
Practical PostgreSQL
Prev Next

Appendix A. Multibyte Encoding Types
Table A-1 lists the various multibyte encoding types supported by PostgreSQL, as of version
7.1.x. These encoding types are only available if PostgreSQL was configured with the --
enable-multibyte flag (see Chapter 2). A database can be created with a default encoding type
if SQL_ASCII is not desired.

Table A-1. Multibyte Encoding Types

Encoding Type Integer Description
SQL_ASCII 0 Plain ASCII format
EUC_JP 1 Japanese Extended UNIX

Code
EUC_CN 2 Chinese Extended UNIX

Code
EUC_KR 3 Korean Extended UNIX

Code
EUC_TW 4 Taiwan Extended UNIX

Code
UNICODE 5 UTF-8 Unicode
MULE_INTERNAL 6 Mule internal type
LATIN1 7 ISO 8859-1 (English, with

some European languages)
LATIN2 8 ISO 8859-2 (English, with

some European languages)
LATIN3 9 ISO 8859-3 (English, with

some European languages)
LATIN4 10 ISO 8859-4 (English, with

some European languages)
LATIN5 11 ISO 8859-5 (English, with

some European languages)
KOI8 12 KOI8-R
WIN 13 Windows CP1251
ALT 14 Windows CP866

Prev Home Next
Appendixes Up Backend Options for postgres

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

Appendix A. Multibyte Encoding Types
Table A-1 lists the various multibyte encoding types supported by PostgreSQL, as of version
7.1.x. These encoding types are only available if PostgreSQL was configured with the --
enable-multibyte flag (see Chapter 2). A database can be created with a default encoding type
if SQL_ASCII is not desired.

Table A-1. Multibyte Encoding Types

Encoding Type Integer Description
SQL_ASCII 0 Plain ASCII format
EUC_JP 1 Japanese Extended UNIX

Code
EUC_CN 2 Chinese Extended UNIX

Code
EUC_KR 3 Korean Extended UNIX

Code
EUC_TW 4 Taiwan Extended UNIX

Code
UNICODE 5 UTF-8 Unicode
MULE_INTERNAL 6 Mule internal type
LATIN1 7 ISO 8859-1 (English, with

some European languages)
LATIN2 8 ISO 8859-2 (English, with

some European languages)
LATIN3 9 ISO 8859-3 (English, with

some European languages)
LATIN4 10 ISO 8859-4 (English, with

some European languages)
LATIN5 11 ISO 8859-5 (English, with

some European languages)
KOI8 12 KOI8-R
WIN 13 Windows CP1251
ALT 14 Windows CP866

Prev Home Next
Appendixes Up Backend Options for postgres

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

Appendix B. Backend Options for postgres
The postgres program is the actual backend server that processes SQL statements. It is
generally not called directly, but invoked through the multiuser postmaster process. It can be
helpful to know the options available to this program, however, as they can be called
indirectly through the postmaster 's -o  flag.

The following syntax diagram shows the options recognized by postgres:

 postgres [-A { 0 | 1 }] [-B buffers] [-c name=value] [-d debug-level]
 [-D datadir] [-e] [-E] [-f { s | i | n | m | h }] [-F]
 [-i] [-L] [-N] [-o file-name] [-O] [-P]
 [-s | -t { pa | pl | ex }] [-S sort_mem] [-W num] database

 postgres [-A { 0 | 1 }] [-B buffers] [-c name=value] [-d debug-level]
 [-D datadir] [-e] [-f { s | i | n | m | h }] [-F] [-i]
 [-L] [-o file-name] [-O] [-p database] [-P]
 [-s | -t { pa | pl | ex }] [-S sort_mem] [-v version] [-W num

-A { 0 | 1 }

The run-time assertion check parameter. This enables debugging, if the debugging
option was enabled during compilation of PostgreSQL. This parameter should only be
used by knowledgeable developers working on PostgreSQL.

-B buffers

The number of shared-memory disk buffers that postmaster will allocate for use by the
backend. By default, this is 64.

Note: The buffers value passed to -B must be at least twice the number
supplied for the -N parameter.

-c name=value

An arbitrary run-time configuration, setting name to value. Any configuration settings
found in the postgresql.conf file (within the database cluster's data directory) may be
over-ridden with this option.

-d debug_level

The debug level, which determines the amount of debugging output that will be logged
by the backend. The default is 0. With a higher the debug_level number, more output
will be generated. Values as high as 4 are reasonable for normal use, though this can log
a great deal of information.

Note: Unless the standard output and standard error streams from
postmaster are redirected to a file (e.g., from the shell, or with the -l option
to pg_ctl) all debugging information will be displayed to the controlling

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to pg_ctl) all debugging information will be displayed to the controlling
terminal session of the postmaster process.

-D datadir

The data directory of the intended database cluster. If this is not supplied, postmaster
will use either the value of the PGDATA environment variable, or the /data path off of the
path defined in the POSTGRESHOME environment variable. If neither environment variable
is set, the default compile-time directory is used (e.g., /usr/local/pgsql/data).

-e

The European date style parameter. This causes PostgreSQL to assume that dates such
as 3/2/2001 are day-first rather than month-first. It also causes PostgreSQL to display
the day before the month (e.g., dd/mm/yyyy) when displaying dates.

-E

The verbose echo parameter. Causes all passed statements to be output (e.g., to the
controlling terminal session, or to the server log).

-f { s | i | n | m | h }

The forbid parameter, which can forbid the use of certain scan and join methods. The
following options may follow the -f:

s

Forbids sequential scans

i

Forbids index scans

n

Forbids nested loops

m

Forbids merge joins

h

Forbids hash joins

-F

The fsync-disabling option. Using this increases performance at the risk of data
corruption in the event that the operating system or physical hardware crashes
unexpectedly. Be sure you know what you are doing before you use this parameter!

-i

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The -i parameter disables query execution, and causes PostgreSQL to only show the
plan tree.

-L

The lock-disabling parameter. This turns off the ability to lock in PostgreSQL.

-N

The -N parameter disables the use of a newline as a statement delimiter.

-O

The -O parameter allows system tables to be modified.

-p database

The postmaster parameter, indicating that this postgres instance was started by
postmaster connecting to database. This causes postgres to make different decisions
about memory management and file descriptors.

-P

The -P parameter causes PostgreSQL to ignore system indices when scanning and
updating system tuples. This option is required by the REINDEX command when
indexing system tables.

-s

The statistics parameter. This causes PostgreSQL to display processing time and other
statistics after each query, which can be helpful in benchmark tests, or for tuning the
amount of buffers you make available with the -B parameter.

-S sort_mem

The amount of memory to be allocated for internal sorting and hashes before falling
back on temporary hard disk files. sort_mem is a numeric value, in kilobytes, and
defaults to 512. For complex statements, several sorts or hashes may run
simultaneously; each one will be allocated up to the value specified by sort_mem before
using temporary disk space.

-t { pa | pl | e }

The timing statistics parameter, specific to only one of the major postgres components.
The following are the valid options that may follow the -t parameter:

pa

Times the parser component

pl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Times the planner component

e

Times the executor component

The -t and -s options are mutually exclusive.

-v version

The protocol version parameter. This option sets the internal version number of the
frontend-to-backend protocol.

-W num

The wait parameter. Specifying this value causes postgres to wait for num seconds
before starting up, allowing a developer time to attach a debugger.

Prev Home Next
Multibyte Encoding Types Up Binary COPY Format

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

Appendix C. Binary COPY Format
Table of Contents
The Header
Tuples
Trailer

In addition to saving data in text format, PostgreSQL can also save COPY output in its own
binary format. This is the format compiled programs are stored in, which is not readable by
normal text editors.

The Header
The PostgreSQL binary file header contains 24 bytes of fixed fields, and a variable length
header extension area. The fixed fields are as follows:

Signature Field

A 12-byte sequence, which is literally: PGBCOPY\n\377\r\n\0

The signature is used to identify files that are malformed through a non-8-bit-clean
transfer; it is changed by dropped NULL values, parity changes, newline translation
filters, and dropped high bits.

Integer Layout Field

A 32-byte integer constant (0x01020304) in the source's byte order. This is to assist an
application reading this file format in preventing byte-flipping of multi-byte values.

Flags Field

A 32-bit integer, which is the main storage point for file formatting information. Within
this field, bits are ordered from 0 (least significant byte, or LSB) to 31 (most significant
byte, or MSB). To hold backwards-compatibility formatting information, bits 0 through
15 are reserved. Bits 16 through 31 are used to flag critical file formatting information.
As of 7.1.x, the only bit here that has a definition is bit 16.

BIT 16

If bit 16 is set to 1, object IDs are included in the file.

If bit 16 is set to 0, object IDs are not included.

Header Extension Length Field

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A 32-bit integer describing the length, in bytes, of the remainder of the header (not
including the header extension length field). In earlier versions, this was set to zero, and
the first tuple immediately followed.

Prev Home Next
Backend Options for postgres Up Tuples

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev

Appendix D. Internal psql Variables
The psql client uses a variety of internal variables as special system variables to control
aspects of the program. A few of the most notable variables are PROMPT1, PROMPT2, and
PROMPT3, which store the prompts for the program. While running the program you can set and
unset these variables at will using the \set and \unset commands. A list of all the special
variables psql uses follows:

DBNAME

This variable holds the name of the database psql is currently connected to. This
variable is set whenever psql connects to a database, either when starting up or when
instructed to connect during program operation.

ECHO

This variable controls what gets displayed on the screen when executing commands
from a file. To display all contents of a script file on the screen as it is parsed, set this
variable to all. To display all queries as they are sent to the backend process, set this
variable to queries.

ECHO_HIDDEN

This variable, when set to true, displays the queries used by slash commands from
within psql. Such queries will be displayed before they are sent to the backend. To show
the queries for slash commands without actually executing them, set ECHO_HIDDEN to
noexec.

ENCODING

This variable holds the database's multibyte encoding scheme. You must have compiled
PostgreSQL to support multibyte encoding; if you did not, this variable will contain
SQL_ASCII.

HISTCONTROL

This variable sets methods of controlling the psql history buffer. Set this variable to
ignorespace if you wish for the history to ignore all lines entered that were preceded by
spaces. Set it to ignoredups to ignore any entries that matched the previous line entered.
To ignore both lines beginning with spaces and lines that duplicate, use the value
ignoreboth.

HISTSIZE

This variable sets the length of the history buffer; the default length is 500 lines.

HOST

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HOST

This variable holds the hostname of the database server you are currently connected to.
This value is set during startup and whenever a database connection occurs.

IGNOREEOF

This variable controls how psql handles EOF characters. Normally, when psql receives
an EOF character the application terminates. This character is usually generated by
pressing CTRL-D on the keyboard. Setting this option to any non-numeric value will
inform psql that you wish to have the EOF character ignored until it is repeated more
than 10 times. You may alternatively set this variable to a specific number; if you do so,
psql will ignore that many EOF characters before terminating.

LASTOID

This variable contains the last object identifier (OID) set from an INSERT command, or
lo_import() function call.

LO_TRANSACTION

This variable sets the action psql will take during large object operations. It may be set
to one of the following values:

rollback

This causes any transaction you are currently working within to be rolled back if
you attempt an operation on a large object (or a large object import). For
maximum efficiency, large object operations should usually be placed within their
own transactions; for this reason, LO_TRANSACTION defaults to rollback.

commit

This causes psql to commit any transaction you were in before you issued a large
object operation.

nothing

This causes psql to execute the large object operation within the current
transaction.

ON_ERROR_STOP

This variable, when set (to any value), causes psql to terminate the processing of a script
that encounters an error (such as incorrect SQL syntax or misuse of a slash command),
instead of continuing to process it. By default, scripts that have encountered errors
continue to be processed by psql.

PORT

This variable holds the port number that you are currently connected to. This value is set
automatically both when you start the program and when you manually connect to a
database from the psql prompt.

PROMPT1, PROMPT2, PROMPT3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PROMPT1, PROMPT2, PROMPT3

These variables hold character strings that directly control the prompt's structure within
psql. Setting these will change the way each prompt is displayed within the program.
See Chapter 6, for information on how to set these variables.

SINGLELINE

This variable, when set (to any value), causes SQL input to psql to be executed when a
newline is reached, without the need for a semi-colon or \g terminator. This mode can
also be set by the command line option -S.

SINGLESTEP

This variable, when set (to any value), causes each statement to require confirmation
before being executed.

USER

This variable holds the PostgreSQL username you are connected to the database with.

Prev Home
Trailer Up

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL

John Worsley

Command Prompt, Inc.

Joshua Drake

Command Prompt, Inc.

Edited by

Andrew Brookins

Michael Holloway

Copyright © 2001 by Commandprompt, Inc

Copyright (c) 2001 by Command Prompt, Inc. This material may be distributed only subject to
the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest

version is presently available at http://www.opencontent.org/openpub/).

'Distribution of substantively modified versions of this document is prohibited without the
explicit permission of the copyright holder.' to the license reference or copy.

'Distribution of the work or derivative of the work in any standard (paper) book form is
prohibited unless prior permission is obtained from the copyright holder.' to the license

reference or copy.

Although every reasonable effort has been made to incorporate accurate and useful
information into this book, the copyright holders make no representation about the suitability

of this book or the information therein for any purpose. It is provided "as is" without expressed
or implied warranty.

Table of Contents
Preface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Who Is the Intended Audience?
Structure of This Book
Platform and Version Used
What Is Included on the CD?
Conventions Used in This Book
Acknowledgments
Comments and Questions

I. Introduction and Installation

1. What is PostgreSQL?

Open Source Free Version
PostgreSQL Feature Set
Where to Proceed from Here

2. Installing PostgreSQL

Preparing for Installation
10 Steps to Installing PostgreSQL

II. Using PostgreSQL

3. Understanding SQL

Introduction to SQL
Introduction to Relational Databases
SQL Statements
Data Types
Tables in PostgreSQL

4. Using SQL with PostgreSQL

Introduction to psql
Using Tables
Adding Data with INSERT and COPY
Retrieving Rows with SELECT
Modifying Rows with UPDATE
Removing Rows with DELETE
Using Sub-Queries
Using Views
Further SQL Application

5. Operators and Functions

Operators
Functions

6. PostgreSQL Clients

The psql Client: Advanced Topics
PgAccess: A Graphical Client

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. Advanced Features

Indices
Advanced Table Techniques
Arrays
Automating Common Routines
Transactions and Cursors
Extending PostgreSQL

III. Administrating PostgreSQL

8. Authentication and Encryption

Client Authentication
Encrypting sessions

9. Database Management

Starting and Stopping PostgreSQL
Initializing the Filesystem
Creating and Removing a Database
Maintaining a Database
Backing Up and Restoring Data

10. User and Group Management

Managing Users
Managing Groups
Granting Privileges

IV. Programming with PostgreSQL

11. PL/pgSQL

Adding PL/pgSQL to your Database
Language Structure
Using Variables
Controlling Program Flow
PL/pgSQL and Triggers

12. JDBC

Building the PostgreSQL JDBC Driver
Using the PostgreSQL Driver
Using JDBC
Issues Specific to PostgreSQL and JDBC

13. LXP

Why Use LXP?
Core Features
Installing and Configuring LXP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Understanding LXP Mark-Up
LXP Variables and Objects
Using Cookies with LXP
Tag Parsing
Branching Logic
Loop Iteration
Content Inclusion
Displaying Foreign Tags with <xtag>

V. PostgreSQL Command Reference

14. PostgreSQL Command Reference

ABORT -- Rolls back changes made during a transaction block.
ALTER GROUP -- Modifies the structure of a user group.
ALTER TABLE -- Modifies table and column attributes.
ALTER USER -- Modifies user properties and permissions.
BEGIN -- Starts a chained-mode transaction block.
CLOSE -- Closes a previously defined cursor object.
CLUSTER -- Provides the backend server with clustering information about a
table.
COMMENT -- Adds a comment to an object within the database.
COMMIT -- Ends the current transaction block and finalizes changes made
within it.
COPY -- Copies data between files and tables.
CREATE AGGREGATE -- Defines a new aggregate function within the
database.
CREATE DATABASE -- Creates a new database in PostgreSQL.
CREATE FUNCTION -- Defines a new function within the database.
CREATE GROUP -- Creates a new PostgreSQL group within the database.
CREATE INDEX -- Places an index on a table.
CREATE LANGUAGE -- Defines a new language to be used by functions.
CREATE OPERATOR -- Defines a new operator within the database.
CREATE RULE -- Defines a new rule on a table.
CREATE SEQUENCE -- Creates a new sequence number generator.
CREATE TABLE -- Creates a new table.
CREATE TABLE AS -- Creates a new table built from data retrieved by a
SELECT.
CREATE TRIGGER -- Creates a new trigger.
CREATE TYPE -- Defines a new data type for use in the database.
CREATE USER -- Creates a new PostgreSQL database user.
CREATE VIEW -- Creates a view on a table.
CURRENT_DATE -- Returns the current date.
CURRENT_TIME -- Returns the current time.
CURRENT_TIMESTAMP -- Returns the current date and time.
CURRENT_USER -- Returns the current database username.
DECLARE -- Defines a new cursor.
DELETE -- Removes rows from a table.
DROP AGGREGATE -- Removes an aggregate function from a database.
DROP DATABASE -- Removes a database from the system.
DROP FUNCTION -- Removes a user-defined function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DROP GROUP -- Removes a user group from the database.
DROP INDEX -- Removes an index from a database.
DROP LANGUAGE -- Removes a procedural language from a database.
DROP OPERATOR -- Removes an operator from the database.
DROP RULE -- Removes a rule from a database.
DROP SEQUENCE -- Removes a sequence from a database.
DROP TABLE -- Removes a table from a database.
DROP TRIGGER -- Removes a trigger definition from a database.
DROP TYPE -- Removes a type from the system catalogs.
DROP USER -- Removes a PostgreSQL user.
DROP VIEW -- Removes an existing view from a database.
END -- Ends the current transaction block and finalizes its modifications.
EXPLAIN -- Shows the statement execution plan for a supplied query.
FETCH -- Retrieves rows from a cursor.
GRANT -- Grants access privileges to a user, a group, or to all users in the
database.
INSERT -- Inserts new rows into a table.
LISTEN -- Listen for a notification event.
LOAD -- Dynamically loads object files into a database.
LOCK -- Locks a table within a transaction.
MOVE -- Repositions a cursor to another row.
NOTIFY -- Signals all backends that are listening for the specified notify event.
REINDEX -- Rebuilds indices on tables.
RESET -- Restores runtime variables to their default settings.
REVOKE -- Revokes access privileges from a user, a group, or all users.
ROLLBACK -- Aborts the current transaction block and abandons any
modifications it would have made.
SELECT -- Retrieves rows from a table or view.
SELECT INTO -- Construct a new table from the results of a SELECT.
SET -- Set runtime variables.
SET CONSTRAINTS -- Sets the constraint mode for the current transaction
block.
SET TRANSACTION -- Sets the transaction isolation level for the current
transaction block.
SHOW -- Displays the values of runtime variables.
TRUNCATE -- Empties the contents of a table.
UNLISTEN -- Stops the backend process from listening for a notification event.
UPDATE -- Modifies the values of column data within a table.
VACUUM -- Cleans and analyzes a database.

VI. Appendixes

A. Multibyte Encoding Types
B. Backend Options for postgres
C. Binary COPY Format

The Header
Tuples
Trailer

D. Internal psql Variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

List of Tables
3-1. An example SQL table
3-2. Fundamental PostgreSQL commands
3-3. PostgreSQL supported C-style escape sequences
3-4. Floating-point representations
3-5. Punctuation Symbols
3-6. Fundamental PostgreSQL operators
3-7. A simple SQL query
3-8. UPDATE example: the SET clause
3-9. UPDATE example: the WHERE clause
3-10. PostgreSQL supported data types
3-11. Supported true or false constants
3-12. Character types
3-13. Numeric types overview
3-14. Date and time types
3-15. Valid date formats
3-16. Month abbreviations
3-17. Day of the week abbreviations
3-18. Date output formats
3-19. Extended date output formats
3-20. Valid time formats
3-21. Valid time zone formats
3-22. Some valid timestamp formats
3-23. Date and time constants
3-24. Geometric types
3-25. System columns
3-26. The authors table
3-27. The subjects table
4-1. The shipments table
5-1. Basic Character String Operators
5-2. Regular expression comparison operators
5-3. Regular expression symbols
5-4. Mathematical operators
5-5. Comparison operators
5-6. Bit-string operators
5-7. The AND, OR, and NOT operators
5-8. Operator precedence
5-9. Mathematical functions in PostgreSQL
5-10. Character string functions
5-11. Date and time functions
5-12. Timestamp and interval units
5-13. Type conversion functions
5-14. Numeric conversion formatting characters
5-15. Timestamp conversion formatting characters
5-16. Aggregate functions
6-1. Default PROMPT settings
6-2. Prompt substitution characters
7-1. Sequence attributes
7-2. The shipments table
7-3. The pg_trigger table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8-1. The pg_shadow table
10-1. The pg_shadow table
10-2. PostgreSQL ACL privileges
10-3. The stock table
11-1. Possible level values
11-2. Trigger function variables
13-1. LXP inclusion methods
13-2. Database Connection Attributes
14-1. Operator/index correspondence
A-1. Multibyte Encoding Types

List of Figures
6-1. PgAccess application window
6-2. The PgAccess Users tab
6-3. The PgAccess Create new table dialog box
6-4. The PgAccess Visual query designer
6-5. The Function dialog box

List of Examples
2-1. Verifying GNU make
2-2. Verifying GCC
2-3. Verifying gzip and tar
2-4. Verifying disk space
2-5. Adding the postgres User
2-6. Unpacking the PostgreSQL source package
2-7. Compiling the source with GNU make
2-8. Making regression tests
2-9. Regression check output
2-10. The gmake install command
2-11. Installing Perl and Python modules manually
2-12. Installing all headers
2-13. Setting LD_LIBRARY_PATH in a bash shell
2-14. Setting LD_LIBRARY_PATH in csh and tcsh
2-15. Initializing the database
2-16. Output from initdb
2-17. Running postmaster in the foreground
2-18. Running postmaster in the background
2-19. Copying the linux script
2-20. Making the linux script executable
2-21. Starting PostgreSQL with the SysV script
2-22. Creating a database
2-23. Accessing a database with psql
2-24. Querying a system table
3-1. Spaces and newlines
3-2. Keywords and commands
3-3. Bending rules
3-4. Using string constants
3-5. Multiline string constants
3-6. Using bit string constants
3-7. Using integer constants
3-8. Valid floating-point values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3-9. The difference between true and 'true'
3-10. Operators in statements
3-11. Single-line comments
3-12. Multiline comments
3-13. Example SQL query
3-14. A SQL update
3-15. Observing NULL values
3-16. Using NULL values
3-17. Simple Boolean table
3-18. Checking Boolean values
3-19. Implying Boolean 'true'
3-20. Checking for 'false' Boolean values
3-21. Correcting Null values
3-22. Avoiding overflow errors
3-23. A numeric alternative to money
3-24. Using the serial data type
3-25. Accomplishing the same goal manually
3-26. Setting date formats
3-27. Interpreting interval formats
3-28. Using the current and now constants
3-29. Comparing now to current
3-30. Using Type Conversion Functions
3-31. Differentiating rows via the OID
4-1. Setting system path for psql
4-2. Listing psql slash commands
4-3. Entering statements into psql
4-4. Leaving end-characters open
4-5. Setting the EDITOR variable
4-6. Creating the books table
4-7. The \d command's output
4-8. Adding a column
4-9. Altering column defaults
4-10. Renaming a table
4-11. Renaming a column
4-12. Adding constraints to a table
4-13. Changing table ownership
4-14. Restructuring a table with CREATE TABLE AS
4-15. Restructuring a table with CREATE TABLE and INSERT INTO
4-16. Inserting new values into the books table
4-17. Changing the order of target columns
4-18. Inserting values from another table
4-19. An example ASCII copy file
4-20. Copying an ASCII file
4-21. Copying a binary file
4-22. Copying the books table to an ASCII file
4-23. Selecting all from the books table
4-24. Re-Ordering columns
4-25. Using expressions and constants
4-26. Using the AS clause with expressions and constants
4-27. Selecting from multiple table sources

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4-28. Selecting from a sub-query
4-29. Aliasing FROM sources
4-30. Aliasing columns
4-31. Using DISTINCT
4-32. A simple WHERE clause
4-33. Combining conditions in the WHERE clause
4-34. Grouping WHERE conditions with parentheses
4-35. A simple CROSS JOIN
4-36. Comparing INNER JOIN to WHERE
4-37. The NATURAL and USING clauses
4-38. Inner joins versus outer joins
4-39. Joining many data sources
4-40. Using GROUP BY
4-41. Using the HAVING clause
4-42. Using ORDER BY
4-43. Using ORDER BY with multiple expressions
4-44. Using DISTINCT with ORDER BY
4-45. Using LIMIT and OFFSET
4-46. Using UNION
4-47. Using INTERSECT
4-48. Using EXCEPT
4-49. Comparing sub-query result sets
4-50. Using case expressions in statements
4-51. Using case expressions with sub-queries
4-52. Using SELECT INTO
4-53. A simple UPDATE
4-54. Updating entire columns
4-55. Using UPDATE on several columns
4-56. Using UPDATE with several sources
4-57. Deleting rows from a table
4-58. Deleting all table rows
4-59. A simple sub-query
4-60. A sub-query using IN
4-61. A multi-column sub-query using IN
4-62. Creating a view
4-63. Using a view
5-1. Correct operator usage
5-2. Incorrect operator usage
5-3. Comparing strings
5-4. Concatenating strings
5-5. An example regular expression
5-6. A Simple Regular Expression Comparison
5-7. A more involved regular expression comparison
5-8. A Complicated Regular Expression Comparison
5-9. Using Mathematical Operators
5-10. Using comparison operators
5-11. Using BETWEEN
5-12. Operator equivalents to BETWEEN
5-13. Shifting bit strings
5-14. Combining comparisons with Boolean operators

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5-15. Comparisons using IS NULL
5-16. Comparisons equal to NULL
5-17. Using operators with NULL values
5-18. Operator precedence
5-19. Using aggregate expressions
6-1. Inserting a file into the current buffer
6-2. Setting a variable
6-3. The variable list
6-4. Using interpolation during an INSERT
6-5. Reading from a file into a variable
6-6. Using a variable in an INSERT
6-7. Setting the prompt variables
6-8. Customizing the prompt with database host, port, and username
6-9. Customizing the prompt with the date, database name, and username
7-1. Creating an index
7-2. Implicit index creation
7-3. Creating a unique index
7-4. Specifying an index type
7-5. Creating a functional index
7-6. Dropping an index
7-7. Creating a table with column constraints
7-8. Creating a table with table constraints
7-9. Adding a constraint to an existing table
7-10. Removing a constraint
7-11. Creating a child table
7-12. Inserting into a child table
7-13. Selecting with inheritance
7-14. Modifying parent and child tables
7-15. Modifying parent tables with ONLY
7-16. Creating a table with an array column
7-17. Creating a table with a multidimensional array column
7-18. Inserting array constants
7-19. Inserting values into multidimensional arrays
7-20. Selecting entire array values
7-21. Selecting array values with subscripts
7-22. Avoiding NULL values in arrays
7-23. Selecting From a Multi-Dimensional Array
7-24. Selecting array values with slices
7-25. Using array_dims( )
7-26. Completely modifying an array
7-27. Modifying an array subscript
7-28. Creating a sequence
7-29. Viewing a sequence
7-30. Incrementing a sequence
7-31. Using currval( )
7-32. Setting a sequence value
7-33. Removing a sequence
7-34. Checking sequence dependencies
7-35. Creating the check_shipment trigger
7-36. Dropping a trigger

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7-37. Selecting a trigger's assigned table
7-38. Beginning a transaction
7-39. Committing a transaction
7-40. Rolling back a transaction
7-41. Recovering from the abort state
7-42. Declaring a cursor
7-43. Fetching rows from a cursor
7-44. Moving a cursor
7-45. Closing a cursor
7-46. Creating a SQL function
7-47. Using a SQL function
7-48. is_zero.c, a simple C function
7-49. Creating a C function
7-50. Overloading a C function
7-51. Using a C function
7-52. Dropping a function
7-53. Creating a user-defined operator
7-54. Using a user-defined operator
7-55. Overloading a user-defined operator
7-56. Using an overloaded operator
7-57. Dropping an operator
7-58. Dropping an overloaded operator
8-1. A simple pg_hba.conf file
8-2. Checking user permissions
8-3. A valid pg_hba.conf entry with spaces and tabs
8-4. Valid pg_hba.conf comments
8-5. Host entry syntax
8-6. Single host entry
8-7. Rejection entry
8-8. Single host, single database entry
8-9. Small network connection entry
8-10. Larger network connection entry
8-11. An ident configuration in pg_hba.conf
8-12. A pg_ident.conf configuration
8-13. A sameuser configuration
8-14. Making an SSH tunnel to PostgreSQL
8-15. Using Stunnel remotely
8-16. Using Stunnel locally
8-17. An example inetd entry
8-18. An example xinetd entry
9-1. Starting PostgreSQL with pg_ctl
9-2. Stopping PostgreSQL with pg_ctl
9-3. Restarting PostgreSQL with pg_ctl
9-4. Checking status with pg_ctl
9-5. Starting PostgreSQL with service command
9-6. Checking status with postgresql script
9-7. Initializing a New Database Cluster
9-8. Initializing a Secondary Database Location
9-9. Checking usecreatedb rights
9-10. Creating a database

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9-11. Using the createdb application
9-12. Using DROP DATABASE
9-13. Using the dropdb command
9-14. Using VACUUM on a table
9-15. Using VACUUM ANALYZE on a database
9-16. Using vacuumdb on all databases
9-17. Using vacuumdb on a remote database
9-18. Commenting the books table
9-19. Retrieving a comment
9-20. Using pg_dump
9-21. Using pg_dump remotely
9-22. Using pg_dumpall
9-23. Recreating the booktown database
9-24. Restore with pg_restore
9-25. Backing up the PostgreSQL filesystem
10-1. Creating a normal user
10-2. Creating a user with CREATEDB rights
10-3. Creating a superuser
10-4. Creating a user with createuser
10-5. Interactively creating a user with createuser
10-6. Resetting a password
10-7. Adding superuser rights
10-8. Removing superuser rights
10-9. Removing a user with DROP USER
10-10. Removing a user with dropuser
10-11. Creating a group
10-12. Verifying a group
10-13. Removing a group
10-14. Adding a user to a group
10-15. Verifying user addition
10-16. Removing a user from a group
10-17. Granting user privileges
10-18. Granting group privileges
10-19. Revoking rights
10-20. Controlling SELECT privileges with a view
10-21. Controlling SELECT
11-1. Creating the PL/pgSQL call handler
11-2. Adding PL/pgSQL with CREATE LANGUAGE
11-3. Using createlang as a database superuser
11-4. Explicitly passing a superuser account name to createlang
11-5. Structure of a PL/pgSQL code block
11-6. Using single-line comments
11-7. Using block comments
11-8. Using expressions
11-9. Output of a_ function( )
11-10. Using timestamp values correctly
11-11. Declaring a PL/pgSQL variable
11-12. Variable Declarations
11-13. Using variable declaration options
11-14. Default value assignment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11-15. Using the SELECT INTO statement
11-16. Result of the get_customer_id( ) function
11-17. Using SELECT INTO with multiple columns
11-18. Result of the get_customer_name( ) function
11-19. Using the FOUND boolean in get_customer_id( )
11-20. Result of the new get_customer_id( ) function
11-21. Function call examples
11-22. Directly using argument variables
11-23. Syntax of the ALIAS keyword
11-24. Using PL/pgSQL aliases
11-25. Result of the triple_price( ) function
11-26. Syntax of the RETURN statement
11-27. Declaring a variable using %TYPE
11-28. Using the %TYPE attribute
11-29. Results of the get_author( ) function
11-30. Using the %ROWTYPE attribute
11-31. Results of the new get_author( ) function
11-32. Returning a concatenated string
11-33. Assigning a concatenated value to a string
11-34. Syntax of an IF/THEN statement
11-35. Using the IF/THEN statement
11-36. Results of the stock_amount( ) function
11-37. Syntax of an IF/THEN/ELSE statement
11-38. Using the IF/THEN/ELSE statement
11-39. Results of the in_stock( ) function
11-40. Using the IF/THEN/ELSE/IF statement
11-41. Results of the books_by_subject() function
11-42. Using the basic loop
11-43. Result of the square_integer_loop( ) function
11-44. Using the WHILE loop
11-45. Using the FOR loop
11-46. Using the FOR loop with %ROWTYPE
11-47. Result of the extract_title() function
11-48. Using the RAISE statement
11-49. Results of the raise_test( ) function
11-50. Syntax of the PERFORM keyword
11-51. Using the PERFORM keyword
11-52. Creating trigger functions
11-53. The check_shipment_addition() PL/pgSQL trigger function
11-54. The check_shipment trigger
12-1. Class name lookup
12-2. A simple JDBC connection
12-3. A JDBC statement object
12-4. A simple JDBC select
12-5. A simple JDBC insert
12-6. A JDBC prepared statement
12-7. JDBC ResultSetMetaData
12-8. JDBC DatabaseMetaData
12-9. JDBC first row fetch
13-1. Installing LXP with lxpinstall.sh

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13-2. Manually installing liblxp.so
13-3. Manually installing libpq.so.2.2
13-4. Manually installing lxp.conf
13-5. Configuring httpd.conf for LXP
13-6. A Simple LXP mark-up region
13-7. Displaying a cookie value
13-8. Substituting cookie values
13-9. Invalid variable substitution
13-10. Valid variable substitution
13-11. Using entity substitution
13-12. Using <varparser> to prepare SQL
13-13. Using the <if> tag
13-14. Using the <ifnot> tag
13-15. Using nested logic
13-16. Using ifcookie and ifnotcookie
13-17. Using the <else> tag
13-18. Using nested logic with <else> tags
13-19. A simple <for> loop
13-20. Handling array results with <for>
13-21. Including an LXP document
13-22. Including flat files
13-23. Including a token-delimited file
13-24. Including an XML file
13-25. Including an RDF file
13-26. Including other content types
13-27. Connecting to a non-default database
13-28. Including SQL content
13-29. Using SQL object variable values
13-30. Selecting SQL results into an LXP object
13-31. Using <xtag> for empty elements
13-32. Using nested <xtag> elements

 Next
 Preface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

Chapter 3. Understanding SQL
Table of Contents
Introduction to SQL
Introduction to Relational Databases
SQL Statements
Data Types
Tables in PostgreSQL

This chapter discusses the history and fundamental concepts of SQL and forms the foundation
for the next chapter, which is about applying SQL with PostgreSQL. It addresses the basics of
relational databases, object-related database extensions, the structure of a SQL statement, and
provides an overview of PostgreSQL-supported data types, operators and functions.

Introduction to SQL
SQL, the Structured Query Language, is a mature, powerful, and versatile relational query
language. The history of SQL extends back to IBM research begun in 1970. The next few
sections discuss the history of SQL, its predecessors, and the various SQL standards that have
developed over the years.

A Brief History of SQL
The relational model, from which SQL draws much of its conceptual core, was formally
defined in 1970 by Dr. E. F. Codd, a researcher for IBM, in a paper entitled A Relational
Model of Data for Large Shared Data Banks. This article generated a great deal of interest in
both the feasibility and practical commercial application of such a system.

In 1974 IBM began the System/R project and with the work of Donald Chamberlin and others,
developed SEQUEL, or Structured English Query Language. System/R was implemented on
an IBM prototype called SEQUEL-XRM in 1974–75. It was then completely rewritten in
1976–1977 to include multi-table and multiuser features. When the system was revised it was
briefly called "SEQUEL/2," and then re-named "SQL" for legal reasons.

In 1978, methodical testing commenced at customer test sites. Demonstrating both the
usefulness and practicality of the system, this testing proved to be a success for IBM. As a
result, IBM began to develop commercial products that implemented SQL based on their
System R prototype, including SQL/DS (introduced in 1981), and DB2 (in 1983).

Several other software vendors accepted the rise of the relational model and announced SQL-
based products. These included Oracle (who actually beat IBM to market by two years by
releasing their first commercial RDBMS, in 1979), Sybase, and Ingres (based on the
University of California's Berkeley Ingres project).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note: PostgreSQL's name is, as you might have guessed, a play on the name
Ingres. Both PostgreSQL and Ingres trace their roots back to the UC Berkeley's
Ingres RDBMS system.

SQL and Its Predecessors
SQL is based largely on relational algebra and tuple relational calculus. Relational algebra,
introduced by E. F. Codd in 1972, provided the basic concepts behind computing SQL syntax.
It is a procedural way to construct data-driven queries, and it addresses the how logic of a
structured query. The tuple relational calculus (TRC ), on the other hand, affects the
underlying appearance of SQL. Relational calculus uses declarative expressions, addressing
the what logic of a structured query.

There are additional features that set SQL apart from those that merely implement features that
are part of relational algebra or calculus. These features include:

Support for data insertion, modification and deletion

Users are allowed to insert, delete, and modify stored data records.

Arithmetic operators

Arithmetic operations such as addition, subtraction, multiplication, and division (e.g.,
(value1 * 5) + value2) are allowed, as well as comparison operators (e.g., value3
>= value4).

Display of data

Users may display query-generated relationships (such as a table's contents).

Assignment

Users may rename a relation that is computed by a query instead of forcing the use of
the default relationship name, which may be derived from a column or function name,
depending on the query.

Aggregate functions

User may group related rows together and evaluate averages, sums, counts, maximums,
and minimums.

SQL Standards
The American National Standards Institute (ANSI) standardized SQL in 1986 (X3.135) and
the International Standards Organization (ISO) standardized it in 1987. The United States
government's Federal Information Processing Standard (FIPS) adopted the ANSI/ISO
standard. In 1989, a revised standard known commonly as SQL89 or SQL1, was published.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Due partially to conflicting interests from commercial vendors, much of the SQL89 standard
was intentionally left incomplete, and many features were labeled implementor-defined. In
order to strengthen the standard, the ANSI committee revised its previous work with the
SQL92 standard ratified in 1992 (also called SQL2). This standard addressed several
weaknesses in SQL89 and set forth conceptual SQL features which at that time exceeded the
capabilities of any existing RDBMS implementation. In fact, the SQL92 standard was
approximately six times the length of its predecessor. As a result of this disparity, the authors
defined three levels of SQL92 compliance: Entry-level conformance (only the barest
improvements to SQL89), Intermediate-level conformance (a generally achievable set of
major advancements), and Full conformance (total compliance with the SQL92 features).

More recently, in 1999, the ANSI/ISO released the SQL99 standard (also called SQL3). This
standard addresses some of the more advanced and previously ignored areas of modern SQL
systems, such as object-relational database concepts, call level interfaces, and integrity
management. SQL99 replaces the SQL92 levels of compliance with its own degrees of
conformance: Core SQL99 and Enhanced SQL99.

PostgreSQL presently conforms to most of the Entry-level SQL92 standard, as well as many
of the Intermediate- and Full-level features. Additionally, many of the features new in SQL99
are quite similar to the object-relational concepts pioneered by PostgreSQL (arrays, functions,
and inheritance).

Prev Home Next
Using PostgreSQL Up Introduction to Relational

Databases

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

Chapter 6. PostgreSQL Clients
Table of Contents
The psql Client: Advanced Topics
PgAccess: A Graphical Client

This chapter elaborates on the available clients for PostgreSQL. Clients exist in order to
provide a user interface to the PostgreSQL server (also called the backend).

The two most accessible clients for PostgreSQL are the command-line driven psql and a
graphical alternative, PgAccess. The psql client is installed by default, while PgAccess
requires specification of the --with-tcl option during compilation of the PostgreSQL source
code (as mentioned in Chapter 2).

The psql Client: Advanced Topics
Basic information about the psql client is included in Chapter 4; this section documents more
advanced information about the psql client. The topics covered include a complete list of
command line options, and an explanation of each psql slash command. This section also
contains information on how to load SQL input from external files, use the psql history, and
substitute variables dynamically into SQL statements within psql.

Command Line Options
Here is the complete syntax to start psql:

psql [options] [dbname [username]]

The optional dbname value specifies the database to initially connect to. The optional
username specifies the PostgreSQL user to connect as. If either value is unspecified, psql will
default to a database and username with the same name as the operating system user starting
the program.

Additionally, several run-time options can be set by command-line flags. By default, psql
understands both standard UNIX short options (e.g., -c, and GNU-style long options (e.g., - -
command). The latter are not available on all systems. In the following list, the UNIX short
options (which are always one letter) are shown first, followed by the equivalent long option.

-a, --echo-all

Turns on the 'echo all' option, which displays all lines as they are read by psql. This
option can be useful for scripting, and is equivalent to issuing the command: \set ECHO
all from within psql.

-A, --no-align

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Starts psql in unaligned output formatting mode. If this is not specified, the output
formatting mode will be set to aligned.

-c statement, --command statement

Instead of running psql interactively, this option executes the statement that you
specify. This must be a syntactically correct SQL statement, and must be devoid of any
psql-specific commands.

-d database, --dbname database

Explicitly specifies the database you wish psql to initially connect to.

-e, --echo-queries

Specifies that all queries are echoed to the screen.

-E, --echo-hidden

Displays the hidden queries generated by slash commands. You can also issue the
following command from within psql to accomplish the same effect: \set
ECHO_HIDDEN.

-f filename, --file filename

Specifies that rather than start in interactive mode, psql should read and execute SQL
from the specified filename, and process its contents as it would if input directly. After
processing the file, psql exits.

-F separator, --field-separator separator

Specifies that psql should use the specified separator character as the field (column)
delimiter.

-h hostname, --host hostname

Specifies the hostname of the backend machine. This is usually not necessary when
connecting to a local backend process, which uses UNIX domain sockets. However, if
the postmaster initializes its domain socket file somewhere other than the default path of
/tmp, specifying a hostname with a leading forward slash will cause psql to interpret the
hostname value as a local directory to check for the domain socket file (e.g., -h
/var/pgsql will cause psql to look for a domain socket file within /var/pgsql).

-H, --html

Starts psql in HTML output mode.

-l, --list

Displays a list of available databases to connect to.

-o filename, --output filename

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Redirects psql output to filename.

-p port, --port port

Specifies TCP/IP port (or numbered UNIX domain socket) that postmasteris currently
listening on. By default, this is whatever PGPORT is set to (or the default of 5432).

-P name=value, --pset name=value

Specifies the output formatting options using the same syntax as used with the \pset
command. All option names are the same as for \pset, but with this command-line
option you must use an an equal sign (=) instead of a space between each formatting
option name and its value.

-q, --quiet

Instructs psql to work in quiet mode. No psql-specific informative messages or
informational text is displayed.

-R separator, --record-separator separator

Specifies separator as the record (row) delimiter.

-s, --single-step

Specifies that psql will run in "single-step" mode. While in single-step mode, you will
be prompted to either continue or cancel upon executing a SQL statement.

-S, --single-line

Specifies that psql will run in "single-line" mode. When running in this mode, a new
line acts as a semi-colon to execute a SQL statement.

-t, --tuples-only

Turns off the display of extraneous table information, such as column names and
footers. To accomplish this from within psql, use the \t command.

-T table_attribute, --table-attr table_attribute

Sets an HTML attribute that you wish to be placed within the <table> output while in
HTML formatting mode (e.g., width=100%). If you pass more than one
table_attribute to this flag, they must all be contained within double quotes. You can
use \pset from within psql to insert these attributes as well.

-U username, --username username

Connects with the specified username.

-v name=value, --variable name=value

Assigns a value to a variable name, as you would do using the \set command from

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Assigns a value to a variable name, as you would do using the \set command from
within psql. When separating a value from a name, use an equal sign instead of a space.

-V, --version

Displays version information.

-W, --password

Prompts for a password before connecting to a database. This setting remains for the
duration of the psql session.

-x, --expanded

Activate extended row format mode. Accomplish this from within psql by using the \x
slash command.

-X, --no-psqlrc

Do not read or execute the startup file (~/.psqlrc).

-?, --help

Displays brief psql command line argument help.

Warning
Unstable code was introduced into version 7.0 that causes psql to obtain a password from the
user when authentication is requested by the backend process; however, this code is not
reliable and will sometimes fail, which will subsequently cause the connection attempt to
fail. It is advisable to use the -W (--password) option to force a prompt if you know that such
authentication will be necessary.

Slash Commands
Recall that within psql you have several special commands, called slash commands. These
commands are psql-specific, and are not sent to the PostgreSQL backend. Explanations of the
available psql slash commands follow.

Formatting commands

There are several slash commands available to format output. These include \pset, \a, \C, \f,
\H, \t, \T, and \x. Except for \pset, each command controls a different formatting option.
The \pset command, which is newer than the others, controls most of those same settings.
The other commands exist for compatibility with older versions, and for convenience.

Most of these duplicate the effects of \pset. Each command is detailed within the description
of that command and its options. For compatibility with older versions, and convenience,
some of these formatting options may still have a slash command devoted entirely to them;
these commands have been listed as well.

\pset parameter [value]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\pset parameter [value]

The general parameter setting command; this is the most important (and powerful)
formatting command of the list. It encapsulates a variety of display options, and it could
easily be the only formatting slash command you ever use. You may pass it various
parameters to accomplish different formatting functions.

Within its syntax, parameter is one of the following valid parameters:

format

This parameter lets you set the output format to aligned, unaligned, html, or latex.
Aligned is the default setting, for readability. Unaligned will set output to be
printed all on one line, separated by the current character delimiter. The HTML
and LaTeX modes output tables meant for inclusion in HTML and LaTeX
documents, respectively.

border

Depending on the formatting mode, this option will make various changes to the
borders used within displayed tables. For example, when outputting in HTML
mode, this directly affects the border attribute of the <table> tag. This parameter
takes a numeric value. Generally, the higher this number is, the larger (or more
pronounced) the borders will be.

expanded

Setting this option will toggle between regular and extended format. If you have
problems with data being displayed off the screen, or wrapping around in an
illegible fashion, try using this option. It will tell psql to format all output into two
columns, with the column name on the left, and data on the right.

null

This parameter allows you to set the string that is displayed to you when a null
field is displayed. The string you wish to have displayed to represent a null
should follow the word null. Ordinarily, that string is set to nothing. To set it
back to nothing, you may set it with two apostrophes in a row (''). To set it to
some other value, enclose that value in single-quotes. For example: \pset null
' ***null*** '.

fieldsep

This parameter accepts the delimiter to separate column values when working in
the unaligned formatting mode. It is set to the pipe symbol (|) by default. You
may want to use this to set the delimiter to a more commonly used delimiter, such
as the tab (\t) character or comma (,). This has no effect outside of unaligned
mode.

recordsep

This parameter specifies the record delimiter (to separate rows) when working in
unaligned formatting mode. By default this is the newline character (\n).

tuples_only

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tuples_only

This parameter lets you specify whether you want to see table data only (row
results), or if you want to see additional characteristics about the table, such as
headers and comments.

title

This parameter is used to attach a title to any subsequently printed titles. It will be
displayed just above normal output. Use a pair of sequential apostrophes ('') to
set to an empty string.

tableattr

This parameter is for use with the HTML format mode; use it to define any table
attributes you wish to be included upon formatting table output within the <table>
tag (e.g., width, cellpadding, cellspacing). If you wish to define more than a
single attribute, be sure to enclose them within double-quotes in a single value.

pager

This parameter toggles off and on the use of a pager for outputting table data. You
may set the PAGER environment variable in your shell before starting psql if you
wish to use a paging program other than more (such as less).

\a

The align command; this toggles psql between aligned and unaligned mode. This is
equivalent to successive uses of \pset format aligned and \pset format
unaligned.

\C

The query title command; this allows you to set a title that will be displayed at the top of
any displayed result set, and is equivalent to \pset title.

\f

The field delimiter command; this sets the field delimiter when using the unaligned
formatting mode, and is equivalent to \pset fieldsep.

\H

The HTML output command; this toggles between HTML output formatting and the
default aligned formatting, and is equivalent to successive uses of \pset format HTML
and \pset format aligned.

\t

The table information command; this toggles the display of optional table information,
and is equivalent to \pset tuples_only.

\T

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\T

The table attribute command; this defines extra table attributes you wish to be inserted
into the table tags of table data displaying while in HTML formatting mode. It is
equivalent to \pset tableattr.

\x

The toggle expanded command; this toggles expanded row formatting and off. It is
equivalent to \pset expanded.

Information display commands

The psql client has many commands to help you with gathering information about the database
and various objects within it. Most of these commands are prefixed with \d, as this is an easy
mnemonic device for display. Knowing how to use these commands can increase your
productivity (or at least your awareness!) within the database.

\d [relation_name]

The general display command; it is used to view various pieces of information about a
specified relation. The relation you specify may be an index, sequence, table, or view.
When issued, the command will display all of the relation's columns, types, and special
attributes or defaults. When executed without a specified relation, it displays each of the
relations available within the currently connected database.

\da [aggregate_name]

The aggregate display command; with it, you may retrieve the list of the connected
database's aggregate functions, and their accepted data types. If you specify a parameter
following the slash command, it will display only the list of aggregate functions whose
names begin with the aggregate_name pattern in a case-insensitive comparison.

\dd [name]

The general database object display command; it is used to display the descriptions of
any specified database object. The object you specify may be any defined aggregate,
function, operator, relation, rule, or trigger. If you do not specify an object name, or a
partial name, all objects in the database will be displayed.

\df [function_name]

The function display command; it is used to display information about a function
defined within the database, including its arguments, and return types. You can either
specify a function to display, or specify none, and list information about all functions.
Like \da and \dd, a full or partial function_name may be supplied for a case-
insensitive comparison against all functions from the beginning of each function name.

\d[istvS] [name]

A scoped version of the general display command; you may specify any of the options
within the brackets:

i

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

i

Displays indices.

s

Displays sequences.

t

Displays tables.

v

Displays views.

S

Displays system tables.

\dl

The large object display command; this command is equivalent to the \lo_list
command, which displays the list of large objects within the current database.

\do [operator_name]

The operator display command; this displays the list of defined operators within the
current database, along with their operands (arguments), and return types. You may
specify a complete or partial operator_name to examine, or retrieve information about
all available operators.

\dp [object_name]

The permissions display command; this retrieves the list of all database objects (or
objects at least partially matching an object_name, if provided) currently defined within
the database, along with all their associated access permissions (public, user, and
group).

\dT [type_name]

The data type display command; this displays the list of all available data types. You
may again specify a type_name, or partial data type name, or view all available data
types in the current database.

\l

The database display command; this lists all defined databases on the server, and their
ownership information, and multibyte encoding type. Entering \l+ will display any
comments the databases may have (see the Section called Documenting a Database in
Chapter 9" in Chapter 9 for how to comment on a database).

\lo_list

The large object display command; this displays the list of all existing large objects
within the current database, along with any comments that have been attached to them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\z [object_name]

The permissions display command, equivalent to \dp.

PostgreSQL and psql informative commands

Within psql there is a small set of informative commands that display information about
PostgreSQL and psql itself. These are useful primarily for obtaining help with command-
related questions you may have.

\?

The help command; this prints out the list of slash commands documented in this
chapter.

\copyright

The copyright command; this displays copyright information about PostgreSQL.

\encoding

The encoding command; if multibyte encoding is enabled, this can set the client
encoding. If you do not supply an argument, the current encoding will be displayed on
the screen.

\help

The general help command; used without an argument, it will print a list of all
commands for which greater help is available. Used with an argument, it will print more
information (if there is data available) for the subject. Used with an asterisk (*) as the
argument, it will retrieve syntax information for all documented SQL commands.

Input and output commands

The psql client's various input and output slash commands allow you to transfer data to and
from the database in different ways. You may also specify exactly how psql transfers data.
The commands include:

\copy table { FROM | TO } file | stdin | stdout

The copy command; this can be used to copy from the client application (and thus, use
the permissions of the user who started the client) instead of using the SQL COPY
command to copy from the server. This slash command can also accept any of the
standard COPY clauses. For more information on the syntax of this command, refer to the
COPY entry in the command reference section at the back of this book.

The difference between using \copy over COPY are important to understand and include:

Data you \copy transfers first through the client (via your connection), which may
be quite a bit slower than if it were done directly through the server (i.e., the
backend) process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You have access to files on the local filesystem under whatever permissions the
user account you are using has, which means you may have more (or less)
accessibility to needed files than the backend process.

The terms stdin and stdout (standard input and output) have a different
meaning; they refer to psql 's input and output stream. On the backend process
they are used differently: stdin represents where the COPY was issued from, and
stdout represents the query output stream.

\echo string

The echo command; this sends a string to the standard output. This can be useful for
scripting, because you can add non-database–supplied information into script output
(such as comments).

\g [file]

The buffer execution command; this is essentially the same as using the semicolon (;) in
that it sends the current query buffer to the backend to be processed. Optionally, you
can save the result set to a file of your choice, or have psql pipe it to a separate shell
command by following the \g with either a filename or piped command name.

\i file

The file input command; this reads input from a file (the name of which you supply as
an argument after the \i) and causes psql to parse its content as if it were typed directly
into the program's prompt.

\lo_export lo_oid filename

The large object export command; this lets you export the large object with OID lo_oid
to filename on your local filesystem. This is different from the lo_export() server
function in the same way the \copy and the SQL COPY commands are different.

\lo_import filename [comment]

The large object import command; this imports large objects into the database from files
on your local filesystem. Optionally, you can attach a comment to the object; this is
recommended, as otherwise it will be identifiable only by an OID, which you will need
to remember if you wish to access it again. If you attach a comment to the object,
issuing the \lo_list command displays your comment with the OID of the object, thus
making it easier to find once imported.

\o [file | |command]

The output command; this redirects future output (i.e., data retrieved after this command
is issued) to either a file of your choice or a pipe to a system command. If not given any
arguments, the output channel will reset to standard output; use no arguments when you
wish to stop sending output elsewhere. One of the most useful features of this command
is the ability to pipe output to commands such as grep, which can then search for a
pattern of your choosing, allowing you to search against database and slash command
output (which will, of course, only work if grep is installed on your system).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\p

The buffer display command; this prints the psql input currently buffered. If no SQL
input has been entered since the last executed statement, the last executed statement is
displayed.

\qecho string

The query-output echo command; this sends a string to your chosen query output
channel (which is set with the \o command), instead of stdout. This command can be
useful when you need to send non-database–related information into the psql output.

\w file | |command

The buffer output command; this outputs the current query buffer to a specified file, or
piped system command.

System commands

The following commands pertain to the general, systematic functions of psql. These include
database re-connection, external editor invocation, setting and unsetting psql variables, and
quitting psql.

\connect [database [username]]

The database re-connection command; this connects you to another database from
within psql. You may specify the database to connect to and the username to use (if it
is not the same as the current username) and omitting this parameter will cause the
current username to be used.

\edit [file]

The external editor command; with this, you can either edit a file of your choice or (if
no file is specified) the current query buffer. After you are done editing, the new buffer
is input to the query buffer, and executed if terminated with a semi-colon.

When opening a file for editing with this command, psql searches your environment
variables for the following fields (in this order) to find out what editor to use:
PSQL_EDITOR, EDITOR, and VISUAL. If none of these are present, it will attempt to launch
/bin/vi.

\q

The quit command; this exits the program. You may also use CTRL-D in most terminal
applications to quit.

\set [name [value]]

The variable setting command; used without arguments, this displays all set variables
within psql. Otherwise, it sets the variable name to value. If no value is passed, name is
set with an empty value. If multiple values are passed, name is assigned the
concatenation of each value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\unset variable

The variable unsetting command; this unsets a specified variable from memory. This
is different from assigning a variable with an empty value, which is still technically set.

\! [command]

The shell execution command; without arguments, this opens a shell which overrides the
psql prompt until it is exited. Otherwise, it executes a specified shell command from
within psql, and displays its results to stdout.

Using External Files to Enter Queries
As it is possible to use psql to enter queries directly from the prompt, it is possible to create
queries and statements within files and let psql read the files and insert their content into the
current buffer. This can be useful to some users.

First, enter your query into a file on your filesystem; after it is complete, open psql. The
command to insert files into the current query buffer is \i. Example 6-1 shows how to insert a
simple file-based SELECT command into the current buffer. Text from the query is displayed
on-screen in the example, but this may not happen on your system by default. To see the lines
of a file as it is being read, set the ECHO variable to all by typing \set ECHO all.

Example 6-1. Inserting a file into the current buffer

testdb=# \set ECHO all
testdb=# \i /usr/local/pgsql/query
SELECT * FROM employees WHERE firstname='Andrew';
 firstname | lastname | id
-----------+----------+-----
 Andrew | Brookins | 100
(1 row)

If you find yourself doing this often for the sole purpose of using your favorite editor, using
the \edit command would probably be more convenient.

The Readline and History Libraries
The psql client supports some of the same command-tracking features that the bash shell
supports; namely, reverse-i-search, tab completion, and command history (command history is
stored in /home/[username]/.psql_ history). These features are all available because psql
support the readline library, which provide these functions to bash.

If the configure script finds the readline library, reverse-i-search, tab completion and
command history should be automatically installed when you compile PostgreSQL. If psql
does not support tab-completion, history, or reverse-i-search (history search), it may be
because you either have the library files and/or header files installed into a non-standard
directory. If this is the case, and you wish to reconfigure psql to use the readline and history
features, your first task is to locate the library header files. (The filenames are: libreadline.a,
readline.h, and history.h).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once you know where the library and header files are stored on your filesystem, tell the
PostgreSQL configure script where they are by using the following flags: --with-includes=[.h
file locations], and --with-libs=[lib file location]. After reconfiguration, remake the
psql binary, and the features should become available. See the Section called Step 3:
Configuring the Source Tree in Chapter 2" in Chapter 2 for more on the configuration process
of PostgreSQL.

Variable Substitution
The psql client allows you to modify and create variables using the \set slash command, and
delete them with the \unset slash command. Variables within psql work much the same way
as variables within UNIX and Linux shell programs, such as bash. Though the overall
implementation of variables within psql is fairly simple, they are still useful, as you may easily
insert or substitute the values of variables into slash commands and SQL commands.

Note: When setting and using variables, be aware that psql uses a set of pre-
defined internal variables. Setting these to non-intended values may cause
unpredictable and undesirable effects within the program. For a list of these
variables and their uses, see Appendix D.

To set a variable, use the \set command, giving the command the name and the value of the
variable you wish to set, in sequence, separated by space(s). This will either modify a
previously existing variable or create a new variable if there is not one matching the variable
name you supplied). As Example 6-2 shows, the variable name can be any length, and you can
use any combination of letters, underscores, or numbers, and the value of the variable may be
set to a string of any length.

Example 6-2. Setting a variable

testdb=# \set myvariable 'There are many like it, but this one is mine.'

Now, when you type \set without any arguments, the variable will appear in the list of
variables.

Example 6-3. The variable list

testdb=# \set
VERSION = 'PostgreSQL 7.1.3 on i586-pc-linux-gnu, compiled by GCC 2.96'
DBNAME = 'testdb'
USER = 'postgres'
PORT = '5432'
ENCODING = 'SQL_ASCII'
PROMPT1 = '%/%R%# '
PROMPT2 = '%/%R%# '
PROMPT3 = '>> '
HISTSIZE = '500'
myvariable = 'There are many like it, but this one is mine.'

Once you have defined a variable, you can use what is known as interpolation to place it
within both internal slash commands and SQL commands. This makes it possible to do things
like load files into variables, and then use the loaded contents during an INSERT or SELECT, as
well as more basic substitutions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To substitute a variable value in this way, prefix the variable name with a colon (:) when you
reference it from within other statements. For example, Example 6-4 demonstrates how to use
a created variable during an INSERT or SELECT statement.

Example 6-4. Using interpolation during an INSERT

testdb=# \set manager_id 150
testdb=# INSERT INTO employees VALUES (
testdb(# 'Kevin',
testdb(# 'Murphy',
testdb(# :manager_id
testdb(#);
testdb=# SELECT * FROM employees WHERE id = :manager_id;
 firstname | lastname | id
-----------+----------+-----
 Kevin | Murphy | 150
(1 row)

As mentioned, it is possible to insert files into variables and then use interpolation to insert
their content into other commands. To read files, use backticks (`) to set a variable to the
output of the cat command (the UNIX command to display the contents of a file). Example 6-
5 and Example 6-6 illustrate a basic way of doing this. In these examples, the tabledata file is
located in the user's home directory (~/ ).

Example 6-5. Reading from a file into a variable

testdb=# \set data `cat tabledata`
testdb=# \echo :data
'Mike', 'Nelson', 151

Example 6-6. Using a variable in an INSERT

testdb=# INSERT INTO employees VALUES (:data);

After Example 6-6, you would have a new row within the employees table with the values set
in the data variable.

About the psql Prompt
The psql client supports the complete modification of its prompt. This can be helpful for
displaying various pieces of information in an obvious way (what could be more obvious than
the prompt?). Prompt information is stored in the PROMPT1, PROMPT2, and PROMPT3 variables
within psql. The program displays each of these variables at different times.

PROMPT1 contains the normal (default) prompt information while PROMPT2 contains the prompt
information that is displayed on a new line during a statement or query that you have not yet
terminated (because you have not ended it with either a semicolon or issued the \g command)
PROMPT3 contains the prompt information displayed while entering data during an SQL COPY
command. To view how your prompts are currently configured, use the \set command
without arguments to view a list of defined variables. Within this list you should see entries
for PROMPT1, PROMPT2, and PROMPT3. You'll see single quotes surrounding user-configurable
display strings, which define how the psql prompt appears. The %-prefixed characters (e.g., %m)
are variables; all other characters are printed directly as shown.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 6-1 displays the default prompt settings for each of the prompt variables. Notice that the
display in the second row, PROMPT2, assumes that a query has been continued to the next line
with an open parenthesis, resulting in the (symbol preceding the hash mark (#).

Table 6-1. Default PROMPT settings

Prompt Variable Display
PROMPT1 '%/%R%#' testdb=#
PROMPT2 '%/%R%# ' testdb(#
PROMPT3 '>> ' >>

Modifying the prompt

To modify the psql prompt, use \set to change the strings held by the three prompt variables.
When defining your prompt strings, use % to substitute a variable into the string (Example 6-7
provides a list of defined substitutions you can make with the % sign). You may use \n to
display a new line character. All other characters will be displayed normally. Example 6-7
modifies the PROMPT1 variable to contain an additional psql: prefix, trivially modifying the
standard prompt display.

Example 6-7. Setting the prompt variables

testdb=# \set PROMPT1 'psql:%/%R%# '
psql:testdb=#

Table 6-2. Prompt substitution characters

Substitution character Description
%~ This inserts the name of the database you are

currently working in. If you are currently working in
the default database, a tilde (~) will be displayed.

%# This will insert a number sign (#) if the current user
is defined as a superuser within the database.
Otherwise, it will insert a greater-than sign (>).

%> This will insert the port number the database server
is currently accepting connections at.

%/ This will insert the name of the database you are
currently working in.

%m This will insert the hostname of the server the
database is currently running on, truncated down to
the string before the first dot (i.e., "yourserver.com"
would become "yourserver" when inserted).

%M This will insert the full hostname of the server the
database is currently running on. If no hostname
information is available, the string "localhost" will
be inserted.

%n This will insert the database username you are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%n This will insert the database username you are
currently connected as.

%R When used with PROMPT1, this will insert an equal
sign (=) during normal operation; in single-line
mode, it will insert a caret (^); and if your session
ever becomes disconnected from the backend
process, an exclamation point (!) is inserted.

When used with PROMPT2, %R inserts a dash (-)
instead of an equal sign during normal operation,
and whatever you entered as the end-symbol if you
started a new line during an unterminated statement
(for example, if you leave a parenthesis open while
entering a multiline query, this variable will display
a parenthesis in the prompt).

Nothing is inserted if this is used with the PROMPT3
variable.

%number You may enter specific characters in prompt
variables using decimal, octal, or hexadecimal
numbers. To specify an octal number, prefix it with a
0; to specify the number as hexadecimal, prefix it
with a 0x; otherwise number is interpreted as a
decimal number.

%:variable To insert the contents of a psql variable, use the
colon (:) and the variable's identifier.

%`command` Inserts the output of whatever command is specified
with the command parameter.

Prompt examples

Using the \set command, you may combine the different substitution characters to form
whatever prompt you would like. Example 6-8 and Example 6-9 demonstrate setting the
PROMPT1 variable to an arbitrary new sequence.

Example 6-8. Customizing the prompt with database host, port, and username

testdb=# \set PROMPT1 '[%m:%>:%n](%/)= '
[host:5432:postgres](testdb)=

Example 6-9. Customizing the prompt with the date, database name, and username

testdb=# \set PROMPT1 '\n[%`date`]\n%n:%/%=# '
[Fri Aug 3 21:44:30 PDT 2001]
postgres:testdb=#

Prev Home Next
Functions Up PgAccess: A Graphical Client

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

Chapter 7. Advanced Features
Table of Contents
Indices
Advanced Table Techniques
Arrays
Automating Common Routines
Transactions and Cursors
Extending PostgreSQL

This chapter covers more advanced PostgreSQL subjects including optimizing table access
with indices, advanced table concepts such as inheritance and constraints, the practical use of
non-atomic array values, and explicit use of transactions and cursors. These sophisticated
features greatly set PostgreSQL apart from many other relational database management
systems.

This chapter also documents programmatic concepts such as triggers and sequences. Finally,
for programmers wanting to add customized routines to the database, we document how to
extend PostgreSQL through the addition of user-defined functions and operators.

Indices
Indices are database objects that can greatly increase database performance, enabling faster
execution of statements involving comparative criteria. An index tracks the data on one or
more columns in a table, allowing conditional clauses (such as the WHERE clause) to find their
targeted rows more efficiently.

The internal workings of indices vary, and there are several implementations to choose from.
This section describes the different types of indices available, and explains when you should
use one type over the other.

While indices exist to enhance performance, they also contribute to system overhead. Indices
must be updated as data in the column that they are applied to fluctuates. Maintaining
infrequently used indices decreases performance when the amount of time spent maintaining
them outweighs the time saved through using them. In general, indices should be applied only
to columns that you expect to use frequently in comparative expressions.

Creating an Index
Indices are created with the CREATE INDEX SQL command. Here is the syntax for CREATE
INDEX:

 CREATE [UNIQUE] INDEX indexname ON table
 [USING indextype] (column [opclass] [, ...])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [USING indextype] (column [opclass] [, ...])

In this syntax, indexname is the name of the new index to be created, table is the name of the
table to be indexed, and column is the name of a specific column to be indexed. Optionally,
the indextype parameter may be set to specify index implementation, and the opclass
parameter may be set to indicate what operator class should be used in sorting input values.

Warning
Operator classes are stored in PostgreSQL's pg_opclass column. Unless you are especially
knowledgeable of the technical inner workings of PostgreSQL's operator classes, you
shouldn't use this option.

Regarding the column to index, multiple names may be specified, separated by commas; doing
so creates an index across both specified columns. Such an index will only be used by
PostgreSQL when executing SQL statements that search all indexed columns in the WHERE
clause through the AND keyword. Multicolumn indices are limited to a maximum of 16
columns in a default PostgreSQL installation, and may not use an index type other than B-tree.

In determining upon which columns to create an index, consider which columns will be most
frequently accessed for search conditions. For example, while the books table keeps an index
on its id column (the primary key), the title column is also frequently checked for in WHERE
conditions. Adding a secondary index to the title column will greatly increase the
performance of SQL statements making comparisons against values in that column.

Example 7-1 shows how to create such an index and uses the \d psql slash command to view
the books table. In addition to showing the table's column types, this command also shows the
indices that have been created on it.

Example 7-1. Creating an index

booktown=# CREATE INDEX books_title_idx
booktown-# ON books (title);
CREATE
booktown=# \d books
 Table "books"
 Attribute | Type | Modifier
------------+---------+----------
 id | integer | not null
 title | text | not null
 author_id | integer |
 subject_id | integer |
Indices: books_id_pkey,
 books_title_idx

Certain types of table constraints, notably the PRIMARY KEY and UNIQUE constraints, result in
the implicit creation of an index for use in enforcing the constraint. In Example 7-2 you see
the creation of the Book Town authors table with the PRIMARY KEY constraint placed on its id
column. This use of PRIMARY KEY causes an index called authors_ pkey to be implicitly
created.

Example 7-2. Implicit index creation

booktown=# CREATE TABLE authors (id integer PRIMARY KEY,
booktown(# last_name text,
booktown(# first_name text);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown(# first_name text);
NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index 'authors_pkey' for
table 'authors'
CREATE
example=# \d authors
 Table "authors"
 Attribute | Type | Modifier
------------+---------+----------
 id | integer | not null
 last_name | text |
 first_name | text |
Index: authors_pkey

The index created in Example 7-2 enables PostgreSQL to quickly verify that the primary key
is unique for any new row inserted into the table, as well as enhances the performance of
queries which use the id column as a search condition.

Unique indices

Specifying the UNIQUE keyword causes the index to disallow duplicate values within the
column (or set of columns) it indexes. Creating a UNIQUE index on a table is functionally
identical to creating a table with the UNIQUE constraint (see the Section called Using
Constraints" later in this chapter).

Example 7-3 creates a unique index called unique_ publisher_idx on the publishers table's
name column. This will disallow two publishers from having the same name in this table.

Example 7-3. Creating a unique index

booktown=# CREATE UNIQUE INDEX unique_publisher_idx
booktown-# ON publishers (name);
CREATE
booktown=# \d publishers
 Table "publishers"
 Attribute | Type | Modifier
-----------+---------+----------
 id | integer | not null
 name | text |
 address | text |
Indices: publishers_pkey,
 unique_publisher_idx

As the NULL value does not technically match any value, duplicate instances of NULL can be
inserted into a column with a unique index placed on it. This is the main practical difference
between a unique index and an index implicitly created by the PRIMARY KEY constraint, which
does not allow NULL values at all.

Warning
Note that the UNIQUE clause may not be used in conjunction with the USING clause for any
index type other than B-tree.

Index types

The optional USING clause can be used to specify the type of index to implement. PostgreSQL
7.1.x supports three types of indices including:

B-tree

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

R-tree

Hash

PostgreSQL's B-tree implementation uses Lehman-Yao high-concurrency B-tree algorithms
and is both the most capable, and most commonly used indexing method. For this reason, it is
the default index type.

The R-tree implementation is primarily useful for spacial data type operations (i.e., operations
on geometric types) and utilizes Guttman's quadratic split algorithm. The Hash
implementation utilizes Litwin's linear hashing routines, which have been traditionally used
for indices that involve frequent direct equal-to comparisons (e.g., with the = operator).

At the time of this writing, for PostgreSQL 7.1.x, the B-tree index implementation is by far the
most capable and flexible of the available index types. At this time, it is recommended that
you use the B-tree index type over the Hash implementation, even for direct = comparisons.
The Hash index exists mostly for legacy reasons, though it may still be used if you are sure
your system would benefit from a Hash index over a B-tree index.

As stated, the R-tree index implementation is recommended for indexing geometric types; be
aware, however, that several limitations exist. For example, you cannot create a unique R-tree
index, nor can you create an R-tree index on more than one column. In these cases, it makes
more sense to rely on the capable B-tree index type.

The USING clause can be used with the keywords BTREE, RTREE, and HASH in order to explicitly
choose the type of index you want to create. Specifying BTREE explicitly chooses the default
index type.

Example 7-4 creates a table called polygons, which stores spacial data of the type polygon.
An index named spacial_idx is then applied to its shape column with the R-tree
implementation.

Example 7-4. Specifying an index type

booktown=# CREATE TABLE polygons (shape polygon);
CREATE
booktown=# CREATE INDEX spacial_idx ON polygons USING RTREE (shape);
CREATE

Warning
Again, unless you have a solid conceptual understanding of why one index type might be
preferable in your system over another, we advise you to use the default B-tree type.

Functional indices

A slightly modified form of the CREATE INDEX command can be used to index the results of a
function on a column value, rather than the column value itself. This is called a functional
index.

Use the following syntax to create a functional index:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CREATE [UNIQUE] INDEX indexname ON table
 [USING indextype] (functionname (column [, ...]) [opclass])

The only difference in this syntax is that the index is created on the results of the specified
function applied to each column value. All other clauses have the same effect as the functional
index.

Functional indices are useful on table columns that commonly have their values prepared
through a function before being compared against values in a SQL statement. For example, the
upper() function is commonly used to make case-insensitive comparisons. Creating an index
using the upper() function enables such case-insensitive comparisons to be carried out
efficiently.

Example 7-5 creates a functional index named upper_title_idx on the books table. It uses
the upper() function on the title column as the basis to create the index. Then it performs an
example SQL query that is more efficiently executed as a result of the newly created
functional index.

Example 7-5. Creating a functional index

booktown=# CREATE INDEX upper_title_idx ON books
booktown-# (upper(title));
CREATE
booktown=# SELECT title FROM books WHERE upper(title) = 'DUNE';
 title

 Dune
(1 row)

Destroying an Index
The SQL command to permanently destroy an existing index from a table is DROP INDEX.
Here is the syntax for DROP INDEX:

 DROP INDEX indexname [, ...]

In this syntax, indexname is the name of the index that you wish to permanently remove.
Multiple indices to drop may be specified, separated by commas.

Example 7-6 drops the upper_title_idx index created in Example 7-5.

Example 7-6. Dropping an index

booktown=# DROP INDEX upper_title_idx;
DROP

Prev Home Next
PgAccess: A Graphical Client Up Advanced Table Techniques

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

Chapter 8. Authentication and Encryption
Table of Contents
Client Authentication
Encrypting sessions

This chapter documents the fundamental concepts involved with authenticating and encrypting
a client session to the PostgreSQL server. This includes how to correctly configure the
pg_hba.conf file for a variety of authentication schemes, as well as a few common ways to
encrypt your client connections.

Client Authentication
Client authentication is a central feature to PostgreSQL. Without it, you would either have to
sacrifice remote connectivity, or blindly allow anyone to connect to your database and
retrieve, or even modify your data. PostgreSQL has several different types of client
authentication at its disposal. As the site administrator, you need to decide which one is best
for your system.

As of PostgreSQL 7.1.x, host-based client access is specified in the pg_hba.conf file. The
rights and restrictions described in this file should not be confused with a PostgreSQL user's
rights to objects within the database. The pg_hba.conf file allows you to set the type of host-
based authentication to be used. This authentication is performed before PostgreSQL
establishes a connection to the intended database, where user rights would be relevant.

Note: The pg_hba.conf is located in the PostgreSQL data directory (e.g.,
/usr/local/pgsql/data ), and is installed automatically upon the execution of the
initdb command when PostgreSQL is installed.

PostgreSQL's host-based authentication is flexible, featuring a wide variety of configurable
options. You may restrict database access to specific hosts, as well as allow access to a range
of IP addresses by using netmasks. Each configured host has its own host record, which is a
single line in the pg_hba.conf file.

With these host records, you may specify access either to a particular database or all
databases. Furthermore, you may require a user from a specified host to authenticate via the
PostgreSQL users table after qualifying for a connection.

Put simply, the pg_hba.conf file allows you to determine who is allowed to connect to which
databases from what machines, and to what degree they must prove their authenticity to gain
access.

Warning

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Through remote password-based authentication, passwords may be transmitted in clear text
depending on whether or not you are using encrypted sessions. Be sure that you understand
how your application is communicating with PostgreSQL before allowing users to remotely
connect to a PostgreSQL database.

Password Authentication
Passwords allow PostgreSQL users a way to identify themselves and prevent unauthorized
individuals from connecting with a user that is not theirs. As of PostgreSQL 7.1.x, user
passwords are stored in plain text in the pg_shadow system table. The structure of this table is
illustrated in Table 8-1. Note that while the passwords are stored as plain text, only
PostgreSQL superusers are allowed to view the pg_shadow table.

Table 8-1. The pg_shadow table

Column Type
usename name
usesysid integer
usecreatedb boolean
usetrace boolean
usesuper boolean
usecatupd boolean
passwd text
valuntil abstime

The pg_shadow table is a system table, and thus is accessible from any database. It follows,
therefore, that users are not assigned to a specific database. If a user exists in the pg_shadow
table, that user will be able to connect to any database on the server machine, though not
necessarily from any remote machine (depending on your configuration).

Users typically set passwords in PostgreSQL when the user is created (with the CREATE USER
command) or after the user has been created (using the ALTER USER command). Alternatively,
you may manually modify a user's password by using an UPDATE statement. (For a more
detailed explanation about defining passwords for users, see Chapter 10.)

If a password is not set, a user's password defaults to NULL. If password-based authentication is
enabled in the pg_hba.conf file, connection attempts will always fail for such a user.
Conversely, if the host that establishes the connection is a trusted host (such as localhost, by
default), anyone from the trusted host may connect as a user with a NULL password. In fact,
passwords are ignored entirely for trusted hosts.

Note: The GRANT command allows you to restrict or allow a variety of access
types to tables within a database. See Chapter 10 for more on this topic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unless your needs for security are very minimal, you will not want to rely on password-only
authentication with your PostgreSQL server. Using a password-only method to authenticate
users will allow any verified user access to any database on the system, and authenticating
with a password over clear text can result in unauthorized individuals acquiring user
passwords. If you are likely to have your database connected to the Internet in some fashion,
we strongly suggest that you read the following sections. These cover the use of the
pg_hba.conf file and session encryption.

The pg_hba.conf file
We mentioned earlier in this section that the pg_hba.conf file enables client authentication
between the PostgreSQL server and the client application. This file consists of a series of
entries, which define a host and its associated permissions (e.g., the database it is allowed to
connect to, the authentication method to use, and so on).

When an application requests a connection, the request will specify a PostgreSQL username
and database with which it intends to connect to PostgreSQL. Optionally, a password may be
provided, depending on the expected configuration for the connecting host.

Note: PostgreSQL has its own user and password tables, which are separate from
system accounts. It is not required that your PostgreSQL users match users
available to the operating system.

When PostgreSQL receives a connection request it will check the pg_hba.conf file to verify
that the machine from which the application is requesting a connection has rights to connect to
the specified database. If the machine requesting access has permission to connect,
PostgreSQL will check the conditions that the application must meet in order to successfully
authenticate. This affects connections that are initiated locally as well as remotely.

PostgreSQL will check the authentication method via the pg_hba.conf for every connection
request. This check is performed every time a new connection is requested from the
PostgreSQL server, so there is no need to re-start PostgreSQL after you add, modify or
remove an entry in the pg_hba.conf file. Example 8-1 is a simple example of the pg_hba.conf
file.

Example 8-1. A simple pg_hba.conf file

PostgreSQL HOST ACCESS CONTROL FILE
#

local all trust
host all 127.0.0.1 255.255.255.255 trust
host booktown 192.168.1.3 255.255.255.255 ident sales
host all 192.168.1.4 255.255.255.255 ident audit

When a connection is initialized, PostgreSQL will read through the pg_hba.conf one entry at a
time, from the top down. As soon a matching record is found, PostgreSQL will stop searching
and allow or reject the connection, based on the found entry. If PostgreSQL does not find a
matching entry in the pg_hba.conf file, the connection fails completely.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table-level permissions still apply to a database, even if a user has permissions to connect to
the database. If you can connect, but cannot select data from a table, you may want to verify
that your connected user has permission to use SELECT on that table. Using the psql command-
line application, you can check the permissions of the tables within a database by using the \z
slash command. From any other interface to PostgreSQL, use the query demonstrated in
Example 8-2 to see the same information provided by the \z slash command.

Example 8-2. Checking user permissions

testdb=# SELECT relname as "Relation", relacl as "Access permissions"
testdb-# FROM pg_class
testdb-# WHERE relkind IN ('r', 'v', 'S')
testdb-# AND relname !~ '^pg_'
testdb-# ORDER BY relname;
 Relation | Access permissions
----------+----------------------------------
 foo | {"=arwR","jdrake=arwR"}
 my_list | {"=","jdrake=arwR","jworsley=r"}
(2 rows)

Structure of the pg_hba.conf file

The pg_hba.conf file contains sequential entries that define the settings PostgreSQL should
use during the client authentication process for a specified host. This file is designed to be
easily customizable to your system needs.

Within this file, you may associate a TCP/IP host address (or a range of addresses) with a
particular database (or all databases), and one of several available authentication methods.
You may also specify access for local connections using the term localhost, or 127.0.0.1,
rather than using the system's external IP address. Several syntax rules apply to the
pg_hba.conf.

First, you may only place one host record per line in the file. Subsequently, host records are
not allowed to wrap across multiple lines. Second, each host record must contain multiple
fields, which must be separated by either tabs or spaces. The number of fields in a host record
is directly related to the type of host entry being defined. Example 8-3 shows two host records,
the first with the fields separated by spaces, and the second with the file separated by tabs.

Example 8-3. A valid pg_hba.conf entry with spaces and tabs

host all 127.0.0.1 255.255.255.255 trust
host all 127.0.0.1 255.255.255.255 trust

Commenting is allowed within the pg_hba.conf by placing a hash mark (#) at the beginning of
each line being commented. Example 8-4 demonstrates valid commented lines.

Example 8-4. Valid pg_hba.conf comments

Book Town host entries
#
#
host all 127.0.0.1 255.255.255.255 trust

Regarding the actual form of each host record, there are three general types available in the
pg_hba.conf (the type keyword is always the first word in the host record):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pg_hba.conf (the type keyword is always the first word in the host record):

host

A host entry is used to specify remote hosts that are allowed to connect to the
PostgreSQL server. PostgreSQL's postmaster backend must be running with the -i
option (TCP/IP) in order for a host entry to work correctly.

local

A local entry is semantically the same as a host entry. However, you do not need to
specify a host that is allowed to connect. The local entry is used for client connections
that are initiated from the same machine that the PostgreSQL server is operating on.

hostssl

A hostssl entry is user to specify hosts (remote or local) that are allowed to connect to
the PostgreSQL server using SSL. The use of SSL insures that all communication
between the client and the server is encrypted. In order for this to work, both the client
and the server must support SSL. The postmaster backend must be running with the -l
(SSL) and -i (TCP/IP) options.

Note: See Chapter 9 for more on how to start the postmaster process with the
appropriate run-time options.

Example 8-5 illustrates the general syntax for each type of host record available within the
pg_hba.conf file. Notice that the format is essentially identical for each record, with the
exception that a local record does not require an IP address or netmask to be specified, as the
connection is assumed to be from the same machine on which PostgreSQL is running.

Example 8-5. Host entry syntax

A "local" record.
local database auth_method [auth_option]

A "host" record.
host database ip_addr netmask auth_method [auth_option]

A "hostssl" record.
hostssl database ip_addr netmask auth_method [auth_option]

Note: Remember that each entry in the pg_hba.conf must be a single line. You
cannot word wrap or use line breaks.

The following list is a description of the keywords for the pg_hba.conf entries mentioned
previously:

database

This is the database name that the specified host is allowed to connect to. The database
keyword has three possible values:

all

The all keyword specifies that the client connecting can connect to any database
the PostgreSQL server is hosting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sameuser

The sameuser keyword specifies that the client can only connect to a database
that matches the clients authenticated user name.

name

A specific name may be specified, so that the client can only connect to the
database as specified by name.

ip_addr, netmask

The ip_addr and netmask fields specify either a specific IP address, or range of IP
addresses, that are allowed to connect to the PostgreSQL server. Such a range can by
specified by describing an IP network with an associated netmask. Otherwise, for a
single IP address, the netmask field should be set to 255.255.255.255.

If you are unsure of how to specify a netmask, view the online Linux Networking
HOWTO, at http://www.thelinuxreview.com/howto/networking, or consult your system
administrator.

auth_method

The authentication method specifies the type of authentication the server should use for
a user trying to connect to PostgreSQL. The following is a list of options available for
auth_method:

trust

The trust method allows any user from the defined host to connect to a
PostgreSQL database without the use of a password, as any PostgreSQL user.
You are trusting the host-based authentication with the use of this method, and
any user on the specified host. This is a dangerous condition if the specified host
is not a secure machine, or provides access to users unknown to you.

reject

The reject method automatically denies access to PostgreSQL for that host or
user. This can be a prudent setting for sites that you know are never allowed to
connect to your database server.

password

The password method specifies that a password must exist for a connecting user.
The use of this method will require the connecting user to supply a password that
matches the password found in the global pg_shadow system table for their
username. If you use the password method, the password will be sent in clear
text.

crypt

The crypt method is similar to the password method. When using crypt, the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The crypt method is similar to the password method. When using crypt, the
password is not sent in clear text, but through a simple form of encryption. The
use of this method is not very secure, but is better than using the clear text
password method.

krb4, krb5

The krb4 and krb5 methods are used to specify Version 4 or 5 of the Kerberos
authentication system. The installation and configuration of Kerberos is beyond
the scope of this book, but if you wish to authenticate via Kerberos, these
methods are available.

ident

The ident method specifies that an ident map should be used when a host is
requesting connections from a valid IP address listed in the pg_hba.conf file. This
method requires one option.

The required option may be either the special term sameuser, or a named map
that is defined within the pg_ident.conf file. For more information on defining an
ident map, see the Section called The pg_ident.conf file."

auth_option

The auth_option field may or may not be required, based on the type of authentication
method that is used; as of PostgreSQL 7.1.x, only the ident method requires an option.

Warning
We do not suggest the use of either password or crypt without the use of an external
encryption mechanism. See the Section called Encrypting sessions" in this chapter for
information on installing a central encryption mechanism for all of your PostgreSQL traffic.

Example pg_hba.conf entries

This section contains a series of examples that can be used within the pg_hba.conf. To begin,
the host record within Example 8-6 allows a single machine with the IP address 192.168.1.10
to connect to any database as any user, without the use of a password. This is because it is
configured with the all and trust terms, respectively.

Example 8-6. Single host entry

host all 192.168.1.10 255.255.255.255 trust

Example 8-7 shows a host record which will reject all users from host 192.168.1.10, for any
requested database. This is set by the use of the terms all and reject as the database target
and authentication method, respectively.

Example 8-7. Rejection entry

host all 192.168.1.10 255.255.255.255 reject

The host record in Example 8-8 will allow any user with the IP of 192.168.1.10, and a valid
password, to connect to the database template1. The password will be encrypted during

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

password, to connect to the database template1. The password will be encrypted during
authentication because of the use of the term crypt.

Example 8-8. Single host, single database entry

host template1 192.168.1.10 255.255.255.255 crypt

The host record in Example 8-9 allows a small subnet of computers to access any database,
without the need of a password. This subnet describes any IP from 192.168.1.1 to
192.168.1.15. Again, if you are unsure of how to configure your netmask, consult your
network administrator, or view the Linux Networking HOWTO at
http://www.thelinuxreview.com/howto/networking.

Example 8-9. Small network connection entry

host all 192.168.1.0 255.255.255.240 trust

Expanding on the use of subnets, the host record in Example 8-10 allows any machine on the
192.168.1 block to connect to the booktown database, without the use of a password.

Example 8-10. Larger network connection entry

host booktown 192.168.1.0 255.255.255.0 trust

Remember, as stated earlier in this section, each host record line is read in succession from the
top of the file to the bottom. The first record which matches the host attempting to connect is
used. If no matching record is found, connection is completely disallowed.

The pg_ident.conf file

When specifying the ident term as a host record's authentication method, PostgreSQL uses
the pg_ident.conf file to map the identifying username to a PostgreSQL username. The
identifying username is the name provided by the connecting client's identd service (RFC
1413), which is required to identify the name of the system account initiating the connection.
This method is similar to the trust method, but restricts access based on the identifying
username.

As stated in the specification for the ident protocol, "The Identification Protocol is not
intended as an authorization or access control protocol." This is only a useful method of
identification for secure, controlled machines, and is not intended as a means for secure
control from a wide array of external machines. This is because an identd daemon merely
returns an arbitrary username describing the current system user. For example, allowing the
username jworsley from an entire subnet of IP addresses would create a serious security hole,
because anyone with a machine in that subnet could create a user named jworsley and
become "authenticated" as a result.

The pg_ident.conf file should be located in the same path as the pg_hba.conf file. This should
be the path defined by the PGDATA environment variable (e.g., /usr/local/pgsql/data). Like the
pg_hba.conf, changes to the pg_ident.conf file do not require PostgreSQL to be re-started.

The content of the pg_ident.conf associates identifying usernames with PostgreSQL
usernames via definitions called ident maps. This is useful for users whose system usernames
do not match their PostgreSQL usernames. Some rules you should keep in mind when
defining and using an ident map are:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each ident map member is defined on a single line, which associates a map name with
an identifying username, and a translated PostgreSQL username.

The pg_ident.conf file can contain multiple map names. Each group of single lines with
the same associative map name are considered a single map.

The pg_hba.conf file determines the types of connections that relate to users in this file.

A single line record to define an ident map consist of 3 tokens: the name of the map, the
identifying username, and the translated PostgreSQL username. This syntax is entered as
follows, where each token is separated by spaces, or tabs:

mapname identname postgresqlname

mapname

The map name used in the pg_hba.conf file to refer to the ident map.

identname

The identifying username, which is generally the name of the system user attempting to
establish a connection to the database. This is the name provided by the identd daemon,
which must be running on the system attempting to connect.

postgresqlname

The database username which is allowed for the preceding identifying username. You
may specify several lines with the same identname, but with different postgresqlname
values, in order to allow a single system user access to several accounts, which do not
all need to be on the same database.

As an example, suppose that the Book Town server has a set of system accounts named
jdrake, jworsley, and auditor, used for two salespeople and an internal auditor,
respectively.

You may wish to create a pair of ident maps for these two groups of users. Suppose that the
sales department's workstation has an IP address of 192.168.1.3, and only needs access to the
booktown database, while the audit department's workstation has an IP address of 192.168.1.4,
and requires access to all databases. This scenario might result in a pga_hba.conf, such as the
one displayed in Example 8-11.

Example 8-11. An ident configuration in pg_hba.conf

host booktown 192.168.1.3 255.255.255.255 ident sales
host all 192.168.1.4 255.255.255.255 ident audit

This host access configuration states that the sales machine may connect to the booktown
database using an ident map named sales, and the audit workstation may connect to any
database using an ident map named audit. Each of these maps must then be configured within
the pg_ident.conf file. Example 8-12 demonstrates such a configuration.

Example 8-12. A pg_ident.conf configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MAP IDENT POSTGRESQL_USERNAME
sales jdrake sales
sales jworsley sales
audit auditor sales
audit auditor postgres

The file shown in Example 8-12 allows either of the system users jdrake or jworsley to
connect as the PostgreSQL sales user, and allows the system user named auditor to connect
to PostgreSQL as either sales, or postgres.

Note: It is possible for an identifying username to be mapped to multiple
PostgreSQL usernames. This is illustrated in Example 8-12 with the auditor
user.

If you wish only to use ident as a means of automatically identifying your remote username,
you do not need to use the pg_ident.conf file. You can instead use the special term sameuser
in the pg_hba.conf file, in place of a map name.

Again, this is similar to the trusted method, however ident sameuser restricts connections
based on the username provided by identd. Providing a PostgreSQL username to connect with
(e.g., with the -U  flag to psql ) that is different from the name sent by identd will result in a
failure to connect.

Use of the sameuser map is demonstrated in Example 8-13.

Example 8-13. A sameuser configuration

host booktown 192.168.1.0 255.255.255.0 ident sameuser

The host record in Example 8-13 allows any machine on the 192.168.1 network block to
connect to the booktown database, using the PostgreSQL username that matches the username
provided by identd. The sameuser term causes PostgreSQL to implicitly compare the
requested PostgreSQL username against the name provided by identd.

Authentication Failure
When authentication failure occurs, PostgreSQL will usually do its best to provide a useful
error message, rather than blindly fail. The following are common error messages you may
encounter, with explanations:

FATAL 1: user "testuser" does not exist

The specified username was not found in the pg_shadow system table, meaning the user
does not exist. See Chapter 10 for more on adding users.

FATAL 1: Database "testdb" does not exist in the system catalog

This database cannot be found because it does not exist. Note that if you do not specify
a database name to a PostgreSQL connection, it will attempt to connect to the provided
username.

No pg_hba.conf entry for host 123.123.123.1, user testuser, database testdb

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

No pg_hba.conf entry for host 123.123.123.1, user testuser, database testdb

You have succeeded in contacting the server, but the server is not accepting your
connection. The server refused the connection because it cannot find an entry for
testuser using testdb at their IP address (123.123.123.1) in the pg_hba.conf file.

Password authentication failed for user 'testuser'

You have succeeded in contacting the server and it is replying back, but the connection
failed password authorization. Check the password you are supplying to the server, and
make sure that it is correct. Further, you can check the Kerberos or Ident software
programs if you are using them for your password authentication.

You may want to check if this user has a password. If this user does not have one, and
the pg_hba.conf file is set to check for passwords, it will still check every user for their
password. For all users without a defined password, a NULL password is assigned to that
user. When the user tries to log in and does not specify a password, it will compare the
NULL password to the NULL input, and it will return false.

On the other hand, if the user tries to supply a password (even a blank one), it will
compare that input value with the NULL password and still return false. If you are using
password authentication, you must assign a password to all users. If a password is not
assigned to a user in such a scheme, password authentication will always fail, and the
user will not be able to log in.

Prev Home Next
Administrating PostgreSQL Up Encrypting sessions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

Chapter 9. Database Management
Table of Contents
Starting and Stopping PostgreSQL
Initializing the Filesystem
Creating and Removing a Database
Maintaining a Database
Backing Up and Restoring Data

This chapter covers several topics associated with managing a PostgreSQL database system,
including starting and stopping the PostgreSQL backend, initializing the filesystem, and the
creation, removal, and maintenance of individual databases. There is also a section devoted to
the topic of backing up and restoring data from a database.

Starting and Stopping PostgreSQL
In this section we cover two options provided with PostgreSQL that are used to start and stop
PostgreSQL. The first is a general purpose application called pg_ctl, which should function
identically on any machine, regardless of the system. This script is intended to be run by the
system user (e.g., the user who owns the data directory) configured to execute the postmaster
backend.

The second script provided is the SysV-style script, found in the contrib/start-scripts
subdirectory within the PostgreSQL source path. The installation of the SysV script is
discussed in Chapter 2. By default this script is named linux, as it is intended for a Linux
system's start-script directory, though in the installation instructions it is renamed to a script
called postgresql in the system's service start-up directory (e.g., /etc/rc.d/init.d ).

The main functional difference between pg_ctl and the SysV-style service script is that pg_ctl
is intended to be used by the user who runs the postmaster backend (e.g., postgres), whereas
the service script is intended to be run by the root user.

The service script is not strictly Linux-specific, and should be compatible with most systems
based on SysV start-up scripts. However, if you are not running Linux, you may prefer to stick
with the pg_ctl script.

Using pg_ctl
The pg_ctl script is provided with PostgreSQL as a general control application. With it, you
can start, stop, restart, or check on the status of PostgreSQL.

Here is the syntax for pg_ctl, from the -  -help option:

 pg_ctl start [-w] [-D DATADIR ] [-s] [-l FILENAME ] [-o "OPTIONS"]
 pg_ctl stop [-W] [-D DATADIR ] [-s] [-m SHUTDOWN-MODE ]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pg_ctl stop [-W] [-D DATADIR ] [-s] [-m SHUTDOWN-MODE ]
 pg_ctl restart [-w] [-D DATADIR ] [-s] [-m SHUTDOWN-MODE ] [-o "OPTIONS"]
 pg_ctl status [-D DATADIR]

The following options may be passed to pg_ctl:

-w

Causes the pg_ctl application to wait until the operation has finished before returning to
a command line. This option may be passed to either the start or restart action; by
default, the application sends the command on to the postmaster and exits immediately
for these actions.

-W

Causes the pg_ctl application not to wait until the operation has finished before
returning to a command line. This option may only be passed to the stop action; by
default, the application sends the stop command on to the postmaster, and waits for the
action to finish before exiting.

-D DATADIR

Specifies the directory that contains the default database files. This is optional, because
you may have this value already set in the PGDATA environment variable. If the PGDATA
environment variable is not set, the -D flag is required.

-s

Suppresses any output from the pg_ctl application, aside from system errors. If this flag
is not specified, information about the activity within the database (or specific
information about startup or shutdown, depending on the action) will be displayed to the
screen of the user who initiated the command.

-l FILENAME

Specifies a file FILENAME to append database activity to. This option is only available
with the start action.

-m SHUTDOWN-MODE

Sets the SHUTDOWN-MODE with which to shut down the postmaster backend.

smart

Makes postmaster wait for all clients to disconnect before shutting down.

fast

Shuts postmaster down without waiting for clients to disconnect.

immediate

Shuts postmaster down more abruptly than fast mode, bypassing normal
shutdown procedures. This mode causes the database to restart in recovery mode
the next time it starts, which verifies the integrity of the system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This option is of course only available to the stop and restart actions.

-o "OPTIONS"

Passes the options specified by OPTIONS (within double quotes) to be passed directly
through to the postmaster (e.g., the -i flag to enable TCP/IP connections). See the
Section called Calling postmaster Directly" later in this chapter for a complete list of
these flags.

Note: Many of the run-time configuration options for postmaster can be found in
the postgresql.conf file, which is stored in the PostgreSQL data path (e.g.,
/usr/local/pgsql/data). The options in this file are of a more technical nature, and
should not be modified unless you are sure you understand their purpose.

Starting PostgreSQL with pg_ctl

To start PostgreSQL's postmaster backend, the start argument must be passed to pg_ctl.
Remember that pg_ctl must be run by the postgres user (or whatever user you have configured
to own the PostgreSQL data path).

Example 9-1 starts the postmaster backend, using the data path of /usr/local/pgsql/data. The
database system starts up successfully, reports the last time the database system was shut
down, and provides various debugging statements before returning the postgres user to a shell
prompt.

Example 9-1. Starting PostgreSQL with pg_ctl

[postgres@booktown ~]$ pg_ctl -D /usr/local/pgsql/data start
postmaster successfully started
DEBUG: database system was shut down at 2001-09-17 08:06:34 PDT
DEBUG: CheckPoint record at (0, 1000524052)
DEBUG: Redo record at (0, 1000524052); Undo record at (0, 0); Shutdown TRUE
DEBUG: NextTransactionId: 815832; NextOid: 3628113
DEBUG: database system is in production state

[postgres@booktown ~]$

Stopping PostgreSQL with pg_ctl

The PostgreSQL postmaster backend can be stopped in the same fashion that it is started—by
passing the stop argument to pg_ctl. The application pg_ctl checks for the running postmaster
process, and, if the stop command was executed by the user who owns the running processes
(e.g., postgres) the server is shut down.

There are three ways in which PostgreSQL can shut down the backend: smart, fast, and
immediate. These arguments are passed to pg_ctl following the -m flag, to indicate the desired
shutdown mode.

A smart shutdown (the default) causes PostgreSQL to wait for all clients to first cancel their
connections before shutting down. A fast shutdown causes PostgreSQL to simply shut down
through its normal routine, without checking client status. An immediate shutdown bypasses
the normal shutdown procedure, and will require the system to go through a recovery mode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the normal shutdown procedure, and will require the system to go through a recovery mode
when restarted.

Warning
Never use kill -9 (kill -KILL) on the postmaster process. This can result in lost or corrupted
data.

Example 9-2 calls the pg_ctl script to stop the postmaster process in fast mode. The
postmaster backend will not wait for any client connections to disconnect before shutting
down.

Example 9-2. Stopping PostgreSQL with pg_ctl

[postgres@booktown ~]$ pg_ctl -D /usr/local/pgsql/data stop -m fast
Fast Shutdown request at Mon Sep 17 09:23:39 2001
DEBUG: shutting down
waiting for postmaster to shut down.....
DEBUG: database system is shut down
done
postmaster successfully shut down
[postgres@booktown ~]$

Note: The smart shutdown is equivalent to a kill -TERM on the running
postmaster process, while fast is equivalent to a kill -INT, and immediate is
equivalent to a kill -QUIT.

Restarting PostgreSQL with pg_ctl

You may pass the restart argument to pg_ctl as shorthand for sequential stop and start calls to
pg_ctl. This argument may also specify the -m flag to indicate the preferred shutdown mode.

PostgreSQL stores the most recently used start-up options in a temporary file called
postmaster.opts, within the PostgreSQL data path (PGDATA). This file is used when pg_ctl is
invoked with the restart argument to ensure that your run-time options are preserved. Avoid
placing your own configurations on the postmaster.opts file, as it will be overwritten when
pg_ctl is executed with the start argument.

Example 9-3 restarts the Book Town database server with the postgres user.

Example 9-3. Restarting PostgreSQL with pg_ctl

[postgres@booktown ~]$ pg_ctl -D /usr/local/pgsql/data restart
Smart Shutdown request at Mon Sep 17 08:33:51 2001
DEBUG: shutting down
waiting for postmaster to shut down.....DEBUG: database system is shut down
done
postmaster successfully shut down
postmaster successfully started
[postgres@booktown ~]$
DEBUG: database system was shut down at 2001-09-17 08:33:53 PDT
DEBUG: CheckPoint record at (0, 1000524116)
DEBUG: Redo record at (0, 1000524116); Undo record at (0, 0); Shutdown TRUE
DEBUG: NextTransactionId: 815832; NextOid: 3628113
DEBUG: database system is in production state

[postgres@booktown ~]$

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[postgres@booktown ~]$

Checking status of PostgreSQL with pg_ctl

You may use the status argument to check the status of a running postmaster process. While
not having any effect on the data itself, the data path must be known to pg_ctl. If the PGDATA
environmental variable is not set, the -D flag must be passed to pg_ctl.

Example 9-4 checks the status of the Book Town PostgreSQL server.

Example 9-4. Checking status with pg_ctl

[postgres@booktown ~]$ pg_ctl -D /usr/local/pgsql/data status
pg_ctl: postmaster is running (pid: 11575)
Command line was:
/usr/local/pgsql/bin/postmaster '-D' '/usr/local/pgsql/data' '-i' '-s'
[postgres@booktown ~]$

Note: A lot of typing can be saved by making sure the PGDATA variable is set. If
you intend to always use the same data directory, you may set the PGDATA variable
(e.g., in the /etc/profile file, as is recommended in Chapter 2) and never have to
apply the -D flag.

Using the SysV Script
The SysV-style script, if installed, operates similarly to the pg_ctl script. In fact, the SysV-
style script operates as a management program that wraps around the pg_ctl command. The
primary difference is that the SysV script is intended to be invoked by the root user, rather
than the user who owns and runs PostgreSQL (e.g., postgres). The script itself handles the
switching of the userids at the appropriate times.

Using the SysV script instead of manually invoking pg_ctl is advantageous in that it simplifies
system startup and shutdown procedures. The postgresql script file in /etc/rc.d/init.d/ is a plain
text file, and can be modified in any standard text editor. Within this file you may easily locate
the startup and shutdown routines, and add or remove options to pg_ctl as you most commonly
use them. The pg_ctl commands are simplified by using either the single administrative start
or stop parameter with the postgresql script.

The instructions for installation of the postgresql script are covered in Chapter 2. Depending
on your machine's configuration, there may be more than one method of invoking the script
once it has been properly installed. Remember that the actual name of the SysV script file in
the /etc/rc.d/init.d/ directory may be an arbitrary name, depending on how it was copied. The
most common names given to this script are postgresql and postgres.

If your system supports the service command, you should be able to use it as a wrapper to the
installed PostgreSQL script with the following syntax:

service postgresql { start | stop | restart | status }

The service command accepts only the parameters described in the preceding syntax. No other
options are accepted. You can modify the way any of these general modes runs by editing the
script (e.g., /etc/rc.d/init.d/postgresql) manually. Example 9-5 uses the service command to
start PostgreSQL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-5. Starting PostgreSQL with service command

[root@booktown ~]# service postgresql start
Starting PostgreSQL: ok
[root@booktown ~]#

Alternatively, if the service command does not exist on your system, the postgresql script can
be manually invoked with its complete system path:

/etc/rc.d/init.d/postgresql { start | stop | restart | status }

Example 9-6 checks the status of PostgreSQL's backend process by directly calling the
postgresql script in the complete path. This assumes that your system has its SysV start-up
scripts installed in the /etc/rc.d/init.d/ directory.

Example 9-6. Checking status with postgresql script

[root@booktown ~]# /etc/rc.d/init.d/postgresql status
pg_ctl: postmaster is running (pid: 13238)
Command line was:
/usr/local/pgsql/bin/postmaster '-D' '/usr/local/pgsql/data'
[root@booktown ~]#

As you can see from the output of Example 9-6, the SysV script is just a convenient wrapper
to the pg_ctl command discussed in the previous section.

Calling postmaster Directly
The postmaster program is the multi-user PostgreSQL database server backend itself. This is
the process that your PostgreSQL clients actually connect to, where a connection to a postgres
backend is negotiated.

This binary is typically not called manually, but is indirectly executed through either the
pg_ctl or SysV script discussed earlier in this section. However, these scripts at some point
call the postmaster binary directly, and it can be helpful in configuring your PostgreSQL
system to know what the postmaster is, and what it does.

The postmaster can only access one database cluster at a time, though you may have several
concurrent postmaster applications running on different ports with a different database cluster
for each.

Here is the syntax for the postmaster program:

 postmaster [-A { 0 | 1 }] [-B buffers] [-c name=value] [-d debug_level
 [-D datadir] [-F] [-h hostname] [-i] [-k directory] [-l]
 [-N max_connections] [-o options] [-p port] [-S] [-n | -s]

The following are each of the parameters available to the postmaster program, as of
PostgreSQL 7.1.x:

-A { 0 | 1 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The run-time assertion check flag. This enables debugging, if this option was enabled
during compilation of PostgreSQL. This flag should only be used by knowledgeable
developers working on PostgreSQL itself.

-B buffers

The number of shared-memory disk buffers that postmaster will allocate for use by the
backend. By default, this is 64.

Note: The value passed to -B must be at least twice the number supplied for
the -N parameter.

-c name=value

An arbitrary run-time configuration, setting name to value. Any configuration settings
found in the postgresql.conf file (within the database cluster's data directory) may be
over-ridden with this option.

-d debug_level

The debug level, which determines the amount of debugging output that will be logged
by the backend. The default is 0. The higher the number, the more output will be
generated. Values as high as 4 are reasonable for normal use, though a value of 4 will
quickly take up disk space if you are logging the debug output.

Note: Unless the standard output and standard error streams from
postmaster are redirected to a file (e.g., from the shell, or with the -l option
to pg_ctl) all debugging information will be displayed to the controlling
terminal session of the postmaster process.

-D datadir

The data directory of the intended database cluster. If this is not supplied, postmaster
will use either the value of the PGDATA environment variable, or the /data path off of the
path defined in the POSTGRESHOME environment variable. If neither environment variable
is set, the default compile-time directory is used (e.g., /usr/local/pgsql/data).

-F

The fsync-disabling option. Using this increases performance, at the risk of data
corruption, in the event that the operating system or physical hardware crashes
unexpectedly. Be sure you know what you are doing before you use this flag!

-h host

The host address to listen on; by default, PostgreSQL's backends will listen on all
configured addresses, including localhost.

-i

The TCP/IP client-connection flag, which allows connections via TCP/IP. If this option
is not specified, the backend will accept only local domain socket connections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-k directory

The directory for the UNIX domain socket, which postmaster will listen on for local
connections. This defaults to /tmp/.

-l

The SSL flag. Use this to enable SSL connections. The -i parameter must also be given.

Note: You must have compiled PostgreSQL with SSL enabled to use the -I
option.

-N max_connections

The maximum number of concurrent backend processes that postmaster can start. By
default, this value is set to 32. The maximum allowed number for this value is 1024.
Make sure that your allocated buffers are configured for the maximum number of
concurrent backends (the -B parameter, which must be at least twice the
max_connections value).

-o options

Any options that postmaster should send to the postgres backends when they are first
started. These options are listed in Appendix B. Surround the options string with
quotes, if more than one option is passed.

-p port

The TCP/IP port number (or socket file extension) that this instance of postmaster
should listen for connections on. If this is left unspecified, the default is taken from the
PGPORT environment variable, or the compile-time default (usually 5432).

-S

The silent mode flag. This will cause PostgreSQL to disassociate from the user's
terminal session, start its own process group, and redirect its standard output and
standard error to /dev/null.

Warning
Using the -S switch makes it very difficult to troubleshoot problems, since all
tracing and logging output that would normally be generated by the
postmaster and its child backend processes will be discarded.

The postmaster also accepts the following two debugging options, for interested developers:

-n

The -n flag stops postmaster from re-initializing shared data structures. A debugging
tool can then be used to gain information about the memory's state at the time of the
crash.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-s

The -s flag causes postmaster to use the SIGSTOP signal to stop backend processes,
without terminating the processes. Using this signal will keep the backend processes in
memory instead of terminating them, which allows a developer to collect a core dump
from each backend process manually. Each core dump can then be individually
examined for debugging information.

Prev Home Next
Encrypting sessions Up Initializing the Filesystem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

Chapter 10. User and Group Management
Table of Contents
Managing Users
Managing Groups
Granting Privileges

As in most database systems, users and groups handle an important role within PostgreSQL.
Used correctly, users and groups can allow for fine-grained, versatile access control to your
database objects.

PostgreSQL stores both user and group data within its own system catalogs. These are
different from the users and groups defined within the operating system on which the software
is installed. Any connection to PostgreSQL must be made with a specific user, and any user
may belong to one or more defined groups.

Users control the allocation of rights and track who is allowed to perform actions on the
system (and which actions they may perform). Groups exist as a means to simplify the
allocation of these rights. Both users and groups exist as global database objects, which means
they are not tied to any particular database.

This chapter addresses the management and practical application of PostgreSQL users and
groups.

Managing Users
In order to establish a connection to PostgreSQL, you must supply a basic form of
identification. This is called a username, as it identifies the user who the system will recognize
as connected to a database. Users within PostgreSQL are not necessarily related to users of the
operating system (which are sometimes called system accounts), though you may choose to
name your PostgreSQL users after the system accounts that will be accessing them.

Each user has an internal system ID to PostgreSQL (called a sysid), as well as a password,
though the password is not necessarily required to connect (depending on the configuration of
the pg_hba.conf ; (see Chapter 8, for more on this subject). The user's system ID is used to
associate objects in a database with their owner (the user who is allowed to grant and revoke
rights on an object).

As well as being used to associate database objects with their owner, users may also have
global rights assigned to them when they are created. These rights determine whether or not a
user is allowed to create and destroy databases, and whether or not the user is a superuser (a
user who is allowed all rights, in all databases, including the right to create users). The
assignment of these rights may be modified at any time by an existing superuser.

PostgreSQL installs a single superuser by default named postgres. All other users must be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PostgreSQL installs a single superuser by default named postgres. All other users must be
added by this user, or by another subsequently added superuser.

Viewing Users
All user information is stored in a PostgreSQL system table called pg_shadow, shown in Table
10-1. This table is only selectable by superusers, though a limited view of this table called
pg_user is accessible to normal users.

Table 10-1. The pg_shadow table

Column Type
usename name
usesysid integer
usecreatedb boolean
usetrace boolean
usesuper boolean
usecatupd boolean
passwd text
valuntil abstime

The primary difference between the selectable data in pg_user and pg_shadow is that the
actual value of the passwd column is not shown (it is replaced with a string of asterisks). This
is a security measure to ensure that normal users are not able to determine one another's
passwords.

The usename column stores the name of the system user, which is a unique character string (no
two users may have the same name, as users are global database objects). Similarly, the
usesysid column stores a unique integer value associated with the user. The usecreatedb and
usesuper each correspond to the pair of privileges which can be set upon creation of a user, as
documented in the Section called Creating Users."

Creating Users
PostgreSQL provides two methods by which database users may be created. Each requires
authentication as a superuser, for only superusers can create new users.

The first method is through the use of the SQL command CREATE USER, which may be
executed by any properly authenticated PostgreSQL client (e.g., psql ). The second is a
command-line wrapper called createuser, which may be more convenient for a system
administrator, as it can be executed in a single command without the need to interact with a
PostgreSQL client.

The following sections document each of these methods.

Creating a user with the CREATE USER SQL command

The CREATE USER command requires only one parameter: the name of the new user. There are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CREATE USER command requires only one parameter: the name of the new user. There are
also a variety of options that may be set, including a password, explicit system ID, group, and
a set of rights that may be explicitly allocated. Here is the complete syntax for CREATE USER:

 CREATE USER username
 [WITH [SYSID uid]
 [PASSWORD 'password']]
 [CREATEDB | NOCREATEDB]
 [CREATEUSER | NOCREATEUSER]
 [IN GROUP groupname [, ...]]
 [VALID UNTIL 'abstime']

In this syntax, username is the name of the new user to be created. You cannot have two users
with the same name. By specifying the WITH keyword, either or both of the SYSID and
PASSWORD keywords may be applied.

Every other optional keyword may follow in the order displayed (not requiring the use of the
WITH keyword). The following is a detailed explanation of each optional keyword and its
meaning:

SYSID uid

Specifies that the system ID is to be set to the value of uid. If omitted, a reasonable,
unique numeric default is chosen.

PASSWORD 'password'

Sets the new user's password to password. If unspecified, the password defaults to NULL.

CREATEDB | NOCREATEDB

Specifying the CREATEDB keyword grants the new user the right to create new databases,
as well as the right to destroy databases which they own. Specifying NOCREATEDB
explicitly enforces the default, which is the lack of this right.

CREATEUSER | NOCREATEUSER

Grants the right to create new users, which implicitly creates a superuser. Notice that a
user with the rights to create other users will therefore have all rights, in all databases
(including the rights to create a database, even if NOCREATEDB was specified).
NOCREATEUSER explicitly enforces the default, which is the lack of this right.

IN GROUP groupname [, ...]

Adds the new user to the group named groupname. Multiple group names may be
specified by separating them with commas. The group(s) must exist in order for the
statement to succeed.

VALID UNTIL 'abstime'

Sets the user's password to expire at abstime, which must be of a recognizable
timestamp format. After that date, the password must be reset, and the expiration moved
forward.

VALID UNTIL 'infinity'

Sets the user's password to be valid indefinitely.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By not specifying either CREATEDB or CREATEUSER, users are implicitly "normal" with no
special rights. They may not create databases or other users, nor may they destroy databases or
users. Such users may connect to databases in PostgreSQL, but they can only perform the
statements which they have been granted access to (see the Section called Granting
Privileges" for more on granting rights).

Example 10-1 creates a normal user named salesuser. It also sets a password of N0rm4! by
the use of the WITH PASSWORD clause. By omitting the VALID UNTIL clause, this password will
never expires.

Example 10-1. Creating a normal user

template1=# CREATE USER salesuser
template1-# WITH PASSWORD 'N0rm4!';
CREATE USER

The CREATE USER server message returned in Example 10-1 indicates that the user was added
successfully. Other messages you may receive from this command are as follows:

ERROR: CREATE USER: permission denied

This message is returned if the user issuing the CREATE USER command is not a
superuser. Only superusers may create new users.

ERROR: CREATE USER: user name "salesuser" already exists

This message indicates that a user with the name salesuser already exists.

If you wish to create a user who has the ability to create databases within PostgreSQL but not
create or destroy PostgreSQL users, you may specify the CREATEDB keyword rather than
CREATEUSER. This allows the named user to arbitrarily create databases, as well as drop any
databases which they own. See Chapter 9, for more on this the topic of creating and destroying
databases.

Example 10-2 illustrates the creation of a user named dbuser who has the right to create new
databases. This is achieved by specifying the CREATEDB keyword after the username. Notice
also the use of the WITH PASSWORD and VALID UNTIL keywords. These set the password for
dbuser to DbuS3r, which will be valid until November 11th, 2002.

Example 10-2. Creating a user with CREATEDB rights

template1=# CREATE USER dbuser CREATEDB
template1-# WITH PASSWORD 'DbuS3r'
template1-# VALID UNTIL '2002-11-11';
CREATE USER

Resetting an expired user's password does not modify the VALID UNTIL value. In order to re-
active a user's access whose password has expired, both the WITH PASSWORD and VALID UNTIL
keywords must be provided to the ALTER USER command. See the Section called Altering
Users" for more on this command.

Warning
VALID UNTIL settings are only relevant to systems which are not trusted; sites which are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VALID UNTIL settings are only relevant to systems which are not trusted; sites which are
trusted do not require passwords. See Chapter 8 for more on host-based authentication.

You may wish to create an alternate superuser from the postgres user, though caution should
be exercised in creating superusers. These users are granted every right within PostgreSQL,
including creating users, removing users, and destroying databases. Example 10-3
demonstrates the creation of a PostgreSQL superuser named manager from the psql prompt.

Example 10-3. Creating a superuser

template1=# CREATE USER manager CREATEUSER;
CREATE USER

Creating a user with the createuser script

The createuser script is executed directly from the command line, and can operate in one of
two ways. If issued without any arguments, it will interactively prompt you for the username
and each of the rights, and attempt to make a local connection to PostgreSQL. Alternatively,
you may choose to specify the options and the username to be created on the command line.

As with other command-line applications for PostgreSQL, arguments may be supplied either
in their short form (with a single dash, and character), or in their long form (with two dashes,
and the full name of the argument).

Here is the syntax for createuser :

 createuser [options] [username]

The username in the syntax represents the name of the user you wish to create. Replace
options with one or more of the following flags:

-d, - -createdb

Equivalent to the CREATEDB keyword of the CREATE USER SQL command. Allows the
new user to create databases.

-D, - -no-createdb

Equivalent to the NOCREATEDB keyword of the CREATE USER SQL command. Explicitly
indicates that the new user may not create databases. This is the default.

-a, - -adduser

Equivalent to the CREATEUSER keyword of the CREATE USER SQL command. Allows the
new user to create users, and raises the status of the user to a superuser (enabling all
rights within PostgreSQL).

-A, - -no-adduser

Equivalent to the NOCREATEUSER keyword of the CREATE USER SQL command.
Explicitly indicates that the new user is not a superuser. This is the default.

-i SYSID, - -sysid=SYSID

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets the new users system ID to SYSID.

-P, - -pwprompt

Results in a password prompt allowing you to set the password of the new user
username.

-h HOSTNAME, - -host=HOSTNAME

Specifies that HOSTNAME will be connected to, rather than the localhost, or the host
defined by the PGHOST environment variable.

-p PORT, - -port=PORT

Specifies that the database connection will be made on port PORT, rather than the default
port (usually 5432).

-U USERNAME, - -username=USERNAME

Specifies that USERNAME will be the user who connects to PostgreSQL (The default is to
connect using the name of the system user executing the createuser script).

-W, - -password

Results in a password prompt for the connecting user, which happens automatically if
the pg_hba.conf file is configured not to trust the requesting host.

-e, - -echo

Causes the CREATE USER command sent to PostgreSQL to be displayed to the screen
as it is executed by createuser.

-q, - -quiet

Prevents output from being sent to stdout (though errors will still be sent to stderr).

If any of the -d, -D, -a, -A, or username arguments are omitted, createuser will prompt you for
each missing argument. This is because PostgreSQL will not make any assumptions about the
rights intended for the new user, nor about the new user's name. Example 10-4 creates a user
named newuser, who has neither the right to create a database, nor create users.

Example 10-4. Creating a user with createuser

[jworsley@booktown ~]$ createuser -U manager -D -A newuser
CREATE USER

Notice also the -U manager flag passed to the createuser script. This indicates that the user
with which to connect to PostgreSQL is manager, not jworsley as the script would otherwise
assume, based on the name of the system account invoking the script.

If you prefer to be interactively prompted for each setting, (instead of having to remember the
meaning of each flag or check the reference each time) you may simply omit the flags you are
uncertain of. The createuser script will then prompt you for the basic createuser options.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

uncertain of. The createuser script will then prompt you for the basic createuser options.
These options include the PostgreSQL username, whether the user may create databases, and
whether or not the user may add new users to PostgreSQL.

Example 10-5 demonstrates using the createuser script in interactive mode. The net effect of
this example is the same as the single line executed in Example 10-4.

Example 10-5. Interactively creating a user with createuser

[jworsley@booktown ~]$ createuser
Enter name of user to add: newuser
Shall the new user be allowed to create databases? (y/n) n
Shall the new user be allowed to create more new users? (y/n) n
CREATE USER

Altering Users
Existing users may only be modified by PostgreSQL superusers. Possible modifications
include each of the options available at the creation of the user (e.g., password, password
expiration date, global rights), except for the system ID of an existing user, which may not be
modified. Modification of existing users is achieved through the use of the ALTER USER SQL
statement.

Here is the syntax for ALTER USER:

 ALTER USER username
 [WITH PASSWORD 'password']
 [CREATEDB | NOCREATEDB]
 [CREATEUSER | NOCREATEUSER]
 [VALID UNTIL 'abstime']

The required username argument specifies which user is to be modified. Any of the following
parameters may additionally be specified:

WITH PASSWORD 'password'

Sets username's password to password.

