This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev Next

Appendix A. Multibyte Encoding Types

Table A-1 lists the various multibyte encoding types supported by PostgreSQL, as of version
7.1.x. These encoding types are only available if PostgreSQL was configured with the --
enable-multibyte flag (see Chapter 2). A database can be created with a default encoding type
if SOL _ASCII is not desired.

Table A-1. Multibyte Encoding Types

|Enc0ding Type ||Integer HDescription ‘
ISOL_AScCII 0 [Plain ASCII format |
EUC JP 1 Japanese Extended UNIX
Code
EUC CN 2 Chinese Extended UNIX
Code
EUC KR 3 Korean Extended UNIX
Code
EUC TW 4 Taiwan Extended UNIX
Code
|UNICODE 5 |UTE-8 Unicode |
IMULE_INTERNAL 6 [Mule internal type |
LATINI 7 ISO 8859-1 (English, with
some European languages)
LATIN?2 8 ISO 8859-2 (English, with
some European languages)
LATIN3 9 ISO 8859-3 (English, with
some European languages)
LATIN4 10 ISO 8859-4 (English, with
some European languages)
LATINS 11 ISO 8859-5 (English, with
some European languages)
kOIS 112 [KOI8-R |
\wIN 113 [Windows CP1251 |
lALT 114 [Windows CP866 |
Prev Home Next

Appendixes Up Backend Options for postgres

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev Next

Appendix A. Multibyte Encoding Types

Table A-1 lists the various multibyte encoding types supported by PostgreSQL, as of version
7.1.x. These encoding types are only available if PostgreSQL was configured with the --
enable-multibyte flag (see Chapter 2). A database can be created with a default encoding type
if SOL _ASCII is not desired.

Table A-1. Multibyte Encoding Types

|Enc0ding Type ||Integer HDescription ‘
ISOL_AScCII 0 [Plain ASCII format |
EUC JP 1 Japanese Extended UNIX
Code
EUC CN 2 Chinese Extended UNIX
Code
EUC KR 3 Korean Extended UNIX
Code
EUC TW 4 Taiwan Extended UNIX
Code
|UNICODE 5 |UTE-8 Unicode |
IMULE_INTERNAL 6 [Mule internal type |
LATINI 7 ISO 8859-1 (English, with
some European languages)
LATIN?2 8 ISO 8859-2 (English, with
some European languages)
LATIN3 9 ISO 8859-3 (English, with
some European languages)
LATIN4 10 ISO 8859-4 (English, with
some European languages)
LATINS 11 ISO 8859-5 (English, with
some European languages)
kOIS 112 [KOI8-R |
\wIN 113 [Windows CP1251 |
lALT 114 [Windows CP866 |
Prev Home Next

Appendixes Up Backend Options for postgres

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev Next

Appendix B. Backend Options for postgres

The postgres program is the actual backend server that processes SQL statements. It is
generally not called directly, but invoked through the multiuser postmaster process. It can be
helpful to know the options available to this program, however, as they can be called
indirectly through the postmaster's -o flag.

The following syntax diagram shows the options recognized by postgres:

postgres [-A { O | 1 } 1 [-B buffers] [-c name=value] [-d debug-level]
[-D datadir] [e] [-E]1 [-f { s | i | n | m | h} 1 [-F]
[-i] [-L] [-N] [-o file-name] [-0] [-P]
[-s | -t { pa | pl | ex }] [-S sort mem] [-W num] database
postgres [-A { 0 | 1 }] [-B buffers] [-c name=value] [-d debug-level]
[-Ddatadir] [-e] [-f{ s | 1 | n | m | h} 1 [-F1I[-1i]
[-L] [-o file-name] [-O] [-p database] [-P |
[s | -t {pa | pl | ex}] [-S sort mem] [-v version] [-W num
A{0]1}

The run-time assertion check parameter. This enables debugging, if the debugging
option was enabled during compilation of PostgreSQL. This parameter should only be
used by knowledgeable developers working on PostgreSQL.

-B burfers

The number of shared-memory disk buffers that postmaster will allocate for use by the
backend. By default, this is 64.

Note: The burrers value passed to -B must be at least twice the number
supplied for the -N parameter.

-C name=value

An arbitrary run-time configuration, setting name to value. Any configuration settings
found in the postgresql.conf file (within the database cluster's data directory) may be
over-ridden with this option.

-d debug level

The debug level, which determines the amount of debugging output that will be logged
by the backend. The default is 0. With a higher the debug 1evel number, more output
will be generated. Values as high as 4 are reasonable for normal use, though this can log
a great deal of information.

Note: Unless the standard output and standard error streams from
postmaster are redirected to a file (e.g., from the shell, or with the -/ option
to pg_ctl) all debugging information will be displayed to the controlling

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

terminal session of the postmaster process.
-D datadir

The data directory of the intended database cluster. If this is not supplied, postmaster
will use either the value of the pcpaTa environment variable, or the /data path off of the
path defined in the rosTcrESHOME environment variable. If neither environment variable
is set, the default compile-time directory is used (e.g., /usr/local/pgsql/data).

-e
The European date style parameter. This causes PostgreSQL to assume that dates such
as 3/2/2001 are day-first rather than month-first. It also causes PostgreSQL to display
the day before the month (e.g., dd/mm/yyyy) when displaying dates.

-E

The verbose echo parameter. Causes all passed statements to be output (e.g., to the
controlling terminal session, or to the server log).

Sisliln|m[h}

The forbid parameter, which can forbid the use of certain scan and join methods. The
following options may follow the -f:

s
Forbids sequential scans
i
Forbids index scans
n
Forbids nested loops
m
Forbids merge joins
h

Forbids hash joins

The £sync-disabling option. Using this increases performance at the risk of data
corruption in the event that the operating system or physical hardware crashes
unexpectedly. Be sure you know what you are doing before you use this parameter!

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

The -i parameter disables query execution, and causes PostgreSQL to only show the
plan tree.

-L
The lock-disabling parameter. This turns off the ability to lock in PostgreSQL.

-N
The -N parameter disables the use of a newline as a statement delimiter.

-0
The -O parameter allows system tables to be modified.

-p database
The postmaster parameter, indicating that this postgres instance was started by
postmaster connecting to database. This causes postgres to make different decisions
about memory management and file descriptors.

-P
The -P parameter causes PostgreSQL to ignore system indices when scanning and
updating system tuples. This option is required by the rRETNDEX command when
indexing system tables.

-S

The statistics parameter. This causes PostgreSQL to display processing time and other
statistics after each query, which can be helpful in benchmark tests, or for tuning the
amount of buffers you make available with the -B parameter.

-S sort mem

The amount of memory to be allocated for internal sorting and hashes before falling
back on temporary hard disk files. sort mem 1s a numeric value, in kilobytes, and
defaults to 512. For complex statements, several sorts or hashes may run
simultaneously; each one will be allocated up to the value specified by sort mem before
using temporary disk space.

-t{pa|pl|e}

The timing statistics parameter, specific to only one of the major postgres components.
The following are the valid options that may follow the -7 parameter:

pa
Times the parser component

pl!

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Times the planner component

Times the executor component
The - and -s options are mutually exclusive.
-V version

The protocol version parameter. This option sets the internal version number of the
frontend-to-backend protocol.

-Wnum

The wait parameter. Specifying this value causes positgres to wait for num seconds
before starting up, allowing a developer time to attach a debugger.

Prev Home Next
Multibyte Encoding Types Up Binary COPY Format

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev Next

Appendix C. Binary COPY Format

Table of Contents
The Header
Tuples

Trailer

In addition to saving data in text format, PostgreSQL can also save cory output in its own
binary format. This is the format compiled programs are stored in, which is not readable by
normal text editors.

The Header

The PostgreSQL binary file header contains 24 bytes of fixed fields, and a variable length
header extension area. The fixed fields are as follows:

Signature Field
A 12-byte sequence, which is literally: PGBCOPY\n\377\r\n\0

The signature is used to identify files that are malformed through a non-8-bit-clean
transfer; it is changed by dropped nur1 values, parity changes, newline translation
filters, and dropped high bits.

Integer Layout Field

A 32-byte integer constant (0x01020304) in the source's byte order. This is to assist an
application reading this file format in preventing byte-flipping of multi-byte values.

Flags Field

A 32-bit integer, which is the main storage point for file formatting information. Within
this field, bits are ordered from 0 (least significant byte, or LSB) to 31 (most significant
byte, or MSB). To hold backwards-compatibility formatting information, bits 0 through
15 are reserved. Bits 16 through 31 are used to flag critical file formatting information.
As of 7.1.x, the only bit here that has a definition is bit 16.

BIT 16
Ifbit 16 is set to 1, object IDs are included in the file.
If bit 16 is set to 0, object IDs are not included.

Header Extension Length Field

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

A 32-bit integer describing the length, in bytes, of the remainder of the header (not
including the header extension length field). In earlier versions, this was set to zero, and
the first tuple immediately followed.

Prev Home Next
Backend Options for postgres Up Tuples

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev

Appendix D. Internal psql Variables

The psql client uses a variety of internal variables as special system variables to control
aspects of the program. A few of the most notable variables are provpT1, PROMPT2, and
prOMPT3, Which store the prompts for the program. While running the program you can set and
unset these variables at will using the \set and \unset commands. A list of all the special
variables psql uses follows:

DBNAME

This variable holds the name of the database psqgl is currently connected to. This
variable is set whenever psq/ connects to a database, either when starting up or when
instructed to connect during program operation.

ECHO

This variable controls what gets displayed on the screen when executing commands
from a file. To display all contents of a script file on the screen as it is parsed, set this
variable to all. To display all queries as they are sent to the backend process, set this
variable to queries.

ECHO_ HIDDEN

This variable, when set to #rue, displays the queries used by slash commands from
within psql. Such queries will be displayed before they are sent to the backend. To show
the queries for slash commands without actually executing them, set EcHo_HIDDEN to
noexec.

ENCODING

This variable holds the database's multibyte encoding scheme. You must have compiled
PostgreSQL to support multibyte encoding; if you did not, this variable will contain
SOL ASCII.

HISTCONTROL

This variable sets methods of controlling the psq/ history buffer. Set this variable to
ignorespace if you wish for the history to ignore all lines entered that were preceded by
spaces. Set it to ignoredups to ignore any entries that matched the previous line entered.
To ignore both lines beginning with spaces and lines that duplicate, use the value
ignoreboth.

HISTSIZE

This variable sets the length of the history buffer; the default length is 500 lines.

HOST

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

This variable holds the hostname of the database server you are currently connected to.
This value is set during startup and whenever a database connection occurs.

IGNOREEOF

This variable controls how psq/ handles EOF characters. Normally, when psq/ receives
an EOF character the application terminates. This character is usually generated by
pressing CTRL-D on the keyboard. Setting this option to any non-numeric value will
inform psq/ that you wish to have the EOF character ignored until it is repeated more
than 10 times. You may alternatively set this variable to a specific number; if you do so,
psql will ignore that many EOF characters before terminating.

LASTOID

This variable contains the last object identifier (OID) set from an 1nserT command, or
1o import () function call.

LO TRANSACTION

This variable sets the action psg/ will take during large object operations. It may be set
to one of the following values:

rollback

This causes any transaction you are currently working within to be rolled back if
you attempt an operation on a large object (or a large object import). For
maximum efficiency, large object operations should usually be placed within their
own transactions; for this reason, Lo _Transact1on defaults to rollback.

commit

This causes psg/ to commit any transaction you were in before you issued a large
object operation.

nothing

This causes psql to execute the large object operation within the current
transaction.

ON_ ERROR_ STOP

PORT

This variable, when set (to any value), causes psqg/ to terminate the processing of a script
that encounters an error (such as incorrect SQL syntax or misuse of a slash command),
instead of continuing to process it. By default, scripts that have encountered errors
continue to be processed by psql.

This variable holds the port number that you are currently connected to. This value is set
automatically both when you start the program and when you manually connect to a
database from the psq/ prompt.

PROMPT1, PROMPTZ2, PROMPT3

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

These variables hold character strings that directly control the prompt's structure within
psql. Setting these will change the way each prompt is displayed within the program.
See Chapter 6, for information on how to set these variables.

SINGLELINE

This variable, when set (to any value), causes SQL input to psq/ to be executed when a
newline is reached, without the need for a semi-colon or \ g terminator. This mode can
also be set by the command line option -S.

SINGLESTEP

This variable, when set (to any value), causes each statement to require confirmation
before being executed.

USER

This variable holds the PostgreSQL username you are connected to the database with.

Prev Home
Trailer Up

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL

John Worsley

Command Prompt, Inc.

Joshua Drake

Command Prompt, Inc.

Edited by
Andrew Brookins

Michael Holloway

Copyright © 2001 by Commandprompt, Inc

Copyright (c) 2001 by Command Prompt, Inc. This material may be distributed only subject to
the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest
version is presently available at http://www.opencontent.org/openpuby/).

'Distribution of substantively modified versions of this document is prohibited without the
explicit permission of the copyright holder.' to the license reference or copy.

'Distribution of the work or derivative of the work in any standard (paper) book form is
prohibited unless prior permission is obtained from the copyright holder.' to the license
reference or copy.

Although every reasonable effort has been made to incorporate accurate and useful
information into this book, the copyright holders make no representation about the suitability
of this book or the information therein for any purpose. It is provided "as is" without expressed
or implied warranty.

Table of Contents
Preface

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

V. PostgreSQL Command Reference

14. PostgreSQL Command Reference

ABORT -- Rolls back changes made during a transaction block.

ALTER GROUP -- Modifies the structure of a user group.

ALTER TABLE -- Modifies table and column attributes.

ALTER USER -- Modifies user properties and permissions.

BEGIN -- Starts a chained-mode transaction block.

CLOSE -- Closes a previously defined cursor object.

CLUSTER -- Provides the backend server with clustering information about a
table.

COMMENT -- Adds a comment to an object within the database.
COMMIT -- Ends the current transaction block and finalizes changes made
within it.

COPY -- Copies data between files and tables.

CREATE AGGREGATE -- Defines a new aggregate function within the
database.

CREATE DATABASE -- Creates a new database in PostgreSQL.
CREATE FUNCTION -- Defines a new function within the database.
CREATE GROUP -- Creates a new PostgreSQL group within the database.
CREATE INDEX -- Places an index on a table.

CREATE LANGUAGE -- Defines a new language to be used by functions.
CREATE OPERATOR -- Defines a new operator within the database.
CREATE RULE -- Defines a new rule on a table.

CREATE SEQUENCE -- Creates a new sequence number generator.
CREATE TABLE -- Creates a new table.

CREATE TABLE AS -- Creates a new table built from data retrieved by a
SELECT.

CREATE TRIGGER -- Creates a new trigger.

CREATE TYPE -- Defines a new data type for use in the database.
CREATE USER -- Creates a new PostgreSQL database user.

CREATE VIEW -- Creates a view on a table.

CURRENT_DATE -- Returns the current date.

CURRENT _TIME -- Returns the current time.

CURRENT_TIMESTAMP -- Returns the current date and time.
CURRENT _USER -- Returns the current database username.

DECLARE -- Defines a new cursor.

DELETE -- Removes rows from a table.

DROP AGGREGATE -- Removes an aggregate function from a database.
DROP DATABASE -- Removes a database from the system.

DROP FUNCTION -- Removes a user-defined function.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

DROP GROUP -- Removes a user group from the database.

DROP INDEX -- Removes an index from a database.

DROP LANGUAGE -- Removes a procedural language from a database.
DROP OPERATOR -- Removes an operator from the database.

DROP RULE -- Removes a rule from a database.

DROP SEQUENCE -- Removes a sequence from a database.

DROP TABLE -- Removes a table from a database.

DROP TRIGGER -- Removes a trigger definition from a database.

DROP TYPE -- Removes a type from the system catalogs.

DROP USER -- Removes a PostgreSQL user.

DROP VIEW -- Removes an existing view from a database.

END -- Ends the current transaction block and finalizes its modifications.
EXPLAIN -- Shows the statement execution plan for a supplied query.
FETCH -- Retrieves rows from a cursor.

GRANT -- Grants access privileges to a user, a group, or to all users in the
database.

INSERT -- Inserts new rows into a table.

LISTEN -- Listen for a notification event.

LOAD -- Dynamically loads object files into a database.

LOCK -- Locks a table within a transaction.

MOVE -- Repositions a cursor to another row.

NOTIFY -- Signals all backends that are listening for the specified notify event.
REINDEX -- Rebuilds indices on tables.

RESET -- Restores runtime variables to their default settings.

REVOKE -- Revokes access privileges from a user, a group, or all users.
ROLLBACK -- Aborts the current transaction block and abandons any
modifications it would have made.

SELECT -- Retrieves rows from a table or view.

SELECT INTO -- Construct a new table from the results of a SELECT.
SET -- Set runtime variables.

SET CONSTRAINTS -- Sets the constraint mode for the current transaction
block.

SET TRANSACTION -- Sets the transaction isolation level for the current
transaction block.

SHOW -- Displays the values of runtime variables.

TRUNCATE -- Empties the contents of a table.

UNLISTEN -- Stops the backend process from listening for a notification event.
UPDATE -- Modifies the values of column data within a table.
VACUUM -- Cleans and analyzes a database.

VI. Appendixes

A. Multibyte Encoding Types
B. Backend Options for postgres
C. Binary COPY Format

The Header

Tuples
Trailer

D. Internal psql Variables

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

List of Tables

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

List of Examples
2-1. Verifying GNU make

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Next
Preface

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev Next

Chapter 3. Understanding SQL

Table of Contents

Introduction to SQL

Intr ion to Relational D

SQL Statements

Data Types

Tables in PostgreSQL

This chapter discusses the history and fundamental concepts of SQL and forms the foundation
for the next chapter, which is about applying SQL with PostgreSQL. It addresses the basics of

relational databases, object-related database extensions, the structure of a SQL statement, and
provides an overview of PostgreSQL-supported data types, operators and functions.

Introduction to SQL

SQL, the Structured Query Language, is a mature, powerful, and versatile relational query
language. The history of SQL extends back to IBM research begun in 1970. The next few
sections discuss the history of SQL, its predecessors, and the various SQL standards that have
developed over the years.

A Brief History of SQL

The relational model, from which SQL draws much of its conceptual core, was formally
defined in 1970 by Dr. E. F. Codd, a researcher for IBM, in a paper entitled 4 Relational
Model of Data for Large Shared Data Banks. This article generated a great deal of interest in
both the feasibility and practical commercial application of such a system.

In 1974 IBM began the System/R project and with the work of Donald Chamberlin and others,
developed SEQUEL, or Structured English Query Language. System/R was implemented on
an IBM prototype called SEQUEL-XRM in 1974-75. It was then completely rewritten in
1976-1977 to include multi-table and multiuser features. When the system was revised it was
briefly called "SEQUEL/2," and then re-named "SQL" for legal reasons.

In 1978, methodical testing commenced at customer test sites. Demonstrating both the
usefulness and practicality of the system, this testing proved to be a success for IBM. As a
result, IBM began to develop commercial products that implemented SQL based on their
System R prototype, including SQL/DS (introduced in 1981), and DB2 (in 1983).

Several other software vendors accepted the rise of the relational model and announced SQL-
based products. These included Oracle (who actually beat IBM to market by two years by
releasing their first commercial RDBMS, in 1979), Sybase, and Ingres (based on the
University of California's Berkeley Ingres project).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Note: PostgreSQL's name is, as you might have guessed, a play on the name
Ingres. Both PostgreSQL and Ingres trace their roots back to the UC Berkeley's
Ingres RDBMS system.

SQL and Its Predecessors

SQL is based largely on relational algebra and tuple relational calculus. Relational algebra,
introduced by E. F. Codd in 1972, provided the basic concepts behind computing SQL syntax.
It is a procedural way to construct data-driven queries, and it addresses the Zow logic of a
structured query. The tuple relational calculus (7RC)), on the other hand, affects the
underlying appearance of SQL. Relational calculus uses declarative expressions, addressing
the what logic of a structured query.

There are additional features that set SQL apart from those that merely implement features that
are part of relational algebra or calculus. These features include:

Support for data insertion, modification and deletion
Users are allowed to insert, delete, and modify stored data records.
Arithmetic operators

Arithmetic operations such as addition, subtraction, multiplication, and division (e.g.,
(valuel * 5) + value2)are allowed, as well as comparison operators (e.g., value3

>= value4).
Display of data

Users may display query-generated relationships (such as a table's contents).
Assignment

Users may rename a relation that is computed by a query instead of forcing the use of
the default relationship name, which may be derived from a column or function name,
depending on the query.

Aggregate functions

User may group related rows together and evaluate averages, sums, counts, maximumes,
and minimums.

SQL Standards

The American National Standards Institute (ANSI) standardized SQL in 1986 (X3.135) and
the International Standards Organization (ISO) standardized it in 1987. The United States
government's Federal Information Processing Standard (F7PS) adopted the ANSI/ISO
standard. In 1989, a revised standard known commonly as SOQL89 or SOL1, was published.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Due partially to conflicting interests from commercial vendors, much of the SQL89 standard
was intentionally left incomplete, and many features were labeled implementor-defined. In
order to strengthen the standard, the ANSI committee revised its previous work with the
SQL9?2 standard ratified in 1992 (also called SQL2). This standard addressed several
weaknesses in SQL89 and set forth conceptual SQL features which at that time exceeded the
capabilities of any existing RDBMS implementation. In fact, the SQL92 standard was
approximately six times the length of its predecessor. As a result of this disparity, the authors
defined three levels of SQL92 compliance: Entry-level conformance (only the barest
improvements to SQL89), Intermediate-level conformance (a generally achievable set of
major advancements), and Full conformance (total compliance with the SQL92 features).

