the default /usr/local/apache. If you want to
see what they are, add the —show-layout option before you proceed:

panic% ./configure --prefix=/home/stas --show-layout
You might want to put all the Apache files under /home/stas/apache, following Apache's convention:
panic% ./configure --prefix=/home/stas/apache

If you want to modify some or all of the names of the automatically created directories, use the —sbindir, —sysconfdir,
and —/ogfiledir options:

panic% ./configure --prefix=/home/stas/apache \
--shindir=/home/stas/apache/sbin \
--sysconfdir=/home/stas/apache/conf \
--logfiledir=/home/stas/apache/logs

Refer to the output of ./configure —help for all available options.

Also remember that you can start the script only under a user and group to which you belong, so you must set the User
and Group directives in httpd.conf to appropriate values.

Furthermore, as we said before, the Port directive in httpd.conf must be adjusted to use an unused port above 1024,
such as 8080. This means that when users need to access the locally installed server, their URLs need to specify the
port number (e.g., http://www.example.com:8080/). Otherwise, browsers will access the server running on port 80,
which isn't the one you installed locally.

3.9.5 Nonstandard mod_perl-Enabled Apache Installation

Now that we know how to install local Apache and Perl modules separately, let's see how to install mod_perl-enabled
Apache in our home directory. It's almost as simple as doing each one separately, but there is one wrinkle. We'll talk
about it at the end of this section.

Let's say you have unpacked the Apache and mod_perl sources under /home/stas/src and they look like this:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

panic% Is /home/stas/src
/home/stas/src/apache_1.3.xx
/home/stas/src/mod_perl-1.xx

where x.xx are replaced by the real version nhumbers, as usual. You want the Perl modules from the mod_perl package
to be installed under /home/stas/lib/perl5 and the Apache files to go under /home/stas/apache. The following
commands will do that for you:

panic% perl Makefile.PL \
PREFIX=/home/stas \
APACHE_PREFIX=/home/stas/apache \
APACHE_SRC=../apache_1.3.xx/src \
DO_HTTPD=1\
USE_APACI=1 \
EVERYTHING=1

panic% make && make test && make install

panic% cd ../apache_1.3.xx

panic% make install

If you need some parameters to be passed to the ./configure script, as we saw in the previous section, use APACI_ARGS.
For example:

APACI_ARGS="--shindir=/home/stas/apache/sbin \
--sysconfdir=/home/stas/apache/conf \
--logfiledir=/home/stas/apache/logs’

Note that the above multiline splitting will work only with Bourne-style shells. C-style shell users will have to list all the
parameters on a single line.

Basically, the installation is complete. The only remaining problem is the @INC variable. This won't be correctly set if
you rely on the PERL5LIB environment variable unless you set it explicitly in a startup file that is required before loading
any other module that resides in your local repository. A much nicer approach is to use the lib pragma, as we saw
before, but in a slightly different way—we use it in the startup file and it affects all the code that will be executed under
mod_perl handlers. For example:

PerlRequire /home/stas/apache/perl/startup.pl
where startup.pl starts with:

use lib qw(/home/stas/lib/perl5/5.6.1/
/home/stas/lib/perl5/site_perl/5.6.1
/home/stas/lib/perl5/site_perl

)i

Note that you can still use the hardcoded @INC modifications in the scripts themselves, but be aware that scripts modify
@INC in BEGIN blocks and mod_perl executes the BEGIN blocks only when it performs script compilation. As a result,
@INC will be reset to its original value after the scripts are compiled, and the hardcoded settings will be forgotten.

The only time you can alter the "original" value is during the server configuration stage, either in the startup file or by
putting the following line in httpd.conf:

PerlSetEnv Perl5LIB \
/home/stas/lib/perl5/5.6.1/:/home/stas/lib/perl5/site_perl/5.6.1

But the latter setting will be ignored if you use the PerlTaintcheck setting, and we hope you do use it. See the perirun
manpage for more information.

The rest of the mod_perl configuration can be done just as if you were installing mod_perl as root.

Resource Usage

Another important thing to keep in mind is the consumption of system resources. mod_perl is memory-
hungry. If you run a lot of mod_perl processes on a public, multiuser machine, most likely the system
administrator of this machine will ask you to use fewer resources and may even shut down your mod_perl
server and ask you to find another home for it. You have a few options:

® Reduce resource usage as explained in Chapter 21.

® Ask your ISP's system administrator whether she can set up a dedicated machine for you, so that
you will be able to install as much memory as you need. If you get a dedicated machine, chances
are that you will want to have root access, so you may be able to manage the administration
yourself. You should also make sure the system administrator is responsible for a reliable
electricity supply and a reliable network link. The system administrator should also make sure that
the important security patches get applied and the machine is configured to be secure (not to
mention having the machine physically protected, so no one will turn off the power or break it).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® The best solution might be to look for another ISP with lots of resources or one that supports

mod_perl. You can find a list of these ISPs at http://perl.apache.org/.

3.9.6 Nonstandard mod_perl-Enabled Apache Installation with CPAN.pm

Again, CPAN makes installation and upgrades simpler. You have seen how to install a mod_perl-enabled server using
CPAN.pm's interactive shell. You have seen how to install Perl modules and Apache locally. Now all you have to do is to
merge these techniques.

Assuming that you have configured CPAN.pm to install Perl modules locally, the installation is very simple. Start the
CPAN shell, set the arguments to be passed to perl Makefile.PL (modify the example setting to suit your needs), and tell
CPAN.pm to do the rest for you:

panic% perl -MCPAN -eshell

cpan> o conf makepl_arg 'DO_HTTPD=1 USE_APACI=1 EVERYTHING=1 \
PREFIX=/home/stas APACHE_PREFIX=/home/stas/apache’

cpan> install mod_perl

When you use CPAN.pm for local installation, you need to make sure that the value of makepl_arg is restored to its
original value after the mod_perl installation is complete, because if you install other Perl modules you probably don't
want to pass mod_perl flags to them. The simplest way to do this is to quit the interactive shell and then re-enter it.
There is another way to do it without quitting, but it's very cumbersome—if you want to learn about the other option,
refer to the CPAN.pm manpage.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
3.10 How Can | Tell if mod_perl Is Running?

There are several ways to find out if mod_perl is enabled in your version of Apache. In older versions of Apache
(versions earlier than 1.3.6), you could check by running httpd -v, but that no longer works. Now you should use httpd
-l.

It is not enough to know that mod_perl is installed—the server needs to be configured for mod_perl as well. Refer to
Chapter 4 to learn about mod_perl configuration.

3.10.1 Checking the error_log File

One way to check for mod_perl is to check the error_log file for the following message at server startup:

[Sat May 18 18:08:01 2002] [notice]
Apache/1.3.24 (Unix) mod_perl/1.26 configured
-- resuming normal operations

3.10.2 Testing by Viewing /perl-status

Assuming that you have configured the <Location /perl-status> section in the server configuration file as explained in
Chapter 9, fetch http://www.example.com/peri-status/ using your favorite browser.

You should see something like this:

Embedded Perl version 5.6.1 for Apache/1.3.24 (Unix)
mod_perl/1.26 process 50880,
running since Sat May 18 18:08:01 2002

3.10.3 Testing via Telnet

Knowing the port you have configured Apache to listen on, you can use Telnet to talk directly to it.

Assuming that your mod_perl-enabled server listens to port 8080,L11 telnet to your server at port 8080, type HEAD /
HTTP/1.0, and then press the Enter key twice:

[71 1f in doubt, try port 80, which is the standard HTTP port.

panic% telnet localhost 8080
HEAD / HTTP/1.0

You should see a response like this:

HTTP/1.1 200 OK

Date: Mon, 06 May 2002 09:49:41 GMT
Server: Apache/1.3.24 (Unix) mod_perl/1.26
Connection: close

Content-Type: text/html; charset=iso-8859-1

Connection closed.
The line:
Server: Apache/1.3.24 (Unix) mod_perl/1.26

confirms that you have mod_perl installed and that its version is 1.26.

3.10.4 Testing via a CGI Script

Another method to test for mod_perl is to invoke a CGI script that dumps the server's environment.

We assume that you have configured the server so that scripts running under the location /perl/ are handled by the
Apache::Registry handler and that you have the PerlSendHeader directive set to On.

Copy and paste the script below. Let's say you name it test.p/ and save it at the root of the CGI scripts, which is
mapped directly to the /perl location of your server.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

print "Content-type: text/plain\n\n";
print "Server's environment\n";
foreach (keys %ENV) {

print "$_\t$ENV{$_}\n";

Make it readable and executable by the server (you may need to tune these permissions on a public host):
panic% chmod a+rx test.pl

Now fetch the URL http://www.example.com:8080/perl/test.pl (replacing 8080 with the port your mod_perl-enabled
server is listening to). You should see something like this (the output has been edited):

SERVER_SOFTWARE Apache/1.3.24 (Unix) mod_perl/1.26
GATEWAY_INTERFACE CGI-Perl/1.1
DOCUMENT_ROOT /home/httpd/docs

REMOTE_ADDR 127.0.0.1

[more environment variables snipped]

MOD_PERL mod_perl/1.21_01-dev

[more environment variables snipped]

If you see the that the value of GATEWAY_INTERFACE is CGI-Perl/1.1, everything is OK.

If there is an error, you might have to add a shebang line (#!/usr/bin/perl) as the first line of the CGI script and then try
it again. If you see:

GATEWAY_INTERFACE CGI/1.1
it means you have configured this location to run under mod_cgi and not mod_perl.

Also note that there is a $ENV{MOD_PERL} environment variable if you run under a mod_perl handler. This variable is set
to the mod_perl/1.xx string, where 1.xx is the version number of mod_perl.

Based on this difference, you can write code like this:

BEGIN {
perl5.004 or better is a must under mod_perl
require 5.004 if $ENV{MOD_PERL};

¥

If you develop a generic Perl module aimed at mod_perl, mod_cgi, and other runtime environments, this information
comes in handy, because it allows you to do mod_ perl-specific things when running under mod_perl. For example,
CGIL.pm is mod_perl-aware: when CGIL.pm knows that it is running under mod_perl, it registers a cleanup handler for its
global $Q object, retrieves the query string via Apache->request->args, and does a few other things differently than when
it runs under mod_cgi.

3.10.5 Testing via Iwp-request

Assuming you have the libwww-perl (LWP) package installed, you can run the following tests. (Most likely you do have it
installed, since you need it to pass mod_perl's make test.)

panic% Iwp-request -e -d http://www.example.com

This shows you just the headers; the -d option disables printing the response content. If you just want to see the server
version, try:

panic% lwp-request -e -d http://www.example.com | egrep '~Server:'

Of course, you should use http://www.example.com:port_number if your server is listening to a port other than port
80.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
3.11 General Notes

This section looks at some other installation issues you may encounter.

3.11.1 How Do | Make the Installation More Secure?

Unix systems usually provide chroot or jail mechanisms, which allow you to run subsystems isolated from the main
system. So if a subsystem gets compromised, the whole system is still safe.

Section 23.3.5 includes a few references to articles discussing these mechanisms.

3.11.2 Can | Run mod_perl-Enabled Apache as suExec?

The answer is definitively "no." You can't suid a part of a process. mod_perl lives inside the Apache process, so its UID
and GID are the same as those of the Apache process.

You have to use mod_cgi if you need this functionality. See Appendix C for other possible solutions.

3.11.3 Should | Rebuild mod_perl if | Have Upgraded Perl?

Yes, you should. You have to rebuild the mod_perl-enabled server, because it has a hardcoded @INC variable. This
points to the old Perl and is probably linked to an old libperl library. If for some reason you need to keep the old Perl
version around, you can modify @INC in the startup script, but it is better to build afresh to save you from getting into a
mess.

3.11.4 mod_auth_dbm Nuances

If you are a mod_auth_dbm or mod_auth_db user, you may need to edit Perl's Config module. When Perl is configured, it
attempts to find libraries for ndbm, gdbm, db, etc. for the DB*_File modules. By default, these libraries are linked with
Perl and remembered by the Config.pm module. When mod_perl is configured with Apache, the ExtUtils::Embed module
requires these libraries to be linked with httpd so Perl extensions will work under mod_perl. However, the order in
which these libraries are stored in Config.pm may confuse mod_auth_db*. If mod_auth_db* does not work with mod_perl,
take a look at the order with the following command:

panic% perl -V:libs
Here's an example:
libs="-Inet -Insl_s -Igdbm -Indbm -Idb -IdId -Im -Ic -Indir -lcrypt’;

If -lgdbm or -Idb is before -Indbm (as it is in the example), edit Config.pm and move -lgdbm and -Idb to the end of the list.
Here's how to find Config.pm:

panic% perl -MConfig -e 'print "$Config{archlibexp}/Config.pm\n

Under Solaris, another solution for building mod_perl- and mod_auth_dbm-enabled Apache is to remove the DBM and
NDBM "emulation" from /ibgdbm.a. It seems that Solaris already provides its own DBM and NDBM, and in our
installation we found there's no reason to build GDBM with them.

In our Makefile for GDBM, we changed:
OBJS = $(DBM_OF) $(NDBM_OF) $(GDBM_OF)
to:

OBJS = $(GDBM_OF)

Then rebuild libgdbm before building mod_perl-enabled Apache.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
3.12 References

® Apache Toolbox (http://apachetoolbox.com/) provides a means to easily compile Apache with about 60 different
Apache modules. It is fully customizable and menu-driven. Everything is compiled from source. It checks for
RPMs that might cause problems and uses wget to download the source automatically if it's missing.

® Several Apache web server books that discuss the installation details are listed at

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

Chapter 4. mod_perl Configuration

The next step after building and installing a mod_perl-enabled Apache server is to configure it. This is done in two
distinct steps: getting the server running with a standard Apache configuration, and then applying mod_perl-specific
configuration directives to get the full benefit out of it.

For readers who haven't previously been exposed to the Apache web server, our discussion begins with standard
Apache directives and then continues with mod_ perl-specific material.

The startup.pl file can be used in many ways to improve performance. We will talk about all these issues later in the
book. In this chapter, we discuss the configuration possibilities that the startup.pl file gives us.

<Perl> sections are a great time saver if you have complex configuration files. We'll talk about <Perl> sections in this
chapter.

Another important issue we'll cover in this chapter is how to validate the configuration file. This is especially important
on a live production server. If we break something and don't validate it, the server won't restart. This chapter discusses
techniques to prevent validation problems.

At the end of this chapter, we discuss various tips and tricks you may find useful for server configuration, talk about a
few security concerns related to server configuration, and finally look at a few common pitfalls people encounter when
they misconfigure their servers.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
4.1 Apache Configuration

Apache configuration can be confusing. To minimize the number of things that can go wrong, it's a good idea to first
configure Apache itself without mod_perl. So before we go into mod_perl configuration, let's look at the basics of
Apache itself.

4.1.1 Configuration Files

Prior to Version 1.3.4, the default Apache installation used three configuration files: httpd.conf, srm.conf, and
access.conf. Although there were historical reasons for having three separate files (dating back to the NCSA server), it
stopped mattering which file you used for what a long time ago, and the Apache team finally decided to combine them.
Apache Versions 1.3.4 and later are distributed with the configuration directives in a single file, httpd.conf. Therefore,
whenever we mention a configuration file, we are referring to httpd.conf.

By default, httpd.conf is installed in the conf directory under the server root directory. The default server root is
/usr/local/apache/ on many Unix platforms, but it can be any directory of your choice (within reason). Users new to
Apache and mod_perl will probably find it helpful to keep to the directory layouts we use in this book.

There is also a special file called .htaccess, used for per-directory configuration. When Apache tries to access a file on
the filesystem, it will first search for .htaccess files in the requested file's parent directories. If found, Apache scans
.htaccess for further configuration directives, which it then applies only to that directory in which the file was found and
its subdirectories. The name .htaccess is confusing, because it can contain almost any configuration directives, not just
those related to resource access control. Note that if the following directive is in httpd.conf:

<Directory />
AllowOverride None
</Directory>

Apache will not look for .htaccess at all unless AllowOverride is set to a value other than None in a more specific
<Directory> section.

.htaccess can be renamed by using the AccessFileName directive. The following example configures Apache to look in the
target directory for a file called .acl/ instead of .htaccess:

AccessFileName .acl

However, you must also make sure that this file can't be accessed directly from the Web, or else you risk exposing your
configuration. This is done automatically for .ht* files by Apache, but for other files you need to use:

<Files .acl>
Order Allow,Deny
Deny from all
</Files>

Another often-mentioned file is the startup file, usually named startup.pl. This file contains Perl code that will be
executed at server startup. We'll discuss the startup.pl file in greater detail later in this chapter, in Section 4.3.

Beware of editing httpd.conf without understanding all the implications. Modifying the configuration file and adding new
directives can introduce security problems and have performance implications. If you are going to modify anything,
read through the documentation beforehand. The Apache distribution comes with an extensive configuration manual. In
addition, each section of the distributed configuration file includes helpful comments explaining how each directive
should be configured and what the default values are.

If you haven't moved Apache's directories around, the installation program will configure everything for you. You can
just start the server and test it. To start the server, use the apachect/ utility bundled with the Apache distribution. It
resides in the same directory as httpd, the Apache server itself. Execute:

panic% /usr/local/apache/bin/apachectl start

Now you can test the server, for example by accessing http://localhost/ from a browser running on the same host.

4.1.2 Configuration Directives

A basic setup requires little configuration. If you moved any directories after Apache was installed, they should be
updated in httpd.conf. Here are just a couple of examples:

ServerRoot "/usr/local/apache"
DocumentRoot "/usr/local/apache/docs"

You can change the port to which the server is bound by editing the Port directive. This example sets the port to 8080
(the default for the HTTP protocol is 80):

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Port 8080

You might want to change the user and group names under which the server will run. If Apache is started by the user
root (which is generally the case), the parent process will continue to run as root, but its children will run as the user
and group specified in the configuration, thereby avoiding many potential security problems. This example uses the
httpd user and group:

User httpd
Group httpd

Make sure that the user and group httpd already exist. They can be created using useradd(1) and groupadd(1) or
equivalent utilities.

Many other directives may need to be configured as well. In addition to directives that take a single value, there are
whole sections of the configuration (such as the <Directory> and <Location> sections) that apply to only certain areas of
the web space. The httpd.conf file supplies a few examples, and these will be discussed shortly.

4.1.3 <Directory>, <Location>, and <Files> Sections

Let's discuss the basics of the <Directory>, <Location>, and <Files> sections. Remember that there is more to know about
them than what we list here, and the rest of the information is available in the Apache documentation. The information
we'll present here is just what is important for understanding mod_perl configuration.

Apache considers directories and files on the machine it runs on as resources. A particular behavior can be specified for
each resource; that behavior will apply to every request for information from that particular resource.

Directives in <Directory> sections apply to specific directories on the host machine, and those in <Files> sections apply
only to specific files (actually, groups of files with names that have something in common). <Location> sections apply to
specific URIs. Locations are given relative to the document root, whereas directories are given as absolute paths
starting from the filesystem root (/). For example, in the default server directory layout where the server root is
/usr/local/apache and the document root is /usr/local/apache/htdocs, files under the /usr/local/apache/htdocs/pub
directory can be referred to as:

<Directory /usr/local/apache/htdocs/pub>
</Directory>

or alternatively (and preferably) as:

<Location /pub>
</Location>

Exercise caution when using <Location> under Win32. The Windows family of operating systems are case-insensitive. In
the above example, configuration directives specified for the location /pub on a case-sensitive Unix machine will not be
applied when the request URI is /Pub. When URIs map to existing files, such as Apache::Registry scripts, it is safer to use
the <Directory> or <Files> directives, which correctly canonicalize filenames according to local filesystem semantics.

It is up to you to decide which directories on your host machine are mapped to which locations. This should be done
with care, because the security of the server may be at stake. In particular, essential system directories such as /etc/
shouldn't be mapped to locations accessible through the web server. As a general rule, it might be best to organize
everything accessed from the Web under your ServerRoot, so that it stays organized and you can keep track of which
directories are actually accessible.

Locations do not necessarily have to refer to existing physical directories, but may refer to virtual resources that the
server creates upon a browser request. As you will see, this is often the case for a mod_perl server.

When a client (browser) requests a resource (URI plus optional arguments) from the server, Apache determines from
its configuration whether or not to serve the request, whether to pass the request on to another server, what (if any)
authentication and authorization is required for access to the resource, and which module(s) should be invoked to
generate the response.

For any given resource, the various sections in the configuration may provide conflicting information. Consider, for
example, a <Directory> section that specifies that authorization is required for access to the resource, and a <Files>
section that says that it is not. It is not always obvious which directive takes precedence in such cases. This can be a
trap for the unwary.

4.1.3.1 <Directory directoryPath> ... </Directory>

Scope: Can appear in server and virtual host configurations.

<Directory> and </Directory> are used to enclose a group of directives that will apply to only the named directory and its
contents, including any subdirectories. Any directive that is allowed in a directory context (see the Apache
documentation) may be used.

The path given in the <Directory> directive is either the full path to a directory, or a string containing wildcard characters
(also called globs). In the latter case, ? matches any single character, * matches any sequence of characters, and []
matches character ranges. These are similar to the wildcards used by sh and similar shells. For example:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<Directory /home/httpd/docs/foo[1-2]>
Options Indexes
</Directory>

will match /home/httpd/docs/fool and /home/httpd/docs/foo2. None of the wildcards will match a / character. For
example:

<Directory /home/httpd/docs>
Options Indexes
</Directory>

matches /home/httpd/docs and applies to all its subdirectories.

Matching a regular expression is done by using the <DirectoryMatch regex> ... </DirectoryMatch> or <Directory ~ regex> ...
</Directory> syntax. For example:

<DirectoryMatch /home/www/.*/public>
Options Indexes
</DirectoryMatch>

will match /home/www/foo/public but not /home/www/foo/private. In a regular expression, .* matches any character
(represented by .) zero or more times (represented by *). This is entirely different from the shell-style wildcards used
by the <Directory> directive. They make it easy to apply a common configuration to a set of public directories. As regular
expressions are more flexible than globs, this method provides more options to the experienced user.

If multiple (non-regular expression) <Directory> sections match the directory (or its parents) containing a document, the
directives are applied in the order of the shortest match first, interspersed with the directives from any .htaccess files.
Consider the following configuration:

<Directory />
AllowOverride None
</Directory>

<Directory /home/httpd/docs/>
AllowOverride FileInfo
</Directory>

Let us detail the steps Apache goes through when it receives a request for the file /home/httpd/docs/index.html:
1. Apply the directive AllowOverride None (disabling .htaccess files).

2. Apply the directive AllowOverride FileInfo for the directory /home/httpd/docs/ (which now enables .htaccess in
/home/httpd/docs/ and its subdirectories).

3. Apply any directives in the group FileInfo, which control document types (AddEncoding, AddLanguage, AddType, etc.
—see the Apache documentation for more information) found in /home/httpd/docs/.htaccess.

4.1.3.2 <Files filename > ... </Files>

Scope: Can appear in server and virtual host configurations, as well as in .htaccess files.

The <Files> directive provides access control by filename and is comparable to the <Directory> and <Location> directives.
<Files> should be closed with the corresponding </Files>. The directives specified within this section will be applied to
any object with a basename matching the specified filename. (A basename is the last component of a path, generally
the name of the file.)

<Files> sections are processed in the order in which they appear in the configuration file, after the <Directory> sections
and .htaccess files are read, but before <Location> sections. Note that <Files> can be nested inside <Directory> sections
to restrict the portion of the filesystem to which they apply. However, <Files> cannot be nested inside <Location>
sections.

The filename argument should include a filename or a wildcard string, where ? matches any single character and *
matches any sequence of characters, just as with <Directory> sections. Extended regular expressions can also be used,
placing a tilde character (~) between the directive and the regular expression. The regular expression should be in
quotes. The dollar symbol ($) refers to the end of the string. The pipe character (|) indicates alternatives, and
parentheses (()) can be used for grouping. Special characters in extended regular expressions must be escaped with
backslashes (\). For example:

<Files ~ "\.(pl|cgi)$">
SetHandler perl-script
PerlHandler Apache::Registry
Options +ExecCGI

</Files>

would match all the files ending with the .p/ or .cgi extension (most likely Perl scripts). Alternatively, the <FilesMatch
regex> ... </FilesMatch> syntax can be used.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Regular Expressions

There is much more to regular expressions than what we have shown you here. As a Perl programmer,
learning to use regular expressions is very important, and what you can learn there will be applicable to
your Apache configuration too.

See the perlretut manpage and the book Mastering Regular Expressions by Jeffrey E. F. Friedl (O'Reilly) for
more information.

4.1.3.3 <Location URI> ... </Location>

Scope: Can appear in server and virtual host configurations.

The <Location> directive provides for directive scope limitation by URL. It is similar to the <Directory> directive and starts
a section that is terminated with the </Location> directive.

<Location> sections are processed in the order in which they appear in the configuration file, after the <Directory>
sections, .htaccess files, and <Files> sections have been interpreted.

The <Location> section is the directive that is used most often with mod_perl.

Note that URIs do not have to refer to real directories or files within the filesystem at all; <Location> operates
completely outside the filesystem. Indeed, it may sometimes be wise to ensure that <Location>s do not match real
paths, to avoid confusion.

The URI may use wildcards. In a wildcard string, ? matches any single character, * matches any sequences of
characters, and [] groups characters to match. For regular expression matches, use the <LocationMatch regex> ...
</LocationMatch> syntax.

The <Location> functionality is especially useful when combined with the SetHandler directive. For example, to enable
server status requests (via mod_status) but allow them only from browsers at *.example.com, you might use:

<Location /status>
SetHandler server-status
Order Deny,Allow
Deny from all
Allow from .example.com
</Location>

As you can see, the /status path does not exist on the filesystem, but that doesn't matter because the filesystem isn't
consulted for this request—it's passed on directly to mod_status.

4.1.4 Merging <Directory>, <Location>, and <Files> Sections

When configuring the server, it's important to understand the order in which the rules of each section are applied to
requests. The order of merging is:

1. <Directory> (except for regular expressions) and .htaccess are processed simultaneously, with the directives in
.htaccess overriding <Directory>.

2. <DirectoryMatch> and <Directory ~ > with regular expressions are processed next.
3. <Files> and <FilesMatch> are processed simultaneously.
4. <Llocation> and <LocationMatch> are processed simultaneously.

Apart from <Directory>, each group is processed in the order in which it appears in the configuration files. <Directory>s
(group 1 above) are processed in order from the shortest directory component to the longest (e.g., first / and only then
/home/www). If multiple <Directory> sections apply to the same directory, they are processed in the configuration file
order.

Sections inside <VirtualHost> sections are applied as if you were running several independent servers. The directives
inside one <VirtualHost> section do not interact with directives in other <VirtualHost> sections. They are applied only after
processing any sections outside the virtual host definition. This allows virtual host configurations to override the main
server configuration.

If there is a conflict, sections found later in the configuration file override those that come earlier.

4.1.5 Subgrouping of <Directory>, <Location>, and <Files> Sections

Let's say that you want all files to be handled the same way, except for a few of the files in a specific directory and its
subdirectories. For example, say you want all the files in /home/httpd/docs to be processed as plain files, but any files

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

ending with .htm/ and .txt to be processed by the content handler of the Apache::Compress module (assuming that you
are already running a mod_perl server):

<Directory /home/httpd/docs>
<FilesMatch "\.(html|txt)$">
PerlHandler +Apache::Compress
</FilesMatch>
</Directory>

The + before Apache::Compress tells mod_perl to load the Apache::Compress module before using it, as we will see later.

Using <FilesMatch>, it is possible to embed sections inside other sections to create subgroups that have their own
distinct behavior. Alternatively, you could also use a <Files> section inside an .htaccess file.

Note that you can't put <Files> or <FilesMatch> sections inside a <Location> section, but you can put them inside a
<Directory> section.

4.1.6 Options Directive Merging

Normally, if multiple Options directives apply to a directory, the most specific one is taken completely; the options are
not merged.

However, if all the options on the Options directive are preceded by either a + or - symbol, the options are merged. Any
options preceded by + are added to the options currently active, and any options preceded by - are removed.

For example, without any + or - symbols:

<Directory /home/httpd/docs>
Options Indexes FollowSymLinks

</Directory>

<Directory /home/httpd/docs/shtml>
Options Includes

</Directory>

Indexes and FollowSymLinks will be set for /home/httpd/docs/, but only Includes will be set for the
/home/httpd/docs/shtml/ directory. However, if the second Options directive uses the + and - symbols:

<Directory /home/httpd/docs>
Options Indexes FollowSymLinks

</Directory>

<Directory /home/httpd/docs/shtml>
Options +Includes -Indexes

</Directory>

then the options FollowSymLinks and Includes will be set for the /home/httpd/docs/shtml/ directory.

4.1.7 MinSpareServers, MaxSpareServers, StartServers, MaxClients, and
MaxRequestsPerChild

MinSpareServers, MaxSpareServers, StartServers, and MaxClients are standard Apache configuration directives that control the
number of servers being launched at server startup and kept alive during the server's operation. When Apache starts, it
spawns StartServers child processes. Apache makes sure that at any given time there will be at least MinSpareServers but
no more than MaxSpareServers idle servers. However, the MinSpareServers rule is completely satisfied only if the total
number of live servers is no bigger than MaxClients.

MaxRequestsPerChild lets you specify the maximum number of requests to be served by each child. When a process has
served MaxRequestsPerChild requests, the parent kills it and replaces it with a new one. There may also be other reasons
why a child is killed, so each child will not necessarily serve this many requests; however, each child will not be allowed
to serve more than this number of requests. This feature is handy to gain more control of the server, and especially to
avoid child processes growing too big (RAM-wise) under mod_perl.

These five directives are very important for getting the best performance out of your server. The process of tuning
these variables is described in great detail in Chapter 11.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
4.2 mod_perl Configuration

When you have tested that the Apache server works on your machine, it's time to configure the mod_perl part.
Although some of the configuration directives are already familiar to you, mod_perl introduces a few new ones.

It's a good idea to keep all mod_perl-related configuration at the end of the configuration file, after the native Apache
configuration directives, thus avoiding any confusion.

To ease maintenance and to simplify multiple-server installations, the mod_perl-enabled Apache server configuration
system provides several alternative ways to keep your configuration directives in separate places. The Include directive
in httpd.conf lets you include the contents of other files, just as if the information were all contained in httpd.conf. This
is a feature of Apache itself. For example, placing all mod_perl-related configuration in a separate file named
conf/mod_perl.conf can be done by adding the following directive to httpd.conf:

Include conf/mod_perl.conf

If you want to include this configuration conditionally, depending on whether your Apache has been compiled with
mod_perl, you can use the IfModule directive :

<IfModule mod_perl.c>
Include conf/mod_perl.conf
</IfModule>

mod_perl adds two more directives. <Perl> sections allow you to execute Perl code from within any configuration file at
server startup time. Additionally, any file containing a Perl program can be executed at server startup simply by using
the PerlRequire or PerlModule directives, as we will show shortly.

4.2.1 Alias Configurations

For many reasons, a server can never allow access to its entire directory hierarchy. Although there is really no
indication of this given to the web browser, every path given in a requested URI is therefore a virtual path; early in the
processing of a request, the virtual path given in the request must be translated to a path relative to the filesystem
root, so that Apache can determine what resource is really being requested. This path can be considered to be a
physical path, although it may not physically exist.

For instance, in mod_perl systems, you may intend that the translated path does not physically exist, because your
module responds when it sees a request for this non-existent path by sending a virtual document. It creates the
document on the fly, specifically for that request, and the document then vanishes. Many of the documents you see on
the Web (for example, most documents that change their appearance depending on what the browser asks for) do not
physically exist. This is one of the most important features of the Web, and one of the great powers of mod_perl is that
it allows you complete flexibility to create virtual documents.

The ScriptAlias and Alias directives provide a mapping of a URI to a filesystem directory. The directive:
Alias /foo /home/httpd/foo

will map all requests starting with /foo to the files starting with /home/httpd/foo/. So when Apache receives a request
to http://www.example.com/foo/test.pl, the server will map it to the file test.pl in the directory /home/httpd/foo/.

Additionally, ScriptAlias assigns all the requests that match the specified URI (i.e., /cgi-bin) to be executed by mod_cgi.
ScriptAlias /cgi-bin /home/httpd/cgi-bin
is actually the same as:

Alias /cgi-bin /home/httpd/cgi-bin
<Location /cgi-bin>

SetHandler cgi-script

Options +ExecCGI
</Location>

where the SetHandler directive invokes mod_cgi. You shouldn't use the ScriptAlias directive unless you want the request to
be processed under mod_cgi. Therefore, when configuring mod_perl sections, use Alias instead.

Under mod_perl, the Alias directive will be followed by a section with at least two directives. The first is the
SetHandler/perl-script directive, which tells Apache to invoke mod_perl to run the script. The second directive (for
example, PerlHandler) tells mod_perl which handler (Perl module) the script should be run under, and hence for which
phase of the request. Later in this chapter, we discuss the available Perl*Handlers[1] for the various request phases. A
typical mod_perl configuration that will execute the Perl scripts under the Apache::Registry handler looks like this:

[1] when we say Perl*Handler, we mean the collection of all Perl handler directives (PerlHandler, PerlAccessHandler,
etc.).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Alias /perl/ /home/httpd/perl/
<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options +ExecCGI
</Location>

The last directive tells Apache to execute the file as a program, rather than return it as plain text.

When you have decided which methods to use to run your scripts and where you will keep them, you can add the
configuration directive(s) to httpd.conf. They will look like those below, but they will of course reflect the locations of
your scripts in your filesystem and the decisions you have made about how to run the scripts:

ScriptAlias /cgi-bin/ /home/httpd/cgi-bin/
Alias /perl/ /home/httpd/perl/
<Location /perl>

SetHandler perl-script

PerlHandler Apache::Registry

Options +ExecCGI
</Location>

In the examples above, all requests issued for URIs starting with /cgi-bin will be served from the directory
/home/httpd/cgi-bin/, and those starting with /per/ will be served from the directory /home/httpd/perl/.

4.2.1.1 Running scripts located in the same directory under different handlers

Sometimes you will want to map the same directory to a few different locations and execute each file according to the
way it was requested. For example, in the following configuration:

Typical for plain cgi scripts:
ScriptAlias /cgi-bin/ /home/httpd/perl/

Typical for Apache::Registry scripts:
Alias /perl/ /home/httpd/perl/

Typical for Apache::PerlRun scripts:
Alias /cgi-perl/ /home/httpd/perl/

<Location /perl/>
SetHandler perl-script
PerlHandler Apache::Registry
Options +ExecCGI

</Location>

<Location /cgi-perl/>
SetHandler perl-script
PerlHandler Apache::PerlRun
Options +ExecCGI

</Location>

the following three URIs:

http://www.example.com/perl/test.pl
http://www.example.com/cgi-bin/test.pl
http://www.example.com/cgi-perl/test.pl

are all mapped to the same file, /home/httpd/perl/test.pl. If test.pl is invoked with the URI prefix /perl, it will be
executed under the Apache::Registry handler. If the prefix is /cgi-bin, it will be executed under mod_cgi, and if the prefix
is /cgi-perl, it will be executed under the Apache::PerlRun handler.

This means that we can have all our CGI scripts located at the same place in the filesystem and call the script in any of
three ways simply by changing one component of the URI (cgi-bin|perl|cgi-perl).

This technique makes it easy to migrate your scripts to mod_perl. If your script does not seem to work while running
under mod_perl, in most cases you can easily call the script in straight mod_cgi mode or under Apache::PerlRun without
making any script changes. Simply change the URL you use to invoke it.

Although in the configuration above we have configured all three Aliases to point to the same directory within our
filesystem, you can of course have them point to different directories if you prefer.

This should just be a migration strategy, though. In general, it's a bad idea to run scripts in plain mod_cgi mode from a

mod_perl-enabled server—the extra resource consumption is wasteful. It is better to run these on a plain Apache
server.

4.2.2 <Location /perl> Sections

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The <Location> section assigns a number of rules that the server follows when the request's URI matches the location.
Just as it is a widely accepted convention to use /cgi-bin for mod_cgi scripts, it is habitual to use /perl as the base URI
of the Perl scripts running under mod_perl. Let's review the following very widely used <Location> section:

Alias /perl/ /home/httpd/perl/
PerlModule Apache::Registry
<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options +ExecCGI
Allow from all
PerlSendHeader On
</Location>

This configuration causes all requests for URIs starting with /per/ to be handled by the mod_perl Apache module with
the handler from the Apache::Registry Perl module.

Remember the Alias from the previous section? We use the same Alias here. If you use a <Location> that does not have
the same Alias, the server will fail to locate the script in the filesystem. You need the Alias setting only if the code that
should be executed is located in a file. Alias just provides the URI-to-filepath translation rule.

Sometimes there is no script to be executed. Instead, a method in a module is being executed, as with /perl-status, the
code for which is stored in an Apache module. In such cases, you don't need Alias settings for these <Location>s.

PerlModule is equivalent to Perl's native use() function call. We use it to load the Apache::Registry module, later used as a
handler in the <Location> section.

Now let's go through the directives inside the <Location> section:
SetHandler perl-script
The SetHandler directive assigns the mod_perl Apache module to handle the content generation phase.
PerlHandler Apache::Registry
The PerlHandler directive tells mod_perl to use the Apache::Registry Perl module for the actual content generation.
Options +ExecCGI
Options +ExecCGI ordinarily tells Apache that it's OK for the directory to contain CGI scripts. In this case, the flag
is required by Apache::Registry to confirm that you really know what you're doing. Additionally, all scripts located

in directories handled by Apache::Registry must be executable, another check against wayward non-script files
getting left in the directory accidentally. If you omit this option, the script either will be rendered as plain text or

will trigger a Save As dialog, depending on the client. 21
[2] You can use Apache::RegistryBB to skip this and a few other checks.
Allow from all

The Allow directive is used to set access control based on the client's domain or IP adress. The from all setting
allows any client to run the script.

PerlSendHeader On

The PerlSendHeader On line tells mod_perl to intercept anything that looks like a header line (such as Content-
Type: text/html) and automatically turn it into a correctly formatted HTTP header the way mod_cgi does. This lets
you write scripts without bothering to call the request object's send_http_header() method, but it adds a small
overhead because of the special handling.

If you use CGIL.pm's header() function to generate HTTP headers, you do not need to activate this directive, because
CGIL.pm detects that it's running under mod_perl and calls send_http_header() for you.

You will want to set PerlSendHeader Off for non-parsed headers (nph) scripts and generate all the HTTP headers yourself.
This is also true for mod_perl handlers that send headers with the send_http_header() method, because having
PerlSendHeader On as a server-wide configuration option might be a performance hit.

</Location>

</Location> closes the <Location> section definition.

Overriding <Location> Settings

Suppose you have:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<Location /foo>
SetHandler perl-script
PerlHandler Book::Module
</Location>

To remove a mod_perl handler setting from a location beneath a location where a handler is set (e.g.,
/foo/bar), just reset the handler like this:

<Location /foo/bar>
SetHandler default-handler
</Location>

Now all requests starting with /foo/bar will be served by Apache's default handler, which serves the
content directly.

4.2.3 PerlModule and PerlRequire

As we saw earlier, a module should be loaded before its handler can be used. PerIModule and PerlRequire are the two
mod_perl directives that are used to load modules and code. They are almost equivalent to Perl's use() and require()
functions (respectively) and are called from the Apache configuration file. You can pass one or more module names as
arguments to PerlModule:

PerlModule Apache::DBI CGI DBD::Mysq|

Generally, modules are preloaded from the startup script, which is usually called startup.pl. This is a file containing Perl
code that is executed through the PerlRequire directive. For example:

PerlRequire /home/httpd/perl/lib/startup.pl
A PerlRequire filename can be absolute or relative to the ServerRoot or to a path in @INC.

As with any file with Perl code that gets use()d or require()d, it must return a true value. To ensure that this happens,
don't forget to add 1; at the end of startup.pl.

4.2.4 Perl*Handlers

As mentioned in Chapter 1, Apache specifies 11 phases of the request loop. In order of processing, they are: Post-read-
request, URI translation, header parsing, access control, authentication, authorization, MIME type checking, fixup,
response (also known as the content handling phase), logging, and finally cleanup. These are the stages of a request
where the Apache API allows a module to step in and do something. mod_perl provides dedicated configuration
directives for each of these stages:

PerlPostReadRequestHandler
PerlInitHandler
PerlTransHandler
PerlHeaderParserHandler
PerlAccessHandler
PerlAuthenHandler
PerlAuthzHandler
PerlTypeHandler
PerlFixupHandler
PerlHandler
PerlLogHandler
PerlCleanupHandler

These configuration directives usually are referred to as Perl*Handler directives. The * in Perl*Handler is a placeholder to
be replaced by something that identifies the phase to be handled. For example, PerlLogHandler is the Perl handler that
(fairly obviously) handles the logging phase.

In addition, mod_perl adds a few more stages that happen outside the request loop:
PerlChildInitHandler

Allows your modules to initialize data structures during the startup of the child process.
PerlChildExitHandler

Allows your modules to clean up during the child process shutdown.

PerlChildInitHandler and PerIChildExitHandler might be used, for example, to allocate and deallocate system
resources, pre-open and close database connections, etc. They do not refer to parts of the request loop.

PerlRestartHandler

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Allows you to specify a routine that is called when the server is restarted. Since Apache always restarts itself
immediately after it starts, this is a good phase for doing various initializations just before the child processes
are spawned.

PerIDispatchHandler

Can be used to take over the process of loading and executing handler code. Instead of processing the
Perl*Handler directives directly, mod_perl will invoke the routine pointed to by PerlDispatchHandler and pass it the
Apache request object and a second argument indicating the handler that would ordinarily be invoked to
process this phase. So for example, you can write a PerIDispatchHandler handler with a logic that will allow only
specific code to be executed.

Since most mod_perl applications need to handle only the response phase, in the default compilation, most of the
Perl*Handlers are disabled. During the perl Makefile.PL mod_perl build stage, you must specify whether or not you will
want to handle parts of the request loop other than the usual content generation phase. If this is the case, you need to
specify which phases, or build mod_perl with the option EVERYTHING=1, which enables them all. All the build options are
covered in detail in Chapter 3.

Note that it is mod_perl that recognizes these directives, not Apache. They are mod_perl directives, and an ordinary
Apache server will not recognize them. If you get error messages about these directives being "perhaps mis-spelled," it
is a sure sign that the appropriate part of mod_perl (or the entire mod_perl module!) is missing from your server.

All <Location>, <Directory>, and <Files> sections contain a physical path specification. Like PerIChildInitHandler and
PerlChildExitHandler, the directives PerlPostReadRequestHandler and PerlTransHandler cannot be used in these sections, nor in
.htaccess files, because the path translation isn't completed and a physical path isn't known until the end of the
translation (PerlTransHandler) phase.

PerlInitHandler is more of an alias; its behavior changes depending on where it is used. In any case, it is the first handler
to be invoked when serving a request. If found outside any <Location>, <Directory>, or <Files> section, it is an alias for
PerlPostReadRequestHandler. When inside any such section, it is an alias for Perl[HeaderParserHandler.