CREATEDB | NOCREATEDB

Grants or revokes from username the right to create databases.

CREATEUSER | NOCREATEUSER

Grants or revokes from username the status of superuser, which enables all possible
right within PostgreSQL (most notably the ability to create and destroy users and
superusers).

VALID UNTIL 'abstime'

Sets username's password to expire at abstime, which must be of some valid timestamp
format. This value is only relevant for systems requiring password authentication, and is
otherwise ignored (e.g., for trusted sites).

A common function of ALTER USER is to reset the password (and potentially the expiration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A common function of ALTER USER is to reset the password (and potentially the expiration
date) of a user. If a PostgreSQL user had an expiration date set when their user was originally
added, and that date has passed, and the user requires password-based authentication, a
superuser will have to reset both the password and the expiration date to re-activate a user's
ability to connect. If you want to cause a user's password to never expire, set it to the special
timestamp infinity.

Example 10-6 modifies a user named salesuser. The user's password is set to n3Wp4s4 by
the WITH PASSWORD clause, and set to expire on January 1st, 2003 by the VALID UNTIL clause.

Example 10-6. Resetting a password

template1=# ALTER USER salesuser
template1-# WITH PASSWORD 'n3WP4s4'
template1-# VALID UNTIL '2003-01-01';
ALTER USER

At times you may wish to grant a user additional rights beyond those originally granted to
them. The use of the CREATEUSER keyword in Example 10-7 modifies the user salesuser to
have all rights in PostgreSQL, making the user into a superuser. Note that this makes the
CREATEDB right moot, as superusers can create databases implicitly.

Example 10-7. Adding superuser rights

template1=# ALTER USER salesuser
template1-# CREATEUSER;
ALTER USER

Conversely, there may be times when a user no longer deserves rights that have been granted
in the past. These rights may be just as easily removed by a superuser with the NOCREATEDB
and NOCREATEUSER keywords.

Example 10-8. Removing superuser rights

template1=# ALTER USER salesuser
template1-# NOCREATEDB NOCREATEUSER;
ALTER USER

Warning
As any superuser may revoke rights from another superuser, or even remove another
superuser, it is wise to be extremely careful when granting the CREATEUSER right.

Removing Users
PostgreSQL users may at any time be removed from the system by authenticated superusers.
The only restriction is that a user may not be removed if any databases exist which are owned
by that user. If a user owns a database, that database must be dropped before the user can be
removed from the system.

As with the creation of PostgreSQL users, there are two methods by which users may be
removed. These are the DROP USER SQL command, and the dropuser command-line
executable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Removing users with the DROP USER SQL command

A superuser may remove a user by issuing the DROP USER command from a valid
PostgreSQL client. The psql program is most commonly used to achieve this task.

Here is the syntax for DROP USER:

 DROP USER username

In this syntax, username is the name of the user that you intend to permanently remove from
the system. Example 10-9 shows the use of the psql client to connect to PostgreSQL as the
manager user in order to remove the salesuser database user.

Example 10-9. Removing a user with DROP USER

[jworsley@booktown ~]$ psql -U manager template1
Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

template1=# DROP USER salesuser;
DROP USER

The DROP USER server message indicates that the user was successfully removed from the
system. Other messages that you might receive from this command include:

ERROR: DROP USER: permission denied

Indicates that the user initiating the command does not have the right to drop a user.
Only superusers may drop existing database users.

ERROR: DROP USER: user "salesuser" does not exist

Indicates that there is no such user with the name salesuser.

Removing users with the dropuser operating system command

The dropuser command operates much like the createuser script. It offers the same connection
options, ensuring that it can be used remotely as well as locally, and requires only the
username of the user to be removed from the system.

Here is the syntax for dropuser:

 dropuser [options] [username]

Each of the connectivity options is identical to those for createuser, described in the Section
called Creating a user with the createuser script," earlier in this chapter. Example 10-10
demonstrates the same net effect as the SQL statement in Example 10-9 by connecting to the
PostgreSQL backend as the manager user, and removing the user named salesuser.

Example 10-10. Removing a user with dropuser

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[jworsley@booktown ~]$ dropuser -U manager salesuser
DROP USER

The output from dropuser is the same as the output for the SQL DROP USER command. If you
omit the username that you wish to remove when you execute the script dropuser, you will be
prompted interactively for the name of that user to be removed from the system.

Prev Home Next
Backing Up and Restoring
Data

Up Managing Groups

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

Chapter 11. PL/pgSQL
Table of Contents
Adding PL/pgSQL to your Database
Language Structure
Using Variables
Controlling Program Flow
PL/pgSQL and Triggers

PL/pgSQL is a loadable, procedural language, similar to the Oracle procedural language,
PL/SQL. A procedural language is a programming language used to specify a sequence of
steps that are followed to produce an intended programmatic result.

You can use PL/pgSQL to group sequences of SQL and programmatic statements together
within a database server, reducing network and communications overhead incurred by client
applications having to constantly request data from the database and perform logic operations
upon that data from a remote location.

You have access to all PostgreSQL data types, operators, and functions within PL/pgSQL
code. The "SQL" in PL/pgSQL is indicative of the fact that you are allowed to directly use the
SQL language from within PL/pgSQL code. The use of SQL within PL/pgSQL code can
increase the power, flexibility, and performance of your programs. If multiple SQL statements
are executed from a PL/pgSQL code block, the statements are processed at one time, instead
of the normal behavior of processing a single statement at a time.

Another important aspect of using PL/pgSQL is its portability; its functions are compatible
with all platforms that can operate the PostgreSQL database system.

The following sections describe how to make PL/pgSQL available as a procedural language in
your database.

Adding PL/pgSQL to your Database
Programming languages are made available to databases by being created as a database object.
You will therefore need to add the PL/pgSQL language to your database before you can use it
(it is installed with PostgreSQL by default). The following steps demonstrate how to add
PL/pgSQL to an existing database.

Adding PL/pgSQL to your Database
To add PL/pgSQL to your PostgreSQL database, you can either use the createlang application
from the command line, or the CREATE LANGUAGE SQL command from within a database client
such as psql. The use of the CREATE LANGUAGE command first requires the creation of the
PL/pgSQL call handler, which is the function that actually processes and interprets the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PL/pgSQL call handler, which is the function that actually processes and interprets the
PL/pgSQL code.

Though the createlang utility is simpler to use, as it abstracts the creation of the call handler
and the language away from the user, the following sections document both methods.

Note: Installing PL/pgSQL in the template1 database causes all subsequent
databases that are created with template1 as their template (which is the default)
to also have PL/pgSQL installed.

Using psql to add PL/pgSQL

CREATE LANGUAGE is the SQL command which adds procedural languages to the currently
connected database. Before it can be used, however, the CREATE FUNCTION command must
first be used to create the procedural call handler.

Here is the syntax to create a PL/pgSQL call handler with CREATE FUNCTION:

 CREATE FUNCTION plpgsql_call_handler()
 RETURNS OPAQUE AS '/postgres_library_path/plpgsql.so' LANGUAGE 'C'

In this syntax, postgres_library_path is the absolute system path to the installed
PostgreSQL library files. This path, by default, is /usr/local/pgsql/lib. Example 11-1 uses the
CREATE FUNCTION command to create the PL/pgSQL call handler, assuming the plpgsql.so file
is in the default location.

Example 11-1. Creating the PL/pgSQL call handler

booktown=# CREATE FUNCTION plpgsql_call_handler ()
booktown-# RETURNS OPAQUE
booktown-# AS '/usr/local/pgsql/lib/plpgsql.so'
booktown-# LANGUAGE 'C';
CREATE

Example 11-1 only creates the function handler; the language itself must also be added with
the CREATE LANGUAGE command. Here is the syntax to add PL/pgSQL to a database:

 CREATE LANGUAGE 'plpgsql' HANDLER plpgsql_call_handler
 LANCOMPILER 'PL/pgSQL'

In this syntax, plpgsql is the name of the language to be created, the plpgsql_call_handler
is the name of the call handler function (e.g., the one created in Example 11-1), and the
PL/pgSQL string constant following the LANCOMPILER keyword is an arbitrary descriptive note.

Example 11-2 adds PL/pgSQL to the booktown database with the CREATE LANGUAGE
command.

Example 11-2. Adding PL/pgSQL with CREATE LANGUAGE

booktown=# CREATE LANGUAGE 'plpgsql' HANDLER plpgsql_call_handler
booktown-# LANCOMPILER 'PL/pgSQL';
CREATE

The name following the HANDLER keyword should be the same name which is used to create
the call handler. Since Example 11-1 created a call handler named plpgsql_call_handler,
Example 11-2 uses the same name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The string following the LANCOMPILER keyword is an outdated legacy clause, and its value is
not consequential. Even so, as of PostgreSQL 7.1.x, it is a required clause. It is commonly
used as a comment space to describe the language.

Using createlang to add PL/pgSQL

To execute createlang you will first need to be at the command prompt. If the operating
system username you are currently logged into is the same as that of a database superuser
account on the target database, you can call createlang with the command shown in Example
11-3 (you will be asked for a password if the database requires one). Otherwise, to pass the
username of a database superuser to createlang, use the -U flag as shown in Example 11-4.

Example 11-3. Using createlang as a database superuser

$ cd /usr/local/pgsql/bin
booktown=# createlang plpgsql booktown

Example 11-4. Explicitly passing a superuser account name to createlang

$ cd /usr/local/pgsql/bin/
$ createlang plpgsql -U manager booktown

The createlang program will return you to a shell prompt upon successful execution.

Prev Home Next
Programming with
PostgreSQL

Up Language Structure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

Chapter 1. What is PostgreSQL?
Table of Contents
Open Source Free Version
PostgreSQL Feature Set
Where to Proceed from Here

PostgreSQL is an Object-Relational Database Management System (ORDBMS) that has been
developed in various forms since 1977. It began as a project named Ingres at the University of
California at Berkeley. Ingres itself was later developed commercially by Relational
Technologies/Ingres Corporation.

In 1986 another team led by Michael Stonebraker from Berkeley continued the development
of the Ingres code to create an object-relational database system called Postgres. In 1996, due
to a new open source effort and the enhanced functionality of the software, Postgres was
renamed to PostgreSQL, after a brief stint as Postgres95. The PostgreSQL project is still under
very active development worldwide from a team of open source developers and contributors.

PostgreSQL is widely considered to be the most advanced open source database system in the
world. It provides many features (which are discussed in more detail in the Section called
PostgreSQL Feature Set") that are traditionally seen only in enterprise-caliber commercial
products.

Open Source Free Version
PostgreSQL is an open source project. Open source by definition means that you can obtain
the source code, use the program, and modify it freely without the confines of proprietary
software. In the database world, open source means that you have honest access to
benchmarking numbers and performance statistics, which companies such as Oracle prohibit.
Open source also means that you are free to modify PostgreSQL to fit your particular needs.

However, there is a misconception that since open source software is free from distribution
restrictions, it is always free of cost to your company. This is not necessarily the case. It is true
that you can, without external cost, download and install open source software, but there will
always be costs associated with the time and energy your company puts into support and
research of the application. As such, if you do not have those resources to spend, there are
several commercial vendors and consultants who deal specifically with PostgreSQL.

Commercial PostgreSQL Products
The Red Hat version of PostgreSQL is called Red Hat Database and is a very new product to
the database market. Red Hat Database is based on the community-released open source
version, PostgreSQL 7.1. Red Hat Database currently supports Linux only, preferably Red Hat
Linux 7.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Open Source Versus Commercial Products
The open source version of PostgreSQL only includes the database-management system and
the associated programming interfaces. The Red Hat version of PostgreSQL includes a
graphical installer and limited support for the installation.

The main factor in deciding whether to use the open source version of PostgreSQL or a
commercially packaged version should be your business requirements. If you have a
knowledgeable on-site technical-support staff, the community version may do well for you.
However, if you need installation, configuration, and management support, you may be better
served by purchasing a commercial version of PostgreSQL.

If you prefer to do business with smaller consulting companies, we have compiled a modest
list of professional companies providing support for PostgreSQL in the Section called
Commercial Support."

The Bottom Line
Marketing would suggest that a commercial version of PostgreSQL is somehow objectively
superior to an open source version of PostgreSQL. In reality, this is not the case. When
deciding what version of PostgreSQL you are going to run, you need only be aware of your
own needs. For example, are you going to need installation support? Is a graphical installation
important to you? If they are, then you should probably purchase a commercial version of
PostgreSQL. However, if you or one of your staff are comfortable with compiling and
configuring source code, the open source version could be more applicable to you.

There are two additional questions you may want to ask. Do you need printed documentation
and are you willing to pay for PostgreSQL? The commercial distribution comes with printed
documentation. However, if you are reading this book, we hope you won't need the additional
documentation. The other question relates to cost. Red Hat Database is priced at $2,295.00.

The most important thing to remember when deciding on which version of PostgreSQL to use
is this (from a perspective of general usage and feature availability): there is no practical
difference between the open source and the commercial versions.

Commercial Support
Outside of Red Hat, there are many companies that provide consulting services to the
PostgreSQL community. The following is a small list of consultants providing commercial
support for PostgreSQL.

Command Prompt, Inc. (http://www.commandprompt.com/)

Command Prompt, Inc. is a Linux managed-services and PostgreSQL-support company.
They provide Linux and PostgreSQL support, including custom programming in C &
C++, Java, PHP, Perl, and their own LXP application server for PostgreSQL.

Command Prompt, Inc. is the author of this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cybertec Geschwinde & Schvnig OEG (http://postgres.cybertec.at/)

Cybertec provides training courses, support, consulting, and cost-effective high-end
systems. Cybertec services the German-speaking region (Austria, Germany, and
Switzerland).

dbExperts (http://www.dbexperts.com.br/)

dbExperts offers training courses, specialized support for development, and commercial
products for PostgreSQL. dbExperts is located in Brazil and provides services in the
Portuguese language.

PostgreSQL, Inc. (http://www.pgsql.com/)

PostgreSQL, Inc. offers support for PostgreSQL, database hosting, and promotional
materials.

Software Research Associates (http://osb.sra.co.jp/)

Software Research Associates offers a range of services to aid customers with open
source software-based systems. Support from this company is also available in
Japanese.

Community Support
The PostgreSQL community provides active support to users of PostgreSQL via a number of
mailing lists. There are several user mailing lists to which you can subscribe, segregated by
topic (e.g., pgsql-general, pgsql-hackers, etc.). The mailing lists for PostgreSQL users are
quite thorough, covering everything from general discussion to support on developing with
PostgreSQL programming interfaces. For a complete list of mailing lists with associated
descriptions, please visit the PostgreSQL website at http://www.postgresql.org.

Prev Home Next
Introduction and Installation Up PostgreSQL Feature Set

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

Chapter 12. JDBC
Table of Contents
Building the PostgreSQL JDBC Driver
Using the PostgreSQL Driver
Using JDBC
Issues Specific to PostgreSQL and JDBC

This chapter covers JDBC ( Java DataBase Connectivity), which is a set of classes and
methods available for the Java programming language. The use of JDBC with Java is a simple,
generic, and portable way of interacting with different types of databases. For this chapter,
some existing knowledge of how to program in Java is assumed.

The JDBC interfaces, defined by Sun, cover all of the interactions you can have with a
standard SQL database. The vendor (in this case, PostgreSQL) supplies concrete
implementations that implement these interfaces. These concrete implementations handle the
vendor-specific interactions with the database: connecting, logging in, using stored
procedures, and so forth. These interfaces are designed this way so that a program using JDBC
can connect to any JDBC-compliant database, without your having to rewrite the code.
However, there are some caveats.

One issue is that JDBC does not do any client-side SQL parsing or syntax checking. SQL
statements are passed off transparently to the database, whether or not they are valid.
Therefore, if the SQL is valid on one vendor's database, but invalid on another vendor's
database the implementation won't know until the actual connection is made and the SQL is
sent across. Sun is attempting to deal with this problem, and there may be some provisions
made to correct this, either in later versions of JDBC or in a different standard.

Another issue is that each vendor has additional helper classes specific to that vendor. For
instance, PostgreSQL has extensions for geometric data types. Other vendors won't support
these extensions; they are specific to PostgreSQL. If you use such vendor-specific classes,
your program will not work with another JDBC database, despite using the JDBC "standard."

One advantage of the PostgreSQL JDBC driver is that it is a "Type 4" driver. This means that
it is written in Pure Java, so it can be taken anywhere, and used anywhere as long as the
platform it is used on has TCP/IP capabilities, because the driver only connects via TCP/IP.

Building the PostgreSQL JDBC Driver
This section assumes that you already have a PostgreSQL database set up and ready to go.
Make sure that you have it set to accept incoming TCP/IP connections. This can be configured
when running the postmaster command. For more information on database start-up options,
see Chapter 9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Before you can use JDBC, you must build the PostgreSQL JDBC drivers. To do this, you
must have the Java source code that is used to build the driver. This source is included both in
the complete PostgreSQL package, and in the opt package. These can be downloaded from the
PostgreSQL site; for more information about downloading and installing these, see Chapter 2.

You also need Ant. Ant is a standard build system for Java products, somewhat similar to
gmake, and is created by Apache's Jakarta project. It is required to build the PostgreSQL
JDBC driver. For more information on Ant, see: http://jakarta.apache.org/ant/index.html.
Make sure that Ant's bin directory is in your path.

First you need to configure the makefile system to recognize that you are using Java. If you
did not originally build PostgreSQL with Java support, move into the top level of the
PostgreSQL source tree, and type ./configure with-java, along with any other configure
options you originally used. This will regenerate makefiles and, if necessary, will add support
for Java.

Next you must actually build the driver and implementations. Change to the
src/interfaces/jdbc directory and issue the gmake command. This will build two jar files:
postgresql.jar, containing the Driver class and other concrete implementations, and
postgresql-examples.jar, containing compiled example classes.

Prev Home Next
PL/pgSQL and Triggers Up Using the PostgreSQL Driver

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

Chapter 14. PostgreSQL Command
Reference
Table of Contents
ABORT -- Rolls back changes made during a transaction block.
ALTER GROUP -- Modifies the structure of a user group.
ALTER TABLE -- Modifies table and column attributes.
ALTER USER -- Modifies user properties and permissions.
BEGIN -- Starts a chained-mode transaction block.
CLOSE -- Closes a previously defined cursor object.
CLUSTER -- Provides the backend server with clustering information about a table.
COMMENT -- Adds a comment to an object within the database.
COMMIT -- Ends the current transaction block and finalizes changes made within it.
COPY -- Copies data between files and tables.
CREATE AGGREGATE -- Defines a new aggregate function within the database.
CREATE DATABASE -- Creates a new database in PostgreSQL.
CREATE FUNCTION -- Defines a new function within the database.
CREATE GROUP -- Creates a new PostgreSQL group within the database.
CREATE INDEX -- Places an index on a table.
CREATE LANGUAGE -- Defines a new language to be used by functions.
CREATE OPERATOR -- Defines a new operator within the database.
CREATE RULE -- Defines a new rule on a table.
CREATE SEQUENCE -- Creates a new sequence number generator.
CREATE TABLE -- Creates a new table.
CREATE TABLE AS -- Creates a new table built from data retrieved by a SELECT.
CREATE TRIGGER -- Creates a new trigger.
CREATE TYPE -- Defines a new data type for use in the database.
CREATE USER -- Creates a new PostgreSQL database user.
CREATE VIEW -- Creates a view on a table.
CURRENT_DATE -- Returns the current date.
CURRENT_TIME -- Returns the current time.
CURRENT_TIMESTAMP -- Returns the current date and time.
CURRENT_USER -- Returns the current database username.
DECLARE -- Defines a new cursor.
DELETE -- Removes rows from a table.
DROP AGGREGATE -- Removes an aggregate function from a database.
DROP DATABASE -- Removes a database from the system.
DROP FUNCTION -- Removes a user-defined function.
DROP GROUP -- Removes a user group from the database.
DROP INDEX -- Removes an index from a database.
DROP LANGUAGE -- Removes a procedural language from a database.
DROP OPERATOR -- Removes an operator from the database.
DROP RULE -- Removes a rule from a database.
DROP SEQUENCE -- Removes a sequence from a database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DROP TABLE -- Removes a table from a database.
DROP TRIGGER -- Removes a trigger definition from a database.
DROP TYPE -- Removes a type from the system catalogs.
DROP USER -- Removes a PostgreSQL user.
DROP VIEW -- Removes an existing view from a database.
END -- Ends the current transaction block and finalizes its modifications.
EXPLAIN -- Shows the statement execution plan for a supplied query.
FETCH -- Retrieves rows from a cursor.
GRANT -- Grants access privileges to a user, a group, or to all users in the database.
INSERT -- Inserts new rows into a table.
LISTEN -- Listen for a notification event.
LOAD -- Dynamically loads object files into a database.
LOCK -- Locks a table within a transaction.
MOVE -- Repositions a cursor to another row.
NOTIFY -- Signals all backends that are listening for the specified notify event.
REINDEX -- Rebuilds indices on tables.
RESET -- Restores runtime variables to their default settings.
REVOKE -- Revokes access privileges from a user, a group, or all users.
ROLLBACK -- Aborts the current transaction block and abandons any modifications it would
have made.
SELECT -- Retrieves rows from a table or view.
SELECT INTO -- Construct a new table from the results of a SELECT.
SET -- Set runtime variables.
SET CONSTRAINTS -- Sets the constraint mode for the current transaction block.
SET TRANSACTION -- Sets the transaction isolation level for the current transaction block.
SHOW -- Displays the values of runtime variables.
TRUNCATE -- Empties the contents of a table.
UNLISTEN -- Stops the backend process from listening for a notification event.
UPDATE -- Modifies the values of column data within a table.
VACUUM -- Cleans and analyzes a database.

This command reference covers each of the major SQL commands supported by PostgreSQL.
It contains both standard SQL commands (e.g., INSERT, SELECT) and PostgreSQL-specific
commands (e.g., CREATE OPERATOR, CREATE TYPE).

Each reference entry is broken up into three sections: a synopsis, a description, and an
examples section. The synopsis contains a syntax diagram, parameter explanation, and a list of
possible results from executing the command. The description briefly summarizes the general
use of the command. The examples section contains at least one functional example of using
the command.

Prev Home Next
PostgreSQL Command
Reference

Up ABORT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

Chapter 2. Installing PostgreSQL
Table of Contents
Preparing for Installation
10 Steps to Installing PostgreSQL

This chapter focuses on the requirements and steps involved in installing and configuring
PostgreSQL. Many of the PostgreSQL capabilities are not enabled, by default. For example,
support for the TCL language is a feature that must be explicitly requested during compile-
time. As there are many other features that are not configured by default, we will cover the
various flags and options you may use to enable them when compiling PostgreSQL. It is
important that you carefully read through all the steps in this process before beginning
installation.

This chapter will walk you through the installation steps on a Linux/UNIX-style platform. Our
installation platform is Linux, but these instructions should be compatible with most current
UNIX platforms.

Note: Although PostgreSQL is capable of running on a Win32 platform, this book
does not cover installation on Windows. The Win32 version of PostgreSQL
requires the Cygwin environment and will not operate independently within
Win32. Although Cygwin can be useful in many situations, the use of
PostgreSQL in a Cygwin environment is not recommended.

Preparing for Installation
The installation of PostgreSQL is not difficult. However, there are some software
requirements that you will need for the PostgreSQL compilation. All of the requirements —
outside of the PostgreSQL source code — are GNU tools. If you are running Linux, there is a
good chance that the tools are already installed. If you are running a BSD derivative, such as
FreeBSD or MacOS X, you may have to download the tools.

If you find that you are missing any of the required components, first check your vendor's web
site for the packages; otherwise, you may download them from http://www.gnu.org. It is also
essential that you have enough disk space available to unpack and compile the source code on
the filesystem to which you install. Disk-space requirements are discussed in the Section
called Disk Space."

Required Software Packages
You will most likely have some of the required software packages already installed on your
system, if not all of them. These packages are as follows:

GNU make

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GNU make is commonly known as gmake on non-GNU based systems, but is normally
referred to as just make on GNU-based systems such as Linux. For consistency, we will
refer to it as gmake throughout the rest of this book.

We recommend that you use at least gmake version 3.76.1 or higher when compiling
PostgreSQL. To verify the existence and correct version number of gmake, type the
command shown in Example 2-1.

Example 2-1. Verifying GNU make

$ gmake --version
GNU Make version 3.79.1, by Richard Stallman and Roland McGrath.
Built for i386-redhat-linux-gnu
Copyright (C) 1988, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000
 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

Report bugs to <bug-make@gnu.org>.

ISO/ANSI C Compiler

There are numerous ISO/ANSI C compilers available. The recommended compiler for
PostgreSQL is the GNU C Compiler, although PostgreSQL has been known to build
with compilers from different vendors. At the time of this writing, the most commonly
distributed versions of GCC are 2.95 and 2.96 (RedHat Linux 7.x and Mandrake Linux
8.x). If you do not currently have GCC installed, you can download it by visiting the
GNU website at http://gcc.gnu.org.

To check for the existence and version of GCC, enter the command shown in Example
2-2.

Example 2-2. Verifying GCC

$ gcc --version
2.95.3

GNU zip and tar

GNU zip is also called gzip. GNU zip is a compression utility that can compress as well
as decompress files. All compressed, or zipped, files made with gzip have a .gz
extension. You can test for the existence of the gzip program with the gzip --version
command.

In addition to gzip, you will require a copy of tar, a utility used to group several files
and directories into a single archive, as well as to unpack these archives onto the
filesystem. An archived tar output file will typically contain a .tar extension. Files that
are both archived by tar and compressed by gzip often have a .tar.gz compound
extension, as is the case with the included PostgreSQL source distribution. You can test
for tar with the tar --version command.

Example 2-3. Verifying gzip and tar

$ gzip --version

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ gzip --version
gzip 1.3
(1999-12-21)
Copyright 1999 Free Software Foundation
Copyright 1992-1993 Jean-loup Gailly
This program comes with ABSOLUTELY NO WARRANTY.
You may redistribute copies of this program
under the terms of the GNU General Public License.
For more information about these matters, see the file named COPYING.
Compilation options:
DIRENT UTIME STDC_HEADERS HAVE_UNISTD_H HAVE_MEMORY_H HAVE_STRING_H
Written by Jean-loup Gailly.

$ tar --version
tar (GNU tar) 1.13.17
Copyright 2000 Free Software Foundation, Inc.
This program comes with NO WARRANTY, to the extent permitted by law.
You may redistribute it under the terms of the GNU General Public License;
see the file named COPYING for details.
Written by John Gilmore and Jay Fenlason.

Optional Packages
The following are some optional packages that you may want to have installed:

GNU Readline library

The GNU Readline library greatly increases the usability of psql, the standard
PostgreSQL command-line console client. It adds all of the standard functionality of the
GNU Readline library to the psql command line, such as being able to easily modify,
edit, and retrieve command-history information with the arrow keys and the ability to
search the command history (also known as a reverse-i-search). If the Readline library
is already installed on your system, the configuration process should automatically
compile readline support with psql.

Note: You may not need this package if you have NetBSD, as NetBSD has
a libedit library, which provides Readline compatibility.

OpenSSL

OpenSSL is an Open Source implementation of the SSL/TLS protocols. OpenSSL is
commonly used with utilities such as OpenSSH and Apache-SSL. PostgreSQL can
make use of OpenSSL for encrypted connectivity between the psql client application
and the PostgreSQL backend. You may also want to consider OpenSSL if you wish to
use Stunnel. More information on OpenSSL is located at http://www.openssl.org.
Installing and configuring Stunnel for use with PostgreSQL is discussed in Chapter 8.

Tcl/Tk

Tcl/Tk is a combination programming language and graphical toolkit. Although we
don't cover the use of Tcl with PostgreSQL, we do cover the use of PgAccess, which is
written in Tcl. If you wish to utilize the PgAccess application you will need to install the
Tcl/Tk software. The website for Tcl/Tk is http://tcl.activestate.com.

Ant/JDK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The JDK is the Java Development Kit. It is required for Java development; hence, it is
required by PostgreSQL if you wish to enable JDBC support. Ant is a Java-based build
tool (somewhat like gmake) that is also required for JDBC support. The JDK can be
downloaded from http://java.sun.com/j2se/index.html, and Ant can be downloaded from
http://jakarta.apache.org/ant/index.html.

Disk Space
PostgreSQL does not require the extensive use of disk resources. In fact, in comparison to
products such as Oracle, PostgreSQL could be considered fat free. However, PostgreSQL is a
database, and as with any database, the requirements will grow as you continue to use
PostgreSQL.

On an average Linux machine, you will need approximately 50 MB of hard-drive space to
unpack the source and another 60 MB of hard drive space to compile the source. If you choose
to run the regression tests, you will need an additional 30 MB. Depending on the configuration
options you choose, PostgreSQL can take anywhere from 8 to 15 MB of hard drive space once
installed.

Note: Remember that PostgreSQL’s space requirements will grow as you use the
system! Be sure to plan ahead for the amount of data you will be storing.

Trying to install on a system lacking in disk space is potentially dangerous! Before installing
PostgreSQL, we recommend that you check your filesystem to be sure you have enough disk
space in your intended installation partition (e.g., /usr/local). If you have a GNU-based
system, the df command should be at your disposal. Example 2-4 checks for free disk space,
reported in 1k blocks.

Example 2-4. Verifying disk space

$ df -k
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/hda1 2355984 932660 1303644 42% /
/dev/hdb1 4142800 2133160 1799192 54% /home
/dev/hda6 1541680 272540 1190828 19% /usr/local

Prev Home Next
Where to Proceed from Here Up 10 Steps to Installing

PostgreSQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

Chapter 4. Using SQL with PostgreSQL
Table of Contents
Introduction to psql
Using Tables
Adding Data with INSERT and COPY
Retrieving Rows with SELECT
Modifying Rows with UPDATE
Removing Rows with DELETE
Using Sub-Queries
Using Views
Further SQL Application

In this chapter we continue to discuss SQL, this time with a practical focus. We'll address
creating tables, populating tables with data, and managing that data via SQL statements.

Like most network-capable database systems, PostgreSQL fits into a client-server paradigm.
The heart of PostgreSQL is the server backend, or the postmaster process. It is called a
"backend" because it is not meant to directly interface with a user; rather, it can be connected
to with a variety of clients.

When you start the PostgreSQL service, the postmaster process starts running in the
background, listening to a specific TCP/IP port for connections from clients. Unless explicitly
configured, postmaster will bind to, and listen on, port 5432.

There are several interfaces available through which clients may connect to the postmaster
process. The examples in this book use psql, the most portable and readily accessible client
distributed with PostgreSQL.

This chapter covers psql basics, how to create and use tables, and how to retrieve and manage
data within those tables. It also addresses SQL sub-queries and views.

Introduction to psql
The psql client is a command-line client distributed with PostgreSQL. It is often called the
interactive monitor or interactive terminal. With psql, you get a simple yet powerful tool with
which you can directly interface with the PostgreSQL server, and thereby begin exploring
SQL.

Starting psql
Before starting psql, be sure that you have either copied the psql binary into a path in your
system PATH variable (e.g., /usr/bin), or that you have placed the PostgreSQL binary path (e.g.,
/usr/local/pgsql/bin) within your list of paths in your PATH environment variable (as shown in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/usr/local/pgsql/bin) within your list of paths in your PATH environment variable (as shown in
Chapter 2).

How you set the appropriate PATH variable will depend on your system shell. An example in
either bash or ksh might read:

$ export PATH=$PATH:/usr/local/pgsql/bin

An example in either csh or tcsh might read:

$ set path=($path /usr/local/pgsql/bin)

Example 4-1. Setting system path for psql

[user@host user]$ psql
bash: psql: command not found
[user@host user]$ echo $PATH
/bin:/usr/bin:/usr/local/bin:/usr/bin/X11:/usr/X11R6/bin
[user@host user]$ export PATH=$PATH:/usr/local/pgsql/bin
[user@host user]$ psql testdb
Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

testdb=#

Note that Example 4-1 takes place within a bash shell.

Once you have appropriately set your PATH variable, you should be able to type psql, along
with a database name, to start up the PostgreSQL interactive terminal.

Warning
Shell environment variables are erased after you have logged out. If you wish for your
changes to the PATH variable to be retained upon logging in, you need to enter the appropriate
PATH declaration into your shell-specific start-up scripts (e.g., ~/.bash_ profile).

Introduction to psql Syntax
Upon starting psql, you are greeted with a brief synopsis of four essential psql slash
commands : \h for SQL help, \? for help on psql-specific commands, \g for executing queries
and \q for actually exiting psql once you are done.

Every psql-specific command is prefixed by a backslash; hence the term "slash command"
used earlier. For a complete list of slash commands and a brief description their functions, type
\? into the psql command line, and press enter.

Example 4-2. Listing psql slash commands

booktown=# \?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# \?
 \a toggle between unaligned and aligned mode
 \c[onnect] [dbname|- [user]]
 connect to new database (currently 'booktown')
 \C <title> table title
 \copy ... perform SQL COPY with data stream to the client machine
 \copyright show PostgreSQL usage and distribution terms
 \d <table> describe table (or view, index, sequence)
 \d{t|i|s|v} list tables/indices/sequences/views
 \d{p|S|l} list permissions/system tables/lobjects
 \da list aggregates
 \dd [object] list comment for table, type, function, or operator
 \df list functions
 \do list operators
 \dT list data types
 \e [file] edit the current query buffer or [file] with external editor
 \echo <text> write text to stdout
 \encoding <encoding> set client encoding
 \f <sep> change field separator
 \g [file] send query to backend (and results in [file] or |pipe)
 \h [cmd] help on syntax of sql commands, * for all commands
 \H toggle HTML mode (currently off)
 \i <file> read and execute queries from <file>
 \l list all databases
 \lo_export, \lo_import, \lo_list, \lo_unlink
 large object operations
 \o [file] send all query results to [file], or |pipe
 \p show the content of the current query buffer
 \pset <opt> set table output <opt> = {format|border|expanded|fieldsep|
 null|recordsep|tuples_only|title|tableattr|pager}
 \q quit psql
 \qecho <text> write text to query output stream (see \o)
 \r reset (clear) the query buffer
 \s [file] print history or save it in [file]
 \set <var> <value> set internal variable
 \t show only rows (currently off)
 \T <tags> HTML table tags
 \unset <var> unset (delete) internal variable
 \w <file> write current query buffer to a <file>
 \x toggle expanded output (currently off)
 \z list table access permissions
 \! [cmd] shell escape or command

Executing Queries
Entering and executing queries within psql can be done two different ways. When using the
client in interactive mode, the normal method is to directly enter queries into the prompt (i.e.,
standard input, or stdin). However, through the use of psql 's \i slash command, you can
have psql read and interpret a file on your local filesystem as the query data.

Entering queries at the psql prompt

To enter queries directly into the prompt, open psql and make sure you are connected to the
correct database (and logged in as the correct user). You will be presented with a prompt that,
by default, is set to display the name of the database you are currently connected to. The
prompt will look like this: psql:

testdb=#

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

testdb=#

To pass SQL statements to PostgreSQL, simply type them into the prompt. Anything you type
(barring a slash command) will be queued until you terminate the query with a semicolon.
This is the case even if you start a new line of type, thus allowing you to spread query
statements across multiple lines. Examine Example 4-3 to see how this is done.

Example 4-3. Entering statements into psql

testdb=# SELECT * FROM employees
testdb-# WHERE firstname = 'Michael';

The query entered in Example 4-3 will return a table that consists of all employees whose first
name is Michael. The query could be broken up over multiple lines to improve readability, and
psql would not send it to the backend until the terminating semicolon was sent. The prompt
will show the end-character of a previous line if the character requires a closing character,
such as a parenthesis or a quote (this is not shown in the example). If you were to issue a
CREATE TABLE command to start a statement, and then hit enter to begin a new line for
readability purposes, you would see a prompt similar to the one displayed in Example 4-4.

Example 4-4. Leaving end-characters open

testdb=# CREATE TABLE employees (
testdb(#

At this point you could continue the statement. The psql prompt is informing you of the open
parenthesis by inserting an open parenthesis symbol into the prompt.

Editing the query buffer

Use the \e command to edit the current query buffer with the editor that your EDITOR
environment variable is set to. Doing so can be very useful when entering queries and
statements in psql, as you can easily view and modify all lines of your query or statement
before it is committed. Example 4-5 shows how to set the EDITOR variable. The vi editor will
be used if EDITOR is not set.

Example 4-5. Setting the EDITOR variable

$ set EDITOR='joe'
$ export EDITOR

You can also use this command to save your current buffer as a file. Issue the \e command to
enter editing mode. This will open your editor and load the buffer as if it were a file. Complete
whatever work you wish to do with the buffer, then use your editor's save function to save the
buffer and return to psql. To save the query as a normal file, use your editor's save-as function
and save it as a file other than the .tmp created by \e.

Prev Home Next
Tables in PostgreSQL Up Using Tables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

Chapter 5. Operators and Functions
Table of Contents
Operators
Functions

This chapter expands on the operators and functions available to PostgreSQL. These character
symbols and identifiers allow you to flexibly modify and compare results within SQL
statements. The results of these operations can be used in a variety of ways, from updating
existing row data, to constraining query results to only rows matching particular conditions.

PostgreSQL supports the usual variety of standard SQL operators and functions as defined by
the ANSI/ISO SQL standards, such as mathematical operators, basic text formatting functions,
and date and time value extraction. PostgreSQL also comes with a rich set of custom
PostgreSQL extensions, such as regular expression comparison operators, and the flexible
to_char() text conversion function.

Take note that these sections describe the native operators and functions available to
PostgreSQL. An excellent feature of PostgreSQL is its extensibility in this area. Once you
have a solid understanding of operators and functions, you may be interested in developing
your own. These techniques are described in Chapter 7.

Operators
In Chapter 3, operators are defined syntactically as tokens that are used to perform operations
on values (e.g., constants, or identifiers), and return the results of that operation. In addition to
these syntactic character symbols, there are some SQL keywords that are considered operators
due to their effect on values in a SQL statement. Throughout this section, both these symbols
and keywords will be referred to as operators.

The function of each operator is highly dependent on its context. Applications of operators
range from performing mathematical operations and concatenating character strings, to
performing a wide variety of comparisons yielding Boolean results. This section describes the
general usage of operators in SQL, with successive sections on the following families of
operators:

Character string

Numeric

Logical

Note: For an up-to-date and complete list of PostgreSQL supported operators,
you can use psql 's \do slash command to view a list of available operators.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you can use psql 's \do slash command to view a list of available operators.
Understand that many of the listed operators are PostgreSQL-specific, and
therefore may not exist in other SQL-capable databases implementations.

Following the discussions of the various types of operators, you'll find information on dealing
with NULL values in expressions, and on the order in which operators are evaluated.

Using Operators
Operators operate on either a single value or a pair of values. The majority of operators
operate on two values, with the operator placed between the values it is to operate upon (e.g.,
a - b). Operators that affect only one value are called unary operators, and either precede or
follow the value they affect (e.g., the @ operator preceding a value is a unary operator
indicating the absolute value).

Many operators, while invoked with the same keyword or character symbol, will have
different effects depending on the data types to which they are applied. Further, operators will
not always have a relevant use to every data type (see Chapter 3 for more information about
what data types are available to PostgreSQL).

For example, you can use the addition operator (+) to add two integer values together, but you
cannot use it to add an integer to a text type. This is an undefined (and therefore ambiguous
and disallowed) use of the operator. The operator character itself (+, in this case) will still be
recognized, but you will receive an error such as the one shown in Example 5-2 if you try to
misuse an operator:

Consider the Book Town authors table, which correlates author's names with numeric
identifiers.

 Table "authors"
 Attribute | Type | Modifier
------------+---------+----------
 id | integer | not null
 last_name | text |
 first_name | text |
Index: authors_pkey

Two identifiers in this table are the columns id, and last_name, which are types integer (a
4-byte integer) and text, respectively. Since the id column is type integer, it may be used
with a mathematical operator along with another numeric value.

Example 5-1 demonstrates correct usage of the addition (+) operator.

Example 5-1. Correct operator usage

booktown=# SELECT id + 1 AS id_plus_one, last_name
booktown-# FROM authors
booktown-# ORDER BY id DESC LIMIT 5;
 id_plus_one | last_name
-------------+--------------
 25042 | Bianco
 15991 | Bourgeois
 7807 | Christiansen
 7806 | Lutz
 4157 | King
(5 rows)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(5 rows)

Notice the result of trying to add incompatible types in Example 5-2.

Example 5-2. Incorrect operator usage

booktown=# SELECT id + last_name AS mistake
booktown-# FROM authors;
ERROR: Unable to identify an operator '+' for types 'int4' and 'text'
 You will have to retype this query using an explicit cast

Fortunately, as you can see in Example 5-2, PostgreSQL's operator-misuse error messages
supply a reason for failure, rather than blindly failing. These can be helpful in determining the
next step in developing your statement, in order to make it a valid query.

Character String Operators
PostgreSQL contains a comprehensive set of character string operators, from simple text
concatenation and string comparison, to a strong set of regular expression matching. Character
string operators are valid upon values of types char, varchar, and PostgreSQL's own text
type.

The following sections describe the basic comparison and concatenation operators, as well as
the implementation of case-sensitive and case-insensitive regular expression operators.

Basic comparison

Each of the basic character string comparison and concatenation operators supported by
PostgreSQL are listed in Table 5-1.

Note: Note that the LIKE and ILIKE keywords, which call to the like() function,
are sometimes referred to as string comparison operators. These keywords are
covered in the Section called Functions".

Table 5-1. Basic Character String Operators

Operator Usage Description
= 'string' = 'comparison' A comparison returning true if

string matches comparison
identically

!= 'string' != 'comparison' A comparison returning true if
string does not match
comparison identically

<> 'string' <> 'comparison' Identical to the != operator
< 'string' < 'comparison' A comparison returning true if

string should be sorted
alphabetically before
comparison

<= 'string' <= 'comparison' A comparison returning true if
string should be sorted

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string should be sorted
alphabetically before
comparison, or if the values are
identical

> 'string' > 'comparison' A comparison returning true if
string should be sorted
alphabetically after comparison

>= 'string' >= 'comparison' A comparison returning true if
string should be sorted
alphabetically after comparison,
or if the values are identical

Each of the string comparison operators returns a Boolean result of either true or false. The
alphabetical sorting referred to by Table 5-1 compares each sequential character in a string,
determining if one character is considered 'greater than' or 'less than' the other. If the leading
characters in two strings are at all identical, each character is checked from left to right until
two different characters are found for comparison. In this sorting scheme, characters are
determined to be higher than one another based on their ASCII value, as demonstrated in the
following example:

booktown=# SELECT letter,
booktown-# ascii(letter)
booktown-# FROM text_sorting
booktown-# ORDER BY letter ASC;
 letter | ascii
--------+-------
 0 | 48
 1 | 49
 2 | 50
 3 | 51
 A | 65
 B | 66
 C | 67
 D | 68
 a | 97
 b | 98
 c | 99
 d | 100
(12 rows)

If you are unsure of how a character will be sorted, you can use the ascii() function to
determine the ASCII value of the character. This function is described further in the Section
called Functions." Example 5-3 illustrates a comparative check on the books table, and returns
all titles whose first letter would be sorted before the letter D.

Example 5-3. Comparing strings

booktown=# SELECT title FROM books
booktown-# WHERE substr(title, 1, 1) < 'D';
 title

 2001: A Space Odyssey
 Bartholomew and the Oobleck
(2 rows)

String concatenation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The text concatenation operator (||) is an invaluable tool for formatting output results. Like
all operators, it may be used anywhere a constant value is allowed in a SQL statement. Values
may be repeatedly concatenated in a single statement by simply appending the || operator
after each appended string constant or identifier.

As an example, it might be used in the WHERE clause in order to constrain rows by comparing
against a dynamically generated character string. Example 5-4 demonstrates how to use this
operator.

Example 5-4. Concatenating strings

booktown=# SELECT 'The Title: ' || title || ', by ' ||
booktown-# first_name || ' ' || last_name AS book_info
booktown-# FROM books NATURAL JOIN authors AS a (author_id)
booktown-# LIMIT 3;
 book_info
--
 The Title: The Shining, by Stephen King
 The Title: Dune, by Frank Herbert
 The Title: 2001: A Space Odyssey, by Arthur C. Clarke
(3 rows)

Regular expression matching operators

For times when normal equivalence comparisons are inadequate, PostgreSQL has several
operators designed to perform pattern matching against regular expressions. A regular
expression is similar to any other string to be matched against, with the exception that some
characters (such as the square braces, pipe, and backslash) have special meaning in a
comparison. If you have used UNIX programs such as sed, grep, or perl, you may already be
familiar with this kind of syntax.

Note: For more detailed information on regular expressions in general, refer to
O'Reilly's Mastering Regular Expressions, by Jeffrey E. F. Friedl.

When a value is compared against a regular expression, the expression itself (or regex) may
match both literal character sequences, as well as several variable character sequences. Both
literal and variable sequences may be specified throughout the expression. Example 5-5
illustrates an example of such a sequence. It searches the Book Town authors table for names
beginning with eitherA or T.

Example 5-5. An example regular expression

booktown=# SELECT first_name, last_name
booktown-# FROM authors
booktown-# WHERE first_name ~ '^A|^T';
 first_name | last_name
---------------+--------------
 Ariel | Denham
 Tom | Christiansen
 Arthur C. | Clarke
 Andrew | Brookins
 Theodor Seuss | Geisel
(5 rows)

The ~ symbol is the regular expression operator, within the WHERE clause, and the regular

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ~ symbol is the regular expression operator, within the WHERE clause, and the regular
expression sequence itself in Example 5-5 is ^A|^T. The special characters in this sequence are
the caret (^), and the pipe (|), while the literal characters are A and T. The special characters
used in regular expressions are explained in detail later in this section.

The most important syntactic difference between the use of the like() function and regular
expression operators is that like() uses wild-card symbols (e.g., %) at the beginning and end
of its expression in order to match a substring. In contrast, (with the beginning and end-line
symbols found in Table 5-3) regular expression operators will implicitly look for the regular
expression sequence anywhere in the compared character string unless otherwise instructed.

Table 5-2 lists the regular expression operators. These operators compare a text value (either
an identifier or a constant) to a regular expression. Each operator provides a Boolean result,
depending on the nature of the operator.

Table 5-2. Regular expression comparison operators

Operator Usage Description
~ 'string' ~ 'regex' A regular expression comparison,

yielding true if the expression
matches

!~ 'string' !~ 'regex' A regular expression comparison,
yielding true if the expression does
not match

~* 'string' ~* 'regex' A case-insensitive regular
expression, yielding true if the
expression matches

!~* 'string' !~* 'regex' not equal to regular expression,
case insensitive

The special characters available to a regular expression are listed in Table 5-3. These are the
characters which may be used in a regular expression string to represent special meaning.

Table 5-3. Regular expression symbols

Symbol(s) Usage Description
^ ^ expression Matches the beginning (^  ) of

the character string
$ expression $ Matches the end ($ ) of the

character string
. . Matches any single character

[ ] [ abc ] Matches any single character
which is between brackets
(e.g., a, b, or c)

[^] [^abc ] Matches any single character
not between brackets,
following caret (e.g., not a, b,
or c)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[-] [ a-z ] Matches any character which
is between the range of
characters between brackets
and separated by the dash
(e.g., within a through z)

[^-] [^a-z ] Matches any characters not
between the range of
characters between brackets
and separated by the dash
(e.g., not within a through z)

? a ? Matches zero or one
instances of the character (or
regex sequence) preceding it

* a * Matches zero or more
instances of the character (or
regex sequence) preceding it

+ a+ Matches one or more
instances of the character (or
regex sequence) preceding it

| expr1| expr2 Matches character sequences
to the left or right of it (e.g.,
either expr1, or expr2)

( ) (expr1) expr2  Explicitly groups
expressions, to clarify
precedence of special
character symbols

Note: Note that in order to use a literal version of any of the characters in Table
5-3, they must be prefixed with two backslashes (e.g., \\$ represents a literal
dollar sign).

A common use of regular expressions is to search for a literal substring within a larger string.
This can be achieved either with the ~ operator, if case is important, or with the ~* operator if
the comparison should be case-insensitive. These operators are each demonstrated in Example
5-6.

Example 5-6. A Simple Regular Expression Comparison

booktown=# SELECT title FROM books
booktown-# WHERE title ~ 'The';
 title

 The Shining
 The Cat in the Hat
 The Velveteen Rabbit
 The Tell-Tale Heart
(4 rows)

booktown=# SELECT title FROM books
booktown-# WHERE title ~* 'The';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# WHERE title ~* 'The';
 title

 The Shining
 The Cat in the Hat
 Bartholomew and the Oobleck
 Franklin in the Dark
 The Velveteen Rabbit
 The Tell-Tale Heart
(6 rows)

As you can see in Example 5-6, two more rows are returned when using the ~* operator, as it
matches not just "the" sequence, but modification of case on the same sequence (including the,
tHe, ThE, and so on).

The same regular expression sequence can be modified to use the ^ symbol, to match only the
character string The when it is at the beginning of the comparison string, as shown in Example
5-7. Additionally, the .* sequence is then appended, to indicate any number of characters may
match until the next following grouped expression. In this case, the .* sequence is followed by
a parenthetically grouped pair of strings (rabbit and heart), which are separated by the |
symbol, indicating that either of the strings will be considered a match.

Example 5-7. A more involved regular expression comparison

booktown=# SELECT title FROM books
booktown-# WHERE title ~* '^The.*(rabbit|heart)';
 title

 The Velveteen Rabbit
 The Tell-Tale Heart
(2 rows)

In Example 5-7, the results should fairly clearly indicate the effect of the regular expression
comparison. Translated into English, the expression ^The.*(rabbit|heart) states that a match
will be found only if the compared string begins with the character sequence The and, any
amount of any characters thereafter, contain either the character sequence rabbit, or heart. The
use of the ~* operator (rather than just the ~ operator) makes the comparison case-insensitive.

Example 5-8 executes an even more complicated regular expression comparison.

Example 5-8. A Complicated Regular Expression Comparison

booktown=# SELECT title FROM books
booktown-# WHERE title ~* '(^t.*[ri]t)|(ing$|une$)';
 title

 The Shining
 Dune
 The Velveteen Rabbit
 The Tell-Tale Heart
(4 rows)

booktown=#

The regular expression used in Example 5-8 is a good example of how regular expressions can
be intimidating! Breaking it down an element at a time, you can see that there are two
parenthetically grouped expressions, separated by a | symbol. This means that if either of these
expressions are found to match the title, the comparison will be considered a match.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Breaking it down further, you can see that the expression to the left of the | symbol consists of,
from left to right: a caret (^  ) followed by the character t, a period (.) followed by an asterisk
(*  ), and a pair of square brackets ([] ) enclosing the characters r and i, followed by the
character t. Translated into English, this sub-expression essentially says that in order to match,
the compared string must begin with the letter t, and be followed by a sequence of zero or
more characters until either the letter r, or i is found, which must be followed immediately by
the letter t. If any of these conditions is not found, the comparison will not be considered a
match.

The expression to the right of the | symbol is a bit simpler, consisting of two character string
sequences (ing and une), each followed by the $ character, and separated by another | symbol.
This sub-expression, translated into English, describes a match as a relationship in which
either ends with the value ing, or une. If either of these are found, the expression is considered
a match, because of the | symbol.

Numeric Operators
PostgreSQL's numeric operator support can be divided into three general groups:

Mathematical operators

Mathematical operators affect one or two values, perform a mathematical operation, and
return a value of a numeric data type.

Numeric comparison operators

Numeric comparison operators draw a conclusion based on two numeric values (such as
whether one is larger than the other) and returns a value of type boolean, set to either
true or false.

Binary (or bit string) operators

Binary, or bit string, operators manipulate numeric values at the bit level of zeroes and
ones. The following sections address each of these operator groups.

Mathematical operators

Mathematical operators can be used in the target list, in the WHERE clause of a SELECT
statement, or anywhere else a numeric result may be appropriate. This sometimes will include
the ORDER BY clause, a JOIN qualifier, or a GROUP BY clause.

Table 5-4 describes each of the mathematical operators available in PostgreSQL, along with
example usage.

Table 5-4. Mathematical operators

Operator Usage Description
+ a + b Addition of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a + b Addition of
numeric
quantities a
and b

- a - b Subtraction of
numeric
quantity b
from a

* a * b Multiplication
of numeric
quantities a
and b

/ a / b Division of
numeric
quantity a by
b

% a % b Modulus, or
remainder,
from dividing
a by b

^ a ^ b Exponential
operator, the
value of a to
the power of
b

|/ |/ a Square root
of a

||/ ||/ a Cube root of
a

! a! Factorial of a
!! !! a Factorial

prefix,
factorial of a,
different only
in syntactic
placement
from !

@ @ a Absolute
value of a

As an example of mathematical operators in the target list, the statement in Example 5-9 takes
the retail price for each book and divides the cost with the / operator in order to determine the
profit margin. This value is then typecast to a truncated numeric value with only two digits of
precision. Finally, the integer constant 1 is subtracted from the division result, to yield only the
percentage points over 100.

Example 5-9. Using Mathematical Operators

booktown=# SELECT isbn,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SELECT isbn,
booktown-# (retail / cost)::numeric(3, 2) - 1 AS margin
booktown-# FROM stock
booktown-# ORDER BY margin DESC
booktown-# LIMIT 4;
 isbn | margin
------------+--------
 0451457994 | 0.35
 0760720002 | 0.33
 0451198492 | 0.30
 0441172717 | 0.29
(4 rows)

Notice that the column name is temporarily aliased to margin by using the AS keyword.
Remember that the column name created by the AS keyword is a temporary name, and used
only for the duration of the query.

Numeric comparison operators

Comparison operators are used to compare values of types such as integer or text to one
another, but they will always return a value of type boolean. These operators are most
commonly used in the WHERE clause, but may be used anywhere in a SQL statement where a
value of type boolean would be valid.

Table 5-5 shows the available comparison operators.

Table 5-5. Comparison operators

Operator Description
< Less-than, returns true if the value to the left is

smaller in quantity than the value to the right
> Greater-than, returns true if the value to the left is

greater in quantity than the value to the right
<= Less-than or equal-to, returns true if the value to

the left is smaller, or equal to, in quantity than the
value to the right

>= Greater-than or equal-to, returns true if the value
to the left is greater, or equal to, in quantity than
the value to the right

= Equal-to, returns true if the values to the left and
right of the operator are equivalent

< > or != Not-equal, returns true if the values to the left and
right of the operator not equivalent

Note: The < > operator exists as an alias to the != operator for functional
compatibility with other SQL-capable database implementations. They are
effectively identical.

For an example of mathematical comparison operator usage, observe Example 5-10. The
query involved uses the <= operator first, to check if the retail value is less-than or equal-to
25. Subsequently, the != operator is employed with the AND keyword to ensure that only books
which are in stock (whose stock value are not equal to 0) are returned.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 5-10. Using comparison operators

booktown=# SELECT isbn, stock
booktown-# FROM stock
booktown-# WHERE retail <= 25
booktown-# AND stock != 0;
 isbn | stock
------------+-------
 0441172717 | 77
 0590445065 | 10
 0679803335 | 18
 0760720002 | 28
 0929605942 | 25
 1885418035 | 77
(6 rows)

Numeric comparison keywords

The BETWEEN keyword (sometimes called an operator) allows you to check a value for
existence within a range of values. For instance, Example 5-11 shows a SELECT statement that
looks for books with cost between 10 and 17 dollars.

Example 5-11. Using BETWEEN

booktown=# SELECT isbn FROM stock
booktown-# WHERE cost BETWEEN 10 AND 17;
 isbn

 0394800753
 0441172717
 0451457994
(3 rows)

You can achieve the same output using the less-than-or-equal-to operator (<=) in conjunction
with the greater-than-or-equal-to (>=) operator. See Example 5-12.

Example 5-12. Operator equivalents to BETWEEN

booktown=# SELECT isbn FROM stock
booktown-# WHERE cost >= 10 AND cost <= 17;
 isbn

 0394800753
 0441172717
 0451457994
(3 rows)

The BETWEEN syntax simply adds to the readability of an SQL statement. Since both the
keyword and operator forms are equally valid to PostgreSQL, it's mostly a matter of user
preference.

Binary operators

Binary operators perform bitwise operations on the literal bits of a bit string or integer. These
operators may affect integer values, or directly on bit string values. Each of PostgreSQL's
binary operators are described in Table 5-6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 5-6. Bit-string operators

Operator Usage Description
& a & b Binary AND between bit string values

of a and b (which may be provided as
integers)

| a | b Binary OR between bit string values
of a and b (which may be provided as
integers)

a # b Binary XOR between bit string values
of a and b (which may be provided as
integers)

~ ~ b Binary NOT, returns the inverted bit
string of b

<< b << n Binary shifts b to the left by n bits
>> b >> n Binary shifts b to the right by n bits

Example 5-13 demonstrates shifting a numeric value, and its equivalent bit string, two bits to
the right with the >> operator. It also demonstrates the use of the bittoint4() function,
described in the Section called Functions."

Example 5-13. Shifting bit strings

booktown=# SELECT b'1000' >> 2 AS "8 shifted right",
booktown-# bittoint4(b'1000' >> 2) AS integer,
booktown-# 8 >> 2 AS likewise;
 8 shifted right | integer | likewise
-----------------+---------+----------
 0010 | 2 | 2
(1 row)

Note: When shifting bit strings, the original length of the string does not change,
and any digits pushed either to the left or right of the bit string will be truncated.
When using &, |, or #, the bit strings operated on must be of equal length in order
to properly compare each bit on a one-to-one basis.

Logical Operators
The AND, OR, and NOT keywords are PostgreSQL's Boolean operators. They are commonly used
to join or invert conditions in a SQL statement, particularly in the WHERE clause and the HAVING
clause.

Table 5-7 illustrates the Boolean values returned for the AND, OR, and NOT keywords, with each
possible value for a Boolean field (true, false, or NULL).

Table 5-7. The AND, OR, and NOT operators

a b a AND b a OR b NOT a NOT b
true true true true false false
true false false true false true

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

true false false true false true
true NULL NULL true false NULL
false false false false true true
false NULL false NULL true NULL
NULL NULL NULL NULL NULL NULL

Example 5-14 sequentially uses the OR and AND keywords in two queries to combine a pair of
conditions by which rows should be retrieved. In the first query, if a book has either a cost of
greater than thirty dollars, or is out of stock, its information will be returned. As you can see
from the result set, matching one or both of these conditions causes a row to be returned.

The second query in Example 5-14 uses the same conditions, but combines them with the AND
keyword. This results in a stricter condition, as both criteria must be met. As such, only one
row is returned, since only one book is found which both has a cost of greater than thirty
dollars, and is out of stock.

Example 5-14. Combining comparisons with Boolean operators

booktown=# SELECT isbn, cost, stock
booktown-# FROM stock
booktown-# WHERE cost > 30
booktown-# OR stock = 0;
 isbn | cost | stock
------------+-------+-------
 0394900014 | 23.00 | 0
 044100590X | 36.00 | 89
 0451198492 | 36.00 | 0
 0451457994 | 17.00 | 0
(4 rows)

booktown=# SELECT isbn, cost, stock
booktown-# FROM stock
booktown-# WHERE cost > 30
booktown-# AND stock = 0;
 isbn | cost | stock
------------+-------+-------
 0451198492 | 36.00 | 0
(1 row)

Using Operators with NULL
If a table has NULL values in it, a special pair of comparison operators that can be used to
include or omit NULL valued fields. You can check for fields set to NULL using the IS NULL
keyword phrase. In order to check for a non-NULL value, use the IS NOT NULL keyword
phrase.

Example 5-15 uses the IS NULL keyword to check for authors whose first_name column
value are set to NULL.

Example 5-15. Comparisons using IS NULL

booktown=# SELECT last_name, first_name
booktown-# FROM authors
booktown-# WHERE first_name IS NULL;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# WHERE first_name IS NULL;
 last_name | first_name
-----------+------------
 Geisel |
(1 row)

Examining Example 5-15 and Example 5-16, you might think that the syntax in the two
statements provided are identical. There is, however, a key difference.

Example 5-16. Comparisons equal to NULL

booktown=# SELECT last_name, first_name
booktown-# FROM authors
booktown-# WHERE first_name = NULL;
 last_name | first_name
-----------+------------
 Geisel |
(1 row)

PostgreSQL provides a translation from = NULL to IS NULL, and likewise for the != NULL
operation with IS NOT NULL. This is provided only for compatibility with existing client
applications (such as Microsoft Access).

When comparing a value to NULL in an expression, be in the habit of using the IS NULL and IS
NOT NULL keyword operators rather than the = or != math-style operators. While this
translation is provided for the sake of compatibility with other systems, it may be discontinued
in the future, as it is not a standard SQL procedure (and it is certainly not guaranteed to be a
portable procedure to other SQL-based database systems for the same reason).

Any as-yet undiscussed comparison operator used on a NULL value will return a NULL value, as
NULL will never be larger, smaller, or otherwise related to any non-NULL value. (See Example
5-17.) A direct query on the result of a comparison against a NULL value will therefore return
NULL. You can think of a NULL value as being a sort of SQL black hole, from which no
comparison (outside of IS NULL, and its special = translation) may return true, and to which
no values may be added, or concatenated.

Example 5-17. Using operators with NULL values

booktown=# \pset null *null* Null display is '*null*'.
booktown=# SELECT 5 > NULL;
 ?column?

 null
(1 row)

booktown=# SELECT NULL IS NULL;
 ?column?

 t
(1 row)

booktown=# SELECT NULL || 'Test';
 ?column?

 null
(1 row)

Operator Precedence

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When utilizing several operators in large expressions, it can be helpful to know in what order
PostgreSQL processes operators. It is not, as you might think, strictly from left to right. If not
properly understood, the order of execution can introduce potential for accidental side-effects,
such as those shown in Example 5-18.

Example 5-18. Operator precedence

booktown=# SELECT 60 + 12 * 5 AS "sixty plus twelve times five",
booktown-# 12 + 60 * 5 AS "twelve plus sixty times five";
 sixty plus twelve times five | twelve plus sixty times five
------------------------------+------------------------------
 120 | 312
(1 row)

As you can see by the two column values returned in Example 5-18, the use of several
operators without parentheses to enforce precedence can return very different results, despite
the same numbers being manipulated in only a slightly different order. In this example, the
multiplication is actually executed first (regardless of the fact that the addition sign (+)
precedes it sequentially, from left to right).

Table 5-8 lists, in order of PostgreSQL's execution from the top down, the precedence of each
group of operators.

Table 5-8. Operator precedence

Operator Usage Description
:: value::type Explicit typecast
[ ] value[index ] Array element index
. table.column Table and column name separator
- -value Unary minus
^ value ^ power Exponent
* / % value1 * value2 Multiplication, division, and

modulus
+ - value1 + value2 Addition and subtraction
IS value IS boolean Compares against true or false
ISNULL value ISNULL Compares against NULL
IS NOT NULL value IS NOT NULL Checks for value inequivalent to

NULL
Other Variable Includes all other native and user-

defined character operators
IN value IN set Checks for membership of value

in set
BETWEEN value BETWEEN a AND b Checks for value in range

between values a and b
LIKE, ILIKE string LIKE comparison Checks for matching pattern

comparison in string
< > <= >= value1 < value2 Quantity comparisons for less

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

than, greater than, less than or
equal to, and greater than or
equal to.

= value1 = value2 Equality comparison
NOT NOT value Logical NOT inversion
AND value1 AND value2 Logical AND conjunction
OR value1 OR value2 Logical OR conjunction

Note: The operator precedence listed in Table 5-8 applies to user-defined
operators that have the same character sequence as built-in operators. For
example, if you define the plus symbol (+) operator for your own user-defined
data type, it has the same precedence as the built in plus (+) operator, regardless
of its function.

Prev Home Next
Further SQL Application Up Functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

Preface
Table of Contents
Who Is the Intended Audience?
Structure of This Book
Platform and Version Used
What Is Included on the CD?
Conventions Used in This Book
Acknowledgments
Comments and Questions

PostgreSQL is one of the most successful open source databases available. It is arguably also
the most advanced, with a wide range of features that challenge even many closed-source
databases.

This book is intended to be a practical guide to PostgreSQL v7.1.x, though most of the book
should also apply to earlier and future releases of PostgreSQL. The content is focused on
getting you comfortable with PostgreSQL in the most expedient fashion possible. Although
we will touch on some academic database subjects, such discussion will be kept brief. Our
core focus is to provide the reader with enough of an understanding of PostgreSQL to manage
a fully operational PostgreSQL database. Our hope is that by introducing this book to the
community we will provide a better understanding of PostgreSQL and its functionality.

Who Is the Intended Audience?
This book is for anyone interested in utilizing the PostgreSQL object-relational database-
management system (ORDBMS). The reader should be familiar with Linux- and UNIX-based
systems, but is not expected to be a database guru. Although the test operating system for this
book is Red Hat Linux, the tasks in this book that apply to Linux should apply to most UNIX
variants without much modification.

Prev Home Next
Practical PostgreSQL Structure of This Book

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

Chapter 13. LXP
Table of Contents
Why Use LXP?
Core Features
Installing and Configuring LXP
Understanding LXP Mark-Up
LXP Variables and Objects
Using Cookies with LXP
Tag Parsing
Branching Logic
Loop Iteration
Content Inclusion
Displaying Foreign Tags with <xtag>

LXP (or mod_lxp) is an Application Server designed as an Apache Module. LXP is used to
broker and dynamically format HTML content through a process called server-side inclusion.
This involves assembling HTML output from a variety of sources, which can include HTML
source files, XML files, or even data within a PostgreSQL database.

LXP's content inclusion is performed entirely on the server, ensuring the same output
regardless of the web browser. LXP is intended to behave more intuitively, seamlessly, and
comprehensively than other available content inclusion methods via its unique mark-up based
approach and native PostgreSQL connectivity.

LXP uses a unique form of programmatic mark-up tags, which are interpreted entirely on the
server and translated into standard HTML output before being sent to the client. While the
effects of these tags are programmatic in nature, they differ from a "scripting language" such
as PHP or Perl, by relying for their implementation on the same structural concepts as those
behind HTML and XML for their implementation.

One of the goals of LXP is to provide dynamic, conditional capabilities that do not violate the
syntax and methodology of a mark-up–based document. An LXP document should be
readable to anyone fluent in HTML, though the meaning of the extra tags may not be
immediately obvious. Simultaneously, experienced programmers can take advantage of the
more advanced features within the content model of LXP.

Why Use LXP?
LXP provides a simple way to build powerful web sites without using a "programming"
language. If you can use mark-up, you can use LXP to help provide dynamically manageable
content.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Additionally, LXP's integration with PostgreSQL allows for a deeper degree of content in your
web sites. Traditionally, if you wanted to perform logic on result sets from a database, you
would have to use PHP, Perl, or compiled C or C++. With LXP, use of such languages is no
longer required.

Using LXP allows you to utilize the power of PostgreSQL's features—including user-defined
functions, triggers, and procedural languages (such as PL/pgSQL)—to provide the logic for
your data. With LXP, there is no longer a need to use complicated programming languages for
the majority of your simple tasks. Even mathematical operations, date and time evaluations,
and involved string formatting can be performed with LXP, via the connection to PostgreSQL.

While this simplicity is one of LXP's strengths, we understand that sometimes a more
comprehensive solution is required (or simply preferred) for the design of a given function.
For this reason, if you need the power of a comprehensive programming language in part of
your web site, you can use either of LXP's Apache or URI methods to embed any available
document type within LXP-managed output.

Prev Home Next
Issues Specific to PostgreSQL
and JDBC

Up Core Features

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

II. Using PostgreSQL
Table of Contents
3. Understanding SQL
4. Using SQL with PostgreSQL
5. Operators and Functions
6. PostgreSQL Clients
7. Advanced Features

Prev Home Next
10 Steps to Installing
PostgreSQL

 Understanding SQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

III. Administrating PostgreSQL
Table of Contents
8. Authentication and Encryption
9. Database Management
10. User and Group Management

Prev Home Next
Extending PostgreSQL Authentication and Encryption

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

IV. Programming with PostgreSQL
Table of Contents
11. PL/pgSQL
12. JDBC
13. LXP

Prev Home Next
Granting Privileges PL/pgSQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

I. Introduction and Installation
Table of Contents
1. What is PostgreSQL?
2. Installing PostgreSQL

Prev Home Next
Comments and Questions What is PostgreSQL?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

V. PostgreSQL Command Reference
Table of Contents
14. PostgreSQL Command Reference

Prev Home Next
Displaying Foreign Tags with
<xtag>

 PostgreSQL Command
Reference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

VI. Appendixes
Table of Contents
A. Multibyte Encoding Types
B. Backend Options for postgres
C. Binary COPY Format
D. Internal psql Variables

Prev Home Next
VACUUM Multibyte Encoding Types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

ABORT
Name
ABORT -- Rolls back changes made during a transaction block.

Synopsis
ABORT [WORK | TRANSACTION]

Parameters

WORK | TRANSACTION

A pair of optional noise keywords. They can be ignored, or used to make your SQL
more readable.

Results

ROLLBACK

The message returned when an ABORT completes successfully.

NOTICE: ROLLBACK: no transaction in progress

The notice returned if the database server is unable to find any transaction in progress.

Examples
The following example demonstrates the use of ABORT to undo an accidental DELETE
command:

booktown=# BEGIN WORK;
BEGIN
booktown=# DELETE FROM publishers WHERE id < 100;
DELETE 6
booktown=# ABORT WORK;
ROLLBACK

Prev Home Next
PostgreSQL Command
Reference

Up ALTER GROUP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

ALTER GROUP
Name
ALTER GROUP -- Modifies the structure of a user group.

Synopsis
ALTER GROUP name ADD USER
 username [, ...]
ALTER GROUP name DROP USER
 username [, ...]

Parameters

name

The name of an existing group to alter.

username

The names of existing users you wish to add or remove from the specified group.
Multiple names are delimited by commas.

Results

ALTER GROUP

The message returned when an ALTER GROUP modification is successful.

Description
Database superusers can use the ALTER GROUP command to add and remove specified users
from a group. As groups can be allocated privileges, adding members to a group grants those
privileges by proxy. Users must exist before they can be added to a group. Dropping a user
from a group does not drop a user from the system.

Use CREATE GROUP to create a new group and DROP GROUP to remove a group. Use GRANT and
REVOKE to manage privileges on a group.

Examples
The following example adds the PostgreSQL database users jessica and william to the
sales group:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# ALTER GROUP sales ADD USER jessica, william;
ALTER

The next example removes the user jessica from the sales group:

booktown=# ALTER GROUP sales DROP USER jessica;
ALTER

Prev Home Next
ABORT Up ALTER TABLE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

ALTER TABLE
Name
ALTER TABLE -- Modifies table and column attributes.

Synopsis
ALTER TABLE table [*]
 ADD [COLUMN] column type
ALTER TABLE table [*]
 ALTER [COLUMN] column { SET DEFAULT defaultvalue | DROP DEFAULT }
ALTER TABLE table [*]
 RENAME [COLUMN] column TO newcolumn
ALTER TABLE table
 RENAME TO newtable
ALTER TABLE table
 ADD CONSTRAINT newconstraint definition
ALTER TABLE table
 OWNER TO newowner

Parameters

table

The name of the (existing) table you intend to modify.

column

The name of a new column, or existing column that you intend to modify.

type

The data type of a new column being created. (This is used only during the creation of a
new column.)

defaultvalue

A new default value for the specified column.

newcolumn

A new name for column.

newtable

A new name for table.

newconstraint definition

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

newconstraint definition

The name and definition of a new table constraint to be added to an existing table. See
Chapter 7 for more details on how to define a table constraint.

newowner

The new owner of table (when transferring ownership).

Results

ALTER

The message returned when a column or table modification is completed successfully.

ERROR

The message returned if the table or column modifications cannot be completed, along
with an explanation of what failed, if possible.

Description
The ALTER TABLE command is used to modify the structure of tables existing within a
database in various ways. To rename a column or table, use the RENAME keyword. Renaming in
this manner will not alter any of the data in either a column or a table. If you wish to add a
new table constraint to a table, use the ADD CONSTRAINT clause with the same constraint syntax
used with CREATE TABLE for a table constraint (see CREATE TABLE").

As of the most current version of PostgreSQL available at this printing (7.1.x), the only
constraints that can be added to a table through the ADD CONSTRAINT clause are the CHECK and
FOREIGN KEY constraints. To implicitly add a UNIQUE constraint, a workaround is to create a
UNIQUE index, using the CREATE INDEX command (see CREATE INDEX"). To add any other
constraints, you will have to recreate and reload data into the table in question.

To add a new column to a table, use ADD COLUMN with the same column syntax used in CREATE
TABLE (see CREATE TABLE"). To modify or delete a column's default setting, use ALTER
COLUMN with either the SET DEFAULT or DROP DEFAULT clause. (Remember that defaults are
only applicable to newly added rows, and will not affect existing rows.)

As of PostgreSQL 7.1.x, you are not able to set the default value or constraint settings for a
column at the same time as when it is added with the ADD COLUMN clause. You can, however,
use the SET DEFAULT clause of ALTER TABLE to set the default values after the column is
created. If you do this after the table has been in use for any period of time, be sure to use the
UPDATE command to update the column's data in any existing rows to the new default.

Note: You must be the owner of a table, or a superuser, in order to modify it.

Examples
The following example adds a text column named address to the employees table:

booktown=# ALTER TABLE employees ADD COLUMN address text;
ALTER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ALTER

Next, the newly added address column is renamed to mailing_address:

booktown=# ALTER TABLE employees RENAME COLUMN address TO mailing_address;
ALTER

The following example renames the employees table to personnel:

booktown=# ALTER TABLE employees RENAME TO personnel;
ALTER

The following example then changes the owner of the personnel table to the PostgreSQL user
jonathan:

booktown=# ALTER TABLE personnel OWNER TO jonathan;
ALTER

Finally, the following syntax adds a FOREIGN KEY constraint to the schedules table named
valid_employee, which verifies the employee id column in the personnel table:

booktown=# ALTER TABLE schedules ADD CONSTRAINT valid_employee
booktown-# FOREIGN KEY (employee_id)
booktown-# REFERENCES personnel (id) MATCH FULL;
NOTICE: ALTER TABLE ... ADD CONSTRAINT will create implicit trigger(s) for
FOREIGN KEY check(s)
CREATE

Prev Home Next
ALTER GROUP Up ALTER USER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

ALTER USER
Name
ALTER USER -- Modifies user properties and permissions.

Synopsis
ALTER USER username
 [WITH PASSWORD 'password']
 [CREATEDB | NOCREATEDB] [CREATEUSER | NOCREATEUSER]
 [VALID UNTIL 'abstime']

Parameters & Keywords

username

The name of the PostgreSQL database user to be modified.

password

An optional new password to assign to the modified PostgreSQL user.

CREATEDB | NOCREATEDB

The privilege to create new databases. Use CREATEDB, to give the user permission to
create databases. Use NOCREATEDB to explicitly deny that permission (which is the
default).

CREATEUSER | NOCREATEUSER

The superuser privilege. The use of CREATEUSER allows access to both the CREATE USER
and DROP USER commands, as well as makes the user a superuser (with universal rights
across all databases). NOCREATEUSER is the default.

Specifying that a PostgreSQL user is able to create other users also automatically
classifies the user as a superuser in the database; this can be a security risk if
unintentional. A superuser can override all other access restrictions.

abstime

The timestamp that defines when a user's password expires. When the date and time
defined by abstime is reached, the user's defined password will become invalid. If
unset, the password never expires.

Results

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ALTER USER

The message returned when the ALTER USER command is successful.

ERROR: ALTER USER: user "username" does not exist

The error returned if username does not exist in the pg_shadow users table.

Description
Use the ALTER USER to change the attributes and permissions of a PostgreSQL database user.

Note: Only a database superuser can change privileges and password expiration
values with ALTER USER. Ordinary users are only permitted to change their own
password.

To create and remove PostgreSQL database users, use the CREATE USER command and the
DROP USER command, respectively.

Examples
The following example changes the password for user mark:

booktown=# ALTER USER mark WITH PASSWORD 'ml0215em';
ALTER USER

The next example demonstrates changing the password expiration date for the user mark:

booktown=# ALTER USER mark VALID UNTIL 'Dec 24 2012';
ALTER USER

Prev Home Next
ALTER TABLE Up BEGIN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

BEGIN
Name
BEGIN -- Starts a chained-mode transaction block.

Synopsis
BEGIN [WORK | TRANSACTION]

Parameters

WORK | TRANSACTION

A pair of optional noise keywords. They can be ignored, or used to make your SQL
more readable.

Results

BEGIN

The message returned when a transaction begins.

NOTICE: BEGIN: already a transaction in progress

The notice returned if a transaction is already in progress within your PostgreSQL
session. You cannot nest multiple transactions. The transaction you have in progress is
not altered when this happens.

Description
PostgreSQL executes transactions in unchained mode by default. Also called autocommit, this
mode encapsulates each user statement in an implicit transaction, and automatically finalizes
the transaction by either committing the modification, or performing a rollback, depending on
whether or not the execution was successful.

Using BEGIN specifies that you want to enter a transaction block using chained mode, in which
statements will be queued by the database, and then sent in a single transaction when the
database receives a COMMIT command. Alternatively, the queued statements can be discarded
by a ROLLBACK, or by an unexpected disconnection.

Chained mode can be useful when you are working with multiple related tables, and also to
increase database performance in general. Executing statements in chained mode uses less
CPU and disk resources, as there is only one commit needed per block of statements executed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When a transaction is committed, the database will attempt to run all updates that have been
specified within it. If there are were no errors, the updates will be performed; otherwise the
transaction block will be aborted.

Examples
The following example begins a transaction block, creates a table, and commits the action:

booktown=# BEGIN WORK;
BEGIN
booktown=# CREATE TABLE test (id integer, name text);
CREATE
booktown=# COMMIT WORK;
COMMIT

Prev Home Next
ALTER USER Up CLOSE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CLOSE
Name
CLOSE -- Closes a previously defined cursor object.

Synopsis
CLOSE cursor

Parameters

cursor

The name of a currently open cursor that you wish to close.

Results

CLOSE

The message returned when the cursor is successfully closed.

NOTICE: PerformPortalClose: portal "cursor" not found

The notice returned if the specified cursor is either not declared, or not open.

Description
The CLOSE command closes an open cursor and frees the resources it was using. Cursors
should always be closed after they are no longer needed. Once a cursor is closed, further
operations are not allowed on it.

Note: Executing a COMMIT or ROLLBACK terminates the current transaction, closing
all open cursors.

Examples
The following example opens a transaction, declares the cur_publishers cursor, and closes
it:

booktown=# BEGIN;
BEGIN
booktown=# DECLARE cur_publishers CURSOR FOR SELECT * FROM publishers;
SELECT
booktown=# CLOSE cur_publishers;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# CLOSE cur_publishers;
CLOSE

Prev Home Next
BEGIN Up CLUSTER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CLUSTER
Name
CLUSTER -- Provides the backend server with clustering information about a table.

Synopsis
CLUSTER indexname ON tablename

Parameters

indexname

The name of the index to use in clustering.

tablename

The name of the table you wish to cluster.

Results

CLUSTER

The message returned when a table is successfully clustered.

ERROR: CLUSTER: "indexname" is not an index for table "tablename"

The error returned if you attempt to cluster an index indexname which is not placed on
the specified table (tablename).

ERROR: Index "indexname" does not exist

The error returned if the specified index (indexname) cannot be found in the connected
database.

ERROR: Relation "tablename" does not exist

The error returned if the specified table (tablename) cannot be found in the connected
database.

ERROR: Relation "child_table" inherits from "tablename"

The error returned if the specified table (tablename) is inherited by another table
(child_table).

Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the CLUSTER command to cluster a table on a specific index. The table (identified by the
tablename parameter) must already, exist and the index (identified by the indexname
parameter) must exist, and be placed on the table.

During clustering, a table is reordered for performance in an arrangement based on the
specified index. A cluster is a one-time operation upon a table; to recluster a table, you must
execute the command again.

Warning
When a cluster is created, the rows of the table are actually copied to a temporary table
according to an order derived from the specified index. That temporary table is then renamed
to the original table name. Because of this, all permissions and other indices are lost when
clustering is performed.

Examples
The following example clusters the subjects table on the basis of its subjects_pkey index:

booktown=# CLUSTER subjects_ pkey ON subjects;
CLUSTER

Prev Home Next
CLOSE Up COMMENT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

COMMENT
Name
COMMENT -- Adds a comment to an object within the database.

Synopsis
COMMENT ON
[
 [DATABASE | INDEX | RULE | SEQUENCE | TABLE | TYPE | VIEW] object_name |
 COLUMN table_name.column_name |
 FUNCTION func_name (argument [, ...]) |
 AGGREGATE aggr_func aggr_type |
 OPERATOR operator (left_type , right_type) |
 TRIGGER trigger_name ON table_name
] IS 'text'

Parameters

DATABASE | INDEX | RULE | SEQUENCE | TABLE | TYPE | VIEW

The type of database object that you are adding a comment to.

object_name

The name of the object (database, index, rule, sequence, table, type, or view) to
which you are adding a comment.

COLUMN table_name.column_name

The column name within table_name you are adding a comment to.

FUNCTION func_name (argument [, ...])

The name of the function on which you are commenting, specified also by the argument
data types that it accepts.

AGGREGATE aggr_func aggr_type

The aggregate function name (and associated data type aggr_type, which it accepts) to
which you are adding a comment.

OPERATOR operator (left_type, right_type)

The name of the operator on which you are commenting (operator), further described

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The name of the operator on which you are commenting (operator), further described
by the data type it operates on to the left, and the data type it operates on to the right,
separated by a comma, enclosed within parentheses. If either side is inapplicable, the
NONE keyword may be used.

TRIGGER trigger_name ON table_name

The name of the trigger on which you are placing a comment, and the name of the table
upon which the trigger is placed.

text

The actual text of the comment to add.

Results

COMMENT

The message returned when an object is successfully commented.

Description
COMMENT is a PostgreSQL-specific command that allows you to add comments to most objects
within a database, including a database itself. Comments can be retrieved by using the
following commands from within the psql client:

\l+

Displays all databases available, with comments.

\dd

Displays all database objects, with comments.

\d+

Displays all database objects in the connected database, with comments.

\dt+

Displays all tables in the connected database, with comments.

\di+

Displays all indices in the connected database, with comments.

\ds+

Displays all sequences in the connected database, with comments.

\dv+

Displays all views in the connected database, with comments.

\df+

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\df+

Displays all functions in the connected database, with comments.

\da+

Displays all aggregate functions in the connected database, with comments.

\do+

Displays all operators in the connected database, with comments.

\dT+

Displays all data types in the connected database, with comments.

You can remove a comment by setting its text to NULL.

Note: A comment that has been made on an object will be removed when that
object is removed from the system.

Examples
The following example adds a comment to the customers table:

booktown=# COMMENT ON TABLE customers IS 'For customer names.';
COMMENT

The next example deletes the previously added comment from the customer table:

booktown=# COMMENT ON TABLE customers IS NULL;

Prev Home Next
CLUSTER Up COMMIT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

COMMIT
Name
COMMIT -- Ends the current transaction block and finalizes changes made within it.

Synopsis
COMMIT [WORK | TRANSACTION]

Parameters

WORK | TRANSACTION

A pair of optional noise keywords. They can be ignored, or used to make your SQL
more readable.

Results

COMMIT

The message returned when the current transaction is successfully committed.

NOTICE: COMMIT: no transaction in progress

The notice returned if there is no current transaction for the COMMIT command to
actually commit.

Description
Use the COMMIT command to finalize the current transaction. Once a COMMIT is performed, any
modifications made by the transaction are saved into the database.

Note: If something unintended happens during a transaction block, you can use
the ROLLBACK command to abort the current transaction. This undoes the effect of
any SQL executed after the last BEGIN statement.

Examples
The following example begins a transaction, modifies data, and then commits the
modifications:

booktown=# BEGIN WORK;
BEGIN
booktown=# INSERT INTO employees VALUES (106, 'Hall', 'Timothy');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# INSERT INTO employees VALUES (106, 'Hall', 'Timothy');
INSERT 3574402 1
booktown=# COMMIT WORK;
COMMIT

Prev Home Next
COMMENT Up COPY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

COPY
Name
COPY -- Copies data between files and tables.

Synopsis
COPY [BINARY] table [WITH OIDS]
 FROM { 'filename' | stdin }
 [[USING] DELIMITERS 'delimiter']
 [WITH NULL AS 'null_string']
COPY [BINARY] table [WITH OIDS]
 TO { 'filename' | stdout }
 [[USING] DELIMITERS 'delimiter']
 [WITH NULL AS 'null_string']

Parameters

BINARY

The BINARY mode keyword. This specifies that you wish for COPY to store and read data
in PostgreSQL's own binary format (rather than text). When using binary format, the
WITH NULL and DELIMITERS keywords are not applicable.

table

The name of an existing table to either copy data from, or to.

FROM

The FROM keyword, which indicates that the COPY operation will copy data from either a
file or stdin into table.

TO

The TO keyword, which indicates that the COPY operation will copy data to either a file
or stdout, from the data in table.

WITH OIDS

The optional oid specifier. This indicates that the copy operation is to either select or
insert the unique object ID (oid) of each row, depending on whether or not it is a COPY
FROM or COPY TO.

filename

The absolute path to the file chosen for input or output (i.e.,
/usr/local/pgsql/data/employeetable). You must specify an absolute path.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

stdin

The standard input option. When used in place of a filename, this indicates that data
will be accepted from the client application, rather than a file. If you are using psql to
enter data, you will be prompted to type in text if you initiate a COPY FROM on stdin.

stdout

The standard output option. When used in place of a filename, this indicates that output
will be sent directly to the client, rather than to a file (e.g., to psql).

delimiter

The character symbol that separates column values in a row. On a COPY FROM,
PostgreSQL will expect this character to delimit columns. On a COPY TO, PostgreSQL
will delimit each column value by this character in its output. If omitted, the default
delimiter used, which is a tab (\t).

The delimiter you choose must only be one character; if you enter something longer
than one character, only the first character of what you enter will be used as the
delimiter.

null_string

The character sequence used to identify a NULL value. By default, \N is used, but you
can change it to something more suited to your needs. Recognize that when data is
copied into the database, any strings that match your specified NULL string will be
interpreted as NULL values, so make sure to use the same string when you copy data in to
the database as you used when you copied the data out to begin with, and try to choose a
sequence that should never have a valid, non-NULL counterpart.

Results

COPY

The message returned when a COPY procedure finishes successfully.

ERROR

The error returned if a COPY procedure fails, accompanied by a reason for failure.

Description
Use the COPY command to transfer data between tables in a PostgreSQL database and files
within a filesystem. There are two ways to use COPY: COPY TO and COPY FROM.

Use COPY TO when you want to output the entire contents of a table in your database to a file,
or to standard output (stdout, i.e., the client connected to the database). Use COPY FROM when
you wish to import data from a standard file, or standard input (stdin, from the client).

Note: The SQL COPY command should not be confused with the psql \copy
command. \copy performs a COPY FROM stdin or COPY TO stdout, storing the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

command. \copy performs a COPY FROM stdin or COPY TO stdout, storing the
acquired data in a psql-accessible file. This means the file access rights are
controlled by the client (frontend), instead of the postmaster (backend).

See the Section called Adding Data with INSERT and COPY in Chapter 4" in Chapter 4, for
more on the nuances of this command.

You can either use normal text for transferring data, or you can use binary format (when
specified with the BINARY keyword). Using binary format will speed up COPY commands
significantly; however, binary formatting decreases the portability of your application due to
low-level byte ordering differences.

Restrictions and limitations

There are a few restrictions to the COPY command. In order for COPY to read from the tables
specified, your PostgreSQL user must have SELECT access granted on them. If you are
directing COPY to insert values into a table, your PostgreSQL user must also have INSERT or
UPDATE access.

Likewise, if you are copying files to or from a system file, the user running the PostgreSQL
backend (the postmaster) must have the necessary filesystem permissions on the specified file.
To sidestep this restriction, the \copy command exists within psql (see Chapter 6 for more on
this).

Using the COPY TO command will check constraints, and any triggers you may have set up, but
it will not invoke rules or act on column defaults.

COPY will stop operation upon reaching the first error. This should not lead to problems in the
event of a COPY FROM, but the target relation will be partially modified in a COPY TO. The
VACUUM command should be used to clean up after a failed COPY command.

File formatting

If you are a developer interested in the technical format of PostgreSQL's binary output, see
Appendix C. If you choose to use normal text formatting instead of binary, the file COPY
creates will be formatted as such: each row will appear on a single line, with column values
separated by the delimiter character. Any embedded characters located in the file have a
preceding backslash (\), and column values are output as plain text strings.

If WITH OIDS is specified, the oid will be placed at the beginning of the line. If you create an
output file using the WITH OIDS clause, and wish to import that data back into PostgreSQL (or
on another PostgreSQL machine), remember to again specify the WITH OIDS clause.
Otherwise, it will be interpreted as a normal column.

When COPY sends its results to standard output (stdout), it will end the transfer with the
following format: a backslash (\), a period (.), and a newline to mark the end of the file. If an
EOF (end of file) is reached before the normal end-format, it will automatically terminate.

Due to the backslash character having multiple definitions, you'll need to use an escape
sequence to represent an actual backslash character. Do this by typing two consecutive
backslashes (\\). The other characters that require this method to display correctly are as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

backslashes (\\). The other characters that require this method to display correctly are as
follow: the tab character is represented as a backslash and a tab, and a newline is represented
by a backslash and a newline.

Remember to pre-format any non-PostgreSQL text data that you are loading into the database
by changing backslashes to double-backslashes.

Examples
The example below copies the employees table to the emp_table file, using a pipe (|) as the
field delimiter:

booktown=# COPY employees TO '/tmp/employee_data' USING DELIMITERS '|';
COPY

The following example copies data from a system file into the publishers table:

booktown=# COPY publishers FROM '/tmp/publisher_data';
COPY

Prev Home Next
COMMIT Up CREATE AGGREGATE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CREATE AGGREGATE
Name
CREATE AGGREGATE -- Defines a new aggregate function within the database.

Synopsis
CREATE AGGREGATE name (BASETYPE = input_type
 [, SFUNC = sfunc, STYPE = state_type]
 [, FINALFUNC = ffunc]
 [, INITCOND = initial_condition])

Parameters

name

The name of the aggregate function you are creating.

input_type

The input data type on which the new function will operate. If the aggregate function
ignores input values (as the count() function does), you can use the ANY string constant
as the data type.

sfunc

The name of the function you wish to be called to handle all non-NULL input data values.
These functions usually follow the same format, having two arguments. The first
argument is of the state_type data type, and the second of the input_type data type. If
the aggregate does not examine input values, it will take only one argument of type
state_type. Either way, the function must return a value of type state_type.

state_type

The data type for the state value of the aggregate.

ffunc

The name of the final function called upon to compute the aggregate's result after all
input has been examined. This function is required to accept a single argument of type
state_type.

The output data type of the aggregate function is defined as the return type of this
function. If you do not specify ffunc, the ending state value is used as the aggregate's
result, and the output data type is determined by state_type.

initial_condition

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initial_condition

The initial value of the aggregate function's state value. This is a literal constant of the
the same data type as state_type. The state value will be initialized to NULL if
initial_condition is not specified.

Results

CREATE

The message returned when an aggregate is created successfully.

ERROR: AggregateCreate: function "sfunc(state_type, input_type)" does not
exist

The error returned if the specified state function sfunc, accepting arguments of types
state_type and input_type, does not exist.

ERROR: AggregateCreate: function "sfunc(state_type)" does not exist

The error returned if the specified sfunc, accepting one argument of type state_type,
does not exist. This error should only be displayed if the input_type is set to ANY.

Description
Use the CREATE AGGREGATE command to define new aggregate functions in PostgreSQL.
Some commonly used aggregate functions are already included with PostgreSQL, such as
min(), avg(), and max(). See Chapter 5, for more on PostgreSQL's built-in functions.

Aggregate functions are characterized primarily by their input data type. It is possible for two
or more aggregate functions to exist with the same name, as long as they accept different data
types. This is called function overloading.

Warning
In order to avoid confusion, do not try to create normal functions with the same name and
input type as an aggregate. If you do, aggregate functions will receive precedence.

An aggregate function is comprised of either one or two normal functions. The required
function is the state transition function (the sfunc), and the optional function is the finalization
function (ffunc).

PostgreSQL uses a temporary stype variable that is updated by the state transition function for
every input row it receives. If you have defined a finalization function for your aggregate, it
will be called to calculate the output value after all data has been processed; otherwise, the
ending state value is returned without further processing.

Aggregate functions can also set an initial value for the internal state value; this is known as an
initial condition, and is specified with the INITCOND keyword. PostgreSQL stores this value in
the database as a value of type text, but it must represent a constant of the same data type as
the state value defined by the STYPE keyword. This value will be initialized to NULL if nothing
is supplied.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the state transition function was created with the isstrict attribute (see CREATE
FUNCTION"), it cannot be called with NULL parameters. Transition functions declared in this
manner cause aggregate execution to behave differently then normal; specifically, all NULL
input parameters are ignored, and the function is not called. The previous state value is
retained, and the aggregate function continues to process input values.

Furthermore, if the initial state value is set to NULL, it will be replaced by the first non-NULL
parameter value, and the transition function is called with the second non-NULL parameter
value. This can be useful for creating aggregates such as max(). Note that this behavior will
only occur when state_type is the same as input_type. If these types are different, you must
either provide a non-NULL initial condition, or use a non-strict transition function.

When the state transition function is not declared as strict, it will be called unconditionally for
each input value. This causes it to handle NULL values and NULL transition values by itself,
which allows the aggregate author to have more control over the aggregate's handling of NULL
input.

If the finalization function of an aggregate is declared strict, it will not be called if the
ending state value is a NULL value; instead, it will output a NULL result automatically.

Examples
The following example defines an aggregate function named sum(), for use with the text data
type. This aggregate calls the textcat(text,text) function built into PostgreSQL to return a
concatenated "sum" of all the text found in its input values:

booktown=# CREATE AGGREGATE sum (BASETYPE = text,
booktown(# SFUNC = textcat,
booktown(# STYPE = text,
booktown(# INITCOND = '');
CREATE
booktown=# SELECT sum(title || ' ') FROM books WHERE title ~ '^L';
 sum

 Little Women Learning Python
(1 row)

Prev Home Next
COPY Up CREATE DATABASE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CREATE DATABASE
Name
CREATE DATABASE -- Creates a new database in PostgreSQL.

Synopsis
CREATE DATABASE name
 [WITH [LOCATION = { 'dbpath' | DEFAULT }]
 [TEMPLATE = template | DEFAULT]
 [ENCODING = encoding_name | encoding_number | DEFAULT]]

Parameters

name

The name of the database you are creating.

dbpath

The directory in which to save the database. You may use the DEFAULT keyword to save
the database in the default data directory, as specified by the PGDATA environment
variable (or -D flag, passed to the postmaster).

Note that the dbpath value must normally be the name of system-level environment
variable, which is set within the PostgreSQL user's environment to a value describing
an initialized database directory.However, if PostgreSQL was compiled by the gmake
command with the CPPFLAGS=-DALLOW_ABSOLUTE_DBPATHS argument passed
to it, you can also specify a complete, absolute directory path.

template

The name of the template you wish to base the new database off of. Use the DEFAULT
keyword to specify the default template (usually template1).

encoding_name | encoding_num

The multibyte encoding method to use for the database. This can be entered as a string
literal, or an encoding type's corresponding integer encoding number. See Appendix A,
for a list of PostgreSQL's multibyte encoding types.

You may use the DEFAULT keyword to explicitly specify the default encoding method
(this is already the default).

Results

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE DATABASE

The message returned when a new database is created successfully.

ERROR: user 'username' is not allowed to create/drop databases

The error returned if your PostgreSQL user does not have the createdb privilege
necessary to create a database. A database administrator can add permissions to a
PostgreSQL user by using the ALTER USER command.

ERROR: Absolute paths are not allowed as database locations

The error returned if dbpath is specified as an absolute system path, and PostgreSQL
was not compiled with the CPPFLAGS=-DALLOW_ABSOLUTE_DBPATHS argument
to gmake.

ERROR: Relative paths are not allowed as database locations

The error returned if dbpath is specified as a relative system path, which is never
allowed, as of PostgreSQL 7.1.x. You must set dbpath to the name of the postmaster's
configured environment variable describing the location of your intended database
location.

ERROR: createdb: database "name" already exists

The error returned if a database named name already exists within the system catalog.

ERROR: database path may not contain single quotes

The error returned if you use single quotes (') within the dbpath parameter (the location
to save the database). Such single quotes are not compatible with the system's directory
creation program.

ERROR: CREATE DATABASE: unable to create database directory '/path'

The error returned if it is not possible to save the database files in the path you specified.
This can be due to a full disk, insufficient permissions on the specified directory, or the
directory not having been initialized by either initdb or initlocation.

The username under which PostgreSQL's postmaster is running must have access to the
path specified as the database location.

ERROR: CREATE DATABASE: May not be called in a transaction block

The error returned if you attempt to use CREATE DATABASE during an explicit transaction
block. You cannot use CREATE DATABASE within an open transaction block.

Description
Use CREATE DATABASE to create a new database on the system. When you create a new
database, the PostgreSQL user you are logged in as will automatically become the owner of
the new database, so be sure you are logged in correctly before using this command.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note: If absolutely necessary, you can change the owner of a database by
performing an UPDATE on the pg_database system table's datdba column to be a
different user's PostgreSQL system ID).

The dbpath usually describes an environment variable, which contains the location of the path
to create the database in. This environment variable must exist in the environment of the user
running the postmaster. In this manner, administrators have more control over where on the
filesystem databases can be created. See Chapter 9, for more information on this.

The directory you choose to store the database in must be prepared with the initlocation (or
initdb) command beforehand. See Chapter 9 for more on these commands.

Note: If PostgreSQL has been compiled with ALLOW_ABSOLUTE_DBPATHS
(by passing CPPFLAGS=-DALLOW_ABSOLUTE_DBPATHS to gmake after
configuration), absolute pathnames are allowed. This is not allowed by default,
due to security and data integrity issues that can arise from using database
locations specified as absolute paths.

To create a new database, PostgreSQL clones a database template (template1, by default). If
you wish to use a different database template, specify it with the TEMPLATE clause. To create a
completely new database (with no cloned template objects), pass template0 as the name of
the template to clone from.

Examples
The following example creates a database with the name of booktown:

template1=# CREATE DATABASE booktown;
CREATE DATABASE

This next example specifies the creation of a database with a different data directory location
for the new database:

template1=# CREATE DATABASE booktown WITH LOCATION = '/usr/local/pgsql/booktown';
CREATE DATABASE

Prev Home Next
CREATE AGGREGATE Up CREATE FUNCTION

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CREATE FUNCTION
Name
CREATE FUNCTION -- Defines a new function within the database.

Synopsis
CREATE FUNCTION name ([argtype [, ...]])
 RETURNS returntype
 AS 'definition'
 LANGUAGE 'langname'
 [WITH (attribute [, ...])]
CREATE FUNCTION name ([argtype [, ...]])
 RETURNS returntype
 AS 'obj_file' [, 'link_symbol']
 LANGUAGE 'langname'
 [WITH (attribute [, ...])]

Parameters

name

The name of the new function being created.

argtype

The data type of the argument, or arguments, to be accepted by the new function. There
are three general input types you may use: base types, complex types, or the special
opaque type. The opaque type explicitly allows the function to accept arguments of
invalid SQL types. The opaque type is generally used by internal functions, or functions
written in internal language such as C, or PL/pgSQL, where the return type is not
provided as a standard SQL data type.

returntype

The data type of the value or values returned by the new function. This may be set as a
base type, complex type, setof type (a normal data type, prefixed by setof), or the
opaque type.

Using the setof modifier determines that the function will return multiple rows worth
of data (by default, a function returns only one row). For example, a return type defined
as setof integer creates a function that can return more than a single row of integer
values.

attribute

An optional function attribute. Valid attributes, as of PostgreSQL 7.1.x, are isstrict

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An optional function attribute. Valid attributes, as of PostgreSQL 7.1.x, are isstrict
and iscacheable.

definition

The definition of the function to create. This is entered as a string, bound by quotes,
though its contents vary widely between languages. The exact content of this string may
be an internal function name, a SQL statement, or procedural code in a language such as
PL/pgSQL.

obj_file [, link_symbol]

The file that contains the dynamically loadable object code, and the function name in
the C source. The link_symbol is only required if the source C function has a name that
is different from the intended SQL function name.

langname

The name of the language the new function is written in. Possible values for this
parameter are C, SQL, internal, or the name of a procedural language created using the
CREATE LANGUAGE command (e.g., plpgsql). See CREATE LANGUAGE" for further
details.

Results

CREATE

The message returned when a function is created successfully.

Description
Use the CREATE FUNCTION command to create a new function in the connected database.
Ownership of the function is set to the PostgreSQL user that created it.

Function attributes

iscachable

The iscacheable attribute specifies that the function will always return the same result
when passed the same argument values (i.e., calculated results are cached). Such a
function does not perform a database lookup or use information not directly present in
the parameter list. This option is used by the optimizer to determine whether it is safe to
pre-evaluate the result of a function call based on past calls, rather than re-executing the
function on cached values for previously passed arguments.

isstrict

The isstrict attribute specifies that the function is strict in its handling of NULL values.
This means that whenever the function is passed a NULL argument, it will not operate,
and will simply return a NULL value.

Function overloading

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PostgreSQL allows function overloading. Users of object-oriented programming languages
may be familiar with this term. In PostgreSQL, the term means to create multiple functions
with the same name, provided each of them has a unique set of argument types.

Overloading is useful for creating what seems to be a single function that can handle a large
variety of different input types; to the user, the series of functions you have created become a
single, seamless, versatile tool.

Differing from PostgreSQL's ability to overload functions based on argument types, two
compiled C functions in one object file are unable to share the same name. To avoid this
problem, you can arbitrarily rename the second C function that you wish to overload within
PostgreSQL to a unique function name in your C source, compile the object code, and then
explicitly define the link_symbol parameter as that arbitrary name when creating the
overloaded C function.

Examples
The following example creates a simple SQL function that returns a book title based on the ID
number passed to the function:

booktown=# CREATE FUNCTION title(integer) RETURNS text
booktown-# AS 'SELECT title from books where id = $1'
booktown-# LANGUAGE 'sql';
CREATE

The title() function can now be used within the booktown database to retrieve rows with ID
numbers matching the number passed as an argument:

booktown=# SELECT title(41472) AS book_title;
 book_title

 Practical PostgreSQL
(1 row)

Prev Home Next
CREATE DATABASE Up CREATE GROUP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CREATE GROUP
Name
CREATE GROUP -- Creates a new PostgreSQL group within the database.

Synopsis
CREATE GROUP name
 [WITH [SYSID gid]
 [USER username [, ...]]]

Parameters

name

The name of the new group to create.

gid

The group ID to use for the new group. If you do not explicitly specify the group ID, it
will automatically be calculated as one higher than the highest group ID currently in
use.

username

The user (or comma-delimited list of users) that you wish to automatically include in the
group you are creating. The users listed in this parameter must already exist within the
database.

Results

CREATE GROUP

The message returned when a PostgreSQL group is created successfully.

ERROR: CREATE GROUP: group name "name" already exists

The error returned if a PostgreSQL group named name currently exists in the system.

ERROR: CREATE GROUP: permission denied

The error returned if a non-superuser attempts to create a group.

ERROR: CREATE GROUP: user "username" does not exist

The error returned if the username in the WITH USER clause does not currently exist.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Description
A database superuser can use CREATE GROUP to create a new group in PostgreSQL. A group is
a system-wide database object that can be assigned privileges (with the GRANT command), and
have users added to it as members. Members of a group are assigned its privileges by proxy.

To modify a group (and the list of users that it is composed of it), use the ALTER GROUP
command. If you wish to remove a group entirely, use the DROP GROUP command.

Examples
The following example creates an empty group named management:

booktown=# CREATE GROUP management;
CREATE GROUP

The next example creates a group called accounting, and automatically adds users to it two
users by specifying their usernames following the WITH USER clause:

booktown=# CREATE GROUP accounting WITH USER vincent, allen;
CREATE GROUP

Prev Home Next
CREATE FUNCTION Up CREATE INDEX

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CREATE INDEX
Name
CREATE INDEX -- Places an index on a table.

Synopsis
CREATE [UNIQUE] INDEX index_name ON table
 [USING method] (column [op_class] [, ...])
CREATE [UNIQUE] INDEX index_name ON table
 [USING method] (func_name (column [, ...]) [op_class])

Parameters

UNIQUE

The optional UNIQUE keyword. When used, this causes the database to check for, and
prevent, duplicate values within the column (or combined columns) it is placed upon.
This check will occur both when the index is created and each time data is added to the
table. PostgreSQL will then generate an error whenever an INSERT or UPDATE request is
made that would place duplicate data within the index, and the command will fail.

index_name

The name for the new index.

table

The name of the table you are placing the index on.

method

The type of indexing method you wish to use for the index. There are three methods
available to choose from, the default being btree:

btree

The PostgreSQL implementation of Lehman-Yao high-concurrency B-trees.

rtree

The PostgreSQL implementation of standard R-trees using Guttman's quadratic
split algorithm.

hash

The PostgreSQL implementation of Litwin's linear hashing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

column

The name of the column (or comma-delimited list of columns) on which to place the
index.

op_class

The optionally specified associated operator class. For most users, this should not be
specified.

func_name

The name of a function you wish CREATE INDEX to use on the specified columns (rather
than on the data values literally in those columns). The specified function must return a
valid value that can be indexed (e.g., not a set of values).

Results

CREATE

The message returned when an index is created successfully.

ERROR: Cannot create index: 'index_name' already exists

The error returned if an index with the name you specified already exists.

ERROR: DefineIndex: attribute "column" not found

The error returned if the specified column does not exist in the specified table to index.

ERROR: DefineIndex: relation "table" not found

The error returned if the specified table does not exist in the connected database.

Description
Use CREATE INDEX to build an optimization index on a specified table, based on one or more
of its columns. Remember that while indices are designed to improve the performance and
effectiveness of your database, using them on tables whose cost of index maintenance
outweighs the practical benefit actually decreases overall performance.

Column index

You may create an index specifying a list of one or more table columns. This is the
"traditional" index type. It may be used by queries that directly reference the indexed columns
in a WHERE clause. Note that R-tree and Hash indices may only index one column, though B-
tree indices can index up to sixteen columns.

Functional index

An alternate type of index is one called a functional index. A functional index is an index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An alternate type of index is one called a functional index. A functional index is an index
based on the returned value of a function applied to one or more columns. Such an index is
useful for queries that use the same function in a WHERE clause frequently.

For example, if you have a query that always references upper(last_name) in its WHERE
clause, you could optimized that query by creating a functional index on upper(last_name).

Operators and operator classes

The PostgreSQL query optimizer will use different indices for different operators used in a
comparison. It will choose which type of index to used based on the pre-defined list shown in
Table 14-1.

Table 14-1. Operator/index correspondence

Index Operator
B-
tree

<, <=,
>=, >

R-
tree

<<, &<,
&>, >>,
@, ~=,
&&

Hash =

You can optionally specify an operator class for each column on which an index is placed.
This is done by setting the optional op_class parameter to the class of operator you intend to
use. This option only exists because, in some circumstances, there can be more than one
meaningful way to order data. The default indexing method is generally sufficient for most
users, however, and this option is best left unused unless you are creating your own custom
types and operators.

Examples
The following example creates a unique index on the id column of the employees table:

booktown=# CREATE UNIQUE INDEX employee_id_idx
booktown-# ON employees (id);
CREATE

The next example creates a functional index on the last_name column of the employees table,
using the upper() function:

booktown=# CREATE INDEX employee_upper_name_idx
booktown-# ON employees (upper(last_name));
CREATE

Prev Home Next
CREATE GROUP Up CREATE LANGUAGE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CREATE LANGUAGE
Name
CREATE LANGUAGE -- Defines a new language to be used by functions.

Synopsis
CREATE [TRUSTED] [PROCEDURAL] LANGUAGE 'langname'
 HANDLER call_handler
 LANCOMPILER 'comment'

Parameters

TRUSTED

The TRUSTED keyword indicates that the PostgreSQL lets unprivileged users bypass user
and permission-related access restrictions on the language. If this parameter is not
specified during creation of the language, only database superusers will be able to use
the language to create new functions.

PROCEDURAL

The optional PROCEDURAL noise term. This may be used to increase readability of your
CREATE LANGUAGE statements, but has no effect.

langname

The name of the new procedural language to define. This name is case insensitive. A
procedural language will not (and cannot) override an existing, built-in PostgreSQL
language.

HANDLER call_handler

The name of the already-defined function that will be called to execute the PL
procedures.

comment

A string that is inserted into the lancompiler column of the pg_language system table.
The LANCOMPILER clause is a legacy clause with no practical effect, and may be
removed in a future PostgreSQL release. However, as of version 7.1.x, this is still a
required clause.

Results

CREATE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE

The message returned when a new language is successfully created.

ERROR: PL handler function call_handler() doesn't exist

The error returned if the function you specified as the call handler with call_handler
parameter cannot be found.

Description
Use the CREATE LANGUAGE command to load a new procedural language into the connected
database. This command can be used with languages that you specified using --with-langname
when you first installed PostgreSQL, or one you have created yourself. For instance, to
correctly add the pltcl language into PostgreSQL, you should have used the tag --with-tcl
when you configured PostgreSQL to make its call handler available.

After this command has been issued, you should be able to define functions using the newly
added language. Note that the user who executes the CREATE LANGUAGE command must be a
superuser.

As of PostgreSQL 7.1.x (the most current version at the printing of this book), once a
procedural languages is defined, the definition cannot be modified. To change the definition of
your procedural language, you will need to drop it from the database with the DROP LANGUAGE
command and recreate it.

Note: If you use CREATE LANGUAGE to create a language in the template1
database, all subsequent databases that are created from the template1 (the
default template) will support that language.

In order for a procedural language to be used by PostgreSQL, a call handler must be written
for it. That call handler must be compiled into a binary form; it is therefore required that the
language used to write a handler be one that compiles into a binary format, such as C or C++.

The call handler must be created within PostgreSQL as a function that does not accept
arguments and has a return type of opaque. By defining the handler function in this manner,
you enable PostgreSQL to prevent the function (and thus, the language) from ever being used
in an arbitrary SQL statement.

Examples
A handler must already exist for the language in question when you use the CREATE LANGUAGE
command. The first step in registering a procedural language to create a function that specifies
the location of object code for the call handler. The following example creates an example call
handler, whose object code is located at /usr/local/pgsql/lib/libexample.so:

booktown=# CREATE FUNCTION example_call_handler () RETURNS opaque
booktown-# AS '/usr/local/pgsql/lib/libexample.so'
booktown-# LANGUAGE 'C';
CREATE

Note: You do not need to define the call handler function if it has already been

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note: You do not need to define the call handler function if it has already been
created by the programmer. For illustrative purposes, we are assuming that the
programmer has not defined a function that refers to the call handler.

The second step is to use CREATE LANGUAGE to load the existing language into the connected
database. The following example creates a language called plexample, which uses the call
handler created in the preceding example:

booktown=# CREATE PROCEDURAL LANGUAGE 'plexample'
booktown-# HANDLER example_call_handler
booktown-# LANCOMPILER 'My Example';
CREATE

Prev Home Next
CREATE INDEX Up CREATE OPERATOR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CREATE OPERATOR
Name
CREATE OPERATOR -- Defines a new operator within the database.

Synopsis
CREATE OPERATOR name (PROCEDURE = func_name
 [, LEFTARG = type1] [, RIGHTARG = type2]
 [, COMMUTATOR = com_op] [, NEGATOR = neg_op]
 [, RESTRICT = res_proc] [, JOIN = join_proc]
 [, HASHES] [, SORT1 = left_sort_op] [, SORT2 = right_sort_op])

Parameters

name

The character sequence of the new operator. Read further for a list of valid characters to
use in names and symbols.

func_name

The function that implements the the new operator.

type1

The type of the left-hand argument. Do not use this option with a unary operator that
always appears to the left of the value on which it operates.

type2

The data type of the right-hand argument. Do not use this option with a unary operator
that always appears to the right of the value on which it operates.

com_op

The commutator operator for the new operator. A commutator is another existing
operator which executes the commutation (order reversal) of the procedure defined for
the new operator, e.g., with the left argument treated as the right argument, and the right
argument treated as the left argument.

neg_op

The negator operator for the new operator. A negator is another existing operator which
executes the literal inversion of the procedure define for the new operator. A negator
should only be defined if the result of applying the NOT keyword to the new operator
always results in the same output that the negator would return on the same condition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

res_proc

The name of the restriction selectivity estimator function for the new operator. This
function must already exist, must accept arguments of the same data types as defined for
this new operator, and return a floating point value.

join_proc

The name of the join selectivity estimator function for the new operator. This function
must already exist, and must be defined to accept arguments of the same data types as
defined for this new operator, and return a floating point value.

HASHES

The HASHES keyword, which indicates that the new operator can support a hash join.

left_sort_op

The operator that sorts left-hand values, if the new operator can support a merge join.

right_sort_op

The operator that sorts right-hand values, if the new operator can support a merge join.

Results

CREATE

The message returned when a new operator is created successfully.

Description
Use the CREATE OPERATOR command to define a new operator. The PostgreSQL user that
creates the operator becomes the operator owner when creation is successful.

The operator name is a character sequence up to 31 characters in length. Characters in the
operator name must be within the following list of accepted characters:

 + - * / < > = ~ ! @ # % ^ & | ` ? $

There are some restrictions on allowed character sequences for the name:

The dollar sign ($) is only allowed within an operator name consisting of multiple
characters. It cannot be specified as single-character operator name.

The double-dash (- -) and the forward slash and star (/*) character combinations cannot
appear anywhere in an operator name, as they will be interpreted as the start of a
comment.

A multiple character operator cannot end with a plus sign (+) or dash (-), unless the
name also contains at least one of the following characters:

Tilde (~)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exclamation mark (!)

At symbol (@)

Number symbol (#)

Percent sign (%)

Caret (^)

Ampersand (&)

Pipe (|)

Backtick (`)

Question mark (?)

Dollar sign ($)

These restrictions on operator names let PostgreSQL parse syntactically valid queries
without requiring the user to separate tokens with spaces (or other characters).

Note: When using non-SQL standard (i.e., user-defined) operator names, you
should make it a habit to separate adjacent operators with a space to clearly define
your intended meaning.

When you create an operator , you must include at least one LEFTARG or one RIGHTARG (as the
operator must take an argument). If you are defining a binary operator (one which operators on
a value to the left and right of the operator), both the LEFTARG and RIGHTARG must be
specified. If you are creating a right unary operator, you will only need to define LEFTARG;
likewise, when creating a left unary operator, you will only need to define RIGHTARG.

Note: The function you specify as the func_name parameter when creating an
operator must have been defined to accept the correct number of arguments for
that operator.

For the query optimizer to correctly reverse the order of operands, it needs to know what the
commutator operator is (if it exists). For some operators, a commutator should exist (or at
least, the existence of one would make sense). For example, the commutator of the greater-
than symbol (>) is the less-than (<) symbol, and it makes sense that both of these should exist,
and be related to one another in this fashion. With this information, your operator order can
easily be reversed, changing something like x < y to y > x if the query optimizer finds it to
be more efficient.

In the same way that specifying the commutator operator can help the optimizer, so can
specifying a negator operator (if one exists). The negator to the equals sign (=) is !=,
signifying not-equals or not-equivalent. When a negator is specified, the query optimizer can
simplify statements like this:

booktown=# SELECT * FROM employees WHERE NOT name = 'John';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SELECT * FROM employees WHERE NOT name = 'John';

This simplified form of this query, using the negator operator, is:

booktown=# SELECT * FROM employees WHERE name != 'John';

Note that you may technically specify an operator's commutator or negator operator to
PostgreSQL before that operator actually exists. This is to allow you to create two operators
which reference one another. Exercise care, however, in remembering to create the appropriate
operator to fit the definition of your commutator or negator if it does not yet exist.

Use the HASH option to indicate to the query optimizer that an operator can support the use of a
hash-join algorithm (usable only if the operator represents equality tests where equality of the
type also means bitwise equality of the representation of the type). Likewise, use SORT1 and
SORT2 to inform the optimizer that, respectively, the left and right side operators can support a
merge-sort. These sorting operators should only be given for an equality operator, and when
they are given they should be represented by less-than and greater-than symbols for the left-
and right-hand data types, respectively.

The RESTRICT and JOIN parameters provide functions that assist the query optimizer with
estimation of result set sizes. With some query conditions, it may be necessary for PostgreSQL
to estimate the number of results an action with operators may produce; in these situations, the
query optimizer will call the res_proc function with the same arguments passed to the
operator, then use the number returned by that function to estimate how many results there
will be. Because of this, the res_proc function must already be defined using
CREATE_FUNCTION and must accept the correct arguments.

The function specified with JOIN is used to help with estimation of the size of a join when the
operands of an operator are not constant values. The query optimizer uses the floating point
number returned from join_proc to compute the estimated size of the result.

Examples
The following example defines a non-zero boolean operator for the integer type, using the
is_zero function (see Chapter 7 for more on this function and its definition):

booktown=# CREATE OPERATOR !# (PROCEDURE = is_zero,
booktown(# LEFTARG = integer,
booktown(# RIGHTARG = integer);
CREATE

Prev Home Next
CREATE LANGUAGE Up CREATE RULE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CREATE RULE
Name
CREATE RULE -- Defines a new rule on a table.

Synopsis
CREATE RULE name AS ON event TO object [WHERE condition] DO [INSTEAD] action
action ::= NOTHING | query | (query [; ...]) | [query [; ...]]

Parameters

name

The name of the new rule you are creating.

event

The event that triggers the rule. This parameter should be one of: SELECT, UPDATE,
DELETE, or INSERT.

object

The name of a table, or the fully qualified name of a table column (e.g.,
table_name.column_name).

condition

A SQL condition evaluating to a value of type boolean, which specifies when this rule
should be used. This statement should not refer to a table; the only exception to this is
that the condition may refer to the special new and old relations, which represent the
existing rows, and any new row data provided, respectively.

INSTEAD

The INSTEAD keyword; when used, the action is executed instead of the specified
event. Otherwise, the action executes before the event does.

action

The query (or queries) that define the action to perform when the rule is triggered, and
the condition is met. The query (or queries) can be any valid SELECT, INSERT, UPDATE,
DELETE, or NOTIFY statements. Supply multiple queries by surrounding them in
parentheses.

You may alternatively use the NOTHING keyword instead of a query. NOTHING will

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You may alternatively use the NOTHING keyword instead of a query. NOTHING will
perform no action, and is only useful if you also specify the INSTEAD keyword.

Within the condition and action values, you are able to use the special new and old relations
to access column values from both the referenced object, and from the data triggering the
rule.

The new relation is available in an INSERT or UPDATE rule, containing the column values being
inserted or updated, while the old relation is available in a SELECT, UPDATE, or DELETE rule,
containing the row data being selected, updated, or deleted.

Results

CREATE

The message returned when a rule is successfully created.

Description
Use CREATE RULE to create a rule. Rules allow you to define alternate actions to be taken upon
table and class inserts, updates, and deletions. You can also use the PostgreSQL rule system to
implement table views.

When SELECT, INSERT, DELETE, or UPDATE is issued, the rules for that event are examined in an
unspecified order. If a WHERE clause has been specified by the rule, it is checked; if the
specified condition is met, the rule's specified action is performed. If you specified INSTEAD
when creating the rule, the action will be taken instead of the event; otherwise the action will
be performed before the query is processed (the event itself). Be careful not to create what are
known as circular rules; these are rules that reference other rules that in turn reference the
original rule.

Note: When using ON SELECT rules, you must pass the INSTEAD parameter.
Essentially, this means that ON SELECT must always implement table views.

Examples
The following example shows the definition of a rule named sync_stock_with_editions that
updates the stock table's isbn column automatically when the editions table is modified:

booktown=# CREATE RULE sync_stock_with_editions AS
booktown-# ON UPDATE TO editions
booktown-# DO UPDATE stock SET isbn = new.isbn
booktown-# WHERE isbn = old.isbn;
CREATE

Prev Home Next
CREATE OPERATOR Up CREATE SEQUENCE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CREATE SEQUENCE
Name
CREATE SEQUENCE -- Creates a new sequence number generator.