More recently, in 1999, the ANSI/ISO released the SOL99 standard (also called SQL3). This
standard addresses some of the more advanced and previously ignored areas of modern SQL
systems, such as object-relational database concepts, call level interfaces, and integrity
management. SQL99 replaces the SQL92 levels of compliance with its own degrees of
conformance: Core SQLY9 and Enhanced SQL99.

PostgreSQL presently conforms to most of the Entry-level SQL92 standard, as well as many
of the Intermediate- and Full-level features. Additionally, many of the features new in SQL99
are quite similar to the object-relational concepts pioneered by PostgreSQL (arrays, functions,
and inheritance).

Prev Home Next
Using PostgreSQL Up Introduction to Relational
Databases

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev Next

Chapter 6. PostgreSQL Clients

Table of Contents
] | Client: Ad { Toni
PgA - A QGraphical Clien

This chapter elaborates on the available clients for PostgreSQL. Clients exist in order to
provide a user interface to the PostgreSQL server (also called the backend).

The two most accessible clients for PostgreSQL are the command-line driven psg/ and a
graphical alternative, PgAccess. The psql/ client is installed by default, while PgAccess
requires specification of the --with-tcl option during compilation of the PostgreSQL source

code (as mentioned in Chapter 2).

The psql Client: Advanced Topics

Basic information about the psg/ client is included in Chapter 4; this section documents more
advanced information about the psq/ client. The topics covered include a complete list of
command line options, and an explanation of each psqg/ slash command. This section also
contains information on how to load SQL input from external files, use the psq/ history, and
substitute variables dynamically into SQL statements within psg/.

Command Line Options

Here is the complete syntax to start psq/:

psgl [options] [dbname [username]]

The optional dbname value specifies the database to initially connect to. The optional
username specifies the PostgreSQL user to connect as. If either value is unspecified, psq/ will
default to a database and username with the same name as the operating system user starting
the program.

Additionally, several run-time options can be set by command-line flags. By default, psq/
understands both standard UNIX short options (e.g., -¢, and GNU-style long options (e.g., - -
command). The latter are not available on all systems. In the following list, the UNIX short
options (which are always one letter) are shown first, followed by the equivalent long option.

-a, --echo-all

Turns on the 'echo all' option, which displays all lines as they are read by psql. This
option can be useful for scripting, and is equivalent to issuing the command: \set EcHO
al1 from within psql.

-A, --no-align

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Starts psg/ in unaligned output formatting mode. If this is not specified, the output
formatting mode will be set to aligned.

-C statement, --command statement

Instead of running psq! interactively, this option executes the statement that you
specify. This must be a syntactically correct SQL statement, and must be devoid of any
psql-specific commands.

-d database, --dbname database

Explicitly specifies the database you wish psql to initially connect to.
-e, --echo-queries

Specifies that all queries are echoed to the screen.
-E, --echo-hidden

Displays the hidden queries generated by slash commands. You can also issue the
following command from within psq/ to accomplish the same effect: \set
ECHO HIDDEN.

fri lename, --file filename

Specifies that rather than start in interactive mode, psq/ should read and execute SQL
from the specified ri1ename, and process its contents as it would if input directly. After
processing the file, psq/ exits.

-F separa tor, --ﬁeld-separator separator

Specifies that psq/ should use the specified separator character as the field (column)
delimiter.

-h hostname, --host hostname

Specifies the hostname of the backend machine. This is usually not necessary when
connecting to a local backend process, which uses UNIX domain sockets. However, if
the postmaster initializes its domain socket file somewhere other than the default path of
/tmp, specifying a hostname with a leading forward slash will cause psqg/ to interpret the
hostname value as a local directory to check for the domain socket file (e.g., -h
/var/pgsql Will cause psq/ to look for a domain socket file within /~var/pgsql).

-H, --html
Starts psql/ in HTML output mode.
-1, --list
Displays a list of available databases to connect to.

-0 filename, --OUtpUt filename

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Redirects psgl output to £i1ename.
-p port, --port port

Specifies TCP/IP port (or numbered UNIX domain socket) that postmasteris currently
listening on. By default, this is whatever pcrorT is set to (or the default of 5432).

-P name=value, --pset name=value

Specifies the output formatting options using the same syntax as used with the \pset
command. All option names are the same as for \pset, but with this command-line
option you must use an an equal sign (=) instead of a space between each formatting
option name and its value.

-q, --quiet

Instructs psql to work in quiet mode. No psgl-specific informative messages or
informational text is displayed.

-R separator, --record-separator separator
Specifies separator as the record (row) delimiter.
-s, --single-step

Specifies that psq/ will run in "single-step" mode. While in single-step mode, you will
be prompted to either continue or cancel upon executing a SQL statement.

-S, --single-line

Specifies that psq/ will run in "single-line" mode. When running in this mode, a new
line acts as a semi-colon to execute a SQL statement.

-t, --tuples-only

Turns off the display of extraneous table information, such as column names and
footers. To accomplish this from within psq/, use the \t command.

-T table attribute, --table-attr table attribute

Sets an HTML attribute that you wish to be placed within the <table> output while in
HTML formatting mode (e.g., width=100%). If you pass more than one

table attribute to this flag, they must all be contained within double quotes. You can
use \pset from within psgl to insert these attributes as well.

-U username, --USCIMamMe username
Connects with the specified username.
-V name=value, --variable name=value

Assigns a value to a variable name, as you would do using the \set command from

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

within psg/. When separating a value from a name, use an equal sign instead of a space.
-V, --version

Displays version information.
-W, --password

Prompts for a password before connecting to a database. This setting remains for the
duration of the psgl session.

-X, --expanded

Activate extended row format mode. Accomplish this from within psq/ by using the \x
slash command.

-X, --no-psqlrc
Do not read or execute the startup file (~/.psqlrc).
-?, --help

Displays brief psq/ command line argument help.

Warning

Unstable code was introduced into version 7.0 that causes psg/ to obtain a password from the
user when authentication is requested by the backend process; however, this code is not
reliable and will sometimes fail, which will subsequently cause the connection attempt to
fail. It is advisable to use the -W (--password) option to force a prompt if you know that such
authentication will be necessary.

Slash Commands

Recall that within psq/ you have several special commands, called slash commands. These
commands are psgl-specific, and are not sent to the PostgreSQL backend. Explanations of the
available psqg/ slash commands follow.

Formatting commands

There are several slash commands available to format output. These include \pset, \a, \c, \ £,
\H, \t, \T, and \x. Except for \pset, each command controls a different formatting option.
The \pset command, which is newer than the others, controls most of those same settings.
The other commands exist for compatibility with older versions, and for convenience.

Most of these duplicate the effects of \pset. Each command is detailed within the description
of that command and its options. For compatibility with older versions, and convenience,
some of these formatting options may still have a slash command devoted entirely to them;
these commands have been listed as well.

\pset parameter [value]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

The general parameter setting command; this is the most important (and powerful)
formatting command of the list. It encapsulates a variety of display options, and it could
easily be the only formatting slash command you ever use. You may pass it various
parameters to accomplish different formatting functions.

Within its syntax, parameter is one of the following valid parameters:

format

This parameter lets you set the output format to aligned, unaligned, html, or latex.
Aligned is the default setting, for readability. Unaligned will set output to be
printed all on one line, separated by the current character delimiter. The HTML
and LaTeX modes output tables meant for inclusion in HTML and LaTeX
documents, respectively.

border

Depending on the formatting mode, this option will make various changes to the
borders used within displayed tables. For example, when outputting in HTML
mode, this directly affects the border attribute of the <tab1e> tag. This parameter
takes a numeric value. Generally, the higher this number is, the larger (or more
pronounced) the borders will be.

expanded

null

Setting this option will toggle between regular and extended format. If you have
problems with data being displayed off the screen, or wrapping around in an
illegible fashion, try using this option. It will tell psq/ to format all output into two
columns, with the column name on the left, and data on the right.

This parameter allows you to set the string that is displayed to you when a null
field is displayed. The string you wish to have displayed to represent a nu11
should follow the word nu11. Ordinarily, that string is set to nothing. To set it
back to nothing, you may set it with two apostrophes in a row ('). To set it to
some other value, enclose that value in single-quotes. For example: \pset null

1 ***null*‘k* l.

fieldsep

This parameter accepts the delimiter to separate column values when working in
the unaligned formatting mode. It is set to the pipe symbol (|) by default. You
may want to use this to set the delimiter to a more commonly used delimiter, such
as the tab (\t) character or comma (,). This has no effect outside of unaligned
mode.

recordsep

This parameter specifies the record delimiter (to separate rows) when working in
unaligned formatting mode. By default this is the newline character (\n).

tuples only

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

\a

\C

\f

\H

\t

\T

This parameter lets you specify whether you want to see table data only (row
results), or if you want to see additional characteristics about the table, such as
headers and comments.

title

This parameter is used to attach a title to any subsequently printed titles. It will be
displayed just above normal output. Use a pair of sequential apostrophes (' ') to
set to an empty string.

tableattr

This parameter is for use with the HTML format mode; use it to define any table
attributes you wish to be included upon formatting table output within the <table>
tag (e.g., width, cellpadding, cellspacing). If you wish to define more than a
single attribute, be sure to enclose them within double-quotes in a single vaiue.

pager

This parameter toggles off and on the use of a pager for outputting table data. You
may set the PAGER environment variable in your shell before starting psq! if you
wish to use a paging program other than more (such as /ess).

The align command; this toggles psq/ between aligned and unaligned mode. This is
equivalent to successive uses of \pset format aligned and \pset format

unaligned.

The query title command; this allows you to set a title that will be displayed at the top of
any displayed result set, and is equivalent to \pset title.

The field delimiter command; this sets the field delimiter when using the unaligned
formatting mode, and is equivalent to \pset fieldsep.

The HTML output command; this toggles between HTML output formatting and the
default aligned formatting, and is equivalent to successive uses of \pset format HTML
and.\pset format aligned.

The table information command; this toggles the display of optional table information,
and is equivalent to \pset tuples only.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The table attribute command; this defines extra table attributes you wish to be inserted
into the table tags of table data displaying while in HTML formatting mode. It is
equivalent to \pset tableattr.

\x

The toggle expanded command; this toggles expanded row formatting and off. It is
equivalent to \pset expanded.

Information display commands

The psql client has many commands to help you with gathering information about the database
and various objects within it. Most of these commands are prefixed with \ 4, as this is an easy
mnemonic device for display. Knowing how to use these commands can increase your
productivity (or at least your awareness!) within the database.

\d [relation name]

The general display command; it is used to view various pieces of information about a
specified relation. The relation you specify may be an index, sequence, table, or view.
When issued, the command will display all of the relation's columns, types, and special
attributes or defaults. When executed without a specified relation, it displays each of the
relations available within the currently connected database.

\da [aggregate name]

The aggregate display command; with it, you may retrieve the list of the connected
database's aggregate functions, and their accepted data types. If you specify a parameter
following the slash command, it will display only the list of aggregate functions whose
names begin with the aggregate name pattern in a case-insensitive comparison.

\dd [name]

The general database object display command; it is used to display the descriptions of
any specified database object. The object you specify may be any defined aggregate,
function, operator, relation, rule, or trigger. If you do not specify an object name, or a
partial name, all objects in the database will be displayed.

\df [function name]

The function display command; it is used to display information about a function
defined within the database, including its arguments, and return types. You can either
specify a function to display, or specify none, and list information about all functions.
Like \da and \ 44, a full or partial function name may be supplied for a case-
insensitive comparison against all functions from the beginning of each function name.

\d[istvS] [name]

A scoped version of the general display command; you may specify any of the options
within the brackets:

i

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

\dl

\do

\dp

\dT

\1

Displays indices.

Displays sequences.

Displays tables.

Displays views.

Displays system tables.

The large object display command; this command is equivalent to the \10 1ist
command, which displays the list of large objects within the current database.

[operator name]

The operator display command; this displays the list of defined operators within the
current database, along with their operands (arguments), and return types. You may
specify a complete or partial operator name to examine, or retrieve information about
all available operators.

[object name]

The permissions display command; this retrieves the list of all database objects (or
objects at least partially matching an object name, if provided) currently defined within
the database, along with all their associated access permissions (public, user, and

group).

[type name]

The data type display command; this displays the list of all available data types. You
may again specify a type name, or partial data type name, or view all available data
types in the current database.

The database display command; this lists all defined databases on the server, and their
ownership information, and multibyte encoding type. Entering \ 1+ will display any

comments the databases may have (see the Section called Documenting a Database in
Chapter 9" in Chapter 9 for how to comment on a database).

\lo list

The large object display command; this displays the list of all existing large objects
within the current database, along with any comments that have been attached to them.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

\z [object name]

The permissions display command, equivalent to \dp.

PostgreSQL and psql informative commands

Within psqg/ there is a small set of informative commands that display information about
PostgreSQL and psq! itself. These are useful primarily for obtaining help with command-
related questions you may have.

\7?
The help command; this prints out the list of slash commands documented in this
chapter.
\copyright
The copyright command; this displays copyright information about PostgreSQL.
\encoding
The encoding command; if multibyte encoding is enabled, this can set the client
encoding. If you do not supply an argument, the current encoding will be displayed on
the screen.
\help

The general help command; used without an argument, it will print a list of all
commands for which greater help is available. Used with an argument, it will print more
information (if there is data available) for the subject. Used with an asterisk (*) as the
argument, it will retrieve syntax information for all documented SQL commands.

Input and output commands

The psql client's various input and output slash commands allow you to transfer data to and
from the database in different ways. You may also specify exactly how psq/ transfers data.
The commands include:

\copy table { FROM | TO } file | stdin | stdout

The copy command; this can be used to copy from the client application (and thus, use
the permissions of the user who started the client) instead of using the SQL cory
command to copy from the server. This slash command can also accept any of the
standard cory clauses. For more information on the syntax of this command, refer to the
copy entry in the command reference section at the back of this book.

The difference between using \copy over copy are important to understand and include:

e Data you \copy transfers first through the client (via your connection), which may
be quite a bit slower than if it were done directly through the server (i.e., the
backend) process.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

* You have access to files on the local filesystem under whatever permissions the
user account you are using has, which means you may have more (or less)
accessibility to needed files than the backend process.

e The terms stdin and stdout (standard input and output) have a different
meaning; they refer to psqgl/'s input and output stream. On the backend process
they are used differently: stdin represents where the cory was issued from, and
stdout represents the query output stream.

\echo string

\g

The echo command; this sends a string to the standard output. This can be useful for
scripting, because you can add non-database—supplied information into script output
(such as comments).

file]

The buffer execution command; this is essentially the same as using the semicolon (;) in
that it sends the current query buffer to the backend to be processed. Optionally, you
can save the result set to a ri1e of your choice, or have psqg/ pipe it to a separate shell
command by following the \ g with either a filename or piped command name.

\i file

The file input command; this reads input from a i 1e (the name of which you supply as
an argument after the \ 1) and causes psqgl to parse its content as if it were typed directly
into the program's prompt.

\lo_export lo oid filename

The large object export command,; this lets you export the large object with OID 10 oid
to rilename on your local filesystem. This is different from the 10 export () server
function in the same way the \copy and the SQL cory commands are different.

\lo import filename [comment]

\o

The large object import command; this imports large objects into the database from files
on your local filesystem. Optionally, you can attach a comment to the object; this is
recommended, as otherwise it will be identifiable only by an OID, which you will need
to remember if you wish to access it again. If you attach a comment to the object,
issuing the \10_1ist command displays your comment with the OID of the object, thus
making it easier to find once imported.

file | |command]

The output command; this redirects future output (i.e., data retrieved after this command
is issued) to either a ri 1e of your choice or a pipe to a system command. If not given any
arguments, the output channel will reset to standard output; use no arguments when you
wish to stop sending output elsewhere. One of the most useful features of this command
is the ability to pipe output to commands such as grep, which can then search for a
pattern of your choosing, allowing you to search against database and slash command
output (which will, of course, only work if grep is installed on your system).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

\p

The buffer display command; this prints the psq/ input currently buffered. If no SQL
input has been entered since the last executed statement, the last executed statement is
displayed.

\gecho string

The query-output echo command; this sends a string to your chosen query output
channel (which is set with the \o command), instead of stdout. This command can be
useful when you need to send non-database—related information into the psg/ output.

\w file | |command

The buffer output command; this outputs the current query buffer to a specified riie, or
piped system command.

System commands

The following commands pertain to the general, systematic functions of psq/. These include
database re-connection, external editor invocation, setting and unsetting psq/ variables, and
quitting psql.

\connect [database [username]]

The database re-connection command; this connects you to another database from
within psql. You may specify the database to connect to and the username to use (if it
is not the same as the current username) and omitting this parameter will cause the
current username to be used.

\edit [file]

The external editor command; with this, you can either edit a £i1e of your choice or (if
no file is specified) the current query buffer. After you are done editing, the new buffer
is input to the query buffer, and executed if terminated with a semi-colon.

When opening a file for editing with this command, psgl/ searches your environment
variables for the following fields (in this order) to find out what editor to use:
PSQL_EDITOR, EDITOR, and visuaL. If none of these are present, it will attempt to launch

/bin/vi.

\q
The quit command; this exits the program. You may also use CTRL-D in most terminal
applications to quit.

\set [name [value]]

The variable setting command; used without arguments, this displays all set variables
within psql. Otherwise, it sets the variable name to value. If no vaiue is passed, name is
set with an empty value. If multiple values are passed, name is assigned the
concatenation of each vaiue.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

\unset variable

The variable unsetting command; this unsets a specified variabie from memory. This
is different from assigning a variable with an empty value, which is still technically set.

\! [command]

The shell execution command; without arguments, this opens a shell which overrides the
psql prompt until it is exited. Otherwise, it executes a specified shell command from
within psql/, and displays its results to stdout.

Using External Files to Enter Queries

As it is possible to use psq!/ to enter queries directly from the prompt, it is possible to create
queries and statements within files and let psq/ read the files and insert their content into the
current buffer. This can be useful to some users.

First, enter your query into a file on your filesystem; after it is complete, open psq/. The
command to insert files into the current query buffer is \i. Example 6-1 shows how to insert a
simple file-based serecT command into the current buffer. Text from the query is displayed
on-screen in the example, but this may not happen on your system by default. To see the lines
of a file as it is being read, set the £cHo variable to a11 by typing \set ECHO all.

Example 6-1. Inserting a file into the current buffer

testdb=# \set ECHO all
testdb=# \i /usr/local/pgsql/query
SELECT * FROM employees WHERE firstname='Andrew';

firstname | lastname | id
___________ +__________+_____
Andrew | Brookins | 100

(1 row)

If you find yourself doing this often for the sole purpose of using your favorite editor, using
the \edit command would probably be more convenient.

The Readline and History Libraries

The psql client supports some of the same command-tracking features that the bash shell
supports; namely, reverse-i-search, tab completion, and command history (command history is
stored in /home/ [username]/.psql_history). These features are all available because psq/
support the readline library, which provide these functions to bash.

If the configure script finds the readline library, reverse-i-search, tab completion and
command history should be automatically installed when you compile PostgreSQL. If psq/
does not support tab-completion, history, or reverse-i-search (history search), it may be
because you either have the library files and/or header files installed into a non-standard
directory. If this is the case, and you wish to reconfigure psq! to use the readline and history
features, your first task is to locate the library header files. (The filenames are: libreadline.a,
readline.h, and history.h).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

Once you know where the library and header files are stored on your filesystem, tell the
PostgreSQL configure script where they are by using the following flags: --with-includes=1. n
file locations], and --with-libs=[1ib file location]. After reconfiguration, remake the

psql binary, and the features should become available. See the Section called Step 3:

Configuring the Source Tree in Chapter 2" in Chapter 2 for more on the configuration process
of PostgreSQL.

Variable Substitution

The psql client allows you to modify and create variables using the \set slash command, and
delete them with the \unset slash command. Variables within psq/ work much the same way
as variables within UNIX and Linux shell programs, such as bash. Though the overall
implementation of variables within psqg/ is fairly simple, they are still useful, as you may easily
insert or substitute the values of variables into slash commands and SQL commands.

Note: When setting and using variables, be aware that psq/ uses a set of pre-
defined internal variables. Setting these to non-intended values may cause
unpredictable and undesirable effects within the program. For a list of these
variables and their uses, see Appendix D.

To set a variable, use the \set command, giving the command the name and the value of the
variable you wish to set, in sequence, separated by space(s). This will either modify a
previously existing variable or create a new variable if there is not one matching the variable
name you supplied). As Example 6-2 shows, the variable name can be any length, and you can
use any combination of letters, underscores, or numbers, and the value of the variable may be
set to a string of any length.

Example 6-2. Setting a variable

testdb=# \set myvariable 'There are many like it, but this one is mine.'

Now, when you type \set without any arguments, the variable will appear in the list of
variables.

Example 6-3. The variable list

testdb=# \set

VERSION = 'PostgreSQL 7.1.3 on i586-pc-linux-gnu, compiled by GCC 2.96'
DBNAME = 'testdb'

USER = 'postgres'

PORT = '5432"'

ENCODING = 'SQL ASCII'

PROMPT1 = 'S/%RS%# '

PROMPT2 = '%/%R%# '

PROMPT3 = '>> !

