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PREFACE

The goal of this book is to give you the skills and knowledge necessary to succeed
in calculus. Much of the difficulty calculus students face is with algebra. They have
to solve equations, find equations of lines, study graphs, solve word problems, and
rewrite expressions—all of these require a solid background in algebra. You will
get experience with all this and more in this book. Not only will you learn about the
basic functions in this book, you also will strengthen your algebra skills because
all of the examples and most of the solutions are given with a lot of detail. Enough
steps are given in the problems to make the reasoning easy to follow.

The basic functions covered in this book are linear, polynomial, and rational func-
tions, as well as exponential, logarithmic, and trigonometric functions. Because
understanding the slope of a line is crucial to making sense of calculus, the interpre-
tation of a line’s slope is given extra attention. Other calculus topics introduced in
this book are Newton’s Quotient, the average rate of change, increasing/decreasing
intervals of a function, and optimizing functions. Your experience with these ideas
will help you when you learn calculus.

Concepts are presented in clear, simple language, followed by detailed examples.
To make sure you understand the material, each section ends with a set of practice
problems. Each chapter ends with a multiple-choice test, and there is a final exam
at the end of the book. You will get the most from this book if you work steadily
from the beginning to the end. Because much of the material is sequential, you
should review the ideas in the previous section. Study for each end-of-chapter test
as if it really were a test, and take it without looking at examples and without using
notes. This will let you know what you have learned and where, if anywhere, you
need to spend more time.

Good luck.

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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1
CHAPTER

The Slope and
Equation of a Line

The slope of a line and the meaning of the slope are important in calculus. In fact,
the slope formula is the basis for differential calculus. The slope of a line measures
its tilt. The sign of the slope tells us if the line tilts up (if the slope is positive)
or tilts down (if the slope is negative). The larger the number, the steeper the
slope.

We can put any two points on the line, (x1, y1) and (x2, y2), in the slope formula
to find the slope of the line.

m = y2 − y1

x2 − x1

1
xi

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



CHAPTER 1 The Slope and Equation2

Fig. 1.1.

Fig. 1.2.

For example, (0, 3), (−2, 2), (6, 6), and (−1, 5
2) are all points on the same line.

We can pick any pair of points to compute the slope.

m = 2 − 3

−2 − 0
= −1

−2
= 1

2
m =

5
2 − 2

−1 − (−2)
=

1
2

1
= 1

2

m = 3 − 6

0 − 6
= −3

−6
= 1

2

A slope of 1
2 means that if we increase the x-value by 2, then we need to increase

the y-value by 1 to get another point on the line. For example, knowing that (0, 3)

is on the line means that we know (0 + 2, 3 + 1) = (2, 4) is also on the line.
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Fig. 1.3.

Fig. 1.4.

As we can see from Figure 1.4, (−4, −2) and (1, −2) are two points on a
horizontal line. We will put these points in the slope formula.

m = −2 − (−2)

1 − (−4)
= 0

5
= 0

The slope of every horizontal line is 0. The y-values on a horizontal line do not
change but the x-values do.

What happens to the slope formula for a vertical line?
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Fig. 1.5.

The points (3, 2) and (3, −1) are on the vertical line in Figure 1.5. Let’s see what
happens when we put them in the slope formula.

m = −1 − 2

3 − 3
= −3

0

This is not a number so the slope of a vertical line does not exist (we also say that
it is undefined). The x-values on a vertical line do not change but the y-values do.

Any line is the graph of a linear equation. The equation of a horizontal line
is y = a (where a is the y-value of every point on the line). Some examples of
horizontal lines are y = 4, y = 1, and y = −5.

Fig. 1.6.
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The equation of a vertical line is x = a (where a is the x-value of every point
on the line). Some examples are x = −3, x = 2, and x = 4.

Fig. 1.7.

Other equations usually come in one of two forms: Ax+By = C andy = mx+b.
We will usually use the form y = mx + b in this book. An equation in this form
gives us two important pieces of information. The first is m, the slope. The second
is b, the y-intercept (where the line crosses the y-axis). For this reason, this form
is called the slope-intercept form. In the line y = 2

3x + 4, the slope of the line is 2
3

and the y-intercept is (0, 4), or simply, 4.
We can find an equation of a line by knowing its slope and any point on the line.

There are two common methods for finding this equation. One is to put m, x, and y

(x and y are the coordinates of the point we know) in y = mx + b and use algebra
to find b. The other is to put these same numbers in the point-slope form of the line,
y − y1 = m(x − x1). We will use both methods in the next example.

EXAMPLES
• Find an equation of the line with slope −3

4 containing the point (8, −2).
We will let m = −3

4 , x = 8, and y = −2 in y = mx + b to find b.

−2 = −3

4
(8) + b

4 = b

The line is y = −3

4
x + 4.
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Now we will let m = −3

4
, x1 = 8 and y1 = −2 in y − y1 = m(x − x1).

y − (−2) = −3

4
(x − 8)

y + 2 = −3

4
x + 6

y = −3

4
x + 4

• Find an equation of the line with slope 4, containing the point (0, 3).
We know the slope is 4 and we know the y-intercept is 3 (because (0, 3) is
on the line), so we can write the equation without having to do any work:
y = 4x + 3.

• Find an equation of the horizontal line that contains the point (5, −6).
Because the y-values are the same on a horizontal line, we know that this
equation is y = −6. We can still find the equation algebraically using the fact
that m = 0, x = 5 and y = −6. Then y = mx + b becomes −6 = 0(5) + b.
From here we can see that b = −6, so y = 0x − 6, or simply, y = −6.

• Find an equation of the vertical line containing the point (10, −1).
Because the x-values are the same on a vertical line, we know that the
equation is x = 10. We cannot find this equation algebraically because m

does not exist.

We can find an equation of a line if we know any two points on the line. First
we need to use the slope formula to find m. Then we will pick one of the points to
put into y = mx + b.

EXAMPLES
Find an equation of the line containing the given points.

• (−2, 3) and (10, 15)

m = 15 − 3

10 − (−2)
= 1

We will use x = −2 and y = 3 in y = mx + b to find b.

3 = 1(−2) + b

5 = b

The equation is y = 1x + 5, or simply y = x + 5.
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• (1
2 , −1) and (4, 3)

m = 3 − (−1)

4 − 1
2

= 4
7
2

= 4 ÷ 7

2
= 4 · 2

7
= 8

7

Using x = 4 and y = 3 in y = mx + b, we have

3 = 8

7
(4) + b

−11

7
= b.

The equation is y = 8
7x − 11

7 .
• (0, 1) and (12, 1)

The y-values are the same, making this a horizontal line. The equation is
y = 1.

If a graph is clear enough, we can find two points on the line or even its slope.
If fact, if the slope and y-intercept are easy enough to see on the graph, we know
right away what the equation is.

EXAMPLES

•

Fig. 1.8.

The line in Figure 1.8 crosses the y-axis at 1, so b = 1. From this point, we
can go right 2 and up 3 to reach the point (2, 4) on the line. “Right 2” means
that the denominator of the slope is 2. “Up 3” means that the numerator of
the slope is 3. The slope is 3

2 , so the equation of the line is y = 3
2x + 1.
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•

Fig. 1.9.

The y-intercept is not easy to determine, but we do have two points. We
can either find the slope by using the slope formula, or visually (as we
did above). We can find the slope visually by asking how we can go from
(−4, 3) to (2, −1): Down 4 (making the numerator of the slope −4) and
right 6 (making the denominator 6). If we use the slope formula, we have

m = −1 − 3

2 − (−4)
= −4

6
= −2

3
.

Using x = 2 and y = −1 in y = mx + b, we have −1 = −2
3(2) + b. From

this, we have b = 1
3 . The equation is y = −2

3x + 1
3 .

•

Fig. 1.10.

The line in Figure 1.10 is vertical, so it has the form x = a. All of the
x-values are −2, so the equation is x = −2.
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When an equation for a line is in the form Ax + By = C, we can find
the slope by solving the equation for y. This will put the equation in the form
y = mx + b.

EXAMPLE
• Find the slope of the line 6x − 2y = 3.

6x − 2y = 3

−2y = −6x + 3

y = 3x − 3

2

The slope is 3 (or 3
1 ).

Two lines are parallel if their slopes are equal (or if both lines are vertical).

Fig. 1.11.

Two lines are perpendicular if their slopes are negative reciprocals of each
other (or if one line is horizontal and the other is vertical). Two numbers are
negative reciprocals of each other if one is positive and the other is negative and
inverting one gets the other (if we ignore the sign).

EXAMPLES
• 5

6
and − 6

5
are negative reciprocals

• −3

4
and

4

3
are negative reciprocals
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Fig. 1.12.

• −2 and
1

2
are negative reciprocals

• 1 and − 1 are negative reciprocals

We can decide whether two lines are parallel or perpendicular or neither by
putting them in the form y = mx + b and comparing their slopes.

EXAMPLES
Determine whether the lines are parallel or perpendicular or neither.

• 4x − 3y = −15 and 4x − 3y = 6

4x − 3y = −15 4x − 3y = 6

−3y = −4x − 15 −3y = −4x + 6

y = 4

3
x + 5 y = 4

3
x − 2

The lines have the same slope, so they are parallel.
• 3x − 5y = 20 and 5x − 3y = −15

3x − 5y = 20 5x − 3y = −15

−5y = −3x + 20 −3y = −5x − 15

y = 3

5
x − 4 y = 5

3
x + 5

The slopes are reciprocals of each other but not negative reciprocals, so they
are not perpendicular. They are not parallel, either.
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• x − y = 2 and x + y = −8

x − y = 2 x + y = −8

y = x − 2 y = −x − 8

The slope of the first line is 1 and the second is −1. Because 1 and −1 are
negative reciprocals, these lines are perpendicular.

• y = 10 and x = 3
The line y = 10 is horizontal, and the line x = 3 is vertical. They are
perpendicular.

Sometimes we need to find an equation of a line when we know only a point on
the line and an equation of another line that is either parallel or perpendicular to it.
We need to find the slope of the line whose equation we have and use this to find
the equation of the line we are looking for.

EXAMPLES

• Find an equation of the line containing the point (−4, 5) that is parallel to
the line y = 2x + 1.
The slope of y = 2x + 1 is 2. This is the same as the line we want, so we
will let x = −4, y = 5, and m = 2 in y = mx + b. We get 5 = 2(−4) + b,
so b = 13. The equation of the line we want is y = 2x + 13.

• Find an equation of the line with x-intercept 4 that is perpendicular to
x − 3y = 12.
The x-intercept is 4 means that the point (4, 0) is on the line. The slope
of the line we want will be the negative reciprocal of the slope of the line
x − 3y = 12. We will find the slope of x − 3y = 12 by solving for y.

x − 3y = 12

y = 1

3
x − 4

The slope we want is −3, which is the negative reciprocal of 1
3 . When we let

x = 4, y = 0, and m = −3 in y = mx + b, we have 0 = −3(4) + b, which
gives us b = 12. The line is y = −3x + 12.

• Find an equation of the line containing the point (3, −8), perpendicular to
the line y = 9.
The line y = 9 is horizontal, so the line we want is vertical. The vertical line
passing through (3, −8) is x = 3.
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PRACTICE
When asked to find an equation for a line, put your answer in the form y = mx + b

unless the line is horizontal (y = a) or vertical (x = a).

1. Find the slope of the line containing the points (4, 12) and (−6, 1).

2. Find the slope of the line with x-intercept 5 and y-intercept −3.

3. Find an equation of the line containing the point (−10, 4) with slope
−2

5 .

4. Find an equation of the line with y-intercept −5 and slope 2.

5. Find an equation of the line in Figure 1.13.

Fig. 1.13.

6. Find an equation of the line containing the points (3
4 , 1) and (−2, −1).

7. Determine whether the lines 3x − 7y = 28 and 7x + 3y = 3 are parallel
or perpendicular or neither.

8. Find an equation of the line containing (2, 3) and perpendicular to the line
x − y = 5.

9. Find an equation of the line parallel to the line x = 6 containing the point
(−3, 2).

10. Determine whether the lines 2x − 3y = 1 and −4x + 6y = 5 are parallel
or perpendicular or neither.
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SOLUTIONS
1. m = 1 − 12

−6 − 4
= −11

−10
= 11

10

2. The x-intercept is 5 and the y-intercept is −3 mean that the points (5, 0)

and (0, −3) are on the line.

m = −3 − 0

0 − 5
= −3

−5
= 3

5

3. Put x = −10, y = 4, and m = −2
5 in y = mx + b to find b.

4 = −2

5
(−10) + b

0 = b

The equation is y = −2
5x + 0, or simply y = −2

5x.

4. m = 2, b = −5, so the line is y = 2x − 5.

5. From the graph, we can see that the y-intercept is 3. We can use the
indicated points (0, 3) and (2, 0) to find the slope in two ways. One way
is to put these numbers in the slope formula.

m = 0 − 3

2 − 0
= −3

2

The other way is to move from (0, 3) to (2, 0) by going down 3 (so the
numerator of the slope is −3) and right 2 (so the denominator is 2). Either
way, we have the slope −3

2 . Because the y-intercept is 3, the equation
is y = −3

2x + 3.

6. m = −1 − 1

−2 − 3

4

= −2

−11

4

= −2 ÷ −11

4
= −2 · − 4

11
= 8

11

We will use x = −2 and y = −1 in y = mx + b.

−1 = 8

11
(−2) + b

5

11
= b

The equation is y = 8
11x + 5

11 .
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7. We will solve for y in each equation so that we can compare their slopes.

3x − 7y = 28 7x + 3y = 3

y = 3

7
x − 4 y = −7

3
x + 1

The slopes are negative reciprocals of each other, so these lines are
perpendicular.

8. Once we have found the slope for the line x − y = 5, we will use its
negative reciprocal as the slope of the line we want.

x − y = 5

y = x − 5

The slope of this line is 1. The negative reciprocal of 1 is −1. We will use
x = 2, y = 3, and m = −1 in y = mx + b.

3 = −1(2) + b

5 = b

The equation is y = −1x + 5, or simply y = −x + 5.

9. The line x = 6 is vertical, so the line we want is also vertical. The vertical
line that goes through (−3, 2), is x = −3.

10. We will solve for y in each equation and compare their slopes.

2x − 3y = 1 −4x + 6y = 5

y = 2

3
x − 1

3
y = 2

3
x + 5

6

The slopes are the same, so these lines are parallel.

Applications of Lines and Slopes
We can use the slope of a line to decide whether points in the plane form certain
shapes. Here, we will use the slope to decide whether or not three points form a
right triangle and whether or not four points form a parallelogram. After we plot
the points, we can decide which points to put into the slope formula.
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EXAMPLES

• Show that (−1, 2), (4, −3), and (5, 0) are the vertices of a right triangle.

Fig. 1.14.

From the graph in Figure 1.14, we can see that the line segment between (5, 0)

and (−1, 2) should be perpendicular to the line segment between (5, 0) and
(4, −3). Once we have found the slopes of these line segments, we will see
that they are negative reciprocals.

m = 2 − 0

−1 − 5
= −1

3
m = −3 − 0

4 − 5
= 3

• Show that (−3, 1), (3, −5), (4, −1), and (−2, 5) are the vertices of a
parallelogram.

Fig. 1.15.
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From the graph in Figure 1.15, we see that we need to show that line
segments a and c are parallel and that line segments b and d are parallel.

The slope for segment a is m = 5 − 1

−2 − (−3)
= 4,

and the slope for segment c is m = −1 − (−5)

4 − 3
= 4.

The slope for segment b is m = −5 − 1

3 − (−3)
= −1,

and the slope for segment d is m = −1 − 5

4 − (−2)
= −1.

There are many applications of linear equations to business and science.
Suppose the property tax rate for a school district is $1.50 per $100 valuation.
This is a linear relationship between the value of the property and the amount of
tax on the property. The slope of the line in this relationship is

Tax change

Value change
= $1.50

$100
.

As the value of property increases by $100, the tax increases by $1.50. Two vari-
ables are linearly related if a fixed increase of one variable causes a fixed increase
or decrease in the other variable. These changes are proportional. For example, if
a property increases in value by $50, then its tax would increase by $0.75.

We can find an equation (also called a model) that describes the relationship
between two variables if we are given two points or one point and the slope. As in
most word problems, we will need to find the information in the statement of the
problem, it is seldom spelled out for us. One of the first things we need to do is to
decide which quantity will be represented by x and which by y. Sometimes it does
not matter. In the problems that follow, it will matter. If we are instructed to “give
variable 1 in terms of variable 2,” then variable 1 will be y and variable 2 will be x.
This is because in the equation y = mx + b, y is given in terms of x. For example,
if we are asked to give the property tax in terms of property value, then y would
represent the property tax and x would represent the property value.

EXAMPLES
• A family paid $52.50 for water in January when they used 15,000 gallons and

$77.50 in May when they used 25,000 gallons. Find an equation that gives
the amount of the water bill in terms of the number of gallons of water used.
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Because we need to find the cost in terms of water used, we will let y

represent the cost and x, the amount of water used. Our ordered pairs will
be (water, cost): (15,000, 52.50) and (25,000, 77.50). Now we can compute
the slope.

m = 77.50 − 52.50

25,000 − 15,000
= 0.0025

We will use x = 15,000, y = 52.50, and m = 0.0025 in y = mx + b to
find b.

52.50 = 0.0025(15,000) + b

15 = b

The equation is y = 0.0025x + 15. With this equation, the family can
predict its water bill by putting the amount of water used in the equation. For
example, 32,000 gallons would cost 0.0025(32,000) + 15 = $95.

• A bakery sells a special bread. It costs $6000 to produce 10,000 loaves of
bread per day and $5900 to produce 9500 loaves. Find an equation that gives
the daily costs in terms of the number of loaves of bread produced.
Because we want the cost in terms of the number of loaves produced, we
will let y represent the daily cost and x, the number of loaves produced. Our
points will be of the form (number of loaves, daily cost): (10,000, 6000) and
(9500, 5900).

m = 5900 − 6000

9500 − 10,000
= 1

5

We will use x = 10,000, y = 6000, and m = 1
5 in y = mx + b.

6000 = 1

5
(10,000) + b

4000 = b

The equation is y = 1
5x + 4000.

The slope, and sometimes the y-intercept, have important meanings in applied
problems. In the first example, the household water bill was computed using
y = 0.0025x + 15. The slope means that each gallon costs $0.0025 (or 0.25 cents).
As the number of gallons increases by 1, the cost increases by $0.0025. The
y-intercept is the cost when 0 gallons are used. This additional monthly charge
is $15. The slope in the bakery problem means that five loaves of bread costs $1 to
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produce (or each loaf costs $0.20). The y-intercept tells us the bakery’s daily fixed
costs are $4000. Fixed costs are costs that the bakery must pay regardless of the
number of loaves produced. Fixed costs might include rent, equipment payments,
insurance, taxes, etc.

In the following examples, information about the slope will be given and a point
will be given or implied.

• The dosage of medication given to an adult cow is 500 mg plus 9 mg per
pound. Find an equation that gives the amount of medication (in mg) per
pound of weight.
We will use 500 mg as the y-intercept. The slope is

increase in medication

increase in weight
= 9

1
.

The equation is y = 9x + 500, where x is in pounds and y is in milligrams.
• At the surface of the ocean, a certain object has 1500 pounds of pressure

on it. For every foot below the surface, the pressure on the object increases
about 43 pounds. Find an equation that gives the pressure (in pounds) on the
object in terms of its depth (in feet) in the ocean.
At 0 feet, the pressure on the object is 1500 lbs, so the y-intercept is 1500.
The slope is

increase in pressure

increase in depth
= 43

1
= 43.

This makes the equation y = 43x + 1500, where x is the depth in feet and
y is the pressure in pounds.

• A pancake mix requires 3
4 cup of water for each cup of mix. Find an equation

that gives the amount of water needed in terms of the amount of pancake mix.
Although no point is directly given, we can assume that (0, 0) is a point on
the line because when there is no mix, no water is needed. The slope is

increase in water

increase in mix
= 3/4

1
= 3

4
.

The equation is y = 3
4x + 0, or simply y = 3

4x.

PRACTICE
1. Show that the points (−5, 1), (2, 0), and (−2, −3) are the vertices of a

right triangle.



CHAPTER 1 The Slope and Equation 19

2. Show that the points (−2, −3), (3, 6), (−5, 2), and (6, 1) are the vertices
of a parallelogram.

3. A sales representative earns a monthly base salary plus a commission on
sales. Her pay this month will be $2000 on sales of $10,000. Last month,
her pay was $2720 on sales of $16,000. Find an equation that gives her
monthly pay in terms of her sales level.

4. The temperature scales Fahrenheit and Celsius are linearly related. Water
freezes at 0◦C and 32◦F. Water boils at 212◦F and 100◦C. Find an equation
that gives degrees Celsius in terms of degrees Fahrenheit.

5. A sales manager believes that each $100 spent on television advertising
results in an increase of 45 units sold. If sales were 8250 units sold when
$3600 was spent on television advertising, find an equation that gives the
sales level in terms of the amount spent on advertising.

SOLUTIONS
1.

Fig. 1.16.

We will show that the slope of the line segment between (−5, 1) and
(−2, −3) is the negative reciprocal of the slope of the line segment between
(−2, −3) and (2, 0). This will show that the angle at (−2, −3) is a right
angle.

m = −3 − 1

−2 − (−5)
= −4

3
m = 0 − (−3)

2 − (−2)
= 3

4
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2.

Fig. 1.17.

We will show that the slope of the line segment between (−5, 2) and
(−2, −3) is equal to the slope of the line segment between (3, 6) and (6, 1).

m = −3 − 2

−2 − (−5)
= −5

3
m = 1 − 6

6 − 3
= −5

3

Now we will show that the slope of the line segment between (−5, 2) and
(3, 6) is equal to the slope of the line segment between (−2, −3) and (6, 1).

m = 6 − 2

3 − (−5)
= 1

2
m = 1 − (−3)

6 − (−2)
= 1

2

3. Because we want pay in terms of sales, y will represent pay, and x will
represent monthly sales. The points are (10,000, 2000) and (16,000, 2720).

m = 2720 − 2000

16,000 − 10,000
= 3

25

(This means that for every $25 in sales, the representative earns $3.) We
will use x = 10,000, y = 2000, and m = 3

25 in y = mx + b.

2000 = 3

25
(10,000) + b

800 = b

The equation is y = 3
25x + 800. (The y-intercept is 800 means that her

monthly base pay is $800.)
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4. The points are (degrees Fahrenheit, degrees Celcius): (32, 0) and
(212, 100).

m = 100 − 0

212 − 32
= 5

9

(This means that a 9◦F increase in temperature corresponds to an increase
of 5◦C.) We will use F = 32, C = 0, and m = 5

9 in C = mF + b.

0 = 5

9
(32) + b

−160

9
= b

The equation is C = 5
9F − 160

9 . (The y-intercept is −160
9 means that the

temperature 0◦F corresponds to −160
9

◦
C.)

5. The points are (amount spent on advertising, number of units sold). The
slope is

increase in sales

increase in advertising spending
= 45

100
= 9

20
,

and our point is (3600, 8250).

8250 = 9

20
(3600) + b

6630 = b

The equation is y = 9
20x + 6630. (The slope means that every $20 spent

on television advertising results in an extra 9 units sold. The y-intercept is
6630 means that if nothing is spent on television advertising, 6630 units
would be sold.)

CHAPTER 1 REVIEW
1. Find the slope of the line containing the points (3, 1) and (4, −2).

(a) 1
3 (b) −3 (c) −1

3 (d) 3
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2. Are the lines 2x + y = 4 and 2x − 4y = 5 parallel, perpendicular, or
neither?
(a) Parallel
(c) Neither

(b) Perpendicular
(d) Cannot be determined

3. Are the lines x = 4 and y = −4 parallel, perpendicular, or neither?

(a) Parallel
(c) Neither

(b) Perpendicular
(d) Cannot be determined

4. What is the equation of the line containing the points (0, −1) and (5, 1)?

(a) y = −1

(c) y = −4x − 1

(b) y = 5
2x − 1

(d) y = 2
5x − 1

5. Find an equation of the line containing the point (−1, −5) and parallel
to the line y = 2x − 4.
(a) y = 2x − 3
(c) y = 2x − 1

(b) y = 2x − 5
(d) y = 2x + 4

6. Find an equation of the line containing the point (3, 3) and perpendicular
to the line y = 2x + 5.
(a) y = −1

2x + 9
2

(c) y = 1
2x + 3

2

(b) y = 1
2x + 3

(d) y = −1
2x + 3

7. Find an equation of the line in Figure 1.18.

(a) y = −1
2x + 4

(c) y = −2x + 4
(b) y = 1

2x + 4
(d) y = 2x + 4

Fig. 1.18.
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8. Find an equation of the horizontal line that goes through the point (4, 9).

(a) x = 4
(c) Cannot be determined

(b) y = 9

9. Are the points (−5, −1), (1, 4), and (6, −2) the vertices of a right
triangle?
(a) Yes (b) No
(c) Cannot be determined

10. A government agency leases a photocopier for a fixed monthly charge
plus a charge for each photocopy. In one month, the bill was $350 for
4000 copies. In the following month, the bill was $375 for 5000 copies.
Find the monthly bill in terms of the number of copies used.

(a) y = 1.267x − 4718
(c) y = 0.789x − 3570

(b) y = 40x − 10,000
(d) y = 0.025x + 250

SOLUTIONS
1. B 2. B 3. B 4. D 5. A
6. A 7. B 8. B 9. A 10. D



2
CHAPTER

Introduction to
Functions

A relation between two sets A and B is a collection of ordered pairs, where the
first coordinate comes from A and the second comes from B. For example, if A =
{1, 2, 3, 4} and B = {a, b, c}, one relation is the three pairs {(1, c), (1, a), (3, a)}.
A function on sets A and B is a special kind of relation where every element of A is
paired with exactly one element from B. The relation above fails to be a function
in two ways. Not every element of A is paired with an element from B, 1 and 3
are used but not 2 and 4. Also, the element 1 is used twice, not once. There are no
such restrictions on B; that is, elements from B can be paired with elements from
A many times or not at all. For example, {(1, a), (2, a), (3, b), (4, b)} is a function
from A to B.

Functions exist all around us. If a worker is paid by the hour, his weekly pay is a
function of how many hours he worked. For any number of hours worked, there is
exactly one pay amount that corresponds to that time. If A is the set of all triangles
and B is the set of real numbers, then we have a function that pairs each triangle
with exactly one real number that is its area. We will be concerned with functions

24
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from real numbers to real numbers. A will either be all of the real numbers or will
be some part of the real numbers, and B will be the real numbers.

A linear function is one of the most basic kinds of functions. These functions
have the form f (x) = mx + b. The only difference between f (x) = mx + b and
y = mx + b is that y is replaced by f (x). Very often f (x) and y will be the same.
The letter f is the name of the function. Other common names of functions are g

and h. The notation f (x) is pronounced “f of x” or “f at x.”
Evaluating a function at a quantity means to substitute the quantity for x (or

whatever the variable is). For example, evaluating the function f (x) = 2x − 5 at
6 means to substitute 6 for x.

f (6) = 2(6) − 5 = 7

We might also say f (6) = 7. The quantity inside the parentheses is x and the
quantity on the right of the equal sign is y. One advantage to this notation is that
we have both the x- and y-values without having to say anything about x and y.
Functions that have no variables in them are called constant functions. All y-values
for these functions are the same.

EXAMPLES
• Find f (−2), f (0), and f (6) for f (x) = √

x + 3.
We need to substitute −2, 0, and 6 for x in the function.

f (−2) = √−2 + 3 = √
1 = 1

f (0) = √
0 + 3 = √

3

f (6) = √
6 + 3 = √

9 = 3

• Find f (−8), f (π), and f (10) for f (x) = 16.
f (x) = 16 is a constant function, so the y-value is 16 no matter what quantity
is in the parentheses.

f (−8) = 16 f (π) = 16 f (10) = 16

A piecewise function is a function with two or more formulas for computing
y. The formula to use depends on where x is. There will be an interval for x

written next to each formula for y.
•

f (x) =






x − 1 if x ≤ −2

2x if − 2 < x < 2

x2 if x ≥ 2
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In this example, there are three formulas for y: y = x − 1, y = 2x, and
y = x2, and three intervals for x: x ≤ −2, −2 < x < 2, and x ≥ 2. When
evaluating this function, we need to decide to which interval x belongs. Then
we will use the corresponding formula for y.

EXAMPLES
• Find f (5), f (−3), and f (0) for the function above.

For f (5), does x = 5 belong to x ≤ −2, −2 < x < 2, or x ≥ 2? Because
5 ≥ 2, we will use y = x2, the formula written next to x ≥ 2.

f (5) = 52 = 25

For f (−3), does x = −3 belong to x ≤ −2, −2 < x < 2, or x ≥ 2?
Because −3 ≤ −2, we will use y = x − 1, the formula written next to
x ≤ −2.

f (−3) = −3 − 1 = −4

For f (0), does x = 0 belong to x ≤ −2, −2 < x < 2, or x ≥ 2? Because
−2 < 0 < 2, we will use y = 2x, the formula written next to −2 < x < 2.

f (0) = 2(0) = 0

• Find f (3), f (1), and f (−4) for

f (x) =
{

−x if x ≤ 1

5 if x > 1

f (3) = 5 because 3 > 1

f (1) = −1 because 1 ≤ 1

f (−4) = −(−4) = 4 because − 4 ≤ 1

Piecewise functions come up in daily life. For example, suppose a company pays
the regular hourly wage for someone who works up to eight hours but time and a
half for someone who works more than eight hours but no more than ten hours and
double time for more than ten hours. Then a worker whose regular hourly pay is
$10 has the daily pay function below.

p(h) =






10h if 0 ≤ h ≤ 8

15(h − 8) + 80 if 8 < h ≤ 10

20(h − 10) + 110 if 10 < h ≤ 24
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Below is an example of a piecewise function taken from an Internal Revenue Service
(IRS) publication. The y-value is the amount of personal income tax for a single
person. The x-value is the amount of taxable income.

f (x) =






4316 if 30,000 ≤ x < 30,050

4329 if 30,050 ≤ x < 30,100

4341 if 30,100 ≤ x < 30,150

4354 if 30,150 ≤ x < 30,200

A single person whose taxable income was $30,120 would pay $4341. (Source:
2003, 1040 Forms and Instructions)

PRACTICE
1. Find f (−1) and f (0) for f (x) = 3x2 + 2x − 1.

2. Evaluate f (x) = 1
x+1 at x = −3, x = 1, and x = 1

2 .

3. Evaluate g(x) = √
x − 6 at x = 6, x = 8, and x = 10.

4. Find f (5), f (3), f (2), f (0), and f (−1).

f (x) =






x2 + x if x ≤ −1

10 if − 1 < x ≤ 2

−6x if x > 2

5. The function below gives the personal income tax for a single person for
the 2003 year. If a single person had a taxable income of $63,575, what is
her tax?

f (x) =






12,666 if 63,400 ≤ x < 63,450

12,679 if 63,450 ≤ x < 63,500

12,691 if 63,500 ≤ x < 63,550

12,704 if 63,550 ≤ x < 63,600

SOLUTIONS
1. f (−1) = 3(−1)2 + 2(−1) − 1 = 3 − 2 − 1 = 0

f (0) = 3(0)2 + 2(0) − 1 = −1
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2.
f (−3) = 1

−3 + 1
= 1

−2
or − 1

2

f (1) = 1

1 + 1
= 1

2

f

(
1

2

)

= 1
1
2 + 1

= 1
1
2 + 2

2

= 1
3
2

= 1 ÷ 3

2
= 1 · 2

3
= 2

3

3. g(6) = √
6 − 6 = √

0 = 0

g(8) = √
8 − 6 = √

2

g(10) = √
10 − 6 = √

4 = 2

4. f (5) = −6(5) = −30 f (3) = −6(3) = −18

f (2) = 10 f (0) = 10

f (−1) = (−1)2 + (−1) = 0

5. The tax is $12,704 because 63,550 ≤ 63,575 < 63,600.

Functions can be evaluated at quantities that are not numbers, but the idea is the
same—substitute the quantity in the parentheses for x and simplify.

EXAMPLES
• Evaluate f (a + 3), f (a2), f (u − v), and f (a + h) for f (x) = 8x + 5.

We will let x = a + 3, x = a2, x = u − v, and x = a + h in the function.

f (a + 3) = 8(a + 3) + 5 = 8a + 24 + 5 = 8a + 29

f (a2) = 8(a2) + 5 = 8a2 + 5

f (u − v) = 8(u − v) + 5 = 8u − 8v + 5

f (a + h) = 8(a + h) + 5 = 8a + 8h + 5
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• Evaluate f (10a), f (−a), f (a +h), and f (x +1) for f (x) = x2 +3x −4.

f (10a) = (10a)2 + 3(10a) − 4 = 102a2 + 30a − 4 = 100a2 + 30a − 4

f (−a) = (−a)2 + 3(−a) − 4 = a2 − 3a − 4

Remember, (−a)2 = (−a)(−a) = a2, not −a2.

f (a + h) = (a + h)2 + 3(a + h) − 4 = (a + h)(a + h) + 3(a + h) − 4

= a2 + 2ah + h2 + 3a + 3h − 4

f (x + 1) = (x + 1)2 + 3(x + 1) − 4 = (x + 1)(x + 1) + 3(x + 1) − 4

= x2 + 2x + 1 + 3x + 3 − 4 = x2 + 5x

• Find f (a − 12), f (a2 + 1), f (a + h), and f (x + 3) for f (x) = −4.
This is a constant function, so the y-value is −4 no matter what is in the
parentheses.

f (a − 12) = −4 f (a2 + 1) = −4

f (a + h) = −4 f (x + 3) = −4

• Find f (2u + v), f ( 1
u
), and f (2x) for

f (x) = x + 1

x + 2
.

f (2u + v) = 2u + v + 1

2u + v + 2

f

(
1

u

)

=
1
u

+ 1
1
u

+ 2
=

1
u

+ u
u

· 1
1
u

+ u
u

· 2

=
1
u

+ u
u

1
u

+ 2u
u

=
1+u
u

1+2u
u

= 1 + u

u
÷ 1 + 2u

u
= 1 + u

u
· u

1 + 2u
= 1 + u

1 + 2u

f (2x) = 2x + 1

2x + 2
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Very early in an introductory calculus course, students use function evaluation
to evaluate an important formula called Newton’s Quotient.

f (a + h) − f (a)

h

When evaluating Newton’s Quotient, we will be given a function such as f (x) =
x2 + 3. We need to find f (a + h) and f (a). Once we have these two quantities,
we will put them into the quotient and simplify. Simplifying the quotient is usually
the messiest part. For f (x) = x2 + 3, we have f (a + h) = (a + h)2 + 3 =
(a + h)(a + h) + 3 = a2 + 2ah + h2 + 3, and f (a) = a2 + 3. We will substitute
a2 + 2ah + h2 + 3 for f (a + h) and a2 + 3 for f (a).

f (a + h) − f (a)

h
=

f (a+h)
︷ ︸︸ ︷

a2 + 2ah + h2 + 3 −(

f (a)
︷ ︸︸ ︷

a2 + 3)

h

Now we need to simplify this fraction.

a2 + 2ah + h2 + 3 − (a2 + 3)

h
= a2 + 2ah + h2 + 3 − a2 − 3

h

= 2ah + h2

h
Factor h.

= h(2a + h)

h
= 2a + h

EXAMPLES
Evaluate Newton’s Quotient for the given functions.

• f (x) = 3x2

f (a + h) = 3(a + h)2 = 3(a + h)(a + h) = 3(a2 + 2ah + h2)

= 3a2 + 6ah + 3h2

f (a) = 3a2

f (a + h) − f (a)

h
= 3a2 + 6ah + 3h2 − 3a2

h
= 6ah + 3h2

h

= h(6a + 3h)

h
= 6a + 3h
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• f (x) = x2 − 2x + 5

f (a + h) = (a + h)2 − 2(a + h) + 5 = (a + h)(a + h) − 2(a + h) + 5

= a2 + 2ah + h2 − 2a − 2h + 5

f (a) = a2 − 2a + 5

f (a + h) − f (a)

h
= a2 + 2ah + h2 − 2a − 2h + 5 − (a2 − 2a + 5)

h

= a2 + 2ah + h2 − 2a − 2h + 5 − a2 + 2a − 5

h

= 2ah + h2 − 2h

h
= h(2a + h − 2)

h

= 2a + h − 2

• f (x) = 1

x

f (a + h) = 1

a + h
and f (a) = 1

a

f (a + h) − f (a)

h
=

1
a+h

− 1
a

h

=
1

a+h
· a

a
− 1

a
· a+h

a+h

h

=
a

a(a+h)
− a+h

a(a+h)

h

=
a−(a+h)
a(a+h)

h
=

a−a−h
a(a+h)

h

=
−h

a(a+h)

h
= −h

a(a + h)
÷ h

= −h

a(a + h)
· 1

h
= −1

a(a + h)

Do not worry—you will not spend a lot of time evaluating Newton’s Quotient in
calculus, there are formulas that do most of the work. What is Newton’s Quotient,
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anyway? It is nothing more than the slope formula where x1 = a, y1 = f (a), x2 =
a + h, and y2 = f (a + h).

m = y2 − y1

x2 − x1
= f (a + h) − f (a)

a + h − a
= f (a + h) − f (a)

h

PRACTICE
1. Evaluate f (u + 1), f (u3), f (a + h), and f (2x − 1) for f (x) = 7x − 4.

2. Find f (−a), f (2a), f (a + h), and f (x + 5) for f (x) = 2x2 − x + 3.

3. Find f (u + v), f (u2), f ( 1
u
), and f (x2 + 3) for

f (x) = 10x + 1

3x + 2

4. Evaluate Newton’s Quotient for f (x) = 3x2 + 2x − 1.

5. Evaluate Newton’s Quotient for f (x) = 15
2x−3 .

SOLUTIONS
1. f (u + 1) = 7(u + 1) − 4 = 7u + 7 − 4 = 7u + 3

f (u3) = 7(u3) − 4 = 7u3 − 4

f (a + h) = 7(a + h) − 4 = 7a + 7h − 4

f (2x − 1) = 7(2x − 1) − 4 = 14x − 7 − 4 = 14x − 11

2. f (−a) = 2(−a)2 − (−a) + 3 = 2a2 + a + 3

f (2a) = 2(2a)2 − 2a + 3 = 2(4a2) − 2a + 3 = 8a2 − 2a + 3

f (a + h) = 2(a + h)2 − (a + h) + 3 = 2(a + h)(a + h) − (a + h) + 3

= 2(a2 + 2ah + h2) − a − h + 3 = 2a2 + 4ah + 2h2 − a − h + 3

f (x + 5) = 2(x + 5)2 − (x + 5) + 3 = 2(x + 5)(x + 5) − (x + 5) + 3

= 2(x2 + 10x + 25) − x − 5 + 3 = 2x2 + 19x + 48
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3. f (u + v) = 10(u + v) + 1

3(u + v) + 2
= 10u + 10v + 1

3u + 3v + 2

f (u2) = 10u2 + 1

3u2 + 2

f

(
1

u

)

=
10
(

1
u

)
+ 1

3
(

1
u

)
+ 2

=
10
u

+ 1
3
u

+ 2
=

10
u

+ 1 · u
u

3
u

+ 2 · u
u

=
10
u

+ u
u

3
u

+ 2u
u

=
10+u

u

3+2u
u

= 10 + u

u
÷ 3 + 2u

u

= 10 + u

u
· u

3 + 2u
= 10 + u

3 + 2u

f (x2 + 3) = 10(x2 + 3) + 1

3(x2 + 3) + 2

= 10x2 + 31

3x2 + 11

4. f (a + h) = 3(a + h)2 + 2(a + h) − 1 = 3(a + h)(a + h) + 2(a + h) − 1

= 3(a2 + 2ah + h2) + 2a + 2h − 1

= 3a2 + 6ah + 3h2 + 2a + 2h − 1

f (a) = 3a2 + 2a − 1

f (a + h) − f (a)

h
= 3a2 + 6ah + 3h2 + 2a + 2h − 1 − (3a2 + 2a − 1)

h

= 3a2 + 6ah + 3h2 + 2a + 2h − 1 − 3a2 − 2a + 1

h

= 6ah + 3h2 + 2h

h

= h(6a + 3h + 2)

h
= 6a + 3h + 2
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5.
f (a + h) = 15

2(a + h) − 3
= 15

2a + 2h − 3
and f (a) = 15

2a − 3

f (a + h) − f (a)

h
=

15
2a+2h−3 − 15

2a−3

h

=
15

2a+2h−3 · 2a−3
2a−3 − 15

2a−3 · 2a+2h−3
2a+2h−3

h

=
15(2a−3)−15(2a+2h−3)

(2a+2h−3)(2a−3)

h
=

30a−45−30a−30h+45
(2a+2h−3)(2a−3)

h

=
−30h

(2a+2h−3)(2a−3)

h
= −30h

(2a + 2h − 3)(2a − 3)
÷ h

= −30h

(2a + 2h − 3)(2a − 3)
· 1

h
= −30

(2a + 2h − 3)(2a − 3)

Domain and Range
The domain of a function from set A to set B is all of set A. The range is either all or
part of set B. In our example at the beginning of the chapter, we had A = {1, 2, 3, 4},
B = {a, b, c} and our function was {(1, a), (2, a), (3, b), (4, b)}. The domain of
this function is {1, 2, 3, 4}, and the range is all of the elements from B that were
paired with elements from A. These were {a, b}.

For the functions in this book, the domain will consist of all the real numbers
we are allowed to use for x. The range will be all of the y-values. In this chapter,
we will find the domain algebraically. In Chapter 3, we will find both the domain
and range from graphs of functions.

Very often, we find the domain of a function by thinking about what we cannot
do. For now the things we cannot do are limited to division by zero and taking even
roots of negative numbers. If a function has x in a denominator, set the denominator
equal to zero and solve for x. The domain will not include the solution(s) to this
equation (assuming the equation has a solution). If a function has x under an even
root sign, set the quantity under the sign greater than or equal to zero to find
the domain. Later when we learn about logarithm functions and functions from
trigonometry, we will have other things we cannot do. The domain and range are



CHAPTER 2 Introduction to Functions 35

usually given in interval notation. There is a review of interval notation in the
Appendix.

EXAMPLES

• f (x) = x2 − 4

x + 3

We cannot let x + 3 to be zero, so we cannot let x = −3. The domain is
x �= −3, or (−∞, −3) ∪ (−3, ∞).

• f (x) = 1

x3 + 2x2 − x − 2

We will use factoring by grouping to factor the denominator. (There is a
review of factoring by grouping in the Appendix.)

x3 + 2x2 − x − 2 = 0

x2(x + 2) − 1(x + 2) = 0

(x + 2)(x2 − 1) = 0

(x + 2)(x − 1)(x + 1) = 0

x + 2 = 0 x − 1 = 0 x + 1 = 0

x = −2 x = 1 x = −1

The domain is all real numbers except 1, −1, and −2. The domain is shaded
on the number line in Figure 2.1.

Fig. 2.1.

The domain is (−∞, −2) ∪ (−2, −1) ∪ (−1, 1) ∪ (1, ∞).

• g(x) = x + 5

x2 + 1

Because x2 + 1 = 0 has no real number solution, we can let x equal any real
number. The domain is all real numbers, or (−∞, ∞).
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• f (x) = √
x − 8

Because we can only take the square root of nonnegative numbers, x−8 must
be nonnegative. We represent “x − 8 must be nonnegative” as “x − 8 ≥ 0.”
Solving x − 8 ≥ 0, we get x ≥ 8. The domain is x ≥ 8, or [8, ∞).

• f (x) = √
x2 − x − 2

(The Appendix has a review on solving nonlinear inequalities.) We need to
solve x2 − x − 2 ≥ 0. Factoring x2 − x − 2, we have (x − 2)(x + 1).

x − 2 = 0 x + 1 = 0

x = 2 x = −1

Fig. 2.2.

We will use x = −2 for the number to the left of −1, x = 0 for the number
between −1 and 2, and x = 3 for the number to the right of 2 in x2−x−2 ≥ 0
to see which of these numbers makes it true.

Is (−2)2 − (−2) − 2 ≥ 0? Yes. Put “True” to the left of −1.

Is 02 − 0 − 2 ≥ 0? No. Put “False” between −1 and 2.

Is 32 − 3 − 2 ≥ 0? Yes. Put “True” to the right of 2.

Fig. 2.3.

The inequality is true for x ≤ −1 and x ≥ 2, so the domain is (−∞, −1] ∪
[2, ∞).

• f (x) = 4
√

x2 + 5

Because x2 + 5 is always positive, we can let x be any real number. The
domain is (−∞, ∞).

• g(x) = 3
√

x + 7
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We can take the cube root of any number, so the domain is all real numbers,
or (−∞, ∞).

• f (x) = x4 − x2 + 1

There is no x in a denominator and no x under an even root sign, so the
domain is all real numbers, or (−∞, ∞).
There are some functions that have x in a denominator and under an even
root. At times, it will be useful to shade a number line to keep track of the
domain.

• f (x) = x2 + x − 3√
4 − x

We cannot let
√

4 − x be zero, and we cannot let 4 − x be negative. These
restrictions mean that we must have 4 − x > 0 (instead of 4 − x ≥ 0). The
domain is 4 > x (or x < 4), which is the interval (−∞, 4).

• h(x) = 15 − x

x2 + 3x − 4
+ √

x + 10

For
√

x + 10 we need x + 10 ≥ 0, or x ≥ −10.

Fig. 2.4.

We also need for x2 + 3x − 4 not to be zero.

x2 + 3x − 4 = 0

(x + 4)(x − 1) = 0

x + 4 = 0 x − 1 = 0

x = −4 x = 1

We cannot let x = −4 and x = 1, so we will remove these numbers from
x ≥ −10. The domain is [−10, −4) ∪ (−4, 1) ∪ (1, ∞).

Fig. 2.5.
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PRACTICE
For Problems 2–11, give the domain in interval notation.

1. A function consists of the ordered pairs {(h, 5), (z, 3), (i, 12)}. List the
elements in the domain.

2. f (x) = 2x + 3

x − 8

3. f (x) = −1

x2 − 2x

4. f (x) = x − 3

x2 + 10

5. g(x) = 3
√

6 − x

6. h(x) = √
x + 3

7. f (x) = √
4 − x2

8. f (x) = √
3x2 + 5

9. f (x) = 1√
x − 9

10. f (x) = 4x3 − 2x + 5

11. f (x) =
√

x + 5

x2 + 2x − 8

SOLUTIONS
1. The domain consists of the first coordinate of the ordered pairs—h, z,

and i.

2. We cannot let x − 8 = 0, so we cannot let x = 8. The domain is x �= 8, or
(−∞, 8) ∪ (8, ∞).

3. We cannot let x2 − 2x = x(x − 2) = 0, so we cannot let x = 0 or x = 2.
The domain is all real numbers except 0 and 2, or (−∞, 0)∪(0, 2)∪(2, ∞).

4. Because x2 + 10 = 0 has no real number solution, the domain is all real
numbers, or (−∞, ∞).

5. We can take the cube root of any number, so the domain is all real numbers,
or (−∞, ∞).

6. We must have x + 3 ≥ 0, or x ≥ −3. The domain is [−3, ∞).
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7. We need to solve 4 − x2 = (2 − x)(2 + x) ≥ 0.

Fig. 2.6.

The domain is [−2, 2].
8. Because 3x2 +5 ≥ 0 is true for all real numbers, the domain is (−∞, ∞).

9. We need x − 9 > 0. The domain is x > 9, or (9, ∞).

10. The domain is all real numbers, or (−∞, ∞).

11. From x + 5 ≥ 0, we have x ≥ −5.

Fig. 2.7.

Now we need to solve x2 + 2x − 8 = (x + 4)(x − 2) = 0.

x + 4 = 0 x − 2 = 0

x = −4 x = 2

Now we need to remove −4 and 2 from x ≥ −5. The domain is [−5, −4)∪
(−4, 2) ∪ (2, ∞).

Fig. 2.8.

At times the domain of a function will matter when we are solving an applied
problem. For example, suppose there is a 10′′ × 18′′ piece of cardboard that will
be made into an open-topped box. After cutting a square x by x inches from each
corner, the sides will be folded up to form the box.

Fig. 2.9.
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The volume of the box is a function of x, V (x) = x(18 − 2x)(10 − 2x). What is
the domain of this function? We obviously cannot cut a negative number of inches
from each corner. If we cut 0 inches from each corner, we do not have a box, so x

must be positive. Finally, the box is only 10 inches wide, so we can cut up to five
inches from each corner. These facts make the domain 0 < x < 5. Maximizing the
volume of this box is a typical problem in a first semester of calculus. The solutions

to the mathematical problem are 14±√
61

3 (approximately 2.0635, and 7.27008).
Only one of these numbers is in the domain of the applied function, so only one of
these numbers is the solution.

CHAPTER 2 REVIEW
1. Evaluate f (x) = 4 − 2x2 at x = 3.

(a) −14 (b) −12 (c) −10 (d) −8

2. Evaluate f (−1) for

f (x) =
{

5 if x < 0

x + 3 if x ≥ 0

(a) −1 (b) 5 (c) 2 (d) 2, 5

3. Evaluate f (u2 + v) for f (x) = 4x + 6.
(a) (u2 + v)(4x + 6)

(c) 4v2x + 6
(b) 4u2 + v + 6
(d) 4u2 + 4v + 6

4. What is the domain for f (x) = √
x2 + 1?

(a) (−∞, ∞)

(c) (−∞, −1) ∪ (1, ∞)

(b) (−∞, −1] ∪ [1, ∞)

(d) [−1, 1]
5. Evaluate f (a+h)−f (a)

h
for f (x) = x2 + 3.

(a) 2a + h2

(c) 2a + h

(b) 2a + h2 + 3
(d) 2a + h + 3

6. What is the domain for f (x) = √
x − 5?

(a) (−∞, 5) ∪ (5, ∞)

(c) (−∞, 5]
(b) [5, ∞)

(d) (−∞, −5) ∪ (5, ∞)
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7. What is the domain for f (x) = 1
x2−9

?

(a) (−∞, 9) ∪ (9, ∞)

(c) [3, ∞)

(b) (−∞, 3) ∪ (3, ∞)

(d) (−∞, −3) ∪ (−3, 3) ∪ (3, ∞)

8. What is the domain for the function {(a, 6), (b, 6), (d, 9)}?
(a) {a, b, d}
(c) {a, b, d, 6, 9}

(b) {6, 9}
(d) {a, b, d, 9}

9. What is the domain for

f (x) = x − 5√
x − 4

?

(a) [4, 5) ∪ (5, ∞)

(c) [4, ∞)

(b) (−∞, 4) ∪ (4, ∞)

(d) (4, ∞)

10. What is the domain for

f (x) =
√

x − 4

x − 5
?

(a) [4, 5) ∪ (5, ∞)

(c) [4, ∞)

(b) (−∞, 4) ∪ (4, ∞)

(d) (4, ∞)

SOLUTIONS
1. A 2. B 3. D 4. A 5. C
6. B 7. D 8. A 9. D 10. A



3
CHAPTER

Functions and
Their Graphs

The graph of a function can give us a great deal of information about the
function. In this chapter we will use the graph of a function to evaluate the func-
tion, find the x- and y-intercepts (if any), the domain and range, and determine
where the function is increasing or decreasing (an important idea in calculus).

To say that f (−3) = 1 means that the point (−3, 1) is on the graph of f (x).
If (5, 4) is a point on the graph of f (x), then f (5) = 4.

EXAMPLE
• The graph in Figure 3.1 is the graph of f (x) = x3 − x2 − 4x + 4. Find

f (−1), f (0), f (3), and f (−2).

The point (−1, 6) is on the graph means that f (−1) = 6.
The point (0, 4) is on the graph means that f (0) = 4.

42
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Fig. 3.1.