Synopsis
 CREATE SEQUENCE seqname [INCREMENT increment]
 [MINVALUE minvalue] [MAXVALUE maxvalue]
 [START start] [CACHE cache] [CYCLE]

Parameters

seqname

The name of the new sequence.

increment

The value to be applied on each sequence increment. Specify a positive number to make
an ascending sequence; specify a negative number to make a descending sequence.

minvalue

The minimum value the new sequence will generate. The default minimum is 1 for an
ascending sequence and –2147483647 for a descending sequence.

maxvalue

The maximum value the new sequence will generate. The default is 2147483647 for an
ascending sequence, and –1 for a descending sequence.

start

The starting value of the sequence. By default, an ascending sequence will start at
minvalue, and a descending sequence will start at maxvalue.

cache

The quantity of sequence numbers that can be stored in cache memory. Using a cache
value greater than 1 will speed up performance, because some calls for new sequence
values will be satisfied from the cache. By default, the cache value is set at 1, which
forces generation of one sequence number at a time (by default, cache is not used). Set
it to a number higher than 1 to enable the use of caching.

CYCLE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CYCLE

Use this keyword to enable wrapping. When wrapping is enabled, a sequence can wrap
around past its minimum or maximum value and begin again at its minimum or
maximum value. The direction of the wrap depends on whether a sequence is ascending
or descending.

Results

CREATE

The message returned when a sequence is created successfully.

ERROR: Relation 'seqname' already exists

The error returned if the sequence already exists.

ERROR: DefineSequence: MINVALUE (start) can't be >= MAXVALUE (max)

The error returned if the sequence's minimum starting value is out of range.

ERROR: DefineSequence: START value (start) can't be < MINVALUE (min)

The error returned if the starting value is out of range.

ERROR: DefineSequence: MINVALUE (min) can't be >= MAXVALUE (max)

The error returned if the minimum and maximum values are incompatible.

Description
Use the CREATE SEQUENCE command to create a new sequence number generator into the
database.

Examples
This example demonstrates the creation of a sequence named shipments_ship_id_seq:

booktown=# CREATE SEQUENCE shipments_ship_id_seq
booktown-# START 200 INCREMENT 1;
CREATE

Once created, you can select the next number from a sequence with the nextval() function:

booktown=# SELECT nextval ('shipments_ship_id_seq');
 nextval

 200
(1 row)

You can also use a sequence in an INSERT command:

booktown=# INSERT INTO shipments VALUES
booktown-# (nextval('shipments_ship_id_seq'), 107, '0394800753', 'now');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Prev Home Next
CREATE RULE Up CREATE TABLE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CREATE TABLE
Name
CREATE TABLE -- Creates a new table.

Synopsis
CREATE [TEMPORARY | TEMP] TABLE table_name (
 { column_name type [column_constraint [...]] |
 table_constraint }
 [, ...]
)
 [INHERITS (inherited_table [,...])]

column_constraint ::=
 [CONSTRAINT column_constraint_name]
 { NOT NULL | NULL | UNIQUE | PRIMARY KEY |
 DEFAULT default_value |
 CHECK (condition |
 REFERENCES foreign_table [(foreign_column)]
 [MATCH FULL | MATCH PARTIAL]
 [ON DELETE action]
 [ON UPDATE action]
 [DEFERRABLE | NOT DEFERRABLE]
 [INITIALLY DEFERRED | INITIALLY IMMEDIATE]
 }

table constraint ::=
 [CONSTRAINT table_constraint_name]
 { UNIQUE (column_name [, ...]) |
 PRIMARY KEY (column_name [, ...]) |
 CHECK (condition) |
 FOREIGN KEY (column_name [, ...])
 REFERENCES foreign_table
 [(foreign_column [, ...])]
 [MATCH FULL | MATCH PARTIAL]
 [ON DELETE action]
 [ON UPDATE action]
 [DEFERRABLE | NOT DEFERRABLE]
 [INITIALLY DEFERRED | INITIALLY IMMEDIATE]
 }

action ::= { NO ACTION | RESTRICT | CASCADE | SET NULL | SET DEFAULT }

Parameters

TEMPORARY | TEMP

The keyword which defines a table as having a temporary lifespan. Such a table will be
destroyed after the user's session has ended. Any table-related constructions (such as
indices and constraints) will also be destroyed with the table at the end of the session.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If a temporary table is given the same name as an existing permanent table, only the
temporary table will be accessible by the session which created it. This will cause
problems, since it will implicitly take precedence over the permanent table within the
current session until it is destroyed.

table_name

The name of the table you are creating.

column_name

The name of a column within the new table. Multiple column definitions are specified
within parentheses, separated by commas.

type

The type of a specified column, immediately following a column name. This can be a
standard type or an array of a standard type.

column_constraint

A complete constraint definition for a column. Here are the parameters available for a
column constraint:

column_constraint_name

The optional name for a constraint clause.

NULL

The clause used to explicitly allow the column to contain NULL values. This option
is set by default.

NOT NULL

The clause used to forbid the use of a NULL value for this column. You can
accomplish this by using the CHECK (column NOT NULL) column constraint.

UNIQUE

The clause used to force all rows within a column to have unique values (unique
within the table). This is enforced by the creation of a unique index on the
column.

PRIMARY KEY

The clause used to set a column as a primary key for the table. Other tables rely
on primary keys to act as the identifying column for each row. A primary key is
effectively the same as a column created with the UNIQUE and NOT NULL clauses.

DEFAULT

The clause used to set a default value for a column. Such a value is used if an
input value is not provided for the column by an INSERT statement. Without an
explicit default_value, a column defaults to contain NULL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CHECK

The clause used to have values checked against a specified condition. If the
condition yields false on an INSERT or UPDATE, the statement will fail.

condition

An arbitrary conditional expression yielding a Boolean value, following the CHECK
clause.

REFERENCES

The clause used to verify column values against the values of a column in another
table. (See Chapter 7 for more on this creating and using this constraint.)

foreign_table

The name of a table you wish to be referenced by a foreign key constraint.

foreign_column

The name of a column in another table which you are referencing in a foreign key
constraint. The column must reside within an existing table. If no column name is
given, the database will use the referenced table's primary key is used.

MATCH FULL | MATCH PARTIAL

The MATCH clause affects what kind of NULL and non-NULL values are allowed to
be mixed on insertion into a table whose foreign key references multiple columns.
The MATCH clause is therefore only practically applicable to table constraints,
though the syntax is technically valid in a column constraint as well.

MATCH FULL disallows insertion of row data whose columns contain NULL values
unless all referenced columns are NULL. MATCH PARTIAL is not supported as of
PostgreSQL 7.1.x. Not specifying either clause allows NULL columns to satisfy the
constraint.

ON DELETE

The ON DELETE clause indicates that when a DELETE is executed on a referenced
row in the referenced table, one of the following actions will be executed upon the
constrained column, as specified by action:

NO ACTION

The NO ACTION clause produces an error if the reference is violated. This is
the default if action is not specified.

RESTRICT

The RESTRICT keyword is identical to NO ACTION.

CASCADE

The CASCADE keyword removes all rows which reference the deleted row.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CASCADE keyword removes all rows which reference the deleted row.
Exercise caution with this action.

SET NULL

The SET NULL clause assigns a NULL value to all referenced column values.

SET DEFAULT

The SET DEFAULT clause sets all referenced columns to their default values.

Note that specifying CASCADE as the ON UPDATE action updates all of the rows
which reference the updated row with the new value (rather than deleting them, as
would be the case with ON DELETE CASCADE).

ON UPDATE

The ON DELETE clause indicates that when an UPDATE statement is performed on a
referenced row in the referenced table, the same actions are available as with the
ON DELETE clause. The default action is also NO ACTION.

Specifying CASCADE as the ON UPDATE action updates all of the rows which
reference the updated row with the new value (rather than deleting them, as would
be the case with ON DELETE CASCADE).

DEFERRABLE | NOT DEFERRABLE

The DEFERRABLE clause gives you the option of postponing enforcement of the
constraint to the end of a transaction rather than having it enforced at the end of
each statement. Use the INITIALLY clause to specify the initial point at which the
constraint will be enforced.

The NOT DEFERRABLE clause indicates the enforcement of the constraint must
always be done immediately as each statement is executed. This is the default.

INITIALLY DEFERRED | INITIALLY IMMEDIATE

The INITIALLY DEFERRED clause postpones constraint enforcement until the end
of the transaction, whereas INITIALLY IMMEDIATE causes constraint checking to
be performed after each statement. The INITIALLY IMMEDIATE clause is the
default.

table_constraint

A complete table constraint definition for the table being created. A table constraint can
affect multiple columns, whereas a column constraint only creates a constraint for a
single column. Here are the parameters available for a table constraint:

table_constraint_name

The optional name for the constraint to be created.

column_name [, ...]

The name of the column (or comma-delimited list of columns) to which the table
constraint applies.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PRIMARY KEY | UNIQUE

The table constraint keywords that apply an implicit index. Use the UNIQUE
keyword to have the specified column's value checked for duplicate values. Any
attempt to insert new rows that do not contain a unique value for the specified
column (or columns) will fail if this constraint is used.

Use the PRIMARY KEY keywords to both check for duplicate values, and to
disallow NULL values on the specified column, or columns.

CHECK (condition)

The conditional CHECK constraint keyword. Use this keyword to check a value
against the evaluated boolean condition before a new row is inserted; if the
check fails (i.e., condition returned false), the row is not added.

FOREIGN KEY

The FOREIGN KEY constraint keyword. Use this keyword to identify a column in
another table that will be referenced as a foreign key relation (see Chapter 7 for
more on this constraint). The remainder of this clause is identical to the
REFERENCES clause of a column constraint.

inherited_table

The name of a table from which the new table should inherit columns. If there are any
column names inherited that match column names you've already specified as columns
for the new table, PostgreSQL will display an error and terminate execution of the
command.

Results

CREATE

The message returned when a table is successfully created.

ERROR: Relation 'table_name' already exists

The error returned if a table named table_name already exists.

ERROR: CREATE TABLE: attribute "b" duplicated

The error returned a column name is listed twice.

ERROR: Unable to locate type name 'type' in catalog

The error returned if a specified column type does not exist.

ERROR: Illegal class name 'table_name'

The error returned if table_name begins with pg_.

Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the CREATE TABLE command to add a new table to the database to which you are
connected. After it is created, the new table will be completely empty, and its ownership will
be set to the user who issued the CREATE TABLE command.

You must supply a name and data type for each column of which the new table will be
comprised (except for inherited columns, for which this data will be derived from the parent
table). The name supplied may be up to 31 characters in length, and will be folded to
lowercase unless placed within double quotes. The data type can be a standard type (e.g.,
int4, char), or an array type (a standard type, followed by square brackets, such as
float4[]).

You may set a variety of constraints on a column, such as the NOT NULL clause, which
disallows NULL values from being inserted into the column.

Warning
Tables cannot have the same name as existing data types; nor can they have the same names
as system catalog tables, or even be prefixed with pg_, which is the reserved system table
prefix.

A table can have a maximum of about 1,600 columns. Due to tuple-length issues, this number
is lower in practice.

For more information about creating tables, see Chapter 4. For more information about column
and table constraints in general, see Chapter 7.

Examples
The following example creates a table called shipments. It places the NOT NULL constraint and
DEFAULT constraints on its id column:

booktown=# CREATE TABLE shipments (
booktown(# id integer NOT NULL DEFAULT nextval('shipments_ship_id_seq'),
booktown(# customer_id integer,
booktown(# isbn text,
booktown(# ship_date timestamp);
CREATE

Prev Home Next
CREATE SEQUENCE Up CREATE TABLE AS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CREATE TABLE AS
Name
CREATE TABLE AS -- Creates a new table built from data retrieved by a SELECT.

Synopsis
CREATE TABLE table [(column [, ...])]
 AS select

Parameters

table

The name of the new table to be created.

column

The name of a column to create; you can specify multiple columns by including their
names in a comma-delimited list. There should be the same number of columns
specified as are returned by select.

select

A valid SELECT statement. The number of targets selected must match the number of
columns in the optional column list preceding the AS clause.

Results

SELECT

The message returned on successful creation of, and insertion of row data into, table.

ERROR: CREATE TABLE/AS SELECT has mismatched column count

The error returned if the optional list of columns in parentheses contains a different
number of rows than the select statement returns.

Description
Use the CREATE TABLE AS command to create a table from the contents of result set, such as a
query on a table that already exists within the database. Both the column types, and row data
for the new table, come from the SELECT command specified by select.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that, as of PostgreSQL 7.1.x, if you specify the optional column list within parentheses,
you cannot use the asterisk (*) in the select statement.

Example
The following example creates a backup table (aptly named book_backup) from all of the
columns taken from the books table:

booktown=# CREATE TABLE book_backup
booktown-# AS SELECT * FROM books;
SELECT

Prev Home Next
CREATE TABLE Up CREATE TRIGGER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CREATE TRIGGER
Name
CREATE TRIGGER -- Creates a new trigger.

Synopsis
CREATE TRIGGER name { BEFORE | AFTER } { event [OR event ...] }
 ON table FOR EACH { ROW | STATEMENT }
 EXECUTE PROCEDURE function (arguments)

Parameters

name

The name of the new trigger.

table

The name of the table with which the trigger will be associated.

event

The event with which you wish to associate the trigger, that causes the trigger to fire.
Valid events are: INSERT, DELETE, and UPDATE. A trigger may be associated with
more than one event.

function

The name of the function you wish to link to the new trigger. When the trigger fires, the
function is invoked. The function must return a variable of type opaque; the opaque
type is used only by internal functions and such functions cannot be invoked directly
from SQL.

arguments

The arguments to pass to the function when the trigger is called.

Results

CREATE

The message returned when a trigger is successfully created.

Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the CREATE TRIGGER command to add a trigger to a database. When a trigger is added to
the database, it is associated with the table specified in the ON clause. When the specified
event "fires" the trigger, the function you specified will be executed.

Note: A trigger may only be created on a table by the table's owner, or by a
superuser.

When you create a trigger, you must specify whether it is to be fired before or after the event
is attempted (or completed). If the trigger is set to fire BEFORE one of those events, it may skip
the operation for the current tuple, or change the tuple being inserted. If you have set the
trigger to fire AFTER the event, it will be aware of all changes that were made during the event
(including the last insertion, update, or deletion).

Examples
The following example defines a trigger that is invoked when an existing row in the authors
table is updated:

booktown=# CREATE TRIGGER sync_authors_books
booktown-# BEFORE UPDATE
booktown-# ON authors
booktown-# FOR EACH ROW
booktown-# EXECUTE PROCEDURE sync_authors_and_books();
CREATE

The sync_authors_and_books() function is a PL/pgSQL function defined to update the value
of the author_id column in the books table if the id value in the authors table is updated. It
therefore keeps the books table in sync with the authors table. A similar effect could be
achieved with a FOREIGN KEY constraint (see Chapter 7).

Prev Home Next
CREATE TABLE AS Up CREATE TYPE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CREATE TYPE
Name
CREATE TYPE -- Defines a new data type for use in the database.

Synopsis
CREATE TYPE typename (INPUT = input_function, OUTPUT = output_function
 , INTERNALLENGTH = { internallength | VARIABLE }
 [, EXTERNALLENGTH = { externallength | VARIABLE }]
 [, DEFAULT = "default"]
 [, ELEMENT = element] [, DELIMITER = delimiter]
 [, SEND = send_function] [, RECEIVE = receive_function]
 [, PASSEDBYVALUE]
 [, ALIGNMENT = alignment]
 [, STORAGE = storage])

Parameters

typename

The name of the new type being created, which may be up to 30 characters in length.
All type names must be unique within a database, and may not begin with an underscore
(which is reserved for implicit array types).

internallength

The internal length of the new type, in bytes.

externallength

The optional external (displayed) length of the new type.

input_function

The name of the new type's input function. You must have already defined the function
using CREATE FUNCTION, and it must act to convert data of the type's external form into
the type's internal form.

output_function

The name of the new type's output function. This function must convert data of the
type's internal form into its displayable form.

element

The data type of individual array elements which this type addresses, if you intend to
create an array type manually. The element must be fixed-length data type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

delimiter

The value delimiter for the implicitly created array associated with the new type
(typename[]).

default

The default value for the new data type. If you do not specify a default, the default value
for an unspecified column will fall back to either a table-level DEFAULT constraint or
NULL.

send_function

The name of the new type's send function. This function would convert data of the type
into a form that can be transferred to another machine, but is not used by PostgreSQL as
of 7.1.x, and can be omitted.

receive_function

The name of the new type's receive function. This function would accept data of the
form returned by send_function, and convert that into the type's internal form, but it is
also not used by PostgreSQL as of 7.1.x, and can be omitted.

PASSEDBYVALUE

The optional PASSEDBYVALUE keyword indicates that operators and functions that use
this data type should be passed the argument by value, rather than by reference (the
default). You may not use this option on types whose internal representation is more
than four bytes in length.

alignment

The storage alignment that this type will require. This must be either char, int2, int4,
or double. If unspecified, int4 will be chosen by default.

storage

The storage technique that will be used for the type. Set this to one of plain, external,
extended, or main. If left unspecified, the storage type will default to plain.

Results

CREATE

The message returned when a type is successfully created.

Description
Use the CREATE TYPE command to register a new, user-defined data type within the current
database. The PostgreSQL user that issues the command becomes the owner of the data type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For a type to be created, it must use two user-defined functions (written in C). These functions
are the input and output functions of the data type. The input function converts the type's
external representation into an internal representation that can be used by the system objects
associated with the type. The output function converts the internal representation back to an
external representation.

Both the input and output functions must take a single argument of the opaque type. The
output function must return a value of type opaque, while the input function should return a
value of the type you intend to create. Notice that this is done before the type is actually
created.

You can set the type as either fixed or variable length. If you intend to create a fixed-length
type, set internallength to set its numeric length, in bytes. If you intend to create a variable-
length type, use the VARIABLE keyword instead of the internallength parameter, and the
length will be handled in the same way as for the text data type. Specify the external length in
the same way, using either a numeric value for externallength, or the VARIABLE keyword.

When a new type is created, PostgreSQL automatically adds an implicit array type for the new
data type. Internally, this implicit array type is named _typename (with a leading underscore).
Any reference to a data type called typename[] will automatically be translated to the internal
array type (_typename).

If you wish to provide a delimiter character for the array type, use delimiter to do so. This is
the character used to separate array elements within array constants passed to PostgreSQL
(e.g., {1,2,3}). This is also the character used to separate elements in the external display of
values for this array type. By default the delimiter is set to a comma.

If you choose to manually create an array data type, you may provide the PostgreSQL
array_in and array_out functions as the input and output function, respectively. You may
then use the ELEMENT keyword to specify the data type of the array elements.

To define a system-wide default value for insertion on a column of the new data type (which
would ordinarily default to NULL, in instances where a value is neither provided by a user, or
by a DEFAULT constraint), use the DEFAULT keyword. Note that, as of PostgreSQL 7.1.x, this
must be the internal representation of the default value.

The alignment value dictates the internal storage alignment of the new data type. Data types
created with a variable internal length must be either int4 or double.

The storage value determines the internal storage method. Data types with fixed internal
length can only be set to plain. Data types with variable internal length can be set to plain,
extended, external, or main.

The plain method causes data to be stored in an uncompressed, literal representation. This
representation is subject to a maximum length of 8 kilobytes. The extended method allows
values that go over this limit to be compressed, as well as to be stored outside of the physical
location of the table if the size of the value goes over the physical limit through PostgreSQL's
TOAST extension (The Oversized Attribute Storage Technique, coined by Tom Lane).

The external method is similar to the extended method, but does not attempt to compress the
value before using TOAST to store values over the physical limit of the table. The main

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

value before using TOAST to store values over the physical limit of the table. The main
method is also similar to the extended method, in that it supports compression and TOAST,
but it prefers to be maintained physically within the main table unless there is no other storage
alternative.

Example
The following example demonstrates the creation of a new data type called zero, which is a
numeric data type always set to 0. First, the input and output functions are created. Then, the
type itself is created, referencing those functions, as follows.

booktown=# CREATE FUNCTION zero_out(opaque) RETURNS opaque
booktown-# AS '/usr/local/pgsql/lib/zero.so' LANGUAGE 'C';
CREATE
booktown=# CREATE FUNCTION zero_in(opaque) RETURNS zero
booktown-# AS '/usr/local/pgsql/lib/zero.so' LANGUAGE 'C';
NOTICE: ProcedureCreate: type 'zero' is not yet defined
CREATE
booktown=# CREATE TYPE zero (internallength = 16,
booktown(# input = zero_in, output = zero_out);
CREATE

Prev Home Next
CREATE TRIGGER Up CREATE USER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CREATE USER
Name
CREATE USER -- Creates a new PostgreSQL database user.

Synopsis
CREATE USER username
 [WITH
 [SYSID uid]
 [PASSWORD 'password']]
 [CREATEDB | NOCREATEDB] [CREATEUSER | NOCREATEUSER]
 [IN GROUP groupname [, ...]]
 [VALID UNTIL 'abstime']

Parameters

username

The name of the new user you intend to create.

uid

The explicit user ID for the PostgreSQL user that you are creating; if left out of the
CREATE USER command, the user ID will be automatically assigned.

password

The new PostgreSQL user's password; if the database is setup to require password
authentication, this must be set for the user to be able to connect. Otherwise, a defined
password is not meaningful to PostgreSQL.

CREATEDB | NOCREATEDB

The privilege to create new databases. Use CREATEDB, to give the user permission to
create databases. Use NOCREATEDB to explicitly deny that permission (which is the
default).

CREATEUSER | NOCREATEUSER

The superuser privilege. The use of CREATEUSER allows access to both the CREATE USER
and DROP USER commands, as well as makes the user a superuser (with universal rights
across all databases). NOCREATEUSER is the default.

groupname

The optional name of a group to which the user is to automatically be added.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

abstime

The timestamp that defines when a user's password expires. When the date and time that
abstime defines has been reached, the user's defined password becomes invalid. If
unset, the password never expires.

Results

CREATE USER

The message returned when a user is created successfully.

Description
Use CREATE USER to add new users to a PostgreSQL database. This command is only usable
by database superusers. For more information about managing users and authentication, refer
to Chapter 10.

Note: You may also use the createuser script to add users to a database from the
operating system command line. Use of the script is essentially as using this
command.

Example
The following example demonstrates how to create a PostgreSQL user (david) in the
accounting group that is valid until January 1, 2005 and has the specified password of
jw8s0F4.

booktown=# CREATE USER david
booktown-# WITH PASSWORD 'jw8s0F4' CREATEDB
booktown-# IN GROUP accounting VALID UNTIL 'Jan 1 2005';
CREATE USER

Prev Home Next
CREATE TYPE Up CREATE VIEW

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CREATE VIEW
Name
CREATE VIEW -- Creates a view on a table.

Synopsis
CREATE VIEW view AS query

Parameters

view

The name of the view to create.

query

The SQL query to provide the columns and rows of the view.

Results

CREATE

The message returned when a view is successfully created.

ERROR: Relation 'view' already exists

The error returned if a view with the name you supplied (view) already exists.

NOTICE create: attribute "column" has an unknown type

The notice returned if the data type for column in the query definition is of an
ambiguous type.

Description
Use CREATE VIEW to define a new table view within the current database.

Note: Views are read-only as of PostgreSQL 7.1.x (the most current version as of
the writing of this book).

Example
The following example creates a view of all publishers whose names begin with H:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# CREATE VIEW h_publishers AS
booktown-# SELECT * FROM publishers WHERE name LIKE 'H%';
CREATE

Prev Home Next
CREATE USER Up CURRENT_DATE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CURRENT_DATE
Name
CURRENT_DATE -- Returns the current date.

Synopsis
 CURRENT_DATE

Parameters

This function does not accept any parameters.

Results

date

The current date. The returned data type is date.

Description
Use the CURRENT_DATE function to retrieve the current system date as an object of data type
DATE. Use SET DATESTYLE to format the display of that date to your liking. See the Section
called Data Types in Chapter 3" in Chapter 3, for more information on this variable and
available options when setting it.

Examples
The following example retrieves the current date:

testdb=# SELECT CURRENT_DATE AS today;
 today

 2001-10-29
(1 row)

Prev Home Next
CREATE VIEW Up CURRENT_TIME

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CURRENT_TIME
Name
CURRENT_TIME -- Returns the current time.

Synopsis
 CURRENT_TIME

Parameters

This function does not accept any parameters.

Results

time

The current time. The return data type is time.

Description
Use the CURRENT_TIME function to retrieve the current system-recorded time in an object of
data type TIME.

Examples
The following example retrieves the current time:

testdb=# SELECT CURRENT_TIME AS the_time;
 the_time

 19:44:35
(1 row)

Prev Home Next
CURRENT_DATE Up CURRENT_TIMESTAMP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CURRENT_TIMESTAMP
Name
CURRENT_TIMESTAMP -- Returns the current date and time.

Synopsis
 CURRENT_TIMESTAMP

Parameters

This function does not accept parameters.

Results

timestamp

The current date and the current time. The return data type is timestamp.

Description
Use the CURRENT_TIMESTAMP function to retrieve the current date and time in a data type of
timestamp.

Examples
The following example displays the result of a call to CURRENT_TIMESTAMP:

testdb=# SELECT CURRENT_TIMESTAMP AS date_and_time;
 date_and_time

 2001-09-04 19:48:21-08
(1 row)

Prev Home Next
CURRENT_TIME Up CURRENT_USER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

CURRENT_USER
Name
CURRENT_USER -- Returns the current database username.

Synopsis
 CURRENT_USER

Parameters

This function does not accept parameters.

Results

This function returns the name of the current database user.

Description
Use the CURRENT_USER function to retrieve the name of the current user in a string of type name
(a 31 character length non-standard type used for storing system identifiers).

Examples
The following example displays the current user logged into testdb:

testdb=# SELECT CURRENT_USER AS myself;
 myself

 jlx
(1 row)

Prev Home Next
CURRENT_TIMESTAMP Up DECLARE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

DECLARE
Name
DECLARE -- Defines a new cursor.

Synopsis
DECLARE cursorname
 [BINARY] [INSENSITIVE] [SCROLL]
 CURSOR FOR query
 [FOR { READ ONLY | UPDATE [OF column [, ...]] }]

Parameters

cursorname

The name of the new cursor.

BINARY

The BINARY keyword causes the cursor to fetch data in binary format, rather than in the
default text format.

INSENSITIVE

The INSENSITIVE keyword specifies that all data retrieved from the cursor will be
unchanged by updates from other processes (and other cursors). This option is unneeded
when using PostgreSQL, as the database already encapsulates all cursor operations
within transactions. This option exists for compatibility with other database systems.

SCROLL

The SCROLL keyword allows data to be retrieved in multiple rows per FETCH operation.
However, specifying it will have no effect, as PostgreSQL already allows this
functionality implicitly.

query

The SQL query that will provide the new cursor with rows. For information on how to
construct this query, see SELECT."

READ ONLY

The READ ONLY clause indicates that the cursor will be used only to read data (read-only
mode). Using this keyword has no effect, as PostgreSQL already only provides read-
only access for use with cursors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UPDATE

The UPDATE clause specifies that the cursor will be used to update tables; however,
updates from cursors are not supported as of PostgreSQL 7.1.x (the current version at
the printing of this book).

column

The columns to be updated; however, cursor updates are not currently supported as of
PostgreSQL 7.1.x (the current version at the printing of this book).

Results

SELECT

The message returned when a SELECT statement executes successfully.

NOTICE: Closing pre-existing portal "cursorname"

The notice returned when a cursor with the name you specified has already been
declared within the current transaction block. If this happens, the previously declared
cursor is automatically discarded.

ERROR: DECLARE CURSOR may only be used in begin/end transaction blocks

The error returned if you attempt to declare a cursor outside of a transaction block. You
must be within a transaction block to use cursors.

Description
Use the DECLARE command to create a cursor within a transaction block, which can then be
used to retrieve data from queries. Returned data can be in either text or binary format. The
use of cursors is only supported within transaction blocks. You will receive an error if you
attempt to use them without starting a transaction block.

Warning
Use binary cursors with caution, as not all clients support their use.

PostgreSQL does not require you to explicitly open a cursor; the cursor is opened when you
declare it. However, the use of explicit OPEN commands is supported by the preprocessor,
ecpg, for use with embedded or interactive SQL applications.

Example
The following example declares a cursor named cur_publisher and then uses that cursor to
fetch 2 rows. Used directly within psql, these results are immediately displayed:

booktown=# BEGIN WORK;
BEGIN
booktown=# DECLARE cur_publisher CURSOR FOR SELECT name FROM publishers;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# DECLARE cur_publisher CURSOR FOR SELECT name FROM publishers;
SELECT
booktown=# FETCH FORWARD 2 IN cur_publisher;
 name

 Kids Can Press
 Henry Holt & Company, Inc.
(2 rows)

Prev Home Next
CURRENT_USER Up DELETE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

DELETE
Name
DELETE -- Removes rows from a table.

Synopsis
 DELETE FROM [ONLY] table [WHERE condition]

Parameters

table

The name of the table from which you are deleting rows.

condition

The condition that identifies rows to be deleted. This is just like the WHERE clause of a
SELECT query; refer to SELECT" for more information on constructing conditions. Note
that not providing a WHERE condition will cause all rows to be deleted from a table.

Results

DELETE count

The message returned if the deletion of any rows is successful. The count is the number
of rows that were removed from the table. If that number is 0, then either no rows met
the specified condition, or there were no rows in the table to be removed.

Description
Use DELETE to remove rows from a table. Only rows that match a condition you specify will
be deleted. To delete all rows from a table, do not specify a condition. Issuing a DELETE with
no condition results in all rows being deleted from the target table. You are then be left with an
empty table.

Note: Use TRUNCATE to empty a table more efficiently than with an unconditional
DELETE statement.

Use the ONLY clause to prevent the deletion of rows from tables that inherit from the target
table. ONLY restricts the delete operation to only the target table. Otherwise, the delete
operation will affect not only the target table, but all tables that inherit from it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example
The following syntax removes all shipped orders from the shipments table that were placed
by customer ID 142, and that were shipped before August 7, 2001:

booktown=# DELETE FROM shipments
booktown-# WHERE customer_id = 142
booktown-# AND ship_date < '2001-08-07';
DELETE 1

Prev Home Next
DECLARE Up DROP AGGREGATE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

DROP AGGREGATE
Name
DROP AGGREGATE -- Removes an aggregate function from a database.

Synopsis
DROP AGGREGATE name type

Parameters

name

The name of the existing aggregate function you wish to remove.

type

The data type that the existing aggregate function accepts.

Results

DROP

The message returned when an aggregate function is dropped successfully.

ERROR: RemoveAggregate: aggregate 'name' for 'type' does not exist

The error returned if an aggregate function with the specified name and type does not
exist.

Description
Use the DROP AGGREGATE command to remove an aggregate function definition from your
database. As with other DROP commands, you must be the owner of the object that you are
dropping.

Examples
The following example removes the sum aggregate for type text:

booktown=# DROP AGGREGATE sum text;
DROP

Prev Home Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DELETE Up DROP DATABASE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

DROP DATABASE
Name
DROP DATABASE -- Removes a database from the system.

Synopsis
DROP DATABASE name

Parameters

name

The name of the database you wish to remove.

Results

DROP DATABASE

The message returned when a database is dropped correctly.

ERROR: user 'username' is not allowed to create/drop databases

The error returned if you attempt to drop a database with a PostgreSQL user that does
not have superuser privileges. You must have a user that was created with the CREATEDB
privilege to drop databases. See CREATE USER" for more about this.

ERROR: dropdb: cannot be executed on the template database

The error returned if you attempt to drop the template1 database. This database cannot
be dropped; it is a system database.

ERROR: dropdb: cannot be executed on an open database

The error returned if you attempt to drop a database to which you are currently
connected. If you get this error, try connecting to the template1 database and then
issuing the command to drop the database on which you were previously working.

ERROR: dropdb: database 'name' does not exist

The error returned if the database you are trying to delete does not exist.

ERROR: dropdb: database 'name' is not owned by you

The error returned if you attempt to delete a database that you do not own.

ERROR: dropdb: May not be called in a transaction block

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ERROR: dropdb: May not be called in a transaction block

The error returned if you attempt to issue the DROP DATABASE command from within a
transaction block. You must finish any current transaction before dropping a database.

NOTICE: The database directory 'directory' could not be removed

The notice message displayed if the dropped database's data directory could not be
removed. You will have to delete the data directory manually in order to complete the
drop.

Description
Use the DROP DATABASE command to remove a database from the system. All data and catalog
entries for the database are deleted when you drop a database. Attempting to use this
command on a database you are currently connected to will result in an error; for this reason it
may be more convenient to use the dropdb shell script.

Note: Only the owner \, or a superuser, may drop a database.

Examples
The following example permanently removes the testdb database:

template1=# DROP DATABASE testdb;
DROP

Prev Home Next
DROP AGGREGATE Up DROP FUNCTION

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

DROP FUNCTION
Name
DROP FUNCTION -- Removes a user-defined function.

Synopsis
DROP FUNCTION name ([type [, ...]])

Parameters

name

The name of the existing function you wish to drop.

type

Zero or more data types consisting of the function's arguments. The types combine with
the name to uniquely identify the function.

Results

DROP

The message returned when a function is successfully dropped.

ERROR: RemoveFunction: Function 'name(types)' does not exist

The error returned if the function name for the specified types does not exist in the
current database.

Description
Use this command to remove C function references that are defined in a database. Specifying
the parameter types that the function takes allows proper identification; this is necessary when
dealing with the C language, as functions exist with the same name that only differ in the types
of arguments they take.

Warning
DROP FUNCTION does not check if any database elements rely on the function, or if removing
it would cause any negative effects. You must check these things on your own.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following example removes the title(integer) function from the booktown database:

booktown=# DROP FUNCTION title(integer);
DROP

Prev Home Next
DROP DATABASE Up DROP GROUP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

DROP GROUP
Name
DROP GROUP -- Removes a user group from the database.

Synopsis
DROP GROUP name

Parameters

name

The name of database you wish to drop.

Results

DROP GROUP

The message returned when a group is successfully removed.

Description
Use DROP GROUP to remove a group from the database in which you are working. This
command is independent of the DROP USER command; as such, any users within the group that
you drop will not be removed from the database.

Example
The following example drops the sales group:

booktown=# DROP GROUP sales;
DROP GROUP

Prev Home Next
DROP FUNCTION Up DROP INDEX

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

DROP INDEX
Name
DROP INDEX -- Removes an index from a database.

Synopsis
DROP INDEX index_name [, ...]

Parameters

index_name

The name of the index you wish to remove from the database.

Results

DROP

The message returned if the index is removed successfully.

ERROR: index "index_name" does not exist

The error returned if the specified index cannot be found within the database.

Description
The owner of an index may remove it from the database by using this command.

Example
The following example drops an index called customer_id_idx from the booktown database:

booktown=# DROP INDEX customer_id_idx;
DROP

The next example drops two indices simultaneously from the booktown database:

booktown=# DROP INDEX books_id_pkey, books_title_idx;
DROP

Prev Home Next
DROP GROUP Up DROP LANGUAGE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

DROP LANGUAGE
Name
DROP LANGUAGE -- Removes a procedural language from a database.

Synopsis
DROP [PROCEDURAL] LANGUAGE 'name'

Parameters

name

The name of the existing language you wish to remove from the database.

Results

DROP

The message returned if the language is successfully removed without error.

ERROR: Language "name" doesn't exist

The error returned if the language you specify does not exist within the database.

Description
Use the DROP PROCEDURAL LANGUAGE command to remove the definition of the procedural
language named name.

Warning
DROP LANGUAGE does not check to make sure that functions and triggers you have registered
for use with this language have been removed. Be sure that no existing functions in your
database rely on a language before dropping it.

Example
The following example removes the plexample language from the booktown database:

booktown=# DROP PROCEDURAL LANGUAGE 'plexample';
DROP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Prev Home Next
DROP INDEX Up DROP OPERATOR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

DROP OPERATOR
Name
DROP OPERATOR -- Removes an operator from the database.

Synopsis
DROP OPERATOR op
 ({ lefttype | NONE } ,
 { righttype | NONE })

Parameters

op

The operator you wish to remove.

lefttype | NONE

The operator's left argument type (or NONE, if it does not have a left argument).

righttype | NONE

The operator's right argument type (or NONE, if it does not have a right argument).

Results

DROP

The message returned when a user is dropped successfully.

ERROR: RemoveOperator: binary operator 'op' taking 'lefttype' and 'righttype'
does not exist

The error returned if you specify a binary operator that does not exist.

ERROR: RemoveOperator: left unary operator 'op' taking 'lefttype' does not
exist

The error returned if you specify a left unary operator that does not exist.

ERROR: RemoveOperator: right unary operator 'op' taking 'righttype' does not
exist

The error returned if you specify a right unary operator that does not exist.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Description
Use the DROP OPERATOR command to remove an existing operator from the database. You can
only drop an operator if you are the operator's owner or a superuser.

Warning
Removing an operator when there are access methods or operator classes that rely on it can
cause problems; be sure you know what elements of your database rely on an operator before
dropping it.

Example
The following example drops the binary !# operator for the integer data types:

booktown=# DROP OPERATOR !# (integer, integer);
DROP

Prev Home Next
DROP LANGUAGE Up DROP RULE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

DROP RULE
Name
DROP RULE -- Removes a rule from a database.

Synopsis
DROP RULE name [, ...]

Parameters

name

The name of an existing rule to drop. You may drop multiple rules by specifying their
names in a comma-delimited list.

Results

DROP

The message returned when a rule is dropped successfully.

ERROR: Rule or view "name" not found

The error returned if the specified rule name does not exist.

Description
Use the DROP RULE command to remove a rule from a PostgreSQL database. When a rule is
dropped, the change is effective immediately. A rule becomes unavailable as soon as it is
dropped, and its definition is completely removed from the database system.

Example
The following example drops the sync_stock_with_editions rule:

booktown=# DROP RULE sync_stock_with_editions;
DROP

Prev Home Next
DROP OPERATOR Up DROP SEQUENCE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

DROP SEQUENCE
Name
DROP SEQUENCE -- Removes a sequence from a database.

Synopsis
DROP SEQUENCE name [, ...]

Parameters

name

The name of the sequence you wish to permanently remove. You may drop multiple
sequences by specifying their names in a comma-delimited list.

Results

DROP

The message returned when a sequence is successfully dropped.

ERROR: sequence "name" does not exist

The error returned if the specified sequence name does not exist.

Description
Use the DROP SEQUENCE command to remove a sequence number generator from a database.

Example
The following example removes a sequence named shipments_ship_id_seq from the
database:

booktown=# DROP SEQUENCE shipments_ship_id_seq;
DROP

Prev Home Next
DROP RULE Up DROP TABLE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

DROP TABLE
Name
DROP TABLE -- Removes a table from a database.

Synopsis
DROP TABLE name [, ...]

Parameters

name

The name of an existing table you intend to drop. You may drop multiple tables by
specifying their names in a comma-delimited list.

Results

DROP

The message returned when a table is dropped successfully.

ERROR: table "name" does not exist!

The error returned if the specified table or view name does not exist in the database.

Description
DROP TABLE removes tables from the database. You must be the owner of the table, or a
superuser, in order to drop it.

Note: To empty a table (as opposed to completely deleting it), use either the
TRUNCATE or DELETE command.

Deleting a table also destroys any indices that were placed on that table.

Example
The following command permanently removes the employees table from the booktown
database:

booktown=# DROP TABLE employees;
DROP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Prev Home Next
DROP SEQUENCE Up DROP TRIGGER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

DROP TRIGGER
Name
DROP TRIGGER -- Removes a trigger definition from a database.

Synopsis
DROP TRIGGER name ON table

Parameters

name

The name of the trigger you wish to remove.

table

The name of the table the trigger is on.

Results

DROP

The message returned when a trigger is successfully dropped.

ERROR: DropTrigger: there is no trigger name on relation table

The error returned if the trigger name does not exist on table.

Description
Use the DROP TRIGGER command to remove a trigger from the database. All references to the
trigger are removed when you issue this command. You must be the owner of trigger in order
to drop it.

Examples
The following command removes the sync_authors_books trigger from the authors table, in
the booktown database:

booktown=# DROP TRIGGER sync_authors_books ON authors;
DROP

Prev Home Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DROP TABLE Up DROP TYPE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

DROP TYPE
Name
DROP TYPE -- Removes a type from the system catalogs.

Synopsis
DROP TYPE typename [, ...]

Parameters

typename

The name of a type you wish to remove. You may drop multiple types by specifying
their names in a comma-delimited list.

Results

DROP

The message returned when a type is dropped successfully.

ERROR: RemoveType: type 'typename' does not exist

This error displayed if the type typename is not found in the connected database.

Description
Use the DROP TYPE command to remove a type from the database system. Only the owner of a
type, or a superuser, is allowed to do this.

Warning
If you are logged in as a superuser, you will be able to drop system types. However, doing so
can cause extreme instability. Be careful!

The DROP TYPE command will not automatically remove any objects that reference the data
type, or types, that you are dropping. Once a data type is removed, anything that uses it will
most likely stop working. Be sure to remove objects that depend on types that you drop, and
be sure not to drop types used by objects you wish to keep.

Examples

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following command removes the zero data type from the booktown database:

booktown=# DROP TYPE zero;
DROP

Prev Home Next
DROP TRIGGER Up DROP USER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

DROP USER
Name
DROP USER -- Removes a PostgreSQL user.

Synopsis
DROP USER name

Parameters

name

The username of the PostgreSQL user you wish to remove.

Results

DROP USER

The message returned when a PostgreSQL user is successfully removed.

ERROR: DROP USER: user "name" does not exist

The error returned if the specified PostgreSQL user cannot be found on the connected
host.

ERROR: DROP USER: user "name" owns database "database", cannot be removed

The error returned if a database called database still exists when you attempt to drop
the name user. Any owned databases must first be removed.

Description
Use the DROP USER command to remove a user from a database. You are not allowed to
remove a user that owns a database. All database objects the user owned will continue to exist
within the database.

Note: To run this command from the command prompt, use dropuser, which is a
wrapper application to the same SQL command (see Chapter 10 for more about
this command).

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following example permanently drops the PostgreSQL user named jonathan from the
system:

template1=# DROP USER jonathan;
DROP

Prev Home Next
DROP TYPE Up DROP VIEW

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

DROP VIEW
Name
DROP VIEW -- Removes an existing view from a database.

Synopsis
DROP VIEW name [, ...]

Parameters

name

The name of the view you wish to remove.

Results

DROP

The message returned when a view is successfully dropped.

ERROR: view "name" does not exist

The error returned if the view name does not exist in the current database.

Description
Use the DROP VIEW command to remove a view from a database. As with most objects, you
must be the owner a view to remove it.

Example
The following example removes the h_ publishers view from the booktown database:

booktown=# DROP VIEW h_ publishers;
DROP

Prev Home Next
DROP USER Up END

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

END
Name
END -- Ends the current transaction block and finalizes its modifications.

Synopsis
END [WORK | TRANSACTION]

Parameters

WORK | TRANSACTION

A pair of optional noise keywords. They can be ignored, or used to make your SQL
more readable.

Results

COMMIT

The message returned when a transaction is successfully committed.

NOTICE: COMMIT: no transaction in progress

The notice returned if there is no transaction in progress for the END command to end.

Description
The END command is a synonym for COMMIT. Use it to end transactions the same way you
would use the COMMIT command.

Example
The following example demonstrates how to commit a transaction using the END command:

booktown=# END WORK;
COMMIT

Prev Home Next
DROP VIEW Up EXPLAIN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

EXPLAIN
Name
EXPLAIN -- Shows the statement execution plan for a supplied query.

Synopsis
EXPLAIN [VERBOSE] query

Parameters

VERBOSE

The optional verbose output keyword, which results in extra information being returned
about a query plan.

query

The query you intend to have explained.

Results

NOTICE: QUERY PLAN: plan

The notice which will be followed by an explicit query plan sent from the backend.

EXPLAIN

The message returned below the query plan, signifying that execution of the command
is complete.

Description
Use the EXPLAIN command to view the execution plan for a query, generated by PostgreSQL's
planner component. The planner component is the part of PostgreSQL that attempts to
determine the most efficient manner in which to execute a SQL query. The execution plan
details how tables referenced within your query will be scanned by the database server.
Depending on the circumstances, tables might be scanned sequentially, or through the use of
an index. The plan will list output for each table involved in the execution plan.

The EXPLAIN command is useful for determining the relative cost of query execution plans.
This cost is measured literally in disk page fetches. The more pages needed, the longer it takes
a query to run.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PostgreSQL does not attempt to equate this number of fetches into a meaningful unit of time,
as this will vary widely from machine to machine based on the hardware requirements and
load of the operating system. The cost of a query execution plan is therefore only meaningful
to the relative cost of an alternative query.

Two numbers are associated with the cost, separated by two periods. The first number is the
estimated cost of startup (the time spent before the first tuple can be returned). The second
number is the estimated total cost that the query will incur to completely execute.

If you pass the VERBOSE keyword, EXPLAIN will display the internal representation of the plan
tree. This is fairly indecipherable to the average user, and should only be used by developers
familiar with the internal workings of PostgreSQL.

Example
The following example shows the results received when executing EXPLAIN for a query on the
books table, in the booktown database:

booktown=# EXPLAIN SELECT * FROM books AS b (book_id)
booktown-# NATURAL INNER JOIN editions;
NOTICE: QUERY PLAN:

Merge Join (cost=71.27..83.96 rows=150 width=64)
 -> Sort (cost=1.44..1.44 rows=15 width=24)
 -> Seq Scan on books b (cost=0.00..1.15 rows=15 width=24)
 -> Sort (cost=69.83..69.83 rows=1000 width=40)
 -> Seq Scan on editions (cost=0.00..20.00 rows=1000 width=40)

EXPLAIN

The next example shows a verbose explanation of a simpler query, with the VERBOSE keyword:

booktown=# EXPLAIN VERBOSE SELECT * FROM books;
NOTICE: QUERY DUMP:

{ SEQSCAN :startup_cost 0.00 :total_cost 1.15 :rows 15 :width 24 :qptargetlist
({ TARGETENTRY :resdom { RESDOM :resno 1 :restype 23 :restypmod -1 :resname id
:reskey 0 :reskeyop 0 :ressortgroupref 0 :resjunk false } :expr { VAR :varno 1
:varattno 1 :vartype 23 :vartypmod -1 :varlevelsup 0 :varnoold 1 :varoattno 1}}
{ TARGETENTRY :resdom { RESDOM :resno 2 :restype 25 :restypmod -1 :resname title
:reskey 0 :reskeyop 0 :ressortgroupref 0 :resjunk false } :expr { VAR :varno 1
:varattno 2 :vartype 25 :vartypmod -1 :varlevelsup 0 :varnoold 1 :varoattno 2}}
{ TARGETENTRY :resdom { RESDOM :resno 3 :restype 23 :restypmod -1 :resname
author_id :reskey 0 :reskeyop 0 :ressortgroupref 0 :resjunk false } :expr
{ VAR :varno 1 :varattno 3 :vartype 23 :vartypmod -1 :varlevelsup 0 :varnoold
1 :varoattno 3}} { TARGETENTRY :resdom { RESDOM :resno 4 :restype 23 :restypmod
-1 :resname subject_id :reskey 0 :reskeyop 0 :ressortgroupref 0 :resjunk false }
:expr { VAR :varno 1 :varattno 4 :vartype 23 :vartypmod -1 :varlevelsup 0
:varnoold 1 :varoattno 4}}) :qpqual <> :lefttree <> :righttree <> :extprm ()
:locprm () :initplan <> :nprm 0 :scanrelid 1 }
NOTICE: QUERY PLAN:

Seq Scan on books (cost=0.00..1.15 rows=15 width=24)

EXPLAIN

Prev Home Next
END Up FETCH

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

FETCH
Name
FETCH -- Retrieves rows from a cursor.

Synopsis
FETCH direction
 [count] { IN | FROM } cursor

direction ::= { FORWARD | BACKWARD | RELATIVE }
count ::= { numrows | ALL | NEXT | PRIOR }

Parameters

direction

Use the optional direction parameter to specify the direction you want to fetch. It may
be specified as any of the following keywords:

FORWARD

The keyword used to retrieve rows following the current position. This is the
default, if the direction is not explicitly set.

BACKWARD

The keyword used to retrieve rows preceding the current position.

RELATIVE

A noise term made available for SQL92 compatibility. As of PostgreSQL 7.1.x,
all cursors locate rows relative to the current cursor position, and this keyword
therefore has no effect. Note that combining the RELATIVE keyword with a count
of 0 will produce an error (see the "Results" section later in this reference entry).

count

This parameter takes the number of rows you wish to fetch. You can specify an integer
constant here to have a specific number of rows fetched (numrows), or use any of the
following keywords:

ALL

The keyword used to retrieve all rows.

NEXT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NEXT

The keyword used to retrieve the row immediately following the current position.

PRIOR

The keyword used to retrieve the row immediately preceding the current position.

cursor

The name of an open cursor you wish to use for the FETCH.

Results

A successful FETCH command returns any query results generated by the specified cursor. If
the query fails, one of the following messages will be displayed:

NOTICE: PerformPortalFetch: portal "cursor" not found

The notice returned if the specified cursor has not yet been declared. Remember that
you must declare a cursor within a transaction block before it can be used.

NOTICE: FETCH/ABSOLUTE not supported, using RELATIVE

The notice returned if you attempt to use absolute positioning with the ABSOLUTE
keyword in place of the RELATIVE keyword. PostgreSQL does not currently support
absolute positioning of cursors (which would move a cursor to a specific row offset in a
result set, rather than a row relative to the current cursor position).

ERROR: FETCH/RELATIVE at current position is not supported

The error returned if you attempt to pass 0 as the number of rows to fetch, with the
RELATIVE direction specified. This happens because the FETCH RELATIVE 0 FROM
cursor syntax is defined within SQL92 as allowing a user to continually retrieve the
row which is at the cursor's current position.

PostgreSQL does not support the use of this syntax; used without the RELATIVE
keyword, instead of returning the current position's row, the use of 0 indicates to the
database that you wish to retrieve all rows. Used with the RELATIVE keyword, however,
PostgreSQL assumes you are instead trying to use the SQL92 defined functionality and
displays this error instead of fetching all rows.

Description
Use the FETCH command to retrieve a specified number of rows using a cursor. You always
need to be within a transaction while using cursors, as the data they store is not independent of
other users within the system. The number of rows you specify can be either positive or
negative. A positive number will fetch from whatever direction you specify with the direction
parameter (if you don't specify a direction, FORWARD will be used by default).

A negative number will take you in the opposite direction as that specified by the direction
parameter. For example, specifying FORWARD -5 has the same effect as specifying BACKWARD
5. If the number of rows you specify is greater than the number of rows remaining to be
retrieved, the FETCH command will return all those remaining.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note: As of PostgreSQL 7.1.x, you cannot update data using a cursor.

Examples
The following examples assume a transaction and an already-defined cursor (named
cur_employee) that returns rows from the employees table.

The following example fetches the first two rows in the cur_employee cursor:

booktown=# BEGIN;
BEGIN
booktown=# DECLARE cur_employee CURSOR FOR
booktown-# SELECT first_name, last_name FROM employees;
SELECT
booktown=# FETCH FORWARD 2 IN cur_employee;
 first_name | last_name
------------+-----------
 Vincent | Appel
 Michael | Holloway
(2 rows)

The following example uses BACKWARD -2 (a double negative) to then fetch two rows in the
forward direction:

booktown=# FETCH BACKWARD -2 IN cur_employee;
 first_name | last_name
------------+-----------
 David | Joble
 Ben | Noble
(2 rows)

The next example demonstrates how to actually fetch backwards in the cur_employee cursor:

booktown=# FETCH BACKWARD 3 IN cur_employee;
 first_name | last_name
------------+-----------
 David | Joble
 Michael | Holloway
 Vincent | Appel
(3 rows)

Prev Home Next
EXPLAIN Up GRANT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

GRANT
Name
GRANT -- Grants access privileges to a user, a group, or to all users in the database.

Synopsis
GRANT privilege [, ...] ON object [, ...]
 TO { PUBLIC | GROUP group | username }

Parameters

privilege

The privilege you wish to grant. Valid privileges are:

SELECT

The privilege allowing the specified user or group to access all columns in a
specific table or view.

INSERT

The privilege allowing the specified user or group to insert data into all columns
of a specified table.

UPDATE

The privilege allowing the specified user or group to update all columns of a
specified table.

DELETE

The privilege allowing the specified user or group to delete rows from a specific
table.

RULE

The privilege allowing the specified user or group to delete rules from a specified
table or rule.

ALL

A shorthand way to grant all of the previous privileges to the specified user or
group.

object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

object

The name of the object upon which you are granting privileges. Valid object types are
tables, views, and sequences.

PUBLIC

The optional PUBLIC keyword indicates that privilege be granted to all users of the
database.

group

The name of a group to receive the privileges that you are granting.

username

The name of a PostgreSQL user to receive the privileges that you are granting. You can
use PUBLIC here to represent all users.

Results

CHANGE

The message returned when a target is successfully granted the specified privileges.

ERROR: ChangeAcl: class "object" not found

The error returned if object is not found in the connected database.

ERROR: aclparse: non-existent user "user"

The error returned if user does not exist.

ERROR: non-existent group "group"

The error returned if group does not exist.

Description
Use the GRANT command to set user and group permissions for objects you own. You can set
permissions for specific users and groups, or you can set permissions for PUBLIC, which
represents all users in the database. By default, no one but the object owner has access
permissions to that object. Object permissions must be granted by an object's owner after the
object is created.

To grant privileges to a only part of a table, create a view that constraints the result set to the
columns or rows you wish to grant access to. To allow users access to those columns and
rows, allow them access to the view.

Use psql's backslash-z (\z) command to display permission information for existing objects.

Example
The following example grants all privileges on the publishers table to the user manager:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# GRANT ALL ON publishers TO manager;
GRANT

The next example shows how to use the \z psql command to view access privileges on the
publishers table:

booktown=# \z publishers
Access permissions for database "booktown"
 Relation | Access permissions
------------+----------------------
 publishers | {"=","manager=arwR"}
(1 row)

Prev Home Next
FETCH Up INSERT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

INSERT
Name
INSERT -- Inserts new rows into a table.

Synopsis
INSERT INTO table [(column [, ...])]
 { DEFAULT VALUES |
 VALUES (value [, ...]) |
 query }

Parameters

table

The table into which you are inserting data.

column

A column for which a value will be specified. The name must match a column table,
though these columns need not be listed in their literal order within the table.

value

A constant or expression to insert into a column within table. This value is associated
with the corresponding column in the column list if a column list was specified
(columns in the column list correspond in a one-to-one fashion with expressions in the
value list). If the expression for each column is not of the correct data type, automatic
type coercion will be attempted. If this fails, the INSERT will fail completely.

query

A valid SQL SELECT statement. The number of columns returned by the query must
match the number of columns you are inserting, as well as be of a compatible data type.

Results

INSERT oid 1

The message returned if one row of data is inserted correctly. The oid is the object
identifier of the newly inserted row.

INSERT 0 #

The message returned if more than one row is inserted. The # symbol represents how

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The message returned if more than one row is inserted. The # symbol represents how
many rows were updated in total.

Description
Use the INSERT command to add new rows into a table. This can be done either one row at a
time, or in sets. Used with the VALUES keyword, an INSERT statement can only insert one row
of data. To insert multiple rows, you can instead supply a query. Results from the query are
then fed into the INSERT command's target table.

If an incorrect data type is provided for a field on insertion, PostgreSQL will attempt to
automatically coerce it into the appropriate type. If it cannot, the INSERT will fail.

When inserting values into columns (instead of whole rows), the columns can be listed in any
order; however, the values for those columns will need to be listed in the same order.

Note: If you leave out values for any fields in your table, the database will
automatically do one of two things. Fields for which you have not specified a
default value will be set to NULL. Fields for which you have specified a default
value will be set to their defaults.

Examples
The following example inserts a single row into the employees table:

booktown=# INSERT INTO employees
booktown-# VALUES (106, 'Hall', 'Timothy');
INSERT 3752064 1

Alternatively, you can insert only an ID number and last name, and not a first name, by
specifying a target column list preceding the VALUES clause. This results in a NULL value for
the first_name column in the new row:

booktown=# INSERT INTO employees (id, last_name)
booktown=# VALUES (108, 'Williams');
INSERT 3752065 1

The next example inserts all 15 rows from the books table into the book_backup table by
providing a query from which to insert data:

booktown=# INSERT INTO book_backup
booktown-# SELECT * FROM books;
INSERT 0 15

Prev Home Next
GRANT Up LISTEN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

LISTEN
Name
LISTEN -- Listen for a notification event.

Synopsis
LISTEN name

Parameters

name

The name of the notify condition for which you want the backend to listen.

Results

LISTEN

The message returned when a command is successful, and the backend process is
listening for notification.

NOTICE: Async_Listen: We are already listening on name

The notice returned if the backend is already listening for the specified notify condition
name.

Description
The NOTIFY and LISTEN commands work together to create a system for PostgreSQL
components to communicate between themselves. Use the LISTEN command to start the
backend process listening for a notification named name. Notifications are passed by the
NOTIFY command, which is usually placed in rules related to changes of various database
components; in this way, notifications are sent out to listeners when things are changed.

All running backend processes that are listening for a specific notification are sent that
notification when a NOTIFY command is issued for it by any of the processes. When a backend
process receives a notification, that notification is sent to the client application (such as psql),
which then handles the notification in whatever manner it is written for. For more information
about this method of IPC (inter-process communication), see NOTIFY."

You can use any valid string no longer than 31 characters for the name of the notification to
listen for (this is also true for the NOTIFY command). To stop a backend process from listening

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

listen for (this is also true for the NOTIFY command). To stop a backend process from listening
for notifications, use the UNLISTEN command.

Example
The following example configures and executes a listen/notify sequence from psql:

booktown=# LISTEN publisher_update;
LISTEN
booktown=# NOTIFY publisher_update;
Asynchronous NOTIFY 'publisher_update' from backend with pid '16864' received.

Prev Home Next
INSERT Up LOAD

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

LOAD
Name
LOAD -- Dynamically loads object files into a database.

Synopsis
LOAD 'filename'

Parameters

filename

The name of the dynamic object file you wish to load.

Results

LOAD

The message returned when a dynamic object file was successfully loaded.

ERROR: LOAD: could not open file 'filename'

The error returned if the specified file was not found. Make sure PostgreSQL backend is
permitted to access the file.

Description
Use the LOAD command to load an object file into the PostgreSQL backend. Once loaded, an
object file provides the backend for whatever functionality the file was created. In this way,
you can incorporate your own database components (such as types and functions)
dynamically. If you do not explicitly load an object file, the backend will load it automatically
when a function from the file is called. Currently, only C language object files are supported.

Note: You can also use this command to force the reloading of recently
recompiled object files.

Example
The following example loads the object file /usr/local/src/lxp/libxpl.so in the lx database:

lx=# LOAD '/usr/local/src/lxp/libxpl.so';
LOAD

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Prev Home Next
LISTEN Up LOCK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

LOCK
Name
LOCK -- Locks a table within a transaction.

Synopsis
LOCK [TABLE] name
LOCK [TABLE] name IN lock_mode

lock_mode ::= { [ROW | ACCESS] { SHARE | EXCLUSIVE } |
 SHARE ROW EXCLUSIVE } MODE

Parameters

name

The name of the table you intend to lock.

lock_mode

There are seven valid lock modes that may be combined from the available keywords.
Here they are, in order from least restrictive to most restrictive, along with the
commands and modes they block:

ACCESS SHARE MODE

The ACCESS SHARE MODE lock is acquired automatically by a SELECT statement on
the table or tables it retrieves from. This mode blocks ALTER TABLE, DROP TABLE,
and VACUUM commands on the table on which it is placed.

This mode also blocks concurrent ACCESS EXCLUSIVE MODE locks from being
acquired on the same table.

ROW SHARE MODE

The ROW SHARE MODE lock is acquired automatically by a SELECT statement that
has a FOR UPDATE clause. It blocks ALTER TABLE, DROP TABLE, and VACUUM
commands on the table on which it is acquired.

This mode also blocks concurrent EXCLUSIVE MODE and ACCESS EXCLUSIVE MODE
locks from being acquired on the same table.

ROW EXCLUSIVE MODE

The ROW EXCLUSIVE MODE lock is acquired automatically by an UPDATE, INSERT,
or DELETE command. This mode blocks ALTER TABLE, DROP TABLE, VACUUM, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

or DELETE command. This mode blocks ALTER TABLE, DROP TABLE, VACUUM, and
CREATE INDEX commands.

This mode also blocks concurrent SHARE MODE, SHARE ROW EXCLUSIVE MODE,
EXCLUSIVE MODE, and ACCESS EXCLUSIVE MODE locks from being acquired on the
same table.

SHARE MODE

The SHARE MODE lock is acquired automatically by a CREATE INDEX command. It
blocks INSERT, UPDATE, DELETE, ALTER TABLE, DROP TABLE, and VACUUM
commands.

This mode also blocks concurrent ROW EXCLUSIVE MODE, SHARE ROW EXCLUSIVE
MODE, EXCLUSIVE MODE, and ACCESS EXCLUSIVE MODE locks from being acquired
on the same table.

SHARE ROW EXCLUSIVE MODE

The SHARE ROW EXCLUSIVE MODE lock is a special lock mode nearly identical to
the EXCLUSIVE MODE lock, but which allows concurrent ROW SHARE MODE locks to
be acquired.

EXCLUSIVE MODE

The EXCLUSIVE MODE lock blocks INSERT, UPDATE, DELETE, CREATE INDEX, ALTER
TABLE, DROP TABLE, and VACUUM commands on the table on which it is acquired,
as well as SELECT commands with a FOR UPDATE clause.

This mode also blocks concurrent ROW SHARE MODE, ROW EXCLUSIVE MODE, SHARE
MODE, SHARE ROW EXCLUSIVE MODE, EXCLUSIVE MODE, and ACCESS EXCLUSIVE
MODE locks.

ACCESS EXCLUSIVE MODE

The ACCESS EXCLUSIVE MODE lock is acquired automatically by a ALTER TABLE,
DROP TABLE, or VACUUM command on the table it modifies.

This mode blocks any concurrent command or other lock_mode from being
acquired on the locked table.

Results

LOCK TABLE

The message returned when a lock is successfully applied to a table.

ERROR: Relation 'name' does not exist

The error returned if the table name does not exist in the connected database.

ERROR: Deadlock detected

The error returned if two LOCK TABLE commands result in a deadlock between two
concurrent transactions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Description
Use the LOCK TABLE command to manually lock tables during a transaction. Locking is a
function of an RDBMS that temporarily blocks various kinds of access to a table (depending
on the lock_mode). The session that locks the table retains normal access; the effect is only
felt by concurrently connected users attempting to access the locked table.

Note that, in this context, blocking access is not the same as denying access. Any concurrently
connected user attempting access which is blocked by a SQL lock will pause, but not fail, and
wait until either the blocked command is terminated by the user, or until the table lock is
released.

Several SQL commands implicitly acquire locks before they perform their work; in these
cases, PostgreSQL will always choose the least restrictive lock necessary. A table lock
immediately releases when a transaction is committed.

Using LOCK TABLE without an explicit locking mode causes the most restrictive mode (ACCESS
EXCLUSIVE) to be used. You can specify less restrictive locking procedures by providing an
explicit lock_mode.

Warning
You can only lock tables when working within a transaction. Using LOCK TABLE outside of a
transaction will not display an error, but it will immediately autocommit, and release the
lock, which serves no purpose. Use the BEGIN command to start a transaction, and the
COMMIT command to commit your changes, and release the lock.

Deadlocks can occur when two transactions are waiting for each other to finish their
operations. While PostgreSQL can detect them and end them with a ROLLBACK, deadlocks can
still be inconvenient. To prevent your applications from running into this problem, make sure
to design them in such a way that they will lock objects in the same order.

Examples
The following example locks the books table within the booktown database in ACCESS
EXCLUSIVE mode:

booktown=# BEGIN;
BEGIN
booktown=# LOCK TABLE books IN ACCESS EXCLUSIVE MODE;
LOCK TABLE

Prev Home Next
LOAD Up MOVE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

MOVE
Name
MOVE -- Repositions a cursor to another row.

Synopsis
MOVE [direction] [count]
 { IN | FROM } cursor

Parameters

direction

The direction you wish to move the specified cursor. See FETCH" or more information
about the different usable directions.

count

The number of rows you wish to move the cursor.

cursor

The cursor that you are moving.

Results

The MOVE command will return the same errors and messages as the FETCH command;
however, it will not return rows. See FETCH" for more information on what messages you
may encounter.

Description
Use the MOVE command to reposition a cursor. This command operates essentially the same as
the FETCH command. However, unlike FETCH, it does not use the cursor to return the traversed
rows after it is repositioned.

Examples
The following examples assume a transaction and an already defined cursor (cur_employee)
that uses the employees table for data. Using the MOVE command, this example moves the
cursor one row forward in the result set:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# MOVE FORWARD 1 IN cur_employee;
MOVE

The only output returned by using this command is the message MOVE. The next example uses
the FETCH command to display the second row of the cursor, after moving:

booktown=# FETCH 1 IN cur_employee;
 first_name | last_name
------------+-----------
 Michael | Holloway
(1 row)

Prev Home Next
LOCK Up NOTIFY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

NOTIFY
Name
NOTIFY -- Signals all backends that are listening for the specified notify event.

Synopsis
NOTIFY name

Parameters

name

The condition to be signaled.

Results

NOTIFY

The message returned when a notification is sent out correctly.

Description
The NOTIFY command is the counterpart of the LISTEN command, which we covered earlier in
this chapter. The two commands provide a simple interprocess communication (IPC)
implementation that can often prove useful if used correctly.

Use NOTIFY to send out a notification with the specified name; if any frontends have issued a
LISTEN command with the same notification name, they will be informed of the notification.

Note: The behavior of a frontend process after receiving a notification sent by the
NOTIFY command is dependent upon its implementation of the feature, so it may
not respond immediately (or at all).

A notification is comprised of the notification's name and the issuing backend's process ID
(PID). The original designer of the database specifies what notify condition names exist and
how they function within the database.

The NOTIFY and LISTEN commands are most often used to provide a way to notify frontend
processes that tables have been modified; as such, notification names are often set to the
names of tables. This is the common use of this feature, but it is not required that notification
names be table names.

Note: Automatic notification of table modifications can be achieved by placing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note: Automatic notification of table modifications can be achieved by placing
the NOTIFY command in a rule that gets triggered by table updates.

Transactions

It is important to note how NOTIFY behaves when used with transactions. Most importantly,
any NOTIFY commands executed within a transaction will not be delivered until after the
transaction is committed. This behavior prevents notifications from being sent out from
aborted transactions.

Also important is that a backend will not deliver a notification to its connected frontend if a
transaction is in progress. If a frontend process is currently within a transaction, the backend
will wait to send a notification until that transaction has been terminated with either a COMMIT
or ROLLBACK.

Multiple signals

The NOTIFY/LISTEN system works in a way that is very similar to that of UNIX signals. Even
if the same notification is signaled multiple times using multiple NOTIFY commands, that
notification may only be sent to listening processes only once, instead of however many times
it was signaled.

Because of this design feature, you cannot use the number of received notifications as a
counter or to track anything important within your database. The correct way to achieve
tracking or counting would be to use NOTIFY with a sequence object (or something similar) to
wake applications and track or count actions and events.

Example
The following example defines a notify event to listen for, and then notifies the backend
process that the event was reached:

booktown=# LISTEN publisher_deletion;
LISTEN
booktown=# NOTIFY publisher_deletion;
Asynchronous NOTIFY 'publisher_deletion' from backend with pid '16864' received.

Prev Home Next
MOVE Up REINDEX

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

REINDEX
Name
REINDEX -- Rebuilds indices on tables.

Synopsis
REINDEX { TABLE | DATABASE | INDEX } name [FORCE]

Parameters

TABLE | DATABASE | INDEX

The type of database object to be re-indexed.

name

The name of the database object you wish to re-index.

FORCE

The FORCE keyword forces the rebuilding of all specified indices. If this parameter is not
given, the REINDEX command will rebuild only invalidated indices.

Results

REINDEX

The message returned when a target object is successfully reindexed.

Description
Use the REINDEX command to rebuild any indices that have become corrupt. This is especially
useful if system indices become corrupted. To fix them, shutdown postmaster and start it using
the -o "-O -P" command-line parameter. This opens a standalone server that allows for re-
indexing of system indices. Run the REINDEX DATABASE command once you are at the psql
prompt.

Examples
The following example rebuilds all indices on the books table, within the booktown database:

booktown=# REINDEX TABLE books;
REINDEX

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REINDEX

Prev Home Next
NOTIFY Up RESET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

RESET
Name
RESET -- Restores runtime variables to their default settings.

Synopsis
RESET variable

Parameters

variable

A runtime variable that you wish to reset to its default value. See SET" for more
information on available variables.

Results

RESET VARIABLE

The message returned when a specified variable is reset to its default value.

Description
Use the RESET command to return runtime variables to their original values. For more
information about values allowed for these variables, and what the original values were, refer
to SET."

You can also issue the following command to accomplish the same effect:

 SET variable TO DEFAULT

Example
The following example resets a variable called SEED to its default value:

testdb=# RESET SEED;
RESET VARIABLE

Prev Home Next
REINDEX Up REVOKE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

REVOKE
Name
REVOKE -- Revokes access privileges from a user, a group, or all users.

Synopsis
REVOKE privilege [, ...]
 ON object [, ...]
 FROM { PUBLIC | GROUP groupname | username }

Parameters

privilege

A privilege to revoke. Specify SELECT, INSERT, UPDATE, or DELETE to revoke the
privilege to use the corresponding command. Use RULE to revoke the privilege to create
rules on a table. Use ALL to remove all privileges on a table or other object.

object

The name of the object from which you wish to revoke privileges. This object can be a
table, view, or sequence.

group

The name of a group from which to revoke privileges.

user

The name of a PostgreSQL user from which to revoke privileges.

PUBLIC

The keyword that revokes specified privileges from all PostgreSQL users.

Results

CHANGE

The message returned when privileges are successfully revoked.

ERROR: Relation 'object' does not exist

The error returned if object does not exist in the connected database.

ERROR: aclparse: non-existent user "user"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ERROR: aclparse: non-existent user "user"

The error returned if user does not exist.

ERROR: non-existent group "group"

The error returned if group does not exist.

Description
Use REVOKE to remove privileges to an object of which you are the owner. You can revoke
privileges from a specific user, from a group, or from all users (by specifying the PUBLIC
keyword).

Example
The following example revokes INSERT privileges on the books table from a user guest:

booktown=# REVOKE INSERT ON guest FROM books;
CHANGE

Prev Home Next
RESET Up ROLLBACK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

ROLLBACK
Name
ROLLBACK -- Aborts the current transaction block and abandons any modifications it would
have made.

Synopsis
ROLLBACK [WORK | TRANSACTION]

Parameters

WORK | TRANSACTION

A pair of optional noise keywords. They can be ignored, or used to make your SQL
more readable.

Results

ABORT

The message returned when a transaction is aborted successfully.

NOTICE: ROLLBACK: no transaction in progress

The notice returned if there is not a transaction in progress to rollback.

Description
Use ROLLBACK to abort a transaction in progress and discard all changes either already made or
queued to be made on COMMIT.

Example
The following example demonstrates how to rollback an accidental delete performed within a
transaction block:

booktown=# BEGIN WORK;
BEGIN
booktown=# DELETE FROM shipments;
DELETE 36
booktown=# ROLLBACK WORK;
ROLLBACK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Prev Home Next
REVOKE Up SELECT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

SELECT
Name
SELECT -- Retrieves rows from a table or view.

Synopsis
SELECT [ALL | DISTINCT [ON (distinct_expression [, ...])]]
 target_expression [AS output_name] [, ...]
 [FROM from_item [{ , | CROSS JOIN } ...]]
 [WHERE condition]
 [GROUP BY aggregate_expression [, ...]]
 [HAVING aggregate_condition [, ...]]
 [{ UNION | INTERSECT | EXCEPT [ALL] } select]
 [ORDER BY order_expression [ASC | DESC | USING operator] [, ...]]
 [FOR UPDATE [OF update_table [, ...]]]
 [LIMIT { ALL | count } [{ OFFSET | , } start]]

from_item ::= { [ONLY] table_name [*]
 [[AS] from_alias [(column_alias_list)]] |
 (select) [[AS] alias [(column_alias_list)]] |
 from_item [NATURAL] join_type from_item
 [ON (join_condition) | USING (join_column_list)]
 }

join_type ::= [INNER |
 LEFT [OUTER] |
 RIGHT [OUTER] |
 FULL [OUTER]
] JOIN

Parameters

ALL | DISTINCT

The DISTINCT keyword indicates that duplicate values found in two or more rows will
not be shown after the first row. The ALL keyword explicitly reinforces the default to
retrieve all rows regardless of uniqueness.

Note that the ORDER BY clause sorts rows before the DISTINCT clause removes non-
unique rows. Use these clauses together to ensure that the row found is the row you
intend to retrieve.

DISTINCT ON

The ON keyword, following the DISTINCT keyword, allows you to specify one or more
distinct_expressions by which to judge uniqueness.

distinct_expression

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

distinct_expression

A column name within a from_item, or a valid expression, whose value is used by the
DISTINCT ON clause as a basis for removing duplicate values.

target_expression

A column name within a from_item, or a valid expression.

output_name

An alternate name for an output column, following the AS clause. This name will then be
used during display of the output and can be used to reference the column within ORDER
BY and GROUP BY clauses in the same SELECT statement. However, this name does not
apply to the WHERE or HAVING clauses; you will need to use the correct column name for
them.

FROM

The clause which is passed from_items, from which to retrieve rows.

from_item

The name of a table, a subselect, or a JOINed set of from_items that you wish to
retrieve data from.

{ , | CROSS JOIN }

The comma (or formal CROSS JOIN clause) separates multiple from_items.

WHERE

The clause that is passed conditions by which to constraint a result set.

condition

An expression that yields either true or false, applied conditionally to non-grouped
target expressions.

GROUP BY

The clause that is passed aggregate_expressions to aggregate (group) rows together.

aggregate_expression

A column name within a from_item, or a valid expression, to be used as a basis to
aggregate (group) rows together.

HAVING

The clause to which is passed any aggregate_conditions by which to constrain a
result set.

aggregate_condition

An expression that yields either true or false, applied conditionally to aggregated
(grouped) target expressions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UNION

The clause that combines two result sets with compatible column structure into a single
combined result set.

INTERSECT

The clause that removes any rows from the initial result set not found in the following
select statement's result set (resulting in the overlapping, or intersecting, set).

EXCEPT

The clause that removes any rows from the initial result set that are found in the
following select statement's result set (resulting in the difference set).

select

A full select statement. The limitation on this form of subquery is that you cannot use
any of the ORDER BY, FOR UPDATE, or LIMIT clauses unless the statement is enclosed in
parentheses.

ORDER BY

The ORDER BY clause sorts the retrieved result set by each order_expression provided.

order_expression [ASC | DESC | USING operator]

A column name in the retrieved result set by which the ORDER BY clause sorts the
results. The use of the ASC keyword explicitly defines the default of ascending sorting,
while the DESC implies descending sorting. The USING clause defines an operator (e.g.,
>) to compare subsequent order_expression values with.

FOR UPDATE

The locking clause that places an implicit ROW SHARE MODE lock (see LOCK") on the
from_item table selected in the current transaction.

OF update_table

A specific table to which to apply ROW SHARE MODE locking when multiple tables are
selected in the FROM clause.

LIMIT

The LIMIT clause constrains only a specified portion of the retrieved results.

ALL | count

The ALL keyword explicitly specifies the default, which is to not limit the number of
rows returned. The use of a numeric count value limits the number of rows in the
retrieved result set to count.

{ OFFSET | , } start

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The OFFSET keyword (or informal comma, following the LIMIT clause) allows a result
set to ignore the first start rows.

The following clauses and parameters are available within each from_item:

[ONLY] table_name [*]

The name of an existing table or view from which you wish to retrieve rows. If you do
not specify ONLY, all descendant tables will be searched as well. You can also add an
asterisk (*) to indicate a wildcard after the table name to have descendant tables
searched.

sub_select

A sub-SELECT statement within the FROM clause of a SELECT statement; this creates a
temporary table from which rows can be pulled for the duration of the command.
Aliases must be provided for sub-SELECTs, and they must also be surrounded in
parentheses.

[AS] from_alias

The from_alias is a substitute name for a referenced table in the FROM clause.

column_alias_list

A comma-delimited list of alias names for each column in the from_alias source
immediately preceding it. There may be fewer aliases listed in column_alias_list than
there are columns in the from_alias source to which it applies.

join_type

The join type, where the type is one of the following:

[INNER] JOIN

LEFT [OUTER] JOIN

RIGHT [OUTER] JOIN

FULL [OUTER] JOIN

NATURAL

The optional NATURAL keyword indicates that the join will join the two from_items
based on any identically-named columns they share. The use of this keyword precludes
the use of explicit join_conditions or a join_column_list.

join_condition

A join qualification condition following the ON clause. Functionally, this clause is the
same as a WHERE clause, except that the condition will only be applied to the two objects
being joined.

join_column_list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

join_column_list

A list of columns following the USING clause. This list is a shortened way of specifying
the ON clause; it implies equivalence of columns within the FROM sources of a join that
have the same names in the two joined sources.

Results

The primary result of a SELECT statement is a list of rows contained in the selected result set,
followed by the number of rows retrieved. One of the following error messages may
alternatively be encountered:

ERROR: Relation 'from_item' does not exist

The error returned if a specified from_item table or view cannot be found in the
connected database.

ERROR: Table name "from_item" specified more than once

The error returned if a from_item database table or view is specified twice without an
alias. You can avoid this error by applying an alias to one of the named from_item
sources with the AS clause.

ERROR: Attribute 'column' not found

The error returned if a specified column cannot be found in any specified from_item.

Description
Use the SELECT command to retrieve rows of data from table, view, subquery, or any joined
result set. Use the WHERE clause to set a condition that rows must meet in order to be retrieved;
rows will not be retrieved if they don't meet the condition. If you do not specify any conditions
using WHERE, all rows in the data source will be retrieved.

There are many clauses available within a SELECT statement. See the "Parameters" section of
this reference entry for a listing of these clauses and their descriptions. See Chapter 4 for more
detailed instructions for their use.

Examples
The following example selects all rows from the books table:

booktown=# SELECT * FROM books;
 id | title | author_id | subject_id
-------+-----------------------------+-----------+------------
 7808 | The Shining | 4156 | 9
 4513 | Dune | 1866 | 15
 4267 | 2001: A Space Odyssey | 2001 | 15
 1608 | The Cat in the Hat | 1809 | 2
 1590 | Bartholomew and the Oobleck | 1809 | 2
 25908 | Franklin in the Dark | 15990 | 2
 1501 | Goodnight Moon | 2031 | 2
 190 | Little Women | 16 | 6
 1234 | The Velveteen Rabbit | 25041 | 3
 2038 | Dynamic Anatomy | 1644 | 0
 156 | The Tell-Tale Heart | 115 | 9

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 156 | The Tell-Tale Heart | 115 | 9
 41472 | Practical PostgreSQL | 1212 | 4
 41473 | Programming Python | 7805 | 4
 41477 | Learning Python | 7805 | 4
 41478 | Perl Cookbook | 7806 | 4
(15 rows)

The next example selects only rows with an ID number higher than 5000 will be retrieved:

booktown=# SELECT * FROM books WHERE id > 5000;
 id | title | author_id | subject_id
-------+-----------------------+-----------+------------
 7808 | The Shining | 4156 | 9
 25908 | Franklin in the Dark | 15990 | 2
 41472 | Practical PostgreSQL | 1212 | 4
 41473 | Programming Python | 7805 | 4
 41477 | Learning Python | 7805 | 4
 41478 | Perl Cookbook | 7806 | 4
(6 rows)

Prev Home Next
ROLLBACK Up SELECT INTO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

SELECT INTO
Name
SELECT INTO -- Construct a new table from the results of a SELECT.

Synopsis
SELECT [ALL | DISTINCT [ON (distinct_expression [, ...])]]
 target_expression [AS output_name] [, ...]
 [INTO [TEMPORARY | TEMP] [TABLE] new_table]
 [FROM from_item [{ , | CROSS JOIN } ...]]
 [WHERE condition]
 [GROUP BY aggregate_expression [, ...]]
 [HAVING aggregate_condition [, ...]]
 [{ UNION | INTERSECT | EXCEPT [ALL] } select]
 [ORDER BY order_expression [ASC | DESC | USING operator] [, ...]]
 [FOR UPDATE [OF update_table [, ...]]]
 [LIMIT { ALL | count } [{ OFFSET | , } start]]

from_item ::= { [ONLY] table_name [*]
 [[AS] from_alias [(column_alias_list)]] |
 (select) [[AS] alias [(column_alias_list)]] |
 from_item [NATURAL] join_type from_item
 [ON (join_condition) | USING (join_column_list)]
 }

join_type ::= [INNER |
 LEFT [OUTER] |
 RIGHT [OUTER] |
 FULL [OUTER]
] JOIN

Parameters

Most SELECT INTO parameters are the same as for the SELECT command. The following two
are the only parameters unique to SELECT INTO:

TEMPORARY, TEMP

The TEMPORARY (or TEMP) keyword indicates that the table is for temporary use; it will be
destroyed when the session has ended.

new_table

The name of the new table created to hold the resulting rows of the query. This table
will be created automatically and must not already exist before you execute this
command.

Results

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Refer to CREATE TABLE" and SELECT" for a list of possible results.

Description
Use SELECT INTO to execute a query and use the resulting rows to populate a new
(automatically created) table. Each column's names and data type for the new table are derived
from the rows resulting from the original query. This command is effectively the same as the
CREATE TABLE AS command, and it is recommended that you use that syntax, due to the fact
that SELECT INTO is non-standard and is also not interpreted correctly by PL/pgSQL.

Example
The following example will create a temporary employee table for employees with an
identification number below 105:

booktown=# SELECT * INTO TEMP TABLE old_emp
booktown-# FROM employees
booktown-# WHERE id < 105;
SELECT

Prev Home Next
SELECT Up SET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

SET
Name
SET -- Set runtime variables.

Synopsis
SET variable { TO | = } { value | 'value' | DEFAULT }
SET TIME ZONE { 'timezone' | LOCAL | DEFAULT }

Parameters

variable

The name of the runtime variable you are setting.

value

A new value for the specified variable. Use DEFAULT to reset the variable to its default
value.

timezone

The time zone of the client. The following are a few valid time zone values:

PST8PDT

The Pacific Standard/Daylight Savings Time (GMT offset by 8 hours).

EST5EDT

The Eastern Standard/Daylight Savings Time (GMT offset by 5 hours).

NZST13NZDT

The standard/daylight savings time zone in New Zealand (GMT offset by 13
hours).

LOCAL

The clause to set the time zone to the local system's configured time zone.

DEFAULT

The clause to set a variable value, or a time zone value, to its default.

Results

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SET VARIABLE

The message returned when a variable is successfully set.

ERROR: not a valid option name:(name)

The error returned if you try to set a variable that doesn't exist.

ERROR: permission denied

The error returned if you do not have adequate permissions to alter the specified
variable.

ERROR: name can only be set at start-up

The error returned if you attempt to set a variable that can only set set upon startup.

Description
Use the SET command to modify PostgreSQL runtime configuration variables. The following
variable can be altered:

CLIENT_ENCODING

The multibyte client encoding scheme (if enabled in PostgreSQL).

DATESTYLE

This variable sets the date and time representation style. When setting this variable, you
can choose one format from the normal output styles, one of the two substyles, or both
an output style and a substyle. Initialize the format by manually changing the
PGDATESTYLE environment variable. You can also initialize the format using postmaster
command options. For example, run postmaster using -o "-e" to set dates to the
European format (see Chapter 9 for more about the options available to postmaster).

The following are valid date and time output styles:

ISO

The ISO-8601–style date and time formatting. Date and time are displayed as
YYYY-MM-DD HH:MM:SS. This is the default style.

SQL

The Oracle/Ingres–style date and time formatting. Despite this format's label, it is
not the SQL default; SQL uses ISO–8601 style formatting.

Postgres

The traditional PostgreSQL date and time formatting.

German

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

German

The traditional German-style formatting. Numeric date representations are
displayed as DD.MM.YYYY.

European

The standard European-style formatting. This is a substyle of the SQL and
PostgreSQL styles. Numeric date representations are displayed as DD/MM/YYYY.

NonEuropean, US

The standard United States-style formatting. This is a substyle of the SQL and
Postgres styles. Numeric date representations are displayed as MM/DD/YYYY.

SEED

This variable sets the internal seed for the PostgreSQL random number generator, which
is used by the random() function. Allowed values are floating point numbers between 0
and 1. The number you supply is then multiplied by 2^30.

Alternatively, you may set the seed by calling the SQL setseed() function, with a
single argument of type double precision.

SERVER_ENCODING

The server's default multibyte encoding (if enabled in PostgreSQL).

Examples
The following example sets the DATESTYLE variable to use traditional PostgreSQL style
formatting. It also sets the substyle to U.S., which uses additional United States-specific
formatting.

booktown=# SET DATESTYLE TO Postgres,US;
SET VARIABLE

The next example sets the date and time formatting to ISO:

booktown=# SET DATESTYLE TO ISO;
SET VARIABLE

Prev Home Next
SELECT INTO Up SET CONSTRAINTS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

SET CONSTRAINTS
Name
SET CONSTRAINTS -- Sets the constraint mode for the current transaction block.

Synopsis
SET CONSTRAINTS { ALL | constraint [,...] }
 { DEFERRED | IMMEDIATE }

Parameters

ALL

The keyword indicating that the mode you are specifying should be applied to all
constraints within the current transaction.

constraint

The name of a specific constraint of which you wish to set the mode.

DEFERRED

The keyword indicating that constraints (or a specific constraint) shouldn't be checked
until the transaction reaches a COMMIT.

IMMEDIATE

The keyword indicating that constraints (or a specific constraint) should be checked at
the end of each statement within a transaction.

Results

SET CONSTRAINTS

The message returned when a constraint mode is set successfully.

ERROR: Constraint 'constraint' does not exist

The error returned if you attempt to change the mode of a constraint that does not
exist.

Description
Use the SET CONSTRAINTS command to set the constraint mode for all constraints or for a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the SET CONSTRAINTS command to set the constraint mode for all constraints or for a
single constraint within the current transaction block. You can choose to set the constraint
mode to either IMMEDIATE or DEFERRED. Use of IMMEDIATE mode will force the checking of all
constraints at the end of each statement within the transaction. In DEFERRED mode, constraints
are not checked until a COMMIT command is issued.

Note: PostgreSQL 7.1.x (the most current version as of the writing of this book)
only supports the use of these modes with foreign key constraints, as both check
and unique constraints are set to a constraint mode that is not affected by this
command.

Example
The following example sets the constraint evaluation mode to IMMEDIATE for all constraints
within the transaction:

booktown=# SET CONSTRAINTS ALL IMMEDIATE;
SET CONSTRAINTS

Prev Home Next
SET Up SET TRANSACTION

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

SET TRANSACTION
Name
SET TRANSACTION -- Sets the transaction isolation level for the current transaction block.

Synopsis
SET TRANSACTION ISOLATION LEVEL
 { READ COMMITTED | SERIALIZABLE }
SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL
 { READ COMMITTED | SERIALIZABLE }

Parameters

READ COMMITTED

The clause that specifies that statements will be able to view changes to the database
that were committed before the transaction began. This is the default.

SERIALIZABLE

The clause that specifies that statements will be able to view all rows that were
committed in the database before the transaction's first DML statement is executed.

Results

SET VARIABLE

The message returned when the isolation level has been set successfully. To verify that
it is correctly set, you can issue the command SHOW TRANSACTION ISOLATION LEVEL,
which should then return the variable's setting (either READ COMMITTED or
SERIALIZABLE).

Description
Use the SET TRANSACTION command to set the transaction isolation level for the current
transaction. This change will affect only the current transaction; all other subsequent
transactions must have their isolation mode explicitly set, otherwise the default of READ
COMMITTED will be used.

You can only use this command before the first DML statement has been executed. A DML
statement is one of SELECT, INSERT, DELETE, UPDATE, FETCH, or COPY.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To set the default transaction isolation level (as opposed to individual transaction), use SET
SESSION CHARACTERISTICS and specify either READ COMMITTED or SERIALIZABLE. Issuing a
SET TRANSACTION command from within a transaction can override this default setting.

When the isolation level is set to READ COMMITTED, all statements within the transaction view
only the rows that were committed before the transaction was started. Setting the isolation
level to SERIALIZABLE allows statements within the transaction to view changes made to the
database before the first DML statement was executed within the transaction.

Examples
The following example sets the transaction isolation level to SERIALIZABLE for the current
transaction:

testdb=# SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET VARIABLE

The next example demonstrates setting the default transaction isolation level for the current
session:

testdb=# SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET VARIABLE

Prev Home Next
SET CONSTRAINTS Up SHOW

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

SHOW
Name
SHOW -- Displays the values of runtime variables.

Synopsis
SHOW name

Parameters

name

The name of a runtime variable.

Results

SHOW VARIABLE

The message returned after the SHOW command returns.

ERROR: Option 'name' is not recognized

The error returned if the variable specified (name) does not exist.

ERROR: permission denied

The error returned if you do not have the permissions necessary to view this
information.

NOTICE: Time zone is unknown

The notice returned if you request to show the TIMEZONE variable when the TZ or PGTZ
environment variable is not set.

Description
Use the SHOW command to display the current settings for a specified runtime variable. The
variables in question are specified using the SET command or automatically determined during
server startup.

Examples
The following example displays the current transaction isolation level:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SHOW TRANSACTION ISOLATION LEVEL;
NOTICE: TRANSACTION ISOLATION LEVEL is SERIALIZABLE
SHOW VARIABLE

The next example displays the current date formatting style:

booktown=# SHOW DATESTYLE;
NOTICE: DateStyle is ISO with US (NonEuropean) conventions
SHOW VARIABLE

Prev Home Next
SET TRANSACTION Up TRUNCATE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

TRUNCATE
Name
TRUNCATE -- Empties the contents of a table.

Synopsis
TRUNCATE [TABLE] name

Parameters

name

The name of the table you wish to truncate. To truncate a table means to remove all
rows from the table.

Results

TRUNCATE

The message returned if the specified table is successfully truncated.

ERROR: Relation 'name' does not exist

The error returned if the specified table name does not exist in the connected database.

Description
Use this command to remove all rows of a specified table. It does not scan through the table
before removing data, making it rather helpful when emptying large tables of data. In essence,
it is a quicker form of the DELETE command.

Example
This example empties all of the rows in the temp_emp table:

booktown=# TRUNCATE TABLE temp_emp;
TRUNCATE

Prev Home Next
SHOW Up UNLISTEN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

UNLISTEN
Name
UNLISTEN -- Stops the backend process from listening for a notification event.

Synopsis
UNLISTEN { notifyname | * }

Examples

notifyname

The name of the NOTIFY condition you wish to stop listening for.

*

Passing the asterisk symbol (*) as the name of the notify condition will stop the backend
from listening for any currently defined conditions.

Results

UNLISTEN

The message returned when a UNLISTEN command is completed successfully.

Description
Use the UNLISTEN command to unregister a current NOTIFY registration matching the notify
condition specified by notifyname. Alternatively, you can use the wildcard symbol (*) to
remove all listener registrations for the current session. When a backend shuts down it will
automatically issue UNLISTEN * to remove all listener registrations.

Note: If you are interested in seeing all of the notification events being listened
for, you may query the relname column from the pg_listener system table.

More information about using the NOTIFY and LISTEN commands (which work together to
form the simple interprocess communication or IPC system) can be found by referring to
NOTIFY."

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following example checks all notifications being listened for, and subsequently stops the
backend process from listening for the publisher_update event:

booktown=# SELECT relname FROM pg_listener;
 relname

 publisher_update
 publisher_delete
(2 rows)

booktown=# UNLISTEN publisher_update;
UNLISTEN
booktown=# SELECT relname FROM pg_listener;
 relname

 publisher_delete

Prev Home Next
TRUNCATE Up UPDATE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

UPDATE
Name
UPDATE -- Modifies the values of column data within a table.

Synopsis
UPDATE [ONLY] table SET
 column = expression [, ...]
 [FROM fromlist]
 [WHERE condition]

Parameters

ONLY

The optional ONLY keyword indicates to only update the specified table (and not its
inheriting child tables, if it has any).

table

The name of an existing table to update.

column

The name of a column to update in the table you specified.

expression

An expression or value that you want assigned to the specified column.

fromlist

A valid table, view, or other from_item as defined in SELECT." A PostgreSQL
extension of the UPDATE command is the ability to use column values from other tables
within the WHERE condition; to do this correctly, you must use this parameter to list the
tables from which you will be pulling column values.

condition

The WHERE condition for UPDATE to use when determining what rows are to be updated.
This can be any valid expression resulting in a value of type boolean.

Results

UPDATE count

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The message returned when an UPDATE was successful. The count will actually be the
number of rows that were modified as a result of the UPDATE. For example, if # is zero, it
means that no rows were updated.

ERROR: Relation 'table' does not exist

The error returned if table is not a table in the connected database.

ERROR: Relation 'table' does not have attribute 'column'

The error returned if a column that does not exist in the table is used in the SET clause.

ERROR: Cannot update a view without an appropriate rule

The error returned if an UPDATE is attempted on a view instead of a table, without a
defined rule on how to handle the attempt.

Description
Use the UPDATE command to modify column values of all rows that match a WHERE condition
that you specify. You can also use this command to update the values of array columns. For an
array column, you can modify a single element, a range, or the entire array. To update only the
table specified, pass the ONLY parameter: otherwise all sub-tables will be updated as well.

Note: You must have write access to any columns you are attempting to modify,
and read access to any columns referenced within your WHERE statement.

Example
The following example adds one to the total stock number for the book with the specified
ISBN within the stock table:

booktown=# UPDATE stock SET stock = stock + 1 WHERE isbn = '0385121679';
UPDATE 1

Prev Home Next
UNLISTEN Up VACUUM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Next

VACUUM
Name
VACUUM -- Cleans and analyzes a database.

Synopsis
VACUUM [VERBOSE] [ANALYZE] [table]
VACUUM [VERBOSE] ANALYZE [table [(column [, ...])]]

Parameters

VERBOSE

The keyword that causes VACUUM to display an activity report for each table it operates
upon.

ANALYZE

The keyword that causes VACUUM to update column statistics for the optimizer.

table

A table you intend to vacuum. If you do not specify a table, VACUUM will operate upon
all tables.

column

The name of a column to analyze (used when updating statistics for the optimizer).

Results

VACUUM

The message returned when a VACUUM successfully vacuums a database or table.

NOTICE: --Relation table--

The notice returned when VACUUM begins cleaning a table (table) while in verbose
mode.

NOTICE: Pages 1: Changed 1, reaped 1, Empty 0, New 0; Tup 12: Vac 39,
Keep/VTL 0/0, Crash 0, UnUsed 0, MinLen 52, MaxLen 76; Re-using: Free/Avail.
Space 7180/0; EndEmpty/Avail. Pages 0/0. CPU 0.00s/0.00u sec.

The notice returned from the analysis on a table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOTICE: Index indexname: Pages 2; Tuples 12: Deleted 39. CPU 0.00s/0.00u sec.

The notice returned from an analysis of indexname.

Description
Use the VACUUM command to clean up records from rolled back transactions and to update
system catalog statistics. Call it with the ANALYZE option to collect statistical information about
data. Using this command periodically can increase the performance of your database.

Example
The following example displays the output of the VACUUM command when run on the books
table with the VERBOSE keyword:

booktown=# VACUUM VERBOSE books;
NOTICE: --Relation books--
NOTICE: Pages 1: Changed 0, reaped 1, Empty 0, New 0; Tup 15:
 Vac 0, Keep/VTL 0/0, Crash 0, UnUsed 5, MinLen 52,
 MaxLen 76; Re-using: Free/Avail. Space 7108/0;
 EndEmpty/Avail. Pages 0/0. CPU 0.00s/0.00u sec.
NOTICE: Index books_id_pkey: Pages 2; Tuples 15: Deleted 0.
 CPU 0.00s/0.00u sec.

Prev Home Next
UPDATE Up Appendixes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Preface Next

Conventions Used in This Book
Italic

Used for filenames, directory names, string-bound constants, and URLs. It is also used
for emphasis, and for the first use of a technical term.

Constant width

Used for keywords, identifiers (such as tables and columns), data types, examples, and
to show the contents of files, and the output of commands.

Constant width italic

Used in syntax descriptions to indicated user-defined items.

Constant width bold

Indicates user input within examples.

UPPERCASE

Used within syntax descriptions, uppercase usually indicates keywords.

lowercase

Used within syntax descriptions, lowercase usually indicates user-defined items, such as
variables and identifiers.

[]

Used within syntax descriptions, square brackets enclose optional items, which are
separated from one another by pipes (|).

{ }

Used within syntax descriptions, curly brackets enclose a set of items from which you
must choose one.

...

Used within syntax descriptions, ellipses indicate repeating information. Used within
examples, ellipses indicate that a section of unimportant information was removed from
the example output to improve readability and conserve space.

Note: The owl icon indicates a tip, suggestion, or general note. For example, we'll
let you know that PostgreSQL supports the use of all ISO standard time zone
abbreviations in the section on time zones.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Warning
The turkey icon indicates a warning or caution. For example, we'll warn you ahead of time
that using the DELETE command without a WHERE clause can delete all of your data from a
table.

Prev Home Next
What Is Included on the CD? Up Acknowledgments

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 3. Understanding SQL Next

Introduction to Relational Databases
PostgreSQL is a sophisticated object-relational database management system (ORDBMS). An
ORDBMS is an extension of the more traditional relational database management systems
(RDBMS). An RDBMS enables users to store related pieces of data in two-dimensional data
structures called tables. This data may consist of many defined types, such as integers,
floating-point numbers, character strings, and timestamps. Data inserted in the table can be
categorized using a grid-like system of vertical columns, and horizontal rows. The relational
model was built on a strong premise of conceptual simplicity, which is arguably both its most
prominent strength and weakness.

The object-relational aspect of PostgreSQL adds numerous enhancements to the straight
relational data model. These include support for arrays (multiple values in a single column),
inheritance (child-parent relationships between tables), and functions (programmatic methods
invoked by SQL statements). For the advanced developer, PostgreSQL even supports
extensibility of its data types and procedural languages.

Due to this object-relational concept, tables are sometimes called classes, while rows and
columns can be referred to as object-instances and object-attributes, respectively. We will use
this terminology interchangeably in this book. Other SQL data structures, such as indices and
views, can be referred to as database objects.

Note: Take care to observe that object-relational is not synonymous with object-
oriented, a term pertaining to many modern programming languages. While
PostgreSQL supports several objective improvements to the relational model, it is
still accurate to refer to PostgreSQL as a relational database management system
(RDBMS).

Understanding Databases
While PostgreSQL is commonly considered an RDBMS, or a "database," it may not be
commonly understood what is meant specifically by the word database. A database within
PostgreSQL is an object-relational implementation of what is formally called a schema in
SQL99.

Put simply, a database is a stored set of data that is logically interrelated. Typically, this data
can be accessed in a multiuser environment. This is the case with PostgreSQL, though there
are well-defined rights and restrictions enforced with that access.

It may not be commonly understood that PostgreSQL can have several databases concurrently
available, each with their own owner, and each with their own unique tables, views, indices,
sequences, and functions.

In order to create a table, function, or any other database object, you must connect to a specific
database via a PostgreSQL client. Once connected, you can create an object, which is then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

database via a PostgreSQL client. Once connected, you can create an object, which is then
owned by the connected database, and therefore is inaccessible from any other database
(though a client may have several connections open to different databases).

By keeping fundamental data objects segregated into their own databases in this fashion, you
run a smaller risk of running into a naming collision by choosing a table name already chosen
for another purpose (e.g., if two users each wanted to have a table called products for two
separate applications). This is because neither database has any knowledge of the other
database's components, and will not attempt to make any kind of logical relationship between
them. Furthermore, as the same rule applies to object-relational data objects, users may even
create functions and language definitions within their database that are inaccessible to other
users connected to other databases running within PostgreSQL.

By default, PostgreSQL installs only one functional database, which is called template1 to
represent the template nature of the database. Any database created after template1 is
essentially a clone, inheriting any of its database objects, including table structure, functions,
languages, etc. It is not uncommon to create a default database for new PostgreSQL users with
the same name as their PostgreSQL username, as PostgreSQL will attempt to connect to a
database with the same name as the connecting user if a database name is not specified.

Understanding Tables
Tables are quite possibly the most important aspect of SQL to understand inside and out, as all
of your data will reside within them. In order to be able to correctly plan and design your SQL
data structures, and any programmatic routines toward accessing and applying that data, a
thorough understanding of tables is an absolute pre-requisite.

A table is composed of columns and rows, and their intersections are fields. If you have ever
used spreadsheet software before (such as Excel), these two terms are visually represented in
the same manner, and the fields within a table are equivalent to the cells within a spreadsheet.
From a general perspective, columns within a table describe the name and type of data that
will be found (and can be entered) by row for that column's fields. Rows within a table
represent records composed of fields that are described from left to right by their
corresponding column's name and type. Each field in a row is implicitly correlated with each
other field in that row. In this sense, columns can be thought of as descriptors for the discrete,
sequential elements of a row, and each row can be thought of as a stored record matching that
description.

Table 3-1 illustrates a simple table called books, used by our imaginary bookstore, Book
Town. We will frequently refer to this table in later examples. Each of its stored records
describes a book by a numeric identifier, title, author identifier, and subject identifier. These
characteristics, from left to right, are described by its columns (id, title, author_id, and
subject_id).

Table 3-1. An example SQL table

id title author_id subject_id
7808 The Shining 4156 9
156 The Tell-Tale Heart 15 9
4513 Dune 1866 15

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4267 2001: A Space Odyssey 2001 15
1608 The Cat in the Hat 1809 2
1590 Bartholomew and the

Oobleck
1809 2

As you can see, this describes a table with four columns, in a fixed, left-to-right order,
currently populated by six rows (also known as tuples, or records). It is essential to understand
that in a relational database, while a table has a fixed column order, rows themselves are
inherently unordered. You will see later, as the SQL's query structure is explained in Chapter
4, that there are ways within SQL to order selected rows. However, the rows in the database
itself are not automatically ordered in any consistently predictable way. When order is
meaningful for a SQL query, you must carefully consider and explicitly order records.

Every table must have at least one column, but tables may at times contain no rows, because
each vertical column corresponds to a relatively fixed attribute of the data represented in that
table (such as the title column in the previous example's books table). Without a column, a
row's contents would be ambiguous; without a row, a table is merely lacking recorded data. As
of PostgreSQL 7.1, there is a maximum of 1600 columns to a table, and an unlimited number
of rows (i.e., you are limited only by hardware limitations, such as disk space).

In Table 3-1, the column names fairly clearly indicate the significance of each column. The
decision of how to name columns is fairly arbitrary, though, and care must be taken in
planning table names and conventions to avoid ambiguity.

Though it may not be immediately obvious, each of the columns of a table have an associated
data type. While a column's data type helps to further describe the sort of information it
contains, it constrains the kind of data that may be inserted into the column. For example, the
author_id column is of type integer; this signifies that any insertion attempts not consisting
of pure a integer (e.g., 110a) will fail. These types are described in more detail in the Section
called Data Types."

This section introduced the general concepts of how data is logically arranged in a relational
database and within tables. The next section explains why statements are the basis for all
interactions with the database.

Prev Home Next
Understanding SQL Up SQL Statements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 6. PostgreSQL Clients Next

PgAccess: A Graphical Client
PgAccess is a graphical administration application for PostgreSQL. It is designed to be similar
in function to PC database software, such as Microsoft Access.

Figure 6-1 displays the main PgAccess application window.

Figure 6-1. PgAccess application window

The interface allows you to view and modify various aspects of your PostgreSQL database
using graphical representations of database elements, such as tables, queries, and views
(among others). It can be a convenient escape from the sometimes tedious task of using the
psql command line interface.

PgAccess was written in the Tcl/Tk scripting language; this increases its level of portability, as
it can be installed and run on any system that supports the Tcl/Tk scripting language
(including Linux/UNIX, Windows, and MacOS). As PgAccess is a client side application,
PostgreSQL is not required to be on the machine running PgAccess.

Installation and Basic Configuration
There are relatively few things you will need to do to configure PgAccess for use with
PostgreSQL. Most importantly, make sure that Tcl/Tk is installed and configured properly.

To configure PostgreSQL with TCL support, you must have used the --with-tcl flag during
source compilation. The use of the --with-tcl flag will configure the appropriate tcl libraries for
use with PostgreSQL. This flag will install the pgaccess binary for you.

Note: PgAccess will not operate unless you have configured PostgreSQL to
support Tcl/Tk. Linux distributions that come with PostgreSQL, such as Red Hat
and Mandrake, should have TCL support compiled in to their PostgreSQL
binaries.

If you did not use the --with-tcl flag during your original compilation you can add TCL
support to your existing PostgreSQL configuration without having to reinitialize the
PostgreSQL data directories by reconfiguring PostgreSQL with the --with-tcl flag, and
subsequently recompiling.

After the reconfiguration is complete, clean up the directory by typing: gmake clean, and then
recompile the code by typing: gmake. Finally, shut down postmaster and type the command:
gmake install. This will install the new binaries and libraries for the reconfigured PostgreSQL
system. Once these are installed you can safely restart PostgreSQL.

Warning

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you are going to recompile PostgreSQL after it has been installed, you must use source
from the same version of PostgreSQL that you originally compiled. If you use a different
version of the source, you may lose data. As always, it is a good idea to backup your data
before performing any changes to your PostgreSQL installation.

Managing Users
PgAccess provides the ability to graphically modify and manage user accounts associated with
the database. Like command-line clients, it uses CREATE USER and ALTER USER to accomplish
these tasks. The difference is that PgAccess provides a graphical front-end to these commands.
This feature is available through the Users tab on the left side of the PgAccess window. Figure
6-2 shows this tab.

Figure 6-2. The PgAccess Users tab

Clicking on Users will display a list of all users associated with the database. Of the program's
three action buttons, only New and Design perform actions from this tab.

Clicking New will allow you to create a new user within the database. As you may notice, the
options in this window correlate with the options available through the use of the SQL
command, CREATE USER. Use the Username field to set the new user's username, and the
Password and verify password fields to set the password (if there will be one). The two
check boxes set the CREATEDB and CREATEUSER permissions for the new user, if checked
(remember that allowing these permissions creates the new user as a database superuser). You
may use the Valid until field to set the valid-until date for the user (the same as the CREATE
USER command).

Clicking the Design button allows you to modify the attributes of the selected user account as
you would normally do with the SQL command, ALTER USER. As such, the options here
correlate with the options available through ALTER USER, such as modifying the username,
changing the password, setting the previously mentioned CREATEDB and CREATEUSER
permissions, and modifying the valid-until date.

Managing Groups
As of Version 0.98.7, the most current version at the printing of this book, PgAccess does not
support the management of groups. You can use the command-line interface psql to create and
modify PostgreSQL user groups.

Creating Databases
To create a database using PgAccess, click the Database menu option at the top of the screen,
then click New and type in the name you wish to give the database. This will create a database
as if you had called the SQL CREATE DATABASE command from the currently logged-in
database user. To use a template other than template1 for the new database or set its encoding
type, you will need to either use the createdb program, or the CREATE DATABASE command
from a command line client (see Chapter 9).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating Tables
It is relatively easy to create and modify the tables of a database with PgAccess through its
graphical interface. Figure 6-3 shows this dialog window.

Figure 6-3. The PgAccess Create new table dialog box

To create a table, first click on the Tables tab, then click the New button to open the "Create
new table" window. This window contains various fields and buttons that allow you to modify
the attributes of the table you are creating. Basically, these commands are visual
representations of the options found in the SQL CREATE TABLE command.

The following list names available inputs within the PgAccess Create Table Dialog:

Table name

The name of the table you wish to create within PostgreSQL.

Inherits

You can set what table(s) from which this table will inherit attributes. A list of available
tables is located in the drop-down box. Note that the list is not restricted to holding just
one value; you can click the downward arrow button and choose another table to add
that table to the inheritance list.

Check

Enter any expressions you wish to have checked on INSERT and UPDATE commands.

Constraint

Enter any constraints you wish to place upon the table.

The following subsections talk about how to add fields to a table and about how to insert and
delete rows.

To add a field to the table, set its attributes with the field name, type, size, and Default
value fields, and set its options with the "field cannot be null" and "primary key" check box
options. Once you have chosen the options, click the "Add field" button to add the field to the
field list. You are able to move fields up and down through the list with the "Move up" and
"Move down" buttons, delete a field with the "Delete field" button, and delete all fields with
the "Delete all" button.

Once you are ready to add the table into your database, click the Create button. The following
subsections discuss how to insert and delete of rows.

Inserting and updating values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It is possible to insert values into a table using PgAccess; in fact, the process is fairly simple.
Click on the Table tab to view the list of tables, then click on the table you wish to modify and
click Open.

After clicking Open, you should see a window of rows and columns that contain the various
fields of your table. You can tab through these columns and rows to reach a target field, or just
use your mouse to click on it. The row chosen will become highlighted and a cursor will
appear showing you the location of the new data. The database will not be updated with your
changes until you tab out of the field you were editing; or, alternatively, click into another
field with your mouse. PgAccess displays the message: "Updating database..." after you
complete one of these actions.

It may be useful to note that it is possible to both sort and filter the table data by making use of
two fields at the top of the table window, named logically "Sort field" and "Filter conditions."
It is possible to sort the table by a field or multiple fields by typing the name of the field into
the "Sort field" box, optionally including "ASC" or "DESC" if you wish for the sort to be
ascending or descending, respectively. You can choose to sort by multiple fields. To do this,
include the names of other fields in a comma-delimited list. As an example, you could use the
following to sort a list of names by the lastname field, ascending:

lastname ASC

To use the "Filter conditions" box, enter filter conditions such as the following:

(age < 45) and (avgsalary > 40000)

The process for updating table data is the same as for inserting, but you change existing rows
rather than adding new ones.

Deleting values

To delete values from a table, open it in the same manner you would when attempting to insert
values: click on the Tables tab, then click on the table you wish to modify and click Open.
Within this window are the columns and rows of the table, filled with whatever data has been
entered. You can either delete rows, or specific fields within a row. To delete a row, click on
the desired row, then hit the Delete key on your keyboard. PgAccess will display a dialog box
asking for confirmation of the delete, in case your choice to delete was accidental. To delete
the contents of a field, or the partial contents of a field, click or tab into that field and use the
Backspace key to delete characters.

Using Queries
As should be expected, you are able to design, edit, and run queries through PgAccess. Click
on the Queries tab to view a list of the defined queries associated with your database. This area
of the program should be familiar to Microsoft Access users, as the visual query designer and
other features are very similar to their counterparts within that program.

To create a new query, click the New button. This will open the "Query builder" window.
Before designing the query, you should name it with the Query name field. This name is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Before designing the query, you should name it with the Query name field. This name is
arbitrary and serves no function within the query; it is needed only so that PgAccess has
something to display for this query in the list of available queries. You may also add
comments in the comment window at this point.

Manually designing a query

After naming the query, you can either design it manually or use the visual designer tool to
speed up the process. To manually design the query, use the large, white box below the Query
name field to type in the SELECT statement that will be used to query the database. You can
spread this statement out over multiple lines, if you wish.

Using the visual designer

To use the visual designer tool for creation of the new query, click on the "Visual designer"
button. As stated before, the interface to this tool is similar to the query designer tool in
Microsoft Access. You are initially given a blank canvas to work with. Add tables to the
canvas by typing the name of the table in the Add table field (the cursor enters text into this
field by default). Alternatively, you can add tables by clicking the down-arrow button and
selecting the table you wish to add from its list of available tables.

Once you've added the tables you wish to use, you can form links between them by clicking
and dragging on a field, then pulling it from one table object to the other. When a link is
formed it will display as a thin line that connects the two objects together. Note that you can
move table objects around the canvas and the link graphic will stretch to fit whatever
arrangement you desire. You may delete tables from the canvas by clicking on their labels and
hitting the Delete key on your keyboard. Similarly, links may be deleted between columns by
clicking on them and pressing the Delete key.

Any links between corresponding table columns will be translated into a SQL WHERE clause,
specifying conditions upon which to join two table sets. A link will only represent a condition
involving the equal-to operator (=). If you require a different condition, the SQL statement can
be edited manually in the "Query builder" window; bear in mind that going back to the Visual
Designer will cause any modified relationship to be re-created as an equal-to relationship
when it is saved.

Figure 6-4 shows the PgAccess Visual Designer interface. It illustrates a fairly involved SQL
query, reproduced in a more comprehensible, graphical form.

Figure 6-4. The PgAccess Visual query designer

To select fields that you wish to be included in the results of the query, drag the field name
down into the result zone (the cell-divided area at the bottom of the screen). You may define
conditions you wish to be applied to results from the query; do this by entering a condition
into the Criteria field. To see the SQL statement you have created with the visual design,
click the "Show SQL" button. To execute your query (for testing purposes), click the "Execute
SQL" button. When you are done creating the query's design, click on the "Save to query
builder" button. This saves the query within the pga_queries table.

Executing a query

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To view the results of an existing query, click the Queries tab, select the desired query from
the list in the main PgAccess window, and click the Open button. This displays the retrieved
rows in a window similar to the window used for modifying tables, though this table is read-
only. You can use the Sort field to sort the records by an expression, or the Filter
conditions field to provide a filter expression.

Modifying a query

To modify an existing query, click the "Queries" tab, select it from the query list in the main
PgAccess window, and click the Design button. This will display the "Query builder" window,
which is the same view as if you were to create a new query. The query's name and SQL
statement will be displayed in the window, as well as any comments you added onto it when it
was originally designed. From here you can either edit the SQL statement directly or use the
visual designer.

Remember to click the "Save query definition" button to save your modifications to an
existing query.

Creating Functions
Creating functions within PgAccess is also fairly simple. First click on the Functions tab, then
click New. You should now be presented with the Function window. Here, you may enter the
name of your new function, the parameters it takes (comma-separated), the language it is
written in (e.g., SQL, C, plpgsql, etc.), and the type of data it returns (if the function returns a
value). Once you have defined those options, enter the body of the function in the white box
that takes up most of the screen (or the location in the filesystem of the shared object file, if it
is a C function). Once finished, click Save.

Note: You may view existing function definitions by selecting one from the
function list, and clicking Open.

Figure 6-5 illustrates a simple example function, which selects the name of an author based on
the id value in the authors table.

Figure 6-5. The Function dialog box

We will continue the discussion about creating functions in the next chapter.

Prev Home Next
PostgreSQL Clients Up Advanced Features

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 7. Advanced Features Next

Advanced Table Techniques
PostgreSQL provides several ways to constrain values inserted and updated within tables. One
of these is the availability of table and column constraints.

PostgreSQL also supports an advanced object-relational table concept called inheritance.
Inheritance allows separate tables to have an explicit parent-child relationship and, through
this relationship, share columns in a hierarchical fashion.

The following sections document both types of SQL constraints, as well as the creation and
application of inherited tables.

Using Constraints
Constraints are table attributes used to define rules on the type of data values allowed within
specified columns. By enforcing these rules within the database, you can effectively safeguard
against incorrect or inappropriate data being added to the database.

When you create a table, you can create a constraint using the CREATE TABLE command's
CONSTRAINT clause. There are two types of constraints: column constraints and table
constraints.

Column constraints apply only to a single column, while table constraints may apply to one or
more columns. Within the CREATE TABLE command, the syntax for a column constraint
follows immediately after a column definition, whereas the syntax for a table constraint exists
in its own block, separated by a comma from any existing column definitions. A table
constraint relies on its definition, rather than placement in the syntax, to indicate the columns
affected by its restrictions.

The following sections discuss the different rules a constraint can enforce.

Column constraints

Performing the \h CREATE TABLE slash command within psql displays several detailed syntax
diagrams for the constraints that may be placed on a table. Here is the syntax for a column
constraint:

 [CONSTRAINT constraint_name]
 { NOT NULL | UNIQUE | PRIMARY KEY | DEFAULT value | CHECK (condition) |
 REFERENCES table [(column)]
 [MATCH FULL | MATCH PARTIAL]
 [ON DELETE action]
 [ON UPDATE action]
 [DEFERRABLE | NOT DEFERRABLE]
 [INITIALLY DEFERRED | INITIALLY IMMEDIATE]
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

This syntax immediately follows the data type of the column to be constrained (and precedes
any commas separating it from other columns) in the CREATE TABLE statement. It may be used
with as many columns as is necessary. Notice that the CONSTRAINT keyword and
constraint_name identifier are optional, and may be omitted.

There are six sets of column constraint keywords that may be applied. Some of the effects of
these constraints are implicitly defined by others. The constraint keywords are as follows:

NOT NULL

Specifies that the column is not allowed to contain NULL values. Using the constraint
CHECK (column NOT NULL) is equivalent to using the NOT NULL constraint.

UNIQUE

Specifies that the same value may not be inserted in this column twice. Note that the
UNIQUE constraint allows more than one NULL value to be in a column, as NULL values
technically never match another value.

PRIMARY KEY

Implies both UNIQUE and NOT NULL constraints, and causes an index to be created on the
column. A table is restricted to having only one primary key constraint.

DEFAULT value

Causes unspecified input values to be replaced with a default value of value. This value
must be of the same data type as the column it applies to. PostgreSQL 7.1.x does not
support subselects as default values.

CHECK condition

Defines a condition that the value must satisfy for an INSERT or UPDATE operation to
succeed on that row. The condition is an expression that returns a Boolean result. Used
as a column constraint, only the one column being defined can be referenced by the
CHECK clause.

The sixth column constraint, REFERENCES, contains the following clauses:

REFERENCES table [(column)]

Input values to the constrained column are checked against the values of the column
column within the table table. If a matching value on this column is not found in the
column that it references, the INSERT or UPDATE will fail. If column is omitted, the
primary key on table is used, if one exists.

This column constraint is similar to the FOREIGN KEY table discussed in the next section.
Functionally, the REFERENCES column constraint is very similar to a FOREIGN KEY
column constraint.

See Example 7-8 for an example of a table being created with a FOREIGN KEY table
constraint.

MATCH FULL | MATCH PARTIAL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MATCH FULL | MATCH PARTIAL

The MATCH clause affects what kind of NULL and non-NULL values are allowed to be
mixed on insertion into a table whose foreign key references multiple columns. The
MATCH clause is therefore only practically applicable to table constraints, though the
syntax is technically valid in a column constraint as well.

MATCH FULL disallows insertion of row data whose columns contain NULL values unless
all referenced columns are NULL. As of PostgreSQL 7.1.x, MATCH PARTIAL is not
supported. Not specifying either clause allows NULL columns to satisfy the constraint.

Again, as column constraints may only be placed on a single column, this clause is only
directly applicable to table constraints.

ON DELETE action

When a DELETE is executed on a referenced row in the referenced table, one of the
following actions will be executed upon the constrained column, as specified by
action:

NO ACTION

Produces an error if the reference is violated. This is the default if action is not
specified.

RESTRICT

Identical to NO ACTION.

CASCADE

Removes all rows which reference the deleted row.

SET NULL

Assigns a NULL value to all referenced column values.

SET DEFAULT

Sets all referenced columns to their default values.

ON UPDATE action

When an UPDATE statement is performed on a referenced row in the referenced table, the
same actions are available as with the ON DELETE clause. The default action is also NO
ACTION.

Specifying CASCADE as the ON UPDATE action updates all of the rows that reference the
updated row with the new value (rather than deleting them, as would be the case with ON
DELETE CASCADE).

DEFERRABLE | NOT DEFERRABLE

DEFERRABLE gives you the option of postponing enforcement of the constraint to the end
of a transaction rather than having it enforced at the end of each statement. Use the
INITIALLY clause to specify the initial point at which the constraint will be enforced.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOT DEFERRABLE means the enforcement of the constraint must always be done
immediately as each statement is executed. Users do not have the option to defer
enforcement to the end of a transaction when this is set. This is the default.

INITIALLY DEFERRED | INITIALLY IMMEDIATE

The constraint must be DEFERRABLE in order to specify the INITIALLY clause.
INITIALLY DEFERRED causes enforcement to be postponed until the end of the
transaction is reached, whereas INITIALLY IMMEDIATE causes constraint checking to be
performed after each statement. INITIALLY IMMEDIATE is the default when the
INITIALLY clause is not specified.