Starting with the header parsing phase, the requested URI has been mapped to a physical server pathname, and thus
PerlHeaderParserHandler can be used to match a <Location>, <Directory>, or <Files> configuration section, or to process an
.htaccess file if such a file exists in the specified directory in the translated path.

PerIDispatchHandler, PerlCleanupHandler, and PerlRestartHandler do not correspond to parts of the Apache API, but allow you
to fine-tune the mod_perl APIL. They are specified outside configuration sections.

The Apache documentation and the book Writing Apache Modules with Perl and C (O'Reilly) provide in-depth
information on the request phases.

4.2.5 The handler() Subroutine

By default, the mod_perl API expects a subroutine named handler() to handle the request in the registered Perl*Handler
module. Thus, if your module implements this subroutine, you can register the handler with mod_perl by just specifying
the module name. For example, to set the PerlHandler to Apache::Foo::handler, the following setting would be sufficient:

PerlHandler Apache::Foo
mod_perl will load the specified module for you when it is first used. Please note that this approach will not preload the
module at startup. To make sure it gets preloaded, you have three options:

® You can explicitly preload it with the PerlModule directive:

PerlModule Apache::Foo

® You can preload it in the startup file:

use Apache::Foo ();

® You can use a nice shortcut provided by the Perl*Handler syntax:
PerlHandler +Apache::Foo
Note the leading + character. This directive is equivalent to:

PerIModule Apache::Foo
<Location ..>

PerlHandler Apache::Foo
</Location>

If you decide to give the handler routine a name other than handler() (for example, my_handler()), you must preload the
module and explicitly give the name of the handler subroutine:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

PerIModule Apache::Foo
<Location ..>

PerlHandler Apache::Foo::my_handler
</Location>

This configuration will preload the module at server startup.

If a module needs to know which handler is currently being run, it can find out with the current_callback() method. This
method is most useful to PerIDispatchHandlers that take action for certain phases only.

if ($r->current_callback eq "PerlLogHandler") {
$r->warn("Logging request");

}

4.2.6 Investigating the Request Phases

Imagine a complex server setup in which many different Perl and non-Perl handlers participate in the request
processing, and one or more of these handlers misbehaves. A simple example is one where one of the handlers alters
the request record, which breaks the functionality of other handlers. Or maybe a handler invoked first for any given
phase of the process returns an unexpected OK status, thus preventing other handlers from doing their job. You can't
just add debug statements to trace the offender—there are too many handlers involved.

The simplest solution is to get a trace of all registered handlers for each phase, stating whether they were invoked and
what their return statuses were. Once such a trace is available, it's much easier to look only at the players that actually
participated, thus narrowing the search path down a potentially misbehaving module.

The Apache::ShowRequest module shows the phases the request goes through, displaying module participation and
response codes for each phase. The content response phase is not run, but possible modules are listed as defined. To
configure it, just add this snippet to httpd.conf:

<Location /showrequest>

SetHandler perl-script

PerlHandler +Apache::ShowRequest
</Location>

To see what happens when you access some URI, add the URI to /showrequest. Apache::ShowRequest uses PATH_INFO to
obtain the URI that should be executed. So, to run /index.html with Apache::ShowRequest, issue a request for
/showrequest/index.html. For /perl/test.pl, issue a request for /showrequest/perl/test.pl.

This module produces rather lengthy output, so we will show only one section from the report generated while
requesting /showrequest/index.htm/:

Running request for /index.html
Request phase: post_read_request

[snip]

Request phase: translate_handler
mod_perloooeeviiinnns DECLINED
mod_setenvif undef
mod_authcceeveenninnns undef
mMOod_accessoeeeunens undef
mod_alias DECLINED
mod_userdirDECLINED
mod_actionsundef
mod_imapundef
mod_asis undef
mod_cgi undef
mod_dirundef
mod_autoindex undef
mod_includeceeen.... undef
mod_infocoeeeviiiinnnns
mod_status
mod_negotiation undef
mod_mimecccceeeeeeennn. undef
mod_log_config undef
mod_envundef
http_coreccoevvvveeenns OK

Request phase: header_parser
[snip]

Request phase: access_checker
[snip]

Request phase: check_user_id
[snip]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Request phase: auth_checker

[snip]

Request phase: type_checker
[snip]

Request phase: fixer_upper
[snip]

Request phase: response handler (type: text/html)
mod_actionsceeeenn. defined
mod_include defined
http_coredefined

Request phase: logger
[snip]

For each stage, we get a report of what modules could participate in the processing and whether they took any action.
As you can see, the content response phase is not run, but possible modules are listed as defined. If we run a mod_perl
script, the response phase looks like:

Request phase: response handler (type: perl-script)
mod_perloooevviiiinne defined

4.2.7 Stacked Handlers

With the mod_perl stacked handlers mechanism, it is possible for more than one Perl*Handler to be defined and executed
during any stage of a request.

Perl*Handler directives can define any number of subroutines. For example:
PerlTransHandler Foo::foo Bar::bar
Foo::foo() will be executed first and Bar::bar() second. As always, if the subroutine's name is handler(), you can omit it.

With the Apache->push_handlers() method, callbacks (handlers) can be added to a stack at runtime by mod_perl
modules.

Apache->push_handlers() takes the callback handler name as its first argument and a subroutine name or reference as its
second. For example, let's add two handlers called my_logger1() and my_logger2() to be executed during the logging
phase:

use Apache::Constants qw(:common);

sub my_logger1 {

#some code here
return OK;

sub my_logger2 {
#some other code here
return OK;

¥
Apache->push_handlers("PerlLogHandler", \&my_logger1);
Apache->push_handlers("PerlLogHandler", \&my_logger2);

You can also pass a reference to an anonymous subroutine. For example:

use Apache::Constants qw(:common);

Apache->push_handlers("PerlLogHandler", sub {
print STDERR "_ _ANON_ _ called\n";
return OK;

i

After each request, this stack is erased.

All handlers will be called in turn, unless a handler returns a status other than OK or DECLINED.

To enable this feature, build mod_perl with:

panic% perl Makefile.PL PERL_STACKED_HANDLERS=1[...]

or:

panic% perl Makefile.PL EVERYTHING=1 ...]

To test whether the version of mod_perl you're running can stack handlers, use the Apache->can_stack_handlers method.
This method will return a true value if mod_perl was configured with PERL_STACKED_HANDLERS=1, and a false value

otherwise.

Let's look at a few real-world examples where this method is used:

® The widely used CGIL.pm module maintains a global object for its plain function interface. Since the object is

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

global, under mod_perl it does not go out ofiscope when the request is completed, and the DESTROY method is
never called. Therefore, CGI->new arranges to call the following code if it detects that the module is used in the
mod_perl environment:

Apache->push_handlers("PerlCleanupHandler", \&CGI::_reset_globals);

This function is called during the final stage of a request, resetting CGIL.pm's globals before the next request
arrives.

® Apache::DCELogin establishes a DCE login context that must exist for the lifetime of a request, so the DCE::Login
object is stored in a global variable. Without stacked handlers, users must set the following directive in the
configuration file to destroy the context:

PerlCleanupHandler Apache::DCELogin::purge
This is ugly. With stacked handlers, Apache::DCELogin::handler can call from within the code:

Apache->push_handlers("PerlCleanupHandler", \&purge);

® Apache::DBI, the persistent database connection module, can pre-open the connection when the child process
starts via its connect_on_init() function. This function uses push_handlers() to add a PerlChildInitHandler:

Apache->push_handlers(Per|ChildInitHandler => \&childinit);
Now when the new process gets the first request, it already has the database connection open.

Apache::DBI also uses push_handlers() to have PerlCleanupHandler handle rollbacks if its AutoCommit attribute is
turned off.

® perlTransHandlers (e.g., Apache::MsqlProxy) may decide, based on the URI or some arbitrary condition, whether or
not to handle a request. Without stacked handlers, users must configure it themselves.

PerlTransHandler Apache::MsqlProxy::translate
PerlHandler ~ Apache::MsqlProxy

PerlHandler is never actually invoked unless translate() sees that the request is a proxy request ($r->proxyreq). If
it is a proxy request, translate() sets $r->handler("perl-script"), and only then will PerlHandler handle the request.
Now users do not have to specify PerlHandler Apache::MsqlProxy, because the translate() function can set it with
push_handlers().

Now let's write our own example using stacked handlers. Imagine that you want to piece together a document that
includes footers, headers, etc. without using SSI. The following example shows how to implement it. First we prepare

the code as shown in Example 4-1.
Example 4-1. Book/Compose.pm

package Book::Compose;
use Apache::Constants qw(OK);

sub header {
my $r = shift;
$r->send_http_header("text/plain");
$r->print("header text\n");
return OK;

¥

sub body {
shift->print("body text\n");
return OK;

sub footer {
shift->print("footer text\n");
return OK;

¥
i

The code defines the package Book::Compose, imports the OK constant, and defines three subroutines: header() to send
the header, body() to create and send the actual content, and finally footer() to add a standard footer to the page. At
the end of each handler we return OK, so the next handler, if any, will be executed.

To enable the construction of the page, we now supply the following configuration:

PerlModule Book::Compose
<Location /compose>

SetHandler perl-script

PerlHandler Book::Compose::header Book::Compose::body Book::Compose::footer
</Location>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

We preload the Book::Compose module and construct the PerlHandler directive by listing the handlers in the order in which
they should be invoked.[3]

(31 1t may not seem to make sense to use this example, as it would be much simpler to write a single handler to
call all three subroutines. But what if the three reside in different modules that are maintained by different authors?

Finally, let's look at the technique that allows parsing the output of another PerlHandler. For example, suppose your
module generates HTML responses, but you want the same content to be delivered in plain text at a different location.
This is a little trickier, but consider the following:

<Location /perl>
SetHandler perl-script
PerlHandler Book::HTMLContentGenerator
</Location>
<Location /text>
SetHandler perl-script
PerlHandler Book::HTML2TextConvertor Book::HTMLContentGenerator
</Location>

Notice that Book::HTML2TextConvertor is listed first. While its handler() will be called first, the actual code that does the
conversion will run last, as we will explain in a moment. Now let's look at the sample code in Example 4-2.

Example 4-2. Book/HTML2TextConvertor.pm

package Book::HTML2TextConvertor;

sub handler {

my $r = shift;

untie *STDOUT,;

tie *STDOUT => _ _PACKAGE_ _, $r;
b

sub TIEHANDLE {
my($class, $r) = @_;
bless { r => $r}, $class;

b
sub PRINT {
my $self = shift;
for (@_) {
copy it so no 'read-only value modification' will happen
my $line =$_;
$line =~ s/<[~>]*>//g; # strip the html <tags>
$self->{r}->print($line);
}
b
1L

It untie()s STDOUT and re-tie()s it to its own package, so that content printed to STDOUT by the previous content
generator in the pipe goes through this module. In the PRINT() method, we attempt to strip the HTML tags. Of course,
this is only an example; correct HTML stripping actually requires more than one line of code and a quite complex
regular expression, but you get the idea.

4.2.8 Perl Method Handlers

If mod_perl was built with:

panic% perl Makefile.PL PERL_METHOD_HANDLERS=1 ...]
or:

panic% perl Makefile.PL EVERYTHING=1 ...]

it's possible to write method handlers in addition to function handlers. This is useful when you want to write code that
takes advantage of inheritance. To make the handler act as a method under mod_perl, use the $$ function prototype in
the handler definition. When mod_perl sees that the handler function is prototyped with $$, it'll pass two arguments to
it: the calling object or a class, depending on how it was called, and the Apache request object. So you can write the
handler as:

sub handler ($$) {
my($self, $r) = @_;
...

}

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The configuration is almost as usual. Just use the class name if the default method name handler() is used:
PerlHandler Book::SubClass

However, if you choose to use a different method name, the object-oriented notation should be used:
PerlHandler Book::SubClass->my_handler

The my_handler() method will then be called as a class (static) method.

Also, you can use objects created at startup to call methods. For example:

<Perl>

use Book::SubClass;

$Book::Global::object = Book::SubClass->new();
</Perl>

PerlHandler $Book::Global::object->my_handler

In this example, the my_handler() method will be called as an instance method on the global object $Book::Global.

4.2.9 PerlFreshRestart

To reload PerlRequire, PerlModule, and other use()d modules, and to flush the Apache::Registry cache on server restart, add
this directive to httpd.conf:

PerlFreshRestart On

You should be careful using this setting. It used to cause trouble in older versions of mod_perl, and some people still
report problems using it. If you are not sure if it's working properly, a full stop and restart of the server will suffice.

Starting with mod_perl Version 1.22, PerlFreshRestart is ignored when mod_perl is compiled as a DSO. But it almost

doesn't matter, as mod_perl as a DSO will do a full tear-down (calling perl_destruct()).[ﬁ—1

[4] The parent process would leak several MB on each restart without calling perl_destruct().

4.2.10 PerlSetEnv and PerlPassEnv

In addition to Apache's SetEnv and PassEnv directives, respectively setting and passing shell environment variables,
mod_perl provides its own directives: PerlSetEnv and PerlPassEnv.

If you want to globally set an environment variable for the server, you can use the PerlSetEnv directive. For example, to
configure the mod_perl tracing mechanism (as discussed in Chapter 21), add this to httpd.conf:

PerlSetEnv MOD_PERL_TRACE all
This will enable full mod_perl tracing.

Normally, PATH is the only shell environment variable available under mod_perl. If you need to rely on other
environment variables, you can have mod_perl make those available for your code with PerlPassEnv.

For example, to forward the environment variable HOME (which is usually set to the home of the user who has invoked
the server in httpd.conf), add:

PerlPassEnv HOME
Once you set the environment variable, it can be accessed via the %ENV hash in Perl (e.g., $ENV{HOME}).

PerlSetEnv and PerlPassEnv work just like the Apache equivalents, except that they take effect in the first phase of the
Apache request cycle. The standard Apache directives SetEnv and PassEnv don't affect the environment until the fixup
phase, which happens much later, just before content generation. This works for CGI scripts, which aren't run before
then, but if you need to set some environment variables and access them in a handler invoked before the response
stage, you should use the mod_perl directives. For example, handlers that want to use an Oracle relational database
during the authentication phase might need to set the following environment variable (among others) in httpd.conf:

PerlSetEnv ORACLE_HOME /share/lib/oracle/

Note that PerlSetEnv will override the environment variables that were available earlier. For example, we have
mentioned that PATH is always supplied by Apache itself. But if you explicitly set:

PerlSetEnv PATH /tmp
this setting will be used instead of the one set in the shell program.

As with other configuration scoping rules, if you place PerlSetEnv or PerlPassEnv in the scope of the configuration file, it
will apply everywhere (unless overridden). If placed into a <Location> section, or another section in the same group,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

these directives will influence only the handlers in that section.

4.2.11 PerlSetVar and PerlAddVar

PerlSetVar is another directive introduced by mod_perl. It is very similar to PerlSetEnv, but the key/value pairs are stored
in an Apache::Table object and retrieved using the dir_config() method.

There are two ways to use PerlSetVar. The first is the usual way, as a configuration directive. For example:
PerlSetVar foo bar
The other way is via Perl code in <Perl> sections:

<Perl>
push @{ $Location{"/"}->{PerlSetVar} }, [foo => 'bar'];
</Perl>

Now we can retrieve the value of foo using the dir_config() method:
$foo = $r->dir_config('foo');
Note that you cannot use the following code in <Perl> sections, which we discuss later in this chapter:
<Perl>
my %foo = (a=>0,b=>1);
push @{ $Location{"/"}->{PerlSetVar} }, [foo => \%foo J;
</Perl>

All values are passed to Apache::Table as strings, so you will get a stringified reference to a hash as a value (such as
"HASH(0x87a5108)"). This cannot be turned back into the original hash upon retrieval.

However, you can use the PerlAddVar directive to push more values into the variable, emulating arrays. For example:

PerlSetVar foo bar
PerlAddVar foo barl
PerlAddVar foo bar2

or the equivalent:

PerlAddVar foo bar
PerlAddVar foo barl
PerlAddVar foo bar2

To retrieve the values, use the $r->dir_config->get() method:
my @foo = $r->dir_config->get(‘foo');

Obviously, you can always turn an array into a hash with Perl, so you can use this directive to pass hashes as well.
Consider this example:

PerlAddVar foo keyl
PerlAddVar foo valuel
PerlAddVar foo key2
PerlAddVar foo value2

You can then retrieve the hash in this way:
my %foo = $r->dir_config->get('foo');
Make sure that you use an even number of elements if you store the retrieved values in a hash.
Passing a list or a hash via the PerlAddVar directive in a <Perl> section should be coded in this way:
<Perl>

my %foo = (a =>0, b =>1);

for (%foo) {

push @{ $Location{"/"}->{PerlAddVar} }, [foo => $_1;

</Perl>
Now you get back the hash as before:
my %foo = $r->dir_config->get('foo’);
This might not seem very practical; if you have more complex needs, think about having dedicated configuration files.

Customized configuration directives can also be created for the specific needs of a Perl module. To learn how to create
these, please refer to Chapter 8 of Writing Apache Modules with Perl and C (O'Reilly), which covers this topic in great
detail.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

4.2.12 PerlSetupEnv

Certain Perl modules used in CGI code (such as CGL.pm) rely on a humber of environment variables that are normally
set by mod_cgi. For example, many modules depend on QUERY_STRING, SCRIPT_FILENAME, and REQUEST_URI. When the
PerlSetupEnv directive is turned on, mod_perl provides these environment variables in the same fashion that mod_cgi
does. This directive is On by default, which means that all the environment variables you are accustomed to being
available under mod_cgi are also available under mod_perl.

The process of setting these environment variables adds overhead for each request, whether the variables are needed
or not. If you don't use modules that rely on this behavior, you can turn it off in the general configuration and then turn
it on in sections that need it (such as legacy CGI scripts):

PerlSetupEnv Off

<Location /perl-run>
SetHandler perl-script
PerlHandler Apache::PerlRun
Options +ExecCGI
PerlSetupEnv On

</Location>

You can use mod_perl methods to access the information provided by these environment variables (e.g., $r->path_info
instead of $ENV{PATH_INFO}). For more details, see the explanation in Chapter 11.

4.2.13 PerlWarn and PeriTaintCheck

PerlWarn and PerlTaintCheck have two possible values, On and Off. PerlWarn turns warnings on and off globally to the whole
server, and PerlTaintCheck controls whether the server is running with taint checking or not. These two variables are also

explained in Chapter 6.

[Team LiB] [+ Faavisvs vt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Pavisua]f T o]
4.3 The Startup File

At server startup, before child processes are spawned, you can do much more than just preload modules. You might
want to register code that will initialize a database connection for each child when it is forked, tie read-only DBM files,
fill in shared caches, etc.

The startup.pl file is an ideal place to put code that should be executed when the server starts. Once you have prepared
the code, load it in httpd.conf before other mod_perl configuration directives with the PerlRequire directive:

PerlRequire /home/httpd/perl/lib/startup.pl

Be careful with the startup file. Everything run at server initialization is run with root privileges if you start the server as
root (which you have to do unless you choose to run the server on an unprivileged port, numbered 1024 or higher).
This means that anyone who has write access to a script or module that is loaded by PerlModule, PerlRequire, or <Perl>
sections effectively has root access to the system.

4.3.1 A Sample Startup File

Let's look at a real-world startup file. The elements of the file are shown here, followed by their descriptions.

use strict;

This pragma is worth using in every script longer than half a dozen lines. It will save a lot of time and debugging later.
use lib gw(/home/httpd/lib /home/httpd/extra-lib);

This permanently adds extra directories to @INC, something that's possible only during server startup. At the end of
each request's processing, mod_perl resets @INC to the value it had after the server startup. Alternatively, you can use
the PERLSLIB environment variable to add extra directories to @INC.

$ENV{MOD_PERL} or die "not running under mod_perl!";
This is a sanity check. If mod_perl wasn't properly built, the server startup is aborted.

use Apache::Registry ();
use LWP::UserAgent ();
use Apache::DBI ();

use DBI ();

Preload the modules that get used by Perl code serving requests. Unless you need the symbols (variables and
subroutines) exported by preloaded modules to accomplish something within the startup file, don't import them—it's
just a waste of startup time and memory. Instead, use the empty import list () to tell the import() function not to
import anything.

use Carp ();
$SIG{_ _WARN_ _} = \&Carp::cluck;

This is a useful snippet to enable extended warnings logged in the error_log file. In addition to basic warnings, a trace
of calls is added. This makes tracking potential problems a much easier task, since you know who called what.

The only drawback of this method is that it globally overrides the default warning handler behavior—thus, in some
places it might be desirable to change the settings locally (for example, with local $~W=0, or no warnings under Perl 5.6.0
and higher). Usually warnings are turned off on production machines to prevent unnecessary clogging of the error_log
file if your code is not very clean. Hence, this method is mostly useful in a development environment.

use CGI ();
CGI->compile(":all");

Some modules, such as CGIL.pm, create their subroutines at runtime via AUTOLOAD to improve their loading time. This
helps when the module includes many subroutines but only a few are actually used. (Also refer to the AutoSplit
manpage.) Since the module is loaded only once with mod_perl, it might be a good idea to precompile all or some of its
methods at server startup. This avoids the overhead of compilation at runtime. It also helps share more compiled code
between child processes.

CGIL.pm's compile() method performs this task. Note that compile() is specific to CGL.pm; other modules that implement
this feature may use another name for the compilation method.

As with all modules we preload in the startup file, we don't import symbols from them because they will be lost when
they go out of the file's scope.

The following code snippet makes sure that when the child process is spawned, a connection to the database is opened
automatically, avoiding this performance hit on the first request:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Apache::DBI->connect_on_init
("DBIL:mysql:database=test;host=localhost",
"user", "password", {
PrintError => 1, # warn() on errors
RaiseError => 0, # don't die on error
AutoCommit => 1, # commit executes immediately
¥
)i

We discuss this method in detail in Chapter 20.

The file ends with 1; so it can be successfully loaded by Perl.

The entire startup.pl file is shown in Example 4-3.
Example 4-3. startup.pl

use strict;

use lib gw(/home/httpd/lib /home/httpd/extra-lib);
$ENV{MOD_PERL} or die "not running under mod_perl!";

use Apache::Registry ();
use LWP::UserAgent ();
use Apache::DBI ();

use DBI ();

use Carp ();
$SIG{_ _WARN_ _} = \&Carp::cluck;

use CGI ();
CGI->compile(":all');

Apache::DBI->connect_on_init
("DBI:mysql:database=test;host=localhost",
"user", "password", {
PrintError => 1, # warn() on errors
RaiseError => 0, # don't die on error
AutoCommit => 1, # commit executes immediately
¥
)
1

4.3.2 Syntax Validation

If the startup file doesn't include any modules that require the mod_perl runtime environment during their loading, you
can validate its syntax with:

panic% perl -cw /home/httpd/perl/lib/startup.pl
The -c switch tells Perl to validate only the file's syntax, and the -w switch enables warnings.

Apache::DBI is an example of a module that cannot be loaded outside of the mod_perl environment. If you try to load it,
you will get the following error message:

panic% perl -MApache::DBI -c -e 1

Can't locate object method "module" via package "Apache"
(perhaps you forgot to load "Apache"?) at
/Jusr/lib/perl5/site_perl/5.6.1/Apache/DBI.pm line 202.
Compilation failed in require.

BEGIN failed--compilation aborted.

However, Apache::DBI will work perfectly once loaded from within mod_perl.

4.3.3 What Modules Should Be Added to the Startup File

Every module loaded at server startup will be shared among the server children, saving a lot of RAM on your machine.
Usually, we put most of the code we develop into modules and preload them.

You can even preload CGI scripts with Apache::RegistryLoader, as explained in Chapter 10.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

4.3.4 The Confusion with use() in the Server Startup File

Some people wonder why they need to duplicate use Modulename in the startup file and in the script itself. The confusion
arises due to misunderstanding use(). Let's take the POSIX module as an example. When you write:

use POSIX qw(setsid);
use() internally performs two operations:

BEGIN {
require POSIX;
POSIX->import(qw(setsid));
¥

The first operation loads and compiles the module. The second calls the module's import() method and specifies to
import the symbol setsid into the caller's namespace. The BEGIN block makes sure that the code is executed as soon as
possible, before the rest of the code is even parsed. POSIX, like many other modules, specifies a default export list. This
is an especially extensive list, so when you call:

use POSIX;
about 500 KB worth of symbols gets imported.

Usually, we don't need POSIX or its symbols in the startup file; all we want is to preload it. Therefore, we use an empty
list as an argument for use():

use POSIX ();
so the POSIX::import() method won't be even called.

When we want to use the POSIX module in the code, we use() it again, but this time no loading overhead occurs
because the module has been loaded already. If we want to import something from the module, we supply the list of
symbols to load:

use POSIX qw(:flock_h);
This example loads constants used with the flock() function.

Technically, you aren't required to supply the use() statement in your handler code if the module has already been
loaded during server startup or elsewhere. When writing your code, however, don't assume that the module code has
been preloaded. Someday in the future, you or someone else will revisit this code and will not understand how it is
possible to use a module's methods without first loading the module itself.

Please refer to the Exporter and perlmod manpages, and to the section on use() in the per/func manpage for more
information about import().

Remember that you can always use require() to preload the files at server startup if you don't add (), because:
require Data::Dumper;

is the same as:

use Data::Dumper ();

except that it's not executed at compile-time.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
4.4 Apache Configuration in Perl

With <Perl> ... </Perl> sections, you can configure your server entirely in Perl. It's probably not worth it if you have
simple configuration files, but if you run many virtual hosts or have complicated setups for any other reason, <Perl>
sections become very handy. With <Perl> sections you can easily create the configuration on the fly, thus reducing

duplication and easing maintenance.[2]

[5] You may also find that mod_macro is useful to simplify the configuration if you have to insert many repetitive
configuration snippets.

To enable <Perl> sections, build mod_perl with:
panic% perl Makefile.PL PERL_SECTIONS=17 ...]

or with EVERYTHING=1.

4.4.1 Constructing <Perl> Sections

<Perl> sections can contain any and as much Perl code as you wish. <Perl> sections are compiled into a special package
called Apache::ReadConfig. mod_perl looks through the symbol table for Apache::ReadConfig for Perl variables and
structures to grind through the Apache core configuration gears. Most of the configuration directives can be represented
as scalars ($scalar) or arrays (@array). A few directives become hashes.

How do you know which Perl global variables to use? Just take the Apache directive name and prepend either $, @, or
% (as shown in the following examples), depending on what the directive accepts. If you misspell the directive, it is
silently ignored, so it's a good idea to check your settings.

Since Apache directives are case-insensitive, their Perl equivalents are case-insensitive as well. The following
statements are equivalent:

$User = 'stas';
$user = 'stas'; # the same

Let's look at all possible cases we might encounter while configuring Apache in Perl:

® Directives that accept zero or one argument are represented as scalars. For example, CacheNegotiatedDocs is a
directive with no arguments. In Perl, we just assign it an empty string:

<Perl>
$CacheNegotiatedDocs = ";
</Perl>

Directives that accept a single value are simple to handle. For example, to configure Apache so that child
processes run as user httpd and group httpd, use:

User = httpd
Group = httpd

What if we don't want user and group definitions to be hardcoded? Instead, what if we want to define them on
the fly using the user and group with which the server is started? This is easily done with <Perl> sections:

<Perl>
$User = getpwuid($>) || $>;

$Group = getgrgid($)) || $);
</Perl>

We use the power of the Perl API to retrieve the data on the fly. $User is set to the name of the effective user ID
with which the server was started or, if the name is not defined, the numeric user ID. Similarly, $Group is set to
either the symbolic value of the effective group ID or the numeric group ID.

Notice that we've just taken the Apache directives and prepended a $, as they represent scalars.

® Directives that accept more than one argument are represented as arrays or as a space-delimited string. For
example, this directive:

PerIModule Mail::Send Devel::Peek

becomes:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

<Perl>
@PerlModule = qw(Mail::Send Devel::Peek);
</Perl>

@PerlModule is an array variable, and we assign it a list of modules. Alternatively, we can use the scalar notation
and pass all the arguments as a space-delimited string:

<Perl>
$PerlModule = "Mail::Send Devel::Peek";
</Perl>

Directives that can be repeated more than once with different values are represented as arrays of arrays. For
example, this configuration:

AddEncoding x-compress Z
AddEncoding x-gzip gz tgz

becomes:

<Perl>
@AddEncoding = (
['x-compress' => qw(Z)],
['x-gzip' => qw(gz tgz)],

</Perl>

Directives that implement a container block, with beginning and ending delimiters such as <Location> ...
</Location>, are represented as Perl hashes. In these hashes, the keys are the arguments of the opening
directive, and the values are the contents of the block. For example:

Alias /private /home/httpd/docs/private
<Location /private>
DirectoryIndex index.html index.htm
AuthType Basic

AuthName "Private Area"
AuthUserFile /home/httpd/docs/private/.htpasswd
Require valid-user

</Location>

These settings tell Apache that URIs starting with /private are mapped to the physical directory
/home/httpd/docs/private/ and will be processed according to the following rules:

O The users are to be authenticated using basic authentication.
O PrivateArea will be used as the title of the pop-up box displaying the login and password entry form.

© Only valid users listed in the password file /home/httpd/docs/private/.htpasswd and who provide a valid
password may access the resources under /private/.

O If the filename is not provided, Apache will attempt to respond with the index.html or index.htm
directory index file, if found.

Now let's see the equivalent <Perl> section:

<Perl>
push @Alias, qw(/private /home/httpd/docs/private);
$Location{"/private"} = {
DirectoryIndex => [gqw(index.html index.htm)],

AuthType => 'Basic',
AuthName => "Private Area",
AuthUserFile => "/home/httpd/docs/private/.htpasswd’,
Require => 'valid-user,
b2
</Perl>

First, we convert the Alias directive into an array @Alias. Instead of assigning, however, we push the values at
the end. We do this because it's possible that we have assigned values earlier, and we don't want to overwrite
them. Alternatively, you may want to push references to lists, like this:

push @Alias, [qw(/private /home/httpd/docs/private)];

Second, we convert the Location block, using /private as a key to the hash %Location and the rest of the block as
its value. When the structures are nested, the normal Perl rules apply—that is, arrays and hashes turn into
references. Therefore, DirectoryIlndex points to an array reference. As shown earlier, we can always replace this
array with a space-delimited string:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

$Location{"/private"} = {
DirectoryIndex => 'index.html index.htm’,

Y

Also notice how we specify the value of the AuthName attribute:

m

AuthName => "'Private Area"',
The value is quoted twice because Apache expects a single value for this argument, and if we write:
AuthName => 'Private Area’,

<Perl> will pass two values to Apache, "Private" and "Area", and Apache will refuse to start, with the following
complaint:

[Thu May 16 17:01:20 2002] [error] <Perl>: AuthName takes one
argument, The authentication realm (e.g. "Members Only")

If a block section accepts two or more identical keys (as the <VirtualHost> ... </VirtualHost> section does), the
same rules as in the previous case apply, but a reference to an array of hashes is used instead.

In one company, we had to run an Intranet machine behind a NAT/firewall (using the 10.0.0.10 IP address). We
decided up front to have two virtual hosts to make both the management and the programmers happy. We had
the following simplistic setup:

NameVirtualHost 10.0.0.10

<VirtualHost 10.0.0.10>
ServerName tech.intranet
DocumentRoot /home/httpd/docs/tech
ServerAdmin webmaster@tech.intranet
</VirtualHost>

<VirtualHost 10.0.0.10>
ServerName suit.intranet
DocumentRoot /home/httpd/docs/suit
ServerAdmin webmaster@suit.intranet
</VirtualHost>

In Perl, we wrote it as follows:

<Perl>

$NameVirtualHost => '10.0.0.10";

my $doc_root = "/home/httpd/docs";

$VirtualHost{'10.0.0.10"} = [
{
ServerName => 'tech.intranet’,
DocumentRoot => "$doc_root/tech”,
ServerAdmin => 'webmaster@tech.intranet’,
}I
{

ServerName => 'suit.intranet’,
DocumentRoot => "$doc_root/suit",
ServerAdmin => 'webmaster@suit.intranet’,

Because normal Perl rules apply, more entries can be added as needed using push().[—fﬂ Let's say we want to
create a special virtual host for the company's president to show off to his golf partners, but his fancy vision
doesn't really fit the purpose of the Intranet site. We just let him handle his own site:

[6] For complex configurations with multiple entries, consider using the module Tie::DxHash, which
implements a hash that preserves insertion order and allows duplicate keys.

push @{ $VirtualHost{'10.0.0.10'} },

ServerName => 'president.intranet’,
DocumentRoot => "$doc_root/president”,
ServerAdmin => 'webmaster@president.intranet’,

1

Nested block directives naturally become Perl nested data structures. Let's extend an example from the
previous section:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<Perl>
my $doc_root = "/home/httpd/docs";
push @{ $VirtualHost{'10.0.0.10'} },

{

ServerName => 'president.intranet’,
DocumentRoot => "$doc_root/president",
ServerAdmin => 'webmaster@president.intranet’,
Location => {
"/private" =>{

Options => 'Indexes',

AllowOverride => 'None',

AuthType => 'Basic',

AuthName => "Do Not Enter",

AuthUserFile => 'private/.htpasswd',

Require => 'valid-user",

b

perlrun" => {
SetHandler => "perl-script’,
PerlHandler => 'Apache::PerlRun’,
PerlSendHeader => 'On’,
Options => "+ExecCGI',
}I
}l
)7

</Perl>

We have added two Location blocks. The first, /private, is for the juicy stuff and accessible only to users listed in
the president's password file. The second, /perirun, is for running dirty Perl CGI scripts, to be handled by the
Apache::PerlRun handler.

® <Perl> sections don't provide equivalents for <IfModule> and <IfDefine> containers. Instead, you can use the
module() and define() methods from the Apache package. For example:

<IfModule mod_ssl.c>
Include ssl.conf
</IfModule>

can be written as:

if (Apache->module("mod_ssl.c")) {
push @Include, "ssl.conf";

And this configuration example:

<IfDefine SSL>
Include ssl.conf
</IfDefine>

can be written as:

if (Apache->define("SSL")) {
push @Include, "ssl.conf";

}

Now that you know how to convert the usual configuration directives to Perl code, there's no limit to what you
can do with it. For example, you can put environment variables in an array and then pass them all to the
children with a single configuration directive, rather than listing each one via PassEnv or PerlPassEnv:

<Perl>
my @env = qw(MYSQL_HOME CVS_RSH);
push @PerlPassEnv, \@env;

</Perl>

Or suppose you have a cluster of machines with similar configurations and only small distinctions between
them. Ideally, you would want to maintain a single configuration file, but because the configurations aren't
exactly the same (for example, the ServerName directive will have to differ), it's not quite that simple.

<Perl> sections come to the rescue. Now you can have a single configuration file and use the full power of Perl
to tweak the local configuration. For example, to solve the problem of the ServerName directive, you might have
this <Perl> section:

<Perl>
use Sys::Hostname;
$ServerName = hostname();
</Perl>

and the right machine name will be assigned automatically.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Or, if you want to allow personal directories on all machines except the ones whose names start with secure,
you can use:

<Perl>
use Sys::Hostname;
$ServerName = hostname();
if ($ServerName !~ /~secure/) {
$UserDir = "public.html";
b

</Perl>

4.4.2 Breaking Out of <Perl> Sections

Behind the scenes, mod_perl defines a package called Apache::ReadConfig in which it keeps all the variables that you
define inside the <Perl> sections. So <Perl> sections aren't the only way to use mod_perl to configure the server: you
can also place the Perl code in a separate file that will be called during the configuration parsing with either PerlModule or
PerlRequire directives, or from within the startup file. All you have to do is to declare the package Apache::ReadConfig
before writing any code in this file.

Using the last example from the previous section, we place the code into a file named apache_config.pl, shown in

Example 4-4.
Example 4-4. apache_config.pl

package Apache::ReadConfig;

use Sys::Hostname;

$ServerName = hostname();

if ($ServerName !~ /~secure/) {
$UserDir = "public.html";

¥

1

Then we execute it either from httpd.conf:
PerlRequire /home/httpd/perl/lib/apache_config.pl
or from the startup.pl file:

require "/home/httpd/perl/lib/apache_config.pl";

4.4.3 Cheating with Apache->httpd_conf

In fact, you can create a complete configuration file in Perl. For example, instead of putting the following lines in
httpd.conf:

NameVirtualHost 10.0.0.10

<VirtualHost 10.0.0.10>
ServerName tech.intranet
DocumentRoot /home/httpd/httpd_perl/docs/tech
ServerAdmin webmaster@tech.intranet
</VirtualHost>

<VirtualHost 10.0.0.10>
ServerName suit.intranet
DocumentRoot /home/httpd/httpd_perl/docs/suit
ServerAdmin webmaster@suit.intranet
</VirtualHost>

You can write it in Perl:

use Socket;

use Sys::Hostname;

my $hostname = hostname();

(my $domain = $hostname) =~ s/[.]+\.//;

my $ip = inet_ntoa(scalar gethostbyname($hostname || 'localhost’));
my $doc_root = '/home/httpd/docs';

Apache->httpd_conf(qq{
NameVirtualHost $ip

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<VirtualHost $ip>
ServerName tech.$domain
DocumentRoot $doc_root/tech
ServerAdmin webmaster\@tech.$domain
</VirtualHost>

<VirtualHost $ip>
ServerName suit.$domain
DocumentRoot $doc_root/suit
ServerAdmin webmaster\@suit.$domain

</VirtualHost>

i

First, we prepare the data, such as deriving the domain name and IP address from the hostname. Next, we construct
the configuration file in the "usual"” way, but using the variables that were created on the fly. We can reuse this
configuration file on many machines, and it will work anywhere without any need for adjustment.

Now consider that you have many more virtual hosts with a similar configuration. You have probably already guessed
what we are going to do next:

use Socket;

use Sys::Hostname;

my $hostname = hostname();

(my $domain = $hostname) =~ s/[*.]+\.//;

my $ip = inet_ntoa(scalar gethostbyname($hostname || 'localhost"));
my $doc_root = '/home/httpd/docs';

my @vhosts = qw(suit tech president);

Apache->httpd_conf("NameVirtualHost $ip");

for my $vh (@vhosts) {
Apache->httpd_conf(qq{

<VirtualHost $ip>
ServerName $vh.$domain
DocumentRoot $doc_root/$vh
ServerAdmin webmaster\@$vh.$domain

</VirtualHost>

;

b

In the loop, we create new virtual hosts. If we need to create 100 hosts, it doesn't take a long time—just adjust the
@vhosts array.

4.4.4 Declaring Package Names in Perl Sections

Be careful when you declare package names inside <Perl> sections. For example, this code has a problem:

<Perl>
package Book::Trans;
use Apache::Constants qw(:common);
sub handler { OK }

$PerlTransHandler = "Book::Trans";
</Perl>

When you put code inside a <Perl> section, by default it goes into the Apache::ReadConfig package, which is already
declared for you. This means that the PerlTransHandler we tried to define will be ignored, since it's not a global variable in
the Apache::ReadConfig package.

If you define a different package name within a <Perl> section, make sure to close the scope of that package and return
to the Apache::ReadConfig package when you want to define the configuration directives. You can do this by either
explicitly declaring the Apache::ReadConfig package:

<Perl>
package Book::Trans;
use Apache::Constants qw(:common);
sub handler { OK }

package Apache::ReadConfig;
$PerlTransHandler = "Book::Trans";
</Perl>

or putting the code that resides in a different package into a block:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<Perl>
{
package Book::Trans;
use Apache::Constants qw(:common);
sub handler { OK }
}

$PerlTransHandler = "Book::Trans";
</Perl>

so that when the block is over, the Book::Trans package's scope is over, and you can use the configuration variables
again.

However, it's probably a good idea to use <Perl> sections only to create or adjust configuration directives. If you need
to run some other code not related to configuration, it might be better to place it in the startup file or in its own
module. Your mileage may vary, of course.

4.4.5 Verifying <Perl> Sections

How do we know whether the configuration made inside <Perl> sections was correct?

First we need to check the validity of the Perl syntax. To do that, we should turn it into a Perl script, by adding #!perl at
the top of the section:

<Perl>

#!perl

... code here ...
__END_ _
</Perl>

Notice that #!perl and _ _END_ _ must start from the column zero. Also, the same rules as we saw earlier with validation
of the startup file apply: if the <Perl> section includes some modules that can be loaded only when mod_perl is running,
this validation is not applicable.

Now we may run:
perl -cx httpd.conf

If the Perl code doesn't compile, the server won't start. If the Perl code is syntactically correct, but the generated
Apache configuration is invalid, <Perl> sections will just log a warning and carry on, since there might be globals in the
section that are not intended for the configuration at all.

If you have more than one <Perl> section, you will have to repeat this procedure for each section, to make sure they all
work.

To check the Apache configuration syntax, you can use the variable $Apache::Server::StrictPerlSections, added in mod_perl
Version 1.22. If you set this variable to a true value:

$Apache::Server::StrictPerlSections = 1;

then mod_perl will not tolerate invalid Apache configuration syntax and will croak (die) if it encounters invalid syntax.
The default value is 0. If you don't set $Apache::Server::StrictPerlSections to 1, you should localize variables unrelated to
configuration with my() to avoid errors.

If the syntax is correct, the next thing we need to look at is the parsed configuration as seen by Perl. There are two
ways to see it. First, we can dump it at the end of the section:

<Perl>

use Apache::PerlSections ();

code goes here

print STDERR Apache::PerlSections->dump();
</Perl>

Here, we load the Apache::PerlSections module at the beginning of the section, and at the end we can use its dump()
method to print out the configuration as seen by Perl. Notice that only the configuration created in the section will be
seen in the dump. No plain Apache configuration can be found there.

For example, if we adjust this section (parts of which we have seen before) to dump the parsed contents:

<Perl>
use Apache::PerlSections ();
$User = getpwuid($>) || $>;
$Group = getgrgid($)) || $);
push @Alias, [qw(/private /home/httpd/docs/private)];
my $doc_root = "/home/httpd/docs";
push @{ $VirtualHost{'10.0.0.10'} },
{

ServerName => 'president.intranet’,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

DocumentRoot => "$doc_root/president”,
ServerAdmin => 'webmaster@president.intranet’,

Location =>{
"/private" => {
Options => 'Indexes',

AllowOverride => 'None',
AuthType => 'Basic',
AuthName => ""Do Not Enter",
AuthUserFile => 'private/.htpasswd',
Require => 'valid-user",

}I

"/perlrun" => {
SetHandler => "perl-script’,
PerlHandler => 'Apache::PerlRun’,
PerlSendHeader => 'On’,

Options => "+ExecCGI',
}I
)2
b7
print STDERR Apache::PerlSections->dump();
</Perl>

This is what we get as a dump:

package Apache::ReadConfig;
#hashes:

%/VirtualHost = (
'10.0.0.10"' => [

'Location’ => {
'/private’ => {
'AllowOverride' => 'None',
'AuthType' => 'Basic',
'Options' => 'Indexes',
'AuthUserFile' => 'private/.htpasswd',
'AuthName' => "'Do Not Enter",
'Require' => 'valid-user'
)
'/perlrun’ => {
'PerlHandler' => 'Apache::PerlRun’,
'Options' => '+ExecCGI',
'PerlSendHeader' => 'On’,
'SetHandler' => 'perl-script'
b
}l
‘DocumentRoot’ => '/home/httpd/docs/president’,
'ServerAdmin' => 'webmaster@president.intranet’,
'ServerName' => 'president.intranet'
3
1
)i

#arrays:

@Alias = (
'/private’,
'/home/httpd/docs/private’

]
)

#scalars:
$Group = 'stas’;
$User = 'stas';

i
_ _END_ _

You can see that the configuration was created properly. The dump places the output into three groups: arrays, hashes,
and scalars. The server was started as user stas, so the $User and $Group settings were dynamically assigned to the
user stas.