The point (3, 10) is on the graph means that f (3) = 10.
The point (−2, 0) is on the graph means that f (−2) = 0.

The graph also shows the intercepts of the graph. Remember that an x-intercept
is a point where the graph touches the x-axis, and the y-intercept is a point
where the graph touches the y-axis. We can tell that the y-intercept for the graph in
Figure 3.1 is 4 (or (0, 4)) and the x-intercepts are −2, 1, and 2 (or (−2, 0), (1, 0)

and (2, 0)).
An equation “gives y as a function of x” means that for every x-value,

there is a unique y-value. From this fact we can look at a graph of an equa-
tion to decide if the equation gives y as a function of x. If an x-value has
more than one y-value in the equation, then there will be more than one point
on the graph that has the same x-coordinate. A line through points that have
the same x-coordinate is vertical. This is the idea behind the Vertical Line
Test. The graph of an equation passes the Vertical Line Test if every vertical
line touches the graph at one point or not at all. If so, then the equation is
a function.

The graph of y2 = x is shown in Figure 3.2. The vertical line x = 4 touches the
graph in two places, (4, 2) and (4, −2), so y is not a function of x in the equation
y2 = x.

The domain of a function consists of all possiblex-values. We can find the domain
of a function by looking at its graph. The graph’s extension horizontally shows the
function’s domain. The range of a function consists of all possible y-values. The
graph’s vertical extention shows the function’s range.
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Fig. 3.2.

EXAMPLES
Give the domain and range in interval notation.

•

Fig. 3.3.

The graph extends horizontally from x = −5 to x = 4. Because there are
closed dots on these endpoints (instead of open dots), x = −5 and x = 4 are
part of the domain, too. The domain is [−5, 4]. The graph extends vertically
from y = −4 to y = 3. The range is [−4, 3].
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•

Fig. 3.4.

The graph extends horizontally from x = −3 to x = 2. Because open dots
are used on (−3, 5) and (2, 0), these points are not on the graph, so x = −3
and x = 2 are not part of the domain. The domain is (−3, 2). The graph
extends vertically from y = −4 and y = 5. The range is [−4, 5). We need
to use a bracket around −4 because (0, −4) is a point on the graph, and a
parenthesis around 5 because the point (−3, 5) is not a point on the graph.

•

Fig. 3.5.

The graph extends horizontally from x = −2 on the left and vertically from
below y = 0. The domain is [−2, ∞), and the range is (−∞, 0].

A function is increasing on an interval if moving toward the right in the inter-
val means the graph is going up. A function is decreasing on an interval if moving
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toward the right in the interval means the graph is going down. The function whose
graph is in Figure 3.6 is increasing from x = −3 to x = 0 as well as to the right of
x = 2. It is decreasing to the left of x = −3 and between x = 0 and x = 2. Using
interval notation, we say the function is increasing on the intervals (−3, 0) and
(2, ∞) and decreasing on the intervals (−∞, −3) and (0, 2). For reasons covered
in calculus, parentheses are used for the interval notation.

Fig. 3.6.

A function is constant on an interval if the y-values do not change. This part of
the graph will be part of a horizontal line.

EXAMPLES
Determine the intervals on which the functions are increasing, decreasing or
constant.

•

Fig. 3.7.
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This function is increasing on (−5, −2) and (4, 5). It is decreasing on (−2, 2)

and constant on (2, 4).
•

Fig. 3.8.

The function is increasing on all of its domain, (0, ∞).

PRACTICE
1. Is the graph in Figure 3.9 the graph of a function?

Fig. 3.9.

2. Refer to the graph of f (x) in Figure 3.10.

(a) What is f (−3)?
(b) What is f (5)?
(c) What is the domain?
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Fig. 3.10.

(d) What is the range?
(e) What are the x-intercepts?
(f) What is the y-intercept?
(g) What is/are the increasing interval(s)?
(h) What is/are the decreasing interval(s)?

3. Refer to the graph of f (x) in Figure 3.11.

Fig. 3.11.

(a) What is f (2)? f (1)?
(b) What are the x-intercepts? What is the y-intercept?
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(c) What is the domain? Range?
(d) What is the increasing interval? What are the decreasing intervals?

SOLUTIONS
1. No. The graph fails the Vertical Line Test.

2. (a) f (−3) = 1 because (−3, 1) is a point on the graph.
(b) f (5) = −5 because (5, −5) is a point on the graph.
(c) The domain is [−5, 5].
(d) The range is [−5, 4].
(e) The x-intercepts are −4, −1, and 3.
(f) The y-intercept is −1

2 .
(g) The increasing intervals are (−4, −3) and (2, 3).
(h) The decreasing intervals are (−5, −4), (−3, 2) and (3, 5).

3. (a) f (2) = 4 because (2, 4) is a point on the graph. f (1) = 2 because
(1, 2) is a point on the graph.

(b) The x-intercepts are 0 and 3. The y-intercept is 0.
(c) The domain and range are each all real numbers, (−∞, ∞).
(d) The increasing interval is (0, 2), and the decreasing intervals are

(−∞, 0) and (2, ∞).

Graphs are useful tools to present a lot of information in a small space. Being
able to read a graph and draw conclusions from it are important in many subjects
in addition to mathematics. In the example below, we will practice drawing con-
clusions based on information given in the graph in Figure 3.12. This graph shows
the daily balance of a checking account for about two weeks. No more than one
transaction (a deposit or a check written) is made in one day. For example, the
balance at the end of the second day is $350 and $300 at the end of the third day,
so a $50 check was written on the third day.

1. On what day was a check for $200 written?
On the 12th day when the balance dropped from $150 to −$50.

2. What is the largest deposit?
The largest increase was $200, on the 8th day when the balance increased
from $200 to $400.

3. What is the largest check written?
The largest check was written on the tenth day when the balance dropped
from $400 to $150.
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Fig. 3.12.

4. When was the account overdrawn?
The balance was negative on the 12th day.

Average Rate of Change
Calculus deals with the rate of change. A familiar example of a rate of change is
speed (or more accurately, velocity). Velocity is the rate of change of distance per
unit of time. A car traveling in city traffic will generally have a lower rate of change
of distance per hour than a car traveling on an interstate freeway. A glass of water
placed in a refrigerator will have a lower rate of temperature change than a glass of
water placed in a freezer. In calculus, you will study instantaneous rates of change
of functions at different values of x. We will study the average rate of change in
this book. As you will see in the following examples, the average rate of change
can hide a lot of variation.

EXAMPLES
• Suppose $1000 was invested in company stock of some manufacturing com-

pany. The value of the investment at the beginning of each year is given in
Table 3.1.

1. How much did the stock increase per year on average from the begin-
ning of Year 3 to the beginning of Year 6?
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Table 3.1

Year Value (in dollars) Change from the previous year

1 1000 New investment of $1000
2 1205 Gain of $205
3 1162 Loss of $43
4 1025 Loss of $137
5 1190 Gain of $165
6 1252 Gain of $62
7 1434 Gain of $182
8 1621 Gain of $187
9 2015 Gain of $394

10 2845 Gain of $830

For this three-year period the investment increased in value from
$1162 to $1252. The average rate of change is

1252 − 1162

6 − 3
= 90

3
= 30 per year.

2. What was the average annual loss from the beginning of Year 2 to
the beginning of Year 5?
The average rate of change during this three-year period is

1190 − 1205

5 − 2
= −15

3
= −5 per year.

The negative symbol means that this change is a loss, not a gain.
3. What was the average annual increase over the full period?

The average increase in the investment over the full nine years is

2845 − 1000

10 − 1
= 1845

9
= 205 per year.

• Find the average rate of change between (−3, 9) and (−1, 3) and
between (1, 1.5) and (3, 1.125) for the function whose graph is given in
Figure 3.13.
The average rate of change of a function between two points on the graph
is the slope of the line containing the two points. For the points (−3, 9) and
(−1, 3), x1 = −3, y1 = 9 and x2 = −1 and y2 = 3.

Average rate of change = y2 − y1

x2 − x1
= 3 − 9

−1 − (−3)
= −6

2
= −3

1
= −3
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Fig. 3.13.

Between x = −3 and x = −1, the y-values of this function decrease by 3
as x increases by 1, on average.
For the points (1, 1.5) and (3, 1.125) x1 = 1, y1 = 1.5 and x2 = 3, y2 =
1.125.

Average rate of change = y2 − y1

x2 − x1
= 1.125 − 1.5

3 − 1
= −0.375

2
= −0.1875

Between x = 1 and x = 3, the y-values of this function decrease on
average by 0.1875 as x increases by 1.

• Find the average rate of change of f (x) = −3x2 + 10 between x = −1
and x = 2.
Once we have found the y-values by putting these x-values into the function,
we will find the slope of the line containing these two points.

y1 = f (x1) = f (−1) = −3(−1)2 + 10 = 7

y2 = f (x2) = f (2) = −3(2)2 + 10 = −2

Average rate of change = y2 − y1

x2 − x1
= −2 − 7

2 − (−1)
= −9

3
= −3

1
= −3

Between x = −1 and x = 2, this function decreases on average by 3 as x

increases by 1.
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PRACTICE
1. A sales representative’s pay is based on his sales. Table 3.2 shows his salary

during one year.

Table 3.2

Month Pay

January (1) 2100
February (2) 2000
March (3) 2400
April (4) 2700
May (5) 2500
June (6) 3000
July (7) 3500
August (8) 3600
September (9) 2500
October (10) 2000
November (11) 2000
December (12) 2100

How much did his monthly pay change on average between January and
July? Between July and December? Between October and December?

2. Find the average rate of change between the indicated points of the function
whose graph is given in Figure 3.14.

Fig. 3.14.
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3. Find the average rate of change for f (x) = 2 − x3 between x = −2 and
x = 1.

4. Find the average rate of change for f (x) = 6x − 3 between x = −5 and
x = 3 and between x = 0 and x = 8.

SOLUTIONS
1. The average monthly increase between January and July is the slope of the

line containing the points (1,2100) and (7,3500).

3500 − 2100

7 − 1
≈ 233

The average monthly decrease between July and December is the slope of
the line containing the points (7,3500) and (12,2100).

2100 − 3500

12 − 7
= −280

The average monthly increase from October to December is the slope of the
line containing the points (10,2000) and (12,2100).

2100 − 2000

12 − 10
= 50

2. x1 = 0, y1 = −1 and x2 = 2, y2 = 8

Average rate of change = 8 − (−1)

2 − 0
= 9

2

3.

y1 = f (x1) = f (−2) = 2 − (−2)3 = 10

y2 = f (x2) = f (1) = 2 − (1)3 = 1

Average rate of change = 1 − 10

1 − (−2)
= −3

4. For x1 = −5 and x2 = 3—

y1 = f (x1) = f (−5) = 6(−5) − 3 = −33

y2 = f (x2) = f (3) = 6(3) − 3 = 15

Average rate of change = 15 − (−33)

3 − (−5)
= 6
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For x1 = 0 and x2 = 8—

y1 = f (x1) = f (0) = 6(0) − 3 = −3

y2 = f (x2) = f (8) = 6(8) − 3 = 45

Average rate of change = 45 − (−3)

8 − 0
= 6

The average rate of change between any two points on a linear function is
the slope.

Newton’s Quotient gives the average rate of change of f (x) between x1 = a

and x2 = a + h.

y1 = f (x1) = f (a) y2 = f (x2) = f (a + h)

Average rate of change = y2 − y1

x2 − x1
= f (a + h) − f (a)

a + h − a
= f (a + h) − f (a)

a

Even and Odd Functions
A graph is symmetric if one half looks like the other half. We might also say that
one half of the graph is a reflection of the other.

When a graph has symmetry, we usually say that it is symmetric with respect to
a line or a point. The graph in Figure 3.15 is symmetric with respect to the x-axis
because the half of the graph above the x-axis is a reflection of the half below the
x-axis. The graph in Figure 3.16 is symmetric with respect to the y-axis.

Fig. 3.15.
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Fig. 3.16.

Fig. 3.17.

The graph in Figure 3.17 is symmetric with respect to the vertical line x = 2.
One type of symmetry that is a little harder to see is origin symmetry. A graph

has origin symmetry if folding the graph along the x-axis then again along the
y-axis would have one part of the graph coincide with the other part. The graphs
in Figures 3.18 and 3.19 have origin symmetry.

Knowing in advance whether or not the graph of a function is symmetric can
make sketching the graph less work. We can use algebra to decide if the graph
of a function has y-axis symmetry or origin symmetry. Except for the function
f (x) = 0, the graph of a function will not have x-axis symmetry because x-axis
symmetry would cause a graph to fail the Vertical Line Test.

For the graph of a function to be symmetric with respect to the y-axis, a point
on the left side of the y-axis will have a mirror image on the right side of the
graph.

The graph of a function with y-axis symmetry has the property that (x, y) is
on the graph means that (−x, y) is also on the graph. The functional notation for
this idea is f (x) = f (−x). “f (x) = f (−x)” says that the y value for x (f (x))
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Fig. 3.18.

Fig. 3.19.

Fig. 3.20.
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is the same as the y-value for −x (f (−x)). If evaluating a function at −x does
not change the equation, then its graph will have y-axis symmetry. Such functions
are called even functions.

For a function whose graph is symmetric with respect to the origin, the mirror
image of (x, y) is (−x, −y).

Fig. 3.21.

The functional notation for this idea is f (−x) = −f (x). “f (−x) =
−f (x)” says that the y-value for −x (f (−x)) is the opposite of the y-value for
x (−f (x)). If evaluating a function at −x changes the equation to its negative,
then the graph of the function will be symmetric with respect to the origin. These
functions are called odd functions.

In order to work the following problems, we will need the following facts.

a(−x)even power = axeven power and a(−x)odd power = −axodd power

EXAMPLES
Determine if the given function is even (its graph is symmetric with respect to
the y-axis), odd (its graph is symmetric with respect to the origin), or neither.

• f (x) = x2 − 2
Does evaluating f (x) at −x change the function? If so, is f (−x) =
−(x2 − 2) = −f (x)?

f (−x) = (−x)2 − 2 = x2 − 2

Evaluating f (x) at −x does not change the function, so the function
is even.
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• f (x) = x3 + 5x

Does evaluating f (x) at −x change the function? If so, is f (−x) =
−(x3 + 5x) = −f (x)?

f (−x) = (−x)3 + 5(−x) = −x3 − 5x = −(x3 + 5x) = −f (x)

Evaluating f (x) at −x gives us −f (x), so the function is odd.

• f (x) = x

x + 1

Does evaluating f (x) at −x change the function? If so, is f (−x) = − x
x+1 =

−f (x)?

f (−x) = −x

−x + 1

Because f (−x) is not the same as f (x) nor the same as −f (x), the
function is neither even nor odd.

PRACTICE
For 1–4, determine whether or not the graph has symmetry. If it does, determine
the kind of symmetry it has. For 5–8, determine if the functions are even, odd, or
neither.

1.

Fig. 3.22.
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2.

Fig. 3.23.

3.

Fig. 3.24.

4.

Fig. 3.25.
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5. f (x) = x3 + 6

6. f (x) = 3x2 − 2

7. f (x) = x2 − 3

x3 + 2x

8. g(x) = 3
√

x

SOLUTIONS
1. This graph has y-axis symmetry.

2. This graph has x-axis symmetry.

3. This graph does not have symmetry.

4. This graph has origin symmetry.

5. f (−x) = (−x)3 + 6 = −x3 + 6

f (−x) �= f (x) and f (−x) �= −f (x), making f (x) neither even
nor odd.

6. f (−x) = 3(−x)2 − 2 = 3x2 − 2

f (−x) = f (x), making f (x) even.

7. f (−x) = (−x)2 − 3

(−x)3 + 2(−x)
= x2 − 3

−x3 − 2x
= x2 − 3

−(x3 + 2x)

= − x2 − 3

x3 + 2x
= −f (x)

f (−x) = −f (x), making f (x) odd.

8. g(−x) = 3
√−x = − 3

√
x = −g(x)

g(−x) = −g(x) making g(x) odd.

CHAPTER 3 REVIEW
Problems 1–2 refer to the graph in Figure 3.26.

1. Find f (1).
(a) −1 (b) −2 (c) 1 (d) 2
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Fig. 3.26.

2. Where is the function decreasing?
(a) (−∞, 0) ∪ (1, ∞) (b) (0, −2) (c) (0, 1) (d) (1, ∞)

Problems 3–6 refer to the graph of f (x) in Figure 3.27.

Fig. 3.27.

3. What is the domain?
(a) [0, 2] (b) [2, 0] (c) [−2, 2] (d) [−2, 0]

4. What is the range?
(a) [0, 2] (b) [2, 0] (c) [−2, 2] (d) [−2, 0]
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5. What is the average rate of change of the function between x = − 2
and x = 1?
(a) −1

2 (b) −2
3 (c) −3

4 (d) −1

6. Is the graph in Figure 3.27 symmetric?

(a) Yes, with respect to the x-axis.
(b) Yes, with respect to the y-axis.

(c) Yes, with respect to the origin.
(d) No.

7. Find the average rate of change for f (x) = 1
x+1 between x = 0 and

x = 2.
(a) −3 (b) −1

3 (c) 3 (d) 1
3

8. Is the function f (x) = 3x2 + 5 even, odd, or neither?
(a) Even
(b) Odd
(c) Neither
(d) Cannot be determined without the graph

9. Is the function f (x) = 3x3 + 5 even, odd, or neither?
(a) Even
(b) Odd
(c) Neither
(d) Cannot be determined without the graph

10. Is the function f (x) = 4x2/x3 + x even, odd, or neither?
(a) Even
(b) Odd
(c) Neither
(d) Cannot be determined without the graph

SOLUTIONS
1. B 2. C 3. C 4. A 5. B
6. B 7. B 8. A 9. C 10. B
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CHAPTER

Combinations of
Functions
and Inverse
Functions

Most of the functions studied in calculus are some combination of only a few
families of functions, most of the combinations are arithmetic. We can add two
functions, f + g(x), subtract them, f − g(x), multiply them, fg(x), and divide
them f

g
(x). The domain of f + g(x), f − g(x), and fg(x), is the intersection of

the domain of f (x) and g(x). In other words, their domain is where the domain
of f (x) overlaps the domain of g(x). The domain of f

g
(x) is the same, except we

need to remove any x that makes g(x) = 0.

64
xi
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CHAPTER 4 Combinations of Functions 65

EXAMPLES
Find f + g(x), f − g(x), fg(x), and f

g
(x) and their domain.

• f (x) = x2 − 2x + 5 and g(x) = 6x − 10

f + g(x) = f (x) + g(x) = (x2 − 2x + 5) + (6x − 10) = x2 + 4x − 5

f − g(x) = f (x) − g(x) = (x2 − 2x + 5) − (6x − 10) = x2 − 8x + 15

fg(x) = f (x)g(x) = (x2 − 2x + 5)(6x − 10) = 6x3 − 10x2 − 12x2

+ 20x + 30x − 50

= 6x3 − 22x2 + 50x − 50

f

g
(x) = f (x)

g(x)
= x2 − 2x + 5

6x − 10

The domain of f + g(x), f − g(x), and fg(x) is (−∞, ∞). The domain of
f
g
(x) is x �= 5

3 (from 6x − 10 = 0), or (−∞, 5
3) ∪ (5

3 , ∞).

• f (x) = x − 3 and g(x) = √
x + 2

f + g(x) = x − 3 + √
x + 2 f − g(x) = x − 3 − √

x + 2

fg(x) = (x − 3)
√

x + 2
f

g
(x) = x − 3√

x + 2

The domain for f +g(x), f −g(x), and fg(x) is [−2, ∞) (from x +2 ≥ 0).
The domain for f

g
(x) is (−2, ∞) because we need

√
x + 2 �= 0.

An important combination of two functions is function composition. This
involves evaluating one function at the other. The notation for composing f with
g is f ◦ g(x). By definition, f ◦ g(x) = f (g(x)), this means that we substitute
g(x) for x in f (x).

EXAMPLES
Find f ◦ g(x) and g ◦ f (x).
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• f (x) = x2 + 1 and g(x) = 3x + 2

f ◦ g(x) = f (g(x))

= f (3x + 2) Replace g(x) with 3x + 2.

= (3x + 2)2 + 1 Substitute 3x + 2 for x in f (x).

= (3x + 2)(3x + 2) + 1 = 9x2 + 12x + 5

g ◦ f (x) = g(f (x))

= g(x2 + 1) Replace f (x) with x2 + 1.

= 3(x2 + 1) + 2 Substitute x2 + 1 for x in g(x).

= 3x2 + 3 + 2 = 3x2 + 5

• f (x) = √
5x − 2 and g(x) = x2

f ◦ g(x) = f (g(x))

= f (x2) Replace g(x) with x2.

=
√

5x2 − 2 Substitute x2 for x in f (x).

g ◦ f (x) = g(f (x))

= g(
√

5x − 2) Replace f (x) with
√

5x − 2.

= (
√

5x − 2)2 Substitute
√

5x − 2 for x in g(x).

= 5x − 2

• f (x) = 1

x + 1
and g(x) = 2x − 1

x + 3

f ◦ g(x) = f (g(x)) = f

(
2x − 1

x + 3

)

= 1
2x−1
x+3 + 1

= 1
2x−1
x+3 + 1 · x+3

x+3

= 1
2x−1+x+3

x+3

= 1
3x+2
x+3
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= 1 ÷ 3x + 2

x + 3
= 1 · x + 3

3x + 2

= x + 3

3x + 2

g ◦ f (x) = g(f (x)) = g

(
1

x + 1

)

= 2( 1
x + 1) − 1

1
x + 1 + 3

=
2

x + 1 − 1 · x + 1
x + 1

1
x + 1 + 3 · x + 1

x + 1

=
2−(x + 1)

x + 1
1+3(x + 1)

x + 1

=
−x + 1
x + 1
3x + 4
x + 1

= −x + 1

x + 1
÷ 3x + 4

x + 1
= −x + 1

x + 1
· x + 1

3x + 4

= −x + 1

3x + 4

At times, we only need to find f ◦ g(x) for a particular value of x. The
y-value for g(x) becomes the x-value for f (x).

EXAMPLE
• Find f ◦g(−1), f ◦g(0), and g◦f (1) for f (x) = 4x+3 and g(x) = 2−x2.

f ◦ g(−1) = f (g(−1)) Compute g(−1).

= f (1) g(−1) = 2 − (−1)2 = 1

= 4(1) + 3 = 7 Evaluate f (x) at x = 1.

f ◦ g(0) = f (g(0)) Compute g(0).

= f (2) g(0) = 2 − 02 = 2

= 4(2) + 3 = 11 Evaluate f (x) at x = 2.
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g ◦ f (1) = g(f (1)) Compute f (1).

= g(7) f (1) = 4(1) + 3 = 7

= 2 − 72 = −47 Evaluate g(x) at x = 7.

We can compose two functions at a single x-value by looking at the graphs
of the individual functions. To find f ◦ g(a), we will look at the graph of
g(x) to find the point whose x-coordinate is a. The y-coordinate of this
point will be g(a). Then we will look at the graph of f (x) to find the
point whose x-coordinate is g(a). The y-coordinate of this point will be
f (g(a)) = f ◦ g(a).

EXAMPLE
Refer to Figure 4.1. The solid graph is the graph of f (x), and the dashed graph is
the graph of g(x).

• Find f ◦ g(−1), f ◦ g(3), f ◦ g(5), and g ◦ f (0).

f ◦ g(−1) = f (g(−1)) Look for x = −1 on g(x).

= f (−2) (−1, −2) is on the graph of g(x), so g(−1) = −2.

= 0 (−2, 0) is on the graph of f (x), so f (−2) = 0.

Fig. 4.1.
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f ◦ g(3) = f (g(3)) Look for x = 3 on g(x).

= f (−2) (3, −2) is on the graph of g(x), so g(3) = −2.

= 0 (−2, 0) is on the graph of f (x), so f (−2) = 0.

f ◦ g(5) = f (g(5)) Look for x = 5 on g(x).

= f (0) (5, 0) is on the graph of g(x), so g(5) = 0.

= −1 (0, −1) is on the graph of f (x), so f (0) = −1.

g ◦ f (0) = g(f (0)) Look for x = 0 on f (x).

= g(−1) (0, −1) is on the graph of f (x), so f (0) = −1.

= −2 (−1, −2) is on the graph of g(x), so g(−1) = −2.

Unfortunately, finding the domain for the composition of two functions is not
straightforward. The definition for the domain of f ◦ g(x) is the set of all real
numbers x such that g(x) is in the domain of f (x). When finding the domain
for f ◦ g(x), begin with the domain with g(x). Then remove any x-value whose
y-value is not in the domain for f (x). For example if f (x) = 1

x
g(x) = x + 3, the

y-values for g(x) are x + 3. We need for x + 3 to be nonzero for f ◦ g(x) = 1
x+3 .

EXAMPLES
Find the domain for f ◦ g(x).

• f (x) = 1
x2 and g(x) = √

2x − 6

The domain for g(x) is x ≥ 3 (from 2x − 6 ≥ 0). Are there any x-values
in [3, ∞) we cannot put into 1

(
√

2x−6)2 ? We cannot allow (
√

2x − 6)2 to be

zero, so we cannot allow x = 3. The domain for f ◦ g(x) is (3, ∞).

• f (x) = 1
x

and g(x) = x−1
x+1

The domain for g(x) is x �= −1. Are there any x-values we need to remove
from x �= −1? We need to find any real numbers that are not in the domain for

f ◦ g(x) = f (g(x)) = f

(
x − 1

x + 1

)

= 1
x−1
x+1

The denominator of this fraction is x−1
x+1 , so we cannot allow x−1

x+1 to be
zero. A fraction equals zero only when the numerator is zero, so we cannot
allow x − 1 to be zero. We must remove x = 1 from the domain of g(x).
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The domain of f ◦ g(x) is x �= −1, 1, or (−∞, −1) ∪ (−1, 1) ∪ (1, ∞).
This function simplifies to f ◦ g(x) = x+1

x−1 , which hides the fact that we
cannot let x = −1.

Any number of functions can be composed together. Functions can even be
composed with themselves. When composing three or more functions together,
we will work from the right to the left, performing one composition at a time.

EXAMPLES
Find f ◦ f (x) and f ◦ g ◦ h(x).

• f (x) = x3, g(x) = 2x − 5, and h(x) = x2 + 1.

f ◦ f (x) = f (f (x)) = f (x3) = (x3)3 = x9

For f ◦ g ◦ h(x), we will begin with g ◦ h(x) = g(h(x)) = g(x2 + 1) =
2(x2 + 1) − 5 = 2x2 − 3. Now we need to evaluate f (x) at 2x2 − 3.

f ◦ g ◦ h(x) = f (g(h(x))

= f (2x2 − 3) = (2x2 − 3)3

• f (x) = 3x + 7, g(x) = |x − 2|, and h(x) = x4 − 5

f ◦ f (x) = f (f (x)) = f (3x + 7) = 3(3x + 7) + 7 = 9x + 28

f ◦ g ◦ h(x) = f ◦ g(h(x))

g(h(x)) = g(x4 − 5) = |(x4 − 5) − 2| = |x4 − 7|
f ◦ g(h(x)) = f (g(h(x))) = f (|x4 − 7|)

= 3|x4 − 7| + 7

In order for calculus students to use some formulas, they need to recognize
complicated functions as a combination of simpler functions. Sums, differences,
products, and quotients are easy to see, but some compositions of functions are
less obvious.

EXAMPLES
Find functions f (x) and g(x) so that h(x) = f ◦ g(x).

• h(x) = √
x + 16
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Although there are many possibilities for f (x) and g(x), there is usually one
pair of functions that is obvious. Usually we want g(x) to be the computation
that is done first and f (x), the computation to be done last. Here, when
computing the y-value for h(x), we would calculate x + 16. This will be
g(x). The last calculation will be to take the square root. This will be f (x).
If we let f (x) = √

x and g(x) = x + 16, we have f ◦ g(x) = f (g(x)) =
f (x + 16) = √

x + 16 = h(x).

• h(x) = 2
x2+1

When computing a y-value for h(x), we would first find x2 + 1. This will
be g(x). This number will be the denominator of a fraction whose numer-
ator is 2. This will be f (x), a fraction whose numerator is 2 and whose
denominator is x. If f (x) = 2

x
and g(x) = x2 + 1,

f ◦ g(x) = f (g(x)) = f (x2 + 1) = 2

x2 + 1
= h(x).

PRACTICE
1. f (x) = 3x2 + x and g(x) = x − 4

(a) Find f + g(x), f − g(x), fg(x), and f
g
(x).

(b) What is the domain for f
g
(x)?

(c) Find f ◦ g(x) and g ◦ f (x).

(d) What is the domain for f ◦ g(x)?

(e) Find f ◦ g(1) and g ◦ f (0).

(f) Find f ◦ f (x).

2. Find f ◦ g(x), g ◦ f (x), and the domain for f ◦ g(x).

f (x) = 2x − 3

x + 4
and g(x) = x

x − 1

3. Refer to the graphs in Figure 4.2. The solid graph is the graph of f (x),
and the dashed graph is the graph of g(x). Find f ◦ g(1), f ◦ g(4), and
g ◦ f (−2).

4. Find f ◦ g ◦ h(x) for f (x) = 1
x + 3 , g(x) = 4x + 9, and h(x) = 5x2 − 1.

5. Find functions f (x) and g(x) so that h(x) = f ◦ g(x), where h(x) =
(x − 5)3 + 2.
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Fig. 4.2.

SOLUTIONS
1. (a)

f + g(x) = (3x2 + x) + (x − 4) = 3x2 + 2x − 4

f − g(x) = (3x2 + x) − (x − 4) = 3x2 + 4

fg(x) = (3x2 + x)(x − 4) = 3x3 − 11x2 − 4x

f

g
(x) = 3x2 + x

x − 4

(b) The domain is x �= 4, (from x − 4 = 0), or (−∞, 4) ∪ (4, ∞).

(c)

f ◦ g(x) = f (g(x)) = f (x − 4) = 3(x − 4)2 + (x − 4)

= 3(x − 4)(x − 4) + x − 4 = 3x2 − 23x + 44

g ◦ f (x) = g(f (x)) = g(3x2 + x) = 3x2 + x − 4

(d) The domain forg(x) is all real numbers. We can letx be any real number
for f (x), so we do not need to remove anything from the domain of
g(x). The domain of f ◦ g(x) is all real numbers, or (−∞, ∞).
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(e)

f ◦ g(1) = f (g(1))

= f (−3) g(1) = 1 − 4 = −3

= 24 f (−3) = 3(−3)2 + (−3) = 24

g ◦ f (0) = g(f (0))

= g(0) f (0) = 3(0)2 + 0 = 0

= −4 g(0) = 0 − 4 = −4

(f)

f ◦ f (x) = f (f (x)) = f (3x2 + x) = 3(3x2 + x)2 + (3x2 + x)

= 3(3x2 + x)(3x2 + x) + 3x2 + x = 27x4 + 18x3 + 6x2 + x

2.

f ◦ g(x) = f (g(x)) = f

(
x

x − 1

)

=
2
(

x
x−1

)
− 3

x
x−1 + 4

=
2x

x−1 − 3 · x−1
x−1

x
x−1 + 4 · x−1

x−1

=
2x − 3(x−1)

x−1
x + 4(x−1)

x−1

=
−x + 3
x−1

5x − 4
x − 1

= −x + 3

x − 1
÷ 5x − 4

x − 1
= −x + 3

x − 1
· x − 1

5x − 4

= −x + 3

5x − 4

g ◦ f (x) = g(f (x)) = g

(
2x − 3

x + 4

)

=
2x − 3
x + 4

2x − 3
x + 4 − 1

=
2x − 3
x + 4

2x − 3
x + 4 − 1 · x + 4

x + 4

=
2x − 3
x + 4

2x − 3 − (x + 4)
x + 4

=
2x − 3
x + 4
x − 7
x + 4
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= 2x − 3

x + 4
÷ x − 7

x + 4
= 2x − 3

x + 4
· x + 4

x − 7

= 2x − 3

x − 7

The domain of g(x) is x �= 1. Now we need to see if there is anything
we need to remove from x �= 1. Before simplifying f ◦ g(x), we have

2
(

x
x−1

)
− 3

x
x−1 + 4

.

The denominator of this fraction cannot be zero, so we must have
x

x−1 + 4 �= 0.

x

x − 1
+ 4 = 0

(x − 1)

(
x

x − 1
+ 4

)

= (x − 1)0

x + 4(x − 1) = 0

5x − 4 = 0

x = 4

5

The domain is x �= 1, 4
5 , or (−∞, 4

5) ∪ (4
5 , 1) ∪ (1, ∞).

While it seems that x = −4 might not be allowed in the domain of
f ◦ g(x), x = −4 is in the domain.

f ◦ g(−4) = f (g(−4))

= f

(
4

5

)

g(−4) = −4

−4 − 1
= 4

5

= − 7

24
f

(
4

5

)

= 2(4/5) − 3

4/5 + 4
= − 7

24

3.

f ◦ g(1) = f (g(1)) Look for x = 1 on g(x).

= f (4) (1, 4) is on the graph of g(x), so g(1) = 4.

= 1 (4, 1) is on the graph of f (x), so f (4) = 1.
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f ◦ g(4) = f (g(4)) Look for x = 4 on g(x).

= f (0) (4, 0) is on the graph of g(x), so g(4) = 0.

= −2 (0, −2) is on the graph of f (x), so f (0) = −2.

g ◦ f (−2) = g(f (−2)) Look for x = −2 on the graph of f (x).

= g(1) (−2, 1) is on the graph of f (x), so f (−2) = 1.

= 4 (1, 4) is on the graph of g(x), so g(1) = 4.

4.

f ◦ g ◦ h(x) = f ◦ g(h(x)) = f (g(h(x)))

g(h(x)) = g(5x2 − 1) = 4(5x2 − 1) + 9 = 20x2 + 5

f (g(h(x))) = f (20x2 + 5) = 1

(20x2 + 5) + 3
= 1

20x2 + 8

5. One possibility is g(x) = x − 5 and f (x) = x3 + 2.

f ◦ g(x) = f (g(x)) = f (x − 5) = (x − 5)3 + 2 = h(x)

Inverse Functions
In the same way operations on real numbers (like addition and multiplication)
have identities and inverses, operations on functions can have identities and
inverses. We can apply many operations on functions that we can apply to real
numbers—adding, multiplying, raising to powers, etc. These operations can have
identities and functions have inverses in the same way they do with real numbers.
The additive identity for function addition is i(x) = 0. Each function has an addi-
tive inverse, −f (x) is the additive inverse for f (x). The multiplicative identity for
function multiplication is i(x) = 1, and the multiplicative inverse for f (x) is 1

f (x)
.

If we look at function composition as an operation on functions, then we can
ask whether or not there is an identity for this operation and whether or not func-
tions have inverses for this operation. There is an identity for this operation,
i(x) = x. For any function f (x), f ◦ i(x) = f (i(x)) = f (x). Some functions
have inverses. Later we will see which functions have inverses and how to find
inverses. The notation for the inverse function of f (x) is f −1(x). This is different
from (f (x))−1, which is the multiplicative inverse for f (x). For now, we will be
given two functions that are said to be inverses of each other. We will use function
composition to verify that they are.
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EXAMPLES
Verify that f (x) and g(x) are inverses.

• f (x) = 2x + 5 and g(x) = 1
2x − 5

2
We will show that f ◦ g(x) = x and g ◦ f (x) = x.

f ◦ g(x) = f (g(x)) = f

(
1

2
x − 5

2

)

= 2

(
1

2
x − 5

2

)

+ 5 = x − 5 + 5 = x

g ◦ f (x) = g(f (x)) = g(2x + 5) = 1

2
(2x + 5) − 5

2

= x + 5

2
− 5

2
= x

• f (x) = 5x3 − 6 and g(x) = 3

√
x + 6

5

f ◦ g(x) = f (g(x)) = f

(

3

√
x + 6

5

)

= 5

(

3

√
x + 6

5

)3

− 6

= 5

(
x + 6

5

)

− 6 = x + 6 − 6 = x

g ◦ f (x) = g(f (x)) = g(5x3 − 6) = 3

√

5x3 − 6 + 6

5

= 3

√

5x3

5
= 3
√

x3 = x

• f (x) = 2x − 1

x + 4
and g(x) = 4x + 1

2 − x

f ◦ g(x) = f (g(x)) = f

(
4x + 1

2 − x

)

=
2
(

4x + 1
2 − x

)
− 1

4x + 1
2 − x

+ 4

=
2(4x + 1)

2 − x
− 1 · 2 − x

2 − x

4x + 1
2 − x

+ 4 · 2 − x
2 − x



CHAPTER 4 Combinations of Functions 77

=
8x + 2 − (2 − x)

2 − x

4x + 1 + 4(2 − x)
2 − x

=
9x

2 − x

9
2 − x

= 9x

2 − x
÷ 9

2 − x
= 9x

2 − x
· 2 − x

9
= x

g ◦ f (x) = g(f (x)) = g

(
2x − 1

x + 4

)

=
4
(

2x − 1
x + 4

)
+ 1

2 − 2x − 1
x + 4

=
4(2x − 1)

x + 4 + 1 · x + 4
x + 4

2 · x + 4
x + 4 − 2x − 1

x + 4

=
8x − 4 + x + 4

x + 4
2(x + 4) − (2x − 1)

x + 4

=
9x

x + 4
9

x + 4

= 9x

x + 4
÷ 9

x + 4

= 9x

x + 4
· x + 4

9
= x

If we think of a function as a collection of points on a graph, or ordered
pairs, then the only thing that makes f (x) different from f −1(x) is that their
x-coordinates and y-coordinates are reversed. For example, if (3, −1) is a point on
the graph of f (x), then (−1, 3) is a point on the graph of f −1(x).

EXAMPLE
The graph of a function f (x) is given in Figure 4.3. Use the graph of f (x) to
sketch the graph of f −1(x).

Fig. 4.3.



CHAPTER 4 Combinations of Functions78

We will make a table of values for f (x) and switch the x and y columns for f −1(x).

Table 4.1

x y = f (x)

−5 −3
−3 0

0 1
1 3
5 5

To get the table for f −1(x), we will switch the x- and y-values.

Table 4.2

x y = f −1(x)

−3 −5
0 −3
1 0
3 1
5 5

The solid graph is the graph of f (x), and the dashed graph is the graph of f −1(x).

Fig. 4.4.
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If f (x) is a function that has an inverse, then the graph of f −1(x) is a reflection
of the graph of f (x) across the line y = x.

Fig. 4.5.

Fig. 4.6.

A function has an inverse if its graph passes the Horizontal Line Test—if any
horizontal line touches the graph in more than one place, then the function will
not have an inverse. Functions whose graphs pass the Horizontal Line Test are
called one-to-one functions. For a one-to-one function, every x will be paired with
exactly one y and every y will be paired with exactly one x.
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EXAMPLE
• The graph of f (x) is given in Figure 4.7. Is f (x) one to one?

Fig. 4.7.

This graph fails the Horizontal Line Test, so f (x) is not one to one.

Fig. 4.8.

For functions that are not one to one, we can restrict the domain to force the
function to be one to one. The function whose graph is in Figure 4.9, f (x) = x2−3,
is not one to one. If we restrict the domain to x ≥ 0, then the new function is one
to one.

Finding the inverse function is not hard, but it can be a little tedious. The steps
below show the process of algebraically switching x and y.

1. Replace f (x) with x, and replace x with y.
2. Solve this equation for y.
3. Replace y with f −1(x).
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Fig. 4.9.

Fig. 4.10.

EXAMPLES
Find f −1(x).

• f (x) = 6x + 14

x = 6y + 14 Step 1

x − 14 = 6y Step 2

x − 14

6
= y

f −1(x) = x − 14

6
Step 3
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• f (x) = 9(x − 4)5

x = 9(y − 4)5 Step 1

x

9
= (y − 4)5 Step 2

5

√
x

9
= y − 4

5

√
x

9
+ 4 = y

f −1(x) = 5

√
x

9
+ 4 Step 3

• f (x) = 1−x
2−x

x = 1 − y

2 − y
Step 1

x(2 − y) = 1 − y Step 2

2x − xy = 1 − y

2x − 1 = xy − y y terms on one side, non-y terms on other side

2x − 1 = y(x − 1) Factor y

2x − 1

x − 1
= y

f −1(x) = 2x − 1

x − 1
Step 3

PRACTICE
1. Show that f (x) = 1

2x + 7 and g(x) = 2x − 14 are inverses.

2. Show that f (x) = 3
√

x − 8 and g(x) = x3 + 8 are inverses.

3. Show that f (x) = x + 2
x − 3 and g(x) = 3x + 2

x − 1 are inverses.

4. Use the graph of f (x) in Figure 4.11 to sketch the graph of f −1(x).

5. Find f −1(x) for f (x) = 5x + 12.

6. Find g−1(x) for g(x) = 3
√

2x − 1.

7. Find f −1(x) for f (x) = 2x − 3
6x + 1
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Fig. 4.11.

SOLUTIONS
1.

f ◦ g(x) = f (g(x)) = f (2x − 14) = 1

2
(2x − 14) + 7 = x − 7 + 7 = x

g ◦ f (x) = g(f (x)) = g

(
1

2
x + 7

)

= 2

(
1

2
x + 7

)

− 14 = x + 14 − 14 = x

2.

f ◦ g(x) = f (g(x)) = f (x3 + 8) = 3
√

(x3 + 8) − 8 = 3
√

x3 = x

g ◦ f (x) = g(f (x)) = g(
3
√

x − 8) = (
3
√

x − 8)3 + 8 = x − 8 + 8 = x

3.

f ◦ g(x) = f (g(x)) = f

(
3x + 2

x − 1

)

=
3x + 2
x − 1 + 2

3x + 2
x − 1 − 3

=
3x + 2
x − 1 + 2 · x − 1

x − 1
3x + 2
x − 1 − 3 · x − 1

x − 1

=
3x + 2 + 2(x − 1)

x − 1
3x + 2 − 3(x − 1)

x − 1

=
5x

x − 1
5

x − 1

= 5x

x − 1
÷ 5

x − 1

= 5x

x − 1
· x − 1

5
= x
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g ◦ f (x) = g(f (x)) = g

(
x + 2

x − 3

)

=
3
(

x + 2
x − 3

)
+ 2

x + 2
x − 3 − 1

=
3(x + 2)
x − 3 + 2 · x − 3

x − 3
x + 2
x − 3 − 1 · x − 3

x − 3

=
3x + 6 + 2(x − 3)

x − 3
x + 2 − (x − 3)

x − 3

=
5x

x − 3
5

x − 3

= 5x

x − 3
÷ 5

x − 3

= 5x

x − 3
· x − 3

5
= x

4. The solid graph in Figure 4.12 is the graph of f (x), and the dashed graph
is the graph of f −1(x).

Fig. 4.12.

5.

x = 5y + 12

x − 12 = 5y

x − 12

5
= y so, f −1(x) = x − 12

5

6.

x = 3
√

2y − 1

x + 1 = 3
√

2y
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(x + 1)3 = 2y

(x + 1)3

2
= y so g−1(x) = (x + 1)3

2

7.

x = 2y − 3

6y + 1

x(6y + 1) = 2y − 3

6xy + x = 2y − 3

x + 3 = 2y − 6xy

x + 3 = y(2 − 6x)

x + 3

2 − 6x
= y so f −1(x) = x + 3

2 − 6x

CHAPTER 4 REVIEW
Problems 1–5 refer to f (x) = 1

x−3 and g(x) = 2x + 4.

1. Find the domain for f + g(x).
(a) (3, ∞)

(c) (−∞, 3] ∪ [3, ∞)

(b) (−∞, 3) ∪ (3, ∞)

(d) [3, ∞)

2. Find f ◦ g(x).
(a) 1

2x+1 (b) x − 3 (c) 2
x−3 + 4 (d) 2x+4

x−3

3. Find g ◦ f (x).
(a) 1

2x+1 (b) x − 3 (c) 2
x−3 + 4 (d) 2x+4

x−3

4. Find f ◦ g(4)

(a) 12 (b) 1
9 (c) 6 (d) 48

5. Find f −1(x).
(a) x − 3 (b) 3x+1

x+1 (c) 3x+1
x

(d) 3x+1
x−3

6. The graph of f (x) is given in Figure 4.13. Does f (x) have an inverse?

(a) Yes (b) No (c) Cannot be determined
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Fig. 4.13.

7. Are f (x) = 1
2x + 3 and g(x) = 2x − 3 inverses?

(a) Yes (b) No (c) Cannot be determined

8. What is the domain for f ◦ g(x) where

f (x) = 1

x
and g(x) = x − 2

x + 2
?

(a) (−∞, −2) ∪ (−2, 0) ∪ (0, 2) ∪ (2, ∞)

(b) (−∞, −2) ∪ (−2, 2) ∪ (2, ∞)

Fig. 4.14.
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(c) (−∞, 0) ∪ (0, 2) ∪ (2, ∞)

(d) (−∞, −2) ∪ (−2, 0) ∪ (0, ∞)

9. The solid graph in Figure 4.14 is the graph of f (x). The dashed graph is
the graph of g(x). Find f ◦ g(4).

(a) −2 (b) −3 (c) 2 (d) 3

SOLUTIONS
1. B 2. A 3. C 4. B 5. C
6. A 7. B 8. B 9. B



5
CHAPTER

Translations and
Special Functions

Calculus students work with only a few families of functions—absolute value,
nth root, cubic, quadratic, polynomial, rational, exponential, logarithmic, and
trigonometric functions. Two or more of these functions might be combined arith-
metically or by using function composition. In this chapter, we will look at the
absolute value function (whose graph is in Figure 5.1), the square root func-
tion (whose graph is in Figure 5.2), and the cubic function (whose graph is in
Figure 5.3).

We will also look at how these functions are affected by some simple changes.
Knowing the effects certain changes have on a function will make sketching its
graph by hand much easier. This understanding will also help you to use a graphing
calculator. One of the simplest changes to a function is to add a number. This change
will cause the graph to shift vertically or horizontally.

88
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Fig. 5.1. Fig. 5.2.

Fig. 5.3.

What effect does adding 1 to a function have on its graph? It depends on where
we put “+1.” Adding 1 to x will shift the graph left one unit. Adding 1 to y will
shift the graph up one unit.

• y = |x+1|, 1 is added to x, shifting the graph to the left 1 unit. See Figure 5.4.
• y = |x| + 1, 1 is added to y (which is |x|) shifting the graph up 1 unit. See

Figure 5.5.
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For the graphs in this chapter, the solid graph will be the graph of the orig-
inal function, and the dashed graph will be the graph of the transformed
function.

Fig. 5.4. Fig. 5.5.

• y = √
x + 2, 2 is added to x, shifting the graph to the left 2 units.

See Figure 5.6.
• y = √

x + 2, 2 is added to y (which is
√

x) shifting the graph up 2 units.
See Figure 5.7.

Fig. 5.6. Fig. 5.7.
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Subtracting a number from x will shift the graph to the right while subtracting
a number from y will shift the graph down.

• y = (x − 1)3, 1 is subtracted from x, shifting the graph to the right 1 unit.
See Figure 5.8.

• y = x3 − 1, 1 is subtracted from y (which is x3), shifting the graph down 1
unit. See Figure 5.9.

Fig. 5.8. Fig. 5.9.

Multiplying the x-values or y-values by a number changes the graph, usually by
stretching or compressing it. Multiplying the x-values or y-values by −1 will
reverse the graph. If a is a number larger than 1 (a > 1), then multiplying x by a

will horizontally compress the graph, but multiplying y by a will vertically stretch
the graph. If a is positive but less than 1 (0 < a < 1), then multiplying x by a will
horizontally stretch the graph, but multiplying y by a will vertically compress the
graph.

• y = √
2x, the graph is horizontally compressed. See Figure 5.10.

• y = 2
√

x, the graph is vertically stretched. See Figure 5.11.

• y =
(

1
2x
)3

, the graph is horizontally stretched. See Figure 5.12.

• y = 1
2x3, the graph is vertically compressed. See Figure 5.13.
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Fig. 5.10. Fig. 5.11.

Fig. 5.12. Fig. 5.13.

For many functions, but not all, vertical compression is the same as horizontal
stretching, and vertical stretching is the same as horizontal compression.

Multiplying the x-values by −1 will reverse the graph horizontally. This is
called reflecting the graph across the y-axis. Multiplying the y-values by −1
will reverse the graph vertically. This is called reflecting the graph across the
x-axis.
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Fig. 5.14.

Fig. 5.15.

When a function is even, reflecting the graph across the y-axis does not change the
graph. When a function is odd, reflecting the graph across the y-axis is the same as
reflecting it across the x-axis.

We can use function notation to summarize these transformations.

y = af (x + h) + k

• If h is positive, the graph is shifted to the left h units.
• If h is negative, the graph is shifted to the right h units.
• If k is positive, the graph is shifted up k units.
• If k is negative, the graph is shifted down k units.
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• If a > 1, the graph is vertically stretched. The larger a is, the greater the
stretch.

• If 0 < a < 1, the graph is vertically compressed. The closer to 0 a is, the
greater the compression.

• The graph of −f (x) is reflected across the x-axis.
• The graph of f (−x) is reflected across the y-axis.

The graphs below are various transformations of the graph of y = |x|.

Fig. 5.16. Fig. 5.17.

Fig. 5.18. Fig. 5.19.
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EXAMPLES
The graph of y = f (x) is given in Figure 5.20. Sketch the transformations. We
will sketch the graph by moving the points (−4, 5), (−1, −1), (1, 3), and (4, 0).

Fig. 5.20.

• y = f (x + 1) − 3
Table 5.1

Original Left 1 Down 3 Plot this
point x − 1 y − 3 point

(−4, 5) −4 − 1 = −5 5 − 3 = 2 (−5, 2)

(−1, −1) −1 − 1 = −2 −1 − 3 = −4 (−2, −4)

(1, 3) 1 − 1 = 0 3 − 3 = 0 (0, 0)

(4, 0) 4 − 1 = 3 0 − 3 = −3 (3, −3)

Fig. 5.21.
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• y = −f (x)

Table 5.2

Original x does not change Opposite of y Plot this
point x −y point

(−4, 5) −4 −5 (−4, −5)

(−1, −1) −1 −(−1) = 1 (−1, 1)

(1, 3) 1 −3 (1, −3)

(4, 0) 4 −0 = 0 (4, 0)

Fig. 5.22.

• y = 2f (x − 3)

Table 5.3

Original Right 3 Stretched Plot this
point x + 3 2y point

(−4, 5) −4 + 3 = −1 2(5) = 10 (−1, 10)

(−1, −1) −1 + 3 = 2 2(−1) = −2 (2, −2)

(1, 3) 1 + 3 = 4 2(3) = 6 (4, 6)

(4, 0) 4 + 3 = 7 2(0) = 0 (7, 0)
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Fig. 5.23.

• y = 1

2
f (−x) + 2

Table 5.4

Original Opposite of x Compressed and up 2 Plot this
point −x 1

2y + 2 point

(−4, 5) −(−4) = 4 1
2 (5) + 2 = 9

2 (4, 9
2 )

(−1, −1) −(−1) = 1 1
2 (−1) + 2 = 3

2 (1, 3
2 )

(1, 3) −1 1
2 (3) + 2 = 7

2 (−1, 7
2 )

(4, 0) −4 1
2 (0) + 2 = 2 (−4, 2)

Fig. 5.24.
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PRACTICE
For 1–4, match the graph with its function. Some functions will be left over.

1.

Fig. 5.25.

2.

Fig. 5.26.

3.

Fig. 5.27.
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4.

Fig. 5.28.

f (x) = −2|x − 1| + 5 f (x) = −√
x + 3 f (x) = √

3 − x

f (x) = −1

2
x3 + 1 f (x) = |x + 2| − 3 f (x) = 1

2
x3 + 1

For Problems 5–8, use the statements below to describe the transformations
on f (x). Some of the statements will be used more than once, and others
will not be used.