Example 7-7 shows how to create a table called employees with a variety of simple
constraints.

Example 7-7. Creating a table with column constraints

booktown=# CREATE TABLE employees
booktown-# (id integer PRIMARY KEY CHECK (id > 100),
booktown(# last_name text NOT NULL,
booktown(# first_name text);
NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index 'employees_pkey'
for table 'employees'
CREATE

Example 7-7 creates a column called id, of type integer which has both a PRIMARY KEY
constraint and a CHECK constraint. The PRIMARY KEY constraint implies both NOT NULL and
UNIQUE, as well as implicitly creates the employees_ pkey index to be used on the column. The
CHECK constraint verifies that the value of id is greater than 100. This means that any attempt
to INSERT or UPDATE row data for the employees table with an id value of less-than or equal-
to 100 will fail.

The employees table created in Example 7-7 also contains a column named last_name of type
text which has a NOT NULL constraint enforced. This is a much simpler constraint; it disallows
the addition of employees whose last name values are input as NULL. In other words, users
must supply a last name for each employee.

Note: Conditions set with the CHECK clause must involve values of comparable
data types.

Table constraints

Unlike column constraints, a table constraint can be defined on more than one column of a
table. Here is the syntax to create a table constraint:

 [CONSTRAINT constraint_name]
 { UNIQUE (column [, ...]) |
 PRIMARY KEY (column [, ...]) |
 CHECK (condition) |
 FOREIGN KEY (column [, ...])
 REFERENCES table [(column [, ...])]
 [MATCH FULL | MATCH PARTIAL]
 [ON DELETE action]
 [ON UPDATE action]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [ON UPDATE action]
 [DEFERRABLE | NOT DEFERRABLE]
 [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

CONSTRAINT constraint_name provides an optional name for the constraint. Naming a
constraint is recommended, as it provides you with a meaningful name for the purpose of the
constraint, rather than an automatically generated, generic name. In the future, this name also
may be useful in removing constraints (e.g., when PostgreSQL's DROP CONSTRAINT clause of
the ALTER TABLE implemented). The other clauses define four general types of table
constraints:

PRIMARY KEY (column [, ...])

The PRIMARY KEY table constraint is similar to the PRIMARY KEY column constraint. As a
table constraint, PRIMARY KEY allows multiple columns to be defined in a parenthetical
expression, separated by commas. An implicit index will be created across columns.
The combination of values for each column specified must therefore amount to only
unique and non-NULL values, as with the PRIMARY KEY column constraint.

UNIQUE (column [, ...])

Specifies that the combination of values for the columns listed in the expression
following the UNIQUE keyword may not amount to duplicate values. NULL values are
allowed more than once, as NULL technically never matches any other value.

CHECK (condition)

Defines a condition that incoming row data must satisfy for an INSERT or UPDATE
operation to succeed. The condition is an expression that returns a Boolean result. Used
as a table constraint, more than one column can be referenced by the CHECK clause.

FOREIGN KEY (column [, ...]) REFERENCES table [(column [, ...])]

Allows multiple columns to be specified as the source for the REFERENCES clause. The
syntax following the FOREIGN KEY clause and its specified columns is identical to that of
the column REFERENCES constraint.

Example 7-8 creates the Book Town editions table. It creates three table constraints. A
detailed explanation follows the example.

Example 7-8. Creating a table with table constraints

booktown=# CREATE TABLE editions
booktown-# (isbn text,
booktown(# book_id integer,
booktown(# edition integer,
booktown(# publisher_id integer,
booktown(# publication date,
booktown(# type char,
booktown(# CONSTRAINT pkey PRIMARY KEY (isbn),
booktown(# CONSTRAINT integrity CHECK (book_id IS NOT NULL
booktown(# AND edition IS NOT NULL),
booktown(# CONSTRAINT book_exists FOREIGN KEY (book_id)
booktown(# REFERENCES books (id)
booktown(# ON DELETE CASCADE
booktown(# ON UPDATE CASCADE);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown(# ON UPDATE CASCADE);
NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index 'pkey' for table
'editions'
NOTICE: CREATE TABLE will create implicit trigger(s) for FOREIGN KEY check(s)
CREATE

The first constraint, pkey is a PRIMARY KEY constraint on the isbn column, and behaves
identically to a PRIMARY KEY column constraint (because only one column target is supplied).

The constraint named integrity uses the CHECK clause to ensure that neither the book_id nor
edition columns ever contain NULL values.

Finally, the book_exists constraint uses the FOREIGN KEY and REFERENCES clauses to verify
that the book_id value always exists within the books table in the id column. Furthermore,
since the CASCADE keyword is supplied for both the ON DELETE and ON UPDATE clauses, any
modifications to the id column in the books table will also be made to the corresponding rows
of the editions table, and any deletions from books will result in corresponding rows being
deleted from editions.

Notice that both an implicit index named editions_pkey on the isbn column and an implicit
trigger are created from these table constraints. The implicit index is used in the enforcement
of the PRIMARY KEY constraint. The implicit trigger enforces the FOREIGN KEY constraint.

Adding a constraint

The ALTER TABLE command is intended to allow the addition of table constraints to existing
tables. As of PostgreSQL 7.1.x, however, only the addition of CHECK and FOREIGN KEY
constraints is supported.

Here is the syntax to add a constraint with ALTER TABLE:

 ALTER TABLE table
 ADD [CONSTRAINT name]
 { CHECK (condition) |
 FOREIGN KEY (column [, ...])
 REFERENCES table [(column [, ...])]
 [MATCH FULL | MATCH PARTIAL]
 [ON DELETE action]
 [ON UPDATE action]
 [DEFERRABLE | NOT DEFERRABLE]
 [INITIALLY DEFERRED | INITIALLY IMMEDIATE]
 }

Example 7-9 adds a FOREIGN KEY constraint to the Book Town books table's subject_id
column. This constraint references the id column within the subjects table, and will ensure
that no values are inserted or modified on the subject_id column with a value which cannot
be found in the subjects table's id column.

Example 7-9. Adding a constraint to an existing table

booktown=# ALTER TABLE books ADD CONSTRAINT legal_subjects
booktown-# FOREIGN KEY (subject_id)
booktown-# REFERENCES subjects (id);
NOTICE: ALTER TABLE ... ADD CONSTRAINT will create implicit trigger(s) for
FOREIGN KEY check(s)
CREATE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE

Removing a constraint

As of PostgreSQL 7.1.x, constraints may not be directly removed from a table. The only way
to achieve the net effect of dropping a constraint is to create a copy of the table which is nearly
identical to the original, with any unwanted constraints omitted. The data can then be copied
from the original table to the new table, and the tables renamed using the ALTER TABLE
command so that the new copy replaces the original table.

Warning
Be aware of who is connected to, and accessing, any tables that you wish to restructure with
this work-around. Data should not be inserted or modified at any time in the middle of the
operation; therefore, you may need to temporarily disallow connection to the database if it is
a highly active table, make the modifications, and finally, restart the system when finished.

Example 7-10 demonstrates this work-around method for removing a constraint by effectively
removing the legal_subjects FOREIGN KEY constraint from the books table (see Example 7-
9). Notice that the books_id_pkey is removed before the new table is created, so that the new
table can be created with an index named books_id_ pkey. This is not necessary, but for the
sake of consistency we want to keep the primary key index name the same.

Example 7-10. Removing a constraint

booktown=# DROP INDEX books_id_pkey;
DROP
booktown=# CREATE TABLE new_books
booktown-# (id integer CONSTRAINT books_id_pkey PRIMARY KEY,
booktown(# title text NOT NULL,
booktown(# author_id integer,
booktown(# subject_id integer);
NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index 'books_id_pkey'
for table 'new_books'
CREATE
booktown=# INSERT INTO new_books SELECT * FROM books;
INSERT 0 15
booktown=# ALTER TABLE books RENAME TO old_books;
ALTER
booktown=# ALTER TABLE new_books RENAME TO books;
ALTER

Inheritance
PostgreSQL supports an advanced object-relational mechanism known as inheritance.
Inheritance allows a table to inherit some of its column attributes from one or more other
tables, creating a parent-child relationship. This causes the child table to have each of the same
columns and constraints as its inherited table (or tables), as well as its own defined columns.

When performing a query on an inherited table, the query can be instructed to retrieve either
all rows of a table and its descendants, or just the rows in the parent table itself. The child
table, on the other hand, will never return rows from its parent.

Creating a child table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A child table is created with the CREATE TABLE SQL command by using the INHERITS clause.
This clause consists of the INHERITS keyword, and the name of the table (or tables) from
which to inherit.

Here is the portion of the CREATE TABLE syntax which applies to inheritance:

 CREATE TABLE childtable definition
 INHERITS (parenttable [, ...])

In this syntax, childtable is the name of the new table to be created, definition is the
complete table definition (with all the ordinary CREATE TABLE clauses), and parenttable is
the table whose column structure is to be inherited. More than one parent table may be
specified by separating table names with commas.

Example 7-11 creates a table called distinguished_authors with a single column named
award of type text. Since it is instructed to inherit from the authors table by the INHERITS
clause it actually is created with four columns; the first three from authors, and the fourth
awards column.

Example 7-11. Creating a child table

booktown=# CREATE TABLE distinguished_authors (award text)
booktown-# INHERITS (authors);
CREATE
booktown=# \d distinguished_authors
 Table "distinguished_authors"
 Attribute | Type | Modifier
------------+---------+----------
 id | integer | not null
 last_name | text |
 first_name | text |
 award | text |

As you can see, even though Example 7-11 specified only one column, the
distinguished_authors table inherited all of the columns that were originally in the authors
table.

Using inherited tables

The relationship between the shared columns of a parent and child table is not purely
cosmetic. Inserted values on the distinguished_authors table will also be visible in the
authors table, its parent. However, in the authors table, you will only see the three columns
which were inherited. When querying a parent table, you can use the ONLY keyword to specify
that rows from child tables are to be omitted from the query results.

Note: Parent rows are never visible within a query on one of its child tables.
Therefore, using the ONLY keyword on a child table would only have an effect if
that child table were also inherited by another table, making it effectively both a
parent and a child.

Example 7-12 inserts a new author named Neil Simon with the award of Pulitzer Prize into the
distinguished_authors table. Notice that the first three inserted values are shared between
the parent and child tables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7-12. Inserting into a child table

booktown=# INSERT INTO distinguished_authors
booktown-# VALUES (nextval('author_ids'),
booktown(# 'Simon', 'Neil', 'Pulitzer Prize');
INSERT 3629421 1

Since the first three columns of the distinguished_authors table are inherited from the
authors table, this author will also appear implicitly as a regular author in the authors table
(though the data is not literally inserted into the authors table). Only the
distinguished_authors table will show information about awards, however, as inheritance
only works one way (descending from parent to child).

Example 7-13 executes three SELECT statements. Each of these queries chooses a different
target for the FROM clause, while using the same search criteria in the WHERE clause.

Example 7-13. Selecting with inheritance

booktown=# SELECT * FROM distinguished_authors
booktown-# WHERE last_name = 'Simon';
 id | last_name | first_name | award
-------+-----------+------------+----------------
 25043 | Simon | Neil | Pulitzer Prize
(1 row)

booktown=# SELECT * FROM authors WHERE last_name = 'Simon';
 id | last_name | first_name
-------+-----------+------------
 25043 | Simon | Neil
(1 row)

booktown=# SELECT * FROM ONLY authors WHERE last_name = 'Simon';
 id | last_name | first_name
----+-----------+------------
(0 rows)

Each of the three queries in Example 7-13 look for rows where the last_name column
matches the string constant Simon. The first query selects from the distinguished_authors
table, which the data was originally inserted into (in Example 7-12), and the requested row is
returned.

The second query in Example 7-13 selects from the parent of distinguished_authors, which
is the authors table. Again, a row is retrieved, though this row includes only the columns
which are inherited by the distinguished_authors.

It is important to understand that this data was not literally inserted into both tables, but simply
made visible because of the inheritance relationship. This is illustrated by the third and final
query in Example 7-13, which prefixes the authors table name with the ONLY keyword. This
keyword indicates that rows are not to be received from child tables, but only from the
specified parent; as a result, no rows are returned by the query.

Some constraints may appear to be violated because of the nature of inherited tables. For
example, a column with a UNIQUE constraint placed on it may appear to have the same value
twice by including data from inherited children. Make careful use of constraints and
inheritance, as a child table does not literally violate such a constraint, though it can appear to
if the ONLY keyword is not used when selecting from the parent table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Modifying inherited tables

As covered in the preceding section, adding values into child and parent tables is fairly
straightforward. An insertion of values into a child table will cause values in inherited columns
to appear as values in the parent table, though the data itself physically resides in the child
table. Insertion of values into a parent table has no effect whatsoever on the child table.

Likewise, modifying values in a child table is self-explanatory: only the values in the child
table are modified, while any values literally in the parent table are unmodified. This is
because the data is not literally shared between tables, but can only be viewed through the
hierarchy. A retrieval of rows on the parent table without the ONLY clause will still show both
the parent rows, and the modified child rows.

The effect of modifying existing rows in a parent table is less obvious than the effect of
modifying existing rows in a child table. UPDATE and DELETE statements executed on a parent
table will, by default, affect not only rows in the parent table, but also any child tables that
match the criteria of the statement. Example 7-14 performs an UPDATE statement on the
authors table. Notice that the row data in the distinguished_authors table is actually
affected by this statement.

Example 7-14. Modifying parent and child tables

booktown=# UPDATE authors SET first_name = 'Paul'
booktown-# WHERE last_name = 'Simon';
UPDATE 1
booktown=# SELECT * FROM distinguished_authors;
 id | last_name | first_name | award
-------+-----------+------------+----------------
 25043 | Simon | Paul | Pulitzer Prize
(1 row)

The ONLY keyword can be used with UPDATE and DELETE in a fashion similar to its use with the
SELECT command in order to prevent the type of cascading modification illustrated in Example
7-14. The ONLY keyword should always precede the inherited table name in the SQL syntax.

Example 7-15 demonstrates the use of the ONLY keyword. First, the example inserts a new row
for Dr. Seuss into the distinguished_authors table, along with a reference to his Pulitzer
Prize. This results in the authors table appearing to have two separate entries for the same
author. The old entry (that exists physically in the authors table) is then removed by use of
the DELETE SQL command combined with the ONLY keyword.

Example 7-15. Modifying parent tables with ONLY

booktown=# INSERT INTO distinguished_authors
booktown-# VALUES (1809, 'Geisel',
booktown(# 'Theodor Seuss', 'Pulitzer Prize');
INSERT 3629488 1
booktown=# SELECT * FROM authors
booktown-# WHERE last_name = 'Geisel';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# WHERE last_name = 'Geisel';
 id | last_name | first_name
------+-----------+---------------
 1809 | Geisel | Theodor Seuss
 1809 | Geisel | Theodor Seuss
(2 rows)

booktown=# DELETE FROM ONLY authors
booktown-# WHERE last_name = 'Geisel';
DELETE 1

The end result of Example 7-15 is that the record for Dr. Seuss is added to the
distinguished_authors table, and subsequently removed from the authors table, as follows:

booktown=# SELECT * FROM authors
booktown-# WHERE last_name = 'Geisel';
 id | last_name | first_name
------+-----------+---------------
 1809 | Geisel | Theodor Seuss
(1 row)

booktown=# SELECT * FROM distinguished_authors
booktown-# WHERE last_name = 'Geisel';
 id | last_name | first_name | award
------+-----------+---------------+----------------
 1809 | Geisel | Theodor Seuss | Pulitzer Prize
(1 row)

Prev Home Next
Advanced Features Up Arrays

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 7. Advanced Features Next

Arrays
As documented in Chapter 3, PostgreSQL supports non-atomic values in individual table
columns through data constructs called arrays. An array itself is not a data type, but an
extension of any PostgreSQL data type.

Creating an Array Column
A simple array column is created by appending a pair of square brackets to the data type of the
intended array column within a CREATE TABLE or ALTER TABLE statement. These brackets
indicate that more than a single value of the described data type may be inserted without limit
into that column. For example:

 single_array type[] -- A single array of values.

Additional square brackets may be added to create multidimensional arrays, which may store
an array of array values. For example:

 multi_array type[][] -- A multidimensional array of values.

In theory, an integer value n could be supplied within the square brackets to produce a fixed-
length array (one which always has n members, and no more). As of PostgreSQL 7.1.x,
however, this restriction is not enforced, and there is no practical difference between an array
created with a fixed length and one created without.

Example 7-16 creates a table named favorite_books. This table associates an integer value of
an employee with a one-dimensional character string array of type text called books.

Example 7-16. Creating a table with an array column

booktown=# CREATE TABLE favorite_books
booktown-# (employee_id integer, books text[]);
CREATE

The table created by Example 7-16 allows any number of book titles to be stored in a single
array column, for each employee. The advantage of such an array of discrete text values over a
single text string (which also, of course, could contain multiple titles) is that each title is kept
physically separate from each other title in the array column. Since the system knows where
each array value begins and ends, you can choose titles by their subscript, rather than having
to manually parse them out of a long text string.

Creating a multidimensional array column is very similar. The only distinction is that another
pair of square brackets follows the first pair, as shown earlier in this section. Example 7-17
creates a table called favorite_authors, with an employee_id column of type integer, and
multidimensional text array of author_and_titles. This essentially creates an array of text
arrays.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7-17. Creating a table with a multidimensional array column

booktown=# CREATE TABLE favorite_authors (employee_id integer,
booktown(# authors_and_titles text[][]);
CREATE

Inserting Values into Array Columns
A special kind of syntax is used in order to insert multiple values into a single column. This
syntax allows you to describe an array constant. As documented in Chapter 3, the syntax of an
array constant (for referring to PostgreSQL array values in SQL statements) is a special
arrangement of curly braces, double-quotes and commas, all bound by single-quotes. Double
quotes are required only when working with an array of character strings. Therefore, the
general forms of array constants are:

 '{ "text1" [, ...] }' -- A character string array.
 '{ numeric [, ...] }' -- A numeric array.

These syntax forms illustrate how to handle string and numeric arrays, but a column may be
defined as an array of any arbitrary type (including boolean, date, and time types).
Generally, if you would ordinarily use single-quotes to describe a value in a non-array context
(such as with a string constant, or timestamp value), double-quotes should be used for that
value in an array constant.

Example 7-18 inserts a pair of records into the favorite_books table. The first statement
inserts a single favorite book for the employee with id 102, and the second statement inserts
two titles for the employee with id 103.

Example 7-18 executes two SQL INSERT statements, which insert a pair of array constant
values.

Example 7-18. Inserting array constants

booktown=# INSERT INTO favorite_books VALUES
booktown-# (102, '{"The Hitchhiker\'s Guide to the Galaxy"}');
INSERT 3628399 1
booktown=# INSERT INTO favorite_books VALUES
booktown-# (103, '{"The Hobbit", "Kitten, Squared"}');
INSERT 3628400 1

Notice that, in Example 7-18, curly braces are still required to insert a single value into an
array. Notice also that the single-quote in the title (first INSERT statement) still requires a
backslash preceding it, even though it is surrounded by double-quotes. This is because the
array constant itself is parsed as if it were one long string constant, and subsequently
interpreted as an array based on the context of its target column.

The insertion of values into a multidimensional array requires a pair of curly braces for each
array; an array of arrays must therefore itself be bound in curly braces, while each of its
member arrays should be separated by one another with commas. Example 7-19 inserts a
single row containing a multidimensional array constant into the favorite_authors table,
created in Example 7-17.

Example 7-19. Inserting values into multidimensional arrays

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# INSERT INTO favorite_authors
booktown-# VALUES (102,
booktown(# '{{"J.R.R. Tolkien", "The Silmarillion"},
booktown'# {"Charles Dickens", "Great Expectations"},
booktown'# {"Ariel Denham", "Attic Lives"}}');
INSERT 3727961 1

Notice that the inserted multidimensional array in Example 7-19 contains three text arrays,
which each have two members. There is no systematic relationship between these arrays,
though the implied relationship from the context is that the first members of each array are
authors corresponding to the second members of each array, which are the favorite titles from
the associated author.

Selecting Values From Array Columns
Selecting an array column from a table will result in the entire array being returned in the same
constant format described in the previous section. Example 7-20 retrieves the entire arrays for
inserted rows in the books column of the favorite_books table.

Example 7-20. Selecting entire array values

booktown=# SELECT books FROM favorite_books;
 books
--
 {"The Hitchhiker's Guide to the Galaxy"}
 {"The Hobbit","Kitten, Squared"}
(2 rows)

While it is helpful to be able to return the entire array, the ability to retrieve only a specific
portion of an array is often more useful. To this end, you need to learn how to work with array
subscripts and slices.

Array subscripts

The usefulness of arrays lies largely in the fact that you can use subscripts to specify the value
that you wish to view. A subscript is an integer value surrounded by square brackets, that
describes the value you want to select. This number describes the precedence of the value you
wish to select, from left to right in the array.

Unlike arrays in programming languages such as C, PostgreSQL begins counting array
elements at 1, not 0. Example 7-21 uses the [1] subscript on the books column of the
favorite_books table to select only the first of an employee's favorite titles. Notice that the
query returns values without braces or double-quotes. This is because a single text value need
only be returned as a single text constant, not as an array.

Example 7-21. Selecting array values with subscripts

booktown=# SELECT books[1] FROM favorite_books;
 books

 The Hitchhiker's Guide to the Galaxy
 The Hobbit
(2 rows)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(2 rows)

Specifying a subscript for an array element which holds no value results in a NULL value being
selected. The IS NOT NULL keywords may be useful in conjunction with such selections.
Example 7-22 demonstrates two queries; the first returns two rows, NULL value as well as a
title. The second query only returns the title (and not the row with the NULL value as a result of
its use of the WHERE clause, with the IS NOT NULL condition.

Example 7-22. Avoiding NULL values in arrays

booktown=# SELECT books[2] FROM favorite_books;
 books

 Kitten, Squared
(2 rows)

booktown=# SELECT books[2] FROM favorite_books
booktown-# WHERE books[2] IS NOT NULL;
 books

 Kitten, Squared
(1 row)

Selecting from a multidimensional array requires an additional subscript following the initial
subscript. The first subscript refers to which array that you are retrieving data from, while the
second subscript refers to which member of the specified array is to be retrieved. Example 7-
23 demonstrates selecting the first author, and associated title for that author, from the
favorite_authors table created in Example 7-19.

Example 7-23. Selecting From a Multi-Dimensional Array

booktown=# SELECT authors_and_titles[1][1] AS author,
booktown-# authors_and_titles[1][2] AS title
booktown-# FROM favorite_authors;
 author | title
----------------+------------------
 J.R.R. Tolkien | The Silmarillion
(1 row)

Array slices

PostgreSQL also supports slices in array selection. These are similar to array subscripts, but
describe a range of values to be returned. The syntax of a slice is a pair of integers, separated
by a colon (:), surrounded by square brackets. For example, [2:5] specifies the second, third,
fourth, and fifth array values of a given array. The result of a slice selection is returned as an
array constant that is essentially a sub-array of the entire array (though a slice may extend
from the beginning to the end of an array).

Example 7-24 selects the range of the first two book titles in the books test array column from
the favorite_books table. Even though the first returned row has only one title, it is still
returned as an array with one member value.

Example 7-24. Selecting array values with slices

booktown=# SELECT books[1:2] FROM favorite_books;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SELECT books[1:2] FROM favorite_books;
 books
--
 {"The Hitchhiker's Guide to the Galaxy"}
 {"The Hobbit","Kitten, Squared"}
(2 rows)

Array slices can be somewhat unpredictable with multidimensional arrays as of PostgreSQL
7.1.x. It is therefore recommended to stick to exact subscript values when working with
multidimensional arrays until this support is improved.

Array dimensions

It can be useful to know the number of values stored in an array. You may use the
array_dims() function to accomplish this. It accepts as a parameter a single identifier, which
is the name of the array column that you wish to perform the function on. The result is
returned as a character string describing the array with the same syntax used in array slices.
Example 7-25 calls the array_dims() function on the books column of the favorite_books
table.

Example 7-25. Using array_dims( )

booktown=# SELECT array_dims(books) FROM favorite_books;
 array_dims

 [1:1]
 [1:2]
(2 rows)

Updating Values in Array Columns
Values in array columns may be modified in one of three ways:

Complete modification

The entire array may be replaced with a new array constant.

Slice modification

A slice of an array (range between two values) may be replaced with a new array
constant. The new array constant should have the same number of values within it as the
splice to be updated.

Element modification

An individual value in the array may be replaced with a new constant of the base type of
the array. You use a subscript to specify which array value to replace.

Replacing an array value with a new array puts no restriction on the number of values within
the new array. There need not be the same number of values in the new array as in the existing
one. For instance, suppose that the employee with id 102 wishes to add another favorite book
to his list in the favorite_books table. This is achieved with an UPDATE statement in Example
7-26 which completely overwrites the previous value.

Example 7-26. Completely modifying an array

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# UPDATE favorite_books
booktown-# SET books='{"The Hitchhiker\'s Guide to the Galaxy",
booktown'# "The Restaurant at the End of the Universe"}'
booktown-# WHERE employee_id = 102;
UPDATE 1

The same approach used in Example 7-26 can be used to set a slice of an array by attaching a
slice descriptor to the end of the target identifier (e.g., books[1:3] would refer to the first,
second and third values in the books array column). More commonly, though, situations arise
where a single value within an array needs to be modified, instead of the entire array, or a slice
of an array.

Updating a single value in an array is done by attaching a subscript to the target identifier to
indicate the specific value to be modified. Example 7-27 updates the first array value of the
books column, in the favorite_books table.

Example 7-27. Modifying an array subscript

booktown=# SELECT books[1] FROM favorite_books;

 books
--
 The Hitchhiker's Guide to the Galaxy
 The Hobbit
(2 rows)

booktown=# UPDATE favorite_books
booktown-# SET books[1] = 'There and Back Again: A Hobbit\'s Holiday'
booktown-# WHERE books[1] = 'The Hobbit';
UPDATE 1
booktown=# SELECT books[1] FROM favorite_books;

 books
--
 The Hitchhiker's Guide to the Galaxy
 There and Back Again: A Hobbit's Holiday
(2 rows)

Prev Home Next
Advanced Table Techniques Up Automating Common Routines

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 3. Understanding SQL Next

SQL Statements
Conceptual information on relational databases and tables is of course entirely moot if you
don't have any idea of how to directly interact with your data. From a general perspective,
SQL consists entirely of structured statements, with which all data in the database is added,
modified, and removed. These statements form the basis for your communication with the
PostgreSQL server.

The following sections dissect the anatomy of a SQL statement into its structural pieces,
explaining the significance of each, and their relation to one another. The standard
PostgreSQL command-line client, psql, provides output to display example PostgreSQL
statements.

Our SQL examples commonly take place within an example database called booktown, the
database for our imaginary bookstore, Book Town. The output from psql is consistently
prefixed with a default prompt style, which looks like this:

booktown=#

Some simpler examples may use our generic test database, testdb, if not specific to the Book
Town examples. By default, the psql prompt displays only the name of the connected database
and the =# characters indicating that the system is ready for a new command (though you will
see that the = symbol will change dynamically as psql tracks the status of SQL input). We
display this prompt along with the SQL input and output in order to help familiarize you with
the psql output.

Chapter 4 documents psql in more detail, and it is only mentioned here to explain the source
and style of this book's SQL examples using PostgreSQL.

Note: The schema (with sample data) for the booktown database can be found in
the booktown.sql file, on the CD-ROM. To install this database, type psql -U
postgres template1 -f /mnt/cdrom/booktown.sql from the command line (where
/mnt/cdrom is the path to your mounted CD, and postgres is your PostgreSQL
superuser).

The Anatomy of a SQL Statement
SQL statements always begin with a command (a word, or group of words, that describes what
action the statement will initiate). The command can be called the verb of the SQL statement,
as it always describes an action to be taken. Statements typically contain one or more clauses,
which are formal modifiers that further describe the function of the SQL statement.

Table 3-2 contains a list of some of the most commonly used PostgreSQL commands.

Table 3-2. Fundamental PostgreSQL commands

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Command Description
CREATE DATABASE Creates a new database
CREATE INDEX Creates a new index on a table column
CREATE SEQUENCE Creates a new sequence in an existing database
CREATE TABLE Creates a new table in an existing database
CREATE TRIGGER Creates a new trigger definition
CREATE VIEW Creates a new view on an existing table
SELECT Retrieves records from a table
INSERT Adds one or more new records into a table
UPDATE Modifies the data in existing table records
DELETE Removes existing records from a table
DROP DATABASE Destroys an existing database
DROP INDEX Removes a column index from an existing table
DROP SEQUENCE Destroys an existing sequence generator
DROP TABLE Destroys an existing table
DROP TRIGGER Destroys an existing trigger definition
DROP VIEW Destroys an existing table view
CREATE USER Adds a new PostgreSQL user account to the

system
ALTER USER Modifies an existing PostgreSQL user account
DROP USER Removes an existing PostgreSQL user account
GRANT Grant rights on a database object to a user
REVOKE Deny rights on a database object from a user
CREATE FUNCTION Creates a new SQL function within a database
CREATE LANGUAGE Creates a new language definition within a

database
CREATE OPERATOR Creates a new SQL operator within a database
CREATE TYPE Creates a new SQL data type within a database

While obviously code-like in nature, SQL was designed with ease of use and readability in
mind. As a result, SQL statements often bear a strong resemblance to simple, instructional
English sentences. A strong feature of SQL is that its statements are designed to instruct the
server what data to find, not literally how to find it, as you would be forced to do in an
ordinary programming language. Reading a well-designed SQL query should be nearly as
easy as reading an ordinary sentence.

Note: In SQL texts, the word query is frequently used interchangeably with
statement. In order to be clear, within this book the term query is used only to
refer to statements which return data (e.g., SELECT statements), rather than
general SQL statements, which may instead create, add, or modify data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Internally, PostgreSQL interprets structured SQL statements as a sequence of tokens, usually
delimited by whitespace (spaces or newlines, outside of quotes), though some tokens may be
placed adjacently if there is no chance of ambiguity (such as when operators are placed
directly next to identifiers). A token in this context is a word or character that can be identified
meaningfully by the server when the SQL statement is parsed, or interpreted.

Technically, each token can either be considered a keyword, an identifier, a quoted identifier, a
constant (also called a literal ), or one of several special character symbols. Keywords are
words PostgreSQL recognizes as words with pre-defined SQL or PostgreSQL-specific
meanings; these include SQL commands, clauses, function names, and special noise terms,
which are often accompanied optionally with SQL commands (e.g., the noise term WORK in the
COMMIT command). In contrast, identifiers represent variable names for tables, columns, and
any other database object.

Both keywords and identifiers reference internally defined functions, values, or records, as far
as PostgreSQL is concerned. Constants, on the other hand, describe pieces of data that are
interpreted literally, such as a number or character string.

Finally, a SQL statement contains special character symbols. These are reserved characters
(such as parentheses, the semicolon, and square brackets) that logically affect the meaning and
arrangement of your keywords, identifiers, and literals. You can think of these characters as
the punctuation for your SQL statements.

Operators fall under the category of special character symbols; they can be used to imply
logical operations or evaluations between data values (either literals, or represented by
identifiers), and are generally between one and four characters in length.

The following sections explain and expand upon the nature of these elementary components of
SQL.

Token Formatting Considerations
As described in the preceding section, each sequential element of a SQL statement is
considered a token. What may not be immediately clear, however, is that tokens may be kept
all on the same line, or they may be split across several lines, as extra whitespace is ignored by
PostgreSQL's parser.

Consider the SQL statement in Example 3-1, which is executed first on a single line, and then
executed again, split across two separate lines. Both SELECT statements instruct the database to
display the entire contents of the my_list table:

Example 3-1. Spaces and newlines

testdb=# SELECT * FROM my_list;
 todos
--
 Pick up laundry.
 Send out bills.
 Wrap up Grand Unifying Theory for publication.
(3 rows)

testdb=# SELECT *

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

testdb=# SELECT *
testdb-# FROM
testdb-# my_list;
 todos
--
 Pick up laundry.
 Send out bills.
 Wrap up Grand Unifying Theory for publication.
(3 rows)

In Example 3-1 there are several newlines and spaces between the second statement's tokens.
As you can see by the identical output, PostgreSQL ignores the extra newlines and spaces,
making both statements semantically equivalent. You can take advantage of this behavior by
splitting a long string of tokens across numerous lines for improved readability of your SQL
statement. This probably isn't necessary for statements as simple as those in Example 3-1, but
it can be quite helpful when dealing with complex SQL statements with numerous clauses,
expressions, and conditions. Throughout this book we will periodically split some statements
over several lines to help show what each part of the statement is intended to accomplish.

Keywords and Identifiers
Keywords are any reserved SQL terms which have a reserved syntactic meaning to the server.
Some common keywords are INSERT, UPDATE, SELECT, and DELETE.

All SQL commands are keywords, though many keywords themselves are not complete
commands. For instance, the command INSERT INTO is a valid SQL command, and the word
INTO is a reserved keyword. As you might guess, however, the word INTO has no particular
significance when used out of context.

Identifiers, as described earlier, are variable names that reference database objects. These
names are arbitrarily designated by the creator of the database object upon creation. The
objects which can be referred to by identifiers in PostgreSQL may be databases, tables,
columns, indices, views, sequences, rules, triggers, or functions.

Example 3-2 adds three pieces of information about Oregon into a simple table called states.

Example 3-2. Keywords and commands

booktown=# INSERT INTO states VALUES (33, 'Oregon', 'OR');
INSERT 3389701 1

In Example 3-2, the INSERT INTO SQL command makes use of the SQL keywords INSERT,
INTO, and VALUES.

The INSERT INTO command modifies the table referenced by the states identifier. The
modification in this case is the insertion of a new record.

Quoted identifiers

While not normally required, quotes can be used around identifiers, meaning they should be
interpreted literally. For example, if we want to view each of the columns from a table called
states, a simple statement to achieve this would ordinarily read:

booktown=# SELECT * FROM states;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SELECT * FROM states;
 id | name | abbreviation
----+------------+--------------
 33 | Oregon | OR
 42 | Washington | WA
(2 rows)

The keywords in this statement are SELECT and FROM, while the identifiers are the asterisk *
(indicating all columns), and states (the table name). With this command, we are selecting all
columns from a table named states and thereby viewing its contents.

You can accomplish the same thing by putting quotes around the identifier, with the following
statement:

booktown=# SELECT * FROM "states";
 id | name | abbreviation
----+------------+--------------
 33 | Oregon | OR
 42 | Washington | WA
(2 rows)

As you can see, the output is identical when applying quotes to a lowercase identifier.
However, the following statement, which uses quotes around the stAtes identifier, will fail:

booktown=# SELECT * FROM "stAtEs";
ERROR: Relation 'stAtEs' does not exist

This statement fails because it instructs PostgreSQL to look for a table called, literally, stAtEs
(rather than states). In other words, with the use of quotes, the statement has explicitly
requested that PostgreSQL interpret the identifier name literally.

All non-quoted identifiers are folded, or converted, to lowercase. When specifying stAtEs, or
STATES (i.e., any combination of uppercase or lowercase letters) without quotes, PostgreSQL
automatically converts the identifier to lowercase (states) before processing the statement.

Note: The folding of unquoted identifiers to lowercase names is a PostgreSQL-
specific convention. The SQL92 standard specifies that unquoted identifiers
always be converted to uppercase. For both legacy and readability reasons,
PostgreSQL does not intend to move to this part of the SQL92 standard.

This should be of special note to database administrators familiar with other SQL
products, such as Oracle, who expect case to automatically change to uppercase.
If you are a developer, and you are interested in writing easily portable
applications, be sure to consider this case issue to avoid conflicts over this
convention.

Since the parser can still read and understand mixed-case statements (provided that they are
formed with the correct syntax), you should use uppercase and lowercase terminology
carefully. Your use of case can both help and hinder your efficiency when working with a
large amount of SQL.

We recommend that, for readability, you try typing identifiers in lowercase and keywords in
uppercase, the convention used throughout this book. By visually separating the fixed,
systematic terminology from the user-defined data objects, you make it a great deal easier to
quickly read and understand complex SQL statements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When quotes are required

The only instances where you are required to use quotes are either when a database object's
identifier is identical to a keyword, or when the identifier has at least one capitalized letter in
its name. In either of these circumstances, you must remember to quote the identifier both
when creating the object, as well as in any subsequent references to that object (e.g., in
SELECT, DELETE, or UPDATE statements).

If you do not quote an identifier that is spelled identically to an existing keyword, PostgreSQL
will return an error message because it interprets the intended identifier as a keyword. For
instance, if you had a table whose name was literally select, you would get an error message
if you tried querying it with the following statement:

testdb=# SELECT * FROM select;
ERROR: parser: parse error at or near "select"

As you can see, an unquoted query on a table called select produces an error message. To
specify that select is in fact a table, and not a keyword, it needs to be placed inside of quotes.
Therefore, the correct syntax to view a table named select is as follows.

testdb=# SELECT * FROM "select";
 selected

 0
 1
 52
 105
(4 rows)

Remember that any identifiers with at least one capitalized letter must be treated similarly. For
example, if you've for some reason created a table named ProDucts (notice the capitalized "P"
and "D"), and you want to destroy it (as you probably should, with a name like that!), then
once again the identifier needs to be quoted in order to accurately describe its name to
PostgreSQL, as follow:

booktown=# DROP TABLE ProDucts;
ERROR: table "products" does not exist
booktown=# DROP TABLE "ProDucts";
DROP

This technique can be extremely useful in some circumstances, even if you never name
database objects with these criteria yourself. For example, importing data through an external
ODBC connection (e.g., via Microsoft Access) can result in table names with all capitalized
letters. Without the functionality of quoted identifiers, you would have no way to accurately
reference these tables.

Identifier validity

Both keywords and identifier names in PostgreSQL have a maximum length limit of 31
characters. Parsed keywords or identifiers over that length limit are automatically truncated.
Identifiers may begin with any letter (a through z), or with an underscore, and may then be
followed by letters, numbers (0 through 9), or underscores. While keywords are not permitted
to start or end with an underscore, identifier names are permitted to do so. Neither keywords

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to start or end with an underscore, identifier names are permitted to do so. Neither keywords
nor identifiers should ever begin with a number.

In the Section called When quotes are required" we described how quoted identifiers could be
used to "overrule" the case insensitivity of identifiers by placing quotes around them. The
same rule-bending can apply to the assertion that an identifier cannot begin with a number.
While PostgreSQL will not allow you to create a table using the name 1st_bent_rule without
quotes, the name is acceptable if it is surrounded with quotes.

Example 3-3 first fails in trying to create an illegally named table. It then proceeds to bend the
rules with quotes.

Example 3-3. Bending rules

booktown=# CREATE TABLE 1st_bent_rule (rule_name text);
ERROR: parser: parse error at or near "1"
booktown=# CREATE TABLE "1st_bent_rule" (rule_name text);
CREATE

Furthermore, while quotes themselves are, of course, not allowed within the set of quotes to
refer to a table name, other normally illegal characters are allowed, such as spaces and
ampersands. Take note that while the ANSI/ISO SQL standard forbids using identifiers with
the same names as SQL keywords, PostgreSQL (like many other SQL implementations) has a
similarly relaxed view on this, allowing you to force such names with quoted identifiers.

Remember that while the use of quotes can be a useful trick to know for unusual
circumstances, if you wish to design portable, standard SQL statements and relations, it is best
to adhere to ANSI/SIO standards whenever possible.

Constants
While much of the data in working with a database is stored on the disk and referred to via
identifiers (e.g., table names, column names, and functions), there are obviously times when
new data must be introduced to the system. This may be observed when inserting new records,
when forming clauses to specify criteria to delete or modify, or even when performing
calculations on existing records. This data is input through constants, which are sometimes
called literals because they literally represent a value in a SQL statement (rather than
referencing an existing value by identifier).

An implicitly typed constant is one whose type is recognized automatically by PostgreSQL's
parser merely by its syntax. PostgreSQL supports five types of implicitly typed constants:

String

Bit string

Integer

Floating point

Boolean

String constants

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A string constant is an arbitrary sequence of characters bound by single quotes (apostrophes).
These are typically used when inserting character data into a table or passing character data to
any other database object. A practical example of the necessity of string constants is updating
the first and last names of authors in Book Town's authors table:

booktown=# SELECT * FROM authors;
 id | last_name | first_name
-------+-----------+------------------
 1809 | Geisel | Theodor Seuss
 1111 | Denham | Ariel
 15990 | Bourgeois | Paulette
 25041 | Bianco | Margery Williams
 16 | Alcott | Luoisa May
 115 | Poe | Edgar Allen
(6 rows)

Looking at this table's contents, it might stand out to you that the first_name with id 16,
Louisa May has been misspelled as Luoisa May. To correct this, an UPDATE statement can be
made with a string constant, as shown in Example 3-4.

Example 3-4. Using string constants

booktown=# UPDATE authors
booktown-# SET first_name = 'Louisa May'
booktown-# WHERE first_name = 'Luoisa May';
UPDATE 1
booktown=# SELECT * FROM authors;
 id | last_name | first_name
-------+-----------+------------------
 1809 | Geisel | Theodor Seuss
 1111 | Denham | Ariel
 15990 | Bourgeois | Paulette
 25041 | Bianco | Margery Williams
 15 | Poe | Edgar Allen
 16 | Alcott | Louisa May
(6 rows)

The UPDATE statement made in Example 3-4 uses the string constants Louisa May and Luoisa
May in conjunction with the SET and WHERE keywords. This statement updates the contents of
the table referenced by the authors identifier and, as shown, corrects the misspelling.

The fact that string constants are bound by single quotes presents an obvious semantic
problem, however, in that if the sequence itself contains a single quote, the literal bounds of
the constant are made ambiguous. To escape (make literal) a single quote within the string,
you may type two adjacent single quotes. The parser will interpret the two adjacent single
quotes within the string constant as a single, literal quote. PostgreSQL will also allow single
quotes to be embedded by using a C-style backslash:

testdb=# SELECT 'PostgreSQL''s great!' AS example;
 example

 PostgreSQL's great!
(1 row)

booktown=# SELECT 'PostgreSQL\'s C-style slashes are great!' AS example;
 example

 PostgreSQL's C-style slashes are great!
(1 row)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(1 row)

PostgreSQL also supports the C-style "backslash escape" sequences, which are listed in Table
3-3.

Table 3-3. PostgreSQL supported C-style escape sequences

Escape sequence Description
\\ Literal backslash
\' Literal apostrophe
\b Backspace
\f Form feed
\n Newline
\r Carriage return
\t Tab
\xxx ASCII character with the corresponding octal number

xxx

Warning
As a result of the backslashes' special meaning described in Table 3-3, in order to include a
backslash in the string you must escape it using a another backslash (e.g., 'A single
backslash is: \\' will transform the pair of backslashes into a single backslash).

When entering two quoted character strings to PostgreSQL that are separated by some amount
of whitespace, and where that whitespace includes at least one newline, the strings are
concatenated and viewed as if they had been typed as one constant. This is illustrated in
Example 3-5.

Example 3-5. Multiline string constants

booktown=# SELECT 'book'
booktown-#
booktown-# 'end' AS example;
 example

 bookend
(1 row)

booktown=# SELECT 'bookend' AS example;
 example

 bookend
(1 row)

As you can see, the semantics of the two statements is equivalent. However, at least one
newline is required for this interpretation to be possible, as spaces alone would result in the
following error:

booktown=# SELECT 'book' 'end' AS mistake;
ERROR: parser: parse error at or near "'"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ERROR: parser: parse error at or near "'"

This error occurs because without a newline, PostgreSQL will assume that you are referring to
two separate constants. If you wish to concatenate two string constants this way on a single
line, PostgreSQL supports the || operator for text concatenation (see Chapter 5, for more
details on this operator).

booktown=# SELECT 'book' || 'end' AS example;
 example

 bookend
(1 row)

Bit string constants

Bit string constants provide a way to directly represent a binary value with an arbitrary
sequence of ones and zeroes. Similarly to string constants, they are bound by single quotes,
but they also must be preceded by a leading B character (which may be uppercase or
lowercase). This character identifies to PostgreSQL that the forthcoming constant is a bit
string, and not a normal string of character data.

Syntactically, the opening single quote must follow immediately after the leading B, and the
bit string may not contain any character other than 0 or 1. While there cannot be whitespace
within this string of bits, it can be continued across multiple lines just like regular string
constants, as documented in the Section called String constants."

Bit string constants are generally only useful when working with tables or functions that
require binary values. Example 3-6 demonstrates the use of a bit string constant upon a simple
table containing raw bytes. A bit string byte is inserted into a list of bytes in the my_bytes
table, and insertion is verified with a simple query.

Example 3-6. Using bit string constants

testdb=# INSERT INTO my_bytes VALUES (B'00000000');
testdb=# SELECT my_byte FROM my_bytes;
 my_byte

 10000000
 10000001
 10000101
 11111111
 00000000
(5 rows)

Integer constants

Integer constants are far more frequently used than bit string constants. PostgreSQL identifies
an integer constant as any token that consists solely of a sequence of numbers (without a
decimal point) and that is outside of single-quotes. Technically, SQL defines integer constants
as a sequence of decimal digits with no decimal point. The range of values available for an
integer constant depends largely on the context within which it is used, but PostgreSQL's
default for the integer data type is a 4-byte signed integer, with range from –2147483648 to
2147483647.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Integer constants are used anywhere you wish to represent a literal integer value. They are
used frequently within mathematical operations, as well as in SQL commands that reference a
column with an integer data type. Example 3-7 is a simple demonstration of the use of integer
constants to update an author's numeric identifier via an UPDATE command.

Consider once again the authors table used in previous sections, which correlates a numeric
author identifier with two character strings representing the author's first and last name.
Suppose that, for administrative reasons, it has been deemed necessary that any author with an
identifier of less than 100 must be modified to a value of more than 100.

The first step to correct this would be to locate any author with such an id value. An integer
constant can first be used in a SELECT statement's WHERE clause to perform a less-than
comparison to check.

Example 3-7. Using integer constants

booktown=# SELECT * FROM authors WHERE id < 100;
 id | last_name | first_name
-------+-----------+------------------
 16 | Alcott | Louisa May
(1 row)

booktown=# SELECT * FROM authors WHERE id = 116;
 id | last_name | first_name
-------+-----------+------------------
(0 rows)

booktown=# UPDATE authors
booktown-# SET id = 116
booktown-# WHERE id = 16;
UPDATE 1
booktown=# SELECT * FROM authors WHERE id = 116;
 id | last_name | first_name
-------+-----------+------------------
 116 | Alcott | Louisa May
(1 row)

In Example 3-7, the WHERE clause in the SELECT statement compares the id column identifier
against an integer constant of 100, returning one row. Once the author with the offending id is
found, a second SELECT statement is issued to check for an existing author with an id of 116.
This is to verify that the new id is not in use by another author within the authors table, as
this column has been specified as requiring a unique identifier. Finally, an UPDATE statement is
executed, again using integer constants in both the SET and WHERE clauses.

Floating-point constants

A floating-point constant is similar to an integer constant, but it is used to represent decimal
values as well as whole integers. These are required whenever such a floating-point value
must be represented literally within a SQL statement.

A floating-point constant can be represented in several forms, as shown in Table 3-4. Each
occurrence of ## represents one or more digits.

Table 3-4. Floating-point representations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Representation Example
##.## 6.4
##e[+-]##] 8e-8
[##].##[e[+-
]##]

.04e8

##.[##][e[+-
]##]

4.e5

In the first form, there must be at least one digit before or after the decimal point for
PostgreSQL to recognize the value as a floating-point constant versus an integer constant. The
other options involve having at least one digit before or after an exponent clause, denoted by
the e in the list. The presence of either the decimal point, the exponent clause, or both,
distinguishes an integer constant from a floating-point.

Each of these valid formats is represented in Example 3-8 through a simple SQL SELECT
statement illustrating a variety of floating-point conventions.

Example 3-8. Valid floating-point values

booktown=# SELECT .04 AS small_float,
booktown-# -16.63 AS negative_float,
booktown-# 4e3 AS exponential_float,
booktown-# 6.1e-2 AS negative_exponent;
 small_float | negative_float | exponential_float | negative_exponent
-------------+----------------+-------------------+-------------------
 0.04 | -16.63 | 4000 | 0.061
(1 row)

Boolean constants

Boolean constants are much simpler than any other constant values recognized by
PostgreSQL, as they may consist only of two possible values: true and false. When
PostgreSQL encounters either of these terms outside of single quotes, they are implicitly
interpreted as Boolean constants, rather than a string constant. Example 3-9 shows this
important distinction.

Example 3-9. The difference between true and 'true'

testdb=# SELECT true AS boolean_t,
testdb-# 'true' AS string_t,
testdb-# false AS boolean_f,
testdb-# 'false' AS string_f;
 bool_t | string_t | bool_f | string_f
--------+----------+--------+----------
 t | true | f | false
(1 row)

When the terms true and false are parsed by PostgreSQL outside of single quotes, they are
implied Boolean values. As shown in Example 3-9, PostgreSQL displays values which are
literally of the type boolean as t or f, though be careful not to try to use only t or f as
Boolean constant values, as this will not be interpreted correctly by PostgreSQL, and will
cause an error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Special Character Symbols
Special character symbols are characters with a pre-defined syntactic meaning in PostgreSQL.
They are typically disallowed from being used in identifier names for this reason, though as
mentioned in the section on quoted identifiers, this restriction can usually be worked around
with quotes if need be.

Punctuation symbols

Some special character symbols help to make up the "punctuation" of a SQL statement, much
like parentheses, periods and commas do in the English language. Table 3-5 shows some
common PostgreSQL-recognized syntactic symbols.

Table 3-5. Punctuation Symbols

Character Definition
* (asterisk) Used with the SELECT command to query all columns in the

table, and with the count() aggregate function to count all
rows in a table.

() (parentheses) Used to group expressions, enforce operator precedence, and
to make function calls. The use of parentheses is highly
subjective to the context in which they are used.

[] (brackets) Used in the selection of specific elements in an array, or in the
declaration of an array type (e.g., with the CREATE TABLE
command).

; (semicolon) Used to terminate a SQL command. The only place it can be
used within a statement is within a string constant or quoted
identifier.

, (comma) Some commands use the comma to separate elements within a
list.

. (period) Used in floating-point constants (e.g., 3.1415), as well as to
reference column names as children of tables (e.g.,
table_name.column_name).

: (colon) Used to select slices from arrays.
$ (dollar sign) Used in the body of a function definition to represent a

positional parameter, or argument.

Operator symbols

An operator is another type of special character symbol; it is used to perform operations on
identifiers or constants, returning resultant values. Operators can be used for mathematical
operations, such as addition, as well as to perform comparison and logical operations.

Consider again the books table, and its numeric author_id field. Recall that the author_id

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Consider again the books table, and its numeric author_id field. Recall that the author_id
column is an integer used to identify an author. Now imagine that, due to a system
modification, all author identifiers must be incremented by 1,500. This can be achieved by
evaluating the result of an operation (an operator expression) in an UPDATE statement upon the
author_id column. This requires use of the addition (+) operator. An example of this can be
seen in Example 3-10.

Example 3-10. Operators in statements

booktown=# SELECT * FROM books;
 id | title | author_id | subject_id
------+-----------------------------+-----------+------------
 7808 | The Shining | 4156 | 9
 156 | The Tell-Tale Heart | 15 | 9
 4513 | Dune | 1866 | 15
 4267 | 2001: A Space Odyssey | 2001 | 15
 1608 | The Cat in the Hat | 1809 | 2
 1590 | Bartholomew and the Oobleck | 1809 | 2
(6 rows)

booktown=# UPDATE books SET author_id = author_id + 1500;
UPDATE 6
booktown=# SELECT * FROM books;
 id | title | author_id | subject_id
------+-----------------------------+-----------+------------
 7808 | The Shining | 5656 | 9
 156 | The Tell-Tale Heart | 1515 | 9
 4513 | Dune | 3366 | 15
 4267 | 2001: A Space Odyssey | 3501 | 15
 1608 | The Cat in the Hat | 3309 | 2
 1590 | Bartholomew and the Oobleck | 3309 | 2
(6 rows)

As you can see in Example 3-10, each author_id record is modified with the results of the +
operator's operation upon the previous author_id value.

Common operators that you are may already familiar with include the basic mathematical
operators: the + sign for the addition of two numeric values, the - sign for the subtraction of
one numeric value from another, etc. Some of the more esoteric operators include the bitwise &
and | operators, which modify binary values at the bit level.

In addition to these character symbol operators, it's important to remember the SQL keywords,
which are frequently called operators as well. Most notably, this includes the logical operators
AND, OR, and NOT. While technically keywords, these terms are grouped with the operators
because of their operational effect upon constants and identifiers.

Table 3-6 lists some fundamental PostgreSQL operators.

Table 3-6. Fundamental PostgreSQL operators

Category Operator Definition
Mathematical
operators

+ (addition) Adds two
numeric
types

- (subtraction) Subtracts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

one
numeric
type from
another

/ (division) Divides
one
numeric
type by
another

*
(multiplication)

Multiplies
one
numeric
type by
another

! (factorial) Returns an
integer's
factorial

@ (absolute
value)

Returns the
absolute
value of a
numeric
value

Comparison
operators

= (equivalence) Compares
two values
for
equivalence

< (less than) Evaluates
whether or
not one
number is
less than
another

> (greater than) Evaluates
whether or
not one
number is
larger than
another

~ (regular
expression)

Performs a
regular
expression
comparison
on text
values

Logical
operators

AND Returns
true if both

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Boolean
conditions
are true

OR Returns
true if at
least one of
two
Boolean
conditions
is true

NOT Returns the
opposite of
a Boolean
condition

While many operators have various connotations depending on their context, the = operator is
an especially important one due to its meaning when used with an UPDATE statement's SET
clause.

While in most expressions the = operator is an equivalence operator (used to compare two
values for equivalence), when following the SET clause and an identifier name in an UPDATE
statement, the = is read as an assignment operator. This means that it is used to assign a new
value to an existing identifier, as the SET term implies.

For more information on operators, see the Section called Operators in Chapter 5."

Comments
Comments are blocks of text that, through special character sequences, can embed non-SQL
text within SQL code. These can be used within blocks of code, because PostgreSQL removes
the commented areas from the input stream and treats it as whitespace. There are two styles of
comments available: single-line comments, and multiline comments.

Single-line comments are preceded by two dashes (- -) and may either be on a line by
themselves, or they may follow valid SQL tokens. (The comments themselves are not
considered tokens to PostgreSQL's parser, as any character data following the - - sequence, up
to the end of the line, is treated as whitespace.) This is demonstrated in Example 3-11.

Example 3-11. Single-line comments

testdb=# SELECT 'Test' -- This can follow valid SQL tokens,
testdb-# -- or be on a line of it own.
testdb-# AS example;
 example

 Test
(1 row)

Multiline comments begin with a sequential slash-asterisk (/*) sequence, and terminate with a
sequential asterisk-slash (*/) sequence. This style of commenting may already be familiar to C
programmers, but there is one key difference between PostgreSQL's interpreter and the C
language interpreter: PostgreSQL comments may be nested. Therefore, when you create a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

language interpreter: PostgreSQL comments may be nested. Therefore, when you create a
multiline comment within another multiline comment, the */ used to close the inner comment
does not also close the outer comment. Example 3-12 provides a comment explanation.

Example 3-12. Multiline comments

testdb=# SELECT 'Multi' /* This comment extends across
testdb*# * numerous lines, and can be
testdb*# * /* nested safely */ */
testdb-# || '-test' AS example;
 example

 Multi-test
(1 row)

Nesting comments can be useful if you have a file containing SQL syntax of which you wish
to comment a large portion before sending to PostgreSQL for interpreting and execution. If
you have already used multiline comments within that document and you wish to comment a
large section which includes those comments, PostgreSQL is intelligent enough to recognize
that a closing comment sequence (*/) closes only the most recently opened comment, not the
entire commented region.

Note: The asterisk character by itself (without an adjacent slash character) has no
special meaning within a comment. The extra asterisks in Example 3-12 on
multiline comments are provided only for aesthetic purposes and readability.

Putting It All Together
In summary, a SQL statement is comprised of tokens, where each token can represent either a
keyword, identifier, quoted identifier, constant, or special character symbol. Table 3-7 uses a
simple SELECT statement to illustrate a basic, but complete, SQL statement and its
components.

Table 3-7. A simple SQL query

SELECT id, name FROM states
Token Type Keyword Identifiers Keyword Identifier
Description Command Id and name

columns
Clause Table name

As shown in the table, the SELECT statement contains the keywords SELECT and FROM.
Together, the FROM keyword and states token compose a clause, as they modify and further
describe the SELECT command.

The id, name, and states tokens are the identifiers of the statement. The id and name
identifiers specify the selected columns, while the states identifier specifies the table name to
select from. Therefore, with the preceding SQL query, you are instructing PostgreSQL to
display the columns named id and name for each row from the states table. Example 3-13
shows the output this query generates within the booktown database.

Example 3-13. Example SQL query

booktown=# SELECT id, name FROM states;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SELECT id, name FROM states;
 id | name
----+------------
 42 | Washington
 51 | Oregon
(2 rows)

booktown=#

Getting more complicated, Table 3-8 and Table 3-9 break down another example statement.
This statement uses the UPDATE command, along with SET and WHERE clauses, which
respectively specify with what to update the records, and how to find the records to update.

Table 3-8. UPDATE example: the SET clause

UPDATE states SET id = 51
keyword identifier keyword identifier operator integer

constant
command table name clause column assignment new id value

Table 3-9. UPDATE example: the WHERE clause

WHERE name = 'Oregon'
keyword identifier operator string constant
clause column name equivalence string value to match

When executed, this statement examines each record's name column to find matches for the
WHERE clause's stated condition (equivalence to the string constant 'Oregon'). Then, for each
row which matches that condition, it updates the id column with the value 51.

Breaking it down, this UPDATE statement has three keywords, three identifiers, two operators,
and two constants. The keywords are UPDATE (the SQL command), SET (specifies the updates
to make), and WHERE (identifies the rows to update). The identifiers are the states table name,
the id column name, and the name column name.

The operators are both represented by the = operator. When used with the SET clause, this
operator is used for assignment (to assign a new value to an existing record's identified
column); this is a special use which is unique to the SET clause. In contrast, when used with
the WHERE clause, the = operator is used to check equivalence between values. In this case, this
means that the equivalence operator will check the value of a record's name column against a
string constant with the value of Oregon.

Finally, the constants in this statement are the integer constant 51 (the new value for the id
column), and the string constant Oregon (compared to the name column through the WHERE
clause).

Example 3-14 therefore updates the states table by setting the id column to 51 whenever the
name column matches the value Oregon. It then checks the results of that UPDATE statement
with another SELECT statement.

Example 3-14. A SQL update

booktown=# UPDATE states

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# UPDATE states
booktown-# SET id = 51
booktown-# WHERE name = 'Oregon';
UPDATE 1
booktown=# SELECT * FROM states
booktown-# WHERE name = 'Oregon';
 id | name | abbreviation
----+--------+--------------
 51 | Oregon | OR
(1 row)

Prev Home Next
Introduction to Relational
Databases

Up Data Types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 7. Advanced Features Next

Automating Common Routines
As an object-relational DBMS, PostgreSQL has helped pioneer several non-standard SQL
extensions. Several of these are designed to aid in the automation of commonly executed
database routines.

This section covers two such extensions: sequences and triggers.

Sequences
A sequence in PostgreSQL is a database object that is essentially an automatically
incrementing numeric value. For this reason, sequences are commonly known in other
database products as auto-increment values. Sequences can be extremely useful in assigning
non-random, unique identification numbers to tables that require such values. A sequence
consists of a current numeric value, and a set of characteristics that determine how to
automatically increment (or alternatively, decrement) that value upon use.

Along with its current value, a sequence also includes a minimum value, a maximum value, a
starting value, and the amount to increment the sequence by. This increment is usually 1, but
may be any whole integer.

In practice, sequences are not meant to be accessed directly. Instead, they are used through a
set of functions built into PostgreSQL which either set, increment, or return the current value
of the sequence.

Creating a sequence

Sequences are created with the CREATE SEQUENCE SQL command. The sequence can be
specified to increment or decrement. The syntax for CREATE SEQUENCE is:

 CREATE SEQUENCE sequencename
 [INCREMENT increment]
 [MINVALUE minvalue]
 [MAXVALUE maxvalue]
 [START start]
 [CACHE cache]
 [CYCLE]

In this syntax, sequencename is the name of the sequence to be created. This is the only
required parameter. A sequence uses the integer data type, and it therefore shares its maximum
and minimum limitations of 2147483647 and –2147483647, respectively.

The optional CREATE SEQUENCE clauses are as follows:

INCREMENT increment_val

Sets the numeric quantity with which to modify the sequence's value to increment_val.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets the numeric quantity with which to modify the sequence's value to increment_val.
This is used when the nextval() function is called on the sequence. Setting
increment_val to a negative number results in a descending sequence. The default
value is 1.

MINVALUE minvalue

Sets the fixed minimum value for the sequence to minvalue. Any attempt to lower a
sequence below this value will result in an error, or in the value cycling to its maximum
value (if the CYCLE keyword was used when the sequence was created).

The default value is 1 for ascending sequences, and –2147483647 for descending
sequences.

MAXVALUE maxvalue

Sets the fixed maximum value for the sequence to maxvalue. Any attempt to raise a
sequence above this value will result in an error, or in the value cycling to its minimum
value.

The default value is 2147483647 for ascending sequences, and –1 for descending
sequences.

START start_val

Sets the value that the sequence begins at. It may be any integer between the minimum
and maximum values. The sequence defaults to start at its minimum value for ascending
sequences, and its maximum value for descending sequences.

CACHE cache

Provides the ability for sequence values to be pre-allocated and stored in memory. This
can result in faster access times to highly used sequences. The minimum and default
value is 1; a higher value of cache results in more values being cached.

CYCLE

Enables the sequence to continue generating new values after it has reached its
maximum or minimum value. When the limit is reached, the sequence starts over at the
minimum value (for ascending sequences), or at the maximum value (descending
sequences).

Example 7-28 creates a simple ascending sequence named shipments_ship_id_seq that starts
at a value of 0, and will be incremented by the default increment of 1 until it reaches the
default maximum limit of 2147483647. By not using the CYCLE keyword, the sequence is
guaranteed to always return a unique value.

Example 7-28. Creating a sequence

booktown=# CREATE SEQUENCE shipments_ship_id_seq
booktown-# MINVALUE 0;
CREATE

Viewing a sequence

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The output from the \d command within psql shows whether or not a database object is a
sequence, table, view or index. More specifically, the \ds command can be used to view all
sequences in the currently connected database. For example:

booktown=# \ds
 List of relations
 Name | Type | Owner
-----------------------+----------+---------
 book_ids | sequence | manager
 shipments_ship_id_seq | sequence | manager
 subject_ids | sequence | manager
(3 rows)

While not often necessary, sequences can be directly queried with SELECT statements, as if
they were a table or view. When you query a sentence, you use the attributes of that sequence
as columns in your select list. The attributes of a sequence are shown in Table 7-1.

Table 7-1. Sequence attributes

Attribute Type
sequence_name name
last_value integer
increment_by integer
max_value integer
min_value integer
cache_value integer
log_cnt integer
is_cycled "char"
is_called "char"

Example 7-29 illustrates a query to the shipments_ship_id_seq sequence. This query selects
the last_value attribute, which is the most currently selected value from the sequence, and
the increment_by attribute, which is the amount the sequence is to be incremented each time
the nextval() function is called.

Example 7-29. Viewing a sequence

booktown=# SELECT last_value, increment_by
booktown-# FROM shipments_ship_id_seq;
 last_value | increment_by
------------+--------------
 0 | 1
(1 row)

Since the sequence in question has just been created, its last_value is still set to 0.

Using a sequence

Sequences are typically not queried directly, but are instead used through functions. There are
three functions in PostgreSQL which apply exclusively to sequences:

nextval('sequence_name')

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

nextval('sequence_name')

Increments the value of the specified sequence named sequence_name, and returns the
new value, which is of type integer.

currval('sequence_name')

Returns the most recently returned value from nextval('sequence_name'). This value
is associated with a PostgreSQL session, and if the nextval() function has not yet been
called in the connected session on the specified sequence sequence_name, there will be
no "current" value returned.

setval('sequence_name', n )

Sets the current value of the specified sequence to the numeric value n. The value
returned by the next call to nextval() will return n + increment, where increment is
the amount that the sequence increments by each iteration.

setval('sequence_name', n, b )

Also sets the current value of the specified sequence to the numeric value n. However, if
b (a value of type boolean) is false, the value returned by the next call to nextval()
will be just n . If b is true, the next call to nextval() will return n + increment, as it
would without specifying the Boolean argument at all.

The most commonly used sequence function is nextval(). This is the function that actually
pushes the increment of the value. It requires the name of the sequence as the argument (bound
by single quotes), and returns a value of type integer.

Example 7-30 selects a couple of incremented values from the sequence named
shipments_ship_id_seq.

Example 7-30. Incrementing a sequence

booktown=# SELECT nextval('shipments_ship_id_seq');
 nextval

 1
(1 row)

booktown=# SELECT nextval('shipments_ship_id_seq');
 nextval

 2
(1 row)

Note: The first call to nextval() will return the sequence's initial value (set by
the START keyword), since it has not yet been called to increment the starting
value. All subsequent calls increment the last_value column.

Sequences are commonly used as default values for tables which require unique integer
identifiers. The shipments table within the booktown database, shown in Table 7-2,
exemplifies this.

Table 7-2. The shipments table

Column Type Modifier

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

id integer NOT NULL DEFAULT
nextval('shipments_ship_id_seq')

customer_id integer
isbn text
ship_date timestamp

with time
zone

The syntax to create the table in Table 7-2, with the auto-incrementing DEFAULT and PRIMARY
KEY constraint, is:

 CREATE TABLE shipments
 (id integer DEFAULT nextval('"shipments_ship_id_seq"'::text)
 PRIMARY KEY,
 customer_id integer,
 isbn text,
 ship_date timestamp)

The default value for the id column in Table 7-2 is set to the nextval()'s result on the
shipments_ship_id_seq sequence. Insertion of row data that does not specify a value for id
will therefore choose its value from the result of this function call.

Warning
Merely placing a DEFAULT constraint on the id column does not enforce the use of that
default. A user could still manually insert a value, potentially causing a conflict with future
sequence values. This can be disallowed with the use of a trigger. See the Section called
Triggers" later in this chapter for more information.

After the nextval() function has been called on a sequence in a given session (a connection
to PostgreSQL), the currval() function may be used on that same sequence to return the most
recently returned value from the sequence. Note that this function may only be called on a
sequence that has been called through nextval() in the active session.

Note: Sequences' "current" values are associated with sessions in order to prevent
multiple users from running into mistakes by accessing the same sequence at the
same time. Two users may access the same sequence from separate sessions, but
the currval() function will return only the most recently incremented value of
the sequence from within the same session that calls currval().

Example 7-31 inserts a new row into the shipments column, without specifying the value for
the id column. This causes the default value to be used, which (as noted in Table 7-2) is the
result of the shipments_ship_id_seq being incremented by the nextval() function. The
currval() function is then used to access the row that was just inserted.

Example 7-31. Using currval( )

booktown=# INSERT INTO shipments (customer_id, isbn, ship_date)
booktown-# VALUES (221, '0394800753', 'now');
INSERT 3628625 1
booktown=# SELECT * FROM shipments
booktown-# WHERE id = currval('shipments_ship_id_seq');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# WHERE id = currval('shipments_ship_id_seq');
 id | customer_id | isbn | ship_date
------+-------------+------------+------------------------
 1002 | 107 | 0394800753 | 2001-09-22 11:23:28-07
(1 row)

Finally, a sequence may also have its last_value attribute reset to an arbitrary numeric value
(within its maximum and minimum value range) by using the setval() function. This
requires the name of the sequence as a single-quote bound character string for the first
argument and an integer constant representing the new value for last_value for the second
argument.

There are two ways to go about this. By default, setval() assumes that the new setting is for
an initialized sequence; this means that the next value returned by nextval() will actually be
incremented once past the value set by setval().

Alternatively, an optional false value of type boolean may be added as the last argument to
setval(), de-initializing the sequence. This modifies the sequence so that the next value
returned by nextval() will be the same numeric value passed to setval() (though the
sequence will of course be incremented on the next call to nextval()).

Example 7-32 sets the shipments_ship_id_seq's last_value to 1010 through each method,
and selects the nextval() on the same sequence to illustrate the effective result.

Example 7-32. Setting a sequence value

booktown=# SELECT setval('shipments_ship_id_seq', 1010);
 setval

 1010
(1 row)

booktown=# SELECT nextval('shipments_ship_id_seq');
 nextval

 1011
(1 row)

booktown=# SELECT setval('shipments_ship_id_seq', 1010, false);
 setval

 1010
(1 row)

booktown=# SELECT nextval('shipments_ship_id_seq');
 nextval

 1010
(1 row)

Warning
Sequences are commonly used to ensure unique values in a column. Be sure that you
understand the application of a sequence before you reset its last_value attribute.

Destroying a sequence

To destroy a sequence, or several sequences simultaneously, use the DROP SEQUENCE SQL
command. Here is the syntax for DROP SEQUENCE:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DROP SEQUENCE sequencename [, ...]

In this syntax, sequencename is the name of the sequence that you wish to remove. Multiple
sequence names may be specified, separated by commas.

Example 7-33 removes the shipments_ship_id_seq sequence.

Example 7-33. Removing a sequence

booktown=# DROP SEQUENCE shipments_ship_id_seq;
DROP

Before destroying a sequence, make sure that the sequence is not used by another table,
function, or any other object in the database. If this check is not performed, then other
operations that rely on the sequence will fail. The following query will return the name of any
relation which relies on a default sequence value, where sequence_name is the name of the
sequence you are interesting in finding dependencies for:

 SELECT p.relname, a.adsrc FROM pg_class p
 JOIN pg_attrdef a ON (p.relfilenode = a.adrelid)
 WHERE a.adsrc ~ '"sequence_name "';

Example 7-34 uses this query to look up the name of any table with a default value involving
the shipments_ship_id_seq sequence.

Example 7-34. Checking sequence dependencies

booktown=# SELECT p.relname, a.adsrc FROM pg_class p JOIN pg_attrdef a
booktown-# ON (p.relfilenode = a.adrelid)
booktown-# WHERE a.adsrc ~ '"shipments_ship_id_seq"';
 relname | adsrc
-----------+--
 shipments | nextval('"shipments_ship_id_seq"'::text)
(1 row)

Triggers
Often, anticipated SQL events should precede or follow a particular action. This action might
be a consistency check on a set of values to be inserted, the formatting of supplied data before
it is inserted, or a modification to a separate table following the removal or modification of a
set of rows. Traditionally, such actions are handled at the programmatic level within an
application connected to the database, rather than the database software itself.

To ease the responsibility of the application's database interaction, PostgreSQL supports a
non-standard programmatic extension known as a trigger. A trigger defines a function which
occurs before, or after, another action on a table. A trigger is implemented through C,
Pl/pgSQL or any other functional language (with the exception of SQL) that PostgreSQL can
use to define a function (see the Section called Extending PostgreSQL" later in this chapter for
more on creating functions, or Chapter 11 for more on PL/pgSQL).

Warning
As triggers are a PostgreSQL-specific extension, be sure not to implement a trigger-based
solution when a high degree of portability to other RDBMS systems is important.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Triggers may affect any of the following SQL events on a table:

INSERT

UPDATE

DELETE

Creating a trigger

In order to create a trigger, a function must first exist for it to execute. PostgreSQL supports
many types of functions, including those defined by SQL, PL/pgSQL, and C. As of
PostgreSQL 7.1.x, a trigger may use a function defined in any language, with the exception
that the function cannot be defined as a purely SQL function.

Once a function is defined, a trigger may be defined to call that function either before or after
an event on a specified table. Here is the syntax to create a trigger, followed by a description
of its syntax:

 CREATE TRIGGER name { BEFORE | AFTER } { event [OR event ...] }
 ON tablename
 FOR EACH { ROW | STATEMENT }
 EXECUTE PROCEDURE functionname (arguments)

CREATE TRIGGER name

name is any arbitrary name for the new trigger. A trigger may have the same name as an
existing trigger in a database provided that it is defined to operate on a different table.
Also, like most other non-system database objects, triggers must only have a unique
name (and table to operate on) within the database they are created in.

{ BEFORE | AFTER }

The BEFORE keyword instructs the defined function to be executed before the event is
attempted, which also precedes any built-in constraint checking on the values involved
in the case of an INSERT or DELETE event. Alternatively, the AFTER keyword causes the
function to be called only after the attempted action has finished.

{ event [OR event ...] }

event is any one of the supported SQL events; multiple events may be listed, separated
by the OR keyword.

ON tablename

tablename is the name of the table which, when modified by event, initiates this
trigger.

FOR EACH { ROW | STATEMENT }

The keyword following the FOR EACH clause determines how many times the function
should be called when the defined event is triggered. Use the ROW keyword to specify
that the function is to be executed once for each affected row. Conversely, if the
function should be executed only once for the calling statement, the STATEMENT keyword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function should be executed only once for the calling statement, the STATEMENT keyword
is used.

EXECUTE PROCEDURE functionname (arguments)

functionname is the name of the existing function to be executed, with passed
arguments.

Note: Only the database object's owner, or a super user, can create a trigger on a
database object.

While PostgreSQL tables support constraints to perform simple checks against static criteria,
sometimes more involved procedures may be needed to validate input values. This is a typical
example of where a trigger might be useful.

A trigger may be used to validate input values by preparing a validation function to be
executed before values are inserted into a table, or before values in a table are updated. The
function can then be made responsible for verifying that the values meet a complex set of
restrictions, and even return an appropriate error through PostgreSQL's error logging system.

Suppose that you have written a function in a procedural language that validates attempted
INSERT or UPDATE values on the shipments table, and that then performs an update on the
stock table to decrement the inventory for the shipment. This function could be written in any
language that PostgreSQL supports (with the noted exception of pure SQL).

Specifically, suppose that this function verifies that both the provided customer_id and isbn
exist in their respective customers and editions tables. If at least one is missing, a
meaningful error is returned. Otherwise, the SQL statement is allowed to execute, and on a
successful INSERT statement, the stock table is automatically decremented to reflect the drop
in stock from the shipment.

Example 7-35 creates a trigger to be "fired" immediately before an INSERT or UPDATE
statement is processed on the shipments table. The trigger invokes the
check_shipment_addition() function once per each modified row.

Example 7-35. Creating the check_shipment trigger

booktown=# CREATE TRIGGER check_shipment
booktown-# BEFORE INSERT OR UPDATE
booktown-# ON shipments FOR EACH ROW
booktown-# EXECUTE PROCEDURE check_shipment_addition();
CREATE

Since the check_shipment trigger is configured to execute the check_shipment_addition()
function for both INSERT and UPDATE statements, the integrity of the customer_id and isbn
columns are fairly robustly maintained. Its use of the ROW keyword ensures that each added or
modified row will be processed by the check_shipment_addition() validation function.

No arguments are passed to the check_shipment_addition() function, as it uses internal
PL/pgSQL variables to check incoming rows. See Example 11-53, in Chapter 11, for the
implementation of the check_shipment_addition() function, written in PL/pgSQL.

Viewing a trigger

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Triggers are stored in the pg_trigger PostgreSQL system table, and can have their
characteristics queried after creation. The structure of the pg_trigger table is shown in Table
7-3.

Table 7-3. The pg_trigger table

Column Type
tgrelid oid
tgname name
tgfoid oid
tgtype smallint
tgenabled boolean
tgisconstraint boolean
tgconstrname name
tgconstrrelid oid
tgdeferrable boolean
tginitdeferred boolean
tgnargs smallint
tgattr int2vector
tgargs bytea

Most of the columns in the Table 7-3 column are unlikely to be useful in a direct query. The
most immediately relevant attributes of the pg_trigger system table are tgrelid and tgname.

The tgrelid value is the trigger's relation identifier number. This value is of type oid, and
corresponds to the relfilenode column in the pg_class. The tgname is the identifier which
represents the name of the trigger, as specified in the CREATE TRIGGER command when the
trigger was created.

Removing a trigger

The DROP TRIGGER command removes a trigger permanently from the database. Similar to the
CREATE TRIGGER command, using this command requires you to be either the owner of the
trigger, or a superuser.

Here is the syntax to remove an existing trigger:

 DROP TRIGGER name ON table

Example 7-36 drops the check_shipment trigger placed on the shipments table.

Example 7-36. Dropping a trigger

booktown=# DROP TRIGGER check_shipment ON shipments;
DROP

The DROP statement indicates that the trigger was successfully dropped. Notice that you must
specify not only the name of the trigger that you wish to remove, but also the table on which
it is placed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you are unsure which table a particular trigger is placed on, you can derive this information
from PostgreSQL's system tables. For example, you can perform a join between the
pg_trigger system table's tgrelid column and the pg_class system table's relfilenode
column, comparing the name of the trigger against the tgname column. Example 7-37
demonstrates such a query to check the assigned relation (relname) associated with the trigger
named check_shipment.

Example 7-37. Selecting a trigger's assigned table

booktown=# SELECT relname FROM pg_class
booktown-# INNER JOIN pg_trigger
booktown-# ON (tgrelid = relfilenode)
booktown-# WHERE tgname = 'check_shipment';
 relname

 shipments
(1 row)

Caution
If you drop a function that a trigger is defined to use, the trigger will fail, and redefining the
function with the same name will not correct the problem. Such a trigger must be recreated
after its function is recreated.

Prev Home Next
Arrays Up Transactions and Cursors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 7. Advanced Features Next

Transactions and Cursors
PostgreSQL uses a multi-version approach to transactions within the database. A transaction
is a formal term for a SQL statement's effects being synchronized with the "current" data in
the database. This doesn't necessarily mean that the data is written to disk, but it becomes part
of the "current" set of information stored in the database. When a statement's results have
effectively been processed in the current state of the database, the transaction is considered to
be committed.

The issue of two users attempting to commit changes to the same database object is obviously
a potential concern, as their modifications may be exclusive to one another. Some relational
database systems rely on automatic locking to prevent such conflicts.

Locking is a mechanism that disallows selecting from a database object while it is being
modified, and vice versa. Locking presents several obvious performance concerns. For
example, data which is being updated will not be selectable until the update transaction has
completed.

PostgreSQL's Multi-Version Concurrency Control (MVCC), however, allows for SQL
statements to be performed within transaction-deferred blocks. This means that each
connection to PostgreSQL essentially maintains a temporary snapshot of the database for
objects modified within a transaction block, before the modifications are committed.

Without explicitly opening a transaction block, all SQL statements issued to PostgreSQL are
auto-committed, meaning that the database is synchronized with the results of the statement
immediately upon execution. When a transaction block is used, however, changes made to the
database will not be visible to other users until the block is committed. This allows for several
changes to various objects within a database to be made tentatively. They can then be either
committed all at once, or rolled back.

Rolling back a transaction returns the state of any affected objects to the condition they were
in before the transaction block began. This can be useful when recovering from a partially
failed operation, in that any modifications made part-way into a process can be undone. Rolled
back transactions are never actually committed; while the process appears to undo
modifications to the user who performed the rollback, other users connected to the same
database never know the difference.

PostgreSQL also supports cursors, which are flexible references to fully executed SQL
queries. A cursor is able to traverse up and down a result set, and only retrieve those rows
which are explicitly requested. Used properly, a cursor can aid an application in efficiently use
a static result set. A cursor may only be executed within a transaction block.

The following sections cover the basic use of transactions and cursors. They show how to
begin, commit, and roll back transactions, and also how to declare, move, and fetch data from
a cursor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using Transaction Blocks
Transaction blocks are explicitly started with the BEGIN SQL command. This keyword may
optionally be followed by either of the noise terms WORK or TRANSACTION, though they have no
effect on the statement, or the transaction block.

Example 7-38 begins a transaction block within the booktown database.

Example 7-38. Beginning a transaction

booktown=# BEGIN;
BEGIN

Any SQL statement made after the BEGIN SQL command will appear to take effect as normal
to the user making the modifications. As stated earlier, however, other users connected to the
database will be oblivious to the modifications that appear to have been made from within
your transaction block until it is committed.

Transaction blocks are closed with the COMMIT SQL command, which may be followed by
either of the optional noise terms WORK or TRANSACTION. Example 7-39 uses the COMMIT SQL
command to synchronize the database system with the result of an UPDATE statement.

Example 7-39. Committing a transaction

booktown=# BEGIN;
BEGIN
booktown=# UPDATE subjects SET location = NULL
booktown-# WHERE id = 12;
UPDATE 1
booktown=# SELECT location FROM subjects WHERE id = 12;
 location

(1 row)

booktown=# COMMIT;
COMMIT

Again, even though the SELECT statement immediately reflects the result of the UPDATE
statement in Example 7-39, other users connected to the same database will not be aware of
that modification until after the COMMIT statement is executed.

To roll back a transaction, the ROLLBACK SQL command is used. Again, either of the optional
noise terms WORK or TRANSACTION may follow the ROLLBACK command.

Example 7-40 begins a transaction block, makes a modification to the subjects table, and
verifies the modification within the block. The transaction is then rolled back, returning the
subjects table to the state that it was in before the transaction block began.

Example 7-40. Rolling back a transaction

booktown=# BEGIN;
BEGIN
booktown=# SELECT * FROM subjects WHERE id = 12;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SELECT * FROM subjects WHERE id = 12;
 id | subject | location
----+----------+----------
 12 | Religion |
(1 row)

booktown=# UPDATE subjects SET location = 'Sunset Dr'
booktown-# WHERE id = 12;
UPDATE 1
booktown=# SELECT * FROM subjects WHERE id = 12;
 id | subject | location
----+----------+-----------
 12 | Religion | Sunset Dr
(1 row)

booktown=# ROLLBACK;
ROLLBACK
booktown=# SELECT * FROM subjects WHERE id = 12;
 id | subject | location
----+----------+----------
 12 | Religion |
(1 row)

PostgreSQL is very strict about errors in SQL statements inside of transaction blocks. Even an
innocuous parse error, such as that shown in Example 7-41, will cause the transaction to enter
into the ABORT STATE. This means that no further statements may be executed until either the
COMMIT or ROLLBACK command is used to end the transaction block.

Example 7-41. Recovering from the abort state

booktown=# BEGIN;
BEGIN
booktown=# SELECT * FROM;
ERROR: parser: parse error at or near ";"
booktown=# SELECT * FROM books;
NOTICE: current transaction is aborted, queries ignored until end of transaction block
ABORT STATE
booktown=# COMMIT;

Using Cursors
A SQL cursor in PostgreSQL is a read-only pointer to a fully executed SELECT statement's
result set. Cursors are typically used within applications that maintain a persistent connection
to the PostgreSQL backend. By executing a cursor, and maintaining a reference to its returned
result set, an application can more efficiently manage which rows to retrieve from a result set
at different times, without having to re-execute the query with different LIMIT and OFFSET
clauses.

Used within a programming Application Programming Interface (API), cursors are often used
to allow multiple queries to be executed to a single database backend, which are then tracked
and managed separately by the application through references to the cursor. This prevents
having to store all of the results in memory within the application.

Cursors are often abstracted within a programming API (such as libpq++'s PgCursor class),
though they can also be directly created and manipulated through standard SQL commands.
For the sake of generality, this section uses psql to demonstrate the fundamental concepts of
cursors with SQL. The four SQL commands involved with PostgreSQL cursors are DECLARE,
FETCH, MOVE and CLOSE.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The DECLARE command both defines and opens a cursor, in effect defining the cursor in
memory, and then populating the cursor with information about the result set returned from the
executed query. The FETCH command lets you pull rows from an open cursor. The MOVE
command moves the "current" location of the cursor within the result set, and the CLOSE
command closes the cursor, freeing up any associated memory.

Note: If you are interested in learning how to use cursors within a particular API,
consult that API's documentation.

Declaring a cursor

A cursor is both created and executed with the DECLARE SQL command. This process is also
referred to as "opening" a cursor. A cursor may be declared only within an existing transaction
block, so you must execute a BEGIN command prior to declaring a cursor. Here is the syntax
for DECLARE:

 DECLARE cursorname [BINARY] [INSENSITIVE] [SCROLL]
 CURSOR FOR query
 [FOR { READ ONLY | UPDATE [OF column [, ...]] }]

DECLARE cursorname

cursorname is the name of the cursor to create.

[BINARY]

The optional BINARY keyword causes output to be retrieved in binary format instead of
standard ASCII; this can be more efficient, though it is only relevant to custom
applications, as clients such as psql are not built to handle anything but text output.

[INSENSITIVE] [SCROLL]

The INSENSITIVE and SCROLL keywords exist for compliance with the SQL standard,
though they each define PostgreSQL's default behavior and are never necessary. The
INSENSITIVE SQL keyword exists to ensure that all data retrieved from the cursor
remains unchanged from other cursors or connections. Since PostgreSQL requires that
cursors be defined within transaction blocks, this behavior is already implied. The
SCROLL SQL keyword exists to specify that multiple rows can be selected at a time from
the cursor. This is the default in PostgreSQL, even if unspecified.

CURSOR FOR query

query is the complete query whose result set will be accessible by the cursor, when
executed.

[FOR { READ ONLY | UPDATE [OF column [, ...]] }]

As of PostgreSQL 7.1.x, cursors may only be defined as READ ONLY, and the FOR clause
is therefore superfluous.

Example 7-42 begins a transaction block with the BEGIN keyword, and opens a cursor named
all_books with SELECT * FROM books as its executed SQL statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7-42. Declaring a cursor

booktown=# BEGIN;
BEGIN
booktown=# DECLARE all_books CURSOR
booktown-# FOR SELECT * FROM books;
SELECT

The SELECT message returned from Example 7-42 indicates that the statement was executed
successfully. This means that the rows retrieved by the query are now accessible from the
all_books cursor.

Fetching from a cursor

You may retrieve rows from a cursor with the FETCH SQL command. Here is the syntax for the
FETCH SQL command:

 FETCH [FORWARD | BACKWARD | RELATIVE]
 [# | ALL | NEXT | PRIOR]
 { IN | FROM } cursor

In this syntax diagram, cursor is the name of the cursor from which to retrieve row data. A
cursor always points to a "current" position in the executed statement's result set, and rows can
be retrieved either ahead or behind of the current location. The FORWARD and BACKWARD
keywords may be used to specify the direction, though the default is forward. The RELATIVE
keyword is a noise term made available for SQL92 compliance.

Warning
The ABSOLUTE keyword can be used, but absolute cursor positioning and fetching are not
supported as of PostgreSQL 7.1.x; the cursor will still use relative positioning and provide a
notice regarding the state of absolute positioning being unsupported.

Following the direction you may optionally specify a quantity. This quantity may either be a
literal number of rows to be returned (in the form of an integer constant) or one of several
keywords. The ALL keyword causes returns all rows from the current cursor position. The NEXT
keyword (the default) returns the next single row from the current cursor position. The PRIOR
keyword causes the single row preceding the current cursor position to be returned.

There is no functional difference between the IN and FROM keywords, but one of these must be
specified.

Example 7-43 fetches the first four rows stored in the result set pointed to by the all_books
cursor. As a direction is not specified, FORWARD is implied. It then uses a FETCH statement with
the NEXT keyword to select the fifth row, and then another FETCH statement with the PRIOR
keyword to again select the fourth retrieved row.

Example 7-43. Fetching rows from a cursor

booktown=# FETCH 4 FROM all_books;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# FETCH 4 FROM all_books;
 id | title | author_id | subject_id
------+-----------------------+-----------+------------
 7808 | The Shining | 4156 | 9
 4513 | Dune | 1866 | 15
 4267 | 2001: A Space Odyssey | 2001 | 15
 1608 | The Cat in the Hat | 1809 | 2
(4 rows)

booktown=# FETCH NEXT FROM all_books;
 id | title | author_id | subject_id
------+-----------------------------+-----------+------------
 1590 | Bartholomew and the Oobleck | 1809 | 2
(1 row)

booktown=# FETCH PRIOR FROM all_books;
 id | title | author_id | subject_id
------+--------------------+-----------+------------
 1608 | The Cat in the Hat | 1809 | 2
(1 row)

Moving a cursor

A cursor maintains a position in the result set of its referenced SELECT statement. You can use
the MOVE command to move the cursor to a specified row position in that result set. Here is the
syntax for the MOVE command:

 MOVE [FORWARD | BACKWARD | RELATIVE]
 [# | ALL | NEXT | PRIOR]
 { IN | FROM } cursor

As you can see, the syntax is very similar to FETCH. However, the MOVE command does not
retrieve any rows and only moves the current position of the specified cursor. The amount is
specified by either an integer constant, the ALL keyword (to move as far as can be moved in
the specified direction), NEXT, or PRIOR. Example 7-44 moves the cursor forward 10 rows from
its current position in the result set.

Example 7-44. Moving a cursor

booktown=# MOVE FORWARD 10
booktown-# IN all_books;
MOVE

Closing a cursor

Use the CLOSE command to explicitly close an open cursor. A cursor is also implicitly closed if
the transaction block that it resides within is committed with the COMMIT command, or rolled
back with the ROLLBACK command.

Here is the syntax for CLOSE, where cursorname is the name of the cursor intended to be
closed:

 CLOSE cursorname

Example 7-45 closes the all_books cursor, freeing the associated memory, and rendering the
cursor's results inaccessible.

Example 7-45. Closing a cursor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# CLOSE all_books;
CLOSE
booktown=# COMMIT;
COMMIT

Prev Home Next
Automating Common Routines Up Extending PostgreSQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 7. Advanced Features Next

Extending PostgreSQL
PostgreSQL users have the option of extending the set of functions and operators available. If
you have a common SQL or programmatic routine, custom functions can be an effective way
to more succinctly and efficiently accomplish your tasks. Likewise, custom operators can be
created to call these functions (or existing built-in functions) in order to make more efficient
and legible SQL statements.

Functions and operators each exist as database objects, and are thus tied to a specific database.
Creating a function while connected to the booktown database, for example, creates a function
object available only to users connected to booktown.

If you intend to re-use some general functions or operators in multiple databases, you should
create them in the template1 database. This will clone the function and operator objects from
template1 when a new database is created.

The following sections cover the creation, use, and removal of custom functions and operators.

Creating New Functions
PostgreSQL supports a variation of the SQL99 CREATE FUNCTION command. It is not directly
compatible with the standard, but it does allow for a variety of means to extend PostgreSQL
by creating your own customized functions (see Chapter 5 for more on functions in general).

Here is the syntax for CREATE FUNCTION:

 CREATE FUNCTION name ([argumenttype [, ...]])
 RETURNS returntype
 AS 'definition'
 LANGUAGE 'languagename'
 [WITH (attribute [, ...])]

CREATE FUNCTION name ([argumenttype [, ...]])

name is the name of the new function to be created. The parenthetically grouped
argumenttype expression defines the data types of the arguments that the function
requires when called, separated by commas. Leaving this expression blank results in a
function which accepts no arguments (though the parentheses are still required in both
definition and usage).

RETURNS returntype

The returntype is the single data type of the value which is returned by the function.

AS 'definition'

definition is the programmatic definition of the function itself. For procedural

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

definition is the programmatic definition of the function itself. For procedural
languages, such as PL/pgSQL, this is the literal code used to define the function. For
compiled C functions, this is the absolute system path which to links the file containing
the object code.

LANGUAGE 'languagename'

languagename is the name of the language which the function is written in. The
language may be any supported procedural language (such as plpgsql, or plperl,
assuming it has been added to the database), C, or SQL.

[WITH (attribute [, ...])]

As of PostgreSQL 7.1.x, two possible values exist for attribute ; iscachable, and
isstrict:

iscachable

This attribute lets the optimizer know if it is acceptable to pre-evaluate a call to a
function with arguments that have already been evaluated once. This can be
useful for functions which are programmatically expensive, but not terribly
dynamic (e.g., functions with which the same input arguments will invariably
return the same results).

isstrict

Causes the function to always return a NULL value whenever any of its arguments
are NULL values. The function is actually not executed in such a case, when
isstrict is defined.

Note: Functions may be overloaded (i.e., share the same name as an existing
function) by defining them as accepting different arguments. In this way you can
have a single function name that can perform several operations, depending on the
number and type of the input arguments.

Creating SQL functions

The simplest kind of function to add to PostgreSQL is a pure SQL function, as it requires no
external programming knowledge or experience. A SQL function is merely defined as a
standard SQL statement with support for inline arguments passed as positional parameters.

A positional parameter is a reference used in a SQL function definition to one of the calling
arguments. It is called positional because it is referenced by the order in which the arguments
are passed to the function. The syntax of a positional parameter is a dollar sign followed by a
number (e.g., $1). The number represents the ordered position in the arguments passed to the
function, starting with 1.

Example 7-46 creates a function named isbn_to_title, which returns the title of a book
when passed the ISBN number of the book. It accepts a single argument of type text, and
returns its result as the same type.

Example 7-46. Creating a SQL function

booktown=# CREATE FUNCTION isbn_to_title(text) RETURNS text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# CREATE FUNCTION isbn_to_title(text) RETURNS text
booktown-# AS 'SELECT title FROM books
booktown'# JOIN editions AS e (isbn, id)
booktown'# USING (id)
booktown'# WHERE isbn = $1'
booktown-# LANGUAGE 'SQL';
CREATE

Notice the $1 in Example 7-46; when the select statement executes, the complete value of the
first argument to isbn_to_title replaces this positional parameter. Notice that the positional
parameter does not need to be bound by single quotes, as the quotes are part of the argument
passed. Each other element of the function definition is either a standard SQL keyword or
identifier.

The CREATE message indicates that the function was successfully created. Example 7-47 calls
the isbn_to_title function with a single text parameter of 0929605942. The title, from the
books table, returns that ISBN number as per the SQL defined in Example 7-46.

Example 7-47. Using a SQL function

booktown=# SELECT isbn_to_title('0929605942');
 isbn_to_title

 The Tell-Tale Heart
(1 row)

Once created, any user may access the function, presuming that they have the permission to
execute the SQL involved. For example, the isbn_to_title function requires read access to
the editions and books tables (see Chapter 10 for more information on user privileges).

Creating C functions

PostgreSQL is written in C and can dynamically load compiled C code for use on the fly,
without recompilation of the base software. Only superusers are allowed to use CREATE
FUNCTION to link to a C function, as functions can make system-level calls and potentially
provide a security hole.

Documenting the entire PostgreSQL API is outside the scope of this book, but for an
experienced programmer, some basic C functions can very easily be developed, compiled and
linked through loadable shared object code.

The GNU C Compiler, gcc, supports a flag called -shared, which creates a dynamically
loadable piece of object code. The most basic syntax to create such a function with gcc is:

$ gcc -shared input.c -o output.so

In this syntax, input.c is the name of the file containing the C code to be compiled, and
output.so is the shared object file to build.

Example 7-48 is an extremely simple pair of C functions. They define two C functions called
is_zero(int) and is_zero_two(int, int). The first function returns true (1) if the passed
argument to it is 0; otherwise, it returns false (0). The second function returns true if at least
one of the passed arguments is 0.

Example 7-48. is_zero.c, a simple C function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/* is_zero.c
 * A pair of simple zero-checking functions.
 */

int is_zero(int);
int is_zero_two(int, int);

int is_zero(int incoming) {
 /* Return true only if the incoming value is 0. */
 if (incoming == 0) return 1;
 else return 0;
}

int is_zero_two(int left, int right) {
 /* Return true only if either of the values are 0. */
 if (left == 0 || right == 0) return 1;
 else return 0;
}

Warning
No PostgreSQL-specific headers are included in this extremely basic example. They are not
required in this case because of the obvious parallels between the example C and SQL data
types. For more advanced examples of the internal PostgreSQL API and data structures,
check the contrib directory within the PostgreSQL source path.

Example 7-49 compiles the file is_zero.c, with the -shared flag, and outputs the shared object
code to a file called is_zero.so. The location of that file is then passed as the definition of the
function to the CREATE FUNCTION command, and the function type is defined as C.

Example 7-49. Creating a C function

[jworsley@cmd ~]$ gcc -shared is_zero.c -o is_zero.so
[jworsley@cmd ~]$ psql -U manager booktown
Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

booktown=# CREATE FUNCTION is_zero(int4) RETURNS Boolean
booktown-# AS '/home/jworsley/is_zero.so' LANGUAGE 'C';
CREATE

The CREATE FUNCTION command in Example 7-49 creates a function named is_zero(),
which accepts a single argument of type int4 and returns a value of type boolean. This
function references the C function is_zero(int) implemented in the object code located at
/home/jworsley/is_zero.so (since C has no Boolean type, PostgreSQL must transform the
integer value returned by the function to a Boolean value). In this case, 0 is translated to false,
and 1 is translated to true.

By default, PostgreSQL looks for a function in the shared object code with the same name as
the function being created within PostgreSQL. This works well for the is_zero(integer)
function, as its names matches the compiled symbol name of the is_zero(int) function
within the file is_zero.so. In order to avoid a C name-collision with is_zero(int), the second
function in the shared object is defined as is_zero_two(int, int). To load this function into

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function in the shared object is defined as is_zero_two(int, int). To load this function into
PostgreSQL with the same name (as an overloaded function, with two arguments instead of
one), pass the literal C function name (also called the link symbol) as a second string constant
following the location of the shared object filename.

This name should not contain parentheses or arguments, and should be separated from the
filename definition by a comma, as in this syntax:

CREATE FUNCTION name ([argumenttype [, ...]])
 RETURNS returntype
 AS 'definition', 'link_symbol'
 LANGUAGE 'C'
 [WITH (attribute [, ...])]

Example 7-50 loads the same shared object code, but specifies the function symbol name as
is_zero_two so that it knows which function to use for this overloaded function.

Example 7-50. Overloading a C function

booktown=# CREATE FUNCTION is_zero(int4, int4) RETURNS Boolean
booktown-# AS '/home/jworsley/is_zero.so', 'is_zero_two'
booktown-# LANGUAGE 'C';
CREATE

Like a SQL function, any user may call the C function once it has been created. As C
functions can make direct modifications to the filesystem (where permissions allow) and affect
other system level events, care must be taken in designing functions free from potential
misuse. Example 7-51 makes several calls to the is_zero function defined in Example 7-49,
and to its overloaded function, created in Example 7-50.

Example 7-51. Using a C function

booktown=# SELECT is_zero(0) AS zero, is_zero(1) AS one,
booktown-# is_zero(6, 0) AS one_zero, is_zero(11,12) AS neither;
 zero | one | one_zero | neither
------+-----+----------+---------
 t | f | t | f
(1 row)

Destroying functions

Functions may be destroyed either by their owner or by a superuser with the DROP FUNCTION
SQL command. Here is the syntax for DROP FUNCTION:

 DELETE FUNCTION name ([argumenttype [, ...]]);

For example, Example 7-52 drops the isbn_to_title(text) function. Note that the argument
types are required to be specified, even though the function itself is not overloaded.

Example 7-52. Dropping a function

booktown=# DROP FUNCTION isbn_to_title(text);
DROP

The DROP server message indicates that the function was successfully dropped. Like most DROP
SQL commands, this action is permanent, so be sure that you wish to drop your function
before you execute this command.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating New Operators
PostgreSQL allows the creation of custom operators in addition to custom functions. Operators
are sometimes called syntactic sugar for functions. This is because, technically, an operator is
just an alternate syntax for an existing function. For example, the addition operator (+) actually
calls one of several built-in functions, including numeric_add(). For example:

booktown=# SELECT 1 + 2 AS by_operator, numeric_add(1,2) AS by_function;
 by_operator | by_function
-------------+-------------
 3 | 3
(1 row)

An operator definition defines what data types it operates on, and which side of the operator to
expect a value of the given data type to be found on (left, right, or both). It also defines the
function that is called, passing the values that are being operated on as arguments to that
function.

Creating an operator

The CREATE OPERATOR SQL command creates a new operator. Here is the syntax for CREATE
OPERATOR:

 CREATE OPERATOR name (PROCEDURE = functionname
 [, LEFTARG = type1]
 [, RIGHTARG = type2]
 [, COMMUTATOR = commutatorop]
 [, NEGATOR = negatorop]
 [, RESTRICT = restrictproc]
 [, JOIN = joinproc]
 [, HASHES]
 [, SORT1 = leftsortop]
 [, SORT2 = rightsortop])

In this syntax, name is the name of the new operator, and functionname is the name of the
function to be called by the operator. The remaining clauses are all optional, though at least
one of the LEFTARG or RIGHTARG clauses must be applied. Note that the operator name may
only consist of the following accepted characters:

 + - * / < > = ~ ! @ # % ^ & | ` ? $

Note: See the reference entry on CREATE OPERATOR for more information on the
remaining optional clauses, and further restrictions on the operator name.

Specifying only the LEFTARG data type creates an operator that operates only on a value (e.g., a
constant or identifier) to its left. Conversely, specifying only the RIGHTARG data type creates an
operator that operates only on a value to its right. Specifying both a LEFTARG and RIGHTARG
type results in an operator that operates on a value to both the left and right.

The factorial operator (!) is an example of a built-in operator that affects values to its left,
while the addition operator (+) is a good example of an operator that affects values both on the
left and right of the operator. Note that the functionname must accept the appropriate number
of arguments as implied by the use of the LEFTARG and RIGHTARG keywords (either one or two

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of arguments as implied by the use of the LEFTARG and RIGHTARG keywords (either one or two
arguments). Furthermore, the function's accepted argument types should match the relevant
operator types defined by CREATE OPERATOR for each respective value to be operated on.

Example 7-53 creates an operator named !#, which passes the value to its left to the
is_zero() function (defined in Example 7-49). This means that the syntax of value !# will
be effectively identical to using the functional syntax of is_zero(value).

Example 7-53. Creating a user-defined operator

booktown=# CREATE OPERATOR !# (PROCEDURE = is_zero,
booktown(# LEFTARG = integer);
CREATE

The CREATE message returned by Example 7-53 indicates that the operator was successfully
created. As with functions, any user connected to the database will be able to use the new
operator. The operator is owned by the user who creates it, meaning that no other user may
remove it (unless they have superuser rights). Example 7-54 demonstrates the use of the new
!# operator to check for books that are out of stock in Book Town's stock table.

Example 7-54. Using a user-defined operator

booktown=# SELECT * FROM stock WHERE stock !#;
 isbn | cost | retail | stock
------------+-------+--------+-------
 0394900014 | 23.00 | 23.95 | 0
 0451198492 | 36.00 | 46.95 | 0
 0451457994 | 17.00 | 22.95 | 0
(3 rows)

Overloading an operator

Operators may become overloaded in much the same way as functions. This means that an
operator is created with the same name as an existing operator, but affects a different set of
defined types. More than one operator may have the same name, although two operators may
not share the same name if they accept the same argument definitions. As long as a function
exists to accept the number and type of arguments implied by the type of operator defined,
though, the operator may be overloaded.

Example 7-53 overloads the !# operator. The first CREATE OPERATOR statement creates a
similar operator to the one created in Example 7-53. However, it specifies a RIGHTARG clause
rather than a LEFTARG clause, resulting in a version of the operator with the same name which
operates on an argument of type integer to the right of the operator, rather than the left. The
second statement creates a third variant of the !# operator, which operates on both an
argument to the left and right of the operator, simultaneously.

Example 7-55. Overloading a user-defined operator

booktown=# CREATE OPERATOR !# (PROCEDURE = is_zero,
booktown(# RIGHTARG = integer);
CREATE
booktown=# CREATE OPERATOR !# (PROCEDURE = is_zero,
booktown(# LEFTARG = integer,
booktown(# RIGHTARG = integer);
CREATE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE

Example 7-55 overloads the !# operator with the same is_zero() function because the
function itself was overloaded in Example 7-50 in the Section called Creating C functions,"
earlier in this chapter. As there are two copies of the is_zero() function--one that accepts one
argument, and one that accepts two--the !# operator can be safely overloaded to accept both a
single argument (on either the left or right side), as well as to accept parameters from both
sides.

Once overloaded, PostgreSQL's parser can correctly interpret each defined operator in your
SQL statements. Example 7-56 demonstrates three uses of the same operator, with different
left and right arguments. Each use is valid, as the operator was overloaded in Example 7-55.

Example 7-56. Using an overloaded operator

booktown=# SELECT isbn, stock FROM stock
booktown-# WHERE stock !#
booktown-# AND !# stock
booktown-# AND stock !# stock;
 isbn | stock
------------+-------
 0394900014 | 0
 0451198492 | 0
 0451457994 | 0
(3 rows)

Dropping an operator

An operator can be dropped with the DROP OPERATOR command. An operator may only be
dropped by the user who created it, or by a PostgreSQL superuser.

Warning
The DROP OPERATOR command applies to built-in operators as well as user-defined operators,
so take care with this command if executing it as a superuser!

As operators are defined by their arguments as well as their name, DROP OPERATOR requires
that you specify the left and right argument types of the operator. If there is no type for a given
side, specify the NONE keyword.

Here is the syntax for DROP OPERATOR:

 DROP OPERATOR name ({ lefttype | NONE } , { righttype | NONE })

Example 7-57 drops the variant of the !# operator that affects both left and right arguments.

Example 7-57. Dropping an operator

booktown=# DROP OPERATOR !# (integer, integer);
DROP

Example 7-58 uses very similar syntax to Example 7-57, but drops the overloaded operator
that affects only arguments to the right of the operator.

Example 7-58. Dropping an overloaded operator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# DROP OPERATOR !# (NONE, integer);
DROP

Prev Home Next
Transactions and Cursors Up Administrating PostgreSQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Preface Next

Acknowledgments
Command Prompt would like to express our thanks to the following people: Andrew Brookins
for his contributions and editing support, Michael Holloway for clutch editing, Corwin Light-
Williams for his JDBC chapter, and of course, a chubby little Penguin named Tux. We would
also like to take a moment to thank our families; it has been a long road and we appreciate
your love and patience.

John would like to thank his parents for their lifelong support, and for purchasing him
computer equipment in his formative years for better reasons than playing Wolfenstein 3D
until 2:00 in the morning.

Joshua would like to thank God for providing a family with enough patience to tolerate the
long hours needed to complete this book, and specifically his son, Joshua A, for being the
coolest kid on the planet.

Last but not least, we would like to thank O'Reilly and Associates for their help in creating
this book, and the PostgreSQL community for their technical assistance (particularly Tom
Lane), and for providing such a great product.

Prev Home Next
Conventions Used in This
Book

Up Comments and Questions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 8. Authentication and Encryption Next

Encrypting sessions
In the digital age, privacy and data integrity have become two of the most talked about areas
of computing. It seems that almost every day someone else has been cracked, or a new
security hole has been found in an application you once trusted.

At the same time, the encrypting of data sessions has become veritably common place
amongst computer users. Every reputable e-commerce site uses SSL (the Secure Sockets
Layer) to protect user data while transmitting personal information such as credit cards and
home addresses across the Internet.

The most common type of crack executed on a machine is not really a "crack" at all. It is
usually an unsuspecting user trusting a protocol such as POP or FTP to transfer information
over the Internet. By using these protocols, the user can unknowingly transmit their login and
password in clear text (in an unencrypted form) over the Internet.

The transmission of data such as login names and passwords in clear text over the Internet
means that anybody using a sniffer program (an application that listens to network traffic
between two parties) could potentially gain access to your most personal information. In the
world of databases, this scenario is no different.

If you connect remotely to PostgreSQL without the use of an encryption technology, there is a
potential for misuse by crackers on the Internet. If a cracker uses a sniffer on your network, or
on a network between your client and the database server that you are connecting to, they can
gain complete access to the information that is stored within PostgreSQL.

We will cover three general methods of encrypting your data between PostgreSQL and client
connections:

Built-in SSL

The built-in PostgreSQL SSL support, enabled with the - -with-ssl flag at compilation,
allows psql (or any client written specifically to connect to PostgreSQL through SSL) to
connect securely to PostgreSQL.

SSH/OpenSSH

An SSH (Secure SHell) session may be used to create a tunnel to a remote server,
provided that an SSH daemon (e.g., sshd ) is installed and accessible by the connecting
user. This requires shell access to the system running PostgreSQL for each user who
wishes to connect.

Stunnel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stunnel is an application which creates an encrypted tunnel between a client and the
PostgreSQL server. The Stunnel method requires shell access to set up, but may be
configured to run on a client system for a user who does not have direct shell access to
the remote server.

Built-in SSL
PostgreSQL provides the option to compile with support for SSL with the - -with-ssl
configuration parameter. This option is a good choice if you are going to be doing the majority
of your work with PostgreSQL in psql, as it natively supports this method of connection.

Most people choose to use PostgreSQL as a backend to a variety of client applications. If this
is the case, you will either need to develop your own client to understand SSL connections to
PostgreSQL, or choose an external method of encrypting sessions between your client or
application and the PostgreSQL server (such as with SSH, or Stunnel).

SSH/OpenSSH
OpenSSH provides an excellent method for using external encryption between a client and
server. OpenSSH is a commonly implemented standard among security professionals and
system administrators. It is most commonly used for terminal or file transfer applications. The
SSH protocol is a general method of encryption, and it can be applied in a general fashion for
just about any application.

Provided that you have access to a system account on the remote server, you may authenticate
to that system and open a tunnel between the remote and local hosts with the -L  flag. Such a
tunnel will listen to a specified port on the local machine, encrypt incoming packet data, and
forward it to the remote server in an encrypted form. The data will then be decrypted and
forwarded to another specified port on the remote server.

In this fashion, you can easily create a generalized encrypted tunnel of data between the client
and server. Further, the entire process is invisible to PostgreSQL, which believes it is
accepting packet input from the same machine it is running on, from the user which
authenticated the creation of the tunnel. Make careful note of this, as your pg_hba.conf will
need to reflect the appropriate host.

The SSH executable is usually called ssh, and can be used to create a tunnel with the
following syntax:

ssh -L localport:remotehost:remoteport username@remotehost

The localport is any arbitrary port that you wish to locally listen on. This port must be above
1024, unless you are logged in as the root user, which is not advisable. This number will be
the local port that your client believes it is connecting to PostgreSQL on. In actuality, the data
received on this port will be forwarded to remotehost on its listening SSH port (usually 22),
decrypted, and then forwarded again from the remote server to itself, on the specified
remoteport number.

The phrase username@remotehost must be provided in order to authenticate a valid system

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The phrase username@remotehost must be provided in order to authenticate a valid system
user. Without a valid system account an SSH tunnel cannot be created. This entire process is
demonstrated in Example 8-14, in which the ellipses separate a pair of terminal sessions. The
first terminal connection creates the SSH tunnel, and must remain active in order for the tunnel
to exist. The second terminal connection actually takes advantage of the tunnel to make a
connection to the local tunnel port, which is then forwarded to the remote host, decrypted, and
passed through to the PostgreSQL server.

Example 8-14. Making an SSH tunnel to PostgreSQL

[user@local ~]$ ssh -L 4001:remotehost:5432 user@remotehost
user@remotehost's password:
[user@remote ~]$

...

[user@local ~]$ psql -h localhost -p 4001 template1
Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

template1=#

Note: When issuing the ssh command, you may specify the -T  flag if you don't
need to be provided with a command line after creating the SSH tunnel, which is
the default behavior. This will cause the terminal to appear to hang after
authentication. Such a session may be terminated with CTRL-C when finished.

The only drawback to the use of an SSH tunnel is that it requires a system account from the
user who is connecting to PostgreSQL. SSH does not provide completely transparent access to
encrypted data streams until you initiate a connection and authenticate against the ssh daemon
service, which is typically called sshd service. Depending on your needs this could be a
positive or negative restriction.

If you wish to set up an even more generalized encryption tunnel, read through the next
section for information on Stunnel.

Configuring and Using Stunnel
While both the built-in SSL and OpenSSH encryption methods provide robust, secure
connections to PostgreSQL, they each have their own idiosyncrasies and usage restrictions.
Many users of PostgreSQL will therefore be interested to know that there is another
dependable encryption method available for use with totally transparent remote access to the
server. If you wish to encrypt database sessions transparently for any client, without needing
to bind to SSH, this is possible using two easily available tools: OpenSSL and Stunnel.

If you are a UNIX or Linux system administrator, you are most likely familiar with one or
both of these, as they are quite useful beyond the scope of this context (in so much as
encryption in general is useful beyond the scope of this context). If you are a system
administrator who is not familiar with encryption, it is advisable that you become familiar with
the subject.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OpenSSL

The OpenSSL software package is a software project developed by members of the Open
Source community. It is a robust set of tools provided to help your system implement the
Secure Sockets Layer (SSL), as well as other security-related protocols, such as Transport
Layer Security (TLS). It also includes a cryptography library. This software package is
important to anyone who is planning on using a fair amount of security on their Linux
machine (not limited to PostgreSQL, though that will be our focus). Please note that because it
is open-source software, you are able to download it for free, unlike commercial SSL packages
that require you to purchase the software and/or licensing.

To download the newest version of OpenSSL, point your web browser to the OpenSSL web
page at http://www.openssl.org. There should be a list of available versions along with links to
download them. There are two types of versions available: major releases and beta copies.
There are a couple of older listings for bug fixes. Most likely you will be interested in the
newest major release, or a subsequent bug-fix.

A major release should be listed in a fashion similar to this:

09-Jul-2001: OpenSSL 0.9.6b is now available, a major release

Open the source page through the "available" link. Once there, you can download the most up-
to-date version, which will logically be listed with the text "[LATEST]" printed next to it.

Download the file for the version you want, and save it into your home directory (or
whichever directory you normally save files to). After it completes downloading, open a
console window and cd into the directory in which you just saved the file. The file will be
tarred and gzipped, so you will need to extract it with the following command (note that
[version] represents the version number of the software, e.g., 0.9.6b):

gzip -d openssl-[version].tar.gz

Then type:

tar xf openssl-[version].tar

These commands extract the OpenSSL files into a directory named openssl-[version] where
[version] is whatever version number you downloaded.

Note: If you are running the GNU version of tar, you can simply type tar -xzf
openssl-[version].tar.gz instead of issuing separate gzip and tar commands.

To complete installation of OpenSSL, cd into the installation directory. OpenSSL is a source
distribution, so a bit of compiling is in order. Before we begin to delve into compilation, there
are a few requirements you need to be aware of:

The gmake (or make) program

Perl 5, or higher

An ANSI C compiler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A development environment (development libraries, and C header files)

A supported UNIX-compatible operating system

If you have all of these things, you are ready to proceed. Otherwise you will need to acquire
them (e.g., download and install them) before you will be able to complete the installation of
OpenSSL.

To finish installation, complete the following steps. If you have trouble, consult the INSTALL
file (from which these steps were taken).

1. Execute the configuration script:

$./config

This step will gather information about your system and configure the OpenSSL
installation scripts. It shouldn't take incredibly long, though the time will depend on the
speed of your system.

2. Next, compile the OpenSSL software:

$ make

This is the primary make command. After configuration, this command begins
compilation of the source code. Even on a fairly high-end machine, this process can take
a bit of time.

3. After compiling, run the test:

$ make test

This command tests the validity of the compilation; if there are any errors, refer to the
INSTALL file.

4. If the test is successful, you can install the OpenSSL binaries:

$ make install

After this step is finished, you should be done with the installation of OpenSSL. If you
experience any errors, refer to the documentation (specifically the INSTALL and
README files).

Stunnel

Stunnel is an SSL wrapper, which means it allows you to add SSL functionality to a daemon
that is not normally designed to handle a secure layer. This is useful, because you can use it to
create a secure connection with a PostgreSQL database, thus encrypting your database
connections, thus tightening general system security, and protecting your data.

Stunnel can be found at http://www.stunnel.org. After opening the page in your web browser,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stunnel can be found at http://www.stunnel.org. After opening the page in your web browser,
open the download page, and click the "get the source code" link. From here you are able to
download the newest version. Save the file into your home directory, or wherever you wish to
place it in your filesystem. Once you have downloaded Stunnel, open a console window and
cd into the directory where you saved it. Then unzip and untar the file with the following
commands:

$ gzip -d stunnel-[version] .tar.gz
$ tar xf stunnel-[version] .tar

You should now have the stunnel files extracted into a directory named stunnel-[version]
(where [version] is the version number that you downloaded). Fortunately, the installation
process of Stunnel is normally quicker than that of OpenSSL. Once everything is extracted, cd
into the directory. Remember that you must have already installed OpenSSL before this point
or the installation of Stunnel will not work. Use the following process to make and install
Stunnel:

1. Run the configuration script:

$./configure

This command will gather information about your system and configure Stunnel's
installation scripts.

2. Next, compile the Stunnel sources:

$ make

This command compiles the binary files from Stunnel's source code. The program will
prompt you with some questions regarding your locality and domain name. It will use
your input to help build the PEM file (which will be called stunnel.pem). This file is the
certificate with which your data is encrypted.

3. After successfully compiling Stunnel, go ahead and install it:

$ make install

This step will install the compiled files.

Knowing how to start Stunnel

You have two options available when deciding how to run Stunnel on your system: using
inetd, or running the Stunnel binary as a daemon. Running it as a daemon is preferred over the
former, as using inetd can place limitations on the software due to various issues related to
SSL. These limitations include:

Stunnel must be initialized for every connection with inetd

No session cache is possible

inetd requires forking (which causes extra processor overhead)

It is possible to use Stunnel to provide a secure connection for both remote and local
databases. If you host a database on a computer other than the one the psql client is located on,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

databases. If you host a database on a computer other than the one the psql client is located on,
it is possible to provide a secure connection from psql to that database. If your database is
hosted on the same computer as the psql client, you can provide an equally secure connection
between the two local programs (in case you are concerned about other users on the machine
observing local connections over TCP/IP sockets).

There should be a file named stunnel in your Stunnel directory; this is the executable for the
program. The instructions included assume you are using the executable from this directory,
but you may copy it out to /usr/local/sbin, or another preferred path. Also, you may wish to
put links to this file in your start-up scripts so that it is automatically started (as one process or
two, depending on how you wish to run it) when the system boots.

Note: If you use Stunnel with inetd, you will not need to call it from a startup
script.

Running Stunnel in daemon mode

Running Stunnel as a daemon is fairly simple, whether you are connecting to a local or remote
database. To use Stunnel to connect to a local database, you must start it as a client and as a
server (two different processes of the same program, each running on a different port). You
then instruct psql to connect to the port number that the stunnel client is running on.

After psql has connected to the client, any data will be encrypted and then sent to the Stunnel
server (located on another port, which is given to the client when you start it) where it is
decrypted and sent to the actual PostgreSQL server. The client has to be told a specific port to
run on, along with the port number that the server process is running on (so it knows where to
connect to once it is given something to do).

The most common use of Stunnel is to send data from a local client to a remote server. The
way to do this is to start the client Stunnel process locally, either by calling it during a start-up
script (such as /etc/rc.d/rc.local) or by calling it directly from the installed directory. You then
must run the Stunnel process remotely on the machine on which PostgreSQL is running. As
with the client, you may want to start the server automatically during system startup.

Both the client and server executions of an example Stunnel scenario are demonstrated in
Example 8-15. The ellipses separate the remote server from the local client. Remember that if
you do not copy the stunnel executable into /usr/sbin, Stunnel will have to be run from the
directory where it is located.

Example 8-15. Using Stunnel remotely

[user@remote ~]$ # This command starts the server on the remote machine.
[user@remote ~]$ stunnel -P/tmp/ -p ~/stunnel.pem -d 9000 -r
localhost:5432

...

[user@local ~]$ # This command starts the client on the local machine.
[user@local ~]$ stunnel -P/tmp/ -c -d 5432 -r 192.168.1.2:9000

The remote host command (the first command) in Example 8-15 tells the server to use
~/stunnel.pem as the certificate for encryption, and to open a Stunnel process as a daemon.
The -d 9000 parameter causes the daemon to listen for encrypted data on port 9000. The -r
localhost:5432 parameter tells the daemon process that when it receives encrypted data on its

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

localhost:5432 parameter tells the daemon process that when it receives encrypted data on its
listening port (9000, in this case), it should decrypt it and send it to localhost on port 5432
(which is the PostgreSQL port number, meaning the decrypted data will be sent along to the
database server on the local host).

The second command in Example 8-15 opens an instance of Stunnel on a client machine, in
client mode (as dictated by the -c flag), listening on port 5432. The -r 192.168.1.2:9000
parameter instructs the process that the server computer is located at 192.168.1.2, and that it is
listening on port 9000 for encrypted packets.