A different approach to seeing the dump at any time (not only during startup) is to use the Apache::Status module (see
Chapter 9). First we store the Perl configuration:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<Perl>
$Apache::Server::SaveConfig = 1;
the actual configuration code
</Perl>

Now the Apache::ReadConfig namespace (in which the configuration data is stored) will not be flushed, making
configuration data available to Perl modules at request time. If the Apache::Status module is configured, you can view it
by going to the /perl/-status URI (or another URI that you have chosen) in your browser and selecting "Perl Section
Configuration" from the menu. The configuration data should look something like that shown in Figure 4-1.

Figure 4-1. <Perl> sections configuration dump

Since the Apache::ReadConfig namespace is not flushed when the server is started, you can access the configuration
values from your code—the data resides in the Apache::ReadConfig package. So if you had the following Perl
configuration:

<Perl>
$Apache::Server::SaveConfig = 1;
$DocumentRoot = "/home/httpd/docs/mine";
</Perl>

at request time, you could access the value of $DocumentRoot with the fully qualified name
$Apache::ReadConfig::DocumentRoot. But usually you don't need to do this, because mod_perl provides you with an API to
access to the most interesting and useful server configuration bits.

4.4.6 Saving the Perl Configuration

Instead of dumping the generated Perl configuration, you may decide to store it in a file. For example, if you want to
store it in httpd_config.pl, you can do the following:

<Perl>
use Apache::PerlSections ();
code goes here
Apache::PerlSections->store("httpd_config.pl");
</Perl>

You can then require() that file in some other <Perl> section. If you have the whole server configuration in Perl, you can
start the server using the following trick:

panic% httpd -C "PerlRequire httpd_config.pl"

Apache will fetch all the configuration directives from httpd_config.pl, so you don't need httpd.conf at all.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

4.4.7 Debugging

If your configuration doesn't seem to do what it's supposed to do, you should debug it. First, build mod_perl with:
panic% perl Makefile.PL PERL_TRACE=1 [...]

Next, set the environment variable MOD_PERL_TRACE to s (as explained in Chapter 21). Now you should be able to see
how the <Perl> section globals are converted into directive string values. For example, suppose you have the following
Perl section:

<Perl>
$DocumentRoot = "/home/httpd/docs/mine";
</Perl>

If you start the server in single-server mode (e.g., under bash):
panic% MOD_PERL_TRACE=s httpd -X

you will see these lines among the printed trace:

SVt_PV: $DocumentRoot = */home/httpd/docs/mine'
handle_command (DocumentRoot /home/httpd/docs/mine): OK

But what if you mistype the directory name and pass two values instead of a single value? When you start the server,
you'll see the following error:

SVt_PV: $DocumentRoot = */home/httpd/docs/ mine'
handle_command (DocumentRoot /home/httpd/docs/ mine):
DocumentRoot takes one argument,

Root directory of the document tree

and of course the error will be logged in the error_log file:

[Wed Dec 20 23:47:31 2000] [error]
(2)No such file or directory: <Perl>:
DocumentRoot takes one argument,
Root directory of the document tree

[Team LiB] [+ Faavisvs vt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
4.5 Validating the Configuration Syntax

Before you restart a server on a live production machine after the configuration has been changed, it's essential to
validate that the configuration file is not broken. If the configuration is broken, the server won't restart and users will
find your server offline for the time it'll take you to fix the configuration and start the server again.

You can use apachect! configtest or httpd -t to validate the configuration file without starting the server. You can safely
validate the configuration file on a running production server, as long as you run this test before you restart the server
with apachectl restart. Of course, it is not 100% perfect, but it will reveal any syntax errors you might have made while
editing the file.

The validation procedure doesn't just parse the code in startup.pl, it executes it too. <Perl> sections invoke the Perl
interpreter when reading the configuration files, and PerlRequire and PerlModule do so as well.

Of course, we assume that the code that gets called during this test cannot cause any harm to your running production
environment. If you're worried about that, you can prevent the code in the startup script and in <Perl> sections from
being executed during the syntax check. If the server configuration is tested with -Dsyntax_check:

panic% httpd -t -Dsyntax_check
you can check in your code whether syntax_check was set with:
Apache->define('syntax_check')

If, for example, you want to prevent the code in startup.pl/ from being executed, add the following at the top of the
code:

return if Apache->define('syntax_check');

Of course, there is nothing magical about using the string 'syntax_check' as a flag—you can use any other string as well.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 rxaviss] firaxt +]
4.6 The Scope of mod_perl Configuration Directives

able 4-1 depicts where the various mod_perl configuration directives can be used.

Table 4-1. The Scope of mod_perl configuration directives

Directive Global <VirtualHost> <Directory>

PerlTaintCheck \%

PerlWarn \

PerlFreshRestart \%

PerlPassEnv \ V

PerlRequire \ V \Y,
PerlModule \ V \
PerlAddVar \ V \
PerlSetEnv \ V Vv
PerlSetVar \ V \
PerlSetupEnv Vv \% \%
PerlSendHeader \% \" \"
<Perl> Sections Vv \ Vv

The first column represents directives that can appear in the global configuration; that is, outside all sections. Note that
PerlTaintCheck, PerlWarn, and PerlFreshRestart can be placed inside <VirtualHost> sections. However, because there's only
one Perl interpreter for all virtual hosts and the main server, setting any of these values in one virtual host affects all
other servers. Therefore, it's probably a good idea to think of these variables as being allowed only in the global
configuration.

The second column represents directives that can appear inside the <VirtualHost> sections.

The third column represents directives that can appear in the <Directory>, <Location>, and <Files> sections and all their
regex variants. These mod_perl directives can also appear in .htaccess files.

For example, PerlWarn cannot be used in <Directory> and <VirtualHost> sections. However, PerlSetEnv can be used
anywhere, which allows you to provide different behavior in different sections:

PerlSetEnv ADMIN_EMAIL webmaster@example.com
<Location /bar/manage/>

PerlSetEnv ADMIN_EMAIL bar@example.com
</Location>

In this example, a handler invoked from /bar/manage/ will see the ADMIN_EMAIL environment variable as
bar@example.com, while other handlers configured elsewhere will see ADMIN_EMAIL as the default value,
webmaster@example.com.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
4.7 Apache Restarts Twice

When the server is restarted, the configuration and module initialization phases are called twice before the children are
forked. The second restart is done to test that all modules can survive a restart (SIGHUP), in order to ensure that future
graceful restarts will work correctly. This is very important if you are going to restart a production server.

You can control what Perl code will be executed on the start or restart by checking the values of $Apache::Server::Starting
and $Apache::Server::ReStarting. The former variable is true when the server is starting, and the latter is true when it's
restarting.

For example, if you want to be notified when the server starts or restarts, you can do:

<Perl>
email_notify("start") if $Apache::Server::Starting;
email_notify("restart") if $Apache::Server::ReStarting;
</Perl>

where the function email_notify() (that you have to write) performs the notification. Since Apache restarts itself on start,
you will get both notifications when Apache is started, and only one when it's restarted.

The startup.pl file and similar files loaded via PerlModule or PerlRequire are compiled only once, because once the module
is compiled, it enters the special %INC hash. When Apache restarts, Perl checks whether the module or script in
question is already registered in %INC and won't try to compile it again.

Thus, the only code that you might need to protect from running on restart is the code in <Perl> sections. But since
<Perl> sections are primarily used for creating on-the-fly configurations, it shouldn't be a problem to run the code more
than once.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
4.8 Enabling Remote Server Configuration Reports

The nifty mod_info Apache module displays the complete server configuration in your browser. In order to use it, you
have to compile it in or, if the server was compiled with DSO mode enabled, load it as an object. Then just uncomment
the already prepared section in the httpd.conf file:

<Location /server-info>
SetHandler server-info
Order deny,allow
Deny from all
Allow from localhost
</Location>

Now restart the server and issue the request:
http://localhost/server-info

We won't show a snapshot of the output here, as it's very lengthy. However, you should know that mod_info is unaware
of the configuration created or modified by <Perl> sections or equivalent methods discussed earlier in this chapter.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
4.9 Tips and Tricks

The following are miscellaneous tips and tricks that might save you lots of time when configuring mod_perl and Apache.

4.9.1 Publishing Port Numbers Other Than 80

If you are using a dual-server setup, with a mod_perl server listening on a high port (e.g., 8080), don't publish the high
port number in URLs. Rather, use a proxying rewrite rule in the non-mod_perl server:

RewriteEngine On

RewriteLoglLevel 0

RewriteRule ~/perl/(.*) http://localhost:8080/perl/$1 [P]
ProxyPassReverse / http://localhost/

In the above example, all the URLs starting with /per/ are rewritten to the backend server, listening on port 8080. The
backend server is not directly accessible; it can be reached only through the frontend server.

One of the problems with publishing high port numbers is that Microsoft Internet Explorer (IE) 4.x has a bug when re-
posting data to a URL with a nonstandard port (i.e., anything but 80). It drops the port designator and uses port 80
anyway. Hence, your service will be unusable for IE 4.x users.

Another problem is that firewalls will probably have most of the high ports closed, and users behind them will be unable
to reach your service if it is running on a blocked port.

4.9.2 Running the Same Script from Different Virtual Hosts

When running under a virtual host, Apache::Registry and other registry family handlers will compile each script into a
separate package. The package name includes the name of the virtual host if the variable
$Apache::Registry::NameWithVirtualHost is set to 1. This is the default behavior.

Under this setting, two virtual hosts can have two different scripts accessed via the same URI (e.qg., /perl/guestbook.pl)
without colliding with each other. Each virtual host will run its own version of the script.

However, if you run a big service and provide a set of identical scripts to many virtual hosts, you will want to have only
one copy of each script compiled in memory. By default, each virtual host will create its own copy, so if you have 100

virtual hosts, you may end up with 100 copies of the same script compiled in memory, which is very wasteful. If this is
the case, you can override the default behavior by setting the following directive in a startup file or in a <Perl> section:

$Apache::Registry::NameWithVirtualHost = 0;

But be careful: this makes sense only if you are sure that there are no other scripts with identical URIs but different
content on different virtual hosts.

Users of mod_perl v1.15 are encouraged to upgrade to the latest stable version if this problem is encountered—it was
solved starting with mod_perl v1.16.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
4.10 Configuration Security Concerns

Any service open to the Internet at large must take security into account. Large, complex software tends to expose
subtle vulnerabilities that attackers can exploit to gain unauthorized access to the server host. Third-party modules or
libraries can also contain similarly exploitable bugs. Perl scripts aren't immune either: incorrect untainting and sanitizing
of user input can lead to disaster when this input is fed to the open() or system() functions.

Also, if the same mod_perl server is shared by more than one user, you may need to protect users of the server from

each other (see Appendix C).

4.10.1 Using Only Absolutely Necessary Components

The more modules you have enabled in your web server, the more complex the code and interaction between these
modules will be. The more complex the code in your web server, the more chances for bugs there are. The more
chances for bugs, the more chance there is that some of those bugs may involve security holes.

Before you put the server into production, review the server setup and disable any unused modules. As time goes by,
the server enviroment may change and some modules may not be used anymore. Do periodical revisions of your setups
and disable modules that aren't in use.

4.10.2 Taint Checking

Make sure to run the server with the following setting in the httpd.conf file:
PerlTaintCheck On

As discussed in Chapter 6, taint checking doesn't ensure that your code is completely safe from external hacks, but it
does force you to improve your code to prevent many potential security problems.

4.10.3 Hiding Server Information

We aren't completely sure why the default value of the ServerTokens directive in Apache is Full rather than Minimal. It
seems like Full is really useful only for debugging purposes. A probable reason for using ServerTokens Full is publicity: it
means that Netcraft (http://netcraft.com/) and other similar survey services will count more Apache servers, which is
good for all of us. In general, though, you really want to reveal as little information as possible to potential crackers.

Another approach is to modify the httpd sources to not reveal any unwanted information, so that all responses return
an empty or phony Server: field.

Be aware, however, that there's no security by obscurity (as the old saying goes). Any determined cracker will
eventually figure out what version of Apache is running and what third-party modules are built in.

You can see what information is revealed by your server by telneting to it and issuing some request. For example:

panic% telnet localhost 8080
Trying 127.0.0.1

Connected to localhost
Escape character is ']
HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Sun, 16 Apr 2000 11:06:25 GMT

Server: Apache/1.3.24 (Unix) mod_perl/1.26 mod_ssl/2.8.8 OpenSSL/0.9.6
[more lines snipped]

As you can see, a lot of information is revealed when ServerTokens Full has been specified.

4.10.4 Making the mod_perl Server Inaccessible from the Outside

It is best not to expose mod_perl to the outside world, as it creates a potential security risk by revealing which modules
you use and which operating system you are running your web server on. In Chapter 12, we show how to make
mod_perl inaccessible directly from the outside by listening only to the request coming from mod_proxy at the local
host (127.0.0.1).

4.10.5 Protecting Private Status Locations

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

It's a good idea to protect your various monitors, such as /per/-status, by password. The less information you provide
for intruders, the harder it will be for them to break in. (One of the biggest helps you can provide for these bad guys is
to show them all the scripts you use. If any of these are in the public domain, they can grab the source of the script
from the Web, study it, and probably find a few or even many security holes in it.)

Security by obscurity may help to wave away some of the less-determined malicious fellas, but it doesn't really work
against a determined intruder. For example, consider the old <Limit> container:

<Location /sys-monitor>
SetHandler perl-script
PerlHandler Apache::VMonitor
AuthUserFile /home/httpd/perl/.htpasswd
AuthGroupFile /dev/null
AuthName "Server Admin"
AuthType Basic
<Limit GET POST>

require user foo bar

</Limit>

</Location>

Use of the <Limit> container is a leftover from NCSA server days that is still visible in many configuration examples
today. In Apache, it will limit the scope of the require directive to the GET and POST request methods. Use of another
method will bypass authentication. Since most scripts don't bother checking the request method, content will be served
to the unauthenticated users.

For this reason, the Limit directive generally should not be used. Instead, use this secure configuration:

<Location /sys-monitor>
SetHandler perl-script
PerlHandler Apache::VMonitor
AuthUserFile /home/httpd/perl/.htpasswd
AuthGroupFile /dev/null
AuthName "Server Admin"
AuthType Basic
require user foo bar
</Location>

The contents of the password file (/home/httpd/perl/.htpasswd) are populated by the htpasswd utility, which comes
bundled with Apache:

foo:1SA3h/d27mCp
bar:WbWQhzZM3m4kI

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
4.11 General Pitfalls

The following are some of the mostly frequently asked questions related to mod_perl configuration issues (and the
answers, of course).

My CGI/Perl code is returned as plain text instead of being executed by the web server.

Check your configuration files and make sure that +ExecCGI is turned on in your configurations. + adds an
option without resetting any options that were previously set. So this is how the <Location> section might look:

<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options +ExecCGI
PerlSendHeader On
</Location>

My script works under mod_cgi, but when called via mod_perl, I get a Save As prompt.
You probably sent the HTTP header via print():
print "Content-type: text/html\n\n";
If this is the case, you must make sure that you have:
PerlSendHeader On
in the configuration part of the <Location> section:

<Location /perl>

PerlSendHeader On
</Location>

This adds a little overhead to the output generation, because when this configuration is enabled, mod_perl will
parse the output and try to find where the header information ends so it can be converted into a proper HTTP
header. It is meant only for mod_cgi emulation with regard to HTTP headers.

Is there a way to provide a different startup.pl file for each individual virtual host?

No. Any virtual host will be able to see the routines from a startup.pl file loaded for any other virtual host.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
4.12 References

® To learn regular expressions for use in <DirectoryMatch> or equivalent sections, the book Mastering Regular
Expressions, by Jeffrey E. F. Friedl (O'Reilly), may prove to be an invaluable resource.

® Chapters 4 and 8 of Professional Apache, by Peter Wainwright (Wrox Press), explain how to configure Apache
the way you want and improve Apache's performance.

® Chapter 3 of Apache: The Definitive Guide, by Ben Laurie and Peter Laurie (O'Reilly), talks extensively about
the Apache configuration process.

® Chapter 8 of Writing Apache Modules with Perl and C, by Lincoln Stein and Doug MacEachern (O'Reilly), talks
extensively about configuration customization with mod_perl.

® The extensive configuration manual at http://httpd.apache.org/docs/.

® mod_macro is a module that allows the definition and use of macros within Apache runtime configuration files.
The syntax is a natural extension to Apache HTML-like configuration style. It's very useful if you have to
configure many sections (e.g., when you have many virtual hosts) and haven't learned about <Perl> sections
yet.

mod_macro is available from http://www.cri.ensmp.fr/~coelho/mod_macro/.

[Team LiB] [+ Faavisvs vt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

Chapter 5. Web Server Control, Monitoring, Upgrade,
and Maintenance

This chapter covers everything about administering a running mod_perl server. First, we will explain techniques for
starting, restarting, and shutting down the server. As with Perl, there's more than one way to do it, and each technique
has different implications for the server itself and the code it runs. A few widely used techniques for operating a server
are presented. You may choose to use one of the suggested techniques or develop your own.

Later in the chapter, we give instructions on upgrading and disabling scripts on a live server, using a three-tier scheme,
and monitoring and maintaining a web server.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
5.1 Starting the Server in Multi-Process Mode

To start Apache manually, just run its executable. For example, on our machine, a mod_perl-enabled Apache
executable is located at /home/httpd/httpd_perl/httpd_perl. So to start it, we simply execute:

panic% /home/httpd/httpd_perl/bin/httpd_perl

This executable accepts a number of optional arguments. To find out what they are (without starting the server), use
the -h argument:

panic% /home/httpd/httpd_perl/bin/httpd_perl -h

The most interesting arguments will be covered in the following sections. Any other arguments will be introduced as
needed.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
5.2 Starting the Server in Single-Process Mode

When developing new code, it is often helpful to run the server in single-process mode. This is most often used to find
bugs in code that seems to work fine when the server starts, but refuses to work correctly after a few requests have
been made. It also helps to uncover problems related to collisions between module names.

Running in single-process mode inhibits the server from automatically running in the background. This allows it to more
easily be run under the control of a debugger. The -X switch is used to enable this mode:

panic% /home/httpd/httpd_perl/bin/httpd_perl -X

With the -X switch, the server runs in the foreground of the shell, so it can be killed by typing Ctrl-C. You can run it in
the background by appending an ampersand:

panic% /home/httpd/httpd_perl/bin/httpd_perl -X &
Note that in -X (single-process) mode, the server will run very slowly when fetching images. Because only one request

can be served at a time, requests for images normally done in parallel by the browser will now be serialized, making the
page display slower.

Note for Netscape Users

If Netscape is being used as the test browser while the server is running in single-process mode, the HTTP
protocol's KeepAlive feature gets in the way. Netscape tries to open multiple connections and keep them all
open, as this should be faster for browsing. But because there is only one server process listening, each
connection has to time out before the next one succeeds. Turn off KeepAlive in httpd.conf to avoid this
effect while testing. Assuming you use width and height image size parameters in your HTML files, Netscape
will be able to render the page without the images, so you can press the browser's Stop button after a few
seconds to speed up page display. It's always good practice to specify width and height image size
parameters.

Also note that when running with -X, the control messages that the parent server normally writes to error_log (e.g.,
"server started", "server stopped", etc.) will not be written anywhere. httpd -X causes the server to handle all requests
itself without forking any children, so there is no controlling parent to write the status messages.

Usually Ctrl-C is used to kill a server running in single process mode, but Ctrl-C doesn't constitute a clean shutdown.
httpd.pid doesn't get removed, so the next time the server is started, the message:

[warn] pid file /home/httpd/httpd_perl/logs/httpd.pid
overwritten -- Unclean shutdown of previous Apache run?

will appear in error_log. You can ignore this warning; there's nothing to worry about.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
5.3 Using kill to Control Processes

Linux and other Unix-like operating systems support a form of interprocess communication called signals. The kill
command is used to send a signal to a running process. How a process responds to a signal, if it responds at all,
depends on the specific signal sent and on the handler set by the process. If you are familiar with Unix signal handling,
you will find that Apache adheres to the usual conventions, and you can probably skip this section. This section
describes the use of kill in relation to Apache for readers who aren't accustomed to working with signals.

The name "kill" is a misnomer; it sounds as if the command is inherently destructive, but kill simply sends signals to
programs. Only a few signals will actually kill the process by default. Most signals can be caught by the process, which
may choose to either perform a specific action or ignore the signal. When a process is in a zombie or uninterruptible
sleep() state, it might ignore any signals.

The following example will help dispel any fear of using this command. Most people who are familiar with the command
line know that pressing Ctrl-C will usually terminate a process running in a console. For example, it is common to
execute:

panic% tail -f /home/httpd/httpd_perl/logs/error_log

to monitor the Apache server's error_log file. The only way to stop tail is by pressing Ctrl-C in the console in which the
process is running. The same result can be achieved by sending the INT (interrupt) signal to this process. For example:

panic% kill -INT 17084

When this command is run, the tail process is aborted, assuming that the process identifier (PID) of the tail process is
17084.

Every process running in the system has its own PID. kill identifies processes by their PIDs. If kill were to use process
names and there were two tail processes running, it might send the signal to the wrong process. The most common
way to determine the PID of a process is to use ps to display information about the current processes on the machine.
The arguments to this utility vary depending on the operating system. For example, on BSD-family systems, the
following command works:

panic% ps auxc | grep tail
On a System V Unix flavor such as Solaris, the following command may be used instead:
panic% ps -eaf | grep tail

In the first part of the command, ps prints information about all the current processes. This is then piped to a grep
command that prints lines containing the text "tail". Assuming only one such tail process is running, we get the
following output:

root 17084 0.1 0.1 1112 408 pts/8 S 17:28 0:00 tail

The first column shows the username of the account running the process, the second column shows the PID, and the
last column shows the name of the command. The other columns vary between operating systems.

Processes are free to ignore almost all signals they receive, and there are cases when they will. Let's run the /ess
command on the same error_log file:

panic% less /home/httpd/httpd_perl/logs/error_log

Neither pressing Ctrl-C nor sending the INT signal will kill the process, because the implementers of this utility chose to
ignore that signal. The way to kill the process is to type g.

Sometimes numerical signal values are used instead of their symbolic names. For example, 2 is normally the numeric
equivalent of the symbolic name INT. Hence, these two commands are equivalent on Linux:

panic% kill -2 17084
panic% kill -INT 17084

On Solaris, the -s option is used when working with symbolic signal hames:
panic% kill -s INT 17084
To find the numerical equivalents, either refer to the signal(7) manpage, or ask Perl to help you:

panic% perl -MConfig -e "printf "%6s %2d\n", $_, $sig++ \
for split / /, $Config{sig_name}'

If you want to send a signal to all processes with the same name, you can use pkill on Solaris or killall on Linux.

5.3.1 kill Signals for Stopping and Restarting Apache

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Apache performs certain actions in response to the KILL, TERM, HUP, and USR1 signals (as arguments to kill). All
Apache system administrators should be familiar with the use of these signals to control the Apache web server.

By referring to the signal.h file, we learn the numerical equivalents of these signals:

#define SIGHUP 1 /* hangup, generated when terminal disconnects */
#define SIGKILL 9 /* last resort */

#define SIGTERM 15 /* software termination signal */

#define SIGUSR1 30 /* user defined signal 1 */

The four types of signal are:
KILL signal: forcefully shutdown

The KILL (9) signal should never be used unless absolutely necessary, because it will unconditionally kill
Apache, without allowing it to clean up properly. For example, the httpd.pid file will not be deleted, and any
existing requests will simply be terminated halfway through. Although failure to delete httpd.pid is harmless, if
code was registered to run upon child exit but was not executed because Apache was sent the KILL signal, you
may have problems. For example, a database connection may be closed incorrectly, leaving the database in an
inconsistent state.

The three other signals have safe and legitimate uses, and the next sections will explain what happens when
each of them is sent to an Apache server process.

It should be noted that these signals should be sent only to the parent process, not to any of the child
processes. The parent process PID may be found either by using ps auxc | grep apache (where it will usually be
the lowest-numbered Apache process) or by executing cat on the httpd.pid file. See Section 5.3.3, later in this
chapter, for more information.

TERM signal: stop now

Sending the TERM signal to the parent causes it to attempt to kill off all its children immediately. Any requests
in progress are terminated, and no further requests are accepted. This operation may take tens of seconds to
complete. To stop a child, the parent sends it an HUP signal. If the child does not die before a predetermined
amount of time, the parent sends a second HUP signal. If the child fails to respond to the second HUP, the
parent then sends a TERM signal, and if the child still does not die, the parent sends the KILL signal as a last
resort. Each failed attempt to kill a child generates an entry in the error_Jlog file.

Before each process is terminated, the Perl cleanup stage happens, in which Perl END blocks and global objects'
DESTROY methods are run.

When all child processes have been terminated, all open log files are closed and the parent itself exits.
Unless an explicit signal name is provided, kill sends the TERM signal by default. Therefore:
panic# kill -TERM 1640
and:
panic# kill 1640
will do the same thing.
HUP signal: restart now

Sending the HUP signal to the parent causes it to kill off its children as if the TERM signal had been sent. That
is, any requests in progress are terminated, but the parent does not exit. Instead, the parent rereads its
configuration files, spawns a new set of child processes, and continues to serve requests. It is almost equivalent
to stopping and then restarting the server.

If the configuration files contain errors when restart is signaled, the parent will exit, so it is important to check
the configuration files for errors before issuing a restart. We'll cover how to check for errors shortly.

Using this approach to restart mod_perl-enabled Apache may cause the processes' memory consumption to
grow after each restart. This happens when Perl code loaded in memory is not completely torn down, leading to
a memory leak.

USR1 signal: gracefully restart now

The USR1 signal causes the parent process to advise the children to exit after serving their current requests, or
to exit immediately if they are not serving a request. The parent rereads its configuration files and reopens its
log files. As each child dies off, the parent replaces it with a child from the new generation (the new children
use the new configuration) and the new child processes begin serving new requests immediately.

The only difference between USR1 and HUP is that USR1 allows the children to complete any current requests
prior to terminating. There is no interruption in the service, unlike with the HUP signal, where service is
interrupted for the few (and sometimes more) seconds it takes for a restart to complete.

By default, if a server is restarted using the USR1 or the HUP signal and mod_perl is not compiled as a DSO, Perl scripts
and modules are not reloaded. To reload modules pulled in via PerlRequire, PerlModule, or use, and to flush the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Apache::Registry cache, either completely stop the server and then start it again, or use this directive in httpd.conf:
PerlFreshRestart On

(This directive is not always recommended. See Chapter 22 for further details.)

5.3.2 Speeding Up Apache's Termination and Restart

Restart or termination of a mod_perl server may sometimes take quite a long time, perhaps even tens of seconds. The
reason for this is a call to the perl_destruct() function during the child exit phase, which is also known as the cleanup
phase. In this phase, the Perl END blocks are run and the DESTROY method is called on any global objects that are still
around.

Sometimes this will produce a series of messages in the error_log file, warning that certain child processes did not exit
as expected. This happens when a child process, after a few attempts have been made to terminate it, is still in the
middle of perl_destruct(). So when you shut down the server, you might see something like this:

[warn] child process 7269 still did not exit,
sending a SIGTERM

[error] child process 7269 still did not exit,
sending a SIGKILL

[notice] caught SIGTERM, shutting down

First, the parent process sends the TERM signal to all of its children, without logging a thing. If any of the processes still
doesn't quit after a short period, it sends a second TERM, logs the PID of the process, and marks the event as a
warning. Finally, if the process still hasn't terminated, it sends the KILL signal, which unconditionaly terminates the
process, aborting any operation in progress in the child. This event is logged as an error.

If the mod_perl scripts do not contain any END blocks or DESTROY methods that need to be run during shutdown, or if
the ones they have are nonessential, this step can be avoided by setting the PERL_DESTRUCT_LEVEL environment
variable to -1. (The -1 value for PERL_DESTRUCT_LEVEL is special to mod_perl.) For example, add this setting to the
httpd.conf file:

PerlSetEnv PERL_DESTRUCT_LEVEL -1

What constitutes a significant cleanup? Any change of state outside the current process that cannot be handled by the
operating system itself. Committing database transactions and removing the lock on a resource are significant
operations, but closing an ordinary file is not. For example, if DBI is used for persistent database connections, Perl's
destructors should not be switched off.

5.3.3 Finding the Right Apache PID

In order to send a signal to a process, its PID must be known. But in the case of Apache, there are many httpd
processes running. Which one should be used? The parent process is the one that must be signaled, so it is the parent's
PID that must be identified.

The easiest way to find the Apache parent PID is to read the httpd.pid file. To find this file, look in the httpd.conf file.
Open httpd.conf and look for the PidFile directive. Here is the line from our httpd.conf file:

PidFile /home/httpd/httpd_perl/logs/httpd.pid

When Apache starts up, it writes its own process ID in httpd.pid in a human-readable format. When the server is
stopped, httpd.pid should be deleted, but if Apache is killed abnormally, httpd.pid may still exist even if the process is
not running any more.

Of course, the PID of the running Apache can also be found using the ps(1) and grep(1) utilities (as shown previously).
Assuming that the binary is called httpd_perl, the command would be:

panic% ps auxc | grep httpd_perl
or, on System V:
panic% ps -ef | grep httpd_perl

This will produce a list of all the httpd_perl (parent and child) processes. If the server was started by the root user
account, it will be easy to locate, since it will belong to root. Here is an example of the sort of output produced by one
of the ps command lines given above:

root 17309 0.9 2.7 8344 7096 ? S 18:22 0:00 httpd_perl

nobody 17310 0.1 2.7 8440 7164 ? S 18:22 0:00 httpd_perl
nobody 17311 0.0 2.7 8440 7164 ? S 18:22 0:00 httpd_perl
nobody 17312 0.0 2.7 8440 7164 ? S 18:22 0:00 httpd_perl

In this example, it can be seen that all the child processes are running as user nobody whereas the parent process runs
as user root. There is only one root process, and this must be the parent process. Any kill signals should be sent to this
parent process.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If the server is started under some other user account (e.g., when the user does not have root access), the processes
will belong to that user. The only truly foolproof way to identify the parent process is to look for the process whose
parent process ID (PPID) is 1 (use ps to find out the PPID of the process).

If you have the GNU tools installed on your system, there is a nifty utility that makes it even easier to discover the
parent process. The tool is called pstree, and it is very simple to use. It lists all the processes showing the family
hierarchy, so if we grep the output for the wanted process's family, we can see the parent process right away. Running
this utility and greping for httpd_perl, we get:

panic% pstree -p | grep httpd_perl
|-httpd_perl(17309)-+-httpd_perl(17310)
| |-httpd_perl(17311)
| |-httpd_perl(17312)

And this one is even simpler:

panic% pstree -p | grep 'httpd_perl.*httpd_perl'
|-httpd_perl(17309)-+-httpd_perl(17310)

In both cases, we can see that the parent process has the PID 17309.

ps's f option, available on many Unix platforms, produces a tree-like report of the processes as well. For example, you
can run ps axfwwww to get a tree of all processes.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Pavisua]f T o]
5.4 Using apachectl to Control the Server
The Apache distribution comes with a script to control the server called apachectl/, installed into the same location as

the httpd executable. For the sake of the examples, let's assume that it is in /home/httpd/httpd_perl/bin/apachectl.

All the operations that can be performed by using signals can also be performed on the server by using apachect/. You
don't need to know the PID of the process, as apachect! will find this out for itself.

To start httpd_perl:

panic% /home/httpd/httpd_perl/bin/apachectl start

To stop httpd_perl:

panic% /home/httpd/httpd_perl/bin/apachectl stop

To restart httpd_perl (if it is running, send HUP; if it is not, just start it):
panic% /home/httpd/httpd_perl/bin/apachect! restart

Do a graceful restart by sending a USR1 signal, or start it if it's not running:
panic% /home/httpd/httpd_perl/bin/apachect! graceful

To perform a configuration test:

panic% /home/httpd/httpd_perl/bin/apachectl configtest

There are other options for apachect!. Use the help option to see them all.
panic% /home/httpd/httpd_perl/bin/apachectl help

It is important to remember that apachect/ uses the PID file, which is specified by the PidFile directive in httpd.conf. If
the PID file is deleted by hand while the server is running, or if the PidFile directive is missing or in error, apachect! will
be unable to stop or restart the server.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
5.5 Validating Server Configuration

If the configuration file has syntax errors, attempting to restart the server will fail and the server will die. However, if a
graceful restart is attempted using apachect!/ and the configuration file contains errors, the server will issue an error
message and continue running with the existing configuration. This is because apachect/ validates the configuration file
before issuing the actual restart command when a graceful restart is requested.

Apache provides a method to check the configuration's syntax without actually starting the server. You can run this
check at any time, whether or not a server is currently running. The check has two forms, using the -t or -T options.
For example:

panic% /home/httpd/httpd_perl/bin/httpd_perl -t

-t will verify that the DocumentRoot directory exists, whereas -T will not. -T is most useful when using a configuration file
containing a large number of virtual hosts, where verifying the existence of each DocumentRoot directory can take a
substantial amount of time.

Note that when running this test with a mod_perl server, the Perl code will be executed just as it would be at server
startup—that is, from within the httpd.conf <Perl> sections or a startup file.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
5.6 Setuid root Startup Scripts

If a group of developers need to be able to start and stop the server, there may be a temptation to give them the root
password, which is probably not a wise thing to do. The fewer people that know the root password, the less likely you
will encounter problems. Fortunately, an easy solution to this problem is available on Unix platforms. It is called a setuid
executable (setuid root in this case).

Before continuing, we must stress that this technique should not be used unless it is absolutely necessary. If an
improperly written setuid script is used, it may compromise the system by giving root privileges to system breakers
(crackers).

To be on the safe side, do not deploy the techniques explained in this section. However, if this approach is necessary in
a particular situation, this section will address the possible problems and provide solutions to reduce the risks to a
minimum.

5.6.1 Introduction to setuid Executables

A setuid executable has the setuid permissions bit set, with the following command:
panic% chmod u+s filename

This sets the process's effective user ID to that of the file upon execution. Most users have used setuid executables
even if they have not realized it. For example, when a user changes his password he executes the passwd command,
which, among other things, modifies the /etc/passwd file. In order to change this file, the passwd program needs root
permissions. The passwd command has the setuid bit set, so when someone executes this utility, its effective ID
becomes the root user ID.

Using setuid executables should be avoided as a general practice. The less setuid executables there are in a system, the
less likely it is that someone will find a way to break in. One approach that crackers use is to find and exploit
unanticipated bugs in setuid executables.

When the executable is setuid to root, it is vital to ensure that it does not extend read and write permissions to its
group or to the world. Let's take the passwd utility as an example. Its permissions are:

panic% Is - /usr/bin/passwd
-r-s--x--x 1 root root 12244 Feb 8 00:20 /usr/bin/passwd

The program is group- and world-executable but cannot be read or written by group or world. This is achieved with the
following command:

panic% chmod 4511 filename

The first digit (4) stands for the setuid bit, the second digit (5) is a bitwise-OR of read (4) and executable (1)
permissions for the user, and the third and fourth digits set the executable (1) permissions for group and world.

5.6.2 Apache Startup Script's setuid Security

In the situation where several developers need to be able to start and stop an Apache server that is run by the root
account, setuid access must be available only to this specific group of users. For the sake of this example, let's assume
that these developers belong to a group named apache. It is important that users who are not root or are not part of
the apache group are unable to execute this script. Therefore, the following commands must be applied to the apachect/
program:

panic% chgrp apache apachectl
panic% chmod 4510 apachect!

The execution order is important. If the commands are executed in reverse order, the setuid bit is lost.
The file's permissions now look like this:

panic% Is -l apachectl
-r-s--x--- 1 root apache 32 May 13 21:52 apachectl

Everything is set. Well, almost...

When Apache is started, Apache and Perl modules are loaded, so code may be executed. Since all this happens with the
root effective ID, any code is executed as if run by the root user. This means that there is a risk, even though none of
the developers has the root password—all users in the apache group now have an indirect root access. For example, if
Apache loads some module or executes some code that is writable by any of these users, they can plant code that will
allow them to gain shell access to the root account.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Of course, if the developers are not trusted, this setuid solution is not the right approach. Although it is possible to try
to check that all the files Apache loads are not writable by anyone but root, there are so many of them (especially with
mod_perl, where many Perl modules are loaded at server startup) that this is a risky approach.

If the developers are trusted, this approach suits the situation. Although there are security concerns regarding Apache
startup, once the parent process is loaded, the child processes are spawned as non-root processes.

This section has presented a way to allow non-root users to start and stop the server. The rest is exactly the same as if
they were executing the script as root in the first place.

5.6.3 Sample setuid Apache Startup Script

Example 5-1 shows a sample setuid Apache startup script.

Note the line marked WORKAROUND, which fixes an obscure error when starting a mod_perl-enabled Apache, by
setting the real UID to the effective UID. Without this workaround, a mismatch between the real and the effective UIDs
causes Perl to croak on the -e switch.

This script depends on using a version of Perl that recognizes and emulates the setuid bits. This script will do different
things depending on whether it is named start_httpd, stop_httpd, or restart_httpd; use symbolic links to create the
names in the filesystem.

Example 5-1. suid_apache_ctl

#!/usr/bin/perl -T
use strict;

These constants will need to be adjusted.

my $PID_FILE = '/home/httpd/httpd_perl/logs/httpd.pid';
my $HTTPD = '/home/httpd/httpd_perl/bin/httpd_perl ';
$HTTPD .= "'-d /home/httpd/httpd_perl’;

These prevent taint checking failures
$ENV{PATH} = '/bin:/usr/bin’;
delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};

This sets the real to the effective ID, and prevents
an obscure error when starting apache/mod_perl
$< = $>; # WORKAROUND

$(=$) = 0; # set the group to root too

Do different things depending on our name
my $name = $0;
$name =~ m|([*/]+)$I;

if ($name eq 'start_httpd') {
system $HTTPD and die "Unable to start HTTPD";
print "HTTP started.\n";
exit 0;

}

extract the process id and confirm that it is numeric

my $pid = "cat $PID_FILE";

$pid =~ /~(\d+)$/ or die "PID $pid not numeric or not found";
$pid = $1;

if ($name eq 'stop_httpd") {
kill " TERM', $pid or die "Unable to signal HTTPD";
print "HTTP stopped.\n";
exit 0;

}

if ($name eq 'restart_httpd") {
kill 'HUP', $pid or die "Unable to signal HTTPD";
print "HTTP restarted.\n";
exit 0;

}

script is named differently
die "Script must be named start_httpd, stop_httpd, or restart_httpd.\n";

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
5.7 Preparing for Machine Reboot

When using a non-production development box, it is OK to start and stop the web server by hand when necessary. On a
production system, however, it is possible that the machine on which the server is running will have to be rebooted.
When the reboot is completed, who is going to remember to start the server? It is easy to forget this task, and what
happens if no one is around when the machine is rebooted? (Some OSs will reboot themselves without human
intervention in certain situations.)

After the server installation is complete, it is important to remember that a script to perform the server startup and
shutdown should be put in a standard system location—for example, /etc/rc.d under Red Hat Linux, or
/etc/init.d/apache under Debian GNU/Linux.

This book uses Red Hat-compatible Linux distributions in its examples. Let's step aside for a brief introduction to the
System V (SysV) init system that many Linux and other Unix flavors use to manage starting and stopping daemons. (A
daemon is a process that normally starts at system startup and runs in the background until the system goes down.)

The SysV init system keeps all its files in the /etc/rc.d/ directory. This directory contains a number of subdirectories:

panic% find /etc/rc.d -type d
/etc/rc.d

/etc/rc.d/init.d
/etc/rc.d/rc0.d
/etc/rc.d/rcl.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc/rc.d/rc6.d

/etc/rc.d/init.d contains many scripts, one for each service that needs to be started at boot time or when entering a
specific runlevel. Common services include networking, file sharing, mail servers, web servers, FTP servers, etc.

When the system boots, the special init script runs all scripts for the default runlevel. The default runlevel is specified in
the /etc/inittab file. This file contains a line similar to this one:

id:3:initdefault:

The second column indicates that the default runlevel is 3, which is the default for most server systems. (5 is the
default for desktop machines.)

Let's now see how the scripts are run. We'll first look at the contents of the /etc/rc.d/rc3.d directory:

panic% Is -I /etc/rc.d/rc3.d

Irwxrwxrwx 1 root root 13 Jul 1 01:08 K20nfs -> ../init.d/nfs

Irwxrwxrwx 1 root root 18 Jul 1 00:54 K92ipchains -> ../init.d

Irwxrwxrwx 1 root root 17 Jul 1 00:51 S10network -> ../init.d/network
Irwxrwxrwx 1 root root 16 Jul 1 00:51 S30syslog -> ../init.d/syslog
Irwxrwxrwx 1 root root 13 Jul 1 00:52 S40atd -> ../init.d/atd

Irwxrwxrwx 1 root root 15 Jul 1 00:51 S40crond -> ../init.d/crond
Irwxrwxrwx 1 root root 15 Jul 1 01:13 S91httpd_docs -> ../init.d/httpd_docs
Irwxrwxrwx 1 root root 15 Jul 1 01:13 S91httpd_perl -> ../init.d/httpd_perl
Irwxrwxrwx 1 root root 17 Jul 1 00:51 S95kheader -> ../init.d/kheader
Irwxrwxrwx 1 root root 11 Jul 1 00:51 S99local -> ../rc.local

(Only part of the output is shown here, since many services are started and stopped at runlevel 3.)

There are no real files in the directory. Instead, each file is a symbolic link to one of the scripts in the init.d directory.
The links' names start with a letter (S or K) and a two-digit number. S specifies that the script should be run when the
service is started and K specifies that the script should be run when the service is stopped. The number following S or K
is there for ordering purposes: init will start services in the order in which they appear.

init runs each script with an argument that is either start or stop, depending on whether the link's name starts with S or
K. Scripts can be executed from the command line; the following command line will stop the httpd server:

panic# /etc/rc.d/init.d/httpd_perl stop
Unfortunately, different Unix flavors implement different init systems. Refer to your system's documentation.
Now that we're familiar with how the init system works, let's return to our discussion of apachect! scripts.