(A) shifts the graph to the left.
(B) shifts the graph to the right.
(C) shifts the graph up.
(D) shifts the graph down.
(E) reflects the graph across the y-axis.
(F) reflects the graph across the x-axis.
(G) vertically compresses the graph.
(H) vertically stretches the graph.
(I) reflects the graph across the x-axis and vertically compresses the

graph.
(J) reflects the graph across the y-axis and vertically stretches the graph.

5. For the function f (−x) + 3,

(a) What does “+3” do?
(b) What does the negative sign on x do?

6. For the function 3f (x − 1) − 4,

(a) What does “3” do?
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(b) What does “−1” do?

(c) What does “−4” do?

7. For the function −1
2f (x + 3) + 1,

(a) What does “−1
2” do?

(b) What does “+3” do?

(c) What does “+1” do?

8. For the function 1
3f (−x) − 1,

(a) What does “1
3” do?

(b) What does the negative sign on x do?

(c) What does “−1” do?

Refer to the graph of f (x) in Figure 5.29 for Problems 9–10.

Fig. 5.29.

9. Sketch the graph of f (−x) − 1.

10. Sketch the graph of −1
2f (x + 3) + 1.

SOLUTIONS
1. f (x) = −√

x + 3

2. f (x) = |x + 2| − 3

3. f (x) = 1
2x3 + 1

4. f (x) = −2|x − 1| + 5
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5. C, E

6. H, B, D

7. I, A, C

8. G, E, D

9.

Fig. 5.30.

Table 5.5

Original Opposite of x Down 1 Plot this
point −x y − 1 point

(−5, −3) −(−5) = 5 −3 − 1 = −4 (5, −4)

(−2, 0) −(−2) = 2 0 − 1 = −1 (2, −1)

(0, 4) −0 = 0 4 − 1 = 3 (0, 3)

(5, −2) −5 −2 − 1 = −3 (−5, −3)

10.

Fig. 5.31.
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Table 5.6

Original Left 3 Opposite of y, compressed, up 1 Plot this
point x − 3 − 1

2y + 1 point

(−5, −3) −5 − 3 = −8 − 1
2 (−3) + 1 = 5

2 (−8, 5
2 )

(−2, 0) −2 − 3 = −5 − 1
2 (0) + 1 = 1 (−5, 1)

(0, 4) 0 − 3 = −3 − 1
2 (4) + 1 = −1 (−3, −1)

(5, −2) 5 − 3 = 2 − 1
2 (−2) + 1 = 2 (2, 2)

CHAPTER 5 REVIEW
Match the graphs in Figures 5.32–5.34 with the functions in Problems 1–3.

Fig. 5.32. Fig. 5.33.

Fig. 5.34.
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1. f (x) = √
x + 2

2. f (x) = −√
x + 2

3. f (x) = √−x + 2

4. The graph of f (x) = (x + 1) + 2 is the graph of f (x)

(a) shifted to the left one unit and down two units.
(b) shifted to the left one unit and up two units.
(c) shifted to the right one unit and down two units.
(d) shifted to the right one unit and up two units.

Fig. 5.35.

5. The solid graph in Figure 5.35 is the graph of f (x), and the dashed graph
is the graph of a transformation. What is the transformation?

(a) 1
2f (x − 1)

(c) f (x − 1) + 1
2

(b) 1
2f (x + 1)

(d) f (x + 1) + 1
2

SOLUTIONS
1. Figure 5.32 2. Figure 5.34 3. Figure 5.33 4. B 5. A
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CHAPTER

Quadratic
Functions

The graph of every quadratic function, f (x) = ax2 + bx + c, is a transformation
of the graph of y = x2. (See Figure 6.1.)

When the function is written in the form f (x) = a(x −h)2 +k, we have a pretty
good idea of what its graph looks like: h will cause the graph to shift horizontally,
and k will cause it to shift vertically. The point (0, 0) on y = x2 has shifted to
(h, k). This point is the vertex. On a parabola that opens up (when a is positive),
the vertex is the lowest point on the graph. The vertex is the highest point on a
parabola that opens down (when a is negative).

We need to know the vertex when sketching a parabola. Once we have the vertex,
we will find two points to its left and two points to its right. We should choose points
in such a way that shows the curvature around the vertex and how fast the ends are
going up or down. It does not matter which points we choose, but a good rule of
thumb is to find h− 2a, h− a, h+ a, and h+ 2a. Because a parabola is symmetric

104
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Fig. 6.1.

about the line x = h (the vertical line that goes through the vertex), the y-values
for h − a and h + a will be the same and the y-values for h − 2a and h + 2a will
be the same, too. We will also find the intercepts.

EXAMPLES
Sketch the graph for the following quadratic functions. Find the y-intercept and the
x-intercepts, if any.

• f (x) = (x − 1)2 − 4

a = 1, h = 1, k = −4 The parabola opens up and the vertex is (1, −4).
For the y-intercept, let x = 0 in the function. The y-intercept is (0−1)2−4 =
−3. For the x-intercepts, let y = 0 and solve for x.

(x − 1)2 − 4 = 0

(x − 1)2 = 4 Take the square root of each side.

x − 1 = ±2

x = 1 ± 2 = 1 + 2, 1 − 2 = 3, −1

The x-intercepts are 3 and −1.
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Table 6.1

x y Plot this point

h − 2a 1 − 2(1) = −1 (−1 − 1)2 − 4 = 0 (−1, 0)

h − a 1 − 1 = 0 (0 − 1)2 − 4 = −3 (0, −3)

h 1 −4 (1, −4)

h + a 1 + 1 = 2 (2 − 1)2 − 4 = −3 (2, −3)

h + 2a 1 + 2(1) = 3 (3 − 1)2 − 4 = 0 (3, 0)

Fig. 6.2.

• g(x) = −2(x + 1)2 + 18

a = −2, h = −1, k = 18 The parabola opens down, and the vertex is
(−1, 18).

y = −2(0 + 1)2 + 18 −2(x + 1)2 + 18 = 0

y = 16 −2(x + 1)2 = −18

(x + 1)2 = 9

x + 1 = ±3

x = −1 ± 3 = −1 − 3,

− 1 + 3 = −4, 2

The y-intercept is 16 and the x-intercepts are −4 and 2.
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Table 6.2

x y Plot this point

h − 2a −1 − 2(−2) = 3 −2(3 + 1)2 + 18 = −14 (3, −14)

h − a −1 − (−2) = 1 −2(1 + 1)2 + 18 = 10 (1, 10)
h −1 18 (−1, 18)

h + a −1 + (−2) = −3 −2(−3 + 1)2 + 18 = 10 (−3, 10)

h + 2a −1 + 2(−2) = −5 −2(−5 + 1)2 + 18 = −14 (−5, −14)

Fig. 6.3.

• f (x) = 1
2(x + 1)2 + 2

a = 1
2 , h = −1, k = 2 The parabola opens up, and the vertex is (−1, 2).

Because the parabola opens up (a = 1
2 is positive) and the vertex is above the

x-axis (k = 2 is positive), there will be no x-intercept. If we were to solve
the equation 1

2(x + 1)2 + 2 = 0, we would not get a real number solution.
The y-intercept is y = 1

2(0 + 1)2 + 2 = 21
2 .

Table 6.3

x y Plot this point

h − 2a −1 − 2( 1
2 ) = −2 1

2 (−2 + 1)2 + 2 = 2 1
2 (−2, 2 1

2 )

h − a −1 − 1
2 = −1 1

2
1
2 (−1 1

2 + 1)2 + 2 = 2 1
8 (−1 1

2 , 2 1
8 )

h −1 2 (−1, 2)

h + a −1 + 1
2 = − 1

2
1
2 (− 1

2 + 1)2 + 2 = 2 1
8 (− 1

2 , 2 1
8 )

h + 2a −1 + 2( 1
2 ) = 0 1

2 (0 + 1)2 + 2 = 2 1
2 (0, 2 1

2 )
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Fig. 6.4.

By knowing the vertex and one other point on the graph, we can find an
equation for the quadratic function. Once we know the vertex, we have h

and k in y = a(x − h)2 + k. By using another point (x, y), we can find a.

EXAMPLE
• The vertex for a quadratic function is (−3, 4), and the y-intercept is −10.

Find an equation for this function.
Let h = −3, k = 4 in y = a(x − h)2 + k to get y = a(x + 3)2 + 4. Saying
that the y-intercept is −10 is another way of saying (0, −10) is a point on
the graph. We can let x = 0 and y = −10 in y = a(x + 3)2 + 4 to find a.

−10 = a(0 + 3)2 + 4

−14 = 9a

−14

9
= a

One equation for this function is y = −14
9 (x + 3)2 + 4.

Quadratic equations are not normally written in the convenient form f (x) =
a(x −h)2 + k. We can complete the square on f (x) = ax2 + bx + c to find (h, k).
Begin by completing the square on the x2 and x terms.
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EXAMPLES
Find the vertex.

• y = x2 − 6x − 2

y = x2 − 6x − 2

y =
[

x2 − 6x +
(

6

2

)2
]

− 2+?

We need to balance putting +(6/2)2 = 9 in the parentheses by adding
−9 to −2

y = (x2 − 6x + 9) − 2 − 9

y = (x − 3)2 − 11 The vertex is (3, −11).

• f (x) = 4x2 + 8x + 1

We will begin by factoring a = 4 from 4x2 + 8x. Then we will complete the
square on the x2 and x terms.

f (x) = 4x2 + 8x + 1

f (x) = 4(x2 + 2x) + 1

f (x) = 4(x2 + 2x + 1) + 1+?

By putting +1 in the parentheses, we are adding 4(1) = 4. We need to
balance this by adding −4 to 1.

f (x) = 4(x2 + 2x + 1) + 1 + (−4)

f (x) = 4(x + 1)2 − 3 The vertex is (−1, −3).

When factoring an unusual quantity from two or more terms, it is not obvi-
ous what terms go in the parentheses. We can find the terms that go in the
parentheses by writing the terms to be factored as numerators of fractions
and the number to be factored as the denominator. The terms that go in the
parentheses are the simplified fractions.
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• f (x) = −3x2 + 9x + 1
4

We need to factor a = −3 from −3x2 + 9x.

−3x2

−3
+ 9x

−3
= x2 − 3x

f (x) = −3x2 + 9x + 1

4

f (x) = −3(x2 − 3x) + 1

4

f (x) = −3

(

x2 − 3x + 9

4

)

+ 1

4
+?

(
3

2

)2

= 9

4

By putting +9

4
in the parentheses, we are adding −3

(
9

4

)

= −27

4
. We need

to balance this by adding
27

4
to

1

4

f (x) = −3

(

x2 − 3x + 9

4

)

+ 1

4
+ 27

4
= −3

(

x2 − 3x + 9

4

)

+ 28

4

f (x) = −3

(

x − 3

2

)2

+ 7 The vertex is

(
3

2
, 7

)

• g(x) = 2
3x2 + x − 2

Factoring a = 2
3 from 2

3x2 + x, we have

(2/3)x2

2/3
+ x

2/3
= x2 + x ÷ 2

3
= x2 + x · 3

2
= x2 + 3

2
x.

g(x) = 2

3

(

x2 + 3

2
x

)

− 2

= 2

3

(

x2 + 3

2
x + 9

16

)

− 2+?

(
1

2
· 3

2

)2

= 9

16

By adding
9

16
in the parentheses, we are adding

2

3
· 9

16
= 3

8
. We need to

balance this by adding −3/8 to −2.
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g(x) = 2

3

(

x2 + 3

2
x + 9

16

)

− 2 − 3

8

g(x) = 2

3

(

x + 3

4

)2

− 19

8
The vertex is

(

−3

4
, −19

8

)

One advantage to the form f (x) = ax2 + bx + c is that it is usually easier to use
to find the intercepts. We can use factoring and the quadratic formula when it is in
this form. Also, c is the y-intercept. Because a is the same number in both forms,
we can tell whether the parabola opens up or down when the equation is in either
form. It can be tedious to complete the square on f (x) = ax2 + bx + c to find
the vertex. Fortunately, there is a shortcut.

h = −b

2a
and k = f

(−b

2a

)

This shortcut comes from completing the square to rewrite f (x) = ax2 + bx + c

as f (x) = a(x − h)2 + k.

f (x) = ax2 + bx + c

= a

(

x2 + b

a
x

)

+ c

= a

(

x2 + b

a
x +

(
b

2a

)2
)

+ c − a ·
(

b

2a

)2

= a

(

x + b

2a

)2

+ c − b2

4a
The vertex is

(−b

2a
, c − b2

4a

)

It is easier to find k by evaluating the function at x = −b
2a

than by using this formula.

EXAMPLE
Use the shortcut to find the vertex.

• f (x) = −3x2 + 9x + 4

h = −b

2a
= −9

2(−3)
= 3

2
and k = f

(
3

2

)

= −3

(
3

2

)2

+ 9

(
3

2

)

+ 4 = 43

4

The vertex is (3
2 , 43

4 ).
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An important topic in calculus is optimizing functions; that is, finding a maxi-
mum and/or minimum value for the function. Precalculus students can use algebra
to optimize quadratic functions. A quadratic function has a minimum value (if its
graph opens up) or a maximum value (if its graph opens down). If a is positive,
then k is the minimum functional value. If a is negative, then k is the maximum
functional value. These values occur at x = h.

EXAMPLES
Find the minimum or maximum functional value and where it occurs.

• f (x) = −(x − 3)2 + 25

The parabola opens down because a = −1 is negative. This means that
k = 25 is the maximum functional value. It occurs at x = 3.

• y = 0.01x2 − 6x + 2000

h = −b

2a
= −(−6)

2(0.01)
= 300 and k = 0.01(300)2 − 6(300) + 2000 = 1100

a = 0.01 is positive, so k = 1100 is the minimum functional value. The
minimum occurs at x = 300.

PRACTICE
For Problems 1–3, sketch the graph and identify the vertex and intercepts.

1. y = −(x − 1)2 + 4

2. f (x) = 2
3(x + 1)2 + 2

3. y = −1
2x2 − x + 12

4. Rewrite f (x) = −3
5x2 − 6x − 11 in the form f (x) = a(x − h)2 + k, using

completing the square.

5. Find the maximum or minimum functional value for g(x) = −0.002x2 +
5x + 150.
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6. Find an equation for the quadratic function whose vertex is (2, 5) and whose
graph contains the point (−8, 15).

SOLUTIONS
1. The vertex is (1, 4). The y-intercept is −(0 − 1)2 + 4 = 3.

−(x − 1)2 + 4 = 0

−(x − 1)2 = −4

(x − 1)2 = 4

(x − 1) = ±2

x = 1 ± 2 = 1 + 2, 1 − 2 = 3, −1

The x-intercepts are 3 and −1.

Fig. 6.5.

2. The vertex is (−1, 2). The y-intercept is 2
3(0 + 1) + 2 = 8

3 . There are two
ways we can tell that there are no x-intercepts. The parabola opens up and
the vertex is above the x-axis, so the parabola is always above the x-axis.
Also, the equation 2

3(x + 1)2 + 2 = 0 has no real number solution.
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Fig. 6.6.

3. The vertex is (−1, 25
2 ).

h = −b

2a
= −(−1)

2 · −1
2

= −1 and k = −1

2
(−1)2 − (−1) + 12 = 25

2

The y-intercept is −1
2(0)2 − 0 + 12 = 12.

0 = −1

2
x2 − x + 12

−2(0) = −2

(

−1

2
x2 − x + 12

)

0 = x2 + 2x − 24

0 = (x + 6)(x − 4)

x + 6 = 0 x − 4 = 0

x = −6 x = 4

The x-intercepts are −6 and 4.



CHAPTER 6 Quadratic Functions 115

Fig. 6.7.

4. f (x) = −3

5
x2 − 6x − 11

f (x) = −3

5
(x2 + 10x) − 11

−6x

−3/5
= −6x ÷ −3

5
= −6x · −5

3
= 10x

f (x) = −3

5
(x2 + 10x + 25) − 11 + 15

f (x) = −3

5
(x + 5)2 + 4

5. This function has a maximum value because a = −0.002 is negative.
The answer is k.

h = −b

2a
= −5

2(−0.002)
= 1250 and

k = g(1250) = −0.002(1250)2 + 5(1250) + 150 = 3275

The maximum functional value is 3275.

6. h = 2, k = 5 which makes y = a(x − h)2 + k become y = a(x − 2)2 + 5.
We can find a by letting x = −8 and y = 15.

y = a(x − 2)2 + 5

15 = a(−8 − 2)2 + 5

10 = a(−10)2
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10 = 100a

0.1 = a

The equation is y = 0.1(x − 2)2 + 5.

These techniques to maximize/minimize quadratic functions can be applied to prob-
lems outside of mathematics. We can maximize the enclosed area, minimize the
surface area of a box, maximize revenue, and optimize many other problems. In the
first group of problems, the functions to be optimized will be given. In the second,
we will have to find the functions based on the information given in the problem.
The answers to every problem below will be one or both coordinates of the vertex.

EXAMPLES
• The weekly profit function for a product is given by P(x) = −0.0001x2 +

3x −12,500, where x is the number of units produced per week, and P(x) is
the profit (in dollars). What is the maximum weekly profit? How many units
should be produced for this profit?
The profit function is a quadratic function which has a maximum value.
What information does the vertex give us? h is the number of units needed
to maximize the weekly profit, and k is the maximum weekly profit.

h = −b

2a
= −3

2(−0.0001)
= 15,000 and

k = −0.0001(15,000)2 + 3(15,000) − 12,500 = 10,000

Maximize the weekly profit by producing 15,000 units. The maximum
weekly profit is $10,000.

• The number of units of a product sold depends on the amount of money spent
on advertising. If y = −26x2 + 2600x + 10,000 gives the number of units
sold after x thousands of dollars is spent on advertising, find the amount
spent on advertising that results in the most sales.
h will give us the amount to spend on advertising in order to maximize sales,
and k will tell us the maximum sales level. We only need to find h.

h = −b

2a
= −2600

2(−26)
= 50

$50 thousand should be spent on advertising to maximize sales.

The height of an object propelled upward (neglecting air resistance) is given by
the quadratic function s(t) = −16t2 + v0t + s0 , where s is the height in feet, and
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t is the number of seconds after the initial thrust. The initial velocity (in feet per
second) of the object is v0, and s0 is the initial height (in feet) of the object. For
example, if an object is tossed up at the rate of 10 feet per second, then v0 = 10.
If an object is propelled upward from a height of 50 feet, then s0 = 50. If an
object is dropped, its initial velocity is 0, so v0 = 0.

EXAMPLES
• An object is tossed upward with an initial velocity of 15 feet per second from

a height of four feet. What is the object’s maximum height? How long does
it take the object to reach its maximum height?
Because the initial velocity is 15 feet per second, v0 = 15, and the initial
height is four feet, so s0 = 4. The function that gives the height of the object
(in feet) after t seconds is s(t) = −16t2 + 15t + 4.

h = −b

2a
= −15

2(−16)
= 0.46875 and

k = −16(0.46875)2 + 15(0.46875) + 4 = 7.515625

The object reaches its maximum height of 7.515625 feet after
0.46875 seconds.

• A projectile is fired from the ground with an initial velocity of 120 miles per
hour. What is the projectile’s maximum height? How long does it take to
reach its maximum height?
Because the projectile is being fired from the ground, its initial height is 0,
so s0 = 0. The initial velocity is given as 120 miles per hour—we need to
convert this to feet per second. There are 5280 feet per mile, so 120 miles is
120(5280) = 633,600 feet. There are 60(60) = 3600 seconds per hour.

120 miles

1 hour
= 633,600 feet

3600 seconds
= 176 feet per second

Now we have the function: s(t) = −16t2 + 176t + 0 = −16t2 + 176t .

h = −b

2a
= −176

2(−16)
= 5.5 and k = −16(5.5)2 + 176(5.5) = 484

The projectile reaches its maximum height of 484 feet after 5.5 seconds.

Another problem involving the maximum vertical height is one where we know
the horizontal distance traveled instead of the time it has traveled. The x-coordinates
describe the object’s horizontal distance, and the y-coordinates describe its height.
Here we will find the maximum height and how far it traveled horizontally to reach
the maximum height.
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EXAMPLE
• A ball is thrown across a field. Its path can be described by the equation

y = −0.002x2 + 0.2x + 5, where x is the horizontal distance (in feet) and
y is the height (in feet). See Figure 6.8. What is the ball’s maximum height?
How far had it traveled horizontally to reach its maximum height?

Fig. 6.8.

k will answer the first question, and h will answer the second.

h = −b

2a
= −0.2

2(−0.002)
= 50 and k = −0.002(50)2 + 0.2(50) + 5 = 10

The ball reached a maximum height of 10 feet when it traveled 50 feet
horizontally.

The revenue of a product or service can depend on its price in two ways. An
increase in the price means that more revenue per unit is earned but fewer units are
sold. A decrease in the price means that less revenue is earned per unit but more
units are sold. Quadratic functions model some of these relationships. In the next
problems, a current price and sales level are given. We will be told how a price
increase or decrease affects the sales level. We will let x represent the number of
price increases/decreases. Suppose every $10 decrease in the price results in an
increase of five customers. Then the revenue function is (old price − 10x)(old sales
level + 5x). If every $50 increase in the price results in a loss of one customer, then
the revenue function is (old price + 50x)(old sales level − 1x). These functions are
quadratic functions which have a maximum value. The vertex tells us the maximum
revenue and how many times to decrease/increase the price to get the maximum
revenue.

EXAMPLES
• A management firm has determined that 60 apartments in a complex can

be rented if the monthly rent is $900, and that for each $50 increase
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in the rent, three tenants are lost with little chance of being replaced.
What rent should be charged to maximize revenue? What is the maximum
revenue?

Let x represent the number of $50 increases in the rent. This means if the
rent is raised $50, x = 1, if the rent is increased $100, x = 2, and if the rent
is increased $150, x = 3. The rent function is 900 + 50x. The number of
tenants depends on the number of $50 increases in the rent. So, if the rent
is raised $50, there will be 60 − 3(1) tenants; if the rent is raised $100, the
there will be 60 − 3(2) tenants; and if the rent is raised $150, there will be
60 − 3(3) tenants. If the rent is raised $50x, there will be 60 − 3x tenants.
The revenue function is

R = (900 + 50x)(60 − 3x) = −150x2 + 300x + 54,000.

h = −b

2a
= −300

2(−150)
= 1 and k = −150(1)2 + 300(1) + 54,000 = 54,150

The maximum revenue is $54,150. Maximize revenue by charging 900 +
50(1) = $950 per month for rent.

• A cinema multiplex averages 2500 tickets sold on a Saturday when ticket
prices are $8. Concession revenue averages $1.50 per ticket sold. A research
firm has determined that for each $0.50 increase in the ticket price, 100 fewer
tickets will be sold. What is the maximum revenue (including concession
revenue) and what ticket price maximizes the revenue?
Let x represent the number of $0.50 increases in the price. The ticket price is
8 + 0.50x. The average number of tickets sold is 2500 − 100x. The average
ticket revenue is (8.00 + 0.50x)(2500 − 100x). The average concession
revenue is 1.50(2500 − 100x). The total revenue is

R = (8.00 + 0.50x)(2500 − 100x) + 1.50(2500 − 100x)

= −50x2 + 300x + 23,750.

h = −b

2a
= −300

2(−50)
= 3 and k = −50(3)2 + 300(3) + 23,750 = 24,200

To maximize revenue, the ticket price should be 8.00 + 0.50(3) = $9.50,
and the maximum revenue is $24,200.

• The manager of a performing arts company offers a group discount price of
$45 per person for groups of 20 or more and will drop the price by $1.50 per
person for each additional person. What is the maximum revenue? What size
group will maximize the revenue?
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Because the price does not change until more than 20 people are in the group,
we will let x represent the additional people in the group. What is the price
per person if the group size is more than 20? If one extra person is in the
group, the price is 45 − 1(1.50). If there are two extra people, the price is
45 − 2(1.50); and if there are three extra people, the price is 45 − 3(1.50).
So, if there are x additional people, the price is 45 − 1.50x. The revenue is

R = (20 + x)(45 − 1.50x) = −1.50x2 + 15x + 900.

h = −b

2a
= −15

2(−1.50)
= 5 and k = −1.50(5)2 + 15(5) + 900 = 937.50

The group size that maximizes revenue is 20 + 5 = 25. The maximum
revenue is $937.50.

Optimizing geometric figures are common calculus and precalculus problems.
In many of these problems, there are more than two variables. We will be given
enough information in the problem to eliminate one of the variables. For example,
if we want the area of a rectangle, the formula is A = LW . If we know the perimeter
is 20, then we can use the equation 2L + 2W = 20 to solve for either L or W and
substitute this quantity in the area function, reducing the equation from three to
two variables. The new area function will be quadratic.

EXAMPLES
• A parks department has 1200 meters of fencing available to enclose two

adjacent playing fields. (See Figure 6.9.) What dimensions will maximize
the enclosed area? What is the maximum enclosed area?

Fig. 6.9.

The total enclosed area is A = LW . Because there is 1200 meters of fencing
available, we must have L + W + W + W + L = 1200 (see Figure 6.10).
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Fig. 6.10.

We can solve for L or W in this equation and substitute it in A = LW ,
reducing the equation to two variables. We will solve for L in 2L + 3W =
1200.

2L + 3W = 1200

L = 1200 − 3W

2

Now A = LW becomes A = 1200−3W
2 ·W = −3

2W 2 +600W . This function
has a maximum value.

h = −b

2a
= −600

2(−3/2)
= 200 and k = −3

2
(200)2 + 600(200) = 60,000

The width that maximizes the enclosed area is 200 meters, the length is
1200−3(200)

2 = 300 meters. The maximum enclosed area is 60,000 square
meters.

Another common fencing problem is one where only three sides of a rectangular
area needs to be fenced. The fourth side is some other boundary like a stream or the
side of a building. We will call two sides W and the third side L. Then “2W +L =
amount of fencing” allows us to solve for L and substitute “L = amount of fencing
−2W” in A = LW to reduce the area formula to two variables.

EXAMPLE
• A farmer has 1000 feet of fencing materials available to fence a rectangular

pasture next to a river. If the side along the river does not need to be fenced,
what dimensions will maximize the enclosed area? What is the maximum
enclosed area?
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Fig. 6.11.

Using the fact that 2W + L = 1000, we can solve for L and substitute this
quantity in the area formula A = LW .

2W + L = 1000

L = 1000 − 2W

A = LW

A = (1000 − 2W)W = −2W 2 + 1000W

This quadratic function has a maximum value.

h = −b

2a
= −1000

2(−2)
= 250 and k = −2(250)2 + 1000(250) = 125,000

Maximize the enclosed area by letting W = 250 feet and L = 1000 −
2(250) = 500 feet. The maximum enclosed area is 125,000 square feet.

In the last problems, we will maximize the area of a figure but will have to work
a little harder to find the area function to maximize.

EXAMPLES
• A window is to be constructed in the shape of a rectangle surmounted by a

semicircle (see Figure 6.12). The perimeter of the window needs to be 18
feet. What dimensions will admit the greatest amount of light?

The dimensions that will admit the greatest amount of light are the same
that will maximize the area of the window. The area of the window is the
rectangular area plus the area of the semicircle. The area of the rectangular
region is LW . Because the width of the window is the diameter (or twice the
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Fig. 6.12.

radius) of the semicircle, we can rewrite the area as L(2r) = 2rL. The area
of the semicircle is half of the area of a circle with radius r , or 1

2πr2. The
total area of the window is

A = 2rL + 1

2
πr2.

Now we will use the fact that the perimeter is 18 feet to help us replace L

with an expression using r . The perimeter is made up of the two sides (2L)
and the bottom of the rectangle (2r) and the length around the semicircle.
The length around the outside of the semicircle is half of the circumference
of a circle with radius r , 1

2(2πr) = πr . The total perimeter is P = 2L +
2r + πr . This is equal to 18. We will solve the equation 2L + 2r + πr = 18
for L.

2L + 2r + πr = 18

2L = 18 − 2r − πr

L = 18 − 2r − πr

2
= 9 − r − 1

2
πr

Now we will substitute 9 − r − 1
2πr for L in the area formula.

A = 2rL + 1

2
πr2

A = 2r(9 − r − 1

2
πr) + 1

2
πr2
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A = 18r − 2r2 − πr2 + 1

2
πr2 = 18r − 2r2 − 1

2
πr2 = 18r −

(

2 + 1

2
π

)

r2

A = −
(

2 + 1

2
π

)

r2 + 18r

This quadratic function has a maximum value.

h = −b

2a
= −18

2
[
−
(

2 + 1
2π
)] = 18

4 + π
≈ 2.52

Maximize the amount of light admitted in the window by letting the radius of
the semicircle be about 2.52 feet, and the length about 9−2.52− π

2 (2.52) ≈
2.52 feet.

• A track is to be constructed so that it is shaped like Figure 6.13, a rectangle
with a semicircle at each end. If the inside perimeter of the track is to be 1

4
mile, what is the maximum area of the rectangle?

Fig. 6.13.

The length of the rectangle is L. Its width is the diameter of the semicircles
(or twice their radius). The area formula for the rectangle is A = LW =
L(2r) = 2rL. The perimeter of the figure is the two sides of the rectangle
(2L) plus the length around each semicircle (πr). The total perimeter is
2L + 2πr . Although we could work with the dimensions in miles, it will be
easier to convert 1/4 mile to feet. There are 5280/4 = 1320 feet in 1/4 mile.
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We will solve 2L + 2πr = 1320 for L. Solving for r works, too.

2L + 2πr = 1320

2L = 1320 − 2πr

L = 1320 − 2πr

2
= 660 − πr

A = 2rL

A = 2r(660 − πr) = −2πr2 + 1320r

The area function has a maximum value.

h = −b

2a
= −1320

2(−2π)
= 330

π

k = −2π

(
330

π

)2

+ 1320

(
330

π

)

= 217,800

π
≈ 69,328

The maximum area of the rectangular region is about 69,328 square feet.
• A rectangle is to be constructed so that it is bounded below by the x-axis, on

the left by the y-axis, and above by the line y = −2x+12. (See Figure 6.14).
What is the maximum area of the rectangle?

Fig. 6.14.
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The coordinates of the corners will help us to see how we can find the length
and width of the rectangle.

Fig. 6.15.

The height of the rectangle is y and the width is x. This makes the area
A = xy. We need to eliminate x or y. Because y = −2x + 12, we can
substitute −2x + 12 for y in A = xy to make it the quadratic function
A = xy = x(−2x + 12) = −2x2 + 12x.

h = −b

2a
= −12

2(−2)
= 3 and k = −2(3)2 + 12(3) = 18

The maximum area is 18 square units.

PRACTICE
1. The average cost of a product can be approximated by the function C(x) =

0.00025x2 − 0.25x + 70.5, where x is the number of units produced and
C(x) is the average cost in dollars. What level of production will minimize
the average cost?

2. A frog jumps from a rock to the shore of a pond. Its path is given
by the equation y = − 5

72x2 + 5
3x, where x is the horizontal distance

in inches, and y is the height in inches. What is the frog’s maximum
height? How far had it traveled horizontally when it reached its maximum
height?
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3. A projectile is fired upward from a ten-foot platform. The projectile’s initial
velocity is 108 miles per hour. What is the projectile’s maximum height?
When will it reach its maximum height?

4. Attendance at home games for a college basketball team averages 1000 and
the ticket price is $12. Concession sales average $2 per person. A student
survey reveals that for every $0.25 decrease in the ticket price, 25 more stu-
dents will attend the home games. What ticket price will maximize revenue?
What is the maximum revenue?

5. A school has 1600 feet of fencing available to enclose three playing fields
(see Figure 6.16). What dimensions will maximize the enclosed area?

Fig. 6.16.

6. The manager of a large warehouse wants to enclose an area behind the build-
ing. He has 900 feet of fencing available. What dimensions will maximize
the enclosed area? What is the maximum area?

Fig. 6.17.

7. A swimming pool is to be constructed in the shape of a rectangle with a
semicircle at one end (see Figure 6.12). If the perimeter is to be 120 feet,
what dimensions will maximize the area? What is the maximum area?
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8. A rectangle is to be constructed so that it is bounded by the x-axis, the
y-axis, and the line y = −3x + 4 (see Figure 6.18). What is the maximum
area of the rectangle?

Fig. 6.18.

SOLUTIONS
1. We only need to find h.

h = −b

2a
= −(−0.25)

2(0.00025)
= 500

Minimize the average cost by producing 500 units.

2. k answers the first question, h answers the second.

h = −b

2a
= −5/3

2(−5/72)
= 5/3

5/36
= 5

3
÷ 5

36
= 5

3
· 36

5
= 12

k = − 5

72
(12)2 + 5

3
(12) = 10

The frog reached a maximum height of 10 inches and had traveled 12 inches
horizontally when it reached its maximum height.

3. The formula s(t) = −16t2 + v0t + s0 is in feet and seconds, so we need to
convert 108 miles per hour to feet per second. There are 5280 feet in a mile
and 60(60) = 3600 seconds in an hour.

108 miles

1 hour
= 108(5280) feet

3600 seconds
= 158.4 feet per second
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Replacing v0 with 158.4 and s0 with 10, we have the function giving the
height of the projectile after t seconds, s(t) = −16t2 + 158.4t + 10.

h = −b

2a
= −158.4

2(−16)
= 4.95 and

k = −16(4.95)2 + 158.4(4.95) + 10 = 402.04

The projectile reaches a maximum height of 402.04 feet after 4.95 seconds.

4. We will let x represent the number of $0.25 decreases in the ticket price.
The ticket price is 12 − 0.25x and the average number attending the games
is 1000 + 25x. Ticket revenue is (12 − 0.25x)(1000 + 25x). Revenue from
concession sales is 2(1000 + 25x). Total revenue is

R = (12 − 0.25x)(1000 + 25x) + 2(1000 + 25x)

= −6.25x2 + 100x + 14,000

h = −b

2a
= −100

2(−6.25)
= 8 and

k = −6.25(8)2 + 100(8) + 14,000 = 14,400

The ticket price that will maximize revenue is 12 − 0.25(8) = $10 and the
maximum revenue is $14,400.

5. The total area is A = LW . Because there is 1600 feet of fencing available,
2L + 4W = 1600. Solving this equation for L, we have L = 800 − 2W .
Substitute 800 − 2W for L in A = LW .

A = LW

= (800 − 2W)W = −2W 2 + 800W

h = −b

2a
= −800

2(−2)
= 200

Maximize the enclosed area by letting the width be 200 feet and the length
be 800 − 2(200) = 400 feet.

6. The enclosed area is A = LW . Because 900 feet of fencing is available,
2W + L = 900. Solving this for L, we have L = 900 − 2W . We will
substitute 900 − 2W for L in A = LW .

A = LW

= (900 − 2W)W = −2W 2 + 900W
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h = −b

2a
= −900

2(−2)
= 225 and k = −2(225)2 + 900(225) = 101,250

Maximize the enclosed area by letting the width be 225 feet and the
length 900 − 2(225) = 450 feet. The maximum enclosed area is 101,250
square feet.

7. The area of the rectangle is 2rL (the width is twice the radius of the semi-
circle). The area of the semicircle is half the area of a circle with radius
r , 1

2πr2. The total area of the pool is A = 2rL + 1
2πr2. After finding an

equation for the perimeter, we will solve the equation for L and substitute
this for L in A = 2rL + 1

2πr2. The perimeter of the rectangular part is
L+2r +L = 2r +2L. The length around the semicircle is half the circum-
ference of a circle with radius r , 1

2(2πr) = πr . The total length around the
pool is 2L + 2r + πr which equals 120 feet.

2L+2r+πr =120

2L=120−2r−πr

L= 120−2r−πr

2
=60−r− 1

2
πr

A=2rL+ 1

2
πr2

=2r(60−r− 1

2
πr)+ 1

2
πr2 Substitute 60−r− 1

2
πr for L.

=120r−2r2−πr2+ 1

2
πr2

=−2r2− 1

2
πr2+120r

=
(

−2− 1

2
π

)

r2+120r

h= −b

2a
= −120

2(−2− 1
2π)

= −120

−4−π
= −120

−(4+π)

= 120

4+π
≈16.8
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k =
(

−2 − 1

2
π

)(
120

4 + π

)2

+ 120

(
120

4 + π

)

= 7200

4 + π
≈ 1008.2

Maximize the area by letting the radius of the semicircle be about 16.8 feet
and the length of the rectangle about 60 − 16.8 − 1

2π(16.8) ≈ 16.8 feet.
The maximum area is about 1008.2 square feet.

8. The area is A = LW . The length of the rectangle is y (the distance from
(0, 0) and (0, y)). The width is x (the distance from (0, 0) and (x, 0)). The
area is now A = xy. Because y = −3x + 4, we can substitute −3x + 4 for
y in A = xy.

A = xy

A = x(−3x + 4) = −3x2 + 4x

h = −4

2(−3)
= 2

3
and k = −3

(
2

3

)2

+ 4

(
2

3

)

= 4

3

The maximum area is 4
3 square units.

CHAPTER 6 REVIEW
1. What is the vertex for f (x) = −2(x − 1)2 + 4?

(a) (1, 4) (b) (−1, 4) (c) (−2, 4) (d) (2, 4)

2. Complete the square on y = x2 − 6x + 10 to write it in the form
y = a(x − h)2 + k.
(a) y = (x − 3)2 + 9
(c) y = (x − 3)2 − 9

(b) y = (x − 3)2 + 19
(d) y = (x − 3)2 + 1

3. Complete the square on y = 3x2 − x + 1 to write it in the form
y = a(x − h)2 + k.
(a) y = 3(x − 1

6)2 + 13
12

(c) y = 3(x − 1
6)2 + 35

36

(b) y = 3(x − 1
6)2 + 11

12

(d) y = 3(x − 1
6)2 + 37

36
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4. What are the x- and y-intercepts for f (x) = 2x2 + x − 6?
(a) The y-intercept is −6, and the x-intercepts are −3

2 and 2.

(b) The y-intercept is −6, and the x-intercepts are 3
2 and 2.

(c) The y-intercept is −6, and the x-intercepts are 3
2 and −2.

(d) The y-intercept is −6, and the x-intercepts are −3
2 and −2.

5. What is the vertex for f (x) = −0.02x2 + 3x − 10?
(a) (75, −122.5)

(c) (75, 102.5)

(b) (−75, −347.5)

(d) (75, 5615)

6. Find the maximum or minimum functional value for f (x) = 6(x−25)2+
100.
(a) The maximum functional value is 25.

(b) The maximum functional value is 100.

(c) The minimum functional value is 25.

(d) The minimum functional value is 100.

7. Find the quadratic function with vertex (4, −2) and with the point (5, −5
3)

on its graph.

(a) f (x) = 1
3(x − 4)2 − 2

(c) f (x) = (x − 4)2 + 2

(b) f (x) = 1
27(x + 4)2 − 2

(d) f (x) = − 1
81(x + 4)2 + 2

Fig. 6.19.

8. What is the function whose graph is in Figure 6.19?
(a) f (x) = −2(x + 1)2 + 2 (b) f (x) = −2(x − 1)2 + 2

(c) f (x) = 2(x + 1)2 + 2 (d) f (x) = 2(x − 1)2 + 2
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9. A hot dog vendor at a local fair averages 140 hot dogs per day when the
price is $3. If for every $0.25 increase in the price, 10 fewer hot dogs are
sold on average, what price maximizes the revenue?

(a) $3.00 (b) $3.25 (c) $3.50 (d) $3.75

10. A warehouse manager wants to fence a rectangular area behind his
warehouse. He has 120 meters of fencing available. If the side against
the building does not need to be fenced, what is the maximum enclosed
area?

(a) 1500 square meters
(c) 1600 square meters

(b) 1700 square meters
(d) 1800 square meters

SOLUTIONS
1. A 2. D 3. B 4. C 5. C
6. D 7. A 8. B 9. B 10. D
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CHAPTER

Polynomial
Functions

A polynomial function is a function in the form f (x) = anx
n + an−1x

n−1 + · · · +
a1x + a0, where each ai is a real number and the powers on x are whole numbers.
There is no x under a root sign and no x in a denominator. The number ai is called a
coefficient. For example, in the polynomial function f (x) = −2x3 +5x2 −4x +8,
the coefficients are −2, 5, −4, and 8. The constant term (the term with no variable)
is 8. The powers on x are 3, 2, and 1. The degree of the polynomial (and polynomial
function) is the highest power on x. In this example, the degree is 3. Quadratic
functions are degree 2. Linear functions of the form f (x) = mx + b (if m �= 0) are
degree 1. Constant functions of the form f (x) = b are degree 0 (this is because
x0 = 1, making f (x) = bx0).

The leading term of a polynomial (and polynomial function) is the term having x

to the highest power. Usually, but not always, the leading term is written first. The
leading coefficient is the coefficient on the leading term. In our example, the leading
term is −2x3, and the leading coefficient is −2. By looking at the leading term only,
we can tell roughly what the graph looks like. The graph of any polynomial will

134
xi
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either go up on both ends, go down on both ends, or go up on one end and down on
the other. This is called the end behavior of the graph. The figures below illustrate
the end behavior of polynomial functions. The shape of the dashed part of the graph
depends on the individual function.

Fig. 7.1.

This graph goes up on both ends.

Fig. 7.2.

This graph goes down on both ends.

Fig. 7.3.

This graph goes down on the left and up on the right.
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Fig. 7.4.

This graph goes up on the left and down on the right.
If the degree of the polynomial is an even number, the graph will look like the

graph in Figure 7.1 or in Figure 7.2. If the leading coefficient is a positive number,
the graph will look like the graph in Figure 7.1. If the leading coefficient is a
negative number, the graph will look like the graph in Figure 7.2. If the degree of
the polynomial is an odd number, the graph will look like the one in Figure 7.3 or in
Figure 7.4. If the leading coefficient is a positive number, the graph will look like
the graph in Figure 7.3. If the leading coefficient is a negative number, the graph
will look like the graph in Figure 7.4.

How can one term in a polynomial function give us this information? For poly-
nomial functions, the leading term dominates all of the other terms. For x-values
large enough (both large positive numbers and large negative numbers), the other
terms don’t contribute much to the size of the y-values.

EXAMPLES
Match the graph of the given function with one of the graphs in Figures
7.1–7.4.

• f (x) = 4x5 + 6x3 − 2x2 + 8x + 11

We only need to look at the leading term, 4x5. The degree, 5, is odd, and the
leading coefficient, 4, is positive. The graph of this function looks like the
one in Figure 7.3.

• P(x) = 5 + 2x − 6x2

The leading term is −6x2. The degree, 2, is even, and the leading coef-
ficient, −6, is negative. The graph of this function looks like the one in
Figure 7.2.
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• h(x) = −2x3 + 4x2 − 7x + 9

The leading term is −2x3. The degree, 3, is odd, and the leading coefficient,
−2, is negative. The graph of this function looks like the one in Figure 7.4.

• g(x) = x4 + 4x3 − 8x2 + 3x − 5

The leading term is x4. The degree, 4, is even, and the leading coefficient, 1,
is positive. The graph of this function looks like the one in Figure 7.1.

Finding the x-intercepts (if any) for the graph of a polynomial function is very
important. The x-intercept of any graph is where the graph touches the x-axis. This
happens when the y-coordinate of the point is 0. We found the x-intercepts for
some quadratic functions by factoring and setting each factor equal to zero. This
is how we will find the x-intercepts for polynomial functions. It is not always easy
to do. In fact, some polynomials are so hard to factor that the best we can do is
approximate the x-intercepts (using graphing calculators or calculus). This will not
be the case for the polynomials in this book, however. Every polynomial here will
be factorable using techniques covered later.

Because an x-intercept for f (x) = anx
n + an−1x

n−1 + · · · + a1x + a0 is a
solution to the equation 0 = anx

n + an−1x
n−1 + · · · + a1x + a0, x-intercepts are

also called zeros of the polynomial. All of the following statements have the same
meaning for a polynomial. Let c be a real number, and let P(x) be a polynomial
function.

1. c is an x-intercept of the graph of P(x).
2. c is a zero for P(x).
3. x − c is a factor of P(x).

EXAMPLES
• x − 1 is a factor means that 1 is an x-intercept and a zero.
• x + 5 is a factor means that −5 is an x-intercept and a zero.
• x is a factor means that 0 is an x-intercept and a zero.
• 3 is a zero means that x − 3 is a factor and 3 is an x-intercept.

We can find the zeros of a function (or at least the approximate zeros) by looking
at its graph.

The x-intercepts of the graph in Figure 7.5 are 2 and −2. Now we know that
x − 2 and x + 2 (which is x − (−2)) are factors of the polynomial.

The graph of the polynomial function in Figure 7.6 has x-intercepts of −1, 1,
and 2. This means that x − 1, x − 2, and x + 1 (as x − (−1)) are factors of the
polynomial.
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Fig. 7.5. Fig. 7.6.

Fig. 7.7.

The x-intercepts for the graph in Figure 7.7 are −3, 0, and 2, making x + 3,
x (as x − 0), and x − 2 factors of the polynomial.

Now that we know about the end behavior of the graphs of polynomial functions
and the relationship between x-intercepts and factors, we can look at a polynomial
and have a pretty good idea of what its graph looks like. In the next set of examples,
we will match the graphs from the previous section with their polynomial functions.

EXAMPLES
Match the functions with the graphs in Figures 7.5–7.7.

• f (x) = 1

10
x2(x + 3)(x − 2) = 1

10
x4 + 1

10
x3 − 3

5
x2
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Because f (x) is a polynomial whose degree is even and whose leading
coefficient is positive, we will look for a graph that goes up on the left and up
on the right. Because the factors are x2, x + 3, and x − 2, we will also look
for a graph with x-intercepts 0, −3, and 2. The graph in Figure 7.7 satisfies
these conditions.

• g(x) = −1

2
(x − 1)(x − 2)(x + 1) = −1

2
x3 + x2 + 1

2
x − 1

Because g(x) is a polynomial whose degree is odd and whose leading coef-
ficient is negative, we will look for a graph that goes up on the left and down
on the right. The factors are x − 1, x − 2, and x + 1, we will also look for
a graph with 1, 2, and −1 as x-intercepts. The graph in Figure 7.6 satisfies
these conditions.

• P(x) = 1

10
(x − 2)2(x + 2) = 1

10
x3 − 1

5
x2 − 2

5
x + 4

5

Because P(x) is a polynomial whose degree is odd and whose leading term
is positive, we will look for a graph that goes down on the left and up on
the right. The x-intercepts are 2 and −2. The graph in Figure 7.5 satisfies
these conditions.

Sketching Graphs of Polynomials
To sketch the graph of most polynomial functions accurately, we need to use
calculus (don’t let that scare you—the calculus part is easier than the algebra
part!) We can still get a pretty good graph using algebra alone. The general
method is to plot x-intercepts (if there are any), a point to the left of the small-
est x-intercept, a point between any two x-intercepts, and a point to the right of the
largest x-intercept. Because y-intercepts are easy to find, it wouldn’t hurt to plot
these, too.

EXAMPLES
• f (x) = −(2x − 1)(x + 2)(x − 3)

The x-intercepts are −2, 3, and 1
2 (from 2x − 1 = 0). In addition to the

x-intercepts, we will plot the points for x = −2.5 (to the left of x = −2),
x = −1 (between x = −2 and x = 1

2 ), x = 2 (between x = 1
2 and x = 3),

and x = 3.5 (to the right of x = 3).
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Table 7.1

x f (x)

−2.5 16.5
−2 0
−1 −12

0 −6
1
2 0

2 12
3 0
3.5 −16.5

The reason we used x = −2.5 instead of x = −3 and x = 3.5 instead of x = 4
is that their y-values were too large for our graph.

Fig. 7.8.

PRACTICE
Match the graph of the given function with one of the graphs in Figures 7.1–7.4.

1. f (x) = −8x3 + 4x2 − 9x + 3
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2. f (x) = 4x5 + 10x4 − 3x3 + x2

3. P(x) = −x2 + x − 6

4. g(x) = 1 + x + x2 + x3

Identify the x-intercepts and factors for the polynomial function whose
graphs are given.

5.

Fig. 7.9.

6.

Fig. 7.10.
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7.

Fig. 7.11.

Match the polynomial function with one of the graphs in Figures 7.9
through 7.11.

8. f (x) = −1

8
(x + 4)(x + 2)(x − 2)(x − 4) = −1

8
x4 + 5

2
x2 − 8

9. P(x) = −1

2
x2(x + 2)(x − 1) = −1

2
x4 − 1

2
x3 + x2

10. R(x) = 1

2
(x + 3)(x − 2)(x − 4) = 1

2
x3 − 3

2
x2 − 5x + 12

11. Sketch the graph of f (x) = 1

2
x(x − 2)(x + 2).

12. Sketch the graph of h(x) = − 1

10
(x + 4)(x + 1)(x − 2)(x − 3).

SOLUTIONS
1. Figure 7.4

2. Figure 7.3

3. Figure 7.2

4. Figure 7.3

5. The x-intercepts are −2, 0, and 1, so x + 2, x, and x − 1 are factors of the
polynomial.

6. The x-intercepts are −3, 2, and 4, so x + 3, x − 2, and x − 4 are factors
of the polynomial.
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7. The x-intercepts are −4, −2, 2 and 4, so x + 4, x + 2, x − 2 and x − 4 are
factors of the polynomial.

8. Figure 7.11

9. Figure 7.9

10. Figure 7.10

11.

Fig. 7.12.

12.

Fig. 7.13.
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Polynomial Division
Polynomials can be divided in much the same way as whole numbers. When we
take the quotient of two whole numbers (where the divisor is not zero), we get
a quotient and a remainder. The same happens when we take the quotient of two
polynomials. Polynomial division is useful when factoring polynomials.

Polynomial division problems usually come in one of two forms.

dividend polynomial

divisor polynomial
or dividend polynomial ÷ divisor polynomial

According to the division algorithm for polynomials, for any polynomials f (x) and
g(x) (with g(x) not the zero function)

f (x)

g(x)
= q(x) + r(x)

g(x)
,

where q(x) is the quotient (which might be 0) and r(x) is the remainder, which
has degree strictly less than the degree of g(x). Multiplying by g(x) to clear the
fraction, we also get f (x) = g(x)q(x) + r(x). First we will perform polynomial
division using long division.

q(x)

g(x) f (x)

r(x)

EXAMPLES
Find the quotient and remainder using long division.

• 4x2 + 3x − 5

x + 2

x + 2 4x2 + 3x − 5

We will begin by dividing the leading term of the dividend by the leading
term of the divisor. For the first step in this example, we will divide 4x2

by x. You might see right away that 4x2 ÷ x is 4x. If not, write 4x2 ÷ x as
a fraction then reduce: 4x2

x
= 4x. This will be the first term of the quotient.

4x

x + 2 4x2+3x−5
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Multiply 4x by the divisor: 4x(x + 2) = 4x2 + 8x. Subtract this from the
first two terms of the dividend. Be careful to subtract all of 4x2 + 8x, not
just 4x2.

4x

x + 2 4x2+ 3x−5
−(4x2+ 8x)

−5x

Bring down the next term.

4x

x + 2 4x2+ 3x−5
−(4x2+ 8x)

−5x−5

Start the process again with −5x ÷ x = −5. The next term in the quotient
is −5. Multiply x + 2 by −5: −5(x + 2) = −5x − 10. Subtract this from
−5x − 5.

4x − 5

x + 2 4x2+ 3x− 5
−(4x2+ 8x)

−5x− 5−(−5x−10)

5

We are done because 5 ÷ x = 5
x

cannot be a term in a polynomial. The
remainder is 5 and the quotient is 4x − 5.

• x2 + 2x − 3 3x4+5x3−4x2+7x−1

Divide 3x4 by x2 to get the first term of the quotient: 3x4

x2 = 3x2. Multiply

x2 + 2x − 3 by 3x2: 3x2(x2 + 2x − 3) = 3x4 + 6x3 − 9x2. Subtract this
from the first three terms in the dividend.