Both modes require the -P/tmp/ flag to provide a temporary path for the PID file, which is the
file storing the system ID of the Stunnel process. You do not need to specify the PID filename,
as a path is sufficient (the filename will default to something akin to
stunnel.localhost.9000.pid ), though you may specify the complete filename if you wish.

Once each of these Stunnel processes are running on their respective machines, the psql client
may be pointed to port 5432 on the client machine. Packets sent to this port will be
transparently encrypted, forwarded to port 9000 on the server machine, decrypted, and sent to
PostgreSQL on port 5432. This is similar to the SSH tunnel discussed in the Section called
SSH/OpenSSH," with one notable distinction: the client Stunnel process may be created
without any kind of authentication to the remote server. Thus, any user may create a secure
"sender" to the database server, though it still requires that a secure "receiver" be configured to
accept that incoming encrypted data.

This encryption occurs completely separately from PostgreSQL's normal authentication
procedures; as far as the postmaster backend process is concerned, the data is coming through
to it in plain text, because it is decrypted before being forwarded to the postmaster. Using
Stunnel in conjunction with password authentication can be ideal, as it uses a password-based
restriction policy, and also encrypts those passwords over the network connection.

Additionally, as mentioned, you have the option to run the two Stunnel processes locally to
encrypt packets between two local TCP/IP ports. Starting both the client and server processes
on the same machine is demonstrated in Example 8-16.

Example 8-16. Using Stunnel locally

[user@local ~]$ stunnel -P/tmp/ -p ~/stunnel-3.15/stunnel.pem -d 9000 -r 5432
[user@local ~]$ stunnel -P/tmp/ -c -d 5433 -r localhost:9000

The first use of stunnel in Example 8-16 opens the server process, and tells it to use ~/stunnel-
3.15/stunnel.pem as the certificate file. It also instructs the daemon to listen for connections on
port 9000, and to send the unencrypted data from that port to port 5432. The example uses
5432 because the PostgreSQL server is running on that port.

The second use of stunnel in Example 8-16 opens the Stunnel client process on port 5433
(chosen arbitrarily to resemble the PostgreSQL port, in this case). That daemon is instructed to
encrypt incoming data, and to forward it to the server process listening on the localhost to port
9000.

Running with inetd

If you wish to configure your system to invoke only the server-side Stunnel instance when
requested, you may configure it for use with inetd (or xinetd, on newer systems), rather than in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

requested, you may configure it for use with inetd (or xinetd, on newer systems), rather than in
daemon mode. As has been stated previously, this can lead to negative performance effects. If
you wish to use this feature in spite of this, it is fairly easy to accomplish. First, you must edit
the /etc/services file, and add an entry for the server process. Something like the following will
suffice:

pgssl 9000/tcp # PostgreSQL stunnel wrapper

Depending on whether or not your system uses inetd or xinetd, you will either need to add a
new service file called pgssl into the /etc/xinetd.d/ path, or add the service into /etc/inetd.conf.
Both of these configurations require that you enter the complete command to be executed
(including any arguments to the program). The command should follow this format:

stunnel -P/tmp/ -p path/stunnel.pem -r port

In this format, path is the location of the certificate file (this is originally placed in the
directory you compiled Stunnel in), and port is the port which PostgreSQL is listening on
(usually 5432). Note that the primary difference between invoking stunnel through an inetd-
style service versus as a daemon is that the -d flag is not passed.

An example inetd.conf entry (which must be placed entirely on a single line) might look as it
does in Example 8-17. The location of the PEM file must of course be configured to point to
your certificate file, and must be readable by the user specified in the inetd.conf file. Note that
/usr/sbin/stunnel is the full path to the Stunnel binary.

Example 8-17. An example inetd entry

pgssl stream tcp nowait root /usr/sbin/stunnel -P/tmp/ -p /root/my.pem -r 5432

The user specified in Example 8-17 is root, but you may wish to specify a more restricted user
as a security concern. Any user with read access to the certificate file and execute access to the
stunnel binary (e.g., nobody), may be used for non-reserved ports.

An example xinetd configuration entry is displayed in Example 8-18. On a machine using
xinetd, this data would reside in /etc/xinetd.d/pgssl. Again, be sure that the certificate pointed
to by the -p parameter is where your certificate file is located. Additionally, as with inetd, you
may not want to run stunnel as root.

Example 8-18. An example xinetd entry

xinetd configuration for pgssl.

service pgssl
{
 disable = no
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 server = /usr/sbin/stunnel
 server_args = -P/tmp/ -p /root/stunnel.pem -r 5432
}

After adding either an inetd or xinetd entry to your configuration, you must re-start the
relevant service (on Red Hat systems, this is usually done with a call to service):

[root@host ~]# service xinetd restart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[root@host ~]# service xinetd restart
Stopping xinetd: [OK]
Starting xinetd: [OK]
[root@host ~]#

If the service command is unavailable, you may usually achieve the same net effect by
invoking the killall command with the parameters -HUP, and the name of the process (e.g.,
killall -HUP xinetd).

Warning
To preserve the integrity of your data encryption, be sure that your certificate file is
configured to only be readable by the user which initiates the stunnel server process.

Wrapping up

Once these steps are completed, you should be able to make a secure connection to your
PostgreSQL database with any valid PostgreSQL client. To test this with psql, you may use
the following syntax:

psql -p port -h host -U username database_name

Enter the port number that the Stunnel client is listening on for port, then the host that the
client is listening on for host (localhost, in this case), followed by your username, and the
database_name to connect to. This should connect you to the database just as if you had
opened it normally with psql locally.

Note: Notice that you will need to start postmaster with the -i flag to be able to
connect to it with Stunnel. The -i flag tells postmaster to enable TCP/IP
connections, which are required for Stunnel to work.

Prev Home Next
Authentication and Encryption Up Database Management

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Preface Next

Comments and Questions
We have tested and verified the information in this book to the best of our ability, but you may
find that features have changed or that we have made mistakes. If so, please notify us by
writing to:

O'Reilly & Associates
101 Morris Street
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (FAX)

You can also send messages electronically. To be put on the mailing list or request a catalog,
send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

There is a web page for this book, which lists errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/ppostgresql/

You may view a constantly developed version of this book at the authors website. The authors'
website is available at:

http://www.commandprompt.com/ppbook/
http://www.postgresql.info/

Prev Home Next
Acknowledgments Up Introduction and Installation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 9. Database Management Next

Initializing the Filesystem
Before you can create a database in a database cluster, the filesystem must first be initialized.
There are two ways to initialize the filesystem for use with PostgreSQL; you may either use
the initdb application to create an entirely new database cluster (as was used to prepare your
initial database system, in Chapter 2), or you may use the initlocation application to prepare a
secondary data directory.

A database cluster represents several associated databases. A single instance of the postmaster
process can only access one database cluster at a time. Alternatively, through initlocation, you
can create databases that are part of an existing cluster that just happen to be stored in another
data directory.

The following sections cover these two applications.

Initializing a Database Cluster
Use the initdb program to create and initialize a new database cluster within your filesystem.
Again, a database cluster is the framework upon which PostgreSQL databases are created.
You should already have one cluster in the data directory which was initialized in Chapter 2.

You may use initdb to initialize a new data directory for a database cluster, and instruct
postmaster to start up using that data cluster instead of the default. Alternatively, you may
have two postmaster processes running at the same time with different database clusters,
provided that they are configured to listen on different ports.

After you use initdb to create a new database cluster, that new cluster's filesystem will be
owned by whatever operating system user you were logged in as when issuing the command.

Warning
Do not run the initdb program while logged in as the root user! The cluster needs to be
created and owned by whichever normal user is going to become the new cluster's database
superuser.

You can also use initdb to correct a corrupted template1 database by executing initb with the -t
(or - -template) parameter. This will re-generate the template1 database from scratch.

Here is the syntax for initdb:

 initdb [-D dbdir | - -pgdatadbdir]
 [-i sysid | - -sysid sysid]
 [-W | - -pwprompt]
 [-E encoding | - -encoding=encoding]
 [-L libdir | - -pglib=libdir]
 [-n | - -noclean]
 [-d | - -debug]
 [-t | - -template]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [-t | - -template]

The following are the valid options for initdb:

[-D dbdir | - -pgdata=dbdir]

The directory that you wish to initialize a new database cluster within. If you do not
specify a directory name, the command will look at the PGDATA environment variable.

[-i sysid | - -sysid=sysid]

The system ID of the database superuser to be created. If unspecified, the ID will be the
operating system ID of the system user who runs the initdb program.

[-W | - -pwprompt]

Prompt for a password upon connection.

[-E encoding | - -encoding=encoding]

The name of the multi-byte encoding type of the template database within this cluster.
Whatever type you set here will become the default type for any databases you later
create using this cluster. This is only relevant if you have enabled multi-byte encoding
in PostgreSQL.

[-l libdir | - -pglib=libdir]

The location of the PostgreSQL library files used by initdb when creating a database
cluster. It is rarely necessary to use this parameter. The location of the libraries is
usually known by the initdb program, and if it isn't known, initdb will prompt you for
the location.

[-t | - -template]

The template switch, which causes initdb to re-initialize only the template1 database
within an already existing database cluster. This can help during PostgreSQL version
updates, or if your template1 database ever becomes corrupted, or is lost.

[-n | - -noclean]

The noclean switch, which specifies that initdb should not clean up its files in the event
that it is unable to complete cluster creation due to an error. This parameter is only
useful for debugging purposes.

[-d | - -debug]

The debug switch, which causes debugging information from the creation of the catalog
tables to be displayed.

If the command completes successfully, initdb will have created a database cluster in the
specified data directory; this cluster can then be used by the backend to store its databases.

Example 9-7 initializes a new database cluster in the /usr/local/pgsql/booktown directory:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-7. Initializing a New Database Cluster

[postgres@booktown ~]$ initdb /usr/local/pgsql/booktown
This database system will be initialized with username "postgres".
This user will own all the data files and must also own the server process.

Creating directory /usr/local/pgsql/booktown
Creating directory /usr/local/pgsql/booktown/base
Creating directory /usr/local/pgsql/booktown/global
Creating directory /usr/local/pgsql/booktown/pg_xlog
Creating template1 database in /usr/local/pgsql/booktown/base/1
DEBUG: database system was shut down at 2001-08-27 16:51:07 PDT
DEBUG: CheckPoint record at (0, 8)
DEBUG: Redo record at (0, 8); Undo record at (0, 8); Shutdown TRUE
DEBUG: NextTransactionId: 514; NextOid: 16384
DEBUG: database system is in production state
Creating global relations in /usr/local/pgsql/booktown/global
DEBUG: database system was shut down at 2001-08-27 16:51:14 PDT
DEBUG: CheckPoint record at (0, 108)
DEBUG: Redo record at (0, 108); Undo record at (0, 0); Shutdown TRUE
DEBUG: NextTransactionId: 514; NextOid: 17199
DEBUG: database system is in production state
Initializing pg_shadow.
Enabling unlimited row width for system tables.
Creating system views.
Loading pg_description.
Setting lastsysoid.
Vacuuming database.
Copying template1 to template0.

Success. You can now start the database server using:

 /usr/local/pgsql/bin/postmaster -D /usr/local/pgsql/booktown
or
 /usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/booktown -l logfile start

Initializing a Secondary Database Location
If you are not interested in creating a new database cluster, but simply wish to store a
particular database in a different data directory, use initlocation. The initlocation program
creates the directories needed for a secondary database storage area. For more information on
how to create a database in a secondary data storage area, refer to the Section called Creating
and Removing a Database" later in this chapter. Here is the syntax for initlocation:

 initlocation directory

In this syntax, directory is the path for the new secondary database location. This command
should be run as the user which runs the postmaster, so that it will have the necessary rights in
the created path.

Example 9-8 demonstrates how to initialize a secondary database storage area in the
/usr/local/pgsql/booktown2 directory:

Example 9-8. Initializing a Secondary Database Location

[postgres@booktown ~]$ initlocation /usr/local/pgsql/booktown2

Prev Home Next
Database Management Up Creating and Removing a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Database Management Up Creating and Removing a
Database

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 9. Database Management Next

Creating and Removing a Database
PostgreSQL installs two default template databases. Upon creation, a new database is cloned
from one of these templates. They are template0, and template1. Of these, you may only
connect to template1. This is because the template0 database exists as an empty template,
while template1 may be modified to include commonly used languages, functions, and even
database objects, such as tables, views, or sequences. Neither of the template databases may be
removed from the system.

The following sections cover creating and removing databases from PostgreSQL.

Creating a Database
PostgreSQL provides two methods for creating a new database: the CREATE DATABASE SQL
command, and the createdb command-line executable. To use either of these methods requires
that you have the necessary rights. You do not have to be a PostgreSQL superuser to create a
database, but you must have the usecreatedb right set in the pg_shadow table.

If you are unsure of whether or not this right has been granted to your user, check through a
query to the pg_user view (which in turn queries the pg_shadow table; only superusers may
query the pg_shadow directly). The usecreatedb column in the pg_shadow table contains a
boolean value, which reflects if this right has been granted. Example 9-9 illustrates an example
query to the pg_user view to check for usecreatedb rights for the guest user.

Example 9-9. Checking usecreatedb rights

template1=> SELECT usecreatedb FROM pg_user WHERE usename='guest';
 usecreatedb

 f
(1 row)

Using CREATE DATABASE

The syntax for the CREATE DATABASE SQL command is as follows:

 CREATE DATABASE dbname
 [WITH [LOCATION = 'dbpath']
 [TEMPLATE = template]
 [ENCODING = encoding]]

In this syntax, dbname is the name of the new database to be created. All database names must
begin with an alphabetical character, and are limited to 31 characters in length. PostgreSQL
allows any number of databases to be created in a given data directory (assuming there is
available disk space).

By appending the optional WITH keyword, up to three more optional attributes may be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By appending the optional WITH keyword, up to three more optional attributes may be
specified:

LOCATION = 'dbpath'

The dbpath value describes an environment variable, initialized in the shell
environment of the user which runs the PostgreSQL backend. For example, you might
put the following line in /home/postgres/.bash_profile :

export PGDATA2="/usr/local/pgsql/data2"

Thus, enabling the use of PGDATA2 as a variable (once PostgreSQL has been restarted
with the environment variable set in memory), and a valid value for dbpath. This is a
general security precaution to prevent users from writing to an inappropriate location in
the filesystem.

If the LOCATION keyword is omitted, PostgreSQL will create the database in the default
data directory (e.g., /usr/local/pgsql/data).

TEMPLATE = template

The template identifier refers to a database to "clone" in creating the new database.
Any database objects within that database will be duplicated in the creation of the
database dbname.

If unspecified, PostgreSQL will implicitly choose template1 as the database to
duplicate objects from. If you wish for a completely fresh database to be created, you
may specify template0 to avoid copying the objects with which you may have
populated template1.

ENCODING = encoding

The encoding value can be either a string constant describing the encoding type (e.g.,
SQL_ASCII, LATIN1, etc), or its equivalent PostgreSQL numeric constant. The
available PostgreSQL multibyte encoding formats, and their numeric constant values,
are listed in Appendix A.

If the ENCODING keyword is unspecified, PostgreSQL will create a database using its
default encoding. This is usually SQL_ASCII, though it may have been set to a different
default during the initial configuration of PostgreSQL (see Chapter 2 for more on
default encoding).

Warning
The value of dbpath passed to the LOCATION keyword must be set to the name of an
environment variable. This variable may not literally describe a system path (e.g.,
/usr/local/pgsql/data2) unless the CPPFLAGS=-DALLOW_ABSOLUTE_DBPATHS
argument was passed to the gmake command when PostgreSQL was originally compiled and
installed.

You must connect to a database prior to issuing the CREATE DATABASE command. If you have
not yet created a database, you may "bootstrap" your way into creating one through the use of
the default template1 database. By connecting to this database, you may create new databases
which can then be connected to directly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once a database is created, the creator automatically becomes it's owner, or DBA (database
administrator). This user will own each object within the database, and therefore be able to
grant rights on those objects to other users. Be sure to create your databases with the user that
you'll use to actively maintain the database with.

Example 9-10 demonstrates connecting to the template1 database as the Book Town
managerial user named manager, and creating Book Town's example database, booktown. This
example uses psql, but the same SQL syntax will work with any valid PostgreSQL client.

Example 9-10. Creating a database

[jworsley@booktown ~]$ psql -U manager template1
Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

template1=# CREATE DATABASE booktown;
CREATE DATABASE

The returned message CREATE DATABASE indicates that the database was created successfully.
Other server messages returned may include the following:

ERROR: CREATE DATABASE: permission denied

This message indicates that the user attempting to create the database does not have the
rights to create a database. This right (or lack thereof ) is indicated by the usecreatedb
column in the pg_shadow table, described earlier in this chapter. See Chapter 10 for
more information on enabling this right.

ERROR: CREATE DATABASE: database "booktown" already exists

This message indicates that a database with the specified dbname (in this example,
booktown) already exists. You may not have two databases with the same name (even in
different physical locations on the filesystem).

Note: If another user is accessing a database that you wish to use as a template,
you must wait until the user is no longer accessing it in order to do so.

Using createdb

PostgreSQL also provides a command-line wrapper to the CREATE DATABASE command, in an
application called createdb. The only alternate functionality to createdb over its SQL
counterpart is that it may be run directly from the command line, and it allows a comment to
be added into the database, all in one command. In SQL, this would require at least two
statements: the CREATE DATABASE statement, and a COMMENT statement.

The syntax for the createdb application is as follows:

 createdb [options] dbname [description]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 createdb [options] dbname [description]

In this syntax, dbname is the name of the database to be created, options consists of any of the
listed optional flags, and description is the comment to be added with an implicit COMMENT
command (see the Section called Documenting a Database" for more on database comments).

The options arguments may be provided either as single-dashed flags, each followed by a
space and an argument (e.g., -D PATH), or the GNU-style, double-dashed counterpart, each
followed by an equals sign (=) and an argument, if necessary (e.g., - -location=PATH). Single-
dashed flags will always consist of a single letter, while double-dashed flags will be more
verbose, consisting of an entire word.

The following are the options available to createdb:

-D PATH , - -location=PATH

Equivalent to the LOCATION keyword used with the CREATE DATABASE command. PATH
should be the environment variable (set for the user running the PostgreSQL backend)
which is set to the system path where the new database files were created.

-T TEMPLATE , - -template=TEMPLATE

Equivalent to the TEMPLATE keyword used with the CREATE DATABASE command.
TEMPLATE should be the identifier describing the database (e.g., template0 ) to use as
the basis from which to create the new database, duplicating all objects.

-E ENCODING , - -encoding=ENCODING

Equivalent to the ENCODING keyword used with the CREATE DATABASE command.
ENCODING describes a valid encoding string constant, as explained in Appendix A. A
numeric constant cannot be passed through createdb, even though one can be passed
through CREATE DATABASE. This is because ENCODING is always passed to createdb as a
string constant.

-h HOSTNAME , - -host=HOSTNAME

The HOSTNAME that will be connected to, to create the database. Defaults to localhost, or
the host defined by the PGHOST environment variable.

-p PORT , - -port=PORT

Specifies that the database connection is made on port PORT, rather than the default port
(usually 5432, though it may have been configured differently when PostgreSQL was
compiled, by the - -with-pgport flag).

-U USERNAME , - -username=USERNAME

Specifies that the username USERNAME is the user who connects to PostgreSQL (rather
than the name of the system user executing createdb) to create the database.

-W, - -password

Accepts no parameters, and causes a password prompt, which happens automatically if
the pg_hba.conf file is configured not to trust the requesting host.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-e, - -echo

Accepts no parameters, and causes the CREATE DATABASE statement sent to PostgreSQL
to be displayed to the screen as it is executed by createdb.

-q, - -quiet

Accepts no parameters, and causes no output to be sent to stdout (though errors will still
be sent to stderr).

The success and failure messages for createdb are identical to those created by CREATE
DATABASE, though you may also receive connection errors similar to those received from psql
if invalid host or user information is provided. See the Section called Using CREATE
DATABASE" earlier in this chapter for more information on these messages.

Example 9-11 shows the use of the createdb application, creating the new database example as
the manager user, in the directory described by the PGDATA2 variable. Notice that both forms of
options may be simultaneously supplied (single-dashed, and GNU-style).

Example 9-11. Using the createdb application

[jworsley@booktown ~]$ createdb - -location=PGDATA2 -U manager example
CREATE DATABASE

Removing a Database
Similar to its approach in creating databases, PostgreSQL offers two methods to remove a
database permanently from your system: the DROP DATABASE SQL command, and the dropdb
command-line executable. The use of these methods requires the usecreatedb right to be set
in the pg_shadow table for the user initiating the command.

Warning
Upon dropping a database, all tables, data, and other objects in that database are destroyed.
The system files associated with the database are also physically removed. PostgreSQL will
not prompt you to verify the permanent deletion of the database. This action cannot be
undone, nor can it be executed within a transaction block.

Using DROP DATABASE

The syntax for the DROP DATABASE SQL command is as follows:

 DROP DATABASE dbname

In this syntax, dbname represents the name of the database to be removed from the system.
Note that no user may be connected to the database that you are trying to remove, or the
command will fail. Example 9-12 demonstrates dropping a database called example.

Example 9-12. Using DROP DATABASE

template1=# DROP DATABASE example;
DROP DATABASE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DROP DATABASE

The DROP DATABASE server message indicates that the database was successfully removed, and
its associated system files deleted. Other messages you may receive from the command
follow:

ERROR: DROP DATABASE: cannot be executed on the currently open database

This message indicates that you are connected to the database you are trying to remove.
A database cannot be removed from the system while you are actively connected to it.

ERROR: DROP DATABASE: database "example" is being accessed by other users

This message indicates that another user is connected to the database you are attempting
to remove. You must wait until all users are disconnected before being able to
successfully remove a database.

ERROR: DROP DATABASE: database "example" does not exist

This message indicates that there is no database with the specified dbname (in this case,
example).

Using dropdb

Similar to the createdb script, there is another command-line wrapper called dropdb that
executes the DROP DATABASE SQL command. The only functionality that dropdb provides, as
compared to the DROP DATABASE command, is that you execute it from a shell, and you can use
the interactive flag to have it prompt you for confirmation.

The syntax for the dropdb script is as follows:

 dropdb [options] dbname

In this syntax, dbname is the name of the database to be permanently removed from
PostgreSQL, and options describe each of the options available to the application. Most of
these options exist to describe the PostgreSQL connection options, and to mimic the options
described in the Section called Using createdb" earlier in this chapter. The notable exception
is the -i, or - -interactive, flag.

Here is the complete list of options for dropdb:

-h HOSTNAME , - -host=HOSTNAME

The HOSTNAME that will be connected to, to drop the database. Defaults to localhost, or a
host defined by the PGHOST environment variable.

-p PORT , - -port=PORT

Specifies that the database connection is made on port PORT, rather than the default port
(usually 5432, though it may have been configured differently when PostgreSQL was
compiled, by the - -with-pgport flag).

-U USERNAME , - -username=USERNAME

Specifies that the username USERNAME is the user who connects to PostgreSQL (rather

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies that the username USERNAME is the user who connects to PostgreSQL (rather
than the name of the system user executing dropdb) to drop the database.

-W, - -password

Accepts no parameters, and causes a password prompt, which happens automatically if
the pg_hba.conf file is configured not to trust the requesting host.

-i, - -interactive

Accepts no parameters, and causes the user to be prompted to confirm the removal of
the database before actually destroying the data.

-e, - -echo

Accepts no parameters, and causes the DROP DATABASE statement sent to PostgreSQL to
be displayed to the screen as it is executed by dropdb.

-q, - -quiet

Accepts no parameters, and causes no output to be sent to stdout (though errors will still
be sent to stderr).

It is prudent to always execute the dropdb command with the -i flag, as it requires a
confirmation before anything is actually removed from PostgreSQL. Example 9-13
demonstrates the removal of a database named example with the -i interactive flag, as the
manager user.

Example 9-13. Using the dropdb command

[jworsley@booktown ~]$ dropdb -U manager -i example
Database "example" will be permanently deleted.
Are you sure? (y/n) y
DROP DATABASE

Prev Home Next
Initializing the Filesystem Up Maintaining a Database

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 9. Database Management Next

Maintaining a Database
Database maintenance is a broad subject. This section covers the physical maintenance of the
system (pertaining to its disk usage), analytical maintenance (to increase performance), and
database object documentation (to add to the maintainability and clarity of the schema).

The primary tool for physical and analytical database maintenance in PostgreSQL is the
VACUUM SQL command, and its accompanying command-line script, vacuumdb. They each
perform the same two general functions:

Remove any leftover data from rollbacks and other processes that can leave temporary
data

Analyze activity in the database to assist PostgreSQL in designing efficient queries

It is good practice to perform a VACUUM nightly on a production database. While it can be run
at the same time data is accessed, doing so will decrease the response time of the server. As
such, it is generally preferable to schedule it at a time when you do not expect a great deal of
database activity.

Any time an exceptionally large number of records are added or deleted, it is prudent to
perform a VACUUM to analyze the database, which automatically updates the PostgreSQL query
optimizer of major changes to the tables. By doing this you allow PostgreSQL to have a more
up-to-date profile of the data within the database, providing a better set of information with
which to plan the most efficient queries. All of these actions should result in a faster, more
efficient response from the database.

Warning
The VACUUM command locks tables in access exclusive mode. This means that any query
involving a table being vacuumed will pause and wait until the vacuum of the affected table
is complete before continuing.

Using VACUUM
The syntax for the VACUUM SQL command is as follows:

 VACUUM [VERBOSE] [ANALYZE] [table]
 VACUUM [VERBOSE] ANALYZE [table [(column [, ...])]]

Used without any of the optional keywords or identifiers, a VACUUM statement will clean up
each table in the presently connected database, one at a time, deleting temporary data and
recovering disk space. This use of VACUUM is primarily to maximize free disk space.

An optional table identifier may be specified if you want the VACUUM to clean a single table in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An optional table identifier may be specified if you want the VACUUM to clean a single table in
the connected database, rather than all tables. It will also update statistics in the system
catalogs pertaining to the number of records and amount of data stored in each table. Example
9-14 shows the use of a VACUUM statement in the booktown database, on the books table.

Example 9-14. Using VACUUM on a table

booktown=# VACUUM books;
VACUUM

The VACUUM message returned in Example 9-14 indicates that the process finished successfully.
If a specified table cannot be found, you will instead receive the following notice:

NOTICE: Vacuum: table not found

With the use of the optional ANALYZE keyword, PostgreSQL examines the allocation of data in
each column for each table (or the specified table, if provided), and uses the information to
prepare the query optimizer for better planning. With the use of the ANALYZE keyword, you
also have the option to analyze only specified columns. Example 9-15 shows the use of the
VACUUM ANALYZE command on the entire booktown database.

Example 9-15. Using VACUUM ANALYZE on a database

booktown=# VACUUM ANALYZE;
VACUUM

Finally, the optional VERBOSE keyword may be applied if you are interested in seeing a
detailed internal report of the findings of the VACUUM statement. This is most likely not of
interest to anyone not actively developing the PostgreSQL engine, or related software.

Using vacuumdb
As with many of the database management SQL commands, the VACUUM command has a
command-line executable wrapper called vacuumdb. The vacuumdb script provides one
significant added function to the normal use of the VACUUM SQL statement, in that you can
instruct it to perform a VACUUM on each PostgreSQL database on your system.

Additionally, since it accepts connection parameters on how to connect to PostgreSQL, you
may use vacuumdb remotely (i.e., without having to first connect to the machine via a terminal
client, and then executing vacuumdb or psql from the remote machine). This is provided that
your authentication scheme in PostgreSQL's pg_hba.conf file is configured for outside access
(see Chapter 8 for more information on this).

Here is the syntax for vacuumdb:

 vacuumdb [options] [dbname]

Like the createdb and dropdb scripts, vacuumdb accepts both single-dashed and GNU-style
double-dashed arguments from the command line. The only required option is the dbname
(unless you specify - -all), which describes the database to be cleaned and analyzed. The
options parameters describe which mode the VACUUM command should be invoked in. The
following are the available options for the vacuumdb script:

-h HOSTNAME , - -host=HOSTNAME

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies that you are connected to HOSTNAME, rather than the localhost. Use this option
when vacuuming a remote database.

-p PORT , - -port=PORT

Specifies that the database connection is made on port PORT, rather than the default port
(usually 5432, though it may have been configured differently when PostgreSQL was
compiled, by the - -with-pgport flag).

-U USERNAME , - -username=USERNAME

Specifies that the username USERNAME is the user who connects to PostgreSQL (rather
than the name of the system user executing vacuumdb).

-W, - -password

Accepts no parameters, and causes a password prompt, which occurs automatically if
the pg_hba.conf file on the target server is configured not to trust the requesting host.

-d DBNAME , - -dbname=DBNAME

Explicitly specifies the name of the database to perform the VACUUM statement on. This
option is mutually exclusive to the - -all option.

-a, - -all

Applies the VACUUM command, with specified options, to all databases in the system
catalog.

-z, - -analyze

Equivalent to the ANALYZE keyword for the VACUUM SQL command. Updates stored
statistics about the data allocation between columns, which are used by the query
optimizer to help guide internal query planning.

-t ' TABLE [(column [, ...])]', - -table=' TABLE [(column [, ...])]'

Targets a specific table TABLE (or specific columns within that table) to be affected. The
- -analyze option is required to describe specific columns.

-v, - -verbose

Equivalent to the VERBOSE keyword for the VACUUM SQL command. Causes a detailed
internal report of the processing performed to be displayed.

-e, - -echo

Accepts no parameters, and causes the query sent to PostgreSQL to be displayed to the
screen as it is executed by vacuumdb.

-q, - -quiet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Accepts no parameters, and causes no output to be sent to stdout (though any errors will
still be sent to stderr).

Example 9-16 demonstrates the use of the vacuumdb script from the Book Town server. The -
U flag specifies that the connection should use the manager user to connect, while the - -all
flag causes all databases in the system catalog to be affected in sequence.

Example 9-16. Using vacuumdb on all databases

[jworsley@booktown ~]$ vacuumdb -U manager - -all
Vacuuming postgres
VACUUM
Vacuuming booktown
VACUUM
Vacuuming template1
VACUUM

As mentioned, because of the connectivity options available to the vacuumdb script, it can be
easily executed from a remote server. Example 9-17 shows a similar process to the command
used in Example 9-16, but with the addition of the -h flag to specify a remote server named
booktown.commandprompt.com. Example 9-17 also targets the booktown database
specifically, rather than all databases.

Example 9-17. Using vacuumdb on a remote database

[jworsley@cmd ~]$ vacuumdb -h booktown.commandprompt.com -U manager booktown
VACUUM

Documenting a Database

Using COMMENT

PostgreSQL offers a non-standard SQL command called COMMENT, which allows for
documentation of any database object. By using COMMENT on a table, function, operator, or
other database object, you can provide description that is stored in the pg_description
system table. Descriptions can be easily retrieved through a set of extended psql slash
commands.

Most standard objects in the database have a default description, which can be perused (along
with any user-added descriptions) with the \dd slash command within psql.

Here is the syntax for COMMENT:

 COMMENT ON [[DATABASE | INDEX | RULE | SEQUENCE | TABLE | TYPE | VIEW]
 { object_name |
 COLUMN table_name.column_name |
 AGGREGATE aggregate_name aggregate_type |
 FUNCTION function_name (argument_type [, ...]) |
 OPERATOR operator_name (leftoperand_type , rightoperand_type) |
 TRIGGER trigger_name ON table_name }
] IS ' description '

In this syntax, object_name is the name of the database object that you wish to add a
comment of description to. The keywords for the major database objects are optional, but if

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

comment of description to. The keywords for the major database objects are optional, but if
you intend to place a comment on a column, function, aggregate function, operator, or trigger,
you must specify the preceding keyword so that PostgreSQL knows what kind of syntax to
expect, and where to look for the object name specified.

Note: Note that any comment added to a database is tied to both the database in
which it is added, and the user who added it. You can only see those comments
that you create.

The description string constant following the IS keyword is the literal comment to be placed
in the database. Example 9-18 demonstrates placing a simple description on the id column of
the booktown database.

Example 9-18. Commenting the books table

booktown=# COMMENT ON COLUMN books.id
booktown-# IS 'An Internal Book Town Identifier';
COMMENT

The COMMENT server message returned in Example 9-18 indicates that the comment was
successfully placed on the column.

Retrieving comments

You may retrieve comments from the database easily by using the psql slash-plus commands.
These are as follows:

\d+

Displays the same information as the standard \d command (displaying all tables,
views, sequences, and indices in the currently connected database), but adds a column
for the comments as well.

\l+

Displays comments on all databases.

\df+ [pattern]

Displays descriptions for each function in the currently connected database (as well as
the language and source of the function). You may wish to view this slash command in
expanded mode for readability by first initiating the \x slash command (see Chapter 6
for more about this). You can optionally supply a regular expression pattern to
compare against existing function names, allowing you to limit the number of functions
displayed.

\dt+

Displays comments on all tables in the currently connected database.

\di+

Displays comments on all indices in the currently connected database.

\ds+

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\ds+

Displays comments on all sequences in the currently connected database.

\dv+

Displays comments on all views in the currently connected database.

\dS+

Displays comments on system tables. Note that comments placed on system tables are
still tied to a particular database, even though they are accessible from all databases, and
will therefore not be visible when performing a \dS+ slash command from another
database connection.

\dd

Displays all descriptions for all database objects.

Example 9-19 demonstrates the retrieval of the comment that was placed on the books table in
Example 9-18 with the use of the psql \d+ command.

Example 9-19. Retrieving a comment

booktown=# \d+ books
 Table "books"
 Attribute | Type | Modifier | Description
------------+---------+----------+----------------------------------
 id | integer | not null | An Internal Book Town Identifier
 title | text | not null |
 author_id | integer | |
 subject_id | integer | |
Index: books_id_pkey

The COMMENT SQL command provides a very simple way of internally documenting your
objects, from tables to functions. This can be of great help when working with large or
complicated database schema. Even the best of naming conventions do not always result in
database objects whose applications are self-evident; this is especially the case when working
with multiple developers.

Prev Home Next
Creating and Removing a
Database

Up Backing Up and Restoring
Data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 9. Database Management Next

Backing Up and Restoring Data
The concept of backup and restoration of data is a vital one to any database administrator. No
system is immune from hard drive crashes, careless users, or any number of potential
catastrophes that can endanger data stored within PostgreSQL.

This section covers two general methods for backing up your data. The first approach uses the
pg_dump application distributed with PostgreSQL to create a set of SQL instructions with
which a database can be fully restored. The second method consists of backing up the
filesystem itself.

Using pg_dump
The pg_dump (which is short for "PostgreSQL dump") application is run from a command
line, and creates a list of SQL commands. These commands, executed in the order provided,
re-create the database from scratch.

Here is the syntax for pg_dump:

 pg_dump [options] dbname

In this syntax, dbname is the name of the database that you want to "dump" SQL instructions
for. The available options are similar in format to those of the other database management
utilities included with PostgreSQL, such as createdb. The most common flag specified in the
options to pg_dump is the -f flag, which specifies the file to store the dumped SQL statements
within.

Note: If the -f flag is not specified to pg_dump, the dumped SQL will be written
to stdout rather than stored in a file.

The complete list of pg_dump options follow:

-a, - -data-only

Forces only COPY or INSERT SQL statements to be dumped (depending on whether or
not the -d flag is used). This results in a backup of data, and not database objects (or
schema). If the -d flag is not passed along with this flag, the dumped COPY commands
are used to copy all data from stdin (i.e., the rows are stored literally within the dumped
file as COPY commands from stdin). Otherwise, each row is represented as sequential
INSERT statements.

-b, - -blobs

Causes any large objects to be dumped as well as normal data. This option also requires
that the -F flag be provided with either the t or c format. By default, large object data is
not dumped.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-c, - -clean

Specifies that SQL statements to drop all existing objects will precede the SQL
statements to create those objects. This option is useful in re-initializing an existing
database, rather than dropping it and recreating it from scratch.

-C, - -create

Specifies that the SQL statement to create the database (CREATE DATABASE) should be
included in the dump.

-d, - -inserts

Causes INSERT statements to be dumped for each row of data, rather than the default
COPY statements. This can be safer, as a single corrupted row will cause a COPY
statement to fail, though it is a much slower process to add a single row at a time during
restoration.

-D, - -attribute-inserts

Like the -d flag, causes INSERT statements to be dumped; however, with this flag, each
INSERT statement is created with an explicit column target list in parentheses,
immediately preceding the VALUES.

-f FILENAME, - -file=FILENAME

Directs the output of pg_dump to a file named FILENAME, rather than to stdout. The
user executing pg_dump must have system permissions to write to this file.

-F { c | t | p }, - -format { c | t | p }

Determines the file format of the output:

c (gzip compressed)

A format of c creates a gzip-compressed tar file (i.e., a .tar.gz file).

t (tar)

A value of t creates a tar file (i.e., a .tar file).

p (plain text)

The default value of p causes plain text output.

Note that pg_restore is typically used to handle files created with the c or t (gzip-
compressed or tar) formats.

-h HOSTNAME, - -host=HOSTNAME

Specifies that HOSTNAME should be connected to, rather than the localhost. Use this when
the target database is on another server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-i, - -ignore-version

Overrides the check between the version of pg_dump and the version of PostgreSQL
running. This option is not recommended unless there is no other alternative, as it most
likely will produce errors due to changes in the system catalogs between versions.
Normally, you should use the version of pg_dump matching the database that you are
backing up.

-n, - -no-quotes

Suppresses any double-quotes surrounding identifiers unless there are normally illegal
characters in the identifier (e.g., spaces, or uppercase characters).

-N, - -quotes

Explicitly indicates that double-quotes should be used around all identifiers. This has
been the default behavior of pg_dump since PostgreSQL 6.4.

-o, - -oid

Causes OIDs (object identifiers) for each row of data to be dumped as well. This can be
vital if any of your applications based around the data in PostgreSQL use OIDs in any
kind of meaningful or associative way.

-O, - -no-owner

Causes ownership to not be taken into account in the dump. A restore with suppressed
ownership will cause all re-created objects to belong to the user performing the restore.

-p PORT, - -port=PORT

Specifies that the database connection should be made on port PORT, rather than the
default port (usually 5432, though it may have been configured differently when
PostgreSQL was compiled, by the - -with-pgport flag).

-R, - -no-reconnect

Suppresses any \connect statements, which are usually used to enforce currently
reflected ownerships when a backup is restored. This is similar in practice to the -O flag,
but also precludes the ability to use the -C flag, as a reconnect is required after creation
of a new database.

-s, - -schema-only

Causes only the schema-related (database objects such as tables, sequences, indices and
views) SQL statements to be dumped, ignoring re-creation of the data. This can be
useful in moving a general database structure from a development machine to a
production machine.

-t TABLE, - -table=TABLE

Causes only TABLE to be dumped from the specified database, rather than all tables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-u, - -password

Provides a prompt for a username and password. As of PostgreSQL 7.1.x, this is the
only method to provide an alternate username. If the user's password is unset (NULL),
you may simply press enter when prompted for it.

-v, - -verbose

Causes verbose output from the pg_dump functions being performed to be displayed to
stderr (not stdout).

-x, - -no-acl

Suppresses any GRANT or REVOKE statements, which are usually used to preserve the
rights set at the time of the dump. Use this flag if you do not wish to enforce any
existing rights or restrictions when re-creating a database from this dump.

-Z, - -compress { 0 - 9 }

Sets the degree of compression (0 for the least compression, 9 for the most) when used
with the -F c argument.

Any system user may run pg_dump by default, but the user with which you connect to
PostgreSQL must have SELECT rights for every object in the database being dumped. Example
9-20 demonstrates the use of pg_dump on the booktown database, with the manager
PostgreSQL user. The -C flag passed causes the CREATE DATABASE command to be included in
the SQL dump as well. This command is not always included, as you may prefer to create the
database beforehand with non-standard options.

Example 9-20. Using pg_dump

[jworsley@booktown ~]$ pg_dump -u -C -f booktown.sql booktown
Username: manager
Password:

[jworsley@booktown ~]$ ls -l booktown.sql
-rw-rw-r- - 1 jworsley jworsley 46542 Sep 13 16:42 booktown.sql

Note that since pg_dump provides the standard connection options for specifying a host
connection (e.g., the -h, -u and -p flags), it can be used to perform remote backups from any
host allowed to make a remote connection (according to the pg_hba.conf file: see Chapter 8
for more on this subject). Example 9-21 shows a user on a remote server specifying a
connection to the booktown.commandprompt.com server, in order to create a backup file in
compressed format (with the -F c flag) called booktown.sql.tar.gz.

Example 9-21. Using pg_dump remotely

[jworsley@cmd ~]$ pg_dump -u -h booktown.commandprompt.com \
> -F c -f booktown.sql.tar.gz booktown
Username: manager
Password:

[jworsley@cmd ~]$ ls -l booktown.sql.tar.gz
-rw-rw-r- - 1 jworsley jworsley 45909 Sep 13 17:12 booktown.sql.tar.gz

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-rw-rw-r- - 1 jworsley jworsley 45909 Sep 13 17:12 booktown.sql.tar.gz

If you wish to use large objects in your dumped file, it is necessary that you use either the tar
(t) or gzip-compressed (c) format, since the plain-text format cannot include large objects.
Otherwise, normal plain-text formatted dumps are suitable for most users.

Creating a dump in tar format can often result in a backup file more than twice the size of its
plain-text counterpart, even without large objects. This is because the tar format involves a
hierarchy of TOC (table of contents) .dat files which represent information on how to be used
by the corresponding pg_restore command; thus, more disk space is taken up by the extra
instructions. Since tar is not a compression utility, the gzip-compressed (c) format exists as
well to compress the tarred file into gzipped format automatically.

Using pg_dumpall
PostgreSQL supplies a supplementary wrapper command to the pg_dump application called
pg_dumpall. The primary use of this application is to allow the entire cluster of PostgreSQL
databases on a system to be dumped at once, rather than having to perform a pg_dump for
each database, one at a time.

Here is the syntax for pg_dumpall, displayed from the - -help flag:

 pg_dumpall [-c] [-h HOSTNAME] [-p PORT] [-g]

The pg_dumpall command accepts the same connection parameters available to pg_dump. The
following are the pg_dumpall-specific parameters:

-c

Specifies that SQL statements to drop existing global objects will precede the SQL
statements to create those objects.

-h HOSTNAME, - -host=HOSTNAME

Specifies that HOSTNAME should be connected to, rather than the localhost, or the host
defined by the PGHOST environment variable. Use this when the target database is on
another server.

-p PORT, - -port=PORT

Specifies that the database connection should be made on port PORT, rather than the
default port (usually 5432).

-g, - -globals-only

Specifies that only global objects will be dumped. This is primarily useful for recreating
just users and groups, or for duplicating them on another machine (by taking the dump
to another machine, and executing it). The -g flag implicitly causes all users to be
deleted from the pg_shadow table prior to the CREATE statements. Exercise caution with
the output from this command!

Warning

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Do not pass the -? flag to pg_dumpall, as it will result in passing that flag to pg_dump for
each database, which may result in quite a few more help screens than you would expect. If
you wish to view pg_dumpall's help, use the - -help flag.

Note that as of PostgreSQL 7.1.x, the use of the pg_dumpall script does have some practical
limitations over the normal use of pg_dump. For example, the -u flag cannot be used to
provide a different username and password, and the -F flag may not be used to specify a
format other than plain text (your backups will be stored as plain text, regardless of chosen
format). This means that the -b flag cannot be used with pg_dumpall either, as it requires a
format other than plain-text.

While the -f flag can be used to pass a filename through to pg_dump, doing so does not create
a complete dump, as pg_dumpall's global data is still sent to stdout. To solve the problem of
not having the -f flag available to pg_dumpall, the shell re-direction operator (>) can be used to
redirect the output of pg_dumpall to a file.

A simple workaround to the lack of the -u flag is to set the PGUSER environment variable. You
can also set the PGPASSWORD environment variable in this fashion if you are connecting to a
system which requires password authentication, and you do not wish to provide a password for
each database that it connects to and dumps.

Example 9-22 demonstrates a simple bash-shell shorthand for a temporary environment
variable (PGUSER) when invoking any PostgreSQL client. While not usually necessary, it can
be a handy trick to know for exceptions such as the pg_dumpall script. Example 9-22 uses this
technique to create one dump file for all databases.

Example 9-22. Using pg_dumpall

[jworsley@booktown ~]$ PGUSER=postgres pg_dumpall > all.sql

The first part of the shell statement demonstrated in Example 9-22 sets a temporary
environment variable named PGUSER to the value of postgres. This variable is set for the
duration of the pg_dumpall command, and expires when the command has finished.

Note: The pg_dumpall command generally requires that the user executing the
script be a PostgreSQL superuser. This is because the pg_dumpall command
requires access to the PostgreSQL system catalogs, as it dumps global objects as
well as database objects.

You can also run the pg_dumpall command remotely, though be sure to set any environment
variables as needed. These will depend greatly on the remote host configuration in the
pg_hba.conf file.

You should use the pg_dumpall command if it is especially inconvenient to backup all your
existing databases individually, or if you have any kind of complex user and group system in
place. If you are inhibited by the limitations of pg_dumpall for data output (particularly if your
database makes use of large objects), the simplest solution is to use pg_dumpall with the -g
flag to keep a backup of all user and group data, and to subsequently use pg_dump for each
database which needs to be backed up, individually.

Restoring a Database

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Data from a SQL dump can be restored to a database in one of two ways. If the dump created
by pg_dump as a simple, plain-text file, it may be passed through to psql directly as an input
file. Alternatively, if another output format was chosen (e.g., the tar or compressed tar
format), the pg_restore command must be used.

A database may either be restored from scratch, to an empty database, or to a non-existent
database; how you go about restoring a database depends largely on how it was dumped (e.g.,
if only data were dumped, or if the commands to create the database were included).

Using psql for plain text dumps

A plain text output file from pg_dump may be passed through to psql as an input file. This
executes sequentially each of the dumped SQL instructions. Depending on how the dump was
created, and for what purpose, there are a variety of ways to invoke psql with the dump.

If your dump was created with the -C flag, the SQL statement to create the database is
included in the dump file itself. This means that, most likely, the database was either dropped,
or has not yet been created on the system on which it is being restored. If the database already
exists, it may need to be dropped, but only do this if you are sure the dump is up to date.

On the other hand, if the -C flag was not used, you may need to first create the database before
connecting to it and restoring its attributes and data. Remember also that you need to specify
the usual connection parameters to psql in order to operate as a user with the rights to create a
database.

Example 9-23 demonstrates recreating the booktown database with the booktown.sql file
created in Example 9-20, in the Section called Using pg_dump" earlier in this chapter. Since
the -C flag was used in this example, there is no need to create the database first; it can be
created by bootstrapping through the template1 database.

Example 9-23. Recreating the booktown database

[jworsley@booktown ~]$ psql -U manager -f booktown.sql template1
CREATE DATABASE
You are now connected to database booktown as user postgres.
COMMENT
CREATE
CREATE
CHANGE

[...]

As each dumped command in the booktown.sql file is processed by PostgreSQL, the resulting
server messages (e.g., CREATE, CHANGE) will be displayed to stderr.

Note: Since psql can be used remotely, this same technique may be used across a
network, provided the correct connection parameters are used from an authorized
host.

Using pg_restore for tarred and compressed dumps

For files created by pg_dump with a file format other than plain text, the pg_restore command

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For files created by pg_dump with a file format other than plain text, the pg_restore command
exists to seamlessly restore the dumped database from the tar, or compressed tar file.

Here is the syntax for the pg_restore command:

 pg_restore [options] [file]

In this syntax, if file is not specified, pg_restore will wait for data from stdin. This means
that you may effectively use the < shell redirection character with the same results. Notice
especially in the options the -d flag. If left unspecified, pg_restore will simply display the
database restoration statements to stdout (and thus, to the screen) rather than actually restoring
a database.

If you are using the -C flag to create a database from scratch, you must still supply the -d flag
(with the name of an existing database to connect to first, e.g., template1) from which to
initialize a connection and create the new database. In such a case, it is not important to which
database you initially connect, as it is only a temporary connection until the new database is
created.

Many of the options for pg_restore directly mirror those available in pg_dump. In some cases,
the same option must be supplied in both pg_dump and pg_restore in order for the desired
functionality to be achieved. For example, this is the case with the -C flag. If used with
pg_dump, but not pg_restore, the CREATE DATABASE command will be ignored by
pg_restore, even though the command is present in the dump file.

The following are more detailed explanations of each option:

-a, --data-only

Causes any reference to creation of database schema objects to be ignored, restoring
only data records (those with COPY or INSERT statements).

-c, - -clean

Causes any DROP SQL statements to be executed before creating database objects.
Without the -c flag, these statements are ignored, even if they are present in the dump
file.

-C, - -create

Causes the CREATE DATABASE SQL statement (if found in the dump file) to be executed.
Without the -C flag, the statement is ignored.

-d NAME, - -dbname=NAME

Specifies the database called NAME to be connected to for the restoration. If the -C flag is
used to create a new database, the -d flag should be pointed to template1. If this
parameter is not specified, the commands to restore the database will instead be
displayed to stdout rather than sent to PostgreSQL.

-f FILENAME, - -file=FILENAME

Indicates that FILENAME is the target for the database restoration SQL commands, rather
than a the postmaster backend (with the -d flag), or stdout (the default).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-F { c | t }, - -format={ c | t }

Specifies the format of the input file, FILENAME. A value of c indicates that it is a
compressed and tarred dump, while t indicates that it is only tarred. Note that this option
is usually not necessary, as pg_restore can judge what kind of file it is dealing with
through its header data.

-h HOSTNAME, - -host=HOSTNAME

Specifies that you should connect to HOSTNAME, rather than the localhost.

-i, - -index

Specifies that only indices be recreated. Note that due to a bug, the -i flag may not work,
though the - -index flag should (as of PostgreSQL 7.1.x).

-l, - -list

Specifies that only the table of contents of database objects should be output in a
comma-delimited, PostgreSQL specific TOC (table of contents) format. This output can
be redirected to a file (either with shell redirection via the < character, or with the -f
flag) and later used with the -L flag to control what database objects are restored.

-L FILENAME, - -use-list=FILENAME

Indicates use of the PostgreSQL TOC file FILENAME to determine which objects should
be restored by pg_restore. This file is generated using the -l flag. After generating the
file, delete lines for objects you do now wish to restore, or preface those lines with a
semicolon (;). When -L is used, pg_restore only restores those objects listed in the
specified TOC file.

-N, - -orig-order

Causes the restore to occur in the same order that the pg_dump originally dumped the
objects in (through the use of the extra TOC information in a tar or gzip-compressed
format). This is not the same as the literal order in which the statements are placed in the
dump file itself, which is the default restore order. This option excludes the use of the -o
or -r options.

If, during a restoration, database objects are created in an incorrect order (e.g., an object
which relies on another existing object is created before the object it relies on), you can
re-initialize a database and try this flag to override the order which was originally
chosen by pg_dump.

-o, - -oid-order

Causes the restore to occur strictly in the order of OIDs, ascending; this option excludes
the use of the -N or -r options.

-O, - -no-owner

Forces pg_restore to ignore any \connect statements which would be used to enforce

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Forces pg_restore to ignore any \connect statements which would be used to enforce
ownership.

-p PORT, - -port=PORT

Specifies that the database connection should be made on port PORT, rather than the
default port (usually 5432, though it may have been configured differently when
PostgreSQL was compiled, by the - -with-pgport flag).

-P, - -function

Specifies that only functions are to be recreated. Like the -i flag, due to a bug, the -P
flag may not work, though the - -function flag should, as of PostgreSQL 7.1.x.

-r, - -rearrange

Causes the restore to occur in the order chosen by pg_dump at the time of the dump
file's creation. Most of the objects are created in OID order with this option, though
statements creating rules and indices are placed towards the end of the file. This option
is the default.

-R, - -no-reconnect

Forces pg_restore to ignore all \connect statements (not just those intended to enforce
ownership). This cannot be used with the -C flag, which requires at least one
reconnection after the creation of a new database.

-s, - -schema-only

Causes only the creation of database schema objects, such as tables, views, sequences,
and indices. No rows will be copied or inserted into the tables, and sequences will
initialize to their default values. This can be used, for example, to create an empty
production database that matches the structure of a development database.

-S NAME, - -superuser=NAME

Specifies the superuser with username NAME to be used in disabling triggers (if
necessary, to recreate a trigger), as well as to set ownership of schema elements.

-t NAME, - -table[=NAME]

Causes only the table NAME to be restored, rather than all database objects. Specifying
just - -table causes only tables to be restored.

-T NAME, - -trigger[=NAME]

Causes only the trigger NAME to be restored, rather than all database objects. Specifying
just - -trigger causes only triggers to be restored.

-u, - -password

Causes pg_restore to provide a prompt for a username and password.

-v, - -verbose

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Causes verbose output of each action as it is performed. This output is sent to stderr,
rather than stdout.

-x, - -no-acl

Suppresses any SQL GRANT or REVOKE statement in the dump being restored.

Example 9-24 demonstrates a restoration of the booktown database on a separate machine
from which the original was made. It uses the booktown.sql.tar file created in Example 9-21,
in the Section called Using pg_dump," earlier in this chapter, as the source for the restoration.

Example 9-24. Restore with pg_restore

[jworsley@cmd ~]$ pg_restore -v -C -O -d template1 booktown.sql.tar
Connecting to database for restore
Creating DATABASE booktown
Connecting to new DB 'booktown' as postgres
Connecting to booktown as postgres
Creating COMMENT DATABASE "booktown"
Creating TABLE inventory

[...]

You can see upon examining the pg_restore command in Example 9-24 that it uses the -v flag
for verbose output as it operates, the -C flag to create the database (as this is a new database on
this machine), and the -O flag to ignore ownership from the original database (as the users on
another machine are not guaranteed to exist locally). Notice also the -d flag is used to connect
to the template1 database before creating, and connecting to, the booktown database.

Note that the use of the -O flag can be dangerous if ownership is an important part of the
recreation of a database. It can play a helpful role in moving from a development environment
to a production environment (e.g., if test or development account names were associated with
various database objects). However, if a database is being restored on an existing machine
(e.g., from a nightly backup), it is not recommended that the -O flag be used.

Warning
Remember that pg_restore exists only for files that are output in either tar format (t), or
compressed tar format (c). Plain text SQL dumps may be processed with psql, as
documented in the Section called Using psql for plain text dumps," earlier in this chapter.

When to Backup and Restore Data
An important consideration to the use of the pg_dump, pg_dumpall, and pg_restore commands
is when to use them, and when not to. Fortunately, in respect to each of these procedures,
PostgreSQL is quite accommodating.

When to backup

With regards to backing up data with either pg_dump or pg_dumpall, there are few
considerations necessary for when they may be performed. PostgreSQL has supported hot
backup procedures since Version 6.5—these allow you to request data without blocking the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

backup procedures since Version 6.5—these allow you to request data without blocking the
normal activity of other concurrent users. It is called a hot backup because it is performed
while the system is running, uninterrupted.

Therefore, the only potential considerations for backup PostgreSQL center around
performance. An exceptionally large database may take a while to dump all of its contents.
The use of large objects may also be a factor if you intend to back up large object data with
pg_dump's -b flag (thus, adding to the amount of data needing to be output).

If you have a large database that takes a substantial amount of time to complete a dump, it is
recommended that you schedule the pg_dump execution for a time when the database is not
heavily used. Even though a dump does not block users from requesting and completing
transactions, it can still slow down the general performance of such a system during heavy, or
even medium usage.

When to restore

With respect to restoration there are several more considerations to be taken into account than
when merely backing up data. Specifically, these apply to how "deep" a restoration must go;
restoring just the data is a very different operation from totally recreating the database from
scratch, and the restrictions involved scale with the depth of the operation.

The least restrictive kind of restoration is one which restores data only. This can be executed
while users are actively connected to the database. It may even be executed while connected
users are in the middle of transactions. This is possible through PostgreSQL's multiversion
control. Such a restore can be performed on the fly, without having to restart the database
system. Once modifications are synchronized with the database, the changes are immediately
available to connected users.

A restoration involving dropping and recreating database schema (e.g., tables, views, etc.) may
also be performed while the system is running. This method is not as seamless as a data-only
restoration, because database objects will briefly be removed from the system, which may
cause temporary problems to applications relying on certain objects to exist. The exact nature
of such a restriction is dependent on the nature of the application accessing the database.

The most restrictive kind of restoration is one which involves dropping the database itself. If
such a restoration is scheduled, it must be done at a time when no other user is connected to
that database. The DROP DATABASE command will fail if any user is actively connected at the
time it is executed.

It may in fact be necessary to shut down and restart PostgreSQL with TCP/IP connections
disabled if a highly-used database is intended to be dropped and recreated from scratch; this
will prevent any external machine from connecting to the database server until the work is
completed.

Backing Up the Filesystem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

While PostgreSQL abstracts the literal data files from its users, all of the data within
PostgreSQL databases can be found in normal system files. These files are constantly in a state
of flux when the database is running, as not all changes made in PostgreSQL are immediately
written to disk. These files are stored within the PostgreSQL directory (e.g.,
/usr/local/pgsql/data, or whatever path is specified by the PGDATA environment variable).

Rather than creating a set of SQL instructions to re-create a database, you may instead opt to
stop the PostgreSQL server (in order to ensure that all changes are synchronized with the hard
disk) and create a backup of that area of the filesystem. Typically this is done with the tar
utility, and optionally compressed with a compression utility such as gzip.

Example 9-25 demonstrates the backing up of a filesystem in which PostgreSQL keeps its
data, as performed by the user who owns the data files (which is the same user that runs
PostgreSQL's backend). In this case, the path is /usr/local/pgsql/data, and the system user is
postgres.

Example 9-25. Backing up the PostgreSQL filesystem

[postgres@booktown ~]$ cd /usr/local/pgsql
[postgres@booktown pgsql]$ pg_ctl stop
Smart Shutdown request at Fri Sep 14 14:54:15 2001
DEBUG: shutting down
waiting for postmaster to shut down......DEBUG: database system is shut down
done
postmaster successfully shut down
[postgres@booktown pgsql]$ tar czf pgsql.bak.tar.gz data/
[postgres@booktown pgsql]$ ls -l *.tar.gz
-rw-rw-r- - 1 postgres postgres 66124795 Sep 14 14:36 pgsql.bak.tar.gz

Notice that the pg_ctl command is called before the tar process, to stop the PostgreSQL
backend (if installed, the SysV script may be invoked with the service command to the same
end). As stated, this is to ensure that the most recent changes to the database have been
synchronized with the hard disk, as well as to verify that none of the data files are modified
while backed up.

The primary advantage to backing up your data in this fashion is that you have a literal backup
of PostgreSQL's data files. In order to restore a crashed database from this kind of file, it needs
to be decompressed in the appropriate location, and for the backend to be re-started. There is
no need for negotiation of options, ownership, or potential conflicts between the pg_dump
output and restoring it to a live PostgreSQL server through sequential SQL statements.

However, while this method is easier to implement, it presents several limitations. First, the
database must be shut down completely to backup or restore the data, eliminating the primary
advantage of a hot backup-capable DBMS, which is limited downtime. Further, it is not
possible to backup only specific databases, or tables. The entire data directory must be backed
up for a complete restoration of the filesystem. This is because there are many files associated
with a particular database, and it is not obvious which files correlate to which databases.

Finally, because more than abstract information is represented on disk by a live database, a
much greater amount of disk space is required to backup even a compressed copy of the entire
data directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Prev Home Next
Maintaining a Database Up User and Group Management

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 10. User and Group Management Next

Managing Groups
Groups serve to simplify the assignment of rights. Ordinary privileges must be granted to a
single user, one at a time. This can be tedious if several users need to be assigned the same
access to a variety of database objects.

Groups are created to avoid this problem. A group simply requires a name, and can be created
empty (without users). Once created, users who are intended to share common access
privileges are added into the group together, and are henceforth associated by their
membership in that group. Rights on database objects are then granted to the group, rather
than to each member of the group. For a system with many users and databases, groups make
managing rights less of an administrative chore.

Note: Users may belong to any number of groups, or no groups at all.

Creating and Removing Groups
Before you get started managing groups, you should first understand how to create and
remove them from the system. Each of these procedures requires superuser privileges. See the
Section called Managing Users" earlier in this chapter for more about superusers.

Creating a group

Any superuser may create a new group in PostgreSQL with the CREATE GROUP command.
Here is the syntax for CREATE GROUP:

 CREATE GROUP groupname
 [WITH
 [SYSID groupid]
 [USER username [, ...]]]

In this syntax, groupname is the name of the group that you wish to create. A group's name
must start with an alphabetical character, and may not exceed 31 characters in length.
Providing the WITH keyword allows for either of the optional attributes to be specified. If you
wish to specify the system ID to use for the new group, use the SYSID keyword to specify the
groupid value. Use the USER keyword to include one or more users to the group at creation
time. Separate usernames by commas.

Additionally, the PostgreSQL user and group tables operate separately from each other. This
separation does allow a user's usesysid and a group's grosysid to be identical within the
PostgreSQL system.

As an example, Example 10-11 creates the sales group, and adds two users to it upon its
creation. These users are allen, and vincent (presumably, members of Book Town's sales
department).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 10-11. Creating a group

booktown=# CREATE GROUP sales
booktown-# WITH USER allen, vincent;
CREATE GROUP

The CREATE GROUP server message indicates that the group was created successfully. You may
verify the creation of a group, as well as view all existing groups, with a query on the
pg_group system table. Example 10-12 executes such a query.

Example 10-12. Verifying a group

booktown=# SELECT * FROM pg_group;
 groname | grosysid | grolist
------------+----------+-------------
 sales | 1 | {7017,7016}
 accounting | 2 |
 marketing | 3 |
(3 rows)

Notice that the grolist column is an array, containing the PostgreSQL user ID of each user in
the group. These are the same user IDs which can be seen in the pg_user view. For example:

booktown=# SELECT usename FROM pg_user
booktown-# WHERE usesysid = 7017 OR usesysid = 7016;
 usename

 allen
 vincent
(2 rows)

Removing a group

Any superuser may also remove a group with the DROP GROUP SQL command. You should
exercise caution with this command, as it is irreversible, and you will not be prompted to
verify the removal of the group (even if there are users still in the group). Unlike DROP
DATABASE, DROP GROUP may be performed within a transaction block.

Here is the syntax for DROP GROUP:

 DROP GROUP groupname

The groupname is the name of the group to be permanently removed. Example 10-13 removes
an outdated marketing group from the Book Town database.

Example 10-13. Removing a group

booktown=# DROP GROUP marketing;
DROP GROUP

The DROP GROUP server message returned from Example 10-13 indicates that the group was
successfully destroyed. Note that removing a group does not remove permissions placed on it,
but rather "disembodies" them. Any permissions placed on a database object which have rights
assigned to a dropped group will appear to be assigned to a group system ID, rather than to a
group.

Note: Inadvertently dropped groups can be restored to their previous functionality

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note: Inadvertently dropped groups can be restored to their previous functionality
by creating a new group with the same system ID as the dropped group. This
involves the SYSID keyword, as documented in the Section called Creating a
group." If you assign group permissions to a table and then drop the group, the
group permissions on the table will be retained. However, you will need to add
the appropriate users to the newly recreated group for the table permissions to be
effective for members of that group.

Associating Users with Groups
Users are both added and removed from groups in PostgreSQL through the ALTER GROUP SQL
command. Here is the syntax for the ALTER GROUP command:

 ALTER GROUP groupname { ADD | DROP } USER username [, ...]

The groupname is the name of the group to be modified, while the username is the name of the
user to be added or removed, depending on whether the ADD or DROP keyword is specified.

Adding a user to a group

Suppose that Booktown hires two new sales associates, David and Ben, and gives them
usernames david and ben, respectively. Example 10-14 uses the ALTER GROUP command adds
these new users to the sales group.

Example 10-14. Adding a user to a group

booktown=# ALTER GROUP sales ADD USER david, ben;
ALTER GROUP

The ALTER GROUP server message returned in Example 10-14 indicates that the users david
and ben were successfully added to the sales group. Example 10-15 demonstrates another
query to the pg_ group table to verify the addition of those new users to the group. Note that
there are now four system IDs in the grolist column for the sales group.

Example 10-15. Verifying user addition

booktown=# SELECT * FROM pg_group WHERE groname = 'sales';
 groname | grosysid | grolist
---------+----------+-----------------------
 sales | 1 | {7019,7018,7017,7016}
(1 row)

Removing a user from a group

Suppose that some time later David is transferred from sales to accounting. In order to
maintain the correct group association, and to make sure that David does not have any rights
granted exclusively to the sales group, his user (david) should be removed from that group;
Example 10-16 achieves this.

Example 10-16. Removing a user from a group

booktown=# ALTER GROUP sales DROP USER david;
ALTER GROUP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ALTER GROUP

The ALTER GROUP message returned from Example 10-16 indicates that the david user was
successfully removed from the sales group.

To complete his transition to the accounting department, David must then have his user added
to the accounting group. The following statements use similar syntax as the statements in
Example 10-14 and Example 10-15. The net effect is that the david user is added into the
accounting group. This means that any special rights granted to this group will be implicitly
granted to david for as long as he is a member of the group.

booktown=# ALTER GROUP accounting ADD USER david;
ALTER GROUP
booktown=# SELECT * FROM pg_group;
 groname | grosysid | grolist
------------+----------+------------------
 sales | 1 | {7016,7017,7019}
 accounting | 2 | {7018}
(2 rows)

Prev Home Next
User and Group Management Up Granting Privileges

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 10. User and Group Management Next

Granting Privileges
PostgreSQL maintains a tightly controlled set of access control lists or ACLs. This information
describes which users are allowed to select from, update, and otherwise modify objects within
a database. A set of access privileges and restrictions exist for each applicable database object
in PostgreSQL (e.g., tables, views, and sequences). Superusers and owners of database objects
maintain these ACLs through a pair of SQL commands: GRANT and REVOKE.

As stated in Chapter 9, when a user first creates a database, they are implicitly the owner of
that database. Similarly, whenever someone creates that database object, it is owned by that
individual who issued the related CREATE SQL command.

Aside from PostgreSQL superusers (who may manipulate any database object in any way),
only the owners of database objects are allowed to grant and revoke privileges on the objects
which they own. Though any user may connect to a database, if they wish access to objects
within that database they must have those privileges explicitly granted to them.

Understanding Access Control
As mentioned earlier in this section, access control lists apply to three types of database
objects: tables, lists, and sequences. For these objects, there are four general privileges which
may be granted to, or revoked from, a user or group. The ability to revoke rights exists only to
undo the function of having granted them. Users and groups have no rights to begin with.

From the psql client, you can view ACL permission summaries by using the \z slash
command. This command displays all access permissions in the currently connected database.
To see permissions on a specific object, specify that object's name as a parameter to the \z
command. You can use a regular expression in place of a name to see privileges on a group of
objects.

Table 10-2 lists each of the Access Control privileges available within PostgreSQL. Each
privilege also has an associated symbol, which appears as a single alphabetical character.
These symbols are shorthand for the described privilege, and are used by the psql \z slash
command when displaying summaries of access permissions.

Table 10-2. PostgreSQL ACL privileges

Keyword Symbol Description
SELECT r Allows a user to retrieve data from a

table, view or sequence (though the
nextval() function may not be
called with only SELECT rights).
Also known as "read" rights.

INSERT a Allows a user to insert new rows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

into a table. Also known as
"append" rights.

UPDATE, DELETE w Allows a user to modify or remove
rows of data from a table. If either
the UPDATE or DELETE right is
granted, the other is implicitly
granted as well. Also known as
"write" rights.

RULE R Allows a user to create a rewrite rule
on a table or view.

ALL arwR Represents a shorthand way to grant
or revoke all rights at once. ALL is
not a right in and of itself. Granting
ALL results in the granting of
SELECT, INSERT, UPDATE, DELETE,
and RULE.

Granting privileges with GRANT
To assign a privilege to a user or group, use SQL's GRANT command. Here is the syntax for
GRANT:

 GRANT privilege [, ...] ON object [, ...]
 TO { PUBLIC | username | GROUP groupname }

In this syntax, privilege is any of the privileges listed in Table 10-2, object is the name of
the database object (table, view or sequence) that a privilege is being granted on, and the token
following the TO keyword describes who the privilege is being granted to. Multiple privileges
and objects may be listed, separated from one another by commas.

Only one of the terms following TO may be used in a single GRANT statement. Granting rights
with the PUBLIC keyword indiscriminately grants the intended privilege to the special "public"
target. PUBLIC privileges are shared by all users. Specifying a username grants the privilege to
specific user. Likewise, specifying a groupname grants the privilege to a specific group.

Suppose, for example, that the manager user needs all rights to the customers, books,
editions and publishers tables. Example 10-17 gives the manager user those rights, a single
GRANT statement.

Example 10-17. Granting user privileges

booktown=# GRANT ALL ON customers, books, editions, publishers
booktown-# TO manager;
CHANGE

The use of the ALL keyword in Example 10-17 grants all possible ACL rights (SELECT,
UPDATE, etc.) for the specified objects to the user manager. The CHANGE message from the
server indicates that the privileges were correctly modified. Remember that you can use the \z
command in psql in order to verify permissions on a database object.

booktown=# \z publishers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# \z publishers
Access permissions for database "booktown"
 Relation | Access permissions
------------+----------------------
 publishers | {"=","manager=arwR"}
(1 row)

As another example, let's look at the use of the GROUP keyword to grant privileges to members
of a group groupname. For instance, the entire sales department at the Book Town should be
given permission to view the customers table, but not to modify it. Example 10-18 grants
SELECT access on the customers table to any member of the sales group.

Example 10-18. Granting group privileges

booktown=# GRANT SELECT ON customers TO GROUP sales;
CHANGE
booktown=# \z customers
 Access permissions for database "booktown"
 Relation | Access permissions
-----------+---------------------------------
 customers | {"=","manager=arwR","group sales=r"}
(1 row)

Restricting Rights with REVOKE
By default, a normal user has no all privileges on any database object that they do not own. To
explicitly revoke a right after it has been granted, the object's owner (or a superuser) can issue
the REVOKE command. This command is very similar in form to the GRANT command.

Here is the syntax for REVOKE:

 REVOKE privilege [, ...] ON object [, ...]
 FROM { PUBLIC | username | GROUP groupname }

The structure of the REVOKE command syntax is identical to that of the GRANT command, with
the exception that the SQL command itself is REVOKE rather than GRANT, and the keyword FROM
is used, rather than the TO keyword.

Note: Revoking privileges from PUBLIC only affects the special "public" group,
which includes all users. Revoking rights from PUBLIC will not affect any users
who have been explicitly granted those privileges.

Suppose the UPDATE rights on the books table have been granted to the user david. When
David is transferred to another department, and no longer needs the ability to modify book
information, you should revoke David's UPDATE privilege on the books table.

Example 10-19 uses the \z slash command in psql to check the permissions on the books
table, revealing that david has write-access privileges to that table. A REVOKE statement then
explicitly revokes the UPDATE and DELETE privileges on the books table from the user david.
Finally, another \z slash command is executed to verify the removal of the privilege.

Example 10-19. Revoking rights

booktown=# \z books

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# \z books
Access permissions for database "booktown"
 Relation | Access permissions
----------+--------------------------------
 books | {"=","manager=arwR","david=w"}
(1 row)

booktown=# REVOKE UPDATE, DELETE ON books
booktown-# FROM david;
CHANGE
booktown=# \z books
Access permissions for database "booktown"
 Relation | Access permissions
----------+----------------------
 books | {"=","manager=arwR"}
(1 row)

Using Views for Access Control
While you cannot control read-access to specified columns or rows of a table, you can achieve
this indirectly through the careful use of views. By creating a view on a table, and forcing
users to access the table through that view, you can allow only desired columns or rows to be
selected.

You limit columns by specifying a column list in the view's SELECT statement when you create
the view. The view will then return only the columns you specify. You limit rows by writing a
WHERE clause in the view's SELECT statement. The view will then return only those rows that
match the WHERE clause (see Chapter 4, for more about creating views).

As ACL privileges may be applied to views as well as tables, you may then grant SELECT
rights to the limited view, but not the table itself. Users will then be able to select from the
view even though they don't have access to the underlying table.

For instance, the Book Town store has a stock table correlating a book's ISBN number to its
purchase cost, retail price, and the current available stock. The table structure is shown in
Table 10-3.

Table 10-3. The stock table

Column Type Modifier
isbn text NOT

NULL
cost numeric(5,2)
retail numeric(5,2)
stock integer

Suppose that the manager of Book Town doesn't want the salespeople to have access to the
purchase cost of each book. This information can be restricted by generating a view which
retrieves data from only the isbn, retail and stock columns. Example 10-20 creates such a
view, grants rights to the sales group, and verifies the rights with the \z psql slash command.

Example 10-20. Controlling SELECT privileges with a view

booktown=# CREATE VIEW stock_view
booktown-# AS SELECT isbn, retail, stock

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# AS SELECT isbn, retail, stock
booktown-# FROM stock;
CREATE
booktown=# GRANT SELECT ON stock_view TO GROUP sales;
CHANGE
booktown=# \z stock
 Access permissions for database "booktown"
 Relation | Access permissions
--------------+---------------------------------------
 stock |
 stock_backup |
 stock_view | {"=","manager=arwR","group sales=r"}
(3 rows)

Example 10-21 demonstrates the addition of a new user, barbara. It grants SELECT rights on
the stock_view. Since the barbara user does not have any implicit rights on the stock table,
it is inaccessible; this is the case, even though the view on that table is accessible as a result of
the GRANT statement.

Example 10-21. Controlling SELECT

booktown=# CREATE USER barbara;
CREATE USER
booktown=# GRANT USER barbara SELECT ON stock_view;
booktown=# \c - barbara
You are now connected as new user barbara.
booktown=> SELECT * FROM stock;
ERROR: stock: Permission denied.
booktown=> SELECT * FROM stock_view;
 isbn | retail | stock
------------+--------+-------
 0385121679 | 36.95 | 65
 039480001X | 32.95 | 31
 0394900014 | 23.95 | 0
 044100590X | 45.95 | 89
 0441172717 | 21.95 | 77
 0451160916 | 28.95 | 22
 0451198492 | 46.95 | 0
 0451457994 | 22.95 | 0
 0590445065 | 23.95 | 10
 0679803335 | 24.95 | 18
 0694003611 | 28.95 | 50
 0760720002 | 23.95 | 28
 0823015505 | 28.95 | 16
 0929605942 | 21.95 | 25
 1885418035 | 24.95 | 77
 0394800753 | 16.95 | 4
(16 rows)

Notice that when connected as the barbara user, the SELECT statement from the stock_view is
successful, while the stock table presents a Permission denied error.

Prev Home Next
Managing Groups Up Programming with

PostgreSQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 11. PL/pgSQL Next

Language Structure
The structure of PL/pgSQL is fairly simple, mainly due to the fact that each portion of code is
designed to exist as a function. While it may not look immediately similar to other languages,
PL/pgSQL's structure is similar to other programming languages such as C, in which each
portion of code acts (and is created) as a function, all variables must be declared before being
used, and code segments accept arguments when called and return arguments at their end.

Regarding its syntax, PL/pgSQL functions are case insensitive. You can use mixed, upper-, or
lowercase for keywords and identifiers. Additionally, you will notice the use of pairs of
apostrophes (single quotes) in many places within this chapter. These are required whenever a
single apostrophe would ordinarily be used. The pair of apostrophes is a means to escape an
apostrophe within the function definition to PostgreSQL, since a function definition is actually
a large string constant within a CREATE FUNCTION statement.

This section will discuss the block organization of PL/pgSQL code, how to use comments,
how PL/pgSQL expressions are organized, and the usage of statements.

Code Blocks
PL/pgSQL code is organized in blocks of code. This method of organization is known as block
structured code. Code blocks are entered within a SQL CREATE FUNCTION call that creates the
PL/pgSQL function in the PostgreSQL database. This CREATE FUNCTION command names the
new function, states its argument types, and states the return type. The function's main code
block then starts with a declaration section.

All variables are declared and optionally initialized to a default value in the declaration section
of a code block. A variable declaration specifies the variable's name and type. The declaration
section is denoted by the DECLARE keyword. Each variable declaration is ended with a
semicolon.

After declaring variables, the main body of the code block is started with the BEGIN keyword.
The code block's statements should appear after the BEGIN keyword.

The END keyword designates the end of the code block. The main block of a PL/pgSQL
function should return a value of its specified return type and end any sub-blocks (code blocks
started within another code block) before its END keyword is reached.

Example 11-5 shows the structure of a PL/pgSQL code block.

Example 11-5. Structure of a PL/pgSQL code block

CREATE FUNCTION identifier (arguments) RETURNS type AS '
 DECLARE
 declaration;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 declaration;
 [...]
 BEGIN
 statement;
 [...]
 END;
' LANGUAGE 'plpgsql';

A block of PL/pgSQL code can contain an unlimited amount of sub-blocks, which are code
blocks nested within other code blocks. Sub-blocks are read and interpreted in the same
manner as normal blocks; hence, they may also contain sub-blocks of their own.

Sub-blocks can be useful for the organization of code within a large PL/pgSQL function. All
sub-blocks must follow normal block structure, meaning they must start with the DECLARE
keyword, followed by the BEGIN keyword and a body of statements, then end with the END
keyword.

Comments
There are two methods of commenting in PL/pgSQL, both similar to the comment structure of
other programming languages. The two methods are single-line comments, and block
comments (multiple line comments).

Comment syntax

The first method of commenting is single line commenting. Single line comments begin with
two dashes (- -) and have no end-character. The parser interprets all characters on the same
line after the two dashes as part of the comment. Example 11-6 demonstrates the use of single
line comments.

Example 11-6. Using single-line comments

-- This will be interpreted as a single-line comment.

The second type of comment is the multiline or block comment, which should be familiar to
most anyone who has worked with programming languages before. Block comments begin
with the forward slash and asterisk characters (/*) and end with the asterisk and forward slash
characters (*/). Block comments can span multiple lines, and any text between the opening /*
and closing */ is considered a comment. Example 11-7 shows the correct usage of a block
comment.

Example 11-7. Using block comments

/*
 * This is a
 * block
 * comment.
 */

Note: While single-line comments can be nested within block comments, block
comments cannot be nested within other block comments.

Good commenting style

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In any programming language, it is helpful to write useful comments. A comment is
considered useful if it can express to the user why a certain section of code was designed a
certain way, or why syntax was used in an abnormal or creative manner. Comments that
restate what is happening programmatically can be helpful at times, but you must remain
aware of what is happening in your program and be sure to express why certain things are
being done (instead of just how).

In our PL/pgSQL code examples we will use comments to explain how and why we do certain
things within a particular section of code. This is to help you, as a new PL/pgSQL user, learn
more about the language and its uses.

Statements and Expressions
PL/pgSQL code is composed of statements and expressions (as most programming languages
are). Most of your code will be made of statements, and you will probably find yourself using
expressions often, as they are essential to certain types of data manipulation. The concept of
statements and expressions is generally applicable to all programming languages in alike (or at
least very similar) ways, and if you have worked with programming languages before, you
may already have a general understanding of them.

Statements

A statement performs an action within PL/pgSQL code, such as assignment of a value to a
variable or the execution of a query. The organization of statements within a PL/pgSQL code
block controls the order in which operations are executed within that code block. The bulk of
your statements will be placed in the main operation section of a code block, which is located
after the BEGIN keyword and before the END keyword. Some declarative statements should
appear in the declaration section (after the DECLARE keyword), but these should only declare
and/or initialize the variables that will be referenced within the code block.

Every statement should end with a semicolon character ( ;). This is similar to SQL, which also
requires each statement to be ended with a semicolon. Types of statements (and their uses) are
discussed throughout the rest of this chapter, as most everything you will do within PL/pgSQL
will be done with statements.

Expressions

Expressions are calculations or operations that return their results as one of PostgreSQL's base
data types. An example expression is x := a + b, which adds the variables a and b, then
assigns the result to the variable x. Example 11-8 shows a simple PL/pgSQL function that
assigns the returned result of a multiplication expression to the variable x, and Example 11-9
shows the output when selecting the function in psql.

Example 11-8. Using expressions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE FUNCTION a_function () RETURNS int4 AS '
DECLARE
 an_integer int4;
BEGIN
 an_integer := 10 * 10;
 return an_integer;
END;
' LANGUAGE 'plpgsql';

Example 11-9. Output of a_ function( )

booktown=# SELECT a_function() AS output;
 output

 100
(1 row)

With the exception of dynamic queries (SQL queries run with the EXECUTE keyword), all
PL/pgSQL expressions in a function are only prepared once during the lifetime of the
PostgreSQL backend process. Since expressions are only prepared once, constant values (not
constant variables, but values such as the now and current timestamp values) used in
PL/pgSQL expressions are only prepared once, causing code with constant values that require
run-time interpretation to break. Example 11-10 shows how to force PL/pgSQL to evaluate
constant timestamp values at a function's run-time, instead of once per creation.

The add_shipment function in Example 11-10 is a fairly advanced function that uses
techniques and aspects of the language covered later in this chapter. Essentially,
add_shipment accepts a customer ID number and book ISBN, calculates the next shipment ID
by adding one to the current highest shipment ID, then inserts the values with a now
timestamp into the shipments table.

If we had used now directly in the INSERT INTO statement, the now string would have been
cast into a timestamp at the time the function was created, and the timestamp created would be
used in all future calls of the function.

Example 11-10. Using timestamp values correctly

CREATE FUNCTION add_shipment (integer, text) RETURNS timestamp AS '
 DECLARE

 -- Declare aliases for function arguments.
 customer_id ALIAS FOR $1;
 isbn ALIAS FOR $2;

 -- Declare a variable to hold the shipment ID number and
 -- the current time.
 shipment_id INTEGER;
 right_now timestamp;

 BEGIN

 -- Set the current time variable to the string ''now''.
 right_now := ''now'';

 -- Order the existing shipments by their ID numbers, beginning
 -- with the highest number, then insert the first ID number into
 -- the shipment_id variable.
 SELECT INTO shipment_id id FROM shipments ORDER BY id DESC;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SELECT INTO shipment_id id FROM shipments ORDER BY id DESC;

 -- Add one to the shipment_id variable.
 shipment_id := shipment_id + 1;

 -- Insert a shipment record into the shipments table. The
 -- right_now variable will be typecast to a timestamp at
 -- run-time, causing constant value now to be interpreted as
 -- the timestamp each time the function is run.
 INSERT INTO shipments VALUES (shipment_id, customer_id, isbn, right_now);

 -- Return a timestamp using the constant value now.
 RETURN right_now;
 END;
' LANGUAGE 'plpgsql';

Prev Home Next
PL/pgSQL Up Using Variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 11. PL/pgSQL Next

Using Variables
Variables are used within PL/pgSQL code to store modifiable data of an explicitly stated type.
All variables that you will be using within a code block must be declared under the DECLARE
keyword. If a variable is not initialized to a default value when it is declared, its value will
default to the SQL NULL type.

Note: As you will read later on in the Section called Controlling Program Flow,"
there is a type of statement known as the FOR loop that initializes a variable used
for iteration. The FOR loop's iteration variable does not have to be pre-declared in
the DECLARE section for the block the loop is located within; hence, the FOR loop is
the only exception to the rule that all PL/pgSQL variables must be declared at the
beginning of the block they are located within.

Data types
Variables in PL/pgSQL can be represented by any of SQL's standard data types, such as an
INTEGER or CHAR. In addition to SQL data types, PL/pgSQL also provides the additional
RECORD data type, which is designed to allow you to store row information without specifying
the columns that will be supplied when data is inserted into the variable. More information on
using RECORD data types is provided later in this chapter. For further information on standard
SQL data types, see the Section called Data Types in Chapter 3" in Chapter 3; the following is
a brief list of commonly used data types in PL/pgSQL:

boolean

text

char

integer

double precision

date

time

Declaration
For variables to be available to the code within a PL/pgSQL code block, they must be declared
in the declarations section of the block, which is denoted by the DECLARE keyword at the
beginning of the block. Variables declared in a block will be available to all sub-blocks within
it, but remember that (as mentioned in the Section called Language Structure" earlier in this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

it, but remember that (as mentioned in the Section called Language Structure" earlier in this
chapter) variables declared within a sub-block are destroyed when that sub-block ends, and are
not available for use by their parent blocks. The format for declaring a variable is shown in
Example 11-11.

Example 11-11. Declaring a PL/pgSQL variable

variable_name data_type [:= value];

As you can see by Example 11-11, you declare a variable by providing its name and type (in
that order), then end the declaration with a semicolon.

Example 11-12 shows the declaration of a variable of the INTEGER data type, a variable of the
VARCHAR data type (the value in parentheses denotes that this variable type holds ten
characters), and a variable of the FLOAT data type.

Example 11-12. Variable Declarations

CREATE FUNCTION identifier (arguments) RETURNS type AS '
 DECLARE

 -- Declare an integer.
 subject_id INTEGER;

 -- Declare a variable length character.
 book_title VARCHAR(10);

 -- Declare a floating point number.
 book_price FLOAT;

 BEGIN
 statements
 END;
' LANGUAGE 'plpgsql';

You may also specify additional options for a variable. Adding the CONSTANT keyword
indicates that a variable will be created as a constant. Constants are discussed later in this
section.

The NOT NULL keywords indicate that a variable cannot be set as NULL. A variable declared as
NOT NULL will cause a run-time error if it is set to NULL within the code block. Due to the fact
that all variables are set to NULL when declared without a default value, a default value must be
provided for any variable that is declared as NOT NULL.

The DEFAULT keyword allows you to provide a default value for a variable. Alternatively, you
can use the := operator without specifying the DEFAULT keyword, to the same effect.

The following illustrates the use of these options within a variable declaration:

 variable_name [CONSTANT] data_type [NOT NULL] [{ DEFAULT | := } value];

Example 11-13 shows the declaration of a constant variable with the default value of 5, the
declaration of a variable with the value of 10 which cannot be set to NULL, and the declaration
of a character with the default value of one a.

Example 11-13. Using variable declaration options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE FUNCTION example_function () RETURNS text AS '
 DECLARE

 -- Declare a constant integer with a
 -- default value of 5.
 five CONSTANT INTEGER := 5;

 -- Declare an integer with a default
 -- value of 100 that cannot be NULL.
 ten INTEGER NOT NULL := 10;

 -- Declare a character with
 -- a default value of "a".
 letter CHAR DEFAULT ''a'';

 BEGIN
 return letter;
 END;
' LANGUAGE 'plpgsql';

Warning
The RENAME keyword covered in online documentation for PL/pgSQL, which is intended to
rename existing variables to new names, does not work at all in PL/pgSQL (as of
PostgreSQL 7.1.x). The use of this keyword on an existing variable indiscriminately causes a
parsing error. It is therefore not recommended, nor documented in this chapter.

Assignment
Variable assignment is done with PL/pgSQL's assignment operator (:=), in the form of
left_variable := right_variable, in which the value of the right variable is assigned to the
left variable. Also valid is left_variable := expression, which assigns the left-hand
variable the value of the expression on the right side of the assignment operator.

Variables can be assigned default values within the declaration section of a PL/pgSQL code
block. This is known as default value assignment, and is done by using the assignment
operator (:=) on the same line as the variable's declaration. This topic is discussed in more
detail later in this section, but Example 11-14 provides a quick demonstration.

Example 11-14. Default value assignment

CREATE FUNCTION identifier (arguments) RETURNS type AS '
 DECLARE
 an_integer int4 := 10;
 BEGIN
 statement;
 [...]
 END;
' LANGUAGE 'plpgsql';

It is also possible to use a SELECT INTO statement to assign variables the results of queries.
This use of SELECT INTO is different from the SQL command SELECT INTO, which assigns the
results of a query to a new table.

Note: To assign the results of a query to a new table within PL/pgSQL, use the
alternative SQL syntax CREATE TABLE AS SELECT).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT INTO is primarily used to assign row and record information to variables declared as
%ROWTYPE or RECORD types. To use SELECT INTO with a normal variable, the variable in
question must be the same type as the column you reference in the SQL SELECT statement
provided. The syntax of SELECT INTO statement is shown in the following syntax:

CREATE FUNCTION identifier (arguments) RETURNS type AS '
 DECLARE
 statement;
 BEGIN
 SELECT INTO target_variable [, ...] target_column [, ...] select_clauses;
 END;
' LANGUAGE 'plpgsql';

In this syntax, target_variable is the name of a variable that is being populated with values,
and select_clauses consists of any supported SQL SELECT clauses that would ordinarily
follow the target column list in a SELECT statement.

Example 11-15 shows a simple function that demonstrates the use of a SELECT INTO
statement. The ALIAS keyword is described in the Section called Argument Variables," later in
this chapter. See the Section called Controlling Program Flow" for examples of using SELECT
INTO with RECORD and %ROWTYPE variables.

Example 11-15. Using the SELECT INTO statement

CREATE FUNCTION get_customer_id (text,text) RETURNS integer AS '
 DECLARE

 -- Declare aliases for user input.
 l_name ALIAS FOR $1;
 f_name ALIAS FOR $2;

 -- Declare a variable to hold the customer ID number.
 customer_id INTEGER;

 BEGIN

 -- Retrieve the customer ID number of the customer whose first and last
 -- name match the values supplied as function arguments.
 SELECT INTO customer_id id FROM customers
 WHERE last_name = l_name AND first_name = f_name;

 -- Return the ID number.
 RETURN customer_id;
 END;
' LANGUAGE 'plpgsql';

Example 11-16 shows the results of the get_customer_id() function when passed the
arguments Jackson and Annie. The number returned is the correct ID number for Annie
Jackson in the customers table.

Example 11-16. Result of the get_customer_id( ) function

booktown=# SELECT get_customer_id('Jackson','Annie');
 get_customer_id

 107
(1 row)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(1 row)

If you wish to assign multiple column values to multiple variables, you may do so by using
two comma-delimited groups of variable names and column names, separated from one
another by white space. Example 11-17 creates essentially an inverse function to the
get_customer_id() function created in Example 11-15.

Example 11-17. Using SELECT INTO with multiple columns

CREATE FUNCTION get_customer_name (integer) RETURNS text AS '
 DECLARE

 -- Declare aliases for user input.
 customer_id ALIAS FOR $1;

 -- Declare variables to hold the customer name.
 customer_fname TEXT;
 customer_lname TEXT;

 BEGIN

 -- Retrieve the customer first and last name for the customer
 -- whose ID matches the value supplied as a function argument.
 SELECT INTO customer_fname, customer_lname
 first_name, last_name
 FROM customers WHERE id = customer_id;

 -- Return the name.
 RETURN customer_fname || '' '' || customer_lname;

 END;
' LANGUAGE 'plpgsql';

Example 11-18 shows the results of the get_customer_name() function, when passed an
argument of 107.

Example 11-18. Result of the get_customer_name( ) function

booktown=# SELECT get_customer_name(107);
 get_customer_name

 Annie Jackson
 (1 row)

Use the special FOUND Boolean variable directly after a SELECT INTO statement to check
whether or not the statement successfully inserted a value into the specified variable. You can
also use ISNULL or IS NULL to find out if the specified variable is NULL after being selected
into (in most situations, this would mean the SELECT INTO statement failed).

FOUND, IS NULL, and ISNULL should be used within a conditional (IF/THEN) statement.
PL/pgSQL's conditional statements are detailed in the "Controlling Program Flow" section of
this chapter. Example 11-19 is a basic demonstration of how the FOUND Boolean could be used
with the get_customer_id() function.

Example 11-19. Using the FOUND boolean in get_customer_id( )

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[...]
 SELECT INTO customer_id id FROM customers
 WHERE last_name = l_name AND first_name = f_name;

 -- If a match could not be found, return -1 (another function calling
 -- this function could then be made to interpret a -1 as an error.
 IF NOT FOUND THEN
 return -1;
 END IF;
[...]

Example 11-20 shows that get_customer_id( ) now returns a –1 value when passed the name
of a non-existent customer.

Example 11-20. Result of the new get_customer_id( ) function

booktown=# SELECT get_customer_id('Schmoe','Joe');
 get_customer_id

 -1
(1 row)

Argument Variables
PL/pgSQL functions can accept argument variables of different types. Function arguments
allow you to pass information from the user into the function that the function may require.
Arguments greatly extend the possible uses of PL/pgSQL functions. User input generally
provides a function with the data it will either operate on or use for operation. Users pass
arguments to functions when the function is called by including them within parentheses,
separated by commas.

Arguments must follow the argument list defined when the function is first created. Example
11-21 shows a pair of example function calls from psql.

Example 11-21. Function call examples

booktown=# SELECT get_author('John');
 get_author

 John Worsley
(1 row)

booktown=# SELECT get_author(1111);
 get_author

 Ariel Denham
(1 row)

Note: The get_author(text) and get_author(integer) functions are discussed
later in this chapter.

Each function argument that is received by a function is incrementally assigned to an identifier
that begins with the dollar sign ($) and is labeled with the argument number. The identifier $1
is used for the first argument, $2 is used for the second argument, and so forth. The maximum
number of function arguments that can be processed is sixteen, so the argument identifiers can
range from $1 to $16. Example 11-22 shows a function that doubles an integer argument

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

range from $1 to $16. Example 11-22 shows a function that doubles an integer argument
variable that is passed to it.

Example 11-22. Directly using argument variables

CREATE FUNCTION double_price (float) RETURNS float AS '
 DECLARE
 BEGIN

 -- Return the argument variable multiplied by two.
 return $1 * 2;

 END;
' LANGUAGE 'plpgsql';

Referencing arguments with the dollar sign and the argument's order number can become
confusing in functions that accept a large number of arguments. To help in functions where the
ability to better distinguish argument variables from one another is needed (or just when you
wish to use a more meaningful name for an argument variable), PL/pgSQL allows you to
create variable aliases.

Aliases are created with the ALIAS keyword and give you the ability to designate an alternate
identifier to use when referencing argument variables. All aliases must be declared in the
declaration section of a block before they can be used (just like normal variables). Example
11-23 shows the syntax of the ALIAS keyword.

Example 11-23. Syntax of the ALIAS keyword

CREATE FUNCTION function_identifier (arguments) RETURNS type AS '
 DECLARE
 identifier ALIAS FOR $1;
 identifier ALIAS FOR $2;
 BEGIN
 [...]
 END;
' LANGUAGE 'plpgsql';

Example 11-24 creates a simple function to demonstrate the use of aliases in a PL/pgSQL
function. The triple_ price() function accepts a floating point number as the price and
returns that number multiplied by three.

Example 11-24. Using PL/pgSQL aliases

CREATE FUNCTION triple_price (float) RETURNS float AS '
 DECLARE

 -- Declare input_price as an alias for the argument variable
 -- normally referenced with the $1 identifier.
 input_price ALIAS FOR $1;

 BEGIN

 -- Return the input price multiplied by three.

 RETURN input_price * 3;

 END;
 ' LANGUAGE 'plpgsql';

Now, if we use the triple_ price function within a SQL SELECT statement in a client such as
psql, we receive the results shown in Example 11-25.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 11-25. Result of the triple_price( ) function

booktown=# SELECT double_price(12.50);
 double_price

 25
(1 row)

Returning Variables
PL/pgSQL functions must return a value that matches the data type specified as their return
type in the CREATE FUNCTION command that created them. Values are returned with a RETURN
statement. A RETURN statement is typically located at the end of a function, but will also often
be located within an IF statement or other statement that directs the flow of the function. If a
function's RETURN statement is located within one of these control statements, you should still
include a return statement at the end of the function (even if the function is designed to never
reach that last RETURN statement). The syntax of a RETURN statement is shown in Example 11-
26.

Example 11-26. Syntax of the RETURN statement

CREATE FUNCTION function_identifier (arguments) RETURNS type AS '
 DECLARE
 declaration;
 [...]
 BEGIN
 statement;
 [...]
 RETURN { variable_name | value }
 END;
' LANGUAGE 'plpgsql';

For a demonstration of the RETURN statement, examine any PL/pgSQL function example
within this chapter.

Attributes
PL/pgSQL provides variable attributes to assist you in working with database objects. These
attributes are %TYPE and %ROWTYPE. Use attributes to declare a variable to match the type of a
database object (using the %TYPE attribute) or to match the row structure of a row (with the
%ROWTYPE attribute). A variable should be declared using an attribute when it will be used
within the code block to hold values taken from a database object. Knowledge of the database
object's type is not required when using attributes to declare variables. If an object's type
changes in the future, your variable's type will automatically change to that data type without
any extra code.

The %TYPE attribute

The %TYPE attribute is used to declare a variable with the data type of a referenced database
object (most commonly a table column). The format for declaring a variable in this manner is
shown in Example 11-27.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 11-27. Declaring a variable using %TYPE

variable_name table_name.column_name%TYPE

Example 11-28 shows the code for a function that uses %TYPE to store the last name of an
author. This function uses string concatenation with the concatenation operator (||), which is
documented in a later section. The use of the SELECT INTO statement was discussed earlier in
this chapter.

Focus on the use of the %TYPE attribute in Example 11-28. Essentially, a variable is declared as
being the same type as a column within the authors table. SELECT is then used to find a row
with a first_name field that matches the name the user passed to the function. The SELECT
statement retrieves the value of that row's last_name column and insert it into the l_name
variable. An example of the user's input to the function is shown right after Example 11-28, in
Example 11-29, and more examples of user input can be found later in this chapter.

Example 11-28. Using the %TYPE attribute

CREATE FUNCTION get_author (text) RETURNS text AS '
 DECLARE

 -- Declare an alias for the function argument,
 -- which should be the first name of an author.
 f_name ALIAS FOR $1;

 -- Declare a variable with the same type as
 -- the last_name field of the authors table.
 l_name authors.last_name%TYPE;

 BEGIN

 -- Retrieve the last name of an author from the
 -- authors table whose first name matches the
 -- argument received by the function, and
 -- insert it into the l_name variable.
 SELECT INTO l_name last_name FROM authors WHERE first_name = f_name;

 -- Return the first name and last name, separated
 -- by a space.
 return f_name || '' '' || l_name;

 END;
' LANGUAGE 'plpgsql';

Example 11-29 shows the results of using the get_author() function.

Example 11-29. Results of the get_author( ) function

booktown=# SELECT get_author('Andrew');
 get_author

 Andrew Brookins
(1 row)

The %ROWTYPE Attribute

%ROWTYPE is used to declare a PL/pgSQL record variable with the same structure as the rows in
a table you specify. It is similar to the RECORD data type, but a variable declared with %ROWTYPE
will have the exact structure of a table's row, whereas a RECORD variable is not structured and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

will have the exact structure of a table's row, whereas a RECORD variable is not structured and
will accept a row from any table.

Example 11-30 overloads the get_author() function that was created in Example 11-28 to
accomplish a similar goal. Notice, though, that this new version of get_author() accepts an
argument of type integer rather than text, and checks for the author by comparing their id
against the passed integer argument.

Notice also that this function is implemented using a variable declared with %ROWTYPE. The use
of %ROWTYPE to accomplish a simple task such as this may make it seem overly complicated,
but as you learn more about PL/pgSQL, the importance of %ROWTYPE will become more
apparent.

The use of the dot (.) within the found_author variable in Example 11-30 references a named
field value in found_author.

Example 11-30. Using the %ROWTYPE attribute

CREATE FUNCTION get_author (integer) RETURNS text AS '
 DECLARE

 -- Declare an alias for the function argument,
 -- which should be the id of the author.
 author_id ALIAS FOR $1;

 -- Declare a variable that uses the structure of
 -- the authors table.
 found_author authors%ROWTYPE;

 BEGIN

 -- Retrieve a row of author information for
 -- the author whose id number matches
 -- the argument received by the function.
 SELECT INTO found_author * FROM authors WHERE id = author_id;

 -- Return the first
 RETURN found_author.first_name || '' '' || found_author.last_name;

 END;
' LANGUAGE 'plpgsql';

Observe the use of the asterisk (*) for the column list in Example 11-30. Since found_author
is declared with the %ROWTYPE attribute on the authors table, it is created with the same data
structure as the authors table. The asterisk can therefore be used to populate the
found_author variable with each column value selected from the SELECT INTO statement in
Example 11-31.

Example 11-31. Results of the new get_author( ) function

booktown=# SELECT get_author(1212);
 get_author

 John Worsley
(1 row)

Concatenation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Concatenation is the process of combining two (or more) strings together to produce another
string. It is a standard operation built into PostgreSQL, and may therefore be used directly on
variables within a PL/pgSQL function. When working with several variables containing
character data, it is an irreplaceable formatting tool.

Concatenation can only be used with character strings. Strings are concatenated by placing the
concatenation operator (||) between two or more character strings (string literal or a character
string variable) that you wish to be combined. This can be used to combine two strings
together to form a compound word, and to combine multiple strings together to form complex
character string combinations.

Concatenation can only be used in situations where your function requires a string value, such
as when a string must be returned (as shown in Example 11-32), or when you are assigning a
new value to a string variable (as shown in Example 11-33).

Example 11-32. Returning a concatenated string

CREATE FUNCTION compound_word(text, text) RETURNS text AS '
 DECLARE

 -- Define aliases for function arguments.
 word1 ALIAS FOR $1;
 word2 ALIAS FOR $2;

 BEGIN

 -- Return the resulting joined words.
 RETURN word1 || word2;

 END;

' LANGUAGE 'plpgsql';

When the words break and fast are passed as arguments to the compound_word() function,
the function returns breakfast as the concatenated string:

booktown=# SELECT compound_word('break', 'fast');
 compound_word

 breakfast
(1 row)

Example 11-33. Assigning a concatenated value to a string

CREATE FUNCTION title_and_author (text, text) RETURNS text AS '
 DECLARE

 -- Declare aliases for the two function arguments.
 title ALIAS for $1;
 author ALIAS for $2;

 -- Declare a text variable to hold the string result
 -- of the concatenation.
 result text;

 BEGIN

 -- Combine the title variable and the author
 -- variable together, placing a comma and the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -- variable together, placing a comma and the
 -- word by between them.
 result := title || '', by '' || author;

 -- Return the resulting string.
 return result;

 END;
' language 'plpgsql';

If you pass the strings Practical PostgreSQL and Command Prompt, Inc. to the function
created in Example 11-33, the function returns Practical PostgreSQL, by Command Prompt,
Inc.:

booktown=# SELECT title_and_author('Practical PostgreSQL','Command Prompt, Inc.');
 title_and_author

 Practical PostgreSQL, by Command Prompt, Inc.
(1 row)

Prev Home Next
Language Structure Up Controlling Program Flow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 11. PL/pgSQL Next

Controlling Program Flow
Most programming languages in existence provide ways of controlling the flow of programs
they are used to create. PL/pgSQL is no different. Technically, by defining the structure of
statements within a PL/pgSQL function, you are controlling its "flow," in that you are
controlling the manner in which it operates and the order its operations are executed.
However, there are more extensive ways in which you can control the flow of a PL/pgSQL,
such as conditional statements and the use of loops.

Conditional statements
A conditional statement specifies an action (or set of actions) that should be executed instead
of continuing execution of the function, based on the result of logical condition specified
within the statement. That definition of conditional statements may make them sound a bit
complex, but they are actually fairly simple. Essentially, a conditional statement informs the
parser that if a given condition is true, a specified action should be taken.

The IF/THEN statement

The IF/THEN statement allows you to specify a statement (or block of statements) that should
be executed if a given condition evaluates true. The syntax of the IF/THEN statement is shown
in Example 11-34.

Example 11-34. Syntax of an IF/THEN statement

CREATE FUNCTION identifier (arguments) RETURNS type AS '
 DECLARE
 declarations
 BEGIN

 IF condition THEN
 statement;
 [...]
 END IF;

 END;
' LANGUAGE 'plpgsql';

In Example 11-35, a function is created that checks the stock of a book when given its book
ID and edition number. The book ID is an internally recorded and tracked number listed in a
few of the database's tables; thus, this function is designed to be used by other functions, as
most users won't directly know the book ID number. The stock_amount function first
retrieves the book's ISBN number with a SELECT INTO statement.

If the SELECT INTO statement could not retrieve an ISBN number for the book with the
provided book ID number and edition number the stock amount function returns a value of –1,
which should be interpreted as an error by the function that called it. The function's flow
continues on if there was an ISBN number found for the book, and another SELECT INTO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

continues on if there was an ISBN number found for the book, and another SELECT INTO
statement is used to retrieve the amount of stock remaining for the book in question. The stock
amount is then returned and the function ends.

Example 11-35. Using the IF/THEN statement

CREATE FUNCTION stock_amount (integer, integer) RETURNS integer AS '
 DECLARE

 -- Declare aliases for function arguments.
 b_id ALIAS FOR $1;
 b_edition ALIAS FOR $2;

 -- Declare variable to store the ISBN number.
 b_isbn TEXT;

 -- Declare variable to store the stock amount.
 stock_amount INTEGER;

 BEGIN

 -- This SELECT INTO statement retrieves the ISBN number of the row in
 -- the editions table that had both the book ID number and edition number
 -- that were provided as function arguments.
 SELECT INTO b_isbn isbn FROM editions WHERE
 book_id = b_id AND edition = b_edition;

 -- Check to see if the ISBN number retrieved is NULL. This will
 -- happen if there is not an existing book with both the ID number
 -- and edition number specified in the function arguments. If the
 -- ISBN is null, the function returns a value of -1 and ends.
 IF b_isbn IS NULL THEN
 RETURN -1;
 END IF;

 -- Retrieve the amount of books available from the stock table
 -- and record the number in the stock_amount variable.
 SELECT INTO stock_amount stock FROM stock WHERE isbn = b_isbn;

 -- Return the amount of books available.
 RETURN stock_amount;

 END;
' LANGUAGE 'plpgsql';

Example 11-36 shows the result of the stock_amount function when it is called for the book
ID value 7808 and edition number 1.

Example 11-36. Results of the stock_amount( ) function

booktown=# SELECT stock_amount(7808,1);
 stock_amount

 22
(1 row)

The IF/THEN/ELSE statement

The IF/THEN/ELSE statement allows you to specify a block of statements that should be
executed if a condition evaluates to true, and also a block of statements that should be
executed if the condition evaluates to false. The syntax of the IF/THEN/ELSE statement is
shown in Example 11-37.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 11-37. Syntax of an IF/THEN/ELSE statement

CREATE FUNCTION identifier (arguments) RETURNS type AS '
 DECLARE
 declarations
 BEGIN

 IF condition THEN
 statement;
 [...]
 ELSE
 statement;
 [...]
 END IF;
 END;
' LANGUAGE 'plpgsql';

In Example 11-38, essentially the same steps that were taken in Example 11-35 are taken
again to retrieve the ISBN number, store it, then use it to retrieve the quantity in stock for the
book in question.

Once the in-stock number is retrieved, an IF/THEN/ELSE statement is used to decide whether
or not the number is above zero. If it is above zero the function returns a TRUE value,
indicating that the title is in stock. If the in-stock is below zero, the function returns a FALSE
value, indicating the title is out of stock. Again, this is a function designed to be used by
another function, so only values are returned. Returned values must be interpreted by the
function that called the in_stock() function.

Example 11-38. Using the IF/THEN/ELSE statement

CREATE FUNCTION in_stock (integer,integer) RETURNS boolean AS '
 DECLARE

 -- Declare aliases for function arguments.
 b_id ALIAS FOR $1;
 b_edition ALIAS FOR $2;

 -- Declare a text variable to hold the ISBN of the book
 -- once found.
 b_isbn TEXT;

 -- Declare an integer variable to hold the amount of stock.
 stock_amount INTEGER;

 BEGIN

 -- This SELECT INTO statement retrieves the ISBN number of
 -- the row in the editions table that had both the book ID
 -- number and edition number that were provided as function
 -- arguments.
 SELECT INTO b_isbn isbn FROM editions WHERE
 book_id = b_id AND edition = b_edition;

 -- Check to see if the ISBN number retrieved is NULL. This
 -- will happen if there is not an existing book with both the
 -- ID number and edition number specified in the function
 -- arguments. If the ISBN is null, the function returns a
 -- FALSE value and ends.
 IF b_isbn IS NULL THEN
 RETURN FALSE;
 END IF;

 -- Retrieve the amount of books available from the stock

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -- Retrieve the amount of books available from the stock
 -- table and record the number in the stock_amount variable.
 SELECT INTO stock_amount stock FROM stock WHERE isbn = b_isbn;

 -- Use an IF/THEN/ELSE check to see if the amount of books
 -- available is less than or equal to 0. If so, return FALSE.
 -- If not, return TRUE.
 IF stock_amount <= 0 THEN
 RETURN FALSE;
 ELSE
 RETURN TRUE;
 END IF;

 END;
' LANGUAGE 'plpgsql';

Example 11-39 shows the result of the check_stock() function when it is called with the
book ID value 4513 and edition number 2. A value of true is returned, indicating that the title
is in stock.

Example 11-39. Results of the in_stock( ) function

booktown=# SELECT in_stock(4513,2);
 in_stock

 t
(1 row)

Example 11-39 shows that a TRUE value was returned, indicating that the title is in stock.

The IF/THEN/ELSE/IF statement

The IF/THEN/ELSE/IF statement is a mechanism for linking several IF statements together in
a series. First, one condition is checked. If the first condition evaluates to FALSE, another
condition is checked, and so forth. A final ELSE can provide for the case when no condition
evaluates to TRUE. The syntax for the IF/THEN/ELSE/IF statement follows:

CREATE FUNCTION identifier (arguments) RETURNS type AS '
 DECLARE
 declarations
 BEGIN
 IF condition THEN
 statement;
 [...]
 ELSE IF condition
 statement;
 [...]
 END IF;
 END;
' LANGUAGE 'plpgsql';

This syntax shows the creation of a function that demonstrates the use of the
IF/THEN/ELSE/IF statement. The books_by_subject() function first uses the provided
argument, which should be a book subject, to retrieve the subject ID number of the subject in
question. The first IF statement then checks to see if the argument received is the value all.

If the argument variable's value is all, the IF/THEN statement executes
extract_all_titles() and assigns the returned list of books and subjects (returned as a text
variable) to the found_text variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If all was not sent to the function as a parameter, an ELSE IF statement is used to check
whether or not the subject ID number that was retrieved is zero or higher. If the value of
sub_id is zero or higher, the function executes the statements in the body of the ELSE IF
statement, which first use extract_title() to retrieve a list of the titles of all existing books
classified under the user's provided subject, and returns the name of the subject with the
acquired list of books.

Another ELSE IF statement is then nested within the previous ELSE IF statement, and is
executed if the subject ID number has been set to NULL. If sub_id is null, the subject title
passed to the function was not found in the booktown database when it was retrieved by the
SELECT INTO statement at the function's beginning. In that case, the function returns the string
subject not found.

Note: The two functions used within Example 11-38 are created later in this
section as examples of using loops to control program flow.

Example 11-40. Using the IF/THEN/ELSE/IF statement

CREATE FUNCTION books_by_subject (text) RETURNS text AS '
 DECLARE

 -- Declare an alias for user input, which should be either all
 -- or the name of a subject.
 sub_title ALIAS FOR $1;

 -- Declare an integer to store the subject ID in, and a text
 -- variable to store the list of found books. The text variable
 -- is set to a blank string.
 sub_id INTEGER;
 found_text TEXT :='''';

 BEGIN

 -- Retrieve the subject ID number for the book matching the
 -- title supplied by the user.
 SELECT INTO sub_id id FROM subjects WHERE subject = sub_title;

 -- Check to see if the function was given all as the the subject
 -- name. If so, execute the SELECT INTO statement and return
 -- the found_text variable.
 IF sub_title = ''all'' THEN
 found_text extract_all_titles();
 RETURN found_text;

 -- If the function was NOT sent all as the name of the subject,
 -- check to see the subject ID number turned out to be within
 -- the valid range of subjects. If it did, execute the
 -- extract_title() function with the subject ID number as its
 -- argument, then assign the result to the found_text variable.
 ELSE IF sub_id >= 0 THEN
 found_text := extract_title(sub_id);
 RETURN ''\n'' || sub_title || '':\n'' || found_text;

 -- If the subject ID number was NULL, return a message telling
 -- the user that the subject specified could not be found.
 ELSE IF sub_id IS NULL THEN
 RETURN ''Subject not found.'';
 END IF;
 END IF;
 END IF;
 RETURN ''An error occurred. .'';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RETURN ''An error occurred. .'';
 END;
' LANGUAGE 'plpgsql';

Example 11-41 first shows the result of the books_by_subject function when it is called with
all as the argument (an indication that the user wishes to view the books within all defined
subjects). The example then shows the results received when Computers is passed as the
function's argument (an indication that the user wishes to view only books categorized as
computer-related books).

Example 11-41. Results of the books_by_subject() function

booktown=# SELECT books_by_subject('all');
books_by_subject

Arts:
Dynamic Anatomy

Business:

Children's Books:
The Cat in the Hat
Bartholomew and the Oobleck
Franklin in the Dark
Goodnight Moon

[...]

Science:

Science Fiction:
Dune
2001: A Space Odyssey

(1 row)

booktown=# SELECT books_by_subject('Computers');
 books_by_subject
--

Computers:
Learning Python
Perl Cookbook
Practical PostgreSQL
Programming Python

(1 row)

Loops
Loops, like conditional statements, are another method of controlling the flow of functions.
Loops use iteration in a number of different ways to accomplish tasks, and through the use of
iteration you can greatly expand the functionality of a PL/pgSQL function.

PL/pgSQL implements three iterative loops: the basic loop, the slightly more advanced WHILE
loop, and the FOR loop. Of the three, you will most likely be using the FOR loop most often, as
it can be applied to a multitude of different programmatic situations, though the other loops are
also useful.

The basic loop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the LOOP keyword to begin a basic, unconditional loop within a function. An
unconditional loop will execute the statements within its body until an EXIT statement is
reached. To form an EXIT statement, the EXIT keyword can be accompanied by WHEN, followed
by and an expression to specify when the loop should exit. Th expression should be a Boolean
expression, such as one that checks to see whether a variable has reached a specified value.
Following is the syntax (without the ELSE keyword) for an unconditional loop:

 LOOP
 statement;
 [...]
 END LOOP;

An unconditional loop statement will continue to loop until it reaches an EXIT statement. EXIT
statements explicitly terminate unconditional loops. When terminating a loop with EXIT, you
may optionally specify a label and/or a condition on which the loop should exit from.

A label is an arbitrary identifier, prefixed with a pair of less-than symbols (<<) and suffixed
with a pair of greater-than symbols (>>). In the case of a loop, it may be placed directly before
the loop block begins to identify that loop block with a chosen label. Here is an example of a
defined loop with label syntax:

 <<label_name>>
 LOOP
 [...]
 END LOOP;

By providing a label, you can specify which loop to exit when you have several loops nested
inside each other (the use of labels in EXIT will only work if you have specified a label for the
loop you are attempting to terminate).

By providing a condition in an EXIT statement specifies that the loop should be terminated
when the condition is true.

Here is the syntax for an EXIT statement, within a LOOP:

 [<<label>>]
 LOOP
 statement;
 [...]
 EXIT [label] [WHEN condition];
 END LOOP;

Example 11-42 shows a demonstration of an unconditional loop and an EXIT statement that
ends it based on a condition. The square_integer_loop() function squares an integer
(multiplies the number by itself) until it reaches a value higher than ten thousand. The function
then returns the resulting value.

Example 11-42. Using the basic loop

CREATE FUNCTION square_integer_loop (integer) RETURNS integer AS '
 DECLARE

 -- Declare aliases for function argument.
 num1 ALIAS FOR $1;

 -- Declare an integer to hold the result.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -- Declare an integer to hold the result.
 result integer;

 BEGIN

 -- Assign the user input number to the result variable.
 result := num1;

 LOOP
 result := result * result;
 EXIT WHEN result >= 10000;
 END LOOP;

 RETURN result;
 END;
' LANGUAGE 'plpgsql';

Example 11-43 shows the result of invoking square_integer_loop() and passing the value 3
as an argument.

Example 11-43. Result of the square_integer_loop( ) function

booktown=# SELECT square_integer_loop(3);
 square_integer_loop

 6561
(1 row)

The WHILE loop

The WHILE loop is used to loop through a block of statements until a specified condition
becomes false. Each time a WHILE loop is entered, its condition will be evaluated before the
statement block is executed.

If the condition is evaluated as TRUE, the statements will then be executed. If the condition is
never evaluated as false, the statement block will repeatedly executed until the client process
that it originated from is terminated. The syntax of the WHILE loop is shown here:

 [<<label>>]
 WHILE condition LOOP
 statement;
 [...]
 END LOOP;

In Example 11-44, the add_two_loop( ) function demonstrates the use of a WHILE loop
designed to add one to a number until the number reaches a specified value. The starting
number and ending number are both supplied by the user as function arguments. The !=
symbol in Example 11-44 is the inequality operator. That inequality operator indicates that the
WHILE loop will run while the result variable is not equal to the high_number variable. In
other words, the WHILE loop in Example 11-44 will run until result is equal to high_number.

Example 11-44. Using the WHILE loop

CREATE FUNCTION add_two_loop (integer, integer) RETURNS integer AS '
 DECLARE

 -- Declare aliases for function arguments.
 low_number ALIAS FOR $1;
 high_number ALIAS FOR $2;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -- Declare a variable to hold the result.
 result INTEGER = 0;

 BEGIN

 -- Add one to the variable result until the value of result is
 -- equal to high_number.
 WHILE result != high_number LOOP
 result := result + 1;
 END LOOP;

 RETURN result;
 END;
' LANGUAGE 'plpgsql';

The FOR loop

The FOR loop is arguably the most important loop implemented in PL/pgSQL. Use the FOR
loop to iterate a statement block over a range of integers that you specify. The structure of a
FOR loop in PL/pgSQL is similar to FOR loops in other procedural languages, such as C.

In a PL/pgSQL FOR loop an integer variable is stated first, to track the iteration of the loop,
then the integer range is given, and finally a statement block is provided. The integer variable
created to track the loop's iteration is destroyed once the loop exits; it does not have to be
declared in the declaration section of the block. The following shows the syntax of the FOR
loop:

 [<<label>>]
 FOR identifier IN [REVERSE] expression1 .. expression2 LOOP
 statement;
 [...]
 END LOOP;

The FOR loop will perform a single iteration for each incremented value of identifier which
is in the range of values between, and including, expression1 and expression2. The
identifier value will be initialized to the value of expression1, regardless of any prior
settings, and incremented by one each iteration. If REVERSE is specified, identifier will be
decremented rather than incremented.

Note: The identifier used to track iteration does not need to be declared outside of
the FOR block, unless you wish to be able to access its value after the loop has
finished.

The FOR loop can also be used to cycle through the the results of a query. The second FOR loop
in Example 11-45 demonstrates using a FOR loop to work with RECORD and %ROWTYPE
variables. The syntax of a FOR loop that iterates through RECORD and %ROWTYPE variables is
shown in the following syntax:

 [<<label>>]
 FOR { record_variable | %rowtype_variable } IN select_statement LOOP
 statement;
 [...]
 END LOOP;

In Example 11-45, the extract_all_titles() function is used to extract a list of all book
titles that exist on the database, organized by subject. When a subject has no book titles, a
blank line is displayed. The list is returned as a text variable. A FOR loop is utilized within the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

blank line is displayed. The list is returned as a text variable. A FOR loop is utilized within the
extract_all_titles() function to cycle through the available subjects by number.

Another FOR loop is nested within the original loop to cycle through the available books and
retrieve all books with subject_id values that match the original loop's iteration variable,
which represents the current subject ID number the function is scanning for. In Example 11-
45, the iteration variable i is initialized to zero because the first subject ID number in our
subjects table is 0.

Example 11-45. Using the FOR loop

CREATE FUNCTION extract_all_titles2 () RETURNS text AS '
 DECLARE

 -- Declare a variable for the subject ID number.
 sub_id INTEGER;

 -- Declare a variable to hold the list of titles.
 text_output TEXT = '' '';

 -- Declare a variable to hold the subject title.
 sub_title TEXT;

 -- Declare a variable to hold records from the books table.
 row_data books%ROWTYPE;

 BEGIN

 -- Outer FOR loop: loop through the body of this loop until the
 -- variable i equals 15. Start the looping at 0. Essentially,
 --loop the following statements 16 times (once for each subject).
 FOR i IN 0..15 LOOP

 -- Retrieve the subject name of the subject with an ID number
 -- that matches the variable i.
 SELECT INTO sub_title subject FROM subjects WHERE id = i;

 -- Insert the subject name, a colon, and a new line into the
 -- text_output variable.
 text_output = text_output || ''\n'' || sub_title || '':\n'';

 -- Loop through all records in the books table with a subject ID
 -- that matches the variable i.
 FOR row_data IN SELECT * FROM books
 WHERE subject_id = i LOOP

 -- Insert the title of a matching book into the text_output
 -- variable, followed by a newline.
 text_output := text_output || row_data.title || ''\n'';

 END LOOP;
 END LOOP;

 -- Return the list.
 RETURN text_output;
 END;
' LANGUAGE 'plpgsql';

Example 11-46 shows the code of another function that uses a FOR loop to iterate through the
results of a SQL query. With each iteration of the loop the FOR loop in Example 11-46 places
the contents of a result row from a query against the books table into the row_data variable,
and then inserts the value of the row's title field into the text_output variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The loop ends when the last record in books is reached. By the end of the loop, text_output
will contain a list of all book titles that match the subject ID number passed to the function.
The text_output variable is returned at the end of the function.