Generally, the simplest solution is to copy the apachect! script to the startup directory or, better still, create a symbolic
link from the startup directory to the apachect! script. The apachect! utility is in the same directory as the Apache
executable after Apache installation (e.g., /home/httpd/httpd_perl/bin). If there is more than one Apache server, there
will need to be a separate script for each one, and of course they will have to have different names so that they can
coexist in the same directory.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

On one of our Red Hat Linux machines with two servers, we have the following setup:

/etc/rc.d/init.d/httpd_docs

/etc/rc.d/init.d/httpd_perl
/etc/rc.d/rc3.d/S91httpd_docs -> ../init.d/httpd_docs
/etc/rc.d/rc3.d/S91httpd_perl -> ../init.d/httpd_perl
/etc/rc.d/rc6.d/K16httpd_docs -> ../init.d/httpd_docs
/etc/rc.d/rc6.d/K16httpd_perl -> ../init.d/httpd_perl

The scripts themselves reside in the /etc/rc.d/init.d directory. There are symbolic links to these scripts in /etc/rc.d/rc*.d
directories.

When the system starts (runlevel 3), we want Apache to be started when all the services on which it might depend are
already running. Therefore, we have used S91. If, for example, the mod_perl-enabled Apache issues a connect_on_init(),
the SQL server should be started before Apache.

When the system shuts down (runlevel 6), Apache should be one of the first processes to be stopped—therefore, we
have used K16. Again, if the server does some cleanup processing during the shutdown event and requires third-party
services (e.g., a MySQL server) to be running at the time, it should be stopped before these services.

Notice that it is normal for more than one symbolic link to have the same sequence number.

Under Red Hat Linux and similar systems, when a machine is booted and its runlevel is set to 3 (multiuser plus
network), Linux goes into /etc/rc.d/rc3.d/ and executes the scripts to which the symbolic links point with the start
argument. When it sees S87httpd_perl, it executes:

/etc/rc.d/init.d/httpd_perl start

When the machine is shut down, the scripts are executed through links from the /etc/rc.d/rc6.d/ directory. This time
the scripts are called with the stop argument, like this:

/etc/rc.d/init.d/httpd_perl stop

Most systems have GUI utilities to automate the creation of symbolic links. For example, Red Hat Linux includes the

ntsysv and tksysv utilities. These can be used to create the proper symbolic links. Before it is used, the apachect!/ or
similar scripts should be put into the init.d directory or an equivalent directory. Alternatively, a symbolic link to some
other location can be created.

However, it's been reported that sometimes these tools mess up and break things. Therefore, the robust chkconfig
utility should be used instead. The following example shows how to add an httpd_perl startup script to the system using
chkconfig.

The apachectl script may be kept in any directory, as long as it can be the target of a symbolic link. For example, it
might be desirable to keep all Apache executables in the same directory (e.g., /home/httpd/httpd_peri/bin), in which
case all that needs to be done is to provide a symbolic link to this file:

panic% In -s /home/httpd/httpd_perl/bin/apachect! /etc/rc.d/init.d/httpd_perl
Edit the apachect! script to add the following lines after the script's main header:

Comments to support chkconfig on RedHat Linux
chkconfig: 2345 91 16
description: mod_perl enabled Apache Server

Now the beginning of the script looks like:

#1/bin/sh

#

Apache control script designed to allow an easy command line
interface to controlling Apache. Written by Marc Slemko,

1997/08/23

Comments to support chkconfig on Red Hat Linux
chkconfig: 2345 91 16
description: mod_perl-enabled Apache Server

#
The exit codes returned are:
..

Adjust the line:
chkconfig: 2345 91 16

to suit your situation. For example, the setting used above says the script should be started in levels 2, 3, 4, and 5, that
its start priority should be 91, and that its stop priority should be 16.

Now all you need to do is ask chkconfig to configure the startup scripts. Before doing so, it is best to check what files
and links are in place:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

panic% find /etc/rc.d | grep httpd_perl
/etc/rc.d/init.d/httpd_perl

This response means that only the startup script itself exists. Now execute:
panic% chkconfig --add httpd_perl

and repeat the find command to see what has changed:
panic% find /etc/rc.d | grep httpd_perl
/etc/rc.d/init.d/httpd_perl

/etc/rc.d/rc0.d/K16httpd_perl

/etc/rc.d/rcl.d/K16httpd_perl

/etc/rc.d/rc2.d/S91httpd_perl

/etc/rc.d/rc3.d/S91httpd_perl

/etc/rc.d/rc4.d/S91httpd_perl

/etc/rc.d/rc5.d/S91httpd_perl
/etc/rc.d/rc6.d/K16httpd_perl

The chkconfig program has created all the required symbolic links using the startup and shutdown priorities as specified
in the line:

chkconfig: 2345 91 16

If for some reason it becomes necessary to remove the service from the startup scripts, chkconfig can perform the
removal of the links automatically:

panic% chkconfig --del httpd_perl

By running the find command once more, you can see that the symbolic links have been removed and only the original
file remains:

panic% find /etc/rc.d | grep httpd_perl
/etc/rc.d/init.d/httpd_perl

Again, execute:

panic% chkconfig --add httpd_perl

Note that when using symbolic links, the link name in /etc/rc.d/init.d is what matters, not the name of the script to
which the link points.

[Team LiB] B B

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
5.8 Upgrading a Live Server

When you're developing code on a development server, anything goes: modifying the configuration, adding or
upgrading Perl modules without checking that they are syntactically correct, not checking that Perl modules don't collide
with other modules, adding experimental new modules from CPAN, etc. If something goes wrong, configuration changes
can be rolled back (assuming you're using some form of version control), modules can be uninstalled or reinstalled, and
the server can be started and stopped as many times as required to get it working.

Of course, if there is more than one developer working on a development server, things can't be quite so carefree.
Possible solutions for the problems that can arise when multiple developers share a development server will be
discussed shortly.

The most difficult situation is transitioning changes to a live server. However much the changes have been tested on a
development server, there is always the risk of breaking something when a change is made to the live server. Ideally,
any changes should be made in a way that will go unnoticed by the users, except as new or improved functionality or
better performance. No users should be exposed to even a single error message from the upgraded service—especially
not the "database busy" or "database error" messages that some high-profile sites seem to consider acceptable.

Live services can be divided into two categories: servers that must be up 24 hours a day and 7 days a week, and
servers that can be stopped during non-working hours. The latter generally applies to Intranets of companies with
offices located more or less in the same time zone and not scattered around the world. Since the Intranet category is
the easier case, let's talk about it first.

5.8.1 Upgrading Intranet Servers

An Intranet server generally serves the company's internal staff by allowing them to share and distribute internal
information, read internal email, and perform other similar tasks. When all the staff is located in the same time zone, or
when the time difference between sites does not exceed a few hours, there is often no need for the server to be up all
the time. This doesn't necessarily mean that no one will need to access the Intranet server from home in the evenings,
but it does mean that the server can probably be stopped for a few minutes when it is necessary to perform some
maintenance work.

Even if the update of a live server occurs during working hours and goes wrong, the staff will generally tolerate the
inconvenience unless the Intranet has become a really mission-critical tool. For servers that are mission critical, the
following section will describe the least disruptive and safest upgrade approach.

If possible, any administration or upgrades of the company's Intranet server should be undertaken during non-working
hours, or, if this is not possible, during the times of least activity (e.g., lunch time). Upgrades that are carried out while
users are using the service should be done with a great deal of care.

In very large organizations, upgrades are often scheduled events and employees are notified ahead of time that the
service might not be available. Some organizations deem these periods "at-risk" times, when employees are expected
to use the service as little as possible and then only for noncritical work. Again, these major updates are generally
scheduled during the weekends and late evening hours.

The next section deals with this issue for services that need to be available all the time.

5.8.2 Upgrading 24 x 7 Internet Servers

Internet servers are normally expected to be available 24 hours a day, 7 days a week. E-commerce sites, global B2B
(business-to-business) sites, and any other revenue-producing sites may be critical to the companies that run them,
and their unavailability could prove to be very expensive. The approach taken to ensure that servers remain in service
even when they are being upgraded depends on the type of server in use. There are two categories to consider: server
clusters and single servers.

5.8.2.1 The server cluster

When a service is very popular, a single machine probably will not be able to keep up with the number of requests the
service has to handle. In this situation, the solution is to add more machines and to distribute the load amongst them.
From the user's point of view, the use of multiple servers must be completely transparent; users must still have a single
access point to the service (i.e., the same single URL) even though there may be many machines with different server
names actually delivering the service. The requests must also be properly distributed across the machines: not simply
by giving equal numbers of requests to each machine, but rather by giving each machine a load that reflects its actual
capabilities, given that not all machines are built with identical hardware. This leads to the need for some smart load-
balancing techniques.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

All current load-balancing techniques are based on a central machine that dispatches all incoming requests to machines
that do the real processing. Think of it as the only entrance into a building with a doorkeeper directing people into
different rooms, all of which have identical contents but possibly a different number of clerks. Regardless of what room
they're directed to, all people use the entrance door to enter and exit the building, and an observer located outside the
building cannot tell what room people are visiting. The same thing happens with the cluster of servers—users send their
browsers to URLs, and back come the pages they requested. They remain unaware of the particular machines from
which their browsers collected their pages.

No matter what load-balancing technique is used, it should always be straightforward to be able to tell the central
machine that a new machine is available or that some machine is not available any more.

How does this long introduction relate to the upgrade problem? Simple. When a particular machine requires upgrading,
the dispatching server is told to stop sending requests to that machine. All the requests currently being executed must
be left to complete, at which point whatever maintenance and upgrade work is to be done can be carried out. Once the
work is complete and has been tested to ensure that everything works correctly, the central machine can be told that it
can again send requests to the newly upgraded machine. At no point has there been any interruption of service or any
indication to users that anything has occurred. Note that for some services, particularly ones to which users must log in,
the wait for all the users to either log out or time out may be considerable. Thus, some sites stop requests to a machine
at the end of the working day, in the hope that all requests will have completed or timed out by the morning.

How do we talk to the central machine? This depends on the load-balancing technology that is implemented and is
beyond the scope of this book. The references section at the end of this chapter gives a list of relevant online
resources.

5.8.2.2 The single server

It's not uncommon for a popular web site to run on a single machine. It's also common for a web site to run on multiple
machines, with one machine dedicated to serving static objects (such as images and static HTML files), another serving
dynamically generated responses, and perhaps even a third machine that acts as a dedicated database server.

Therefore, the situation that must be addressed is where just one machine runs the service or where the service is
spread over a few machines, with each performing a unique task, such that no machine can be shut down even for a
single minute, and leaving the service unavailable for more than five seconds is unacceptable. In this case, two different
tasks may be required: upgrading the software on the server (including the Apache server), and upgrading the code of
the service itself (i.e., custom modules and scripts).

5.8.2.2.1 Upgrading live server components by swapping machines

There are many things that you might need to update on a server, ranging from a major upgrade of the operating
system to just an update of a single piece of software (such as the Apache server itself).

One simple approach to performing an upgrade painlessly is to have a backup machine, of similar capacity and identical
configuration, that can replace the production machine while the upgrade is happening. It is a good idea to have such a
machine handy and to use it whenever major upgrades are required. The two machines must be kept synchronized, of
course. (For Unix/Linux users, tools such as rsync and mirror can be used for synchronization.)

However, it may not be necessary to have a special machine on standby as a backup. Unless the service is hosted
elsewhere and you can't switch the machines easily, the development machine is probably the best choice for a backup
—all the software and scripts are tested on the development machine as a matter of course, and it probably has a
software setup identical to that of the production machine. The development machine might not be as powerful as the
live server, but this may well be acceptable for a short period, especially if the upgrade is timed to happen when the
site's traffic is fairly quiet. It's much better to have a slightly slower service than to close the doors completely. A web
log analysis tool such as analog can be used to determine the hour of the day when the server is under the least load.

Switching between the two machines is very simple:
1. Shut down the network on the backup machine.
2. Configure the backup machine to use the same IP address and domain name as the live machine.
3. Shut down the network on the live machine (do not shut down the machine itself!).
4. Start up the network on the backup machine.

When you are certain that the backup server has successfully replaced the live server (that is, requests are being
serviced, as revealed by the backup machine's access_log), it is safe to switch off the master machine or do any
necessary upgrades.

Why bother waiting to check that everything is working correctly with the backup machine? If something goes wrong,
the change can immediately be rolled back by putting the known working machine back online. With the service
restored, there is time to analyze and fix the problem with the replacement machine before trying it again. Without the
ability to roll back, the service may be out of operation for some time before the problem is solved, and users may
become frustrated.

We recommend that you practice this technique with two unused machines before using the production boxes.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

After the backup machine has been put into service and the original machine has been upgraded, test the original
machine. Once the original machine has been passed as ready for service, the server replacement technique described
above should be repeated in reverse. If the original machine does not work correctly once returned to service, the
backup machine can immediately be brought online while the problems with the original are fixed.

You cannot have two machines configured to use the same IP address, so the first machine must release the IP address
by shutting down the link using this IP before the second machine can enable its own link with the same IP address.
This leads to a short downtime during the switch. You can use the heartbeat utility to automate this process and thus
possibly shorten the downtime period. See the references section at the end of this chapter for more information about
heartbeat.

5.8.2.2.2 Upgrading a live server with port forwarding

Using more than one machine to perform an update may not be convenient, or even possible. An alternative solution is
to use the port-forwarding capabilities of the host's operating system.

One approach is to configure the web server to listen on an unprivileged port, such as 8000, instead of 80. Then, using
a firewalling tool such as iptables, ipchains, or ipfwadm, redirect all traffic coming for port 80 to port 8000. Keeping a
rule like this enabled at all times on a production machine will not noticeably affect performance.

Once this rule is in place, it's a matter of getting the new code in place, adjusting the web server configuration to point
to the new location, and picking a new unused port, such as 8001. This way, you can start the "new" server listening on
that port and not affect the current setup.

To check that everything is working, you could test the server by accessing it directly by port number. However, this
might break links and redirections. Instead, add another port forwarding rule before the first one, redirecting traffic for
port 80 from your test machine or network to port 8001.

Once satisfied with the new server, publishing the change is just a matter of changing the port-forwarding rules one last
time. You can then stop the now old server and everything is done.

Now you have your primary server listening on port 8001, answering requests coming in through port 80, and nobody
will have noticed the change.

5.8.2.2.3 Upgrading a live server with prepackaged components

Assuming that the testbed machine and the live server have an identical software installation, consider preparing an
upgrade package with the components that must be upgraded. Test this package on the testbed machine, and when it
is evident that the package gets installed flawlessly, install it on the live server. Do not build the software from scratch
on the live server, because if a mistake is made, it could cause the live server to misbehave or even to fail.

For example, many Linux distributions use the Red Hat Package Manager (RPM) utility, rom, to distribute source and
binary packages. It is not necessary for a binary package to include any compiled code (for example, it can include Perl
scripts, but it is still called a binary). A binary package allows the new or upgraded software to be used the moment you
install it. The rpm utility is smart enough to make upgrades (i.e., remove previous installation files, preserve
configuration files, and execute appropriate installation scripts).

If, for example, the mod_perl server needs to be upgraded, one approach is to prepare a package on a similarly
configured machine. Once the package has been built, tested, and proved satisfactory, it can then be transferred to the
live machine. The rpm utility can then be used to upgrade the mod_perl server. For example, if the package file is
called mod_perl-1.26-10.i386.rpm, this command:

panic% rpm -Uvh mod_perl-1.26-10.i386.rpm
will remove the previous server (if any) and install the new one.

There's no problem upgrading software that doesn't break any dependencies in other packages, as in the above
example. But what would happen if, for example, the Perl interpreter needs to be upgraded on the live machine?

If the mod_perl package described earlier was properly prepared, it would specify the packages on which it depends
and their versions. So if Perl was upgraded using an RPM package, the rpm utility would detect that the upgrade would
break a dependency, since the mod_perl package is supposed to work with the previous version of Perl. rpm will not
allow the upgrade unless forced to.

This is a very important feature of RPM. Of course, it relies on the fact that the person who created the package has set
all the dependencies correctly. Do not trust packages downloaded from the Web. If you have to use an RPM package
prepared by someone else, get its source, read its specification file, and make doubly sure that it's what you want.

The Perl upgrade task is in fact a very easy problem to solve. Have two packages ready on the development machine:
one for Perl and the other for mod_perl, the latter built using the Perl version that is going to be installed. Upload both
of them to the live server and install them together. For example:

panic% rpm -Uvh mod_perl-1.26-10.i386.rpm perl-5.6.1-5.i386.rpm

This should be done as an atomic operation—i.e., as a single execution of the rpm program. If the installation of the
packages is attempted with separate commands, they will both fail, because each of them will break some dependency.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If a mistake is made and checks reveal that a faulty package has been installed, it is easy to roll back. Just make sure
that the previous version of the properly packaged software is available. The packages can be downgraded by using the
—force option—and voila, the previously working system is restored. For example:

panic% rpm -Uvh --force mod_perl-1.26-9.i386.rpm perl-5.6.1-4.i386.rpm

Although this example uses the rpm utility, other similar utilities exist for various operating systems and distributions.
Creating packages provides a simple way of upgrading live systems (and downgrading them if need be). The packages
used for any successful upgrade should be kept, because they will become the packages to downgrade to if a
subsequent upgrade with a new package fails.

When using a cluster of machines with identical setups, there is another important benefit of prepackaged upgrades.
Instead of doing all the upgrades by hand, which could potentially involve dozens or even hundreds of files, preparing a
package can save lots of time and will minimize the possibility of error. If the packages are properly written and have
been tested thoroughly, it is perfectly possible to make updates to machines that are running live services. (Note that
not all operating systems permit the upgrading of running software. For example, Windows does not permit DLLs that
are in active use to be updated.)

It should be noted that the packages referred to in this discussion are ones made locally, specifically for the systems to
be upgraded, not generic packages downloaded from the Internet. Making local packages provides complete control
over what is installed and upgraded and makes upgrades into atomic actions that can be rolled back if necessary. We
do not recommend using third-party packaged binaries, as they will almost certainly have been built for a different
environment and will not have been fine-tuned for your system.

5.8.2.2.4 Upgrading a live server using symbolic links

Yet another alternative is to use symbolic links for upgrades. This concept is quite simple: install a package into some
directory and symlink to it. So, if some software was expected in the directory /usr/local/foo, you could simply install
the first version of the software in the directory /usr/local/foo-1.0 and point to it from the expected directory:

panic# In -sf /usr/local/foo-1.0 /usr/local/foo

If later you want to install a second version of the software, install it into the directory /usr/local/foo-2.0 and change
the symbolic link to this new directory:

panic# In -sf /usr/local/foo-2.0 /usr/local/foo
Now if something goes wrong, you can always switch back with:
panic# In -sf /usr/local/foo-1.0 /usr/local/foo

In reality, things aren't as simple as in this example. It works if you can place all the software components under a
single directory, as with the default Apache installation. Everything is installed under a single directory, so you can
have:

/usr/local/apache-1.3.17
/usr/local/apache-1.3.19

and use the symlink /usr/local/apache to switch between the two versions.

However, if you use a default installation of Perl, files are spread across multiple directories. In this case, it's not easy
to use symlinks—you need several of them, and they're hard to keep track of. Unless you automate the symlinks with a
script, it might take a while to do a switch, which might mean some downtime. Of course, you can install all the Perl
components under a single root, just like the default Apache installation, which simplifies things.

Another complication with upgrading Perl is that you may need to recompile mod_perl and other Perl third-party
modules that use XS extensions. Therefore, you probably want to build everything on some other machine, test it, and
when ready, just untar everything at once on the production machine and adjust the symbolic links.

5.8.2.2.5 Upgrading Perl code

Although new versions of mod_perl and Apache may not be released for months at a time and the need to upgrade
them may not be pressing, the handlers and scripts being used at a site may need regular tweaks and changes, and
new ones may be added quite frequently.

Of course, the safest and best option is to prepare an RPM (or equivalent) package that can be used to automatically
upgrade the system, as explained in the previous section. Once an RPM specification file has been written (a task that
might take some effort), future upgrades will be much less time consuming and have the advantage of being very easy
to roll back.

But if the policy is to just overwrite files by hand, this section will explain how to do so as safely as possible.

All code should be thoroughly tested on a development machine before it is put on the live server, and both machines
must have an identical software base (i.e., the same versions of the operating system, Apache, any software that
Apache and mod_perl depend on, mod_perl itself, and all Perl modules). If the versions do not match, code that works
perfectly on the development machine might not work on the live server.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

For example, we have encountered a problem when the live and development servers were using different versions of
the MySQL database server. The new code took advantage of new features added in the version installed on the
development machine. The code was tested and shown to work correctly on the development machine, and when it was
copied to the live server it seemed to work fine. Only by chance did we discover that scripts did not work correctly when
the new features were used.

If the code hadn't worked at all, the problem would have been obvious and been detected and solved immediately, but
the problem was subtle. Only after a thorough analysis did we understand that the problem was that we had an older
version of the MySQL server on the live machine. This example reminded us that all modifications on the development
machine should be logged and the live server updated with all of the modifications, not just the new version of the Perl
code for a project.

We solved this particular problem by immediately reverting to the old code, upgrading the MySQL server on the live
machine, and then successfully reapplying the new code.

5.8.2.2.6 Moving files and restarting the server

Now let's discuss the techniques used to upgrade live server scripts and handlers.

The most common scenario is a live running service that needs to be upgraded with a new version of the code. The new
code has been prepared and uploaded to the production server, and the server has been restarted. Unfortunately, the
service does not work anymore. What could be worse than that? There is no way back, because the original code has
been overwritten with the new but non-working code.

Another scenario is where a whole set of files is being transferred to the live server but some network problem has

occurred in the middle, which has slowed things down or totally aborted the transfer. With some of the files old and
some new, the service is most likely broken. Since some files were overwritten, you can't roll back to the previously
working version of the service.

No matter what file transfer technique is used, be it FTP, NFS, or anything else, live running code should never be
directly overwritten during file transfer. Instead, files should be transferred to a temporary directory on the live
machine, ready to be moved when necessary. If the transfer fails, it can then be restarted safely.

Both scenarios can be made safer with two approaches. First, do not overwrite working files. Second, use a revision
control system such as CVS so that changes to working code can easily be undone if the working code is accidentally
overwritten. Revision control will be covered later in this chapter.

We recommend performing all updates on the live server in the following sequence. Assume for this example that the
project's code directory is /home/httpd/peri/rel. When we're about to update the files, we create a new directory,
/home/httpd/perl/test, into which we copy the new files. Then we do some final sanity checks: check that file
permissions are readable and executable for the user the server is running under, and run per/ -Tcw on the new
modules to make sure there are no syntax errors in them.

To save some typing, we set up some aliases for some of the apachect/ commands and for tailing the error_log file:

panic% alias graceful /home/httpd/httpd_perl/bin/apachectl graceful
panic% alias restart /home/httpd/httpd_perl/bin/apachectl restart
panic% alias start /home/httpd/httpd_perl/bin/apachect! start
panic% alias stop /home/httpd/httpd_perl/bin/apachectl stop
panic% alias err tail -f /home/httpd/httpd_perl/logs/error_log
Finally, when we think we are ready, we do:

panic% cd /home/httpd/perl
panic% mv rel old && mv test rel && stop && sleep 3 && restart && err

Note that all the commands are typed as a single line, joined by &&, and only at the end should the Enter key be
pressed. The && ensures that if any command fails, the following commands will not be executed.

The elements of this command line are:
mv rel old &&
Backs up the working directory to o/d, so none of the original code is deleted or overwritten
mv test rel &&
Puts the new code in place of the original
stop &&
Stops the server
sleep 3 &&
Allows the server a few seconds to shut down (it might need a longer sleep)

restart &&

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Restarts the server
err
tails the error_log file to make sure that everything is OK

If mv is overriden by a global alias mv -i, which requires confirming every action, you will need to call mv -f to override
the -i option.

When updating code on a remote machine, it's a good idea to prepend nohup to the beginning of the command line:
panic% nohup mv rel old && mv test rel && stop && sleep 3 && restart && err

This approach ensures that if the connection is suddenly dropped, the server will not stay down if the last command
that executes is stop.

apachectl generates its status messages a little too early. For example, when we execute apachect/ stop, a message
saying that the server has been stopped is displayed, when in fact the server is still running. Similarly, when we
execute apachectl start, a message is displayed saying that the server has been started, while it is possible that it
hasn't yet. In both cases, this happens because these status messages are not generated by Apache itself. Do not rely
on them. Rely on the error_log file instead, where the running Apache server indicates its real status.

Also note that we use restart and not just start. This is because of Apache's potentially long stopping times if it has to
run lots of destruction and cleanup code on exit. If start is used and Apache has not yet released the port it is listening
to, the start will fail and the error_log will report that the port is in use. For example:

Address already in use: make_sock: could not bind to port 8000
However, if restart is used, apachect! will wait for the server to quit and unbind the port and will then cleanly restart it.

Now, what happens if the new modules are broken and the newly restarted server reports problems or refuses to start
at all?

The aliased err command executes tail -f on the error_log, so that the failed restart or any other problems will be
immediately apparent. The situation can quickly and easily be rectified by returning the system to its pre-upgrade state
with this command:

panic% mv rel bad && mv old rel && stop && sleep 3 && restart && err

This command line moves the new code to the directory bad, moves the original code back into the runtime directory
rel, then stops and restarts the server. Once the server is back up and running, you can analyze the cause of the
problem, fix it, and repeat the upgrade again. Usually everything will be fine if the code has been extensively tested on
the development server. When upgrades go smoothly, the downtime should be only about 5-10 seconds, and most
users will not even notice anything has happened.

5.8.2.2.7 Using CVS for code upgrades

The Concurrent Versions System (CVS) is an open source version-control system that allows multiple developers to
work on code or configuration in a central repository while tracking any changes made. We use it because it's the
dominant open source tool, but it's not the only possibility: commercial tools such as Perforce would also work for these
purposes.

If you aren't familiar with CVS, you can learn about it from the resources provided at the end of this chapter. CVS is too
broad a topic to be covered in this book. Instead, we will concentrate on the CVS techniques that are relevant to our
purpose.

Things are much simpler when using CVS for server updates, especially since it allows you to tag each production
release. By tagging files, we mean having a group of files under CVS control share a common label. Like RCS and other
revision-control systems, CVS gives each file its own version number, which allows us to manipulate different versions
of this file. But if we want to operate on a group of many files, chances are that they will have different version
numbers. Suppose we want to take snapshots of the whole project so we can refer to these snapshots some time in the
future, after the files have been modified and their respective version numbers have been changed. We can do this
using tags.

To tag the project whose module name is myproject, execute the following from any directory on any machine:
panic% cvs -rtag PRODUCTION_1_20 myproject

Now when the time comes to update the online version, go to the directory on the live machine that needs to be
updated and execute:

panic% cvs update -dP -r PRODUCTION_1_20

The -P option to cvs prunes empty directories and deleted files, the -d option brings in new directories and files (like cvs
checkout does), and -r PRODUCTION_1_20 tells CVS to update the current directory recursively to the
PRODUCTION_1_20 CVS version of the project.

Suppose that after a while, we have more code updated and we need to make a new release. The currently running
version has the tag PRODUCTION_1_20, and the new version has the tag PRODUCTION_1_21. First we tag the files in the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

current state with a new tag:

panic% cvs -rtag PRODUCTION_1_21 myproject
and update the live machine:

panic% cvs update -dP -r PRODUCTION_1_21

Now if there is a problem, we can go back to the previous working version very easily. If we want to get back to version
PRODUCTION_1_20, we can run the command:

panic% cvs update -dP -r PRODUCTION_1_20

As before, the update brings in new files and directories not already present in the local directory (because of the -dP
options).

Remember that when you use CVS to update the live server, you should avoid making any minor changes to the code
on this server. That's because of potential collisions that might happen during the CVS update. If you modify a single
line in a single file and then do cvs update, and someone else modifies the same line at the same time and commits it
just before you do, CVS will try to merge the changes. If they are different, it will see a conflict and insert both versions
into the file. CVS leaves it to you to resolve the conflict. If this file is Perl code, it won't compile and it will cause
temporal troubles until the conflict is resolved. Therefore, the best approach is to think of live server files as being read-
only.

Updating the live code directory should be done only if the update is atomic—i.e., if all files are updated in a very short
period of time, and when no network problems can occur that might delay the completion of the file update.

The safest approach is to use CVS in conjunction with the safe code update technique presented previously, by working
with CVS in a separate directory. When all files are extracted, move them to the directory the live server uses. Better
yet, use symbolic links, as described earlier in this chapter: when you update the code, prepare everything in a new
directory and, when you're ready, just change the symlink to point to this new directory. This approach will prevent
cases where only a partial update happens because of a network or other problem.

The use of CVS needn't apply exclusively to code. It can be of great benefit for configuration management, too. Just as
you want your mod_perl programs to be identical between the development and production servers, you probably also
want to keep your httpd.conf files in sync. CVS is well suited for this task too, and the same methods apply.

5.8.3 Disabling Scripts and Handlers on a Live Server

Perl programs running on the mod_perl server may be dependent on resources that can become temporarily
unavailable when they are being upgraded or maintained. For example, once in a while a database server (and possibly
its corresponding DBD module) may need to be upgraded, rendering it unusable for a short period of time.

Using the development server as a temporary replacement is probably the best way to continue to provide service
during the upgrade. But if you can't, the service will be unavailable for a while.

Since none of the code that relies on the temporarily unavailable resource will work, users trying to access the
mod_perl server will see either the ugly gray "An Error has occurred" message or a customized error message (if code
has been added to trap errors and customize the error-reporting facility). In any case, it's not a good idea to let users
see these errors, as they will make your web site seem amateurish.

A friendlier approach is to confess to the users that some maintenance work is being undertaken and plead for patience,
promising that the service will become fully functional in a few minutes (or however long the scheduled downtime is
expected to be).

It is a good idea to be honest and report the real duration of the maintenance operation, not just "we will be back in 10
minutes." Think of a user (or journalist) coming back 20 minutes later and still seeing the same message! Make sure
that if the time of resumption of service is given, it is not the system's local time, since users will be visiting the site
from different time zones. Instead, we suggest using Greenwich Mean Time (GMT). Most users have some idea of the
time difference between their location and GMT, or can find out easily enough. Although GMT is known by programmers
as Universal Coordinated Time (UTC), end users may not know what UTC is, so using the older acronym is probably
best.

5.8.3.1 Disabling code running under Apache::Registry

If just a few scripts need to be disabled temporarily, and if they are running under the Apache::Registry handler, a
maintenance message can be displayed without messing with the server. Prepare a little script in
/home/httpd/perl/down4maintenance.pl:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

#!/usr/bin/perl -Tw
use strict;
print "Content-type: text/plain\n\n",
qa{We regret that the service is temporarily
unavailable while essential maintenance is undertaken.

It is expected to be back online from 12:20 GMT.
Please, bear with us. Thank you!};

Let's say you now want to disable the /home/httpd/perl/chat.pl script. Just do this:

panic% mv /home/httpd/perl/chat.pl /home/httpd/perl/chat.pl.orig
panic% In -s /home/httpd/perl/down4maintenance.pl /home/httpd/perl/chat.pl

Of course, the server configuration must allow symbolic links for this trick to work. Make sure that the directive:
Options FollowSymLinks

is in the <Location> or <Directory> section of httpd.conf.

Alternatively, you can just back up the real script and then copy the file over it:

panic% cp /home/httpd/perl/chat.pl /home/httpd/perl/chat.pl.orig
panic% cp /home/httpd/perl/down4maintenance.pl /home/httpd/perl/chat.pl

Once the maintenance work has been completed, restoring the previous setup is easy. Simply overwrite the symbolic
link or the file:

panic% mv /home/httpd/perl/chat.pl.orig /home/httpd/perl/chat.pl

Now make sure that the script has the current timestamp:

panic% touch /home/httpd/perl/chat.pl

Apache::Registry will automatically detect the change and use the new script from now on.

This scenario is possible because Apache::Registry checks the modification time of the script before each invocation. If the
script's file is more recent than the version already loaded in memory, Apache::Registry reloads the script from disk.

5.8.3.2 Disabling code running under other handlers

Under non-Apache::Registry handlers, you need to modify the configuration. You must either point all requests to a new
location or replace the handler with one that will serve the requests during the maintenance period.

Example 5-2 illustrates a maintenance handler.

Example 5-2. Book/Maintenance.pm

package Book::Maintenance;

use strict;
use Apache::Constants qw(:common);

sub handler {

my $r = shift;

$r->send_http_header("text/plain™);

print qg{We regret that the service is temporarily
unavailable while essential maintenance is undertaken.
It is expected to be back online from 12:20 GMT.
Please be patient. Thank you!};

return OK;

)
1

In practice, the maintenance script may well read the "back online" time from a variable set with a PerlSetVar directive in
httpd.conf, so the script itself need never be changed.

Edit httpd.conf and change the handler line from:
<Location /perl>

SetHandler perl-script

PerlHandler Book::Handler

</Location>

to:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<Location /perl>
SetHandler perl-script
#PerlHandler Book::Handler
PerlHandler Book::Maintenance

</Location>

Now restart the server. Users will be happy to read their email for 10 minutes, knowing that they will return to a much
improved service.

5.8.3.3 Disabling services with help from the frontend server

Many sites use a more complicated setup in which a "light" Apache frontend server serves static content but proxies all
requests for dynamic content to the "heavy" mod_perl backend server (see Chapter 12). Those sites can use a third
solution to temporarily disable scripts.

Since the frontend machine rewrites all incoming requests to appropriate requests for the backend machine, a change
to the RewriteRule is sufficient to take handlers out of service. Just change the directives to rewrite all incoming requests
(or a subgroup of them) to a single URI. This URI simply tells users that the service is not available during the
maintenance period.

For example, the following RewriteRule rewrites all URIs starting with /per/ to the maintenance URI /control/maintain on
the mod_perl server:

RewriteRule ~/perl/(.*)$ http://localhost:8000/control/maintain [P,L]

The Book::Maintenance handler from the previous section can be used to generate the response to the URI
/control/maintain.

Make sure that this rule is placed before all the other RewriteRules so that none of the other rules need to be commented
out. Once the change has been made, check that the configuration is not broken and restart the server so that the new
configuration takes effect. Now the database server can be shut down, the upgrade can be performed, and the
database server can be restarted. The RewriteRule that has just been added can be commented out and the Apache
server stopped and restarted. If the changes lead to any problems, the maintenance RewriteRule can simply be
uncommented while you sort them out.

Of course, all this is error-prone, especially when the maintenance is urgent. Therefore, it can be a good idea to
prepare all the required configurations ahead of time, by having different configuration sections and enabling the right
one with the help of the IfDefine directive during server startup.

The following configuration will make this approach clear:
RewriteEngine On

<IfDefine maintain>
RewriteRule /perl/ http://localhost:8000/control/maintain [P,L]
</IfDefine>

<IfDefine !maintain>
RewriteRule ~/perl/(.*)$ http://localhost:8000/$1 [P,L]
more directives
</IfDefine>
Now enable the maintenance section by starting the server with:
panic% httpd -Dmaintain
Request URIs starting with /perl/ will be processed by the /control/maintain handler or script on the mod_perl side.

If the -Dmaintain option is not passed, the "normal" configuration will take effect and each URI will be remapped to the
mod_perl server as usual.

Of course, if apachect! or any other script is used for server control, this new mode should be added so that it will be
easy to make the correct change without making any mistakes. When you're in a rush, the less typing you have to do,
the better. Ideally, all you'd have to type is:

panic% apachectl maintain

Which will both shut down the server (if it is running) and start it with the -Dmaintain option. Alternatively, you could
use:

panic% apachectl start_maintain

to start the server in maintenance mode. apachect! graceful will stop the server and restart it in normal mode.

5.8.4 Scheduled Routine Maintenance

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If maintenance tasks can be scheduled when no one is using the server, you can write a simple PerlAccessHandler that
will automatically disable the server and return a page stating that the server is under maintenance and will be back
online at a specified time. When using this approach, you don't need to worry about fiddling with the server
configuration when the maintenance hour comes. However, all maintenance must be completed within the given time
frame, because once the time is up, the service will resume.

The Apache::DayLimit module from http://www.modperl.com/ is a good example of such a module. It provides options for
specifying which day server maintenance occurs. For example, if Sundays are used for maintenance, the configuration
for Apache::DayLimit is as follows:

<Location /perl>
PerlSetVar RegDay Sunday
PerlAccessHandler Apache::DayLimit
</Location>

It is very easy to adapt this module to do more advanced filtering. For example, to specify both a day and a time, use a
configuration similar to this:

<Location /perl>
PerlSetVar RegDay Sunday
PerlSetVar StartHour 09:00
PerlSetVar EndHour 11:00
PerlAccessHandler Apache::DayTimeLimit
</Location>

[Team LiB] [+ Faavisvs vt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [« privisus [waxt o]
5.9 Three-Tier Server Scheme: Development, Staging, and Production

To facilitate transfer from the development server to the production server, the code should be free of any server-
dependent variables. This will ensure that modules and scripts can be moved from one directory on the development
machine to another directory (possibly in a different path) on the production machine without problems.

If two simple rules are followed, server dependencies can be safely isolated and, as far as the code goes, effectively
ignored. First, never use the server name (since development and production machines have different names), and
second, never use explicit base directory names in the code. Of course, the code will often need to refer to the server
name and directory names, but we can centralize them in server-wide configuration files (as seen in a moment).

By trial and error, we have found that a three-tier (development, staging, and production) scheme works best:
Development

The development tier might include a single machine or several machines (for example, if there are many
developers and each one prefers to develop on his own machine).

Staging

The staging tier is generally a single machine that is basically identical to the production machine and serves as
a backup machine in case the production machine needs an immediate replacement (for example, during
maintenance). This is the last station where the code is staged before it is uploaded to the production machine.

The staging machine does not have to be anywhere near as powerful as the production server if finances are
stretched. The staging machine is generally used only for staging; it does not require much processor power or
memory since only a few developers are likely to use it simultaneously. Even if several developers are using it
at the same time, the load will be very low, unless of course benchmarks are being run on it along with
programs that create a load similar to that on the production server (in which case the staging machine should
have hardware identical to that of the production machine).

Production
The production tier might include a single machine or a huge cluster comprising many machines.

You can also have the staging and production servers running on the same machine. This is not ideal, especially if the
production server needs every megabyte of memory and every CPU cycle so that it can cope with high request rates.
But when a dedicated machine just for staging purposes is prohibitively expensive, using the production server for
staging purposes is better than having no staging area at all.

Another possibility is to have the staging environment on the development machine.

So how does this three-tier scheme work?

® Developers write the code on their machines (development tier) and test that it works as expected. These
machines should be set up with an environment as similar to the production server as possible. A manageable
and simple approach is to have each developer running his own local Apache server on his own machine. If the
code relies on a database, the ideal scenario is for each developer to have access to a development database
account and server, possibly even on their own machines.

® The pre-release manager installs the code on the staging tier machine and stages it. Whereas developers can
change their own httpd.conf files on their own machines, the pre-release manager will make the necessary
changes on the staging machine in accordance with the instructions provided by the developers.

® The release manager installs the code on the production tier machine(s), tests it, and monitors for a while to
ensure that things work as expected.

Of course, on some projects, the developers, the pre-release managers, and the release managers can actually be the
same person. On larger projects, where different people perform these roles and many machines are involved,
preparing upgrade packages with a packaging tool such as RPM becomes even more important, since it makes it far
easier to keep every machine's configuration and software in sync.

Now that we have described the theory behind the three-tier approach, let us see how to have all the code independent
of the machine and base directory names.

Although the example shown below is simple, the real configuration may be far more complex; however, the principles
apply regardless of complexity, and it is straightforward to build a simple initial configuration into a configuration that is
sufficient for more complex environments.

Basically, what we need is the name of the machine, the port on which the server is running (assuming that the port
number is not hidden with the help of a proxy server), the root directory of the web server-specific files, the base
directories of static objects and Perl scripts, the appropriate relative and full URIs for these base directories, and a
support email address. This amounts to 10 variables.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

We prepare a minimum of three Local::Config packages, one per tier, each suited to a particular tier's environment. As
mentioned earlier, there can be more than one machine per tier and even more than one web server running on the
same machine. In those cases, each web server will have its own Local::Config package. The total number of Local::Config
packages will be equal to the number of web servers.

For example, for the development tier, the configuration package might look like Example 5-3.

Example 5-3. Local/Config.pm

package Local::Config;

use strict;

use constant SERVER_NAME ~ => 'dev.example.com’;
use constant SERVER_PORT => 8000;

use constant ROOT_DIR => '/home/userfoo/www';

use constant CGI_BASE_DIR => '/home/userfoo/www/perl’;

use constant DOC_BASE_DIR => '/home/userfoo/www/docs';

use constant CGI_BASE_URI ~ => 'http://dev.example.com:8000/per!’;
use constant DOC_BASE_URI ~ => 'http://dev.example.com:8000';
use constant CGI_RELATIVE_URI => '/perl’;

use constant DOC_RELATIVE_URI =>";

use constant SUPPORT_EMAIL => 'stas@example.com';

1

The constants have uppercase names, in accordance with Perl convention.

The configuration shows that the name of the development machine is dev.example.com, listening to port 8000. Web
server-specific files reside under the /home/userfoo/www directory. Think of this as a directory www that resides under
user userfoo's home directory, /home/userfoo. A developer whose username is userbar might use /home/userbar/www
as the development root directory.

If there is another web server running on the same machine, create another Local::Config with a different port number
and probably a different root directory.

To avoid duplication of identical parts of the configuration, the package can be rewritten as shown in Example 5-4.

Example 5-4. Local/Config.pm

package Local::Config;

use strict;

use constant DOMAIN_NAME ~ => 'example.com’;

use constant SERVER_NAME =>'dev.' . DOMAIN_NAME;

use constant SERVER_PORT => 8000;

use constant ROOT_DIR => "home/userfoo/www';

use constant CGI_BASE_DIR => ROOT_DIR . '/perl’;

use constant DOC_BASE_DIR => ROOT_DIR . '/docs';

use constant CGI_BASE_URI => 'http://' . SERVER_NAME . ":' . SERVER_PORT
. 'Iperl’;

use constant DOC_BASE_URI => 'http://' . SERVER_NAME . ":' . SERVER_PORT;

use constant CGI_RELATIVE_URI => "/perl’;

use constant DOC_RELATIVE_URI => ",

use constant SUPPORT_EMAIL => 'stas@' . DOMAIN_NAME;

i

Reusing constants that were previously defined reduces the risk of making a mistake. In the original file, several lines
need to be edited if the server name is changed, but in this new version only one line requires editing, eliminating the
risk of your forgetting to change a line further down the file. All the use constant statements are executed at compile
time, in the order in which they are specified. The constant pragma ensures that any attempt to change these variables
in the code leads to an error, so they can be relied on to be correct. (Note that in certain contexts—e.g., when they're
used as hash keys—Perl can misunderstand the use of constants. The solution is to either prepend & or append (), so
ROOT_DIR would become either &ROOT_DIR or ROOT_DIR().)

Now, when the code needs to access the server's global configuration, it needs to refer only to the variables in this

module. For example, in an application's configuration file, you can create a dynamically generated configuration, which
will change from machine to machine without your needing to touch any code (see Example 5-5).