3x2

x2 + 2x − 3 3x4+ 5x3− 4x2+7x−1
−(3x4+ 6x3−9x2)

−x3 + 5x2

Divide −x3 by x2 to get the second term in the quotient: −x3

x2 = −x. Multiply

x2 + 2x − 3 by −x: −x(x2 + 2x − 3) = −x3 − 2x2 + 3x. Subtract this
from −x3 + 5x2 + 7x.



CHAPTER 7 Polynomial Functions146

3x2 − x

x2 + 2x − 3 3x4 + 5x3− 4x2 + 7x −1
−(3x4 + 6x3− 9x2)

−x3+ 5x2 + 7x
−(−x3− 2x2 + 3x)

7x2+ 4x

Divide 7x2 by x2 to get the third term in the quotient: 7x2

x2 = 7. Multiply

x2 + 2x − 3 by 7: 7(x2 + 2x − 3) = 7x2 + 14x − 21. Subtract this from
7x2 + 4x − 1.

3x2 − x + 7

x2 + 2x − 3 3x4 + 5x3 − 4x2 + 7x − 1
−(3x4 + 6x3 − 9x2)

−x3 + 5x2 + 7x
−(−x3 − 2x2 + 3x)

7x2 + 4x − 1
−(7x2 + 14x − 21)

− 10x + 20

Because −10x

x2 cannot be a term in a polynomial, we are done. The quotient is

3x2 − x + 7, and the remainder is −10x + 20.
It is important that every power of x, from the highest power to the constant term,

be represented in the polynomial. Although it is possible to perform long division
without all powers represented, it is very easy to make an error. Also, it is not
possible to perform synthetic division (later in this chapter) without a coefficient
for every term. If a power of x is not written, we need to rewrite the polynomial
(either the dividend, divisor, or both) using a coefficient of 0 on the missing powers.
For example, we would write x3 − 1 as x3 + 0x2 + 0x − 1.

EXAMPLE
• (x3 − 8) ÷ (x + 1)

Rewrite as (x3 + 0x2 + 0x − 8) ÷ (x + 1)

x2 − x + 1

x + 1 x3 + 0x2 + 0x − 8
−(x3 + x2)

−x2 + 0x
−(−x2 − x)

x − 8−(x + 1)

−9
The quotient is x2 − x + 1, and the remainder is −9.
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Polynomial division is a little trickier when the leading coefficient of the divisor
is not 1. The terms of the quotient are harder to find and are likely to be fractions.

EXAMPLES
Find the quotient and remainder using long division.

• x2 − x + 2

2x − 1
Find the first term in the quotient by dividing the first term of the dividend
by the first term in the divisor:

x2

2x
= x

2
= 1

2
x.

1
2x

2x − 1 x2− x +2
−(x2−1

2x)

−1
2x+2

The second term in the quotient is

−1
2x

2x
= −1

2

2
= −1

2
÷ 2 = −1

2
· 1

2
= −1

4
.

Multiply 2x − 1 by −1
4 : −1

4(2x − 1) = −1
2x + 1

4 .
1
2x − 1

4

2x − 1 x2− x + 2
−(x2− 1

2x)

− 1
2x + 2

−(−1
2x + 1

4)

7
4

The quotient is 1
2x − 1

4 , and the remainder is 7
4 .

• (4x2 + 5x − 6) ÷
(

2

3
x − 1

)

Find the first term in the quotient by dividing the leading term in the quotient
by the first term in the divisor.

4x2

2
3x

= 4x

2
3

= 4x ÷ 2

3
= 4x · 3

2
= 6x

6x

(
2

3
x − 1

)

= 4x2 − 6x
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6x
2
3x − 1 4x2 + 5x − 6

−(4x2 − 6x)

11x − 6

11x

2
3x

= 11
2
3

= 11 ÷ 2

3
= 11 · 3

2
= 33

2

33

2

(
2

3
x − 1

)

= 11x − 33

2

6x + 33
2

2
3x − 1 4x2 + 5x − 6

−(4x2 − 6x)

11x − 6
−(11x − 33

2 )

21
2

The quotient is 6x + 33
2 , and the remainder is 21

2 .
Synthetic division of polynomials is much easier than long division. It

only works when the divisor is of a certain form, though. Here, we will
use synthetic division when the divisor is of the form “x − number” or
“x + number.”

For a problem of the form

anx
n + an−1x

n−1 + · · · + a1x + a0

x − c
or

(anx
n + an−1x

n−1 + · · · + a1x + a0) ÷ (x − c),

write

c an an−1 . . . a1 a0

Every power of x must be represented.
In synthetic division, the tedious work in long division is reduced to a few
steps.

EXAMPLES
Find the quotient and remainder using synthetic division.
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• 4x3 − 5x2 + x − 8

x − 2

2 4 −5 1 −8

Bring down the first coefficient.

2 4 −5 1 −8

4

Multiply this coefficient by 2 (the c) and put the product under −5, the next
coefficient.

2 4 −5 1 −8
8

4

Add −5 and 8. Put the sum under 8.

2 4 −5 1 −8
8

4 3

Multiply 3 by 2 and put the product under 1, the next coefficient.

2 4 −5 1 −8
8 6

4 3

Add 1 and 6. Put the sum under 6.

2 4 −5 1 −8
8 6

4 3 7

Multiply 7 by 2. Put the product under −8, the last coefficient.

2 4 −5 1 −8
8 6 14

4 3 7

Add −8 and 14. Put the sum under 14. This is the last step.

2 4 −5 1 −8
8 6 14

4 3 7 6

The numbers on the last row are the coefficients of the quotient and the
remainder. The remainder is a constant (which is a term of degree 0), and
the degree of the quotient is exactly one less degree than the degree of
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the dividend. In this example, the degree of the dividend is 3, so the degree
of the quotient is 2. The last number on the bottom row is the remainder. The
numbers before it are the coefficients of the quotient, in order from the high-
est degree to the lowest. The remainder in this example is 6. The coefficients
of the quotient are 4, 3, and 7. The quotient is 4x2 + 3x + 7.

• (3x4 − x2 + 2x + 9) ÷ (x + 5)

Because x + 5 = x − (−5), c = −5.

− 5 3 0 −1 2 9

Bring down 3, the first coefficient. Multiply it by −5. Put 3(−5) = −15
under 0.

− 5 3 0 −1 2 9−15
3

Add 0 + (−15) = −15. Multiply −15 by −5 and put (−15)(−5) = 75
under −1.

− 5 3 0 −1 2 9−15 75
3 − 15

Add −1 and 75. Multiply −1 + 75 = 74 by −5 and put (74)(−5) = −370
under 2.

− 5 3 0 −1 2 9−15 75 −370
3 − 15 74

Add 2 to −370. Multiply 2+ (−370) = −368 by −5 and put (−368)(−5) =
1840 under 9.

− 5 3 0 −1 2 9−15 75 −370 1840
3 − 15 74 −368

Add 9 to 1840. Put 9 + 1840 = 1849 under 1840.

− 5 3 0 −1 2 9−15 75 −370 1840
3 − 15 74 −368 1849

The dividend has degree 4, so the quotient has degree 3. The quotient is
3x3 − 15x2 + 74x − 368 and the remainder is 1849.

When dividing a polynomial f (x) by x − c, the remainder tells us two
things. If we get a remainder of 0, then both the divisor, (x − c), and
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quotient are factors of f (x). Another fact we get from the remainder is that
f (c) = remainder.

f (x) = (x − c)q(x) + remainder

f (c) = (c − c)q(c) + remainder Evaluate f (x) at x = c.

f (c) = 0q(c) + remainder

f (c) = remainder

The fact that f (c) is the remainder is called the Remainder Theorem. It is
useful when trying to evaluate complicated polynomials. We can also use this
fact to check our work with synthetic division and long division (providing
the divisor is x − c).

• (x3 − 6x2 + 4x − 5) ÷ (x − 3)

By the Remainder Theorem, we should get the remainder to be 33 − 6(32)+
4(3) − 5 = −20.

3 1 −6 4 −5
3 −9 −15

1 − 3 −5 −20

EXAMPLE
Use synthetic division and the Remainder Theorem to evaluate f (c).

• f (x) = 14x3 − 16x2 + 10x + 8; c = 1.
We will first perform synthetic division with x − c = x − 1.

1 14 −16 10 8
14 −2 8

14 − 2 8 16

The remainder is 16, so f (1) = 16.

Now we will use synthetic division and the Remainder Theorem to factor poly-
nomials. Suppose x = c is a zero for a polynomial f (x). Let us see what happens
when we divide f (x) by x − c.

f (x) = (x − c)q(x) + r(x)

Because x = c is a zero, the remainder is 0, so f (x) = (x − c)q(x) + 0, which
means f (x) = (x−c)q(x). The next step in completely factoring f (x) is factoring
q(x), if necessary.
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EXAMPLES
Completely factor the polynomials.

• f (x) = x3 − 4x2 − 7x + 10, c = 1 is a zero.
We will use the fact that c = 1 is a zero to get started. We will use synthetic
division to divide f (x) by x − 1.

1 1 −4 −7 10
1 −3 −10

1 − 3 −10 0

The quotient is x2 − 3x − 10. We now have f (x) partially factored.

f (x) = x3 − 4x2 − 7x + 10

= (x − 1)(x2 − 3x − 10)

Because the quotient is quadratic, we can factor it directly or by using the
quadratic formula.

x2 − 3x − 10 = (x − 5)(x + 2)

Now we have the complete factorization of f (x):

f (x) = x3 − 4x2 − 7x + 10

= (x − 1)(x − 5)(x + 2).

• R(x) = x3 − 2x + 1, c = 1 is a zero.

1 1 0 −2 1
1 1 −1

1 1 −1 0

R(x) = x3 − 2x + 1 = (x − 1)(x2 + x − 1)

We will use the quadratic formula to find the two zeros of x2 + x − 1.

x = −1 ±√
12 − 4(1)(−1)

2(1)

−1 ± √
5

2
= −1 + √

5

2
,
−1 − √

5

2
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The factors for these zeros are x − −1+√
5

2 and x − −1−√
5

2 .

R(x) = (x − 1)

(

x − −1 + √
5

2

)(

x − −1 − √
5

2

)

PRACTICE
For Problems 1–4 use long division to find the quotient and remainder. For
Problems 5 and 6, use synthetic division

1. (6x3 − 2x2 + 5x − 1) ÷ (x2 + 3x + 2)

2. (x3 − x2 + 2x + 5) ÷ (3x − 4)

3.
3x3 − x2 + 4x + 2

−1

2
x2 + 1

4.
x3 − 1

x − 1

5.
x3 + 2x2 + x − 8

x + 3

6. (x3 + 8) ÷ (x + 2)

7. Use synthetic division and the Remainder Theorem to evaluate f (c).

f (x) = 6x4 − 8x3 + x2 + 2x − 5; c = −2

8. Completely factor the polynomial. f (x) = x3 + 2x2 − x − 2; c = 1 is
a zero.

9. Completely factor the polynomial. P(x) = x3 − 5x2 + 5x + 3; c = 3 is
a zero.

SOLUTIONS
1. 6x − 20

x2 + 3x + 2 6x3 − 2x2+ 5x − 1
−(6x3 + 18x2+ 12x)

− 20x2− 7x − 1
−(−20X2− 60x − 40)

53x + 39
The quotient is 6x − 20, and the remainder is 53x + 39.
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2.
1
3x2+ 1

9x

3x − 4 x3− x2+ 2x+5
−(x3− 4

3x2)

1
3x2+ 2x

−(1
3x2− 4

9x)

22
9 x+5

22
9 x

3x
=

22
9

3
= 22

9
· 1

3
= 22

27

22

27
(3x − 4) = 22

9
x − 88

27
1
3x2+ 1

9x + 22
27

3x − 4 x3− x2+ 2x+ 5
−(x3− 4

3x2)

1
3x2+ 2x

−(1
3x2− 4

9x)

22
9 x+ 5

−(22
9 x− 88

27)

223
27

The quotient is 1
3x2 + 1

9x + 22
27 , and the remainder is 223

27 .

3.
3x3

−1
2x2

= 3x

−1
2

= 3x ÷ −1

2
= 3x · (−2) = −6x

−6x(−1
2x2 + 0x + 1) = 3x3 + 0x2 − 6x

−6x

− 1
2x2 + 0x + 1 3x3− x2+ 4x + 2

−(3x3− 0x2− 6x)

−x2+ 10x + 2

−x2

−1
2x2

= 1
1
2

= 1 ÷ 1

2
= 1 · 2 = 2

2

(

−1

2
x2 + 0x + 1

)

= −x2 + 0x + 2
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−6x + 2

− 1
2x2 + 0x + 1 3x3− x2 + 4x + 2

−(3x3− 0x2 − 6x)

−x2+ 10x + 2
−(−x2+ 0x + 2)

10x + 0
The quotient is −6x + 2, and the remainder is 10x.

4.
x2+ x +1

x − 1 x3+ 0x2+ 0x− 1
−(x3− x2)

x2 + 0x
−(x2− x)

x− 1−(x−1)

0
The quotient is x2 + x + 1, and the remainder is 0.

5.
− 3 1 2 1 −8−3 3 −12

1 − 1 4 −20
The quotient is x2 − x + 4, and the remainder is −20.

6.
− 2 1 0 0 8−2 4 −8

1 −2 4 0
The quotient is x2 − 2x + 4, and the remainder is 0.

7.
− 2 6 −8 1 2 −5−12 40 −82 160

6 − 20 41 −80 155
The remainder is 155, so f (−2) = 155.

8.
1 1 2 −1 −2

1 3 2
1 3 2 0

f (x) = (x − 1)(x2 + 3x + 2)

= (x − 1)(x + 1)(x + 2)
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9.
3 1 −5 5 3

3 −6 −3
1 − 2 −1 0

P(x) = (x − 3)(x2 − 2x − 1)

In order to factor x2 − 2x − 1, we must first find its zeros.

x = −(−2) ±√
(−2)2 − 4(1)(−1)

2(1)

= 2 ± √
8

2
= 2 ± 2

√
2

2

= 2(1 ± √
2)

2
= 1 ± √

2

= 1 + √
2, 1 − √

2

Because x = 1 + √
2 is a zero, x − (1 + √

2) = x − 1 − √
2 is a factor.

Because x = 1 − √
2 is a zero, x − (1 − √

2) = x − 1 + √
2 is a factor.

P(x) = (x − 3)(x − 1 − √
2)(x − 1 + √

2)

In the above examples and practice problems, a zero was given to help us get
started with factoring. Usually, we have to find a starting point ourselves. The
Rational Zero Theorem gives us a place to start. The Rational Zero Theorem says
that if a polynomial function f (x), with integer coefficients, has a rational number
p/q as a zero, then p is a divisor of the constant term and q is a divisor of the
leading coefficient. Not all polynomials have rational zeros, but most of those in
precalculus courses do.

The Rational Zero Theorem is used to create a list of candidates for zeros. These
candidates are rational numbers whose numerators divide the polynomial’s constant
term and whose denominators divide its leading coefficient. Once we have this list,
we will try each number in the list to see which, if any, are zeros. Once we have
found a zero, we can begin to factor the polynomial.

EXAMPLES
List the possible rational zeros.

• f (x) = 4x3 + 6x2 − 2x + 9
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The numerators in our list will be the divisors of 9: 1, 3, and 9 as well as
their negatives, −1, −3, and −9. The denominators will be the divisors of
4: 1, 2, and 4. The list of possible rational zeros is—

1

1
,

3

1
,

9

1
, −1

1
, −3

1
, −9

1
,

1

2
,

3

2
,

9

2
,

−1

2
, −3

2
, −9

2
,

1

4
,

3

4
,

9

4
, −1

4
, −3

4
, and − 9

4
.

This list could be written with a little less effort as ±1, ±3, ±9, ±1
2 , ±3

2 ,

±9
2 , ±1

4 , ±3
4 , ±9

4 .
We only need to list the numerators with negative numbers and not the

denominators. The reason is that no new numbers are added to the list, only
duplicates of numbers already there. For example, −1

2 and 1
−2 are the same

number.
• g(x) = 6x4 − 5x3 + 2x − 8

The possible numerators are the divisors of 8: ±1, ±2, ±4, and ±8. The
possible denominators are the divisors of 6: 1, 2, 3, and 6. The list of
possible rational zeros is—

± 1, ±2, ±4, ±8, ±1

2
, ±2

2
, ±4

2
, ±8

2
, ±1

3
, ±2

3
, ±4

3
, ±8

3
, ±1

6
, ±2

6
,

± 4

6
, ±8

6
.

There are several duplicates on this list. There will be duplicates when the
constant term and leading coefficient have common factors. The duplicates
don’t really hurt anything, but they could waste time when checking the list
for zeros.

Now that we have a starting place, we can factor many polynomials. Here is
the strategy. First we will see if the polynomial can be factored directly. If not,
we need to list the possible rational zeros. Then we will try the numbers in this
list, one at a time, until we find a zero. Once we have found a zero, we will use
polynomial division (long division or synthetic division) to find the quotient. Next,
we will factor the quotient. If the quotient is a quadratic factor, we will either
factor it directly or use the quadratic formula to find its zeros. If the quotient is a
polynomial of degree 3 or higher, we will need to start over to factor the quotient.
Eventually, the quotient will be a quadratic factor.
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EXAMPLES
Completely factor each polynomial.

• f (x) = 3x4 − 2x3 − 7x2 − 2x

First we will factor x from each term: f (x) = x(3x3 − 2x2 − 7x − 2). The
possible rational zeros for 3x3 − 2x2 − 7x − 2 are ±1, ±2, ±1

3 , ±2
3 .

3(1)3 − 2(1)2 − 7(1) − 2 �= 0

3(−1)3 − 2(−1)2 − 7(−1) − 2 = 0

We will use synthetic division to find the quotient for (3x3 − 2x2 −
7x − 2) ÷ (x + 1).

− 1 3 −2 −7 −2−3 5 2
3 − 5 −2 0

The quotient is 3x2 − 5x − 2 which factors into (3x + 1)(x − 2).

f (x) = 3x4 − 2x3 − 7x2 − 2x

= x(3x3 − 2x2 − 7x − 2)

= x(x + 1)(3x2 − 5x − 2)

= x(x + 1)(3x + 1)(x − 2)

• h(x) = 3x3 + 4x2 − 18x + 5
The possible rational zeros are ±1, ±5, ±1

3 , and ±5
3 .

h(1) = 3(13) + 4(12) − 18(1) + 5 �= 0

h(−1) = 3(−1)3 + 4(−1)2 − 18(−1) + 5 �= 0

h(5) = 3(53) + 4(52) − 18(5) + 5 �= 0

Continuing in this way, we see that h(−5) �= 0, h(1
3) �= 0, h(−1

3) �= 0 and
h(5

3) = 0.

5
3 3 4 −18 5

5 15 −5
3 9 −3 0
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h(x) =
(

x − 5

3

)

(3x2 + 9x − 3)

=
(

x − 5

3

)

(3)(x2 + 3x − 1) =
[

3

(

x − 5

3

)]

(x2 + 3x − 1)

= (3x − 5)(x2 + 3x − 1)

We will find the zeros of x2 + 3x − 1 using the quadratic formula.

x = −3 ±√
32 − 4(1)(−1)

2(1)

= −3 ± √
13

2
= −3 + √

13

2
,

−3 − √
13

2

h(x) = (3x − 5)

(

x − −3 + √
13

2

)(

x − −3 − √
13

2

)

For a polynomial such as f (x) = 5x3 + 20x2 − 9x − 36, the list of possible
rational zeros is quite long—36! There are ways of getting around having
to test every one of them. The fastest way is to use a graphing calculator
to sketch the graph of y = 5x3 + 20x2 − 9x − 36. There appears to be an
x-intercept at x = −4 (remember that x-intercepts are zeros.)

− 4 5 20 −9 −36−20 0 36
5 0 −9 0

f (x) = (x + 4)(5x2 − 9) We will solve 5x2 − 9 = 0 to find the other zeros.

5x2 − 9 = 0

5x2 = 9

x2 = 9

5

x = ±
√

9

5
= ± 3√

5



CHAPTER 7 Polynomial Functions160

= ± 3√
5

·
√

5√
5

= ±3
√

5

5
= 3

√
5

5
, −3

√
5

5

f (x) = (x + 4)

(

x − 3
√

5

5

)(

x + 3
√

5

5

)

There are also a couple of algebra facts that can help eliminate some of the
possible rational zeros. The first we will learn is Descartes’ Rule of Signs. The
second is the Upper and Lower Bounds Theorem. Descartes’ Rule of Signs counts
the number of positive zeros and negative zeros. For instance, according to the
rule f (x) = x3 + x2 + 4x + 6 has no positive zeros at all. This shrinks the list
of possible rational zeros from ±1, ±2, ±3, and ±6 to −1, −2, −3, and −6.
Another advantage of the sign test is that if we know that there are two positive
zeros and we have found one of them, then we know that there is exactly one more.

The Upper and Lower Bounds Theorem gives us an idea of how large (in
both the positive and negative directions) the zeros can be. For example, we
can use the Upper and Lower Bounds Theorem to show that all of the zeros for
f (x) = 5x3 + 20x2 − 9x − 36 are between −5 and 5. This shrinks the list of
possible rational zeros from ±1, ±2, ±3, ±4, ±6, ±9, ±12, ±18, ±36,
±1

5 , ±2
5 , ±3

5 , ±4
5 , ±6

5 , ±9
5 ± 12

5 , ±18
5 , and ±36

5 to ±1, ±2, ±3, ±4, ±1
5 ,

±2
5 , ±3

5 , ±4
5 , ±6

5 , ±9
5 , ±12

5 , and ±18
5 .

Descartes’ Rule of Signs counts the number of positive zeros and the number
of negative zeros by counting sign changes. The maximum number of positive
zeros for a polynomial function is the number of sign changes in f (x) = anx

n +
an−1x

n−1 +· · ·+a1x +a0. The possible number of positive zeros is the number of
sign changes minus an even whole number. For example, if there are 5 sign changes,
there are 5 or 3 or 1 positive zeros. If there are 6 sign changes, there are 6 or 4 or 2
or 0 positive zeros. The polynomial function f (x) = 3x4 − 2x3 + 7x2 + 5x − 8
has 3 sign changes: from 3 to −2, from −2 to 7, and from 5 to −8. There are either
3 or 1 positive zeros. The maximum number of negative zeros is the number of
sign changes in the polynomial f (−x). The possible number of negative zeros is
the number of sign changes in f (−x) minus an even whole number.

EXAMPLES
Use Descartes’ Rule of Signs to count the possible number of positive zeros and
negative zeros for the polynomial functions.
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• f (x) = 5x3 − 6x2 − 10x + 4
There are 2 sign changes: from 5 to −6 and from −10 to 4. This means that
there are either 2 or 0 positive zeros. Before we count the possible number
of negative zeros, remember from earlier in the book that for a number a,
a(−x)even power = axeven power and a(−x)odd power = −axodd power.

f (−x) = 5(−x)3 − 6(−x)2 − 10(−x) + 4

= −5x3 − 6x2 + 10x + 4

There is 1 sign change, from −6 to 10, so there is exactly 1 negative zero.
• P(x) = x5 + x3 + x + 4

There are no sign changes, so there are no positive zeros.

P(−x) = (−x)5 + (−x)3 + (−x) + 4

= −x5 − x3 − x + 4

There is 1 sign change, so there is exactly 1 negative zero.

The Upper and Lower Bounds Theorem helps us to find a range of x-values that
will contain all real zeros. It does not tell us what these bounds are. We make a
guess as to what these bounds are then check them. For a negative number x = a,
the statement “a is a lower bound for the real zeros” means that there is no number
to the left of x = a on the x-axis that is a zero. For a positive number x = b, the
statement “b is an upper bound for the real zeros” means that there is no number to
the right of x = b on the x-axis that is a zero. In other words, all of the x-intercepts
are between a and b.

To determine whether a negative number x = a is a lower bound for a polyno-
mial, we need to use synthetic division. If the numbers in the bottom row alternate
between nonpositive and nonnegative numbers, then x = a is a lower bound for
the negative zeros. A “nonpositive” number is 0 or negative, and a “nonnegative”
number is 0 or positive.

To determine whether a positive number x = b is an upper bound for the positive
zeros, again we need to use synthetic division. If the numbers on the bottom row
are all nonnegative, then x = b is an upper bound on the positive zeros.

EXAMPLES
Show that the given values for a and b are lower, and upper bounds, respectively,
for the following polynomials.
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• f (x) = x4 + x3 − 16x2 − 4x + 48; a = −5 and b = 5

− 5 1 1 −16 −4 48−5 20 −20 120
1 − 4 4 −24 168

The bottom row alternates between positive and negative numbers, so a =
−5 is a lower bound for the negative zeros of f (x).

5 1 1 −16 −4 48
5 30 70 330

1 6 14 66 378

The entries on the bottom row are all positive, so b = 5 is an upper bound for
the positive zeros of f (x). All of the real zeros for f (x) are between x = −5
and x = 5.

If 0 appears on the bottom row when testing for an upper bound, we can
consider 0 to be positive. If 0 appears in the bottom row when testing for a
lower bound, we can consider 0 to be negative if the previous entry is positive
and positive if the previous entry is negative. In other words, consider 0 to
be the opposite sign as the previous entry.

• P(x) = 4x4 + 20x3 + 7x2 + 3x − 6 with a = −5

− 5 4 20 7 3 −6−20 0 −35 160
4 0 7 −32 154

Because 0 follows a positive number, we will consider 0 to be negative. This
makes the bottom row alternate between positive and negative entries, so
a = −5 is a lower bound for the negative zeros of P(x).

The Upper and Lower Bounds Theorem has some limitations. For instance, it
does not tell us how to find upper and lower bounds for the zeros of a polynomial.
For any polynomial, there are infinitely many upper and lower bounds. For instance,
if x = 5 is an upper bound, then any number larger than 5 is also an upper
bound. For many polynomials, a starting place is the quotient of the constant
term and the leading coefficient and its negative: ± constant term

leading coefficient . First show
that these are bounds for the zeros, then work your way inward. For example, if
f (x) = 2x3 − 7x2 + x + 50, let a = −50

2 = −25 and b = 50
2 = 25. Then, let a

and b get closer together, say a = −10 and b = 10.

PRACTICE
1. List the candidates for rational zeros. Do not try to find the zeros. f (x) =

3x4 + 8x3 − 11x2 + 3x + 4
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2. List the candidates for rational zeros. Do not try to find the zeros. P(x) =
6x4 − 24

3. Completely factor h(x) = 2x3 + 5x2 − 23x + 10.

4. Completely factor P(x) = 7x3 + 26x2 − 15x + 2.

5. Use Descartes’ Rule of Signs to count the possible number of positive zeros
and the possible number of negative zeros of f (x) = 2x4−6x3−x2+4x−8.

6. Use Descartes’ Rule of Signs to count the possible number of positive zeros
and the possible number of negative zeros of f (x) = −x3 − x2 + x + 1.

7. Show that the given values for a and b are lower and upper, respectively,
bounds for the zeros of f (x) = x3 − 6x2 + x + 5; a = −3, b = 7.

8. Show that the given values for a and b are lower and upper, respectively,
bounds for the zeros of f (x) = x4 − x2 − 2; a = −2, b = 2.

9. Sketch the graph for g(x) = x3 − x2 − 17x − 15.

SOLUTIONS
1. Possible numerators: ±1, ±2, ±4

Possible denominators: 1 and 3

Possible rational zeros: ±1, ±2, ±4, ±1
3 , ±2

3 , ±4
3

2. Possible numerators: ±1, ±2, ±3, ±4, ±6, ±8, ±12, ±24

Possible denominators: 1, 2, 3, 6

Possible rational zeros (with duplicates omitted): ±1, ±2, ±3, ±4, ±6,
±8, ±12, ±24, ±1

2 , ±3
2 , ±1

3 , ±2
3 , ±4

3 , ±8
3 , ±1

6

3. The possible rational zeros are ±1, ±2, ±5, ±10, ±1
2 , and ±5

2 . Because
h(2) = 0, x = 2 is a zero of h(x).

2 2 5 −23 10
4 18 −10

2 9 −5 0

h(x) = (x − 2)(2x2 + 9x − 5)

h(x) = (x − 2)(2x − 1)(x + 5)

4. The possible rational zeros are ±1, ±2, ±1
7 , and ±2

7 . Because P(2
7) = 0,

x = 2
7 is a zero for P(x).
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2
7 7 26 −15 2

2 8 −2
7 28 −7 0

P(x) =
(

x − 2

7

)

(7x2 + 28x − 7)

=
(

x − 2

7

)

(7)(x2 + 4x − 1) =
[

7

(

x − 2

7

)]

(x2 + 4x − 1)

= (7x − 2)(x2 + 4x − 1)

We will use the quadratic formula to find the zeros for x2 + 4x − 1.

x = −4 ±√
42 − 4(1)(−1)

2(1)
= −4 ± √

20

2

= −4 ± 2
√

5

2
= 2(−2 ± √

5)

2

= −2 ± √
5 = −2 + √

5, −2 − √
5

x2 + 4x − 1 = (x − (−2 + √
5))(x − (−2 − √

5))

= (x + 2 − √
5)(x + 2 + √

5)

P (x) = (7x − 2)(x + 2 − √
5)(x + 2 + √

5)

5. There are 3 sign changes in f (x), so there are 3 or 1 positive zeros.

f (−x) = 2(−x)4 − 6(−x)3 − (−x)2 + 4(−x) − 8

= 2x4 + 6x3 − x2 − 4x − 8

There is 1 sign change in f (−x), so there is exactly 1 negative zero.

6. There is 1 sign change in f (x), so there is exactly 1 positive zero.

f (−x) = −(−x)3 − (−x)2 + (−x) + 1

= x3 − x2 − x + 1

There are 2 sign changes in f (−x), so there are 2 or 0 negative zeros.
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7.
− 3 1 −6 1 5−3 27 −84

1 − 9 28 −79

The entries on the bottom row alternate between positive and negative (or
nonnegative and nonpositive), so a = −3 is a lower bound for the zeros
of f (x).

7 1 −6 1 5
7 7 56

1 1 8 61

The entries on the bottom are positive (nonnegative), so b = 7 is an upper
bound for the positive zeros of f (x).

8.
− 2 1 0 −1 0 −2−2 4 −6 12

1 − 2 3 −6 10

The entries on the bottom row alternate between positive and negative, so
a = −2 is a lower bound for the negative zeros of f (x).

2 1 0 −1 0 −2
2 4 6 12

1 2 3 6 10

The entries on the bottom row are all positive, so b = 2 is an upper bound
for the positive zeros of f (x).

9. The x-intercepts are −3, −1, and 5. We will plot points for x = −3.5, x =
−2, x = 0, x = 3, and x = 5.5.

Fig. 7.14.
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Complex Numbers
Until now, zeros of polynomials have been real numbers. The next topic involves
complex zeros. These zeros come from even roots of negative numbers like

√−1.
Before working with complex zeros of polynomials, we will first learn some
complex number arithmetic. Complex numbers are normally written in the form
a + bi, where a and b are real numbers and i = √−1. A number such as 4 + √−9
would be written as 4 + 3i because

√−9 = √
9
√−1 = 3i. Real numbers are

complex numbers where b = 0.

EXAMPLES
Write the complex numbers in the form a + bi, where a and b are real numbers.

• √−64 = √
64

√−1 = 8i

• √−27 = √
27

√−1 = √
27 i = √

9 · 3 i = √
9
√

3 i

= 3
√

3 i Be careful,
√

3i �= √
3 i.

• 6 + √−8 = 6 + √
8 i = 6 + √

4 · 2 i = 6 + √
4
√

2 i = 6 + 2
√

2 i

Adding complex numbers is a matter of adding like terms. Add the real parts, a and
c, and the imaginary parts, b and d.

(a + bi) + (c + di) = (a + c) + (b + d)i

Subtract two complex numbers by distributing the minus sign in the parentheses
then adding the like terms.

a + bi − (c + di) = a + bi − c − di = (a − c) + (b − d)i

EXAMPLES
Perform the arithmetic. Write the sum or difference in the form a + bi, where a

and b are real numbers.

• (3 − 5i) + (4 + 8i) = (3 + 4) + (−5 + 8)i = 7 + 3i

• 2i − 6 + 9i = −6 + 11i

• 7 − √−18 + 3 + 5
√−2 = 7 − √

18 i + 3 + 5
√

2 i

= 7−√
9 · 2 i+3+5

√
2 i = 7−3

√
2 i+3+5

√
2 i

= 10 + 2
√

2 i

• 11 − 3i − (7 + 6i) = 11 − 3i − 7 − 6i = 4 − 9i
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• 7 + √−8 − (1 − √−18) = 7 + √
8 i − 1 + √

18 i

= 7 + 2
√

2 i − 1 + 3
√

2 i = 6 + 5
√

2 i

Multiplying complex numbers is not as straightforward as adding and subtracting
them. First we will take the product of two purely imaginary numbers (numbers
whose real parts are 0). Remember that i = √−1, which makes i2 = −1. In most
complex number multiplication problems, we will have a term with i2. Replace
i2 with −1. Multiply two complex numbers in the form a + bi using the FOIL
method, substituting −1 for i2 and combining like terms.

EXAMPLES
Write the product in the form a + bi, where a and b are real numbers.

• (5i)(6i) = 30i2 = 30(−1) = −30

• (2i)(−9i) = −18i2 = −18(−1) = 18

• (
√−6)(

√−9) = (
√

6 i)(
√

9 i) = (
√

6)(3)i2 = 3
√

6(−1) = −3
√

6

• (4 + 2i)(5 + 3i) = 20 + 12i + 10i + 6i2 = 20 + 22i + 6(−1) = 14 + 22i

• (8 − 2i)(8 + 2i) = 64 + 16i − 16i − 4i2 = 64 − 4(−1) = 68

The complex numbers a + bi and a − bi are called complex conjugates. The
only difference between a complex number and its conjugate is the sign between
the real part and the imaginary part. The product of any complex number and its
conjugate is a real number.

(a + bi)(a − bi) = a2 − abi + abi − b2i2

= a2 − b2(−1)

= a2 + b2

EXAMPLES
• The complex conjugate of 3 + 2i is 3 − 2i.
• The complex conjugate of −7 − i is −7 + i.
• The complex conjugate of 10i is −10i.
• (7 − 2i)(7 + 2i). Here, a = 7 and b = 2, so a2 = 49 and b2 = 4, making

(7 − 2i)(7 + 2i) = 49 + 4 = 53.
• (1 − i)(1 + i). Here a = 1 and b = 1, so a2 = 1 and b2 = 1, making

(1 − i)(1 + i) = 1 + 1 = 2.
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Dividing two complex numbers can be a little complicated. These problems are
normally written in fraction form. If the denominator is purely imaginary, we can
simply multiply the fraction by i

i
and simplify.

EXAMPLES
Perform the division. Write the quotient in the form a + bi, where a and b are real
numbers.

• 2 + 3i

i
= 2 + 3i

i
· i

i
= (2 + 3i)i

i2

= 2i + 3i2

i2
= 2i + 3(−1)

−1

= −3 + 2i

−1
= −(−3 + 2i)

= 3 − 2i

• 4 + 5i

2i
= 4 + 5i

2i
· i

i
= 4i + 5i2

2i2

= 4i + 5(−1)

2(−1)

= 4i − 5

−2
= −(4i − 5)

2
= −(−5 + 4i)

2

= 5 − 4i

2
= 5

2
− 2i

When the divisor (denominator) is in the form a + bi, multiplying the fraction
by i

i
will not work.

2 − 5i

3 + 6i
· i

i
= 2i − 5i2

3i + 6i2
= 5 + 2i

−6 + 3i

What does work is to multiply the fraction by the denominator’s conjugate over
itself. This works because the product of any complex number and its conjugate is
a real number. We will use the FOIL method in the numerator (if necessary) and
the fact that (a + bi)(a − bi) = a2 + b2 in the denominator.
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EXAMPLES
Write the quotient in the form a + bi, where a and b are real numbers.

• 2 + 7i

6 + i
= 2 + 7i

6 + i
· 6 − i

6 − i
= 12 − 2i + 42i − 7i2

62 + 12

= 12 + 40i − 7(−1)

37
= 12 + 40i + 7

37

= 19 + 40i

37
= 19

37
+ 40

37
i

• 4 − 9i

5 − 2i
= 4 − 9i

5 − 2i
· 5 + 2i

5 + 2i
= 20 + 8i − 45i − 18i2

52 + 22

= 20 − 37i − 18(−1)

25 + 4
= 20 − 37i + 18

29

= 38 − 37i

29
= 38

29
− 37

29
i

There are reasons to write complex numbers in the form a + bi. One is that
complex numbers are plotted in the plane (real numbers are plotted on the number
line), where the x-axis becomes the real axis and the y-axis becomes the imaginary
axis. The number 3 − 4i is plotted in Figure 7.15.

Fig. 7.15.
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PRACTICE
For Problems 1–3, write the complex number in the form a + bi, where a and b

are real numbers.

1.
√−25

2.
√−24

3. 14 − √−36

For Problems 4–15, perform the arithmetic. Write answers in the form a + bi,
where a and b are real numbers.

4. 18 − 4i + (−15) + 2i

5. 5 + i + 5 − i

6. 7 + i + 12 + i

7. −5 + √−12 + 7 + 4
√−12

8.
√−48 − (−1 − √−75)

9. (2i)(10i)

10. (4
√−25)(2

√−25)

11.
√−6 · √−15

12. (15 + 3i)(−2 + i)

13. (3 + 2i)(3 − 2i)

14. (8 − 10i)(8 + 10i)

15. (1 − 9i)(1 + 9i)

For Problems 16–18, identify the complex conjugate.

16. 15 + 7i

17. −3 + i

18. −9i

For Problems 19–21, write the quotient in the form a + bi, where a and b are real
numbers.

19. 4−9i
−3i

20. 4+2i
1−3i

21. 6+4i
6−4i
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SOLUTIONS
1.

√−25 = √
25 i = 5i

2.
√−24 = √

24 i = √
4 · 6 i = 2

√
6 i

3. 14 − √−36 = 14 − √
36 i = 14 − 6i

4. 18 − 4i + (−15) + 2i = 3 − 2i

5. 5 + i + 5 − i = 10 + 0i = 10

6. 7 + i + 12 + i = 19 + 2i

7. −5 + √−12 + 7 + 4
√−12 = −5 + √

12 i + 7 + 4
√

12 i

= −5 + √
4 · 3 i + 7 + 4

√
4 · 3 i

= −5 + 2
√

3 i + 7 + 4 · 2
√

3 i

= −5 + 2
√

3 i + 7 + 8
√

3 i

= 2 + 10
√

3 i

8.
√−48 − (−1 − √−75) = √

48 i + 1 + √
75 i

= √
16 · 3 i + 1 + √

25 · 3 i

= 4
√

3 i + 1 + 5
√

3 i = 1 + 9
√

3 i

9. (2i)(10i) = 20i2 = 20(−1) = −20

10. (4
√−25)(2

√−25) = 4(5i)[2(5i)] = 200i2 = 200(−1) = −200

11.
√−6 · √−15 = √

6 i · √
15 i = √

6 · 15 i2 = √
90 i2 = 3

√
10(−1)

= −3
√

10

12. (15+3i)(−2+i) = −30+15i−6i+3i2 = −30+9i+3(−1) = −33+9i

13. (3+2i)(3−2i) = 9−6i +6i −4i2 = 9−4(−1) = 13 (or 32 +22 = 13)

14. (8 − 10i)(8 + 10i) = 64 + 80i − 80i − 100i2 = 64 − 100(−1) = 164
(or 82 + 102 = 164)

15. (1−9i)(1+9i) = 1+9i−9i−81i2 = 1−81(−1) = 82 (or 12+92 = 82)

16. The complex conjugate of 15 + 7i is 15 − 7i.

17. The complex conjugate of −3 + i is −3 − i.

18. The complex conjugate of −9i is 9i.

19.
4 − 9i

−3i
= 4 − 9i

−3i
· i

i
= 4i − 9i2

−3i2

= 4i − 9(−1)

−3(−1)
= 9 + 4i

3
= 3 + 4

3
i
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20.
4 + 2i

1 − 3i
= 4 + 2i

1 − 3i
· 1 + 3i

1 + 3i
= 4 + 12i + 2i + 6i2

12 + 32

= 4 + 14i + 6(−1)

10
= −2 + 14i

10
= −1

5
+ 7

5
i

21.
6 + 4i

6 − 4i
= 6 + 4i

6 − 4i
· 6 + 4i

6 + 4i
= 36 + 24i + 24i + 16i2

62 + 42

= 36 + 48i + 16(−1)

36 + 16
= 20 + 48i

52
= 5

13
+ 12

13
i

Complex Solutions to Quadratic Equations
Every quadratic equation has a solution, real or complex. The real solutions for a
quadratic equation are the x-intercepts, for the graph of the quadratic function.

The graph for f (x) = x2 + 1 has no x-intercepts.

Fig. 7.16.

The equation x2 + 1 = 0 does have two complex solutions.

x2 + 1 = 0

x2 = −1

x = ±√−1

= ±i
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EXAMPLE
Solve the equation and write the solutions in the form a + bi, where a and b are
real numbers.

• 3x2 + 8x + 14 = 0

x = −8 ±√
82 − 4(3)(14)

2(3)
= −8 ± √−104

6

= −8 ± 2
√

26 i

6
= 2(−4 ± √

26 i)

6

= −4 ± √
26 i

3
= −4

3
±

√
26

3
i

= −4

3
+

√
26

3
i, −4

3
−

√
26

3
i

In this problem, the complex solutions to the quadratic equation came in
conjugate pairs. This always happens when the solutions are complex numbers.
A quadratic expression that has complex zeros is called irreducible (over the reals)
because it cannot be factored using real numbers. For example, the polynomial
function f (x) = x4 − 1 can be factored using real numbers as (x2 − 1)(x2 + 1) =
(x − 1)(x + 1)(x2 + 1). The factor x2 + 1 is irreducible because it is factored as
(x − i)(x + i).

We can tell which quadratic factors are irreducible without having to use
the quadratic formula. We only need part of the quadratic formula, b2 − 4ac.
When this number is negative, the quadratic factor has two complex zeros,
−b±√

negative number
2a

. When this number is positive, there are two real number

solutions,
−b±√

positive number
2a

. When this number is zero, there is one real zero,
−b±√

0
2a

= −b
2a

. For this reason, b2 − 4ac is called the discriminant.
The graphs of some polynomials having irreducible quadratic factors need extra

points plotted to get a more accurate graph. The graph in Figure 7.17 shows the
graph of f (x) = x4 − 3x2 − 4 using our usual method—plotting the x-intercepts,
a point to the left of the smallest x-intercept, a point between each consecutive pair
of x-intercepts, and a point to the right of the largest x-intercept.

See what happens to the graph when we plot the points for x = 1 and x = −1.
The graph of f (x) = (x − 2)(x2 + 6x + 10) is sketched in Figure 7.19. The

graphs we have sketched have several vertices between x-intercepts. When this
happens, we need calculus to find them.
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Fig. 7.17. Fig. 7.18.

Fig. 7.19.
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The Fundamental Theorem of Algebra
By the Fundamental Theorem of Algebra, every polynomial of degree n has exactly
n zeros (some might be counted more than once). Because x = c is a zero
implies x − c is a factor, every polynomial can be completely factored in the
form a(x − cn)(x − cn−1) . . . (x − c1), where a is a real number and ci is real or
complex. Factors in the form x − c are called linear factors. Factors such as 2x + 1
can be written in the form x − c by factoring 2: 2(x + 1

2) or 2(x − (−1
2)).

To completely factor a polynomial, we usually need to first find its zeros.
At times, we will use the Rational Zero Theorem, polynomial division, and the
quadratic formula.

EXAMPLES
Find all zeros, real and complex.

• h(x) = x4 − 16

x4 − 16 = (x2 − 4)(x2 + 4) = (x − 2)(x + 2)(x2 + 4)

The real zeros are 2 and −2. We will find the complex zeros by solving
x2 + 4 = 0.

x2 + 4 = 0

x2 = −4

x = ±√−4 = ±2i

The complex zeros are ±2i.
• x4 + 6x3 + 9x2 − 6x − 10

The possible rational zeros are ±1, ±2, ±5, and ±10. P(1) = 0.

1 1 6 9 −6 −10
1 7 16 10

1 7 16 10 0

P(x) = (x − 1)(x3 + 7x2 + 16x + 10)

Because x3 + 7x2 + 16x + 10 has no sign changes, there are no positive
zeros; x = −1 is a zero for x3 + 7x2 + 16x + 10.

− 1 1 7 16 10−1 −6 −10
1 6 10 0

P(x) = (x − 1)(x + 1)(x2 + 6x + 10)
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Solve x2 + 6x + 10 = 0 to find the complex zeros.

x = −6 ±√
62 − 4(1)(10)

2(1)
= −6 ± √−4

2

= −6 ± 2i

2
= 2(−3 ± i)

2
= −3 ± i

The zeros are ±1, −3 ± i.

If we know a complex number is a zero for a polynomial, we automatically
know another zero—the complex conjugate is also a zero. This gives us a quadratic
factor for the polynomial. Once we have this computed, we can use long division
to find the quotient, which will be another factor of the polynomial. Each time we
factor a polynomial, we are closer to finding its zeros.

EXAMPLES
Find all zeros, real and complex.

• f (x) = 3x4 + x3 + 17x2 + 4x + 20 and x = 2i is a zero.
Because x = 2i is a zero, its conjugate, −2i, is another zero. This tells us
that two factors are x − 2i and x + 2i.

(x − 2i)(x + 2i) = x2 + 2ix − 2ix − 4i2 = x2 − 4(−1) = x2 + 4

We will divide f (x) by x2 + 4 = x2 + 0x + 4.

3x2+ x + 5

x2 + 0x + 4 3x4+ x3+ 17x2 + 4x + 20
−(3x4+ 0x3+ 12x2)

x3+ 5x2 + 4x
−(x3+ 0x2 + 4x)

5x2 + 0x + 20
−(5x2 + 0x + 20)

0

f (x) = (x2 + 4)(3x2 + x + 5)

Solving 3x2 + x + 5 = 0, we get the solutions

x = −1 ±√
12 − 4(3)(5)

2(3)
= −1 ± √−59

6
= −1 ± √

59 i

6
.

The zeros are ±2i, −1±√
59 i

6 .
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• h(x) = 2x3 − 7x2 + 170x − 246, x = 1 + 9i is a zero.
Because x = 1 + 9i is a zero, we know that x = 1 − 9i is also a zero. We
also know that x − (1 + 9i) = x − 1 − 9i and x − (1 − 9i) = x − 1 + 9i

are factors. We will multiply these two factors.

(x − 1 − 9i)(x − 1 + 9i) = x2 − x + 9ix − x + 1 − 9i − 9ix + 9i − 81i2

= x2 − 2x + 1 − 81(−1) = x2 − 2x + 82

2x− 3

x2 − 2x + 82 2x3− 7x2+ 170x− 246
−(2x3− 4x2+164x)

−3x2 + 6x− 246
−(−3x2+ 6x−246)

0
h(x) = (2x − 3)(x2 − 2x + 82)

The zeros are 1 ± 9i and 3
2 (from 2x − 3 = 0).

A consequence of the Fundamental Theorem of Algebra is that a polynomial of
degree n will have n zeros, though not necessarily n different zeros. For example,
the polynomial f (x) = (x − 2)3 = (x − 2)(x − 2)(x − 2) has x = 2 as a zero
three times. The number of times an x-value is a zero is called its multiplicity.
In the above example, x = 2 is a zero with multiplicity 3.

EXAMPLE
• f (x) = x4(x + 3)2(x − 6)

x = 0 is a zero with multiplicity 4 (We can think of x4 as (x − 0)4.)
x = −3 is a zero with multiplicity 2
x = 6 is a zero with multiplicity 1

Now, instead of finding the zeros for a given polynomial, we will find a poly-
nomial with the given zeros. Because we will know the zeros, we will know
the factors. Once we know the factors of a polynomial, we pretty much know
the polynomial.

EXAMPLES
Find a polynomial with integer coefficients having the given degree and zeros.

• Degree 3 with zeros 1, 2, and 5
Because x = 1 is a zero, x − 1 is a factor. Because x = 2 is a zero, x − 2 is
a factor. And because x = 5 is a zero, x − 5 is a factor. Such a polynomial
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will be of the form a(x −1)(x −2)(x −5), where a is some nonzero number.
We will want to choose a so that the coefficients are integers.

a(x − 1)(x − 2)(x − 5) = a(x − 1)[(x − 2)(x − 5)]
= a(x − 1)(x2 − 7x + 10)

= a(x3 − 7x2 + 10x − x2 + 7x − 10)

= a(x3 − 8x2 + 17x − 10)

Because the coefficients are already integers, we can let a = 1. One poly-
nomial of degree three having integer coefficients and 1, 2, and 5 as zeros
is x3 − 8x2 + 17x − 10.

• Degree 4 with zeros −3, 2 − 5i, with −3 a zero of multiplicity 2
Because −3 is a zero of multiplicity 2, (x + 3)2 = x2 + 6x + 9 is a factor.
Because 2 − 5i is a zero, 2 + 5i is another zero. Another factor of the
polynomial is

(x − (2 − 5i))(x − (2 + 5i)) = (x − 2 + 5i)(x − 2 − 5i)

= x2 − 2x − 5ix − 2x + 4 + 10i + 5ix

− 10i − 25i2

= x2 − 4x + 4 − 25(−1) = x2 − 4x + 29.

The polynomial has the form a(x2 + 6x + 9)(x2 − 4x + 29), where a is any
real number that makes all coefficients integers.

a(x2 + 6x + 9)(x2 − 4x + 29) = a(x4 − 4x3 + 29x2 + 6x3 − 24x2

+ 174x + 9x2 − 36x + 261)

= a(x4 + 2x3 + 14x2 + 138x + 261)

Because the coefficients are already integers, we can let a = 1. One
polynomial that satisfies the given conditions is x4+2x3+14x2+138x+261.

In the previous problems, there were infinitely many answers because a

could be any integer. In the following problem, there will be exactly one
polynomial that satisfies the given conditions. This means that a will likely
be a number other than 1.
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• Degree 3 with zeros −1, −2, and 4, where the coefficient for x is −20

a(x + 1)(x + 2)(x − 4) = a(x + 1)[(x + 2)(x − 4)]
= a(x + 1)(x2 − 2x − 8)

= a(x3 − 2x2 − 8x + x2 − 2x − 8)

= a(x3 − x2 − 10x − 8)

= ax3 − ax2 − 10ax − 8a

Because we need the coefficient of x to be −20, we need −10ax = −20x,
so we need a = 2 (from −10a = −20). The polynomial that satisfies the
conditions is 2x3 − 2x2 − 20x − 16.

PRACTICE
For Problems 1–6 solve the equations and write complex solutions in the form
a + bi, where a and b are real numbers.

1. 9x2 + 4 = 0

2. 6x2 + 8x + 9 = 0

3. x4 − 81 = 0

4. x3 + 13x − 34 = 0

5. x4 − x3 + 8x2 − 9x − 9 = 0; x = −3i is a solution.

6. x3 − 5x2 + 7x + 13 = 0; x = 3 − 2i is a solution.

For Problems 7–10 find a polynomial with integer coefficients having the given
conditions.