HISTSIZE = '500'

myvariable = 'There are many like it, but this one is mine.'

Once you have defined a variable, you can use what is known as interpolation to place it
within both internal slash commands and SQL commands. This makes it possible to do things
like load files into variables, and then use the loaded contents during an INSERT Or SELECT, as
well as more basic substitutions.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To substitute a variable value in this way, prefix the variable name with a colon (:) when you
reference it from within other statements. For example, Example 6-4 demonstrates how to use
a created variable during an 1NSERT or sELECT statement.

Example 6-4. Using interpolation during an INSERT

testdb=# \set manager_id 150
testdb=# INSERT INTO employees VALUES (

testdb (# 'Kevin',
testdb (# 'Murphy',
testdb (# :manager_id
testdb (#)
testdb=# SELECT * FROM employees WHERE id = :manager_id;
firstname | lastname | id
___________ +__________+_____
Kevin | Murphy | 150
(1 row)

As mentioned, it is possible to insert files into variables and then use interpolation to insert
their content into other commands. To read files, use backticks () to set a variable to the
output of the cat command (the UNIX command to display the contents of a file). Example 6-
5 and Example 6-6 illustrate a basic way of doing this. In these examples, the tabledata file is
located in the user's home directory (~/).

Example 6-5. Reading from a file into a variable

testdb=# \set data ‘cat tabledata’
testdb=# \echo :data
'Mike', 'Nelson', 151

Example 6-6. Using a variable in an INSERT

testdb=# INSERT INTO employees VALUES (:data);

After Example 6-6, you would have a new row within the employees table with the values set
in the data variable.

About the psql Prompt

The psql client supports the complete modification of its prompt. This can be helpful for
displaying various pieces of information in an obvious way (what could be more obvious than
the prompt?). Prompt information is stored in the prompT1, PROMPT2, and PrRoOMPT3 Vvariables
within psq/. The program displays each of these variables at different times.

prOMPT1 contains the normal (default) prompt information while provMpT2 contains the prompt
information that is displayed on a new line during a statement or query that you have not yet
terminated (because you have not ended it with either a semicolon or issued the \g command)
PROMPT3 contains the prompt information displayed while entering data during an SQL cory
command. To view how your prompts are currently configured, use the \set command
without arguments to view a list of defined variables. Within this list you should see entries
for proMpPT1, PROMPT2, and ProMPT3. You'll see single quotes surrounding user-configurable
display strings, which define how the psg/ prompt appears. The s-prefixed characters (e.g., sm)
are variables; all other characters are printed directly as shown.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Table 6-1 displays the default prompt settings for each of the prompt variables. Notice that the
display in the second row, proMpPT2, assumes that a query has been continued to the next line
with an open parenthesis, resulting in the (symbol preceding the hash mark (#).

Table 6-1. Default PROMPT settings

|PromptH Variable || Display |

[PROMPT1
[PROMPT2
[PROMPT3

1o /ORSH" |testdb:ﬂ
1o /RS H '|testdb(#

['>> - [>> |

Modifying the prompt

To modify the psg/ prompt, use \set to change the strings held by the three prompt variables.
When defining your prompt strings, use ¢ to substitute a variable into the string (Example 6-7
provides a list of defined substitutions you can make with the ¢ sign). You may use \n to
display a new line character. All other characters will be displayed normally. Example 6-7
modifies the proMpT1 variable to contain an additional psq1: prefix, trivially modifying the
standard prompt display.

Example 6-7. Setting the prompt variables

testdb=# \set PROMPT1 'psql:%/%R%# '
psqgl:testdb=#

Table 6-2. Prompt substitution characters

Substitution character ||Description

o

This inserts the name of the database you are
currently working in. If you are currently working in
the default database, a tilde (~) will be displayed.

s This will insert a number sign (#) if the current user
is defined as a superuser within the database.
Otherwise, it will insert a greater-than sign (>).

5> This will insert the port number the database server
is currently accepting connections at.

s/

This will insert the name of the database you are
currently working in.

o
3

This will insert the hostname of the server the
database is currently running on, truncated down to
the string before the first dot (i.e., "yourserver.com"
would become "yourserver" when inserted).

This will insert the full hostname of the server the
database is currently running on. If no hostname
information is available, the string "localhost" will
be inserted.

o
=

oe
o]

IThis will insert the database username vou are |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

e e it B

currently connected as.

o
o

When used with prompT1, this will insert an equal
sign (=) during normal operation; in single-line
mode, it will insert a caret (~); and if your session
ever becomes disconnected from the backend
process, an exclamation point (!) is inserted.

When used with prompT2, %R inserts a dash (-)
instead of an equal sign during normal operation,
and whatever you entered as the end-symbol if you
started a new line during an unterminated statement
(for example, if you leave a parenthesis open while
entering a multiline query, this variable will display
a parenthesis in the prompt).

Nothing is inserted if this is used with the prompT3
variable.

Snumber You may enter specific characters in prompt
variables using decimal, octal, or hexadecimal
numbers. To specify an octal number, prefix it with a
0; to specify the number as hexadecimal, prefix it
with a 0x; otherwise number is interpreted as a
decimal number.

s:variable To insert the contents of a psql variable, use the
colon (:) and the variable's identifier.

o)

% command’ Inserts the output of whatever command is specified
with the command parameter.

Prompt examples

Using the \set command, you may combine the different substitution characters to form

whatever prompt you would like. Example 6-8 and Example 6-9 demonstrate setting the
PROMPT1 variable to an arbitrary new sequence.

Example 6-8. Customizing the prompt with database host, port, and username

testdb=# \set PROMPT1 '[%m:%>:%n] (%/)= "
[host:5432:postgres] (testdb) =

Example 6-9. Customizing the prompt with the date, database name, and username

testdb=# \set PROMPT1 '\n[% date]1\n%n:%/%=§# '

[Fri Aug 3 21:44:30 PDT 2001]
postgres:testdb=#

Prev Home Next
Functions Up PgAccess: A Graphical Client

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev Next

Chapter 7. Advanced Features

Table of Contents
Indices
Advan Table Techni

Arrays

Automating Common Routines

Transactions and Cursors

Extending PostgreSQL

This chapter covers more advanced PostgreSQL subjects including optimizing table access
with indices, advanced table concepts such as inheritance and constraints, the practical use of
non-atomic array values, and explicit use of transactions and cursors. These sophisticated

features greatly set PostgreSQL apart from many other relational database management
systems.

This chapter also documents programmatic concepts such as triggers and sequences. Finally,
for programmers wanting to add customized routines to the database, we document how to
extend PostgreSQL through the addition of user-defined functions and operators.

Indices

Indices are database objects that can greatly increase database performance, enabling faster
execution of statements involving comparative criteria. An index tracks the data on one or
more columns in a table, allowing conditional clauses (such as the waerE clause) to find their
targeted rows more efficiently.

The internal workings of indices vary, and there are several implementations to choose from.
This section describes the different types of indices available, and explains when you should
use one type over the other.

While indices exist to enhance performance, they also contribute to system overhead. Indices
must be updated as data in the column that they are applied to fluctuates. Maintaining
infrequently used indices decreases performance when the amount of time spent maintaining
them outweighs the time saved through using them. In general, indices should be applied only
to columns that you expect to use frequently in comparative expressions.

Creating an Index

Indices are created with the create 1nNDEX SQL command. Here is the syntax for cREATE
INDEX:

CREATE [UNIQUE] INDEX indexname ON table
[USING indextype] (column [opclass] [, ...1)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In this syntax, indexname is the name of the new index to be created, table is the name of the
table to be indexed, and cozumn is the name of a specific column to be indexed. Optionally,
the indextype parameter may be set to specify index implementation, and the opciass
parameter may be set to indicate what operator class should be used in sorting input values.

Warning

Operator classes are stored in PostgreSQL's pg opclass column. Unless you are especially
knowledgeable of the technical inner workings of PostgreSQL's operator classes, you
shouldn't use this option.

Regarding the co1umn to index, multiple names may be specified, separated by commas; doing
so creates an index across both specified columns. Such an index will only be used by
PostgreSQL when executing SQL statements that search all indexed columns in the wHERE
clause through the anp keyword. Multicolumn indices are limited to a maximum of 16
columns in a default PostgreSQL installation, and may not use an index type other than B-tree.

In determining upon which columns to create an index, consider which columns will be most
frequently accessed for search conditions. For example, while the books table keeps an index
on its id column (the primary key), the tit1e column is also frequently checked for in wHERE
conditions. Adding a secondary index to the tit1e column will greatly increase the
performance of SQL statements making comparisons against values in that column.

Example 7-1 shows how to create such an index and uses the \d psq/ slash command to view
the books table. In addition to showing the table's column types, this command also shows the
indices that have been created on it.

Example 7-1. Creating an index

booktown=# CREATE INDEX books_title_ idx
booktown-# ON books (title);
CREATE
booktown=# \d books

Table "books"

Attribute | Type | Modifier
____________ +_________+__________
id | integer | not null
title | text | not null
author id | integer |
subject id | integer |

Indices: books id pkey,
books title idx

Certain types of table constraints, notably the pr1MARY kEY and UNTQUE constraints, result in
the implicit creation of an index for use in enforcing the constraint. In Example 7-2 you see
the creation of the Book Town authors table with the prIMARY KEY constraint placed on its id
column. This use of PrIMARY KEY causes an index called authors pkey to be implicitly
created.

Example 7-2. Implicit index creation

booktown=# CREATE TABLE authors (id integer PRIMARY KEY,
booktown (# last name text,
booktown (# first name text);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index 'authors pkey' for
table 'authors'
CREATE
example=# \d authors
Table "authors"

Attribute | Type | Modifier
____________ +_________+__________
id | integer | not null
last name | text |
first name | text |

Index: authors pkey

The index created in Example 7-2 enables PostgreSQL to quickly verify that the primary key
is unique for any new row inserted into the table, as well as enhances the performance of
queries which use the 14 column as a search condition.

Unique indices

Specifying the untoue keyword causes the index to disallow duplicate values within the
column (or set of columns) it indexes. Creating a un1QUE index on a table is functionally

identical to creating a table with the unToUE constraint (see the Section called Using
Constraints" later in this chapter).

Example 7-3 creates a unique index called unique publisher idx onthe publishers table's
name column. This will disallow two publishers from having the same name in this table.

Example 7-3. Creating a unique index

booktown=# CREATE UNIQUE INDEX unique publisher idx
booktown—-# ON publishers (name) ;
CREATE
booktown=4# \d publishers

Table "publishers"

Attribute | Type | Modifier
___________ +_________+__________
id | integer | not null
name | text |
address | text |

Indices: publishers pkey,
unique publisher idx

As the nuLL value does not technically match any value, duplicate instances of NuL1, can be
inserted into a column with a unique index placed on it. This is the main practical difference
between a unique index and an index implicitly created by the PrRIMARY KEY constraint, which
does not allow nuLL values at all.

| Warning

Note that the un1UE clause may not be used in conjunction with the ustnc clause for any
index type other than B-tree.

Index types

The optional us1nG clause can be used to specify the type of index to implement. PostgreSQL
7.1.x supports three types of indices including:

e B-tree

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

e R-tree
e Hash

PostgreSQL's B-tree implementation uses Lehman-Yao high-concurrency B-tree algorithms
and is both the most capable, and most commonly used indexing method. For this reason, it is
the default index type.

The R-tree implementation is primarily useful for spacial data type operations (i.e., operations
on geometric types) and utilizes Guttman's quadratic split algorithm. The Hash
implementation utilizes Litwin's linear hashing routines, which have been traditionally used
for indices that involve frequent direct equal-to comparisons (e.g., with the = operator).

At the time of this writing, for PostgreSQL 7.1.x, the B-tree index implementation is by far the
most capable and flexible of the available index types. At this time, it is recommended that
you use the B-tree index type over the Hash implementation, even for direct = comparisons.
The Hash index exists mostly for legacy reasons, though it may still be used if you are sure
your system would benefit from a Hash index over a B-tree index.

As stated, the R-tree index implementation is recommended for indexing geometric types; be
aware, however, that several limitations exist. For example, you cannot create a unique R-tree
index, nor can you create an R-tree index on more than one column. In these cases, it makes
more sense to rely on the capable B-tree index type.

The us1nc clause can be used with the keywords BTrEE, RTREE, and HASH in order to explicitly
choose the type of index you want to create. Specifying sTreE explicitly chooses the default
index type.

Example 7-4 creates a table called po1ygons, which stores spacial data of the type po1ygon.
An index named spacial idx 1s then applied to its shape column with the R-tree
implementation.

Example 7-4. Specifying an index type

booktown=# CREATE TABLE polygons (shape polygon) ;

CREATE

booktown=# CREATE INDEX spacial_ idx ON polygons USING RTREE (shape) ;
CREATE

Warning

Again, unless you have a solid conceptual understanding of why one index type might be
preferable in your system over another, we advise you to use the default B-tree type.

Functional indices

A slightly modified form of the creaTE 1NDEx command can be used to index the results of a
function on a column value, rather than the column value itself. This is called a functional
index.

Use the following syntax to create a functional index:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

CREATE [UNIQUE] INDEX indexname ON table
[USING indextype] (functionname (column [, ...]) [opclass])

The only difference in this syntax is that the index is created on the results of the specified
function applied to each column value. All other clauses have the same effect as the functional
index.

Functional indices are useful on table columns that commonly have their values prepared
through a function before being compared against values in a SQL statement. For example, the
upper () function is commonly used to make case-insensitive comparisons. Creating an index
using the upper () function enables such case-insensitive comparisons to be carried out
efficiently.

Example 7-5 creates a functional index named upper title idx onthe books table. It uses
the upper () function on the title column as the basis to create the index. Then it performs an
example SQL query that is more efficiently executed as a result of the newly created
functional index.

Example 7-5. Creating a functional index

booktown=# CREATE INDEX upper title idx ON books

booktown-# (upper (title)) ;

CREATE

booktown=# SELECT title FROM books WHERE upper (title) = 'DUNE’';
title

Destroying an Index

The SQL command to permanently destroy an existing index from a table is brRoP INDEX.
Here is the syntax for prRop INDEX:

DROP INDEX indexname [, ...]

In this syntax, indexname is the name of the index that you wish to permanently remove.
Multiple indices to drop may be specified, separated by commas.

Example 7-6 drops the upper title idx index created in Example 7-5.
Example 7-6. Dropping an index

booktown=# DROP INDEX upper title idx;
DROP

Prev Home Next
PgAccess: A Graphical Client Up Advanced Table Techniques

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev Next

Chapter 8. Authentication and Encryption

Table of Contents
i henticati

En n ion

This chapter documents the fundamental concepts involved with authenticating and encrypting
a client session to the PostgreSQL server. This includes how to correctly configure the
pg_hba.conf file for a variety of authentication schemes, as well as a few common ways to
encrypt your client connections.

Client Authentication

Client authentication is a central feature to PostgreSQL. Without it, you would either have to
sacrifice remote connectivity, or blindly allow anyone to connect to your database and
retrieve, or even modify your data. PostgreSQL has several different types of client
authentication at its disposal. As the site administrator, you need to decide which one is best
for your system.

As of PostgreSQL 7.1.x, host-based client access is specified in the pg hba.conf file. The
rights and restrictions described in this file should not be confused with a PostgreSQL user's
rights to objects within the database. The pg hba.conf file allows you to set the type of /ost-
based authentication to be used. This authentication is performed before PostgreSQL
establishes a connection to the intended database, where user rights would be relevant.

Note: The pg hba.confis located in the PostgreSQL data directory (e.g.,
/usr/local/pgsql/data), and is installed automatically upon the execution of the
initdb command when PostgreSQL is installed.

PostgreSQL's host-based authentication is flexible, featuring a wide variety of configurable
options. You may restrict database access to specific hosts, as well as allow access to a range
of IP addresses by using netmasks. Each configured host has its own host record, which is a
single line in the pg hba.conf file.

With these host records, you may specify access either to a particular database or all
databases. Furthermore, you may require a user from a specified host to authenticate via the
PostgreSQL users table after qualifying for a connection.

Put simply, the pg hba.conf tile allows you to determine who is allowed to connect to which
databases from what machines, and to what degree they must prove their authenticity to gain
access.

“ Warning H

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Through remote password-based authentication, passwords may be transmitted in clear text
depending on whether or not you are using encrypted sessions. Be sure that you understand
how your application is communicating with PostgreSQL before allowing users to remotely
connect to a PostgreSQL database.

Password Authentication

Passwords allow PostgreSQL users a way to identify themselves and prevent unauthorized
individuals from connecting with a user that is not theirs. As of PostgreSQL 7.1.x, user
passwords are stored in plain text in the pg_shadow system table. The structure of this table is
illustrated in Table 8-1. Note that while the passwords are stored as plain text, only
PostgreSQL superusers are allowed to view the pg shadow table.

Table 8-1. The pg_shadow table

|Column ||Type ‘

Iusename “name I

|usesysid ||integer|

Iusecreatedb“booleanl

|usetrace ||boolean|

Iusesuper “booleanl

|usecatupd ||boolean|

Ipasswd “text I

|valuntil ||abstime|

The pg_shadow table is a system table, and thus is accessible from any database. It follows,
therefore, that users are not assigned to a specific database. If a user exists in the pg_shadow
table, that user will be able to connect to any database on the server machine, though not
necessarily from any remote machine (depending on your configuration).

Users typically set passwords in PostgreSQL when the user is created (with the cREATE USER
command) or after the user has been created (using the ALTER User command). Alternatively,
you may manually modify a user's password by using an uppaTE statement. (For a more
detailed explanation about defining passwords for users, see Chapter 10.)

If a password is not set, a user's password defaults to nur1. If password-based authentication is
enabled in the pg hba.conf file, connection attempts will always fail for such a user.
Conversely, if the host that establishes the connection is a trusted host (such as localhost, by
default), anyone from the trusted host may connect as a user with a nur. password. In fact,
passwords are ignored entirely for trusted hosts.

Note: The cranT command allows you to restrict or allow a variety of access
types to tables within a database. See Chapter 10 for more on this topic.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Unless your needs for security are very minimal, you will not want to rely on password-only
authentication with your PostgreSQL server. Using a password-only method to authenticate
users will allow any verified user access to any database on the system, and authenticating
with a password over clear text can result in unauthorized individuals acquiring user
passwords. If you are likely to have your database connected to the Internet in some fashion,
we strongly suggest that you read the following sections. These cover the use of the
pg_hba.conf file and session encryption.

The pg_hba.conf file

We mentioned earlier in this section that the pg hba.conf file enables client authentication
between the PostgreSQL server and the client application. This file consists of a series of
entries, which define a host and its associated permissions (e.g., the database it is allowed to
connect to, the authentication method to use, and so on).

When an application requests a connection, the request will specify a PostgreSQL username
and database with which it intends to connect to PostgreSQL. Optionally, a password may be
provided, depending on the expected configuration for the connecting host.

Note: PostgreSQL has its own user and password tables, which are separate from
system accounts. It is not required that your PostgreSQL users match users
available to the operating system.

When PostgreSQL receives a connection request it will check the pg hba.conf file to verify
that the machine from which the application is requesting a connection has rights to connect to
the specified database. If the machine requesting access has permission to connect,
PostgreSQL will check the conditions that the application must meet in order to successfully
authenticate. This affects connections that are initiated locally as well as remotely.

PostgreSQL will check the authentication method via the pg hba.conf for every connection
request. This check is performed every time a new connection is requested from the
PostgreSQL server, so there is no need to re-start PostgreSQL after you add, modify or
remove an entry in the pg hba.conf file. Example 8-1 is a simple example of the pg hba.conf
file.

Example 8-1. A simple pg_hba.conf file

PostgreSQL HOST ACCESS CONTROL FILE

#

local all trust

host all 127.0.0.1 255.255.255.255 trust

host booktown 192.168.1.3 255.255.255.255 ident sales
host all 192.168.1.4 255.255.255.255 ident audit

When a connection is initialized, PostgreSQL will read through the pg hba.conf one entry at a
time, from the top down. As soon a matching record is found, PostgreSQL will stop searching
and allow or reject the connection, based on the found entry. If PostgreSQL does not find a
matching entry in the pg hba.conf file, the connection fails completely.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Table-level permissions still apply to a database, even if a user has permissions to connect to
the database. If you can connect, but cannot select data from a table, you may want to verify
that your connected user has permission to use seLecT on that table. Using the psq/ command-
line application, you can check the permissions of the tables within a database by using the \z
slash command. From any other interface to PostgreSQL, use the query demonstrated in
Example 8-2 to see the same information provided by the \z slash command.

Example 8-2. Checking user permissions

testdb=# SELECT relname as "Relation", relacl as "Access permissions"

testdb-# FROM pg_class
testdb-# WHERE relkind IN ('r', 'v', 'S'")
testdb-# AND relname '~ '“pg '
testdb-# ORDER BY relname;

Relation | Access permissions

__________ +__________________________________
foo | "=arwR", "jdrake=arwR"}

my list | {"=","jdrake=arwR","jworsley=r"}

(2 rows)

Structure of the pg_hba.conf file

The pg_hba.conf file contains sequential entries that define the settings PostgreSQL should
use during the client authentication process for a specified host. This file is designed to be
easily customizable to your system needs.