Example 5-5. App/Foo/Config.pm

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

package App::Foo::Config;

use Local::Config ();
use strict;
use vars qw($CGI_URI $CGI_DIR);

directories and URIs of the App::Foo CGI project
$CGI_URI = $Local::Config::CGI_BASE_URI . '/App/Foo';
$CGI_DIR = $Local::Config::CGI_BASE_DIR . '/App/Fo0’;
L

Notice that we used fully qualified variable names instead of importing these global configuration variables into the
caller's namespace. This saves a few bytes of memory, and since Local::Config will be loaded by many modules, these
savings will quickly add up. Programmers used to programming Perl outside the mod_perl environment might be
tempted to add Perl's exporting mechanism to Local::Config and thereby save themselves some typing. We prefer not to
use Exporter.pm under mod_perl, because we want to save as much memory as possible. (Even though the amount of
memory overhead for using an exported name is small, this must be multiplied by the number of concurrent users of
the code, which could be hundreds or even thousands on a busy site and could turn a small memory overhead into a
large one.)

For the staging tier, a similar Local::Config module with just a few changes (as shown in Example 5-6) is necessary.

Example 5-6. Local/Config.pm

package Local::Config;

use strict;

use constant DOMAIN_NAME => 'example.com';

use constant SERVER_NAME => 'stage.' . DOMAIN_NAME;

use constant SERVER_PORT => 8000;

use constant ROOT_DIR =>'/home’;

use constant CGI_BASE_DIR => ROOT_DIR . '/perl’;

use constant DOC_BASE_DIR => ROOT_DIR . '/docs';

use constant CGI_BASE_URI => 'http://' . SERVER_NAME . ":' . SERVER_PORT
. '[perl’;

use constant DOC_BASE_URI => 'http://' . SERVER_NAME . "' . SERVER_PORT;

use constant CGI_RELATIVE_URI => "/perl’;

use constant DOC_RELATIVE_URI => "

use constant SUPPORT_EMAIL => 'stage@' . DOMAIN_NAME;

1

We have named our staging tier machine stage.example.com. Its root directory is /home.

The production tier version of Local/Config.pm is shown in Example 5-7.

Example 5-7. Local/Config.pm

package Local::Config;

use strict;

use constant DOMAIN_NAME => 'example.com';

use constant SERVER_NAME =>'www.' . DOMAIN_NAME;

use constant SERVER_PORT => 8000;

use constant ROOT_DIR => '/home/";

use constant CGI_BASE_DIR => ROOT_DIR . '/perl’;

use constant DOC_BASE_DIR => ROOT_DIR . '/docs’;

use constant CGI_BASE_URI ~ => 'http://' . SERVER_NAME . ":' . SERVER_PORT
. 'Iperl’;

use constant DOC_BASE_URI ~ => 'http://' . SERVER_NAME . ":' . SERVER_PORT;

use constant CGI_RELATIVE_URI => '/perl’;

use constant DOC_RELATIVE_URI =>";

use constant SUPPORT_EMAIL => 'support@' . DOMAIN_NAME;

You can see that the setups of the staging and production machines are almost identical. This is only in our example; in
reality, they can be very different.

The most important point is that the Local::Config module from a machine on one tier must never be moved to a
machine on another tier, since it will break the code. If locally built packages are used, the Local::Config file can simply
be excluded—this will help to reduce the risk of inadvertently copying it.

From now on, when modules and scripts are moved between machines, you shouldn't need to worry about having to
change variables to accomodate the different machines' server names and directory layouts. All this is accounted for by
the Local::Config files.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Some developers prefer to run conversion scripts on the moved code that adjust all variables to the local machine. This
approach is error-prone, since variables can be written in different ways, and it may result in incomplete adjustment
and broken code. Therefore, the conversion approach is not recommended.

5.9.1 Starting a Personal Server for Each Developer

When just one developer is working on a specific server, there are fewer problems, because she can have complete
control over the server. However, often a group of developers need to develop mod_perl scripts and modules
concurrently on the same machine. Each developer wants to have control over the server: to be able to stop it, run it in
single-server mode, restart it, etc. They also want control over the location of log files, configuration settings such as
MaxClients, and so on.

Each developer might have her own desktop machine, but all development and staging might be done on a single
central development machine (e.g., if the developers' personal desktop machines run a different operating system from
the one running on the development and production machines).

One workaround for this problem involves having a few versions of the httpd.conf file (each having different Port,
ErrorLog, etc. directives) and forcing each developer's server to be started with:

panic% httpd_perl -f /path/to/httpd.conf

However, this means that these files must be kept synchronized when there are global changes affecting all developers.
This can be quite difficult to manage. The solution we use is to have a single httpd.conf file and use the -Dparameter
server startup option to enable a specific section of httpd.conf for each developer. Each developer starts the server with
his or her username as an argument. As a result, a server uses both the global settings and the developer's private
settings.

For example, user stas would start his server with:
panic% httpd_perl -Dstas
In httpd.conf, we write:

Personal development server for stas
stas uses the server running on port 8000
<IfDefine stas>

Port 8000

PidFile /home/httpd/httpd_perl/logs/httpd.pid.stas

ErrorLog /home/httpd/httpd_perl/logs/error_log.stas

Timeout 300

KeepAlive On

MinSpareServers 2

MaxSpareServers 2

StartServers 1

MaxcClients 3

MaxRequestsPerChild 15

let developers to add their own configuration

so they can override the defaults

Include /home/httpd/httpd_perl/conf/stas.conf
</IfDefine>

Personal development server for eric
eric uses the server running on port 8001
<IfDefine eric>

Port 8001

PidFile /home/httpd/httpd_perl/logs/httpd.pid.eric

ErrorLog /home/httpd/httpd_perl/logs/error_log.eric

Timeout 300

KeepAlive Off

MinSpareServers 1

MaxSpareServers 2

StartServers 1

MaxClients 5

MaxRequestsPerChild 0

Include /home/httpd/httpd_perl/conf/eric.conf
</IfDefine>

With this technique, we have separate error_log files and full control over server starting and stopping, the number of
child processes, and port selection for each server. This saves Eric from having to call Stas several times a day just to
warn, "Stas, I'm restarting the server" (a ritual in development shops where all developers are using the same
mod_perl server).

With this technique, developers will need to learn the PIDs of their parent httpd_perl processes. For user stas, this can
be found in /home/httpd/httpd_perl/logs/httpd.pid.stas. To make things even easier, we change the apachect/ script to
do the work for us. We make a copy for each developer, called apachectl.username, and change two lines in each
script:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

PIDFILE=/home/httpd/httpd_perl/logs/httpd.pid.username
HTTPD='/home/httpd/httpd_perl/bin/httpd_perl -Dusername’

For user stas, we prepare a startup script called apachectl.stas and change these two lines in the standard apachect/
script:

PIDFILE=/home/httpd/httpd_perl/logs/httpd.pid.stas
HTTPD='/home/httpd/httpd_perl/bin/httpd_perl -Dstas'

Now when user stas wants to stop the server, he executes:
panic% apachectl.stas stop

And to start the server, he executes:

panic% apachectl.stas start

And so on, for all other apachect/ arguments.

It might seem that we could have used just one apachect!/ and have it determine for itself who executed it by checking
the UID. But the setuid bit must be enabled on this script, because starting the server requires root privileges. With the
setuid bit set, a single apachect! script can be used for all developers, but it will have to be modified to include code to
read the UID of the user executing it and to use this value when setting developer-specific paths and variables.

The last thing you need to do is to provide developers with an option to run in single-process mode. For example:
panic% /home/httpd/httpd_perl/bin/httpd_perl -Dstas -X

In addition to making the development process easier, we decided to use relative links in all static documents, including
calls to dynamically generated documents. Since each developer's server is running on a different port, we have to
make it possible for these relative links to reach the correct port number.

When typing the URI by hand, it's easy. For example, when user stas, whose server is running on port 8000, wants to
access the relative URI /test/example, he types http://www.example.com:8000/test/example to get the generated
HTML page. Now if this document includes a link to the relative URI /test/example2 and stas clicks on it, the browser
will automatically generate a full request (http://www.example.com:8000/test/example2) by reusing the server:port
combination from the previous request.

Note that all static objects will be served from the same server as well. This may be an acceptable situation for the
development environment, but if it is not, a slightly more complicated solution involving the mod_rewrite Apache
module will have to be devised.

To use mod_rewrite, we have to configure our httpd_docs (light) server with —enable-module=rewrite and recompile,
or use DSOs and load and enable the module in httpd.conf. In the httpd.conf file of our httpd_docs server, we have the
following code:

RewriteEngine on

stas's server

port = 8000

RewriteCond %{REQUEST_URI} ~/perl

RewriteCond %{REMOTE_ADDR} 123.34.45.56
RewriteRule ~(.*) http://example.com:8000/$1 [P,L]

eric's server

port = 8001

RewriteCond %{REQUEST_URI} ~/perl
RewriteCond %{REMOTE_ADDR} 123.34.45.57

RewriteRule ~(.*) http://example.com:8001/$1 [P,L]
all the rest

RewriteCond %{REQUEST_URI} ~/perl

RewriteRule ~(.*) http://example.com:81/$1 [P]

The IP addresses are those of the developer desktop machines (i.e., where they run their web browsers). If an HTML
file includes a relative URI such as /peri/test.pl or even http://www.example.com/peri/test.pl, requests for those URIs
from user stas's machine will be internally proxied to http://www.example.com:8000/perl/test.pl, and requests
generated from user eric's machine will be proxied to http://www.example.com:8001/perl/test.pl.

Another possibility is to use the REMOTE_USER variable. This requires that all developers be authenticated when they
access the server. To do so, change the RewriteRules to match REMOTE_USER in the above example.

Remember, the above setup will work only with relative URIs in the HTML code. If the HTML output by the code uses
full URIs including a port other than 80, the requests originating from this HTML code will bypass the light server
listening on the default port 80 and go directly to the server and port of the full URIL.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
5.10 Web Server Monitoring

Once the production system is working, you may think that the job is done and the developers can switch to a new
project. Unfortunately, in most cases the server will still need to be maintained to make sure that everything is working
as expected, to ensure that the web server is always up, and much more. A large part of this job can be automated,
which will save time. It will also increase the uptime of the server, since automated processes generally work faster
than manual ones. If created properly, automated processes also will always work correctly, whereas human operators
are likely to make occassional mistakes.

5.10.1 Interactive Monitoring

When you're getting started, it usually helps to monitor the server interactively. Many different tools are available to do
this. We will discuss a few of them now.

When writing automated monitoring tools, you should start by monitoring the tools themselves until they are reliable
and stable enough to be left to work by themselves.

Even when everything is automated, you should check at regular intervals that everything is working OK, since a minor
change in a single component can silently break the whole monitoring system. A good example is a silent failure of the
mail system—if all alerts from the monitoring tools are delivered through email, having no messages from the system
does not necessarily mean that everything is OK. If emails alerting about a problem cannot reach the webmaster
because of a broken email system, the webmaster will not realize that a problem exists. (Of course, the mailing system
should be monitored as well, but then problems must be reported by means other than email. One common solution is
to send messages by both email and to a mobile phone's short message service.)

Another very important (albeit often-forgotten) risk time is the post-upgrade period. Even after a minor upgrade, the
whole service should be monitored closely for a while.

The first and simplest check is to visit a few pages from the service to make sure that things are working. Of course,
this might not suffice, since different pages might use different resources—while code that does not use the database
system might work properly, code that does use it might not work if the database server is down.

The second thing to check is the web server's error_log file. If there are any problems, they will probably be reported
here. However, only obvious syntactic or malfunction bugs will appear here—the subtle bugs that are a result of bad
program logic will be revealed only through careful testing (which should have been completed before upgrading the
live server).

Periodic system health checking can be done using the top utility, which shows free memory and swap space, the
machine's CPU load, etc.

5.10.2 Apache::VMonitor—The Visual System and Apache Server Monitor

The Apache::VMonitor module provides even better monitoring functionality than top. It supplies all the relevant
information that top does, plus all the Apache-specific information provided by Apache's mod_status module (request
processing time, last request's URI, number of requests served by each child, etc.) In addition, Apache::VMonitor
emulates the reporting functions of the top, mount, and df utilities.

Apache::VMonitor has a special mode for mod_perl processes. It also has visual alerting capabilities and a configurable
"automatic refresh” mode. A web interface can be used to show or hide all sections dynamically.

The module provides two main viewing modes:

® Multi-processes and overall system status

® Single-process extensive reporting

5.10.2.1 Prerequisites and configuration

To run Apache::VMonitor, you need to have Apache::Scoreboard installed and configured in httpd.conf. Apache::Scoreboard, in
turn, requires mod_status to be installed with ExtendedStatus enabled. In httpd.conf, add:

ExtendedStatus On

Turning on extended mode will add a certain overhead to each request's response time. If every millisecond counts, you
may not want to use it in production.

You also need Time::HiRes and GTop to be installed. And, of course, you need a running mod_perl-enabled Apache

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

server.
To enable Apache::VMonitor, add the following configuration to httpd.conf:

<Location /system/vmonitor>
SetHandler perl-script
PerlHandler Apache::VMonitor
</Location>

The monitor will be displayed when you request http://localhost/system/vmonitor/.

You probably want to protect this location from unwanted visitors. If you are accessing this location from the same IP
address, you can use a simple host-based authentication:

<Location /system/vmonitor>
SetHandler perl-script
PerlHandler Apache::VMonitor
order deny,allow
deny from all
allow from 132.123.123.3
</Location>

Alternatively, you may use Basic or other authentication schemes provided by Apache and its extensions.
You should load the module in httpd.conf:

PerlModule Apache::VMonitor

or from the the startup file:

use Apache::VMonitor();

You can control the behavior of Apache::VMonitor by configuring variables in the startup file or inside the <Perl> section.
To alter the monitor reporting behavior, tweak the following configuration arguments from within the startup file:

$Apache::VMonitor::Config{BLINKING} = 1;
$Apache::VMonitor::Config{REFRESH} = 0;
$Apache::VMonitor::Config{ VERBOSE} = 0;

To control what sections are to be displayed when the tool is first accessed, configure the following variables:

$Apache::VMonitor::Config{SYSTEM} = 1;
$Apache::VMonitor::Config{APACHE} = 1;
$Apache::VMonitor::Config{PROCS} = 1;
$Apache::VMonitor::Config{MOUNT} 1;

$Apache::VMonitor::Config{FS_USAGE} ;

You can control the sorting of the mod_perl processes report by sorting them by one of the following columns: pid,
mode, elapsed, lastreq, served, size, share, vsize, rss, client, or request. For example, to sort by the process size, use the
following setting:

$Apache::VMonitor::Config{SORT_BY} = "size";

As the application provides an option to monitor processes other than mod_perl processes, you can define a regular
expression to match the relevant processes. For example, to match the process names that include "httpd_docs",
"mysql", and "squid", the following regular expression could be used:

$Apache::VMonitor::PROC_REGEX = 'httpd_docs|mysql|squid';

We will discuss all these configuration options and their influence on the application shortly.

5.10.2.2 Multi-processes and system overall status reporting mode

The first mode is the one that's used most often, since it allows you to monitor almost all important system resources
from one location. For your convenience, you can turn different sections on and off on the report, to make it possible
for reports to fit into one screen.

This mode comes with the following features:
Automatic Refresh Mode

You can tell the application to refresh the report every few seconds. You can preset this value at server startup.
For example, to set the refresh to 60 seconds, add the following configuration setting:

$Apache::VMonitor::Config{REFRESH} = 60;
A 0 (zero) value turns off automatic refresh.

When the server is started, you can always adjust the refresh rate through the user interface.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

top Emulation: System Health Report

Like top, this shows the current date/time, machine uptime, average load, and all the system CPU and memory
usage levels (CPU load, real memory, and swap partition usage).

The top section includes a swap space usage visual alert capability. As we will explain later in this chapter,
swapping is very undesirable on production systems. This tool helps to detect abnormal swapping situations by
changing the swap report row's color according to the following rules:

swap usage report color

5Mb < swap < 10 MB light red

20% < swap (swapping is bad!) red

70% < swap (almost all used!) red + blinking (if enabled)
Note that you can turn on the blinking mode with:
$Apache::VMonitor::Config{BLINKING} = 1;

The module doesn't alert when swap is being used just a little (< 5 Mb), since swapping is common on many
Unix systems, even when there is plenty of free RAM.

If you don't want the system section to be displayed, set:
$Apache::VMonitor::Config{SYSTEM} = 0;

The default is to display this section.

top Emulation: Apache/mod_perl Processes Status

Like top, this emulation gives a report of the processes, but it shows only information relevant to mod_perl
processes. The report includes the status of the process (Starting, Reading, Sending, Waiting, etc.), process ID,
time since the current request was started, last request processing time, size, and shared, virtual, and resident
size. It shows the last client's IP address and the first 64 characters of the request URI.

This report can be sorted by any column by clicking on the name of the column while running the application.
The sorting can also be preset with the following setting:

$Apache::VMonitor::Config{SORT_BY} = "size";
The valid choices are pid, mode, elapsed, lastreq, served, size, share, vsize, rss, client, and request.

The section is concluded with a report about the total memory being used by all mod_perl processes as
reported by the kernel, plus an extra number approximating the real memory usage when memory sharing is
taking place. We discuss this in more detail in Chapter 10.

If you don't want the mod_perl processes section to be displayed, set:
$Apache::VMonitor::Config{APACHE} = 0;

The default is to display this section.

top Emulation: Any Processes

This section, just like the mod_perl processes section, displays the information as the top program would. To
enable this section, set:

$Apache::VMonitor::Config{PROCS} = 1;
The default is not to display this section.

You need to specify which processes are to be monitored. The regular expression that will match the desired
processes is required for this section to work. For example, if you want to see all the processes whose names
include any of the strings "http", "mysql", or "squid", use the following regular expression:

$Apache::VMonitor::PROC_REGEX = 'httpd|mysql|squid’;

Figure 5-1 visualizes the sections that have been discussed so far. As you can see, the swap memory is heavily
used. Although you can't see it here, the swap memory report is colored red.

Figure 5-1. Emulation of top, centralized information about mod_perl and
selected processes

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

mount Emulation

This section provides information about mounted filesystems, as if you had called mount with no parameters.
If you want the mount section to be displayed, set:
$Apache::VMonitor::Config{MOUNT} = 1;

The default is not to display this section.

df Emulation

This section completely reproduces the df utility. For each mounted filesystem, it reports the number of total
and available blocks for both superuser and user, and usage in percentages. In addition, it reports available and
used file inodes in numbers and percentages.

This section can give you a visual alert when a filesystem becomes more than 90% full or when there are less
than 10% of free file inodes left. The relevant filesystem row will be displayed in red and in a bold font. A mount
point directory will blink if blinking is turned on. You can turn the blinking on with:

$Apache::VMonitor::Config{BLINKING} = 1;

If you don't want the df section to be displayed, set:
$Apache::VMonitor::Config{FS_USAGE} = 0;

The default is to display this section.

Figure 5-2 presents an example of the report consisting of the last two sections that were discussed (df and
mount emulation), plus the ever-important mod_perl processes report.

Figure 5-2. Emulation of df, both inodes and blocks

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In Figure 5-2, the /mnt/cdrom and /usr filesystems are more than 90% full and therefore are colored red. This
is normal for /mnt/cdrom, which is a mounted CD-ROM, but might be critical for the /usr filesystem, which
should be cleaned up or enlarged.

Abbreviations and hints
The report uses many abbreviations that might be new for you. If you enable the VERBOSE mode with:
$Apache::VMonitor::Config{ VERBOSE} = 1;
this section will reveal the full names of the abbreviations at the bottom of the report.

The default is not to display this section.

5.10.2.3 Single-process extensive reporting system

If you need to get in-depth information about a single process, just click on its PID. If the chosen process is a mod_perl
process, the following information is displayed:

® Process type (child or parent), status of the process (Starting, Reading, Sending, Waiting, etc.), and how long
the current request has been being processed (or how long the previous request was processed for, if the
process is inactive at the moment the report was made).

® How many bytes have been transferred so far, and how many requests have been served per child and per slot.
(When the child process quits, it is replaced by a new process running in the same slot.)

® CPU times used by the process: total, utime, stime, cutime, cstime.

For all processes (mod_perl and non-mod_perl), the following information is reported:

® General process information: UID, GID, state, TTY, and command-line arguments
® Memory usage: size, share, VSize, and RSS
® Memory segments usage: text, shared lib, date, and stack
® Memory maps: start-end, offset, device_major:device_minor, inode, perm, and library path
® Sizes of loaded libraries
Just as with the multi-process mode, this mode allows you to automatically refresh the page at the desired intervals.

Figures Figure 5-3, Figure 5-4, and Figure 5-5 show an example report for one mod_perl process.

Figure 5-3. Extended information about processes: general process information

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 5-4. Extended information about processes: memory usage and maps

Figure 5-5. Extended information about processes: loaded libraries

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

5.10.3 Automated Monitoring

As we mentioned earlier, the more things are automated, the more stable the server will be. In general, there are three
things that we want to ensure:

1. Apache is up and properly serving requests. Remember that it can be running but unable to serve requests (for
example, if there is a stale lock and all processes are waiting to acquire it).

2. All the resources that mod_perl relies on are available and working. This might include database engines, SMTP
services, NIS or LDAP services, etc.

3. The system is healthy. Make sure that there is no system resource contention, such as a small amount of free
RAM, a heavily swapping system, or low disk space.

None of these categories has a higher priority than the others. A system administrator's role includes the proper
functioning of the whole system. Even if the administrator is responsible for just part of the system, she must still
ensure that her part does not cause problems for the system as a whole. If any of the above categories is not
monitored, the system is not safe.

A specific setup might certainly have additional concerns that are not covered here, but it is most likely that they will
fall into one of the above categories.

Before we delve into details, we should mention that all automated tools can be divided into two categories: tools that
know how to detect problems and notify the owner, and tools that not only detect problems but also try to solve them,
notifying the owner about both the problems and the results of the attempt to solve them.

Automatic tools are generally called watchdogs. They can alert the owner when there is a problem, just as a watchdog
will bark when something is wrong. They will also try to solve problems themselves when the owner is not around, just
as watchdogs will bite thieves when their owners are asleep.

Although some tools can perform corrective actions when something goes wrong without human intervention (e.g.,
during the night or on weekends), for some problems it may be that only human intervention can resolve the situation.
In such cases, the tool should not attempt to do anything at all. For example, if a hardware failure occurs, it is almost
certain that a human will have to intervene.

Below are some techniques and tools that apply to each category.

5.10.3.1 mod_perl server watchdogs

One simple watchdog solution is to use a slightly modified apachect/ script, which we have called apache.watchdog. Call
it from cron every 30 minutes—or even every minute—to make sure that the server is always up.

The crontab entry for 30-minute intervals would read:
5,35 * * * * [path/to/the/apache.watchdog >/dev/null 2>&1
The script is shown in Example 5-8.

Example 5-8. apache.watchdog

#1/bin/sh

This script is a watchdog checking whether
the server is online.

It tries to restart the server, and if it is

down it sends an email alert to the admin.

admin's email
EMAIL=webmaster@example.com

the path to the PID file
PIDFILE=/home/httpd/httpd_perl/logs/httpd.pid

the path to the httpd binary, including any options if necessary

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

HTTPD=/home/httpd/httpd_perl/bin/ htfpd_perl

check for pidfile
if [-f $PIDFILE] ; then
PID="cat $PIDFILE"

if kill -0 $PID; then
STATUS="httpd (pid $PID) running"
RUNNING=1
else
STATUS="httpd (pid $PID?) not running"
RUNNING=0
fi
else
STATUS="httpd (no pid file) not running"
RUNNING=0
fi

if [$RUNNING -eq 0 J; then
echo "$0 $ARG: httpd not running, trying to start"
if $HTTPD ; then
echo "$0 $ARG: httpd started"
mail $EMAIL -s "$0 $ARG: httpd started" \
< /dev/null > /dev/null 2>&1
else
echo "$0 $ARG: httpd could not be started"
mail $EMAIL -s "$0 $ARG: httpd could not be started" \
< /dev/null > /dev/null 2>&1
fi
fi

Another approach is to use the Perl LWP module to test the server by trying to fetch a URI served by the server. This is
more practical because although the server may be running as a process, it may be stuck and not actually serving any
requests—for example, when there is a stale lock that all the processes are waiting to acquire. Failing to get the
document will trigger a restart, and the problem will probably go away.

We set a cron job to call this LWP script every few minutes to fetch a document generated by a very light script. The
best thing, of course, is to call it every minute (the finest resolution cron provides). Why so often? If the server gets
confused and starts to fill the disk with lots of error messages written to the error_log, the system could run out of free
disk space in just a few minutes, which in turn might bring the whole system to its knees. In these circumstances, it is
unlikely that any other child will be able to serve requests, since the system will be too busy writing to the error_log
file. Think big—if running a heavy service, adding one more request every minute will have no appreciable impact on
the server's load.

So we end up with a crontab entry like this:
* ok * x * [path/to/the/watchdog.pl > /dev/null
The watchdog itself is shown in Example 5-9.

Example 5-9. watchdog.pl

#!/usr/bin/perl -Tw

These prevent taint checking failures
$ENV{PATH} = '/bin:/usr/bin’;

delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};

use strict;
use diagnostics;

use vars qw($VERSION $ua);
$VERSION = '0.01";

require LWP::UserAgent;

Config #######4#
my $test_script_url = 'http://www.example.com:81/perl/test.pl’;

my $monitor_email = 'root@localhost’;
my $restart_command = '/home/httpd/httpd_perl/bin/apachectl restart’;
my $mail_program = '/usr/lib/sendmail -t -n';

HERBHBRRHBHABHHHHHHBHHHH

$ua = LWP::UserAgent->new;

$ua->agent("$0/watchdog " . $ua->agent);

Uncomment the following two lines if running behind a firewall
my $proxy = "http://www-proxy";

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$ua->proxy('http', $proxy) if $proxy;

If it returns 1" it means that the service is alive, no need to
continue
exit if checkurl($test_script_url);

Houston, we have a problem.
The server seems to be down, try to restart it.
my $status = system $restart_command;

my $message = ($status = = 0)
? "Server was down and successfully restarted!"
: "Server is down. Can't restart.";

my $subject = ($status = = 0)
? "Attention! Webserver restarted"
: "Attention! Webserver is down. can't restart";

email the monitoring person

my $to = $monitor_email;

my $from = $monitor_email;
send_mail($from, $to, $subject, $message);

input: URL to check
output: 1 for success, 0 for failure
HEABHHRHABHHBH SR HBH SR HRH
sub checkurl {

my($url) = @_;

Fetch document
my $res = $ua->request(HTTP::Request->new(GET => $url));

Check the result status
return 1 if $res->is_success;

failed
return 0;

}

send email about the problem
HUHH#HBRBHHH R B R HHH SR HHHH
sub send_mail {

my($from, $to, $subject, $messagebody) = @_;

open MAIL, "[$mail_program"
or die "Can't open a pipe to a $mail_program :$'\n";

print MAIL <<_ _END_OF_MAIL_ _;
To: $to
From: $from
Subject: $subject

$messagebody

Your faithful watchdog
_ _END_OF_MAIL_ _

close MAIL or die "failed to close |$mail_program: $!";

}

Of course, you may want to replace a call to sendmail with Mail::Send, Net::SMTP code, or some other preferred email-
sending technique.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
5.11 Server Maintenance Chores

It is not enough to have your server and service up and running. The server must be maintained and monitored even
when everything seems to be fine. This includes security auditing as well as keeping an eye on the amount of remaining
unused disk space, available RAM, the system's load, etc.

If these chores are forgotten, sooner or later the system will crash, either because it has run out of free disk space, all
available RAM has been used and the system has started to swap heavily, or it has been broken into. The last issue is
much too broad for this book's scope, but the others are quite easily addressed if you follow our advice.

Particular systems might require maintenance chores that are not covered here, but this section highlights some of the
most important general tasks.

5.11.1 Handling Log Files

Apache generally logs all the web server access events in the access_/log file, whereas errors and warnings go into the
error_Jlog file. The access_log file can later be analyzed to report server usage statistics, such as the number of
requests made in different time spans, who issued these requests, and much more. The error_Jog file is used to monitor
the server for errors and warnings and to prompt actions based on those reports. Some systems do additional logging,
such as storing the referrers of incoming requests to find out how users have learned about the site.

The simplest logging technique is to dump the logs into a file opened for appending. With Apache, this is as simple as
specifying the logging format and the file to which to log. For example, to log all accesses, use the default directive
supplied in httpd.conf:

LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog /home/httpd/httpd_perl/logs/access_log common

This setting will log all server accesses to a file named /home/httpd/httpd_perl/logs/access_log using the format
specified by the LogFormat directive—in this case, common. Please refer to the Apache documentation for a complete
explanation of the various tokens that you can use when specifying log formats. If you're tempted to change the format
of the log file, bear in mind that some log analysis tools may expect that only the default or one of a small subset of
logging formats is used.

The only risk with log files is their size. It is important to keep log files trimmed. If they are needed for later analysis,
they should be rotated and the rotation files should be moved somewhere else so they do not consume disk space. You
can usually compress them for storage offline.

The most important thing is to monitor log files for possible sudden explosive growth rates. For example, if a developer
makes a mistake in his code running on the mod_perl server and the child processes executing the code start to log
thousands of error messages a second, all disk space can quickly be consumed, and the server will cease to function.

5.11.1.1 Scheduled log file rotation

The first issue is solved by having a process that rotates the logs run by cron at certain times (usually off-peak hours, if
this term is still valid in the 24-hour global Internet era). Usually, log rotation includes renaming the current log file,
restarting the server (which creates a fresh new log file), and compressing and/or moving the rotated log file to a
different disk.

For example, if we want to rotate the access_/log file, we could do:

panic% mv access_log access_log.renamed

panic% apachectl graceful

panic% sleep 5

panic% mv access_log.renamed /some/directory/on/another/disk

The sleep delay is added to make sure that all children complete requests and logging. It's possible that a longer delay
is needed. Once the restart is completed, it is safe to use access_/log.renamed.

There are several popular utilities, such as rotatelogs and cronolog, that can perform the rotation, although it is also
easy to create a basic rotation script. Example 5-10 shows a script that we run from cron to rotate our log files.

Example 5-10. logrotate

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

#1/usr/local/bin/perl -Tw
This script does log rotation. Called from crontab.

use strict;
$ENV{PATH}="/bin:/usr/bin’;
delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};

configuration

my @logfiles = qw(access_log error_log);

umask 0;

my $server = "httpd_perl";

my $logs_dir = "/home/httpd/$server/logs";

my $restart_command = "/home/httpd/$server/bin/apachect! restart";
my $gzip_exec = "/usr/bin/gzip -9"; # -9 is maximum compression

my ($sec, $min, $hour, $mday, $mon, $year) = localtime(time);
my $time = sprintf "%0.4d.%0.2d.%0.2d-%0.2d.%0.2d.%0.2d",
$year+1900, ++$mon, $mday, $hour, $min, $sec;

chdir $logs_dir;

rename log files
foreach my $file (@lodfiles) {
rename $file, "$file.$time";

}

now restart the server so the logs will be restarted
system $restart_command;

allow all children to complete requests and logging
sleep 5;

compress log files
foreach my $file (@lodfiles) {
system "$gzip_exec $file.$time";

}

As can be seen from the code, the rotated files will include the date and time in their filenames.

5.11.1.2 Non-scheduled emergency log rotation

As we mentioned earlier, there are times when the web server goes wild and starts to rapidly log lots of messages to
the error_Jlog file. If no one monitors this, it is possible that in a few minutes all free disk space will be consumed and
no process will be able to work normally. When this happens, the faulty server process may cause so much I/0O that its
sibling processes cannot serve requests.

Although this rarely happens, you should try to reduce the risk of it occurring on your server. Run a monitoring program
that checks the log file size and, if it detects that the file has grown too large, attempts to restart the server and trim
the log file.

Back when we were using quite an old version of mod_perl, we sometimes had bursts of "Callback called exit" errors
showing up in our error_log. The file could grow to 300 MB in a few minutes.

Example 5-11 shows a script that should be executed from crontab to handle situations like this. This is an emergency
solution, not to be used for routine log rotation. The cron job should run every few minutes or even every minute,
because if the site experiences this problem, the log files will grow very rapidly. The example script will rotate when
error_log grows over 100K. Note that this script is still useful when the normal scheduled log-rotation facility is working.

Example 5-11. emergency_rotate.sh

#1/bin/sh
S="perl -e 'print -s "/home/httpd/httpd_perl/logs/error_log"";
if ["$S" -gt 100000] ; then
mv /home/httpd/httpd_perl/logs/error_log \
/home/httpd/httpd_perl/logs/error_log.old
/etc/rc.d/init.d/httpd restart
date | /bin/mail -s "error_log $S kB" admin@example.com
fi

Of course, a more advanced script could be written using timestamps and other bells and whistles. This example is just
a start, to illustrate a basic solution to the problem in question.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Another solution is to use ready-made tools that are written for this purpose. The daemontools package includes a
utility called multilog that saves the STDIN stream to one or more log files. It optionally timestamps each line and, for
each log, includes or excludes lines matching specified patterns. It automatically rotates logs to limit the amount of disk
space used. If the disk fills up, it pauses and tries again, without losing any data.

The obvious caveat is that it does not restart the server, so while it tries to solve the log file-handling issue, it does not
deal with the problem's real cause. However, because of the heavy I/O induced by the log writing, other server
processes will work very slowly if at all. A normal watchdog is still needed to detect this situation and restart the Apache
server.

5.11.1.3 Centralized logging

If you are running more than one server on the same machine, Apache offers the choice of either having a separate set
of log files for each server, or using a central set of log files for all servers. If you are running servers on more than one
machine, having them share a single log file is harder to achieve, but it is possible, provided that a filesharing system is
used (logging into a database, or a special purpose application like syslog).

There are a few file-sharing systems that are widely used:
Network File System (NFS)

NFS is a network file-sharing system. It's a very useful system, when it works. Unfortunately, it breaks too
often, which makes it unreliable to use on production systems. NFS is available on most Unix flavors.

Andrew File System (AFS)

AFS is a distributed filesystem that enables cooperating hosts (clients and servers) to efficiently share
filesystem resources across both local area and wide area networks. This filesystem is reliable, but it costs
money and is available only on the HP, Next, DEC, IBM, SUN, and SGI operating systems. For more

information, see http://www.transarc.com/ and http://www.angelfire.com/hi/plutonic/afs-faq.html.
Coda

Coda is a distributed filesystem with its origin in AFS2. It has many features that are very desirable for network
filesystems. Coda is platform-independent: you can mix and match servers and clients on any supported
platform. As of this writing, it's not clear how stable the system is; some people have reported success using it,
but others have had some problems with it. For more information, see http://www.coda.cs.cmu.edu/.

Apache permits the location of the file used for logging purposes to be specified, but it also allows you to specify a
program to which all logs should be piped. To log to a program, modify the log handler directive (for example,
CustomLog) to use the logging program instead of specifying an explicit filename:

LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog "| /home/httpd/httpd_perl/bin/sqllogger.pl" common

Logging into a database is a common solution, because you can do insertions from different machines into a single
database. Unless the logger is programmed to send logs to a few databases at once, this solution is not reliable, since a
single database constitutes a single failure point. If the database goes down, the logs will be lost. Sending information
to one target is called unicast (see Figure 5-6), and sending to more than one target is called multicast (see Figure 5-
7). In the latter case, if one database goes down, the others will still collect the data.

Figure 5-6. Unicast solution

Figure 5-7. Multicast solution

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Another solution is to use a centralized logger program based on syslog(3) to send all logs to a central location on a
master host. syslog(3) is not a very scalable solution, because it's slow. It's also unreliable—it uses UDP to send the
data, which doesn't ensure that the data will reach its destination. This solution is also unicast: if the master host goes
down, the logs will be lost.

Using syslog

The syslog solution can be implemented using the following configuration:

LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog "| /home/httpd/httpd_perl/bin/syslogger.pl hostnameX" common

where a simple syslogger.pl can look like this:

#!/usr/bin/perl
use Sys::Syslog qw(:DEFAULT setlogsock);
my $hostname = shift || 'localhost’;
my $options = 'ndelay'; # open the connection immediately
my $facility = 'local0’; # one of local0..local7
my $priority = 'info'; # debug|info|notice|warning|err...
setlogsock 'unix’;
openlog $hostname, $options, $facility;
while (<>) {
chomp;
syslog $priority, $_;

closelog;

The syslog utility needs to know the facility to work with and the logging level. We will use /ocal0, one of
the special logging facilities reserved for local usage (eight local facilities are available: /ocal0O through
local7). We will use the info priority level (again, one of eight possible levels: debug, info, notice, warning,
err, crit, alert, and emerg).

Now make the sysl/og utility on the master machine (where all logs are to be stored) log all messages
coming from facility /ocalO with logging level info to a file of your choice. This is achieved by editing the
/etc/syslog.conf file. For example:

local0.info /var/log/web/access_log

All other machines forward their logs from facility /ocalO to the central machine. Therefore, on all but the
master machine, we add the forwarding directive to the /etc/syslog.conf file (assuming that the master
machine's hostname is masterhost):

local0.info @masterhost

We must restart the syslogd daemon or send it the HUP kill signal for the changes to take effect before the
logger can be used.

One advanced system that provides consolidated logging is mod_log_spread. Based on the group communications toolkit
Spread, using IP multicast, mod_log_spread provides reliable, scalable centralized logging whith minimal performance

impact on the web servers. For more information, see http://www.backhand.org/mod_log_spread/.

5.11.2 Swapping Prevention

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Before we delve into swapping process details, let's look briefly at memory components and memory management.

Computer memory is called RAM (Random Access Memory). Reading and writing to RAM is faster than doing the same
operations on a hard disk, by around five orders of magnitude (and growing). RAM uses electronic memory cells
(transistors) with no moving parts, while hard disks use a rotating magnetic medium. It takes about one tenth of a
microsecond to write to RAM but something like ten thousand microseconds to write to hard disk. It is possible to write
just one byte (well, maybe one word) to RAM, whereas the minimum that can be written to a disk is often four
thousand or eight thousand bytes (a single block). We often refer to RAM as physical memory.

A program may take up many thousands of bytes on disk. However, when it is executed normally, only the parts of the
code actually needed at the time are loaded into memory. We call these parts segments.

On most operating systems, swap memory is used as an extension for RAM and not as a duplication of it. Assuming the
operating system you use is one of those, if there is 128 MB of RAM and a 256 MB swap partition, there is a total of 384
MB of memory available. However, the extra (swap) memory should never be taken into consideration when deciding
on the maximum number of processes to be run (we will show you why in a moment). The swap partition is also known
as swap space or virtual memory.

The swapping memory can be built from a number of hard disk partitions and swap files formatted to be used as swap
memory. When more swap memory is required, as long as there is some free disk space, it can always be extended on
demand. (For more information, see the mkswap and swapon manpages.)

System memory is quantified in units called memory pages. Usually the size of a memory page is between 1 KB and 8
KB. So if there is 256 MB of RAM installed on the machine, and the page size is 4 KB, the system has 64,000 main
memory pages to work with, and these pages are fast. If there is a 256-MB swap partition, the system can use yet
another 64,000 memory pages, but they will be much slower.

When the system is started, all memory pages are available for use by the programs (processes). Unless a program is
really small (in which case at any one time the entire program will be in memory), the process running this program
uses only a few segments of the program, each segment mapped onto its own memory page. Therefore, only a few
memory pages are needed—generally fewer than the program's size might imply.

When a process needs an additional program segment to be loaded into memory, it asks the system whether the page
containing this segment is already loaded. If the page is not found, an event known as a "page fault" occurs. This
requires the system to allocate a free memory page, go to the disk, and finally read and load the requested segment
into the allocated memory page.

If a process needs to bring a new page into physical memory and there are no free physical pages available, the
operating system must make room for this page by discarding another page from physical memory.

If the page to be discarded from physical memory came from a binary image or data file and has not been modified, the
page does not need to be saved. Instead, it can be discarded, and if the process needs that page again it can be
brought back into memory from the image or data file.

However, if the page has been modified, the operating system must preserve the contents of that page so that it can be
accessed at a later time. This type of page is known as a dirty page, and when it is removed from memory it is saved in
a special sort of file called the swap file. This process is referred to as swapping out.

Accesses to the swap file are very slow compared with the speed of the processor and physical memory, and the
operating system must juggle the need to write pages to disk with the need to retain them in memory to be used again.

To try to reduce the probability that a page will be needed just after it has been swapped out, the system may use the
LRU (least recently used) algorithm or some similar algorithm.

To summarize the two swapping scenarios, discarding read-only pages incurs little overhead compared with discarding
data pages that have been modified, since in the latter case the pages have to be written to a swap partition located on
the (very slow) disk. Thus, the fewer memory pages there are that can become dirty, the better will be the machine's
overall performance.

But in Perl, both the program code and the program data are seen as data pages by the OS. Both are mapped to the
same memory pages. Therefore, a big chunk of Perl code can become dirty when its variables are modified, and when
those pages need to be discarded they have to be written to the swap partition.

This leads us to two important conclusions about swapping and Perl:

1. Running the system when there is no free physical memory available hinders performance, because processes'
memory pages will be discarded and then reread from disk again and again.

2. Since the majority of the running code is Perl code, in addition to the overhead of reading in the previously
discarded pages, there is the additional overhead of saving the dirty pages to the swap partition.

When the system has to swap memory pages in and out, it slows down. This can lead to an accumulation of processes
waiting for their turn to run, which further increases processing demands, which in turn slows down the system even
more as more memory is required. Unless the resource demand drops and allows the processes to catch up with their
tasks and go back to normal memory usage, this ever-worsening spiral can cause the machine to thrash the disk and
ultimately to halt.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In addition, it is important to be aware that for better performance, many programs (particularly programs written in
Perl) do not return memory pages to the operating system even when they are no longer needed. If some of the
memory is freed, it is reused when needed by the process itself, without creating the additional overhead of asking the
system to allocate new memory pages. That is why Perl programs tend to grow in size as they run and almost never
shrink.

When the process quits, it returns all the memory pages it used to the pool of available pages for other processes to
use.

It should now be obvious that a system that runs a web server should never swap. Of course, it is quite normal for a
desktop machine to swap, and this is often apparent because everything slows down and sometimes the system starts
freezing for short periods. On a personal machine, the solution to swapping is simple: do not start up any new
programs for a minute, and try to close down any that are running unnecessarily. This will allow the system to catch up
with the load and go back to using just RAM. Unfortunately, this solution cannot be applied to a web server.

In the case of a web server, we have much less control, since it is the remote users who load the machine by issuing
requests to the server. Therefore, the server should be configured such that the maximum number of possible
processes will be small enough for the system to handle. This is achieved with the MaxClients directive, discussed in
Chapter 11. This will ensure that at peak times, the system will not swap. Remember that for a web server, swap space
is an emergency pool, not a resource to be used routinely. If the system is low on memory, either buy more memory or
reduce the number of processes to prevent swapping, as discussed in Chapter 14.