7. Degree 3 with zeros 0, −4, and 6

8. Degree 4 with zeros −1 and 6 − 7i, where x = −1 has multiplicity 2.

9. Degree 3, zeros 4, and ±1, with leading coefficient 3

10. Degree 4 with zeros i and 4i, with constant term −16

11. State each zero and its multiplicity for f (x) = x2(x + 4)(x + 9)6(x − 5)3
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SOLUTIONS
1. 9x2 + 4 = 0

9x2 = −4

x2 = −4

9

x = ±
√

−4

9
= ±2

3
i = 2

3
i, −2

3
i

2. x = −8 ±√
82 − 4(6)(9)

2(6)

= −8 ± √−152

12
= −8 ± 2

√
38 i

12

= 2(−4 ± √
38 i)

12
= −4 ± √

38 i

6

= −4

6
±

√
38

6
i = −2

3
±

√
38

6
i

= −2

3
+

√
38

6
i, −2

3
−

√
38

6
i

3. x4 − 81 = (x2 − 9)(x2 + 9) = (x − 3)(x + 3)(x2 + 9)

x2 + 9 = 0

x2 = −9

x = ±√−9 = ±3i

The solutions are ±3, ±3i.

4. x = 2 is a solution, so x − 2 is a factor of x3 + 13x − 34. Using
synthetic division, we can find the quotient, which will be another factor.

2 1 0 13 −34
2 4 34

1 2 17 0

The quotient is x2 + 2x + 17. We will find the other solutions by solving
x2 + 2x + 17 = 0.

x = −2 ±√
22 − 4(1)(17)

2(1)
= −2 ± √−64

2
= −2 ± 8i

2
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= 2(−1 ± 4i)

2
= −1 ± 4i

The solutions are 2 and −1 ± 4i.

5. x = −3i is a solution, so x = 3i is a solution, also. One factor of
x4 − x3 + 8x2 − 9x − 9 is (x − 3i)(x + 3i) = x2 + 9 = x2 + 0x + 9.

x2− x− 1

x2 + 0x + 9 x4− x3+ 8x2−9x− 9
−(x4+ 0x3+ 9x2)

−x3− x2 −9x
−(−x3+ 0x2− 9x)

−x2+0x− 9
−(−x2+ 0x−9)

0

Solve x2 − x − 1 = 0.

x = −(−1) ±√
(−1)2 − 4(1)(−1)

2(1)
= 1 ± √

5

2

The solutions are ±3i, 1±√
5

2 .

6. x = 3 − 2i is a solution, so x = 3 + 2i is also a solution. One factor of
x3 − 5x2 + 7x + 13 is

(x−(3−2i))(x−(3+2i))= (x−3+2i)(x−3−2i)

=x2−3x−2ix−3x+9+6i+2ix−6i−4i2

=x2−6x+9−4(−1)=x2−6x+13.

x+ 1

x2 − 6x + 13 x3− 5x2+ 7x+ 13
−(x3− 6x2+13x)

x2− 6x + 13
−(x2− 6x+13)

0
The solutions are 3 ± 2i and −1.

7. One polynomial with integer coefficients, with degree 3 and zeros 0, −4
and 6 is

x(x + 4)(x − 6) = x(x2 − 2x − 24) = x3 − 2x2 − 24x.
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8. One polynomial with integer coefficients, with degree 4 and zeros −1,
6 − 7i, where x = −1 has multiplicity 2 is

(x+1)2(x−(6−7i))(x−(6+7i))= (x+1)2(x−6+7i)(x−6−7i)

=[(x+1)(x+1)][x2−6x−7ix−6x+36+42i+7ix−42i−49i2]
= (x2+2x+1)(x2−12x+85)

=x4−12x3+85x2+2x3−24x2+170x+x2−12x+85

=x4−10x3+62x2+158x+85.

9. The factors are x − 4, x − 1, and x + 1.

a(x − 4)(x − 1)(x + 1) = a(x − 4)[(x − 1)(x + 1)] = a(x − 4)(x2 − 1)

= a[(x − 4)(x2 − 1)] = a(x3 − 4x2 − x + 4)

= ax3 − 4ax2 − ax + 4a

We want the leading coefficient to be 3, so a = 3. The polynomial that
satisfies the conditions is 3x3 − 12x2 − 3x + 12.

10. The factors are x + i, x − i, x − 4i, and x + 4i.

a(x+i)(x−i)(x−4i)(x+4i)=a[(x+i)(x−i)][(x−4i)(x+4i)]
=a(x2+1)(x2+16)=a(x4+17x2+16)

=ax4+17ax2+16a

We want 16a = −16, so a = −1. The polynomial that satisfies the
conditions is −x4 − 17x2 − 16.

11. x = 0 is a zero with multiplicity 2.
x = −4 is a zero with multiplicity 1.
x = −9 is a zero with multiplicity 6.
x = 5 is a zero with multiplicity 3.

CHAPTER 7 REVIEW
1. What are the x-intercepts of f (x) = x2(x + 3)(x − 2)?

(a) −3 and 2 (b) 3 and −2 (c) 0, −3, and 2 (d) 0, 3, and −2
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Fig. 7.20.

2. The graph in Figure 7.20 is the graph of which function?
(a) f (x) = 2x2(x − 1)(x + 2) = 2x4 + 2x3 − 4x2

(b) f (x) = −2x2(x − 1)(x + 2) = −2x4 − 2x3 + 4x2

(c) f (x) = 2x(x − 1)(x + 2) = 2x3 + 2x2 − 4x

(d) f (x) = −2x(x − 1)(x + 2) = −2x3 − 2x2 + 4x

3. What is the quotient and remainder for

x3 + 1

x2 + x + 2
?

(a) The quotient is x − 1, and the remainder is −3x − 3.

(b) The quotient is x − 1, and the remainder is −x + 3.

(c) The quotient is x + 1, and the remainder is x + 3.

(d) The quotient is x + 1, and the remainder is 3x + 3.

4. Use synthetic division to find the quotient and remainder for (2x3 −x2 +
2x + 4) ÷ (x − 3).
(a) The quotient is 2x2 + x + 5, and the remainder is 19.

(b) The quotient is 2x2 + 5x + 7, and the remainder is 29.

(c) The quotient is 2x2 + 5x + 17, and the remainder is 55.

(d) The quotient is 2x2 + x + 3, and the remainder is 7.
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5. What is the quotient for (x4 + x3 − 3x + 5) ÷ (−2x2 + x − 6)?
(a) The quotient is −1

2x2 − 1
4x − 11

8 .

(b) The quotient is −1
2x2 + 1

4x + 13
8 .

(c) The quotient is −1
2x2 − 3

4x − 15
8 .

(d) The quotient is −1
2x2 − 3

4x + 9
8 .

6. Completely factor P(x) = 4x3 + 4x2 − x − 1.

(a) (x − 1)2(4x + 1)

(c) (x + 1)2(4x − 1)

(b) (x + 1)(2x − 1)(2x + 1)

(d) (x − 1)(2x − 1)(2x + 1)

7. Find all solutions for x2 + 2x + 4 = 0.
(a) −1 ± √

3 i (b) 1 ± √
3 i (c) 1 ± √

5 (d) −1 ± √
5

8. What is the quotient for 1−i
2+3i

?

(a) 2
13 (b) 5

13 + 1
13 i (c) 5

13 − 1
13 i (d) − 1

13 − 5
13 i

9. According to the Rational Zero Theorem, which is NOT a possible
rational zero for f (x) = 4x5 − 6x3 + 2x2 − 6x − 9?
(a) −4 (b) 3

2 (c) 3 (d) −9

10. According to Descartes’ Rule of Signs, how many positive zeros does
f (x) = 4x5 − 6x3 + 2x2 − 9 have?
(a) 3 (b) 2 or 0 (c) 2 (d) 3 or 1

11. Find all zeros for f (x) = x3 − 6x2 + 13x − 10.
(a) −2, 2 ± i (b) 2, 2 ± i (c) 2, 1 ± 2i (d) −2, 1 ± 2i

SOLUTIONS
1. C 2. A 3. B 4. C 5. D
6. B 7. A 8. D 9. A 10. D 11. B
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CHAPTER

Rational Functions

A rational function is a function that can be written as one polynomial divided by
another.

f (x) = P(x)

Q(x)
= anx

n + an−1x
n−1 + · · · + a1x + a0

bmxm + bm−1xm−1 + · · · + b1x + b0

Polynomial functions are a special kind of rational function whose denominator
function is Q(x) = 1. While the graph of every polynomial function has exactly
one y-intercept, the graph of a rational function might not have a y-intercept. If it
has a y-intercept, it can be found by setting x equal to zero.If it has any x-intercepts,
they can be found by setting the numerator equal to zero.

The graphs of rational functions often come in pieces. For every x-value that
causes a zero in the denominator, there will be a break in the graph. If the function is
reduced to lowest terms (the numerator and denominator have no common factors),
then there will be a vertical asymptote at these breaks. The graph rises (or falls) very
fast near these asymptotes. The graph in Figure 8.1 is the graph of f (x) = 1

x−1 .
It has a vertical asymptote at the line x = 1 because x = 1 causes a zero in the
denominator.

185
xi
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Fig. 8.1.

A vertical asymptote shows that the y-values get large when the x-values get
close to a zero in the denominator. To see this, we will evaluate f (x) = 1

x−1 at
x = 0.99 and x = 1.01, two x-values close to a zero in the denominator.

f (0.99) = 1

0.99 − 1
= −100 and f (1.01) = 1

1.01 − 1
= 100

The graph flattens out horizontally near a horizontal asymptote. The graph in
Figure 8.1 has the x-axis as its horizontal asymptote. A horizontal asymptote shows
that as x gets very large, the y-values get very close to a fixed number. In the func-
tion f (x) = 1

x−1 , there is a horizontal asymptote at y = 0 (the x-axis). This means
that as x gets large, the y-values get close to 0.

f (100) = 1

100 − 1
= 1

99
≈ 0.010101 and

f (−100) = 1

−100 − 1
= − 1

101
≈ −0.009901

Vertical asymptotes are easy to find—set the denominator equal to zero and solve
for x. Whether or not a graph has a horizontal asymptote depends on the degree of
the numerator and of the denominator.

• If the degree of the numerator is larger than the degree of the denominator,
there is no horizontal asymptote.

• If the degree of the denominator is larger than the degree of the numerator,
there is a horizontal asymptote at y = 0, which is the x-axis.
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• If the degree of the numerator equals the degree of the denominator, there is
a horizontal asymptote at y = an

bm
, where an is the leading coefficient of the

numerator and bm is the leading coefficient of the denominator.

EXAMPLES
Find the intercepts, vertical asymptotes, and horizontal asymptotes.

• f (x) = x2 − 16

3x + 1

Solving 3x + 1 = 0 we get x = −1
3 . The vertical line x = −1

3 is the
vertical asymptote for this graph. There is no horizontal asymptote because
the degree of the numerator, 2, is more than the degree of the denominator, 1.
The x-intercepts are ±4 (from x2 − 16 = 0) and the y-intercept is

02 − 16

3(0) + 1
= −16.

• g(x) = 15

x2 − 4x − 5

When we solve x2 −4x −5 = 0, we get the solutions x = 5, −1. This graph
has two vertical asymptotes, the vertical lines x = 5 and x = −1. The x-axis
is the horizontal asymptote because the degree of the numerator, 0, is less
than the degree of the denominator, 2. (A reminder, the degree of a constant
term is 0, 15 = 15x0.) There is no x-intercept because the numerator of this
fraction is always 15, it is never 0. The y-intercept is

15

02 − 4(0) − 5
= −3.

• f (x) = 3x2

x2 + 2

Because x2+2 = 0 has no real solutions, this graph has no vertical asymptote.
There is a horizontal asymptote at y = 3

1 = 3 because the degree of the
numerator and denominator is the same. The x-intercept is 0 (from 3x2 = 0).
The y-intercept is

3(0)2

02 + 2
= 0

2
= 0.

The reason we can find the horizontal asymptotes so easily is that for
large values of x, only the leading terms in the numerator and denominator



CHAPTER 8 Rational Functions188

really matter. The examples below will show an algebraic reason for the rules
above. For any fixed number c any positive power on x,

c

xpower

is almost 0 for large values of x. For example, in −10
x2 , if we let x be any large

number, the fraction will be close to 0.

−10

(100)2
= −0.001

The larger x is, the closer to 0 −10
x2 is.

EXAMPLES
• f (x) = 3x3 + 5x2 + x − 6

2x4 + 8x2 − 1

From above, we know that the x-axis, or the horizontal line y = 0, is a
horizontal asymptote. Here is why. Because the highest power on x is 4, we

will multiply the fraction by 1/x4

1/x4 , which reduces to 1, so we are not changing
the fraction.

3x3 + 5x2 + x − 6

2x4 + 8x2 − 1
·

1
x4

1
x4

=
3x3

x4 + 5x2

x4 + x

x4 − 6
x4

2x4

x4 + 8x2

x4 − 1
x4

=
3
x

+ 5
x2 + 1

x3 − 6
x4

2 + 8
x2 − 1

x4

For large values of x, 3/x, 5/x2, 1/x3, 6/x4, 8/x2, and 1/x4 are very
close to zero, so for large values of x,

3
x

+ 5
x2 + 1

x3 − 6
x4

2 + 8
x2 − 1

x4

is close to
0 + 0 + 0 − 0

2 + 0 − 0
= 0

2
= 0.

• g(x) = 4x3 + 8x2 − 5x + 3

9x3 − x2 + 8x − 2

The degree of the numerator equals the degree of the denominator, so the
graph of this function has a horizontal asymptote at the line y = 4/9. Here
is why. Because the largest power on x is 3, we will multiply the fraction by
1/x3

1/x3 .

4x3 + 8x2 − 5x + 3

9x3 − x2 − 8x − 2
·

1
x3

1
x3

=
4x3

x3 + 8x2

x3 − 5x

x3 + 3
x3

9x3

x3 − x2

x3 − 8x

x3 − 2
x3

= 4 + 8
x

− 5
x2 + 3

x3

9 − 1
x

− 8
x2 − 2

x3
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For large values of x,
4 + 8

x
− 5

x2 + 3
x3

9 − 1
x

− 8
x2 − 2

x3

is close to
4 + 0 − 0 + 0

9 − 0 − 0 − 0
= 4

9
.

These steps are not necessary to find the horizontal asymptotes, only the three
rules earlier in the chapter.

PRACTICE
Find the intercepts, vertical asymptotes, and horizontal asymptotes.

1. f (x) = x + 2

2x + 3

2. g(x) = −3x

x2 + x − 20

3. h(x) = x2 − 1

x2 + 1

4. R(x) = 9x2 − 1

8x + 3

5. f (x) = x3 + 1

x2 + 4

6. f (x) = 2

x2

SOLUTIONS
1. The vertical is asymptote x = −3

2 , from 2x + 3 = 0. The horizontal
asymptote is y = 1

2 because the numerator and denominator have the same
degree. The x-intercept is −2, from x + 2 = 0. The y-intercept is

0 + 2

2(0) + 3
= 2

3
.

2. The vertical asymptotes are x = −5 and x = 4, from x2 + x − 20 = 0.
The horizontal asymptote is y = 0 because the denominator has the higher
degree. The x-intercept is 0, from −3x = 0. The y-intercept is

−3(0)

02 + 0 − 20
= 0

−20
= 0.
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3. There is no vertical asymptote because x2 + 1 = 0 has no real solu-
tion. The horizontal asymptote is y = 1/1 = 1 because the numerator
and denominator have the same degree. The x-intercepts are ±1, from
x2 − 1 = 0. The y-intercept is

02 − 1

02 + 1
= −1

1
= −1.

4. The vertical asymptote is x = −3
8 , from 8x + 3 = 0. There is no horizontal

asymptote because the numerator has the higher degree. The x-intercepts
are ±1

3 , from 9x2 − 1 = 0. The y-intercept is

9(0)2 − 1

8(0) + 3
= −1

3
.

5. There is no vertical asymptote because x2+4 = 0 has no real solution. There
is no horizontal asymptote because the numerator has the higher degree. The
x-intercept is −1, from x3 + 1 = 0. The y-intercept is

03 + 1

02 + 4
= 1

4
.

6. The vertical asymptote is x = 0, from x2 = 0. The horizontal asymp-
tote y = 0 because the denominator has the higher degree. There is no
x-intercept because the numerator is 2, never 0. There is no y-intercept
because 2/02 is not defined.

When sketching the graph of a rational function, we use dashed lines for the asymp-
totes . We will sketch the graphs of rational functions in much the same way we
sketched the graphs of polynomial functions. In addition to the points we plot for
polynomial functions, we need to plot points to illustrate the asymptotic behavior
of the graph. To show how a graph behaves near a vertical asymptote, we need to
plot a point to its left and to its right. To show how a graph behaves near a horizontal
asymptote, we need to plot points with large enough x-values, both positive and
negative, to show how the graph flattens out. When a graph has both horizontal and
vertical asymptotes, we will also plot a couple of mid-sized x-values.

EXAMPLES
Sketch the graph of the rational function.

• f (x) = 2x + 1

x − 4
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The x-intercept is −1
2 , the y-intercept is −1

4 . The vertical asymptote is x = 4,
and the horizontal asymptote is y = 2. We will use dashed lines for the
asymptotes and plot the points for x = 3, x = 5, x = −10, and x = 10 to
show how the graph behaves near the asymptotes.

Fig. 8.2.

It is not obvious what the graph looks like so we will plot a point for x = 7.
Then we will draw a smooth curve between the points.

Fig. 8.3.
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• g(x) = 1

x2 + 1
There is no vertical asymptote because x2 + 1 = 0 has no real solution.
The x-axis is the horizontal asymptote. This graph has no x-intercept. The
y-intercept is 1. We will use x = 5, −5 to show the graph’s horizontal
asymptotic behavior. The function is even, so the left half is a reflection of
the right half. We will plot points for x = 1, 2. The y-values for x = −1, −2
will be the same.

Fig. 8.4.

• R(x) = x2 + 1

x2 − 1

The vertical asymptotes are x = −1 and x = 1. The horizontal asymptote
is y = 1. There is no x-intercept, and the y-intercept is −1. We will use
x = 5, −5 for the horizontal asymptote and x = −0.9, 0.9, −1.1, 1.1 for
the vertical asymptotes. To get a better idea of what the graph looks like, we
will need to plot other points. We will use x = 2 and x = −2.

Fig. 8.5.
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If the degree of the numerator is exactly one more than the degree of the denom-
inator, then the graph has a slant asymptote. We can find the equation of a slant
asymptote (a line whose slope is a nonzero number) by performing polynomial
division. The equation for the slant asymptote is y = quotient.

EXAMPLES
Find an equation for the slant asymptote.

• f (x) = 4x2 + 3x − 5

x + 2

When we divide 4x2 + 3x − 5 by x + 2, we get a quotient of 4x − 5. The
slant asymptote is the line y = 4x − 5.

4x − 5

x + 2 4x2+ 3x − 5
−(4x2+ 8x)

− 5x − 5−(−5x − 10)

5

• f (x) = x3 + 2x2 − 1

x2 + x + 2

x + 1

x2 + x + 2 x3+ 2x2+ 0x − 1
−(x3+ x2+ 2x)

x2− 2x − 1
−(x2+ x + 2)

− 3x − 3

The slant asymptote is y = x + 1.

When sketching the graph of a rational function that has a slant asymptote, we
can show the behavior of the graph near the slant asymptote by plotting points for
larger x-values. We can tell if an x-value is large enough by checking its y-values
in both the line and rational function. If they are fairly close, then the x-value is
large enough.

EXAMPLES
Sketch the graph of rational function.

• f (x) = x2 + x − 6

x + 2
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The x-intercepts are −3 and 2. The y-intercept is −3. The vertical asymptote
is x = −2.

− 2 1 1 −6−2 2
1 − 1 −4

The quotient is x − 1, so the slant asymptote is y = x − 1. We will use
x = 10 and x = −10 to show the graph’s behavior near the slant asymptote.
We will also plot points for x = −1 and x = −2.5 for the vertical asymptote.

Fig. 8.6.

• h(x) = x3

x2 − 1

The x-intercept is 0, the y-intercept is 0, too. The vertical asymptotes are
x = −1 and x = 1.

x

x2 + 0x − 1 x3+ 0x2+0x+0
−(x3+0x2 − x)

x

The quotient is x, so the slant asymptote is y = x. We will plot points for
x = −5 and x = 5 to show the graph’s behavior near the slant asymptote, x =
−1.1, 1.1, −0.9, 0.9 for the vertical asymptotes, and x = −2, 2 for in-between
points.
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Fig. 8.7.

PRACTICE
Find the asymptotes and intercepts and sketch the graph.

1. f (x) = 1

x + 2

2. g(x) = x

x2 − 1

3. h(x) = 2x − 4

x + 2

4. Hint: Rewrite as one fraction.

f (x) = 1

x
+ 1

x − 2

5. f (x) = x2 + x − 12

x − 2
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SOLUTIONS
1. The asymptotes are x = −2 and y = 0 (the x-axis). There is no x-intercept.

The y-intercept is 1
2 .

Fig. 8.8.

2. The asymptotes are x = −1, x = 1, and y = 0. The x-intercept and
y-intercept is 0.

Fig. 8.9.
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3. The asymptotes are x = −2 and y = 2. The x-intercept is 2, and the
y-intercept is −2.

Fig. 8.10.

4. f (x) = 1

x
+ 1

x − 2
= 1

x
· x − 2

x − 2
+ 1

x − 2
· x

x
= x − 2 + x

x(x − 2)

= 2x − 2

x(x − 2)
= 2x − 2

x2 − 2x

The asymptotes are x = 0, x = 2, and y = 0. The x-intercept is 1, and
there is no y-intercept.

Fig. 8.11.
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5. The vertical asymptote is x = 2. The x-intercepts are −4 and 3. The
y-intercept is 6. We can use synthetic division to perform polynomial
division.

2 1 1 −12
2 6

1 3 −6

The quotient is x + 3, so the slant asymptote is y = x + 3.

Fig. 8.12.

CHAPTER 8 REVIEW
1. What is the horizontal asymptote for the graph of

f (x) = 2x4 + 6x − 7

5x3 − 8x + 2
?

(a) y = 0 (b) y = 2
5 (c) There is no horizontal asymptote.

(d) Cannot be determined without the graph.
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2. What is the horizontal asymptote for the graph of

f (x) = 2x3 + 6x − 7

5x3 − 8x + 2
?

(a) y = 0 (b) y = 2
5 (c) There is no horizontal asymptote.

(d) Cannot be determined without the graph.

3. What is the horizontal asymptote for the graph of

f (x) = 2x2 + 6x − 7

5x3 − 8x + 2
?

(a) y = 0 (b) y = 2
5 (c) There is no horizontal asymptote.

(d) Cannot be determined without the graph.

4. What is/are the vertical asymptote(s) for the graph of

f (x) = x − 3

x2 + x − 2
= x − 3

(x + 2)(x − 1)
?

(a) x = 3 (b) x = −2 and x = 1
(c) x = 3, x = −2, and x = 1 (d) There are no vertical asymptotes.

5. What are the intercepts for the graph of

f (x) = x2 + 1

x − 4
?

(a) There are no x-intercepts, and the y-intercept is −1
4

(b) The x-intercepts are ±1, and the y-intercept is −1
4

(c) The x-intercepts are ±1, and there is no y-intercept.
(d) There are no intercepts.

6. What is the slant asymptote for the graph of

f (x) = 2x2 + x − 1

x + 2
?

(a) y = 2x + 5 (b) y = 2x − 3 (c) y = 5
(d) There is no slant asymptote.
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Fig. 8.13.

7. The graph in Figure 8.13 is the graph of which rational function?

(a) r(x) = x − 2

x + 1

(b) q(x) = x − 2

x − 1

(c) f (x) = x + 2

x − 1

(d) g(x) = x + 2

x + 1

SOLUTIONS
1. C 2. B 3. A 4. B 5. A
6. B 7. C
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CHAPTER

Exponents and
Logarithms

Compound Growth
A quantity (such as a population, amount of money, or radiation level) changes
exponentially if the growth or loss is a fixed percentage over a period of time. To
see how this works, we will see how the value of an account grows over four years
if $100 is deposited and earns 5% interest, compounded annually. Compounded
annually means that the interest earned in the previous year earns interest.

After one year, $100 has grown to 100 + 0.05(100) = 100 + 5 = $105. In
the second year, the original $100 earns 5% plus the $5 earns 5% interest: 105 +
(105)(0.05) = $110.25. Now this amount earns interest in the third year: 110.25+
(110.25)(0.05) = $115.76. Finally, this amount earns interest in the fourth year:
115.76 + (115.76)(0.05) = $121.55. If interest is not compounded, that is, the

201
xi

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



CHAPTER 9 Exponents and Logarithms202

interest does not earn interest, the account would only be worth $120. The extra
$1.55 is interest earned on interest.

Compound growth is not dramatic over the short run but it is over time. If $100 is
left in an account earning 5% interest, compounded annually, for 20 years instead
of four years, the difference between the compound growth and noncompound
growth is a little more interesting. After 20 years, the compound amount is $265.33
compared to $200 for simple interest (noncompound growth). Agraph of the growth
of each type over 40 years is given in Figure 9.1. The line is the growth for simple
(noncompounded) interest, and the curve is the growth with compound interest.

Fig. 9.1.

We can use a formula to compute the value of an account earning compounded
interest. If P dollars is invested for t years, earning r interest rate, then it will grow
to A dollars, where A = P(1 + r)t .

EXAMPLES
Find the compound amount.

• $5000, after three years, earning 6% interest, compounded annually
We will use the formula A = P(1 + r)t . P = 5000, r = 0.06, and t = 3.
We want to know A, the compound amount.

A = 5000(1 + 0.06)3 = 5000(1.06)3 = 5000(1.191016)

= 5955.08

The compound amount is $5955.08.
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• $10,000 after eight years, 71
4% interest, compounded annually

A = 10,000(1 + 0.0725)8 = 10,000(1.0725)8 ≈ 10,000(1.7505656)

≈ 17,505.66

The compound amount is $17,505.66

Many investments pay more often than once a year, some paying interest daily.
Instead of using the annual interest rate, we need to use the interest rate per period,
and instead of using the number of years, we need to use the number of periods. If
there are n compounding periods per year, then the interest rate per period is r

n
and

the total number of periods is nt . The compound amount formula becomes

A = P
(

1 + r

n

)nt

.

EXAMPLES
Find the compound amount.

• $5000, after three years, earning 6% annual interest
(a) compounded semiannually
(b) compounded monthly
For (a), interest compounded semiannually means that it is compounded
twice each year, so n = 2.

A = 5000

(

1 + 0.06

2

)2(3)

= 5000(1.03)6 ≈ 5000(1.194052) ≈ 5970.26

The compound amount is $5970.26.
For (b), interest compounded monthly means that it is compounded 12 times
each year, so n = 12.

A = 5000

(

1 + 0.06

12

)12(3)

= 5000(1.005)36 ≈ 5000(1.19668) ≈ 5983.40

The compound amount is $5983.40.
• $10,000, after eight years, earning 71

4% annual interest, compounded weekly
Interest that is paid weekly is paid 52 times each year, so n = 52.

A = 10,000

(

1 + 0.0725

52

)52(8)

≈ 10,000(1.001394231)416

≈ 10,000(1.785317) ≈ 17,853.17

The compound amount is $17,853.17.
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The more often interest is compounded per year, the more interest is earned.
$1000 earning 8% annual interest, compounded annually, is worth $1080 after one
year. If interest is compounded quarterly, it is worth $1082.43 after one year. And
if interest is compounded daily, it is worth $1083.28 after one year. What if interest
is compounded each hour? Each second? It turns out that the most this investment
could be worth (at 8% interest) is $1083.29, when interest is compounded each
and every instant of time. Each instant of time, a tiny amount of interest is earned.
This is called continuous compounding. The formula for the compound amount for
interest compounded continuously is A = Pert , where A, P, r , and t are the same
quantities as before. The letter e stands for a constant called Euler’s number. It is
approximately 2.718281828. You probably have an e or ex key on your calculator.
Although e is irrational, it can be approximated by numbers of the form

(

1 + 1

m

)m

,

where m is a large rational number. The larger m is, the better the approximation
for e. If we make the substitution m = n

r
and use some algebra, we can see how

(1 + r
n
)nt is very close to ert , for large values of n. If interest is compounded every

minute, n would be 525,600, a rather large number!

EXAMPLE
• Find the compound amount of $5000 after eight years, earning 12% annual

interest, compounded continuously.

A = 5000e0.12(8) = 5000e0.96 ≈ 5000(2.611696) ≈ 13,058.48

The compound amount is $13,058.48.

The compound growth formula for continuously compounded interest is used
for other growth and decay problems. The general exponential growth model is
n(t) = n0e

rt , where n(t) replaces A and n0 replaces P . Their meanings are the
same—n(t) is still the compound growth, and n0 is still the beginning amount.
The variable t represents time in this formula; although, time will not always be
measured in years. The growth rate and t need to have the same unit of measure.
If the growth rate is in days, then t needs to be in days. If the growth rate is in
hours, then t needs to be in hours, and so on. If the “population” is getting smaller,
then the formula is n(t) = n0e

−rt .
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EXAMPLES
• The population of a city is estimated to be growing at the rate of 10% per

year. In 2000, its population was 160,000. Estimate its population in the year
2005.
The year 2000 corresponds to t = 0, so the year 2005 corresponds to t = 5;
n0, the population in year t = 0, is 160,000. The population is growing at
the rate of 10% per year, so r = 0.10. The formula n(t) = n0e

rt becomes
n(t) = 160,000e0.10t . We want to find n(t) for t = 5.

n(5) = 160,000e0.10(5) ≈ 263,795

The city’s population is expected to be 264,000 in the year 2005 (estimates
and projections are normally rounded off).

• A county is losing population at the rate of 0.7% per year. If the population
in 2001 is 1,000,000, what is it expected to be in the year 2008?
n0 = 1,000,000, t = 0 is the year 2001, t = 7 is the year 2008, and
r = 0.007. Because the county is losing population, we will use the decay
model: n(t) = n0e

−rt . The model for this county’s population is n(t) =
1,000,000e−.007t . We want to find n(t) for t = 7.

n(7) = 1,000,000e−.007(7) ≈ 952,181

The population is expected to be 952,000 in the year 2008.
• In an experiment, a culture of bacteria grew at the rate of 35% per hour. If

1000 bacteria were present at 10:00, how many were present at 10:45?

n0 = 1000, r = 0.35, t is the number of hours after 10:00

The growth model becomes n(t) = 1000e0.35t . We want to find n(t) for 45
minutes, or t = 0.75 hours.

n(0.75) = 1000e0.35(0.75) = 1000e0.2625 ≈ 1300

At 10:45, there were approximately 1300 bacteria present in the culture.

Present Value
Suppose a couple wants to give their newborn grandson a gift of $50,000 on his 20th
birthday. They can earn 71

2% interest, compounded annually. How much should
they deposit now so that it grows to $50,000 in 20 years? To answer this question,
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we will use the formula A = P(1 + r)t , where we know that A = 50,000 but are
looking for P .

50,000 = P(1 + 0.075)20

= P(1.075)20

50,000

(1.075)20
= P

The couple should deposit $11,770.66 now so that the investment grows to
$50,000 in 20 years.

We say that $11,770.66 is the present value of $50,000 due in 20 years, earning
71

2% interest, compounded annually. The present value formula is P = A(1+r)−t ,
for interest compounded annually, and P = A(1+ r

n
)−nt , for interest compounded

n times per year.

EXAMPLE
• Find the present value of $20,000 due in 81

2 years, earning 6% annual
interest, compounded monthly.

P = 20,000

(

1 + 0.06

12

)−12(8.5)

= 20,000(1.005)−102 ≈ 12,025.18

The present value is $12,025.18.

PRACTICE
For Problems 1–7 find the compound amount.

1. $800, after ten years, 61
2% interest, compounded annually

2. $1200 after six years, 91
2% interest, compounded annually

3. A 20-year-old college student opens a retirement account with $2000. If
her account pays 81

4% interest, compounded annually, how much will be
in the account when she reaches age 65?
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4. $800, after ten years, earning 61
4% annual interest

(a) compounded quarterly

(b) compounded weekly

5. $9000, after five years, earning 63
4% annual interest, compounded daily

(assume 365 days per year).

6. $800, after 10 years, earning 6 1
2% annual interest, compounded

continuously.

7. $9000, after 5 years, earning 6 3
4% annual interest, compounded

continuously.

8. The population of a city in the year 2002 is 2,000,000 and is expected to
grow 1.5% per year. Estimate the city’s population for the year 2012.

9. A construction company estimates that a piece of equipment is worth
$150,000 when new. If it loses value continuously at the annual rate of
10%, what would its value be in 10 years?

10. Under certain conditions a culture of bacteria grow at the rate of about
200% per hour. If 8000 bacteria are present in a dish, how many will be
in the dish after 30 minutes?

11. Find the present value of $9000 due in five years, earning 7% annual
interest, compounded annually.

12. Find the present value of $50,000 due in 10 years, earning 4% annual
interest, compounded quarterly.

13. Find the present value of $125,000 due in 4 1
2 years, earning 61

2% annual
interest, compounded weekly.

SOLUTIONS
1. A = 800(1 + 0.065)10 = 800(1.065)10 ≈ 800(1.877137) ≈ 1501.71

The compound amount is $1501.71.

2. A = 1200(1 + 0.095)6 = 1200(1.095)6 ≈ 1200(1.72379) ≈ 2068.55

The compound amount is $2068.55.

3. A = 2000(1 + 0.0825)45 = 2000(1.0825)45 ≈ 2000(35.420585) ≈
70,841.17

The account will be worth $70,841.17.
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4. (a) n = 4

A = 800

(

1 + 0.0625

4

)4(10)

= 800(1.015625)40 ≈ 800(1.85924)

≈ 1487.39

The compound amount is $1487.39.
(b) n = 52

A = 800

(

1 + 0.0625

52

)52(10)

= 800(1.00120192)520

≈ 800(1.86754) ≈ 1494.04

The compound amount is $1494.04.

5. n = 365

A = 9000

(

1 + 0.0675

365

)365(5)

≈ 9000(1.000184932)1825

≈ 9000(1.4013959) ≈ 12,612.56

The compound amount is $12,612.56.

6. A = 800e0.065(10) = 800e0.65 ≈ 800(1.915540829) ≈ 1532.43

The compound amount is $1532.43.

7. A = 9000e0.0675(5) = 9000e0.3375 ≈ 9000(1.401439608) ≈ 12,612.96

The compound amount is $12,612.96.

8. n0 = 2,000,000, r = 0.015 The growth formula is n(t) = 2,000,000e0.015t

and we want to find n(t) when t = 10.

n(10) = 2,000,000e0.015(10) ≈ 2,323,668

The population in the year 2012 is expected to be about 2.3 million.

9. n0 = 150,000, r = 0.10 We will use the decay formula because value
is being lost. The formula is n(t) = 150,000e−0.10t . We want to find n(t)

when t = 10.

n(10) = 150,000e−0.10(10) ≈ 55,181.92

The equipment will be worth about $55,000 after 10 years.
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10. n0 = 8000, r = 2 The growth formula is n(t) = 8000e2t . We want to
find n(t) when t = 0.5.

n(0.5) = 8000e2(0.5) ≈ 21,746

About 21,700 bacteria will be present after 30 minutes.

11. P = 9000(1.07)−5 ≈ 6416.88

The present value is $6416.88.

12. P = 50,000
(

1 + 0.04
4

)−4(10) = 50,000(1.01)−40 ≈ 33,582.66

The present value is $33,582.66.

13. P = 125,000
(

1 + 0.065
52

)−52(4.5) = 125,000(1.00125)−234 ≈ 93,316.45

The present value is $93,316.45.

Graphs of Exponential Functions
A basic exponential function is of the form f (x) = ax , where a is any positive
number except 1. The graph of f (x) = ax comes in two shapes depending whether
0 < a < 1 (a is positive but smaller than 1) or a > 1. Figure 9.2 is the graph of
f (x) = (1

2)x and Figure 9.3 is the graph of f (x) = 2x .

Fig. 9.2. Fig. 9.3.

Sketch the graph of f (x) = ax by plotting points for x = −3, x = −2, x = −1,
x = 0, x = 1, x = 2, and x = 3. If a is too large or too small, points for x = −3
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and x = 3 might be too awkward to graph because their y-values are too large or
too close to 0. Before we begin sketching graphs, we will review the following
exponent properties.

a−n = 1

an

(
1

a

)−n

= an

EXAMPLES
Sketch the graphs.

• f (x) = 2.5x

We will begin with x = −3, −2, −1, 0, 1, 2, and 3 in a table of values.

Table 9.1

x f (x)

−3 0.064
(
2.5−3 = 1

2.53

)

−2 0.16
(
2.5−2 = 1

2.52

)

−1 0.40
(
2.5−1 = 1

2.5

)

0 1
1 2.5
2 6.25
3 15.625

Fig. 9.4.
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• g(x) = (1
3)x

Table 9.2

x f (x)

−3 27
(( 1

3

)−3 = 33)

−2 9
(( 1

3

)−2 = 32)

−1 3
(( 1

3

)−1 = 31)

0 1
1 0.33
2 0.11
3 0.037

Fig. 9.5.

PRACTICE
Sketch the graphs.

1. f (x) = (3
2)x

2. g(x) = (2
3)x

3. h(x) = ex (Use the e or ex key on your calculator.)
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SOLUTIONS
1.

Table 9.3

x f (x)

−3 0.30
(( 3

2

)−3 = ( 2
3

)3 = 8
27

)

−2 0.44
(( 3

2

)−2 = ( 2
3

)2 = 4
9

)

−1 0.67
(( 3

2

)−1 = 2
3

)

0 1
1 1.5
2 2.25
3 3.375

Fig. 9.6.

2.

Table 9.4

x f (x)

−3 3.375
(( 2

3

)−3 = ( 3
2

)3))

−2 2.25
(( 2

3

)−2 = ( 3
2

)2)

−1 1.5
(( 2

3

)−1 = 3
2

)

0 1
1 0.67
2 0.44
3 0.30
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Fig. 9.7.

3.
Table 9.5

x f (x)

−3 0.05
−2 0.14
−1 0.37

0 1
1 2.72
2 7.39
3 20.09

Fig. 9.8.

Transformations of the graphs of exponential functions behave in the same way
as transformations of other functions.
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EXAMPLES
• The graph of f (x) = −2x is the graph of y = 2x reflected about the x-axis

(flipped upside down).
• The graph of g(x) = 2−x is the graph of y = 2x reflected about the y-axis

(flipped sideways).
• The graph of h(x) = 2x+1 is the graph of y = 2x shifted to the left 1 unit.
• The graph of f (x) = −3 + 2x is the graph of y = 2x shifted down 3 units.

Logarithms
A common question for investors is, “How long will it take for my investment to
double?” If $1000 is invested so that it earns 8% interest, compounded annually,
how long will it take to grow to $2000? To answer the question using the com-
pound growth formula, we need to solve for t in the equation 2000 = 1000(1.08)t .
We will divide both sides of the equation by 1000 to get 2 = (1.08)t . Now
what? It does not make sense to “take the t th root” of both sides. We need to
use logarithms. In mathematical terms, the logarithm and exponent functions are
inverses. Logarithms (or logs) are very useful in solving many science and business
problems.

The logarithmic equation loga x = y is another way of writing the exponential
equation ay = x. Verbally, we say, “log base a of x is (or equals) y.” For “loga x,
we say,” (the) log base a of x.

EXAMPLES
Rewrite the logarithmic equation as an exponential equation.

• log3 9 = 2

The base of the logarithm is the base of the exponent, so 3 will be raised to
a power. The number that is equal to the log is the power, so the power on
3 is 2.

log3 9 = 2 rewritten as an exponent is 32 = 9

• log2
1
8 = −3

The base is 2 and the power is −3.

2−3 = 1

8
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• log9 3 = 1
2

The base is 9 and the power is 1
2 .

9
1
2 = 3

Now we will work in the other direction, rewriting exponential equations
as logarithmic equations. The equation 43 = 64 written as a logarithmic
equation is log4 64 = 3.

EXAMPLES
• 34 = 81

The base of the logarithm is 3, and we are taking the log of 81. The equation
rewritten as a logarithmic equation is log3 81 = 4

• a3 = 4

The base is a, and we are taking the log of 4. The equation rewritten as a
logarithmic equation is loga 4 = 3.

• 82/3 = 4

The base is 8, and we are taking the log of 4. The equation rewritten as a
logarithmic equation is log8 4 = 2

3 .

PRACTICE
For Problems 1–5, rewrite the logarithmic equations as exponential equations. For
Problems 6–12 rewrite the exponential equations as logarithmic equations.

1. log4 16 = 2

2. log100 10 = 1
2

3. loge 2 = 0.6931

4. log(x+1) 9 = 2

5. log7
1
49 = −2

6. 52 = 25

7. 40 = 1

8. 7−1 = 1
7



CHAPTER 9 Exponents and Logarithms216

9. 1251/3 = 5

10. 10−4 = 0.0001

11. e1/2 = 1.6487

12. 8x = 5

SOLUTIONS
1. log4 16 = 2 rewritten as an exponential equation is 42 = 16

2. log100 10 = 1

2
rewritten as an exponential equation is 100

1
2 = 10

3. loge 2 = 0.6931 rewritten as an exponential equation is e0.6931 = 2

4. log(x+1) 9 = 2 rewritten as an exponential equation is (x + 1)2 = 9

5. log7
1

49
= −2 rewritten as an exponential equation is 7−2 = 1

49

6. 52 = 25 rewritten as a logarithmic equation is log5 25 = 2

7. 40 = 1 rewritten as a logarithmic equation is log4 1 = 0

8. 7−1 = 1

7
rewritten as a logarithmic equation is log7

1
7 = −1

9. 1251/3 = 5 rewritten as a logarithmic equation is log125 5 = 1

3

10. 10−4 = 0.0001 rewritten as a logarithmic equation is log10 0.0001 = − 4

11. e1/2 = 1.6487 rewritten as a logarithmic equation is loge 1.6487 = 1

2
12. 8x = 5 rewritten as a logarithmic equation is log8 5 = x

The first two logarithm properties we will learn are the cancelation properties.
They come directly from rewriting one form of an equation in the other form.

loga ax = x and alogax = x

When the bases of the exponent and logarithm are the same, they cancel. Let us
see why these properties are true. What would the expression loga ax be? We
will rewrite the equation “loga ax =?” as an exponential equation: a? = ax . Now
we can see that “?” is x. This is why loga ax = x. What would aloga x be? We will
rewrite “aloga x =?” as a logarithmic equation: loga? = loga x, so “?” is x, and
aloga x = x.
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EXAMPLES
• 5log5 2

The bases of the logarithm and exponent are both 5, so 5log5 2 simplifies to 2.

10log10 8 = 8 4log4 x = x eloge 6 = 6
29log29 1 = 1 logm mr = r log7 7ab = ab

Sometimes we need to use exponent properties before using the property
loga ax = x.

n
√

am = a
m
n and

1

am
= a−m

EXAMPLES
• log9 3 = log9

√
9 = log9 91/2 = 1

2

• log7
1

49
= log7

1

72
= log7 7−2 = −2

• log10
4
√

10 = log10 101/4 = 1

4

• log10
5
√

100 = log10
5√

102 = log10 102/5 = 2

5

Two types of logarithms occur frequently enough to have their own notation. They
are loge and log10. The notation for loge is “ln” (pronounced “ell-in”) and is called
the natural log. The notation for log10 is “log” (no base is written) and is called the
common log. The cancel properties for these special logarithms are

ln ex = x eln x = x and log 10x = x 10log x = x.

EXAMPLES
• e4 = x − 1 rewritten as a log equation is ln(x − 1) = 4
• 10x = 6 rewritten as a log equation is log 6 = x

• ln 2x = 25 rewritten as an exponent equation is e25 = 2x

• log(2x − 9) = 4 rewritten as an exponent equation is 104 = 2x − 9

• ln e15 = 15
• eln 14 = 14
• ln e−4 = −4

• 10log 5 = 5
• log 101/2 = 1

2

• log 10−4 = −4
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PRACTICE
1. Rewrite as a logarithm: e3x = 4

2. Rewrite as a logarithm: 10x−1 = 15

3. Rewrite as an exponent: ln 6 = x + 1

4. Rewrite as an exponent: log 5x = 3

Use logarithm properties to simplify the expression.

5. 9log9 3

6. 10log10 14

7. 5log5 x

8. log15 152

9. log10 10−8

10. loge ex

11. log7

√
7

12. log5
1
5

13. log3
1√
3

14. log4
1
16

15. log25
1
5

16. log8
1
2

17. log10

√
1000

18. ln e5

19. log 10
√

x

20. 10log 9

21. eln 6

22. log 103x−1

23. ln ex+1

SOLUTIONS
1. ln 4 = 3x

2. log 15 = x − 1
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3. ex+1 = 6

4. 103 = 5x

5. 9log9 3 = 3

6. 10log10 14 = 14

7. 5log5 x = x

8. log15 152 = 2

9. log10 10−8 = −8

10. loge ex = x

11. log7

√
7 = log7 71/2 = 1

2

12. log5
1

5
= log5 5−1 = −1

13. log3
1√
3

= log3
1

31/2
= log3 3−1/2 = −1

2

14. log4
1

16
= log4

1

42
= log4 4−2 = −2

15. log25
1

5
= log25

1√
25

= log25
1

25
1
2

= log25 25−1/2 = −1

2

16. 2 = 3
√

8

log8
1

2
= log8

1
3
√

8
= log8

1

8
1
3

= log8 8−1/3 = −1

3

17. 1000 = 103, so log10

√
1000 = log10

√
103 = log10 103/2 = 3/2

18. ln e5 = 5

19. log 10
√

x = √
x

20. 10log 9 = 9

21. eln 6 = 6

22. log 103x−1 = 3x − 1

23. ln ex+1 = x + 1
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Exponent and Logarithm Equations (Part I)
Equations with exponents and logarithms come in many forms. Sometimes more
than one strategy will work to solve them. We will first solve equations of the
form “log = number” and “log = log.” We will solve an equation of the form
“log = number” by rewriting the equation as an exponential equation.

EXAMPLES
Solve the equation for x.

• log3(x + 1) = 4

Rewrite the equation as an exponential equation.

log3(x + 1) = 4

34 = x + 1

81 = x + 1

80 = x

• log2(3x − 4) = 5

25 = 3x − 4

32 = 3x − 4

12 = x

The logarithms cancel for equations in the form “log = log” as long as the bases
are the same. For example, the solution to the equation log8 x = log8 10 is x = 10.
The cancelation law aloga x = x makes this work.

log8 x = log8 10

8log8 x = 8log8 10

x = 10 (By the cancelation law)
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EXAMPLES
Solve for x.

• log6(x + 1) = log6 2x

log6(x + 1) = log6 2x

x + 1 = 2x The logs cancel.

1 = x

• log 4 = log(x − 1)

log 4 = log(x − 1)

4 = x − 1 The logs cancel.

5 = x

PRACTICE
Solve for x.

1. log7(2x + 1) = 2

2. log4(x + 6) = 2

3. log 5x = 1

4. log2(8x − 1) = 4

5. log3(4x − 1) = log3 2

6. log2(3 − x) = log2 17

7. ln 15x = ln(x + 4)

8. log x
x−1 = log 1

2

SOLUTIONS
1. log7(2x + 1) = 2

72 = 2x + 1

24 = x
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2. log4(x + 6) = 2

42 = x + 6

10 = x

3. log 5x = 1

101 = 5x

2 = x

4. log2(8x − 1) = 4

24 = 8x − 1

17

8
= x

5. log3(4x − 1) = log3 2

4x − 1 = 2

x = 3

4

6. log2(3 − x) = log2 17

3 − x = 17

x = −14

7. ln 15x = ln(x + 4)

15x = x + 4

x = 4

14
= 2

7

8. log
x

x − 1
= log

1

2

x

x − 1
= 1

2
Cross-multiply.

2x = x − 1

x = −1

We need to use calculators to find approximate solutions for exponential equa-
tions whose base is e or 10. We will rewrite the exponential equation as a
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logarithmic equation, solve for x, and then use a calculator to get an approximate
solution.

EXAMPLES
Solve for x. Give solutions accurate to four decimal places.

• e2x = 3

e2x = 3 Rewrite as a logarithmic equation.

2x = ln 3

x = ln 3

2

x ≈ 1.0986

2
≈ 0.5493

• 10x+1 = 9

10x+1 = 9 Rewrite as a logarithmic equation.

x + 1 = log 9

x = −1 + log 9

x ≈ −1 + 0.9542 ≈ −0.0458

• 2500 = 1000ex−4

2500 = 1000ex−4 Divide both sides by 1000 before rewriting the equation.

ex−4 = 2.5 Rewrite as a logarithmic equation.

x − 4 = ln 2.5

x = 4 + ln 2.5 ≈ 4 + 0.9163 ≈ 4.9163

PRACTICE
Solve for x. Give your solutions accurate to four decimal places.

1. 103x = 7

2. e2x+5 = 15
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3. 5000 = 2500e4x

4. 32 = 8 · 106x−4

5. 200 = 400e−0.06x

SOLUTIONS
1. 103x = 7

3x = log 7

x = log 7

3
≈ 0.8451

3
≈ 0.2817

2. e2x+5 = 15

2x + 5 = ln 15

2x = −5 + ln 15

x = −5 + ln 15

2
≈ −5 + 2.7081

2
≈ −1.1460

3. 5000 = 2500e4x

5000

2500
= e4x

4x = ln

(
5000

2500

)

4x = ln 2

x = ln 2

4
≈ 0.6931

4
≈ 0.1733

4. 32 = 8 · 106x−4 Divide both sides by 8.

4 = 106x−4

6x − 4 = log 4

6x = 4 + log 4

x = 4 + log 4

6
≈ 4 + 0.6021

6
≈ 0.767

5. 200 = 400e−0.06x

1

2
= e−0.06x
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−0.06x = ln

(
1

2

)

x = ln(1
2)

−0.06
≈ −0.69315

−0.06
≈ 11.5525

The logarithm function f (x) = loga x is the inverse of g(x) = ax . The graph
of f (x) is the graph of g(x) with the x- and y-values reversed. To sketch the
graph by hand, we will rewrite the logarithm function as an exponent equation
and graph the exponent equation.

EXAMPLES
Sketch the graph of the logarithmic functions.

• y = log2 x

Rewrite the equation in exponential form, x = 2y , and let the exponent, y,
be the numbers −3, −2, −1, 0, 1, 2, and 3.

Table 9.6

x y

1
8 −3
1
4 −2
1
2 −1

1 0
2 1
4 2
8 3

Fig. 9.9.
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• y = ln x

Rewritten as an exponent equation, this is x = ey . Let y = −3, −2, −1, 0,
1, 2, and 3.

Table 9.7

x y

0.05 −3
0.14 −2
0.37 −1
1 0
2.72 1
7.39 2
20.09 3

Fig. 9.10.

As you can see by these graphs, the domain of the function f (x) = loga x is all
positive real numbers, (0, ∞).

PRACTICE
Sketch the graph of the logarithmic function.

1. y = log1.5 x

2. y = log3 x
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SOLUTIONS
1.

Fig. 9.11.

2.

Fig. 9.12.

As long as a is larger than 1, all graphs for f (x) = loga x look pretty much the
same. The larger a is, the flatter the graph is to the right of x = 1. Knowing this
and knowing how to graph transformations, we have a good idea of the graphs of
many logarithmic functions.

• The graph of f (x) = log2(x − 2) is the graph of y = log2 x shifted to the
right 2 units.

• The graph of f (x) = −5 + log3 x is the graph of y = log3 x shifted down 5
units.
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• f (x) = 1
3 log x is the graph of y = log x flattened vertically by a factor of

one-third.

The domain of f (x) = loga x is all positive numbers. This means that we cannot
take the log of 0 or the log of a negative number. The reason is that a is a positive
number. Raising a positive number to any power is always another positive number.

EXAMPLES
Find the domain. Give your answers in interval notation.

• f (x) = log5(2 − x)

Because we are taking the log of 2 − x, 2 − x needs to be positive.

2 − x > 0

−x > −2

x < 2

The domain is (−∞, 2).