Within this file, you may associate a TCP/IP host address (or a range of addresses) with a
particular database (or a// databases), and one of several available authentication methods.
You may also specify access for local connections using the term 1ocalhost, 0r 127.0.0.1,
rather than using the system's external IP address. Several syntax rules apply to the
pg_hba.conf.

First, you may only place one host record per line in the file. Subsequently, host records are
not allowed to wrap across multiple lines. Second, each host record must contain multiple
fields, which must be separated by either tabs or spaces. The number of fields in a host record
is directly related to the type of host entry being defined. Example 8-3 shows two host records,
the first with the fields separated by spaces, and the second with the file separated by tabs.

Example 8-3. A valid pg_hba.conf entry with spaces and tabs

host all 127.0.0.1 255.255.255.255 trust
host all 127.0.0.1 255.255.255.255 trust

Commenting is allowed within the pg hba.conf by placing a hash mark (#) at the beginning of
each line being commented. Example 8-4 demonstrates valid commented lines.

Example 8-4. Valid pg_hba.conf comments

Book Town host entries

#

#

host all 127.0.0.1 255.255.255.255 trust

Regarding the actual form of each host record, there are three general #ypes available in the
pg_hba.conf (the type keyword is always the first word in the host record):

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

host

A nost entry is used to specify remote hosts that are allowed to connect to the
PostgreSQL server. PostgreSQL's postmaster backend must be running with the -i
option (TCP/IP) in order for a host entry to work correctly.

local

A 1ocal entry is semantically the same as a nost entry. However, you do not need to
specify a host that is allowed to connect. The local entry is used for client connections
that are initiated from the same machine that the PostgreSQL server is operating on.

hostssl

A nostss1 entry is user to specify hosts (remote or local) that are allowed to connect to
the PostgreSQL server using SSL. The use of SSL insures that all communication
between the client and the server is encrypted. In order for this to work, both the client

and the server must support SSL. The postmaster backend must be running with the -/
(SSL) and -i (TCP/IP) options.

Note: See Chapter 9 for more on how to start the postmaster process with the
appropriate run-time options.

Example &-5 illustrates the general syntax for each type of host record available within the
pg_hba.conf file. Notice that the format is essentially identical for each record, with the
exception that a /ocal record does not require an IP address or netmask to be specified, as the
connection is assumed to be from the same machine on which PostgreSQL is running.

Example 8-5. Host entry syntax

A "local" record.
local database auth method [auth option]

A "host" record.
host database ip addr netmask auth method [auth option]

A "hostssl" record.
hostssl database ip addr netmask auth method [auth option]

Note: Remember that each entry in the pg hba.conf must be a single line. You
cannot word wrap or use line breaks.

The following list is a description of the keywords for the pg hba.conf entries mentioned
previously:

database

This is the database name that the specified host is allowed to connect to. The database
keyword has three possible values:

all

The a11 keyword specifies that the client connecting can connect to any database
the PostgreSQL server is hosting.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

sameuser

The sameuser keyword specifies that the client can only connect to a database
that matches the clients authenticated user name.

name

A specific name may be specified, so that the client can only connect to the
database as specified by name.

ip addr, netmask

The ip addr and netmask fields specify either a specific IP address, or range of IP
addresses, that are allowed to connect to the PostgreSQL server. Such a range can by
specified by describing an IP network with an associated netmask. Otherwise, for a
single IP address, the netmask field should be set to 255.255.255.255.

If you are unsure of how to specify a netmask, view the online Linux Networking
HOWTO, at http://www.thelinuxreview.com/howto/networking, or consult your system
administrator.

auth method

The authentication method specifies the type of authentication the server should use for
a user trying to connect to PostgreSQL. The following is a list of options available for
auth method.

trust

The trust method allows any user from the defined host to connect to a
PostgreSQL database without the use of a password, as any PostgreSQL user.
You are trusting the host-based authentication with the use of this method, and
any user on the specified host. This is a dangerous condition if the specified host
1s not a secure machine, or provides access to users unknown to you.

reject

The reject method automatically denies access to PostgreSQL for that host or
user. This can be a prudent setting for sites that you know are never allowed to
connect to your database server.

password

The password method specifies that a password must exist for a connecting user.
The use of this method will require the connecting user to supply a password that
matches the password found in the global pg shadow system table for their
username. If you use the password method, the password will be sent in clear
text.

crypt

The crypt method is similar to the password method. When using crypt, the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

password is not sent in clear text, but through a simple form of encryption. The
use of this method is not very secure, but is better than using the clear text
password method.

krb4, krb5

The krba and xrb5 methods are used to specify Version 4 or 5 of the Kerberos
authentication system. The installation and configuration of Kerberos is beyond
the scope of this book, but if you wish to authenticate via Kerberos, these
methods are available.

ident

The ident method specifies that an ident map should be used when a host is
requesting connections from a valid IP address listed in the pg hba.conf file. This
method requires one option.

The required option may be either the special term sameuser, or a named map
that is defined within the pg ident.conf file. For more information on defining an

ident map, see the Section called The pg ident.conf file."

auth option

The auth option field may or may not be required, based on the type of authentication
method that is used; as of PostgreSQL 7.1.x, only the ident method requires an option.

Warning

We do not suggest the use of either password or crypt without the use of an external

encryption mechanism. See the Section called Encrypting sessions" in this chapter for

information on installing a central encryption mechanism for all of your PostgreSQL traffic.

Example pg_hba.conf entries

This section contains a series of examples that can be used within the pg hba.conf. To begin,
the host record within Example 8-6 allows a single machine with the IP address 192.168.1.10
to connect to any database as any user, without the use of a password. This is because it is
configured with the a11 and trust terms, respectively.

Example 8-6. Single host entry

host all 192.168.1.10 255.255.255.255 trust

Example 8-7 shows a host record which will reject all users from host 192.168.1.10, for any
requested database. This is set by the use of the terms a11 and reject as the database target
and authentication method, respectively.

Example 8-7. Rejection entry

host all 192.168.1.10 255.255.255.255 reject

The host record in Example 8-8 will allow any user with the IP of 192.168.1.10, and a valid
password, to connect to the database temp1ate1. The password will be encrypted during

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

authentication because of the use of the term crypt.

Example 8-8. Single host, single database entry

host templatel 192.168.1.10 255.255.255.255 crypt

The host record in Example 8-9 allows a small subnet of computers to access any database,
without the need of a password. This subnet describes any IP from 192.168.1.1 to
192.168.1.15. Again, if you are unsure of how to configure your netmask, consult your
network administrator, or view the Linux Networking HOWTO at
http://www.thelinuxreview.com/howto/networking.

Example 8-9. Small network connection entry

host all 192.168.1.0 255.255.255.240 trust

Expanding on the use of subnets, the host record in Example 8-10 allows any machine on the
192.168.1 block to connect to the booktown database, without the use of a password.

Example 8-10. Larger network connection entry

host booktown 192.168.1.0 255.255.255.0 trust

Remember, as stated earlier in this section, each host record line is read in succession from the
top of the file to the bottom. The first record which matches the host attempting to connect is
used. If no matching record is found, connection is completely disallowed.

The pg_ident.conf file

When specifying the ident term as a host record's authentication method, PostgreSQL uses
the pg_ident.conf file to map the identifying username to a PostgreSQL username. The
identifying username is the name provided by the connecting client's identd service (RFC
1413), which is required to identify the name of the system account initiating the connection.
This method is similar to the trust method, but restricts access based on the identifying
username.

As stated in the specification for the ident protocol, "The Identification Protocol is not
intended as an authorization or access control protocol." This is only a useful method of
identification for secure, controlled machines, and is »not intended as a means for secure
control from a wide array of external machines. This is because an identd daemon merely
returns an arbitrary username describing the current system user. For example, allowing the
username jworsley from an entire subnet of IP addresses would create a serious security hole,
because anyone with a machine in that subnet could create a user named jworsiey and
become "authenticated" as a result.

The pg_ident.conf file should be located in the same path as the pg hba.conf file. This should
be the path defined by the pGpaTa environment variable (e.g., /usr/local/pgsql/data). Like the
pg_hba.conf, changes to the pg ident.conf file do not require PostgreSQL to be re-started.

The content of the pg _ident.conf associates identifying usernames with PostgreSQL
usernames via definitions called ident maps. This is useful for users whose system usernames
do not match their PostgreSQL usernames. Some rules you should keep in mind when
defining and using an ident map are:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

e Each ident map member is defined on a single line, which associates a map name with
an identifying username, and a translated PostgreSQL username.

e The pg ident.conf file can contain multiple map names. Each group of single lines with
the same associative map name are considered a single map.

e The pg hba.conf file determines the types of connections that relate to users in this file.

A single line record to define an ident map consist of 3 tokens: the name of the map, the
identifying username, and the translated PostgreSQL username. This syntax is entered as
follows, where each token is separated by spaces, or tabs:

mapname identname postgresglname

mapname

The map name used in the pg hba.conf file to refer to the ident map.

identname

The identifying username, which is generally the name of the system user attempting to
establish a connection to the database. This is the name provided by the identd daemon,
which must be running on the system attempting to connect.

postgresqglname

The database username which is allowed for the preceding identifying username. You
may specify several lines with the same i dentname, but with different postgresqginame
values, in order to allow a single system user access to several accounts, which do not
all need to be on the same database.

As an example, suppose that the Book Town server has a set of system accounts named
jdrake, jworsley, and auditor, used for two salespeople and an internal auditor,
respectively.

You may wish to create a pair of ident maps for these two groups of users. Suppose that the
sales department's workstation has an IP address of 192.168.1.3, and only needs access to the
booktown database, while the audit department's workstation has an IP address of 192.168.1.4,
and requires access to all databases. This scenario might result in a pga_hba.conf, such as the

one displayed in Example 8-11.
Example 8-11. An ident configuration in pg_hba.conf

host booktown 192.168.1.3 255.255.255.255 ident sales
host all 192.168.1.4 255.255.255.255 ident audit

This host access configuration states that the sales machine may connect to the booktown
database using an ident map named sales, and the audit workstation may connect to any
database using an ident map named audit. Each of these maps must then be configured within
the pg_ident.conf file. Example 8-12 demonstrates such a configuration.

Example 8-12. A pg_ident.conf configuration

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

MAP IDENT POSTGRESQL USERNAME
sales jdrake sales

sales jworsley sales

audit auditor sales

audit auditor postgres

The file shown in Example 8-12 allows either of the system users jdrake oOr jworsley to
connect as the PostgreSQL sales user, and allows the system user named auditor to connect
to PostgreSQL as either sales, or postgres.

Note: It is possible for an identifying username to be mapped to multiple
PostgreSQL usernames. This is illustrated in Example 8-12 with the auditor
user.

If you wish only to use ident as a means of automatically identifying your remote username,
you do not need to use the pg ident.conf file. You can instead use the special term sameuser
in the pg hba.conf file, in place of a map name.

Again, this is similar to the trusted method, however ident sameuser restricts connections
based on the username provided by identd. Providing a PostgreSQL username to connect with
(e.g., with the -U flag to psql) that is different from the name sent by identd will result in a
failure to connect.

Use of the sameuser map is demonstrated in Example 8-13.

Example 8-13. A sameuser configuration

host booktown 192.168.1.0 255.255.255.0 ident sameuser

The host record in Example 8-13 allows any machine on the 192.168.1 network block to
connect to the booktown database, using the PostgreSQL username that matches the username
provided by identd. The sameuser term causes PostgreSQL to implicitly compare the
requested PostgreSQL username against the name provided by identd.

Authentication Failure

When authentication failure occurs, PostgreSQL will usually do its best to provide a useful
error message, rather than blindly fail. The following are common error messages you may
encounter, with explanations:

FATAL 1: user "testuser" does not exist

The specified username was not found in the pg_shadow system table, meaning the user
does not exist. See Chapter 10 for more on adding users.

FATAL 1: Database "testdb" does not exist in the system catalog

This database cannot be found because it does not exist. Note that if you do not specify
a database name to a PostgreSQL connection, it will attempt to connect to the provided
username.

No pg hba.conf entry for host 123.123.123.1, user testuser, database testdb

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

You have succeeded in contacting the server, but the server is not accepting your
connection. The server refused the connection because it cannot find an entry for
testuser using testdp at their [P address (123.123.123.1) in the pg_hba.conf file.

Password authentication failed for user 'testuser'

You have succeeded in contacting the server and it is replying back, but the connection
failed password authorization. Check the password you are supplying to the server, and
make sure that it is correct. Further, you can check the Kerberos or Ident software
programs if you are using them for your password authentication.

You may want to check if this user has a password. If this user does not have one, and
the pg hba.conf file is set to check for passwords, it will still check every user for their
password. For all users without a defined password, a nuzL password is assigned to that
user. When the user tries to log in and does not specify a password, it will compare the
NULL password to the NuLL input, and it will return faise.

On the other hand, if the user tries to supply a password (even a blank one), it will
compare that input value with the nur.L password and still return fa1se. If you are using
password authentication, you must assign a password to all users. If a password is not
assigned to a user in such a scheme, password authentication will always fail, and the
user will not be able to log in.

Prev Home Next
Administrating PostgreSQL Up Encrypting sessions

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev Next

Chapter 9. Database Management

Table of Contents

Starting and Stopping PostgreSQL
Initializing the Filesystem
) :
AUne &
Backi Ilg T o T

This chapter covers several topics associated with managing a PostgreSQL database system,
including starting and stopping the PostgreSQL backend, initializing the filesystem, and the
creation, removal, and maintenance of individual databases. There is also a section devoted to
the topic of backing up and restoring data from a database.

Starting and Stopping PostgreSQL

In this section we cover two options provided with PostgreSQL that are used to start and stop
PostgreSQL. The first is a general purpose application called pg ct/, which should function
identically on any machine, regardless of the system. This script is intended to be run by the
system user (e.g., the user who owns the data directory) configured to execute the postmaster
backend.

The second script provided is the SysV-style script, found in the contrib/start-scripts
subdirectory within the PostgreSQL source path. The installation of the SysV script is
discussed in Chapter 2. By default this script is named /inux, as it is intended for a Linux
system's start-script directory, though in the installation instructions it is renamed to a script
called postgresql in the system's service start-up directory (e.g., /etc/rc.d/init.d).

The main functional difference between pg ct/ and the SysV-style service script is that pg_ct/
is intended to be used by the user who runs the postmaster backend (e.g., postgres), whereas
the service script is intended to be run by the roof user.

The service script is not strictly Linux-specific, and should be compatible with most systems
based on SysV start-up scripts. However, if you are not running Linux, you may prefer to stick
with the pg ctl script.

Using pg_ctl

The pg ctl script is provided with PostgreSQL as a general control application. With it, you
can start, stop, restart, or check on the status of PostgreSQL.

Here is the syntax for pg ctl, from the - -help option:

pg_ctl start [-w] [-D DATADIR] [-s] [-1 FILENAME] [-o "OPTIONS"]
pg _ctl stop [-W] [-D DATADIR] [-s] [-m SHUTDOWN-MODE]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

pg:ctl restart [-w] [-D DATADIR] [-s] [-m SHUTDOWN-MODE] [-o "OPTIONS"]
pg_ctl status [-D DATADIR]

The following options may be passed to pg ct/:
-W

Causes the pg_ct/ application to wait until the operation has finished before returning to
a command line. This option may be passed to either the start or restart action; by
default, the application sends the command on to the postmaster and exits immediately
for these actions.

Causes the pg_ct/ application not to wait until the operation has finished before
returning to a command line. This option may only be passed to the szop action; by
default, the application sends the stop command on to the postmaster, and waits for the
action to finish before exiting.

-D paTapIRr

Specifies the directory that contains the default database files. This is optional, because
you may have this value already set in the pGpaTA environment variable. If the pcpaTa
environment variable is not set, the -D flag is required.

Suppresses any output from the pg c#/ application, aside from system errors. If this flag
is not specified, information about the activity within the database (or specific
information about startup or shutdown, depending on the action) will be displayed to the
screen of the user who initiated the command.

-1 FrLENAME

Specifies a file FreEvamEe to append database activity to. This option is only available
with the start action.

-M SHUTDOWN-MODE
Sets the ssuTpown-mopE with which to shut down the postmaster backend.
smart

Makes postmaster wait for all clients to disconnect before shutting down.
fast

Shuts postmaster down without waiting for clients to disconnect.
immediate

Shuts postmaster down more abruptly than fast mode, bypassing normal
shutdown procedures. This mode causes the database to restart in recovery mode
the next time it starts, which verifies the integrity of the system.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This option is of course only available to the sftop and restart actions.
-0 "opT1ONS"

Passes the options specified by orrrons (within double quotes) to be passed directly
through to the postmaster (e.g., the -i flag to enable TCP/IP connections). See the

Section called Calling postmaster Directly" later in this chapter for a complete list of
these flags.

Note: Many of the run-time configuration options for postmaster can be found in
the postgresql.conf file, which is stored in the PostgreSQL data path (e.g.,
/usr/local/pgsql/data). The options in this file are of a more technical nature, and
should not be modified unless you are sure you understand their purpose.

Starting PostgreSQL with pg_ctl

To start PostgreSQL's postmaster backend, the start argument must be passed to pg ctl.
Remember that pg ct/ must be run by the postgres user (or whatever user you have configured
to own the PostgreSQL data path).

Example 9-1 starts the postmaster backend, using the data path of /usr/local/pgsql/data. The
database system starts up successfully, reports the last time the database system was shut
down, and provides various debugging statements before returning the postgres user to a shell
prompt.

Example 9-1. Starting PostgreSQL with pg ctl

[postgres@booktown ~]$ pg _ctl -D /usr/local/pgsql/data start

postmaster successfully started

DEBUG: database system was shut down at 2001-09-17 08:06:34 PDT

DEBUG: CheckPoint record at (0, 1000524052)

DEBUG: Redo record at (0, 1000524052); Undo record at (0, 0); Shutdown TRUE
DEBUG: NextTransactionId: 815832; NextOid: 3628113

DEBUG: database system is in production state

[postgres@booktown ~]$
Stopping PostgreSQL with pg_ctl

The PostgreSQL postmaster backend can be stopped in the same fashion that it is started—by
passing the stop argument to pg_ct/. The application pg ct/ checks for the running postmaster
process, and, if the stop command was executed by the user who owns the running processes
(e.g., postgres) the server is shut down.

There are three ways in which PostgreSQL can shut down the backend: smart, fast, and
immediate. These arguments are passed to pg ctl following the -m flag, to indicate the desired
shutdown mode.

A smart shutdown (the default) causes PostgreSQL to wait for all clients to first cancel their
connections before shutting down. A fast shutdown causes PostgreSQL to simply shut down
through its normal routine, without checking client status. An immediate shutdown bypasses
the normal shutdown procedure, and will require the system to go through a recovery mode

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

when restarted.

Warning

Never use kill -9 (kill -KILL) on the postmaster process. This can result in lost or corrupted
data.

Example 9-2 calls the pg ctl script to stop the postmaster process in fast mode. The
postmaster backend will not wait for any client connections to disconnect before shutting
down.

Example 9-2. Stopping PostgreSQL with pg_ctl

[postgres@booktown ~]$ pg_ctl -D /usr/local/pgsql/data stop -m fast
Fast Shutdown request at Mon Sep 17 09:23:39 2001

DEBUG: shutting down

waiting for postmaster to shut down.....

DEBUG: database system is shut down

done

postmaster successfully shut down

[postgres@booktown ~]$

Note: The smart shutdown is equivalent to a kill -TERM on the running
postmaster process, while fast is equivalent to a kill -INT, and immediate is
equivalent to a kill -QUIT.

Restarting PostgreSQL with pg_ctl

You may pass the restart argument to pg ctl as shorthand for sequential stop and start calls to
pg_ctl. This argument may also specify the -m flag to indicate the preferred shutdown mode.

PostgreSQL stores the most recently used start-up options in a temporary file called
postmaster.opts, within the PostgreSQL data path (pcpata). This file is used when pg ctl is
invoked with the restart argument to ensure that your run-time options are preserved. Avoid
placing your own configurations on the postmaster.opts file, as it will be overwritten when
pg_ctl is executed with the start argument.

Example 9-3 restarts the Book Town database server with the postgres user.

Example 9-3. Restarting PostgreSQL with pg_ctl

[postgres@booktown ~]1$% pg_ctl -D /usr/local/pgsql/data restart

Smart Shutdown request at Mon Sep 17 08:33:51 2001

DEBUG: shutting down

waiting for postmaster to shut down..... DEBUG: database system is shut down
done

postmaster successfully shut down

postmaster successfully started

[postgres@booktown ~1$

DEBUG: database system was shut down at 2001-09-17 08:33:53 PDT

DEBUG: CheckPoint record at (0, 1000524110)

DEBUG: Redo record at (0, 1000524116); Undo record at (0, 0); Shutdown TRUE
DEBUG: NextTransactionId: 815832; NextOid: 3628113

DEBUG: database system is in production state

[postgres@booktown ~18

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Checking status of PostgreSQL with pg_ctl

You may use the status argument to check the status of a running postmaster process. While
not having any effect on the data itself, the data path must be known to pg c#/. If the pcpara
environmental variable is not set, the -D flag must be passed to pg ctl.

Example 9-4 checks the status of the Book Town PostgreSQL server.