However, due to faulty code, sometimes a process might start running in an infinite loop, consuming all the available
RAM and using lots of swap memory. In such a situation, it helps if there is a big emergency pool (i.e., lots of swap
memory). But the problem must still be resolved as soon as possible, since the pool will not last for long. One solution
is to use the Apache::Resource module, described in the next section.

5.11.3 Limiting Resources Used by Apache Child Processes

There are times when we need to prevent processes from excessive consumption of system resources. This includes
limiting CPU or memory usage, the number of files that can be opened, and more.

The Apache::Resource module uses the BSD::Resource module, which in turn uses the C function setrlimit() to set limits on
system resources.

A resource limit is specified in terms of a soft limit and a hard limit. When a soft limit (for example, CPU time or file
size) is exceeded, the process may receive a signal, but it will be allowed to continue execution until it reaches the hard
limit (or modifies its resource limit). The rlimit structure is used to specify the hard and soft limits on a resource. (See
the setrlimit manpage for OS-specific information.)

If the value of variable in rlimit is of the form S:H, S is treated as the soft limit, and H is the hard limit. If the value is a
single number, it is used for both soft and hard limits. So if the value is 10:20, the soft limit is 10 and the hard limit is
20, whereas if the value is just 20, both the soft and the hard limits are set to 20.

The most common use of this module is to limit CPU usage. The environment variable PERL_RLIMIT_CPU defines the
maximum amount of CPU time the process can use. If it attempts to run longer than this amount, it is killed, no matter
what it is doing at the time, be it processing a request or just waiting. This is very useful when there is a bug in the
code and a process starts to spin in an infinite loop, using a lot of CPU resources and never completing the request.

The value is measured in seconds. The following example sets the soft limit for CPU usage to 120 seconds (the default
is 360):

PerlModule Apache::Resource
PerlSetEnv PERL_RLIMIT_CPU 120

Although 120 seconds does not sound like a long time, it represents a great deal of work for a modern processor
capable of millions of instructions per second. Furthermore, because the child process shares the CPU with other
processes, it may be quite some time before it uses all its allotted CPU time, and in all probability it will die from other
causes (for example, it may have served all the requests it is permitted to serve before this hard limit is reached).

Of course, we should tell mod_perl to use this module, which is done by adding the following directive to httpd.conf:
PerIChildInitHandler Apache::Resource

There are other resources that we might want to limit. For example, we can limit the data and bstack memory segment
sizes (PERL_RLIMIT_DATA and PERL_RLIMIT_STACK), the maximum process file size (PERL_RLIMIT_FSIZE), the core file size
(PERL_RLIMIT_CORE), the address space (virtual memory) limit (PERL_RLIMIT_AS), etc. Refer to the setrlimit manpage for
other possible resources. Remember to prepend PERL_ to the resource types that are listed in the manpage.

If Apache::Status is configured, it can display the resources set in this way. Remember that Apache::Status must be loaded
before Apache::Resource, in order to enable the resources display menu.

To turn on debug mode, set the $Apache::Resource::Debug variable before loading the module. This can be done using a
Perl section in httpd.conf.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<Perl>
$Apache::Resource::Debug = 1;
require Apache::Resource;

</Perl>

PerlChildInitHandler Apache::Resource

Now view the error_log file using tail -f and watch the debug messages show up when requests are served.

5.11.3.1 OS-specific notes

Under certain Linux setups, malloc() uses mmap() instead of brk(). This is done to conserve virtual memory—that is,
when a program malloc()s a large block of memory, the block is not actually returned to the program until it is
initialized. The old-style brk() system call obeyed resource limits on data segment sizes as set in setrlimit(). mmap()
does not.

Apache::Resource's defaults put limits on data size and stack size. Linux's current memory-allocation scheme does not
honor these limits, so if we just do:

PerlSetEnv PERL_RLIMIT_DEFAULTS On
PerlModule Apache::Resource
PerlChildInitHandler Apache::Resource

our Apache processes are still free to use as much memory as they like.

However, BSD::Resource also has a limit called RLIMIT_AS (Address Space), which limits the total number of bytes of
virtual memory assigned to a process. Fortunately, Linux's memory manager does honor this limit.

Therefore, we can limit memory usage under Linux with Apache::Resource. Simply add a line to httpd.conf:
PerlSetEnv PERL_RLIMIT_AS 67108864
This example sets hard and soft limits of 64 MB of total address space.

Refer to the Apache::Resource and setrlimit(2) manpages for more information.

5.11.4 Tracking and Terminating Hanging Processes

Generally, limits should be imposed on mod_perl processes to prevent mayhem if something goes wrong. There is no
need to limit processes if the code does not have any bugs, or at least if there is sufficient confidence that the program
will never overconsume resources. When there is a risk that a process might hang or start consuming a lot of memory,
CPU, or other resources, it is wise to use the Apache::Resource module.

But what happens if a process is stuck waiting for some event to occur? Consider a process trying to acquire a lock on a
file that can never be satisfied because there is a deadlock. The process just hangs waiting, which means that neither
extra CPU nor extra memory is used. We cannot detect and terminate this process using the resource-limiting
techniques we just discussed. If there is such a process, it is likely that very soon there will be many more processes
stuck waiting for the same or a different event to occur. Within a short time, all processes will be stuck and no new
processes will be spawned because the maximum number, as specified by the MaxClients directive, has been reached.
The service enters a state where it is up but not serving clients.

If a watchdog is run that does not just check that the process is up, but actually issues requests to make sure that the
service responds, then there is some protection against a complete service outage. This is because the watchdog will
restart the server if the testing request it issues times out. This is a last-resort solution; the ideal is to be able to detect
and terminate hanging processes that do not consume many resources (and therefore cannot be detected by the
Apache::Resource module) as soon as possible, not when the service stops responding to requests, since by that point the
quality of service to the users will have been severely degraded.

This is where the Apache::Watchdog::RunAway module comes in handy. This module samples all live child processes every
$Apache::Watchdog::RunAway::POLLTIME seconds. If a process has been serving the same request for more than
$Apache::Watchdog::RunAway:: TIMEOUT seconds, it is killed.

To perform accounting, the Apache::Watchdog::RunAway module uses the Apache::Scoreboard module, which in turn delivers
various items of information about live child processes. Therefore, the following configuration must be added to
httpd.conf:

<Location /scoreboard>
SetHandler perl-script
PerlHandler Apache::Scoreboard::send
order deny,allow
deny from all
allow from localhost
</Location>

Make sure to adapt the access permission to the local environment. The above configuration allows access to this
handler only from the /ocalhost server. This setting can be tested by issuing a request for http://localhost/scoreboard.
However, the returned data cannot be read directly, since it uses a binary format.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

We are now ready to configure Apache::Watchdog::RunAway. The module should be able to retrieve the information
provided by Apache::Scoreboard, so we will tell it the URL to use:

$Apache::Watchdog::RunAway::SCOREBOARD_URL = "http://localhost/scoreboard";

We must decide how many seconds the process is allowed to be busy serving the same request before it is considered a
runaway. Consider the slowest clients. Scripts that do file uploading and downloading might take a significantly longer
time than normal mod_perl code.

$Apache::Watchdog::RunAway::TIMEOUT = 180; # 3 minutes
Setting the timeout to 0 will disable the Apache::Watchdog::RunAway module entirely.

The rate at which the module polls the server should be chosen carefully. Because of the overhead of fetching the
scoreboard data, this is not a module that should be executed too frequently. If the timeout is set to a few minutes,
sampling every one or two minutes is a good choice. The following directive specifies the polling interval:

$Apache::Watchdog::RunAway::POLLTIME = 60; # 1 minute

Just like the timeout value, polling time is measured in seconds.

To see what the module does, enable debug mode:

$Apache::Watchdog::RunAway::DEBUG = 1;

and watch its log file using the tail command.

The following statement allows us to specify the log file's location:

$Apache::Watchdog::RunAway::LOG_FILE = "/tmp/safehang.log";

This log file is also used for logging information about killed processes, regardless of the value of the $DEBUG variable.

The module uses a lock file in order to prevent starting more than one instance of itself. The default location of this file
may be changed using the $LOCK_FILE variable.

$Apache::Watchdog::RunAway::LOCK_FILE = "/tmp/safehang.lock";

There are two ways to invoke this process: using the Perl functions, or using the bundled utility called amprapmon
(mnemonic: ApacheModPerlRunAwayProcessMonitor).

The following functions are available:
stop_monitor()

Stops the monitor based on the PID contained in the lock file. Removes the lock file.
start_monitor()

Starts the monitor in the current process. Creates the lock file.
start_detached_monitor()

Starts the monitor as a forked process (used by amprapmon). Creates the lock file.

In order for mod_perl to invoke this process, all that is needed is the start_detached_monitor() function. Add the following
code to startup.pl:

use Apache::Watchdog::RunAway();
Apache::Watchdog::RunAway::start_detached_monitor();

Another approach is to use the amprapmon utility. This can be started from the startup.pl file:
system "amprapmon start";

This will fork a new process. If the process is already running, it will just continue to run.

The amprapmon utility could instead be started from cron or from the command line.

No matter which approach is used, the process will fork itself and run as a daemon process. To stop the daemon, use
the following command:

panic% amprapmon stop

If we want to test this module but have no code that makes processes hang (or we do, but the behavior is not
reproducible on demand), the following code can be used to make the process hang in an infinite loop when executed
as a script or handler. The code writes "\0" characters to the browser every second, so the request will never time out.

The code is shown in Example 5-12.

Example 5-12. hangnow.pl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

my $r = shift;
$r->send_http_header('text/plain’);
print "PID = $$\n";
$r->rflush;
while(1) {

$r->print("\0");

$r->rflush;

sleep 1;

¥

The code prints the PID of the process running it before it goes into an infinite loop, so that we know which process
hangs and whether it gets killed by the Apache::Watchdog::RunAway daemon as it should.

Of course, the watchdog is used only for prevention. If you have a serious problem with hanging processes, you have to
debug your code, find the reason for the problem, and resolve it, as discussed in Chapter 21.

5.11.5 Limiting the Number of Processes Serving the Same Resource

To limit the number of Apache children that can simultaneously serve a specific resource, take a look at the Apache
mod_throttle_access module.

Throttling access is useful, for example, when a handler uses a resource that places a limitation on concurrent access or
that is very CPU-intensive. mod_throttle_access limits the number of concurrent requests to a given URI.

Consider a service providing the following three URIs:

/perl/news/
/perl/webmail/
/perl/morphing/

The response times of the first two URIs are critical, since people want to read the news and their email interactively.
The third URI is a very CPU- and RAM-intensive image-morphing service, provided as a bonus to the users. Since we do
not want users to abuse this service, we have to set some limit on the number of concurrent requests for this resource.
If we do not, the other two critical resources may have their performance degraded.

When compiled or loaded into Apache and enabled, mod_throttle_access makes the MaxConcurrentRegs directive available.
For example, the following setting:

<Location "/perl/morphing">
<Limit PUT GET POST>
MaxConcurrentReqs 10
</Limit>
</Location>

will allow only 10 concurrent PUT, GET, HEAD (as implied by GET), or POST requests for the URI /perl/morphing to be
processed at any given time. The other two URIs in our example remain unlimited.

5.11.6 Limiting the Request-Rate Speed (Robot Blocking)

Web services generally welcome search engine robots, also called spiders. Search engine robots are programs that
query the site and index its documents for a search engine.

Most indexing robots are polite and pause between requests. However, some search engine robots behave very badly,
issuing too many requests too often, thus slowing down the service for human users. While everybody wants their sites
to be indexed by search engines, it is really annoying when an initially welcomed spider gives the server a hard time,
eventually becoming an unwanted spider.

A common remedy for keeping impolite robots off a site is based on an AccessHandler that checks the name of the robot
and disallows access to the server if it is listed in the robot blacklist. For an example of such an AccessHandler, see the

Apache::BlockAgent module, available from http://www.modperl.com/.

Unfortunately, some robots have learned to work around this blocking technique, masquerading as human users by
using user agent strings identifying them as conventional browsers. This prevents us from blocking just by looking at
the robot's name—we have to be more sophisticated and beat the robots by turning their own behavior against them.
Robots work much faster than humans, so we can gather statistics over a period of time, and when we detect too many
requests issued too fast from a specific IP, this IP can be blocked.

The Apache::SpeedLimit module, also available from http://www.modperl.com/, provides this advanced filtering
technique.

There might be a problem with proxy servers, however, where many users browse the Web via a single proxy. These
users are seen from the outside world (and from our sites) as coming from the proxy's single IP address or from one of
a small set of IP addresses. In this case, Apache::SpeedLimit cannot be used, since it might block legitimate users and not
just robots. However, we could modify the module to ignore specific IP addresses that we designate as acceptable.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Stonehenge::Throttle

Randal Schwartz wrote Stonehenge::Throttle for one of his Linux Magazine columns. This module does CPU
percentage-based throttling. The module looks at the recent CPU usage over a given window for a given
IP. If the percentage exceeds a threshold, a 503 error and a correct Retry-After: header are sent, telling for
how long access from this IP is banned. The documentation can be found at
http://www.stonehenge.com/merlyn/LinuxMag/col17.html, and the source code is available at
http://www.stonehenge.com/merlyn/LinuxMag/col17.listing.txt.

Spambot Trap

Neil Gunton has developed a Spambot Trap (http://www.neilgunton.com/spambot_trap/) that keeps
robots harvesting email addresses away from your web content. One of the important components of the
trap is the robots.txt file, which is a standard mechanism for controlling which agents can reach your site
and which areas can be browsed. This is an advisory mechanism, so if the agent doesn't follow the
standard it will simply ignore the rules of the house listed in this file. For more information, refer to the

W3C specification at http://www.w3.0rg/TR/html401/appendix/notes.html#h-B.4.1.1.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

5.12 References

"Stopping and Restarting Apache," from the Apache documentation:

http://httpd.apache.org/docs/stopping.html.
RPM resources:
O The Red Hat Package Manager web site: http://www.rpm.org/.

O Maximum RPM, by Ed Bailey (Red Hat Press).

O "RPM-HOWTO," by Donnie Barnes: http://www.rpm.org/support/RPM-HOWTO.html.

CVS (Concurrent Versions System) resources:

O http://www.cvshome.org/ is the home of the CVS project and includes a plethora of documentation. Of
special interest is the Cederqvist, the official CVS manual, available at

http://www.cvshome.org/docs/manual/.

O Open Source Development with CVS, by Karl Fogel (Coriolis, Inc.). Most of the book is available online

at http://cvsbook.red-bean.com/.
O CVS Quick Reference Card: http://www.refcards.com/about/cvs.html.
daemontools, a collection of tools for managing Unix services: http://cr.yp.to/daemontools.html.
Log collecting and processing tools: http://www.apache-tools.com/search.jsp?keys=log.
cronolog, a log file-rotation program for the Apache web server: http://www.cronolog.org/.

mod_log_spread, which provides reliable distributed logging for Apache

http://www.backhand.org/mod_log_spread/.
Spread, a wide area group communication system: http://www.spread.org/.

Recall, an open source library for writing distributed, fault-tolerant, replicated storage servers. A Recall-based
server will allow you to save and access data even in the presence of machine failures. See http://www.fault-

tolerant.org/recall/.

Chapters 2, 4, 9, 11, and 28 in UNIX System Administration Handbook, by Evi Nemeth, Garth Snyder, Scott
Seebass, and Trent H. Hein (Prentice Hall).

Chapters 4 and 5 in Optimizing UNIX for Performance, by Amir H. Majidimehr (Prentice Hall).

To learn more about memory management, refer to a book that deals with operating system theory, and
especially with the operating systems used on web server machines.

A good starting point is one of the classic textbooks used in operating system courses. For example:
O Operating System Concepts, by Abraham Silberschatz and Peter Baer Galvin (John Wiley & Sons, Inc.).

O Applied Operating System Concepts, by Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne
(John Wiley & Sons, Inc.).

O Design of the Unix Operating System, by Maurice Bach (Prentice Hall).

The Memory Management Reference at http://www.xanalys.com/software_tools/mm/ is also very helpful.
mod_throttle_access: http://www.fremen.org/apache/mod_throttle_access.html.
mod_backhand, which provides load balancing for Apache: http://www.backhand.org/mod_backhand/.

The High-Availability Linux Project, the definitive guide to load-balancing techniques: http://www.linux-ha.org/.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

The Heartbeat project is a part of the HA Linux project.

® /bnamed, a load-balancing name server written in Perl: http://www.stanford.edu/~riepel/lbnamed/ or
http://www.stanford.edu/~schemers/docs/lbnamed/Ibnamed.html.

L "Network Address Translat|on and Networks Virtual Servers (Load Balancing)":

® |inux Virtual Server Project: http://www.linuxvirtualserver.org/.

® |inux and port forwarding: http://www.netfilter.org/ipchains/ or http://www.netfilter.org/.

® "Efficient Support for P-HTTP in Cluster-Based Web Servers," by Mohit Aron and Willy Zwaenepoel, in
Proceedings of the USENIX 1999 Annual Technical Conference, Monterey, CA, June 1999:
http://www.cs.rice.edu/~druschel/usenix99lard.ps.gz or
http://www.usenix.org/publications/library/proceedings/usenix99/full_papers/aron/aron_html/.

® [P filter: http://coombs.anu.edu.au/~avalon/. The latest IP filter includes some simple load-balancing code that

allows a round-robin distribution onto several machines via ipnat.

® Perl modules available from http://www.modperl.com/book/source (not on CPAN):

O Apache::BlockAgent, which allows you to block impolite web agents.

O Apache::SpeedLimit, which allows you to limit indexing robots' speed.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [vy Jlri v
Chapter 6. Coding with mod_perl in Mind

This is the most important chapter of this book. In this chapter, we cover all the nuances the programmer should know
when porting an existing CGI script to work under mod_perl, or when writing one from scratch.

This chapter's main goal is to teach the reader how to think in mod_perl. It involves showing most of the mod_perl
peculiarities and possible traps the programmer might fall into. It also shows you some of the things that are impossible
with vanilla CGI but easily done with mod_ perl.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

[Team LiB] [+ Femvisus it o]
6.1 Before You Start to Code

There are three important things you need to know before you start your journey in a mod_perl world: how to access
mod_perl and related documentation, and how to develop your Perl code when the strict and warnings modes are
enabled.

6.1.1 Accessing Documentation

mod_perl doesn't tolerate sloppy programming. Although we're confident that you're a talented, meticulously careful
programmer whose programs run perfectly every time, you still might want to tighten up some of your Perl
programming practices.

In this chapter, we include discussions that rely on prior knowledge of some areas of Perl, and we provide short
refreshers where necessary. We assume that you can already program in Perl and that you are comfortable with finding
Perl-related information in books and Perl documentation. There are many Perl books that you may find helpful. We list
some of these in Section 6.13 at the end of each chapter.

If you prefer the documentation that comes with Perl, you can use either its online version (start at

or http://theoryx5.uwinnipeg.ca/CPAN/perl/) or the perldoc utility, which provides access to

the documentation installed on your system.

To find out what Perl manpages are available, execute:

panic% perldoc perl

For example, to find what functions Perl has and to learn about their usage, execute:
panic% perldoc perlfunc

To learn the syntax and to find examples of a specific function, use the -f flag and the name of the function. For
example, to learn more about open(), execute:

panic% perldoc -f open

The perldoc supplied with Perl versions prior to 5.6.0 presents the information in POD (Plain Old Documentation)
format. From 5.6.0 onwards, the documentation is shown in manpage format.

You may find the perlifag manpages very useful, too. To find all the FAQs (Frequently Asked Questions) about a
function, use the -g flag. For example, to search through the FAQs for the open() function, execute:

panic% perldoc -q open

This will show you all the relevant question and answer sections.
Finally, to learn about perldoc itself, refer to the perldoc manpage:
panic% perldoc perldoc

The documentation available through peridoc provides good information and examples, and should be able to answer
most Perl questions that arise.

Chapter 23 provides more information about mod_perl and related documentation.

6.1.2 The strict Pragma

We're sure you already do this, but it's absolutely essential to start all your scripts and modules with:
use strict;

It's especially important to have the strict pragma enabled under mod_perl. While it's not required by the language, its
use cannot be too strongly recommended. It will save you a great deal of time. And, of course, clean scripts will still run
under mod_cgi!

In the rare cases where it is necessary, you can turn off the strict pragma, or a part of it, inside a block. For example, if
you want to use symbolic references (see the periref manpage) inside a particular block, you can use no strict 'refs';, as
follows:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

use strict;

{

no strict 'refs';
my $var_ref = 'foo';
$$var_ref = 1;

b

Starting the block with no strict 'refs'; allows you to use symbolic references in the rest of the block. Outside this block,
the use of symbolic references will trigger a runtime error.

6.1.3 Enabling Warnings

It's also important to develop your code with Perl reporting every possible relevant warning. Under mod_perl, you can
turn this mode on globally, just like you would by using the -w command-line switch to Perl. Add this directive to
httpd.conf:

PerlWarn On
In Perl 5.6.0 and later, you can also enable warnings only for the scope of a file, by adding:
use warnings;

at the top of your code. You can turn them off in the same way as strict for certain blocks. See the warnings manpage
for more information.

We will talk extensively about warnings in many sections of the book. Perl code written for mod_perl should run without
generating any warnings with both the strict and warnings pragmas in effect (that is, with use strict and PerlWarn On or use
warnings).

Warnings are almost always caused by errors in your code, but on some occasions you may get warnings for totally
legitimate code. That's part of why they're warnings and not errors. In the unlikely event that your code really does
reveal a spurious warning, it is possible to switch off the warning.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
6.2 Exposing Apache::Registry Secrets

Let's start with some simple code and see what can go wrong with it. This simple CGI script initializes a variable $counter
to 0 and prints its value to the browser while incrementing it:

#!/usr/bin/perl -w
use strict;

print "Content-type: text/plain\n\n";
my $counter = 0;

for (1..5){
increment_counter();

}

sub increment_counter {
$counter++;
print "Counter is equal to $counter '\n";

}

When issuing a request to /perl/counter.pl or a similar script, we would expect to see the following output:

Counter is equal to 1!
Counter is equal to 2 !
Counter is equal to 3!
Counter is equal to 4 !
Counter is equal to 5 !

And in fact that's what we see when we execute this script for the first time. But let's reload it a few times.... After a
few reloads, the counter suddenly stops counting from 1. As we continue to reload, we see that it keeps on growing,
but not steadily, starting almost randomly at 10, 10, 10, 15, 20..., which makes no sense at all!

Counter is equal to 6 !
Counter is equal to 7 !
Counter is equal to 8!
Counter is equal to 9!
Counter is equal to 10 !

We saw two anomalies in this very simple script:

® Unexpected increment of our counter over 5
® Inconsistent growth over reloads

The reason for this strange behavior is that although $counter is incremented with each request, it is never reset to 0,
even though we have this line:

my $counter = 0;

Doesn't this work under mod_perl?

6.2.1 The First Mystery: Why Does the Script Go Beyond 5?

If we look at the error_log file (we did enable warnings), we'll see something like this:

Variable "$counter" will not stay shared
at /home/httpd/perl/counter.pl line 13.

This warning is generated when a script contains a named (as opposed to an anonymous) nested subroutine that refers
to a lexically scoped (with my()) variable defined outside this nested subroutine.

Do you see a nested named subroutine in our script? We don't! What's going on? Maybe it's a bug in Perl? But wait,
maybe the Perl interpreter sees the script in a different way! Maybe the code goes through some changes before it
actually gets executed? The easiest way to check what's actually happening is to run the script with a debugger.

Since we must debug the script when it's being executed by the web server, a normal debugger won't help, because the
debugger has to be invoked from within the web server. Fortunately, we can use Doug MacEachern's Apache::DB module
to debug our script. While Apache::DB allows us to debug the code interactively (as we will show in Chapter 21), we will
use it noninteractively in this example.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To enable the debugger, modify the httpd.conf file in the following way:

PerlSetEnv PERLDB_OPTS "NonStop=1 Linelnfo=/tmp/db.out AutoTrace=1 frame=2"
PerlModule Apache::DB
<Location /perl>
PerlFixupHandler Apache::DB
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGI
PerlSendHeader On
</Location>

We have added a debugger configuration setting using the PERLDB_OPTS environment variable, which has the same
effect as calling the debugger from the command line. We have also loaded and enabled Apache::DB as a PerlFixupHandler.

In addition, we'll load the Carp module, using <Perl> sections (this could also be done in the startup.pl file):

<Perl>
use Carp;
</Perl>

After applying the changes, we restart the server and issue a request to /peril/counter.pl, as before. On the surface,
nothing has changed; we still see the same output as before. But two things have happened in the background:

® The file /tmp/db.out was written, with a complete trace of the code that was executed.

® Since we have loaded the Carp module, the error_log file now contains the real code that was actually executed.
This is produced as a side effect of reporting the "Variable "$counter" will not stay shared at..." warning that we
saw earlier.

Here is the code that was actually executed:

package Apache::ROOT::perl::counter_2epl;
use Apache qw(exit);
sub handler {
BEGIN {
$AW =1;
7
$AW=1;

use strict;
print "Content-type: text/plain\n\n";
my $counter = 0;

for (1..5) {
increment_counter();

¥

sub increment_counter {
$counter++;
print "Counter is equal to $counter '\n";
}
b

Note that the code in error_log wasn't indented—we've indented it to make it obvious that the code was wrapped inside
the handler() subroutine.

From looking at this code, we learn that every Apache::Registry script is cached under a package whose name is formed
from the Apache::ROOT:: prefix and the script's URI (/perl/counter.pl) by replacing all occurrences of / with :: and . with
_2e. That's how mod_perl knows which script should be fetched from the cache on each request—each script is
transformed into a package with a unique name and with a single subroutine named handler(), which includes all the
code that was originally in the script.

Essentially, what's happened is that because increment_counter() is a subroutine that refers to a lexical variable defined
outside of its scope, it has become a closure. Closures don't normally trigger warnings, but in this case we have a
nested subroutine. That means that the first time the enclosing subroutine handler() is called, both subroutines are
referring to the same variable, but after that, increment_counter() will keep its own copy of $counter (which is why
$counter is not shared) and increment its own copy. Because of this, the value of $counter keeps increasing and is never
reset to 0.

If we were to use the diagnostics pragma in the script, which by default turns terse warnings into verbose warnings, we
would see a reference to an inner (nested) subroutine in the text of the warning. By observing the code that gets
executed, it is clear that increment_counter() is a named nested subroutine since it gets defined inside the handler()
subroutine.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Any subroutine defined in the body of the script executed under Apache::Registry becomes a nested subroutine. If the
code is placed into a library or a module that the script require()s or use()s, this effect doesn't occur.

For example, if we move the code from the script into the subroutine run(), place the subroutines in the mylib.pl file,

save it in the same directory as the script itself, and require() it, there will be no problem at all.l1l Examples Example 6-
1 and Example 6-2 show how we spread the code across the two files.

[1] pon't forget the 1; at the end of the library, or the require() call might fail.
Example 6-1. mylib.pl

my $counter;
sub run {
$counter = 0;
for (1..5) {
increment_counter();
}
b
sub increment_counter {
$counter++;
print "Counter is equal to $counter '\n";
b
L

Example 6-2. counter.pl

use strict;

require "./mylib.pl";

print "Content-type: text/plain\n\n";
run();

This solution is the easiest and fastest way to solve the nested subroutine problem. All you have to do is to move the
code into a separate file, by first wrapping the initial code into some function that you later call from the script, and
keeping the lexically scoped variables that could cause the problem out of this function.

As a general rule, it's best to put all the code in external libraries (unless the script is very short) and have only a few
lines of code in the main script. Usually the main script simply calls the main function in the library, which is often called
init() or run(). This way, you don't have to worry about the effects of named nested subroutines.

As we will show later in this chapter, however, this quick solution might be problematic on a different front. If you have
many scripts, you might try to move more than one script's code into a file with a similar filename, like mylib.pl. A
much cleaner solution would be to spend a little bit more time on the porting process and use a fully qualified package,

as in Examples Example 6-3 and Example 6-4.
Example 6-3. Book/Counter.pm

package Book::Counter;
my $counter = 0;

sub run {
$counter = 0;
for (1..5) {
increment_counter();
}
b

sub increment_counter {
$counter++;
print "Counter is equal to $counter !
\n";

¥

i

END _

Example 6-4. counter-clean.pl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

use strict;
use Book::Counter;

print "Content-type: text/plain\n\n";
Book::Counter::run();

As you can see, the only difference is in the package declaration. As long as the package name is unique, you won't
encounter any collisions with other scripts running on the same server.

Another solution to this problem is to change the lexical variables to global variables. There are two ways global
variables can be used:

® Using the vars pragma. With the use strict 'vars' setting, global variables can be used after being declared with
vars. For example, this code:

use strict;

use vars qw($counter $result);
later in the code

$counter = 0;

$result =1;

is similar to this code if use strict is not used:

$counter = 0;
$result =1;

However, the former style of coding is much cleaner, because it allows you to use global variables by declaring
them, while avoiding the problem of misspelled variables being treated as undeclared globals.

The only drawback to using vars is that each global declared with it consumes more memory than the
undeclared but fully qualified globals, as we will see in the next item.

® Using fully qualified variables. Instead of using $counter, we can use $Foo::counter, which will place the global
variable $counter into the package Foo. Note that we don't know which package name Apache::Registry will assign
to the script, since it depends on the location from which the script will be called. Remember that globals must
always be initialized before they can be used.

Perl 5.6.x also introduces a third way, with the our() declaration. our() can be used in different scopes, similar to my(),
but it creates global variables.

Finally, it's possible to avoid this problem altogether by always passing the variables as arguments to the functions (see

-)
Example 6-5. counter2.pl

#!/usr/bin/perl -w
use strict;

print "Content-type: text/plain\n\n";
my $counter = 0;

for (1..5){
$counter = increment_counter($counter);

}

sub increment_counter {
my $counter = shift;

$counter++;
print "Counter is equal to $counter '\n";

return $counter;

}

In this case, there is no variable-sharing problem. The drawback is that this approach adds the overhead of passing and
returning the variable from the function. But on the other hand, it ensures that your code is doing the right thing and is
not dependent on whether the functions are wrapped in other blocks, which is the case with the Apache::Registry
handlers family.

When Stas (one of the authors of this book) had just started using mod_perl and wasn't aware of the nested subroutine
problem, he happened to write a pretty complicated registration program that was run under mod_perl. We will
reproduce here only the interesting part of that script:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

use CGI;

$gq = CGI->new;

my $name = $g->param(‘'name');
print_response();

sub print_response {
print "Content-type: text/plain\n\n";
print "Thank you, $name!";

}

Stas and his boss checked the program on the development server and it worked fine, so they decided to put it in
production. Everything seemed to be normal, but the boss decided to keep on checking the program by submitting
variations of his profile using The Boss as his username. Imagine his surprise when, after a few successful submissions,
he saw the response "Thank you, Stas!" instead of "Thank you, The Boss!"

After investigating the problem, they learned that they had been hit by the nested subroutine problem. Why didn't they
notice this when they were trying the software on their development server? We'll explain shortly.

To conclude this first mystery, remember to keep the warnings mode On on the development server and to watch the
error_log file for warnings.

6.2.2 The Second Mystery—Inconsistent Growth over Reloads

Let's return to our original example and proceed with the second mystery we noticed. Why have we seen inconsistent
results over numerous reloads?

What happens is that each time the parent process gets a request for the page, it hands the request over to a child
process. Each child process runs its own copy of the script. This means that each child process has its own copy of
$counter, which will increment independently of all the others. So not only does the value of each $counter increase
independently with each invocation, but because different children handle the requests at different times, the increment
seems to grow inconsistently. For example, if there are 10 httpd children, the first 10 reloads might be correct (if each
request went to a different child). But once reloads start reinvoking the script from the child processes, strange results
will appear.

Moreover, requests can appear at random since child processes don't always run the same requests. At any given
moment, one of the children could have served the same script more times than any other, while another child may
never have run it.

Stas and his boss didn't discover the aforementioned problem with the user registration system before going into
production because the error_log file was too crowded with warnings continuously logged by multiple child processes.

To immediately recognize the problem visually (so you can see incorrect results), you need to run the server as a single
process. You can do this by invoking the server with the -X option:

panic% httpd -X
Since there are no other servers (children) running, you will get the problem report on the second reload.

Enabling the warnings mode (as explained earlier in this chapter) and monitoring the error_Jlog file will help you detect
most of the possible errors. Some warnings can become errors, as we have just seen. You should check every reported
warning and eliminate it, so it won't appear in error_log again. If your error_log file is filled up with hundreds of lines on
every script invocation, you will have difficulty noticing and locating real problems, and on a production server you'll
soon run out of disk space if your site is popular.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (e Fuuvisua]fiveaxt o]
6.3 Namespace Issues

If your service consists of a single script, you will probably have no namespace problems. But web services usually are
built from many scripts and handlers. In the following sections, we will investigate possible namespace problems and
their solutions. But first we will refresh our understanding of two special Perl variables, @INC and %INC.

6.3.1 The @INC Array

Perl's @INC array is like the PATH environment variable for the shell program. Whereas PATH contains a list of directories
to search for executable programs, @INC contains a list of directories from which Perl modules and libraries can be
loaded.

When you use(), require(), or do() a filename or a module, Perl gets a list of directories from the @INC variable and
searches them for the file it was requested to load. If the file that you want to load is not located in one of the listed
directories, you must tell Perl where to find the file. You can either provide a path relative to one of the directories in
@INC or provide the absolute path to the file.

6.3.2 The %INC Hash

Perl's %INC hash is used to cache the names of the files and modules that were loaded and compiled by use(), require(),
or do() statements. Every time a file or module is successfully loaded, a new key-value pair is added to %INC. The key
is the name of the file or module as it was passed to one of the three functions we have just mentioned. If the file or
module was found in any of the @INC directories (except "."), the filenames include the full path. Each Perl interpreter,
and hence each process under mod_perl, has its own private %INC hash, which is used to store information about its
compiled modules.

Before attempting to load a file or a module with use() or require(), Perl checks whether it's already in the %INC hash. If
it's there, the loading and compiling are not performed. Otherwise, the file is loaded into memory and an attempt is
made to compile it. Note that do() loads the file or module unconditionally—it does not check the %INC hash. We'll look
at how this works in practice in the following examples.

First, let's examine the contents of @INC on our system:

panic% perl -le 'print join "\n", @INC'
/Jusr/lib/perl5/5.6.1/i386-linux
/usr/lib/perl5/5.6.1
/Jusr/lib/perl5/site_perl/5.6.1/i386-linux
/usr/lib/perl5/site_perl/5.6.1
/usr/lib/perl5/site_perl

Notice . (the current directory) as the last directory in the list.
Let's load the module strict.pm and see the contents of %INC:

panic% perl -le 'use strict; print map {"$_ => $INC{$_}"} keys %INC'
strict.pm => /usr/lib/perl5/5.6.1/strict.pm

Since strict.pm was found in the /usr/lib/perl5/5.6.1/ directory and /usr/lib/perl5/5.6.1/ is a part of @INC, %INC includes
the full path as the value for the key strict.pm.

Let's create the simplest possible module in /tmp/test.pm:
L

This does absolutely nothing, but it returns a true value when loaded, which is enough to satisfy Perl that it loaded
correctly. Let's load it in different ways:

panic% cd /tmp
panic% perl -e 'use test; \

print map { "$_ => $INC{$_}\n" } keys %INC'
test.pm => test.pm

Since the file was found in . (the directory the code was executed from), the relative path is used as the value. Now
let's alter @INC by appending /tmp:

panic% cd /tmp

panic% perl -e 'BEGIN { push @INC, "/tmp" } use test; \
print map { "$_ => $INC{$_3}\n" } keys %INC'

test.pom => test.pm

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Here we still get the relative path, since the module was found first relative to ".". The directory /tmp was placed after .
in the list. If we execute the same code from a different directory, the "." directory won't match:

panic% cd /

panic% perl -e 'BEGIN { push @INC, "/tmp" } use test; \
print map { "$_ => $INC{$_}\n" } keys %INC'

test.pm => /tmp/test.pm

so we get the full path. We can also prepend the path with unshift(), so that it will be used for matching before ".". We
will get the full path here as well:

panic% cd /tmp
panic% perl -e 'BEGIN { unshift @INC, "/tmp" } use test; \
print map { "$_ => $INC{$_}\n" } keys %INC'
test.pm => /tmp/test.pm
The code:
BEGIN { unshift @INC, "/tmp" }
can be replaced with the more elegant:
use lib "/tmp";
This is almost equivalent to our BEGIN block and is the recommended approach.

These approaches to modifying @INC can be labor intensive: moving the script around in the filesystem might require
modifying the path.

6.3.3 Name Collisions with Modules and Libraries

In this section, we'll look at two scenarios with failures related to namespaces. For the following discussion, we will
always look at a single child process.

6.3.3.1 A first faulty scenario

It is impossible to use two modules with identical names on the same server. Only the first one found in a use() or a
require() statement will be loaded and compiled. All subsequent requests to load a module with the same name will be
skipped, because Perl will find that there is already an entry for the requested module in the %INC hash.

Let's examine a scenario in which two independent projects in separate directories, projectA and projectB, both need to
run on the same server. Both projects use a module with the name MyConfig.pm, but each project has completely
different code in its MyConfig.pm module. This is how the projects reside on the filesystem (all located under the
directory /home/httpd/perl):

projectA/MyConfig.pm

projectA/run.pl

projectB/MyConfig.pm

projectB/run.pl

Examples Example 6-6, Example 6-7, Example 6-8, and Example 6-9 show some sample code.
Example 6-6. projectA/run.pl

use lib qw(.);

use MyConfig;

print "Content-type: text/plain\n\n";
print "Inside project: ", project_name();

Example 6-7. projectA/MyConfig.pm

sub project_name { return 'A’; }
¥

Example 6-8. projectB/run.pl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

use lib qw(.);

use MyConfig;

print "Content-type: text/plain\n\n";
print "Inside project: ", project_name();

Example 6-9. projectB/MyConfig.pm

sub project_name { return 'B'; }
L

Both projects contain a script, run.pl/, which loads the module MyConfig.pm and prints an indentification message based
on the project_name() function in the MyConfig.pm module. When a request to /perl/projectA/run.pl is issued, it is
supposed to print:

Inside project: A
Similarly, /perl/projectB/run.pl is expected to respond with:
Inside project: B

When tested using single-server mode, only the first one to run will load the MyConfig.pm module, although both run.p/
scripts call use MyConfig. When the second script is run, Perl will skip the use MyConfig; statement, because MyConfig.pm is
already located in %INC. Perl reports this problem in the error_log:

Undefined subroutine
&Apache::ROOT::perl::projectB::run_2epl::project_name called at
/home/httpd/perl/projectB/run.pl line 4.

This is because the modules didn't declare a package name, so the project_name() subroutine was inserted into
projectA/run.pl's namespace, Apache::ROOT::perl::projectB::run_2epl. Project B doesn't get to load the module, so it
doesn't get the subroutine either!

Note that if a library were used instead of a module (for example, config.pl instead of MyConfig.pm), the behavior would
be the same. For both libraries and modules, a file is loaded and its filename is inserted into %INC.

6.3.3.2 A second faulty scenario

Now consider the following scenario:

project/MyConfig.pm
project/runA.pl
project/runB.pl

Now there is a single project with two scripts, runA.pl and runB.pl, both trying to load the same module, MyConfig.pm, as

shown in Examples Example 6-10, Example 6-11, and Example 6-12.
Example 6-10. project/MyConfig.pm

sub project_name { return 'Super Project’; }
L

Example 6-11. project/runA.pl

use lib qw(.);

use MyConfig;

print "Content-type: text/plain\n\n";
print "Script A\n";

print "Inside project: ", project_name();

Example 6-12. project/runB.pl

use lib qw(.);

use MyConfig;

print "Content-type: text/plain\n\n";
print "Script B\n";

print "Inside project: ", project_name();

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This scenario suffers from the same problem as the previous two-project scenario: only the first script to run will work
correctly, and the second will fail. The problem occurs because there is no package declaration here.

We'll now explore some of the ways we can solve these problems.

6.3.3.3 A quick but ineffective hackish solution

The following solution should be used only as a short term bandage. You can force reloading of the modules either by
fiddling with %INC or by replacing use() and require() calls with do().

If you delete the module entry from the %INC hash before calling require() or use(), the module will be loaded and

compiled again. See Example 6-13.
Example 6-13. project/runA.pl

BEGIN {
delete $INC{"MyConfig.pm"};

¥

use lib qw(.);

use MyConfig;

print "Content-type: text/plain\n\n";
print "Script A\n";

print "Inside project: ", project_name();
Apply the same fix to runB.pl.

Another alternative is to force module reload via do(), as seen in Example 6-14.

Example 6-14. project/runA.pl forcing module reload by using do() instead of
use()

use lib qw(.);

do "MyConfig.pm";

print "Content-type: text/plain\n\n";
print "Script B\n";

print "Inside project: ", project_name();
Apply the same fix to runB.pl.

If you needed to import() something from the loaded module, call the import() method explicitly. For example, if you
had:

use MyConfig qw(foo bar);
now the code will look like:

do "MyConfig.pm";
MyConfig->import(qw(foo bar));

Both presented solutions are ultimately ineffective, since the modules in question will be reloaded on each request,
slowing down the response times. Therefore, use these only when a very quick fix is needed, and make sure to replace
the hack with one of the more robust solutions discussed in the following sections.

6.3.3.4 A first solution

The first faulty scenario can be solved by placing library modules in a subdirectory structure so that they have different
path prefixes. The new filesystem layout will be:

projectA/ProjectA/MyConfig.pm

projectA/run.pl

projectB/ProjectB/MyConfig.pm

projectB/run.pl

The run.pl scripts will need to be modified accordingly:
use ProjectA::MyConfig;

and:

use ProjectB::MyConfig;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

However, if later on we want to add a new script to either of these projects, we will hit the problem described by the
second problematic scenario, so this is only half a solution.

6.3.3.5 A second solution

Another approach is to use a full path to the script, so the latter will be used as a key in %INC:
require "/home/httpd/perl/project/MyConfig.pm";

With this solution, we solve both problems but lose some portability. Every time a project moves in the filesystem, the
path must be adjusted. This makes it impossible to use such code under version control in multiple-developer
environments, since each developer might want to place the code in a different absolute directory.

6.3.3.6 A third solution

This solution makes use of package-name declaration in the require()Jd modules. For example:
package ProjectA::Config;
Similarly, for ProjectB, the package name would be ProjectB::Config.

Each package name should be unique in relation to the other packages used on the same httpd server. %INC will then
use the unique package name for the key instead of the filename of the module. It's a good idea to use at least two-
part package names for your private modules (e.g., MyProject::Carp instead of just Carp), since the latter will collide with
an existing standard package. Even though a package with the same name may not exist in the standard distribution
now, in a later distribution one may come along that collides with a name you've chosen.

What are the implications of package declarations? Without package declarations in the modules, it is very convenient
to use() and require(), since all variables and subroutines from the loaded modules will reside in the same package as
the script itself. Any of them can be used as if it was defined in the same scope as the script itself. The downside of this
approach is that a variable in a module might conflict with a variable in the main script; this can lead to hard-to-find
bugs.