• f (x) = log(x2 − x − 2)

x2 − x − 2 > 0

(x − 2)(x + 1) > 0

Put x = 2 and x = −1 on the number line and test to see where (x − 2)

(x + 1) > 0 is true.

Fig. 9.13.

We want the “True” intervals, so the domain is (−∞, −1) ∪ (2, ∞).

• g(x) = ln(x2 + 1)

Because x2 +1 is always positive, the domain is all real numbers, (−∞, ∞).

PRACTICE
Find the domain. Give your answers in interval notation.

1. f (x) = ln(10 − 2x)
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2. h(x) = log(x2 − 4)

3. f (x) = log(x2 + 4)

SOLUTIONS
1. Solve 10 − 2x > 0. The domain is x < 5, (−∞, 5).

2. Solve x2 − 4 > 0

Fig. 9.14.

The domain is (−∞, −2) ∪ (2, ∞).

3. Because x2 + 4 > 0 is always positive, the domain is all real numbers,
(−∞, ∞).

Exponent and Logarithmic Equations (Part II)
For some logarithmic equations, a solution might be extraneous solution. That
is, such a solution is a solution to the rewritten equations but not to the original
equations. Some solutions to the rewritten equations will cause logarithms of 0
or of negative numbers. We can check them in the original equation to see which
solutions are true solutions.

EXAMPLES
Solve for x.

• log2(x
2 + 3x − 10) = 3

We will rewrite this as an exponent equation: 23 = x2 + 3x − 10 and solve
for x.

x2 + 3x − 10 = 8

x2 + 3x − 18 = 0

(x + 6)(x − 3) = 0
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The solutions are x = −6 and x = 3. We will check them in the original
equation.

log2((−6)2 + 3(−6) − 10) = 3? log2(3
2 + 3(3) − 10) = 3?

log2 8 = 3 True log2 8 = 3 True

The solutions to the original equation are x = −6 and x = 3.

• log5(x
2 + 5x − 4) = log5(x + 1)

The logs cancel leaving x2 + 5x − 4 = x + 1.

x2 + 5x − 4 = x + 1

x2 + 4x − 5 = 0

(x + 5)(x − 1) = 0

The solutions are x = −5 and x = 1. We cannot allow x = −5 as a solution
because log5(−5 + 1) is not defined. We need to check x = 1.

log5(1
2 + 5(1) − 4) = log5(1 + 1) is true

The solution is x = 1.

PRACTICE
Solve for x.

1. ln(x2 + x − 20) = ln(3x + 4)

2. log4(2x2 − 3x + 59) = 3

SOLUTIONS
1. ln(x2 + x − 20) = ln(3x + 4)

x2 + x − 20 = 3x + 4

x2 − 2x − 24 = 0

(x − 6)(x + 4) = 0

The solutions are x = 6 and x = −4. Because ln[3(−4)+4] is not defined,
we only need to check x = 6.

ln(62 + 6 − 20) = ln[3(6) + 4] is true.

The only solution is x = 6.
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2. log4(2x2 − 3x + 59) = 3

2x2 − 3x + 59 = 43 (43 = 64)

2x2 − 3x − 5 = 0

(2x − 5)(x + 1) = 0

We need to check the solutions x = 5
2 and x = −1.

log4

[

2

(
5

2

)2

− 3

(
5

2

)

+ 59

]

= 3? log4[2(−1)2 − 3(−1) + 59] = 3?

log4 64 = 3 is true log4 64 = 3 is true

The solutions are x = 5
2 and x = −1.

Three More Important Logarithm Properties
The following three logarithm properties come directly from the exponent proper-
ties am · an = am+n, am

an = am−n, and amn = (am)n.

1. logb mn = logb m + logb n

2. logb

m

n
= logb m − logb n

3. logb mt = t logb m

We will see why Property 1 works. Let x = logb m and y = logb n. Rewriting
these equations as exponential equations, we get bx = m and by = n. Multiplying
m and n, we have mn = bx · by = bx+y . Rewriting the equation mn = bx+y

as a logarithmic equation, we get logb mn = x + y. Because x = logb m and
y = logb n, logb mn = x + y becomes logb mn = logb m + logb n.

EXAMPLES
Use Property 1 to rewrite the logarithms.

• log4 7x = log4 7 + log4 x

• ln 15t = ln 15 + ln t

• log6 19t2 = log6 19 + log6 t2

• log 100y4 = log 102 + log y4 = 2 + log y4
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• log9 3 + log9 27 = log9 3(27) = log9 81 = 2

• ln x + ln
√

y = ln x
√

y

Use Property 2 to rewrite the logarithms.

• log
(x

4

)
= log x − log 4

• ln

(
5

x

)

= ln 5 − ln x

• log15 3 − log15 2 = log15

(
3

2

)

• ln 16 − ln t = ln
16

t

• log4

(
4

3

)

= log4 4 − log4 3 = 1 − log 3

The exponent property n
√

am = am/n allows us to apply the third logarithm
property to roots as well as to powers. The third logarithm property is especially
useful in science and business applications.

EXAMPLES
Use Property 3 to rewrite the logarithms.

• log4 3x = x log4 3

• 1

3
ln t = ln t1/3

• log x2 = 2 log x

• −3 log 8 = log 8−3

• log6

√
2x = log6(2x)1/2 = 1

2
log6 2x

• ln
4
√

t3 = ln t3/4 = 3

4
ln t

PRACTICE
Use Property 1 to rewrite the logarithms in Problems 1–6.

1. ln 59t

2. log 0.10y

3. log30 148x2
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4. log6 3 + log6 12

5. log5 9 + log5 10

6. log 5 + log 20

Use Property 2 to rewrite the logarithms in Problems 7–12.

7. log4
10
9x

8. log2
7
8

9. ln t
4

10. log 100
x2

11. log7 2 − log7 4

12. log8 x − log8 3

Use Property 3 to rewrite the logarithms in Problems 13–20.

13. ln 5x

14. log12

√
3

15. log
√

16x

16. log5 6−t

17. 2 log8 3

18. (x + 6) log4 3

19. log16 102x

20. −2 log4 5

SOLUTIONS
1. ln 59t = ln 59 + ln t

2. log 0.10y = log 0.10 + log y = log 10−1 + log y = −1 + log y

3. log30 148x2 = log30 148 + log30 x2

4. log6 3 + log6 12 = log6(3 · 12) = log6 36 = log6 62 = 2

5. log5 9 + log5 10 = log5(9 · 10) = log5 90

6. log 5 + log 20 = log(5 · 20) = log 100 = log 102 = 2

7. log4
10

9x
= log4 10 − log4 9x
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8. log2
7

8
= log2 7 − log2 8 = log2 7 − log2 23 = (log2 7) − 3

9. ln
t

4
= ln t − ln 4

10. log
100

x2
= log 100 − log x2 = log 102 − log x2 = 2 − log x2

11. log7 2 − log7 4 = log7
2

4
= log7

1

2

12. log8 x − log8 3 = log8
x

3
13. ln 5x = x ln 5

14. log12

√
3 = log12 31/2 = 1

2 log12 3

15. log
√

16x = log(16x)1/2 = 1
2 log 16x

16. log5 6−t = −t log5 6

17. 2 log8 3 = log8 32 = log8 9

18. (x + 6) log4 3 = log4 3x+6

19. log16 102x = 2x log16 10

20. −2 log4 5 = log4 5−2 = log4
1
52 = log4

1
25

Sometimes we will need to use several logarithm properties to rewrite more
complicated logarithms. The hardest part of this is to use the properties in the
correct order. For example, which property should be used first on log x

y3 ? Do we
first use the third property or the second property? We will use the second property
first. For the expression log(x

y
)3, we would use the third property first.

Going in the other direction, we need to use all three properties in the expression
log2 9 − log2 x + 3 log2 y. We need to use the second property to combine the first
two terms.

log2 9 − log2 x + 3 log2 y = log2
9

x
+ 3 log2 y

We cannot use the first property on log2
9
x

+ 3 log2 y until we have used the third
property to move the 3.

log2
9

x
+ 3 log2 y = log2

9

x
+ log2 y3 = log2 y3 9

x
= log2

9y3

x
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EXAMPLES
Rewrite as a single logarithm.

• log2 3x − 4 log2 y

We need use the third property to move the 4, then we can use the second
property.

log2 3x − 4 log2 y = log2 3x − log2 y4 = log2
3x

y4

• 3 log 4x + 2 log 3 − 2 log y

3 log 4x + 2 log 3 − 2 log y = log(4x)3 + log 32 − log y2 Property 3

= log 43x3 · 32 − log y2 Property 1

= log 576x3 − log y2 = log
576x3

y2
Property 2

• t ln 4 + ln 5

t ln 4 + ln 5 = ln 4t + ln 5 = ln(5 · 4t ) (not ln 20t )

Expand each logarithm.

• ln
3
√

x

y2

ln
3
√

x

y2
= ln 3(x1/2) − ln y2 = ln 3 + ln x1/2 − ln y2 = ln 3 + 1

2
ln x − 2 ln y

• log7
4

10xy2

log7
4

10xy2
= log7 4 − log7 10xy2 = log7 4 − (log7 10 + log7 x + log7 y2)

= log7 4 − (log7 10 + log7 x + 2 log7 y) or

log7 4 − log7 10 − log7 x − 2 log7 y

PRACTICE
For Problems 1–5, rewrite each as a single logarithm.

1. 2 log x + 3 log y
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2. log6 2x − 2 log6 3

3. 3 ln t − ln 4 + 2 ln 5

4. t ln 6 + 2 ln 5

5. 1
2 log x − 2 log 2y + 3 log z

For Problems 6–10, expand each logarithm.

6. log 4x
y

7. ln 6√
y

8. log4
10x
3√z

9. ln
√

4x

5y2

10. log
√

2y3

x

SOLUTIONS
1. 2 log x + 3 log y = log x2 + log y3 = log x2y3

2. log6 2x − 2 log6 3 = log6 2x − log6 32

= log6 2x − log6 9 = log6
2x

9

3. 3 ln t − ln 4 + 2 ln 5 = ln t3 − ln 4 + ln 52

= ln
t3

4
+ ln 25

= ln 25
t3

4
= ln

25t3

4

4. t ln 6 + 2 ln 5 = ln 6t + ln 52 = ln[25(6t )]

5.
1

2
log x − 2 log 2y + 3 log z = log x1/2 − log(2y)2 + log z3

= log x1/2 − log 22y2 + log z3

= log x1/2 − log 4y2 + log z3
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= log
x1/2

4y2
+ log z3 = log z3 x1/2

4y2

= log
z3x1/2

4y2
or log

z3√x

4y2

6. log
4x

y
= log 4x − log y = log 4 + log x − log y

7. ln
6√
y

= ln 6 − ln
√

y = ln 6 − ln y1/2 = ln 6 − 1

2
ln y

8. log4
10x

3
√

z
= log4 10x − log4

3
√

z = log4 10x − log4 z1/3

= log4 10 + log4 x − 1

3
log4 z

9. ln

√
4x

5y2
= ln

√
4x − ln 5y2 = ln(4x)1/2 − ln 5y2

= 1

2
ln 4x − (ln 5 + ln y2) = 1

2
(ln 4 + ln x) − (ln 5 + 2 ln y)

or
1

2
ln 4 + 1

2
ln x − ln 5 − 2 ln y

10. log

√

2y3

x
= log

(
2y3

x

)1/2

= 1

2
log

2y3

x

= 1

2
(log 2y3 − log x) = 1

2
(log 2 + log y3 − log x)

= 1

2
(log 2 + 3 log y − log x) or

1

2
log 2 + 3

2
log y − 1

2
log x

More Logarithm Equations
With these logarithm properties we can solve more logarithm equations. We
will use these properties to rewrite equations either in the form “log = log” or
“log = number.” When the equation is in the form “log = log,” the logs cancel.
When the equation is in the form “log = number,” we will rewrite the equation as
an exponential equation. Instead of checking solutions in the original equation, we
only need to make sure that the original logarithms are defined for the solutions.
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EXAMPLES
• log2(x − 5) + log2(x + 2) = 3

We will use Property 1 to rewrite the equation in the form “log = number.”

log2(x − 5) + log2(x + 2) = 3

log2(x − 5)(x + 2) = 3

(x − 5)(x + 2) = 23

x2 − 3x − 10 = 8

x2 − 3x − 18 = 0

(x − 6)(x + 3) = 0

The solutions are x = 6 and x = −3. Because log2(x + 2) is not defined for
x = −3, the only solution is x = 6.

• 2 log5(x + 1) − log5(x − 3) = log5 25

We will use Property 3 followed by Property 2 to rewrite the equation in the
form “log = log.”

2 log5(x + 1) − log5(x − 3) = log5 25

log5(x + 1)2 − log5(x − 3) = log5 25

log5
(x + 1)2

x − 3
= log5 25

(x + 1)2

x − 3
= 25

(x + 1)2 = 25(x − 3)

(x + 1)(x + 1) = 25x − 75

x2 + 2x + 1 = 25x − 75

x2 − 23x + 76 = 0

(x − 4)(x − 19) = 0

Both log5(x + 1) and log5(x − 3) are defined for x = 4 and x = 19. The
solutions are x = 4 and x = 19.
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PRACTICE
1. log3(2x + 1) + log3(x + 4) = 2

2. ln(3x − 4) + ln(x + 2) = ln(2x + 1) + ln(x + 2)

3. log2(5x + 1) − log2(x − 1) = 3

4. 2 log7(x + 1) = 2

SOLUTIONS
1. log3(2x + 1) + log3(x + 4) = 2 Use Property 1.

log3(2x + 1)(x + 4) = 2 Rewrite as an exponent equation.

(2x + 1)(x + 4) = 32

2x2 + 9x + 4 = 9

2x2 + 9x − 5 = 0

(2x − 1)(x + 5) = 0

Both log3(2x + 1) and log3(x + 5) are undefined for x = −5, so the only
solution is x = 1

2 .

2. ln(3x − 4) + ln(x + 2) = ln(2x + 1) + ln(x + 2) Use Property 1.

ln(3x − 4)(x + 2) = ln(2x + 1)(x + 2) The logs cancel.

(3x − 4)(x + 2) = (2x + 1)(x + 2)

3x2 + 2x − 8 = 2x2 + 5x + 2

x2 − 3x − 10 = 0

(x − 5)(x + 2) = 0

All of ln(3x − 4), ln(x + 2), and ln(x + 2) are not defined for x = −2, so
the only solution is x = 5.

3. log2(5x + 1) − log2(x − 1) = 3 Use Property 2.

log2
5x + 1

x − 1
= 3 Rewrite as an exponent.

5x + 1

x − 1
= 23 = 8 Cross-multiply.

5x + 1 = 8(x − 1)
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5x + 1 = 8x − 8

x = 3

4. 2 log7(x + 1) = 2 Use Property 3.

log7(x + 1)2 = 2 Rewrite as an exponent.

(x + 1)2 = 72

(x + 1)(x + 1) = 49

x2 + 2x + 1 = 49

x2 + 2x − 48 = 0

(x + 8)(x − 6) = 0

The only solution is x = 6 because log7(x + 1) is not defined at x = −8.
We could have solved this problem in fewer steps if we had divided both
sides by 2 in the first step, getting log7(x + 1) = 1.

The domains for f (x) = log(x − 1)(x + 2) and g(x) = log(x − 1)+ log(x + 2)

are not the same, which seems to contradict the first logarithm property. Neither
log(x − 1) nor log(x + 2) is defined for x = −3 because −3 − 1 and −3 + 2 are
negative. But log(x − 1)(x + 2) is defined for x = −3 because (−3 − 1)(−3 + 2)

is positive. The domain of f (x) will include x-values for which both (x − 1) and
(x + 2) are negative.

The Change of Base Formula
There are countless bases for logarithms but calculators usually have only two
logarithms—log and ln. How can we use our calculators to approximate log2 5?
We can use the change of base formula but first, let us use logarithm properties to
find this number. Let x = log2 5. Then 2x = 5. Take the common log of each side.

log 2x = log 5 Now use the third log property.

x log 2 = log 5 Divide both sides by the number log 2.

x = log 5

log 2
≈ 0.698970004

0.301029996
≈ 2.321928095

This means that 22.321928095 is very close to 5.
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We just proved that log2 5 = log10 5
log10 2 . Replace 2 with b, 5 with x, and 10 with a

and we have the change of base formula.

logb x = loga x

loga b

This formula converts a logarithm with old base b to new base a. Usually, the new
base is either e or 10.

EXAMPLE
• Evaluate log7 15. Give your solution accurate to four decimal places.

log7 15 = log 15

log 7
≈ 1.176091259

0.84509804
≈ 1.3917

= ln 15

ln 7
≈ 2.708050201

1.945910149
≈ 1.3917

The change of base formula can be used to solve equations like 42x+1 = 8
by rewriting the equation in logarithmic form and using the change of base
formula. The equation becomes log4 8 = 2x + 1. Because log4 8 = ln 8

ln 4 , the
equation can be written as 2x + 1 = ln 8

ln 4 .

2x + 1 = ln 8

ln 4

2x = −1 + ln 8

ln 4

x = 1

2

(

−1 + ln 8

ln 4

)

= 1

4

EXAMPLE
• 8x = 1

3

Rewriting this as a logarithm equation, we get x = log8
1
3 . Now we can use

the change of base formula.

x = log8
1

3
= ln 1

3

ln 8
≈ −0.5283
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PRACTICE
Evaluate the logarithms. Give your solution accurate to four decimal places.

1. log6 25

2. log20 5

Solve for x. Give your solutions accurate to four decimal places.

3. 3x+2 = 12

4. 153x−2 = 10

5. 243x+5 = 9

SOLUTIONS
1. log6 25 = ln 25

ln 6
≈ 3.218875825

1.791759469
≈ 1.7965

= log 25

log 6
≈ 1.397940009

0.7781525
≈ 1.7965

2. log20 5 = ln 5

ln 20
≈ 1.609437912

2.995732274
≈ 0.5372

= log 5

log 20
≈ 0.698970004

1.301029996
≈ 0.5372

3. Rewrite 3x+2 = 12 as a logarithm equation: x + 2 = log3 12

x + 2 = log3 12 Use the change of base formula.

= ln 12

ln 3

x = −2 + ln 12

ln 3
≈ 0.2619
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4. Rewrite 153x−2 = 10 as a logarithm equation: 3x − 2 = log15 10

3x − 2 = log15 10

= ln 10

ln 15
Use the change of base formula.

3x = 2 + ln 10

ln 15

x = 1

3

(

2 + ln 10

ln 15

)

≈ 0.9501

5. Rewrite 243x+5 = 9 as a logarithm equation: 3x + 5 = log24 9.

3x + 5 = log24 9 Use the change of base formula.

= ln 9

ln 24

3x = −5 + ln 9

ln 24

x = 1

3

(

−5 + ln 9

ln 24

)

≈ −1.4362

When both sides of an exponential equation have an exponent, we will use
another method to solve for x. We will take either the natural log or the common
log of each side and will use the third logarithm property to move the exponents
in front of the logarithm. Once we have used the third logarithm property, we will
perform the following steps to find x.

1. Distribute the logarithms.
2. Collect the x terms on one side of the equation and the non-x terms on the

other side.
3. Factor x.
4. Divide both sides of the equation by x’s coefficient (found in Step 3).
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EXAMPLES
• 32x = 2x+1

We will begin by taking the natural log of each side.

ln 32x = ln 2x+1 Use the third log property.

2x ln 3 = (x + 1) ln 2

2x ln 3 = x ln 2 + ln 2 Distribute ln 2 over (x + 1).

Now we want both terms with an x in them on one side of the equation and
the term without x in it on the other side. This means that we will move x ln 2
to the left side of the equation.

2x ln 3 − x ln 2 = ln 2 Factor x on the left side.

x(2 ln 3 − ln 2) = ln 2 Divide each side by 2 ln 3 − ln 2.

x = ln 2

2 ln 3 − ln 2
We are finished here.

x = ln 2

ln 9
2

This is easier to calculate.

x ≈ 0.4608

• 10x+4 = 63x−1

Because one of the bases is 10, we will use common logarithms. This will
simplify some of the steps. We will begin by taking the common log of both
sides.

log 10x+4 = log 63x−1 The left side simplifies to x + 4.

x + 4 = log 63x−1 Use the third log property.

x + 4 = (3x − 1) log 6 Distribute log 6 in (3x − 1).

x + 4 = 3x log 6 − log 6 Collect x terms on one side.

x − 3x log 6 = −4 − log 6 Factor x on the left.

x(1 − 3 log 6) = −4 − log 6 Divide both sides by 1 − 3 log 6.

x = −4 − log 6

1 − 3 log 6
= −4 − log 6

1 − log 216
≈ 3.5806
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PRACTICE
Solve for x. Give your solutions accurate to four decimal places.

1. 4x = 5x−1

2. 62x = 83x−1

3. 102−x = 5x+3

SOLUTIONS
1. Take the natural log of each side of 4x = 5x−1.

ln 4x = ln 5x−1 Use the third log property.

x ln 4 = (x − 1) ln 5

x ln 4 = x ln 5 − ln 5 This is Step 1.

x ln 4 − x ln 5 = − ln 5 This is Step 2.

x(ln 4 − ln 5) = − ln 5 This is Step 3.

x = − ln 5

ln 4 − ln 5
This is Step 4.

≈ 7.2126

2. Take the natural log of each side of 62x = 83x−1.

ln 62x = ln 83x−1 Use the third log property.

2x ln 6 = (3x − 1) ln 8

2x ln 6 = 3x ln 8 − ln 8 This is Step 1.

2x ln 6 − 3x ln 8 = − ln 8 This is Step 2.

x(2 ln 6 − 3 ln 8) = − ln 8 This is Step 3.

x = − ln 8

2 ln 6 − 3 ln 8
This is Step 4.

≈ 0.7833
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3. Take the common log of each side of 102−x = 5x+3. This lets us use the
fact that log 102−x = 2 − x.

log 102−x = log 5x+3

2 − x = (x + 3) log 5

2 − x = x log 5 + 3 log 5 This is Step 1.

−x − x log 5 = −2 + 3 log 5 This is Step 2.

x(−1 − log 5) = −2 + 3 log 5 This is Step 3.

x = −2 + 3 log 5

−1 − log 5
This is Step 4.

≈ −0.0570

Applications of Logarithm and
Exponential Equations
Now that we can solve exponential and logarithmic equations, we can solve many
applied problems. We will need the compound growth formula for an investment
earning interest rate r , compounded n times per year for t years, A(t) = P(1+ r

n
)nt

and the exponential growth formula for a population growing at the rate of r per
year for t years, n(t) = n0e

rt . In the problems below, we will be looking for the
time required for an investment to grow to a specified amount.

EXAMPLES
• How long will it take for $1000 to grow to $1500 if it earns 8% annual

interest, compounded monthly?
In the formula A(t) = P(1 + r

n
)nt we know A(t) = 1500, P = 1000,

r = 0.08, and n = 12. We do not know t .

1500 = 1000

(

1 + 0.08

12

)12t

We will solve this equation for t and will round up to the nearest month.

1500 = 1000

(

1 + 0.08

12

)12t

Divide both sides by 1000.



CHAPTER 9 Exponents and Logarithms 247

1.5 =
(

1 + 0.08

12

)12t

1.5 = 1.0066712t Take the natural log of both sides.

ln 1.5 = ln 1.0066712t Use the third log property.

ln 1.5 = 12t ln 1.00667 Divide both sides by 12 ln 1.00667.

ln 1.5

12 ln 1.00667
= t

t ≈ 5.085

In five years and one month, the investment will grow to about $1500.
• How long will it take an investment to double if it earns 61

2% annual interest,
compounded daily?
An investment of $P doubles when it grows to $2P, so let A(t) = 2P in the
compound growth formula.

2P = P

(

1 + 0.065

365

)365t

Divide both sides by P .

2 =
(

1 + 0.065

365

)365t

2 = 1.000178365t Take the natural log of both sides.

ln 2 = ln 1.000178365t Use the third log property.

ln 2 = 365t ln 1.000178 Divide both sides by 365 ln 1.000178.

ln 2

365 ln 1.000178
= t

t ≈ 10.66

In about 10 years, 8 months, the investment will double.

PRACTICE
Give your answers rounded up to the nearest compounding period.

1. How long will it take $2000 to grow to $40,000 if it earns 9% annual
interest, compounded annually?
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2. How long will it take for $5000 to grow to $7500 if it earns 6 1
2% annual

interest, compounded weekly?

3. How long will it take an investment to double if it earns 61
4% annual interest,

compounded quarterly?

SOLUTIONS
1. 40,000 = 2000(1 + 0.09)t

20 = 1.09t

ln 20 = ln 1.09t

ln 20 = t ln 1.09

ln 20

ln 1.09
= t

34.76 ≈ t

The $2000 investment will grow to $40,000 in 35 years.

2. 7500 = 5000

(

1 + 0.065

52

)52t

1.5 = 1.0012552t

ln 1.5 = ln 1.0012552t

ln 1.5 = 52t ln 1.00125

ln 1.5

52 ln 1.00125
= t

t ≈ 6.24

In 6 years, 13 weeks (0.24 × 52 = 12.48 rounds up to 13), the $5000
investment will grow to $7500.

3. 2P = P

(

1 + 0.0625

4

)4t

2 = 1.0156254t

ln 2 = ln 1.0156254t

ln 2 = 4t ln 1.015625



CHAPTER 9 Exponents and Logarithms 249

ln 2

4 ln 1.015625
= t

t ≈ 11.18

In 11 years and 3 months (0.18 rounded up to the nearest quarter is 0.25,
one quarter is 3 months), the investment will double.

This method works with population models where the population (either of
people, animals, insects, bacteria, etc.) grows or decays at a certain percent
every period. We will use the growth formula n(t) = n0e

rt . If the population is
decreasing, we will use the decay formula, n(t) = n0e

−rt . Because we will be
working with the base e, instead of taking the log of both sides, we will be rewrit-
ing the equations as log equations (this is equivalent to taking the natural log of
both sides).

EXAMPLES
• A school district estimates that its student population will grow about 5% per

year for the next 15 years. How long will it take the student population to
grow from the current 8000 students to 12,000?
We will solve for t in the equation 12,000 = 8000e0.05t .

12,000 = 8000e0.05t Divide both sides by 8000.

1.5 = e0.05t Rewrite as a log.

0.05t = ln 1.5

t = ln 1.5

0.05
≈ 8.1

The population is expected to reach 12,000 in about 8 years.
• The population of a certain city in the year 2004 is about 650,000. If it is

losing 2% of its population each year, when will the population decline to
500,000?
Because the population is declining, we will use the formula n(t) = n0e

−rt .
Solve for t in the equation 500,000 = 650,000e−0.02t .

500,000 = 650,000e−0.02t

10

13
= e−0.02t Rewrite as a log.
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−0.02t = ln
10

13

t = ln 10
13

−0.02
≈ 13.1

The population is expected to drop to 500,000 around the year 2017.
• At 2:00 a culture contained 3000 bacteria. They are growing at the rate of

150% per hour. When will there be 5400 bacteria in the culture?
A growth rate of 150% per hour means that r = 1.5 and that t is measured
in hours.

5400 = 3000e1.5t

1.8 = e1.5t

1.5t = ln 1.8

t = ln 1.8

1.5
≈ 0.39

At about 2:24 (0.39 × 60 = 23.4 minutes) there will be 5400 bacteria in the
culture.

PRACTICE
1. In 2003 a rural area had 1800 birds of a certain species. If the bird population

is increasing at the rate of 15% per year, when will it reach 3000?

2. In 2002, the population of a certain city was 2 million. If the city’s population
is declining at the rate of 1.8% per year, when will it fall to 1.5 million?

3. At 9:00 a petrie dish contained 5000 bacteria. The bacteria population is
growing at the rate of 160% per hour. When will the dish contain 20,000
bacteria?

SOLUTIONS
1. 3000 = 1800e0.15t

5

3
= e0.15t
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0.15t = ln
5

3

t = ln 5
3

0.15
≈ 3.4

The bird population should reach 3000 in the year 2006.

2. 1.5 = 2e−0.018t

0.75 = e−0.018t

−0.018t = ln 0.75

t = ln 0.75

−0.018
≈ 16

In the year 2018, the population will decline to 1.5 million.

3. 20,000 = 5000e1.6t

4 = e1.6t

1.6t = ln 4

t = ln 4
1.6 ≈ 0.87

At about 9:52 (0.87 × 60 = 52.2 minutes), there will be 20,000 bacteria in
the dish.

Finding the Growth Rate
We can find the growth rate of a population if we have reason to believe that
it is growing exponentially and if we know the population level at two different
times. We will use the first population level as n0. Because we will know another
population level, we have a value for n(t) and for t . This means that the equation
n(t) = n0e

rt will have only one unknown, r . We can find r using natural logarithms
in the same way we found t in the problems above.

EXAMPLES
• The population of a country is growing exponentially. In the year 2000, it

was 10 million and in 2005, it was 12 million. What is the growth rate?
In the year t = 0 (2000), the population was 10 million, so n0 = 10.
The growth formula becomes n(t) = 10ert . When t = 5 (the year 2005),
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the population is 12 million, so n(t) = 12. We will solve the equation
12 = 10e5r for r .

12 = 10e5r

1.2 = e5r

5r = ln 1.2

r = ln 1.2

5
≈ 0.036

The country’s population is growing at the rate of 3.6% per year.
• Suppose a bacteria culture contains 2500 bacteria at 1:00 and at 1:30 there

are 6000. What is the hourly growth rate?
Because we are asked to find the hourly growth rate, t must be measured
in hours and not minutes. Initially, at t = 0, the population is 2500, so
n0 = 2500. Half an hour later, the population is 6000, so t = 0.5 and
n(t) = 6000. We will solve for r in the equation 6000 = 2500e0.5r .

6000 = 2500e0.5r

2.4 = e0.5r

0.5r = ln 2.4

r = ln 2.4

0.5
≈ 1.75

The bacteria are increasing at the rate of 175% per hour.
• A certain species of fish is introduced in a large lake. Wildlife biologists

expect the fish’s population to double every four months for the first few
years. What is the annual growth rate?
If n0 represents the fish’s population when first put in the lake, then it will
double to 2n0 after t = 4 months = 4

12 years = 1
3 years. The growth formula

becomes 2n0 = n0e
1
3 r . This equation has two unknowns, n0 and r , not one.

But after we divide both sides of the equation by n0, r becomes the only
unknown.

2n0 = n0e
1
3 r

2 = e
1
3 r
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1

3
r = ln 2

r = 3 ln 2 ≈ 2.08

The fish population is expected to grow at the rate of 208% per year.

PRACTICE
1. The population of school children in a city grew from 125,000 to 200,000

in five years. Assuming exponential growth, find the annual growth rate for
the number of school children.

2. A corporation that owns a chain of retail stores operated 500 stores in 2000
and 700 stores in 2003. Assuming that the number of stores is growing
exponentially, what is its annual growth rate?

3. At 10:30, 1500 bacteria are present in a culture. At 11:00, 3500 are present.
What is the hourly growth rate?

SOLUTIONS
1. 200,000 = 125,000e5r

1.6 = e5r

5r = ln 1.6

r = ln 1.6

5
≈ 0.094

The population of school children grew at the rate of 9.4% per year.

2. 700 = 500e3r

1.4 = e3r

3r = ln 1.4

r = ln 1.4

3
≈ 0.112

The number of stores is growing at the rate of 11.2% per year.

3. 3500 = 1500e0.5r

7

3
= e0.5r
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0.5r = ln
7

3

r = ln 7
3

0.5
≈ 1.69

The bacteria are increasing at the rate of 169% per hour.

Radioactive Decay
Some radioactive substances decay at the rate of nearly 100% per year and others at
nearly 0% per year. For this reason, we use the half-life of a radioactive substance to
describe how fast its radioactivity decays. For example, bismuth-210 has a half-life
of 5 days. After 5 days, 16 grams of bismuth-210 decays to 8 grams of bismuth-
210 (and 8 grams of another substance); after 10 days, 4 grams remain, and after
15 days, only 2 grams remains. We can use logarithms and the half-life to find
the rate of decay. We will use the decay formula n(t) = n0e

−rt in the following
problems.

EXAMPLES
• Find the daily decay rate of bismuth-210.

Because its half-life is 5 days, at t = 5, one-half of n0 remains, so
n(t) = 1

2n0.

1

2
n0 = n0e

−5r Divide both sides by n0.

1

2
= e−5r Rewrite as a log.

−5r = ln
1

2

r = ln 1
2

−5
≈ 0.1386

Bismuth-210 decays at the rate of 13.86% per day.
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• The half-life of radium-226 is 1600 years. What is its annual decay rate?

1

2
n0 = n0e

−1600r Divide both sides by n0.

1

2
= e−1600r Rewrite as a log.

−1600r = ln
1

2

r = ln 1
2

−1600
≈ 0.000433

The decay rate for radium-226 is about 0.0433% per year.

In the same way we found the decay rate from the half-life, we can find the
half-life from the decay rate. In the formula 1

2n0 = n0e
−rt , we know r and want to

find t .

EXAMPLE
• Suppose a radioactive substance decays at the rate of 2.5% per hour. What is

its half-life?

1

2
n0 = n0e

−0.025t Divide both sides by n0.

1

2
= e−0.025t Rewrite as a log.

−0.025t = ln
1

2

t = ln 1
2

−0.025
≈ 27.7

The half-life is 27.7 hours.

PRACTICE
1. Suppose a substance has a half-life of 45 days. Find its daily decay

rate.
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2. The half-life of lead-210 is 22.3 years. Find its annual decay rate.

3. Suppose the half-life for a substance is 1.5 seconds. What is its decay rate
per second?

4. Suppose a radioactive substance decays at the rate of 0.1% per day. What
is its half-life?

5. A radioactive substance decays at the rate of 0.02% per year. What is its
half-life?

SOLUTIONS

1.
1

2
n0 = n0e

−45r

1

2
= e−45r

−45r = ln
1

2

r = ln 1
2

−45
≈ 0.0154

The decay rate is 1.5% per day.

2.
1

2
n0 = n0e

−22.3r

1

2
= e−22.3r

−22.3r = ln
1

2

r = ln 1
2

−22.3
≈ 0.0311

The decay rate is 3.1% per year.

3.
1

2
n0 = n0e

−1.5r

1

2
= e−1.5r
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−1.5r = ln
1

2

r = ln 1
2

−1.5
≈ 0.462

The substance decays at the rate of 46.2% per second.

4.
1

2
n0 = n0e

−0.001t

1

2
= e−0.001t

−0.001t = ln
1

2

t = ln 1
2

−0.001
≈ 693.1

The half-life is 693 days.

5.
1

2
n0 = n0e

−0.0002t

1

2
= e−0.0002t

−0.0002t = ln
1

2

t = ln 1
2

−0.0002
≈ 3466

The half-life is about 3466 years.

All living things have carbon-14 in them. Once they die, the carbon-14 is not
replaced and begins to decay. The half-life of carbon-14 is approximately 5700
years. This information is used to find the age of many archeological finds. We
will first find the annual decay rate for carbon-14 then will answer some typical
carbon-14 dating questions.

1

2
n0 = n0e

−5700r

1

2
= e−5700r
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−5700r = ln
1

2

r = ln 1
2

−5700
≈ 0.000121605

Carbon-14 decays at the rate of 0.012% per year.

EXAMPLES
• How long will it take for 80% of the carbon-14 to decay in an animal after it

has died?
If 80% of the initial amount has decayed, then 20% remains, or 0.20n0.

0.20n0 = n0e
−0.00012t

0.20 = e−0.00012t

−0.00012t = ln 0.20

t = ln 0.20

−0.00012
≈ 13, 412

After about 13,400 years, 80% of the carbon-14 will have decayed.
• Suppose a bone is discovered and has 60% of its carbon-14. How old is the

bone? 60% of its carbon-14 is 0.60n0.

0.60n0 = n0e
−0.00012t

0.60 = e−0.00012t

−0.00012t = ln 0.60

t = ln 0.60

−0.00012
≈ 4257

The bone is about 4260 years old.

• Suppose an animal dies today. How much of its carbon-14 will remain after
250 years?

n(250) = n0e
−0.00012(250) ≈ 0.97n0

About 97% of its carbon-14 will remain after 250 years.
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PRACTICE
1. Suppose a piece of wood from an archeological dig is being carbon-14

dated, and found to have 70% of its carbon-14 remaining. Estimate the age
of the piece of wood.

2. How long would it take for an object to lose 25% of its carbon-14?

3. Suppose a tree fell 400 years ago. How much of its carbon-14 remains?

SOLUTIONS
1.

0.70n0 = n0e
−0.00012t

0.70 = e−0.00012t

−0.00012t = ln 0.70

t = ln 0.70

−0.00012
≈ 2972

The wood is about 2970 years old.

2. An object has lost 25% of its carbon-14 when 75% of it remains.

0.75n0 = n0e
−0.00012t

0.75 = e−0.00012t

−0.00012t = ln 0.75

t = ln 0.75

−0.00012
≈ 2397

After about 2400 years, an object will lose 25% of its carbon-14.

3.
n(400) = n0e

−0.00012(400) ≈ 0.953n0

About 95% of its carbon-14 remains after 400 years.

CHAPTER 9 REVIEW
1. If $10,000 is invested earning 6% annual interest, compounded quarterly,

what will it be worth after eight years?

(a) $15,938.48 (b) $16,103.24 (c) $11,264.93 (d) $10,613.64
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2. What is the present value of $50,000 due in 10 years, earning 8% annual
interest, compounded annually?

(a) $107,946.25
(c) $23,159.67

(b) $19,277.16
(d) $27,013.44

3. Rewrite loga x = w as an exponential equation.

(a) aw = x (b) ax = w (c) xa = w (d) wa = x

4. Rewrite 7m = n as a logarithmic equation.

(a) logn 7 = m (b) log7 m = n (c) logm 7 = n (d) log7 n = m

5. eln 7 =
(a) ln 7 (b) 7 (c) e7 (d) (ln 7)e

6. Rewrite as a single logarithm.

ln x − 2 ln y + ln z

(a) ln
xz

y2 (b) ln

(
xz

y

)2
(c) ln

xz

2y
(d)

ln xz

2 ln y

7. Expand the logarithm.

log5
3

√

ab2

c

(a) 3
√

log5 a + log5 b2 − log5 c

(b)
1

3
log5 a + 2 log5 b − log5 c

(c) 3
√

log5 a + 3
√

log5 b2 − 3
√

log5 c

(d)
1

3
[log5 a + 2 log5 b − log5 c]

8. Solve for x: log6(x − 1) = 2.

(a) x = 3 (b) x = 37 (c) x = 13 (d) x = 65

9. Solve for x: log4(x + 1) + log4(x − 1) = log4 8.

(a) x = 4 (b) x = ±3 (c) x = 3 (d) No solution
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10. What is the domain for f (x) = log(x + 4)?

(a) (−∞, −4) ∪ (−4, ∞)

(c) (−4, ∞)

(b) (−∞, −4)

(d) [−4, ∞)

11. Solve for x: 3x+1 = 15.

(a) x = −1 + ln 3

ln 15
(c) x = 4

(b) x = −1 + ln 15

ln 3
(d) No solution

12. How long will it take for an investment to double if it earns 10% annual
interest, compounded quarterly?

(a) About 4 years
(c) About 6 years

(b) About 5 years
(d) About 7 years

13. The half-life of a substance is about 40 years. What is its annual decay
rate?

(a) About 1% (b) About 1.5% (c) About 1.7% (d) About 2.1%

SOLUTIONS
1. B 2. C 3. A 4. D 5. B 6. A
7. D 8. B 9. C 10. B 11. B 12. D 13. C
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CHAPTER

Systems of
Equations and
Inequalities

A system of equations is a collection of two or more equations whose graphs might
or might not intersect (share a common point or points). If the graphs do intersect,
then we say that the solution to the system is the point or points where the graphs
intersect. For example, the solution to the system

{
x + y = 4

3x − y = 0

is (1, 3) because the point (1, 3) is on both graphs. See Figure 10.1.

262
xi
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Fig. 10.1.

We say that (1, 3) satisfies the system because if we let x = 1 and y = 3 in each
equation, they will both be true.

1 + 3 = 4 This is a true statement.

3(1) − 3 = 0 This is a true statement.

There are several methods for solving systems of equations. One of them is by
sketching the graphs and seeing where, if anywhere, the graphs intersect. Even
with a graphing calculator, though, these solutions might only be approximations.
When the equations are lines, matrices can be used. Graphing calculators are useful
for these, too. We will use two algebraic methods in this chapter and two matrix
methods in the next. One of the algebraic methods is substitution and the other is
elimination by addition. Both methods will work with many kinds of systems of
equations, but we will start out with systems of linear equations.

Substitution works by solving for one variable in one equation and making a
substitution in the other equation. Usually, it does not matter which variable we
use or which equation we begin with, but some choices are easier than others.

EXAMPLES
Solve the systems of equations. Put your solutions in the form of a point, (x, y).

•
{

x + y = 5

−2x + y = −1

We have four places to start.

1. Solve for x in the first equation: x = 5 − y
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2. Solve for y in the first equation: y = 5 − x

3. Solve for x in the second equation: x = 1
2 + 1

2y

4. Solve for y in the second equation: y = 2x − 1

The third option looks like it would be the most trouble, so we will use one
of the others. We will use the first option. Because x = 5 − y came from the
first equation, we will substitute 5 − y for x in the second equation. Then
−2x + y = −1 becomes −2(5 − y) + y = −1. Now we have one equation
with one variable.

−2(5 − y) + y = −1

−10 + 2y + y = −1

3y = 9

y = 3

Now that we know y = 3, we could use any of the equations above to find
x. We know that x = 5 − y, so we will use this.

x = 5 − 3 = 2

The solution is x = 2 and y = 3 or the point (2, 3). It is a good idea to check
the solution.

2 + 3 = 5 This is true.

−2(2) + 3 = −1 This is true.

•
{

4x − y = 12 A

3x + y = 2 B

We will solve for y in equation B: y = 2−3x. Next we will substitute 2−3x

for y in equation A and solve for x.

4x − y = 12

4x − (2 − 3x) = 12

4x − 2 + 3x = 12

7x = 14

x = 2

Now that we know x = 2, we will put x = 2 in one of the above equations. We
will use y = 2 − 3x: y = 2 − 3(2) = −4. The solution is x = 2, y = −4, or
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Fig. 10.2.

(2, −4). The graphs in Figure 10.2 verify that the solution (2, −4) is on both
lines.

•





y = 4x + 1 A

y = 3x + 2 B

Both equations are already solved for y, so all we need to do is to set them
equal to each other.

A = B

4x + 1 = 3x + 2

x = 1

Use either equation A or equation B to find y when x = 1. We will use A:
y = 4x + 1 = 4(1) + 1 = 5. The solution is x = 1 and y = 5, or (1, 5).
We can see from the graphs in Figure 10.3 that (1, 5) is the solution to the
system.

Solving a system of equations by substitution can be messy when none of the
coefficients is 1. Fortunately, there is another way. We can always add the two
equations to eliminate one of the variables. Sometimes, though, we need to multiply
one or both equations by a number to make it work.
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Fig. 10.3.

EXAMPLE
Solve the systems of equations. Put your solutions in the form of a point, (x, y).

•
{

2x − 3y = 16 A
5x + 3y = −2 B

Add the equations by adding like terms. Because we will be adding −3y to
3y, the y-term will cancel, leaving one equation with only one variable.

2x − 3y = 16

5x + 3y = −2

7x + 0y = 14

x = 2

We can put x = 2 into either A or B to find y. We will put x = 2 into A.

2x − 3y = 16

2(2) − 3y = 16

−3y = 12

y = −4

The solution is (2, −4).
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Sometimes we need to multiply one or both equations by some number or num-
bers so that one of the variables cancels. Multiplying both sides of any equation by
a nonzero number never changes the solution.

EXAMPLES

•
{

3x + 6y = −12 A

2x + 6y = −14 B

Because the coefficients on y are the same, we only need to make one of
them negative. Multiply either A or B by −1, then add.

−3x − 6y = 12 −A

2x + 6y = −14 +B

−x = −2

x = 2

3(2) + 6y = −12 Put x = 2 in A

y = −3

The solution is (2, −3).

•
{

2x + 7y = 1 A

4x − 2y = 18 B

Several options will work. We could multiply A by −2 so that we could add
−4x (in −2A) to 4x in B. We could multiply A by 2 and multiply B by 7 so
that we could add 14y (in 2A) to −14y (in 7B). We could also divide B by
−2 so that we could add 2x (in A) to −2x (in −1

2B). We will add −2A + B.

−4x − 14y = −2 −2A

4x − 2y = 18 +B

−16y = 16

y = −1

2x + 7(−1) = 1 Put y = −1 in A

x = 4

The solution is (4, −1).

Both equations in each of the following systems will need to be changed to
eliminate one of the variables.
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EXAMPLES

•
{

8x − 5y = −2 A

3x + 2y = 7 B

There are many options. Some are 3A − 8B, −3A + 8B, and 2A + 5B. We
will compute 2A + 5B.

16x − 10y = −4 2A

15x + 10y = 35 +5B

31x = 31

x = 1

8(1) − 5y = −2 Put x = 1 in A

y = 2

The solution is (1, 2).

•
{

2
3x − 1

4y = 25
72 A

1
2x + 2

5y = − 1
30 B

First, we will eliminate the fractions. The LCD for A is 72, and the LCD for
B is 30.

48x − 18y = 25 72A

15x + 12y = −1 30B

Now we will multiply the first equation by 2 and the second by 3.

96x − 36y = 50

45x + 36y = −3

141x = 47

x = 47

141
= 1

3

96

(
1

3

)

− 36y = 50

y = −1

2

The solution is (1
3 , −1

2).
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Applications of Systems of Equations
Systems of two linear equations can be used to solve many kinds of word problems.
In these problems, two facts will be given about two variables. Each pair of facts
can be represented by a linear equation. This gives us a system of two equations
with two variables.

EXAMPLES
• A movie theater charges $4 for each children’s ticket and $6.50 for each

adult’s ticket. One night 200 tickets were sold, amounting to $1100 in ticket
sales. How many of each type of ticket was sold?

Let x represent the number of children’s tickets sold and y, the number of
adult tickets sold. One equation comes from the fact that a total of 200 adult
and children’s tickets were sold, giving us x + y = 200. The other equation
comes from the fact that the ticket revenue was $1100. The ticket revenue
from children’s tickets is 4x, and the ticket revenue from adult tickets is
6.50y. Their sum is 1100 giving us 4x + 6.50y = 1100.

{
4x + 6.50y = 1100 A

x + y = 200 B

We could use either substitution or addition to solve this system. Substitution
is a little faster. We will solve for x in B.

x = 200 − y

4(200 − y) + 6.50y = 1100 Put 200 − y into A

800 − 4y + 6.50y = 1100

y = 120

x = 200 − y = 200 − 120 = 80

Eighty children’s tickets were sold, and 120 adult tickets were sold.
• A farmer had a soil test performed. He was told that his field needed 1080

pounds of MineralAand 920 pounds of Mineral B. Two mixtures of fertilizers
provide these minerals. Each bag of Brand I provides 25 pounds of Mineral
A and 15 pounds of Mineral B. Brand II provides 20 pounds of Mineral A
and 20 pounds of Mineral B. How many bags of each brand should he buy?

Let x represent the number of bags of Brand I and y represent the number
of bags of Brand II. Then the number of pounds of Mineral A he will get from
Brand I is 25x and the number of pounds of Mineral B is 15x. The number
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of pounds of Mineral A he will get from Brand II is 20y and the number
of pounds of Mineral B is 20y. He needs 1080 pounds of Mineral A, 25x

pounds will come from Brand I and 20y will come from Brand II. This gives
us the equation 25x + 20y = 1080. He needs 920 pounds of Mineral B, 15x

will come from Brand I and 20y will come from Brand II. This gives us the
equation 15x + 20y = 920.

{
25x + 20y = 1080 A
15x + 20y = 920 B

We will compute A − B.

25x + 20y = 1080 A

−15x − 20y = −920 −B

10x = 160

x = 16

25(16) + 20y = 1080

y = 34

He needs 16 bags of Brand I and 34 bags of Brand II.
• A furniture manufacturer has some discontinued fabric and trim in stock. He

can use them on sofas and chairs. There are 160 yards of fabric and 110 yards
of trim. Each sofa takes 6 yards of fabric and 4.5 yards of trim. Each chair
takes 4 yards of fabric and 2 yards of trim. How many sofas and chairs should
be produced in order to use all the fabric and trim?
Let x represent the number of sofas to be produced and y, the number of
chairs. The manufacturer needs to use 160 yards of fabric, 6x will be used
on sofas and 4y yards on chairs. This gives us the equation 6x + 4y = 160.
There are 110 yards of trim, 4.5x yards will be used on the sofas and 2y on
the chairs. This gives us the equation 4.5x + 2y = 110.

{
6x + 4y = 160 F

4.5x + 2y = 110 T
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We will compute F − 2T.

6x + 4y = 160 F

−9x − 4y = −220 −2T

−3x = −60

x = 20

6(20) + 4y = 160

y = 10

The manufacturer needs to produce 20 sofas and 10 chairs.

PRACTICE
For Problems 1–9, solve the systems of equations. Put your solutions in the form
of a point, (x, y).

1.
{

2x + 3y = 1 A

x − 2y = −3 B

2.
{

x + y = 3 A

x + 4y = 0 B

3.
{−2x + 7y = 19 A

2x − 4y = −10 B

4.
{

15x − y = 9 A

2x + y = 8 B

5.
{−3x + 2y = 12 A

4x + 2y = −2 B
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6.

{
6x − 5y = 1 A

3x − 2y = 1 B

7.

{
5x − 9y = −26 A

3x + 2y = 14 B

8.

{
7x + 2y = 1 A

2x + 3y = −7 B

9.

{
3
4x + 1

5y = 23
60 A

1
6x − 1

4y = −1
9 B

10. A grocery store sells two different brands of milk. The price for the name
brand is $3.50 per gallon, and the price for the store’s brand is $2.25
per gallon. On one Saturday, 4500 gallons of milk were sold for sales of
$12,875. How many of each brand were sold?

11. Agardener wants to add 39 pounds of NutrientAand 16 pounds of Nutrient
B to her garden. Each bag of Brand X provides 3 pounds of Nutrient A
and 2 pounds of Nutrient B. Each bag of Brand Y provides 4 pounds of
Nutrient A and 1 pound of Nutrient B. How many bags of each brand
should she buy?

12. A clothing manufacturer has 70 yards of a certain fabric and 156 buttons in
stock. It manufacturers jackets and slacks that use this fabric and button.
Each jacket requires 1 1

3 yards of fabric and 4 buttons. Each pair of slacks
required 13

4 yards of fabric and 3 buttons. How many jackets and pairs of
slacks should the manufacturer produce to use all the available fabric and
buttons?
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SOLUTIONS
1. Solve for x in B: x = −3 + 2y and substitute this for x in A.

2x + 3y = 1

2(−3 + 2y) + 3y = 1

−6 + 4y + 3y = 1

7y = 7

y = 1 Put y = 1 in x = −3 + 2y

x = −3 + 2(1) = −1

The solution is (−1, 1).

2. Solve for x in B: x = −4y and substitute this for x in A.

x + y = 3

−4y + y = 3

−3y = 3

y = −1 Put y = −1 in x = −4y

x = −4(−1) = 4

The solution is (4, −1).

3. We will add A + B.

−2x + 7y = 19 A

2x − 4y = −10 +B

3y = 9

y = 3

−2x + 7(3) = 19 Put y = 3 in A

x = 1

The solution is (1, 3).
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4.

15x − y = 9 A

2x + y = 8 +B

17x = 17

x = 1

15(1) − y = 9 Put x = 1 in A

y = 6

The solution is (1, 6).