Example 9-4. Checking status with pg_ctl

[postgres@booktown ~]$ pg _ctl -D /usr/local/pgsql/data status

pg _ctl: postmaster is running (pid: 11575)

Command line was:

/usr/local/pgsgl/bin/postmaster '-D' '/usr/local/pgsgl/data' '-i' '-s'
[postgres@booktown ~1$

Note: A lot of typing can be saved by making sure the pcpaTa variable is set. If
you intend to always use the same data directory, you may set the pGpaTa variable
(e.g., in the /etc/profile file, as is recommended in Chapter 2) and never have to
apply the -D flag.

Using the SysV Script

The SysV-style script, if installed, operates similarly to the pg ctl script. In fact, the SysV-
style script operates as a management program that wraps around the pg c#/ command. The
primary difference is that the SysV script is intended to be invoked by the roof user, rather
than the user who owns and runs PostgreSQL (e.g., postgres). The script itself handles the
switching of the userids at the appropriate times.

Using the SysV script instead of manually invoking pg ctl is advantageous in that it simplifies
system startup and shutdown procedures. The postgresq! script file in /etc/rc.d/init.d/ is a plain
text file, and can be modified in any standard text editor. Within this file you may easily locate
the startup and shutdown routines, and add or remove options to pg c#/ as you most commonly
use them. The pg ct/ commands are simplified by using either the single administrative start
or stop parameter with the postgresql script.

The instructions for installation of the postgresql script are covered in Chapter 2. Depending
on your machine's configuration, there may be more than one method of invoking the script
once it has been properly installed. Remember that the actual name of the SysV script file in
the /etc/rc.d/init.d/ directory may be an arbitrary name, depending on how it was copied. The
most common names given to this script are postgresql and postgres.

If your system supports the service command, you should be able to use it as a wrapper to the
installed PostgreSQL script with the following syntax:

service postgresqgl { start | stop | restart | status }

The service command accepts only the parameters described in the preceding syntax. No other
options are accepted. You can modify the way any of these general modes runs by editing the
script (e.g., /etc/re.d/init.d/postgresql) manually. Example 9-5 uses the service command to
start PostgreSQL.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 9-5. Starting PostgreSQL with service command

[root@booktown ~]# service postgresql start
Starting PostgreSQL: ok
[root@booktown ~]#

Alternatively, if the service command does not exist on your system, the postgresql script can
be manually invoked with its complete system path:

/etc/rc.d/init.d/postgresgl { start | stop | restart | status }

Example 9-6 checks the status of PostgreSQL's backend process by directly calling the
postgresql script in the complete path. This assumes that your system has its SysV start-up
scripts installed in the /etc/rc.d/init.d/ directory.

Example 9-6. Checking status with postgresql script

[root@booktown ~]# /ete/rc.d/init.d/postgresql status

pg _ctl: postmaster is running (pid: 13238)

Command line was:

/usr/local/pgsgl/bin/postmaster '-D' '/usr/local/pgsqgl/data’
[root@booktown ~]#

As you can see from the output of Example 9-6, the SysV script is just a convenient wrapper
to the pg ctl command discussed in the previous section.

Calling postmaster Directly

The postmaster program is the multi-user PostgreSQL database server backend itself. This is
the process that your PostgreSQL clients actually connect to, where a connection to a postgres
backend is negotiated.

This binary is typically not called manually, but is indirectly executed through either the
pg_ctl or SysV script discussed earlier in this section. However, these scripts at some point
call the postmaster binary directly, and it can be helpful in configuring your PostgreSQL
system to know what the postmaster is, and what it does.

The postmaster can only access one database cluster at a time, though you may have several
concurrent postmaster applications running on different ports with a different database cluster
for each.

Here is the syntax for the postmaster program:

postmaster [-A { 0 | 1 }] [-B buffers] [-c name=value] [-d debug level
[-D datadir] [-F] [-h hostname] [-i] [-k directory 1 [-1
[-N max connections] [-o options] [-p port] [-S] [-n | -s

The following are each of the parameters available to the postmaster program, as of
PostgreSQL 7.1.x:

-A {01}

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The run-time assertion check flag. This enables debugging, if this option was enabled
during compilation of PostgreSQL. This flag should only be used by knowledgeable
developers working on PostgreSQL itself.

-B burfers

The number of shared-memory disk buffers that postmaster will allocate for use by the
backend. By default, this is 64.

Note: The value passed to -B must be at least twice the number supplied for
the - parameter.

-C name=value

An arbitrary run-time configuration, setting name to value. Any configuration settings
found in the postgresql.conf file (within the database cluster's data directory) may be
over-ridden with this option.

-d debug level

The debug level, which determines the amount of debugging output that will be logged
by the backend. The default is 0. The higher the number, the more output will be
generated. Values as high as 4 are reasonable for normal use, though a value of 4 will
quickly take up disk space if you are logging the debug output.

Note: Unless the standard output and standard error streams from
postmaster are redirected to a file (e.g., from the shell, or with the -/ option
to pg_ctl) all debugging information will be displayed to the controlling
terminal session of the postmaster process.

-D datadir

The data directory of the intended database cluster. If this is not supplied, postmaster
will use either the value of the pcpaTa environment variable, or the /data path off of the
path defined in the posTGrRESHOME environment variable. If neither environment variable
is set, the default compile-time directory is used (e.g., /usr/local/pgsql/data).

-F
The £sync-disabling option. Using this increases performance, at the risk of data
corruption, in the event that the operating system or physical hardware crashes
unexpectedly. Be sure you know what you are doing before you use this flag!

-h host

The host address to listen on; by default, PostgreSQL's backends will listen on all
configured addresses, including localhost.

The TCP/IP client-connection flag, which allows connections via TCP/IP. If this option
is not specified, the backend will accept only local domain socket connections.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

-k directory

The directory for the UNIX domain socket, which postmaster will listen on for local
connections. This defaults to /tmp/.

The SSL flag. Use this to enable SSL connections. The -i parameter must also be given.

Note: You must have compiled PostgreSQL with SSL enabled to use the -/
option.

-N max connections

The maximum number of concurrent backend processes that postmaster can start. By
default, this value is set to 32. The maximum allowed number for this value is 1024.
Make sure that your allocated burrers are configured for the maximum number of
concurrent backends (the -B parameter, which must be at least twice the

max connections Value).

-0 options

Any options that postmaster should send to the postgres backends when they are first
started. These options are listed in Appendix B. Surround the options string with
quotes, if more than one option is passed.

-p port

The TCP/IP port number (or socket file extension) that this instance of postmaster
should listen for connections on. If this is left unspecified, the default is taken from the
PGPORT environment variable, or the compile-time default (usually 5432).

The silent mode flag. This will cause PostgreSQL to disassociate from the user's
terminal session, start its own process group, and redirect its standard output and
standard error to /dev/null.

Warning

Using the -S switch makes it very difficult to troubleshoot problems, since all
tracing and logging output that would normally be generated by the
postmaster and its child backend processes will be discarded.

The postmaster also accepts the following two debugging options, for interested developers:

-n

The -n flag stops postmaster from re-initializing shared data structures. A debugging
tool can then be used to gain information about the memory's state at the time of the
crash.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

-
The -s flag causes postmaster to use the SIGSTOP signal to stop backend processes,
without terminating the processes. Using this signal will keep the backend processes in
memory instead of terminating them, which allows a developer to collect a core dump
from each backend process manually. Each core dump can then be individually
examined for debugging information.

Prev Home Next

Encrypting sessions Up Initializing the Filesystem

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev Next

Chapter 10. User and Group Management

Table of Contents

Managing Users
Managing Groups
. o Privil

As in most database systems, users and groups handle an important role within PostgreSQL.
Used correctly, users and groups can allow for fine-grained, versatile access control to your
database objects.

PostgreSQL stores both user and group data within its own system catalogs. These are
different from the users and groups defined within the operating system on which the software
is installed. Any connection to PostgreSQL must be made with a specific user, and any user
may belong to one or more defined groups.

Users control the allocation of rights and track who is allowed to perform actions on the
system (and which actions they may perform). Groups exist as a means to simplify the
allocation of these rights. Both users and groups exist as global database objects, which means
they are not tied to any particular database.

This chapter addresses the management and practical application of PostgreSQL users and
groups.

Managing Users

In order to establish a connection to PostgreSQL, you must supply a basic form of
identification. This is called a username, as it identifies the user who the system will recognize
as connected to a database. Users within PostgreSQL are not necessarily related to users of the
operating system (which are sometimes called system accounts), though you may choose to
name your PostgreSQL users after the system accounts that will be accessing them.

Each user has an internal system ID to PostgreSQL (called a sysid), as well as a password,
though the password is not necessarily required to connect (depending on the configuration of
the pg hba.conf; (see Chapter 8, for more on this subject). The user's system ID is used to
associate objects in a database with their owner (the user who is allowed to grant and revoke
rights on an object).

As well as being used to associate database objects with their owner, users may also have
global rights assigned to them when they are created. These rights determine whether or not a
user is allowed to create and destroy databases, and whether or not the user is a superuser (a
user who is allowed all rights, in all databases, including the right to create users). The
assignment of these rights may be modified at any time by an existing superuser.

PostgreSQL installs a single superuser by default named postgres. All other users must be

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

added by this user, or by another subsequently added superuser.

Viewing Users

All user information is stored in a PostgreSQL system table called pg shadow, shown in Table
10-1. This table is only selectable by superusers, though a limited view of this table called
pg_user 18 accessible to normal users.

Table 10-1. The pg_shadow table

|C01umn ||Type ‘

|usename ”name |

Iusesysid “integerl

|usecreatedb||boolean|

Iusetrace “booleanl

|usesuper ||boolean|

Iusecatupd “booleanl

|passwd ||text |

Ivaluntil “abstimel

The primary difference between the selectable data in pg_user and pg_shadow is that the
actual value of the passwd column is not shown (it is replaced with a string of asterisks). This
is a security measure to ensure that normal users are not able to determine one another's
passwords.

The usename column stores the name of the system user, which is a unique character string (no
two users may have the same name, as users are global database objects). Similarly, the

usesysid column stores a unique integer value associated with the user. The usecreatedp and
usesuper each correspond to the pair of privileges which can be set upon creation of a user, as

documented in the Section called Creating Users."

Creating Users

PostgreSQL provides two methods by which database users may be created. Each requires
authentication as a superuser, for only superusers can create new users.

The first method is through the use of the SQL command create user, which may be
executed by any properly authenticated PostgreSQL client (e.g., psg/). The second is a
command-line wrapper called createuser, which may be more convenient for a system
administrator, as it can be executed in a single command without the need to interact with a
PostgreSQL client.

The following sections document each of these methods.

Creating a user with the CREATE USER SQL command

The creaTeE User command requires only one parameter: the name of the new user. There are

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

also a variety of options that may be set, including a password, explicit system ID, group, and
a set of rights that may be explicitly allocated. Here is the complete syntax for CREATE USER:

CREATE USER username
[WITH [SYSID uid]

[PASSWORD 'password'] 1]
CREATEDB | NOCREATEDB]
CREATEUSER | NOCREATEUSER]

IN GROUP groupname [, ...]]
VALID UNTIL 'abstime']

— — — —

In this syntax, username is the name of the new user to be created. You cannot have two users
with the same name. By specifying the wits keyword, either or both of the sys1p and
pAssworD keywords may be applied.

Every other optional keyword may follow in the order displayed (not requiring the use of the
wita keyword). The following is a detailed explanation of each optional keyword and its
meaning:

SYSID uid

Specifies that the system ID is to be set to the value of uid. If omitted, a reasonable,
unique numeric default is chosen.

PASSWORD 'password'

Sets the new user's password to password. If unspecified, the password defaults to nuLL.

CREATEDB | NOCREATEDB

Specifying the creaTEDB keyword grants the new user the right to create new databases,
as well as the right to destroy databases which they own. Specifying NocREATEDB
explicitly enforces the default, which is the lack of this right.

CREATEUSER | NOCREATEUSER

Grants the right to create new users, which implicitly creates a superuser. Notice that a
user with the rights to create other users will therefore have all rights, in all databases
(including the rights to create a database, even if NocrREATEDB was specified).
NocrREATEUSER explicitly enforces the default, which is the lack of this right.

IN GROUP groupname [, ...]

Adds the new user to the group named groupname. Multiple group names may be
specified by separating them with commas. The group(s) must exist in order for the
statement to succeed.

VALID UNTIL 'abstime'

Sets the user's password to expire at abst ime, which must be of a recognizable
timestamp format. After that date, the password must be reset, and the expiration moved
forward.

VALID UNTIL 'infinity'

Sets the user's password to be valid indefinitely.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

By not specifying either CREATEDE or CREATEUSER, users are implicitly "normal" with no
special rights. They may not create databases or other users, nor may they destroy databases or
users. Such users may connect to databases in PostgreSQL, but they can only perform the

statements which they have been granted access to (see the Section called Granting
Privileges" for more on granting rights).

Example 10-1 creates a normal user named salesuser. It also sets a password of NOrm4! by
the use of the wiTe passworp clause. By omitting the varip unTIL clause, this password will
never expires.

Example 10-1. Creating a normal user

templatel=# CREATE USER salesuser
templatel-# WITH PASSWORD 'NOrm4!';
CREATE USER

The creaTE UsER server message returned in Example 10-1 indicates that the user was added
successfully. Other messages you may receive from this command are as follows:

ERROR: CREATE USER: permission denied

This message is returned if the user issuing the CREATE USER command is not a
superuser. Only superusers may create new users.

ERROR: CREATE USER: user name "salesuser" already exists
This message indicates that a user with the name salesuser already exists.

If you wish to create a user who has the ability to create databases within PostgreSQL but not
create or destroy PostgreSQL users, you may specify the creaTeps keyword rather than
creaTEUSER. This allows the named user to arbitrarily create databases, as well as drop any
databases which they own. See Chapter 9, for more on this the topic of creating and destroying
databases.

Example 10-2 illustrates the creation of a user named dbuser who has the right to create new
databases. This is achieved by specifying the creaTeEDR keyword after the username. Notice

also the use of the wiTn passworp and var1p unTIL keywords. These set the password for
dbuser to DbuS3r, which will be valid until November 11th, 2002.

Example 10-2. Creating a user with CREATEDB rights

templatel=# CREATE USER dbuser CREATEDB
templatel-# WITH PASSWORD 'DbuS3r'
templatel-# VALID UNTIL '2002-11-11"';
CREATE USER

Resetting an expired user's password does not modify the var1p unTrL value. In order to re-
active a user's access whose password has expired, both the wiTs passworp and vaLip UNTIL

keywords must be provided to the ALTER User command. See the Section called Altering
Users" for more on this command.

| Warning ‘

|VALID UNTIL settings are only relevant to systems which are not trusted; sites which are ‘

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

“trusted do not require passwords. See Chapter 8 for more on host-based authentication.

You may wish to create an alternate superuser from the postgres user, though caution should
be exercised in creating superusers. These users are granted every right within PostgreSQL,
including creating users, removing users, and destroying databases. Example 10-3
demonstrates the creation of a PostgreSQL superuser named manager from the psg/ prompt.

Example 10-3. Creating a superuser

templatel=# CREATE USER manager CREATEUSER;
CREATE USER

Creating a user with the createuser script

The createuser script is executed directly from the command line, and can operate in one of
two ways. If issued without any arguments, it will interactively prompt you for the username
and each of the rights, and attempt to make a local connection to PostgreSQL. Alternatively,
you may choose to specify the options and the username to be created on the command line.

As with other command-line applications for PostgreSQL, arguments may be supplied either
in their short form (with a single dash, and character), or in their long form (with two dashes,
and the full name of the argument).

Here is the syntax for createuser :

createuser [options] [username]

The username in the syntax represents the name of the user you wish to create. Replace
options With one or more of the following flags:

-d, - -createdb

Equivalent to the creaTEDB keyword of the creaTe user SQL command. Allows the
new user to create databases.

-D, - -no-createdb

Equivalent to the nocreaTEDB keyword of the creaTe user SQL command. Explicitly
indicates that the new user may not create databases. This is the default.

-a, - -adduser

Equivalent to the creaTEUsER keyword of the creaTE UseEr SQL command. Allows the
new user to create users, and raises the status of the user to a superuser (enabling all
rights within PostgreSQL).

-A, - -no-adduser

Equivalent to the NocreaTEUSER keyword of the creaTe user SQL command.
Explicitly indicates that the new user is not a superuser. This is the default.

-1 8YSID, - -sysid=svys1D

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Sets the new users system ID to sys1p.
-P, - -pwprompt

Results in a password prompt allowing you to set the password of the new user

username.
-h HosTNAME, - -host=HOS TNAME

Specifies that rosTname will be connected to, rather than the localhost, or the host
defined by the pcrOST environment variable.

-p PORT, - -pOIt=PORT

Specifies that the database connection will be made on port rorT, rather than the default
port (usually 5432).

-U usERNAME, - -US€rName=USERNAME

Specifies that uservame will be the user who connects to PostgreSQL (The default is to
connect using the name of the system user executing the createuser script).

-W, - -password

Results in a password prompt for the connecting user, which happens automatically if
the pg hba.conf file is configured not to trust the requesting host.

-e, - -echo

Causes the CREATE USER command sent to PostgreSQL to be displayed to the screen
as it is executed by createuser.

-q, - -quiet
Prevents output from being sent to stdout (though errors will still be sent to stderr).

If any of the -d, -D, -a, -A, or username arguments are omitted, createuser will prompt you for
each missing argument. This is because PostgreSQL will not make any assumptions about the
rights intended for the new user, nor about the new user's name. Example 10-4 creates a user
named newuser, who has neither the right to create a database, nor create users.

Example 10-4. Creating a user with createuser

[jworsley@booktown ~]$ createuser -U manager -D -A newuser
CREATE USER

Notice also the -U manager flag passed to the createuser script. This indicates that the user
with which to connect to PostgreSQL is manager, not jworsley as the script would otherwise
assume, based on the name of the system account invoking the script.

If you prefer to be interactively prompted for each setting, (instead of having to remember the
meaning of each flag or check the reference each time) you may simply omit the flags you are
uncertain of. The createuser script will then prompt you for the basic createuser options.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

These options include the PostgreSQL username, whether the user may create databases, and
whether or not the user may add new users to PostgreSQL.

Example 10-5 demonstrates using the createuser script in interactive mode. The net effect of
this example is the same as the single line executed in Example 10-4.

Example 10-5. Interactively creating a user with createuser

[jworsley@booktown ~]$ createuser

Enter name of user to add: newuser

Shall the new user be allowed to create databases? (y/n) n
Shall the new user be allowed to create more new users? (y/n) n
CREATE USER

Altering Users

Existing users may only be modified by PostgreSQL superusers. Possible modifications
include each of the options available at the creation of the user (e.g., password, password
expiration date, global rights), except for the system ID of an existing user, which may not be
modified. Modification of existing users is achieved through the use of the atTEr User SQL
statement.

Here is the syntax for ALTER USER:

ALTER USER username
[WITH PASSWORD 'password']
[CREATEDB | NOCREATEDB]
[CREATEUSER | NOCREATEUSER]
[VALID UNTIL 'abstime']

The required username argument specifies which user is to be modified. Any of the following
parameters may additionally be specified:

WITH PASSWORD 'password'

Sets username's password to password.

CREATEDB | NOCREATEDB

Grants or revokes from username the right to create databases.

CREATEUSER | NOCREATEUSER

Grants or revokes from username the status of superuser, which enables a// possible
right within PostgreSQL (most notably the ability to create and destroy users and
superusers).

VALID UNTIL 'abstime'

Sets username's password to expire at abstime, which must be of some valid timestamp
format. This value is only relevant for systems requiring password authentication, and is
otherwise ignored (e.g., for trusted sites).

A common function of ALTER USER is to reset the password (and potentially the expiration

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

date) of a user. If a PostgreSQL user had an expiration date set when their user was originally
added, and that date has passed, and the user requires password-based authentication, a
superuser will have to reset both the password and the expiration date to re-activate a user's
ability to connect. If you want to cause a user's password to never expire, set it to the special
timestamp infinity.

Example 10-6 modifies a user named salesuser. The user's password is set to n3Wp4s4 by
the wiTa passworD clause, and set to expire on January Ist, 2003 by the var1p untIL clause.

Example 10-6. Resetting a password

templatel=# ALTER USER salesuser

templatel-# WITH PASSWORD 'n3WP4s4'
templatel-# VALID UNTIL '2003-01-01"';
ALTER USER

At times you may wish to grant a user additional rights beyond those originally granted to
them. The use of the creaTEUSER keyword in Example 10-7 modifies the user salesuser to
have all rights in PostgreSQL, making the user into a superuser. Note that this makes the
CREATEDB right moot, as superusers can create databases implicitly.

Example 10-7. Adding superuser rights

templatel=# ALTER USER salesuser
templatel-# CREATEUSER;
ALTER USER

Conversely, there may be times when a user no longer deserves rights that have been granted
in the past. These rights may be just as easily removed by a superuser with the NOCREATEDB
and nocreATEUSER keywords.

Example 10-8. Removing superuser rights

templatel=# ALTER USER salesuser
templatel-# NOCREATEDB NOCREATEUSER;
ALTER USER

Warning

As any superuser may revoke rights from another superuser, or even remove another
superuser, it is wise to be extremely careful when granting the crREATEUSER right.

Removing Users

PostgreSQL users may at any time be removed from the system by authenticated superusers.
The only restriction is that a user may not be removed if any databases exist which are owned
by that user. If a user owns a database, that database must be dropped before the user can be
removed from the system.