With package declarations in the modules, things are a bit more complicated. Given that the package name is PackageA,
the syntax PackageA::project_name() should be used to call a subroutine project_name() from the code using this package.
Before the package declaration was added, we could just call project_name(). Similarly, a global variable $foo must now
be referred to as $PackageA::foo, rather than simply as $foo. Lexically defined variables (declared with my()) inside the
file containing PackageA will be inaccessible from outside the package.

You can still use the unqualified names of global variables and subroutines if these are imported into the namespace of
the code that needs them. For example:

use MyPackage qw(:mysubs sub_b $varl :myvars);

Modules can export any global symbols, but usually only subroutines and global variables are exported. Note that this
method has the disadvantage of consuming more memory. See the perldoc Exporter manpage for information about
exporting other variables and symbols.

Let's rewrite the second scenario in a truly clean way. This is how the files reside on the filesystem, relative to the
directory /home/httpd/perl:

project/MyProject/Config.pm
project/runA.pl
project/runB.pl

Examples Example 6-15, Example 6-16, and Example 6-17 show how the code will look.
Example 6-15. project/MyProject/Config.pm

package MyProject::Config
sub project_name { return 'Super Project’; }

’

Example 6-16. project/runB.pl

use lib qw(.);

use MyProject::Config;

print "Content-type: text/plain\n\n";

print "Script B\n";

print "Inside project: ", MyProject::Config::project_name();

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 6-17. project/runA.pl

use lib qw(.);

use MyProject::Config;

print "Content-type: text/plain\n\n";

print "Script A\n";

print "Inside project: ", MyProject::Config::project_name();

As you can see, we have created the MyProject/Config.pm file and added a package declaration at the top of it:
package MyProject::Config

Now both scripts load this module and access the module's subroutine, project_name(), with a fully qualified name,
MyProject::Config::project_name().

See also the perimodlib and perlmod manpages.

From the above discussion, it also should be clear that you cannot run development and production versions of the tools
using the same Apache server. You have to run a dedicated server for each environment. If you need to run more than
one development environment on the same server, you can use Apache::PerlVINC, as explained in Appendix B.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
6.4 Perl Specifics in the mod_perl Environment

In the following sections, we discuss the specifics of Perl's behavior under mod_perl.

6.4.1 exit()

Perl's core exit() function shouldn't be used in mod_perl code. Calling it causes the mod_perl process to exit, which
defeats the purpose of using mod_perl. The Apache::exit() function should be used instead. Starting with Perl Version
5.6.0, mod_perl overrides exit() behind the scenes using CORE::GLOBAL::, a new magical package.

The CORE:: Package

CORE:: is a special package that provides access to Perl's built-in functions. You may need to use this
package to override some of the built-in functions. For example, if you want to override the exit() built-in
function, you can do so with:

use subs qw(exit);
exit() if $DEBUG;
sub exit { warn "exit() was called"; }

Now when you call exit() in the same scope in which it was overridden, the program won't exit, but instead
will just print a warning "exit() was called". If you want to use the original built-in function, you can still
do so with:

the 'real' exit
CORE::exit();

Apache::Registry and Apache::PerlRun override exit() with Apache::exit() behind the scenes; therefore, scripts running under
these modules don't need to be modified to use Apache::exit().

If CORE::exit() is used in scripts running under mod_perl, the child will exit, but the current request won't be logged.
More importantly, a proper exit won't be performed. For example, if there are some database handles, they will remain
open, causing costly memory and (even worse) database connection leaks.

If the child process needs to be killed, Apache::exit(Apache::Constants::DONE) should be used instead. This will cause the
server to exit gracefully, completing the logging functions and protocol requirements.

If the child process needs to be killed cleanly after the request has completed, use the $r->child_terminate method. This
method can be called anywhere in the code, not just at the end. This method sets the value of the MaxRequestsPerChild
configuration directive to 1 and clears the keepalive flag. After the request is serviced, the current connection is broken
because of the keepalive flag, which is set to false, and the parent tells the child to cleanly quit because
MaxRequestsPerChild is smaller than or equal to the number of requests served.

In an Apache::Registry script you would write:
Apache->request->child_terminate;

and in httpd.conf:

PerlFixupHandler "sub { shift->child_terminate }"

You would want to use the latter example only if you wanted the child to terminate every time the registered handler
was called. This is probably not what you want.

You can also use a post-processing handler to trigger child termination. You might do this if you wanted to execute your
own cleanup code before the process exits:

my $r = shift;
$r->post_connection(\&exit_child);

sub exit_child {
some logic here if needed
$r->child_terminate;

}

This is the code that is used by the Apache::SizeLimit module, which terminates processes that grow bigger than a preset
quota.

6.4.2 die()

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

die() is usually used to abort the flow of the program if something goes wrong. For example, this common idiom is used
when opening files:

open FILE, "foo" or die "Cannot open 'foo' for reading: $!";

If the file cannot be opened, the script will die(): script execution is aborted, the reason for death is printed, and the
Perl interpreter is terminated.

You will hardly find any properly written Perl scripts that don't have at least one die() statement in them.

CGI scripts running under mod_cgi exit on completion, and the Perl interpreter exits as well. Therefore, it doesn't
matter whether the interpreter exits because the script died by natural death (when the last statement in the code flow
was executed) or was aborted by a die() statement.

Under mod_perl, we don't want the process to quit. Therefore, mod_perl takes care of it behind the scenes, and die()
calls don't abort the process. When die() is called, mod_perl logs the error message and calls Apache::exit() instead of
CORE::die(). Thus, the script stops, but the process doesn't quit. Of course, we are talking about the cases where the
code calling die() is not wrapped inside an exception handler (e.g., an eval { } block) that traps die() calls, or the $SIG{_
DIE _} sighandler, which allows you to override the behavior of die() (see Chapter 21). Section 6.13 at the end of this
chapter mentions a few exception-handling modules available from CPAN.

6.4.3 Global Variable Persistence

Under mod_perl a child process doesn't exit after serving a single request. Thus, global variables persist inside the
same process from request to request. This means that you should be careful not to rely on the value of a global
variable if it isn't initialized at the beginning of each request. For example:

the very beginning of the script
use strict;

use vars qw($counter);
$counter++;

relies on the fact that Perl interprets an undefined value of $counter as a zero value, because of the increment operator,
and therefore sets the value to 1. However, when the same code is executed a second time in the same process, the
value of $counter is not undefined any more; instead, it holds the value it had at the end of the previous execution in the
same process. Therefore, a cleaner way to code this snippet would be:

use strict;

use vars qw($counter);
$counter = 0;
$counter++;

In practice, you should avoid using global variables unless there really is no alternative. Most of the problems with
global variables arise from the fact that they keep their values across functions, and it's easy to lose track of which
function modifies the variable and where. This problem is solved by localizing these variables with local(). But if you are
already doing this, using lexical scoping (with my()) is even better because its scope is clearly defined, whereas
localized variables are seen and can be modified from anywhere in the code. Refer to the per/sub manpage for more
details. Our example will now be written as:

use strict;
my $counter = 0;
$counter++;

Note that it is a good practice to both declare and initialize variables, since doing so will clearly convey your intention to
the code's maintainer.

You should be especially careful with Perl special variables, which cannot be lexically scoped. With special variables,
local() must be used. For example, if you want to read in a whole file at once, you need to undef() the input record
separator. The following code reads the contents of an entire file in one go:

open IN, $file or die $!;

$/ = undef;

$content = <IN>; # slurp the whole file in
close IN;

Since you have modified the special Perl variable $/ globally, it'll affect any other code running under the same process.
If somewhere in the code (or any other code running on the same server) there is a snippet reading a file's content line
by line, relying on the default value of $/ (\n), this code will work incorrectly. Localizing the modification of this special
variable solves this potential problem:

local $/; # $/ is undef now
$content = <IN>; # slurp the whole file in

}

Note that the localization is enclosed in a block. When control passes out of the block, the previous value of $/ will be
restored automatically.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

6.4.4 STDIN, STDOUT, and STDERR Streams

Under mod_perl, both STDIN and STDOUT are tied to the socket from which the request originated. If, for example, you
use a third-party module that prints some output to STDOUT when it shouldn't (for example, control messages) and you
want to avoid this, you must temporarily redirect STDOUT to /dev/null. You will then have to restore STDOUT to the
original handle when you want to send a response to the client. The following code demonstrates a possible
implementation of this workaround:

{
my $nullfh = Apache::gensym();
open $nullfh, '>/dev/null’ or die "Can't open /dev/null: $!";
local *STDOUT = $nulifh;
call_something_thats_way_too_verbose();
close $nullfh;

}

The code defines a block in which the STDOUT stream is localized to print to /dev/null. When control passes out of this
block, STDOUT gets restored to the previous value.

STDERR is tied to a file defined by the ErrorLog directive. When native syslog support is enabled, the STDERR stream will
be redirected to /dev/null.

6.4.5 Redirecting STDOUT into a Scalar Variable

Sometimes you encounter a black-box function that prints its output to the default file handle (usually STDOUT) when
you would rather put the output into a scalar. This is very relevant under mod_perl, where STDOUT is tied to the Apache
request object. In this situation, the 10::String package is especially useful. You can re-tie() STDOUT (or any other file
handle) to a string by doing a simple select() on the I0::String object. Call select() again at the end on the original file
handle to re-tie() STDOUT back to its original stream:

my $str;
my $str_fh = I0::String->new($str);

my $old_fh = select($str_fh);
black_box_print();
select($old_fh) if defined $old_fh;

In this example, a new 10::String object is created. The object is then selected, the black_box_print() function is called,
and its output goes into the string object. Finally, we restore the original file handle, by re-select()ing the originally
selected file handle. The $str variable contains all the output produced by the black_box_print() function.

6.4.6 print()

Under mod_perl, CORE::print() (using either STDOUT as a filehandle argument or no filehandle at all) will redirect output
to Apache::print(), since the STDOUT file handle is tied to Apache. That is, these two are functionally equivalent:

print "Hello";
$r->print("Hello");

Apache::print() will return immediately without printing anything if $r->connection->aborted returns true. This happens if
the connection has been aborted by the client (e.g., by pressing the Stop button).

There is also an optimization built into Apache::print(): if any of the arguments to this function are scalar references to
strings, they are automatically dereferenced. This avoids needless copying of large strings when passing them to
subroutines. For example, the following code will print the actual value of $long_string:

my $long_string = "A" x 10000000;
$r->print(\$long_string);

To print the reference value itself, use a double reference:
$r->print(\\$long_string);

When Apache::print() sees that the passed value is a reference, it dereferences it once and prints the real reference
value:

SCALAR(0x8576€0c)

6.4.7 Formats

The interface to file handles that are linked to variables with Perl's tie() function is not yet complete. The format() and

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

write() functions are missing. If you configure Perl with sfio, write() and format() should work just fine.
Instead of format(), you can use printf(). For example, the following formats are equivalent:
format printf

###H# %2.2f
#H#H#HHE %42

To print a string with fixed-length elements, use the printf() format %n.ms where n is the length of the field allocated for
the string and m is the maximum number of characters to take from the string. For example:

printf "[%5.3s][%10.10s][%30.30s]\n",
12345, "John Doe", "1234 Abbey Road"

prints:
[123][John Doe][1234 Abbey Road]

Notice that the first string was allocated five characters in the output, but only three were used because m=5 and n=3
(%5.3s). If you want to ensure that the text will always be correctly aligned without being truncated, n should always be
greater than or equal to m.

You can change the alignment to the left by adding a minus sign (-) after the %. For example:

printf "[%-5.5s][%-10.10s][%-30.30s]\n",
123, "John Doe", "1234 Abbey Road"

prints:
[123][John Doe][1234 Abbey Road]
You can also use a plus sign (+) for the right-side alignment. For example:

printf "[%+5s][%+10s][%+30s]\n",
123, "John Doe", "1234 Abbey Road"

prints:
[123][John Doe][1234 Abbey Road]
Another alternative to format() and printf() is to use the Text::Reform module from CPAN.

In the examples above we've printed the number 123 as a string (because we used the %s format specifier), but
numbers can also be printed using numeric formats. See perldoc -f sprintf for full details.

6.4.8 Output from System Calls

The output of system(), exec(), and open(PIPE,"|program") calls will not be sent to the browser unless Perl was configured
with sfio. To learn if your version of Perl is sfio-enabled, look at the output of the per/ -V command for the useperlio and
d_sfio strings.

You can use backticks as a possible workaround:
print “command here";

But this technique has very poor performance, since it forks a new process. See the discussion about forking in Chapter
10.

6.4.9 BEGIN blocks

Perl executes BEGIN blocks as soon as possible, when it's compiling the code. The same is true under mod_perl.
However, since mod_perl normally compiles scripts and modules only once, either in the parent process or just once
per child, BEGIN blocks are run only once. As the perimod manpage explains, once a BEGIN block has run, it is
immediately undefined. In the mod_perl environment, this means that BEGIN blocks will not be run during the response
to an incoming request unless that request happens to be the one that causes the compilation of the code. However,
there are cases when BEGIN blocks will be rerun for each request.

BEGIN blocks in modules and files pulled in via require() or use() will be executed:

® Only once, if pulled in by the parent process.
® Once per child process, if not pulled in by the parent process.

® One additional time per child process, if the module is reloaded from disk by Apache::StatINC.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® One additional time in the parent process on each restart, if PerlFreshRestart is On.

® On every request, if the module with the BEGIN block is deleted from %INC, before the module's compilation is
needed. The same thing happens when do() is used, which loads the module even if it's already loaded.

BEGIN blocks in Apache::Registry scripts will be executed:

® Only once, if pulled in by the parent process via Apache::RegistryLoader.
® Once per child process, if not pulled in by the parent process.
® One additional time per child process, each time the script file changes on disk.

® One additional time in the parent process on each restart, if pulled in by the parent process via
Apache::RegistryLoader and PerlFreshRestart is On.

Note that this second list is applicable only to the scripts themselves. For the modules used by the scripts, the previous
list applies.

6.4.10 END Blocks

As the perlmod manpage explains, an END subroutine is executed when the Perl interpreter exits. In the mod_perl
environment, the Perl interpreter exits only when the child process exits. Usually a single process serves many requests
before it exits, so END blocks cannot be used if they are expected to do something at the end of each request's
processing.

If there is a need to run some code after a request has been processed, the $r->register_cleanup() function should be
used. This function accepts a reference to a function to be called during the PerlCleanupHandler phase, which behaves just
like the END block in the normal Perl environment. For example:

$r->register_cleanup(sub { warn "$$ does cleanup\n" });
or:

sub cleanup { warn "$$ does cleanup\n" };
$r->register_cleanup(\&cleanup);

will run the registered code at the end of each request, similar to END blocks under mod_cgi.

As you already know by now, Apache::Registry handles things differently. It does execute all END blocks encountered
during compilation of Apache::Registry scripts at the end of each request, like mod_cgi does. That includes any END
blocks defined in the packages use()d by the scripts.

If you want something to run only once in the parent process on shutdown and restart, you can use register_cleanup() in
startup.pl:

warn "parent pid is $$\n";
Apache->server->register_cleanup(
sub { warn "server cleanup in $$\n" });

This is useful when some server-wide cleanup should be performed when the server is stopped or restarted.

[Team LiB] 14 raavisus [l o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
6.5 CHECK and INIT Blocks

The CHECK and INIT blocks run when compilation is complete, but before the program starts. CHECK can mean
"checkpoint," "double-check," or even just "stop." INIT stands for "initialization." The difference is subtle: CHECK blocks
are run just after the compilation ends, whereas INIT blocks are run just before the runtime begins (hence, the -c
command-line flag to Perl runs up to CHECK blocks but not INIT blocks).

Perl calls these blocks only during perl_parse(), which mod_perl calls once at startup time. Therefore, CHECK and INIT
blocks don't work in mod_perl, for the same reason these don't:

panic% perl -e 'eval qq(CHECK { print "ok\n" })'
panic% perl -e 'eval qq(INIT { print "ok\n" })'

6.5.1 $7T and time()

Under mod_perl, processes don't quit after serving a single request. Thus, $/T gets initialized to the server startup time
and retains this value throughout the process's life. Even if you don't use this variable directly, it's important to know
that Perl refers to the value of $/T internally.

For example, Perl uses $/T with the -M, -C, or -A file test operators. As a result, files created after the child server's
startup are reported as having a negative age when using those operators. -M returns the age of the script file relative
to the value of the $AT special variable.

If you want to have -M report the file's age relative to the current request, reset $/T, just as in any other Perl script.
Add the following line at the beginning of your scripts:

local $1T = time;
You can also do:
local $/T = $r->request_time;

The second technique is better performance-wise, as it skips the time() system call and uses the timestamp of the
request's start time, available via the $r->request_time method.

If this correction needs to be applied to a lot of handlers, a more scalable solution is to specify a fixup handler, which
will be executed during the fixup stage:

sub Apache::PerlBaseTime::handler {
$AT = shift->request_time;
return Apache::Constants::DECLINED;
b

and then add the following line to httpd.conf:
PerlFixupHandler Apache::PerlBaseTime

Now no modifications to the content-handler code and scripts need to be performed.

6.5.2 Command-Line Switches

When a Perl script is run from the command line, the shell invokes the Perl interpreter via the #!/bin/perl directive, which
is the first line of the script (sometimes referred to as the shebang line). In scripts running under mod_cgi, you may
use Perl switches as described in the perlrun manpage, such as -w, -T, or -d. Under the Apache::Registry handlers family,
all switches except -w are ignored (and use of the -T switch triggers a warning). The support for -w was added for
backward compatibility with mod_cgi.

Most command-line switches have special Perl variable equivalents that allow them to be set/unset in code. Consult the
perlvar manpage for more details.

mod_perl provides its own equivalents to -w and -T in the form of configuration directives, as we'll discuss presently.

Finally, if you still need to set additional Perl startup flags, such as -d and -D, you can use the PERL50PT environment
variable. Switches in this variable are treated as if they were on every Perl command line. According to the perirun
manpage, only the -[DIMUdmw] switches are allowed.

6.5.2.1 Warnings

There are three ways to enable warnings:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Globally to all processes

In httpd.conf, set:

PerlWarn On

You can then fine-tune your code, turning warnings off and on by setting the $~W variable in your scripts.
Locally to a script

Including the following line:

#1/usr/bin/perl -w

will turn warnings on for the scope of the script. You can turn them off and on in the script by setting the $"W
variable, as noted above.

Locally to a block
This code turns warnings on for the scope of the block:
local $”W = 1;

some code

}

$~W assumes its previous value here
This turns warnings off:
local $~W = 0;

some code

}

$~W assumes its previous value here

If $2W isn't properly localized, this code will affect the current request and all subsequent requests processed
by this child. Thus:

$7W = 0;
will turn the warnings off, no matter what.

If you want to turn warnings on for the scope of the whole file, as in the previous item, you can do this by
adding:

local $"W = 1;

at the beginning of the file. Since a file is effectively a block, file scope behaves like a block's curly braces ({ }),
and local $”W at the start of the file will be effective for the whole file.

While having warnings mode turned on is essential for a development server, you should turn it globally off on a
production server. Having warnings enabled introduces a non-negligible performance penalty. Also, if every request
served generates one warning, and your server processes millions of requests per day, the error_log file will eat up all
your disk space and the system won't be able to function normally anymore.

Perl 5.6.x introduced the warnings pragma, which allows very flexible control over warnings. This pragma allows you to
enable and disable groups of warnings. For example, to enable only the syntax warnings, you can use:

use warnings 'syntax';
Later in the code, if you want to disable syntax warnings and enable signal-related warnings, you can use:

no warnings 'syntax’;
use warnings 'signal’;

But usually you just want to use:
use warnings;

which is the equivalent of:

use warnings 'all';

If you want your code to be really clean and consider all warnings as errors, Perl will help you to do that. With the
following code, any warning in the lexical scope of the definition will trigger a fatal error:

use warnings FATAL => ‘all’;

Of course, you can fine-tune the groups of warnings and make only certain groups of warnings fatal. For example, to
make only closure problems fatal, you can use:

use warnings FATAL => 'closure';

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Using the warnings pragma, you can also disable warnings locally:

{
no warnings;
some code that would normally emit warnings

}

In this way, you can avoid some warnings that you are aware of but can't do anything about.

For more information about the warnings pragma, refer to the perllexwarn manpage.

6.5.2.2 Taint mode

Perl's -T switch enables taint mode. In taint mode, Perl performs some checks on how your program is using the data
passed to it. For example, taint checks prevent your program from passing some external data to a system call without
this data being explicitly checked for nastiness, thus avoiding a fairly large number of common security holes. If you
don't force all your scripts and handlers to run under taint mode, it's more likely that you'll leave some holes to be
exploited by malicious users. (See Chapter 23 and the perlsec manpage for more information. Also read the re pragma's
manpage.)

Since the -T switch can't be turned on from within Perl (this is because when Perl is running, it's already too late to
mark all external data as tainted), mod_perl provides the PerlTaintCheck directive to turn on taint checks globally. Enable
this mode with:

PerlTaintCheck On
anywhere in httpd.conf (though it's better to place it as early as possible for clarity).

For more information on taint checks and how to untaint data, refer to the perlsec manpage.

6.5.3 Compiled Regular Expressions

When using a regular expression containing an interpolated Perl variable that you are confident will not change during
the execution of the program, a standard speed-optimization technique is to add the /o modifier to the regex pattern.
This compiles the regular expression once, for the entire lifetime of the script, rather than every time the pattern is
executed. Consider:

my $pattern = 'M\d+$'; # likely to be input from an HTML form field
foreach (@list) {
print if /$pattern/o;

This is usually a big win in loops over lists, or when using the grep() or map() operators.

In long-lived mod_perl scripts and handlers, however, the variable may change with each invocation. In that case, this
memorization can pose a problem. The first request processed by a fresh mod_perl child process will compile the regex
and perform the search correctly. However, all subsequent requests running the same code in the same process will use
the memorized pattern and not the fresh one supplied by users. The code will appear to be broken.

Imagine that you run a search engine service, and one person enters a search keyword of her choice and finds what
she's looking for. Then another person who happens to be served by the same process searches for a different
keyword, but unexpectedly receives the same search results as the previous person.

There are two solutions to this problem.

The first solution is to use the eval gq// construct to force the code to be evaluated each time it's run. It's important that
the eval block covers the entire processing loop, not just the pattern match itself.

The original code fragment would be rewritten as:

my $pattern = 'A\d+$';
eval g{
foreach (@list) {
print if /$pattern/o;
¥
¥

If we were to write this:

foreach (@list) {
eval g{ print if /$pattern/o; };

the regex would be compiled for every element in the list, instead of just once for the entire loop over the list (and the
/o modifier would essentially be useless).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

However, watch out for using strings coming from an untrusted origin inside eval—they might contain Perl code
dangerous to your system, so make sure to sanity-check them first.

This approach can be used if there is more than one pattern-match operator in a given section of code. If the section
contains only one regex operator (be it m// or s///), you can rely on the property of the null pattern, which reuses the
last pattern seen. This leads to the second solution, which also eliminates the use of eval.

The above code fragment becomes:

my $pattern = 'M\d+$";
"0" =~ /$pattern/; # dummy match that must not fail!
foreach (@list) {

print if //;

The only caveat is that the dummy match that boots the regular expression engine must succeed—otherwise the
pattern will not be cached, and the // will match everything. If you can't count on fixed text to ensure the match
succeeds, you have two options.

If you can guarantee that the pattern variable contains no metacharacters (such as *, +, ~, $, \d, etc.), you can use the
dummy match of the pattern itself:

$pattern =~ /\Q$pattern\E/; # guaranteed if no metacharacters present
The \Q modifier ensures that any special regex characters will be escaped.

If there is a possibility that the pattern contains metacharacters, you should match the pattern itself, or the
nonsearchable \377 character, as follows:

"\377" =~ [$pattern|M\377$/; # guaranteed if metacharacters present

6.5.3.1 Matching patterns repeatedly

Another technique may also be used, depending on the complexity of the regex to which it is applied. One common
situation in which a compiled regex is usually more efficient is when you are matching any one of a group of patterns
over and over again.

To make this approach easier to use, we'll use a slightly modified helper routine from Jeffrey Friedl's book Mastering
Regular Expressions (O'Reilly):

sub build_match_many_function {
my @list = @_;
my $expr = join'||',
map { "\$_[0] =~ m/\$list[$_]/0" } (0..$#list);
my $matchsub = eval "sub { $expr }";
die "Failed in building regex @list: $@" if $@;
return $matchsub;

}

This function accepts a list of patterns as an argument, builds a match regex for each item in the list against $_[0], and
uses the logical || (OR) operator to stop the matching when the first match succeeds. The chain of pattern matches is
then placed into a string and compiled within an anonymous subroutine using eval. If eval fails, the code aborts with die(
); otherwise, a reference to this subroutine is returned to the caller.

Here is how it can be used:

my @agents = qw(Mozilla Lynx MSIE AmigaVoyager Iwp libwww);
my $known_agent_sub = build_match_many_function(@agents);

while (<ACCESS_LOG>) {
my $agent = get_agent_field($_);
warn "Unknown Agent: $agent\n"
unless $known_agent_sub->($agent);
b

This code takes lines of log entries from the access_/log file already opened on the ACCESS_LOG file handle, extracts the
agent field from each entry in the log file, and tries to match it against the list of known agents. Every time the match
fails, it prints a warning with the name of the unknown agent.

An alternative approach is to use the qr// operator, which is used to compile a regex. The previous example can be
rewritten as:

my @agents = qw(Mozilla Lynx MSIE AmigaVoyager Iwp libwww);
my @compiled_re = map qr/$_/, @agents;

while (<ACCESS_LOG>) {
my $agent = get_agent_field($_);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

my $ok =0; 7
for my $re (@compiled_re) {
$ok = 1, last if /$re/;
}
warn "Unknown Agent: $agent\n"
unless $ok;
)

In this code, we compile the patterns once before we use them, similar to build_match_many_function() from the previous
example, but now we save an extra call to a subroutine. A simple benchmark shows that this example is about 2.5
times faster than the previous one.

[Team LiB] 14 raavisus [l o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
6.6 Apache::Registry Specifics

The following coding issues are relevant only for scripts running under the Apache::Registry content handler and similar
handlers, such as Apache::PerlRun. Of course, all of the mod_perl specifics described earlier apply as well.

6.6.1 __END__and _ _DATA_ _Tokens

An Apache::Registry script cannot contain _ _END_ _ or _ _DATA_ _ tokens, because Apache::Registry wraps the original
script's code into a subroutine called handler(), which is then called. Consider the following script, accessed as
/perl/test.pl:

print "Content-type: text/plain\n\n";
print "Hi";

When this script is executed under Apache::Registry, it becomes wrapped in a handler() subroutine, like this:

package Apache::ROOT::perl::test_2epl;
use Apache qw(exit);
sub handler {
print "Content-type: text/plain\n\n";
print "Hi";
b

If we happen to put an _ _END_ _ tag in the code, like this:

print "Content-type: text/plain\n\n";
print "Hi";

Some text that wouldn't be normally executed
it will be turned into:

package Apache::ROOT::perl::test_2epl;
use Apache qw(exit);
sub handler {
print "Content-type: text/plain\n\n";
print "Hi";
__END_ _

Some text that wouldn't be normally executed

¥
When issuing a request to /perl/test.pl, the following error will then be reported:
Missing right bracket at line 4, at end of line

Perl cuts everything after the _ _END_ _ tag. Therefore, the subroutine handler()'s closing curly bracket is not seen by
Perl. The same applies to the _ _DATA_ _ tag.

6.6.2 Symbolic Links

Apache::Registry caches the script in the package whose name is constructed from the URI from which the script is
accessed. If the same script can be reached by different URIs, which is possible if you have used symbolic links or
aliases, the same script will be stored in memory more than once, which is a waste.

For example, assuming that you already have the script at /home/httpd/perl/news/news.pl, you can create a symbolic
link:

panic% In -s /home/httpd/perl/news/news.pl /home/httpd/perl/news.pl

Now the script can be reached through both URIs, /news/news.pl and /news.pl. This doesn't really matter until the two
URIs get advertised and users reach the same script from the two of them.

Now start the server in single-server mode and issue a request to both URIs:

http://localhost/perl/news/news.pl
http://localhost/perl/news.pl

To reveal the duplication, you should use the Apache::Status module. Among other things, it shows all the compiled
Apache::Registry scripts (using their respective packages). If you are using the default configuration directives, you
should either use this URI:

http://localhost/perl-status?rgysubs

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

or just go to the main menu at:
http://localhost/perl-status
and click on the "Compiled Registry Scripts" menu item.

If the script was accessed through the two URIs, you will see the output shown in Figure 6-1.

Figure 6-1. Compiled Registry Scripts output

You can usually spot this kind of problem by running a link checker that goes recursively through all the pages of the
service by following all links, and then using Apache::Status to find the symlink duplicates (without restarting the server,
of course). To make it easier to figure out what to look for, first find all symbolic links. For example, in our case, the
following command shows that we have only one symlink:

panic% find /home/httpd/perl -type |
/home/httpd/perl/news.pl

So now we can look for that symlink in the output of the Compiled Registry Scripts section.

Notice that if you perform the testing in multi-server mode, some child processes might show only one entry or none at
all, since they might not serve the same requests as the others.

6.6.3 Return Codes

Apache::Registry normally assumes a return code of OK (200) and sends it for you. If a different return code needs to be
sent, $r->status() can be used. For example, to send the return code 404 (Not Found), you can use the following code:

use Apache::Constants qw(NOT_FOUND);
$r->status(NOT_FOUND);

If this method is used, there is no need to call $r->send_http_header() (assuming that the PerlSendHeader Off setting is in
effect).

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]

6.7 Transition from mod_cgi Scripts to Apache Handlers

If you don't need to preserve backward compatibility with mod_cgi, you can port mod_cgi scripts to use mod_perl-
specific APIs. This allows you to benefit from features not available under mod_cgi and gives you better performance
for the features available under both. We have already seen how easily Apache::Registry turns scripts into handlers

before they get executed. The transition to handlers is straightforward in most cases.

Let's see a transition example. We will start with a mod_cgi-compatible script running under Apache::Registry, transpose
it into a Perl content handler without using any mod_ perl-specific modules, and then convert it to use the

Apache::Request and Apache::Cookie modules that are available only in the mod_perl environment.

6.7.1 Starting with a mod_cgi-Compatible Script

Example 6-18 shows the original script's code.

Example 6-18. cookie_script.pl

use strict;

use CGI;

use CGI::Cookie;

use vars qw($q $switch $status $sessionID);

init();
print_header();
print_status();

sub init {

}

$q = new CGI;

$switch = $g->param("switch") ? 1 : 0;

my %cookies = CGI::Cookie->fetch;

$sessionID = exists $cookies{'sessionID"}
? $cookies{'sessionID'}->value

L

0 = not running, 1 = running
$status = $sessionID ? 1 : 0;

switch status if asked to
$status = !$status if $switch;

if ($status) {
preserve sessionlD if it exists or create a new one
$sessionID ||= generate_sessionID() if $status;
}else {
delete the sessionID
$sessionID = ";

¥

sub print_header {

}

print the current Session status and a form to toggle the status

my $c = CGI::Cookie->new(
-name => 'sessionID’,
-value => $sessionID,
-expires => '+1h'

)

print $g->header(
-type => "text/html’,
-cookie => $c

)

sub print_status {

print gg{<htmlI><head> <title>Cookie</title></head><body>};

print "Status: ",
$status
? "Session is running with ID: $sessionID"

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

: "No session is running";

change status form
my $button_label = $status ? "Stop" : "Start";
print qg{<hr>
<form>
<input type=submit name=switch value=" $button_label ">
</form>

o
print qg{</body></html>};
¥

A dummy ID generator
Replace with a real session ID generator
HUHBHBHUHHHHBHUHHH SR AHHH
sub generate_sessionID {

return scalar localtime;

}

The code is very simple. It creates a session when you press the Start button and deletes it when you pressed the Stop
button. The session is stored and retrieved using cookies.

We have split the code into three subroutines. init() initializes global variables and parses incoming data. print_header()
prints the HTTP headers, including the cookie header. Finally, print_status() generates the output. Later, we will see that
this logical separation will allow an easy conversion to Perl content-handler code.

We have used a few global variables, since we didn't want to pass them from function to function. In a big project, you
should be very restrictive about what variables are allowed to be global, if any. In any case, the init() subroutine makes
sure all these variables are reinitialized for each code reinvocation.

We have used a very simple generate_sessionID() function that returns a current date-time string (e.g., Wed Apr 12
15:02:23 2000) as a session ID. You'll want to replace this with code that generates a unique and unpredictable session
ID each time it is called.

6.7.2 Converting into a Perl Content Handler

Let's now convert this script into a content handler. There are two parts to this task: first configure Apache to run the
new code as a Perl handler, then modify the code itself.

First we add the following snippet to httpd.conf:

PerlModule Book::Cookie
<Location /test/cookie>
SetHandler perl-script
PerlHandler Book::Cookie
</Location>

and restart the server.

When a request whose URI starts with /test/cookie is received, Apache will execute the Book::Cookie::handler()
subroutine (which we will look at presently) as a content handler. We made sure we preloaded the Book::Cookie module
at server startup with the PerlModule directive.

Now we modify the script itself. We copy its contents to the file Cookie.pm and place it into one of the directories listed
in @INC. In this example, we'll use /home/httpd/perl, which we added to @INC. Since we want to call this package
Book::Cookie, we'll put Cookie.pm into the /home/httpd/perl/Book/ directory.

The changed code is in Example 6-19. As the subroutines were left unmodified from the original script, they aren't
reproduced here (so you'll see the differences more clearly.)

Example 6-19. Book/Cookie.pm

package Book::Cookie;
use Apache::Constants qw(:common);

use strict;

use CGI;

use CGI::Cookie;

use vars qw($q $switch $status $sessionID);

sub handler {
my $r = shift;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

init();
print_header();
print_status();

return OK;

¥

all subroutines unchanged

1

Two lines have been added to the beginning of the code:

package Book::Cookie;
use Apache::Constants qw(:common);

The first line declares the package name, and the second line imports constants commonly used in mod_perl handlers
to return status codes. In our case, we use the OK constant only when returning from the handler() subroutine.

The following code is left unchanged:

use strict;

use CGI;

use CGI::Cookie;

use vars qw($q $switch $status $sessionID);

We add some new code around the subroutine calls:

sub handler {
my $r = shift;

init();
print_header();
print_status();

return OK;

}

Each content handler (and any other handler) should begin with a subroutine called handler(). This subroutine is called
when a request's URI starts with /test/cookie, as per our configuration. You can choose a different subroutine name—
for example, execute()—but then you must explicitly specify that name in the configuration directives in the following
way:

PerlModule Book::Cookie
<Location /test/cookie>

SetHandler perl-script

PerlHandler Book::Cookie::execute
</Location>

We will use the default name, handler().
The handler() subroutine is just like any other subroutine, but generally it has the following structure:

sub handler {
my $r = shift;

the code

status (OK, DECLINED or else)
return OK;

}

First, we retrieve a reference to the request object by shifting it from @_ and assigning it to the $r variable. We'll need
this a bit later.

Second, we write the code that processes the request.

Third, we return the status of the execution. There are many possible statuses; the most commonly used are OK and
DECLINED. OK tells the server that the handler has completed the request phase to which it was assigned. DECLINED
means the opposite, in which case another handler will process this request. Apache::Constants exports these and other
commonly used status codes.

In our example, all we had to do was to wrap the three calls:
init();

print_header();

print_status();

inside the handler() skeleton:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

sub handler {
my $r = shift;

return OK;

}

Last, we need to add 1; at the end of the module, as we do with any Perl module. This ensures that PerIModule doesn't
fail when it tries to load Book::Cookie.

To summarize, we took the original script's code and added the following seven lines:

package Book::Cookie;
use Apache::Constants qw(:common);

sub handler {
my $r = shift;

return OK;

b
i

and we now have a fully-fledged Perl content handler.

6.7.3 Converting to use the mod_perl APl and mod_perl-Specific Modules

Now that we have a complete PerlHandler, let's convert it to use the mod_perl API and mod_perl-specific modules. First,
this may give us better performance where the internals of the API are implemented in C. Second, this unleashes the
full power of Apache provided by the mod_perl API, which is only partially available in the mod_cgi-compatible modules.

We are going to replace CGI.pm and CGI::Cookie with their mod_perl-specific equivalents: Apache::Request and
Apache::Cookie, respectively. These two modules are written in C with the XS interface to Perl, so code that uses these
modules heavily runs much faster.

Apache::Request has an API similar to CGI's, and Apache::Cookie has an API similar to CGI::Cookie's. This makes porting
straightforward. Essentially, we just replace:

use CGI;
$g = new CGI;

with:

use Apache::Request ();
$q = Apache::Request->new($r);

And we replace:

use CGI::Cookie ();
my $cookie = CGI::Cookie->new(...)

with:

use Apache::Cookie ();
my $cookie = Apache::Cookie->new($r, ...);

Example 6-20 is the new code for Book::Cookie2.

Example 6-20. Book/Cookie2.pm

package Book::Cookie2;
use Apache::Constants qw(:common);

use strict;

use Apache::Request ();

use Apache::Cookie ();

use vars qw($r $g $switch $status $sessionID);

sub handler {
$r = shift;
init();
print_header();
print_status();

return OK;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

b
sub init {

$q = Apache::Request->new($r);
$switch = $g->param("switch") ? 1 : 0;

my %cookies = Apache::Cookie->fetch;
$sessionID = exists $cookies{'sessionID'}
? $cookies{'sessionID'}->value : ";

0 = not running, 1 = running
$status = $sessionID ? 1 : 0;

switch status if asked to
$status = !$status if $switch;

if ($status) {
preserve sessionID if it exists or create a new one
$sessionID ||= generate_sessionID() if $status;
}else {
delete the sessionID
$sessionID =";
¥
¥

sub print_header {
my $c = Apache::Cookie->new(
$rl
-name => 'sessionlD’,
-value => $sessionID,
-expires => '+1h');

Add a Set-Cookie header to the outgoing headers table
$c->bake;

$r->send_http_header('text/html");
b

print the current Session status and a form to toggle the status
sub print_status {

print gg{<html><head> <title>Cookie</title></head><body>};

print "Status: ",
$status
? "Session is running with ID: $sessionID"
: "No session is running";

change status form
my $button_label = $status ? "Stop" : "Start";
print qg{<hr>
<form>
<input type=submit name=switch value=" $button_label ">
</form>

)7
print qg{</body></html>};
b

replace with a real session ID generator
sub generate_sessionID {
return scalar localtime;

b
L

The only other changes are in the print_header() function. Instead of passing the cookie code to CGI's header() function
to return a proper HTTP header, like this:

print $g->header(
-type => 'text/html’,
-cookie => $c);
we do it in two stages. First, the following line adds a Set-Cookie header to the outgoing headers table:

$c->bake;

Then this line sets the Content-Type header to text/htm/ and sends out the whole HTTP header:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$r->send_http_header('text/html');
The rest of the code is unchanged.
The last thing we need to do is add the following snippet to httpd.conf:

PerlModule Book::Cookie2
<Location /test/cookie2>
SetHandler perl-script
PerlHandler Book::Cookie2
</Location>

Now the magic URI that will trigger the above code execution will be one starting with /test/cookie2. We save the code
in the file /home/httpd/perl/Book/Cookie2.pm, since we have called this package Book::Cookie2.

As you've seen, converting well-written CGI code into mod_perl handler code is straightforward. Taking advantage of
mod_perl-specific features and modules is also generally simple. Very little code needs to be changed to convert a
script.

Note that to make the demonstration simple to follow, we haven't changed the style of the original package. But by all
means consider doing that when porting real code: use lexicals instead of globals, apply mod_perl API functions where
applicable, etc.

[Team LiB] 14 raavisus [l o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
6.8 Loading and Reloading Modules

You often need to reload modules in development and production environments. mod_perl tries hard to avoid
unnecessary module reloading, but sometimes (especially during the development process) we want some modules to
be reloaded when modified. The following sections discuss issues related to module loading and reloading.

6.8.1 The @INC Array Under mod_perl

Under mod_perl, @INC can be modified only during server startup. After each request, mod_perl resets @INC's value to
the one it had before the request.

If mod_perl encounters a statement like the following:
use lib qw(foo/bar);

it modifies @INC only for the period during which the code is being parsed and compiled. Afterward, @INC is reset to its
original value. Therefore, the only way to change @INC permanently is to modify it at server startup.

There are two ways to alter @INC at server startup:

® In the configuration file, with:
PerlSetEnv PERL5LIB /home/httpd/perl
or:

PerlSetEnv PERL5LIB /home/httpd/perl:/home/httpd/mymodules

® In the startup.pl file:

use lib qw(/home/httpd/perl /home/httpd/mymodules);
L

As always, the startup file needs to be loaded from httpd.conf:

PerlRequire /path/to/startup.pl

To make sure that you have set @INC correctly, configure perl-status into your server, as explained in Chapter 21. Follow
the "Loaded Modules" item in the menu and look at the bottom of the generated page, where the contents of @INC are
shown:

@INC =

/home/httpd/mymodules
/home/httpd/perl
/Jusr/lib/perl5/5.6.1/i386-linux
/Jusr/lib/perl5/5.6.1
/Jusr/lib/perl5/site_perl/5.6.1/i386-linux
/usr/lib/perl5/site_perl/5.6.1
/usr/lib/per|5/site_perl

Jhome/httpd/httpd_perl/
/home/httpd/httpd_perl/lib/perl

As you can see in our setup, we have two custom directories prepended at the beginning of the list. The rest of the list
contains standard directories from the Perl distribution, plus the $ServerRoot and $ServerRoot/lib/perl directories
appended at the end (which mod_perl adds automatically).

6.8.2 Reloading Modules and Required Files

When working with mod_cgi, you can change the code and rerun the CGI script from your browser to see the changes.
Since the script isn't cached in memory, the server starts up a new Perl interpreter for each request, which loads and
recompiles the script from scratch. The effects of any changes are immediate.

The situation is different with mod_perl, since the whole idea is to get maximum performance from the server. By
default, the server won't spend time checking whether any included library modules have been changed. It assumes
that they weren't, thus saving the time it takes to stat() the source files from any modules and libraries you use() and
require() in your script.

If the scripts are running under Apache::Registry, the only check that is performed is to see whether your main script has

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

been changed. If your séripts do not use()70r require() any other Perl modules or packages, there is nothing to worry
about. If, however, you are developing a script that includes other modules, the files you use() or require() aren't
checked for modification, and you need to do something about that.

There are a couple of techniques to make a mod_perl-enabled server recognize changes in library modules. They are
discussed in the following sections.

6.8.2.1 Restarting the server

The simplest approach is to restart the server each time you apply some change to your code. Restarting techniques
are covered in Chapter 5. After restarting the server about 50 times, you will tire of it and look for other solutions.