Example 11-46. Using the FOR loop with %ROWTYPE

CREATE FUNCTION extract_title (integer) RETURNS text AS '
 DECLARE

 -- Declare an alias for function argument.
 sub_id ALIAS FOR $1;

 -- Declare a variable to hold book titles and set its default
 -- value to a new line.
 text_output TEXT :=''\n'';

 -- Declare a variable to hold rows from the
 -- books table.
 row_data books%ROWTYPE;

 BEGIN

 -- Iterate through the results of a query.
 FOR row_data IN SELECT * FROM books
 WHERE subject_id = sub_id ORDER BY title LOOP

 -- Insert the title of a matching book into the text_output variable.
 text_output := text_output || row_data.title || ''\n'';
 END LOOP;

 -- Return the list of books.
 RETURN text_output;
 END;
' LANGUAGE 'plpgsql';

Example 11-47 shows the results of the extract_title() function when 2, which represents
"Children's Books" in the subject table, is passed as an argument.

Example 11-47. Result of the extract_title() function

booktown=# SELECT extract_title(2);
 extract_title

Bartholomew and the Oobleck
Franklin in the Dark
Goodnight Moon
The Cat in the Hat

(1 row)

The row_data variable is declared as a %ROWTYPE of the books table because it will only be
used to hold records from the books table. We could have declared row_data as a RECORD to
accomplish the same result, but the RECORD type should be used when you are going to be
using the variable for more than just the rows of one specific table:

row_data RECORD;

The extract_title() function will return the same results whether row data is declared as
RECORD, or is declared using %ROWTYPE.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Handling Errors and Exceptions
RAISE statements raise errors and exceptions during a PL/pgSQL function's operation. A
RAISE statement sends specified information to the PostgreSQL elog mechanism (the standard
PostgreSQL error logging utility, which typically logs data either to /var/log/messages, or to
$PGDATA/serverlog, as well as displaying to stderr).

A RAISE statement is also given the level of error it should raise, and the string it should send
to PostgreSQL. Additionally, you can list variables and expressions whose values you wish to
have placed into the string. Use percent signs (%) to mark the locations in the string at which
you want those values inserted. The syntax of the RAISE statement is as follows:

RAISE level ''message string'' [, identifier [...]];

Table 11-1 lists the three possible values for the RAISE statement's level and their meanings.

Table 11-1. Possible level values

Value Explanation
DEBUG DEBUG level

statements
send the
specified
text as a
DEBUG:
message to
the
PostgreSQL
log and the
client
program if
the client is
connected to
a database
cluster
running in
debug mode.
DEBUG level
RAISE
statements
will be
ignored by a
database
running in
production
mode.

NOTICE NOTICE level

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOTICE level
statements
send the
specified
text as a
NOTICE:
message to
the
PostgreSQL
log and the
client
program in
any
PostgreSQL
operation
mode.

EXCEPTION EXCEPTION
level
statements
send the
specified
text as an
ERROR:
message to
the client
program and
the
PostgreSQL
database log.
The
EXCEPTION
level also
causes the
current
transaction
to be
aborted.

In Example 11-48, the first RAISE statement raises a debug level message. The second and
third RAISE statements send a notice to the user. Notice the use of the percent-sign (%) in the
third RAISE statement to mark the location in the string at which the value of an integer is to be
inserted. Finally, the fourth RAISE statement displays an error and throws an exception,
causing the function to end and the transaction to be aborted.

Example 11-48. Using the RAISE statement

CREATE FUNCTION raise_test () RETURNS integer AS '
 DECLARE

 -- Declare an integer variable for testing.
 an_integer INTEGER = 1;

 BEGIN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -- Raise a debug level message.
 RAISE DEBUG ''The raise_test() function began.'';

 an_integer = an_integer + 1;

 -- Raise a notice stating that the an_integer variable was changed,
 -- then raise another notice stating its new value.
 RAISE NOTICE ''Variable an_integer was changed.'';
 RAISE NOTICE ''Variable an_integer's value is now %.'',an_integer;

 -- Raise an exception.
 RAISE EXCEPTION ''Variable % changed. Transaction aborted.'',an_integer;

 RETURN 1;
 END;
' LANGUAGE 'plpgsql';

Example 11-49 shows the results of the raise_test() function when called from our
booktown database. The DEBUG output does not show, because our database is not running in
debug mode.

Example 11-49. Results of the raise_test( ) function

booktown=# SELECT raise_test();
NOTICE: Variable an_integer was changed.
NOTICE: Variable an_integer's value is now 2.
ERROR: Variable 2 changed. Aborting transaction.

Calling Functions
The normal syntax to call another PL/pgSQL function from within PL/pgSQL is to either
reference the function in a SQL SELECT statement, or during the assignment of a variable. For
example:

 SELECT function_identifier(arguments);
 variable_identifier := function_identifier(arguments);

The use of assignments and SELECT statements to execute functions is standard in PL/pgSQL
because all functions in a PostgreSQL database must return a value of some type. Use the
PERFORM keyword to call a function and ignore its return data. Example 11-50 shows the
syntax of the PERFORM keyword.

Example 11-50. Syntax of the PERFORM keyword

PERFORM function_identifier(arguments);

Example 11-51 demonstrates the use of PERFORM to invoke a PL/pgSQL function, and shows
how to call another PL/pgSQL function through assignment (via a SELECT INTO statement).
The ship_item function is a useful wrapper to the add_shipment function. It accepts basic
information, makes sure the customer and book both exist, and then sends the information to
add_shipment.

Example 11-51. Using the PERFORM keyword

CREATE FUNCTION ship_item (text,text,text) RETURNS integer AS '
 DECLARE

 -- Declare function argument aliases.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -- Declare function argument aliases.
 l_name ALIAS FOR $1;
 f_name ALIAS FOR $2;
 book_isbn ALIAS FOR $3;

 -- Declare a variable to hold the book ID number. This variable
 -- is necessary to check for the existence of the provided ISBN.
 book_id INTEGER;

 -- Declare a variable to hold the customer ID number. This variable
 -- is necessary to check for the existence of the customer.
 customer_id INTEGER;

 BEGIN

 -- Retrieve the customer ID number with a previously created
 -- function.
 SELECT INTO customer_id get_customer_id(l_name,f_name);

 -- If the customer does not exist, return -1 and exit. The
 -- get_customer_id function returns a -1 if the customer is not found.
 IF customer_id = -1 THEN
 RETURN -1;
 END IF;

 -- Retrieve the ID number of the book with the specified ISBN.
 SELECT INTO book_id book_id FROM editions WHERE isbn = book_isbn;

 -- If the book does not exist in the system, return a -1.
 IF NOT FOUND THEN
 RETURN -1;
 END IF;

 -- If the book and customer both exist, add the shipment.
 PERFORM add_shipment(customer_id,book_isbn);

 -- Return 1 to indicate the function was successful.
 RETURN 1;
 END;
' LANGUAGE 'plpgsql';

Prev Home Next
Using Variables Up PL/pgSQL and Triggers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 11. PL/pgSQL Next

PL/pgSQL and Triggers
Trigger functions can be created with PL/pgSQL and referenced within a PostgreSQL trigger
definition. The term "trigger function" is a simply a way of referring to a function that is
intended to be invoked by a trigger. Triggers define operations that are performed when a
specific event occurs within the database. A PL/pgSQL trigger function can be referenced by a
trigger as the operation to be performed when the trigger's event occurs.

The definition of a trigger and the definition of its associated trigger function are two different
things. A trigger is defined with the SQL CREATE TRIGGER command, whereas trigger
functions are defined using the SQL CREATE FUNCTION command. Trigger definitions are
explained in detail in Chapter 7.

A trigger function should be defined as accepting no arguments, and returns a value of the
special opaque data type. The CREATE FUNCTION syntax for defining a PL/pgSQL trigger
function is shown in Example 11-52.

Example 11-52. Creating trigger functions

CREATE FUNCTION function_identifier () RETURNS opaque AS '
 DECLARE
 declarations;
 [...]
 BEGIN
 statements;
 [...]
 END;
' LANGUAGE 'plpgsql';

Every trigger function created has access to a number of special variables that exist to provide
information about the calling trigger, and to allow the trigger function to manipulate table
data. All special trigger function variables are listed in Table 11-2.

Table 11-2. Trigger function variables

Name Data
type

Description

NEW RECORD Contains the
new database
row created
after INSERT
and UPDATE
operations
run by ROW

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

run by ROW
level
triggers. Use
this variable
to make
modifications
to the new
row.

OLD RECORD Contains the
old database
row left after
UPDATE AND
DELETE
operations
performed by
ROW level
triggers.

TG_NAME name Contains the
name of the
fired trigger.

TG_WHEN text Contains
either a
BEFORE or
AFTER string,
depending on
whether the
trigger was
defined as
running after
or before its
specified
event.

TG_LEVEL text Contains
either a ROW
or STATEMENT
string,
depending on
the defined
level of the
trigger.

TG_OP text Contains an
INSERT,
UPDATE, or
DELETE string
that indicates
the operation
the trigger is
invoked on.

TG_RELID oid Contains the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

object ID of
the table that
invoked the
trigger.

TG_RELNAME name Contains the
name of the
table for
which the
trigger was
invoked.

TG_NARGS integer Contains the
number of
arguments
the trigger's
definition
specifies the
trigger
function as
having.

TG_ARGV[ ] array of
text

Contains the
arguments
specified by
the CREATE
TRIGGER
statement.
The array
index begins
at zero.

Example 11-53 illustrates the definition of a PL/pgSQL trigger function and demonstrates the
usage of the previously listed special variables. The check_shipment_addition trigger
function is called after an INSERT or UPDATE operation is performed upon the shipments table.

The check_shipment_addition() function checks to make sure each added shipment
contains a valid customer ID number and a valid ISBN for the book specified. It then subtracts
one from the total amount of stock in the stock table for the specified book if the calling SQL
operation is an INSERT statement (but not an UPDATE statement).

Example 11-53. The check_shipment_addition() PL/pgSQL trigger function

CREATE FUNCTION check_shipment_addition () RETURNS opaque AS '
 DECLARE
 -- Declare a variable to hold the customer ID.
 id_number INTEGER;

 -- Declare a variable to hold the ISBN.
 book_isbn TEXT;
 BEGIN

 -- If there is an ID number that matches the customer ID in
 -- the new table, retrieve it from the customers table.
 SELECT INTO id_number id FROM customers WHERE id = NEW.customer_id;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SELECT INTO id_number id FROM customers WHERE id = NEW.customer_id;

 -- If there was no matching ID number, raise an exception.
 IF NOT FOUND THEN
 RAISE EXCEPTION ''Invalid customer ID number.'';
 END IF;

 -- If there is an ISBN that matches the ISBN specified in the
 -- new table, retrieve it from the editions table.
 SELECT INTO book_isbn isbn FROM editions WHERE isbn = NEW.isbn;

 -- If there is no matching ISBN, raise an exception.
 IF NOT FOUND THEN
 RAISE EXCEPTION ''Invalid ISBN.'';
 END IF;

 -- If the previous checks succeeded, update the stock amount
 -- for INSERT commands.
 IF TG_OP = ''INSERT'' THEN
 UPDATE stock SET stock = stock -1 WHERE isbn = NEW.isbn;
 END IF;

 RETURN NEW;
 END;
' LANGUAGE 'plpgsql';

Once the check_shipment_addition() function has been created, a trigger may be set on the
shipments table to call it. Example 11-54 shows the syntax to create the check_shipment
trigger in the booktown database from within psql.

Example 11-54. The check_shipment trigger

booktown=# CREATE TRIGGER check_shipment
booktown-# BEFORE INSERT OR UPDATE
booktown-# ON shipments FOR EACH ROW
booktown-# EXECUTE PROCEDURE check_shipment_addition();
CREATE

Note that the check_shipment_addition trigger function must be defined within the
booktown database before its associated trigger is defined. Always define trigger functions
before defining the triggers that reference them.

See Chapter 7 for more in-depth information on triggers.

Prev Home Next
Controlling Program Flow Up JDBC

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 12. JDBC Next

Using the PostgreSQL Driver
This section describes the process for using the built-in PostgreSQL JDBC driver. First, add
the path to your postgresql.jar file into your CLASSPATH setting. This can be done either by
setting your CLASSPATH environment variable, or by passing the path as an argument on the
command line to your Java executable each time a Java application is executed. For more
information, see your JVM vendor's instructions for setting your classpath.

Next, when coding a Java application, you need to ensure that the Driver gets registered
within your code. When the Driver class passes through the Java class loader, it registers
itself with the DriverManager class so that JDBC will know what Driver to use when
connecting to a specific type of database. For instance, when you connect to a PostgreSQL
database, you would obviously use the PostgreSQL driver class.

To make sure that the Driver class passes through the class loader, you can do a lookup by
class name, as shown in the Java code snippet in Example 12-1.

Example 12-1. Class name lookup

try {
 Class.forName("org.postgresql.Driver");
} catch (ClassNotFoundException cnfe) {
 System.err.println("Couldn't find driver class:");
 cnfe.printStackTrace();
}

Class.forName is a method that finds a class by name. In this case, you look for the Driver.
This causes the class loader to search through the CLASSPATH and find a class by that name. If
it finds it, the class loader will then read in the binary description of the class. If it does not
find it, it will throw a ClassNotFoundException, in which case you can print out an error
message to that effect. If you reach this state, you either haven't built the driver correctly, or
the .jar file is not in your classpath.

Once you have registered the Driver class, you need to request a connection to a PostgreSQL
database. To do this, you use a class called DriverManager. The DriverManager class is
responsible for handling JDBC URLs, finding an appropriate driver, and then using that driver
to provide a connection to the database.

JDBC URLs are of the following format, in three colon-delimited parts:

jdbc:[drivertype]:[database]

The first part, jdbc, is a constant. It represents that you are connecting to a JDBC data source.
The second part, [drivertype], represents the kind of database you want to connect to. Use
postgresql to connect to a PostgreSQL database. The third part is passed off to the driver,
which finds the actual database. It takes on one of the following formats:

databasename
//hostname/databasename

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

//hostname/databasename
//hostname:portnumber/databasename

In the first case, the PostgreSQL database is running on the local machine, on the default port
number. The databasename is the literal name of the database you wish to connect to. The
second case is used for when you want to specify a hostname and a database. This also uses
the default port number. The third case allows you to specify a port number as well. Even if
you use the first type of URL, the JDBC connection will always be made via TCP/IP.

For the purposes of the examples from now on, this chapter will use the URL:
jdbc:postgresql://localhost/booktown, meaning you are connecting to host localhost and
database booktown. With that in mind, try to make a connection, using all you have learned so
far. Example 12-2 shows a simple Java program that opens a JDBC connection to the
booktown database. If you run the example yourself, be sure to replace the username and
password with values that will work on your system.

Example 12-2. A simple JDBC connection

import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.SQLException;

public class Example1 {
 public static void main(String[] argv) {
 System.out.println("Checking if Driver is registered with DriverManager.");

 try {
 Class.forName("org.postgresql.Driver");
 } catch (ClassNotFoundException cnfe) {
 System.out.println("Couldn't find the driver!");
 System.out.println("Let's print a stack trace, and exit.");
 cnfe.printStackTrace();
 System.exit(1);
 }

 System.out.println("Registered the driver ok, so let's make a connection.");

 Connection c = null;

 try {
 // The second and third arguments are the username and password,
 // respectively. They should be whatever is necessary to connect
 // to the database.
 c = DriverManager.getConnection("jdbc:postgresql://localhost/booktown",
 "username", "password");
 } catch (SQLException se) {
 System.out.println("Couldn't connect: print out a stack trace and exit.");
 se.printStackTrace();
 System.exit(1);
 }

 if (c != null)
 System.out.println("Hooray! We connected to the database!");
 else
 System.out.println("We should never get here.");
 }
}

At this point you should be able to use this Connection object to do anything you want with
the PostgreSQL database.

Notice the first three lines of Example 12-2. These three import statements make available the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice the first three lines of Example 12-2. These three import statements make available the
required classes to register with the DriverManager object, to create a Connection object, and
to use SQLException objects. In general, to make available a JDBC class, the syntax is as
follows, where classname is the name of the class you wish to be able to instantiate, and
access:

import java.sql.classname

If you are unsure of what classes to import, you may use the following line to make all of the
JDBC classes available to your program:

import java.sql.*

Understand that importing the entire set of JDBC classes can introduce a great deal of extra
overhead. For maximum efficiency, you should only import those classes that you know your
application requires.

Prev Home Next
JDBC Up Using JDBC

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 12. JDBC Next

Using JDBC
This section will be a brief introduction to JDBC, addressing the basics of JDBC, issues,
caveats, and so forth. For more detailed information, visit the JDBC website
(http://java.sun.com/products/jdbc/ ), which has many good resources and will always provide
the most up to date information. Also, the API documentation included with your JDK has
detailed information on specific classes, methods, and fields. Look for the java.sql package.

JDBC has classes to represent most of the basic pieces of a program's interaction with SQL.
The classes are: Connection, Statement, ResultSet, Blob, and Clob, and they all map
directly to some concept in SQL. JDBC also has helper classes, such as ResultSetMetaData
and DatabaseMetaData, that represent meta-information. These are useful for when you'd like
to get information about the capabilities of the database. They are also useful for getting the
types of results returned by a query, either for debugging, or because you don't know about the
data you are dealing with.

PostgreSQL's JDBC interface also provides classes to map to PostgreSQL's non-standard
extensions to JDBC's SQL support. These non-standard extensions include: Fastpath,
geometric types, native large objects, and a class that aids serialization of Java objects into the
database.

Basic JDBC Usage
Example 12-2 used a Connection object, representing a physical connection to the database.
Now you can use this Connection object to create Statement objects. Statement objects are
JDBC's way of getting SQL statements to the database.

There are three main types of Statement objects: the base class Statement, the
PreparedStatement, and the CallableStatement.

To create a Statement object, use the createStatement method as shown in Example 12-3:

Example 12-3. A JDBC statement object

Statement s = c.createStatement();

Example 12-3 creates a Statement object named s, from the Connection object c. You can
now use this Statement object to execute queries and updates on the database.

There are two main methods in the Statement class that are important. The first is
executeQuery. This method takes one argument, the SQL statement to be executed, and
returns an object of type ResultSet, which is discussed later. This method is used for
executing queries which will return a set of data back, for instance, a SELECT statement. The
ResultSet object returned represents the data resulting from the query.

Example 12-4 retrieves some data from the booktown database:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 12-4. A simple JDBC select

Statement s = null;
try {
 s = c.createStatement();
} catch (SQLException se) {
 System.out.println("We got an exception while creating a statement:" +
 "that probably means we're no longer connected.");
 se.printStackTrace();
 System.exit(1);
}
ResultSet rs = null;
try {
 rs = s.executeQuery("SELECT * FROM books");
} catch (SQLException se) {
 System.out.println("We got an exception while executing our query:" +
 "that probably means our SQL is invalid");
 se.printStackTrace();
 System.exit(1);
}

int index = 0;

try {
 while (rs.next()) {
 System.out.println("Here's the result of row " + index++ + ":");
 System.out.println(rs.getString(1));
 }
} catch (SQLException se) {
 System.out.println("We got an exception while getting a result:this " +
 "shouldn't happen: we've done something really bad.");
 se.printStackTrace();
 System.exit(1);
}

Example 12-4 creates a Statement object, and then uses that Statement object's
executeQuery method to execute the query SELECT * FROM books. You get back a
ResultSet, and use that ResultSet to print out some of the information you got back.

The ResultSet object is our primary interface for fetching information from the database. It
has two main features. It can step through the set of rows returned, and it can return the value
for a specific column in that row. It works in a similar fashion to a standard Java Enumeration:
it starts before the first element, and you use the next method to step through the rest of the
elements.

next returns true if the ResultSet was able to step to the next results; that is to say, there are
results to be read. The while loop in Example 12-4 will print out the first column of each of
the rows returned. If no rows were returned, next will return false initially, representing this
fact, and therefore nothing will be printed.

ResultSet can return values of all sorts of different types; Example 12-4 treats the first
column as if it were a String. Fortunately, all standard SQL data types can be represented as
String, so regardless of the type of the first column, you will be able to fetch the value of the
first column and print it out. There are many other methods available on ResultSet, including
methods for fetching all of the various SQL data types and converting them to native Java
types. Consult the API documentation on ResultSet for more information.

The other important method is executeUpdate. This method, again, takes one argument,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The other important method is executeUpdate. This method, again, takes one argument,
which is the SQL statement to be executed. The difference between executeQuery and
executeUpdate is that executeUpdate is for executing statements that change data in the
database. For example, use executeUpdate to execute a CREATE an INSERT or an UPDATE
statement. executeUpdate returns an int, and the value of that int corresponds to the number
of records that were modified.

Example 12-5 uses the executeUpdate method to insert a new row into the books table.

Example 12-5. A simple JDBC insert

Statement s = null;
try {
 s = c.createStatement();
} catch (SQLException se) {
 System.out.println("We got an exception while creating a statement:" +
 "that probably means we're no longer connected.");
 se.printStackTrace();
 System.exit(1);
}

int m = 0;

try {
 m = s.executeUpdate("INSERT INTO books VALUES " +
 "(41472, 'Practical PostgreSQL', 1212, 4)");
} catch (SQLException se) {
 System.out.println("We got an exception while executing our query:" +
 "that probably means our SQL is invalid");
 se.printStackTrace();
 System.exit(1);
}

System.out.println("Successfully modified " + m + " rows.\n");

Using Advanced JDBC Features
As mentioned earlier, besides the basic Statement object, there are two additional types of
statements available in JDBC: PreparedStatements and CallableStatements. These two
types are described later in this section.

In addition to these statements, this section also describes the use of the ResultSetMetaData
and DatabaseMetaData objects. You can use these last two objects to interrogate JDBC for
information about a given set of query results, or for information about your database. The
ability to get such information at run-time enables you to dynamically execute any SQL
statement, even one that is unknown when you write your program.

CallableStatement

Callable statements are implemented by the CallableStatement object. A
CallableStatement is a way to execute stored procedures in a JDBC-compatible database.
The best reference for this is Sun's Javasoft web site (http://java.sun.com/products/jdbc/ ),
because callable statements represent a changing and evolving standard, and their application
will depend greatly on your version of Java, and JDBC.

PreparedStatement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A PreparedStatement, in contrast to a CallableStatement, is used for SQL statements that
are executed multiple times with different values. For instance, you might want to insert
several values into a table, one after another. The advantage of the PreparedStatement is that
it is pre-compiled, reducing the overhead of parsing SQL statements on every execution.
Example 12-6 is an example of how a PreparedStatement might be used.

Example 12-6. A JDBC prepared statement

PreparedStatement ps = null;

try {
 ps = c.prepareStatement("INSERT INTO authors VALUES (?, ?, ?)");
 ps.setInt(1, 495);
 ps.setString(2, "Light-Williams");
 ps.setString(3, "Corwin");
} catch (SQLException se) {
 System.out.println("We got an exception while preparing a statement:" +
 "Probably bad SQL.");
 se.printStackTrace();
 System.exit(1);
}

try {
 ps.executeUpdate();
} catch (SQLException se) {
 System.out.println("We got an exception while executing an update:" +
 "possibly bad SQL, or check the connection.");
 se.printStackTrace();
 System.exit(1);
}

You can see that Example 12-6 prepares a statement in a similar fashion as before, except it
uses a question mark (?) character in place of each value that you want to supply. Use the
appropriate PreparedStatement set method (e.g., setInt, setString) to set each value. The
specific set method that you use for a column depends on the data type of the column.

The PreparedStatement approach is useful because it avoids manual conversion of Java
types to SQL types. For instance, the you do not have to worry about quoting or escaping
when going to a text type.

Notice that the first parameter passed to a set method indicates the specific placeholder
parameter (the question marks) that you are setting. A value of 1 corresponds to the first
question mark, a value of 2 corresponds to the second, and so on.

The other strength of the PreparedStatement is that you can use it over and over again with
new parameter values, rather than having to create a new Statement object for each new set of
parameters. This approach is obviously more efficient, as only one object is created.

Use the set methods each time to specify new parameter values.

ResultSetMetaData

You can interrogate JDBC for detailed information about a query's result set using a
ResultSetMetaData object. ResultSetMetaData is a class that is used to find information
about the ResultSet returned from a executeQuery call. It contains information about the
number of columns, the types of data they contain, the names of the columns, and so on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Two of the most common methods in the ResultSetMetaData are getColumnName and
getColumnTypeName. These retrieve the name of a column, and the name of its associated data
type, respectively, each in the form of a String.

Note: The getColumnType method is not the same as the getColumnTypeName.
getColumnType returns an int corresponding to a data type's internal JDBC
identification code, whereas getColumnTypeName returns the name as a String.

Example 12-7 is an example of using the ResultSetMetaData to get the name and data type of
the first column in a ResultSet called rs. This code could logically follow the acquisition of
the ResultSet named rs in Example 12-4.

Overall, the PreparedStatement mechanism is considerably more robust than the Statement
class.

Example 12-7. JDBC ResultSetMetaData

ResultSetMetaData rsmd = null;
try {
 rsmd = rs.getMetaData();
} catch (SQLException se) {
 System.out.println("We got an exception while getting the metadata:" +
 "check the connection.");
 se.printStackTrace();
 System.exit(1);
}

String columnName = null,
 columnType = null;
try {
 columnName = rsmd.getColumnName(1);
 columnType = rsmd.getColumnTypeName(1);
} catch (SQLException se) {
 System.out.println("We got an exception while getting the column name:" +
 "check the connection.");
 se.printStackTrace();
 System.exit(1);
}

System.out.print("The name of the first column is: '");
System.out.print(columnName);
System.out.println("'");
System.out.print("The data type of the first column is: ");
System.out.println(columnType);

There are many other useful methods in the ResultSetMetaData class, all of which are well
documented in the JDK API documentation.

DatabaseMetaData

Finally, DatabaseMetaData is a class that can be used to fetch information about the database
you are using. Use it to answer questions such as:

What kind of catalogs are in the database?

What brand of database am I working with?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What username am I?

Example 12-8 uses DatabaseMetaData to query the JDBC driver for the username used to
establish the connection, and the database URL.

Example 12-8. JDBC DatabaseMetaData

DatabaseMetaData dbmd = null;

try {
 dbmd = c.getMetaData();
} catch (SQLException se) {
 System.out.println("We got an exception while getting the metadata:" +
 " check the connection.");
 se.printStackTrace();
 System.exit(1);
}

String username = null;
try {
 username = dbmd.getUserName();
} catch (SQLException se) {
 System.out.println("We got an exception while getting the username:" +
 "check the connection.");
 se.printStackTrace();
 System.exit(1);
}

String url = null;
try {
 url = dbmd.getURL();
} catch (SQLException se) {
 System.out.println("We got an exception while getting the URL:" +
 "check the connection.");
 se.printStackTrace();
 System.exit(1);
}

System.out.println("You are connected to '" + url +
 "' with user name '" + username + "'");

Once again, the best source for the most current information about DatabaseMetaData's many
other methods is in the JDK API documentation.

Prev Home Next
Using the PostgreSQL Driver Up Issues Specific to PostgreSQL

and JDBC

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 12. JDBC Next

Issues Specific to PostgreSQL and JDBC
This section will detail three common issues with JDBC, just to save you the trouble of
puzzling through them yourself. The first is fairly simple. ResultSets returned from an
executeQuery call always start out with the row pointer set to to the point before the first row
returned by the query. This means that you must advance to the first row returned before
trying to fetch information from a ResultSet by calling the next method. Example 12-9
illustrates this. Notice that you'll get an exception from the first invocation of getString,
because there is no current row. After a call to next, the getString function successfully
returns a value from the first row in the set.

Example 12-9. JDBC first row fetch

ResultSet newSet = null;

try {
 newSet = s.executeQuery("SELECT * FROM book");
} catch (SQLException se) {
 System.out.println("We got an exception while executing our query:" +
 "This probably means that our SQL is invalid.");
 se.printStackTrace();
 System.exit(1);
}

try {
 String value = newSet.getString(1); // BAD: we haven't called next() yet
} catch (Exception e) {
 System.out.println("We'll get an exception here, because we haven't" +
 " stepped to the first row of the ResultSet yet.");
 e.printStackTrace();
}

try {
 newSet.next();
 String value = newSet.getString(1);
} catch (SQLException se) {
 System.out.println("We'll only get an exception here if we've lost" +
 "our connection, which isn't our fault.");
 se.printStackTrace();
 System.exit(1);
}

The next issue is also related to ResultSets, but it's far simpler than the first. You cannot get
the number of rows returned from an executed statement without first stepping through the
ResultSet using next, and incrementing a counter. In other words, there is no simple
ResultSet method to return the number of rows retrieved. This is due to the fact that JDBC
doesn't necessarily fetch any rows from PostgreSQL (or, for that matter, know whether or not
there is a next row) until after you call the next method.

The last issue is more of a caveat. In a multithreaded environment, it's good to ensure that each
thread uses its own Statement and ResultSet objects. That's because there is some state
maintained in these objects, and using them from different threads will corrupt that state.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Prev Home Next
Using JDBC Up LXP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 13. LXP Next

Core Features
LXP provides a core set of features that include external file inclusion, XML parsing, and a
direct SQL interface to PostgreSQL. As of Version 0.8, SQL execution is performed with
either a dynamic or persistent connection to the PostgreSQL RDBMS.

LXP also supports a few more advanced techniques commonly found in programming
languages, such as variable setting, insertion and substitution, arrays, branching logic, loop
iteration, and a basic search-and-replace variable formatting interface.

Content Inclusion and Management
The essential concept of content inclusion is that other files, or sources of data, can be
included (e.g., inserted or embedded) within a requested document's HTML output. Instructing
an LXP document to include another file means that the output from that included file will
appear inline, as if it had been part of the originally requested document itself. This can aid
both the efficiency and maintainability of a large, dynamic web site.

LXP can natively include a variety of external files, from plain HTML, to XML, to token-
delimited flat files. However, one of the strongest features of LXP's content inclusion
capability is that LXP can embed any content type that your Apache web server has been
configured to handle.

Earlier incarnations of LXP had somewhat rigid support for the inclusion of PHP scripts. As of
Version 0.8, however, LXP can include any available content type via Apache subrequests.
This allows you to embed server-side documents written in languages including, but not
limited to, PHP, Perl, and any executable CGI application. Any CGI arguments or LXP
variables available to LXP are passed on to the included document as if it had been called
directly with those variables through an HTTP request.

LXP also utilizes expat, a nonvalidating XML parsing library. While expat doesn't validate
your XML based on a DTD, the XML to be parsed must at least be well-formed (e.g., no
invalid characters, mismatched tags, etc.).

The XML parser implementation was written into LXP with support for easy RSS/RDF
formats in particular (Rich Site Summary and Resource Description Framework, respectively).
These file formats are available on popular web sites to provide a short summary of the
information supplied on their site to other hosts that link to their content (e.g., the headlines
from a news site, along with URL information).

LXP's XML method is evolving into a more generalized tool, but it can presently be used to a
limited extent with any well-formed XML.

Direct SQL Methods and PostgreSQL Connectivity

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LXP provides both dynamic and persistent PostgreSQL database connectivity, allowing for
versatile execution of SQL statements. The SQL inclusion method allows the execution of a
query from within an LXP document. Once a query is executed, its results are passed to the
LXP parser for inline formatting. These values can either be displayed immediately, or set as
variables for use later in the document.

The persistent connections, inline formatting, and direct SQL query tags lend LXP
unparalleled ease of use in the arrangement of content from a database. An example use of the
LXP database connectivity can be found in the Fingerless LXP package, a simple and flexible
weblog implementation.

Fingerless
Fingerless, first introduced in LXP 0.7, is an LXP-based weblog system, similar to those seen
on sites such as Slashdot.org and Kuro5hin.org.

As of the 0.8 release, the Fingerless implementation has been re-factored into an external
package utilizing general LXP tags and persistent SQL connectivity. As such, this
documentation will not cover the now deprecated Fingerless builtin methods, which will be
removed from the LXP core in the next major release. For an example of a web site running
Fingerless, however, visit: http://www.thelinuxreview.com.

Prev Home Next
LXP Up Installing and Configuring

LXP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 13. LXP Next

Installing and Configuring LXP
To install LXP, you must have the Apache web server installed and configured to support
mod_so. This is the Apache Shared Object module. If you have not built Apache with this
module, you will need to reconfigure it, making sure to include the - -enable-module=so
configuration option before compiling.

Warning
If you choose to manually compile Apache, be sure that you remove any existing Apache
RPMs first. You can usually identify these with the rpm -qa |grep apache command.

If Apache is installed, and the Shared Object module is enabled, you may insert the CD
included with this book, mount it, and proceed with the installation. You will need to be
logged in as root in order to successfully install LXP, since it requires access to system-level
files and directories.

Installing LXP
There are two ways to install LXP as of Version 0.8; you may use the lxpinstall.sh script,
found in the lxp directory on the CD, or you may install it manually. The lxpinstall.sh script is
intended to both install the required LXP files and to configure your httpd.conf file to load and
enable the LXP module.

If you encounter any errors during the installation from lxpinstall.sh, see the following section
about manual configuration.

Using lxpinstall.sh

The lxpinstall.sh script is extremely straightforward. On a fresh system, the only option you
should be prompted to respond to is at the end of the script, when it asks you whether or not to
automatically restart Apache (as must be done, to enable LXP). You may run it again
afterward in case something goes wrong, though it will prompt you whether or not certain files
should be overwritten.

Example 13-1 changes to the lxp directory on the CD (mounted in /mnt/cdrom, in this case),
and runs the lxpinstall.sh file.

Example 13-1. Installing LXP with lxpinstall.sh

[root@host root]# cd /mnt/cdrom/lxp
[root@host lxp]# ./lxpinstall.sh

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[root@host lxp]# ./lxpinstall.sh
===
Thank you for installing Command Prompt LXP, 0.8.0.
Copyright (c) 1999-2001, Command Prompt, Inc.
See the LICENSE file for licensing restrictions.
==
[cmd] Checking for PostgreSQL libs (this may take a moment) ...
[cmd] Found PostgreSQL libpq library.
[cmd] Using apxs: '/usr/local/apache/bin/apxs'
[cmd] Using '/usr/local/apache/libexec/' for shared object file

==
[cmd] Installing 'liblxp.so'
[activating module `lxp' in /usr/local/apache/conf/httpd.conf]
cp lib/liblxp.so /usr/local/apache/libexec/liblxp.so
chmod 755 /usr/local/apache/libexec/liblxp.so
cp /usr/local/apache/conf/httpd.conf /usr/local/apache/conf/httpd.conf.bak
cp /usr/local/apache/conf/httpd.conf.new /usr/local/apache/conf/httpd.conf
rm /usr/local/apache/conf/httpd.conf.new

==
[cmd] Using '/usr/local/apache/conf/httpd.conf' for configuration
[cmd] Backing up original configuration file...
/usr/local/apache/conf/httpd.conf -> /usr/local/apache/conf/httpd.conf.lxp_backup
[cmd] Backing up original configuration file...
/usr/local/apache/conf/srm.conf -> /usr/local/apache/conf/srm.conf.lxp_backup
[cmd] Adding LXP directives to httpd.conf...

==
[cmd] Installing 'lxp.conf' into /usr/local/cmd/etc ...
conf/lxp.conf-dist -> /usr/local/cmd/etc/lxp.conf

==
[cmd] Re-start Apache with '/usr/local/apache/bin/apachectl'? (y/n) y
/usr/local/apache/bin/apachectl stop: httpd stopped
/usr/local/apache/bin/apachectl start: httpd started
[cmd] Command Prompt LXP 0.8.0 successfully installed.

Note: In case there is a problem with your httpd.conf reconfiguration, remember
that LXP creates a backup of your original configuration called
httpd.conf.lxp_backup in the same directory as your httpd.conf before making any
modifications.

You may receive the following error when running the lxpinstall.sh script:

[cmd] ERROR: LXP requires Apache be configured with Shared Object support,
[cmd] but we couldn't find Apache's apxs script.
[cmd] Please make sure it is in your path, if you know mod_so is enabled.
[cmd] exit error 1

This error indicates that apxs, the Apache Extension tool, could not be found on your system.
It is typically found in /usr/local/apache/bin, though it may be missing if your Apache web
server was not built with mod_so support enabled, or if you have not installed the apache-
devel RPM for your system. If you know it is installed, be sure that the directory it resides
within is in your PATH environment variable.

Alternatively, you may get an error message similar to the following:

[cmd] ERROR: apxs couldn't find your configuration file
[cmd] (Tried /usr/local/apache/conf/httpd.conf)
[cmd] exit error 3

If you are not using a configuration file with a standard name (i.e., httpd.conf ), you will need

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you are not using a configuration file with a standard name (i.e., httpd.conf ), you will need
to manually configure it. See the next section instructions.

Manual installation

This section describes how to manually install LXP if the lxpinstall.sh script does not work for
you. If you've already installed LXP successfully through this script, you may skip this
section.

There are three steps to manually installing LXP:

Installing the LXP shared-object file

Installing the LXP configuration file

Configuring Apache's httpd.conf file

The liblxp.so file (located in the /lxp/lib directory on the CD) must be copied to the directory
that your Apache web server is configured to load external modules from. This is typically
/usr/local/apache/libexec for manual installations of Apache, and /etc/httpd/modules for RPM
installations. Note that this directory varies wildly, and may be different in your distribution.
You should be able to install into this directory through the use of apxs, however, with the
following syntax:

apxs -i -n module -a shared_object

Example 13-2 demonstrates using the apxs script to install and configure the liblxp.so file
directly into Apache's module directory.

Example 13-2. Manually installing liblxp.so

[root@host lib]# apxs -i -n "lxp" -a lib/liblxp.so
cp lib/liblxp.so /usr/local/apache/libexec/liblxp.so
chmod 755 /usr/local/apache/libexec/liblxp.so
[activating module `lxp' in /usr/local/apache/conf/httpd.conf]

If you do not have PostgreSQL installed, the libpq.so.2.2 file (also located in the /lxp/lib
directory on the CD) should be copied to the /usr/local/cmd/lib directory. A symbolic link
named libpq.so.2 should also be created to point to this file. If you have not run lxpinstall.sh,
you may need to create this directory. Example 13-3 demonstrates this process.

Example 13-3. Manually installing libpq.so.2.2

[root@host lib]# mkdir -p /usr/local/cmd/lib
[root@host lib]# cp -iv libpq.so.2.2 /usr/local/cmd/lib/
libpq.so.2.2 -> /usr/local/cmd/lib/libpq.so.2.2
[root@host lib]# ln -s /usr/local/cmd/lib/libpq.so.2.2 /usr/local/cmd/lib/libpq.so.2

Next, the lxp.conf file must be installed in the /usr/local/cmd/etc directory. This is the
configuration file for LXP 0.8, discussed in detail in the next section. The distributed
configuration file is found in the lxp/conf directory on the CD, and is named lxp.conf-dist.
Copy this file to /usr/local/cmd/etc from the lxp/conf directory on the CD, as shown in
Example 13-4. If you have not run lxpinstall.sh at all, you may need to create this directory.
Be sure to rename it from lxp.conf-dist to lxp.conf  !

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 13-4. Manually installing lxp.conf

[root@host lxp]# mkdir -p /usr/local/cmd/etc
[root@host lxp]# cp -v conf/lxp.conf-dist /usr/local/cmd/etc/lxp.conf
conf/lxp.conf-dist -> /usr/local/cmd/etc/lxp.conf
[root@host lxp]#

Finally, Apache's httpd.conf file must be configured for the LXP content type.

Warning
In some circumstances, httpd.conf may have been renamed to something else (such as
httpsd.conf, in the case of ApacheSSL).

There are two lines that must be added to this file for LXP to be configured. These are shown
in Example 13-5.

Example 13-5. Configuring httpd.conf for LXP

DirectoryIndex index.html index.lxp
AddType application/x-httpd-lxp .lxp

A line similar to the first line in Example 13-5 should already exist in your httpd.conf file. You
must add index.lxp as a value to this directive if you wish for Apache to automatically look
for an LXP index in a directory request.

The second line must be added from scratch. This AddType directive should be entered exactly
as it is shown in Example 13-5. This line enables the LXP module to process files ending in
.lxp.

It is generally not important where you put these last two directives within the httpd.conf file,
though you may wish to place them with similarly named directives that already exist, to keep
the configuration file organized.

Once you have finished, you must restart Apache for the changes to take effect. This is
typically done with either the apachectl command, or the httpd service script.

Nuts and Bolts: Configuring lxp.conf
After installing LXP, you will find the lxp.conf file in the /usr/local/cmd/etc directory. This
file defines the database settings with which LXP connects to the PostgreSQL database for
persistent connections. The file also contains a pair of debugging options.

The lxp.conf file is a simple configuration file using common conventions. The format of this
file can consist of comments, directives, and associated values for each directive.

Comments are always prefixed with a hash mark (#). They can be at the beginning of a line, or
follow a directive and value. They are totally ignored by LXP when the configuration is
loaded, and are only useful for remembering notes on why directives are set and what possible
options there may be. You can add your own comments without harming the functionality of
LXP as long as you remember to precede the comment with a hash mark (#).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Directives have a very basic affect upon the functionality of LXP. They typically start at the
beginning of a line, have a name (without spaces), and are followed by their associated value.
The directive name defines a behavior to affect, while the value sets how to affect that
behavior. Some directives accept multiple values, which are separated by either tabs or spaces.
Here is example syntax:

Here's an example directive.

MyDirective SomeValue # MyDirective defines some arbitrary value.

You may never need to make serious alterations in your lxp.conf file, but it's a good idea to
know what it is, and what it does, in case you ever need to change one of these basic
behaviors. As of LXP 0.8, the lxp.conf file is broken up into two sections; general settings and
database settings.

General settings

The first two directives under the General settings section are Debug and MaxIncludeDepth:

#######################
General LXP settings.
#######################

Debug No # (Yes|No)
MaxIncludeDepth 15 # (Number)

Setting the Debug directive to Yes adds a debugging-header to the top of all LXP documents.
This can be useful for tracking down unexplained behavior of LXP files and included scripts.
The debug header includes the name of the LXP document requested, any cookies found for
the given domain, any GET/POST variables that are passed, and maximum depth inclusion.

The maximum depth inclusion is the highest number of includes LXP will traverse down
before stopping and displaying an error. This is used to prevent accidental infinite includes
(e.g., a.lxp includes b.lxp, which includes a.lxp). Set this value with the MaxIncludeDepth
directive. The default value is 15.

Note: The value assigned to MaxIncludeDepth does not limit the total number of
files that can be included within a document. It describes only the deepest level
LXP can go in sub-inclusions (e.g., a.lxp includes b.lxp, which includes c.lxp,
which includes d.lxp, etc).

Database settings

The next six directives pertain to database connectivity with PostgreSQL. Most of the default
options are usable on most systems, but you may wish to modify these if you have special
needs for your PostgreSQL installation:

###
PostgreSQL persistent connectivity options.
###

UseDb No # (Yes|No) Set to Yes if you wish to connect to the database.

DbName template1 # The database to use. By default, "template1".

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DbName template1 # The database to use. By default, "template1".
DbHost localhost # The database host to use. By default, "localhost".
DbPort 5432 # The port to connect to PostgreSQL on.
DbUser postgres # The username to connect with. By default, "postgres".
DbPass # The password to connect with. By default, empty

If you wish to enable LXP's persistent connections to a database, set UseDb to Yes. If set to No,
you will still be able to use the Direct SQL Interface to dynamically open up connections (see
the Section called Including SQL Content"), but you will incur the cost of a new PostgreSQL
backend connection for each connection request.

The remaining options—DbName, DbHost, DbPort, DbUser, and DbPass—should be familiar to
anyone with experience connecting to PostgreSQL. The defaults will usually work fine, but
you might wish to change them if you have special needs (for example, if you wish to store
your data on a separate database server, you would change DbHost to point to the appropriate
machine).

Warning
When utilizing the persistent connections between Apache and LXP's PostgreSQL database,
it is important to recognize that there will be a separate postmaster binary running for each
httpd process. Be sure that your system is configured to be capable of loading as many
PostgreSQL postmaster backends as Apache requires (i.e., the number defined by the
MaxClients directive in Apache's httpd.conf ) file.

Prev Home Next
Core Features Up Understanding LXP Mark-Up

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 13. LXP Next

Understanding LXP Mark-Up
While LXP performs programmatic tasks, one of the aims of LXP is to achieve these tasks
without having to change the general syntax that one uses when putting together HTML (or
XHTML) mark-up. On the server, an LXP document appears to be a normal HTML file with
some unfamiliar tags.

Here is an introductory example of a simple LXP document:

<lxp>
 <dock type="init">
 <include src="parts/init.lxp" />
 </dock>
 <include src="parts/head.html" />

 <h1>Welcome</h1>

 <hr width="400">

 <if lxp.authenticated='t'>
 Welcome to my webpage, <putcookie name="user" />
 </if>
 <else>
 Please login.
 <include src="parts/login.lxp" />
 </else>

 <include src="parts/foot.html" />
</lxp>

LXP Tags
A tag (formally called an element) is defined as a structure in a document beginning with a
less-than symbol (<) and ending with a greater-than symbol (>). Tags always begin with a
name, which defines the nature of the tag, and can optionally have a set of space-delimited
attributes. Attributes are always described in the form of a name=value pair, where name is an
attribute name unique to that tag, and value is some arbitrary value assigned to that attribute.

All of LXP's tags follow the same general structure of any mark-up language. Tags begin a
region (or block) with an opening tag (e.g., <tag>), and close each region with an associated
slash-prefixed closing tag (e.g., </tag>.

As with HTML and XML, some tags do not require closing. These are called empty element
tags, and do not define a region, but perform a one-time operation. Empty element tags are
typically characterized by a trailing forward slash at the end of the tag (e.g., <tag />.

LXP's parser does not syntactically require trailing-slashes in empty element tags, though
omitting them can cause unpredictable behavior in some circumstances. For example, nesting
the <include> tag can cause some confusion to branching logic if trailing slashes are omitted.
This is because the <include> tag may be either an empty-element tag (as in the case of an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is because the <include> tag may be either an empty-element tag (as in the case of an
external document inclusion), or an opening tag requiring a closing tag (as in the case of the
direct SQL inclusion).

Note: It is a good idea to be in the habit of using trailing slashes in empty-element
tags. In HTML, some tags do not formally require a trailing slash (e.g.,

versus XHTML's
). With the rise of XHTML and XML, however,
requirements for mark-up–based documents are becoming more strict.

Both opening and empty-element tags have names, and may also contain some number of
attributes. While the name describes the intent of a tag, the attributes typically define the
details of the operation to be performed, and vary in their meaning from tag to tag. A closing
tag should only have a name, immediately following its initial forward slash (e.g., </tag>).

LXP tag and attribute names are generally case-insensitive, though there are times when an
attribute name refers literally to a variable's name (such as in the <if> tag). In these instances,
case can matter, depending on the case conventions you use with your variables. The
examples in this document prefer lowercase, following the lead of the XHTML standard
(which defines element names and attributes as all lowercase).

Example 13-6 shows a simple LXP mark-up region with one opening tag, one closing tag, and
two empty-element tags within their defined region.

Example 13-6. A Simple LXP mark-up region

<lxp>
 <setvar example="test" />
 <putvar name="example" />
</lxp>

LXP aims for simplicity and seamlessness in application development, and this basic structural
aspect of LXP is an example of this ethic.

LXP Regions
Arguably the most important LXP tag is the <lxp> tag itself, which enables an LXP region.
This is similar to a <script> tag, or the PHP short tag, in that it instructs the LXP module to
begin looking for LXP content.

Unlike PHP, however, while parsing an LXP region the module will simply ignore any tags
that it does not recognize as an LXP tag. The <lxp> tag simply enables the ability to use LXP
tags in a given region without impairing your ability to write normal HTML mark-up (though
the effect of LXP tags can control which parts of the HTML are displayed).

It should follow from this discussion that </lxp> closes an LXP region and disables the ability
to use LXP tags until the next <lxp> tag is opened.

Note: An LXP document does not automatically look for LXP tags. A document
will be rendered faster if LXP regions are limited to areas requiring LXP
capabilities, as it is more involved to parse an LXP region for dynamic content
than it is to process a plain HTML region.

Prev Home Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Installing and Configuring
LXP

Up LXP Variables and Objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 13. LXP Next

LXP Variables and Objects
A variable is a modifiable value in memory that is accessed through an associated name. This
name is used to identify, and subsequently utilize in some fashion, the value that it represents.
The specific use varies based on the LXP tag employed.

LXP also implements a special type of data structure called an object. An LXP object is
typically used to identify several associated variable values through a common name. The
particular value you wish to address in an LXP object is identified either by a trailing subscript
(a numeric or text value, in square brackets, such as example[0]) or a dot-notated trailing
identifier (such as for.count).

The concept of an LXP object is similar to the programmatic concept of arrays and objects in
traditional programming languages, though LXP objects are generally much simpler in their
nature. In practice, the only difference between variables and objects is syntactic, having to do
with how values are identified. Variables are identified with a plain name (e.g., my_value),
while objects are identified by a name and a secondary identifier (e.g., my_value[0],
my_value[1], my_value.size).

From a programmer's perspective, variables and objects are considered global, meaning that
once set, they are available anywhere in a document. Included documents will also have
access to the variables which are set in memory.

Naming Conventions
The valid characters with which you may define an LXP variable's name are:

Any letter (a–z, A–Z)

Any digit (0–9)

The underscore ( _ )

The valid characters with which you define a complete LXP object's name are:

Any letter (a–z, A–Z)

Any digit (0–9)

The underscore ( _ )

The period (.)

Square brackets ([ ] )

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that while numbers are the most common form of subscript (since they are used
implicitly by CGI arrays; see the Section called CGI Arrays"), any legal characters may be
used within square brackets following an object's name (e.g., pseudo_array[example]).

When parsing the attributes of an LXP tag, some special character symbols may be used to
substitute the value of a variable directly into either the attribute's name or value (see the
Section called Tag Parsing" for more about this technique). These characters are: the dollar
sign ($) for variables, and the at sign (@) for objects.

It must be understood that while special character symbols are sometimes used to substitute
variable values into a tag's attributes, these character symbols are not part of a variable's name
and should not be used in contexts where a literal variable or object name is expected.

Using Variables and Objects
Variable values can be displayed anywhere in the body of an LXP region through the
<putvar> tag. Here is the syntax for <putvar>, where variablename is the name of the
variable whose value is to be displayed:

<putvar name="variablename" />

Variable values may also be set and reset via the <setvar> and <setvars> tags. Here is the
syntax for these tags:

<setvar variablename="variablevalue" />
<setvars variable1="value1"
 variable2="value2"
 [...]
 />

Like variables, the values referenced by objects can also be displayed and set by the <putvar>
and <setvar> tags.

Note: Remember that the use of either a dot (period) or square brackets in setting
a name with <setvar> implies that you are setting a variable value to an object,
rather than a plain variable. Such a value can therefore only be substituted later
with the at sign, rather than the dollar sign.

CGI Arguments
Like many web-based programming languages, LXP keeps an internal list of CGI arguments
that have been passed to it. These arguments are implicitly treated by LXP as variables.

Note: For the purpose of this chapter, the terms "argument" and "variable" will be
nearly synonymous. In context, the term "argument" applies specifically to form-
passed variables, while "variable" applies to any variable set in memory (either
passed by a form, or set by the developer).

Arguments are each passed from forms with a name and a value. For each argument passed to
an LXP document (e.g., via an HTML form), a single variable is created with the passed
argument used as the variable's name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If two arguments have the same name, the last value passed by the form is used (with the
exception of array values; see the Section called CGI Arrays").

CGI Arrays
Objects are useful when handling CGI arrays. Ordinarily, if more than one argument value is
passed to an LXP document with the same argument name, the value of the last passed
argument is used, and any preceding values are ignored. However, by passing a CGI argument
with a name ending in empty square brackets (e.g., <select name="test[]">), an LXP object
will automatically have an array of values assigned to an object bearing the name preceding
the square brackets.

In other words, any argument passed from a CGI form whose name ends in square brackets
(e.g., test[]) will be implicitly treated by LXP as an array of values. When such an argument
is passed to LXP by a submitted form, each separate value found for it is automatically set as a
separate variable value in memory, with an incrementing numeric value between the brackets
following the object's name.

For example, if an HTML form passes an argument named test[] that has three values set to
its name, three variable values will be set for a test object. These values may be referenced as
test[0], test[1], and test[2], respectively.

Direct SQL objects
During a direct SQL query's execution, a special object called this is used to reference
column values in the result set. Each column selected from the result set can be referenced as
this.column_name where column_name is the name of the column.

Additionally, an object called sql is created with meta-information about the query. These
pieces of information include the number of the current row being accessed (sql.row), the
offset of the current row being accessed (sql.offset), the number of rows last selected by a
SQL query (sql.numrows), and the number of columns last selected by a SQL query
(sql.numcols, or sql.numfields).

Global LXP objects
Two special objects named lxp and env are pre-defined system objects that can supply
information about the LXP system and environment variables.

Any environment variable set by Apache's CGI configuration (e.g., REMOTE_ADDR) can be
accessed by referencing the name of the variable as a dot-notated identifier through the env
object. For example, the env.REMOTE_ADDR variable value identifies the address of the remote
client accessing the current document (if that feature is enabled in Apache).

The lxp object is reserved for system purposes. As of Version 0.8, only three values are
defined. The most useful of these is the lxp.self value, which describes the URI which
Apache received for the current LXP request (e.g., /app/index.lxp).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Additionally, the lxp.version variable value contains the current version of the LXP
software being used, and the lxp.copyright variable value contains the copyright on the
software.

Users submitting data to an LXP document are not able to pass variables beginning with lxp.
via a GET or POST request. Thus, any variable beginning with lxp. is a protected variable, and
can only be set by an LXP document through the <setvar> tag. This can be useful in
maintaining the integrity of sensitive variables, such as the results of password-based
authentication.

Prev Home Next
Understanding LXP Mark-Up Up Using Cookies with LXP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 13. LXP Next

Using Cookies with LXP
LXP has the ability to both set and retrieve cookie values. The LXP tag to set a cookie is
<setcookie>, and the LXP tag to display a cookie value is <putcookie>.

Setting Cookies
The setting of a cookie must happen before any content is sent from the Apache server. This is
because the cookie is included in the headers that precede the actual output of the requested
document.

A special construct exists for this type of scenario, called the initialization dock, which is
defined with <dock type="init">. This tag must be the first LXP tag following the <lxp> tag
in your document. Within it, you may use the <setcookie> tag. Here is the syntax for opening
an initialization dock:

<lxp>
 <dock type="init">

Once the dock is open, you may set cookies with the following syntax:

 <setcookie name="cookie_name" value="cookie_value"
 domain="cookie_domain" path="cookie_path"
 expires="cookie_expiration" />

When the dock is closed with </dock>, the cookies will be set, and content following the
closing dock tag will be sent to the client.

Only the name and value attributes are required to set a cookie. Supplying an empty value has
the effect of deleting the cookie.

Setting an explicit domain is helpful in specifying the detail of a domain the cookie should be
accepted for (e.g., www.thelinuxreview.com, versus .thelinuxreview.com for all subdomains).
Similarly, the path attribute specifies a URI path to maintain the cookie for (e.g.,
path="/app/").

If the expires attribute is omitted, the cookie is set as a session cookie, and it will expire
when the browser is closed. Otherwise, the value represents either the number of hours in
which the cookie should expire, or the complete epoch value (the number of seconds since
1970 to the moment the cookie should expire). If the value is larger than one million, it is
implied that it is describing the latter.

Note that, unlike some web languages, LXP documents will be immediately aware of any
cookies that you have set within the same request that sets the cookie. This awareness is
handled through logic internal to LXP, and included documents of other types (such as PHP)
will not be aware of a cookie that has been set until a request following the one which sets the
cookie is submitted. This is due to the client-side nature of cookies.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note: An initialization dock is also a good region in which to perform any general
initialization for a document, as no comments or newlines in an initialization dock
will be sent to the browser. You can include an external LXP file from within the
dock.

Accessing Cookie Values
Unlike some other web-languages, such as PHP, cookies are not implicitly treated as variables.
Instead, LXP maintains a separate list of cookies in addition to its list of variables. This is
done to ensure that methods that should apply to cookies always do, and to prevent the
collision of variable names and cookie names.

Therefore, to display a cookie, use the <putcookie> tag, as shown in Example 13-7.

Example 13-7. Displaying a cookie value

<lxp>
 Your cookie "user" is set to: <putcookie name="user" />
</lxp>

If you wish to substitute the value of a cookie into an LXP attribute, you might think you
could do so with the same dollar sign notation used to substitute variable values. However,
this introduces a point of ambiguity between cookie values and variable values. Therefore,
cookie values may be accessed through the special cookies LXP object.

Example 13-8. Substituting cookie values

<lxp>
 <setvar welcome_msg="Welcome, @cookies.user!" />

 <if cookies.user>
 <putvar name="welcome_msg" />
 </if>
</lxp>

As of LXP 0.8, for backwards compatibility, if a variable is not found with a specified
substitution name (e.g., $my_cookie), LXP will search the list of cookies for a cookie with that
name. This behavior is scheduled to either be removed (or be made configurable) in future
versions of LXP, however.

Prev Home Next
LXP Variables and Objects Up Tag Parsing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 13. LXP Next

Tag Parsing
When a tag is parsed, its attributes are read in one of two ways—literally, or interpretively.
Similar to existing conventions in a variety of languages, defining a value in single-quotes
(e.g., name='value') causes the contents of the value to be parsed literally, regardless of the
characters between quotes. Using double-quotes causes its contents to be parsed interpretively,
meaning that some characters will be treated in special ways.

Specifically, these special characters are the dollar sign ($), the at sign (@), and the ampersand
(&). These characters correspond to variable substitution, object variable value substitution,
and entity substitution, respectively.

Value substitution is the process by which a variable, cookie, object, or entity's value is
substituted for its syntactically referenced name. This occurs at the name's original location in
any arbitrary string of characters.

Variable Substitution
What may be confusing to experienced programmers at first is that LXP supports the familiar
dollar sign notation to substitute a named variable (e.g., $myvariable) with its associated
value in a mixed character string.

When using LXP, it is important to understand the contexts in which variables are substituted
(and the context in which they are not). Subsequently, it is also important to understand when
to use variable substitution and when not to.

The first rule is that variables will never be substituted outside of an LXP tag. Example 13-9
attempts incorrectly to place the value of a variable named variable within an LXP
document.

Example 13-9. Invalid variable substitution

<lxp>
 Here is my variable: $variable <!-- Wrong -->
</lxp>

Instead, suppose that the URL http://localhost/test.lxp?setbar=foo is opened in a browser, and
that test.lxp contains the snippet of LXP mark-up shown in Example 13-10.

Example 13-10. Valid variable substitution

<lxp>
 <setvar bar="$setbar" /> <!-- sets bar's value to setbar's value -->
 <putvar name="bar" /> <!-- output the value of bar -->
<lxp>

The mark-up in Example 13-10 opens an LXP region and uses the <setvar> tag to assign the
value of the variable named setbar to a new variable named bar. Variable substitution is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

value of the variable named setbar to a new variable named bar. Variable substitution is
correctly used in this case, because it occurs within an LXP tag.

Since the previously mentioned URL assigned a value of foo to setbar, this means that the
new variable bar will be assigned a value of foo.

The use of the <putvar> tag introduces the second rule to watch out for in LXP. Some tags
(such as the <putvar> tag) expect to receive a literal variable name in order to perform their
job. Remember that dollar signs and at signs are not actually part of variable names; they are
only used to substitute values in place of names.

You might be inclined to think that the syntax of the <putvar> tag in Example 13-10 should
have read like this:

 <putvar name="$bar" /> <!-- output the value of bar -->

This would actually result, however, in the value of the variable bar being substituted into the
value of the name attribute. Since the value of the bar variable is foo, LXP would attempt to
insert a variable with the name of foo.

The simplest way to know whether or not to use substitution characters is to remain aware of
what the purpose of the tag is. If an attribute should be substituted with a variable's value, use
the $ symbol to substitute it. If an attribute is literally specifying a variable by name, as with
the <putvar> tag, do not substitute it.

A literal dollar sign ($) may be used within double quotes by placing two of them immediately
one after the other, sequentially (e.g., <setvar price="$$99.95" />).

Note: When using substitution, if a variable with the specified name is not found,
LXP will check for a cookie with the specified name. If one is found, its value
will be substituted.

Object Variable Value Substitution
The substitution of a variable value from an object is very similar to normal variable
substitution. However, instead of using the dollar sign ($) to substitute a value, you use the at
sign (@). Syntactically, the only difference between referencing a variable value with @ instead
of $ is that dots (.) and square brackets ([]) are allowed as part of the object name.

A literal at sign (@) can be placed inside of an attribute's value by typing the character twice
consecutively (e.g., <setvar email="jlx@@commandprompt.com" />).

Entity substitution
LXP automatically converts any recognized entity within an LXP tag's attribute value into its
literally interpreted character symbol. As of Version 0.8, LXP's recognized entities consist of
the five pre-defined XML entities:

Ampersand (&)

Less-than symbol (<)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Greater-than symbol (>)

Apostrophe (')

Double-quote (")

It's useful to know about entity substitution, as sometimes both apostrophes and quotes may be
needed within the value of an LXP tag attribute, making it otherwise impossible to insert them
without the use of these entities. LXP's developers considered programmatic back-slash escape
sequences as a means to solve this (as is common in other programming languages), but LXP's
ability to natively handle entities both preserves the mark-up mentality and adds a new level of
sophistication to the language.

Example 13-11 provides an example of entity substitution within the LXP <include> tag.

Example 13-11. Using entity substitution

<lxp>
 <setvar field="field_two" />
 <include sql="SELECT field_one, $field FROM "CAPITALIZED_TABLE""
 method="SQL">
 Column One: <field name="field_one" />

 Column Two: <field name="field_two" />

 </include>
</lxp>

Example 13-11 demonstrates the use of entities inside of a direct SQL query in order to place
quotes within quotes. This is frequently required to make identifiers case-sensitive within
PostgreSQL, as identifiers are otherwise folded to lowercase.

When parsed, the " is changed into its literal counter-part, making the actual executed
query as follows:

 SELECT field_one, field_two FROM "CAPITALIZED_TABLE"

See the Section called Including SQL Content" for an explanation of what exactly this
example's LXP markup would achieve.

Using <varparser>
LXP supports a simple search-and-replace mechanism for variable values with its
<varparser> tag. This tag takes two attributes—find and replace. When you use the
<varparser> tag, a region is opened within which any variable value that is substituted will be
filtered through the defined search-and-replace rule.

The <varparser> is primarily useful for stripping or escaping unwanted characters. For
example, in preparation to execute a SQL statement, single-quotes (') must be prefixed by a
backslash, as a single-quote delimits string constants to PostgreSQL. Example 13-12
demonstrates the escaping of single-quotes in a variable called txt.

Example 13-12. Using <varparser> to prepare SQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<lxp>
 <varparser find="'" replace="\'">
 <include sql="SELECT * FROM table WHERE txtfield = '$txt'">
 <field />

 </include>
 </varparser>
</lxp>

In Example 13-12, the <varparser find="'" replace="\'"> tag instructs LXP to replace
any single-quote with a back-referenced \' sequence within any substituted variable value.

Note that this search-and-replace occurs only for substituted variable values. As such, the
literally typed apostrophes in the sql attribute of the <include> tag are left unchanged; only
the contents of variable values being substituted within that attribute (e.g., the txt variable's
value, in Example 13-12) are modified upon their substitution.

The closing </varparser> tag puts LXP back into normal variable substitution mode.

Note: You can configure several simultaneous search-and-replace rules by
nesting several <varparser> tags within one another.

Prev Home Next
Using Cookies with LXP Up Branching Logic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 13. LXP Next

Branching Logic
A simple method of conditionally rendering content lies in LXP's native support for a small set
of branching logic tags. These allow you to either display or hide regions of markup by
performing equivalence checks on variables or cookies. LXP's basic branching logic tags
include:

<if>

<ifnot>

<ifcookie>

<ifnotcookie>

<else>

<elseif>

<elseifnot>

The <if> and <ifnot> tags operate on LXP variables (or object variable values), whereas the
<ifcookie> and <ifnotcookie> tags operate on stored cookies for the current domain. In other
words, the logical functions of <if> and <ifcookie> are the same; only the sources for logical
evaluation differ.

The <else> tag is more generalized, and implements subsequent, inverted logic evaluations on
any of the previously mentioned tags. The <elseif> and <elseifnot> tags are actually just
shortcut tags with the same result as nesting an <if> or <ifnot> tag within an <else> region.

The <if> and <ifnot> Tags
When used without any accompanying attributes, the <if> and <ifnot> tags perform no
useful function. However, with meaningful attributes, these tags can be used to quickly and
simply flag regions of mark-up for display under specific circumstances.

Using <if>

The <if> tag examines its defined attributes through equivalence comparisons to variables
whose names match the attribute names. If the specified attribute's value matches the variable's
value exactly, the region of mark-up between that <if> and its associated </if> closing tag
will be processed by LXP. Otherwise, that region (between <if> and </if>) will be
completely ignored (including any LXP mark-up) up to its closing tag.

You may include in the <if> tag either an attribute name, a complete attribute pair, or a series
of attribute pairs, depending on the intended logical assessment you wish to make.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Providing only an attribute name (e.g., <if test>) causes LXP to check only for the existence
of any characters assigned to the variable value with that name. In this case, if the variable is
set to an empty value (or not set at all), the <if> match fails, and its defined region is muted
(not displayed). Otherwise, if a value is found, the region is processed as it would be normally.

Providing one or more attribute pairs results in each attribute value being compared to the
variable with the specified attribute name. When more than one attribute is specified in the tag,
each condition must match exactly for the <if> conditions to be considered a match as a
whole, and for the region to be processed.

Example 13-13 uses the <if> tag to check for the existence of any variable value named name,
and compares the variable named access to the value of 1.

Example 13-13. Using the <if> tag

<lxp>
 <if name access="1">
 Success!

 A name is set, and access is set to 1.

 </if>
</lxp>

Using <ifnot>

The <ifnot> tag logically performs the opposite of the <if> tag in every respect. For
example, when multiple attributes are passed, each equivalence comparison must fail for the
<ifnot> region to be processed.

Example 13-14 uses the <ifnot> tag to test for the lack of a variable called error, as well as
to check that a variable named access is not set to the value of 0.

Example 13-14. Using the <ifnot> tag

<lxp>
 <ifnot error access="0">
 Success!

 An error is not set, and access is not set to 0.

 </ifnot>
</lxp>

Note: You may not define two attributes with the same name in a single LXP tag
(e.g., <ifnot access="0" access="2"> is not valid). Therefore, two logical
assessments on one variable requires the use of two logic tags.

Nesting logic

The term nesting refers to placing tags within regions marked-up by other tags. You may
safely nest logical tags as much as you like, provided you carefully keep track of where they
open and close.

In some cases, you may have to nest logic tags in order to perform multiple checks on a single
variable. This is because you can only place a variable's name inside of a logic tag once.

Example 13-15 nests several logic tags within one top-level <if> tag.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 13-15 nests several logic tags within one top-level <if> tag.

Example 13-15. Using nested logic

<lxp>
 <if answer>
 You have supplied an answer!

 <if answer="12">
 Your answer is correct!

 </if>

 <ifnot answer="12">
 Your answer of <putvar name="answer">, though, is incorrect.

 </ifnot>

 <if answer="12" cheatcode>
 You appear to be cheating, however.
 </if>
 </if>
</lxp>

In Example 13-15, the first <if> tag checks to see if an argument titled answer is set at all. If it
is not, the entire region it encapsulates is muted.

The second <if> tag evaluates the passed answer argument to see if it is equal to 12. If it is,
that <if> tag's region is processed. Otherwise, that region will be muted.

The <ifnot> tag then checks to see if the passed argument named answer is not equal to 12. If
it is not, the region that the <ifnot> encapsulates will be processed.

Lastly, the final <if> tag in Example 13-15 checks to see if the passed value for answer is
equal to 12, and for the existence of a passed argument called cheatcode. If the variable
answer is found to equal 12, and the variable cheatcode is found at all, the region
encapsulated by the last <if> tag will be processed (meaning, in this case, that it is merely
displayed).

Using <ifcookie> and <ifnotcookie>
The <ifcookie> and <ifnotcookie> tags behave identically to the <if> and <ifnot> tags,
with the notable exception being that they derive the source of their logical evaluations from
the cookies stored in the browser for the domain being accessed by the web browser, rather
than from stored variables.

Example 13-16 welcomes a user with a personalized message if they have a cookie stored in
their browser named username.

Example 13-16. Using ifcookie and ifnotcookie

<lxp>
 <ifcookie username>
 Welcome back, <putcookie name="username">.

 </ifcookie>
 <ifnotcookie username>
 <include src="login.php" />
 </ifnotcookie>
</lxp>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</lxp>

In Example 13-16, if the username cookie doesn't exist, the user will see a login screen
provided by a PHP document. This document is rendered through an Apache sub-request
inclusion (see the Section called Including External Content Types").

The <else>, <elseif>, and <elseifnot> Tags
The <else>, <elseif>, and <elseifnot> tags aid in the creation of more involved conditional
logic than a single <if> or <ifnot> statement.

The <else> tag marks a region to be displayed only if the last logical evaluation (at the same
logical depth, if working with nested logic tags) was false. If the last logical evaluation was
true, the <else> region will be muted.

Example 13-17 creates a simple <if> condition to check for the existence of a variable called
answer. If it is not found, the region marked up by the <else> and </else> tags will be
displayed; otherwise, that region will be muted.

Example 13-17. Using the <else> tag

<lxp>
 <if answer>
 Thank you for supplying an answer.
 </if>
 <else>
 You have not yet supplied an answer.

 <include src="forms/question.lxp" />
 </else>
</lxp>

As mentioned earlier in this section, the <elseif> and <elseifnot> tags are just shortcuts.
They behave exactly as the <if> and <ifnot> tags do, respectively, if they were nested within
an <else> region. For example, the following two blocks of markup are functionally identical:

 <if condition1="true">
 Condition 1 is True.
 </if>
 <else>
 <if condition2="true">
 Condition 2 is true.
 </if>
 </else>

...

 <if condition1="true">
 Condition 1 is True.
 </if>
 <elseif condition2="true">
 Condition 2 is true.
 </elseif>

Using <else> tags streamlines both the maintainability and efficiency of the conditional logic.
By using <else>, you can rely on LXP to keep track of whether or not the last condition was
or was not met, and not have to re-evaluate the same conditions with the opposite logic tag.

Example 13-18 re-implements the same logic that was used in Example 13-15 earlier in this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 13-18 re-implements the same logic that was used in Example 13-15 earlier in this
section, but improves it with the use of the <else> tag.

Example 13-18. Using nested logic with <else> tags

<lxp>
 <if answer>
 You have supplied an answer!

 <if answer="12">
 Your answer is correct!

 <if cheatcode>
 You appear to be cheating, however.
 </if>
 <else>
 Congratulations for not cheating!
 </else>
 </if>
 <else>
 Your answer of <putvar name="answer">, though, is incorrect.

 </else>

 </if>
 <else>
 You have not yet supplied an answer.

 <include src="forms/question.lxp" />
 </else>
</lxp>

Prev Home Next
Tag Parsing Up Loop Iteration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 13. LXP Next

Loop Iteration
If you have an LXP region that you wish to iterate more than once, the <for> tag exists for
this purpose. It requires at least a start attribute, and either an end or endbefore attribute.
Each attribute should be given a numeric value.

The start attribute defines a whole integer value to begin the loop iteration with. That value
initializes an iteration count, which will be incremented by 1 for each iteration of the loop. If
the end attribute is defined, the loop will stop iterating after the iteration count has looped
through the number specified by end. Alternatively, if the endbefore attribute is defined, the
loop will stop one iteration earlier. Using end and endbefore is respectively equivalent to
using the <= and < operators in a programming language such as PHP or C.

While iterating, a special LXP object called for maintains a value called count, which stores
the value of the current loop's iteration count. Example 13-19 demonstrates a simple for loop
that will iterate from 1 to 5.

Example 13-19. A simple <for> loop

<lxp>
 <for start="1" end="5">
 Iterating loop: <putvar name="for.count" />

 </for>
</lxp>

Here is the output from this loop, when processed by LXP:

Iterating loop: 1

Iterating loop: 2

Iterating loop: 3

Iterating loop: 4

Iterating loop: 5

The <for> loop iterator can be invaluable when dealing with arrays of values that you need to
return by using LXP. As mentioned earlier in this chapter, if a variable is defined with trailing
square-brackets ([]), it will be implicitly given an offset by LXP for each value found with
that name. LXP will also create an object variable of the same name, but without square-
brackets, with two attributes: size and last. The size value (e.g., my_array.size) stores the
number of elements in the implicitly defined array, while the last value (e.g. my_array.last)
stores the offset of the last value.

Example 13-20 demonstrates the handling of a passed variable called my_array[].

Example 13-20. Handling array results with <for>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<lxp>
 <for start="0" end="@my_array.last">
 Here is the value of my_array, at offset <putvar name="for.count" />:
 <putvar name="my_array[@for.count]" />

 </for>
</lxp>

Notice that the at sign (@) for the my_array object is only used where its variable value is
desired, rather than its name. Thus, it is omitted in the <putvar> tag, since the name attribute
expects a literal variable name, and not the variable's value.

Warning
If you manually assign index offsets to variables in a form (e.g., my_array[0],
my_array[1]) rather than creating an implied array (e.g., my_array[]), LXP will not set the
size and last values for such an array of values.

Prev Home Next
Branching Logic Up Content Inclusion

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 13. LXP Next

Content Inclusion
The heart of LXP's content management is its content inclusion workhorse: the <include> tag.
The <include> tag can operate in one of many ways, depending either on the explicit value of
the method attribute with which it is initiated, or the implicit context determined by its
attributes.

The <include> tag can be used, in its simplest form, to simply include a flat HTML file, such
as a standard header, sidebar, and footer. In its more advanced incarnations, the <include> tag
can be used to parse token-delimited files by using arbitrary tokens, parse basic XML
documents, embed PHP output inline within the LXP document, make direct SQL queries,
and, of course, include other LXP documents.

Table 13-1 lists each of the LXP inclusion methods available to the <include> tag. The
method in the first column is value that you supply to the <include> tag's method attribute.
The alias in the second column describes any alternative names that you can use to invoke the
same method. The "Implied by" column shows any attribute values which would imply a
method (bypassing the need for an explicit method attribute), and the "Description" column
gives a brief description of the method itself.

Table 13-1. LXP inclusion methods

Method Aliases Implied by Description
LXP .lxp extension ending src

attribute
Processes the source file
through mod_lxp

flat Unrecognized extension in
src attribute, and no sql or
query attribute

Displays a file's literal
contents

parsed Parses a token-delimited
file, and breaks it up into
accessible <field> values

XML RSS, RDF .xml, .rdf or .rss extension at
the end of the src attribute

Parses a well-formed
XML file, and breaks it
up into accessible
<field> values

local Apache .php, .php3, or .phtml
extension at the end of the
src attribute

Displays output of an
Apache subrequest with a
src attribute describing a
system filename

URI Displays output of an
Apache subrequest with a
src attribute describing
an HTTP URI

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL Existence of sql or query
attribute

Executes a SQL
statement, making query
results accessible both as
variables, and with the
<field> tag

The source of content inclusion is invariably defined in the src attribute of the <include> tag.
In most cases this is a system filename, though it may describe a database source or Apache
URI request, depending on the method. When you include a file described by a relative path
(one that is not explicitly defined from the root of the filesystem), LXP will use the working
directory of the LXP document which is performing the inclusion.

Note: To prevent accidental infinite recursion (e.g., including a file that includes
itself), LXP documents may only include to the depth specified in the lxp.conf
file's MaxIncludeDepth directive (see the Section called Nuts and Bolts:
Configuring lxp.conf"). The default maximum include depth is 15.

Including LXP Files
Any LXP file can be included within another LXP file, if the Apache server has read access to
the document specified in the src attribute. Any variables set in the including LXP document
will be both accessible, and modifiable, by the included LXP document.

To include an LXP file, open an LXP region, and use the following syntax where lxpfile is
the name of the LXP file you wish to include:

 <include src="lxpfile" />

Note: When an LXP file is included, it is parsed as if it had been directly called.
Therefore, you must still use the <lxp> tag to open an LXP region in the included
LXP document before you are able to use LXP tags within it.

Since the output of the included LXP document is embedded in place of the <include> tag
itself, no closing tag is necessary with this inclusion method. In this case, the <include> tag
should be an empty-element tag (i.e., with a trailing slash). If the LXP file you are including
does not have an extension ending in .lxp, you may force it to be parsed by the LXP module
by using the method="lxp" attribute.

Suppose that you have an LXP application that provides different content depending on the
virtual host accessing the site. Each virtual host's DocumentRoot could store just a single
index.lxp file, configured to include the root LXP application from another directory. Example
13-21 demonstrates such a simple top-level file, which sets two protected LXP variables, and
includes the root LXP file.

Example 13-21. Including an LXP document

<lxp>
 <setvar lxp.virtual_host="0" />
 <setvar lxp.access_level="1" />
 <include src="../application/index.lxp" />
</lxp>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</lxp>

Including Flat Files
Flat file is a term used to refer to a plain-text document. A flat file is a non-parsed document
(such as a simple HTML document, or text file), as far as the server is concerned.

As with the inclusion of LXP documents, the flat file inclusion method does not require a
closing tag, and should therefore be used as an empty-element tag with a trailing slash. To
include a flat file, open an LXP region, and use the following syntax where flatfile is the
name of the file you wish to include:

 <include src="flatfile" />

If the flat file you are including has a recognized file extension, you may force it to be
displayed literally by using the method="flat" attribute. Example 13-22 demonstrates an
LXP document which includes three HTML files, from a relative directory called parts, to be
used as a header, sidebar, and footer. Since their extensions do not imply any more complex
method, the files are included as-is in the main document.

Example 13-22. Including flat files

<lxp>
 <include src="parts/header.html" />
 <include src="parts/leftbar.html" />
 Welcome to my home page.

 <include src="parts/footer.html />
</lxp>

As you can see, this sort of inclusion can make web sites with consistent themes far easier to
maintain by modularizing components in a manner similar to what is done when using server-
side-includes or PHP's readfile() function. In addition, flat file inclusion allows you to
achieve this modularity without having to leave the simplicity and elegance of mark-up
design. This is certainly not the full extent of the <include> tag's power, as you will find out
in subsequent sections.

Including Token-Delimited Files
A common function of many dynamic web sites is to post the contents of token-delimited files
(such as Linux Today's headlines file) on their web site in some kind of programmatically
filtered format. These filters generally are implemented differently from page to page, and site
to site, and rely on somewhat involved algorithms to pull apart the data and put it back
together again into a useful format.

The LXP approach to displaying such files is with the use of the <include> tag, by specifying
the method="parsed" attribute. This use of the <include> tag breaks up the parsed fields into
sequential values, accessible via the general-purpose LXP <field> tag.

Blocks are delimited from one another by the value supplied to the delimiter attribute.
Within a block, fields are separated from one another by each newline (symbolically, \n, a
literal line-wrap) found within the block. You may optionally specify a different field
delimiter value using the separator attribute.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The parsed method for the <include> tag requires a closing </include> tag, because for each
block that LXP reads from the file, it loops back to the beginning of the <include> tag and re-
iterates the mark-up until the last block is processed.

If you wish to limit the number of blocks to be displayed, the last block number can be
specified with the lastblock attribute. Additionally, the firstblock attribute can be used to
skip any leading blocks (e.g., an introductory statement that might be embedded at the top of
the text file preceding the first delimiter).

Here is an example of such a token-delimited file, from www.linuxtoday.com:

Welcome to lthead.txt. Fields are delimited by two ampersands.
The first field is the headline. The second field is the URL to the story.
The third field is the date the story was posted.
Have Fun! (webmaster@linuxtoday.com)
&&
LinuxProgramming: python-dev summary 2001-06-21 - 2001-07-05
http://linuxtoday.com/news_story.php3?ltsn=2001-07-05-019-21-OS-SW
Jul 5, 2001, 21:30:38
&&
Chicago Sun-Times: Test drive Linux using friendly tryout software
http://linuxtoday.com/news_story.php3?ltsn=2001-07-05-018-21-PS-CY
Jul 5, 2001, 21:00:48
&&
[...]

Example 13-23 opens the file /home/web/headlines/lthead.txt, and parses it into blocks using
the && character sequence as the block delimiter.

Example 13-23. Including a token-delimited file

<lxp>
 <include src="/home/web/headlines/lthead.txt" delimiter="&&"
 firstblock="2" lastblock="4" method="parsed">
 <table border="0" cellspacing="1"><tr>
 <td bgcolor="#ffffff" width="100%">
 <div class="content">
 - <field />
 </div>
 </td>
 </tr><tr>
 <td bgcolor="#e0e0e8" width="100%">

 <field type="url" link="Read More..." target="_blank" />

 </td>
 </tr></table>
 </include>
</lxp>

When an inclusion such as the one in Example 13-23 is processed, the <field> tags are
replaced with the field values found within the parsed blocks. Fields are assigned to <field>
tags in the order in which they are found.

As you can see in Example 13-23, you may also specify an alternate type attribute for an LXP
<field>. Valid types in a parsed inclusion are hidden (this hides the field if there is a value
that you wish to skip over, and not display) and url.

The hidden type is used for a field which you wish to merely skip over. Since token-delimited

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The hidden type is used for a field which you wish to merely skip over. Since token-delimited
files have no identifying name for each block, each field must be processed in the order that is
encountered by LXP in the source file. Therefore, a field can be assigned a type="hidden"
attribute in order to skip it rather than display it, allowing you to display fields that are past it
in the file.

The url type is useful in this context when you know that a particular field will be a URL, as
it creates a hyperlink to that URL (with an HTML <a> tag), rather than just displaying the
URL itself. You can set the text of the generated hyperlink to appear as an arbitrary value,
other than just the URL itself (such as the Read More... value used in Example 13-23), by
specifying the value of the link attribute within the <field> tag.

Here is example output of what you would see from LXP, after parsing the mark-up from
Example 13-23:

<table border="0" cellspacing="1"><tr>
 <td bgcolor="#ffffff" width="100%">
 <div class="content">
 - LinuxProgramming: python-dev summary 2001-06-21 - 2001-07-05
 </div>
 </td>
</tr><tr>
 <td bgcolor="#e0e0e8" width="100%">

 <a href="http://linuxtoday.com/news_story.php3?ltsn=2001-07-05-019-21-OS-SW"
target="_blank">Read More...

 </td>
</tr></table>

<table border="0" cellspacing="1"><tr>
 <td bgcolor="#ffffff" width="100%">
 <div class="content">
 - Chicago Sun-Times: Test drive Linux using friendly tryout software
 </div>
 </td>
</tr><tr>
 <td bgcolor="#e0e0e8" width="100%">

 <a href="http://linuxtoday.com/news_story.php3?ltsn=2001-07-05-018-21-PS-CY"
target="_blank">Read More...

 </td>
</tr></table>

[...]

Note: When using an LXP <field type="url"> tag, you can pass non-LXP
attributes such as class, or target, and they will be placed in the generated <a>
tag.

Including XML, RSS and RDF Files
To include an external well-formed XML document, the approach is very similar to the
parsed method. The method attribute may be set to either XML, RSS, or RDF to explicitly set the
method to XML parsing. Including a src attribute that ends in any of the .xml, .rss, or .rdf
extensions will implicitly invoke this method as well.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The delimiter attribute in this context sets the name of the element (tag) within which to look
for element fields to parse. For example, most of the relevant fields in an RDF file are
contained directly within the <item> element; for this reason, item is the default delimiter
element. For each delimiting element found, the entire <include> region will be looped
through once.

Like the parsed method, the XML method uses the generalized <field> tag to display the
contents of a field value. In this context, a field value refers to the character data within a
named element (tag) inside the delimiting element. Field values will be displayed in the order
in which they appear in the XML file unless a name attribute is set within the <field> tag,
assigning the name of the element field to output. For example, a name="title" attribute
refers to the character data within <title> and </title> in the source XML document.

As an example, suppose that you have an XML source document called languages.xml that
describes languages related to PostgreSQL, with the following structure:

<?xml version="1.0" encoding="utf-8"?>
<languages>
 <language>
 <name>C</name>
 <notes>Built-in language.</notes>
 </language>
 <language>
 <name>LXP</name>
 <notes>Web-based content language.</notes>
 </language>
 <language>
 <name>PL/pgSQL</name>
 <notes>PostgreSQL procedural language.</notes>
 </language>
</languages>

In this scheme, notice that each language is described within the <language> element. To
parse such an XML file in the same manner as the RDF example described earlier, set the
delimiter attribute of the <include> tag to language and the src attribute to
languages.xml. This is demonstrated in Example 13-24.

Example 13-24. Including an XML file

<lxp>
 <include src="languages.xml" delimiter="language" method="xml">
 Language Name: <field name="name" />

 Language Notes: <field name="notes" />

 <hr />
 </include>
</lxp>

When processed, the output of Example 13-24 would look like this:

 Language Name: C

 Language Notes: Built-in language.

 <hr />

 Language Name: LXP

 Language Notes: Web-based content language.

 <hr />

 Language Name: PL/pgSQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Language Name: PL/pgSQL

 Language Notes: PostgreSQL procedural language.

 <hr />

Example 13-25 demonstrates the display of a simple RDF XML document. This example
differs from Example 13-24 in that it addresses, specifically, an RDF document. As a result,
the delimiter attribute can be omitted, since the default value of item is appropriate for the
RDF schema.

Example 13-25. Including an RDF file

<lxp>
 <include src="/home/web/ports/headlines/slashdot.rdf" lastblock="5">
 <table border="0" cellspacing="1"><tr>
 <td bgcolor="#ffffff" width="100%">
 <div class="content">- <field name="title"></div>
 </td>
 </tr><tr>
 <td bgcolor="#e0e0e8" width="100%">

 <field name="link" type="url" link="Read More..." target="_blank">

 </td>
 </tr></table>
 </include>
</lxp>

Notice also the use of the lastblock attribute in Example 13-25, which was also described in
the Section called Including Token-Delimited Files" earlier in this chapter. Both the
firstblock and lastblock attributes can also be used with XML, RDF, and RSS files to
limit and offset which blocks of data are displayed.

Warning
Remember that any XML document you attempt to include through LXP must be well-
formed, or the parser will fail. XML parse errors should appear in the Apache error log,
prefixed with [lxp] XML Parse Error.

Including External Content Types
To include an external content-type configured within Apache, the <include> tag can be
invoked with either the URI or local method. Each performs a subrequest to Apache, meaning
that the inclusion is processed as if it is a direct request to Apache, with the output embedded
at the location of the <include> tag in the LXP document.

The difference between these two methods is that the URI method accepts a src attribute of the
form that Apache would literally accept from a web browser, prefixed with a forward-slash,
and beginning at the document root directory of the configured host (e.g., /example.php).
Alternatively, the local method tells Apache directly where the file is located on the local
filesystem (e.g., /home/web/default/example.php).

Example 13-26 shows an LXP file which includes a PHP script in two ways. Note that each of
these methods goes through Apache, and will thus be reliant on Apache to be properly
configured for the requested content type, and especially in the case of the local method,
have the necessary rights on the directory containing the included script.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 13-26. Including other content types

<lxp>
 An example PHP script:

 <include src="/example.php" method="URI" />
 <hr />
 The same PHP script, using the local method:

 <include src="/home/web/default/example.php" method="local" />
</lxp>

Omitting the method attribute when including a document (specified by the a src attribute)
with a name ending with any of the common PHP extensions (.php, .php3, and .phtml) results
in the method being implied as local. As of LXP 0.8, however, there is no way to imply the
URI method. You must therefore specify method="URI" to use the URI method.

Including SQL Content
The SQL method in LXP offers a great amount of power through direct connectivity to
PostgreSQL. It allows for the embedding of 100% dynamic, database results directly within a
web page without the need to call out to a programming language, create explicit connection
or statement programming objects, or even to parse and format the results.

To use the SQL method, you may either explicitly use the <include> tag with a method
attribute of SQL, or implicitly define the <include> tag as using the SQL method by setting the
value of the sql attribute to the SQL statement you wish to execute. In the following example,
the SQL method is implied as a result of specifying a value for the sql attribute:

 <include sql="SELECT * FROM pg_database">

Like each of the parsing methods, the <include> tag loops between its opening <include>
and closing </include> tags for each row returned from a successfully executed SQL query.

Setting the database source

When using the SQL inclusion method, the src attribute is used within the <include> tag to
define the database source to connect to. If this attribute is omitted, LXP will attempt to
connect to its persistent database connection, if one exists.

Note: While there exists a single persistent database connection for each Apache
httpd process, the LXP module actually maintains the connection—not Apache.

The format of this connection string will be familiar to anyone who has connected to
PostgreSQL through C or PHP. It is a single, character string, within which there are several
sub-attributes describing the data source. Available sub-attributes are shown in Table 13-2.

Table 13-2. Database Connection Attributes

Attribute Description
dbname The database to connect with (defaults to the

same name as the connecting user)
host The hostname to connect to
user The username to connect with (defaults to the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

user The username to connect with (defaults to the
user running Apache)

password The password to use, if authentication is
required

port The port to connect to (Defaults to 5432)

Within the src attribute's value, attribute pairs are separated by whitespace, and an equal sign
separates each attribute from its value. The order in which the database attributes appear is not
important.

Example 13-27 shows the execution of a SQL query, which uses a connection to a database
called example, on a host named db_server, with the username john.

Example 13-27. Connecting to a non-default database

<lxp>
 <include sql="SELECT * FROM users ORDER BY username ASC"
 src="dbname=example host=db_server user=john">
 User: <field />

 </include>
</lxp>

Warning
For LXP 0.8, if you wish to nest a SQL include within another SQL include, the nested
include must have an explicit src attribute defined, even if it is connecting to the default
database connection. This restriction is corrected with LXP 0.8.1.

Accessing column values

Column values can be accessed in one of two ways while iterating through a SQL inclusion
region; either through the general <field> tag, or through the this object, which is populated
with a value for each column upon each row iteration.

Like the XML inclusion, a name attribute can be applied to a <field> tag in order to specify
which column is to be displayed. Otherwise, the column values are displayed in the order they
were targeted by the query, from left to right, with each successive use of the <field> tag.

Alternatively, the values of each column can be accessed by a variable named this.column,
where column is the name of the column to be identified. For example, the following two tags
would output the same value within an included SQL region:

 <field name="id" />
 <putvar name="this.id" />

The main reason for the existence of the this object is so that branching logic, and variable
substitution, can be performed using the values of the returned SQL result set. Example 13-28
executes a SQL query, and formats its output conditionally through the use of branching logic.

Example 13-28. Including SQL content

<lxp>
 <include sql="SELECT datname, datdba AS user_id FROM pg_database">
 <if this.user_id="$userid">
 <field />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <field />

 <setvar owned_databases="$owned_databases @this.datname" />
 </if>
 <else>
 <field />

 </else>
 </include>
</lxp>

Accessing SQL meta-data

When executing a SQL query, some special variable values containing data about the current
result set are assigned to an LXP object called sql. These are:

sql.numrows

sql.numcols

sql.numfields (alias to sql.numcols)

sql.row

sql.offset

The sql.numrows variable value contains the number of rows retrieved by the query. The
sql.numcols (and its sql.numfields alias) variable value contains the number of columns in
each row. When looping between <include> and </include>, the sql.row variable value
contains the numeric index of the current row, counting from 1, while the sql.offset variable
value contains the numeric index of the current row counting from 0.

Example 13-29 uses the the sql.row variable to display the current row index within the
looped <include> region. In addition, the sql.numrows variable is used after the query results
are displayed to show how many rows were retrieved.

Example 13-29. Using SQL object variable values

<lxp>
 <include sql="SELECT * FROM pg_user ORDER BY usename LIMIT 5">
 User #<putvar name="sql.row" />: <putvar name="this.usename" />

 </include>

 Selected <putvar name="sql.numrows" /> rows.
</lxp>

The output of Example 13-29 would look like this:

 User #1: allen

 User #2: barbara

 User #3: ben

 User #4: corwin

 User #5: david

 Selected 5 rows.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Selected 5 rows.

Setting SQL object variables

If you prefer to execute a SQL query only as a means to have access to the result set returned
(bypassing the automatic looping iteration of the <include> tag), you may supply the setvars
attribute with the name of an LXP object to be populated with the query results, and
immediately close the region with a closing </include> tag.

For result sets with a single row returned, this approach sets a variable named object.column
for each column in the row, where object is the name specified by the setvars attribute, and
column is the name of a column returned by the query. For result sets with more than a single
row, square-brackets containing an offset describing the row number are appended to the
column name (e.g., object.column[0], object.column[1], etc.).

Example 13-30 executes a query on the pg_user table, to retrieve three columns about a
particular user.

Example 13-30. Selecting SQL results into an LXP object

<lxp>
 <include sql="SELECT usename, usesuper, usecreatedb
 FROM pg_user
 WHERE usesysid = $userid"
 setvars="userinfo"></include>

 <if sql.numrows="1">
 User name: <putvar name="userinfo.usename">

 <if userinfo.usecreatedb='t'>
 This user can create databases.

 </if>
 <if userinfo.usesuper='t'>
 This user is a superuser.

 </if>
 </if>
 <else>
 Error: No user was found.
 </else>
</lxp>

Prev Home Next
Loop Iteration Up Displaying Foreign Tags with

<xtag>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 13. LXP Next

Displaying Foreign Tags with <xtag>
There may be times when you wish to use an LXP variable value within the contents of an
HTML tag. For example, you may have a graphic with a dynamically assigned width. Since
LXP only performs variable value substitution within LXP tags, you cannot substitute an LXP
variable within an HTML tag as you would with an LXP tag. In other words, the $width
variable reference in the following example will not work:

<lxp>
 <!-- WRONG: LXP variable will not be substituted in non-LXP tag -->

</lxp>

You might think an obvious solution would be to place the LXP <putvar> tag inside of the
HTML tag. There is a problem with this approach, however. Specifically, such syntax breaks
the integrity of the mark-up of the document. For a mark-up language to be well formed, tags
must not be nested within the actual contents of another tag as shown in this example:

<lxp>
 <!-- Not recommended: Tags should not be nested in one another -->
 <img src="/images/spacer.gif" width="<putvar name="width" />">
</lxp>

Note that nesting LXP tags within non-LXP tags can work in some circumstances, though it is
not recommended. The LXP well-formedness requirements will probably grow more stringent
in the future, and this kind of nesting is an easy way to make your LXP mark-up both lose its
readability, as well as its mark-up integrity.

The LXP solution to this problem is the <xtag> element. The <xtag> is used as a wrapper to
display any foreign (non-LXP) tag. It has one required attribute, which is xname. This attribute
determines what tag will be output in place of <xtag> when the <xtag> is processed by LXP.
For example, <xtag xname="a"> will be displayed as <a>.

Optionally, the xappend attribute may be used to append an arbitrary character string to the
end of the generated tag. For example, using xappend=" checked" for an HTML checkbox
input tag will create an <input type="checkbox" checked> tag.

Any other attributes will be passed through to the wrapped tag, directly. This is the key to the
usefulness of the <xtag>, because variable values may be substituted within an <xtag>, and
are then directly embedded within the resulting foreign tag. As an example, the correct way to
wrap an HTML tag in LXP is shown in Example 13-31.

Example 13-31. Using <xtag> for empty elements

<lxp>
 <xtag xname="img" src="images/spacer.gif" width="$width" />
</lxp>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</lxp>

Here is the displayed output from this document, once processed by LXP, assuming that the
width variable has a value of 10:

Notice the trailing slash used in the <xtag> element within Example 13-31. An <xtag> may be
an opening, closing, or empty-element tag, depending on what tag you ultimately wish to
display. A vital nuance to the nature of <xtag> is that LXP keeps track of what opening
<xtag> elements have been left open, and chooses the appropriate tag name to use when it
reaches a closing </xtag>.

If you are wrapping a foreign tag that does not close (e.g., the HTML tag), you must
adhere to document strictness and make that <xtag> an empty-element tag with a trailing
slash. If you do not, LXP will name the next closing </xtag> with the xname assigned to the
last opening <xtag> (e.g., img), which in this case will result in mismatched tag output.

Consider the following piece of mark-up:

<lxp>
 <xtag xname="table" width="$table_width">
 <tr>
 <-- WRONG: The following Empty-element requires trailing slash -->
 <td><xtag xname="img" src="images/spacer.gif" width="$width"></td>
 </tr>
 </xtag>
</lxp>

This code uses three <xtag> elements; one opening and one closing (corresponding to a
wrapped <table> element), and one opening <xtag> used to wrap an tag. Since the
 tag does not have a closing tag in HTML, this <xtag> should instead be an empty-
element tag, but it will not be read that way by LXP (notice the lack of a trailing slash). The
problem with this mark-up is that since LXP keeps track of open <xtag> elements, when it
reaches the first closing</xtag>, it expects to close not the intended<table> tag, but the
 tag.

Assuming the table_width variable has a value of 100, and the width variable has a value of
10, the incorrect output looks like this:

 <table width="100">
 <tr>
 <-- WRONG: Empty-element requires trailing slash -->
 <td></td>
 </tr>

Example 13-32 shows the correct way to mix opening, empty-element, and closing <xtag>
elements.

Example 13-32. Using nested <xtag> elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<lxp>
 <xtag xname="table" width="$table_width">
 <tr>
 <-- RIGHT: Empty-element has required trailing slash -->
 <td><xtag xname="img" src="images/spacer.gif" width="$width" /></td>
 </tr>
 </xtag>
</lxp>

Since the second <xtag> element in Example 13-32 uses a trailing slash, as is required when
you wrap a tag that does not explicitly close, LXP does not anticipate a closing tag for the
 tag, and the output looks (correctly) like this:

 <table width="100">
 <tr>
 <-- RIGHT: Empty-element has required trailing slash -->
 <td></td>
 </tr>
 </table>

Prev Home Next
Content Inclusion Up PostgreSQL Command

Reference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 3. Understanding SQL Next

Data Types
SQL is considered a strongly typed language. This means that any piece of data represented
by PostgreSQL has an associated data type, even if it is not plainly obvious. A data value's
type both defines and constrains the kinds of operations which may be performed on it.

Not only is every piece of data associated with a type, but types play a large part in the
construction of tables. As stated in the Section called Introduction to Relational Databases,"
tables are made up of one or more columns. These columns must, in addition to having a
name, have a specific data type.

Note: While PostgreSQL provides a wide variety of built-in data types, you also
have the option to add new data types to PostgreSQL using the CREATE TYPE
command. See the reference entry on CREATE TYPE for more on this command.

Table 3-10 lists the data types officially supported by PostgreSQL, as well as any PostgreSQL
recognized aliases (alternative names that are identical in connotation). There are many other
internal (meaning they are no longer intended for normal use) or deprecated (outdated, and
discouraged) data types available that are unlisted.

Additionally, while most of the data types implemented in PostgreSQL are directly derived
from SQL standards, there are some actively maintained data types that are non-standard (such
as the geometric and spacial types). Therefore, you will not always be able to find equivalent
types on other SQL-capable database management systems.

Table 3-10. PostgreSQL supported data types

Category Data type Description Standardization
Boolean and
binary types

boolean, bool A single true or false
value.

SQL99

bit(n ) An n -length bit
string (exactly n
binary bits).

SQL92

bit varying(n ),
varbit(n )

A variable n -length
bit string (up to n
binary bits)

SQL92

Character types character (n ),
char(n )

A fixed n -length
character string.

SQL89

character
varying(n ),
varchar(n )

A variable length
character string of up
to n characters.

SQL92

text A variable length
character string, of
unlimited length.

PostgreSQL-specific

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Numeric types smallint, int2 A signed 2-byte
integer.

SQL89

integer, int, int4 A signed, fixed-
precision 4-byte
number.

SQL92

bigint, int8 A signed 8-byte
integer, up to 18
digits in length.

PostgreSQL-specific

real, float4 A 4-byte floating-
point number.

SQL89

double precision,
float8, float

An 8-byte floating-
point number.

SQL89

numeric(p,s ),
decimal(p,s )

An exact numeric
type with arbitrary
precision p, and
scale s.

SQL99

money A fixed precision,
U.S.-style currency.

PostgreSQL-specific,
deprecated.

serial An auto-
incrementing 4-byte
integer.

PostgreSQL-specific

Date and time
types

date The calendar date
(day, month and
year).

SQL92

time The time of day. SQL92
time with time zone The time of day,

including time zone
information.

SQL92

timestamp (includes
time zone) Both the date and

time.
SQL92

interval An arbitrarily
specified length of
time.

SQL92

Geometric types box A rectangular box in
a 2D plane.

PostgreSQL-specific

line An infinite line in a
2D plane.

PostgreSQL-specific

lseg A finite line segment
in a 2D plane.

PostgreSQL-specific

circle A circle with center
and radius.

PostgreSQL-specific

path Open and closed
geometric paths in a
two-dimensional
plane.

PostgreSQL-specific

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

point geometric point in a
2D plane

PostgreSQL-specific

polygon A closed geometric
path in a 2D plane.

PostgreSQL-specific

Network types cidr An IP network
specification.

PostgreSQL-specific

inet A network IP
address, with
optional subnet bits.

PostgreSQL-specific

macaddr A MAC address
(e.g., an Ethernet
card's hardware
address).

PostgreSQL-specific

System types oid An object (row)
identifier.

PostgreSQL-specific

xid A transaction
identifier.

PostgreSQL-specific

Remaining true to theme, the following sections on data types will describe in further detail
each of the most widely used and practical types. This book will not go into detail on the non-
standard and/or more esoteric types, such as the geometric, network and bitwise types. These
sections include information on valid usage, storage considerations, input and output formats
and general syntactic conventions. Before we go much further on specific data types there are
a couple of topics worth discussing, including the NULL keyword.

NULL Values
Despite the previously discussed rule that a column can have only one data type and logically
accept only that type, there is a value that all columns can be defined as, no matter what their
data type. This is the value a column is set to when you use the SQL keyword NULL.
Essentially, NULL has no data value, so it is not considered a type; it is a system value that
indicates to the database that the field it is located within contains no value. The only
exception to the rule that any column can contain a NULL is when the NOT NULL constraint is
specified for a column.

NULL is often used in places where a value is optional. It can be a convenient way of omitting
data without having to resort to strange or arbitrary conventions, such as storing negative
values in an integer field to represent omitted data. While your system requirements may
change over time, the connotation of NULL is always NULL.

NULL can be thought of as a meta-value: a value that represents a lack of a value, which will
never be equivalent to a non-NULL value. One problem often encountered when working with
NULL values is that they are easily confused with empty character strings, which return a blank
value to the client when selected. The reason this can be confusing is that NULL values also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

value to the client when selected. The reason this can be confusing is that NULL values also
return a blank value when selected; however, they are completely different than empty
character strings and this must be understood in order to avoid creating faulty queries or code.
A character string column that contains a blank value still contains a string of characters,
though the characters that compose the string are blank; thus, there is still a value in the
column. A NULL value represents the complete absence of value within the column, not that it
is merely blank.

This is an important distinction, as the rules for SQL operations involving the NULL value are
quite different than the rules for operations involving empty string values. This internal
distinction is especially important in reference to joins, which are discussed in Chapter 4.

The return of both NULL and empty values is shown in Example 3-15, which retrieves a set of
five books from the books table. The first SELECT query shows that there appear to be two
books which have been inserted without titles. Upon successive querying, however, it
becomes clear that while neither have visible titles, one of the books has an empty value for its
title (id 100), while the other has a NULL value.

Example 3-15. Observing NULL values

booktown=# SELECT id, title FROM books;
 id | title
------+---------------------
 7808 | The Shining
 156 | The Tell-Tale Heart
 4513 | Dune
 100 |
 101 |
(5 rows)

booktown=# SELECT id, title FROM books WHERE title = '';
 id | title
-----+-------
 100 |
(1 row)

booktown=# SELECT id, title FROM books WHERE title IS NULL;
 id | title
-----+-------
 101 |
(1 row)

Example 3-16 demonstrates a more practical (and likely) use of NULL in a table called
editions, which relates a book's ISBN number to its publication date.

Example 3-16. Using NULL values

booktown=# SELECT isbn, publication FROM editions;
 isbn | publication
------------+-------------
 039480001X | 1957-03-01
 0394800753 | 1949-03-01
 0385121679 |
(3 rows)

booktown=# SELECT isbn, publication FROM editions WHERE publication IS NULL;
 isbn | publication
------------+-------------
 0385121679 |
(1 row)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(1 row)

NULL might be used in this manner in order to represent books with editions that are not yet
published, or for books whose publication date was unknown when entered into the database.
It could be misleading to supply some arbitrarily illogical date for a book fitting either of these
criteria, and in both cases, NULL makes sense as a solution.

Boolean Values
A Boolean value is a simple data structure which can only represent values of true or false.
PostgreSQL supports the SQL99-defined boolean data type, with a PostgreSQL-specific alias
of bool.

Like all other data types, Boolean values can also be set to NULL. If a Boolean is set to NULL, it
will never be interpreted as either true or false; it will be interpreted as NULL. This may seem
obvious, but it is significant in situations where you may think to check for NULL Booleans by
checking for false values (which won't work). You must use IS NULL to check for NULL
Booleans. The ability to be true, false, or NULL (and its related rules regarding the designation
of NULL as not being true or false) is known as three-valued logic.

Table 3-11 shows the valid constant values for a true or false state that are recognized by
PostgreSQL. Which convention you choose to employ is dependent solely on your own
preference. All variations of true, as well as all variations of false, are interpreted identically
by the server.

Table 3-11. Supported true or false constants

True False
true false
't' 'f '
'true' 'false'
'y' 'n'
'yes' 'no'
'1' '0'

Warning
If you decide to use the constants listed in Table 3-11, every value (except for true and
false) must be enclosed within single quotes. Failure to do so will result in a server error.

Example 3-17 creates a simple table named daily_inventory that logs what books are stock
and which are not, correlating an ISBN number with a Boolean value. Once created, the table
is populated with data via a series of INSERT statements involving a string constant (the ISBN
number), and a variety of valid Boolean constants.

Example 3-17. Simple Boolean table

booktown=# CREATE TABLE daily_inventory (isbn text, in_stock boolean);
CREATE
booktown=# INSERT INTO daily_inventory VALUES ('0385121679', true);
INSERT 3390926 1
booktown=# INSERT INTO daily_inventory VALUES ('039480001X', 't');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# INSERT INTO daily_inventory VALUES ('039480001X', 't');
INSERT 3390927 1
booktown=# INSERT INTO daily_inventory VALUES ('044100590X', 'true');
INSERT 3390928 1
booktown=# INSERT INTO daily_inventory VALUES ('0451198492', false);
INSERT 3390929 1
booktown=# INSERT INTO daily_inventory VALUES ('0394900014', '0');
INSERT 3390930 1
booktown=# INSERT INTO daily_inventory VALUES ('0441172717', '1');
INSERT 3390931 1
booktown=# INSERT INTO daily_inventory VALUES ('0451160916');
INSERT 3390932 1

Now that the table has been populated with records, a SELECT query may be issued to easily
check which books are in stock, as shown in Example 3-18.

Example 3-18. Checking Boolean values

booktown=# SELECT * FROM daily_inventory WHERE in_stock = 'yes';
 isbn | in_stock
------------+----------
 0385121679 | t
 039480001X | t
 044100590X | t
 0441172717 | t
(4 rows)

With a Boolean column you have the ability to imply a true value by referencing the column
name without any kind of operator or modifying keyword. This can lead to more intuitive
looking queries for well-designed tables, as shown in Example 3-19.

Example 3-19. Implying Boolean 'true'

booktown=# SELECT * FROM daily_inventory WHERE in_stock;
 isbn | in_stock
------------+----------
 0385121679 | t
 039480001X | t
 044100590X | t
 0441172717 | t
(4 rows)

Although the second query does not specify 'true' or 'false', it implicitly looks for a value of
'true' by omitting a comparison operator.

Similarly, if you want to search for false values, you may either compare the named column's
value against any of the valid boolean constants in Table 3-11, or you may use the SQL
keyword NOT just before the column name. Each method is demonstrated in Example 3-20.

Example 3-20. Checking for 'false' Boolean values

booktown=# SELECT * FROM daily_inventory WHERE in_stock = 'no';
 isbn | in_stock
------------+----------
 0451198492 | f
 0394900014 | f
(2 rows)

booktown=# SELECT * FROM daily_inventory WHERE NOT in_stock;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SELECT * FROM daily_inventory WHERE NOT in_stock;
 isbn | in_stock
------------+----------
 0451198492 | f
 0394900014 | f
(2 rows)

In this way, you can see how SQL was designed with human readability in mind. By naming
your tables and columns in well-designed terms, a SQL query can read almost as plainly as an
English sentence.

For the more programming-oriented readers, it may be of interest that you can use the
inequality (!=) operator to compare the value of a boolean field against any of the values in
Table 3-11 (e.g., WHERE in_stock != 't'). As such, the following three syntactic variations
are each equivalent:

 SELECT * FROM daily_inventory WHERE NOT in_stock;
 SELECT * FROM daily_inventory WHERE in_stock = 'no';
 SELECT * FROM daily_inventory WHERE in_stock != 't';

You may have noticed that while seven rows were inserted into the table in Example 3-17,
only six rows were returned between the books found in stock, and those found out of stock.
This is due to the last insertion in Example 3-17 not supplying a value at all for the in_stock
column, leaving the record for the book with ISBN 0451160916 with a NULL value in the
in_stock column.

As stated previously, NULL will not register as either true or false. As such, you may use the
SQL phrase IS NULL to check for rows with NULL values. Alternatively, you may use != but
you will risk portability issues with other databases. The following syntax demonstrates a SQL
query which uses the IS NULL phrase:

booktown=# SELECT * FROM daily_inventory WHERE in_stock IS NULL;
 isbn | in_stock
------------+----------
 0451160916 |
(1 row)

Since IS NULL is a general SQL phrase, you can use the same WHERE clause in an UPDATE
statement to correct any accidental NULL values.

Example 3-21. Correcting Null values

booktown=# UPDATE daily_inventory SET in_stock = 'f' WHERE in_stock IS NULL;
UPDATE 1

Character Types
Character types are required any time that you wish to reference character data, such as blocks
of ASCII text. They are commonly used for storing names, addresses, and so on.

SQL provides two character types called character, and character varying. In addition to
these, a general text type is supported by PostgreSQL, which does not require an explicitly
declared upper limit on the size of the field. Columns of type text are automatically re-sized
according to the data you put in them, and they may re-size without boundaries (discounting,
of course, the 1GB limit for a single field). Table 3-12 shows the available character data types
within PostgreSQL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 3-12. Character types

Type Storage Description
character(n ), char(n ) (4 + n ) bytes A fixed-length character

string, padded with spaces so
that it is n characters in length.

character varying(n ), varchar(n ) Up to (4 + n ) bytes A variable-length character
string with a limit of n
characters

text Variable A variable, unlimited-length
character string

The n in Table 3-12 represents an arbitrarily specified number of characters. This number is
specified for a column when a table is created.

Note: Although the text data type is not part of the ANSI/ISO SQL standards,
many other Relational Database Management Systems (RDBMS) provide this
functionality, including Sybase and MS SQL Server.

Numeric Types
PostgreSQL's numeric types are used to represent both integers and decimal floating-point
values. From a general perspective, PostgreSQL's supported numeric types consist of:

Two-, four-, and eight-byte integers

Four- and eight-byte floating-point numbers

Fixed precision decimals

PostgreSQL has support for special types which fall under the family of numeric types,
including the deprecated money type, and the special serial construct.

Table 3-13. Numeric types overview

Data type Storage Range
bigint, int8 8 bytes Whole integer values, –

9,223,372,036,854,775,807 to
+9,223,372,036,854,775,807

double precision,
float8, float

8 bytes Floating-point integer values, 15 significant
digits, unlimited size (with limited precision)

integer, int, int4 4 bytes Whole integer values, –2147483648 to
+2147483647

numeric(p,s ), decimal
(p,s )

Variable Whole or floating point integers defined as p
total digits (including digits to the right of the
decimal) with s digits to the right of the decimal
point

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

real, float4 4 bytes Floating-point integer values, six significant
digits, unlimited size (with limited precision)

smallint, int2 2 bytes Whole integers, –32768 to +32767
money 4 bytes Floating-point integer values with a scale of two

digits to the right of the decimal, —21474836.48
to +21474836.47

serial 4 bytes Whole integers, 0 to 2147483647

As shown in Table 3-13, several of PostgreSQL's data types have aliases that are equivalent to
their associated data types. This was done for ease of use, but at times it can be confusing, due
to the fact that some of the aliases sound familiar. If you are not careful to understand what
data type an alias you are using is associated with, you may accidentally reference the wrong
data type. For example, in PostgreSQL the real and double precision data types represent
numbers you may be more familiar to using a float variable in other languages; however,
because they both have aliases that contain the word "float" (float and float8 link to double
precision; float4 links to real). Problems may result if if you attempt to use the float
alias, thinking it is linked to real, when in fact it is associated with double precision.

The numeric type

The numeric (also known as decimal) type is a specially designed numeric data type that can
represent arbitrarily large and precise values within a fixed length that is given by the user.
When you create a table with a column of type numeric, you may specify in parentheses two
values: the precision and the scale.

The precision is the maximum number of digits that the numeric value may hold (including
digits to the right of the decimal point), while the scale describes how many of those digits of
precision are to be to the right of the decimal point. If left unspecified, the precision will
default to 30 digits, and scale to 6 digits. The maximum precision (and, hence, the maximum
scale) you can set this to is 1,000. Setting the precision to 1,000 would allow a maximum
1,000 digits, which should be fairly adequate for most needs.

Note: PostgreSQL will not always return an error if you violate the precision and
scale of a numeric column.

Unlike the floating-point data types, you will receive an overflow error if you attempt to insert
a number that is larger than the allotted precision range. Beside this limitation, you should be
able to insert any number that fits within the provided precision and scale of the numeric type
column.

For example, in a numeric(11,6) column, you may safely insert the value 9.999999 with two
digits too many to the right of the decimal point (though the value is rounded up to
10.000000). However, an attempt to insert the value 99999.99999999 will fail, as shown in
Example 3-22.

Problems that arise from trying to insert values that are two large can be avoided by using the
trunc() numeric truncating function within an INSERT command to make sure a number is
truncated to a size suitable for the column it is being inserted into. You must provide the
length it should be truncated to, which means you'll have to be aware of the precisions you've
previously specified. The use of trunc() is also illustrated within Example 3-22.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 3-22. Avoiding overflow errors

booktown=# INSERT INTO numbers VALUES (9.99999999);
INSERT 3390697 1
booktown=# SELECT * FROM numbers;
 number

 10.000000
(1 row)

booktown=# INSERT INTO numbers VALUES (99999.99999999);
ERROR: overflow on numeric ABS(value) >= 10^5 for field with precision 11 scale 6
booktown=# INSERT INTO numbers VALUES (trunc(99999.99999999, 6));
INSERT 3390698 1
booktown=# SELECT * FROM numbers;
 number

 10.000000
 99999.999999
(2 rows)

booktown=# INSERT INTO numbers VALUES (trunc(9.99999999, 6));
INSERT 3390699 1
booktown=# SELECT * FROM numbers;
 number

 10.000000
 99999.999999
 9.999999
(3 rows)

The monetary type

The money type stores U.S.-style currency notation and plain numeric values. As of the writing
of this book, the money type is deprecated, and is discouraged from being actively used. It is
only presented here as it is still a functional data type, and may be in use on existing
PostgreSQL systems.

The suggested alternative to the money type is the numeric type, with a scale of 2 to represent
coin values, and a precision large enough to store the largest necessary monetary value
(including two digits for the coin precision). Formatting similar to that of the money type can
be achieved with the to_char() function, as shown in Example 3-23. This example
demonstrates the text concatenation operator, and the ltrim() text formatting function, each
described in Chapter 4.

Example 3-23. A numeric alternative to money

booktown=# CREATE TABLE money_example (money_cash money, numeric_cash numeric(10,2));
CREATE
booktown=# INSERT INTO money_example VALUES ('$12.24', 12.24);
INSERT 3391095 1
booktown=# SELECT * FROM money_example;
 money_cash | numeric_cash
------------+--------------
 $12.24 | 12.24
(1 row)

booktown=# SELECT money_cash,
booktown-# '$' || ltrim(to_char(numeric_cash, '9999.99'))
booktown-# AS numeric_cashified

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# AS numeric_cashified
booktown-# FROM money_example;
 money_cash | numeric_cashified
------------+-------------------
 $12.24 | $12.24
(1 row)

The serial type

The serial type is a non-standard but useful shortcut which allows you to easily create an
identifier column within a table that contains a unique value for each row. The serial type
literally combines the functionality of a 4-byte integer data type, an index, and a sequence.
Example 3-24 shows the serial type being used to generate a unique identifier for each row in
a table named auto_identifier. Example 3-25 shows the same thing being accomplished
using an integer column, the nextval() function , and a sequence. As of the writing of this
book, these two methods are functionally identical.

See Chapter 7 for more information on using sequences.

Example 3-24. Using the serial data type

booktown=# CREATE TABLE auto_identified (id serial);
NOTICE: CREATE TABLE will create implicit sequence 'auto_identified_id_seq'
for SERIAL column 'auto_identified.id'
NOTICE: CREATE TABLE/UNIQUE will create implicit index 'auto_identified_id_key'
for table 'auto_identified'
CREATE

Example 3-25. Accomplishing the same goal manually

booktown=# CREATE SEQUENCE auto_identified_id_seq;
CREATE
booktown=# CREATE TABLE auto_identified
booktown-# (id integer UNIQUE DEFAULT nextval('auto_identified_id_seq'));
NOTICE: CREATE TABLE/UNIQUE will create implicit index 'auto_identified_id_key' for table 'auto_identified'
CREATE

Caution with Implicit Sequences
Upon dropping a table, the implicit sequence created for the serial types are not
automatically dropped. You must clean up after these types of sequences if you destroy a
table which had a serial column, as shown in Example 3-24, with the DROP SEQUENCE
command.

Date and Time Types
Date and time types are a convenient way to store date and time related data in a uniform SQL
data structure, without having to worry about the conventions involved with storage (e.g., if
you were to try to store such information in a character data type). PostgreSQL uses Julian
dates for all date and time calculations. Julian date representation is the commonly used
January through December calendar that you are most likely familiar with. By fixing the
length of a year at about 365.24 days, Julian dates can correctly calculate any date after 4713
BC, as well as far into the future.

PostgreSQL supports all of the SQL92-defined date and time types shown in Table 3-14, as
well as some PostgreSQL-specific extensions to help with SQL92's timezone limitations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 3-14. Date and time types

Name Storage Description Range
date 4 bytes A calendar date (year,

month, and day)
4713 BC to 32767 AD

time 4 bytes The time of day only,
without time zone
information

00:00:00.00 to 23:59:59.99

time with time
zone 4 bytes The time of day only,

including a time zone
00:00:00.00+12 to
23:59:59.99-12

timestamp
(includes time
zone)

8 bytes Both the calendar date
and time, with time
zone information

1903 AD to 2037 AD

interval 12 bytes A general time span
interval

–1780000000 years to
17800000 years

Backward compatibility

To ensure compatibility with earlier versions of PostgreSQL, the developers have continued to
provide the older datetime and timespan data types. The datetime type is now equivalent to
timestamp, while the timespan is now equivalent to the interval types.

Other date/time data types include abstime and reltime, which are lower precision types.
However, these types are internal to PostgreSQL, and any or all of these types may disappear
in a future release. It is advised therefore to design new applications with the SQL-compliant
data types in mind, and to convert older applications from any of these data types as soon as is
possible.