5. We will add −A + B.

3x − 2y = −12 −A

4x + 2y = − 2 +B

7x = −14

x = −2

−3(−2) + 2y = 12 Put x = −2 in A

y = 3

The solution is (−2, 3).

6. We will compute A − 2B.

6x − 5y = 1 A

−6x + 4y = −2 −2B

−y = −1

y = 1

6x − 5(1) = 1 Put y = 1 in A

x = 1

The solution is (1, 1).
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7. We will compute 3A − 5B.

15x − 27y = −78 3A

−15x − 10y = −70 −5B

−37y = −148

y = 4

5x − 9(4) = −26 Put y = 4 in A

x = 2

The solution is (2, 4).

8. We will compute 3A − 2B.

21x + 6y = 3 3A

−4x − 6y = 14 −2B

17x = 17

x = 1

7(1) + 2y = 1 Put x = 1 in A

y = −3

The solution is (1, −3).

9. First clear the fractions.

45x + 12y = 23 60A

6x − 9y = −4 36B

Add 3 times the first to 4 times the second.

135x + 36y = 69

24x − 36y = −16

159x = 53

x = 53

159
= 1

3
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45

(
1

3

)

+ 12y = 23

y = 2

3

The solution is (1
3 , 2

3).

10. Let x represent the number of gallons of the name brand sold and y rep-
resent the number of gallons of the store brand sold. The total number of
gallons sold is 4500, giving us x + y = 4500. Revenue from the name
brand is 3.50x and is 2.25y for the store brand. Total revenue is $12,875,
giving us the equation 3.50x + 2.25y = 12,875.

{
x + y = 4,500

3.50x + 2.25y = 12,875

We will use substitution.

x = 4500 − y

3.50(4500 − y) + 2.25y = 12,875

y = 2300

x = 4500 − y = 4500 − 2300 = 2200

The store sold 2200 gallons of the name brand and 2300 gallons of the
store brand.

11. Let x represent the number of bags of Brand X and y, the number of bags
of Brand Y. She will get 3x pounds of Nutrient A from x bags of Brand X
and 4y pounds from y bags of Brand Y, so we need 3x + 4y = 39. She
will get 2x pounds of Nutrient B from x bags of Brand X and 1y pounds
of Nutrient B from y bags of Brand Y, so we need 2x + y = 16. We will
use substitution.

y = 16 − 2x

3x + 4(16 − 2x) = 39

x = 5

y = 16 − 2x = 16 − 2(5) = 6

The gardener needs to buy 5 bags of Brand X and 6 bags of Brand Y.
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12. Let x represent the number of jackets to be produced and y the number
of pairs of slacks. To use 70 yards of fabric, we need 11

3x + 13
4y = 70.

To use 156 buttons, we need 4x + 3y = 156.

1
1

3
x + 1

3

4
y = 70

4

3
x + 7

4
y = 70 F

4x + 3y = 156 B

16x + 21y = 840 12F

−16x − 12y = −624 −4B

9y = 216

y = 24

4x + 3(24) = 156

x = 21

The manufacturer should produce 21 jackets and 24 pairs of slacks.

Two lines in the plane either intersect in one point, are parallel, or are really the
same line. Until now, our lines have intersected in one point. When solving a system
of two linear equations that are parallel or are on the same line, both variables will
cancel and we are left with a true statement such as “3 = 3” or a false statement
such as “5 = 1.” We will get a true statement when the two lines are the same and
a false statement when they are parallel.

EXAMPLES

•
{

2x − 3y = 6 A

−4x + 6y = 8 B

4x − 6y = 12 2A

−4x + 6y = 8 +B

0 = 20
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Fig. 10.4.

This is a false statement, so the lines are parallel. They are sketched in
Figure 10.4

•
{

y = 2
3x − 1

2x − 3y = 3

We will use substitution.

2x − 3

(
2

3
x − 1

)

= 3

2x − 2x + 3 = 3

0 = 0

Because 0 = 0 is a true statement, these lines are the same.

When the system of equations is not a pair of lines, there could be no solutions,
one solution, or more than one solution. The same methods used for pairs of lines
will work with other kinds of systems.

EXAMPLES

•
{

y = x2 − 2x − 3 A

3x − y = 7 B

Elimination by addition would not work to eliminate x2 because B has no
x2 term to cancel x2 in A. Solving for x in B and substituting it in for x in A
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Fig. 10.5.

would work to eliminate x. Both addition and substitution will work to
eliminate y. We will use addition to eliminate y.

y = x2 − 2x − 3 A

3x − y = 7 +B

3x = x2 − 2x + 4

0 = x2 − 5x + 4

0 = (x − 1)(x − 4)

The solutions occur when x = 1 or x = 4. We need to find two y-values. We
will let x = 1 and x = 4 in A.

y = 12 − 2(1) − 3 = −4 (1, −4) is one solution.

y = 42 − 2(4) − 3 = 5 (4, 5) is the other solution.

We can see from the graphs in Figure 10.5 that these solutions are correct.

•
{

x2 + y2 = 25 A

y = −1
3x2 + 7 B

We could solve for x2 in A and substitute this in B. We cannot add the
equations to eliminate y or y2 because A does not have a y term to cancel y

in B and B does not have a y2 term to cancel y2 in A. We will move −1
3x2
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to the left side of B and multiply B by −3. Then we can add this to A to
eliminate x2.

1

3
x2 + y = 7 B

x2 + y2 = 25 A

−x2 − 3y = −21 −3B

y2 − 3y = 4

y2 − 3y − 4 = 0

(y − 4)(y + 1) = 0

The solutions occur when y = 4, −1. Put y = 4, −1 in A to find their
x-values.

x2 + 42 = 25

x2 = 9

x = ±3 (−3, 4) and (3, 4) are solutions.

x2 + (−1)2 = 25

x2 = 24

x = ±√
24 = ±2

√
6 (2

√
6, −1) and (−2

√
6, −1) are solutions.

•
{

x2 + y2 = 4 A

y = 2
x

B

Addition will not work on this system but substitution will. We will substitute
y = 2

x
for y in A.

x2 +
(

2

x

)2

= 4

x2 + 4

x2
= 4 The LCD is x2

x2
(

x2 + 4

x2

)

= x2(4)

x4 + 4 = 4x2
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x4 − 4x2 + 4 = 0

(x2 − 2)(x2 − 2) = 0

x2 = 2

x = ±√
2

We will put x = √
2 and x = −√

2 in y = 2
x

.

y = 2√
2

= 2
√

2√
2
√

2
= 2

√
2

2
= √

2; (
√

2,
√

2) is a solution.

y = 2

−√
2

= 2
√

2

−√
2
√

2
= 2

√
2

−2
= −√

2; (−√
2, −√

2) is a solution.

PRACTICE
Solve the systems of equations. Put your solutions in the form of a point, (x, y).

1.
{

y = x2 − 4 A

x + y = 8 B

2.
{

x2 + y2 + 6x − 2y = −5 A

y = −2x − 5 B

3.
{

x2 − y2 = 16 A

x2 + y2 = 16 B

4.
{

4x2 + y2 = 5 A

y = 1
x

B
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SOLUTIONS
1.

y = x2 − 4 A

−x − y = −8 −B

−x = x2 − 12

0 = x2 + x − 12 = (x + 4)(x − 3)

There are solutions for x = −4 and x = 3. Put these in A.

y = (−4)2 − 4 = 12; (−4, 12) is a solution.

y = 32 − 4 = 5; (3, 5) is a solution.

2. Substitute −2x − 5 for y in A.

x2 + (−2x − 5)2 + 6x − 2(−2x − 5) = −5

x2 + 4x2 + 20x + 25 + 6x + 4x + 10 = −5

5x2 + 30x + 40 = 0 Divide by 5

x2 + 6x + 8 = 0

(x + 4)(x + 2) = 0

There are solutions for x = −4 and x = −2. We will put these in B instead
of A because there is less computation to do in B.

y = −2(−4) − 5 = 3; (−4, 3) is a solution.

y = −2(−2) − 5 = −1; (−2, −1) is a solution.

3.

x2 − y2 = 16 A

x2 + y2 = 16 +B

2x2 = 32

x2 = 16

x = ±4
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Put x = 4 and x = −4 in A.

(−4)2 − y2 = 16 42 − y2 = 16

16 − y2 = 16 16 − y2 = 16

y2 = 0 y2 = 0

y = 0 y = 0

The solutions are (−4, 0) and (4, 0).

4. Substitute 1
x

for y in A.

4x2 +
(

1

x

)2

= 5

x2
(

4x2 + 1

x2

)

= x2(5)

4x4 + 1 = 5x2

4x4 − 5x2 + 1 = 0

(4x2 − 1)(x2 − 1) = 0

(2x − 1)(2x + 1)(x − 1)(x + 1) = 0

The solutions are x = ±1
2 (from 2x − 1 = 0 and 2x + 1 = 0) and x = ±1.

Put these in B.

y = 1
1
2

= 2; (
1

2
, 2) is a solution.

y = 1

−1
2

= −2; (−1

2
, −2) is a solution.

y = 1

1
= 1; (1, 1) is a solution.

y = 1

−1
= −1; (−1, −1) is a solution.
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Systems of Inequalities
The solution (if any) for a system of inequalities is usually a region in the plane.
The solution to a polynomial inequality (the only kind in this book) is the region
above or below the curve. We will begin with linear inequalities.

When sketching the graph for an inequality, we will use a solid graph for “≤”
and “≥” inequalities, and a dashed graph for “<” and “>” inequalities. We can
decide which side of the graph to shade by choosing any point not on the graph
itself. We will put this point into the inequality. If it makes the inequality true,
we will shade the side that has that point. If it makes the inequality false, we
will shade the other side. Every point in the shaded region is a solution to the
inequality.

EXAMPLES
• 2x + 3y ≤ 6

We will sketch the line 2x +3y = 6, using a solid line because the inequality
is “≤.”

Fig. 10.6.

We will always use the origin, (0, 0) in our inequalities unless the graph
goes through the origin. Does x = 0 and y = 0 make 2x + 3y ≤ 6 true?
2(0) + 3(0) ≤ 6 is a true statement, so we will shade the side that has the
origin.
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Fig. 10.7.

• x − 2y > 4

We will sketch the line x −2y = 4 using a dashed line because the inequality
is “>.”

Fig. 10.8.

Now we need to decide which side of the line to shade. When we put (0, 0)

in x − 2y > 4, we get the false statement 0 − 2(0) > 4. We need to shade
the side of the line that does not have the origin.
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Fig. 10.9.

• y < 3x

We use a dashed line to sketch the line y = 3x. Because the line goes through
(0, 0), we cannot use it to determine which side of the line to shade. This
is because any point on the line makes the equality true. We want to know
where the inequality is true. The point (1, 0) is not on the line, so we can use
it. 0 < 3(1) is true so we will shade the side of the line that has the point
(1, 0), which is the right side.

Fig. 10.10.

• x ≥ −3

The line x = −3 is a vertical line through x = −3. Because we want x ≥ −3
we will shade to the right of the line.
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Fig. 10.11.

• y < 2

The line y = 2 is a horizontal line at y = 2. Because we want y < 2, we
will shade below the line.

Fig. 10.12.

Graphing the solution region for nonlinear inequalities is done the same
way—graph the inequality, using a solid graph for “≤” and “≥” inequalities and
a dashed graph for “<” and “>” inequalities, then checking a point to see which
side of the graph to shade.
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EXAMPLES
• y ≤ x2 − x − 2

The equality is y = x2 −x −2 = (x −2)(x +1). The graph for this equation
is a parabola.

Fig. 10.13.

Because (0, 0) is not on the graph, we can use it to decide which side to
shade; 0 ≤ 02 − 0 − 2 is false, so we shade below the graph, the side that
does not contain (0, 0).

Fig. 10.14.
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• y > (x + 2)(x − 2)(x − 4)

When we check (0, 0) in the inequality, we get the false statement 0 >

(0 + 2)(0 − 2)(0 − 4). We will shade above the graph, the region that does
not contain (0, 0).

Fig. 10.15.

The solution (if there is one) to a system of two or more inequalities is the region
that is part of each solution for the individual inequalities. For example, if we
have a system of two inequalities and shade the solution to one inequality in blue
and the other in yellow, then the solution to the system would be the region in
green.

EXAMPLES

•
{

x − y < 3

x + 2y > 1

Sketch the solution for each inequality. The solution to x − y < 3 is the
region shaded vertically. The solution to x + 2y > 1 is the region shaded
horizontally.
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Fig. 10.16. Fig. 10.17.

The region that is in both solutions is above and between the lines.

Fig. 10.18.

•
{

y ≤ 4 − x2

x − 7y ≤ 4

Fig. 10.19.
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The solution to y ≤ 4 − x2 is the region shaded vertically. The solution to
x − 7y ≤ 4 is the region shaded horizontally. The region that is in both
solutions is above the line and inside the parabola.

Fig. 10.20.

Because a solid graph indicates that points on the graph are also solutions, to
be absolutely accurate, the correct solution uses dashed graphs for the part
of the graphs that are not on the border of the shaded region.

Fig. 10.21.

We will not quibble with this technicality here.

•






2x + y ≤ 5

x ≥ 0

y ≥ 0
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The inequalities x ≥ 0 and y ≥ 0 mean that we only need the top right corner
of the graph. These inequalities are common in word problems.

Fig. 10.22.

The solution to the system is the region in the top right corner of the graph
below the line 2x + y = 5.

Fig. 10.23.

Some systems of inequalities have no solution. In the following example, the
regions do not overlap, so there are no ordered pairs (points) that make both
inequalities true.

•
{

y ≥ x2 + 4

x − y ≥ 1
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Fig. 10.24.

It is easy to lose track of the solution for a system of three or more inequalities.
There are a couple of things you can do to make it easier. First, make sure the
graph is large enough, using graph paper if possible. Second, shade the solution for
each inequality in a different way, with different colors or shaded with horizontal,
vertical, and slanted lines. The solution (if there is one) would be shaded all different
ways. You could also shade one region at a time, erasing the part of the previous
region that is not part of the inequality.

EXAMPLES

•






x + y ≤ 4

x ≥ 1

y ≤ x

First we will shade the solution for x + y ≤ 4.

Fig. 10.25.
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The region for x ≥ 1 is the right of the line x = 1, so we will erase the region
to the left of x = 1.

Fig. 10.26.

The solution to y ≤ x is the region below the line y = x, so we will erase
the shading above the line y = x.
The shaded region in Figure 10.27 is the solution for the system.

Fig. 10.27.

•






y > x2 − 16

x < 2

y < −5

−x + y < −8
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We will begin with y > x2 − 16.

Fig. 10.28.

The solution to x < 2 is the region to the left of the line x = 2. We will erase
the shading to the right of x = 2.

Fig. 10.29.

The solution to y < −5 is the region below the line y = −5. We will erase
the shading above the line y = −5.
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Fig. 10.30. Fig. 10.31.

The solution to −x + y < −8 is the region below the line −x + y = −8,
so we will erase the shading above the line. The solution to the system is in
Figure 10.31.

PRACTICE
Graph the solution.

1. 2x − 4y < 4

2. x > 1

3. y ≤ −1

4. y ≤ x2 − 4

5. y > x3

6. y < |x|
7. y ≥ (x − 3)(x + 1)(x + 3)

8.

{
2x − y ≤ 6

x ≥ 3

9.

{
y > x2 + 2x − 3

x + y < 5

10.






2x + 3y ≥ 6

x ≥ 0

y ≥ 0
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11.






2x + y ≥ 1

−x + 2y ≤ 4

5x − 3y ≤ 15

SOLUTIONS

1.

Fig. 10.32.

2.

Fig. 10.33.

3.

Fig. 10.34.

4.

Fig. 10.35.
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5.

Fig. 10.36.

6.

Fig. 10.37.

7.

Fig. 10.38.

8.

Fig. 10.39.
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9.

Fig. 10.40.

10.

Fig. 10.41.

11.

Fig. 10.42.

CHAPTER 10 REVIEW
In some of the following problems, you will be asked to find quantities such as
x + 2y for a system of equations. Solve the system and put the solution in the
formula. For example, if the solution is x = 3 and y = 5, then x + 2y becomes
3 + 2(5) = 13.
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1. Find x + 2y for the system.
{

5x − 3y = 29

2x + 3y = −1

(a) −2 (b) −1 (c) 1 (d) 2

2. Find x + 2y for the system.
{

y = 2x + 7

y = −4x + 1

(a) 8 (b) 9 (c) 10 (d) 11

3. Find x + y for the system.
{

3x + 2y = 16

2x + 5y = 18

(a) 4 (b) 5 (c) 6 (d) 7

4. Find x + y for the system.
{

y = x2 − 3x − 4

x − y = −8

(a) 2 and 14 (b) 3 and 12 (c) 4 and 20 (d) 5 and 15

5. The graph in Figure 10.43 is the graph of which inequality?

(a) y > 2x + 2 (b) y ≥ 2x + 2 (c) y ≤ 2x + 2 (d) y < 2x + 2

6. The graph in Figure 10.44 is the graph of which inequality?

(a) y > x2 − 2x + 1
(c) y ≤ x2 − 2x + 1

(b) y ≥ x2 − 2x + 1
(d) y < x2 − 2x + 1

7. The graph in Figure 10.45 is the graph for which system?

(a)

{
y ≤ −x2 + 4x

y ≤ x

(c)

{
y ≥ −x2 + 4x

y ≥ x

(b)

{
y ≤ −x2 + 4x

y ≥ x

(d)

{
y ≥ −x2 + 4x

y ≤ x
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Fig. 10.43. Fig. 10.44.

Fig. 10.45.
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Fig. 10.46.

8. The graph in Figure 10.46 is the graph of which system?

(a)






y ≤ −x2 + 9

y ≥ −x

x ≥ 2

(b)






y ≤ −x2 + 9

y ≥ −x

x ≤ 2

(c)






y ≤ −x2 + 9

y ≤ −x

x ≥ 2

(d)






y ≤ −x2 + 9

y ≤ −x

x ≤ 2

SOLUTIONS
1. A 2. B 3. C 4. C 5. D 6. B 7. B 8 D



11
CHAPTER

Matrices

A matrix is an array of numbers or symbols made up of rows and columns. Matrices
are used in science and business to represent several variables and relationships at
once. For example, suppose there are three brands of fertilizers that provide different
levels of three minerals that a gardener might need. The following matrix shows
how much of each mineral is provided by each brand.

Mineral A Mineral B Mineral C

Brand X 6 2 1

Brand Y 2 1 2

Brand Z 1 3 6

We will learn some matrix arithmetic as well as two matrix methods used to solve
systems of linear equations. Most of the calculations are tedious. Fortunately graph-
ing calculators and computer programs (including spreadsheets) can do most of
them.

303
xi

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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Matrix Arithmetic
The numbers in a matrix are called cells or entries. A matrix’s size is given by the
number of rows and columns it has. For example, a matrix that has two rows and
three columns is called a 2 × 3 (pronounced “2 by 3”) matrix. A matrix that has the
same number of rows as columns is called a square matrix.

Two matrices need to be the same size before we can add them or find their
difference. The sum of two or more matrices is the sum of their corresponding
entries.

[
2 −1
3 4

]

+
[

5 9
4 1

]

=
[

2 + 5 −1 + 9
3 + 4 4 + 1

]

=
[

7 8
7 5

]

Subtract one matrix from another by subtracting their corresponding entries.
[

2 −1
3 4

]

−
[

5 9
4 1

]

=
[

2 − 5 −1 − 9
3 − 4 4 − 1

]

=
[−3 −10
−1 3

]

The scalar product of a matrix is a matrix whose entries are multiplied by a fixed
number.

3




6 −4
2 1
5 0



 =



3 · 6 3 · (−4)

3 · 2 3 · 1
3 · 5 3 · 0



 =



18 −12

6 3
15 0





It might seem that matrix multiplication is carried out the same way addition
and subtraction are—multiply their corresponding entries. This operation is not
very useful. The matrix multiplication operation that is useful requires more work.
Two matrices do not need to be the same size, but the number of columns of the
first matrix must be the same as the number of rows of the second matrix. This is
because we get the entries of the product matrix by multiplying the rows of the first
matrix by the columns of the second matrix. Here, we will multiply a 3 × 3 matrix
by a 3 × 2 matrix.



A B C

D E F

G H I



 ·



K L

M N

O P



 =



Row 1 × Column 1 Row 1 × Column 2
Row 2 × Column 1 Row 2 × Column 2
Row 3 × Column 1 Row 3 × Column 2





Row 1 of the first matrix is A B C and Column 1 of the second matrix is
K
M
O

. The

first entry on the product matrix is Row 1 × Column 1, which is this sum.

Row 1 Column 1
A × K

B × M

+ C × O
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Row 1 × Column 1 Row 1 × Column 2
Row 2 × Column 1 Row 2 × Column 2
Row 3 × Column 1 Row 3 × Column 2



 =



AK + BM + CO AL + BN + CP

DK + EM + FO DL + EN + FP

GK + HM + IO GL + HN + IP





EXAMPLES

•



1 −8 2
5 0 −1
2 1 1



 ·



4 −7

−2 1
3 0





=



1 · 4 + (−8)(−2) + 2 · 3 1(−7) + (−8)1 + 2 · 0
5 · 4 + 0(−2) + (−1)3 5(−7) + 0 · 1 + (−1)0
2 · 4 + 1(−2) + 1 · 3 2(−7) + 1 · 1 + 1 · 0



 =



26 −15
17 −35

9 −13





•
[−6 2

7 1

]

·
[

4 1 0
−3 5 2

]

=
[−6 · 4 + 2(−3) −6 · 1 + 2 · 5 −6 · 0 + 2 · 2

7 · 4 + 1(−3) 7 · 1 + 1 · 5 7 · 0 + 1 · 2

]

=
[−30 4 4

25 12 2

]

An identity matrix is a square matrix with 1s on the main diagonal (from the
upper left corner to the bottom right corner) and 0s everywhere else. The
following are the 2 × 2 and 3 × 3 identity matrices.

[
1 0
0 1

]

and




1 0 0
0 1 0
0 0 1





If we multiply any matrix by its corresponding identity matrix, we will get
the original matrix back.
[

1 0
0 1

]

·
[

3 6 −2
2 1 5

]

=
[

1 · 3 + 0 · 2 1 · 6 + 0 · 1 1(−2) + 0 · 5
0 · 3 + 1 · 2 0 · 6 + 1 · 1 0(−2) + 1 · 5

]

=
[

3 6 −2
2 1 5

]

Matrix multiplication is not commutative. Reversing the order of the mul-
tiplication usually gets a different matrix, if the multiplication is even
possible.

The matrix
[

1 −3
2 4

]

·
[

0 1
2 −1

]

=
[

1 · 0 + (−3)2 1 · 1 + (−3)(−1)

2 · 0 + 4 · 2 2 · 1 + 4(−1)

]

=
[−6 4

8 −2

]
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is not the same as

[
0 1
2 −1

]

·
[

1 −3
2 4

]

=
[

0 · 1 + 1 · 2 0(−3) + 1 · 4
2 · 1 + (−1)2 2(−3) + (−1)4

]

=
[

2 4
0 −10

]

.

PRACTICE
Compute the following.

1.

[
4 0 −2
1 1 5

]

−
[−3 −2 2

6 −4 3

]

2. 5

[
3 −6
2 4

]

3.

[
2 −5
3 8

]

·
[

1 4 −1
0 −1 2

]

4.




1 0 3
2 1 0
3 1 −2



 ·



4 2 1
1 −3 1
3 6 2





SOLUTIONS
1.

[
4 − (−3) 0 − (−2) −2 − 2
1 − 6 1 − (−4) 5 − 3

]

=
[

7 2 −4
−5 5 2

]

2.

[
5 · 3 5 · (−6)

5 · 2 5 · 4

]

=
[

15 −30
10 20

]

3.

[
2 · 1 + (−5)0 2 · 4 + (−5)(−1) 2(−1) + (−5)2
3 · 1 + 8 · 0 3 · 4 + 8(−1) 3(−1) + 8 · 2

]

=
[

2 13 −12
3 4 13

]

4.




1 · 4 + 0 · 1 + 3 · 3 1 · 2 + 0(−3) + 3 · 6 1 · 1 + 0 · 1 + 3 · 2
2 · 4 + 1 · 1 + 0 · 3 2 · 2 + 1(−3) + 0 · 6 2 · 1 + 1 · 1 + 0 · 2
3 · 4 + 1 · 1 + (−2)3 3 · 2 + 1(−3) + (−2)6 3 · 1 + 1 · 1 + (−2)2





=



13 20 7

9 1 3
7 − 9 0
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Row Operations and Inverses
We will use row operations to solve systems of equations and to find the multiplica-
tive inverse of a matrix. These operations are similar to the elimination by addition
method studied in Chapter 10. We will add two rows at a time (or some multiple
of the rows) to make a particular entry 0. For example in the matrix

[ 1 −3 2
4 1 6

]
we

might want to change the entry with a 4 in it to 0. To do so, we can multiply the
first row (Row 1) by −4 and add it to the second row (Row 2).

−4 Row 1 = −4( 1 − 3 2 ) = −4 12 − 8

−4 Row 1 −4 12 −8
+Row 2 4 1 6

New Row 2 0 13 −2

The matrix changes to

[
1 −3 2
0 13 −2

]

.

EXAMPLE
Using Row 2 and Row 3, change the entry with a 3 in it on the second row to 0.




1 8 5

−2 1 3
1 0 4





When adding the rows together, we need the last entry in each column to be oppo-
sites. If we multiply Row 2 by −4 and Row 3 by 3, we will be adding −4(3) to
3(4) to get 0. Multiplying Row 2 by 4 and Row 3 by −3 also works.

−4 Row 2 = −4(−2) −4(1) −4(3) = 8 −4 −12
+3 Row 3 = 3(1) 3(0) 3(4) = 3 0 12

New Row 2 11 −4 0

The new matrix is




1 8 5

11 −4 0
1 0 4



.

Our first use for row operations is to find the inverse of a matrix (if it has one).
If we multiply a matrix by its inverse, we get the corresponding identity matrix.
For example,

[
1 −2

−1 4

]

·
[

2 1
1
2

1
2

]

=
[

1 0
0 1

]

.
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To find the inverse of
[

A B
C D

]
, we first need to write the augmented matrix. An

augmented matrix for this method has the original matrix on the left and the identity
matrix on the right.

[
A B | 1 0
C D | 0 1

]

We will use row operations to change the left half of the matrix to the 2×2 identity
matrix. The inverse matrix will be the right half of the augmented matrix in Step 6.

Step 1 Use row operations to make the C entry a 0 for the new Row 2.
Step 2 Use row operations to make the B entry a 0 for the new Row 1.
Step 3 Write the next matrix.
Step 4 Divide Row 1 by the A entry.
Step 5 Divide Row 2 by the D entry.
Step 6 Write the new matrix. The inverse matrix will be the right half of this

matrix.

EXAMPLE
•

[
1 −2

−1 4

]

The augmented matrix is

[
1 −2 | 1 0

−1 4 | 0 1

]

.

Step 1 We want to change −1, the C entry, to 0.

Row 1 1 −2 1 0
+Row 2 −1 4 0 1

New Row 2 0 2 1 1

Step 2 We want to change −2, the B entry, to 0.

2 Row 1 2 −4 2 0
+ Row 2 −1 4 0 1

New Row 1 1 0 2 1

Step 3
[

1 0 | 2 1
0 2 | 1 1

]

Step 4 This step is not necessary because dividing Row 1 by 1, the A entry,
will not change any of its entries.

Step 5 Divide Row 2 by 2, the D entry. 1
2(0 2 1 1) = 0 1 1

2
1
2 .
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Step 6
[

1 0 | 2 1
0 1 | 1

2
1
2

]

The inverse matrix is

[
2 1
1
2

1
2

]

.

Finding the inverse of a 3 × 3 matrix takes a few more steps. Again, we will
begin by writing the augmented matrix.




A B C

D E F

G H I



 −→



A B C | 1 0 0
D E F | 0 1 0
G H I | 0 0 1





We will use row operations to turn the left half of the augmented matrix into the
3 × 3 identity matrix. There are many methods for getting from the first matrix to
the last. The method outlined below will always work, assuming the matrix has an
inverse.

Step 1 Use Row 1 and Row 2 to make the D entry to 0 for new Row 2.
Step 2 Use Row 1 and Row 3 to make the G entry to 0 for new Row 3.

Step 3 Write the next matrix.
[

Old Row 1
New Row 2
New Row 3

]

Step 4 Use Row 1 and Row 2 to make the B entry a 0 for new Row 1.
Step 5 Use Row 2 and Row 3 to make the H entry a 0 for new Row 3.

Step 6 Write the next matrix.
[

New Row 1
Old Row 2
New Row 3

]
.

Step 7 Use Row 1 and Row 3 to make the C entry a 0 for new Row 1.
Step 8 Use Row 2 and Row 3 to make the F entry a 0 for new Row 2.

Step 9 Write the next matrix.
[

New Row 1
New Row 2
Old Row 3

]

Step 10 Divide Row 1 by A, Row 2 by E, and Row 3 by I . The inverse is the right
half of the augmented matrix.

EXAMPLES
• Find the inverse matrix




1 0 −1
2 2 3
4 −2 1
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The augmented matrix is



1 0 −1 | 1 0 0
2 2 3 | 0 1 0
4 −2 1 | 0 0 1



 .

Step 1 Use Row 1 and Row 2 to make the D entry a 0 by computing
−2 Row 1 + Row 2.

−2 Row 1 −2 0 2 −2 0 0
+ Row 2 2 2 3 0 1 0

New Row 2 0 2 5 −2 1 0

Step 2 Use Row 1 and Row 3 to make the G entry a 0 by computing
−4 Row 1 + Row 3.

−4 Row 1 −4 0 4 −4 0 0
+ Row 3 4 −2 1 0 0 1

New Row 3 0 −2 5 −4 0 1

Step 3



1 0 −1 | 1 0 0
0 2 5 | −2 1 0
0 −2 5 | −4 0 1





Step 4 This step is not necessary because the B entry is already 0. New
Row 1 is old Row 1.

Step 5 Use Row 2 and Row 3 to make the H entry a 0 by computing Row
2 + Row 3.

Row 2 0 2 5 −2 1 0
+Row 3 0 −2 5 −4 0 1

New Row 3 0 0 10 −6 1 1

Step 6



1 0 −1 | 1 0 0
0 2 5 | −2 1 0
0 0 10 | −6 1 1





Step 7 Use Row 1 and Row 3 to make the C entry a 0 by computing
10 Row 1 + Row 3.

10 Row 1 10 0 −10 10 0 0
+ Row 3 0 0 10 −6 1 1

New Row 1 10 0 0 4 1 1
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Step 8 Use Row 2 and Row 3 to make the F entry a 0 by computing
−2 Row 2 + Row 3.

−2 Row 2 0 −4 −10 4 −2 0
+ Row 3 0 0 10 −6 1 1

New Row 2 0 −4 0 −2 −1 1

Step 9



10 0 0 | 4 1 1

0 −4 0 | −2 −1 1
0 0 10 | −6 1 1





Step 10 Divide the Row 1 by 10, the Row 2 by −4, and Row 3 by 10 to
get the next matrix.






1 0 0 | 2
5

1
10

1
10

0 1 0 | 1
2

1
4 −1

4

0 0 1 | −3
5

1
10

1
10






The inverse matrix is





2
5

1
10

1
10

1
2

1
4 −1

4

−3
5

1
10

1
10




 .

• Find the inverse matrix.



6 0 2
1 −1 0
0 1 1





The augmented matrix is



6 0 2 | 1 0 0
1 −1 0 | 0 1 0
0 1 1 | 0 0 1



 .

Step 1 Use Row 1 and Row 2 to make the 1 entry a 0.

Row 1 6 0 2 1 0 0
+(−6) Row 2 −6 6 0 0 −6 0

New Row 2 0 6 2 1 −6 0

Step 2 This step is not necessary because 0 is already in the G entry. New
Row 3 is old Row 3.
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Step 3



6 0 2 | 1 0 0
0 6 2 | 1 −6 0
0 1 1 | 0 0 1





Step 4 This step is not necessary because the B entry is already 0. New
Row 1 is old Row 1.

Step 5 Use Row 2 and Row 3 to make the 1 entry a 0.

Row 2 0 6 2 1 −6 0
+(−6) Row 3 0 −6 −6 0 0 −6

New Row 3 0 0 −4 1 −6 −6

Step 6



6 0 2 | 1 0 0
0 6 2 | 1 −6 0
0 0 −4 | 1 −6 −6





Step 7 Use Row 1 and Row 3 to make 2, the C entry, a 0.

2 Row 1 12 0 4 2 0 0
+ Row 3 0 0 −4 1 −6 −6

New Row 1 12 0 0 3 −6 −6

Step 8 Use Row 2 and Row 3 to make 2, the F entry, a 0.

2 Row 2 0 12 4 2 −12 0
+ Row 3 0 0 −4 1 −6 −6

New Row 2 0 12 0 3 −18 −6

Step 9



12 0 0 | 3 −6 −6

0 12 0 | 3 −18 −6
0 0 −4 | 1 −6 −6





Step 10 Divide Row 1 and Row 2 by 12 and Row 3 by −4.





1 0 0 | 1
4 −1

2 −1
2

0 1 0 | 1
4 −3

2 −1
2

0 0 1 | −1
4

3
2

3
2
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The inverse matrix is





1
4 −1

2 −1
2

1
4 −3

2 −1
2

−1
4

3
2

3
2




 .

PRACTICE
Find the inverse matrix.

1.

[
1 −1
2 3

]

2.




−3 5 1

1 1 −2
2 −1 6





SOLUTIONS
1.

[
1 −1 | 1 0
2 3 | 0 1

]

Step 1 −2 Row 1 −2 2 −2 0
+ Row 2 2 3 0 1

New Row 2 0 5 −2 1

Step 2 3 Row 1 3 −3 3 0
+Row 2 2 3 0 1

New Row 1 5 0 3 1

Step 3 [
5 0 | 3 1
0 5 | −2 1

]

Step 4 Divide Row 1 by 5.
Step 5 Divide Row 2 by 5.
Step 6 [

1 0 | 3
5

1
5

0 1 | −2
5

1
5

]

The inverse matrix is
[

3
5

1
5

−2
5

1
5

]

.
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2.




−3 5 1 | 1 0 0

1 1 −2 | 0 1 0
2 −1 6 | 0 0 1





Step 1
Row 1 −3 5 1 1 0 0

+3 Row 2 3 3 −6 0 3 0

New Row 2 0 8 −5 1 3 0

Step 2
2 Row 1 −6 10 2 2 0 0

+3 Row 3 6 −3 18 0 0 3

New Row 3 0 7 20 2 0 3

Step 3 


−3 5 1 | 1 0 0

0 8 −5 | 1 3 0
0 7 20 | 2 0 3





Step 4
8 Row 1 −24 40 8 8 0 0

+(−5)Row 2 0 −40 25 −5 −15 0

New Row 1 −24 0 33 3 −15 0

Step 5 −7 Row 2 0 −56 35 −7 −21 0
+8 Row 3 0 56 160 16 0 24

New Row 3 0 0 195 9 −21 24

Step 6 


−24 0 33 | 3 −15 0

0 8 − 5 | 1 3 0
0 0 195 | 9 −21 24





To make the numbers smaller, replace Row 1 with 1
3 Row 1 and Row 3 by

1
3Row 3.




−8 0 11 | 1 −5 0

0 8 −5 | 1 3 0
0 0 65 | 3 −7 8





Step 7
65 Row 1 −520 0 715 65 −325 0

+(−11)Row 3 0 0 −715 −33 77 −88

New Row 1 −520 0 0 32 −248 −88
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Step 8
13 Row 2 0 104 −65 13 39 0
+ Row 3 0 0 65 3 −7 8

New Row 2 0 104 0 16 32 8

Step 9 


−520 0 0 | 32 −248 −88

0 104 0 | 16 32 8
0 0 65 | 3 − 7 8



 .

Step 10 Divide Row 1 by −520, Row 2 by 104, and Row 3 by 65.





1 0 0 | − 4
65

31
65

11
65

0 1 0 | 2
13

4
13

1
13

0 0 1 | 3
65 − 7

65
8

65






The inverse matrix is





− 4
65

31
65

11
65

2
13

4
13

1
13

3
65 − 7

65
8

65




 .

Matrices and Systems of Equations
There are three ways we can use matrices to solve a system of linear equations. Two
of them will be discussed in this book. Solving systems using these methods will be
very much like finding inverses. We will begin with 2 × 2 systems (two equations

and two variables) and an augmented matrix of the form
[

A B | E
C D | F

]
. A, B, C, and

D are the coefficients of x and y in the equations and E and F are the constant
terms. We will use the same steps above to change this matrix to one of the form[

1 0 | number
0 1 | number

]
. The numbers in the last column will be the solution.

EXAMPLE

•
{

2x − 3y = 17

−x + y = −7

The coefficients 2, −3, −1, and 1 are the entries in the left side of the matrix.
The constant terms 17 and −7 are the entries on the right side of the matrix.

The augmented matrix is
[

2 −3 | 17
−1 1 | −7

]
.



CHAPTER 11 Matrices316

Step 1 We want −1, the C entry, to be 0.

Row 1 2 −3 17
+2 Row 2 −2 2 −14

New Row 2 0 −1 3

Step 2 We want −3, the B entry, to be 0.

Row 1 2 −3 17
+3 Row 2 −3 3 −21

New Row 1 −1 0 −4

Step 3
[−1 0 | −4

0 −1 | 3

]
This row represents the equation −1x + 0y = −4
This row represents the equation 0x + (−1)y = 3

Step 4 Divide Row 1 by −1.
Step 5 Divide Row 2 by −1.
Step 6
[

1 0 | 4
0 1 | −3

]
This row represents the equation 1x + 0y = 4.
This row represents the equation 0x + 1y = −3.

The solution is x = 4 and y = −3.
Begin solving a 3×3 system (three equations and three variables) by writing

the augmented matrix

[
A B C | J
D E F | K
G H I | L

]

. Using the same steps we used to find

the inverse of a matrix, we want to change this matrix to one of the form[
1 0 0 | number
0 1 0 | number
0 0 1 | number

]

. The numbers in the fourth column will be the solution.

EXAMPLE

•






x + 3z = 3

−x + y − z = 5

2x + y = −2

The augmented matrix is




1 0 3 | 3

−1 1 −1 | 5
2 1 0 | −2



.
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Step 1 Use Row 1 and Row 2 to change the D entry to 0.

Row 1 1 0 3 3
+ Row 2 −1 1 −1 5

New Row 2 0 1 2 8

Step 2 Use Row 1 and Row 3 to change the G entry to 0.

−2 Row 1 −2 0 −6 −6
+ Row 3 2 1 0 −2

New Row 3 0 1 −6 −8

Step 3 


1 0 3 | 3
0 1 2 | 8
0 1 −6 | −8





Step 4 Because the B entry is already 0, this step is not necessary. New
Row 1 is old Row 1.

Step 5 Use Row 2 and Row 3 to change the H entry to 0.

−Row 2 0 −1 −2 − 8
+ Row 3 0 1 −6 − 8

New Row 3 0 0 −8 −16

Step 6 


1 0 3 | 3
0 1 2 | 8
0 0 −8 | −16





Step 7 Use Row 1 and Row 3 to make the C entry a 0.

8 Row 1 8 0 24 24
+3 Row 3 0 0 −24 −48

New Row 1 8 0 0 −24

Step 8 Use Row 2 and Row 3 to make the F entry a 0.

4 Row 2 0 4 8 32
+ Row 3 0 0 −8 −16

New Row 2 0 4 0 16

Step 9 


8 0 0 | −24
0 4 0 | 16
0 0 −8 | −16
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Step 10 Divide Row 1 by 8, Row 2 by 4, and Row 3 by −8.



1 0 0 | −3
0 1 0 | 4
0 0 1 | 2



The solution is x = −3, y = 4, and z = 2.

The second method we will use to solve systems of equations involves finding
the inverse of a matrix and multiplying two matrices. We begin by creating
the coefficient matrix and the constant matrix for the system.

{
Ax + By = E

Cx + Dy = F

The coefficient matrix is
[

A B
C D

]
and the constant matrix is

[
E
F

]
. We will find

the inverse of the coefficient matrix and multiply the inverse by the constant
matrix. The product matrix will consist of one column of two numbers. These
two numbers will be the solution to the system.

EXAMPLE

•
{

−2x + y = −7

x − 3y = 1

The coefficient matrix and constant matrix are
[−2 1

1 −3

]

and

[−7
1

]

.

[−2 1 | 1 0
1 −3 | 0 1

]

Row 1 −2 1 1 0
+2 Row 2 2 −6 0 2

New Row 2 0 −5 1 2

and

3 Row 1 −6 3 3 0
+ Row 2 1 −3 0 1

New Row 1 −5 0 3 1

The next matrix is

[−5 0 | 3 1
0 −5 | 1 2

]

. We need to divide Row 1 and

Row 2 by −5.
[

1 0 | −3
5 −1

5

0 1 | −1
5 −2

5

]

The inverse matrix is

[−3
5 −1

5

−1
5 −2

5

]

.
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Multiply the inverse matrix by the coefficient matrix.

[−3
5 −1

5

−1
5 −2

5

]

·
[−7

1

]

=



−3

5 · (−7) +
(
−1

5

)
· 1

−1
5 · (−7) +

(
−2

5

)
· 1



 =
[

4
1

]

The solution is x = 4 and y = 1.
The strategy is the same for a 3 × 3 system of equations.






Ax + By + Cz = J

Dx + Ey + Fz = K

Gx + Hy + Iz = L

The coefficient matrix and the constant matrix are



A B C

D E F

G H I



 and




J

K

L



 .

We will find the inverse matrix of the coefficient matrix and multiply it by
the constant matrix.

EXAMPLE

•






−3x + 2y + z = 3

2x + y − z = 5

− y + 2z = −3

The coefficient matrix and constant matrix are



−3 2 1

2 1 −1
0 −1 2



 and




3
5

−3



 .




−3 2 1 | 1 0 0

2 1 −1 | 0 1 0
0 −1 2 | 0 0 1





2 Row 1 −6 4 2 2 0 0
+3 Row 2 6 3 −3 0 3 0

New Row 2 0 7 −1 2 3 0
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New Row 3 is old Row 3. The next matrix is




−3 2 1 | 1 0 0

0 7 −1 | 2 3 0
0 −1 2 | 0 0 1



.

7 Row 1 −21 14 7 7 0 0
+(−2) Row 2 0 −14 2 −4 −6 0

New Row 1 −21 0 9 3 −6 0

Row 2 0 7 −1 2 3 0
+7 Row 3 0 −7 14 0 0 7

New Row 3 0 0 13 2 3 7

The next matrix is




−21 0 9 | 3 −6 0

0 7 −1 | 2 3 0
0 0 13 | 2 3 7



.

13 Row 1 −273 0 117 39 − 78 0
+(−9) Row 3 0 0 −117 −18 − 27 −63

New Row 1 −273 0 0 21 −105 −63

13 Row 2 0 91 −13 26 39 0
+ Row 3 0 0 13 2 3 7

New Row 2 0 91 0 28 42 7

The next matrix is




−273 0 0 | 21 −105 −63

0 91 0 | 28 42 7
0 0 13 | 2 3 7



.

Divide Row 1 by −273, Row 2 by 91, and Row 3 by 13.





1 0 0 | − 1
13

5
13

3
13

0 1 0 | 4
13

6
13

1
13

0 0 1 | 2
13

3
13

7
13






Multiply the inverse matrix by the constant matrix.






− 1
13

5
13

3
13

4
13

6
13

1
13

2
13

3
13

7
13




 ·



3
5

−3



 =








3
(
− 1

13

)
+ 5

( 5
13

)+ (−3) 3
13

3
(

4
13

)
+ 5

(
6

13

)
+ (−3)

(
1

13

)

3
(

2
13

)
+ 5

(
3
13

)
+ (−3)

( 7
13

)








=



1
3
0





The solution is x = 1, y = 3 and z = 0.
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PRACTICE
1. Use the first method to solve the system.






−5x + 2y + 3z = −8

x + y − z = −5

2x + y + 3z = 23

2. Use the first method to solve the system.





6x + 2z = −12

x − y = −3

y + z = 1

3. Use the second method to solve the system.





x + z = 6

3x − y + 2z = 17

6x + y − z = 5

SOLUTIONS

1. The augmented matrix is




−5 2 3 | −8

1 1 −1 | −5
2 1 3 | 23



.

Row 1 −5 2 3 −8
+5Row 2 5 5 −5 −25

New Row 2 0 7 −2 −33

2 Row 1 −10 4 6 −16
+5 Row 3 10 5 15 115

New Row 3 0 9 21 99

The next matrix is




−5 2 3 | −8

0 7 −2 | −33
0 9 21 | 99



.

7 Row 1 −35 14 21 −56
+(−2) Row 2 0 −14 4 66

New Row 1 −35 0 25 10

9 Row 2 0 63 −18 −297
+(−7) Row 3 0 −63 −147 −693

New Row 3 0 0 −165 −990

The next matrix is




−35 0 25 | 10

0 7 − 2 | −33
0 0 −165 | −990



.
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We can make the numbers in Row 1 and Row 3 smaller by dividing Row 1
by 5 and Row 3 by −165.




−7 0 5 | 2

0 7 −2 | −33
0 0 1 | 6





Row 1 −7 0 5 2
+(−5) Row 3 0 0 −5 −30

New Row 1 −7 0 0 −28

Row 2 0 7 −2 −33
+2 Row 3 0 0 2 12

New Row 2 0 7 0 −21

The next matrix is



−7 0 0 | −28

0 7 0 | −21
0 0 1 | 6



 .

Divide Row 1 by −7 and Row 2 by 7.




1 0 0 | 4
0 1 0 | −3
0 0 1 | 6





The solution is x = 4, y = −3, and z = 6.

2. The augmented matrix is




6 0 2 | −12
1 −1 0 | −3
0 1 1 | 1



.

Row 1 6 0 2 −12
+(−6) Row 2 −6 6 0 18

New Row 2 0 6 2 6

New Row 3 is old Row 3. The next matrix is




6 0 2 | −12
0 6 2 | 6
0 1 1 | 1



.

Row 2 0 6 2 6
+(−6) Row 3 0 −6 −6 −6

New Row 3 0 0 −4 0
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New Row 1 is old Row 1. The next matrix is




6 0 2 | −12
0 6 2 | 6
0 0 −4 | 0



.

Row 1 6 0 2 −12
+1

2 Row 3 0 0 −2 0

New Row 1 6 0 0 −12

New Row 2 0 6 2 6
+1

2 Row 3 0 0 −2 0

New Row 2 0 6 0 6

The next matrix is




6 0 0 | −12
0 6 0 | 6
0 0 −4 | 0



. Divide Row 1 and Row 2 by 6

and Row 3 by −4.



1 0 0 | −2
0 1 0 | 1
0 0 1 | 0



 The solution is x = −2, y = 1, and z = 0.

3. The augmented matrix is



1 0 1 | 1 0 0
3 −1 2 | 0 1 0
6 1 −1 | 0 0 1



 .

−3 Row 1 −3 0 −3 −3 0 0
+ Row 2 3 −1 2 0 1 0

New Row 2 0 −1 −1 −3 1 0

−6 Row 1 −6 0 −6 −6 0 0
+ Row 3 6 1 −1 0 0 1

New Row 3 0 1 −7 −6 0 1

The next matrix is



1 0 1 | 1 0 0
0 −1 −1 | −3 1 0
0 1 −7 | −6 0 1



 .

Row 2 0 −1 −1 −3 1 0
+ Row 3 0 1 −7 −6 0 1

New Row 3 0 0 −8 −9 1 1

New Row 1 is old Row 1. The next matrix is



1 0 1 | 1 0 0
0 −1 −1 | −3 1 0
0 0 −8 | −9 1 1



 .
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8 Row 1 8 0 8 8 0 0
+ Row 3 0 0 −8 −9 1 1

New Row 1 8 0 0 −1 1 1

−8 Row 2 0 8 8 24 −8 0
+ Row 3 0 0 −8 −9 1 1

New Row 2 0 8 0 15 −7 1

The next matrix is




8 0 0 | −1 1 1
0 8 0 | 15 −7 1
0 0 −8 | −9 1 1



.

Divide Row 1 and Row 2 by 8 and Row 3 by −8.





1 0 0 | −1
8

1
8

1
8

0 1 0 | 15
8 −7

8
1
8

0 0 1 | 9
8 −1

8 −1
8






The inverse matrix is





−1
8

1
8

1
8

15
8 −7

8
1
8

9
8 −1

8 −1
8




 .

Multiply the inverse matrix, by the coefficient matrix
[

6
17

5

]
.






−1
8

1
8

1
8

15
8 −7

8
1
8

9
8 −1

8 −1
8




 ·



6

17
5



 =









6
(
−1

8

)
+ 17

(
1
8

)
+ 5

(
1
8

)

6
(

15
8

)
+ 17

(−7
8

)+ 5
(

1
8

)

6
(

9
8

)
+ 17

(
−1

8

)
+ 5

(
−1

8

)









=



2

−3
4





The solution is x = 2, y = −3 and z = 4

The last computation we will learn is finding a matrix’s determinant. Although
we will not use the determinant here, it is used in vector mathematics courses, some
theoretical algebra courses, and in algebra courses that cover Cramer’s Rule (used
to solve systems of linear equations). An interesting fact about determinants is that
a square matrix has an inverse only when its determinant is a nonzero number.

The usual notation for a determinant is to enclose the matrix using two vertical
bars instead of two brackets. The determinant for the matrix

[
A B
C D

]
is
∣
∣ A B
C D

∣
∣.
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Finding the determinant for a 2 × 2 matrix is not hard.
∣
∣
∣
∣
A B

C D

∣
∣
∣
∣ = AD − BC

EXAMPLE
•

∣
∣
∣
∣
4 −3
5 2

∣
∣
∣
∣ = 4(2) − (−3)(5) = 23

We find the determinant of larger matrices by breaking down the larger matrix
into several 2 × 2 sub-matrices. For larger matrices, there are numerous for-
mulas for computing their determinants. Some of them come from expanding
the matrix along each row and along each column. This means that we will
multiply the entries in a row or a column by the determinant of a smaller
matrix. This smaller matrix comes from deleting the row and column an
entry is in. When working with a 3 × 3 matrix, these sub-matrices will be
2 × 2 matrices.
Suppose we want to expand the following matrix along the first row.




A B C

D E F

G H I





We will multiply the A entry by the submatrix obtained by removing the

first row ABC and the first column
A
D
G

. This leaves us with the matrix



− − −
− E F

− H I



. Our first calculation will be

A

∣
∣
∣
∣
E F

H I

∣
∣
∣
∣ = A(EI − FH).

Similarly, when we use entry B, we will need to remove the first row

A B C and the second column
B
E
H

. This leaves us with

∣
∣
∣
∣
D F

G I

∣
∣
∣
∣. There is

a complication—the signs on the entries must alternate when we perform
these expansions. For our matrix, the signs will alternate beginning with A

not changing, but B and D changing.

A −B C

−D E −F

G −H J
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For our 3 × 3 matrix, the expansion along the first row looks like this.

A

∣
∣
∣
∣
E F

H I

∣
∣
∣
∣− B

∣
∣
∣
∣
D F

G I

∣
∣
∣
∣+ C

∣
∣
∣
∣
D E

G H

∣
∣
∣
∣ = A(EI − FH) − B(DI − FG)

+ C(DH − EG)

The expansion along the second column looks like this.

−B

∣
∣
∣
∣
D F

G I

∣
∣
∣
∣+ E

∣
∣
∣
∣
A C

G I

∣
∣
∣
∣− H

∣
∣
∣
∣
A C

D F

∣
∣
∣
∣ = −B(DI − FG) + E(AI − CG)

− H(AF − CD)

EXAMPLE

• Find the determinant for




4 1 −3
2 0 4

−2 2 1



.