6.8.2.2 Using Apache::StatINC

Help comes from the Apache::StatINC module. When Perl pulls in a file with require(), it stores the full pathname as a
value in the global hash %INC with the filename as the key. Apache::StatINC looks through %INC and immediately reloads
any file that has been updated on the disk.

To enable this module, add these two lines to httpd.conf:

PerlModule Apache::StatINC
PerlInitHandler Apache::StatINC

To be sure it really works, turn on debug mode on your development system by adding PerlSetVar StatINCDebug On to
your configuration file. You end up with something like this:

PerlModule Apache::StatINC
PerlInitHandler Apache::StatINC
<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGI
PerlSendHeader On
PerlSetVar StatINCDebug On
</Location>

Be aware that only the modules located in @INC are reloaded on change, and you can change @INC only before the
server has been started (in the startup file).

Note the following trap: because ".", the current directory, is in @INC, Perl knows how to require() files with pathnames
relative to the current script's directory. After the code has been parsed, however, the server doesn't remember the
path. So if the code loads a module MyModule located in the directory of the script and this directory is not in @INC, you
end up with the following entry in %INC:

'MyModule.pm' => 'MyModule.pm'

When Apache::StatINC tries to check whether the file has been modified, it won't be able to find the file, since
MyModule.pm is not in any of the paths in @INC. To correct this problem, add the module's location path to @INC at
server startup.

6.8.2.3 Using Apache::Reload

Apache::Reload is a newer module that comes as a drop-in replacement for Apache::StatINC. It provides extra functionality
and is more flexible.

To make Apache::Reload check all the loaded modules on each request, just add the following line to httpd.conf:
PerlInitHandler Apache::Reload

To reload only specific modules when these get changed, three alternatives are provided: registering the module
implicitly, registering the module explicitly, and setting up a dummy file to touch whenever you want the modules
reloaded.

To use implicit module registration, turn off the ReloadAll variable, which is on by default:

PerlInitHandler Apache::Reload
PerlSetVar ReloadAll Off

and add the following line to every module that you want to be reloaded on change:
use Apache::Reload;

Alternatively, you can explicitly specify modules to be reloaded in httpd.conf:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

PerlInitHandler Apache::Reload
PerlSetVar ReloadModules "Book::Foo Book::Bar Foo::Bar::Test"

Note that these are split on whitespace, but the module list must be in quotes, or Apache will try to parse the
parameter list itself.

You can register groups of modules using the metacharacter *:
PerlSetVar ReloadModules "Foo::* Bar::*"

In the above example, all modules starting with Foo:: and Bar:: will become registered. This feature allows you to assign
all the modules in a project using a single pattern.

The third option is to set up a file that you can touch to cause the reloads to be performed:
PerlSetVar ReloadTouchFile /tmp/reload_modules

Now when you're happy with your changes, simply go to the command line and type:
panic% touch /tmp/reload_modules

If you set this, and don't touch the file, the reloads won't happen (regardless of how the modules have been
registered).

This feature is very convenient in a production server environment, but compared to a full restart, the benefits of
preloaded modules memory-sharing are lost, since each child will get its own copy of the reloaded modules.

Note that Apache::Reload might have a problem with reloading single modules containing multiple packages that all use
pseudo-hashes. The solution: don't use pseudo-hashes. Pseudo-hashes will be removed from newer versions of Perl
anyway.

Just like with Apache::StatInc, if you have modules loaded from directories that are not in @INC, Apache::Reload will fail to
find the files. This is because @INC is reset to its original value even if it gets temporarily modified in the script. The
solution is to extend @INC at server startup to include all the directories from which you load files that aren't in the
standard @INC paths.

6.8.2.4 Using dynamic configuration files

Sometimes you may want an application to monitor its own configuration file and reload it when it is altered. But you
don't want to restart the server for these changes to take effect. The solution is to use dynamic configuration files.

Dynamic configuration files are especially useful when you want to provide administrators with a configuration tool that
modifies an application on the fly. This approach eliminates the need to provide shell access to the server. It can also
prevent typos, because the administration program can verify the submitted modifications.

It's possible to get away with Apache::Reload and still have a similar small overhead for the stat() call, but this requires
the involvement of a person who can modify httpd.conf to configure Apache::Reload. The method described next has no
such requirement.

6.8.2.4.1 Writing configuration files

We'll start by describing various approaches to writing configuration files, and their strengths and weaknesses.

If your configuration file contains only a few variables, it doesn't matter how you write the file. In practice, however,
configuration files often grow as a project develops. This is especially true for projects that generate HTML files, since
they tend to demand many easily configurable settings, such as the location of headers, footers, templates, colors, and
so on.

A common approach used by CGI programmers is to define all configuration variables in a separate file. For example:

$cgi_dir = '/home/httpd/perl’;

$cgi_url ="/perl;

$docs_dir = '/home/httpd/docs';
$docs_url ='/";

$img_dir = '/home/httpd/docs/images’;
$img_url = '/images';

... many more config params here ...
$color_hint = "'#777777";
$color_warn = '#990066';
$color_normal = '#000000';
The use strict; pragma demands that all variables be declared. When using these variables in a mod_perl script, we must
declare them with use vars in the script, so we start the script with:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

use strict;

use vars qw($cgi_dir $cgi_url $docs_dir $docs_url
... many more config params here

$color_hint $color_warn $color_normal

)l

It is a nightmare to maintain such a script, especially if not all features have been coded yet—we have to keep adding
and removing variable names. Since we're writing clean code, we also start the configuration file with use strict;, so we
have to list the variables with use vars here as well—a second list of variables to maintain. Then, as we write many
different scripts, we may get name collisions between configuration files.

The solution is to use the power of Perl's packages and assign a unique package name to each configuration file. For
example, we might declare the following package name:

package Book::Config0;

Now each configuration file is isolated into its own namespace. But how does the script use these variables? We can no
longer just require() the file and use the variables, since they now belong to a different package. Instead, we must
modify all our scripts to use the configuration variables' fully qualified names (e.g., referring to $Book::Config0::cgi_url
instead of just $cgi_url).

You may find typing fully qualified names tedious, or you may have a large repository of legacy scripts that would take
a while to update. If so, you'll want to import the required variables into any script that is going to use them. First, the
configuration package has to export those variables. This entails listing the names of all the variables in the

@EXPORT_OK hash. See Example 6-21.
Example 6-21. Book/Config0.pm

package Book::Config0;
use strict;

BEGIN {
use Exporter ();

@Book::HTML::ISA = qw(Exporter);

@Book::HTML::EXPORT = qw();

@Book::HTML::EXPORT_OK = qw($cgi_dir $cgi_url $docs_dir $docs_url
... many more config params here
$color_hint $color_warn $color_normal);

}

use vars qw($cgi_dir $cgi_url $docs_dir $docs_url
... many more config params here
$color_hint $color_warn $color_normal

’

$cgi_dir = '/home/httpd/perl’;
$cgi_url ="/perl;

$docs_dir = '/home/httpd/docs';
$docs_url ='/";

$img_dir = '/home/httpd/docs/images’;
$img_url = '/images';

... many more config params here ...
$color_hint = "#777777",;
$color_warn "#990066';
$color_normal = "#000000";

A script that uses this package will start with this code:

use strict;

use Book::Config0 qw($cgi_dir $cgi_url $docs_dir $docs_url
... many more config params here
$color_hint $color_warn $color_normal

use vars qw($cgi_dir $cgi_url $docs_dir $docs_url
... many more config params here
$color_hint $color_warn $color_normal

)i

Whoa! We now have to update at least three variable lists when we make a change in naming of the configuration
variables. And we have only one script using the configuration file, whereas a real-life application often contains many
different scripts.

There's also a performance drawback: exported variables add some memory overhead, and in the context of mod_perl
this overhead is multiplied by the number of server processes running.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

There are a number of techniques we can use to get rid of these problems. First, variables can be grouped in named
groups called tags. The tags are later used as arguments to the import() or use() calls. You are probably familiar with:

use CGI qw(:standard :html);
We can implement this quite easily, with the help of export_ok_tags() from Exporter. For example:

BEGIN {
use Exporter ();
use vars qw(@ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);
@ISA = qw(Exporter);
@EXPORT =();
@EXPORT_OK = ();

%EXPORT_TAGS = (
vars => [qw($firstname $surname)],
subs => [qw(reread_conf untaint_path)],
)i
Exporter::export_ok_tags('vars');
Exporter::export_ok_tags('subs');

In the script using this configuration, we write:
use Book::Config0 qw(:subs :vars);

Subroutines are exported exactly like variables, since symbols are what are actually being exported. Notice we don't
use export_tags(), as it exports the variables automatically without the user asking for them (this is considered bad
style). If a module automatically exports variables with export_tags(), you can avoid unnecessary imports in your script
by using this syntax:

use Book::Config0 ();

You can also go even further and group tags into other named groups. For example, the :all tag from CGIL.pm is a group
tag of all other groups. It requires a little more effort to implement, but you can always save time by looking at the
solution in CGL.pm's code. It's just a matter of an extra code to expand all the groups recursively.

As the number of variables grows, however, your configuration will become unwieldy. Consider keeping all the variables
in a single hash built from references to other scalars, anonymous arrays, and hashes. See Example 6-22.

Example 6-22. Book/Configl.pm

package Book::Configl;
use strict;

BEGIN {
use Exporter ();

@Book::Configl::ISA = qw(Exporter);

@Book::Configl::EXPORT = qw();

@Book::Configl::EXPORT_OK = qw(%c);
b

use vars qw(%:c);

%c = (
dir => {
cgi => 'home/httpd/perl’,
docs => '/home/httpd/docs',
img => '/home/httpd/docs/images’,

}l

url =>{
cgi =>'/perl’,
docs => /',
img => 'f/images',
}l

color => {

hint =>"'#777777,
warn => '#990066',
normal => '#000000",

}I
)i
Good Perl style suggests keeping a comma at the end of each list. This makes it easy to add new items at the end of a
list.

Our script now looks like this:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

use strict;
use Book::Configl qw(%c);
use vars qw(%c);

print "Content-type: text/plain\n\n";
print "My url docs root: $c{url}{docs}\n";

The whole mess is gone. Now there is only one variable to worry about.

The one small downside to this approach is auto-vivification. For example, if we write $c{url}{doc} by mistake, Perl will
silently create this element for us with the value undef. When we use strict;, Perl will tell us about any misspelling of this
kind for a simple scalar, but this check is not performed for hash elements. This puts the onus of responsibility back on
us, since we must take greater care.

The benefits of the hash approach are significant. Let's make it even better by getting rid of the Exporter stuff
completely, removing all the exporting code from the configuration file. See Example 6-23.

Example 6-23. Book/Config2.pm

package Book::Config2;
use strict;
use vars qw(%c);

%c = (
dir => {
cgi => 'fhome/httpd/perl’,
docs => '/home/httpd/docs',
img => '/home/httpd/docs/images',

}I

url => {
cgi =>'/perl',
docs =>"/',
img => 'f/images',
}I

color =>{

hint =>"'#777777,
warn => '#990066',
normal => '#000000',
}l

)

Our script is modified to use fully qualified names for the configuration variables it uses:

use strict;

use Book::Config2 ();

print "Content-type: text/plain\n\n";

print "My url docs root: $Book::Config2::c{url}{docs}\n";

To save typing and spare the need to use fully qualified variable names, we'll use a magical Perl feature to alias the
configuration variable to a script's variable:

use strict;

use Book::Config2 ();

use vars qw(%c);

*c = \%Book::Config2::c;

print "Content-type: text/plain\n\n";
print "My url docs root: $c{url}{docs}\n";

We've aliased the *c glob with a reference to the configuration hash. From now on, %Book::Config2::c and %c refer to the
same hash for all practical purposes.

One last point: often, redundancy is introduced in configuration variables. Consider:

$cgi_dir = '/home/httpd/perl’;
$docs_dir = '/home/httpd/docs';
$img_dir = '/home/httpd/docs/images';

It's obvious that the base path /home/httpd should be moved to a separate variable, so only that variable needs to be
changed if the application is moved to another location on the filesystem.

$base '/home/httpd';
$cgi_dir = "$base/perl";
$docs_dir = "$base/docs";
$img_dir = "$docs_dir/images";

This cannot be done with a hash, since we cannot refer to its values before the definition is completed. That is, this will
not work:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

%c = (
base => '/home/httpd',
dir => {

cgi => "$c{base}/perl",
docs => "$c{base}/docs",
img => "$c{base}{docs}/images",

’

)i
But nothing stops us from adding additional variables that are lexically scoped with my(). The following code is correct:

my $base = '/home/httpd’;
%c = (
dir => {
cgi => "$base/perl",
docs => "$base/docs",
img => "$base/docs/images",
}I
)

We've learned how to write configuration files that are easy to maintain, and how to save memory by avoiding
importing variables in each script's namespace. Now let's look at reloading those files.

6.8.2.4.2 Reloading configuration files

First, lets look at a simple case, in which we just have to look after a simple configuration file like the one below.
Imagine a script that tells you who is the patch pumpkin of the current Perl release.[2] (Pumpkin is a whimsical term for
the person with exclusive access to a virtual "token" representing a certain authority, such as applying patches to a
master copy of some source.)

[2] These are the recent pumpkins: Chip Salzenberg for 5.004, Gurusamy Sarathy for 5.005 and 5.6, Jarkko
Hietaniemi for 5.8, Hugo van der Sanden for 5.10.

use CGI ();
use strict;

my $firstname = "Jarkko";
my $surname = "Hietaniemi";
my $q = CGI->new;

print $g->header(-type=>'text/html’);
print $g->p("$firstname $surname holds the patch pumpkin" .
"for this Perl release.");

The script is very simple: it initializes the CGI object, prints the proper HTTP header, and tells the world who the current
patch pumpkin is. The name of the patch pumpkin is a hardcoded value.

We don't want to modify the script every time the patch pumpkin changes, so we put the $firstname and $surname
variables into a configuration file:

$firstname = "Jarkko";
$surname = "Hietaniemi";
1

Note that there is no package declaration in the above file, so the code will be evaluated in the caller's package or in
the main:: package if none was declared. This means that the variables $firstname and $surname will override (or
initialize) the variables with the same names in the caller's namespace. This works for global variables only—you cannot
update variables defined lexically (with my()) using this technique.

Let's say we have started the server and everything is working properly. After a while, we decide to modify the
configuration. How do we let our running server know that the configuration was modified without restarting it?
Remember, we are in production, and a server restart can be quite expensive. One of the simplest solutions is to poll
the file's modification time by calling stat() before the script starts to do real work. If we see that the file was updated,
we can force a reconfiguration of the variables located in this file. We will call the function that reloads the configuration
reread_conf() and have it accept the relative path to the configuration file as its single argument.

Apache::Registry executes a chdir() to the script's directory before it starts the script's execution. So if your CGI script is
invoked under the Apache::Registry handler, you can put the configuration file in the same directory as the script.
Alternatively, you can put the file in a directory below that and use a path relative to the script directory. However, you
have to make sure that the file will be found, somehow. Be aware that do() searches the libraries in the directories in
@INC.

use vars qw(%MODIFIED);
sub reread_conf {
my $file = shift;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

return unless defined $file;
return unless -e $file and -r _;
my $mod = -M _;
unless (exists $MODIFIED{$file} and $MODIFIED{$file} = = $mod) {
unless (my $result = do $file) {
warn "couldn't parse $file: $@" if $@;
warn "couldn't read $file: $!" unless defined $result;
warn "couldn't run $file" unless $result;

b
$MODIFIED{$file} = $mod; # Update the MODIFICATION times

}

Notice that we use the = = comparison operator when checking the file's modification timestamp, because all we want
to know is whether the file was changed or not.

When the require(), use(), and do() operators successfully return, the file that was passed as an argument is inserted
into %INC. The hash element key is the name of the file, and the element's value is the file's path. When Perl sees
require() or use() in the code, it first tests %INC to see whether the file is already there and thus loaded. If the test
returns true, Perl saves the overhead of code rereading and recompiling; however, calling do() will load or reload the
file regardless of whether it has been previously loaded.

We use do(), not require(), to reload the code in this file because although do() behaves almost identically to require(),

it reloads the file unconditionally. If do() cannot read the file, it returns undef and sets $! to report the error. If do() can
read the file but cannot compile it, it returns undef and sets an error message in $@. If the file is successfully compiled,
do() returns the value of the last expression evaluated.

The configuration file can be broken if someone has incorrectly modified it. Since we don't want the whole service using
that file to be broken that easily, we trap the possible failure to do() the file and ignore the changes by resetting the
modification time. If do() fails to load the file, it might be a good idea to send an email about the problem to the system
administrator.

However, since do() updates %INC like require() does, if you are using Apache::StatINC it will attempt to reload this file
before the reread_conf() call. If the file doesn't compile, the request will be aborted. Apache::StatINC shouldn't be used in
production anyway (because it slows things down by stat()ing all the files listed in %INC), so this shouldn't be a
problem.

Note that we assume that the entire purpose of this function is to reload the configuration if it was changed. This is fail-
safe, because if something goes wrong we just return without modifying the server configuration. The script should not

be used to initialize the variables on its first invocation. To do that, you would need to replace each occurrence of return(
) and warn() with die().

We've used the above approach with a huge configuration file that was loaded only at server startup and another little
configuration file that included only a few variables that could be updated by hand or through the web interface. Those
variables were initialized in the main configuration file. If the webmaster breaks the syntax of this dynamic file while
updating it by hand, it won't affect the main (write-protected) configuration file and won't stop the proper execution of
the programs. In the next section, we will see a simple web interface that allows us to modify the configuration file
without the risk of breaking it.

Example 6-24 shows a sample script using our reread_conf() subroutine.

Example 6-24. reread_conf.pl

use vars qw(%MODIFIED $firstname $surname);
use CGI ();
use strict;

my $q = CGI->new;

print $g->header(-type => 'text/plain’);

my $config_file = "./config.pl";

reread_conf($config_file);

print $g->p("$firstname $surname holds the patch pumpkin" .
"for this Perl release.");

sub reread_conf {

my $file = shift;

return unless defined $file;

return unless -e $file and -r _;

my $mod =-M _;

unless ($MODIFIED{$file} and $MODIFIED{$file} == $mod) {

unless (my $result = do $file) {

warn "couldn't parse $file: $@" if $@;
warn "couldn't read $file: $!" unless defined $result;
warn "couldn't run $file" unless $result;

¥
$MODIFIED{$file} = $mod; # Update the MODIFICATION time

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

b
by

You should be using (stat $file)[9] instead of -M $file if you are modifying the $/T variable. This is because -M returns the
modification time relative to the Perl interpreter startup time, set in $/T. In some scripts, it can be useful to reset $/T
to the time of the script invocation with "local $AT = time()". That way, -M and other -X file status tests are performed
relative to the script invocation time, not the time the process was started.

If your configuration file is more sophisticated—for example, if it declares a package and exports variables—the above

code will work just as well. Variables need not be import()ed again: when do() recompiles the script, the originally
imported variables will be updated with the values from the reloaded code.

6.8.2.4.3 Dynamically updating configuration files

The CGI script below allows a system administrator to dynamically update a configuration file through a web interface.
This script, combined with the code we have just seen to reload the modified files, gives us a system that is dynamically
reconfigurable without having to restart the server. Configuration can be performed from any machine that has a
browser.

Let's say we have a configuration file like the one in Example 6-25.

Example 6-25. Book/MainConfig.pm

package Book::MainConfig;

use strict;
use vars qw(%c);

%c = (
name => "Larry Wall",
release => "5.000",
comments => "Adding more ways to do the same thing :)",

other => "More config values",

colors => { foreground => "black",
background => "white",

}l

machines => [qw(primary secondary tertiary)],
)i
We want to make the variables name, release, and comments dynamically configurable. We'll need a web interface with an
input form that allows modifications to these variables. We'll also need to update the configuration file and propagate
the changes to all the currently running processes.
Let's look at the main stages of the implementation:

1. Create a form with preset current values of the variables.

2. Let the administrator modify the variables and submit the changes.

3. Validate the submitted information (numeric fields should hold numbers within a given range, etc.).

4. Update the configuration file.

5. Update the modified value in the current process's memory.

6. Display the form as before with the (possibly changed) current values.
The only part that seems hard to implement is a configuration file update, for a couple of reasons. If updating the file
breaks it, the whole service won't work. If the file is very big and includes comments and complex data structures,
parsing the file can be quite a challenge.
So let's simplify the task. If all we want is to update a few variables, why don't we create a tiny configuration file
containing just those variables? It can be modified through the web interface and overwritten each time there is

something to be changed, so that we don't have to parse the file before updating it. If the main configuration file is
changed, we don't care, because we don't depend on it any more.

The dynamically updated variables will be duplicated in the main file and the dynamic file. We do this to simplify
maintenance. When a new release is installed, the dynamic configuration file won't exist—it will be created only after
the first update. As we just saw, the only change in the main code is to add a snippet to load this file if it exists and was
changed.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This additional code must be executed after the main configuration file has been loaded. That way, the updated
variables will override the default values in the main file. See Example 6-26.

Example 6-26. manage_conf.pl

remember to run this code in taint mode
use strict;
use vars qw($q %c $dynamic_config_file %vars_to_change %validation_rules);

use CGI ();

use lib qw(.);
use Book::MainConfig ();
*c = \%Book::MainConfig::c;

$dynamic_config_file = "./config.pl";

load the dynamic configuration file if it exists, and override the
default values from the main configuration file
do $dynamic_config_file if -e $dynamic_config_file and -r _;

fields that can be changed and their captions
%vars_to_change =
(
'name' => "Patch Pumpkin's Name",
'release’ => "Current Perl Release",
‘comments' => "Release Comments",

)

each field has an associated regular expression
used to validate the field's content when the
form is submitted
%validation_rules =
(
‘name' =>sub {$_[0] =~ /~A[\W\s\.]+$/; 3,
'release’ => sub { $_[0] =~ /A\d+\.[\d_]+$/; },
'‘comments' => sub { 1; +

)

create the CGI object, and print the HTTP and HTML headers
$q = CGI->new;
print $g->header(-type=>'text/html'),

$g->start_html();

We always rewrite the dynamic config file, so we want all the
variables to be passed, but to save time we will only check
those variables that were changed. The rest will be retrieved from
the 'prev_*' values.
my %updates = ();
foreach (keys %vars_to_change) {
copy var so we can modify it
my $new_val = $g->param($_) || ";

strip a possible ~M char (Win32)
$new_val =~ s/\cM//g;

push to hash if it was changed
$updates{$_} = $new_val
if defined $g->param("prev_" . $_)
and $new_val ne $g->param("prev_" . $_);

}

Note that we cannot trust the previous values of the variables

since they were presented to the user as hidden form variables,

and the user could have mangled them. We don't care: this can't do
any damage, as we verify each variable by rules that we define.

Process if there is something to process. Will not be called if

it's invoked the first time to display the form or when the form
was submitted but the values weren't modified (we'll know by
comparing with the previous values of the variables, which are

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

the hidden fields in the form).
process_changed_config(%updates) if %updates;
show_maoadification_form();

update the config file, but first validate that the values are
acceptable
sub process_changed_config {

my %updates = @_;

we will list here all variables that don't validate
my %malformed = ();

print $g->b("Trying to validate these values
");
foreach (keys %updates) {
print "<dt>$_ => <pre>$updates{$_}</pre>";

now we have to handle each var to be changed very carefully,
since this file goes immediately into production!
$malformed{$_} = delete $updates{$_}

unless $validation_rules{$_}->($updates{$_});

by

if (Y%omalformed) {
print $g->hr,
$9->p($9->b(gqg{Warning! These variables were changed
to invalid values. The original
values will be kept.})
)l
join ",
",
map { $g->b($vars_to_change{$_}) . " : $malformed{$_}\n"
} keys %omalformed;

by

Now complete the vars that weren't changed from the
$q->param('prev_var') values
map { $updates{$_} = $q->param('prev_'. $_)
unless exists $updates{$_} } keys %vars_to_change;

Now we have all the data that should be written into the dynamic
config file
escape single quotes "
my $content = join "\n",
map { $updates{$_} =~ s/(["\\)/\\$1/g;
'$c{". $_. "} =" $updates{$_} . ";\n"
} keys %updates;

while creating a file

add '1;' to make require() happy
$content .= "\n1;";

keep the dummy result in $res so it won't complain
eval {my $res = $content};
if ($@) {
print gg{Warning! Something went wrong with config file
generation!<p> The error was :</p>
<pre>$@</pre>};
return;

}
print $g->hr;

overwrite the dynamic config file
my $fh = Apache::gensym();
open $fh, ">$dynamic_config_file.bak"
or die "Can't open $dynamic_config_file.bak for writing: $!";
flock $fh, 2; # exclusive lock
seek $fh, 0, 0; # rewind to the start
truncate $fh, 0; # the file might shrink!
print $fh $content;
close $fh;

OK, now we make a real file
rename "$dynamic_config_file.bak", $dynamic_config_file
or die "Failed to rename: $!";

rerun it to update variables in the current process! Note that

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

it won't update the variables in other processes. Special

code that watches the timestamps on the config file will do this

work for each process. Since the next invocation will update the

configuration anyway, why do we need to load it here? The reason
is simple: we are going to fill the form's input fields with

the updated data.

do $dynamic_config_file;

¥
sub show_maodification_form {
print $g->center($g->h3("Update Form"));

print $g->hr,
$g->p(qa{This form allows you to dynamically update the current
configuration. You don't need to restart the server in
order for changes to take an effect}

)

set the previous settings in the form's hidden fields, so we
know whether we have to do some changes or not
$g->param("prev_$_", $c{$_}) for keys %vars_to_change;

rows for the table, go into the form
my @configs = ();

prepare text field entries
push @configs,

map {
$g->td($g->b("$vars_to_change{$_}:")),
$g->td(
$g->textfield(
-name =>$_,

-default => $c{$_},
-override =>1,
-size => 20,
-maxlength => 50,

)
)I

} gqw(name release);

prepare multiline textarea entries
push @configs,
map {
$g->td($g->b("$vars_to_change{s$_}:")),
$g->td(
$g->textarea(
-name =>$_,
-default => $c{$_},
-override => 1,
-rows => 10,
-columns => 50,
-wrap => "HARD",

)
)I
} qw(comments);
print $g->startform(POST => $g->url), "\n",
$g->center(

$q->table(map {$q->Tr($_), "\n",} @configs),
$g->submit(", 'Update!"), "\n",

)I

map ({$g->hidden("prev_" . $_, $g->param("prev_".$_)) . "\n" }
keys %vars_to_change), # hidden previous values

$q->br, "\n’",

$g->endform, "\n",

$g->hr, "\n",

$g->end_html;

b
For example, on July 19 2002, Perl 5.8.0 was released. On that date, Jarkko Hietaniemi exclaimed:
The pumpking is dead! Long live the pumpking!

Hugo van der Sanden is the new pumpking for Perl 5.10. Therefore, we run manage_conf.pl and update the data. Once
updated, the script overwrites the previous config.pl file with the following content:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$c{release} = '5.10";
$c{name} = 'Hugo van der Sanden';
$c{comments} = 'Perl rules the world!";

i

Instead of crafting your own code, you can use the CGI::QuickForm module from CPAN to make the coding less tedious.

See Example 6-27.
Example 6-27. manage_conf.pl

use strict;

use CGI qw(:standard :html3) ;
use CGI::QuickForm;

use lib qw(.);

use Book::MainConfig ();

*c = \%Book::MainConfig::c;

my $TITLE = 'Update Configuration';
show_form(
-HEADER => header . start_html($TITLE) . h3($TITLE),
-ACCEPT => \&on_valid_form,
-FIELDS => [
{
-LABEL => "Patch Pumpkin's Name",
-VALIDATE => sub{ $_[0] =~ /A[\W\s\.]+$/; 3},
-default => $c{name},

-LABEL => "Current Perl Release",
-VALIDATE => sub { $_[0] =~ /M\d+\.[\d_]+$/; },
-default => $c{release},

}I

{
-LABEL => "Release Comments",
-default => $c{comments},

}I

)

sub on_valid_form {
save the form's values
b

That's it. show_form() creates and displays a form with a submit button. When the user submits, the values are
checked. If all the fields are valid, on_valid_form() is called; otherwise, the form is re-presented with the errors

highlighted.

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
6.9 Handling the "User Pressed Stop Button" Case

When a user presses the Stop or Reload button, the current socket connection is broken (aborted). It would be nice if
Apache could always immediately detect this event. Unfortunately, there is no way to tell whether the connection is still
valid unless an attempt to read from or write to the connection is made.

Note that no detection technique will work if the connection to the backend mod_perl server is coming from a frontend
mod_proxy (as discussed in Chapter 12). This is because mod_proxy doesn't break the connection to the backend when
the user has aborted the connection.

If the reading of the request's data is completed and the code does its processing without writing anything back to the
client, the broken connection won't be noticed. When an attempt is made to send at least one character to the client,
the broken connection will be noticed and the SIGPIPE signal (Broken Pipe) will be sent to the process. The program can
then halt its execution and perform all its cleanup requirements.

Prior to Apache 1.3.6, SIGPIPE was handled by Apache. Currently, Apache does not handle SIGPIPE, but mod_perl takes
care of it.

Under mod_perl, $r->print (or just print()) returns a true value on success and a false value on failure. The latter usually
happens when the connection is broken.

If you want behavior similar to the old SIGPIPE (as it was before Apache version 1.3.6), add the following configuration
directive:

PerlFixupHandler Apache::SIG

When Apache's SIGPIPE handler is used, Perl may be left in the middle of its eval() context, causing bizarre errors when
subsequent requests are handled by that child. When Apache::SIG is used, it installs a different SIGPIPE handler that
rewinds the context to make sure Perl is in @ normal state before the new request is served, preventing these bizarre
errors. But in general, you don't need to use Apache::SIG.

If you use Apache::SIG and you would like to log when a request was canceled by a SIGPIPE in your Apache access_log,
you must define a custom LogFormat in your httpd.conf. For example:

PerlFixupHandler Apache::SIG
LogFormat "%h %l %u %t \"%r\" %s %b %{SIGPIPE}e"

If the server has noticed that the request was canceled via a SIGPIPE, the log line will end with 1. Otherwise, it will just
be a dash. For example:

127.0.0.1 - - [09/Jan/2001:10:27:15 +0100]

"GET /perl/stopping_detector.pl HTTP/1.0" 200 16 1
127.0.0.1 - - [09/Jan/2001:10:28:18 +0100]

"GET /perl/test.pl HTTP/1.0" 200 10 -

6.9.1 Detecting Aborted Connections

Now let's use the knowledge we have acquired to trace the execution of the code and watch all the events as they
happen. Let's take a simple Apache::Registry script that purposely hangs the server process, like the one in Example 6-
28.

Example 6-28. stopping_detector.pl

my $r = shift;
$r->send_http_header('text/plain');

print "PID = $$\n";
$r->rflush;

while (1) {
sleep 1;

}

The script gets a request object $r by shift()ing it from the @_ argument list (passed by the handler() subroutine that
was created on the fly by Apache::Registry). Then the script sends a Content-Type header telling the client that we are
going to send a plain-text response.

Next, the script prints out a single line telling us the ID of the process that handled the request, which we need to know
in order to run the tracing utility. Then we flush Apache's STDOUT buffer. If we don't flush the buffer, we will never see
this information printed (our output is shorter than the buffer size used for print(), and the script intentionally hangs, so

the buffer won't be auto-flushed).[3]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[3] Buffering is used to reduce the number of system calls (which do the actual writing) and therefore improve
performance. When the buffer (usually a few kilobytes in size) is getting full, it's flushed and the data is written.

Then we enter an infinite while loop that does nothing but sleep(), emulating code that doesn't generate any output. For
example, it might be a long-running mathematical calculation, a database query, or a search for extraterrestrial life.

Running strace -p PID, where PID is the process ID as printed on the browser, we see the following output printed
every second:

rt_sigprocmask(SIG_BLOCK, [CHLD], [1,8) =0
rt_sigaction(SIGCHLD, NULL, {SIG_DFL}, 8) =0
rt_sigprocmask(SIG_SETMASK, [], NULL, 8) =0

nanosleep({1, 0}, {1, 0}) =0
time([978969822]) = 978969822
time([9789698227) = 978969822

Alternatively, we can run the server in single-server mode. In single-server mode, we don't need to print the process
1D, since the PID is the process of the single mod_perl process that we're running. When the process is started in the
background, the shell program usually prints the PID of the process, as shown here:

panic% httpd -X &
[1] 20107

Now we know what process we have to attach to with strace (or a similar utility):

panic% strace -p 20107
rt_sigprocmask(SIG_BLOCK, [CHLD], [],8) =0
rt_sigaction(SIGCHLD, NULL, {SIG_DFL}, 8) =0
rt_sigprocmask(SIG_SETMASK, [], NULL, 8) =0

nanosleep({1, 0}, {1, 0}) =0
time([978969822]) = 978969822
time([978969822]) = 978969822

We see the same output as before.

Let's leave strace running and press the Stop button. Did anything change? No, the same system calls trace is printed
every second, which means that Apache didn't detect the broken connection.

Now we are going to write \0 (NULL) characters to the client in an attempt to detect the broken connection as soon as
possible after the Stop button is pressed. Since these are NULL characters, they won't be seen in the output. Therefore,
we modify the loop code in the following way:

while (1) {
$r->print("\0");
last if $r->connection->aborted;
sleep 1;

}

We add a print() statement to print a NULL character, then we check whether the connection was aborted, with the help
of the $r->connection->aborted method. If the connection is broken, we break out of the loop.

We run this script and run strace on it as before, but we see that it still doesn't work—the script doesn't stop when the
Stop button is pressed.

The problem is that we aren't flushing the buffer. The NULL characters won't be printed until the buffer is full and is
autoflushed. Since we want to try writing to the connection pipe all the time, we add an $r->rflush() call. Example 6-29
is a new version of the code.

Example 6-29. stopping_detector2.pl

my $r = shift;
$r->send_http_header('text/plain');

print "PID = $$\n";
$r->rflush;

while (1) {
$r->print("\0");
$r->rflush;
last if $r->connection->aborted;
sleep 1;

¥
After starting the strace utility on the running process and pressing the Stop button, we see the following output:

rt_sigprocmask(SIG_BLOCK, [CHLD], [1,8) =0
rt_sigaction(SIGCHLD, NULL, {SIG_DFL}, 8) =0

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

rt_sigprocmask(SIG_SETMASK, [1, NULL, 8) =0

nanosleep({1, 0}, {1, 0}) =0

time([978970895]) = 978970895

alarm(300) =0

alarm(0) =300

write(3, "\0", 1) = -1 EPIPE (Broken pipe)

--- SIGPIPE (Broken pipe) ---

chdir("/usr/src/httpd_perl™) =0

select(4, [3], NULL, NULL, {0, 0}) =1 (in [3], left {0, 0})
time(NULL) = 978970895

write(17, "127.0.0.1 - - [08/Jan/2001:19:21"..., 92) = 92

gettimeofday({978970895, 554755}, NULL) = 0

times({tms_utime=46, tms_stime=5, tms_cutime=0,
tms_cstime=0}) = 8425400

close(3) =0
rt_sigaction(SIGUSR1, {0x8099524, [1, SA_INTERRUPT|0x4000000},
{SIG_IGN}, 8) = Oalarm(0) =0

rt_sigprocmask(SIG_BLOCK, NULL, [1,8) =0

rt_sigaction(SIGALRM, {0x8098168, [], SA_RESTART|0x4000000},
{0x8098168, [], SA_INTERRUPT|0x4000000}, 8) = 0

fentl(18, F_SETLKW, {type=F_WRLCK, whence=SEEK_SET,
start=0, len=0}) = 0

Apache detects the broken pipe, as you can see from this snippet:

write(3, "\0", 1) = -1 EPIPE (Broken pipe)
--- SIGPIPE (Broken pipe) ---

Then it stops the script and does all the cleanup work, such as access logging:
write(17, "127.0.0.1 - - [08/Jan/2001:19:21"..., 92) = 92

where 17 is a file descriptor of the opened access_log file.

6.9.2 The Importance of Cleanup Code

Cleanup code is a critical issue with aborted scripts. For example, what happens to locked resources, if there are any?
Will they be freed or not? If not, scripts using these resources and the same locking scheme might hang forever,
waiting for these resources to be freed.

And what happens if a file was opened and never closed? In some cases, this might lead to a file-descriptor leakage. In
the long run, many leaks of this kind might make your system unusable: when all file descriptors are used, the system
will be unable to open new files.

First, let's take a step back and recall what the problems and solutions for these issues are under mod_cgi. Under
mod_cgi, the resource-locking issue is a problem only if you use external lock files and use them for lock indication,
instead of using flock(). If the script running under mod_cgi is aborted between the lock and the unlock code, and you
didn't bother to write cleanup code to remove old, dead locks, you're in big trouble.

The solution is to place the cleanup code in an END block:

END {
code that ensures that locks are removed

)
When the script is aborted, Perl will run the END block while shutting down.

If you use flock(), things are much simpler, since all opened files will be closed when the script exits. When the file is
closed, the lock is removed as well—all the locked resources are freed. There are systems where flock() is unavailable;
on those systems, you can use Perl's emulation of this function.

With mod_perl, things can be more complex when you use global variables as filehandles. Because processes don't exit

after processing a request, files won't be closed unless you explicitly close() them or reopen them with the open() call,
which first closes the file. Let's see what problems we might encounter and look at some possible solutions.

6.9.2.1 Critical section

First, we want to take a little detour to discuss the "critical section" issue. Let's start with a resource-locking scheme. A
schematic representation of a proper locking technique is as follows:

1. Lock a resource
<critical section starts>
2. Do something with the resource

<critical section ends>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

3. Unlock the resource

If the locking is exclusive, only one process can hold the resource at any given time, which means that all the other
processes will have to wait. The code between the locking and unlocking functions cannot be interrupted and can
therefore become a service bottleneck. That's why this code section is called critical. Its execution time should be as
short as possible.

Even if you use a shared locking scheme, in which many processes are allowed to concurrently access the resource, it's
still important to keep the critical section as short as possible, in case a process requires an exclusive lock.

Example 6-30 uses a shared lock but has a poorly designed critical section.

Example 6-30. critical_section_sh.pl

use Fentl gw(:flock);
use Symbol;

my $fh = gensym;
open $fh, "/tmp/foo" or die $!;

start critical section
flock $fh, LOCK_SH; # shared lock, appropriate for reading
seek $fh, 0, O;
my @lines = <$fh>;
for (@lines) {
print if /foo/;

close $fh; # close unlocks the file
end critical section

The code opens the file for reading, locks and rewinds it to the beginning, reads all the lines from the file, and prints out
the lines that contain the string "foo".

The gensym() function imported by the Symbol module creates an anonymous glob data structure and returns a
reference to it. Such a glob reference can be used as a file or directory handle. Therefore, it allows lexically scoped
variables to be used as filehandles.

Fentl imports file-locking symbols, such as LOCK_SH, LOCK_EX, and others with the :flock group tag, into the script's
namespace. Refer to the Fentl manpage for more information about these symbols.

If the file being read is big, it will take a relatively long time for this code to complete printing out the lines. During this
time, the file remains open and locked with a shared lock. While other processes may access this file for reading, any
process that wants to modify the file (which requires an exclusive lock) will be blocked waiting for this section to
complete.

We can optimize the critical section as follows. Once the file has been read, we have all the information we need from
it. To make the example simpler, we've chosen to just print out the matching lines. In reality, the code might be much
longer.

We don't need the file to be open while the loop executes, because we don't access it inside the loop. Closing the file
before we start the loop will allow other processes to obtain exclusive access to the file if they need it, instead of being
blocked for no reason.

Example 6-31 is an improved version of the previous example, in which we only read the contents of the file during the
critical section and process it afterward, without creating a possible bottleneck.

Example 6-31. critical_section_sh2.pl

use Fentl qw(:flock);
use Symbol;

my $fh = gensym;
open $fh, "/tmp/foo" or die $!;

start critical section

flock $fh, LOCK_SH;

seek $fh, 0, 0;

my @lines = <$fh>;

close $fh; # close unlocks the file
end critical section

for (@lines) {
print if /foo/;
b

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 6-32 is a similar example that uses an exclusive lock. The script reads in a file and writes it back, prepending a
number of new text lines to the head of the file.

Example 6-32. critical_section_ex.pl

use Fentl qw(:flock);
use Symbol;

my $fh = gensym;
open $fh, "+>>/tmp/foo" or die $!;

start critical section
flock $fh, LOCK_EX;
seek $fh, 0, 0;

my @add_lines =

qqg{Complete documentation for Perl, including FAQ lists,\n},
qq{should be found on this system using 'man perl' or\n},
qa{'perldoc perl'. If you have access to the Internet, point\n},
qa{your browser at http://www.perl.com/, the Perl Home Page.\n},

)

my @lines = (@add_lines, <$fh>);
seek $fh, 0, 0;

truncate $fh, 0;

print $fh @lines;

close $fh; # close unlocks the file
end critical section

Since we want to read the file, modify it, and write it back without anyone else changing it in between, we open it for
reading and writing with the help of "+>>" and lock it with an exclusive lock. You cannot safely accomplish this task by
opening the file first for reading and then reopening it for writing, since another process might change the file between
the two events. (You could get away with "+<" as well; please refer to the per/func manpage for more information
about the open() function.)

Next, the code prepares the lines of text it wants to prepend to the head of the file and assigns them and the content of
the file to the @lines array. Now we have our data ready to be written back to the file, so we seek() to the start of the
file and truncate() it to zero size. Truncating is necessary when there's a chance the file might shrink. In our example,
the file always grows, so in this case there is actually no need to truncate it; however, it's good practice to always use
truncate(), as you never know what changes your code might undergo in the future, and truncate() doesn't significantly
affect performance.

Finally, we write the data back to the file and close it, which unlocks it as well.

Did you notice that we created the text lines to be prepended as close to the place of usage as possible? This complies
with good "locality of code" style, but it makes the critical section longer. In cases like this, you should sacrifice style in
order to make the critical section as short as possible. An improved version of this script with a shorter critical section is

shown in Example 6-33.
Example 6-33. critical_section_ex2.pl

use Fentl gw(:flock);
use Symbol;

my @lines =

qqg{Complete documentation for Perl, including FAQ lists,\n},
qq{should be found on this system using 'man perl' or\n},
qa{'perldoc perl'. If you have access to the Internet, point\n},
qq{your browser at http://www.perl.com/, the Perl Home Page.\n},

)

my $fh = gensym;
open $fh, "+>>/tmp/foo" or die $!;

start critical section
flock $fh, LOCK_EX;
seek $fh, 0, 0;

push @lines, <$fh>;

seek $fh, 0, O;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

truncate $fh, 0;

print $th @lines;

close $fh; # close unlocks the file
end critical section

There are two important differences. First, we prepared the text lines to be prepended before the file is locked. Second,
rather than creating a new array and copying lines from one array to another, we appended the file directly to the
@lines array.

6.9.2.2 Safe resource locking and cleanup code

Now let's get back to this section's main issue, safe resource locking. If you don't make a habit of closing all files that
you open, you may encounter many problems (unless you use the Apache::PerlRun handler, which does the cleanup for
you). An open file that isn't closed can cause f