Date conventions

Date input can be accepted by PostgreSQL in many common formats, including the ISO-8601
format, the traditional SQL format, the original PostgreSQL format, and more. Table 3-15 lists
several of these date formats.

These formats are relevant to the date and the timestamp data types.

Table 3-15. Valid date formats

Format Example Description
July 1, 2001 Named month, day and year
Sunday July 1, 2001 Named day, named month, day and year
July 15, 01 BC Named month, day and year before the Common

Era
2001-07-01 Standard ISO-8601 format: numeric year, month

and day
20010715 ISO-8601: formatted numerically as complete

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

year, month, day
010715 ISO-8601: formatted numerically as 2-digit year,

month, day
7/01/2001 Non-European (U.S.) format: numeric month, day

and year
1/7/2001 European format: numeric day, month and year
2001.182 Numeric format, with complete year, and

sequential day of the year

When specifying a named month in a date value to PostgreSQL, you may either type the
complete month name, or choose from a set of defined abbreviations for each month. These
abbreviations are listed in Table 3-16.

Table 3-16. Month abbreviations

Month Abbreviation
January Jan
February Feb
March Mar
April Apr
May May
June Jun
July Jul
August Aug
September Sep, Sept
October Oct
November Nov
December Dec

Similarly, Table 3-17 lists PostgreSQL-recognized abbreviations for weekday names.

Table 3-17. Day of the week abbreviations

Day Abbreviation
Sunday Sun
Monday Mon
Tuesday Tue, Tues
Wednesday Wed, Weds
Thursday Thu, Thur,

Thurs
Friday Fri
Saturday Sat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Despite the wide variety of ways in which PostgreSQL can interpret date values, the values
are always stored uniformally, and will be returned in a consistent format. As such, you have a
variety of methods available to you to customize the default behavior with which date and
time values are returned to you.

Note: While date values can always be formatted during selection via several
formatting functions (e.g., to_char()), it is more efficient to configure your
defaults as close to the most commonly used conventions as you can before
having to resort to manual type conversion and text formatting.

To set the general date/time output format, the SET command can be applied to the run-time
variable DATESTYLE. This variable may be set to one of four available general styles shown in
Table 3-18.

Table 3-18. Date output formats

General format Description Example
ISO ISO-8601 standard 2001-06-25 12:24:00-07
SQL Traditional SQL style 06/25/2001 12:24:00.00 PDT
Postgres Original PostgreSQL style Mon 25 Jun 12:24:00 2001 PDT
German Regional style for Germany 25.06.2001 12:24:00.00 PDT

As an example, you can use the following SQL statement to set the date style to SQL:

booktown=# SET DATESTYLE TO SQL;
SET VARIABLE

If you perform a SELECT current_timestamp query after setting this variable, PostgreSQL
should return the current time using the ISO format as instructed:

booktown=# SELECT current_timestamp;
 timestamp

 08/10/2001 13:25:55.00 PDT
(1 row)

The SHOW command can be used to display the current value of the DATESTYLE variable while
PostgreSQL is running.

booktown=# SHOW DATESTYLE;
NOTICE: DateStyle is SQL with US (NonEuropean) conventions
SHOW VARIABLE

In addition to these general formats, PostgreSQL's date output format has two other variants
which further describe how to display the date, shown in Table 3-19: European and non-
European (U.S.). These determine whether the format is day followed by month, or vice versa.
This variation can be applied on top of the previous four general formats with the same syntax
to SET DATESTYLE and will not modify your chosen format except for the arrangement of the
month and day.

Table 3-19. Extended date output formats

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Month/day format Description Example
European day/month/year 12/07/2001 17:34:50.00

MET
U.S., or Non-European month/day/year 07/12/2001 17:34:50.0 PST

Furthermore, you may set both the general format and day/month convention by supplying
both variables to the SET command, comma delimited. The order of these variables is not
important to the SET command as long as the variables are not mutually exclusive (e.g., SQL
and ISO), as shown in Example 3-26.

Example 3-26. Setting date formats

booktown=# SET DATESTYLE TO ISO,US;
SET VARIABLE
booktown=# SHOW DATESTYLE;
NOTICE: DateStyle is ISO with US (NonEuropean) conventions
SHOW VARIABLE
booktown=# SET DATESTYLE TO NONEUROPEAN, GERMAN;
SET VARIABLE
booktown=# SHOW DATESTYLE;
NOTICE: DateStyle is German with European conventions
SHOW VARIABLE

If you do not specify a month/day format, a reasonable default will usually be chosen (e.g.,
European is the default for the German regional format).

While SET DATESTYLE is a convenient way to set the output format, it is important to note that
this is a run-time variable, which means that it exists only for the lifespan of your connected
session. There are two methods available that allow you to provide a default value for the
DATESTYLE variable, which lets you avoid explicitly setting the variable for each new session
you begin:

You may change the PGDATESTYLE environment variable on the server running
postmaster. For example, with the bash shell, you could add the export
PGDATESTYLE="SQL US" line to the postgres user's .bash_ profile file. When the postgres
user starts postmaster, the PGDATESTYLE variable will be read and applied globally to all
date and time formatting performed by PostgreSQL.

You may change the PGDATESTYLE environment variable used by a client application
(assuming it was written with the libpq library) on its session start-up, if you wish the
client rather than the server to configure the output. For example, setting the
PGDATESTYLE variable at a bash prompt with the export command before starting psql
sets the format for psql to use.

Time conventions

Time values, like date values, may be entered in to a table in a number of ways. Commonly
used formats are listed in Table 3-20. These apply to values of type time and time with time
zone.

Table 3-20. Valid time formats

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Format example Description
01:24 ISO-8601, detailed to minutes
01:24 AM Equivalent to 01:24 (the "AM" attached is for

readability only, and does not affect the value)
01:24 PM Equivalent to 13:24 (the hour must be less-

than or equal to 12 to use "PM")
13:24 24-hour time, equivalent to 01:24 PM
01:24:11 ISO-8601, detailed to seconds
01:24:11.112 ISO-8601, detailed to microseconds
012411 ISO-8601, detailed to seconds, formatted

numerically

In addition to these formats, PostgreSQL allows for further description of a time value which
is defined as time with time zone by supporting extra time zone parameters following the
time value. The supported formats are illustrated in Table 3-21.

Table 3-21. Valid time zone formats

Format example Description
01:24:11-7 ISO-8601, 7 hours behind GMT
01:24:11-07:00 ISO-8601, 7 hours, zero minutes behind GMT
01:24:11-0700 ISO-8601, 7 hours, zero minutes behind GMT
01:24:11 PST ISO-8601, Pacific Standard Time (7 hours behind

GMT)

Note: PostgreSQL supports the use of all ISO standard time zone abbreviations.

The time with time zone data type is mainly supported by PostgreSQL to adhere to existing
SQL standards and for portability with other database management systems. If you need to
work with time zones, it is recommended that you use the timestamp data type discussed in
the Section called Timestamps." This is primarily because of the fact that, due to daylight
savings, time zones cannot always be meaningfully interpreted without an associated date.

Internally, PostgreSQL keeps track of all time zone information as a numeric offset of GMT
(Greenwich Mean Time), which is also known as UTC (Universal Coordinated Time). By
default, PostgreSQL's time display will use the time zone that your server's operating system is
configured for. If you wish the time value to operate under a different time zone, there are four
ways in which you can modify the output:

Set the TZ environment variable on the server

This variable is found by the backend server as the default time zone when the
postmaster starts up. It can be set, for example, in the postgres user's .bash_ profile file
with a bash export TZ='zone' command.

Set the PGTZ environment variable on the client

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the PGTZ environment variable is set, it can be read by any client written with libpq
and interpreted as the client's default time zone.

Use the SET TIMEZONE TO SQL statement

This SQL command sets the time zone for the session to zone (e.g., SET TIMEZONE TO
UTC)

Use the AT TIME ZONE SQL clause

This SQL92 clause can be used to specify zone as a text time zone (e.g., PST ) or as an
interval (e.g., interval('—07:00')). This clause may be applied in the middle of a
SQL statement following a value which contains a timestamp (e.g., SELECT
my_timestamp AT TIME ZONE 'PST').

Note: Most systems will default to GMT when a time zone variable is set to an
invalid time zone.

Additionally, if the compiler option USE_AUSTRALIAN_RULES was set when
PostgreSQL was built, the EST time zone will refer to Australian Eastern
Standard Time (with an offset of +10:00 hours from GMT) rather than U.S.
Eastern Standard Time.

Timestamps

The PostgreSQL timestamp combines the functionality of the PostgreSQL date and time
types into a single data type. The syntax of a timestamp value consists of a valid date format,
followed by at least one whitespace character, and a valid time format. It can be followed
optionally by a time zone value, if specified.

Combinations of all date and time formats listed in Table 3-15 and Table 3-20 are each
supported in this fashion. Table 3-22 illustrates some examples of valid timestamp input.

Table 3-22. Some valid timestamp formats

Format Example Description
1980-06-25 11:11-7 ISO-8601 date format, detailed to minutes,

and PST time zone
25/06/1980 12:24:11.112 European date format, detailed to

microseconds
06/25/1980 23:11 U.S. date format, detailed to minutes in 24-

hour time
25.06.1980 23:11:12 PM German regional date format, detailed to

seconds, and PM attached

Warning
While PostgreSQL supports the syntax of creating a column or value with the type
timestamp without time zone, as of PostgreSQL 7.1.2 the resultant data type still

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

timestamp without time zone, as of PostgreSQL 7.1.2 the resultant data type still
contains a time zone.

Intervals

The SQL92 standard specifies a data typed called an interval, which represents a fixed span of
time. By itself, an interval represents only a quantity of time, and does not begin or end at any
set date or time. These intervals can be useful when applied to date and time values to
calculate a new date or time, either by subtracting or adding the quantity. They can also be
handy for quickly determining the precise interval between two date or time values. This can
be achieved by subtracting date values, time values or timestamps from one another.

The two syntax variations below can specify an interval within PostgreSQL:

 qty unit [ago]
 qty1 unit [, qty2 unit2 ...] [ago]

Where:

qty

Specifies the quantity of your interval, which may be any whole integer, or floating-
point number in the case of microseconds. The literal meaning of this number is
qualified by the subsequent unit.

unit

Qualifies the qty provided. The unit may be any one of the following keywords:
second, minute, hour, day, week, month, year, decade, century, millennium. It can also
be an abbreviation (as short as you want, as long as it cannot be confused with another
keyword) or plurals of the previously mentioned units.

ago

The optional ago keyword of the interval determines whether or not you are describing a
period of time before the associated time, rather than after. You can think of it as a
negative sign for date and time types.

Example 3-27 shows functional syntax for date and interval values being meaningfully
combined. You can see that subtracting an inverted time interval (e.g., one with the term ago)
is functionally identical to adding a normal interval. This can be thought of as similar to the
effect of adding negative numbers to integer values.

Example 3-27. Interpreting interval formats

booktown=# SELECT date('1980-06-25');
 date

 1980-06-25
(1 row)

booktown=# SELECT interval('21 years 8 days');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SELECT interval('21 years 8 days');
 interval

 21 years 8 days
(1 row)

booktown=# SELECT date('1980-06-25') + interval('21 years 8 days')
booktown-# AS spanned_date;
 spanned_date

 2001-07-03 00:00:00-07
(1 row)

booktown=# SELECT date('1980-06-25') - interval('21 years 8 days ago')
booktown-# AS twice_inverted_interval_date;
 twice_inverted_interval_date

 2001-07-03 00:00:00-07
(1 row)

Built-in date and time constants

PostgreSQL supports many special constants for use when referencing dates and times. These
constants represent common date/time values, such as now, tomorrow, and yesterday. The
predefined date and time constants supported by PostgreSQL are listed in Table 3-23.

PostgreSQL also provides three built-in functions for retrieving the current time, date, and
timestamp. These are aptly named current_date, current_time, and current_timestamp.

Table 3-23. Date and time constants

Constant Description
current The current transaction time, deferred. Unlike a

now, current is not a timestamp; it represents the
current system time and can be used to reference
whatever that time may be.

epoch 1970-01-01 00:00:00+00 (UNIX's "Birthday")
infinity An abstract constant later than all other valid dates

and times
-infinity An abstract constant earlier than all other valid

dates and times
now The current transaction timestamp
today Midnight, on the current day
tomorrow Midnight, on the day after the current day
yesterday Midnight on the day before the current day

The now and current timestamp constants may seem to be identical, looking solely at their
names. They are, however, very different in terms of storing them in a table. The now constant
is translated into the timestamp of the system time at the execution of whichever command
referenced it (e.g., the time of insertion, it now had been referenced in an INSERT statement).
In contrast, the current constant, as it is a deferred identifier, will actually appear as the phrase
current in the database. From there, it can be translated (e.g., via the to_char() function) to
the timestamp associated with the transaction time of any query which requests that value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In other words, current will always tell you the "current" time when queried, regardless of
when it was stored to the table. The current constant can be used in special situations, such as
process tracking, where you may need to calculate the difference between a timestamp made
with now and the current date and time to find the total time the process has been running.
Example 3-28 demonstrates using the now and current constants to create a log of tasks. First,
a table is created to house the task's name, its start date and time, and its finished date and
time. Two tasks are then added to the table, using the now constant to set the start date and
current to set the completed date. The reason this is done is to show that both of these tasks
are uncompleted. If a task were to be completed, the table could be updated to show a now
timestamp for that task's timefinished column.

Note: The use of time/date constants requires the use of single-quotes around
their respective names. See Example 3-28 for a valid representation of single-
quoted time/date constants.

Example 3-28. Using the current and now constants

booktown=# CREATE TABLE tasklog
booktown=# (taskname char(15),
booktown=# timebegun timestamp,
booktown=# timefinished timestamp);
CREATE
booktown=# INSERT INTO tasklog VALUES
booktown=# ('delivery', 'now', 'current');
INSERT 169936 1
booktown=# INSERT INTO tasklog VALUES
booktown=# ('remodeling', 'now', 'current');
INSERT 169937 1
booktown=# SELECT taskname, timefinished - timebegun AS timespent FROM tasklog;
 taskname | timespent
-----------------+-----------
 delivery | 00:15:32
 remodeling | 00:04:42
(2 rows)

Therefore, you generally want to use now when storing a transaction timestamp in a table, or
even the current_timestamp function, which is equivalent to the output of now. Example 3-
29 shows how this could be a potentially disastrous SQL design issue if not properly
understood. It shows a pair of INSERT statements; one which uses now, another which uses
current. If you watch the first row returned from the two queries (the row with a current
timestamp), you'll notice it changes in each query to show the updated system time, while the
second row remains the same (this is he the row in which now was used).

Example 3-29. Comparing now to current

booktown=# INSERT INTO shipments (customer_id, isbn, ship_date)
booktown-# VALUES (1, '039480001X', 'current');
INSERT 3391221 1
booktown=# INSERT INTO shipments (customer_id, isbn, ship_date)
booktown-# VALUES (2, '0394800753', 'now');
INSERT 3391222 1
booktown=# SELECT isbn, ship_date FROM shipments;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SELECT isbn, ship_date FROM shipments;
 isbn | ship_date
------------+------------------------
 039480001X | current
 0394800753 | 2001-08-10 18:17:49-07
(2 rows)

booktown=# SELECT isbn,
booktown-# to_char(ship_date, 'YYYY-MM-DD HH24:MI:SS')
booktown-# AS value
booktown-# FROM shipments;
 isbn | value
------------+---------------------
 039480001X | 2001-08-10 18:21:22
 0394800753 | 2001-08-10 18:17:49
(2 rows)

booktown=# SELECT isbn, to_char(ship_date, 'YYYY-MM-DD HH24:MI:SS') AS value
booktown-# FROM shipments;
 isbn | value
------------+---------------------
 039480001X | 2001-08-10 18:22:35
 0394800753 | 2001-08-10 18:17:49
(2 rows)

Geometric types
Geometric types in PostgreSQL represent two dimensional spatial objects. These types are not
standard SQL data types, and will not be discussed in depth in this book. Table 3-24 gives a
brief overview of each of the available geometric types.

Table 3-24. Geometric types

Type Name Storage Description Syntax
point 16 bytes A dimensionless object with no

properties except for its location,
where x and y are floating-point
numbers.

(x , y )

lseg 32 bytes Finite line segment. The points
specified are the end points of
the line segment.

((x1 , y1 ), (x2 ,
y2 ))

box 32 bytes Rectangular box. The points
specified are the opposite
corners of the box.

((x1 , y1 ), (x2 ,
y2 ))

path 4 + 32 * n bytes Closed path (similar to
polygon). A connected set of n
points.

((x1 , y1 ), ...)

path 4 + 32 * n bytes Open path. A connected set of n
points.

[(x1 , y1 ), ...]

polygon 4 + 32 * n bytes Polygon (similar to closed path),
with n end points defining line
segments that makes up the
boundary of the polygon.

((x1 , y1 ), ...)

circle 24 bytes The point (x , y ) is the center, <(x , y ), r >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

while r is the radius of the
circle.

Arrays
The original relational model specifies that the values represented by columns within a table
be an atomic piece of data, object-relational database systems such as PostgreSQL allow non-
atomic values to be used through data structures called arrays.

An array is a collection of data values referenced through a single identifier. The array may be
a collection of values of a built-in data type or a user-defined data type, but every value in the
array must be of the same type. Arrays can be accessed from a table through subscript notation
via square brackets (e.g., my_array[0]). You can also use an array constant via curly braces
within single quotes (e.g., '{value_one,value_two,value_three}').

Arrays in tables

When defining an array, the syntax allows for the array to be defined either as fixed-length or
variable-length; however as of PostgreSQL 7.1.2, the fixed-length size restriction is not
enforced. This means that you may treat the array as having a fixed number of elements at all
times, but it can still be dynamically sized. For example, it is perfectly acceptable for a single
column defined as an array to contain three values in one record, four values in another, and
no values in a third.

Additionally, arrays may be defined as being multi-dimensional, meaning that each element of
the array may actually represent another array, rather than an atomic value. Values that are
selected from a multi-dimensional array will consist of nested curly braces in order to show an
array within an array, as follows:

booktown=# SELECT editions FROM my_notes WHERE title='The Cat in the Hat';
 editions

 {{"039480001X","1st Ed, Hard Cover"},{"0394900014","1st Ed"}}
(1 row)

Array constants

In order to actually insert array values into a table column, you need a way to refer to several
values as an array in a SQL statement. The formal syntax of an array constant is a grouping of
values, separated by delimiters (commas, for built-in data types), enclosed by curly braces
({}), which are in turn enclosed by single quotes, as follows:

 '{ value1 , value2 [, ...] }'

The values in this syntax can be any valid PostgreSQL data type. As the entire array is
constrained by single quotes, the use of single quotes within an array value must be escaped,
just as they must be within a string constant. The use of commas to delimit the values,
however, poses an interesting problem pertaining to the use of character strings which contain
commas themselves, as the commas will be interpreted as delimiters if not within single-
quotes. However, as just mentioned, the singles quotes constrain the array, not the array's
values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PostgreSQL's method of handling this is to use double-quotes to quote string constants where
single-quotes would ordinarily be used outside of an array context, as follows:

 '{"value1" , "value 2, which contains a comma" }'

It's vital to remember that arrays require the single quotes surrounding the curly braces in
order to be interpreted correctly by PostgreSQL. You can think of array constants as being
akin to a special type of string constant, which is interpreted as an array based on where it is
used (e.g., when used to add records to a target column which is of an array data type). This is
because unless used in an array context, a constant of the this format will be interpreted by
PostgreSQL as a normal string constant (as it is bound by single quotes) which just happens to
include curly braces.

Type Coercion
PostgreSQL supports three separate conventions for type coercion (also called type casting, or
explicit type casting). Type coercion is a somewhat ugly looking term which refers to a
PostgreSQL method for changing a value from one data type to another. In the middle of a
SQL statement, this has the net effect of explicitly creating a constant of an arbitrary type.

Generally any of the following three methods can be used in order to cast the value contained
within a string constant to another type:

type 'value '

'value '::type

CAST ('value ' AS type )

In the case of maintained numeric constants that you wish to cast to a character string, you will
need to use one of the following syntax forms:

value ::type

CAST (value AS type )

The value in this syntax represents the constant whose data type you wish to modify, and
type represents the type that you wish to coerce, or cast, the value into.

Note: Remember that the money type is deprecated, and therefore not easily cast.

Constants are not the only data values that may be coerced to different types. Columns of a
data set returned by a SQL query may be cast by using its identifier in one of the following
syntax forms:

identifier ::type

CAST (identifier AS type )

Bear in mind that not every data type can be coerced into every other data type. For example,
there is no meaningful way to convert the character string abcd into a binary bit type. Invalid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

there is no meaningful way to convert the character string abcd into a binary bit type. Invalid
casting will result in an error from PostgreSQL. Common valid casts are from character string,
date/time type, or a numeric type to text, or character strings to numeric values.

In addition to these type casting conventions, there are some functions that can be called to
achieve essentially the same effect as an explicit cast of any of the previously mentioned
forms. These often bear the name of the type itself (such as the text() function), though
others are named more specifically (such as bitfromint4()). Example 3-30 shows such a
function, converting the integer 1000 to a character string of type text representing the
characters 1000.

Example 3-30. Using Type Conversion Functions

booktown=# SELECT text(1000)
booktown-# AS explicit_text;
 explicit_text

 1000
(1 row)

Because of conflicting semantics recognized by PostgreSQL's parser, the type coercion format
of type 'value ' can only be used to specify the data type of a single value (e.g., a string
constant bound by single quotes). In contrast, the other available methods of type coercion
('value '::type, CAST('value' AS type ) and type conversion functions, where applicable)
can be used to to specify the type of arbitrary expressions.

This is partially because attempting to follow a data type with a grouped expression (e.g., in
parentheses) will cause PostgreSQL to expect a function with the name of the provided data
type (which will often cause an error) while each of the other methods are syntactically valid
upon grouped expressions.

booktown=# SELECT 1 + integer ('1' || '2') AS add_one_to_twelve;
ERROR: Function 'integer(text)' does not exist
 Unable to identify a function that satisfies the given argument types
 You may need to add explicit typecasts
booktown=# SELECT 1 + ('1' || '2')::integer AS add_one_to_twelve;
 add_one_to_twelve

 13
(1 row)

booktown=# SELECT 1 + CAST('1' || '2' AS integer) AS add_on_to_twelve;
 add_on_to_twelve

 13
(1 row)

Prev Home Next
SQL Statements Up Tables in PostgreSQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 1. What is PostgreSQL? Next

PostgreSQL Feature Set
As stated previously in this chapter, PostgreSQL is widely considered the most advanced open
source database in the world. PostgreSQL provides a wealth of features that are usually only
found in commercial databases such as DB2 or Oracle. The following is a brief listing of some
of these core features, as of PostgreSQL 7.1.x.

Object-Relational DBMS

PostgreSQL approaches data with an object-relational model, and is capable of handling
complex routines and rules. Examples of its advanced functionality are declarative SQL
queries, multi-version concurrency control, multi-user support, transactions, query
optimization, inheritance, and arrays.

Highly extensible

PostgreSQL supports user-defined operators, functions, access methods, and data types.

Comprehensive SQL support

PostgreSQL supports the core SQL99 specification and includes advanced features such
as SQL92 joins.

Referential integrity

PostgreSQL supports referential integrity, which is used to insure the validity of a
database's data.

Flexible API

The flexibility of the PostgreSQL API has allowed vendors to provide development
support easily for the PostgreSQL RDBMS. These interfaces include Object Pascal,
Python, Perl, PHP, ODBC, Java/JDBC, Ruby, TCL, C/C++, and Pike.

Procedural languages

PostgreSQL has support for internal procedural languages, including a native language
called PL/pgSQL. This language is comparable to the Oracle procedural language,
PL/SQL. Another advantage to PostgreSQL is its ability to use Perl, Python, or TCL as
an embedded procedural language.

MVCC

MVCC, or Multi-Version Concurrency Control, is the technology that PostgreSQL uses
to avoid unnecessary locking. If you have ever used another SQL capable DBMS, such

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to avoid unnecessary locking. If you have ever used another SQL capable DBMS, such
as MySQL or Access, you have probably noticed that there are times when a reader has
to wait for access to information in the database. The waiting is caused by people who
are writing to the database. In short, the reader is blocked by writers who are updating
records.

By using MVCC, PostgreSQL avoids this problem entirely. MVCC is considered better
than row-level locking because a reader is never blocked by a writer. Instead,
PostgreSQL keeps track of all transactions performed by the database users.
PostgreSQL is then able to manage the records without causing people to wait for
records to become available.

Client/server

PostgreSQL uses a process-per-user client/server architecture. This is similar to the
Apache 1.3.x method of handling processes. There is a master process that forks to
provide additional connections for each client attempting to connect to PostgreSQL.

Write Ahead Logging (WAL)

The PostgreSQL feature known as Write Ahead Logging increases the reliability of the
database by logging changes before they are written to the database. This ensures that,
in the unlikely occurrence of a database crash, there will be a record of transactions
from which to restore. This can be greatly beneficial in the event of a crash, as any
changes that were not written to the database can be recovered by using the data that
was previously logged. Once the system is restored, a user can then continue to work
from the point that they were at before the crash occurred.

Prev Home Next
What is PostgreSQL? Up Where to Proceed from Here

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Appendix C. Binary COPY Format Next

Tuples
The structure of tuples within the binary file is as follows: a 16-bit integer count of the fields
within the tuple (this is the same within every tuple), a 16-bit integer typlen word, and the field
data for each field. The available options for the typlen field are as follow:

0

NULL; this field contains no data.

>0

A fixed-length data type. The specified number bytes of data follow the typlen word.

-1

A varlena data type. The next four bytes are the varlena header, consisting of the
value's total length (including the length of the header).

<-1

Reserved for possible future use.

To create a convenient way for an application reading this format to check the integrity of
incoming binary data, all non-NULL fields have a typlen value, which can be compared against
the typlen of the destination column before attempting to insert or update data within
PostgreSQL.

A few formatting options were left un-implemented to improve the portability of binary file
dumps. Primarily, extra data between fields is not possible (e.g., alignment padding), and there
is no distinguishment between data types based on passes by reference, or passes by value.

If OIDs are included in a PostgreSQL binary file, they immediately follow the field count
word. OIDs are not included in the field count.

Prev Home Next
Binary COPY Format Up Trailer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Appendix C. Binary COPY Format Next

Trailer
The PostgreSQL binary file trailer is a single 16-bit integer with a value of -1, followed by the
end of the file. This is easily distinguishable from a tuple's initial 16-bit field-count, and can
aid an application in staying in sync with the data.

Prev Home Next
Tuples Up Internal psql Variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 1. What is PostgreSQL? Next

Where to Proceed from Here
Now that your introduction to PostgreSQL is complete, there are several places to proceed.
We have provided the following list as a synopsis of the rest of the book. This is a guideline,
so to speak, of what you need to read next.

If you would like to install PostgreSQL 7.1.x at this time, then you may continue to
Chapter 2.

If you are new to the SQL language and database queries, then you may continue to
Chapter 3. Note that although many of the concepts introduced in Chapter 3 are of a
general nature, some of the techniques and concepts presented are specific to
PostgreSQL, and should not be overlooked if you want a comprehensive understanding
of the software.

If you are already familiar with the SQL language and statement structure, you may be
more interested in Chapter 4, Chapter 5, or Chapter 7.

If you have a working knowledge of PostgreSQL as an end user and you would like to
begin setting up the database server, database users and groups, and authentication, then
you may skip to Part III in Practical PostgreSQL. This part was written to aid system
administrators in initializing, configuring, and managing newly installed or existing
PostgreSQL databases.

If you are familiar with PostgreSQL as a database-management system and would like
to move directly into technical programming concepts and techniques, read through Part
IV in Practical PostgreSQL. This part of the book contains documentation on
PL/pgSQL, the native PostgreSQL procedural language, as well as information and
examples on the JDBC interface and the LXP web-based application server.

Prev Home Next
PostgreSQL Feature Set Up Installing PostgreSQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Preface Next

Structure of This Book
This book is divided into four parts, each focused on a different aspect of a PostgreSQL
database system. It also includes a complete command reference, and a small set of technical
appendixes.

Part I in Practical PostgreSQL, is a general overview of PostgreSQL. It documents what it is,
where you can obtain it, and how to install it on your system. It also covers a wide variety of
compilation options which allow you to customize PostgreSQL to your needs.

Part II in Practical PostgreSQL, includes everything from general information on relational
databases and the structured query language (SQL), to advanced extensibility of PostgreSQL's
functions and operators. Chapter 3, begins with relational database and table concepts, and
introduces the basics of statements, keywords, identifiers, and data types. Chapter 4, delves
deeper into the use of SQL, covering how to perform essential database functions such as
creating and altering tables, inserting rows into tables, copying data, retrieving result sets, and
using views.

Chapter 5, expands on the variety of operators and functions built into PostgreSQL, while
Chapter 6, includes extra information on the use of the psql and PgAccess database clients.
Concluding the part is Chapter 7, which details the more advanced PostgreSQL features such
as indices, inheritance, arrays, constraints, triggers, sequences and cursors. This chapter also
documents PostgreSQL's advanced extensibility with user-defined operators and functions.

Part III in Practical PostgreSQL, explores topics with which you should be familiar if you are
(or plan to be) the administrator of a PostgreSQL database. This part begins with Chapter 8,
which describes PostgreSQL's authentication methods and the types of encryption available
for use. Chapter 9 details the fundamental management of a PostgreSQL database, including
initialization of the filesystem, and how to start and stop the backend. This chapter also
contains information on database creation, removal, backup, and restoration of a backup.
Chapter 10 documents how to add and remove user accounts and groups, and manage database
privileges.

Part IV in Practical PostgreSQL, is a foray into the world of programming for PostgreSQL,
covering the PL/pgSQL procedural language, JDBC (Java DataBase Connectivity), and LXP.
Chapter 11 includes information about the PL/pgSQL language, how to add it into a
PostgreSQL database, and how to use its various programmatic features. Chapter 12, shows
how to build the JDBC interface to PostgreSQL, and introduces the basics of using it. Chapter
13 wraps up the part by documenting the installation, configuration and use of the LXP
PostgreSQL application server for the Apache HTTP server.

Finally, Part 5 contains a comprehensive command reference guide, which documents each of
the standard and extended SQL commands supported by PostgreSQL.

Prev Home Next
Preface Up Platform and Version Used

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 3. Understanding SQL Next

Tables in PostgreSQL
If you are already familiar with SQL or other RDBMS packages, you probably already have a
solid understanding of many of the relational database concepts put forth in this chapter.
However, each RDBMS handles tables differently at the system level. This section takes a
closer look at tables as they are implemented in PostgreSQL.

System Columns
PostgreSQL defines a series of system columns in all tables, which are normally invisible to
the user (e.g., they will not be shown by queries unless explicitly requested). These columns
contain meta-data about the content of the table's rows. Many of these contain data that can
help to differentiate between tuples (an individual state of a row) when working with
transaction blocks. (See Chapter 7 for more about transactions.)

As a result of these system-defined columns, in addition to the user-defined columns of a
table, any inserted row will have values in each of the columns described in Table 3-25.

Table 3-25. System columns

Column Description
oid (object identifier) The unique object identifier of a row.

PostgreSQL automatically adds this 4-byte
number to all rows. It is never re-used within the
same table.

tableoid (table object identifier) The oid of the table that contains a row. The
name and oid of a table are related by the
pg_class system table.

xmin (transaction minimum) The transaction identifier of the inserting
transaction of a tuple.

cmin (command minimum) The command identifier, starting at 0, associated
with the inserting transaction of a tuple.

xmax (transaction maximum) The transaction identifier of a tuple's deleting
transaction. If a tuple is visible (has not been
deleted) this is set to zero.

cmax (command maximum) The command identifier associated with the
deleting transaction of a tuple. Like xmax, if a
tuple is visible, this is set to zero.

ctid (tuple identifier) The identifier which describes the physical
location of the tuple within the database. A pair
of numbers are represented by the ctid: the
block number, and tuple index within that block.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Object Identifiers
As described in the Section called Understanding Tables," each database consists of tables,
and each table consists of at least one named column. These tables may contain rows, but do
not necessarily at any given time.

One table management concern can be how to distinguish between two rows whose column
values are identical. A very useful PostgreSQL feature is that every row has its own object
identifier number, or OID, which is unique within that table. In other words, no two rows
within the same table will ever have the same OID. This means that even if a table were
designed in such a way that two rows might be identical, there is still a programmatic way to
discern between them: via the OID. This is demonstrated in Example 3-31.

Example 3-31. Differentiating rows via the OID

testdb=# SELECT * FROM my_list;
 todos

 Correct redundancies in my list.
 Correct redundancies in my list.
(2 rows)

testdb=# SELECT *,oid FROM my_list;
 todos | oid
----------------------------------+---------
 Correct redundancies in my list. | 3391263
 Correct redundancies in my list. | 3391264
(2 rows)

testdb=# DELETE FROM my_list
testdb-# WHERE oid = 3391264;
DELETE 1
testdb=# SELECT *,oid FROM my_list;
 todos | oid
----------------------------------+---------
 Correct redundancies in my list. | 3391263
(1 row)

Planning Ahead
Before you start creating any tables, we suggest that you take some extra time to plan out your
intended database objects by deciding the names, types, and purposes of all columns within
each table. This can help you to be consistent with table naming structures, which in turn helps
you more easily read and construct "legible" queries and statements.

In addition to taking the somewhat semantic considerations just described (names, types, and
purposes), it is important to be sure that each table's relationship to each other table is clearly
defined. This can be an important point of table design, as you do not wish to redundantly
represent large amounts of data, nor do you want to end up omitting important data from one
table by misunderstanding the needs that must be satisfied by your implementation.

As an example, consider again the Book Town books table, from Table 3-1. This table holds

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As an example, consider again the Book Town books table, from Table 3-1. This table holds
an internal Book Town identification number for each book, the title, author identification
number, and a subject identification number. Notice that rather than storing the name of the
author, and rather than storing a text representation of the subject of the book, simple
identification integers are stored. These identification numbers are used to create relationships
to two other tables: the authors, and subjects tables, whose partial contents are shown in
Table 3-26 and Table 3-27.

Table 3-26. The authors table

id last_name first_name
1809 Geisel Theodor

Seuss
1111 Denham Ariel
15990 Bourgeois Paulette
2031 Brown Margaret

Wise
25041 Margery

Williams
Bianco

16 Alcott Louisa May
115 Poe Edgar Allen

Table 3-27. The subjects table

id subject location
0 Arts Creativity

St
2 Children's

Books
Kids Ct

3 Classics Academic
Rd

4 Computers Productivity
Ave

6 Drama Main St
9 Horror Black

Raven Dr
15 Science

Fiction
Main St

By keeping the author and subject-specific data separate from the books table, the data is
stored more efficiently. When multiple books need to be correlated with a particular subject,
only the subject_id needs to be stored, rather than all of the data associated with that subject.
This also makes for simpler maintenance of data associated with book subjects, such as the
location in the store. Such data can be updated in a single, small table, rather than having to
update all affected book records with such a modification. The same general principle applies
to the authors table, and its relationship to the books table via the author_id.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Thoughtful planning can also help to avoid mistakes in choosing appropriate data types. For
example, in the editions table, ISBN numbers are associated with Book Town book
identification numbers. At first glance, it might seem that the ISBN number could be
represented with a column of type integer. The design oversight in this case would be that
not only can ISBNs sometimes contain character data, but a value of type integer would lose
any leading zeroes in the ISBN (e.g., 0451160916 would become 451160916).

For all of these reasons, good table design is not an issue to be overlooked in database
administration.

Prev Home Next
Data Types Up Using SQL with PostgreSQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 2. Installing PostgreSQL Next

10 Steps to Installing PostgreSQL
PostgreSQL is included on the CD distributed with this book, but you may want to visit the
PostgreSQL website to see if there is a newer version available. Many FTP sites make the
source files for PostgreSQL available for download; a complete list of FTP mirrors can be
found at http://www.postgresql.org.

Once you have connected to a PostgreSQL FTP mirror, you will see the stable releases located
within a directory beginning with v followed by a version (such as v7.1.3/). There should also
be a symbolic link to the most recent stable release’s directory called latest/.

Within this sub-directory is a list of package files. The complete PostgreSQL installation
package is named postgresql-[version].tar.gz and should be the largest file in the list. The
following sub-packages are also made available for download, and may be installed in any
combination (though at least base is required):

postgresql-base-[version].tar.gz

The base package contains the bare minimum of source code required to build and run
PostgreSQL.

postgresql-docs-[version].tar.gz

The docs package contains the PostgreSQL documentation in HTML format. Note that
the PostgreSQL man pages are automatically installed with the base package.

postgresql-opt-[version].tar.gz

The opt package contains several optional extensions to PostgreSQL, such as the
interfaces for C++ (libpq++), JDBC, ODBC, Perl, Python, and Tcl. It also contains the
source required for multibyte support.

postgresql-test-[version].tar.gz

The test package contains the regression test suite. This package is required to run
regression tests after compiling PostgreSQL.

Step 1: Creating the “postgres” User
Create a UNIX user account to own and manage the PostgreSQL database files. Typically, this
user is named postgres, but it can be named anything that you choose. For consistency
throughout the book, the user postgres is considered the PostgreSQL root or superuser.

You will need to have root privileges to create the PostgreSQL superuser. On a Linux
machine, you can use the command shown in Example 2-5 to add the postgres user.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 2-5. Adding the postgres User

$ su - -c "useradd postgres"

Warning
Do not try to use the root user as the PostgreSQL superuser. Doing so presents a large
security hole.

Step 2: Installing the PostgreSQL Source Package
Once you have acquired the source for PostgreSQL, you should copy the PostgreSQL source
package to a temporary compilation directory. This directory will be the path where you install
and configure PostgreSQL. Within this path, you will extract the contents from the tar.gz file
and proceed with installation.

Bear in mind that this will not be the location of the installed database files. This is a
temporary location for configuration and compilation of the source package itself. If you have
downloaded the PostgreSQL package from the Internet, it is probably not saved in your
intended compilation directory (unless you explicitly chose to save there). A common
convention for building source on UNIX and Linux machines is to build within the
/usr/local/src path. You will most likely need root privileges to access this path. As such, the
remaining examples in this chapter will involve the root user until otherwise specified.

Note: If you are a user of a commercial Linux distribution, we strongly suggest
that you verify whether or not you have PostgreSQL already installed. On RPM-
based systems, such as SuSe, Mandrake, or RedHat, this can be done by using the
following command: rpm -qa | grep -i postgres. If you do have PostgreSQL
installed, there is a good chance that it is outdated. You will want to download
and install the latest version of PostgreSQL available. An RPM installation of
PostgreSQL will sometimes install scripts and programs such as postmaster and
psql into globally accessible directories. This can cause conflicts with source-built
versions, so before installing a new version, be sure to remove the RPM by using
the rpm -e <package name> command.

To unpack PostgreSQL source code on a Linux system, first move (or copy, from the CD) the
compressed source file into /usr/local/src (most people move their source files here to keep
them separate from their home directories and/or other locations they may keep downloaded
files). After moving it to the filesystem location where you wish to unpack it, use tar to
unpack the source files. The commands to perform these actions are shown in Example 2-6.

Example 2-6. Unpacking the PostgreSQL source package

[root@host root]# mv postgresql-7.1.3.tar.gz /usr/local/src
[root@host root]# cd /usr/local/src
[root@host src]# tar -xzvf postgresql-7.1.3.tar.gz

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[root@host src]# tar -xzvf postgresql-7.1.3.tar.gz
postgresql-7.1.3/
postgresql-7.1.3/ChangeLogs/
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1-7.1.1
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1RC1-to-7.1RC2
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1RC2-to-7.1RC3
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1RC3-to-7.1rc4
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1beta1-to-7.1beta3
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1beta3-to-7.1beta4
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1beta4-to-7.1beta5
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1beta5-to-7.1beta6
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1beta6-7.1RC1
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1rc4-7.1
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1.1-7.1.2
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1.2-7.1.3
postgresql-7.1.3/COPYRIGHT
[...]
[root@host root]# chown -R postgres.postgres postgresql-7.1.3

Notice the last command used in Example 2-6. The command is chown -R postgres.postgres
postgresql-7.1.3. This command grants the ownership of the PostgreSQL source directory tree
to postgres, which in turn enables you to compile PostgreSQL as the postgres user. Once the
extraction and ownership change has completed, you can switch to the postgres user to
compile PostgreSQL, resulting in all compiled files automatically being owned by postgres.

For reference purposes, the following list is a description of the tar options used to extract the
PostgreSQL source distribution:

x (extract)

tar will extract from the passed filename (as opposed to creating a new file).

v (verbose)

tar will print verbose output as files are extracted. You may omit this flag if you do not
wish to see each file as it is unpacked.

z (zipped)

tar will use gunzip to decompress the source. This option assumes that you are using the
GNU tools; other versions of tar may not support the z flag. In the event that you are not
using the GNU tools, you will need to manually unzip the file using gunzip before you
can unpack it with tar.

f (file)

tar will use the filename following the f parameter to determine which file to extract. In
our examples, this file is postgresql-7.1.3.tar.gz.

After you have completed the extraction of the files, switch to the postgres user and change
into the newly created directory (e.g., /usr/local/src/postgres-7.1.3). The remaining installation
steps will take place in that directory.

Step 3: Configuring the Source Tree

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Before compilation, you must configure the source, and specify installation options specific to
your needs. This is done with the configure script.

The configure script is also used to check for software dependencies that are required to
compile PostgreSQL. As configure checks for dependencies, it will create the necessary files
for use with the gmake command.

To use the default installation script, issue the following command: ./configure. To specify
options that will enable certain non-default features, append the option to the ./configure
command. For a list of all the available configuration options, use ./configure --help

There is a good chance that the default source configuration that configure uses will not be the
setup you require. For a well-rounded PostgreSQL installation, we recommend you use at least
the following options:

--with-CXX

Allows you to build C++ programs for use with PostgreSQL by building the libpq++
library.

--enable-odbc

Allows you to connect to PostgreSQL with programs that have a compatible ODBC
driver (such as Microsoft Access).

--enable-multibyte

Allows multibyte characters to be used, such as non-English language characters (e.g.,
Kanji).

--with-maxbackends=NUMBER

Sets NUMBER as the maximum number of allowed connections (32, by default).

You can also specify anything from the following complete list of configuration options:

--prefix=PREFIX

Specifies that files should be installed under the directory provided with PREFIX, instead
of the default installation directory (/usr/local/pgsql).

--exec-prefix=EXEC-PREFIX

Specifies that architecture-dependent executable files should be installed under the
directory supplied with EXEC-PREFIX.

--bindir=DIRECTORY

Specifies that user executable files (such as psql) should be installed into the directory
supplied with DIRECTORY.

--datadir=DIRECTORY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies that the database should install data files used by PostgreSQL's program suite
(as well as sample configuration files) into the directory supplied with DIRECTORY. Note
that the directory here is not used as an alternate database data directory; it is merely the
directory where read-only files used by the program suite are installed.

--sysconfdir=DIRECTORY

Specifies that system configuration files should be installed into the directory supplied
with DIRECTORY. By default, these are put into the etc folder within the specified base
installation directory.

--libdir=DIRECTORY

Specifies that library files should be stored in the directory supplied with DIRECTORY. If
you are running Linux, this directory should also be entered into the ld.so.conf file.

--includedir=DIRECTORY

Specifies that C and C++ header files should be installed into the directory supplied
with DIRECTORY. By default, include files are stored in the include folder within the base
installation directory.

--docdir=DIRECTORY

Specifies that documentation files should be installed into the directory supplied with
DIRECTORY. This does not include PostgreSQL's man files.

--mandir=DIRECTORY

Specifies that man files should be installed into the directory supplied with DIRECTORY.

--with-includes=DIRECTORIES

Specifies that the colon-separated list of directories supplied with DIRECTORIES should
be searched with the purpose of locating additional header files.

--with-libraries=DIRECTORIES

Specifies that the colon-separated list of directories supplied with DIRECTORIES should
be searched with the purpose of locating additional libraries.

--enable-locale

Enables locale support. The use of locale support will incur a performance penalty and
should only be enabled if you are are not in an English-speaking location.

--enable-recode

Enables the use of the recode translation library.

--enable-multibyte

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enables multibyte encoding. Enabling this option allows the support of non-ASCII
characters; this is most useful with languages such as Japanese, Korean, and Chinese,
which all use nonstandard character encoding.

--with-pgport=NUMBER

Specifies that the the port number supplied with NUMBER should be used as the default
port by PostgreSQL. This can be changed when starting the postmaster application.

--with-maxbackends=NUMBER

Sets NUMBER as the maximum number of allowed connections (32, by default).

--with-CXX

Specifies that the C++ interface library should be compiled during installation. You will
need this library if you plan to develop C++ applications for use with PostgreSQL.

--with-perl

Specifies that the PostgreSQL Perl interface module should be compiled during
installation. This module will need to be installed in a directory that is usually owned by
root, so you will most likely need to be logged in as the root user to complete
installation with this option chosen. This configuration option is only required if you
plan to use the pl/Perl procedural language.

--with-python

Specifies that the PostgreSQL Python interface module should be compiled during
installation. As with the --with-perl option, you will most likely need to log in as the
root user to complete installation with this option. This option is only required if you
plan to use the pl/Python procedural language.

--with-tcl

Specifies that Tcl support should be included in the installation. This option will install
PostgreSQL applications and extensions that require Tcl, such as pgaccess (a popular
graphical database client) and the pl/Tcl procedural language.

--without-tk

Specifies that Tcl support should be compiled without additional support for Tk, the
graphical application tool kit. Using this option with the --with-tcl option specifies that
PostgreSQL Tcl applications that require Tk (such as pgtksh and pgaccess) should not
be installed.

--with-tclconfig=DIRECTORY, --with-tkconfig=DIRECTORY

Specifies that the Tcl or Tk (depending on the option) configuration file (either
tclConfig.sh or tkConfig.sh) is located in the directory supplied with DIRECTORY, instead
of the default directory. These two files are installed by Tcl/Tk, and the information
within them is required by PostgreSQL's Tcl/Tk interface modules.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

--enable-odbc

Enables support for ODBC.

--with-odbcinst=DIRECTORY

Specifies that the ODBC driver should look in the directory supplied with DIRECTORY
for its odbcinst.ini file. By default, this file is held in the etc directory, which is located
in the installation directory.

--with-krb4=DIRECTORY, --with-krb5=DIRECTORY

Enables support for the Kerberos authentication system. The use of Kerberos is not
covered in this book.

--with-krb-srvnam=NAME

Specifies the name of the Kerberos service principal. By default, postgres is set as the
service principal name.

--with-openssl=DIRECTORY

Enables the use of SSL to support encrypted database connections. To build support for
SSL, OpenSSL must be configured correctly and installed in the directory supplied with
DIRECTORY. This option is required if you plan on using the stunnel tool.

--with-java

Enables Java/JDBC support. The Ant and JDK packages are required for PostgreSQL to
compile correctly with this feature enabled.

--enable-syslog

Enables the use of the syslog daemon for logging. You will need to specify that you
wish to use syslog for logging at runtime if you wish to use it.

--enable-debug

Enables the compilation of all PostgreSQL libraries and applications with debugging
symbols. This will slow down performance and increase binary file size, but the
debugging symbols are useful for developers to help diagnose bugs and problems that
can be encountered with PostgreSQL.

--enable-cassert

Enables assertion checking. This feature slows down performance and should be used
only during development of PostgreSQL database itself.

If you compile PostgreSQL and find that you are missing a feature, you can return to this step,
reconfigure, and continue with the subsequent steps to build and install PostgreSQL. If you
choose to come back to this step and reconfigure the PostgreSQL source before installing, be
sure to use the gmake clean command from the top-level directory of the source tree (usually,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sure to use the gmake clean command from the top-level directory of the source tree (usually,
/usr/local/src/postgresql-[version] ). This will remove any leftover object files and partially
compiled files.

Step 4: Compiling the Source
After using the configure command, you may begin compiling the PostgreSQL source by
entering the gmake command.

Note: On Linux machines, you should be able to use make instead of gmake. BSD
users should use gnumake.

Example 2-7. Compiling the source with GNU make

[postgres@host postgresql-7.1.3]# gmake
gmake -C doc all
gmake[1]: Entering directory /usr/local/src/postgresql-7.1.3/doc'
gmake[1]: Nothing to be done for all'.
gmake[1]: Leaving directory /usr/local/src/postgresql-7.1.3/doc'
gmake -C src all
gmake[1]: Entering directory /usr/local/src/postgresql-7.1.3/src'
gmake -C backend all
gmake[2]: Entering directory /usr/local/src/postgresql-7.1.3/src/backend'
gmake -C utils fmgroids.h
gmake[3]: Entering directory /usr/local/src/postgresql-7.1.3/src/backend/utils'
[...]

At this point, depending on the speed of your machine, you may want to get some coffee
because the PostgreSQL compilation could take 10 minutes, an hour, or even more. After the
compilation has finished, the following message should appear:

All of PostgreSQL is successfully made. Ready to install.

Step 5: Regression Testing
Regression tests are an optional but recommended step. The regression tests help verify that
PostgreSQL will run as expected after you have compiled the source. The tests check tasks
such as standard SQL operations, as well as extended capabilities of PostgreSQL. The
regression tests can point out possible (but not necessarily probable) problems which may
arise when running PostgreSQL.

If you decide you would like to run the regression tests, do so by using the following
command: gmake check, as shown in Example 2-8.

Example 2-8. Making regression tests

[postgres@host postgresql-7.1.3]# gmake check
gmake -C doc all
gmake[1]: Entering directory /usr/local/src/postgresql-7.1.3/doc'
gmake[1]: Nothing to be done for all'.
gmake[1]: Leaving directory /usr/local/src/postgresql-7.1.3/doc'
[...]

The gmake check command will build a test installation of PostgreSQL within the source tree,
and display a list of all the checks it is running. As each test completes, the success or failure
will be reported. Items that fail the check will have a failed message printed, rather than the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

will be reported. Items that fail the check will have a failed message printed, rather than the
successful ok message. If any checks fail, gmake check will display output similar to that
found in Example 2-9, though the number of tests failed may be higher on your system than
the number in the example.

Example 2-9. Regression check output

=======================
 1 of 76 tests failed.
=======================

The differences that caused some tests to fail can be viewed in the
file ./regression.diffs'. A copy of the test summary that you see
above is saved in the file ./regression.out'.

The files referenced in Example 2-9 (regression.diffs and regression.out) are placed within the
source tree at src/test/regress. If the source tree is located in /usr/local/src, the full path to the
directory files would be /usr/local/src/postgresql-[version]/src/test/regress.

The regression tests will not always pick up every possible error. This can be due to
inconsistencies in locale settings (such as time zone support), or hardware-specific issues
(such as floating-point results). As with any application, be sure to perform your own
requirements testing while developing with PostgreSQL.

Warning
You cannot run the regression tests as the root user. Be sure to run gmake check as the
postgres user.

Step 6: Installing Compiled Programs and Libraries
After you have configured and compiled the PostgreSQL source code, it is time to install the
compiled libraries, binaries, and data files into a more appropriate home on the system. If you
are upgrading from a previous version of PostgreSQL, be sure to back up your database before
beginning this step. Information on performing PostgreSQL database backups can be found in
Chapter 9.

Installation of the compiled files is accomplished with the commands demonstrated in
Example 2-10. When executed in the manner shown in Example 2-10, the su command
temporarily logs you in as the root user to execute the required commands. You must have the
root password to execute both of the commands shown in Example 2-10.

Note: If you specified a non-default installation directory in Step 3, use the
directory you specified instead of /usr/local/pgsql.

Example 2-10. The gmake install command

$ su -c "gmake install"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ su -c "gmake install"
Password:
gmake -C doc install
gmake[1]: Entering directory /usr/local/src/postgresql-7.1.3/doc'
mkdir /usr/local/pgsql
mkdir /usr/local/pgsql/man
mkdir /usr/local/pgsql/doc
mkdir /usr/local/pgsql/doc/html
[...]
$ su -c "chown -R postgres.postgres /usr/local/pgsql"
Password:

The su -c "gmake install" command will install the freshly compiled source either into the
directory structure you chose in Step 3 with the --prefix configuration option, or, if this was
left unspecified, into the default directory of /usr/local/pgsql. The use of the su -c "chown -R
postgres.postgres /usr/local/pgsql" command will ensure that the postgres user owns the
PostgreSQL installation directories. Using the su -c command lets you save a step by only
logging you in as the root user for the duration of the command’s execution.

If you chose to configure the PostgreSQL source with the Perl or Python interface, but did not
have root access, you can still install the interfaces manually. Use the commands demonstrated
in Example 2-11 to install the Perl and Python modules manually.

Example 2-11. Installing Perl and Python modules manually

$ su -c "gmake -C src/interfaces/perl5 install"
Password:
Password:
gmake: Entering directory /usr/local/src/postgresql-7.1.3/src/interfaces/perl5'
perl Makefile.PL
Checking if your kit is complete...
Looks good
Writing Makefile for Pg
gmake -f Makefile clean
[...]
$ su -c "gmake -C src/interfaces/python install"
Password:
gmake: Entering directory /usr/local/src/postgresql-7.1.3/src/interfaces/python'
sed -e 's,@libpq_srcdir@,../../../src/interfaces/libpq,g' \
 -e 's,@libpq_builddir@,../../../src/interfaces/libpq,g' \
 -e 's%@EXTRA_LIBS@% -lz -lcrypt -lresolv -lnsl -ldl -lm -lbsd -lreadline -ltermcap %g' \
 -e 's%@INCLUDES@%-I../../../src/include%g' \
[...]

You may also want to install the header files for PostgreSQL. This is important, because the
default installation will only install the header files for client application development. If you
are going to be using some of PostgreSQL's advanced functionality, such as user-defined
functions or developing applications in C that use the libpq library, you will need this
functionality. To install the required header files, perform the commands demonstrated in
Example 2-12.

Example 2-12. Installing all headers

$ su -c "gmake install-all-headers"
Password:
gmake -C src install-all-headers
gmake[1]: Entering directory /usr/local/src/postgresql-7.1.3/src'
gmake -C include install-all-headers
[...]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[...]

Step 7: Setting Environment Variables
The use of the PostgreSQL environment variables is not required. However, they are helpful
when performing tasks within PostgreSQL, including starting and shutting down the
postmaster processes. The environment variables that should be set are for the man pages and
the bin directory. You can do so by adding the following statements into the /etc/profile file.
This should work for any sh-based shell, including bash and ksh.

PATH=$PATH:/usr/local/pgsql/bin
MANPATH=$MANPATH:/usr/local/pgsql/man
export PATH MANPATH

Note: You must login to the system after the /etc/profile file has had environment
variables added to it in order for your shell to utilize them.

Depending on how your system handles shared libraries, you may need to inform the
operating system of where your PostgreSQL shared libraries are located. Systems such as
Linux, FreeBSD, NetBSD, OpenBSD, Irix, HP/UX, and Solaris will most likely not need to
do this.

In a default installation, shared libraries will be located in /usr/local/pgsql/lib (this may be
different, depending on whether you changed it with the --prefix configuration option). One of
the most common ways to accomplish this is to set the LD_LIBRARY_PATH environment
variable to /usr/local/pgsql/lib. See Example 2-13 for an example of doing this in Bourne-style
shells and Example 2-14 for an example of doing this in csh and tcsh.

Example 2-13. Setting LD_LIBRARY_PATH in a bash shell

$ LD_LIBRARY_PATH=/usr/local/pgsql/lib
$ export LD_LIBRARY_PATH

Example 2-14. Setting LD_LIBRARY_PATH in csh and tcsh

$ setenv LD_LIBRARY_PATH /usr/local/pgsql/lib

Step 8: Initializing and Starting PostgreSQL
If you are logged in as the root user, instead of using the su -c command in the previous steps,
you will now need to login as the postgres user you added in step 1. Once you are logged in as
the postgres user, issue the command shown in Example 2-15.

Example 2-15. Initializing the database

$ /usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data

The -D option in the previous command is the location where the data will be stored. This
location can also be set with the PGDATA environment variable. If you have set PGDATA, the -D
option is unnecessary. If you would like to use a different directory to hold these data files,
make sure the postgres user account can write to that directory. When you execute initdb you
will see something similar to what is shown in Example 2-16.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 2-16. Output from initdb

$ /usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
This database system will be initialized with username "postgres."
This user will own all the data files and must also own the server process.

Creating directory /usr/local/pgsql/data
Creating directory /usr/local/pgsql/data/base
Creating directory /usr/local/pgsql/data/global
Creating directory /usr/local/pgsql/data/pg_xlog
Creating template1 database in /usr/local/pgsql/data/base/1
DEBUG: database system was shut down at 2001-08-24 16:36:35 PDT
DEBUG: CheckPoint record at (0, 8)
DEBUG: Redo record at (0, 8); Undo record at (0, 8); Shutdown TRUE
DEBUG: NextTransactionId: 514; NextOid: 16384
DEBUG: database system is in production state
Creating global relations in /usr/local/pgsql/data/global
DEBUG: database system was shut down at 2001-08-24 16:36:38 PDT
DEBUG: CheckPoint record at (0, 108)
DEBUG: Redo record at (0, 108); Undo record at (0, 0); Shutdown TRUE
DEBUG: NextTransactionId: 514; NextOid: 17199
DEBUG: database system is in production state
Initializing pg_shadow.
Enabling unlimited row width for system tables.
Creating system views.
Loading pg_description.
Setting lastsysoid.
Vacuuming database.
Copying template1 to template0.

Success. You can now start the database server using:

/usr/local/pgsql/bin/postmaster -D /usr/local/pgsql/data
or
/usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data -l logfile start

Note: You can indicate that PostgreSQL should use a different data directory by
specifying the directory location with the -D option. This path must be initialized
through initdb.

When the initdb command has completed, it will provide you with information on starting the
PostgreSQL server. The first command displayed will start postmaster in the foreground. After
entering the command as it is shown in Example 2-17, the prompt will be inaccessible until
you press CTRL-C on the keyboard to shut down the postmaster process.

Example 2-17. Running postmaster in the foreground

$ /usr/local/pgsql/bin/postmaster -D /usr/local/pgsql/data
DEBUG: database system was shut down at 2001-10-12 23:11:00 PST
DEBUG: CheckPoint record at (0, 1522064)
DEBUG: Redo record at (0, 1522064); Undo record at (0, 0); Shutdown TRUE
DEBUG: NextTransactionId: 615; NextOid: 18720
DEBUG: database system is in production state

Starting PostgreSQL in the foreground is not normally required. We suggest the use of the
second command displayed. The second command will start postmaster in the background. It
uses pg_ctl to start the postmaster service, as shown in Example 2-18.

Example 2-18. Running postmaster in the background

$ /usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data -l /tmp/pgsql.log start
postmaster successfully started

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

postmaster successfully started

The major difference between the first command and the second command is that the second
runs postmaster in the background, as well as redirects any debugging information to
/tmp/pgsql.log. For normal operation, it is generally better to run postmaster in the
background, with logging enabled.

Note: The pg_ctl application can be used to start and stop the PostgreSQL server.
See Chapter 9 for more on this command.

Step 9: Configuring the PostgreSQL SysV Script
The SysV script will allow the graceful control of the PostgreSQL database through the use of
the SysV runlevel system. The SysV script can be used for starting, stopping, and status-
checking of PostgreSQL. It is known to work with most Red Hat based versions of Linux,
including Mandrake; however, it should work with other SysV systems (e.g., UnixWare,
Solaris, etc.) with little modification. The script is named linux. To use it, you will first need to
copy the linux script to your init.d directory. You may require root access to do this.

First, change to the directory where you unpacked the PostgreSQL source. In our case, the
path to that directory is /usr/local/src/postgresql-7.1.3/. Then, issue a cp command to copy the
script from contrib/start-scripts into the init.d directory. Example 2-19 demonstrates how to
do this on a Red Hat Linux system.

Example 2-19. Copying the linux script

$ cd /usr/local/src/postgresql-7.1.3/
$ su -c "cp contrib/start-scripts/linux /etc/rc.d/init.d/postgresql"

Example 2-19 arbitrarily re-names the new copy to postgresql; you may call it whatever you
prefer, though it is typically named either postgresql, or postgres.

You will need to make the script file executable after copying it. To do so, use the command
shown in Example 2-20.

Example 2-20. Making the linux script executable

$ su -c "chmod a+x /etc/rc.d/init.d/postgresql"

There are no additional requirements to use the SysV script with Red Hat, if you do not intend
on using it to start PostgreSQL automatically (i.e., if you wish to use the script manually).
However, if you do wish for the script to startup PostgreSQL automatically when the machine
boots up (or changes runlevels), you will need to have the chkconfig program installed. If
chkconfig is installed, you will also need to add the following two lines, including the hash (#)
symbol, at the beginning of the /etc/rc.d/init.d/postgresql file:

chkconfig: 345 85 15
description: PostgreSQL RDBMS

These example numbers should work on your system; however, it is good to know what role
they perform. The first group of numbers (345) represent which runlevels PostgreSQL should
be started at. The example shown would start PostgreSQL at runlevels 3, 4, and 5. The second
group of numbers (85) represent the order in which PostgreSQL should be started within that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

group of numbers (85) represent the order in which PostgreSQL should be started within that
runlevel, relative to other programs. You should probably keep the second number high, to
indicate that it should be started later in the runlevel. The third number (15) represents the
order in which PostgreSQL should be shutdown. It is a good idea to keep this number low,
representing a shutdown order that is inverse from the startup order. As previously mentioned,
the script should work on your system with the numbers provided, but you can change them if
it is necessary.

Once these two lines have been added to the script, you can use the commands shown in
Example 2-21 on Red Hat and Mandrake Linux distributions to start the PostgreSQL database.
Be sure to execute these as the root user.

Example 2-21. Starting PostgreSQL with the SysV script

$ service postgresql start
Starting PostgreSQL: ok
$ service postgresql stop
Stopping PostgreSQL: ok

Note: The SysV script logs redirects all PostgreSQL debugging output to
/usr/local/pgsql/data/serverlog, by default.

Step 10: Creating a Database
Now that the PostgreSQL database system is running, you have the option of using the default
database, template1. If you create a new database, and you would like all of your consecutive
databases to have the same system-wide options, then you should first configure the
template1 database to have those options enabled. For instance, if you plan to use the
PL/pgSQL language to program, then you should install the PL/pgSQL language into
template1 before using createdb. Then when you use the createdb command, the database
created will inherit template1’s objects, and thus, inherit the PL/pgSQL language. For more
information on installing the PL/pgSQL language into a database, refer to Chapter 11.

The next step will be to create a new database. This will be a simple test database. We do not
recommend using the default template1 database for testing purposes. As you have not
created any users with database-creation rights, you will want to make sure that you are
logged in as the postgres user when adding a new database. You can also create users that are
allowed to add databases, which is discussed later in Chapter 10. To create a new database
named testdb, enter the command shown in Example 2-22.

Example 2-22. Creating a database

$ createdb testdb
CREATE DATABASE

You should receive a message that says CREATE DATABASE, indicating that creation of the
database was successful. You can now use PostgreSQL's command line interface, psql, to
access the newly created database. To do so, enter the command shown in Example 2-23.

Example 2-23. Accessing a database with psql

$ psql testdb

You can now start entering SQL commands (e.g., such as SELECT) at the psql prompt. If you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can now start entering SQL commands (e.g., such as SELECT) at the psql prompt. If you
are unfamiliar with psql, please see Chapter 4 for an introduction.

To verify that the database is working correctly, you can issue the command shown in
Example 2-24, which should give you a listing of the languages installed in the database.

Example 2-24. Querying a system table

testdb=# SELECT * FROM pg_language;
 lanname | lanispl | lanpltrusted | lanplcallfoid | lancompiler
----------+---------+--------------+---------------+-------------
 internal | f | f | 0 | n/a
 C | f | f | 0 | /bin/cc
 sql | f | f | 0 | postgres
(3 rows)

Prev Home Next
Installing PostgreSQL Up Using PostgreSQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 4. Using SQL with PostgreSQL Next

Using Tables
Tables are the fundamental building blocks with which to store data within your database.
Before you can begin to add, retrieve, or modify data within your database, you will first have
to construct your tables to house that data.

This section covers how to create, modify and destroy tables, using the CREATE TABLE, ALTER
TABLE, and DROP TABLE SQL commands. (If you need information about creating a database
within which to work, see Chapter 9.)

Creating Tables with CREATE TABLE
The SQL command to create a table is CREATE TABLE. This command requires, at a minimum,
the name for the new table and a description for each column, which consists of the column
name and data type. The CREATE TABLE command accepts several optional parameters:
column constraints (rules on what data is or is not allowed within a column), and table
constraints (general limitations and relationships defined on the table itself).

CREATE TABLE syntax

The following is the syntax for CREATE TABLE with a detailed explanation of the terms used:

 CREATE [TEMPORARY | TEMP] TABLE table_name (
 { column_name type [column_constraint [...]] | table_constraint }
 [, ...]
) [INHERITS (inherited_table [, ...])]

TEMPORARY | TEMP

The TEMPORARY or TEMP SQL keyword causes the created table to be automatically
destroyed at the end of the active session to PostgreSQL. A temporary table may have
the same name as an existing table, and until the temporary table is destroyed, any
references to that table name will utilize the temporary table. Any indices placed on this
table are temporary and will be destroyed in the same fashion at the end of the session.

table_name

table_name identifies your table's name (once created).

column_name type [column_constraint] | table_constraint

Each table column and table constraint is defined within the parentheses following the
table name, separated by commas. Column definitions must contain a valid identifier for
a column_name, followed by a valid data type, and may optionally include a
column_constraint. The requirements of column constraint definitions are dependent
on the constraints, described in the Section called Using Constraints in Chapter 7" in
Chapter 7. Table constraints and columns may be mixed in this grouped list, though it is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Table constraints and columns may be mixed in this grouped list, though it is
common practice to list columns first, followed by any table constraints.

[, ...]

Each column definition may be followed by a comma in order to define a subsequent
column after it. The ellipses denote that you may enter as many columns as you wish
(up to the limit of 1,600). Be sure that you do not follow the last column or constraint in
the list with a comma, as is allowed in languages like Perl; this will cause a parsing
error.

INHERITS (inherited_table [, ...])

The object-relational capabilities of PostgreSQL allow you to specify one or more tables
(in a grouped, comma-delimited list) from which your table will inherit. This optional
specification creates an implied parent-child relationship between tables. This relatively
new technique to RDBMSs is discussed in more detail in the Section called Inheritance
in Chapter 7" within Chapter 7.

Note: The terms column_constraint and table_constraint in the above syntax
definition refer to sets of potentially complex constraint definitions. The syntax
for these various constraints is listed in detail in the Section called Using
Constraints in Chapter 7" within Chapter 7.

Creating an example table

Example 4-6 demonstrates the syntax to create Book Town's books table.

Example 4-6. Creating the books table

booktown=# CREATE TABLE books (
booktown(# id integer UNIQUE,
booktown(# title text NOT NULL,
booktown(# author_id integer,
booktown(# subject_id integer,
booktown(# CONSTRAINT books_id_pkey PRIMARY KEY (id));
NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index 'books_id_pkey'
for table 'books'
CREATE

The CREATE output following the execution of the statement indicates that the table was
successfully created. If you receive an error message, check your punctuation and spelling to
make sure you have entered the correct syntax. Receiving no message at all means that you
probably left open a quote, parenthesis, or other special character symbol.

Additionally, the NOTICE statement serves to inform you that in order to properly complete the
creation of this table as described, an implicit index called books_ id_ pkey will be created.

Examining a created table

Once created, you may use the \d describe command (followed by the table name) within psql
to display the structure of the table and its constraints (if any). Example 4-7 shows the output
of \d when it is used to describe the books table created in the last section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice that this format does not show actual row data, but instead places each column and its
attributes in its own row, essentially turning the table on its side. This is done for the sake of
clarity, as many tables can grow too large to fit on a screen (or on a page) horizontally. We'll
use this format throughout the book when examining table structure without data.

Example 4-7. The \d command's output

booktown=# \d books
 Table "books"
 Attribute | Type | Modifier
------------+---------+----------
 id | integer | not null
 title | text | not null
 author_id | integer |
 subject_id | integer |
Index: books_id_pkey

The following list provides a more detailed explanation of the fields and terms shown in
Example 4-7:

id

The id column is a numeric identifier unique to each book. It is defined as being of the
data type integer, and has on it the following constraints:

UNIQUE

This constraint ensures that the column always has a unique value. A column with
the UNIQUE constraint set may ordinarily contain empty (NULL values, but any
attempt to insert duplicate values will fail. The id column is also designed to be
used as the PRIMARY KEY.

PRIMARY KEY

While not displayed in the \d breakdown, you can see in our original CREATE
TABLE statement that this table's primary key is defined on the id column. Placing
the constraint of PRIMARY KEY on a column implicitly sets both the NOT NULL and
UNIQUE constraints as well.

NOT NULL

This constraint is set automatically by setting the PRIMARY KEY constraint. It
ensures that the ID column always has a value. Data for this column can never be
empty, and any attempt to insert NULL values will fail.

title

The title column of the table must contain character strings of type text. The text
type is more flexible than varchar, and is a good choice for this column as it does not
require that you specify the maximum number of characters allowed. This column has
the NOT NULL constraint set, indicating that a row's title column cannot ever be set to
NULL.

author_id

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

author_id

The author_id column must contain values of type integer, and relates to the authors
table. There are no constraints placed on this column, as sometimes an author may not
be known for a title (making NOT NULL inappropriate), and an author may show up more
than once (making UNIQUE inappropriate as well).

subject_id

The subject_id is similar to the author_id column, as it may contain values of type
integer, and relates to the subjects table. Again, there are no constraints on the
contents of this column, as many books may be uncategorized, or fall under the same
subject.

While a table's structure can be modified after it has been created, the available modifications
are limited. These include, for example, renaming the table, renaming its columns, and adding
new columns. PostgreSQL 7.1.x does not support dropping columns from a table. It is
therefore good practice to thoughtfully and carefully plan your table structures before creating
them.

Altering Tables with ALTER TABLE
Most mature RDBMSs allow you to alter the properties of existing tables via the ALTER TABLE
command. The PostgreSQL implementation of ALTER TABLE allows for six total types of table
modifications as of version 7.1.x:

Adding columns

Setting and removing default column values

Renaming the table

Renaming columns

Adding constraints

Changing ownership

Adding columns

You can add a new column to a table using the ALTER TABLE command's ADD COLUMN clause.
Here is the syntax for the ALTER TABLE command's ADD COLUMN clause:

 ALTER TABLE table
 ADD [COLUMN] column_name column_type

table_name

The name of the table to modify.

column_name

The name of the column to add.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

column_type

The data type of the new column.

Technically, the COLUMN keyword may be omitted; it is considered a noise term and is only
useful for your own readability.

As an example of adding a column, imagine that an industrious employee at Book Town
decides that the books table requires another column, specifically, a date column to represent
the publication date. Example 4-8 demonstrates such a procedure.

Example 4-8. Adding a column

booktown=# ALTER TABLE books
booktown-# ADD publication date;
ALTER
booktown=# \d books
 Table "books"
 Attribute | Type | Modifier
-------------+---------+----------
 id | integer | not null
 title | text | not null
 author_id | integer |
 subject_id | integer |
 publication | date |
Index: books_id_pkey

Example 4-8 successfully adds a new column to Book Town's books table with the name of
publication, and a data type of date. It also demonstrates a pitfall of uncoordinated table
design among developers: in our examples, the Book Town editions table already stores the
publication date, so the column should not have been added to the books table. See the Section
called Restructuring Existing Tables" for information on how to restructure a table after such a
mistake has been made.

Setting and removing default values

The most flexible table modification pertains to the default values of columns. These values
may be both set and removed from a column with relative ease via the ALTER TABLE
command's ALTER COLUMN clause.

The following syntax passed to PostgreSQL describes how to use ALTER TABLE in order to
either set, or remove a default value of value from a column named column_name :

 ALTER TABLE table
 ALTER [COLUMN] column_name
 { SET DEFAULT value | DROP DEFAULT }

Again, the COLUMN keyword is considered noise, and is an optional term used only for
improved readability of the statement. Example 4-9 demonstrates setting and dropping a
simple default sequence value on the books table's id column.

Example 4-9. Altering column defaults

booktown=# ALTER TABLE books
booktown-# ALTER COLUMN id
booktown-# SET DEFAULT nextval('book_ids');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# SET DEFAULT nextval('book_ids');
ALTER
booktown=# \d books
 Table "books"
 Attribute | Type | Modifier
------------+---------+--
 id | integer | not null default nextval('book_ids'::text)
 title | text | not null
 author_id | integer |
 subject_id | integer |
Index: books_id_pkey

booktown=# ALTER TABLE books
booktown-# ALTER id
booktown-# DROP DEFAULT;
ALTER
booktown=# \d books
 Table "books"
 Attribute | Type | Modifier
------------+---------+----------
 id | integer | not null
 title | text | not null
 author_id | integer |
 subject_id | integer |
Index: books_id_pkey

Renaming a table

A table may be safely renamed by passing the RENAME clause with the ALTER TABLE command.
The following is the syntax to rename a table:

 ALTER TABLE table
 RENAME TO new_table

A table may be arbitrarily renamed as many times as you like without affecting the data. This
could, of course, be a dangerous thing to do if you are dealing with a table on which an
external application relies.

Example 4-10. Renaming a table

booktown=# ALTER TABLE books RENAME TO literature;
ALTER
booktown=# ALTER TABLE literature RENAME TO books;
ALTER

Renaming columns

A table's columns may be safely renamed in PostgreSQL without modifying the data
contained in the table. Renaming a column is a dangerous thing to do because existing
applications may use explicit references to column names. If an existing program references a
column by name and the column is renamed, the program could cease functioning correctly.

The following syntax describes how to rename a column:

 ALTER TABLE table
 RENAME [COLUMN] column_name TO new_column_name;

As with the other ALTER TABLE commands, the COLUMN keyword is considered noise, and may
be optionally omitted. The existence of two identifiers separated by the TO keyword provides

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

be optionally omitted. The existence of two identifiers separated by the TO keyword provides
enough information for PostgreSQL to determine that you are renaming a column, and not a
table, as demonstrated in Example 4-11.

Example 4-11. Renaming a column

booktown=# \d daily_inventory
 Table "daily_inventory"
 Attribute | Type | Modifier
-----------+---------+----------
 isbn | text |
 in_stock | boolean |

booktown=# ALTER TABLE daily_inventory
booktown-# RENAME COLUMN in_stock TO is_in_stock;
ALTER
booktown=# ALTER TABLE daily_inventory
booktown-# RENAME is_in_stock TO is_stocked;
ALTER

Adding constraints

Constraints may be added in a limited fashion after a table has been created. As of
PostgreSQL 7.1.x, only foreign key and check constraints may be added to an existing table
column with ALTER TABLE. The following is the syntax to add a constraint to a table:

 ALTER TABLE table
 ADD CONSTRAINT constraint_name constraint_definition

The syntax of the constraint_definition is dependent on the type of constraint you wish to
add. As foreign keys and checks are the only supported constraints with the ADD CONSTRAINT
clause (as of PostgreSQL 7.1.x), the syntax for adding a foreign key to the editions table
(which references the books table's id column) and a check condition on the type column is
demonstrated in Example 4-12.

Example 4-12. Adding constraints to a table

booktown=# ALTER TABLE editions
booktown-# ADD CONSTRAINT foreign_book
booktown-# FOREIGN KEY (book_id) REFERENCES books (id);
NOTICE: ALTER TABLE ... ADD CONSTRAINT will create implicit trigger(s)
for FOREIGN KEY check(s)
CREATE
booktown=# ALTER TABLE editions
booktown-# ADD CONSTRAINT hard_or_paper_back
booktown-# CHECK (type = 'p' OR type = 'h');
ALTER

Due to the foreign key constraint, any book_id value in the editions table will now also have
to exist in the books table. Additionally, due to the check constraint, the type values within
the editions table may only be set to either p or h.

Note: To implicitly add a unique constraint, a workaround is to create a unique
index using the CREATE INDEX command (see the Section called Indices in
Chapter 7" in Chapter 7).

See the Section called Using Constraints in Chapter 7" in Chapter 7 for more detailed
information about constraints, their purpose, and their syntax.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Changing ownership

By default, the creator of a table is automatically its owner. The owner has all rights that can
be associated with a table, in addition to the ability to grant and revoke rights with the GRANT
and REVOKE commands (for more information see Chapter 10). If ownership must be changed,
you can use the ALTER TABLE command's OWNER clause. The syntax to change the ownership
of a table from one user to another is:

 ALTER TABLE table
 OWNER TO new_owner

Example 4-13 demonstrates altering a table's ownership with the ALTER TABLE command's
OWNER clause. In it, corwin is set as the owner of the employees table.

Example 4-13. Changing table ownership

booktown=# ALTER TABLE employees
booktown-# OWNER TO corwin;
ALTER

Note: In order to change the ownership of a table, you must either be the owner of
that table or a PostgreSQL superuser.

Restructuring Existing Tables
While you have the ability to arbitrarily add new columns to existing tables, remember that (as
of PostgreSQL 7.1.x) you cannot drop columns from existing tables. There are two fairly
painless workarounds for restructuring existing tables. The first involves the CREATE TABLE
AS command, while the second combines the CREATE TABLE command with the INSERT INTO
command.

Each of these methods, in essence, involves creating a new table with your desired structure,
filling it up with the data from your existing table, and renaming the tables so that the new
table takes the place of your old table.

Warning
When "restructuring" a table in this fashion, it is important to notice that old indices placed
on the original table will not automatically be applied to the newly created table, nor will the
OIDs (object identifiers) be the same. Any indices must be dropped and recreated.

Restructuring with CREATE TABLE AS

One common technique of restructuring a table is to use the CREATE TABLE command in
conjunction with the AS clause and a valid SQL query. This allows you to restructure your
existing table into a temporary table, which can then be renamed. Doing this also allows you
to both remove and re-arrange columns to a table by physically re-creating it, and
simultaneously re-populating it with data from the original table.

The following syntax describes this limited version of CREATE TABLE, where query is the valid
SELECT statement that selects the data to populate the new table with. The data type of each

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT statement that selects the data to populate the new table with. The data type of each
created column is implied by the type of each corresponding column selected by query:

 CREATE [TEMPORARY | TEMP] TABLE table
 [(column_name [, ...])]
 AS query

The advantage to this technique is that you may create the new table and populate it in a single
SQL command. The most notable limitation of this technique is that there is no comprehensive
way to set constraints on the newly created table; the only constraints that may be added to the
table after is has been created are the foreign key and check constraints. Once the new table
has been created, the old one can be renamed (or destroyed), and the new one can be renamed
to the name of the original table.

Suppose, for example, that you wanted to modify the books table in order to drop the
superfluous publication column which was created in the Section called Adding columns."
You can create a limited copy of the table (designating only the desired columns) by passing a
valid SELECT statement to the AS clause of CREATE TABLE, and dropping the old table with
DROP TABLE, as shown in Example 4-14.

Example 4-14. Restructuring a table with CREATE TABLE AS

booktown=# \d books
 Table "books"
 Attribute | Type | Modifier
-------------+---------+----------
 id | integer | not null
 title | text | not null
 author_id | integer |
 subject_id | integer |
 publication | date |
Index: books_id_pkey

booktown=# CREATE TABLE new_books
booktown-# (id, title, author_id, subject_id)
booktown-# AS SELECT id, title, author_id, subject_id
booktown-# FROM books;
SELECT
booktown=# ALTER TABLE books RENAME TO old_books;
ALTER
booktown=# ALTER TABLE new_books RENAME TO books;
ALTER
booktown=# \d books
 Table "books"
 Attribute | Type | Modifier
------------+---------+----------
 id | integer |
 title | text |
 author_id | integer |
 subject_id | integer |

booktown=# DROP TABLE books;
DROP

Warning
As of PostgreSQL 7.1.x, if you specify the optional column list within parentheses, you
cannot use the asterisk (*) in the query statement. This behavior is scheduled to be corrected
in PostgreSQL 7.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Restructuring with CREATE TABLE and INSERT INTO

If you require a more specifically defined table than that created by CREATE TABLE AS (e.g.,
one with column constraints), you can replicate the effect of the CREATE TABLE AS technique
by issuing two SQL statements rather than one. You can achieve this by first creating the new
table as you ordinarily would with CREATE TABLE, and then populating the table with data via
the INSERT INTO command and a valid SELECT statement.

Example 4-15. Restructuring a table with CREATE TABLE and INSERT INTO

booktown=# CREATE TABLE new_books (
booktown(# id integer UNIQUE,
booktown(# title text NOT NULL,
booktown(# author_id integer,
booktown(# subject_id integer,
booktown(# CONSTRAINT books_ id_ pkey PRIMARY KEY (id)
booktown(#);
NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index 'books_id_pkey'
for table 'new_books'
CREATE
booktown=# INSERT INTO new_books
booktown-# SELECT id, title, author_id, subject_id
booktown-# FROM books;
INSERT 0 12
booktown=# ALTER TABLE books RENAME TO old_books;
ALTER
booktown=# ALTER TABLE new_books RENAME TO books;
ALTER
booktown=# \d books
 Table "books"
 Attribute | Type | Modifier
------------+---------+----------
 id | integer | not null
 title | text | not null
 author_id | integer |
 subject_id | integer |
Index: books_id_pkey

See the Section called Inserting Values from Other Tables with SELECT" for more
information about using the INSERT INTO command with a SELECT statement, and the Section
called Retrieving Rows with SELECT" for more information about valid SELECT statements.

Destroying Tables with DROP TABLE
The SQL command to permanently destroy a table is DROP TABLE. The following is the syntax
for DROP TABLE, where tablename is the table that you wish to destroy:

 DROP TABLE tablename

Use caution when dropping a table, as doing so destroys all data associated with the table.

Note: Destroying a table with an implicitly-created index will destroy any
associated indices.

Prev Home Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using SQL with PostgreSQL Up Adding Data with INSERT
and COPY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 4. Using SQL with PostgreSQL Next

Adding Data with INSERT and COPY
Once you have created your table with the necessary specifications, the next logical step is to
fill the table with data. There are generally three methods in PostgreSQL with which you can
fill a table with data:

Use the INSERT INTO command with a grouped set of data to insert new values.

Use the INSERT INTO command in conjunction with a SELECT statement to insert
existing values from another table.

Use the COPY (or \copy) command to insert values from a system file.

Inserting New Values
The following is the syntax of the INSERT INTO command, when used to insert new values,
which is subsequently described in detail:

 INSERT INTO table_name
 [(column_name [, ...])]
 VALUES (value [, ...])

table_name

The INSERT SQL command initiates an insertion of data into the table called
table_name.

(column_name [, ...])

An optional grouped expression which describes the targeted columns for the insertion.

VALUES

The SQL clause which instructs PostgreSQL to expect a grouped expression of values to
follow.

(value [, ...])

The required grouped expression that describes the values to be inserted. There should
be one value for each specified column, separated by commas. These values may be
expressions themselves (e.g., an operation between two values), or constants.

Each value following the VALUES clause must be of the same data type as the column it is
being inserted into. If the optional column-target expression is omitted, PostgreSQL will
expect there to be one value for each column in the literal order of the table's structure. If there
are fewer values to be inserted than columns, PostgreSQL will attempt to insert a default value
(or the NULL value, if there is no default) for each omitted value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To demonstrate, Example 4-16 illustrates the insertion of a new book into Book Town's books
table.

Example 4-16. Inserting new values into the books table

booktown=# INSERT INTO books (id, title, author_id, subject_id)
booktown-# VALUES (41472, 'Practical PostgreSQL', 1212, 4);
INSERT 3574037 1

The SQL statement in Example 4-16 inserts a new book with an id of 41472, a title of
Practical PostgreSQL, an author identifier of 1212, and a subject identifier of 4. Note the
feedback beginning with INSERT, which indicates that the insertion was successful. The first
number following INSERT is the OID (object identifier) of the freshly inserted row. The second
number following INSERT represents the number of rows inserted (in this case, 1).

Notice that the optional column target list is specified identically to the physical structure of
the table, from left to right. In this case, omitting the grouped expression would have no effect
on the statement since the INSERT statement assumes that you are inserting values in the
natural order of the table's columns. You can re-arrange the names of the columns in the
grouped column target list if you wish to specify the values in a different order following the
VALUES clause, as demonstrated in Example 4-17.

Example 4-17. Changing the order of target columns

booktown=# INSERT INTO books (subject_id, author_id, id, title)
booktown-# VALUES (4, 7805, 41473, 'Programming Python');
INSERT 3574041 1

Inserting Values from Other Tables with SELECT
If you already have values within one table (or across several other tables) that you wish to
insert into a separate table, this can also be achieved with the INSERT INTO command. The
following syntax is used for this technique:

 INSERT INTO table_name
 [(column_name [, ...])]
 query

Similar to the syntax of INSERT INTO presented in the previous section, you may optionally
specify which columns you wish to insert into, and in what order the query returns their
values. However, with this form of INSERT INTO, you provide a complete SQL SELECT
statement in the place of the VALUES keyword.

For example, imagine that Book Town keeps a table called book_queue, which holds books
waiting to be approved for sale. When approved, those values need to be moved from the
queue, into the normal books table. This can be achieved with the syntax demonstrated in
Example 4-18.

Example 4-18. Inserting values from another table

booktown=# INSERT INTO books (id, title, author_id, subject_id)
booktown-# SELECT nextval('book_ids'), title, author_id, subject_id
booktown-# FROM book_queue WHERE approved;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# FROM book_queue WHERE approved;
INSERT 0 2

The preceding example demonstrates the insertion of two rows from the table book_queue into
the books table by way of a SELECT statement that is passed to the INSERT INTO command.
Any valid SELECT statement may be used in this context. In this case, the query selects the
result of a function called nextval() from a sequence called book_ids, followed by the
title, author_id and subject_id columns from the book_queue table.

Since more than one row is being inserted, the INSERT result indicating success returns 0 in
place of the OID that would be returned if a single row had been inserted. The second number,
as with a normal INSERT INTO command, returns the number of rows inserted (in this case, 2).

Copying Values from External Files with COPY
A useful technique within PostgreSQL is to use the COPY command to insert values directly
into tables from external files. Files used for input by COPY must either be in standard ASCII
text format, whose fields are delimited by a uniform symbol, or in PostgreSQL's binary table
format. Common delimiters for ASCII files are tabs and commas. When using an ASCII
formatted input file with COPY, each line within the file will be treated as a row of data to be
inserted and each delimited field will be treated as a column value.

The COPY FROM command operates much faster than a normal INSERT command because the
data is read as a single transaction directly to the target table. On the other hand, it is a very
strict format, and the entire COPY procedure will fail if just one line is malformed.

The following is the syntax for using the COPY FROM command, where table_name is the table
that you wish to insert values into and filename is the absolute system path to the from which
file to be read:

 COPY [BINARY] table_name [WITH OIDS]
 FROM { 'filename' | stdin }
 [[USING] DELIMITERS 'delimiter']
 [WITH NULL AS 'null_string']

BINARY

Indicates that input will come from a binary file previously created by the COPY TO
command.

table_name

The name of the table you are copying.

WITH OIDS

Instructs PostgreSQL to retrieve all of the OIDs of the table represented by filename
from the first line of the file.

FROM { 'filename' | stdin }

Indicates that either the file specified with filename or standard input (stdin) should be
read by PostgreSQL.

[USING] DELIMITERS 'delimiter'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[USING] DELIMITERS 'delimiter'

Indicates the character provided with delimiter should be used as a delimiter when
parsing input. This clause is not applicable to files that were output in PostgreSQL's
binary format.

WITH NULL AS 'null_string'

Indicates that the character(s) provided with null_string should be interpreted as NULL
values. This clause is not applicable to files that were output in PostgreSQL's binary
format.

When preparing to copy a file from the underlying operating system, remember that the file
specified must be readable by the postmaster process (i.e., the user which PostgreSQL is
running as), since the backend reads the file directly. Additionally, the filename must be
provided with an absolute path; an attempt to use a relative path will result in an error.

If you are using an ASCII formatted input file, a delimiter value may be passed to the
DELIMITERS clause, which defines the character which delimits columns on a single line in the
filename. If omitted, PostgreSQL will assume that the ASCII file is tab-delimited. The
optional WITH NULL clause allows you to specify in what form to expect NULL values. If
omitted, PostgreSQL interprets the \N sequence as a NULL value to be inserted (e.g., blank
fields in a source file will be treated as blank string constants, rather than NULL, by default).

The stdin term may be supplied as the source for the FROM clause if you wish to type values in
manually or paste from another location directly into a terminal session. If you choose to enter
values from stdin, you must terminate the input stream with a \. sequence (backslash-period)
followed immediately by a newline.

Example 4-19 shows the contents of a file that was output in ASCII format by PostgreSQL.
The file in Example 4-19 is comma-delimited and uses \null to represent NULL values. It
contains row data from the Book Town subjects table.

Example 4-19. An example ASCII copy file

1,Business,Productivity Ave
2,Children's Books,Kids Ct
3,Classics,Academic Rd
4,Computers,Productivity Ave
5,Cooking,Creativity St
12,Religion,\null
8,History,Academic Rd
9,Horror,Black Raven Dr
10,Mystery,Black Raven Dr
11,Poetry,Sunset Dr
13,Romance,Main St
14,Science,Productivity Ave
15,Science Fiction,Main St
0,Arts,Creativity St
6,Drama,Main St
7,Entertainment,Main St

The statement in Example 4-20 copies the file (/tmp/subjects.sql) into a table within the
booktown database's subjects table.

Example 4-20. Copying an ASCII file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# COPY subjects FROM '/tmp/subjects.sql'
booktown-# USING DELIMITERS ',' WITH NULL AS '\null';
COPY

Binary format

The COPY command can also input and output both binary formatted data. Specifying to the
COPY FROM command the BINARY keyword requires that the input file specified was created
with the COPY TO command in PostgreSQL's binary format. Binary files can be read more
quickly than ASCII files, but are not readable or modifiable with plain-text editors as ASCII
files are.

Example 4-21 uses the COPY command to insert the rows in the binary output file from the
subjects table within the booktown database.

Example 4-21. Copying a binary file

booktown=# COPY BINARY subjects FROM '/tmp/subjects.sql';
COPY

The difference between COPY and \copy

The COPY command is not the same as the psql \copy command. The \copy command accepts
the same syntax (though without a terminating semicolon), and therefore performs the
operation via the psql client, rather than the postmaster server. The result is that \copy
operates with the permissions of the user running psql rather than of the user the postmaster is
running as.

COPY TO

The syntax of COPY FROM may be used with nearly identical syntax to send a table's data to a
file. You need only replace the FROM keyword with the TO keyword. Additionally, the stdin
keyword may be replaced with stdout if you wish to redirect to standard output rather than to
a file (e.g., to the screen, in psql ). Example 4-22 shows how you would copy the books table
to an ASCII formatted file.

Example 4-22. Copying the books table to an ASCII file

booktown=# COPY books TO 'filename';
COPY

Copying WITH OIDS

Files containing row data with object identifier values (created with the COPY TO command,
involving the WITH OIDS clause) can be read by a COPY FROM command, if the WITH OIDS
clause is specified. Attempts to use the COPY FROM command with the WITH OIDS clause on a
file that wasn't given OIDs during its creation will fail.

The ability to copy values into a table with object-identifiers is a special capability reserved
for COPY. This value cannot be modified by INSERT or UPDATE, as it is a system value. If you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for COPY. This value cannot be modified by INSERT or UPDATE, as it is a system value. If you
are not careful, you may end up with two rows which have the same OID, which potentially
negates their usefulness.

Prev Home Next
Using Tables Up Retrieving Rows with

SELECT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 4. Using SQL with PostgreSQL Next

Retrieving Rows with SELECT
The heart of all SQL queries is the SELECT command. SELECT is used to build queries (also
known as SELECT statements). Queries are the only SQL instructions by which your data can
be retrieved from tables and views. The data returned via a query is called a result set and
consists of rows, with columns, similar to a table.

The columns of a result set are not stored on the disk in any fixed form. They are purely a
temporary result of the query's requested data. A query on a table may return a result set with
the same column structure as the table, or it may differ drastically. Result sets may even have
columns which are drawn from several other tables by a single query.

Since it is central to PostgreSQL, SELECT is easily the most complicated single command,
having the most available clauses and parameters. The following is the syntax for SELECT. The
terms used are summarized and described in greater detail within the following sections. The
term expression is used to refer to either a column name, or a general expression (such as a
column being operated upon by a constant, or another column).

 SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 target [AS name] [, ...]
 [FROM source [, ...]]
 [[NATURAL] join_type source
 [ON condition | USING (column_list)]]
 [, ...]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition [, ...]]
 [{ UNION | INTERSECT | EXCEPT } [ALL] sub-query]
 [ORDER BY expression
 [ASC | DESC | USING operator]
 [, ...]]
 [FOR UPDATE [OF table [, ...]]]
 [LIMIT { count | ALL } [{ OFFSET | , } start]]

In this syntax diagram, source may be either a table name or a subselect. The syntax for these
general forms is as follows:

 FROM { [ONLY] table [[AS] alias [(column_alias [, ...])]] |
 (query) [AS] alias [(column_alias [, ...])] }

ALL

The ALL keyword may be specified as a noise term to make it clear that all rows should
be returned.

DISTINCT [ON (expression [, ...])]

The DISTINCT clause specifies a column (or expression) for which to retrieve only one
row per unique value of expression.

target [AS name] [, ...]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

target [AS name] [, ...]

The SELECT targets are usually column names, though they can be constants, identifier,
function or general expression. Each target requested must be separated by commas,
and may be named dynamically to name via the AS clause. Supplying the asterisk symbol
(*) as a target is shorthand for requesting all non-system columns, and may be listed
along with other targets.

FROM source [, ...]

The FROM clause dictates the source that PostgreSQL will look in for the specified
targets. The source, in this case, may be a table name or a sub-query. You can specify
numerous sources, separated by commas. (This is roughly equivalent to a cross join).
The syntax for the FROM clause is described in more detail later in this section.

[NATURAL] join_type source [ON condition | USING (column_list)]

The FROM sources may be joined together via the JOIN clause, which requires a
join_type (e.g., INNER, FULL OUTER, CROSS) and may require a condition or
column_list to further define the nature of the join, depending on the join_type.

WHERE condition

The WHERE clause constrains the result set from the SELECT statement to specified
criteria, which are defined by condition. Conditions must return a single Boolean value
(true or false), but may consist of several checks combined with logical operators (e.g.,
with AND, and OR) to indicate that available rows must meet all supplied conditions to be
included in the statement's results.

GROUP BY expression [, ...]

The GROUP BY clause aggregates (groups) rows together by the criteria described in
expression. This can be as simple as a column name (and often is) or an arbitrary
expression applied to values of the result set.

HAVING condition [, ...]

The HAVING clause is similar to the WHERE clause, but checks its conditions on
aggregated (grouped) sets instead of atomic rows.

{ UNION | INTERSECT | EXCEPT } [ALL] sub-query

Performs one of three set operations between the SELECT statement and a second query,
returning their result sets in uniform column structure (which must be compatible).

UNION

Returns the set of collected rows.

INTERSECT

Returns the set of rows where the values of the two sets overlap.

EXCEPT

Returns the set of rows which are found in the SELECT statement, but not found in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the set of rows which are found in the SELECT statement, but not found in
the secondary query.

ORDER BY expression

Sorts the results of the SELECT statement by expression.

[ASC | DESC | USING operator]

Determines whether or not the ORDER BY expression proceeds in ascending order
(ASC), or descending order (DESC). An operator may alternatively be specified with the
USING keyword (e.g., < or >).

FOR UPDATE [OF table [, ...]]

Allows for exclusive locking of the returned rows. When used within a transaction
block, FOR UPDATE locks the rows of the specified table until the transaction is
committed. While locked, the rows cannot be updated by other transactions.

LIMIT { count | ALL }

Limits the number of rows returned to a maximum of count, or explicitly allows ALL
rows.

{ OFFSET | , } start

Instructs the LIMIT clause at what point to begin limiting the results. For example, a
LIMIT with a count set to 100, and an OFFSET clause with a start value of 50 would
return the rows from 50 to 150 (if there are that many results to return).

Terms used in the FROM clause's syntax description are as follows:

[ONLY] table

The table name specifies what table to use as a source for the SELECT statement.
Specifying the ONLY clause causes the rows of any child's table to be omitted from the
query.

[AS] alias

An alias may optionally be assigned to a FROM source, in order to simplify a query
(e.g., books might be temporarily referenced with an alias of b). The AS term is
considered noise, and is optional.

(query) [AS] alias

Any valid SELECT statement may be placed in parentheses as the query. This causes the
result set created by the query to be used as a FROM source, as if it had been a static table.
This use of a sub-query requires a specified alias.

(column_alias [, ...])

The FROM sources which have assigned aliases may also alias columns by specifying
arbitrary column aliases. Each column_alias must be separated by commas, and
grouped within parentheses following the FROM source's alias. These aliases must match
the order of the defined columns in the table to which it is applied.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Simple SELECT
A SELECT statement may be as simple as a request for all rows and all columns from a
specified table. Use the following syntax to retrieve all rows and columns from a table:

 SELECT * FROM table_name;

The asterisk (*) character, as mentioned in the explanation of SELECT's syntax, is short-hand
for all non-system columns. In essence, the SELECT * requests all non-system data in the table
named table_name ; this retrieves all columns and all rows, because no row limit is specified.
To demonstrate, Example 4-23 requests all columns (*) from Book Town's books table.

Example 4-23. Selecting all from the books table

booktown=# SELECT * FROM books;
 id | title | author_id | subject_id
-------+-----------------------------+-----------+------------
 7808 | The Shining | 4156 | 9
 4513 | Dune | 1866 | 15
 4267 | 2001: A Space Odyssey | 2001 | 15
 1608 | The Cat in the Hat | 1809 | 2
 1590 | Bartholomew and the Oobleck | 1809 | 2
 25908 | Franklin in the Dark | 15990 | 2
 1501 | Goodnight Moon | 2031 | 2
 190 | Little Women | 16 | 6
 1234 | The Velveteen Rabbit | 25041 | 3
 2038 | Dynamic Anatomy | 1644 | 0
 156 | The Tell-Tale Heart | 115 | 9
 41472 | Practical PostgreSQL | 1212 | 4
 41473 | Programming Python | 7805 | 4
 41477 | Learning Python | 7805 | 4
 41478 | Perl Cookbook | 7806 | 4
(15 rows)

Specifying Target Columns
While SELECT * is a good example of a basic query, and is sometimes very useful, you will
probably be interested in retrieving only a few columns worth of information at a time. To stay
efficient, and to keep your queries clear, it is a good idea to explicitly specify the intended
target columns rather than to use the asterisk. This is especially true when using the JOIN
clause, as will be discussed in the Section called Joining Data Sets with JOIN."

To specify the target columns for a query, list the names of the columns following the SELECT
keyword. The query will return data for only those columns that you list. The order of these
columns need not match their literal order in the table, and columns may be listed more than
once, or not at all, as shown in Example 4-24.

Example 4-24. Re-Ordering columns

booktown=# SELECT id, author_id, title, id
booktown-# FROM books;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# FROM books;
 id | author_id | title | id
-------+-----------+-----------------------------+-------
 7808 | 4156 | The Shining | 7808
 4513 | 1866 | Dune | 4513
 4267 | 2001 | 2001: A Space Odyssey | 4267
 1608 | 1809 | The Cat in the Hat | 1608
 1590 | 1809 | Bartholomew and the Oobleck | 1590
 25908 | 15990 | Franklin in the Dark | 25908
 1501 | 2031 | Goodnight Moon | 1501
 190 | 16 | Little Women | 190
 1234 | 25041 | The Velveteen Rabbit | 1234
 2038 | 1644 | Dynamic Anatomy | 2038
 156 | 115 | The Tell-Tale Heart | 156
 41472 | 1212 | Practical PostgreSQL | 41472
 41473 | 7805 | Programming Python | 41473
 41477 | 7805 | Learning Python | 41477
 41478 | 7806 | Perl Cookbook | 41478
(15 rows)

As you can see, the data sets returned in both Example 4-24 and Example 4-23 are nearly
identical. The second set is returned in a different column arrangement, (omitting the
subject_id column, and repeating the id column twice) as a result of the target list.

Expressions, Constants, and Aliases
In addition to plain column names, targets in the SELECT statement may be arbitrary
expressions (e.g., involving functions, or operators acting upon identifiers), or constants. The
syntax is simple, and only requires that each identifier, expression, or constant be separated by
commas. Conveniently, different types of targets may be arbitrarily mixed in the target list.

In fact, the SELECT command may be used to retrieve expressions and constants without the
use of a FROM clause or specified columns, as in Example 4-25.

Example 4-25. Using expressions and constants

testdb=# SELECT 2 + 2,
testdb-# pi(),
testdb-# 'PostgreSQL is more than a calculator!';
 ?column? | pi | ?column?
----------+------------------+---------------------------------------
 4 | 3.14159265358979 | PostgreSQL is more than a calculator!
(1 row)

The target list allows the use of an optional AS clause for each specified target, which re-names
a column in the returned result set to an arbitrary name specified in the clause. The rules and
limitations for the specified name are the same as for normal identifiers (e.g., they may be
quoted to contain spaces, may not be keywords unless quoted, and so on).

Using AS has no lasting effect on the column itself, but only on the result set which is returned
by the query. AS can be particularly useful when selecting expressions or constants, rather than
plain columns. Naming result set columns with AS can clarify the meaning of an otherwise
ambiguous expression or constant. This technique is demonstrated in Example 4-26, which
shows the same results as Example 4-25, but with different column headings.

Example 4-26. Using the AS clause with expressions and constants

booktown=# SELECT 2 + 2 AS "2 plus 2",

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SELECT 2 + 2 AS "2 plus 2",
booktown-# pi() AS "the pi function",
booktown-# 'PostgreSQL is more than a calculator!' AS comments;
 2 plus 2 | the pi function | comments
----------+------------------+---------------------------------------
 4 | 3.14159265358979 | PostgreSQL is more than a calculator!
(1 row)

Selecting Sources with the FROM Clause
The FROM clause allows you to choose either a table or a result set as a source for your
specified target list. Multiple sources may be entered following the FROM clause, separated by
commas. Specifying multiple sources in this fashion is functionally similar to a CROSS JOIN,
discussed in the Section called Joining Data Sets with JOIN."

Take care when specifying multiple FROM sources to PostgreSQL. The result of performing a
SELECT on several comma-delimited sources without a WHERE or JOIN clause to qualify the
relationship between the sources is that the complete Cartesian product of the sources will be
returned. This is a result set where each column from each source is combined in every
possible combination of rows between each other source.

Typically a WHERE clause is used to define the relationship between comma-delimited FROM
sources, as shown in Example 4-27 (see the Section called Qualifying with the WHERE
Clause" for more information about the WHERE clause).

You must be careful when identifying column names and using multiple sources in the FROM
clause, as it can introduce ambiguity between identifiers. Consider a SELECT that draws from
both the books table and the authors table. Each of these tables has a column called id. If
specified, PostgreSQL will be unable to determine if the id column refers to the book, or the
author:

booktown=# SELECT id FROM books, authors;
ERROR: Column reference "id" is ambiguous

As a result of the potential for ambiguity, "complete" column names can be referenced through
a special syntax called dot-notation. Dot-notation refers to the placement of a dot, or period,
between the table name and a column name, in order to explicitly reference a particular
column. For example, books.id refers to the id column within the books table.

Dot-notation is only required in instances of ambiguity between data sets. As shown in
Example 4-27, you can use the column name as an identifier source, as long as it is unique
among the available sets defined by the FROM clause. (In this case, the title column, which is
unique to the books table, and the last_name column, which is unique to the authors tables).

Example 4-27. Selecting from multiple table sources

booktown=# SELECT books.id, title, authors.id, last_name
booktown-# FROM books, authors
booktown-# WHERE books.author_id = authors.id;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# WHERE books.author_id = authors.id;
 id | title | id | last_name
-------+-----------------------------+-------+--------------
 190 | Little Women | 16 | Alcott
 156 | The Tell-Tale Heart | 115 | Poe
 41472 | Practical PostgreSQL | 1212 | Worsley
 2038 | Dynamic Anatomy | 1644 | Hogarth
 1608 | The Cat in the Hat | 1809 | Geisel
 1590 | Bartholomew and the Oobleck | 1809 | Geisel
 4513 | Dune | 1866 | Herbert
 4267 | 2001: A Space Odyssey | 2001 | Clarke
 1501 | Goodnight Moon | 2031 | Brown
 7808 | The Shining | 4156 | King
 41473 | Programming Python | 7805 | Lutz
 41477 | Learning Python | 7805 | Lutz
 41478 | Perl Cookbook | 7806 | Christiansen
 25908 | Franklin in the Dark | 15990 | Bourgeois
 1234 | The Velveteen Rabbit | 25041 | Bianco
(15 rows)

If you wish to use a sub-query to generate a result set as a source for your FROM clause, the
entire query must be surrounded by parentheses. This instructs PostgreSQL to correctly
interpret the query as a sub-SELECT statement and to execute it before the SELECT statement
within which it resides.

Example 4-28 demonstrates a peculiar query which retrieves all column values (*) from the
books table via a sub-query. The query then retrieves a string constant of test and the id
values from that result set (derived from the sub-query).

Example 4-28. Selecting from a sub-query

booktown=# SELECT 'test' AS test, id
booktown-# FROM (SELECT * FROM books)
booktown-# AS example_sub_query;
 test | id
------+-------
 test | 7808
 test | 4513
 test | 4267
 test | 1608
 test | 1590
 test | 25908
 test | 1501
 test | 190
 test | 1234
 test | 2038
 test | 156
 test | 41472
 test | 41473
 test | 41477
 test | 41478
(15 rows)

The query in Example 4-28 is rather peculiar because the net effect is no different than if you
had selected from the books table. This occurs because the result set from the sub-query is
identical to the set of values in the books table. The use of this query demonstrates the
combination of a string constant from one SELECT statement with a value drawn from the
result set of a second SELECT statement. See the Section called Using Sub-Queries" for more
realistic examples of sub-queries once you have a better understanding of the SELECT
statement itself.

Note: When specifying a table that is inherited by other tables, you may provide

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note: When specifying a table that is inherited by other tables, you may provide
the optional ONLY keyword before the table name to indicate that you do not want
to draw from any sub-tables. (See Chapter 7 for more information on inheritance.)

Aliasing FROM Sources
Like columns, FROM sources (e.g., tables, or sub-queries) may be aliased with the AS clause.
This is usually applied as a convenient shorthand for the dot-notation described in the
preceding section. Aliasing a data set allows you to refer to it via dot-notation, which provides
a more succinct and readable SQL statement. Example 4-29 demonstrates the same query used
in Example 4-27, however you can see that it simplifies the dot-notation with the AS clause.

Example 4-29. Aliasing FROM sources

booktown=# SELECT b.id, title, a.id, last_name
booktown-# FROM books AS b, authors AS a
booktown-# WHERE b.author_id = a.id;
 id | title | id | last_name
-------+-----------------------------+-------+--------------
 190 | Little Women | 16 | Alcott
 156 | The Tell-Tale Heart | 115 | Poe
 41472 | Practical PostgreSQL | 1212 | Worsley
 2038 | Dynamic Anatomy | 1644 | Hogarth
 1608 | The Cat in the Hat | 1809 | Geisel
 1590 | Bartholomew and the Oobleck | 1809 | Geisel
 4513 | Dune | 1866 | Herbert
 4267 | 2001: A Space Odyssey | 2001 | Clarke
 1501 | Goodnight Moon | 2031 | Brown
 7808 | The Shining | 4156 | King
 41473 | Programming Python | 7805 | Lutz
 41477 | Learning Python | 7805 | Lutz
 41478 | Perl Cookbook | 7806 | Christiansen
 25908 | Franklin in the Dark | 15990 | Bourgeois
 1234 | The Velveteen Rabbit | 25041 | Bianco
(15 rows)

In addition to placing aliases on the FROM clause's data sources, you can place aliases on the
columns within that source. This is done by following a valid data source's alias with a list of
column aliases, grouped in parentheses and separated by commas. A column alias list
therefore consists of a sequence of identifier aliases for each column, which correspond to the
literal columns in the order that the table is defined with (from left to right).

When describing a column alias list, you do not need to specify each column; any column that
is left unspecified is accessible via its normal name within such a query. If the only column
you wish to alias is to the right of any other columns that you do not necessarily wish to alias,
you will need to explicitly list the preceding columns (it is valid to list the same name for an
existing column as its "alias"). Otherwise, PostgreSQL will have no way of knowing which
column you were attempting to alias and will assume you were addressing the first column
from the left.

Note: The AS keyword is technically considered noise, and may be omitted in
practice; PostgreSQL determines that any stray identifiers following a FROM
source may be used as aliases.

Example 4-30 illustrates the same query that is used in Example 4-29 but aliases the id
columns in each table to unique identifiers in order to reference them directly (i.e., without
dot-notation). The syntax is functionally identical, aliasing only the books table's id column,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dot-notation). The syntax is functionally identical, aliasing only the books table's id column,
thus making the authors table's id column non-ambiguous:

Example 4-30. Aliasing columns

booktown=# SELECT the_book_id, title, id, last_name
booktown-# FROM books AS b (the_book_id), authors
booktown-# WHERE author_id = id;
 the_book_id | title | id | last_name
-------------+-----------------------------+-------+--------------
 190 | Little Women | 16 | Alcott
 156 | The Tell-Tale Heart | 115 | Poe
 41472 | Practical PostgreSQL | 1212 | Worsley
 2038 | Dynamic Anatomy | 1644 | Hogarth
 1608 | The Cat in the Hat | 1809 | Geisel
 1590 | Bartholomew and the Oobleck | 1809 | Geisel
 4513 | Dune | 1866 | Herbert
 4267 | 2001: A Space Odyssey | 2001 | Clarke
 1501 | Goodnight Moon | 2031 | Brown
 7808 | The Shining | 4156 | King
 41473 | Programming Python | 7805 | Lutz
 41477 | Learning Python | 7805 | Lutz
 41478 | Perl Cookbook | 7806 | Christiansen
 25908 | Franklin in the Dark | 15990 | Bourgeois
 1234 | The Velveteen Rabbit | 25041 | Bianco
(15 rows)

Removing Duplicate Rows with DISTINCT
The optional DISTINCT keyword excludes duplicate rows from the result set. If supplied
without the ON clause, a query that specifies DISTINCT will exclude any row whose target
columns have already been retrieved identically. Only columns in the SELECT's target list will
be evaluated.

For example, the books table has 15 rows, each with an author_id. Some authors may have
several entries in the books table, causing there to be several rows with the same author_id.
Supplying the DISTINCT clause, as shown in the first query in Example 4-31, ensures that the
result set will not have two identical rows.

Example 4-31. Using DISTINCT

booktown=# SELECT DISTINCT author_id
booktown-# FROM books;
 author_id

 16
 115
 1212
 1644
 1809
 1866
 2001
 2031
 4156
 7805
 7806
 15990
 25041
(13 rows)

booktown=# SELECT DISTINCT ON (author_id)
booktown-# author_id, title

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# author_id, title
booktown-# FROM books;
 author_id | title
-----------+-----------------------
 16 | Little Women
 115 | The Tell-Tale Heart
 1212 | Practical PostgreSQL
 1644 | Dynamic Anatomy
 1809 | The Cat in the Hat
 1866 | Dune
 2001 | 2001: A Space Odyssey
 2031 | Goodnight Moon
 4156 | The Shining
 7805 | Programming Python
 7806 | Perl Cookbook
 15990 | Franklin in the Dark
 25041 | The Velveteen Rabbit
(13 rows)

As you can see, the first query in Example 4-31 returns only 13 rows from the books table,
even though there are 15 total rows within it. Two authors with two books each end up being
displayed only once.

The second query in Example 4-31 uses a different form of DISTINCT, which specifies the
columns (or expressions) to be checked for redundancies. In this case, 13 rows are still
returned, as the ON clause specifies to use the author_id column as the basis for determining if
a row is redundant or not. Without the ON clause, the second query would return all 15 rows,
because the DISTINCT clause would cause PostgreSQL to look for rows that are completely
unique.

The titles that are omitted from the resultant data set by ON are arbitrarily determined by
PostgreSQL, unless an ORDER BY clause is specified. If the ORDER BY clause is used with
DISTINCT, you can specify the order in which columns are selected; hence, you can select
which rows will be considered distinct first. See the Section called Sorting Rows with ORDER
BY" for information about sorting rows.

If you are interested in grouping rows which have non-unique criteria, rather than omitting all
rows but one, see the description of the GROUP BY clause in the Section called Grouping Rows
with GROUP BY."

Qualifying with the WHERE Clause
The WHERE clause allows you to provide Boolean (true or false) conditions that rows must
satisfy to be included in the resulting row set. In practice, a SELECT statement will almost
always contain at least one qualification via the WHERE clause.

For example, suppose that you want to see all of the books in Book Town's Computers
section. The subject_id for the Computers subject is 4. Therefore, the WHERE clause can be
applied with an equivalence operation (the = operator) to check for all books in the books table
with a subject_id equal to 4. This is demonstrated in Example 4-32.

Example 4-32. A simple WHERE clause

booktown=# SELECT * FROM books
booktown-# WHERE subject_id = 4;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# WHERE subject_id = 4;
 id | title | author_id | subject_id
-------+----------------------+-----------+------------
 41472 | Practical PostgreSQL | 1212 | 4
 41473 | Programming Python | 7805 | 4
 41477 | Learning Python | 7805 | 4
 41478 | Perl Cookbook | 7806 | 4
(4 rows)

The query in Example 4-32 returns only rows whose subject_id column matches the integer
constant value of 4. Thus, only the four rows for computer books are returned, rather than the
15 rows shown by the simple query in Example 4-23.

The WHERE clause accepts numerous conditions, provided that they are joined by valid logical
keywords (e.g., the AND, and OR keywords) and returns a single Boolean condition. For
example, you may be interested in seeing all Book Town titles that fall under the Computers
subject which are also by the author Mark Lutz, thus joining two conditions to narrow the
focus of your query. Alternatively, you might be interested in seeing each of Book Town's
titles that fall under either the Computers subject or the Arts subject, thereby joining two
conditions to broaden the focus of your intended result set. Example 4-33 demonstrates each
of these scenarios using the AND keyword and OR keyword, respectively.

Example 4-33. Combining conditions in the WHERE clause

booktown=# SELECT title FROM books
booktown-# WHERE subject_id = 4
booktown-# AND author_id = 7805;
 title

 Programming Python
 Learning Python
(2 rows)

booktown=# SELECT title FROM books
booktown-# WHERE subject_id = 4
booktown-# OR subject_id = 0;
 title

 Dynamic Anatomy
 Practical PostgreSQL
 Programming Python
 Learning Python
 Perl Cookbook
(5 rows)

The first SELECT statement in Example 4-33 combines one condition, which checks for titles in
the Computers subject (with a subject_id of 4), with another condition, which checks if the
author is Mark Lutz (with an author_id of 7805) via the AND keyword. The result is a smaller
data set, constrained to two rows that fit both specified conditions.

The second SELECT statement in Example 4-33 combines the same first condition (books in the
Computers subject) with a second condition: if the title falls under the Arts subject (with a
subject_id of 0). The result is a slightly larger data set of five rows that matched at least one
of these conditions.

WHERE conditions may be grouped together indefinitely, though after two conditions you may
wish to group the conditions with parentheses. Doing so explicitly indicates how the
conditions are interrelated. As a demonstration, the two statements in Example 4-34 have
different effects based merely on the addition of parentheses.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 4-34. Grouping WHERE conditions with parentheses

booktown=# SELECT * FROM books
booktown-# WHERE author_id = 1866
booktown-# AND subject_id = 15
booktown-# OR subject_id = 3;
 id | title | author_id | subject_id
------+----------------------+-----------+------------
 4513 | Dune | 1866 | 15
 1234 | The Velveteen Rabbit | 25041 | 3
(2 rows)

booktown=# SELECT * FROM books
booktown-# WHERE author_id = 1866
booktown-# AND (subject_id = 15
booktown(# OR subject_id = 3);
 id | title | author_id | subject_id
------+-------+-----------+------------
 4513 | Dune | 1866 | 15
(1 row)

The preceding example demonstrates two attempts to look up Book Town titles with an
author_id of 1866. The titles also have a subject_id of either 15, or 3. As you can see from
the first statement, when the three conditions are used without parentheses, the intent of the
statement is ambiguous, and interpreted incorrectly. The addition of parentheses will cause the
evaluations within parentheses to be considered before any surrounding condition.

Joining Data Sets with JOIN
As demonstrated by the use of the WHERE clause on two table sources in the Section called
Selecting Sources with the FROM Clause," you have the ability to retrieve data from different
data sources by combining their columns into joined rows. In SQL, this process is formally
called a join.

The essential concept behind a join is that two or more data sets, when joined, have their
columns combined into a new set of rows containing each of the columns requested from each
of the data sets. The foundation of all joins is the Cartesian product, which is the set of all
possible combinations between two data sets. That product may then be refined into a smaller
subset by a set of criteria in the JOIN syntax. These criteria describe a relationship between
data sets, though such a definition is not required.

There are three general types of joins:

Cross joins

Creates a Cartesian product (or cross product) between two sets of data. It is called a
product because it does not define a relationship between the sets; instead, it returns
every possible combination of rows between the joined sets, essentially multiplying the
sources by one another.

Inner joins

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creates a subset of the Cartesian product between two sets of data, requiring a
conditional clause to specify criteria upon which to join records. The condition must
return a Boolean value to determine whether or not a row is included in the joined set.

Outer joins

Similar to an inner join, in that it accepts criteria which will match rows between two
sets of data, but returns at least one instance of each row from a specified set. This is
either the left set (the data source to the left of the JOIN keyword), the right set (the data
source to the right of the JOIN keyword), or both sets, depending on the variety of outer
join employed. The missing column values for the empty half of the row which does not
meet the join condition are returned as NULL values.

Cross joins

A cross join is functionally identical to listing comma-delimited sources. It therefore should
almost always be accompanied by a WHERE clause to qualify the relationship between the
joined data sets. Example 4-35 demonstrates the same functional query used in Example 4-27,
substituting the comma for the formal JOIN syntax.

Example 4-35. A simple CROSS JOIN

booktown=# SELECT b.id, title, a.id, last_name
booktown-# FROM books AS b CROSS JOIN authors AS a
booktown-# WHERE b.author_id = a.id;
 id | title | id | last_name
-------+-----------------------------+-------+--------------
 190 | Little Women | 16 | Alcott
 156 | The Tell-Tale Heart | 115 | Poe
 41472 | Practical PostgreSQL | 1212 | Worsley
 2038 | Dynamic Anatomy | 1644 | Hogarth
 1608 | The Cat in the Hat | 1809 | Geisel
 1590 | Bartholomew and the Oobleck | 1809 | Geisel
 4513 | Dune | 1866 | Herbert
 4267 | 2001: A Space Odyssey | 2001 | Clarke
 1501 | Goodnight Moon | 2031 | Brown
 7808 | The Shining | 4156 | King
 41473 | Programming Python | 7805 | Lutz
 41477 | Learning Python | 7805 | Lutz
 41478 | Perl Cookbook | 7806 | Christiansen
 25908 | Franklin in the Dark | 15990 | Bourgeois
 1234 | The Velveteen Rabbit | 25041 | Bianco
(15 rows)

This syntax is merely a more formal way of stating the relationship between the two data sets.
There is no functional difference between the CROSS JOIN syntax and using a simple comma
delimited list of columns.

Inner and outer join syntax

More useful are the inner and outer joins, which require a qualification of the relationship
between joined data sets in the JOIN syntax itself. The following is the syntax for an inner or
outer join:

 source1 [NATURAL] join_type source2
 [ON (condition [, ...]) | USING (column [, ...])]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [ON (condition [, ...]) | USING (column [, ...])]

source1

Identifies the first data set that is being joined (i.e., a table name or sub-query).

[NATURAL]

Implies that the two data sets should be joined on equivalent values between like-named
columns (e.g., if two tables have a column called id, it will join rows where the id
values are equivalent). The NATURAL clause will respect column aliases, if applied. The
use of the NATURAL clause makes it both unnecessary and invalid to try to specify either
of the ON or USING clauses.

join_type

Specifies the type of JOIN intended. Valid values in this context are [INNER] JOIN
(specifying just JOIN implies an INNER JOIN), LEFT [OUTER] JOIN, RIGHT [OUTER]
JOIN, and FULL [OUTER] JOIN.

source2

Identifies the second data set that is being joined (i.e., a table name, or sub-query).