As with the creation of PostgreSQL users, there are two methods by which users may be
removed. These are the pror user SQL command, and the dropuser command-line
executable.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

Removing users with the DROP USER SQL command

A superuser may remove a user by issuing the DROP USER command from a valid
PostgreSQL client. The psq/ program is most commonly used to achieve this task.

Here is the syntax for prRop USER:

DROP USER username

In this syntax, username is the name of the user that you intend to permanently remove from
the system. Example 10-9 shows the use of the psg/ client to connect to PostgreSQL as the
manager user in order to remove the salesuser database user.

Example 10-9. Removing a user with DROP USER

[jworsley@booktown ~]$ psql -U manager templatel
Welcome to psgl, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\g to quit

templatel=# DROP USER salesuser;
DROP USER

The prop UsER server message indicates that the user was successfully removed from the
system. Other messages that you might receive from this command include:

ERROR: DROP USER: permission denied

Indicates that the user initiating the command does not have the right to drop a user.
Only superusers may drop existing database users.

ERROR: DROP USER: user "salesuser" does not exist

Indicates that there is no such user with the name salesuser.

Removing users with the dropuser operating system command

The dropuser command operates much like the createuser script. It offers the same connection
options, ensuring that it can be used remotely as well as locally, and requires only the
username of the user to be removed from the system.

Here is the syntax for dropuser:
dropuser [options] [username]

Each of the connectivity options is identical to those for createuser, described in the Section

called Creating a user with the createuser script," earlier in this chapter. Example 10-10
demonstrates the same net effect as the SQL statement in Example 10-9 by connecting to the

PostgreSQL backend as the manager user, and removing the user named salesuser.

Example 10-10. Removing a user with dropuser

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[jworsley@booktown ~]$ dropuser -U manager salesuser
DROP USER

The output from dropuser is the same as the output for the SQL pror user command. If you
omit the username that you wish to remove when you execute the script dropuser, you will be
prompted interactively for the name of that user to be removed from the system.

Prev Home Next
Backing Up and Restoring Up Managing Groups
Data

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev Next

Chapter 11. PL/pgSQL

Table of Contents

Adding PL/pgSQL to your Database

Lan I

Using Variabl

Controlling Program Flow

PL/pgSQL and Triggers

PL/pgSQL is a loadable, procedural language, similar to the Oracle procedural language,

PL/SQL. A procedural language is a programming language used to specify a sequence of
steps that are followed to produce an intended programmatic result.

You can use PL/pgSQL to group sequences of SQL and programmatic statements together
within a database server, reducing network and communications overhead incurred by client
applications having to constantly request data from the database and perform logic operations
upon that data from a remote location.

You have access to all PostgreSQL data types, operators, and functions within PL/pgSQL
code. The "SQL" in PL/pgSQL is indicative of the fact that you are allowed to directly use the
SQL language from within PL/pgSQL code. The use of SQL within PL/pgSQL code can
increase the power, flexibility, and performance of your programs. If multiple SQL statements
are executed from a PL/pgSQL code block, the statements are processed at one time, instead
of the normal behavior of processing a single statement at a time.

Another important aspect of using PL/pgSQL is its portability; its functions are compatible
with all platforms that can operate the PostgreSQL database system.

The following sections describe how to make PL/pgSQL available as a procedural language in
your database.

Adding PL/pgSQL to your Database

Programming languages are made available to databases by being created as a database object.
You will therefore need to add the PL/pgSQL language to your database before you can use it
(it 1s installed with PostgreSQL by default). The following steps demonstrate how to add
PL/pgSQL to an existing database.

Adding PL/pgSQL to your Database

To add PL/pgSQL to your PostgreSQL database, you can either use the createlang application
from the command line, or the creaTE r.aNGUAGE SQL command from within a database client
such as psqgl. The use of the creaTE 1anGUAGE command first requires the creation of the
PL/pgSQL call handler, which is the function that actually processes and interprets the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

PL/pgSQL code.

Though the createlang utility is simpler to use, as it abstracts the creation of the call handler
and the language away from the user, the following sections document both methods.

Note: Installing PL/pgSQL in the temp1atel database causes all subsequent
databases that are created with temp1ate1 as their template (which is the default)
to also have PL/pgSQL installed.

Using psql to add PL/pgSQL

CREATE LANGUAGE 1S the SQL command which adds procedural languages to the currently
connected database. Before it can be used, however, the crReaTE rFuncTION command must
first be used to create the procedural call handler.

Here is the syntax to create a PL/pgSQL call handler with crREaTE FUNCTION:

CREATE FUNCTION plpgsqgl call handler()
RETURNS OPAQUE AS '/postgres library path/plpgsgl.so' LANGUAGE 'C'

In this syntax, postgres library path is the absolute system path to the installed
PostgreSQL library files. This path, by default, is /usr/local/pgsql/lib. Example 11-1 uses the
CrREATE FUNCTION command to create the PL/pgSQL call handler, assuming the plpgsqgl.so file
is in the default location.

Example 11-1. Creating the PL/pgSQL call handler

booktown=# CREATE FUNCTION plpgsql call handler ()

booktown-# RETURNS OPAQUE

booktown-# AS '/usr/local/pgsql/lib/plpgsql.so'
booktown-# LANGUAGE 'C';

CREATE

Example 11-1 only creates the function handler; the language itself must also be added with
the creaTe 1aNcUaceE command. Here is the syntax to add PL/pgSQL to a database:

CREATE LANGUAGE 'plpgsgl' HANDLER plpgsgl call handler
LANCOMPILER 'PL/pgSQL"

In this syntax, plpgsql is the name of the language to be created, the p1pgsgl call handler
is the name of the call handler function (e.g., the one created in Example 11-1), and the
PL/pgSQL string constant following the rancovp1LER keyword is an arbitrary descriptive note.

Example 11-2 adds PL/pgSQL to the booktown database with the cREATE L.ANGUAGE
command.

Example 11-2. Adding PL/pgSQL with CREATE LANGUAGE

booktown=# CREATE LANGUAGE 'plpgsql' HANDLER plpgsql call handler
booktown-# LANCOMPILER 'PL/pgSQL';
CREATE

The name following the sanprLER keyword should be the same name which is used to create
the call handler. Since Example 11-1 created a call handler named pi1pgsql _call handler,

Example 11-2 uses the same name.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The string following the n.ancomp1LER keyword is an outdated legacy clause, and its value is
not consequential. Even so, as of PostgreSQL 7.1.x, it is a required clause. It is commonly
used as a comment space to describe the language.

Using createlang to add PL/pgSQL

To execute createlang you will first need to be at the command prompt. If the operating
system username you are currently logged into is the same as that of a database superuser
account on the target database, you can call createlang with the command shown in Example
11-3 (you will be asked for a password if the database requires one). Otherwise, to pass the
username of a database superuser to createlang, use the -U flag as shown in Example 11-4.

Example 11-3. Using createlang as a database superuser

$ ed /usr/local/pgsql/bin
booktown=# createlang plpgsql booktown

Example 11-4. Explicitly passing a superuser account name to createlang

$ ed /usr/local/pgsql/bin/
$ createlang plpgsql -U manager booktown

The createlang program will return you to a shell prompt upon successful execution.

Prev Home Next
Programming with Up Language Structure
PostgreSQL

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev Next

Chapter 1. What is PostgreSQL?

Table of Contents

PostgreSQL is an Object-Relational Database Management System (ORDBMS) that has been
developed in various forms since 1977. It began as a project named Ingres at the University of
California at Berkeley. Ingres itself was later developed commercially by Relational
Technologies/Ingres Corporation.

In 1986 another team led by Michael Stonebraker from Berkeley continued the development
of the Ingres code to create an object-relational database system called Postgres. In 1996, due
to a new open source effort and the enhanced functionality of the software, Postgres was
renamed to PostgreSQL, after a brief stint as Postgres95. The PostgreSQL project is still under
very active development worldwide from a team of open source developers and contributors.

PostgreSQL is widely considered to be the most advanced open source database system in the
world. It provides many features (which are discussed in more detail in the Section called

PostgreSQL Feature Set") that are traditionally seen only in enterprise-caliber commercial
products.

Open Source Free Version

PostgreSQL is an open source project. Open source by definition means that you can obtain
the source code, use the program, and modify it freely without the confines of proprietary
software. In the database world, open source means that you have honest access to
benchmarking numbers and performance statistics, which companies such as Oracle prohibit.
Open source also means that you are free to modify PostgreSQL to fit your particular needs.

However, there is a misconception that since open source software is free from distribution
restrictions, it is always free of cost to your company. This is not necessarily the case. It is true
that you can, without external cost, download and install open source software, but there will
always be costs associated with the time and energy your company puts into support and
research of the application. As such, if you do not have those resources to spend, there are
several commercial vendors and consultants who deal specifically with PostgreSQL.

Commercial PostgreSQL Products

The Red Hat version of PostgreSQL is called Red Hat Database and is a very new product to
the database market. Red Hat Database is based on the community-released open source
version, PostgreSQL 7.1. Red Hat Database currently supports Linux only, preferably Red Hat
Linux 7.1.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Open Source Versus Commercial Products

The open source version of PostgreSQL only includes the database-management system and
the associated programming interfaces. The Red Hat version of PostgreSQL includes a
graphical installer and limited support for the installation.

The main factor in deciding whether to use the open source version of PostgreSQL or a
commercially packaged version should be your business requirements. If you have a
knowledgeable on-site technical-support staff, the community version may do well for you.
However, if you need installation, configuration, and management support, you may be better
served by purchasing a commercial version of PostgreSQL.

If you prefer to do business with smaller consulting companies, we have compiled a modest
list of professional companies providing support for PostgreSQL in the Section called

The Bottom Line

Marketing would suggest that a commercial version of PostgreSQL is somehow objectively
superior to an open source version of PostgreSQL. In reality, this is not the case. When
deciding what version of PostgreSQL you are going to run, you need only be aware of your
own needs. For example, are you going to need installation support? Is a graphical installation
important to you? If they are, then you should probably purchase a commercial version of
PostgreSQL. However, if you or one of your staff are comfortable with compiling and
configuring source code, the open source version could be more applicable to you.

There are two additional questions you may want to ask. Do you need printed documentation
and are you willing to pay for PostgreSQL? The commercial distribution comes with printed
documentation. However, if you are reading this book, we hope you won't need the additional
documentation. The other question relates to cost. Red Hat Database is priced at $2,295.00.

The most important thing to remember when deciding on which version of PostgreSQL to use
is this (from a perspective of general usage and feature availability): there is no practical
difference between the open source and the commercial versions.

Commercial Support

Outside of Red Hat, there are many companies that provide consulting services to the
PostgreSQL community. The following is a small list of consultants providing commercial
support for PostgreSQL.

Command Prompt, Inc. (http://www.commandprompt.com/)

Command Prompt, Inc. is a Linux managed-services and PostgreSQL-support company.
They provide Linux and PostgreSQL support, including custom programming in C &
C++, Java, PHP, Perl, and their own LXP application server for PostgreSQL.

Command Prompt, Inc. is the author of this book.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Cybertec Geschwinde & Schvnig OEG (http.//postgres.cybertec.at/)

Cybertec provides training courses, support, consulting, and cost-effective high-end
systems. Cybertec services the German-speaking region (Austria, Germany, and
Switzerland).

dbExperts (http.//www.dbexperts.com.br/)

dbExperts offers training courses, specialized support for development, and commercial
products for PostgreSQL. dbExperts is located in Brazil and provides services in the
Portuguese language.

PostgreSQL, Inc. (http://www.pgsql.com/)

PostgreSQL, Inc. offers support for PostgreSQL, database hosting, and promotional
materials.

Software Research Associates (http.//osb.sra.co.jp/)

Software Research Associates offers a range of services to aid customers with open
source software-based systems. Support from this company is also available in
Japanese.

Community Support

The PostgreSQL community provides active support to users of PostgreSQL via a number of
mailing lists. There are several user mailing lists to which you can subscribe, segregated by
topic (e.g., pgsql-general, pgsql-hackers, etc.). The mailing lists for PostgreSQL users are
quite thorough, covering everything from general discussion to support on developing with
PostgreSQL programming interfaces. For a complete list of mailing lists with associated
descriptions, please visit the PostgreSQL website at http.//www.postgresql.org.

Prev Home Next
Introduction and Installation Up PostgreSQL Feature Set

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev Next

Chapter 12. JDBC

Table of Contents

Buildin the F SOL JDBC Dri

Using the PostgreSQL Driver

Using JDBC

Issues Specific to PostgreSQL and JDBC

This chapter covers JDBC (Java DataBase Connectivity), which is a set of classes and
methods available for the Java programming language. The use of JDBC with Java is a simple,

generic, and portable way of interacting with different types of databases. For this chapter,
some existing knowledge of how to program in Java is assumed.

The JDBC interfaces, defined by Sun, cover all of the interactions you can have with a
standard SQL database. The vendor (in this case, PostgreSQL) supplies concrete
implementations that implement these interfaces. These concrete implementations handle the
vendor-specific interactions with the database: connecting, logging in, using stored
procedures, and so forth. These interfaces are designed this way so that a program using JDBC
can connect to any JDBC-compliant database, without your having to rewrite the code.
However, there are some caveats.

One issue is that JDBC does not do any client-side SQL parsing or syntax checking. SQL
statements are passed off transparently to the database, whether or not they are valid.
Therefore, if the SQL is valid on one vendor's database, but invalid on another vendor's
database the implementation won't know until the actual connection is made and the SQL is
sent across. Sun is attempting to deal with this problem, and there may be some provisions
made to correct this, either in later versions of JDBC or in a different standard.

Another issue is that each vendor has additional helper classes specific to that vendor. For
instance, PostgreSQL has extensions for geometric data types. Other vendors won't support
these extensions; they are specific to PostgreSQL. If you use such vendor-specific classes,
your program will not work with another JDBC database, despite using the JDBC "standard."”

One advantage of the PostgreSQL JDBC driver is that it is a "Type 4" driver. This means that
it is written in Pure Java, so it can be taken anywhere, and used anywhere as long as the
platform it is used on has TCP/IP capabilities, because the driver only connects via TCP/IP.

Building the PostgreSQL JDBC Driver

This section assumes that you already have a PostgreSQL database set up and ready to go.
Make sure that you have it set to accept incoming TCP/IP connections. This can be configured
when running the postmaster command. For more information on database start-up options,

see Chapter 9.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Before you can use JDBC, you must build the PostgreSQL JDBC drivers. To do this, you

must have the Java source code that is used to build the driver. This source is included both in
the complete PostgreSQL package, and in the opt package. These can be downloaded from the
PostgreSQL site; for more information about downloading and installing these, see Chapter 2.

You also need Ant. Ant is a standard build system for Java products, somewhat similar to
gmake, and is created by Apache's Jakarta project. It is required to build the PostgreSQL
JDBC driver. For more information on Ant, see: http.//jakarta.apache.org/ant/index.html.
Make sure that Ant's bin directory is in your path.

First you need to configure the makefile system to recognize that you are using Java. If you
did not originally build PostgreSQL with Java support, move into the top level of the
PostgreSQL source tree, and type ./configure with-java, along with any other configure
options you originally used. This will regenerate makefiles and, if necessary, will add support
for Java.

Next you must actually build the driver and implementations. Change to the
src/interfaces/jdbc directory and issue the gmake command. This will build two jar files:
postgresql.jar, containing the priver class and other concrete implementations, and
postgresql-examples.jar, containing compiled example classes.

Prev Home Next
PL/pgSQL and Triggers Up Using the PostgreSQL Driver

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev

Chapter 14. PostgreSQL Command
Reference

Table of Contents

ABORT -- Rolls back changes made during a transaction block.

ALTER GROUP -- Modifies the structure of a user group.

ALTER TABLE -- Modifies table and column attributes.

ALTER USER -- Modifies user properties and permissions.

BEGIN -- Starts a chained-mode transaction block.

CLOSE -- Closes a previously defined cursor object.

CLUSTER -- Provides the backend server with clustering information about a table.
COMMENT -- Adds a comment to an object within the database.

COMMIT -- Ends the current transaction block and finalizes changes made within it.
COPY -- Copies data between files and tables.

CREATE AGGREGATE -- Defines a new aggregate function within the database.
CREATE DATABASE -- Creates a new database in PostgreSQL.

CREATE FUNCTION -- Defines a new function within the database.

CREATE GROUP -- Creates a new PostgreSQL group within the database.
CREATE INDEX -- Places an index on a table.

CREATE LANGUAGE -- Defines a new language to be used by functions.
CREATE OPERATOR -- Defines a new operator within the database.

CREATE RULE -- Defines a new rule on a table.

CREATE SEQUENCE -- Creates a new sequence number generator.

CREATE TABLE -- Creates a new table.

CREATE TABLE AS -- Creates a new table built from data retrieved by a SELECT.
CREATE TRIGGER -- Creates a new trigger.

CREATE TYPE -- Defines a new data type for use in the database.

CREATE USER -- Creates a new PostgreSQL database user.

CREATE VIEW -- Creates a view on a table.

CURRENT _DATE -- Returns the current date.

CURRENT_TIME -- Returns the current time.

CURRENT_TIMESTAMP -- Returns the current date and time.

CURRENT _USER -- Returns the current database username.

DECLARE -- Defines a new cursor.

DELETE -- Removes rows from a table.

DROP AGGREGATE -- Removes an aggregate function from a database.

DROP DATABASE -- Removes a database from the system.

DROP FUNCTION -- Removes a user-defined function.

DROP GROUP -- Removes a user group from the database.

DROP INDEX -- Removes an index from a database.

DROP LANGUAGE -- Removes a procedural language from a database.

DROP OPERATOR -- Removes an operator from the database.

DROP RULE -- Removes a rule from a database.

DROP SEQUENCE -- Removes a sequence from a database.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

DROP TABLE -- Removes a table from a database.

DROP TRIGGER -- Removes a trigger definition from a database.

DROP TYPE -- Removes a type from the system catalogs.

DROP USER -- Removes a PostgreSQL user.

DROP VIEW -- Removes an existing view from a database.

END -- Ends the current transaction block and finalizes its modifications.
EXPLAIN -- Shows the statement execution plan for a supplied query.

FETCH -- Retrieves rows from a cursor.

GRANT -- Grants access privileges to a user, a group, or to all users in the database.
INSERT -- Inserts new rows into a table.

LISTEN -- Listen for a notification event.

LOAD -- Dynamically loads object files into a database.

LOCK -- Locks a table within a transaction.

MOVE -- Repositions a cursor to another row.

NOTIFY -- Signals all backends that are listening for the specified notify event.
REINDEX -- Rebuilds indices on tables.

RESET -- Restores runtime variables to their default settings.

REVOKE -- Revokes access privileges from a user, a group, or all users.
ROLLBACK -- Aborts the current transaction block and abandons any modifications it would
have made.

SELECT -- Retrieves rows from a table or view.

SELECT INTO -- Construct a new table from the results of a SELECT.

SET -- Set runtime variables.

SET CONSTRAINTS -- Sets the constraint mode for the current transaction block.
SET TRANSACTION -- Sets the transaction isolation level for the current transaction block.
SHOW -- Displays the values of runtime variables.

TRUNCATE -- Empties the contents of a table.

UNLISTEN -- Stops the backend process from listening for a notification event.
UPDATE -- Modifies the values of column data within a table.

VACUUM -- Cleans and analyzes a database.

This command reference covers each of the major SQL commands supported by PostgreSQL.
It contains both standard SQL commands (e.g., 1nserT, seLeEcT) and PostgreSQL-specific
commands (€.g., CREATE OPERATOR, CREATE TYPE).

Each reference entry is broken up into three sections: a synopsis, a description, and an
examples section. The synopsis contains a syntax diagram, parameter explanation, and a list of
possible results from executing the command. The description briefly summarizes the general
use of the command. The examples section contains at least one functional example of using
the command.

Prev Home Next
PostgreSQL Command Up ABORT
Reference

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev Next

Chapter 2. Installing PostgreSQL

Table of Contents
P o for 1 lati
1 Installing P I L

This chapter focuses on the requirements and steps involved in installing and configuring
PostgreSQL. Many of the PostgreSQL capabilities are not enabled, by default. For example,
support for the TCL language is a feature that must be explicitly requested during compile-
time. As there are many other features that are not configured by default, we will cover the
various flags and options you may use to enable them when compiling PostgreSQL. It is
important that you carefully read through all the steps in this process before beginning
installation.

This chapter will walk you through the installation steps on a Linux/UNIX-style platform. Our
installation platform is Linux, but these instructions should be compatible with most current
UNIX platforms.

Note: Although PostgreSQL is capable of running on a Win32 platform, this book
does not cover installation on Windows. The Win32 version of PostgreSQL
requires the Cygwin environment and will not operate independently within
Win32. Although Cygwin can be useful in many situations, the use of
PostgreSQL in a Cygwin environment is not recommended.

Preparing for Installation

The installation of PostgreSQL is not difficult. However, there are some software
requirements that you will need for the PostgreSQL compilation. All of the requirements —
outside of the PostgreSQL source code — are GNU tools. If you are running Linux, there is a
good chance that the tools are already installed. If you are running a BSD derivative, such as
FreeBSD or MacOS X, you may have to download the tools.

If you find that you are missing any of the required components, first check your vendor's web
site for the packages; otherwise, you may download them from Attp://www.gnu.org. It is also
essential that you have enough disk space available to unpack and compile the source code on
the filesystem to which you install. Disk-space requirements are discussed in the Section

lled Disk Space.”
Required Software Packages

You will most likely have some of the required software packages already installed on your
system, if not all of them. These packages are as follows:

GNU make

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

GNU make is commonly known as gmake on non-GNU based systems, but is normally
referred to as just make on GNU-based systems such as Linux. For consistency, we will
refer to it as gmake throughout the rest of this book.

We recommend that you use at least gmake version 3.76.1 or higher when compiling
PostgreSQL. To verify the existence and correct version number of gmake, type the

command shown in Example 2-1.
Example 2-1. Verifying GNU make

$ gmake --version

GNU Make version 3.79.1, by Richard Stallman and Roland McGrath.

Built for i386-redhat-linux-gnu

Copyright (C) 1988, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000
Free Software Foundation, Inc.

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE.

Report bugs to <bug-makel@gnu.org>.

ISO/ANSI C Compiler

There are numerous ISO/ANSI C compilers available. The recommended compiler for
PostgreSQL is the GNU C Compiler, although PostgreSQL has been known to build
with compilers from different vendors. At the time of this writing, the most commonly
distributed versions of GCC are 2.95 and 2.96 (RedHat Linux 7.x and Mandrake Linux
8.x). If you do not currently have GCC installed, you can download it by visiting the
GNU website at http.//gcc.gnu.org.

To check for the existence and version of GCC, enter the command shown in Example
2-2.

Example 2-2. Verifying GCC

$ gecec --version
2.95.3

GNU zip and tar

GNU zip is also called gzip. GNU zip is a compression utility that can compress as well
as decompress files. All compressed, or zipped, files made with gzip have a .gz
extension. You can test for the existence of the gzip program with the gzip --version
command.

In addition to gzip, you will require a copy of far, a utility used to group several files
and directories into a single archive, as well as to unpack these archives onto the
filesystem. An archived tar output file will typically contain a .zar extension. Files that
are both archived by 7ar and compressed by gzip often have a .tar.gz compound
extension, as is the case with the included PostgreSQL source distribution. You can test
for tar with the far --version command.

Example 2-3. Verifying gzip and tar

$ gzip --version

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

gzip 1.3

(1999-12-21)

Copyright 1999 Free Software Foundation

Copyright 1992-1993 Jean-loup Gailly

This program comes with ABSOLUTELY NO WARRANTY.

You may redistribute copies of this program

under the terms of the GNU General Public License.

For more information about these matters, see the file named COPYING.
Compilation options:

DIRENT UTIME STDC HEADERS HAVE UNISTD H HAVE MEMORY H HAVE STRING H
Written by Jean-loup Gailly.

$ tar --version

tar (GNU tar) 1.13.17

Copyright 2000 Free Software Foundation, Inc.

This program comes with NO WARRANTY, to the extent permitted by law.

You may redistribute it under the terms of the GNU General Public License;
see the file named COPYING for details.

Written by John Gilmore and Jay Fenlason.

Optional Packages

The following are some optional packages that you may want to have installed:

GNU Readline library

The GNU Readline library greatly increases the usability of psql, the standard
PostgreSQL command-line console client. It adds all of the standard functionality of the
GNU Readline library to the psq/ command line, such as being able to easily modify,
edit, and retrieve command-history information with the arrow keys and the ability to
search the command history (also known as a reverse-i-search). If the Readline library
is already installed on your system, the configuration process should automatically
compile readline support with psql.

Note: You may not need this package if you have NetBSD, as NetBSD has
a libedit library, which provides Readline compatibility.

OpenSSL

OpenSSL is an Open Source implementation of the SSL/TLS protocols. OpenSSL is
commonly used with utilities such as OpenSSH and Apache-SSL. PostgreSQL can
make use of OpenSSL for encrypted connectivity between the psq/ client application
and the PostgreSQL backend. You may also want to consider OpenSSL if you wish to
use Stunnel. More information on OpenSSL is located at Attp://www.openssl.org.
Installing and configuring Stunnel for use with PostgreSQL is discussed in Chapter 8.

Tcl/Tk

Tcl/Tk is a combination programming language and graphical toolkit. Although we
don't cover the use of Tcl with PostgreSQL, we do cover the use of PgAccess, which is
written in Tcl. If you wish to utilize the PgAccess application you will need to install the
Tcl/Tk software. The website for Tcl/Tk is http://tcl.activestate.com.

Ant/JDK

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The JDK is the Java Development Kit. It is required for Java development; hence, it is
required by PostgreSQL if you wish to enable JDBC support. Ant is a Java-based build
tool (somewhat like gmake) that is also required for JDBC support. The JDK can be
downloaded from Attp://java.sun.com/j2se/index.html, and Ant can be downloaded from
http://jakarta.apache.org/ant/index.html.

Disk Space

PostgreSQL does not require the extensive use of disk resources. In fact, in comparison to
products such as Oracle, PostgreSQL could be considered fat free. However, PostgreSQL is a

database, and as with any database, the requirements will grow as you continue to use
PostgreSQL.

On an average Linux machine, you will need approximately 50 MB of hard-drive space to
unpack the source and another 60 MB of hard drive space to compile the source. If you choose
to run the regression tests, you will need an additional 30 MB. Depending on the configuration
options you choose, PostgreSQL can take anywhere from 8 to 15 MB of hard drive space once
installed.

Note: Remember that PostgreSQL’s space requirements will grow as you use the
system! Be sure to plan ahead for the amount of data you will be storing.

Trying to install on a system lacking in disk space is potentially dangerous! Before installing
PostgreSQL, we recommend that you check your filesystem to be sure you have enough disk
space in your intended installation partition (e.g., /usr/local). If you have a GNU-based
system, the df command should be at your disposal. Example 2-4 checks for free disk space,
reported in 1k blocks.

Example 2-4. Verifying disk space

$ df -k

Filesystem lk-blocks Used Available Use% Mounted on

/dev/hdal 2355984 932660 1303644 42% /

/dev/hdbl 4142800 2133160 1799192 54% /home

/dev/hdaé 1541680 272540 1190828 19% /usr/local

Prev Home Next
Where to Proceed from Here Up 10 Steps to Installing

PostgreSQL

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev Next

Chapter 4. Using SQL with PostgreSQL

Table of Contents

Introduction to psqgl
Using Tables
1ding T th INSERT and COPY

In this chapter we continue to discuss SQL, this time with a practical focus. We'll address
creating tables, populating tables with data, and managing that data via SQL statements.

Like most network-capable database systems, PostgreSQL fits into a client-server paradigm.
The heart of PostgreSQL is the server backend, or the postmaster process. It is called a
"backend" because it is not meant to directly interface with a user; rather, it can be connected
to with a variety of clients.

When you start the PostgreSQL service, the postmaster process starts running in the
background, listening to a specific TCP/IP port for connections from clients. Unless explicitly
configured, postmaster will bind to, and listen on, port 5432.

There are several interfaces available through which clients may connect to the postmaster
process. The examples in this book use psq/, the most portable and readily accessible client
distributed with PostgreSQL.

This chapter covers psg/ basics, how to create and use tables, and how to retrieve and manage
data within those tables. It also addresses SQL sub-queries and views.

Introduction to psql

The psql client is a command-line client distributed with PostgreSQL. It is often called the
interactive monitor or interactive terminal. With psql, you get a simple yet powerful tool with
which you can directly interface with the PostgreSQL server, and thereby begin exploring
SQL.

Starting psql

Before starting psql, be sure that you have either copied the psg/ binary into a path in your
system paTH variable (e.g., /usr/bin), or that you have placed the PostgreSQL binary path (e.g.,
/usr/local/pgsql/bin) within your list of paths in your paTH environment variable (as shown in

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Chapter 2).

How you set the appropriate paTh variable will depend on your system shell. An example in
either bash or ksh might read:

$ export PATH=$PATH:/usr/local/pgsql/bin

An example in either csh or tcsh might read:

$ set path=($path /usr/local/pgsql/bin)

Example 4-1. Setting system path for psql

[user@host user]$ psql

bash: psgl: command not found

[user@host user]$ echo $PATH
/bin:/usr/bin:/usr/local/bin:/usr/bin/X11:/usr/X11R6/bin
[user@host user]$ export PATH=$PATH:/usr/local/pgsql/bin
[user@host user]$ psql testdb

Welcome to psgl, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\g to quit

testdb=+#
Note that Example 4-1 takes place within a bash shell.

Once you have appropriately set your paTh variable, you should be able to type psqg/, along
with a database name, to start up the PostgreSQL interactive terminal.

Warning

Shell environment variables are erased after you have logged out. If you wish for your
changes to the paTH variable to be retained upon logging in, you need to enter the appropriate
paTH declaration into your shell-specific start-up scripts (e.g., ~/.bash_ profile).

Introduction to psql Syntax

Upon starting psq/, you are greeted with a brief synopsis of four essential psql slash
commands : \n for SQL help, \ > for help on psq/-specific commands, \ g for executing queries
and \q for actually exiting psq/ once you are done.

Every psqgl-specific command is prefixed by a backslash; hence the term "slash command"
used earlier. For a complete list of slash commands and a brief description their functions, type
\ 2 into the psq/ command line, and press enter.

Example 4-2. Listing psql slash commands

booktown=# \?

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

\a toggle between unaligned and aligned mode
\c[onnect] [dbname|- [user]]
connect to new database (currently 'booktown')
\C <title> table title
\copy ... perform SQL COPY with data stream to the client machine
\copyright show PostgreSQL usage and distribution terms
\d <table> describe table (or view, index, sequence)
\d{tl|ils|v} list tables/indices/sequences/views
\d{plS|1l} list permissions/system tables/lobjects
\da list aggregates
\dd [object] list comment for table, type, function, or operator
\df list functions
\do list operators
\dT list data types
\e [file] edit the current query buffer or [file] with external editor
\echo <text> write text to stdout
\encoding <encoding> set client encoding
\f <sep> change field separator
\g [file] send query to backend (and results in [file] or |pipe)
\h [cmd] help on syntax of sgl commands, * for all commands
\H toggle HTML mode (currently off)
\1 <file> read and execute queries from <file>
\1 list all databases

\lo export, \lo import, \lo list, \lo unlink
large object operations

\o [file] send all query results to [file], or |pipe

\p show the content of the current query buffer

\pset <opt> set table output <opt> = {format|border|expanded]|fieldsep]|
null |recordsep|tuples only|title|tableattr|pager}

\gq quit psql

\gecho <text> write text to query output stream (see \o)

\r reset (clear) the query buffer

\s [file] print history or save it in [file]

\set <var> <value> set internal variable

\t show only rows (currently off)

\T <tags> HTML table tags

\unset <var> unset (delete) internal variable

\w <file> write current query buffer to a <file>

\x toggle expanded output (currently off)

\z list table access permissions

\! [cmd] shell escape or command

Executing Queries

Entering and executing queries within psq/ can be done two different ways. When using the
client in interactive mode, the normal method is to directly enter queries into the prompt (i.e.,
standard input, or stdin). However, through the use of psq/'s \ i slash command, you can
have psgl read and interpret a file on your local filesystem as the query data.

Entering queries at the psql prompt

To enter queries directly into the prompt, open psg/ and make sure you are connected to the
correct database (and logged in as the correct user). You will be presented with a prompt that,
by default, is set to display the name of the database you are currently connected to. The
prompt will look like this: psgl:

testdb=#

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To pass SQL statements to PostgreSQL, simply type them into the prompt. Anything you type
(barring a slash command) will be queued until you terminate the query with a semicolon.
This is the case even if you start a new line of type, thus allowing you to spread query
statements across multiple lines. Examine Example 4-3 to see how this is done.

Example 4-3. Entering statements into psql

testdb=# SELECT * FROM employees
testdb-# WHERE firstname = 'Michael’;

The query entered in Example 4-3 will return a table that consists of all employees whose first
name is Michael. The query could be broken up over multiple lines to improve readability, and
psql would not send it to the backend until the terminating semicolon was sent. The prompt
will show the end-character of a previous line if the character requires a closing character,
such as a parenthesis or a quote (this is not shown in the example). If you were to issue a
CREATE TABLE command to start a statement, and then hit enter to begin a new line for
readability purposes, you would see a prompt similar to the one displayed in Example 4-4.

Example 4-4. Leaving end-characters open

testdb=# CREATE TABLE employees (
testdb (#

At this point you could continue the statement. The psg/ prompt is informing you of the open
parenthesis by inserting an open parenthesis symbol into the prompt.

Editing the query buffer

Use the \e command to edit the current query buffer with the editor that your p1Tor
environment variable is set to. Doing so can be very useful when entering queries and
statements in psq/, as you can easily view and modify all lines of your query or statement
before it is committed. Example 4-5 shows how to set the Ep1ToRr variable. The vi editor will
be used if Ep1TOR is not set.

Example 4-5. Setting the EDITOR variable

S set EDITOR='joe'
$ export EDITOR

You can also use this command to save your current buffer as a file. Issue the \e command to
enter editing mode. This will open your editor and load the buffer as if it were a file. Complete
whatever work you wish to do with the buffer, then use your editor's save function to save the
buffer and return to psq/. To save the query as a normal file, use your editor's save-as function
and save it as a file other than the .fmp created by \e.

Prev Home Next
Tables in PostgreSQL Up Using Tables

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev Next

Chapter 5. Operators and Functions

Table of Contents
Operators

Function

This chapter expands on the operators and functions available to PostgreSQL. These character
symbols and identifiers allow you to flexibly modify and compare results within SQL
statements. The results of these operations can be used in a variety of ways, from updating
existing row data, to constraining query results to only rows matching particular conditions.

PostgreSQL supports the usual variety of standard SQL operators and functions as defined by
the ANSI/ISO SQL standards, such as mathematical operators, basic text formatting functions,
and date and time value extraction. PostgreSQL also comes with a rich set of custom
PostgreSQL extensions, such as regular expression comparison operators, and the flexible

to char () text conversion function.

Take note that these sections describe the native operators and functions available to
PostgreSQL. An excellent feature of PostgreSQL is its extensibility in this area. Once you
have a solid understanding of operators and functions, you may be interested in developing
your own. These techniques are described in Chapter 7.

Operators

In Chapter 3, operators are defined syntactically as tokens that are used to perform operations
on values (e.g., constants, or identifiers), and return the results of that operation. In addition to
these syntactic character symbols, there are some SQL keywords that are considered operators
due to their effect on values in a SQL statement. Throughout this section, both these symbols
and keywords will be referred to as operators.

The function of each operator is highly dependent on its context. Applications of operators
range from performing mathematical operations and concatenating character strings, to
performing a wide variety of comparisons yielding Boolean results. This section describes the
general usage of operators in SQL, with successive sections on the following families of
operators:

e Character string
e Numeric
e Logical

Note: For an up-to-date and complete list of PostgreSQL supported operators,
you can use psql's \do slash command to view a list of available operators.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Understand that many of the listed operators are PostgreSQL-specific, and
therefore may not exist in other SQL-capable databases implementations.

Following the discussions of the various types of operators, you'll find information on dealing
with nurL values in expressions, and on the order in which operators are evaluated.

Using Operators

Operators operate on either a single value or a pair of values. The majority of operators
operate on two values, with the operator placed between the values it is to operate upon (e.g.,
a - b). Operators that affect only one value are called unary operators, and either precede or
follow the value they affect (e.g., the @ operator preceding a value is a unary operator
indicating the absolute value).

Many operators, while invoked with the same keyword or character symbol, will have
different effects depending on the data types to which they are applied. Further, operators will
not always have a relevant use to every data type (see Chapter 3 for more information about
what data types are available to PostgreSQL).

For example, you can use the addition operator (+) to add two integer values together, but you
cannot use it to add an integer to a text type. This is an undefined (and therefore ambiguous
and disallowed) use of the operator. The operator character itself (+, in this case) will still be
recognized, but you will receive an error such as the one shown in Example 5-2 if you try to
misuse an operator:

Consider the Book Town authors table, which correlates author's names with numeric
identifiers.

Table "authors"

Attribute | Type | Modifier
____________ +_________+__________
id | integer | not null
last name | text |
first name | text |

Index: authors pkey

Two identifiers in this table are the columns id, and 1ast_name, which are types integer (a
4-byte integer) and text, respectively. Since the id column is type integer, it may be used
with a mathematical operator along with another numeric value.

Example 5-1 demonstrates correct usage of the addition (+) operator.

Example 5-1. Correct operator usage

booktown=# SELECT id + 1 AS id plus_one, last name
booktown-# FROM authors
booktown-# ORDER BY id DESC LIMIT 5;

id plus_one last name

\
_____________ +______________
25042 | Bianco
15991 | Bourgeois
7807 | Christiansen
7806 | Lutz
4157 | King

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Notice the result of trying to add incompatible types in Example 5-2.

Example 5-2. Incorrect operator usage

booktown=# SELECT id + last_name AS mistake

booktown-# FROM authors;

ERROR: Unable to identify an operator '+' for types 'int4' and 'text'
You will have to retype this query using an explicit cast

Fortunately, as you can see in Example 5-2, PostgreSQL's operator-misuse error messages
supply a reason for failure, rather than blindly failing. These can be helpful in determining the
next step in developing your statement, in order to make it a valid query.

Character String Operators

PostgreSQL contains a comprehensive set of character string operators, from simple text
concatenation and string comparison, to a strong set of regular expression matching. Character
string operators are valid upon values of types char, varchar, and PostgreSQL's own text

type.

The following sections describe the basic comparison and concatenation operators, as well as
the implementation of case-sensitive and case-insensitive regular expression operators.

Basic comparison

Each of the basic character string comparison and concatenation operators supported by
PostgreSQL are listed in Table 5-1.

Note: Note that the 11xe and 1n.1kE keywords, which call to the 11 ke () function,

are sometimes referred to as string comparison operators. These keywords are
covered in the Section called Functions".

Table 5-1. Basic Character String Operators

Operator ||Usage HDescription
= 'string' = 'comparison' A comparison returning true if
string matches comparison
identically
b= 'string' != 'comparison' A comparison returning true if

string does not match
comparison identically

<> ||'Stfin9' <> 'comparison' HIdentical to the ! = operator

< 'string' < 'comparison' A comparison returning true if
string should be sorted
alphabetically before

comparison

<= 'string' <= 'comparison' A comparison returning true if
string should be sorted

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

alphabetically before
comparison, or if the values are
identical

> ‘string' > 'comparison' A comparison returning true if
string should be sorted
alphabetically after comparison

>= 'string' >= 'comparison' A comparison returning true if
string should be sorted
alphabetically after comparison,
or if the values are identical

Each of the string comparison operators returns a Boolean result of either true or false. The
alphabetical sorting referred to by Table 5-1 compares each sequential character in a string,
determining if one character is considered 'greater than' or 'less than' the other. If the leading
characters in two strings are at all identical, each character is checked from left to right until
two different characters are found for comparison. In this sorting scheme, characters are
determined to be higher than one another based on their ASCII value, as demonstrated in the
following example:

booktown=# SELECT letter,

booktown-# ascii (letter)
booktown-# FROM text sorting
booktown-# ORDER BY letter ASC;
letter | ascii

________ +_______

0 | 48

1 | 49

2 | 50

3 | 51

A | 65

B | 66

C | 67

D | 68

a | 97

b | 98

c | 99

d | 100

(12 rows)

If you are unsure of how a character will be sorted, you can use the ascii () function to
determine the ASCII value of the character. This function is described further in the Section
called Functions." Example 5-3 illustrates a comparative check on the books table, and returns
all titles whose first letter would be sorted before the letter D.

Example 5-3. Comparing strings

booktown=# SELECT title FROM books
booktown-# WHERE substr(title, 1, 1) < 'D';

2001: A Space Odyssey
Bartholomew and the Oobleck
(2 rows)

String concatenation

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The text concatenation operator (| |) is an invaluable tool for formatting output results. Like
all operators, it may be used anywhere a constant value is allowed in a SQL statement. Values
may be repeatedly concatenated in a single statement by simply appending the | | operator
after each appended string constant or identifier.

As an example, it might be used in the weeRE clause in order to constrain rows by comparing
against a dynamically generated character string. Example 5-4 demonstrates how to use this
operator.

Example 5-4. Concatenating strings

booktown=# SELECT 'The Title: ' || title || ', by ' ||

booktown-# first name || ' ' || last_name AS book_info
booktown-# FROM books NATURAL JOIN authors AS a (author_id)
booktown-# LIMIT 3;

book info

The Title: The Shining, by Stephen King

The Title: Dune, by Frank Herbert

The Title: 2001: A Space Odyssey, by Arthur C. Clarke
(3 rows)

Regular expression matching operators

For times when normal equivalence comparisons are inadequate, PostgreSQL has several
operators designed to perform pattern matching against regular expressions. A regular
expression is similar to any other string to be matched against, with the exception that some
characters (such as the square braces, pipe, and backslash) have special meaning in a
comparison. If you have used UNIX programs such as sed, grep, or perl, you may already be
familiar with this kind of syntax.

Note: For more detailed information on regular expressions in general, refer to
O'Reilly's Mastering Regular Expressions, by Jeffrey E. F. Friedl.

When a value is compared against a regular expression, the expression itself (or regex) may
match both literal character sequences, as well as several variable character sequences. Both
literal and variable sequences may be specified throughout the expression. Example 5-5
illustrates an example of such a sequence. It searches the Book Town authors table for names
beginning with either4 or 7.