[ON (condition [, ...]) |

Identifies the second data set that is being joined (i.e., a table name, or sub-query).

Specifies the relationship between source1 and source2. Any arbitrary criteria may be
specified within the ON clause, just as you would specify conditions following a WHERE
clause. Column and table aliases are allowed in this criteria.

USING (column [, ...])]

Specifies like-named columns between source1 and source2 with which to join rows
by equivalent values. Similar to a NATURAL JOIN, but allows you to indicate what
specific columns to join on, whereas NATURAL will join on all like-named columns.
Similar to NATURAL joins, column aliases are respected in the USING clause's parameters.

Inner joins

The SQL92 INNER JOIN syntax is a tool that helps differentiate the conditions with which you
are joining data sources (the JOIN conditions) from the conditions with which you are
evaluating rows for inclusion in your data set (the WHERE conditions). For example, consider
the two SELECT statements in Example 4-36.

Example 4-36. Comparing INNER JOIN to WHERE

booktown=# SELECT title, last_name, first_name
booktown-# FROM books, authors
booktown-# WHERE (books.author_id = authors.id)
booktown-# AND last_name = 'Geisel';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# AND last_name = 'Geisel';
 title | last_name | first_name
-----------------------------+-----------+---------------
 The Cat in the Hat | Geisel | Theodor Seuss
 Bartholomew and the Oobleck | Geisel | Theodor Seuss
(2 rows)

booktown=# SELECT title, last_name, first_name
booktown-# FROM books AS b INNER JOIN authors AS a
booktown-# ON (b.author_id = a.id)
booktown-# WHERE last_name = 'Geisel';
 title | last_name | first_name
-----------------------------+-----------+---------------
 The Cat in the Hat | Geisel | Theodor Seuss
 Bartholomew and the Oobleck | Geisel | Theodor Seuss
(2 rows)

The two forms of syntax in Example 4-36 are functionally identical, and return the same
results. The INNER JOIN syntax allows you to segregate the relational criteria from your
evaluation criteria by only defining the set relationships in the ON clause. This can make
involved queries much easier to read and maintain, as you do not need to interpret what each
condition described by the WHERE clause is conceptually achieving.

Notice that the second query demonstrates the use of aliases b and a in the ON clause for the
books and authors tables, respectively. The use of these aliases in the ON clause is perfectly
valid, and often preferable from a perspective of improved readability.

In cases of simple equivalence joins, it may be more convenient for you to use either the
USING or NATURAL clauses instead of the ON clause. These are only applicable on data sets with
identically named columns. If you have columns that define a relationship between two sets
that are not identically named, you may still use the USING or NATURAL clauses by employing
column aliases, as demonstrated in Example 4-37, to re-name one or both of the columns to a
uniform name.

Example 4-37. The NATURAL and USING clauses

booktown=# SELECT title, last_name, first_name
booktown-# FROM books INNER JOIN authors AS a (author_id)
booktown-# USING (author_id)
booktown-# WHERE last_name = 'Geisel';
 title | last_name | first_name
-----------------------------+-----------+---------------
 The Cat in the Hat | Geisel | Theodor Seuss
 Bartholomew and the Oobleck | Geisel | Theodor Seuss
(2 rows)

booktown=# SELECT title, last_name, first_name
booktown-# FROM books NATURAL INNER JOIN authors AS a (author_id)
booktown-# WHERE last_name = 'Geisel';
 title | last_name | first_name
-----------------------------+-----------+---------------
 The Cat in the Hat | Geisel | Theodor Seuss
 Bartholomew and the Oobleck | Geisel | Theodor Seuss
(2 rows)

The first SELECT statement in Example 4-37 assigns the alias of author_id to the first column
in the authors table (which is actually named id). By passing the author_id identifier to the
USING clause, PostgreSQL then searches for a column identifier in each data set with that
name to join rows on values found to be equivalent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Inner joins are adequate for a wide variety of queries, but there are times when an outer join is
required to get all of the data you need. The key to understanding the difference between inner
and outer joins is in knowing how each type of join handles rows that do not meet their
defined relationship.

In short, an inner join will discard any row for which it cannot find a corresponding value
between the sets being joined (as specified by either the ON or USING clause).

Outer joins

In contrast to inner joins, an outer join can retain rows where corresponding values between
sets are not found, populating the missing columns with NULL values. Whether or not the outer
join does retain that row depends on which set is missing the value and the kind of outer join
that is specified.

There are three forms of outer joins:

Left outer joins

Will always return at least one instance of each row in the set of rows to the left of the
JOIN keyword. Missing columns in the right set are populated with NULL values.

Right outer joins

Will always return at least one instance of each row in the set of rows to the right of the
JOIN keyword. Missing columns in the left set are populated with NULL values.

Full outer joins

Will always return at least one instance of each row in each joined set. Missing columns
on either side of the new set will be populated with NULL values.

Consider again Book Town's books table, and another Book Town table called editions.
While the books table stores general information on a given title, the editions table stores
specific information pertaining to each edition, such as an the book's ISBN, publisher, and
publication date. The editions table has a column called book_id which corresponds to the
books table's primary key column, id.

Suppose that you want to retrieve each of Book Town's titles, along with its isbn, if applicable.
Performing a query with an inner join between the books and editions tables will correctly
return a data set with title and isbn columns. However, as demonstrated in Example 4-38, if a
book does not yet have a printed edition (or if that edition has not yet been entered into Book
Town's database), those titles will not be displayed.

In contrast, the statement immediately following the inner join in Example 4-38 employs an
outer join, returning 20 rows. Three of the returned rows do not have ISBN numbers, but are
not omitted due to the definition of the join.

Example 4-38. Inner joins versus outer joins

booktown=# SELECT title, isbn
booktown-# FROM books INNER JOIN editions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# FROM books INNER JOIN editions
booktown-# ON (books.id = editions.book_id);
 title | isbn
-----------------------------+------------
 The Tell-Tale Heart | 1885418035
 The Tell-Tale Heart | 0929605942
 Little Women | 0760720002
 The Velveteen Rabbit | 0679803335
 Goodnight Moon | 0694003611
 Bartholomew and the Oobleck | 0394800753
 The Cat in the Hat | 039480001X
 The Cat in the Hat | 0394900014
 Dynamic Anatomy | 0823015505
 2001: A Space Odyssey | 0451457994
 2001: A Space Odyssey | 0451198492
 Dune | 0441172717
 Dune | 044100590X
 The Shining | 0451160916
 The Shining | 0385121679
 Franklin in the Dark | 0590445065
 Programming Python | 0596000855
(17 rows)

booktown=# SELECT title, isbn
booktown-# FROM books LEFT OUTER JOIN editions
booktown-# ON (books.id = editions.book_id);
 title | isbn
-----------------------------+------------
 The Tell-Tale Heart | 1885418035
 The Tell-Tale Heart | 0929605942
 Little Women | 0760720002
 The Velveteen Rabbit | 0679803335
 Goodnight Moon | 0694003611
 Bartholomew and the Oobleck | 0394800753
 The Cat in the Hat | 039480001X
 The Cat in the Hat | 0394900014
 Dynamic Anatomy | 0823015505
 2001: A Space Odyssey | 0451457994
 2001: A Space Odyssey | 0451198492
 Dune | 0441172717
 Dune | 044100590X
 The Shining | 0451160916
 The Shining | 0385121679
 Franklin in the Dark | 0590445065
 Practical PostgreSQL |
 Programming Python | 0596000855
 Learning Python |
 Perl Cookbook |
(20 rows)

The join specified by the second query in Example 4-38 uses the LEFT OUTER JOIN clause to
define its join type. This is because the query focuses on titles from the books table that have
ISBN numbers, and not those editions having ISBN numbers that do not correspond to titles.
As the books table is to the left of the JOIN keyword, it is defined as a left outer join to achieve
this. If the focus of the query was to see both ISBN numbers without titles as well as titles
without ISBN numbers, the same query could instead be modified to be a full outer join with
the FULL OUTER JOIN clause.

The difference between inner and outer joins illustrated in Example 4-38 is a vital concept to
understand, as misuse of joins can lead to both omitted and unexpected rows.

Note: The actual OUTER keyword is an optional term in a PostgreSQL outer join.
Specifying a join as either a LEFT JOIN, RIGHT JOIN or FULL JOIN implicitly
defines it as an outer join.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Intricate joins

It should be understood that while a single JOIN clause connects only two sets of data, in
practice, joins are not restricted to only two data sources. You may arbitrarily specify
numerous JOIN clauses following sets that are themselves constructed from joins, just as you
may specify numerous data sources separated by commas.

When connecting several joins together, it is a good practice to group each join and sub-join
within parentheses. Explicitly grouping joins in this fashion insures that there is no ambiguity,
to either PostgreSQL or a developer, as to which data sets are joined, and in what order.

Example 4-39. Joining many data sources

booktown=# SELECT a.last_name, p.name AS publisher, e.isbn, s.subject
booktown-# FROM ((((authors AS a INNER JOIN books AS b
booktown(# ON (a.id = b.author_id))
booktown(# INNER JOIN editions AS e ON (e.book_id = b.id))
booktown(# INNER JOIN publishers AS p ON (p.id = e.publisher_id))
booktown(# INNER JOIN subjects AS s ON (s.id = b.subject_id));
 last_name | publisher | isbn | subject
-----------+-----------------------------+------------+------------------
 Hogarth | Watson-Guptill Publications | 0823015505 | Arts
 Brown | HarperCollins | 0694003611 | Children's Books
 Geisel | Random House | 0394800753 | Children's Books
 Geisel | Random House | 039480001X | Children's Books
 Geisel | Random House | 0394900014 | Children's Books
 Bourgeois | Kids Can Press | 0590445065 | Children's Books
 Bianco | Penguin | 0679803335 | Classics
 Lutz | O'Reilly & Associates | 0596000855 | Computers
 Alcott | Henry Holt & Company, Inc. | 0760720002 | Drama
 Poe | Mojo Press | 1885418035 | Horror
 Poe | Books of Wonder | 0929605942 | Horror
 King | Doubleday | 0451160916 | Horror
 King | Doubleday | 0385121679 | Horror
 Clarke | Roc | 0451457994 | Science Fiction
 Clarke | Roc | 0451198492 | Science Fiction
 Herbert | Ace Books | 0441172717 | Science Fiction
 Herbert | Ace Books | 044100590X | Science Fiction
(17 rows)

An interesting observation to be made about Example 4-39 is that, while the books table is
itself deeply involved in the join, none of its columns are retrieved in the final result set. The
books table is included in the JOIN clauses in order to provide criteria through which other
tables are joined together. Each of the tables whose columns are retrieved in the query rely on
the books table in order to draw relationships with any other table through the id column (with
the exception of the publishers table, which relates to the publisher_id column in the
editions table).

Grouping Rows with GROUP BY
The GROUP BY clause introduces a powerful SQL concept: aggregation. To aggregate means to
gather into a sum, or whole. The practical effect of aggregating in a SQL query is that any
rows whose results from the GROUP BY expression match identically are grouped together into
a single aggregate row. The GROUP BY expression may define a column, but it may also be any

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a single aggregate row. The GROUP BY expression may define a column, but it may also be any
operation upon a column as well. If several columns or expressions are specified (delimited by
commas), the entire set of specified criteria must be identical for rows to be grouped together.

To effectively use aggregation you must understand that any target columns requested by an
aggregating query which are not specified in the GROUP BY clause will be inaccessible, unless
selected through an aggregate function. An aggregate function accepts a column name (or
expression involving at least one column name) which can represent several values (i.e., from
several grouped rows), performs an operation on those values, and returns a single value.

Common aggregate functions include count(), which returns the number of rows in the set,
max(), which returns the maximum value in the column, and min(), which returns the
minimum value in the column. An aggregate function operates only on rows in the query's
result set, and is therefore executed after conditional joins and WHERE conditions have been
processed.

Imagine that you wanted to know how many books Book Town stores in its database for each
known publisher. You could perform a simple join between the editions and publishers
tables in order to associate each publisher name with a title that they publish. It would be
tedious to manually count how many titles each publisher maintained, and in cases of larger
data sets, it can become difficult to manage larger result sets.

Example 4-40 demonstrates a join between these two Book Town tables, but also introduces
two new elements: the count() function, and the GROUP BY clause.

Example 4-40. Using GROUP BY

booktown=# SELECT count(e.isbn) AS "number of books",
booktown-# p.name AS publisher
booktown-# FROM editions AS e INNER JOIN publishers AS p
booktown-# ON (e.publisher_id = p.id)
booktown-# GROUP BY p.name;
 number of books | publisher
-----------------+-----------------------------
 2 | Ace Books
 1 | Books of Wonder
 2 | Doubleday
 1 | HarperCollins
 1 | Henry Holt & Company, Inc.
 1 | Kids Can Press
 1 | Mojo Press
 1 | O'Reilly & Associates
 1 | Penguin
 3 | Random House
 2 | Roc
 1 | Watson-Guptill Publications
(12 rows)

The GROUP BY clause in Example 4-40 instructs PostgreSQL to group the rows in the joined
data set by p.name, which in this query is a reference to the name column in the publishers
table. Therefore, any rows that have the same publisher name will be grouped together, or
aggregated. The count() function then counts the number of isbn values from the editions
table that are in each aggregated row, and returns a single numeric value representing the
number of rows that were aggregated for each unique publisher.

Note that in Example 4-40 the argument of the editions table's isbn column is chosen simply

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that in Example 4-40 the argument of the editions table's isbn column is chosen simply
to indicate the objective of the example (to count how many books there are per publisher).
Any column name will return the same number, as count() will always return the number of
rows grouped in the current aggregate row.

Something to watch out for when designing aggregate queries is that the WHERE clause cannot
accept criteria involving aggregate functions. Instead, use the HAVING clause. It functions
identically to the WHERE clause, but its conditions must be on aggregate functions rather than
single-row conditions. Syntactically, the HAVING clause follows the GROUP BY clause, as
demonstrated in Example 4-41.

Example 4-41. Using the HAVING clause

booktown=# SELECT count(e.isbn) AS "number of books",
booktown-# p.name AS publisher
booktown-# FROM editions AS e INNER JOIN publishers AS p
booktown-# ON (e.publisher_id = p.id)
booktown-# GROUP BY publisher
booktown-# HAVING count(e.isbn) > 1;
 number of books | publisher
-----------------+--------------
 2 | Ace Books
 2 | Doubleday
 3 | Random House
 2 | Roc
(4 rows)

Both Example 4-40 and Example 4-41 create a data set through an inner join between the
editions and publishers table. However, Example 4-41 constrains the final result to
publishers having more than a single book in the Book Town database, as set by the HAVING
clause.

Note: If a result set's column is aliased via an AS clause to a name that overlaps
with a real column in one of the source data sets, and used in the GROUP BY clause,
PostgreSQL will assume that you are referring to the input column, not the output
alias.

Sorting Rows with ORDER BY
As described in Chapter 3, row data is not stored in a consistent order within tables. In fact, an
identical query executed twice is in no way guaranteed to return the rows in the same order
each time. As order is commonly an important part of retrieving data for database-dependent
applications, use the ORDER BY clause to allow flexible sorting of your result set.

The ORDER BY clause accepts as its parameters a list of comma-delimited column names (or
expressions upon columns), which are used as sorting criteria. For each sort criteria, you may
optionally apply either the ASC, DESC, or USING keywords to control the type of sorting
employed:

ASC

Causes the rows to sort by the related criteria in an ascending fashion (e.g., numbers will
be sorted lowest to highest, text will be sorted alphabetically from a to z). ASC is
equivalent to specifying USING <. Since it is the default behavior, specifying ASC is only
useful for explicit readability.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DESC

Causes the rows to sort by the related criteria in a descending fashion (e.g., numbers will
be sorted highest to lowest, text will be sorted alphabetically from z to a). DESC is
equivalent to specifying USING >.

USING operator

Allows the specification of the operator operator to be used to compare each column
for precedence. This can be particularly useful for custom operators.

Example 4-42 demonstrates the use of the ORDER BY clause on the editions table. It specifies
the publication column as the source of values to sort by, and explicitly declares the
ordering method as an ascending (ASC) sort.

Example 4-42. Using ORDER BY

booktown=# SELECT isbn, edition, publication
booktown-# FROM editions
booktown-# ORDER BY publication ASC;
 isbn | edition | publication
------------+---------+-------------
 0760720002 | 1 | 1868-01-01
 0679803335 | 1 | 1922-01-01
 0694003611 | 1 | 1947-03-04
 0394800753 | 1 | 1949-03-01
 0394900014 | 1 | 1957-01-01
 039480001X | 1 | 1957-03-01
 0823015505 | 1 | 1958-01-01
 0451160916 | 1 | 1981-08-01
 0590445065 | 1 | 1987-03-01
 0385121679 | 2 | 1993-10-01
 1885418035 | 1 | 1995-03-28
 0441172717 | 2 | 1998-09-01
 0929605942 | 2 | 1998-12-01
 044100590X | 3 | 1999-10-01
 0451198492 | 3 | 1999-10-01
 0451457994 | 3 | 2000-09-12
 0596000855 | 2 | 2001-03-01
(17 rows)

As you can see in the result set from Example 4-42, the rows return in ascending order, from
the oldest date to the newest. It should be noted that even columns and expressions that do not
appear in the target list of the SELECT statement may be used to sort the retrieved rows.
Furthermore, aggregate functions and expressions are allowed by the ORDER BY clause if the
query involves aggregation. The ability to sort by such a wide scope of sources thus allows for
a great deal of flexibility in ordering results from a variety of query approaches.

Warning
If a column alias in the result set has the same name as a literal column in an input source
from which it is drawing rows, and it is used in the ORDER BY clause, PostgreSQL will
assume that it is a reference to the named column in the result set, not the column in the
source set. This is an accepted inconsistency compared against the default behavior of the
GROUP BY clause, as specified by the SQL92 standard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When specifying multiple expressions to sort by, the result set will be ordered by the first
criteria (from left to right), and will only process subsequent sorting criteria if the first
condition's sort is inconclusive. For example, consider the sorting performed in Example 4-43.

Example 4-43. Using ORDER BY with multiple expressions

booktown=# SELECT edition, publication
booktown-# FROM editions
booktown-# ORDER BY edition ASC,
booktown-# publication DESC;
 edition | publication
---------+-------------
 1 | 1995-03-28
 1 | 1987-03-01
 1 | 1981-08-01
 1 | 1958-01-01
 1 | 1957-03-01
 1 | 1957-01-01
 1 | 1949-03-01
 1 | 1947-03-04
 1 | 1922-01-01
 1 | 1868-01-01
 2 | 2001-03-01
 2 | 1998-12-01
 2 | 1998-09-01
 2 | 1993-10-01
 3 | 2000-09-12
 3 | 1999-10-01
 3 | 1999-10-01
(17 rows)

The query in Example 4-43 selects the numeric edition and publication date of each book
from the editions table. The ORDER BY clause then specifies two columns to sort by:
edition, in ascending order, and publication, in descending order.

As you can see in the result set for Example 4-43, each row is first sorted by edition,
proceeding from the lower editions to the higher editions. Subsequently, wherever the editions
are identical, the publication date is used to then sort again, from the most recent publication
date to the least recent.

Sorting is extremely relevant when using the DISTINCT keyword, as discussed in the Section
called Removing Duplicate Rows with DISTINCT." If you are only interested in seeing the
most recently published copy of each edition in the editions table, the ORDER BY and
DISTINCT clauses can be combined to achieve an effect somewhat similar to the GROUP BY
clause, as shown in Example 4-44.

Example 4-44. Using DISTINCT with ORDER BY

booktown=# SELECT DISTINCT ON (edition)
booktown-# edition, publication
booktown-# FROM editions
booktown-# ORDER BY edition ASC,
booktown-# publication DESC;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# publication DESC;
 edition | publication
---------+-------------
 1 | 1995-03-28
 2 | 2001-03-01
 3 | 2000-09-12
(3 rows)

booktown=# SELECT edition, max(publication)
booktown-# FROM editions
booktown-# GROUP BY edition;
 edition | max
---------+------------
 1 | 1995-03-28
 2 | 2001-03-01
 3 | 2000-09-12
(3 rows)

Since the ORDER BY occurring before the DISTINCT clause eliminates duplicate rows, the net
effect can be very similar to using the max() or min() with a GROUP BY clause. This technique
can sometimes be more efficient, depending on the complexity of the aggregation and sorting
involved.

Note: While never strictly necessary, PostgreSQL can accept integer constants as
expressions in the ORDER BY clause, instead of column names or expressions.
Such a constant will be interpreted as representing the column that is at the
numbered position in the target list, from left to right, starting at 1 (e.g., ORDER BY
1 ASC references the first column in the result set).

Setting Row Range with LIMIT and OFFSET
PostgreSQL enforces no limit upon the number of rows retrievable from a SQL query. If you
attempt to execute a query that returns several million rows, it may take a while, but the server
will not stop until it has returned the entire result set (or until it is interrupted).

Applications could conceivably be written to programmatically "page" through large sets of
data after retrieval, but SQL provides as a convenience the LIMIT and OFFSET clauses, which
allow for the retrieval of a specified portion of the generated result set.

When the LIMIT clause is specified, no more than the requested number of rows will be
returned (though there may be fewer if the result set is smaller than the passed parameter).
When the OFFSET clause is specified, it skips the number of rows defined by its parameters
before returning rows. If both are specified, the number of rows to be included as per the
LIMIT clause will not be counted until the number of rows dictated by the OFFSET clause have
been skipped.

Example 4-45. Using LIMIT and OFFSET

booktown=# SELECT isbn, title, publication
booktown-# FROM editions NATURAL JOIN books AS b (book_id)
booktown-# ORDER BY publication DESC
booktown-# LIMIT 5;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# LIMIT 5;
 isbn | title | publication
------------+-----------------------+-------------
 0596000855 | Programming Python | 2001-03-01
 0451457994 | 2001: A Space Odyssey | 2000-09-12
 0451198492 | 2001: A Space Odyssey | 1999-10-01
 044100590X | Dune | 1999-10-01
 0929605942 | The Tell-Tale Heart | 1998-12-01
(5 rows)

booktown=# SELECT isbn, title, publication
booktown-# FROM editions NATURAL JOIN books AS b (book_id)
booktown-# ORDER BY publication DESC
booktown-# LIMIT 5
booktown-# OFFSET 2;
 isbn | title | publication
------------+-----------------------+-------------
 0451198492 | 2001: A Space Odyssey | 1999-10-01
 044100590X | Dune | 1999-10-01
 0929605942 | The Tell-Tale Heart | 1998-12-01
 0441172717 | Dune | 1998-09-01
 1885418035 | The Tell-Tale Heart | 1995-03-28
(5 rows)

Example 4-45 demonstrates, in the first query, a simple use of LIMIT, by retrieving only 5
rows from the joined set of the editions and books table. Ordinarily, such a join would result
in 17 rows.

The second query in Example 4-45 shows the use of the OFFSET clause, to shift the scope of
the result set down by two rows. You can see that the last three rows of the first query's result
set overlap with the first three rows of the second query's result set. The ORDER BY clause in
each of these queries insures the consistency of the sets returned.

Note: The ORDER BY clause can be a helpful tool for making sure that the results
of a limited query are relevant. This is because sorting occurs before limiting,
allowing you to determine which rows end up being limited.

Comparing Sets with UNION, INTERSECT & EXCEPT
While joins are used in SQL to combine column values into a single row, the UNION,
INTERSECT and EXCEPT clauses exist to merge or omit row data by comparing column values,
returning a new result set based on this comparison. Each of these keywords may be used at
the end of a valid SQL query and followed by a second query, in order to compare the
resultant data sets, and then either merge or omit rows based on that comparison.

When comparing data sets in this manner, it is required that they each have the same number
of columns, as well as the same column type. Note that they do not need to have the same
name, or be queried from the same table or data source.

UNION

A pair of queries merged with the UNION keyword will combine all non-distinct rows
into a single data set. Like rows will not be duplicated.

INTERSECT

A pair of queries merged with the INTERSECT keyword will cause any rows not found in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A pair of queries merged with the INTERSECT keyword will cause any rows not found in
both data sets to be omitted. As such, the only rows returned are those that overlap
between the two query result sets.

EXCEPT

A pair of queries merged with the EXCEPT keyword will cause any rows found in both
data sets to be omitted from the returned data set. As such, only rows found in the query
to the left of the EXCEPT clause that are not found in the query to the right of the clause
will be returned.

Example 4-46, Example 4-47, and Example 4-48 each demonstrate these keywords by
combining and omitting rows from comparative data sets. Example 4-46 creates a result set by
combining several authors' last names with book titles via the UNION keyword.

Example 4-47 demonstrates the selection of ISBN numbers from the books table, limited to
rows which intersect with the query on the shipments table for books which have records of
more than two shipments. Finally, Example 4-48 demonstrates the removal of any rows from
the first query which are matched completely in the second.

Example 4-46. Using UNION

booktown=# SELECT title FROM books
booktown-# UNION
booktown-# SELECT last_name FROM authors
booktown-# LIMIT 11;
 title

 2001: A Space Odyssey
 Alcott
 Bartholomew and the Oobleck
 Bianco
 Bourgeois
 Brautigan
 Brite
 Brown
 Christiansen
 Clarke
 Denham
(11 rows)

Example 4-47. Using INTERSECT

booktown=# SELECT isbn FROM editions
booktown-# INTERSECT
booktown-# SELECT isbn FROM shipments
booktown-# GROUP BY isbn
booktown-# HAVING count(id) > 2;
 isbn

 039480001X
 0394800753
 0451160916
 0590445065
 0694003611
(5 rows)

Example 4-48. Using EXCEPT

booktown=# SELECT last_name, first_name
booktown-# FROM authors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# FROM authors
booktown-# EXCEPT
booktown-# SELECT last_name, first_name
booktown-# FROM authors AS a (author_id)
booktown-# NATURAL INNER JOIN books
booktown-# ORDER BY first_name ASC;
 last_name | first_name
-----------+------------
 Denham | Ariel
 Gorey | Edward
 Brite | Poppy Z.
 Brautigan | Richard
(4 rows)

In Example 4-48, only rows that do not match the second query are returned. Notice that the
effective result of this is that only authors who do not have a book in the books table are
returned. This is due to the INNER JOIN clause, which causes the second query to omit any
authors whose author_id is not found in the books table.

While the use of these keywords in a single SQL query precludes the ability to use the LIMIT
clause, this limitation can be circumvented by PostgreSQL's support for sub-queries. By
grouping in parentheses each of the queries involved between a UNION, EXCEPT, or EXCEPT
clause, the returned result sets from the sub-queries are compared, as demonstrated in Example
4-49.

Example 4-49. Comparing sub-query result sets

booktown=# (SELECT title FROM books ORDER BY title DESC LIMIT 7)
booktown-# EXCEPT
booktown-# (SELECT title FROM books ORDER BY title ASC LIMIT 11)
booktown-# ORDER BY title DESC;
 title

 The Velveteen Rabbit
 The Tell-Tale Heart
 The Shining
 The Cat in the Hat
(4 rows)

Notice that the query used in Example 4-49 creates a set from the books table that is
constrained to the last seven rows and sorted alphabetically by title. The EXCEPT clause then
removes from that data set the first eleven rows, sorted alphabetically in an ascending fashion.
The result consists of the last four rows from the table, sorted from the bottom by the final
ORDER BY clause on the new exception set.

Using Case Expressions
In order to achieve simple programmatic transformations without having to call out to a
procedural language, PostgreSQL supports standard SQL case expressions. These use the SQL
keywords CASE, WHEN, THEN, and END to allow basic conditional transformations per each row.

The entirety of a case expression is syntactically placed within the SELECT statement's target
list. A case expression's result column is named case by default, but it may be aliased in the
same manner as any normal target list. The general syntax for a case expression in a SELECT
statement's target list is as follows:

 CASE WHEN condition1 THEN result1
 WHEN condition2 THEN result2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHEN condition2 THEN result2
 [...]
 [ELSE default_result]
 END [AS alias]

The CASE, WHEN, THEN, and ELSE keywords are somewhat similar to the if-then-else logic in
programming languages. The condition of a WHEN clause must return a Boolean result.

When a WHEN condition is met, the result from its corresponding THEN clause will return in the
result column for that row. If no conditions are met, the ELSE clause may be used to specify a
default result value. If there are no results found for a case expression, NULL is returned.

Example 4-50. Using case expressions in statements

booktown=# SELECT isbn,
booktown-# CASE WHEN cost > 20 THEN 'over $20.00 cost'
booktown-# WHEN cost = 20 THEN '$20.00 cost'
booktown-# ELSE 'under $20.00 cost'
booktown-# END AS cost_range
booktown-# FROM stock
booktown-# LIMIT 8;
 isbn | cost_range
------------+-------------------
 0385121679 | over $20.00 cost
 039480001X | over $20.00 cost
 044100590X | over $20.00 cost
 0451198492 | over $20.00 cost
 0394900014 | over $20.00 cost
 0441172717 | under $20.00 cost
 0451160916 | over $20.00 cost
 0679803335 | $20.00 cost
(8 rows)

Adding to the power of case expressions are PostgreSQL's sub-queries, described in the
Section called Using Sub-Queries." As demonstrated in Example 4-51, a sub-query may be
provided as a result within a conditional expression.

Example 4-51. Using case expressions with sub-queries

booktown=# SELECT isbn,
booktown-# CASE WHEN cost > 20 THEN 'N/A - (Out of price range)'
booktown-# ELSE (SELECT title FROM books b JOIN editions e
booktown(# ON (b.id = e.book_id)
booktown(# WHERE e.isbn = stock.isbn)
booktown-# END AS cost_range
booktown-# FROM stock
booktown-# ORDER BY cost_range ASC
booktown-# LIMIT 8;
 isbn | cost_range
------------+-----------------------------
 0451457994 | 2001: A Space Odyssey
 0394800753 | Bartholomew and the Oobleck
 0441172717 | Dune
 0760720002 | Little Women
 0385121679 | N/A - (Out of price range)
 039480001X | N/A - (Out of price range)
 044100590X | N/A - (Out of price range)
 0451198492 | N/A - (Out of price range)
(8 rows)

In Example 4-51, any book found to have a cost of less than 20 has its title returned via a sub-
select to the books table, along with its ISBN from the main query to the stock table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating Tables from Other Tables
The INTO TABLE clause may be used with any valid SELECT query in order to create a new
table with the column structure and row data of the returned result set. The syntax for this is as
follows:

 SELECT select_targets
 INTO [TABLE] new_table
 FROM old_table;

This syntax performs an implicit CREATE TABLE command, creating a table with the same
column names, value types, and row data as the result set from the original table. When the
message SELECT is returned, you will know that the statement was successfully performed, and
the new table created. This is demonstrated in Example 4-52, which creates a backup table
called stock_backup out of the data in the stock table.

Example 4-52. Using SELECT INTO

booktown=# SELECT * INTO stock_backup
booktown-# FROM stock;
SELECT

The table specified by the INTO clause must not exist, or else an error will be returned. Upon
the error, the values of the query will not be inserted and the query will fail. Note that the
TABLE keyword, in this query, is an optional noise term.

Prev Home Next
Adding Data with INSERT
and COPY

Up Modifying Rows with
UPDATE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Preface Next

Platform and Version Used
At the time of this book's writing, version 7.1.3 is the most current release of PostgreSQL.
This is the version used in all examples, and for the construction of our example database,
booktown. All examples should be compatible with any of the PostgreSQL 7.1 versions, which
is the reason you will see the version referred to as 7.1.x within our text.

Prev Home Next
Structure of This Book Up What Is Included on the CD?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 4. Using SQL with PostgreSQL Next

Modifying Rows with UPDATE
Once data has been inserted into rows within the database, those rows can have one or more of
their column values modified through use of the SQL UPDATE command. Column values may
be updated either with constants, identifiers to other data sets, or expressions. They may apply
to an entire column, or a subset of a column's values through specified conditions. The UPDATE
command uses the following syntax:

 UPDATE [ONLY] table SET
 column = expression [, ...]
 [FROM source]
 [WHERE condition]

UPDATE [ONLY] table

The ONLY keyword may be used to indicate that only the table table should be updated,
and none of its sub-tables. This is only relevant if table is inherited by any other tables.

SET column = expression [, ...]

The required SET clause is followed by an update expression for each column name that
needs to have its values modified, separated by commas. This expression is always of
the form column = expression, where column is the name of the column to be updated
(which may not be aliased, or dot-notated), and where expression describes the new
value to be inserted into the column.

FROM source

The FROM clause is a non-standard PostgreSQL extension that allows table columns from
other data sets to update a column's value.

WHERE condition

The WHERE clause describes the condition upon which a row in table will be updated.
If unspecified, all values in column will be modified. This may be used to qualify
sources in the FROM clause, as you would in a SELECT statement.

Example 4-53 demonstrates a simple UPDATE statement. It instructs PostgreSQL to update the
value in the stock table's retail column with the floating-point constant value of 29.95. The
WHERE clause constrains any modifications to rows that match the criteria described by it.

Example 4-53. A simple UPDATE

booktown=# SELECT retail FROM stock
booktown-# WHERE isbn = '0590445065';
 retail

 23.95
(1 row)

booktown=# UPDATE stock

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# UPDATE stock
booktown-# SET retail = 25.95
booktown-# WHERE isbn = '0590445065';
UPDATE 1
booktown=# SELECT retail FROM stock
booktown-# WHERE isbn = '0590445065';
 retail

 25.95
(1 row)

The resultant UPDATE 1 message from Example 4-53 indicates that one record was
successfully updated. Even if the value that is modified is identical to the record previously
stored, it is considered an update, and the database files on disk are still modified as a result of
the statement.

Updating Entire Columns
If the WHERE clause is omitted, an UPDATE statement will modify each of the values within the
entire specified column. This is generally most useful when updating columns with an
expression rather than a constant value. When an expression is specified in the SET clause, it
is re-evaluated just before updating each row. Thus, each row is updated to a value determined
dynamically by the interpreted expression's value for each row. This is demonstrated in
Example 4-54.

Example 4-54 demonstrates using an UPDATE statement on the stock table's retail column. It
uses a mathematical expression to raise the retail price of each stocked book. The expression
itself has several components, separated by parentheses to enforce order of execution.

The (retail / cost) sub-expression determines the current profit margin of the book, which
is then incremented by one tenth with the + operator and a floating-point constant of 0.1. The
0.1::numeric syntax explicitly casts the floating point constant to a value of type numeric.
This is necessary due to the result of the division sub-expression returning a value of type
numeric. Finally, this new profit margin is multiplied by the base cost from the cost column,
resulting in the new price with which the retail column should be updated.

Example 4-54. Updating entire columns

booktown=# SELECT isbn, retail, cost
booktown-# FROM stock
booktown-# ORDER BY isbn ASC
booktown-# LIMIT 3;
 isbn | retail | cost
------------+--------+-------
 0385121679 | 36.95 | 29.00
 039480001X | 32.95 | 30.00
 0394800753 | 16.95 | 16.00
(3 rows)

booktown=# UPDATE stock
booktown-# SET retail =
booktown-# (cost * ((retail / cost) + 0.1::numeric));
UPDATE 16

booktown=# SELECT isbn, retail, cost
booktown-# FROM stock
booktown-# ORDER BY isbn ASC
booktown-# LIMIT 3;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# LIMIT 3;
 isbn | retail | cost
------------+--------+-------
 0385121679 | 39.85 | 29.00
 039480001X | 35.95 | 30.00
 0394800753 | 18.55 | 16.00
(3 rows)

Since the UPDATE statement in Example 4-54 has no WHERE clause, all rows within the stock
table are modified by this statement.

Updating Several Columns
By separating assignment expressions in the SET clause with commas, you may execute
updates to several columns of a table in a single statement. Example 4-55 illustrates updating
both the name and address column of the publishers table for the Publisher with the id of
113.

Example 4-55. Using UPDATE on several columns

booktown=# UPDATE publishers
booktown-# SET name = 'O\'Reilly & Associates',
booktown-# address = 'O\'Reilly & Associates, Inc. '
booktown-# || '101 Morris St, Sebastopol, CA 95472'
booktown-# WHERE id = 113;
UPDATE 1
booktown=# SELECT name, substr(address, 1, 40) || '...' AS short_address
booktown-# FROM publishers
booktown-# WHERE id = 113;
 name | short_address
-----------------------+---
 O'Reilly & Associates | O'Reilly & Associates, Inc. 101 Morris S...
(1 row)

The UPDATE statement in Example 4-55 shows both the name and address columns assigned
through string constants. Notice that several backslashes within the string constants escape the
input apostrophes. The SELECT statement following the update verifies that the desired
information was updated.

Example 4-55 also demonstrates the use of the || text concatenation operator, and the
substr() function, in practical usage. The address column is set with two string constants
that are attached through the || operator in order to prevent the query from wrapping past the
edge of the terminal. The substr() function is then used in the SELECT verification to prevent
the output from wrapping. Each of these are used here to maintain readability of the output (of
course, you would not want to display only a substring of the address field if you were
interested in verifying its complete contents).

Updating from Several Sources
PostgreSQL supports a powerful non-standard enhancement to the SQL UPDATE statement in
the form of the FROM clause. By using the FROM clause, you can apply your knowledge of the
SELECT statement to draw input data from other existing data sets, such as tables, or sub-
selects.

Example 4-56 uses an UPDATE statement in conjunction with a FROM clause to modify the row

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 4-56 uses an UPDATE statement in conjunction with a FROM clause to modify the row
data within the stock table via the stock_backup table. The WHERE clause describes the
relationship between the table to be updated and its source. Wherever the isbn column is
found to match, the value in the stock table is modified to the value from the previously
populated stock_backup table.

Example 4-56. Using UPDATE with several sources

booktown=# UPDATE stock
booktown-# SET retail = stock_backup.retail
booktown-# FROM stock_backup
booktown-# WHERE stock.isbn = stock_backup.isbn;
UPDATE 16

The FROM clause supports each of the JOIN syntax options described in the Section called
Retrieving Rows with SELECT," enabling a wide variety of update methods from existing data
sets. Further, as stated previously, sub-selects may be used as a data source to the FROM clause,
just as is possible with the SELECT command.

Prev Home Next
Retrieving Rows with
SELECT

Up Removing Rows with
DELETE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Preface Next

What Is Included on the CD?
The CD included with this book contains the complete source for PostgreSQL 7.1.3. The CD
also includes the PostgreSQL application server LXP. The following is a listing of what is on
the CD, including a short description of each package:

postgresql-7.1.3.tar.gz

The community version of PostgreSQL in compressed source form. This is the most
actively developed PostgreSQL distribution. We do not provide binaries of PostgreSQL,
as you may want to compile different features.

The source is available as a single compressed file (postgresql-7.1.3.tar.gz). Its contents
are not extracted on the CD, as you must copy and extract the files onto your hard drive
before installing PostgreSQL.

lxp-eval-0.8.0.tgz

An evaluation/developer-use copy of the LXP PostgreSQL application server for
Apache 1.3.x. LXP is a good tool for integrating PostgreSQL (and other technologies)
with the web. This package is a binary distribution intended for x86-based systems. It
must be copied to your hard drive before it can be extracted.

lxp/

A directory containing the extracted contents of the lxp-eval-0.8.0.tgz file. LXP can be
installed directly from the lxp directory on the CD. See Chapter 13 for information on
installing LXP.

booktown.sql

The PostgreSQL dump of the example booktown database used throughout this book.
This file contains both commands to re-create the database schema, as well as some
sample data.

To install this database after you have installed PostgreSQL, type from the command
line psql -U postgres template1 -f /mnt/cdrom/booktown.sql (where /mnt/cdrom is the
path to your mounted CD, and postgres is your PostgreSQL superuser).

Prev Home Next
Platform and Version Used Up Conventions Used in This

Book

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 4. Using SQL with PostgreSQL Next

Removing Rows with DELETE
Existing row data within PostgreSQL can be removed with the standard SQL DELETE
command. Unless carefully working within transaction blocks, removal via the DELETE
command is permanent, and extreme caution should therefore be taken before attempting to
remove data from your database.

The syntax to remove one or more rows from a table is as follows:

 DELETE FROM [ONLY] table
 [WHERE condition]

DELETE FROM [ONLY] table

The ONLY keyword may be used to indicate that only the table table should have rows
removed from it, and none of its sub-tables. This is only relevant if table is inherited by
any other tables.

WHERE condition

The WHERE clause describes under what condition to delete rows from table. If
unspecified, all rows in the table will be deleted.

The WHERE clause is almost always part of a DELETE statement. It specifies which rows in the
target table are to be deleted based on its specified conditions, which may be expressed
syntactically in the same form as in the SELECT statement.

It is a good habit to execute a SELECT statement with the intended WHERE clause for your
DELETE statement. This allows you to review the data to be deleted before the DELETE
statement is actually executed. This technique and a simple DELETE statement are
demonstrated in Example 4-57.

Example 4-57. Deleting rows from a table

booktown=# SELECT * FROM stock
booktown-# WHERE stock = 0;
 isbn | cost | retail | stock
------------+-------+--------+-------
 0394800753 | 16.00 | 16.95 | 0
 0394900014 | 23.00 | 23.95 | 0
 0451198492 | 36.00 | 46.95 | 0
 0451457994 | 17.00 | 22.95 | 0
(4 rows)

booktown=# DELETE FROM stock
booktown-# WHERE stock = 0;
DELETE 4

If a WHERE condition is not specified, the DELETE command removes all rows within that table,
as shown in Example 4-58.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 4-58. Deleting all table rows

booktown=# DELETE FROM stock_backup;
DELETE 16

Prev Home Next
Modifying Rows with
UPDATE

Up Using Sub-Queries

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 4. Using SQL with PostgreSQL Next

Using Sub-Queries
Sub-queries, first introduced to PostgreSQL in version 6.3, add a tremendous amount of
flexibility to your SQL statements. Sub-queries are often referred to as sub-selects, as they
allow a SELECT statement to be executed arbitrarily within the body of another SQL statement.
A sub-query is executed by enclosing it in a set of parentheses. Sub-queries are generally used
to return a single row as an atomic value, though they may be used to compare values against
multiple rows with the IN keyword.

Sub-queries are allowed at nearly any meaningful point in a SQL statement, including the
target list, the WHERE clause, and so on. A simple sub-query could be used as a search
condition. For example, between a pair of tables. Example 4-59 demonstrates such a use of a
sub-query.

Example 4-59. A simple sub-query

booktown=# SELECT title FROM books
booktown-# WHERE author_id = (SELECT id FROM authors
booktown(# WHERE last_name='Geisel'
booktown(# AND first_name='Theodor Seuss');
 title

 The Cat in the Hat
 Bartholomew and the Oobleck
(2 rows)

Example 4-59 uses the equal-to operator to compare the one row result of a sub-query on the
authors table with the author_id column in the books table. In a single statement, the author
identification number is acquired from the authors table by a WHERE clause specifying the
name of Theodor Seuss Geisel, and the single identifier field returned is compared against the
author_id column of the books table to return any books by Dr. Seuss.

Note that caution should be taken with this sort of sub-query: to use a normal value operator
on the results of a sub-query, only one field must be returned. For example, if a more general
sub-query were used to check for an author identifier, and several rows were found, you might
see an error such as the following:

booktown=# SELECT title FROM books
booktown-# WHERE author_id = (SELECT id FROM authors
booktown(# WHERE last_name ~ 'G');
ERROR: More than one tuple returned by a subselect used as an
expression.

Normal comparison operators cannot check for a single value being equal to multiple values,
so a check for equivalence between the author_id column and multiple rows causes an error.
This could be solved with a LIMIT 1 clause to ensure that the sub-query never returns more
than a single row.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you are interested in checking for the existence of a single value within a set of other values,
use the IN keyword as an operator upon the result set from a sub-query. Example 4-60
illustrates comparing a sub-query which produces several results (the authors whose names
begin with A through E) to the author_id column via the IN keyword (see the Section called
Operators in Chapter 5" in Chapter 5 for more about the regular expression being employed).

Example 4-60. A sub-query using IN

booktown=# SELECT title FROM books
booktown-# WHERE author_id IN (SELECT id FROM authors
booktown(# WHERE last_name ~ '^[A-E]');
 title

 2001: A Space Odyssey
 Franklin in the Dark
 Goodnight Moon
 Little Women
 The Velveteen Rabbit
 Perl Cookbook
(6 rows)

As a result of the use of IN, books from several authors may be found in the books table
through a comparison against several rows from a sub-query. Note that while the IN keyword
allows you to compare against multiple rows, the number of columns against which to be
match must be identical.

If you wish to use IN to compare several columns, you may group column names together in
the WHERE clause with parentheses immediately preceding IN. The number of columns grouped
must be the same as those in the target list of the sub-query, and of the same data type for
comparison.

Example 4-61 demonstrates a sub-query which targets the isbn column of the editions table,
and an integer constant of 0, for each paperback book (with a type value of p). Those rows are
then returned and compared against the isbn column and the stock column of the stock table
with the IN keyword, effectively selecting any paperback book that is out of stock.

Example 4-61. A multi-column sub-query using IN

booktown=# SELECT isbn, cost, retail FROM stock
booktown-# WHERE (isbn, stock)
booktown-# IN (SELECT isbn, 0 FROM editions
booktown(# WHERE type = 'p');
 isbn | cost | retail
------------+-------+--------
 0394800753 | 16.00 | 16.95
 0394900014 | 23.00 | 23.95
 0451457994 | 17.00 | 22.95
(3 rows)

Prev Home Next
Removing Rows with
DELETE

Up Using Views

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 4. Using SQL with PostgreSQL Next

Using Views
While working with SQL, times will often arise when you would like your statements to be re-
usable. This is especially the case when working with large or intricate queries. There are few
things more frustrating then having to re-type a long query over and over again within psql.
Furthermore, it can be highly inefficient to pass excessively large queries over a network to
your PostgreSQL server for commonly executed routines.

This is where views can come in handy. Views can be thought of as stored queries, which
allow you to create a database object that functions very similarly to a table, but whose
contents are dynamically and directly reflective only of the rows which it is defined to select.
Views are quite flexible in practice, in that they may address common, simple queries to a
single table, as well as extraordinarily complicated ones which may span across several tables.

Creating a View
The following is the syntax for creating a view:

 CREATE VIEW view
 AS query

view

The name (identifier) of the view that you wish to create.

query

The complete SQL SELECT query that defines the content of the view.

Imagine that you have a table called shipments that relates a unique shipping identifier with a
customer identifier, a book ISBN, and a timestamp reflecting when the book was shipped.
This table is shown in Table 4-1.

Table 4-1. The shipments table

Column Type Modifier
id integer NOT NULL DEFAULT

nextval('shipments_ship_id_seq')
customer_id integer
isbn text
ship_date timestamp

Now, imagine that you are interested in seeing how many shipments have been made and
logged into this table. There are several ways that you can achieve the results you are looking
for, but to keep things simple, you can begin with a query like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SELECT COUNT(*) FROM shipments;
 count

 32
(1 row)

Remember that the asterisk (*) symbol in this query simply indicates to PostgreSQL that all
rows should be counted, regardless of NULL values that may exist in an otherwise specified
column name. The query counts the number of total rows that return from the query, and thus
the number of logged shipments.

Increasing the complexity of this query, a JOIN clause can be attached to join the shipments
information with the editions and books tables, in order to retrieve the title of each shipped
book. Furthermore, a GROUP BY clause can be added to the query in order to aggregate the
shipments by their titles.

Recall that by aggregating by the title column, the count() function will count the number
of rows per aggregated row (in this case, per unique title). Finally, a max() function can be
applied to the ship_date column of the shipments table in order to see the most recently
shipped copy of each book, along with the counted number shipped:

booktown=# SELECT count(*) AS num_shipped, max(ship_date), title
booktown-# FROM shipments
booktown-# JOIN editions USING (isbn)
booktown-# NATURAL JOIN books AS b (book_id)
booktown-# GROUP BY b.title
booktown-# ORDER BY num_shipped DESC;
 num_shipped | max | title
-------------+------------------------+-----------------------------
 5 | 2001-08-13 09:47:04-07 | The Cat in the Hat
 5 | 2001-08-14 13:45:51-07 | The Shining
 4 | 2001-08-11 09:55:05-07 | Bartholomew and the Oobleck
 3 | 2001-08-14 13:49:00-07 | Franklin in the Dark
 3 | 2001-08-15 11:57:40-07 | Goodnight Moon
 3 | 2001-08-14 13:41:39-07 | The Tell-Tale Heart
 2 | 2001-08-15 14:02:01-07 | 2001: A Space Odyssey
 2 | 2001-08-14 08:42:58-07 | Dune
 2 | 2001-08-07 13:00:48-07 | Little Women
 2 | 2001-08-09 09:30:46-07 | The Velveteen Rabbit
 1 | 2001-08-14 07:33:47-07 | Dynamic Anatomy
(11 rows)

While obviously an informative query, the syntax can be somewhat too unwieldy to repeat
frequently. Example 4-62 demonstrates creating a view on this same query with the CREATE
VIEW command.

Example 4-62. Creating a view

booktown=# CREATE VIEW recent_shipments
booktown-# AS SELECT count(*) AS num_shipped, max(ship_date), title
booktown-# FROM shipments
booktown-# JOIN editions USING (isbn)
booktown-# NATURAL JOIN books AS b (book_id)
booktown-# GROUP BY b.title
booktown-# ORDER BY num_shipped DESC;
CREATE

The CREATE server response in Example 4-62 confirms that the view was accurately created.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CREATE server response in Example 4-62 confirms that the view was accurately created.
As a result, the Book Town database should now have a view called recent_shipments that
will show each title that has been shipped from Book Town, how many of each title was
shipped, and when the most recent shipment of that title occurred.

Applying Views
The key difference in the functionality of a view is that instead of having to type a long query,
only a simple SELECT command is needed, as shown in Example 4-63.

Example 4-63. Using a view

booktown=# SELECT * FROM recent_shipments;
 num_shipped | max | title
-------------+------------------------+-----------------------------
 5 | 2001-08-13 09:47:04-07 | The Cat in the Hat
 5 | 2001-08-14 13:45:51-07 | The Shining
 4 | 2001-08-11 09:55:05-07 | Bartholomew and the Oobleck
 3 | 2001-08-14 13:49:00-07 | Franklin in the Dark
 3 | 2001-08-15 11:57:40-07 | Goodnight Moon
 3 | 2001-08-14 13:41:39-07 | The Tell-Tale Heart
 2 | 2001-08-15 14:02:01-07 | 2001: A Space Odyssey
 2 | 2001-08-14 08:42:58-07 | Dune
 2 | 2001-08-07 13:00:48-07 | Little Women
 2 | 2001-08-09 09:30:46-07 | The Velveteen Rabbit
 1 | 2001-08-14 07:33:47-07 | Dynamic Anatomy
(11 rows)

booktown=# SELECT * FROM recent_shipments
booktown-# ORDER BY max DESC
booktown-# LIMIT 3;
 num_shipped | max | title
-------------+------------------------+-----------------------
 2 | 2001-08-15 14:02:01-07 | 2001: A Space Odyssey
 3 | 2001-08-15 11:57:40-07 | Goodnight Moon
 3 | 2001-08-14 13:49:00-07 | Franklin in the Dark
(3 rows)

Example 4-63 further demonstrates that, even though the view was created with an ORDER BY
clause, the order of the view's result set itself can be re-sorted. This is achieved by passing an
ORDER BY clause to the SELECT command which is querying the view.

Note: Any attempt to use DELETE or UPDATE on a view will result in an error, as a
view itself does not contain data. The view is merely a window to another set of
data, despite its similar functional appearance to a table, and is not itself a
modifiable data set.

Destroying a view
The syntax to permanently destroy a view is entered as follows, where view is the name of the
view to be destroyed:

 DROP VIEW view

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DROP VIEW view

The destruction of a view will have no effect on the data that the view utilizes. A view exists
purely as a means to observe data in other tables, and may be safely destroyed without losing
data (though the query described by the view will, of course, be lost). Thus any attempts to
alter or delete from a view will fail.

Prev Home Next
Using Sub-Queries Up Further SQL Application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 4. Using SQL with PostgreSQL Next

Further SQL Application
This chapter has provided the fundamental concepts of applying SQL within PostgreSQL. You
should now have a solid understanding of how to create and manage tables, as well as how to
retrieve, modify, and generally manage the data within those tables. Chapter 5, covers in more
detail the functions and operators already alluded to and used in this chapter.

Prev Home Next
Using Views Up Operators and Functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Practical PostgreSQL
Prev Chapter 5. Operators and Functions Next

Functions
A function is an identifier that instructs PostgreSQL to perform a programmatic operation
within a SQL statement. A function returns a single value from its operation, and that value is
then used in the SQL statement where the function was invoked. This process is similar to the
way operators return their results in the location from which they were called in the query. (In
fact, operators are technically pointers to built-in system functions, and are sometimes called
"syntactic sugar" for functions, as they are a syntactically convenient way to call underlying
functions.)

Using Functions
To use a function in a SQL statement, type the function's name, followed by its list of
parameters (called arguments), if any. The arguments passed to a function are enclosed in
parentheses. There are two general styles of entering arguments: the standard SQL92 functions
are generally implemented so that they accept their arguments delimited by special SQL
keywords, such as FROM, FOR, and USING. PostgreSQL-style functions, on the other hand,
accept arguments delimited by commas (which you might expect if you have experience with
a programming language such as C).

Arguments may be constants, valid identifiers, or expressions. The particular arguments you
need to pass to a function will depend completely on the function being used, and its
requirements: especially with regards to data types. With a couple of exceptions, all functions
require the open and closing parentheses following the function name, even if no arguments
are passed.

 sql92_style_function ({ argument | KEYWORD } [...])
 pgsql_style_function (argument [, ...])

Note: The exceptions to the parenthetical function syntax are the SQL92
functions current_date, current_time, and current_timestamp. These lack
parentheses to remain compatible with the SQL92 specification.

A powerful use of functions is that they may be nested, provided that the data type returned by
a nested function is compatible with the argument accepted by the function it is nested within.
Functions may be nested to any depth:

 function_name (nested_function_name (arguments [, ...]) [, ...])

PostgreSQL defines a rich set of functions for its built-in data types. To view a complete list of
functions available, execute the \df slash command within psql. PostgreSQL also supports
extensibility of its function set through the CREATE FUNCTION command. See Chapter 7 for
more on this topic.

Note: The default name for a column that is described by a function in the target

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note: The default name for a column that is described by a function in the target
list will be the name of the function, without trailing parentheses, or arguments
(e.g., to_char).

Mathematical Functions
The mathematical functions provided for PostgreSQL operate on a variety of numeric data
types, and generally return a value of the same type as the function's arguments. They can
perform many useful and common arithmetic and trigonometric operations; Table 5-9 provides
an overview of some of the most common mathematical functions in PostgreSQL.

Table 5-9. Mathematical functions in PostgreSQL

Function Description
abs(x ) Returns the absolute value of x
acos(x ) Returns the inverse cosine of x
asin(x ) Returns the inverse sine of x
atan(x ) Returns the inverse tangent of x
atan2(x , y ) Returns the inverse tangent of the quotient of

x and y
cbrt(x ) Returns the cube root of x
ceil(x ) Returns the smallest whole integer not less

than argument (rounds up)
cos(x ) Returns the cosine of x
cot(x ) Returns the cotangent of x
degrees(r ) Returns degrees from radians r
exp(x ) Returns the e constant (2.71828...), to the

power of x
floor(x ) Returns the largest whole integer not greater

than x (rounds down)
ln(x ) Returns the natural logarithm of x (the

inverse of the exp() function)
log(b , x ) Returns the base b logarithm of x
log(x ) Returns the base 10 logarithm of x
mod(x , y ) Returns the remainder (modulus) when

dividing x / y
pi() Returns the pi constant (3.14159...)
pow(x , y ) Returns value of x to the exponential power

of y
radians(d ) Returns radian equivalent to d degrees
random() Returns a pseudo-random value from 0.0 to

1.0
round(x ) Returns x rounded to the nearest whole

integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

round(x , s ) Returns the value of x, optionally rounded to
s decimal places

sin(x ) Returns the sine of x
sqrt(x ) Returns the square root of x
tan(x ) Returns the tangent of x
trunc(x ) Returns the value of x, with any digits past

the decimal point truncated
trunc(x , s ) Returns the value of x, with any digits past s

decimal points truncated

The following sections elaborate on each of the functions described in Table 5-9, detailing
required arguments, data types, and functionality. Note that while a function will usually only
accept one of a set of data types as its arguments, PostgreSQL will attempt to implicitly
convert supplied arguments to the required types, if necessary. If an implicit type conversion
fails, PostgreSQL will supply the appropriate error message, and you may need to use an
explicit type conversion. See Chapter 3 for more information on explicitly converting types.

abs()

abs(x )

The abs() function accepts a single numeric argument x, and returns its absolute value
(distance from zero). It therefore has no effect on positive numbers, but inverts the sign of a
negative number to a positive number.

It can accept an argument which is of any of the numeric data types (numeric, bigint,
smallint, real, or double precision), and returns the result in form of the same data type
which was passed to it.

Example

testdb=# SELECT abs(100) AS abs_positive,
testdb-# abs(-100) AS abs_negative;
 abs_positive | abs_negative
--------------+--------------
 100 | 100
(1 row)

acos()

acos(x )

The acos() function accepts a valid cosine, and returns the inverse (or arc) cosine of the
double precision argument x (between –1 and 1) passed to it. This effectively returns the
inverse of the cos() function. The result is a double precision value of an angle, in radians,
between 0 and pi.

Example

testdb=# SELECT acos(1), acos(0), acos(-1),
testdb-# acos(cos(1)) AS inverse_example;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

testdb-# acos(cos(1)) AS inverse_example;
 acos | acos | acos | inverse_example
------+-----------------+------------------+-----------------
 0 | 1.5707963267949 | 3.14159265358979 | 1
(1 row)

asin()

asin(x )

The asin() function returns the inverse (or arc) sine of the double precision argument x
(between –1 and 1) passed to it. Like acos(), this effectively returns the inverse of the sin()
function. The result is a double precision value of an angle, in radians, between pi / 2 and –
pi / 2.

Example

testdb=# SELECT asin(1), asin(0), asin(-1),
testdb-# asin(sin(1)) AS inverse_example;
 asin | asin | asin | inverse_example
-----------------+------+------------------+-----------------
 1.5707963267949 | 0 | -1.5707963267949 | 1
(1 row)

atan()

atan(x )

The atan() function returns the inverse (or arc) tangent of a double precision argument x
passed to it, which effectively returns the inverse of the tan() function. The result is a double
precision value of an angle, in radians, between pi / 2 and –pi / 2.

Example

testdb=# SELECT atan(1), atan(0), atan(-1),
testdb-# atan(tan(1)) AS inverse_example;
 atan | atan | atan | inverse_example
-------------------+------+--------------------+-----------------
 0.785398163397448 | 0 | -0.785398163397448 | 1
(1 row)

atan2()

atan2(x , y )

Similar to the atan() function, the atan2() returns the inverse (or arc) tangent in the form of
a double precision value of an angle, in radians, between pi / 2 and –pi / 2. Unlike atan()
atan2() accepts two double precision arguments rather than one, and returns the inverse
tangent of the quotient of the first argument divided into the second argument.

In general, atan2(x , y ) is functionally identical to atan(x / y), though specifying a y
value of 0 will not cause a divide by zero error with atan2, as it would if dividing x / y to the
atan() function. If y is specified to atan2() as zero, the resultant value will be pi / 2 for a
positive value of x, –pi / 2 for a negative value of x, or 0 for a zero value of x.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

testdb=# SELECT atan2(0, 1), atan2(1, 1),
testdb-# atan(0 / 1) AS functionally,
testdb-# atan(1 / 1) AS identical;
 atan2 | atan2 | functionally | identical
-------+-------------------+--------------+-------------------
 0 | 0.785398163397448 | 0 | 0.785398163397448
(1 row)

testdb=# SELECT atan2(1, 0) AS positive_x,
testdb-# atan2(-1, 0) AS negative_x,
testdb-# atan2(0, 0) AS zero_x,
testdb-# pi() / 2 AS pi_over_two;
 positive_x | negative_x | zero_x | pi_over_two
-----------------+------------------+--------+-----------------
 1.5707963267949 | -1.5707963267949 | 0 | 1.5707963267949
(1 row)

cbrt()

cbrt(x )

The cbrt() function accepts a single double precision argument x, and returns its cubed
root as a double precision value. This function is effectively the inverse of raising a number
by the power of 3 with the pow function.

Example

testdb=# SELECT pow(2.0, 3) AS "two cubed",
testdb-# cbrt(8.0) AS "eight's cube root";
 two cubed | eight's cube root
-----------+-------------------
 8 | 2
(1 row)

ceil()

ceil(x )

The ceil() function accepts a value x of any numeric data type (numeric, bigint, smallint,
real, or double precision), and rounds it up to the smallest whole integer greater than the
passed value. If a whole integer is passed, ceil() has no effect.

Example

testdb=# SELECT ceil(1.0), ceil(1.1), ceil(1.5);
 ceil | ceil | ceil
------+------+------
 1 | 2 | 2
(1 row)

cos()

cos(x )

The cos() function accepts a single double precision value x representing an angle (in
radians), and returns its cosine as a double precision value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

testdb=# SELECT cos(pi()) AS cos_pi,
testdb-# cos(0) AS cos_zero;
 cos_pi | cos_zero
--------+----------
 -1 | 1
(1 row)

cot()

cot(x )

The cot() function accepts a single double precision value x representing an angle (in
radians), and returns its cotangent as a double precision value. The argument passed must
be non-zero.

Example

testdb=# SELECT cot(1), cot(-1);
 cot | cot
-------------------+--------------------
 0.642092615934331 | -0.642092615934331
(1 row)

degrees()

degrees(r )

The degrees() function accepts a double precision argument r representing a value
expressed in radians, and converts them into degrees. The result is returned as a value of type
double precision. degrees() is effectively the inverse function of the radians() function.

Example

testdb=# SELECT degrees(acos(-1)) AS half_circle,
testdb-# degrees(pi() * 2) AS full_circle;
 half_circle | full_circle
-------------+-------------
 180 | 360
(1 row)

exp()

exp(x )

The exp() function accepts a single double precision or numeric argument x, and returns
the special e constant, raised to the power passed to the function.

Example

testdb=# SELECT exp(0.0) AS one,
testdb-# exp(1.0) AS e,
testdb-# exp(2.0) AS "e squared";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

testdb-# exp(2.0) AS "e squared";
 one | e | e squared
-----+------------------+------------------
 1 | 2.71828182845905 | 7.38905609893065
(1 row)

floor()

floor(x )

The floor() function accepts a single numeric value x, and rounds it down to the largest
whole integer not greater than the passed argument. It therefore has no effect on a whole
integer.

Example

testdb=# SELECT floor(1.0) AS one,
testdb-# floor(1.1) AS "one point one",
testdb-# floor(1.8) AS "one point eight";
 one | one point one | one point eight
-----+---------------+-----------------
 1 | 1 | 1
(1 row)

ln()

ln(x )

ln() accepts a single numeric or double precision value x and returns the natural logarithm
of that argument. This is effectively the inverse of the exp() function, as well as the
equivalent of selecting the log() of the argument, with base e.

Example

testdb=# SELECT ln(10.0) AS natural_log,
testdb-# log(exp(1.0), 10.0) AS natural_log,
testdb-# ln(exp(10.0)) AS inverse_example;
 natural_log | natural_log | inverse_example
------------------+------------------+-----------------
 2.30258509299405 | 2.30258509299404 | 10
(1 row)

log()

log(x )
log(b , x )

The log() function accepts either one or two arguments of type numeric. If one argument is
specified, log(x ) returns the base 10 logarithm of the x. If two arguments are specified,
log(b , x ) returns the base b logarithm of x.

Example

testdb=# SELECT log(12.0) AS log_12,
testdb-# log(10, 12.0) AS log_12,
testdb-# log(3, 12.0) AS "log 12, base 3";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

testdb-# log(3, 12.0) AS "log 12, base 3";
 log_12 | log_12 | log 12, base 3
------------------+--------------+----------------
 1.07918124604762 | 1.0791812460 | 2.2618595071
(1 row)

mod()

mod(x , y )

The mod function accepts two numeric arguments, x and y, which may be of type numeric,
integer, smallint, or bigint. The value returned is the remainder, or modulus, left over
from dividing x / y, and is of the same data type which is passed to the function.

Example

testdb=# SELECT mod(5, 5) AS no_remainder,
testdb-# mod(6, 5) AS remainder_one,
testdb-# mod(19, 5) AS remainder_four;
 no_remainder | remainder_one | remainder_four
--------------+---------------+----------------
 0 | 1 | 4
(1 row)

pi()

pi()

The pi() function requires no arguments, and returns the pi constant of roughly
3.14159265358979.

Example

testdb=# SELECT pi() AS "the pi constant";
 the pi constant

 3.14159265358979
(1 row)

pow()

pow(x , y )

The pow() function accepts two arguments, x and y, of type numeric or double precision. It
returns the value of x raised to the exponent of y. The result is returned as a value of the same
data type as the passed arguments. Note that the arguments must contain decimal points.

Example

testdb=# SELECT pow(2.0, 3.0) AS "two cubed",
testdb-# pow(2.0, 2.0) AS "two squared",
testdb-# pow(2.0, 1.0) AS "just two";
 two cubed | two squared | just two
-----------+-------------+----------
 8 | 4 | 2
(1 row)

radians()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

radians(d )

The radians() function accepts a single argument d of type double precision, specifying
degrees. The function returns the equivalent number of radians, as a value of type double
precision. radians() is effectively the inverse of the degrees() function.

Example

testdb=# SELECT radians(180) AS half_circle,
testdb-# radians(360) AS full_circle;
 half_circle | full_circle
------------------+------------------
 3.14159265358979 | 6.28318530717959
(1 row)

random()

random()

The random() function accepts no arguments, and returns a pseudo-random value between 0.0
and 1.0, of type double precision. Each invocation of random() returns a different value,
even when used in multiple places within the same query.

Typically this function is used in conjunction with mathematical operators (e.g., + and *) to set
a range of random numbers, and then rounded with an appropriate rounding function (e.g.,
round(), trunc()).

Example

testdb=# SELECT random() AS natural_random,
testdb-# round(random() * 9) + 1 AS one_through_ten,
testdb-# trunc(random() * 99) + 1 AS one_through_one_hundred;
 natural_random | one_through_ten | one_through_one_hundred
-------------------+-----------------+-------------------------
 0.478887704424042 | 2 | 37
(1 row)

round()

round(x )
round(x ,s )

The round() function may accept either one or two arguments. The first argument, x, of type
numeric or double precision, is the number that you intend to round. The second optional
argument, s, of type integer, specifies how many digits past the decimal to round from. The
result is returned as a value of the same type as the first argument.

If there are more digits specified by s than by x, the extra digits will be padded with zeroes.

Example

testdb=# SELECT round(1.0) AS one,
testdb-# round(1.1) AS "one point one",
testdb-# round(1.5) AS "one point five",
testdb-# round(1.8) AS "one point eight";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

testdb-# round(1.8) AS "one point eight";
 one | one point one | one point five | one point eight
-----+---------------+----------------+-----------------
 1 | 1 | 2 | 2
(1 row)

testdb=# SELECT round(1.4949, 1) AS one_digit_scale,
testdb-# round(1.4949, 3) AS three_digit_scale,
testdb-# round(1.4949, 10) AS ten_digit_scale,
testdb-# round(1.4949, 0) AS rounded;
 one_digit_scale | three_digit_scale | ten_digit_scale | rounded
-----------------+-------------------+-----------------+---------
 1.5 | 1.495 | 1.4949000000 | 1
(1 row)

sin()

sin(x )

The sin() function accepts a single argument x of type double precision, representing an
angle described in radians. The sine of the argument is returned as a value of type double
precision.

Example

testdb=# SELECT sin(pi() / 4) AS quarter_pi,
testdb-# sin(pi() / 2) AS half_pi;
 quarter_pi | half_pi
-------------------+---------
 0.707106781186547 | 1
(1 row)

sqrt()

sqrt(x )

The sqrt() function accepts a single argument x, of either type double precision, or
numeric, and returns its square root. The returned value is of the same data type passed to it.
The sqrt function is effectively the inverse of the pow() function, used with a power of 2.

Example

testdb=# SELECT sqrt(2.0), sqrt(4.0),
testdb-# sqrt(pow(2.0, 2)) AS inverse_example;
 sqrt | sqrt | inverse_example
-----------------+------+-----------------
 1.4142135623731 | 2 | 2
(1 row)

tan()

tan(x )

The tan() function accepts a single argument x, of type double precision, representing an
angle described in radians. The tangent of the argument is returned as a value of type double
precision.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

testdb=# SELECT tan(pi() / 8),
testdb-# tan(0);
 tan | tan
-------------------+-----
 0.414213562373095 | 0
(1 row)

trunc()

trunc(x )
trunc(x , s )

The trunc() function accepts one or two arguments, x and s. The x argument may be of the
numeric or double precision type, and represents the value to be truncated. The s argument
may be of the integer type.

If specified, s dictates the number of digits allowed to the right of the decimal before
truncation. If unspecified, any digits past the decimal in x are truncated. If more digits are
specified by s than there are represented by x, the extra digits will be padded with zeroes.

Example

testdb=# SELECT trunc(1.598) AS natural_truncation,
testdb-# trunc(1.598, 1) AS one_decimal_point,
testdb-# trunc(1.598, 8) AS extra_places;
 natural_truncation | one_decimal_point | extra_places
--------------------+-------------------+--------------
 1 | 1.5 | 1.59800000
(1 row)

Character String Functions
PostgreSQL supports a wide variety of text formatting, analysis and comparison functions.
These include both SQL92 standard functions, such as substring() and trim(), as well as
PostgreSQL-specific extensions, such as ltrim(), rtrim() and substr(). Table 5-10 lists the
functions available to PostgreSQL for use with character strings. In general, when referring to
a value of type text, it is functionally synonymous with a value of type character, or
varchar.

Table 5-10. Character string functions

Function Description
ascii(s ) Returns the ascii code of the first

character passed to it in character string
s

btrim(s  [, t ]) Returns character string s, trimmed on
the left and right of any substrings
consisting solely of letters in character
string t (or whitespace, if t is not
specified)

char_length(s ) Returns the numeric length of character
string s

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chr(n ) Returns the character whose ascii value
corresponds to the number n

s  ilike(f ) Returns true if the expression f is found
to match (case-insensitively) s

initcap(s ) Returns the character string s, with
each word's first letter capitalized

length(s ) Returns the numeric length of character
string s

s  like(f ) Returns true if the expression f is found
to match s

lower(s ) Returns the string s, in all lowercase
lpad(s , n  [, c ]) Returns the character string s, padded

to the left with character string c (or
whitespace, if c is not defined to length
of n characters (or truncated on the
right to n characters)

ltrim(s  [, f ]) Returns character string s, trimmed on
the left of a substring consisting solely
of letters in character string f (or
whitespace, if f is not specified)

octet_length(s ) Returns the number of 8-bit bytes in
character string s

position(b IN s ) Returns the location of character sub-
string b in character string s (counting
from 1)

repeat(s , n ) Returns the character string s, repeated
n times

rpad(s , n  [, c ]) Returns the character string s, padded
to the right with character string c (or
whitespace, if c is not specified) to
length of n characters (or truncated on
the left to n characters)

rtrim(s  [, f ]) Returns character string s, trimmed on
the right of a substring consisting solely
of letters in character string f (or
whitespace, if f is not specified)

strpos(s , b ) Returns the location of character sub-
string b in character string s (counting
from 1). This is a PostgreSQL specific
function which duplicates the effect of
the SQL position() function, using C
style arguments.

substr(s , n [, l ]) Returns a character sub-string of the
character string s, starting at digit n
(counting from 1), with optional
maximum length l characters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

substring(s FROM n FOR l ) Returns a character sub-string of the
character string s, starting at digit n
(counting from 1), with optional
maximum length l characters

to_ascii(s , f ) Returns text s converted from multibyte
encoding format f to plain ASCII

translate(s , f , r ) Returns the character string s, with any
found characters from string f replaced
with corresponding character in string r

trim(side f FROM s) Returns character string s, trimmed of
leading and/or trailing substrings which
consist solely of letters in character
string f, as dictated by the side
keyword (which is either LEADING,
TRAILING or BOTH)

upper(s ) Returns the character string s,
converted to all uppercase

The following sections describe each of these character string functions, detailing their
argument requirements, return types, and general usage.

ascii()

ascii(s )

The ascii() function accepts a single argument of either a single character, or a character
string of type text, and returns the numeric ASCII value of the first character interpreted. The
result is returned as a value of type integer.

Examples

booktown=# SELECT ascii('T');
 ascii

 84
(1 row)

booktown=# SELECT DISTINCT ON (substr)
booktown-# title, substr(title, 1, 1),
booktown-# ascii(title)
booktown-# FROM books
booktown-# ORDER BY substr ASC;
 title | substr | ascii
-----------------------------+--------+-------
 2001: A Space Odyssey | 2 | 50
 Bartholomew and the Oobleck | B | 66
 Dune | D | 68
 Franklin in the Dark | F | 70
 Goodnight Moon | G | 71
 Little Women | L | 76
 Practical PostgreSQL | P | 80
 The Shining | T | 84
(8 rows)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(8 rows)

btrim()

btrim(s )
btrim(s , t )

The btrim() function accepts one or two arguments s, and (optionally) t, each of type text.
If t is specified, the function trims the string value s of any leading or trailing strings
consisting solely of characters described in t. If t is not specified, leading and trailing
whitespace is trimmed. The resultant trimmed value is returned as type text.

It is important to understand that the order of the characters described by t is not relevant to
btrim(). Any strings at the beginning or end of s that consecutively match any of the
characters described in t will be trimmed.

Example

booktown=# SELECT btrim(' whitespace example ') AS trim_blanks,
booktown-# btrim('123example 332', '123') AS trim_numbers;
 trim_blanks | trim_numbers
---------------------+--------------
 whitespace example | example
(1 row)

char_length()

char_length(s )

The char_length() SQL92 function accepts a single argument of type text, varchar, or
character, and returns the number of characters in the character string s passed to it. The
returned value is of type integer.

Example

booktown=# SELECT char_length(title), title
booktown-# FROM books
booktown-# LIMIT 3;
 char_length | title
-------------+-----------------------
 11 | The Shining
 4 | Dune
 21 | 2001: A Space Odyssey
(3 rows)

chr()

chr(n )

The chr() function accepts a single numeric argument n of type integer, and returns the
corresponding character value for that ASCII value of n. The resultant value is of type text.

The chr() function is effectively the inverse of the ascii function.

Examples

booktown=# SELECT chr(65), ascii('A');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SELECT chr(65), ascii('A');
 chr | ascii
-----+-------
 A | 65
(1 row)

initcap()

initcap(s )

The initcap() function accepts a single argument s of type text, and returns its value, with
the first letter of each word capitalized. In this context, a "word" is a string of characters
separated from other words by whitespace.

Example

booktown=# SELECT initcap('a prospective book title');
 initcap

 A Prospective Book Title
(1 row)

length()

length(s )

Functionally identical to the char_length() SQL92 function. Accepts a single argument s of
type text, character, or varchar, and returns its length as a value of type integer.

Example

booktown=# SELECT length(title), title
booktown-# FROM books
booktown-# LIMIT 3;
 length | title
--------+-----------------------
 11 | The Shining
 4 | Dune
 21 | 2001: A Space Odyssey
(3 rows)

Note: The length evaluation functions for character strings defined in SQL92 are
char_length() and octet_length(). Therefore, these functions are more likely
to exist within other RDBMS systems than the length() function.

like() and ilike()

s like(f )
s LIKE f
like(s , f )
s ilike(f )
s ILIKE f

The like() function checks the expression described by f, and attempts to see if it matches
the character string s. It may either accept two arguments of type text, s and f, or it may be
used in a special SQL syntax format where the argument s precedes the function name, adding
to the readability of the statement. The ilike() function is a non-standard, case-insensitive
version of like(), and may only be invoked through the SQL-style syntax.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note: The SQL keyword LIKE actually invokes the like() function with
PostgreSQL. The ability to use the LIKE keyword without parentheses to invoke
this functionality is a syntactic convenience, and there is no different in practice.

The use of like() differs from a normal equivalence operation in that the character string f
may contain either an underscore ( _ ) or percent (%) symbol to indicate special meaning in
matching character values. PostgreSQL interprets the _ symbol as indicating that any single
character should be considered a match, while the % symbol is interpreted as indicating that
zero or more characters of any value will be considered a match. These special characters may
be interspersed throughout the character string f.

For more advanced pattern matching capabilities within PostgreSQL, see the Section called
Regular expression matching operators" earlier in this chapter.

Examples

booktown=# SELECT * FROM books
booktown-# WHERE title LIKE ('%Rabbit');
 id | title | author_id | subject_id
------+----------------------+-----------+------------
 1234 | The Velveteen Rabbit | 25041 | 3
(1 row)

booktown=# SELECT * FROM books
booktown-# WHERE title LIKE '%D___';
 id | title | author_id | subject_id
-------+----------------------+-----------+------------
 4513 | Dune | 1866 | 15
 25908 | Franklin in the Dark | 15990 | 2
(2 rows)

booktown=# SELECT * FROM books
booktown-# WHERE title ILIKE '%python%';
 id | title | author_id | subject_id
-------+--------------------+-----------+------------
 41473 | Programming Python | 7805 | 4
 41477 | Learning Python | 7805 | 4
(2 rows)

lower()

lower(s )

The lower() SQL92 function accepts a single character string argument s of type text, and
returns the same value with all characters converted to lowercase. The resultant value is
returned as type text.

Example

booktown=# SELECT lower(title)
booktown-# FROM books
booktown-# LIMIT 3;
 lower

 the shining
 dune
 2001: a space odyssey
(3 rows)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(3 rows)

lpad()

lpad(s , n )
lpad(s , n , c )

The lpad() function accepts either two or three arguments s, n, and optionally c, of types
text, integer, and text, respectively. The function "pads" the left side of the character string
s with either whitespace, or the optional character string defined by c, until it is exactly n
characters in length.

If the character string s is longer than n characters to begin with, s will be truncated from the
right until it is exactly n characters in length.

Example

booktown=# SELECT title, lpad(title, 12, '-') AS dashed,
booktown-# lpad(title, 12, '-+-') AS plus_dashed
booktown-# FROM books
booktown-# LIMIT 4;
 title | dashed | plus_dashed
-----------------------+--------------+--------------
 The Shining | -The Shining | -The Shining
 Dune | --------Dune | -+--+--+Dune
 2001: A Space Odyssey | 2001: A Spac | 2001: A Spac
 The Cat in the Hat | The Cat in t | The Cat in t
(4 rows)

ltrim()

ltrim(s )
ltrim(s , f )

The ltrim() function accepts either one or two arguments, s and optionally f, each of type
text. If f is unspecified, the function returns the value of s, with any leading whitespace
trimmed off. Otherwise, the function returns the character string s, with any leading substring
containing exclusively characters contained in f removed. If no such substring is found, no
change is made.

Examples

booktown=# SELECT ltrim(' whitespace example');
 ltrim

 whitespace example
(1 row)

booktown=# SELECT title, ltrim(title, 'TD2he ')
booktown-# FROM books
booktown-# LIMIT 4;
 title | ltrim
-----------------------+----------------------
 The Shining | Shining
 Dune | une
 2001: A Space Odyssey | 001: A Space Odyssey
 The Cat in the Hat | Cat in the Hat
(4 rows)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(4 rows)

octet_length()

char_length(s )

The octet_length() SQL92 function accepts a single argument of type text, varchar or,
character, and returns the number of 8-bit character bytes in the character string s passed to
it. The returned value is of type integer.

In most circumstances, there will be the same number of octets as there are characters to a
character string, though this may not necessarily be the case with multibyte characters. This is
because a multibyte character may consist of more than a single octet (byte), by definition.

Example

booktown=# SELECT title, octet_length(title)
booktown-# FROM books
booktown-# ORDER BY title ASC
booktown-# LIMIT 3;
 title | octet_length
-----------------------------+--------------
 2001: A Space Odyssey | 21
 Bartholomew and the Oobleck | 27
 Dune | 4
(3 rows)

position()

position(b IN s)

The position() SQL92 function accepts two arguments, b and s, each of type text. The
position of the string b within the string s is returned as a value of type integer (counting
from 1). If the string is not found, zero is returned.

Example

booktown=# SELECT title, position('the' IN title) AS the_pos
booktown-# FROM books
booktown-# WHERE position('the' IN title) != 0;
 title | the_pos
-----------------------------+---------
 The Cat in the Hat | 12
 Bartholomew and the Oobleck | 17
 Franklin in the Dark | 13
(3 rows)

repeat()

repeat(s , n )

The repeat() function accepts two arguments s and n, of types text and integer,
respectively. The function returns the character string described by s, repeated n consecutive
times, as a value of type text.

Example

booktown=# SELECT repeat(last_name, 2)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SELECT repeat(last_name, 2)
booktown-# FROM authors
booktown-# LIMIT 3;
 repeat

 DenhamDenham
 BourgeoisBourgeois
 BiancoBianco
(3 rows)

rpad()

rpad(s , n )
rpad(s , n , c )

The rpad() function is essentially the same as the lpad function, but operates on the right side
of the string s, rather than the left. It accepts either two or three arguments s, n, and optionally
c, of types text, integer, and text, respectively. The function pads the right side of the
character string s with either whitespace, or the optional character string defined by c, until it
is exactly n characters in length.

If the character string s is longer than n characters long to begin with, it will be truncated from
the left until it is exactly n characters in length.

Examples

booktown=# SELECT rpad('whitespace example', 30);
 rpad

 whitespace example
(1 row)

booktown=# SELECT title, rpad(title, 12, '-') AS right_dashed,
booktown-# rpad(title, 12, '-+-') AS right_plus_dashed
booktown-# FROM books
booktown-# LIMIT 3;
 title | right_dashed | right_plus_dashed
-----------------------+--------------+-------------------
 The Shining | The Shining- | The Shining-
 Dune | Dune-------- | Dune-+--+--+
 2001: A Space Odyssey | 2001: A Spac | 2001: A Spac
(3 rows)

rtrim()

rtrim(s )
rtrim(s , f )

The rtrim() function accepts either one or two arguments, s and optionally f, each of type
text. If f is unspecified, the function returns the value of s, with any trailing whitespace
trimmed off. Otherwise, the function returns the character string s, with any trailing substring
containing exclusively characters contained in f removed. If no such substring is found, no
change is made.

Examples

booktown=# SELECT rtrim('whitespace example ');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SELECT rtrim('whitespace example ');
 rtrim

 whitespace example
(1 row)

booktown=# SELECT title, rtrim(title, 'yes')
booktown-# FROM books
booktown-# LIMIT 4;
 title | rtrim
-----------------------+----------------------
 The Shining | The Shining
 Dune | Dun
 2001: A Space Odyssey | 2001: A Space Od
 The Cat in the Hat | The Cat in the Hat
(4 rows)

strpos()

strpos(s , b )

The strpos() function is functionally identical to the SQL92 position() function, but
accepts C-style arguments b and s, each of type text. The position of the string b within the
string s is returned as a value of type integer (counting from 1). If the string is not found,
zero is returned.

Example

booktown=# SELECT title, strpos(lower(title), 'rabbit')
booktown-# FROM books
booktown-# WHERE strpos(lower(title), 'rabbit') != 0;
 title | strpos
----------------------+--------
 The Velveteen Rabbit | 15
(1 row)

substr()

substr(s , n )
substr(s , n , l )

The substr() function is effectively equivalent to the SQL92 function substring(), but
accepts C-style arguments s, n, and optionally l, of types text, integer, and integer,
respectively. The function returns the substring of s, beginning at character index n, and
optionally stopping after l characters.

If the length of the substring to be selected is longer than the available characters, only the
available substring will be returned. In other words, it will not be padded as it would be with a
trim function.

Example

booktown=# SELECT title, substr(title, 15), substr(title, 5, 9)
booktown-# FROM books
booktown-# ORDER BY title DESC
booktown-# LIMIT 3;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# LIMIT 3;
 title | substr | substr
----------------------+--------+-----------
 The Velveteen Rabbit | Rabbit | Velveteen
 The Tell-Tale Heart | Heart | Tell-Tale
 The Shining | | Shining
(3 rows)

substring()

substring(s FROM n)
substring(s FROM n FOR l)

The substring() function is the SQL92 equivalent to the PostgreSQL-specific substr()
function. It accepts two or three arguments, s, n, and optionally l, of types text, integer, and
integer, respectively. The function returns the substring of s, beginning at character index n,
and optionally stopping after l characters.

Examples

booktown=# SELECT title, substring(title FROM 15)
booktown-# FROM books
booktown-# ORDER BY title DESC
booktown-# LIMIT 3;
 title | substring
----------------------+-----------
 The Velveteen Rabbit | Rabbit
 The Tell-Tale Heart | Heart
 The Shining |
(3 rows)

booktown=# SELECT title, substring(title FROM 5 FOR 9)
booktown-# FROM books
booktown-# ORDER BY title DESC
booktown-# LIMIT 3;
 title | substring
----------------------+-----------
 The Velveteen Rabbit | Velveteen
 The Tell-Tale Heart | Tell-Tale
 The Shining | Shining
(3 rows)

to_ascii()

to_ascii(s , f )

The to_ascii() accepts a single argument s of type text describing multibyte encoded text
of the format f and returns normal ASCII text as a value of type text.

The available multibyte encoding formats are LATIN1 (ISO 8859-1), LATIN2 (ISO 8859-2),
and WIN1250 (Windows CP1250, or WinLatin2). This function requires that multibyte
encoding be enabled (which is a compile-time option when building and installing
PostgreSQL).

Example

booktown=# SELECT to_ascii('Multibyte Source', 'LATIN1');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SELECT to_ascii('Multibyte Source', 'LATIN1');
 to_ascii

 Multibyte Source
(1 row)

translate()

translate(s , f , r )

The translate() function accepts three arguments, s, f and r, each of type text. It replaces
any instance of a character in the string s that matches any character in f with the
corresponding character at the same index from string r. The result is returned as a value of
type text.

Note that this function does not replace only complete instances of the character string f, but
replaces any character within s that matches any character in f with the corresponding
character from r. If there are more characters in f than in r, any character in f without a
corresponding character in r will simply be omitted (this can be a useful way to remove
unwanted characters).

The important thing to remember about this method of replacement is that there is always a
one-to-one relationship between the character found and its replacement character (though its
replacement may be empty, if omitted).

The following examples replace all question marks with exclamation points.

Examples

booktown=# SELECT translate('I am an example?', '?', '!');
 translate

 I am an example!
(1 row)

The next example replaces all instances of the character I with the character w, and all
instances of the character s with the character a. The extra s at the end of "was" is ignored.

booktown=# SELECT translate('This is a mistake.', 'is', 'was');
 translate

 Thwa wa a mwatake.
(1 row)

This final example replace all vowels with nothing, effectively removing all vowels from the
input strings.

booktown=# SELECT title,
booktown-# translate(title, 'aeiouAEIOU', '') AS vowelless
booktown-# FROM books
booktown-# LIMIT 5;
 title | vowelless
-----------------------------+--------------------
 The Shining | Th Shnng
 Dune | Dn
 2001: A Space Odyssey | 2001: Spc dyssy
 The Cat in the Hat | Th Ct n th Ht
 Bartholomew and the Oobleck | Brthlmw nd th blck
(5 rows)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(5 rows)

trim()

trim(side f FROM s )

The trim() function is the SQL92 function used to achieve the same effects as PostgreSQL's
rtrim(), ltrim(), and btrim() functions. It accepts three arguments, including a leading
keyword side (which may be either LEADING, TRAILING, or BOTH), and two character strings, f
and s.

When specified as LEADING, trim() behaves as ltrim(), trimming the longest substring from
the beginning of the string s which consists solely of characters contained within f.

When specified as TRAILING, trim() behaves as rtrim(), trimming the longest substring
from the end of the string s which consists solely of characters contained within f.

When specified as BOTH, trim() behaves as btrim(), trimming the longest substrings from
both the beginning and end of the string s which consists solely of characters contained within
f.

Examples

booktown=# SELECT isbn, trim(LEADING '0' FROM isbn)
booktown-# FROM editions
booktown-# LIMIT 2;
 isbn | ltrim
------------+-----------
 039480001X | 39480001X
 0451160916 | 451160916
(2 rows)

booktown=# SELECT isbn, trim(TRAILING 'X' FROM isbn)
booktown-# FROM editions
booktown-# LIMIT 2;
 isbn | rtrim
------------+------------
 039480001X | 039480001
 0451160916 | 0451160916
(2 rows)

booktown=# SELECT isbn, trim(BOTH '0X' FROM isbn)
booktown-# FROM editions
booktown-# LIMIT 2;
 isbn | btrim
------------+-----------
 039480001X | 39480001
 0451160916 | 451160916
(2 rows)

upper()

upper(s )

The upper() SQL92 function accepts a single argument s of type text, and returns the
character string with each character converted to lowercase as a value of type text.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SELECT title, upper(title)
booktown-# FROM books
booktown-# ORDER BY id ASC
booktown-# LIMIT 3;
 title | upper
----------------------+----------------------
 The Tell-Tale Heart | THE TELL-TALE HEART
 Little Women | LITTLE WOMEN
 The Velveteen Rabbit | THE VELVETEEN RABBIT
(3 rows)

Date and Time Functions
The standard SQL92 date and time functions (current_date, current_time,
current_timestamp, and extract()) are each supported by PostgreSQL, as well as a variety
of PostgreSQL-specific extensions. Each of PostgreSQL's date and time retrieval and
extraction functions are listed in Table 5-11.

Table 5-11. Date and time functions

Function Description
current_date Returns the current date as a value

of type date
current_time Returns the current time as a value

of type time
current_timestamp Returns the current date and time

as a value of type timestamp
date_part(s , t ) Returns a date or time element

from timestamp t as specified by
character string s

date_part(s , i ) Returns a date or time element
from interval i as specified by
character string s

date_trunc(s , t ) Returns timestamp t truncated to
the degree specified by s

extract(k FROM t ) Returns a date or time element
from timestamp t as specified by
the keyword k

extract(k FROM i ) Returns a date or time element
from interval i as specified by
the keyword k

isfinite(t ) Returns true if the timestamp t is
a finite value (neither invalid, nor
infinity)

isfinite(i ) Returns true if the interval i is a
finite value (not infinity)

now() Returns the date and time as a
timestamp value. This is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

timestamp value. This is
equivalent to the now timestamp
constant.

timeofday() Returns the current date and time
as a text value

The following sections elaborate on each of PostgreSQL's date and time functions described in
Table 5-11. Note that the syntax for the current_date, current_time and
current_timestamp functions omits the parentheses. This is done to remain compliant with
the SQL92 standard requirements.

current_date

current_date

The current_date function accepts no arguments, and returns the current date as a value of
type date. This is identical to casting the special now constant to a value of type date.

Example

booktown=# SELECT current_date,
booktown-# 'now'::date AS date;
 date | date
------------+------------
 2001-08-31 | 2001-08-31
(1 row)

current_time

current_time

The current_time function accepts no arguments, and returns the current time as a value of
type time. This is identical to casting the special now constant to a value of type time.

Example

booktown=# SELECT current_time,
booktown-# 'now'::time AS time;
 time | time
----------+----------
 11:36:52 | 11:36:52
(1 row)

current_timestamp

current_timestamp

The current_timestamp function accepts no arguments, and returns the current date and time
as a value of type timestamp. This is identical to casting the special now constant to a value of
type timestamp, or to calling the now() function.

Example

booktown=# SELECT current_timestamp,
booktown-# now() AS timestamp;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# now() AS timestamp;
 timestamp | timestamp
------------------------+------------------------
 2001-08-31 11:39:42-07 | 2001-08-31 11:39:42-07
(1 row)

date_ part()

date_part(s , t )
date_part(s , i )

The date_part() function accepts two arguments, s of type text, and either t of type
timestamp, or i of type interval. The function removes the part of the time length specified
by s, and returns it as a value of type double precision.

To understand the function of date_part(), it can be helpful to think of a timestamp or
interval value as being broken up into several fields. These fields each describe a discrete
component of the temporal value, such as the number of days, hours, or minutes described.
The valid values for time field units described by s are detailed in Table 5-12. Notice that
some values are only appropriate for use with a timestamp value, and not with an interval.

Table 5-12. Timestamp and interval units

Unit Description
century Describes the year field, divided by 100

(will not describe the literal century)
day Describes the day field, from 1 to 31, for a

timestamp, or the total number of days for
an interval

decade Describes the year field, divided by 10
dow Describes the day of the week field, from 0

to 6 (beginning on Sunday), for a
timestamp, not applicable to an interval

doy Describes the day of the year field, from 1
to 365 or 366 for a timestamp value, not
application to an interval

epoch Describes the number of seconds since the
epoch (Jan 1, 1970) for a timestamp, or
total number of seconds for an interval

hour Describes the hour represented by a
timestamp

microseconds Describes the millionths of seconds
following the decimal in the seconds field
of a timestamp value

millennium Describes the year field, divided by 1000
(will not describe the literal millennium)

milliseconds Describes the thousandths of seconds
following the decimal in the seconds field
of a timestamp value

minute Describes the minutes field of a timestamp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

or interval value
month Describes the month of the year for a

timestamp value, or the number of months
modulo 12 for interval values

quarter Describes the quarter of the year, from 1 to
4, for timestamp values

second Describes the seconds field of a timestamp
or interval value

week Describes the week of the year of a
timestamp value. ISO-8601 defines the
first week of the year to be the week
containing January 4.

year Describes the year field of a timestamp or
interval value

Examples

booktown=# SELECT date_part('minute',
booktown(# interval('3 days 4 hours 12 minutes'));
 date_part

 12
(1 row)

booktown=# SELECT isbn,
booktown-# date_part('year', publication)
booktown-# FROM editions
booktown-# ORDER BY date_part ASC
booktown-# LIMIT 3;
 isbn | date_part
------------+-----------
 0760720002 | 1868
 0679803335 | 1922
 0694003611 | 1947
(3 rows)

Note: The standard SQL function for achieving the same function as the
date_part() function is the extract() function.

date_trunc()

date_trunc(s , t )

The date_trunc() function accepts two arguments s and t, of types text and timestamp,
respectively. The character string s defines the degree to which the timestamp value t should
be truncated. In this context, truncation means eliminating an amount of detail in the value
represented.

See Table 5-12 for valid values for time unit s.

Example

booktown=# SELECT date_trunc('minute', now());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SELECT date_trunc('minute', now());
 date_trunc

 2001-08-31 09:59:00-07
(1 row)

booktown=# SELECT date_trunc('hour', now());
 date_trunc

 2001-08-31 09:00:00-07
(1 row)

booktown=# SELECT date_trunc('year', now());
 date_trunc

 2001-01-01 00:00:00-08
(1 row)

extract()

extract(k FROM t)
extract(k FROM i)

The extract() function is the SQL92 equivalent to PostgreSQL's date_part() function, with
a slightly modified syntax. The SQL syntax for this function uses the FROM keyword, rather
than a comma. The arguments are similar to those for the date_part() function, though it
differs in that its first argument is a SQL keyword, rather than a character string, and should
therefore not be quoted. Valid values for k are the same as those listed in Table 5-12.

Note that the extract() function exists as a SQL92 syntax "alias" for the PostgreSQL
date_part() function; for this reason, the output column name from PostgreSQL is, by
default, date_ part.

Examples

booktown=# SELECT extract(MINUTE FROM interval('3 days 12 minutes'));
 date_part

 12
(1 row)

booktown=# SELECT extract(MONTH FROM now());
 date_part

 8
(1 row)

isfinite()

isfinite(t )
isfinite(i )

The isfinite() function accepts one argument, of type timestamp or type interval. It
returns true if the value passed to it is not found to be an infinite value, which would be one
set with either the special constant infinity or invalid (a special timestamp constant only).

Example

booktown=# SELECT isfinite('now'::timestamp) AS now_is_finite,
booktown-# isfinite('infinity'::timestamp) AS infinity,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# isfinite('infinity'::timestamp) AS infinity,
booktown-# isfinite('invalid'::timestamp) AS invalid;
 now_is_finite | infinity | invalid
---------------+----------+---------
 t | f | f
(1 row)

now()

now()

The now() function accepts no arguments, and returns the time and date of when now() is
executed by PostgreSQL, in the form of a timestamp value.

Example

booktown=# SELECT now();
 now

 2001-08-31 10:31:18-07
(1 row)

timeofday()

timeofday()

The timeofday() function accepts no arguments. It returns the time and date of when the
function is executed by PostgreSQL. The timeofday() function is similar in use to the now()
function. However, the timeofday() function returns a value of the type text. This means
that it is less flexible to work with, as you cannot use the date_part() or to_char()
functions to break down elements of the value without casting it first to another type. It can be
useful for applications that require a UNIX style timestamp, as well as providing extended
precision for the seconds value.

Example

booktown=# SELECT timeofday();
 timeofday

 Fri Aug 31 10:33:00.837338 2001 PDT
(1 row)

Type Conversion Functions
While PostgreSQL is able to explicitly cast between most commonly used data types, some
conversions require a function in order to meaningfully translate values. Some of
PostgreSQL's commonly used type conversion functions are listed in Table 5-13. These are
detailed in the following sections.

Table 5-13. Type conversion functions

Function Description
bitfromint4(n ) Converts numeric value n to a binary

bit string
bittoint4(b ) Converts bit string b to its numeric

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Converts bit string b to its numeric
decimal representation

to_char(n , f ) Converts numeric value n to a character
string with format f

to_char(t , f ) Converts timestamp t to a character
string with format f

to_date(s , f ) Converts character string s with date
format f to a date value

to_number(s , f ) Converts character string s with format
f to a numeric value

to_timestamp(s , f ) Converts character string s with format
f to a timestamp value

timestamp(d ) Returns the date d as a value of type
timestamp

timestamp(d , t ) Returns a timestamp value derived
from date d and time t

bitfromint4()

bitfromint4(n )

The bitfromint4() function accepts a single argument n of type integer and returns its
binary bit string equivalent. As explicit casts between binary and integer types do not exist,
this function is required to transform decimal values to their binary counterparts.

The returned value is of type bit, and may not exceed 32 bits. Therefore, since the integer
argument is signed, valid input values are between –2147483648 and 2147483647.

Example

booktown=# SELECT bitfromint4(16385);
 bitfromint4

 00000000000000000100000000000001
(1 row)

bittoint4()

bittoint4(b )

The bittoint4() function is essentially the inverse of the bitfromint4() function; it accepts
a single argument b of type bit and returns its decimal numeric value as type integer.

The bounds of input and output are the reverse of the bitfromint4 function, in that it accepts
up to 32 binary digits, and will thus not return more than 2147483647 or less than –
2147483648 as its result value.

Example

booktown=# SELECT bittoint4(B'101010'),
booktown-# bittoint4(bitfromint4(99)) AS inverse_example;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# bittoint4(bitfromint4(99)) AS inverse_example;
 bittoint4 | inverse_example
-----------+-----------------
 42 | 99
(1 row)

to_char() with numbers

to_char(n , f )

The to_char() function, when used with argument n of type numeric and argument f, of type
text, formats the numeric value of n to a character string returned as type text. The character
string f describes the character string format within which to place the value of n.

The f format string consists of a series of meta-characters, which PostgreSQL translates into
the literal values they represent. Valid meta-characters that may be used within this format
string for a numeric conversion are outlined in Table 5-14.

Table 5-14. Numeric conversion formatting characters

Character Description
9 The next sequential digit in the value n
0 The next sequential digit in n, or a leading or

trailing zero if more digits are specified by f
than are in n; may thus be used to force
significant digits to the left or right of a value

. A decimal point (there can be only one)
, A comma (there can be several, for separating

thousands, millions, etc.)
D A decimal point (e.g., a period) derived from

locale
G A group separator (e.g., a comma) derived from

locale
PR If n is a negative value, placing PR at the end of

f surrounds the returned string in angle brackets
SG A plus or minus sign, depending on the value of

n

MI A minus sign, if the n is negative
PL A plus sign, if n is positive
S A plus or minus sign, derived from locale
L A currency symbol, derived from locale
RN The Roman Numeral characters for numeric

values of n between 1 and 3999
TH, th The appropriate ordinal suffix for n (e.g., 4th,

2nd)
V Adds a zero to the right for each 9 following V,

effectively shifting up by exponents of ten
FM Sets format to "fill mode," causing leading and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

trailing zeroes (created by the 9 character, but
not 0), and extra whitespace, to be omitted

When more digits are specified with the 9 character in the format string than are within the
numeric value n, the extra digits will be padded with whitespace. When more digits are
specified with the 0 character, the extra digits will be padded with zeroes.

If fewer digits are specified then are necessary to represent the digits to the left of the decimal,
the meaning of the conversion becomes ambiguous, as significant digits must be omitted.
Since it is unclear which digits should be omitted, the to_char() function will enter the #
character in place of each specified digit. It is therefore important to specify the maximum
number of digits that you expect to receive back from the translation. You should also use a
function such as translate() or one of the trim functions to remove unwanted whitespace
from the translation.

Literal versions of meta-characters may be used within the format string by surrounding them
with double quotes. Doing this within the format string changes the quoted meta-characters so
they are interpreted literally. Note that in order to use a literal double-quote within this
scheme, two backslashes must prefix the double-quote, as it is essentially twice escaped.

Note: Any character that is not a meta-character may be safely used in a format
string (e.g., the $ symbol). Such characters will appear in the formatted string
unchanged.

Examples

booktown=# SELECT to_char(123456789, '999G999G999D99') AS formatted,
booktown-# to_char(123456789, '999999999') AS just_digits,
booktown-# to_char(123456789, '00999999999') AS with_zeroes;
 formatted | just_digits | with_zeroes
-----------------+-------------+--------------
 123,456,789.00 | 123456789 | 00123456789
(1 row)

booktown=# SELECT cost * 100 AS cost_to_order,
booktown-# to_char(cost * 100, '$99,999.99') AS monetary,
booktown-# translate(to_char(cost * 100, '$9,999.99'),' ','')
booktown-# AS translated
booktown-# FROM stock
booktown-# LIMIT 3;
 cost_to_order | monetary | translated
---------------+-------------+------------
 2900.00 | $ 2,900.00 | $2,900.00
 3000.00 | $ 3,000.00 | $3,000.00
 1600.00 | $ 1,600.00 | $1,600.00
(3 rows)

booktown=# SELECT to_char(1.0, '9th "Place"') AS first,
booktown-# to_char(2.2, '9th "Place"') AS second,
booktown-# to_char(pi(), '9th "Place"') AS third,
booktown-# to_char(10, '99V99th "\\"Place\\""') AS shifted_up;
 first | second | third | shifted_up
------------+------------+------------+-----------------
 1st Place | 2nd Place | 3rd Place | 1000th "Place"
(1 row)

Note: Note that as of PostgreSQL v7.1.x, there is a bug in the usage of the RN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note: Note that as of PostgreSQL v7.1.x, there is a bug in the usage of the RN
Roman Numeral conversion sequence which causes it to return invalid results
unless used with the FM character sequence. This is scheduled for correction in
7.2, but can be worked around by using the complete FMRN sequence.

to_char() with timestamps

to_char(t , f )

When used with argument t of type timestamp and argument f of type text the to_char
function formats the date and time represented by of t to a character string returned as type
text.

As with the numeric functionality of to_char(), the character string f describes the meta-
characters which are translated by PostgreSQL into the literal values they represent. Valid
meta-characters that may be used within this format string for date and time values are
outlined in Table 5-15.

Table 5-15. Timestamp conversion formatting characters

Character Description
HH, HH12 The hour of day, from 1 to 12
HH24 The hour of the day, from 0 to 23
MI The minute, from 0 to 59
SS The second, from 0 to 59
SSSS The seconds past midnight, from 0 to 86,399
AM, PM, A.M., P.M. The meridian indicator in uppercase, with

optional periods
am, pm, a.m., p.m. The meridian indicator in lowercase, with

optional periods
TZ, tz The time zone, in upper or lowercase
CC The two-digit century (not the year divided by

100)
Y, YY, YYY, YYYY, Y,YYY The year's last digit, last two digits, last three

digits, or last four digits (with optional comma)
BC, AD, B.C., A.D. Year qualifier, in uppercase
bc, ad, b.c., a.d. Year qualifier, in lowercase
MONTH, Month, month The full month name, padded on the right with

blanks to 9 characters in length, in uppercase,
init-capped, or lowercase

MON, Mon, mon The abbreviated 3-letter month, in uppercase,
init-capped, or lowercase

MM The month number, from 1 to 12
RN, rn The month in Roman Numerals, from I to XII,

in upper or lowercase
DAY, Day, day The full day name, padded on the right to 9

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

characters in length, in uppercase, init-capped,
or lowercase

DY, Dy, dy The abbreviated 3-letter day, in uppercase, init-
capped, or lowercase

DDD, DD, D The day of the year, from 1 to 366, day of the
month, from 1 to 31, or day of the week, from 1
to 7 (beginning on Sunday)

W The week of the month, from 1 to 5 (from the
1st day of the month)

WW The week of the year, from 1 to 53 (from the 1st
day of the year)

IW The ISO week of the year (from the 1st
Thursday of the new year)

TH, th The appropriate ordinal suffix for the preceding
numeric value, upper or lowercase

fm Causes extra padding to be omitted, including
whitespace, and extra zeroes

The TH suffix and FM prefix must be directly adjacent to the value they are modifying. For
example, to apply FM to the Day value, the complete sequence would be FMDay (not FM
Day). Similarly, to attach the ordinal suffix to the DD day of the month, the complete
sequence would be DDTH (not DD TH).

Examples

booktown=# SELECT to_char(now(), 'HH:MI PM') AS the_time;
 the_time

 05:04 PM
(1 row)

booktown=# SELECT to_char(now(), 'Dy (Day), Mon (Month)')
booktown-# AS abbreviations,
booktown-# to_char('yesterday'::timestamp, 'FMMonth FMDDth')
booktown-# AS yesterday,
booktown-# to_char('yesterday'::timestamp, 'FMDDth FMMonth')
booktown-# AS "yesterday UK";
 abbreviations | yesterday | yesterday UK
----------------------------------+-------------+--------------
 Sat (Saturday), Sep (September) | August 31st | 31st August
(1 row)

booktown=# SELECT isbn, these must be
booktown-# to_char(publication, 'FMMonth FMDDth, YYYY')
booktown-# AS informal,
booktown-# to_char(publication, 'YYYY-MM-DD') AS formal,
booktown-# to_char(publication, 'Y,YYY "years" A.D.')
booktown-# AS first_published
booktown-# FROM editions LIMIT 3;
 isbn | informal | formal | first_published
------------+------------------+------------+------------------
 039480001X | March 1st, 1957 | 1957-03-01 | 1,957 years A.D.
 0451160916 | August 1st, 1981 | 1981-08-01 | 1,981 years A.D.
 0394800753 | March 1st, 1949 | 1949-03-01 | 1,949 years A.D.
(3 rows)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(3 rows)

to_date()

to_date(s , f )

The to_date() function accepts two arguments s and f, each of type text. The argument f
describes, using the date-specific meta-characters detailed in Table 5-15, the format of the date
described by the string s. The result is returned as type date.

While PostgreSQL can figure out a wide variety of date formats, it cannot support every
arbitrary date format. The to_date() function insures that, provided the format can be
described using the meta- characters from Table 5-14, nearly any date format can be converted
to a valid date value.

Example

booktown=# SELECT date('198025thJune')
booktown-# AS non_standard_date_format,
booktown-# to_date('198025thJune', 'YYYYDDthMonth')
booktown-# AS correct_interpretation;
 non_standard_date_format | correct_interpretation
--------------------------+------------------------
 2025-08-27 | 1980-06-25
(1 row)

to_number()

to_number(s , f )

The to_number function operates much like the inverse of the to_char() function for
numbers. It accepts two arguments s and f, each of type text. The character string described
by s should have its format described by f, using the same meta-characters shown in Table 5-
14. The result is returned as type numeric.

Examples

booktown=# SELECT to_number('$2,900.00', 'L9G999D99')
booktown-# AS monetary;
 monetary

 2900.00
(1 row)

booktown=# SELECT to_number('123,456,789.00', '999G999G999D99')
booktown-# AS formatted,
booktown-# to_number('123456789', '999999999')
booktown-# AS just_digits,
booktown-# to_number('00123456789', '00999999999')
booktown-# AS leading_zeroes;
 formatted | just_digits | leading_zeroes
--------------+-------------+----------------
 123456789.00 | 123456789 | 123456789
(1 row)

to_timestamp()

to_timestamp(s , f )

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to_timestamp(s , f )

The to_timestamp() function accepts two arguments s and f, each of type text. The
argument f describes, using the meta-characters detailed in Table 5-15, the format of the date
and time described by the string s. The result is returned as type date.

Like to_date(), this function exists primarily as a means to be able to correctly interpret the
format of a non-standard date and time string.

Example

booktown=# SELECT timestamp('197825thJuly01:12am')
booktown-# AS non_standard_timestamp,
booktown-# to_timestamp('197825July01:12am',
booktown(# 'YYYYDDFMMonthHH12:MIam')
booktown-# AS correct_interpretation;
 non_standard_timestamp | correct_interpretation
------------------------+------------------------
 2025-06-27 01:12:00-07 | 1978-07-25 01:12:00-07
(1 row)

Note: The use of the FM modifier can be crucial in making sure the evaluation of
values following a month or day name are interpreted correctly, as these names
are normally padded to nine characters in length. Note that the FM modifier must
precede each element which you wish it to apply to, as it is not a "global"
modifier.

timestamp()

timestamp(d )
timestamp(d , t )

The timestamp() function accepts either a single argument d of type date, or two arguments
d and t, of types date and time, respectively. The arguments passed are converted to a value
of type timestamp and returned. In the former case, the time is assumed to be midnight on the
date specified.

Example

booktown=# SELECT timestamp(date('now')) AS today_at_midnight,
booktown-# timestamp(date('now'),
booktown(# time('now')) AS right_now;
 today_at_midnight | right_now
------------------------+------------------------
 2001-09-01 00:00:00-07 | 2001-09-01 18:04:16-07
(1 row)

Aggregate Functions
An aggregate function is a special kind of function that operates on several rows of a query at
once, returning a single result. Such functions are generally only used in queries which make
use of the GROUP BY clause to associate rows together by like criteria, though they may be
used in queries which only contain aggregate functions in their target list. When performing
the latter, the aggregate function operates on all selected rows from the result set.

Table 5-16 provides an overview of PostgreSQL's supported aggregate functions. To see a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 5-16 provides an overview of PostgreSQL's supported aggregate functions. To see a
complete list of aggregate functions, you may use the \da command within psql.

Table 5-16. Aggregate functions

Function Description
avg(expression ) Returns the average of the

expression values from all
rows in a group.

count(expression ) Returns the number of values,
per each aggregated group of
rows, for which expression is
not NULL

max(expression ) Returns the maximum value of
expression in the grouped
rows

min(expression ) Returns the minimum value of
expression in the grouped
rows

stddev(expression ) Returns the standard deviation
of the values of expression in
the grouped rows

sum(expression ) Returns the sum of the values
of expression in the grouped
rows

variance(expression ) Returns the variance of the
values of expression in the
grouped rows

The following sections describe each aggregate function in further detail, including specific
information on usage, examples, and valid input data types. In each of the functional
explanations, the term expression refers to any valid identifier in a result set, or any valid
expression operating on such an identifier.

Aggregate expressions

When calling an aggregate function, aggregate expressions are employed to describe an
expression from the result set created by the SELECT statement. An aggregate expression is
similar to an ordinary SQL expression, but may be preceded by either the ALL or the DISTINCT
keyword.

The use of the DISTINCT keyword in an aggregate expression causes only grouped rows with
unique values (as described by the expression) to be evaluated by the function. Any duplicate
rows will be suppressed. Similar to the use of the ALL keyword in a SELECT statement, the use
of ALL in an aggregate expression has no function other than to make more explicit the request
for all grouped rows to be evaluated to the function. Example 5-19 demonstrates each of the
aggregate expression forms.

Example 5-19. Using aggregate expressions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SELECT count(location) AS set_locations,
booktown-# count(ALL location) AS all_set_locations,
booktown-# count(DISTINCT location) AS unique_locations,
booktown-# count(*) AS all_rows
booktown-# FROM subjects;
 set_locations | all_set_locations | unique_locations | all_rows
---------------+-------------------+------------------+----------
 15 | 15 | 7 | 16
(1 row)

There is one final form of aggregate expression, as demonstrated by the all_rows result
column in Example 5-19. When the asterisk (*) symbol is supplied as the aggregate
expression, it instructs the aggregate function to evaluate all rows, including rows with values
of NULL, which are ordinarily ignored. Since the subjects table contains one row with a NULL
value in the location column, the counted rows for location differ from those counted for *.

Warning
Rows whose evaluated aggregate expression contain NULL values will not be evaluated by an
aggregate function (with the exception of the count() function).

avg()

avg(expression )

The avg() function accepts an expression describing aggregated values that are either of any
numeric type (numeric, bigint, smallint, real, or double precision), or of the interval
time type.

The average, or mean, of the values described by expression in the grouped rows is returned.
The resultant value is returned as a value of type numeric for expressions of type integer and
double precision for expressions of type real. All other expression types cause a value of
the same data type to be returned.

Examples

booktown=# SELECT avg(cost) AS average_cost,
booktown-# avg(retail) AS average_price,
booktown-# avg(retail - cost) AS average_profit
booktown-# FROM stock;
 average_cost | average_price | average_profit
---------------+---------------+----------------
 24.8235294118 | 30.0088235294 | 5.1852941176
(1 row)

booktown=# SELECT avg(cost) AS average_cost, p.name AS publisher
booktown-# FROM (stock JOIN editions USING (isbn))
booktown-# JOIN publishers AS p (publisher_id)
booktown-# USING (publisher_id)
booktown-# GROUP BY p.name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# GROUP BY p.name;
 average_cost | publisher
---------------+-----------------------------
 26.5000000000 | Ace Books
 19.0000000000 | Books of Wonder
 26.5000000000 | Doubleday
 25.0000000000 | HarperCollins
 18.0000000000 | Henry Holt & Company, Inc.
 23.0000000000 | Kids Can Press
 23.0000000000 | Mojo Press
 20.0000000000 | Penguin
 23.0000000000 | Random House
 26.5000000000 | Roc
 26.0000000000 | Watson-Guptill Publications
(11 rows)

count()

count(expression )

The count() function returns the number of values in a set of aggregated rows where the
expression is not NULL. The count() is not restricted as to the data type described by
expression. It is important to understand that the count() function only counts values which
are not NULL. As a result, it is important to use an expression whose value will not be
returned NULL in order for the expression to be meaningful to the counted results.

You may pass the asterisk (*) character to count() in order to simply count all rows in an
aggregation (including rows with NULL values).

Examples

booktown=# SELECT count(*) FROM editions;
 count

 17
(1 row)

booktown=# SELECT count(isbn), p.name
booktown-# FROM editions JOIN publishers AS p (publisher_id)
booktown-# USING (publisher_id)
booktown-# GROUP BY p.name
booktown-# ORDER BY count DESC;
 count | name
-------+-----------------------------
 3 | Random House
 2 | Ace Books
 2 | Doubleday
 2 | Roc
 1 | Books of Wonder
 1 | HarperCollins
 1 | Henry Holt & Company, Inc.
 1 | Kids Can Press
 1 | Mojo Press
 1 | O'Reilly & Associates
 1 | Penguin
 1 | Watson-Guptill Publications
(12 rows)

max()

max(expression )

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

max(expression )

The max() function returns the maximum found value described by expression in a set of
aggregated rows. It accepts an expression that may represent any numeric, string, date, or
time data type. The maximum is returned as a value of the same data type as the expression.

Examples

booktown=# SELECT max(cost), max(retail) FROM stock;
 max | max
-------+-------
 36.00 | 46.95
(1 row)

booktown=# SELECT max(retail), p.name
booktown-# FROM (stock NATURAL JOIN editions)
booktown-# JOIN publishers AS p (publisher_id)
booktown-# USING (publisher_id)
booktown-# GROUP BY p.name
booktown-# ORDER BY max DESC;
 max | name
-------+-----------------------------
 46.95 | Roc
 45.95 | Ace Books
 36.95 | Doubleday
 32.95 | Random House
 28.95 | HarperCollins
 28.95 | Watson-Guptill Publications
 24.95 | Mojo Press
 24.95 | Penguin
 23.95 | Henry Holt & Company, Inc.
 23.95 | Kids Can Press
 21.95 | Books of Wonder
(11 rows)

min()

min(expression )

The min() function returns the minimum found value described by expression in a set of
aggregated rows. It accepts an expression which may represent any numeric, string, date,
or time data type. The minimum is returned as a value of the same data type as the
expression.

Examples

booktown=# SELECT min(cost), min(retail) FROM stock;
 min | min
-------+-------
 16.00 | 16.95
(1 row)

booktown=# SELECT min(retail), p.name
booktown-# FROM (stock NATURAL JOIN editions)
booktown-# JOIN publishers AS p (publisher_id)
booktown-# USING (publisher_id)
booktown-# GROUP BY p.name
booktown-# ORDER BY min ASC;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown-# ORDER BY min ASC;
 min | name
-------+-----------------------------
 16.95 | Random House
 21.95 | Ace Books
 21.95 | Books of Wonder
 22.95 | Roc
 23.95 | Henry Holt & Company, Inc.
 23.95 | Kids Can Press
 24.95 | Mojo Press
 24.95 | Penguin
 28.95 | Doubleday
 28.95 | HarperCollins
 28.95 | Watson-Guptill Publications
(11 rows)

stddev()

stddev(expression )

The stddev() function accepts an expression describing values of any numeric type (numeric,
bigint, smallint, real, or double precision), and returns the standard deviation of the
values within the aggregated rows. The resultant value is returned as double precision for
an expression describing floating point values, and numeric for all other types.

Examples

booktown=# SELECT stddev(retail) FROM stock;
 stddev

 8.46
(1 row)

booktown=# SELECT stddev(retail), p.name
booktown-# FROM (stock NATURAL JOIN editions)
booktown-# JOIN publishers AS p ON (publisher_id = p.id)
booktown-# GROUP BY p.name
booktown-# ORDER BY stddev DESC
booktown-# LIMIT 4;
 stddev | name
--------+--------------
 16.97 | Ace Books
 16.97 | Roc
 8.02 | Random House
 5.66 | Doubleday
(4 rows)

sum()

sum(expression )

The sum() function accepts an expression describing values of any numeric type (numeric,
bigint, smallint, real, or double precision), and returns the sum of the values within the
aggregated rows. The returned value is of the type numeric when operating on values of type
integer and double precision when operating on values of type real. The result is returned
as the same data type as the values described by expression for all other data types.

Examples

booktown=# SELECT sum(stock) FROM stock;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

booktown=# SELECT sum(stock) FROM stock;
 sum

 508
(1 row)

booktown=# SELECT sum(stock), s.subject
booktown-# FROM ((stock NATURAL JOIN editions)
booktown(# JOIN books ON (books.id = book_id))
booktown-# JOIN subjects AS s
booktown-# ON (books.subject_id = s.id)
booktown-# GROUP BY s.subject
booktown-# ORDER BY sum DESC;
 sum | subject
-----+------------------
 189 | Horror
 166 | Science Fiction
 91 | Children's Books
 28 | Drama
 18 | Classics
 16 | Arts
(6 rows)

variance()

variance(expression )

The variance() function accepts an expression describing values of any numeric type
(numeric, bigint, smallint, real, or double precision) and returns the variance of the
values within the aggregated rows. The variance is equivalent to the stddev() squared. The
resultant value is returned as double precision for an expression describing floating-point
values, and numeric for all other types.

Examples

booktown=# SELECT variance(retail) FROM stock;
 variance

 71.60
(1 row)

booktown=# SELECT variance(retail), p.name
booktown-# FROM (stock NATURAL JOIN editions)
booktown-# JOIN publishers AS p
booktown-# ON (editions.publisher_id = p.id)
booktown-# GROUP BY p.name
booktown-# ORDER BY variance DESC
booktown-# LIMIT 4;
 variance | name
----------+-----------------------------
 288.00 | Ace Books
 288.00 | Roc
 64.33 | Random House
 32.00 | Doubleday
(4 rows)

Prev Home Next
Operators and Functions Up PostgreSQL Clients

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