Example 5-5. An example regular expression

booktown=# SELECT first name, last name

booktown-# FROM authors

booktown—# WHERE first name ~ '~A|"T';
first name last name

\
_______________ +______________
Ariel | Denham
Tom | Christiansen
Arthur C. | Clarke
Andrew | Brookins
Theodor Seuss | Geisel
(5 rows)

The ~ symbol is the regular expression operator, within the wiere clause, and the regular

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

expression sequence itself in Example 5-5 is “4|"T. The special characters in this sequence are
the caret (~), and the pipe (1), while the literal characters are 4 and 7. The special characters
used in regular expressions are explained in detail later in this section.

The most important syntactic difference between the use of the 1ixe () function and regular
expression operators is that 1ike () uses wild-card symbols (e.g., ¢) at the beginning and end
of its expression in order to match a substring. In contrast, (with the beginning and end-line
symbols found in Table 5-3) regular expression operators will implicitly look for the regular
expression sequence anywhere in the compared character string unless otherwise instructed.

[able 5-2 lists the regular expression operators. These operators compare a text value (either
an identifier or a constant) to a regular expression. Each operator provides a Boolean result,
depending on the nature of the operator.

Table 5-2. Regular expression comparison operators

Operator HUsage HDescription

~ 'string' ~ 'regex' A regular expression comparison,
yielding true if the expression
matches

I~ 'string' !~ 'regex' A regular expression comparison,
yielding true if the expression does
not match

'string' ~* 'regex' A case-insensitive regular
expression, yielding true if the
expression matches

I~* 'string' !~* 'regex' not equal to regular expression,
case insensitive

The special characters available to a regular expression are listed in Table 5-3. These are the
characters which may be used in a regular expression string to represent special meaning.

Table 5-3. Regular expression symbols

|Symbol(s) ||Usage HDescription ‘
A Nexpression Matches the beginning (*) of]
the character string
$ expression$ Matches the end (§) of the

character string

|Matches any single character ‘

[] [abc] Matches any single character

which is between brackets
(e.g.,a, b,orc)
[[Mabc] Matches any single character

not between brackets,
following caret (e.g., not a, b,
or ¢)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[-] [a-z] Matches any character which
is between the range of
characters between brackets
and separated by the dash
(e.g., within a through z)

[™-] [fa-z] Matches any characters not
between the range of
characters between brackets
and separated by the dash
(e.g., not within g through z)

? a? Matches zero or one
instances of the character (or
regex sequence) preceding it

* a* Matches zero or more
instances of the character (or
regex sequence) preceding it

+ at Matches one or more
instances of the character (or
regex sequence) preceding it

exprl| expr2 Matches character sequences
to the left or right of it (e.g.,
either expri, or expr2)

() (expri) expr2 Explicitly groups
expressions, to clarify
precedence of special
character symbols

Note: Note that in order to use a literal version of any of the characters in Table
5-3, they must be prefixed with rwo backslashes (e.g., \\ s represents a literal
dollar sign).

A common use of regular expressions is to search for a literal substring within a larger string.
This can be achieved either with the ~ operator, if case is important, or with the ~* operator if
the comparison should be case-insensitive. These operators are each demonstrated in Example
5-6.

Example 5-6. A Simple Regular Expression Comparison

booktown=# SELECT title FROM books
booktown-# WHERE title ~ 'The'’';
title

The Shining

The Cat in the Hat

The Velveteen Rabbit

The Tell-Tale Heart

(4 rows)

booktown=# SELECT title FROM books
booktown-# WHERE title ~* 'The';

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The Shining

The Cat in the Hat
Bartholomew and the Oobleck
Franklin in the Dark

The Velveteen Rabbit

The Tell-Tale Heart

(6 rows)

As you can see in Example 5-6, two more rows are returned when using the ~* operator, as it
matches not just "the" sequence, but modification of case on the same sequence (including e,
tHe, ThE, and so on).

The same regular expression sequence can be modified to use the * symbol, to match only the
character string 7he when it is at the beginning of the comparison string, as shown in Example
5-7. Additionally, the . * sequence is then appended, to indicate any number of characters may
match until the next following grouped expression. In this case, the . * sequence is followed by
a parenthetically grouped pair of strings (rabbit and heart), which are separated by the |
symbol, indicating that either of the strings will be considered a match.

Example 5-7. A more involved regular expression comparison

booktown=# SELECT title FROM books
booktown-# WHERE title ~* '~The.* (rabbit|heart)';
title

The Velveteen Rabbit
The Tell-Tale Heart
(2 rows)

In Example 5-7, the results should fairly clearly indicate the effect of the regular expression
comparison. Translated into English, the expression “The. *(rabbit|heart) states that a match
will be found only if the compared string begins with the character sequence 7/e and, any
amount of any characters thereafter, contain either the character sequence rabbit, or heart. The
use of the ~* operator (rather than just the ~ operator) makes the comparison case-insensitive.

Example 5-8 executes an even more complicated regular expression comparison.

Example 5-8. A Complicated Regular Expression Comparison

booktown=# SELECT title FROM books
booktown-# WHERE title ~* '(~t.*[ri]t) | (ing$|une$)';
title

The Shining

Dune

The Velveteen Rabbit
The Tell-Tale Heart
(4 rows)

booktown=#

The regular expression used in Example 5-8 is a good example of how regular expressions can
be intimidating! Breaking it down an element at a time, you can see that there are two
parenthetically grouped expressions, separated by a | symbol. This means that if either of these
expressions are found to match the title, the comparison will be considered a match.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Breaking it down further, you can see that the expression to the left of the | symbol consists of,
from left to right: a caret (*) followed by the character ¢, a period (.) followed by an asterisk
(*), and a pair of square brackets (/]) enclosing the characters » and i, followed by the
character 7. Translated into English, this sub-expression essentially says that in order to match,
the compared string must begin with the letter ¢, and be followed by a sequence of zero or
more characters until either the letter 7, or i is found, which must be followed immediately by
the letter #. If any of these conditions is not found, the comparison will not be considered a
match.

The expression to the right of the | symbol is a bit simpler, consisting of two character string
sequences (ing and une), each followed by the § character, and separated by another | symbol.
This sub-expression, translated into English, describes a match as a relationship in which
either ends with the value ing, or une. If either of these are found, the expression is considered
a match, because of the | symbol.

Numeric Operators

PostgreSQL's numeric operator support can be divided into three general groups:
Mathematical operators

Mathematical operators affect one or two values, perform a mathematical operation, and
return a value of a numeric data type.

Numeric comparison operators

Numeric comparison operators draw a conclusion based on two numeric values (such as
whether one is larger than the other) and returns a value of type poolean, set to either
true or false.

Binary (or bit string) operators

Binary, or bit string, operators manipulate numeric values at the bit level of zeroes and
ones. The following sections address each of these operator groups.

Mathematical operators

Mathematical operators can be used in the target list, in the weerE clause of a sELECT
statement, or anywhere else a numeric result may be appropriate. This sometimes will include
the orbER BY clause, a so1n qualifier, or a crour BY clause.

Table 5-4 describes each of the mathematical operators available in PostgreSQL, along with
example usage.

Table 5-4. Mathematical operators

|Operat0r‘|Usage||Descripti0n |
[+ la + pllAddition of |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

numeric
quantities a
and b

- a - b|Subtraction of]
numeric
quantity b
from a

* a * b|[Multiplication
of numeric
quantities a
and b

/ a / b||Division of
numeric

quantity a by
b

oe
\)

o\©
o

Modulus, or
remainder,
from dividing
a by b

" a ~ b|l[Exponential
operator, the
value of a to

the power of
b

I/ |/ a ||Square root
of a

1/ I'1/ a||Cube root of

a

! Ha ! ||Factorial of a

H t! a ||[Factorial
prefix,
factorial of a,
different only
in syntactic
placement
from !

¢ ¢ a ||Absolute
value of a

As an example of mathematical operators in the target list, the statement in Example 5-9 takes
the retail price for each book and divides the cost with the / operator in order to determine the
profit margin. This value is then typecast to a truncated numeric value with only two digits of
precision. Finally, the integer constant 1 is subtracted from the division result, to yield only the
percentage points over 100.

Example 5-9. Using Mathematical Operators

booktown=# SELECT isbn,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

booktown-# (retail / cost)::numeric(3, 2) - 1 AS margin
booktown-# FROM stock
booktown-# ORDER BY margin DESC
booktown-# LIMIT 4;
isbn | margin
____________ +________
0451457994 | 0.35
0760720002 | 0.33
0451198492 | 0.30
0441172717 | 0.29
(4 rows)

Notice that the column name is temporarily aliased to margin by using the as keyword.
Remember that the column name created by the as keyword is a temporary name, and used
only for the duration of the query.

Numeric comparison operators

Comparison operators are used to compare values of types such as integer or text to one
another, but they will always return a value of type boo1ean. These operators are most
commonly used in the wieRE clause, but may be used anywhere in a SQL statement where a
value of type boolean would be valid.

[able 5-5 shows the available comparison operators.

Table 5-5. Comparison operators

Operator HDescription

< Less-than, returns true if the value to the left is
smaller in quantity than the value to the right

> Greater-than, returns true if the value to the left is
greater in quantity than the value to the right

<= Less-than or equal-to, returns true if the value to
the left is smaller, or equal to, in quantity than the
value to the right

>= Greater-than or equal-to, returns true if the value
to the left is greater, or equal to, in quantity than
the value to the right

= Equal-to, returns true if the values to the left and
right of the operator are equivalent

<> 0r ! Not-equal, returns true if the values to the left and

right of the operator not equivalent

Note: The < > operator exists as an alias to the != operator for functional
compatibility with other SQL-capable database implementations. They are
effectively identical.

For an example of mathematical comparison operator usage, observe Example 5-10. The
query involved uses the <= operator first, to check if the retai1 value is less-than or equal-to
25. Subsequently, the ! = operator is employed with the anp keyword to ensure that only books
which are in stock (whose stock value are not equal to 0) are returned.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 5-10. Using comparison operators

booktown=# SELECT isbn, stock

booktown-# FROM stock
booktown-# WHERE retail <= 25
booktown—# AND stock '= 0;
isbn | stock

____________ +_______

0441172717 | 777

0590445065 | 10

0679803335 | 18

0760720002 | 28

0929605942 | 25

1885418035 | 77

(6 rows)

Numeric comparison keywords

The BeTweEN keyword (sometimes called an operator) allows you to check a value for
existence within a range of values. For instance, Example 5-11 shows a seLecT statement that
looks for books with cost between 10 and 17 dollars.

Example 5-11. Using BETWEEN

booktown=# SELECT isbn FROM stock
booktown-# WHERE cost BETWEEN 10 AND 17;
isbn

0394800753
0441172717
0451457994
(3 rows)

You can achieve the same output using the less-than-or-equal-to operator (<=) in conjunction
with the greater-than-or-equal-to (>=) operator. See Example 5-12.

Example 5-12. Operator equivalents to BETWEEN

booktown=# SELECT isbn FROM stock
booktown-# WHERE cost >= 10 AND cost <= 17;
isbn

0394800753
0441172717
0451457994
(3 rows)

The BeTwEEN syntax simply adds to the readability of an SQL statement. Since both the
keyword and operator forms are equally valid to PostgreSQL, it's mostly a matter of user
preference.

Binary operators

Binary operators perform bitwise operations on the literal bits of a bit string or integer. These
operators may affect integer values, or directly on bit string values. Each of PostgreSQL's
binary operators are described in Table 5-6.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Table 5-6. Bit-string operators

Operator HUsage HDescription

& a &b Binary AND between bit string values
of a and » (which may be provided as
integers)

al b Binary OR between bit string values
of a and » (which may be provided as
integers)

a# b Binary XOR between bit string values
of a and » (which may be provided as
integers)

~ ~ b Binary NOT, returns the inverted bit
string of b

|<< “b << n “Binary shifts b to the left by n bits ‘

|>> “b >> n “Binary shifts b to the right by n bits ‘

Example 5-13 demonstrates shifting a numeric value, and its equivalent bit string, two bits to
the right with the >> operator. It also demonstrates the use of the bittoint4 () function,

described in the Section called Functions."

Example 5-13. Shifting bit strings

booktown=# SELECT b'1000' >> 2 AS "8 shifted right",

booktown-# bittoint4 (b'1000' >> 2) AS integer,
booktown-# 8 >> 2 AS likewise;

8 shifted right | integer | likewise
_________________ +_________+__________

0010 | 2 | 2

(1 row)

Note: When shifting bit strings, the original length of the string does not change,
and any digits pushed either to the left or right of the bit string will be truncated.
When using s, |, or #, the bit strings operated on must be of equal length in order
to properly compare each bit on a one-to-one basis.

Logical Operators

The anp, or, and noT keywords are PostgreSQL's Boolean operators. They are commonly used
to join or invert conditions in a SQL statement, particularly in the waere clause and the saving

clause.

Table 5-7 illustrates the Boolean values returned for the anp, or, and noT keywords, with each
possible value for a Boolean field (true, false, or nuL1).

Table 5-7. The AND, OR, and NOT operators

la |[b |la AND b|la OR b|INOT a|[NOT b|

|true ”true “true ”true ”false”false

Itrue ”false”false ”true ”false”truel

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[true |[NULL |[NULL [[true [[false|vULL

|false”false”false ”false Htrue “true

[false|NULL [[false |[NULL [[true |vULL

INULL |[NULL |[NuLn |jnunn [[NULL [[NULL

Example 5-14 sequentially uses the or and an

p keywords in two queries to combine a pair of

conditions by which rows should be retrieved. In the first query, if a book has either a cost of
greater than thirty dollars, or is out of stock, its information will be returned. As you can see
from the result set, matching one or both of these conditions causes a row to be returned.

The second query in Example 5-14 uses the same conditions, but combines them with the anp
keyword. This results in a stricter condition, as both criteria must be met. As such, only one
row is returned, since only one book is found which both has a cost of greater than thirty

dollars, and is out of stock.

Example 5-14. Combining comparisons with Boolean operators

booktown=# SELECT isbn, cost, stock

booktown—# FROM stock

booktown-# WHERE cost > 30

booktown-# OR stock = 0;

isbn | cost | stock

____________ e
0394900014 | 23.00 | 0
044100590X | 36.00 | 89
0451198492 | 36.00 | 0
0451457994 | 17.00 | 0

(4 rows)

booktown=# SELECT isbn, cost, stock

booktown-# FROM stock
booktown-# WHERE cost > 30
booktown-# AND stock = 0;
isbn | cost | stock
____________ +_______+_______
0451198492 | 36.00 | 0
(1 row)

Using Operators with NULL

If a table has nurL values in it, a special pair of comparison operators that can be used to
include or omit nutL valued fields. You can check for fields set to nurL using the 1s nNULL

keyword phrase. In order to check for a non-n
phrase.

uLL value, use the 1s noT nunL keyword

Example 5-15 uses the 1s nurL keyword to check for authors whose first name column

value are set to NULL.

Example 5-15. Comparisons using IS NULL

booktown=# SELECT last name, first name

booktown—# FROM authors
booktown-# WHERE first name IS

NULL;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

last name | first name
___________ +____________
Geisel |

(1 row)

Examining Example 5-15 and Example 5-16, you might think that the syntax in the two
statements provided are identical. There is, however, a key difference.

Example 5-16. Comparisons equal to NULL

booktown=# SELECT last name, first name

booktown-# FROM authors

booktown-# WHERE first name = NULL;
last name | first name

_____ T~

Geisel |

(1 row)

PostgreSQL provides a translation from = nurL to 1s nurL, and likewise for the 1= nuLL
operation with 1s ~nor nurr. This is provided only for compatibility with existing client
applications (such as Microsoft Access).

When comparing a value to nuLL in an expression, be in the habit of using the 1s nuwt and 15
nvoT NULL keyword operators rather than the = or ! = math-style operators. While this
translation is provided for the sake of compatibility with other systems, it may be discontinued
in the future, as it is not a standard SQL procedure (and it is certainly not guaranteed to be a
portable procedure to other SQL-based database systems for the same reason).

Any as-yet undiscussed comparison operator used on a nurL value will return a nuzL value, as
nuLL will never be larger, smaller, or otherwise related to any non-vurt value. (See Example
5-17.) A direct query on the result of a comparison against a nur1 value will therefore return
NULL. You can think of a nur1 value as being a sort of SQL black hole, from which no
comparison (outside of 1s nuLL, and its special = translation) may return true, and to which
no values may be added, or concatenated.

Example 5-17. Using operators with NULL values

booktown=# \pset null *null* Null display is '*null*'.
booktown=# SELECT 5 > NULL;
?column?

booktown=# SELECT NULL IS NULL;
?column?

booktown=# SELECT NULL || 'Test’';
?column?

Operator Precedence

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When utilizing several operators in large expressions, it can be helpful to know in what order
PostgreSQL processes operators. It is not, as you might think, strictly from left to right. If not
properly understood, the order of execution can introduce potential for accidental side-effects,

such as those shown in Example 5-18.

Example 5-18. Operator precedence

booktown=# SELECT 60 + 12 * 5 AS "sixty plus twelve times five",
booktown-# 12 + 60 * 5 AS "twelve plus sixty times five";
sixty plus twelve times five | twelve plus sixty times five

(1 row)

As you can see by the two column values returned in Example 5-18, the use of several
operators without parentheses to enforce precedence can return very different results, despite
the same numbers being manipulated in only a slightly different order. In this example, the
multiplication is actually executed first (regardless of the fact that the addition sign (+)
precedes it sequentially, from left to right).

[able 5-8 lists, in order of PostgreSQL's execution from the top down, the precedence of each
group of operators.

Table 5-8. Operator precedence

|Operat0r ||Usage “Description |
[+ [value: :type [Explicit typecast |
|[] ||Value [index] “Array element index |
[[cable.column [Table and column name separator|
|_ ”—Value ||Unary minus ‘
= ”value ~ power ||Exponent ‘
* /% valuel * valueZ Multiplication, division, and
modulus

|+ _ ||Va luel + value2 ||Addition and subtraction ‘
[rs [value 1S boolean |Compares against true or false |

|ISNULL

”value ISNULL

||Compares against NULL

IS NOT NULL

value IS NOT NULL

Checks for va1ue inequivalent to
NULL

Other

Variable

Includes all other native and user-
defined character operators

IN

value IN set

Checks for membership of vaiue
in set

BETWEEN

value BETWEEN a AND b

Checks for va1ue in range
between values a and b

LIKE, ILIKE

string LIKE comparison

Checks for matching pattern

comparison in string

< > <= >=

”Valuel < valueZ2

||Quantity comparisons for less

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

equal to, and greater than or

H chan, greater than, less than or

equal to.

|: valuel = valueZ ||Equality comparison ‘
|NOT ||NOT value ||Logical NOT inversion ‘
|AND ||Valuel AND value2 ||Logical AND conjunction ‘
|OR ||Val uel OR valuez ||Logical OR conjunction ‘

Note: The operator precedence listed in Table 5-8 applies to user-defined

operators that have the same character sequence as built-in operators. For

example, if you define the plus symbol (+) operator for your own user-defined

data type, it has the same precedence as the built in plus (+) operator, regardless

of its function.
Prev Home Next

Further SQL Application Up Functions

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev Next

Preface

Table of Contents
Who Is the Intended Audience?
re of This Book
Platform and Version Used
What Is Included on the CD?
Acknowledgments
Comments and Questions
PostgreSQL is one of the most successful open source databases available. It is arguably also

the most advanced, with a wide range of features that challenge even many closed-source
databases.

This book is intended to be a practical guide to PostgreSQL v7.1.x, though most of the book
should also apply to earlier and future releases of PostgreSQL. The content is focused on
getting you comfortable with PostgreSQL in the most expedient fashion possible. Although
we will touch on some academic database subjects, such discussion will be kept brief. Our
core focus is to provide the reader with enough of an understanding of PostgreSQL to manage
a fully operational PostgreSQL database. Our hope is that by introducing this book to the
community we will provide a better understanding of PostgreSQL and its functionality.

Who Is the Intended Audience?

This book is for anyone interested in utilizing the PostgreSQL object-relational database-
management system (ORDBMS). The reader should be familiar with Linux- and UNIX-based
systems, but is not expected to be a database guru. Although the test operating system for this
book is Red Hat Linux, the tasks in this book that apply to Linux should apply to most UNIX
variants without much modification.

Prev Home Next
Practical PostgreSQL Structure of This Book

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Practical PostgreSQL
Prev Next

Chapter 13. LXP

Table of Contents

LXP (or mod_Ixp) is an Application Server designed as an Apache Module. LXP is used to
broker and dynamically format HTML content through a process called server-side inclusion.
This involves assembling HTML output from a variety of sources, which can include HTML
source files, XML files, or even data within a PostgreSQL database.

LXP's content inclusion is performed entirely on the server, ensuring the same output
regardless of the web browser. LXP is intended to behave more intuitively, seamlessly, and
comprehensively than other available content inclusion methods via its unique mark-up based
approach and native PostgreSQL connectivity.

LXP uses a unique form of programmatic mark-up tags, which are interpreted entirely on the
server and translated into standard HTML output before being sent to the client. While the
effects of these tags are programmatic in nature, they differ from a "scripting language" such
as PHP or Perl, by relying for their implementation on the same structural concepts as those
behind HTML and XML for their implementation.

One of the goals of LXP is to provide dyna