We will use two calculations, along Row 2 and along Column 3. By Row 2
we have

− 2

∣
∣
∣
∣
1 −3
2 1

∣
∣
∣
∣+ 0

∣
∣
∣
∣

4 −3
−2 1

∣
∣
∣
∣− 4

∣
∣
∣
∣

4 1
−2 2

∣
∣
∣
∣

= −2(1 · 1 − (−3)2) + 0(4 · 1 − (−3)(−2)) − 4(4 · 2 − 1(−2)) = −54.

By Column 3 we have

− 3

∣
∣
∣
∣

2 0
−2 2

∣
∣
∣
∣− 4

∣
∣
∣
∣

4 1
−2 2

∣
∣
∣
∣+ 1

∣
∣
∣
∣
4 1
2 0

∣
∣
∣
∣

= −3(2 · 2 − 0(−2)) − 4(4 · 2 − 1(−2)) + 1(4 · 0 − 1 · 2) = −54

The method is the same for larger matrices except that there are more levels
of work.







A B C D

E F G H

I J K L

M N O P







Expanding this matrix along Row 1 gives us

A

∣
∣
∣
∣
∣
∣

F G H

J K L

N O P

∣
∣
∣
∣
∣
∣
− B

∣
∣
∣
∣
∣
∣

E G H

I K L

M O P

∣
∣
∣
∣
∣
∣
+ C

∣
∣
∣
∣
∣
∣

E F H

I J L

M N P

∣
∣
∣
∣
∣
∣
− D

∣
∣
∣
∣
∣
∣

E F G

I J K

M N O

∣
∣
∣
∣
∣
∣
.
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Each of these four determinants must be computed using the previous method
for a 3 × 3 matrix.

PRACTICE

1.




−8 1 3

2 5 0
6 −4 2





SOLUTION
1. Expanding this matrix along Row 2, we have

−2

∣
∣
∣
∣

1 3
−4 2

∣
∣
∣
∣+ 5

∣
∣
∣
∣
−8 3

6 2

∣
∣
∣
∣− 0

∣
∣
∣
∣
−8 1

6 −4

∣
∣
∣
∣

= −2(1 · 2 − 3(−4)) + 5(−8 · 2 − 3 · 6) − 0((−8)(−4) − 1 · 6) = −198

CHAPTER 11 REVIEW

1.

[
8 4

−1 −5

]

−
[

3 −1
−2 6

]

=

(a)

[
5 3

−3 1

]

(c)

[
5 5

−1 1

]

(b)

[
11 3

−3 1

]

(d)

[
5 5
1 −11

]

2.

[
7 4
1 1

]

·
[

0 −2
3 1

]

=

(a)

[
0 −8
3 1

]

(c)

[
8 −10
4 2

]

(b)

[
12 −10
3 −1

]

(d)

[
0 −10
4 −1

]
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3.

[−1 4
0 2

]

·
[

1 1 −1
2 −1 3

]

=

(a)

[
7 4 −2
2 2 −2

]

(c)

[
7 −5 13
4 −2 6

]

(b)




7 2
4 2

−2 −2





(d) The product does not exist.

4. What is the determinant for

[−8 1
4 5

]

?

(a) −36 (b) −37 (c) −44 (d) −27

5. What is the inverse for

[
2 −3

−1 1

]

?

(a)

[
1
2 −1

3

−1 1

]

(c)

[
1
5 −4

5
1
2 2

]

(b)

[−1 −3
−1 −2

]

(d)

[−1 1
2 −3

]

6. What is the determinant for




6 0 2
1 −1 0
0 1 1



?

(a) −4 (b) −5 (c) −6 (d) −7

7. What is the inverse for




1 0 3

−1 1 −1
2 1 0



?

(a)






−1
8 −3

8
3
8

1
4

3
4

1
4

3
8

1
8 −1

8






(c)






3
8

1
8 −1

8

−1
8 −3

8
3
8

1
4

3
4

1
4






(b)






1
4

3
4

1
4

3
8

1
8 −1

8

−1
8 −3

8
3
8






(d)






1
8

3
8 −1

8

−3
8 −1

8
3
8

3
4

1
4

1
4






For Problems 8–10, use different matrix methods to solve the
systems.
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8. What is x + y for the system?
{

5x − 8y = 29

2x + 2y = −4

(a) −2 (b) −3 (c) −4 (d) −5

9. What is x + y + z for the system?





x + y + z = 1

2x − y + z = 3

−x + y − 3z = −7

(a) 0 (b) 1 (c) 2 (d) 3

10. What is x + y + z for the system?





6x + − z = −22

x + y − z = −6

y + z = 5

(a) −1 (b) −2 (c) 1 (d) 2

SOLUTIONS
1. D 2. B 3. C 4. C 5. B
6. A 7. A 8. A 9. B 10. D



12
CHAPTER

Conic Sections

Aconic section is a shape obtained when a cone is sliced. The study of conic sections
began over two thousand years ago and we use their properties today. Planets in our
solar system move around the sun in elliptical orbits. The cross-section of many
reflecting surfaces is in the shape of a parabola. In fact, all of the conic sections
have useful reflecting properties. There are three conic sections—parabolas, ellipses
(including circles), and hyperbolas.

Parabolas
In Chapter 6, we learned how to graph parabolas when their equations were in the
form y = a(x − h)2 + k or y = ax2 + bx + c. Now we will learn the formal
definition for a parabola and another form for its equation.

DEFINITION: A parabola is the set of all points whose distance to a fixed point
and a fixed line are the same.

The fixed point is the focus. The fixed line is the directrix. For example, the focus
for the parabola y = −1

2x2 − 3x + 2 is (−3, 6), and the directrix is the horizontal
line y = 7. The point (0, 2) is on the parabola. Its distance from the line y = 7 is 5.

330
xi
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Its distance from the focus (−3, 6) is also 5.
√

(−3 − 0)2 + (6 − 2)2 = √
25 = 5

The new form for a parabola that opens up or down is (x − h)2 = 4p(y − k).
The vertex is still at (h, k), but p helps us to find the focus and the equation for
the directrix. The focus is the point (h, k + p), and the directrix is the horizontal
line y = k − p. The form for the equation for a parabola that opens to the side is
(y − k)2 = 4p(x − h). The focus for a parabola that opens to the right or to the
left is the point (h + p, k), and the directrix is the vertical line x = h − p. This
information is summarized in Table 12.1 and in Figures 12.1 and 12.2.

Table 12.1

(x − h)2 = 4p(y − k) (y − k)2 = 4p(x − h)

The vertex is (h, k). The vertex is (h, k).
The parabola opens up if p is positive The parabola opens to the right if p is positive

and down if p is negative. and to the left if p is negative.
The focus is (h, k + p). The focus is (h + p, k).
The directrix is y = k − p. The directrix is x = h − p.
The axis of symmetry is x = h. The axis of symmetry is y = k.

Fig. 12.1.
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Fig. 12.2.

In the following examples, we will be asked to match the equation to its graph.
The vertex for each parabola will be at (0, 0). We can decide which graph goes
to which equation either by finding the focus or the directrix in the equation and
finding which graph has this focus or directrix.

EXAMPLES
Match the graphs in Figures 12.3 through 12.6 with their equations.

Fig. 12.3. Fig. 12.4.
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Fig. 12.5. Fig. 12.6.

• x2 = 6y

The equation is in the form (x − h)2 = 4p(y − k), so the parabola will
open up or down. We have p = 3

2 (from 6 = 4p). Now we know three
things—that the parabola opens up (because p is positive), that the focus
is (h, k + p) = (0, 0 + 3

2) = (0, 3
2), and the directrix is y = −3

2 (from
k − p = 0 − 3

2 ). The graph that behaves this way is in Figure 12.5.

• y2 = 6x

The equation is in the form (y − k)2 = 4p(x − h), so the parabola opens to
the left or to the right. We have p = 3

2 (from 6 = 4p). Now we know that the
parabola opens to the right, that the focus is (h+p, k) = (0+ 3

2 , 0) = (3
2 , 0),

and that the directrix is x = −3
2 (from h − p = 0 − 3

2 ). The graph for this
equation is in Figure 12.3.

• y2 = −6x

The equation is in the form (y − k)2 = 4p(x − h), so the parabola opens
to the left or to the right. We have p = −3

2 (from −6 = 4p). The parabola
opens to the left, the focus is (h + p, k) = (0 + −3

2 , 0) = (−3
2 , 0), and the

directrix is x = 3
2 (from h − p = 0 − (−3

2)). The graph for this equation is
in Figure 12.4.

• x2 = −6y

The equation is in the form (x − h)2 = 4p(y − k), so the parabola opens up
or down. We have p = −3

2 (from −6 = 4p). The parabola opens down, the
focus is (h, k +p) = (0, 0 + (−3

2)) = (0, −3
2). The directrix is y = 3

2 (from
k − p = 0 − (−3

2)). The graph for this equation is in Figure 12.6.
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Using the information in Table 12.1, we can find the vertex, focus, directrix, and
whether the parabola opens up, down, to the left, or to the right by looking at its
equation.

EXAMPLES
Find the vertex, focus, and directrix. Determine if the parabola opens up, down, to
the left, or to the right.

• (x − 3)2 = 4(y − 2)

This equation is in the form (x −h)2 = 4p(y −k). The vertex is (3, 2). Once
we have found p, we can find the focus and directrix and how the parabola
opens. p = 1 (from 4 = 4p). The parabola opens up because p is positive;
the focus is (h, k+p) = (3, 2+1) = (3, 3); and the directrix is y = 1 (from
y = k − p = 2 − 1 = 1).

• (y + 1)2 = 8(x − 3)

The equation is in the form (y−k)2 = 4p(x−h). The vertex is (3, −1), p = 2
(from 8 = 4p); the parabola opens to the right; the focus is (h + p, k) =
(3+2, −1) = (5, −1); and the directrix is x = 1 (from x = h−p = 3−2 = 1).

If we know any two of the vertex, focus, and directrix, we can find an equation
of the parabola. From the information given, we first need to decide which form
to use. Knowing the directrix is the fastest way to decide this. If the directrix is a
horizontal line (y = number), then the equation is (x − h)2 = 4p(y − k). If the
directrix is a vertical line (x = number), then the equation is (y−k)2 = 4p(x−h).
If we do not have the directrix, we need to look at the coordinates of the vertex and
focus. Either both the x-coordinates will be the same or both y-coordinates will be.
If both x-coordinates are the same, the parabola opens up or down. We need to use
the form (x − h)2 = 4p(y − k). If both y-coordinates are the same, the parabola
opens to the side. We need to use the form (y − k)2 = 4p(x − h). Once we have
decided which form to use, we might need to use algebra to find h, k, and p. For
example, if we know the focus is (2, −1) and the directrix is x = 6, then we know
h − p = 6 and h + p = 2 and k = −1. The equations h − p = 6 and h + p = 2
form a system of equations.

h − p = 6

h + p = 2

2h = 8
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h = 4

4 − p = 6 Let h = 4 in h − p = 6

p = −2

Now that we have all three numbers and the form, we are ready to write the
equation: (y + 1)2 = −8(x − 4).

EXAMPLES
Find an equation for the parabola.

• The directrix is y = 2, and the vertex is (3, 1).
Because the directrix is a horizontal line, the equation we want is
(x −h)2 = 4p(y −k). The vertex is (3, 1), giving us h = 3 and k = 1. From
y = k − p and y = 2, we have 1 − p = 2, making p = −1. The equation is
(x − 3)2 = −4(y − 1).

• The focus is (4, −2), and the vertex is (0, −2).
The y-coordinates are the same, so this parabola opens to the side, and the
equation we need is (y − k)2 = 4p(x − h). The vertex is (h, k) = (0, −2),
giving us h = 0 and k = −2. The focus is (h + p, k) = (4, −2). From this
we have h+p = 0+p = 4, making p = 4. The equation is (y +2)2 = 16x.

•

Fig. 12.7.

The directrix is the vertical line x = −1, and the focus is (3, 2). Because
the parabola opens to the right, the form we need is (y − k)2 = 4p(x − h).
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From the focus we have (h + p, k) = (3, 2), so h + p = 3 and k = 2. The
directrix is x = −1 and x = h − p so h − p = −1.

h − p = −1

h + p = 3

2h = 2

h = 1

1 + p = 3 Let h = 1 in h + p = 3

p = 2

The equation is (y − 2)2 = 8(x − 1).

PRACTICE
1. Identify the vertex, focus, and directrix for (y − 5)2 = 10(x − 1).

2. Identify the vertex, focus, and directrix for (x + 6)2 = −1
2(y − 4).

3. Find an equation for the parabola that has directrix y = −2 and focus
(4, 10).
For Problems 4–6, match the equation with its graph in Figures 12.8–12.10.

Fig. 12.8. Fig. 12.9.
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Fig. 12.10.

4. x2 = −8(y + 1)

5. (x + 1)2 = 4(y − 2)

6. (y − 2)2 = −6(x + 3)

SOLUTIONS
1. h = 1, k = 5, and p = 5

2 (from 4p = 10). The vertex is (1, 5); the focus
is (h + p, k) = (1 + 5

2 , 5) = (7
2 , 5) and the directrix is x = −3

2 (from
h − p = 1 − 5

2 ).

2. h = −6, k = 4, and p = −1
8 (from 4p = −1

2 ). The vertex is (−6, 4);
the focus is (h, k + p) = (−6, 4 + (−1

8)) = (−6, 31
8 ); and the directrix is

y = 33
8 (from k − p = 4 − (−1

8)).

3. We want to use the equation (x −h)2 = 4p(y − k). The focus is (h, k +p),
so h = 4 and k + p = 10. The directrix is y = k − p, so k − p = −2.

k + p = 10

k − p = −2

2k = 8

k = 4
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4 + p = 10 Let k = 4 in k + p = 10

p = 6

The equation is (x − 4)2 = 24(y − 4).

4. Figure 12.9

5. Figure 12.8

6. Figure 12.10

Ellipses
Most ellipses look like flattened circles. Usually one diameter is longer than the
other. In Figure 12.11, the horizontal diameter is longer than the vertical diameter.
In Figure 12.12 the vertical diameter is longer than the horizontal diameter. The
longer diameter is the major axis, and the shorter diameter is the minor axis. An
ellipse has seven important points—the center, two endpoints of the major axis
(the vertices), two endpoints of the minor axis, and two points along the major
axis called the foci (plural for focus). When the equation of an ellipse is in the form

(x − h)2

a2
+ (y − k)2

b2
= 1 or

(x − h)2

b2
+ (y − k)2

a2
= 1,

we can find these points without much trouble.

Fig. 12.11.
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Fig. 12.12.

If all we want to do is to sketch the graph, all we really need to do is to plot the
endpoints of the diameters and draw a rounded curve connecting them. For example,

if we want to sketch the graph of (x+1)2

4 + (y−1)2

9 = 1, a = 3, b = 2, h = −1,
and k = 1. According to Figure 12.12, the diameters have coordinates (−1 −
2, 1) = (−3, 1), (−1 + 2, 1) = (1, 1), (−1, 1 + 3) = (−1, 4), and (−1, 1 − 3) =
(−1, −2). (See Figure 12.13.)
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Fig. 12.13.

DEFINITION: An ellipse is the set of all points whose distances to two fixed
points (the foci) is constant.

For example, the foci for x2

25 + y2

9 = 1 are (−4, 0) and (4, 0). If we take
any point on this ellipse and calculate its distance to (−4, 0) and to (4, 0) and
add these numbers, the sum will be 10. Two points on this ellipse are (0, 3) and
(5

3 ,
√

8).

Distance from (0, 3) to (−4, 0) + Distance from (0, 3) to (4, 0)

=
√

(−4 − 0)2 + (0 − 3)2 +
√

(4 − 0)2 + (0 − 3)2

= √
16 + 9 + √

16 + 9 = √
25 + √

25 = 10

Distance from (5/3,
√

8) to (−4, 0) + Distance from (5/3,
√

8) to (4, 0)

=
√
(

−4 − 5

3

)2

+ (0 − √
8)2 +

√
(

4 − 5

3

)2

+ (0 − √
8)2

=
√

289

9
+ 8 +

√
49

9
+ 8 =

√
361

9
+
√

121

9
= 10

In the next set of problems, we will be given an equation for an ellipse. From
the equation, we can find h, k, a, and b. With these numbers and the information
in Figures 12.11 or 12.12 we can find the center, foci, and vertices.
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EXAMPLES
Find the center, foci, and vertices for the ellipse.

• (x − 3)2

16
+ (y + 5)2

25
= 1

From the equation, we see that h = 3, k = −5, a2 and b2 are 42 and 52, but
which is a and which is b? a needs to be the larger number, so a = 5 and
b = 4. This makes c = √

a2 − b2 = √
25 − 16 = 3. We need to use the

information in Figure 12.12 because the larger denominator is under (y−k)2.

Center: (h, k) = (3, −5)

Foci: (h, k − c) = (3, −5 − 3) = (3, −8) and (h, k + c) = (3, −5 + 3) =
(3, −2)

Vertices: (h, k−a) = (3, −5−5) = (3, −10) and (h, k+a) = (3, −5+5) =
(3, 0)

• x2

16
+ (y − 2)2 = 1

To make it easier to find h, k, a, and b, we will rewrite the equation.

(x − 0)2

16
+ (y − 2)2

1
= 1

Now we can see that h = 0, k = 2, a = 4, b = 1, c = √
a2 − b2 =√

16 − 1 = √
15. Because the larger denominator is under (x −0)2, we need

to use the information in Figure 12.11.

Center: (h, k) = (0, 2)

Foci: (h−c, k)= (0−√
15, 2) = (−√

15, 2) and (h+c, k)= (0+√
15, 2) =

(
√

15, 2)

Vertices: (h − a, k) = (0 − 4, 2) = (−4, 2) and (h + a, k) = (0 + 4, 2) =
(4, 2)

Now that we can find this important information from an equation of an ellipse,
we are ready to match graphs of ellipses to their equations.

EXAMPLES
Match the equations with the graphs in Figures 12.14–12.16.
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Fig. 12.14. Fig. 12.15.

Fig. 12.16.

• x2

4
+ y2

9
= 1

The larger denominator is under y2, so we need to use the information in
Figure 12.12. Because a = 3, we need to look for a graph with vertices
(0, 3) and (0, −3). This graph is in Figure 12.15.
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• x2

9
+ y2

4
= 1

The larger denominator is under x2, so we need to use the information in
Figure 12.11. Because a = 3, the vertices are (−3, 0) and (3, 0). This graph
is in Figure 12.16.

• x2 + y2

4
= 1

The larger denominator is under y2, so we need to use the information in
Figure 12.12. Because a = 2, the vertices are (0, 2) and (0, −2). This graph
is in Figure 12.14.

With as little as three points, we can find an equation of an ellipse. Using
the formulas in Figures 12.11 and 12.12 and some algebra, we can find h, k, a,
and b.

EXAMPLES
Find an equation of the ellipse.

• The vertices are (−4, 2) and (6, 2), and (1, 5) is a point on the graph.
The y-coordinates are the same, so the major axis (the larger diameter) is
horizontal, which means we need to use the information in Figure 12.11. The
vertices are (h − a, k) and (h + a, k). This means that h − a = −4 and
h + a = 6, and k = 2.

h − a = −4

h + a = 6

2h = 2

h = 1

1 − a = −4 Let h = 1 in h − a = −4

a = 5

So far we know that

(x − 1)2

25
+ (y − 2)2

b2
= 1.
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Because (1, 5) is on the graph, (1−1)2

25 + (5−2)2

b2 = 1. Solving this equation
for b, we find that b = 3. The equation is

(x − 1)2

25
+ (y − 2)2

9
= 1.

• The foci are (−4, −10) and (−4, 14) and (−4, 15) is a vertex.
The x-values of foci are the same, so the major axis is vertical. This tells us
that we need to use the information in Figure 12.12.
(h, k−c) = (−4, −10) and (h, k+c) = (−4, 14), so h = −4, k−c = −10
and k + c = 14.

k − c = −10

k + c = 14

2k = 4

k = 2

2 − c = −10 Let k = 2 in k − c = −10

c = 12

Because (−4, 15) is a vertex, k + a = 15, so 2 + a = 15 and a = 13. All
we need to finish is to find b. Let a = 13 and c = 12 in c = √

a2 − b2 :
12 = √

132 − b2. Solving this for b, we have b = 5. The equation is

(x + 4)2

25
+ (y − 2)2

169
= 1.

The eccentricity of an ellipse is a number that measures how flat it is. The formula
is e = c

a
. This number ranges between 0 and 1. The closer to 1 the eccentricity of

an ellipse is, the flatter it is. If e = c
a

= 0, then the ellipse is a circle. In a circle,
the center and foci are all the same point, and a and b are the same number. For

example, (x−5)2

9 + (y−4)2

9 = 1 is a circle with center (5, 4) and radius
√

9 = 3.
Usually we see equations of circles in the form (x − h)2 + (y − k)2 = r2.

EXAMPLES
Find the ellipse’s eccentricity.

• x2

9
+ y2

25
= 1

a = 5, b = 3, c = √
25 − 9 = 4 and e = c

a
= 4

5
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• (x + 8)2

144
+ (y + 6)2

169
= 1

a = 13, b = 12, c = √
169 − 144 = 5, e = c

a
= 5

13 This ellipse is more
rounded than the first because e is closer to 0.

PRACTICE
1. Identify the center, foci, vertices, and eccentricity for

x2

169
+ (y − 10)2

25
= 1.

2. Identify the center, foci, vertices, and eccentricity for

(x + 9)2

202
+ (y + 2)2

292
= 1.

3. Identify the center and radius for the circle

(x + 6)2

49
+ (y − 1)2

49
= 1.

For Problems 4–7, match the equation with the graph in Figures
12.17–12.20.

Fig. 12.17. Fig. 12.18.
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Fig. 12.19. Fig. 12.20.

4.
(x − 1)2

16
+ (y − 2)2

25
= 1

5.
x2

144
+ y2

169
= 1

6.
(x + 1)2

16
+ (y − 3)2

16
= 1

7.
(x − 1)2

25
+ (y − 2)2

16
= 1

SOLUTIONS
1. h = 0, k = 10, a = 13, b = 5, c = √

a2 − b2 = √
169 − 25 = 12

Center: (0, 10)

Foci: (h−c, k) = (0−12, 10) = (−12, 10) and (h+c, k) = (0+12, 10) =
(12, 10)

Vertices: (h − a, k) = (0 − 13, 10) = (−13, 10) and (h + a, k) =
(0 + 13, 10) = (13, 10)

Eccentricity:
c

a
= 12

13
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2. h = −9, k = −2, a = 29, b = 20, c = √
292 − 202 = 21

Center: (−9, −2)

Foci: (h, k−c) = (−9, −2−21) = (−9, −23) and (h, k+c) = (−9, −2+
21) = (−9, 19)

Vertices: (h, k − a) = (−9, −2 − 29) = (−9, −31) and (h, k + a) =
(−9, −2 + 29) = (−9, 27)

Eccentricity:
c

a
= 21

29

3. The center is (−6, 1), and the radius is 7.

4. Figure 12.19

5. Figure 12.20

6. Figure 12.18

7. Figure 12.17

Hyperbolas
The last conic section is the hyperbola. Hyperbolas are formed when a slice is made
through both parts of a double cone. The graph of a hyperbola comes in two pieces
called branches. Like ellipses, hyperbolas have a center, two foci, and two vertices.
Hyperbolas also have two slant asymptotes. The definition of a hyperbola involves
the distance between points on the graph and two fixed points.

DEFINITION: A hyperbola is the set of all points such that the difference of the
distance between a point and two fixed points (the foci) is constant.

For example, the foci for x2

9 − y2

16 = 1 are (−5, 0) and (5, 0). For any point on
the hyperbola, the distance between this point and one focus minus the distance
between the same point and the other focus is 6. Two points on the hyperbola are
(6,

√
48) and (12,

√
240).

Distance from (6,
√

48) to (−5, 0) − Distance from (6,
√

48) to (5, 0)

=
√

(−5 − 6)2 + (0 − √
48)2 −

√

(5 − 6)2 + (0 − √
48)2

= √
121 + 48 − √

1 + 48 = 13 − 7 = 6
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And

Distance from (12,
√

240) to (−5, 0) − Distance from (12,
√

240) to (5, 0)

=
√

(−5 − 12)2 + (0, −√
240)2 −

√

(5 − 12)2 + (0 − √
240)2

= √
289 + 240 − √

49 + 240 = 23 − 17 = 6

Equations of hyperbolas come in one of two forms.

(x − h)2

a2
− (y − k)2

b2
= 1 or

(y − k)2

a2
− (x − h)2

b2
= 1

If the x2 term is positive, one branch opens to the left and the other to the right. If
the y2 term is positive, one branch opens up and the other down. The formulas for
these two forms are in Figures 12.21 and 12.22.

Fig. 12.21.
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Fig. 12.22.

We can sketch a hyperbola by plotting the vertices and sketching the asymptotes,
using dashed lines. We should also plot two points to the left and two points to the
right of the vertices.

EXAMPLE
• Sketch the graph for y2

4 − x2 = 1.

Because y2 is positive, we will use the information in Figure 12.22. The
center is (0, 0), a = 2, and b = 1. The vertices are (h, k +a) = (0, 0+2) =
(0, 2) and (h, k − a) = (0, 0 − 2) = (0, −2). The asymptote formulas are
y = k− a

b
(x−h) and y = k+ a

b
(x−h). Using our numbers for h, k, a, and b,

we have y = −2x and y = 2x. We will use x = 4 and x = −4 for our extra
points. If we let x = 4 or x = −4, we get two y-values, ±√

68. These give
us four more points—(4,

√
68), (4, −√

68), (−4,
√

68), and (−4, −√
68).

(see Figure 12.23.)
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Fig. 12.23.

In the next problem, we will find the center, vertices, foci, and asymptotes
for given hyperbolas. Once we have determined whether x2 is positive or y2

is positive, we can decide on which formulas to use, those in Figure 12.21 or
Figure 12.22.

EXAMPLES
Find the center, vertices, foci, and asymptotes for the hyperbola.

• (x + 7)2

36
− (y + 4)2

64
= 1

Because x2 is positive, we will use the information in Figure 12.21.

h = −7, k = −4, a = 6, b = 8, c = √
36 + 64 = 10

Center: (−7, −4)

Vertices: (h − a, k) = (−7 − 6, −4) = (−13, −4) and (h + a, k) = (−7 +
6, −4) = (−1, −4)

Foci: (h − c, k) = (−7 − 10, −4) = (−17, −4) and (h + c, k) = (−7 +
10, −4) = (3, −4)

Asymptotes: y = k − b
a
(x − h) = −4 − 8

6(x + 7) = −4
3x − 40

3 and
y = k + b

a
(x − h) = −4 + 8

6(x + 7) = 4
3x + 16

3
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• y2

144
− (x − 1)2

25
= 1

Because y2 is positive, we need to use the information in Figure 12.22.

h = 1, k = 0, a = 12, b = 5, c = √
144 + 25 = 13

Center: (1, 0)

Vertices: (h, k−a) = (1, 0−12) = (1, −12) and (h, k+a) = (1, 0+12) =
(1, 12)

Foci: (h, k − c) = (1, 0 − 13) = (1, −13) and (h, k + c) = (1, 0 + 13) =
(1, 13)

Asymptotes: y = k − a
b
(x − h) = 0 − 12

5 (x − 1) = −12
5 x + 12

5 and
y = k + a

b
(x − h) = 0 + 12

5 (x − 1) = 12
5 x − 12

5

In the next problem, we will match equations of hyperbolas with their graphs.
Being able to identify the vertices will not be enough. We will also need to use the
equations of the asymptotes to find b (we will know a from the vertices). Because
the center of each hyperbola will be at (0, 0), the asymptotes will either be y = a

b
x

and y = −a
b
x or y = b

a
x and y = − b

a
x.

EXAMPLES
Match the equation with its graph in Figures 12.24–12.27.

Fig. 12.24. Fig. 12.25.
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Fig. 12.26. Fig. 12.27.

• x2

4
− y2

4
= 1

The vertices are (−2, 0) and (2, 0). The slopes of the asymptotes are −1
and 1. The graph is in Figure 12.25.

• x2

4
− y2 = 1

The vertices are (−2, 0) and (2, 0). The slopes of the asymptotes are −1
2

and 1
2 . The graph is in Figure 12.26.

• y2

4
− x2

4
= 1

The vertices are (0, −2) and (0, 2). The slopes of the asymptotes are −1
and 1. The graph is in Figure 12.27.

• y2

4
− x2 = 1

The vertices are (0, −2) and (0, 2). The slopes of the asymptotes are −2
and 2. The graph is in Figure 12.24.

We can find the equation for a hyperbola when we know some points or a point
and the asymptotes. If we have the vertices and foci, then finding an equation for
a hyperbola will be similar to finding an equation for an ellipse. If we are given
the vertices and asymptotes or foci and asymptotes, we will need to use the slope
of one of the asymptotes to find either a or b (we will know one but not the other
from the vertices or foci). The first thing we need to decide is which formulas
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to use—those in Figures 12.21 or Figure 12.22. If the vertices or foci are on the
same horizontal line (the y-coordinates are the same), we will use Figure 12.21.
If they are on the same vertical line (the x-coordinates are the same), we will use
Figure 12.22.

EXAMPLES
Find an equation for the hyperbola.

• The vertices are (3, −1) and (3, 7) and y = 4
3x − 1 is an asymptote.

The vertices are on the same vertical line, so we need to use the information in
Figure 12.22. The vertices are (h, k − a) = (3, −1) and (h, k + a) = (3, 7).
This gives us h = 3, k − a = −1 and k + a = 7.

k + a = 7

k − a = −1

2k = 6

k = 3

3 + a = 7 Let k = 3 in k + a = 7

a = 4

The center is (3, 3) and a = 4. Once we have b, we will be done. The slope
of one of the asymptotes in Figure 12.22 is a

b
, so we have a

b
= 4

b
= 4

3 , so
b = 3. The equation is

(y − 3)2

16
− (x − 3)2

9
= 1.

• The vertices are (−8, 5) and (4, 5), and the foci are (−12, 5) and (8, 5).
The vertices and foci are on the same horizontal line, so we need to use
the information in Figure 12.21. The vertices are (h − a, k) = (−8, 5) and
(h+a, k) = (4, 5). Now we know k = 5 and we have the system h−a = −8
and h + a = 4.

h − a = −8

h + a = 4

2h = −4

h = −2
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−2 − a = −8 Let h = −2 in h − a = −8

a = 6

A focus is (h − c, k) = (−2 − c, 5) = (−12, 5), which gives us −2 − c =
−12. Now that we see that c = 10, we can put this anda = 6 in c = √

a2 + b2

to find b.

10 =
√

36 + b2

100 = 36 + b2

8 = b

The equation is

(x + 2)2

36
− (y − 5)2

64
= 1.

PRACTICE
1. Find the center, vertices, foci, and asymptotes for

y2

16
− (x − 5)2

9
= 1.

2. Find the center, vertices, foci, and asymptotes for

(x + 8)2

49
− (y + 6)2

576
= 1.

3. Find an equation for the hyperbola having vertices (−4, 2) and (12, 2) and
foci (−6, 2) and (14, 2).

4. Find an equation for the hyperbola having vertices (−8, 0) and (−4, 0) and
with an asymptote y = 1

2x + 3.

In Problems 5–7, match the graphs in Figures 12.28–12.30 with their
equations.

5. (y − 1)2 − (x − 1)2 = 1

6. (x − 1)2 − (y − 1)2 = 1

7.
(x − 1)2

4
− (y − 1)2 = 1
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Fig. 12.28. Fig. 12.29.

Fig. 12.30.

SOLUTIONS
1. h = 5, k = 0, a = 4, b = 3, and c = √

16 + 9 = 5

Center: (5, 0)

Vertices: (h, k − a) = (5, 0 − 4) = (5, −4) and (h, k + a) =
(5, 0 + 4) = (5, 4)

Foci: (h, k−c) = (5, 0−5) = (5, −5) and (h, k+c) = (5, 0+5) = (5, 5)

Asymptotes: y = k − a
b
(x − h) = 0 − 4

3(x − 5) = −4
3x + 20

3 and
y = k + a

b
(x − h) = 0 + 4

3(x − 5) = 4
3x − 20

3
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2. h = −8, k = −6, a = 7, b = 24, and c = √
49 + 576 = 25

Center: (−8, −6)

Vertices: (h − a, k) = (−8 − 7, −6) = (−15, −6) and (h + a, k) =
(−8 + 7, −6) = (−1, −6)

Foci: (h − c, k) = (−8 − 25, −6) = (−33, −6) and (h + c, k) = (−8 +
25, −6) = (17, −6)

Asymptotes: y = k − b
a
(x − h) = −6 − 24

7 (x + 8) = −24
7 x − 234

7 and

y = k + b
a
(x − h) = −6 + 24

7 (x + 8) = 24
7 x + 150

7

3. The vertices are (−4, 2) and (12, 2), which gives us k = 2 and (h−a, k) =
(−4, 2) and (h + a, k) = (12, 2).

h − a = −4

h + a = 12

2h = 8

h = 4

4 − a = −4 Let h = 4 in h − a = −4

a = 8

A focus is (−6, 2), which gives us (h − c, k) = (−6, 2) and h − c =
4 − c = −6. Solving 4 − c = −6 gives us c = 10. We can find b by letting
a = 8 and c = 10 in c = √

a2 + b2.

c =
√

a2 + b2

10 =
√

64 + b2

100 = 64 + b2

6 = b

The equation is

(x − 4)2

64
− (y − 2)2

36
= 1.
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4. (h − a, k) = (−8, 0) and (h + a, k) = (−4, 0), so k = 0 and we have the
following system.

h − a = −8

h + a = −4

2h = −12

h = −6

−6 − a = −8 Let h = −6 in h − a = −8

a = 2.

The slope of an asymptote is 1
2 , so b

a
= b

2 = 1
2 and b = 1. The equation is

(x + 6)2

4
− y2 = 1.

5. Figure 12.30

6. Figure 12.28

7. Figure 12.29

In order to use a graphing calculator to graph a conic section, the equation
probably needs to be entered as two separate functions. For example, the graph of
y2 = x could be entered as y = √

x and y = −√
x. To use a graphing calculator

to graph a conic section that is not a function, solve for y. When taking the square
root of both sides, we use a “±” symbol on one of the sides. It is this sign that gives
us two separate equations.

EXAMPLES
Solve for y.

• (y − 1)2 + (x + 3)2

9
= 1

(y − 1)2 + (x + 3)2

9
= 1

(y − 1)2 = 1 − (x + 3)2

9
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y − 1 = ±
√

1 − (x + 3)2

9

y = 1 ±
√

1 − (x + 3)2

9

y = 1 +
√

1 − (x + 3)2

9
, 1 −

√

1 − (x + 3)2

9

• x2

9
− (y + 2)2

4
= 1

x2

9
− (y + 2)2

4
= 1

−(y + 2)2

4
= 1 − x2

9

(y + 2)2

4
= −1 + x2

9

(y + 2)2 = 4

(

−1 + x2

9

)

y + 2 = ±
√

4

(

−1 + x2

9

)

y = −2 ±
√

4

(

−1 + x2

9

)

y = −2 +
√

4

(

−1 + x2

9

)

, y = −2 −
√

4

(

−1 + x2

9

)

Equations of conic sections do not always come in the convenient forms we have
been using. Sometimes they come in the general form Ax2 + Bxy + Cy2 + Dx +
Ey + F = 0. When A and C are equal (and B = 0), the graph is a circle. If A

and C are positive and not equal (and B = 0), the graph is an ellipse. If A and C

have different signs (and B = 0), the graph is a hyperbola. If only one of A or C

is nonzero (and B = 0), the graph is a parabola. There are some conic sections
whose entire graph is one point. These are called degenerate conics. We can rewrite



CHAPTER 12 Conic Sections 359

an equation in the general form in the standard form (the form we have been using)
by completing the square.

EXAMPLES
Rewrite the equation in standard form.

• x2 − 2x − 4y = 11

Because there is no y2 term, the graph of this equation is a parabola that
opens up or down. The standard equation is (x − h)2 = 4p(y − k). We need
to have the x terms on one side of the equation and the other terms on the
other side.

x2 − 2x − 4y = 11

x2 − 2x = 4y + 11

x2 − 2x +
(

2

2

)2

= 4y + 11 +
(

2

2

)2

x2 − 2x + 1 = 4y + 12

(x − 1)2 = 4(y + 3)

• −9x2 + 16y2 − 18x − 160y + 247 = 0

Because the signs on x2 and y2 are different, the graph of this equation is a

hyperbola. The standard form for this equation is (y−k)2

a2 − (x−h)2

b2 = 1.

−9x2 + 16y2 − 18x − 160y + 247 = 0

16y2 − 160y − 9x2 − 18x = −247

16(y2 − 10y) − 9(x2 + 2x) = −247

16

(

y2 − 10y +
(

10

2

)2
)

− 9

(

x2 + 2x +
(

2

2

)2
)

= −247 + 16

(
10

2

)2

− 9

(
2

2

)2

16(y − 5)2 − 9(x + 1)2 = 144



CHAPTER 12 Conic Sections360

16(y − 5)2

144
− 9(x + 1)2

144
= 144

144

(y − 5)2

9
− (x + 1)2

16
= 1

PRACTICE
1. Solve for y

y2

4
− (x − 3)2

9
= 1

2. Solve for y

(x + 10)2

25
+ (y + 3)2

25
= 1

3. Rewrite the equation in standard form: 36x2+9y2−216x−72y+144 = 0.

SOLUTIONS

1.
y2

4
− (x − 3)2

9
= 1

y2

4
= 1 + (x − 3)2

9

y2 = 4

(

1 + (x − 3)2

9

)

y = ±
√

4

(

1 + (x − 3)2

9

)

2.
(x + 10)2

25
+ (y + 3)2

25
= 1

(y + 3)2

25
= 1 − (x + 10)2

25

(y + 3)2 = 25

(

1 − (x + 10)2

25

)
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y + 3 = ±
√

25

(

1 − (x + 10)2

25

)

y = −3 ±
√

25

(

1 − (x + 10)2

25

)

3. 36x2 + 9y2 − 216x − 72y + 144 = 0

36x2 − 216x + 9y2 − 72y = −144

36(x2 − 6x) + 9(y2 − 8y) = −144

36(x2 − 6x + 9) + 9(y2 − 8y + 16) = −144 + 36(9) + 9(16)

36(x − 3)2 + 9(y − 4)2 = 324

36(x − 3)2

324
+ 9(y − 4)2

324
= 324

324

(x − 3)2

9
+ (y − 4)2

36
= 1

CHAPTER 12 REVIEW
1. What is the directrix for the parabola (y + 1)2 = −6(x − 3)?

(a) x = 3
2 (b) x = 9

2 (c) y = −5
2 (d) y = 1

2

2. What is the focus for the parabola (y + 1)2 = −6(x − 3)?

(a) (3
2 , −1) (b) (9

2 , −1) (c) (3, 1
2) (d) (3, −5

2)

3. What are the vertices for the ellipse

(x − 1)2

9
+ (y − 2)2

25
= 1?

(a) (−2,2) and (4,2)

(c) (1,−3) and (1,7)

(b) (−4,2) and (6,2)

(d) (1,−1) and (1,5)
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4. What are the foci for the ellipse

(x − 1)2

9
+ (y − 2)2

25
= 1?

(a) (−3, 2) and (5, 2)

(c) (1, −2) and (1, 6)

(b) (1 − √
34, 2) and (1 + √

34, 2)

(d) (1, 2 − √
34) and (1, 2 + √

34)

5. Which line is an asymptote for the hyperbola

(x − 5)2 − (y + 1)2

4
= 1?

(a) y = 2x − 11

(c) y = 1

2
x − 7

2

(b) y = −2x − 9

(d) y = −1

2
x + 3

2

6. Solve for y.

(x − 4)2 − (y − 6)2

25
= 1

(a) y = 6 ± 5
√−1 + (x − 4)2

(c) y = −6 ± 5
√

1 + (x − 4)2

(b) y = 6 ± 5
√

1 − (x − 4)2

(d) y = −6 ± 5
√

1 − (x − 4)2

7. What is the center and radius for the circle (x + 3)2 + (y − 4)2 = 9?
(a) The center is (−3, 4), and the radius is 81.

(b) The center is (−3, 4), and the radius is 3.

(c) The center is (3, −4), and the radius is 81.

(d) The center is (3, −4), and the radius is 3.

8. The graph in Figure 12.31 is the graph of which equation?

(a) y2 = 4x (b) y2 = −4x (c) x2 = −4y (d) x2 = 4y

9. Find an equation of the ellipse with vertices (8, −6) and (8, 4) with a focus
at (8, 2).

(a)
(x − 8)2

16
+ (y + 1)2

25
= 1

(c)
(x − 8)2

16
− (y + 1)2

25
= 1

(b)
(x − 8)2

25
+ (y + 1)2

16
= 1

(d)
(x − 8)2

25
+ (y + 1)2

16
= 1
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Fig. 12.31. Fig. 12.32.

10. Which equation is the equation of a hyperbola with center (1, 0) and with
asymptote y = 2x − 2?

(a) y2 − (x − 1)2

4
= 1

(c)
(x − 1)2

4
− y2 = 1

(b)
y2

4
+ (x − 1)2 = 1

(d) (x − 1)2 − y2

4
= 1

11. The graph in Figure 12.32 is the graph of which equation?

(a) x2 − y2

9
= 1

(c)
y2

9
− x2 = 1

(b)
x2

9
− y2 = 1

(d) y2 − x2

9
= 1

SOLUTIONS
1. B 2. A 3. C 4. C 5. A 6. A
7. B 8. D 9. A 10. D 11. D



13
CHAPTER

Trigonometry

Trigonometry has been used for over two thousand years to solve many real-
world problems, among them surveying, navigating, and problems in engineering.
Another important use is analytic—the trigonometric functions and their graphs are
important in several mathematics courses. The unit circle is the basis of analytic
trigonometry. The unit circle is the circle centered at the origin that has radius 1.
See Figure 13.1.

Angles have two sides, the initial side and the terminal side. On the unit circle,
the initial side is the positive part of the x-axis. The terminal side is the side that
rotates. See Figure 13.2

A positive angle rotates counterclockwise, �. A negative angle rotates
clockwise, �. Angles on the unit circle are often measured in radians. Radian
measure is based on the circumference of the unit circle, C = 2πr . The radius is
1, so 2πr = 2π . An angle that rotates all the way around the circle is 2π radians,
half-way around is π radians, one-third the way is 1

3(2π) = 2π
3 radians, and so on.

The relationship 2π radians = 360◦ gives us two equations.

π

180
radians = 1◦ and

180

π

◦
= 1 radian

364
xi

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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Fig. 13.1. Fig. 13.2.

These equations help us to convert radian measure to degrees and degree measure
to radians. We can convert radians to degrees by multiplying the angle by 180/π .
We can convert degrees to radians by multiplying the angle by π/180.

EXAMPLES
• Convert 4π/5 radians to degree measure.

Because we are going from radians to degrees, we will multiply the angle by
180/π .

4π

5
· 180

π
= 144◦

• Convert 5π/6 radians to degree measure.

5π

6
· 180

π
= 150◦

• Convert 48◦ to radian measure.
Because we are going from degrees to radians, we will multiply the angle by
π/180.

48 · π

180
= 4π

15
radians

• Convert −72◦ to radian measure.

−72 · π

180
= −2π

5
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Two angles are coterminal if their terminal sides are the same. For example, the
terminal sides of the angles 300◦ and −60◦ are the same. See Figure 13.3.

Fig. 13.3.

Two angles are coterminal if their difference is a multiple of 360◦ or 2π radians.
In the example above, the difference of 300◦ and −60◦ is 300◦ − (−60◦) = 360◦.

EXAMPLES
Determine whether or not the angles are coterminal.

• 18◦ and 738◦

Is the difference between 18◦ and 738◦ a multiple of 360? 738◦−18◦ = 720◦,
720◦ = 2 · 360◦, so the angles are coterminal.

• −170◦ and 350◦

350◦ − (−170◦) = 350◦ + 170◦ = 520◦ and 520◦ is not a multiple of 360◦,
so the angles are not coterminal.

• π/8 radians and −7π/8 radians

Is the difference of π/8 and −7π/8 a multiple of 2π?

π

8
−
(

−7π

8

)

= 8π

8
= π radians

Because π radians is not a multiple of 2π radians, the angles are not
coterminal.
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Every angle, θ (the Greek letter theta), has a reference angle, θ̄ , associated with
it. The reference angle is the smallest angle between the terminal side of the angle
and the x-axis. A reference angle will be between 0 and π/2 radians, or 0◦ and 90◦.
The reference angle for all of the angles shown in Figures 13.4 through 13.7 is π

6 .

Fig. 13.4. Fig. 13.5.

Fig. 13.6. Fig. 13.7.

The xy plane is divided into four quadrants. The trigonometric functions of
angles in the different quadrants will have different signs. It is important to be
familiar with the signs of the trigonometric functions in the different quadrants.
One reason is that formulas have ± signs in them, and the sign of + or − depends
on the quadrant in which the angle lies. Before we find reference angles, we will
become familiar with the quadrants in the xy plane. (see Figure 13.8.)

EXAMPLES
Determine the quadrant in which the point lies.

• (5, −3)

x = 5 is positive, and y = −3 is negative, the point is in Quadrant IV.
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Fig. 13.8.

• (4, 7)

Both x = 4 and y = 7 are positive, the point is in Quadrant I.

• (−1, −6)

Both x = −1 and y = −6 are negative, the point is in Quadrant III.

• (−2, 10)

x = −2 is negative, y = 10 is positive, the point is in Quadrant II.

Below is an outline for finding the reference angle.

1. If the angle is not between 0 radians and 2π radians, find an angle between
these two angles by adding or subtracting a multiple of 2π . Call this angle θ .

2. If θ is Quadrant I, θ is its own reference angle.
3. If θ is in Quadrant II, the reference angle is π − θ .
4. If θ is in Quadrant III, the reference angle is θ − π .
5. If θ is in Quadrant IV, the reference angle is 2π − θ .

EXAMPLES
Find the reference angle.

• θ = 9π

8
This angle is in Quadrant III (bigger than π but smaller than 3π/2),
so θ̄ = 9π/8 − π = π/8.
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• θ = 7π

3

This angle is not between 0 and 2π , so we need to add or subtract some
multiple of 2π so that we do have an angle between 0 and 2π . The coterminal
angle we need is 7π/3−2π = 7π/3−6π/3 = π/3, π/3 is its own reference
angle because it is in Quadrant I, so θ̄ = π/3.

• θ = 5π

7

This angle is in Quadrant II (between π/2 and π ), so θ̄ = π − 5π/7 =
7π/7 − 5π/7 = 2π/7.

• θ = −2π

3

This angle is not between 0 and 2π . It is coterminal with 2π + (−2π/3) =
6π/3 − 2π/3 = 4π/3. The angles are in Quadrant III, so θ̄ = 4π/3 − π =
4π/3 − 3π/3 = π/3.

There are six trigonometric functions, but four of them are written in terms of two
of the main functions—sine and cosine. Although trigonometry was developed to
solve problems involving triangles, there is a very close relationship between sine
and cosine and the unit circle. Suppose an angle θ is given. The x-coordinate of the
point on the unit circle for θ is cosine of the angle (written cos θ ). The y-coordinate
of the point is sine of the angle (written sin θ ). For example, suppose the point
determined by the angle θ is (3/5, 4/5). Then cos θ = 3/5 and sin θ = 4/5. See
Figure 13.9.

Fig. 13.9.
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EXAMPLES
Find sin θ and cos θ .

•

Fig. 13.10.

sin θ = √
3/2 and cos θ = −1/2

•

Fig. 13.11.

sin θ = −√
7/4 and cos θ = −3/4

The equation for the unit circle is x2 + y2 = 1. For an angle θ , we can replace
x with cos θ and y with sin θ . This changes the equation to cos2 θ + sin2 θ = 1
(cos2 θ means (cos θ)2 and sin2 θ means (sin θ)2). This is an important equation.
It allows us to find cos θ if we know sin θ and sin θ if we know cos θ . Solving

this equation for cos θ gives us cos θ = ±
√

1 − sin2 θ . Solving it for sin θ gives
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us sin θ = ±√
1 − cos2 θ . For example, if we know sin θ = 1/2, we can find

cos θ .

cos θ = ±
√

1 − sin2 θ = ±
√

1 −
(

1

2

)2

= ±
√

3

4
= ±

√
3

2

Is cos θ = √
3/2 or −√

3/2? We cannot answer this without knowing where θ is.
If we know that θ is in Quadrants I or IV, then cos θ = √

3/2 because cosine is
positive in Quadrants I and IV. If we know that θ is in Quadrants II or III, then
cos θ = −√

3/2 because cosine is negative in Quadrants II and III.

EXAMPLES
Find sin θ and cos θ .

• The terminal point for θ is (−12/13, y), and θ is in Quadrant II.

cos θ = −12/13

Is sin θ =
√

1 −
(

−12

13

)2

or −
√

1 −
(

−12

13

)2

?

Because the y-values in Quadrant II are positive, sin θ is positive.

sin θ =
√

1 −
(

−12

13

)2

=
√

25

169
= 5

13

• The terminal point for θ is (x, −1/9), and θ is in Quadrant III.

Both sine and cosine are negative in Quadrant III, so we will use the negative
square root. Using sin θ = −1/9, we have

cos θ = −
√

1 −
(

−1

9

)2

= −
√

80

81
= −4

√
5

9

The values for sine and cosine of the following angles should be memorized:
0, π/6, π/4, π/3, and π/2. See Figure 13.12.
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Fig. 13.12.

All of these angles are also reference angles in the other three quadrants. You
should either memorize or be able to quickly compute them. The information is in
the table below.

Table 13.1

θ cos θ sin θ θ cos θ sin θ

0 1 0 π −1 0

Quadrant I π
6

√
3

2
1
2 Quadrant III π + π

6 = 7π
6 −

√
3

2 − 1
2

Quadrant I π
4

√
2

2

√
2

2 Quadrant III π + π
4 = 5π

4 −
√

2
2 −

√
2

2

Quadrant I π
3

1
2

√
3

2 Quadrant III π + π
3 = 4π

3 − 1
2 −

√
3

2
π
2 0 1 3π

2 0 −1

Quadrant II π − π
3 = 2π

3 − 1
2

√
3

2 Quadrant IV 2π − π
3 = 5π

3
1
2 −

√
3

2

Quadrant II π − π
4 = 3π

4 −
√

2
2

√
2

2 Quadrant IV 2π − π
4 = 7π

4

√
2

2 −
√

2
2

Quadrant II π − π
6 = 5π

6 −
√

3
2

1
2 Quadrant IV 2π − π

6 = 11π
6

√
3

2 − 1
2

The other trigonometric functions are tangent (tan), cotangent (cot), secant (sec),
and cosecant (csc). All of them can be written as a ratio with sine, cosine, or both.

tan θ = sin θ

cos θ
= y

x
cot θ = cos θ

sin θ
= x

y

sec θ = 1

cos θ
= 1

x
csc θ = 1

sin θ
= 1

y
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Sine and cosine can be evaluated at any angle. This is not true for the other
trigonometric functions. For example tan π/2 = sin π/2/cos π/2 and sec π/2 =
1/cos π/2 are not defined because cos π/2 = 0. We can find all six trigonometric
functions for an angle θ if we either know both coordinates of its terminal point or
if we know one coordinate and the quadrant where θ lies.

Before we begin the next set of problems, we will review a shortcut that will
save some computation for tan θ . A compound fraction of the form (a/b)/(c/b)

simplifies to a/c.

a/b

c/b
= a

b
÷ c

b
= a

b
· b

c
= a

c

EXAMPLES
• 1/8

5/8
= 1

5

• 4/7

2/7
= 4

2
= 2

• −2/3

1/3
= −2

1
= −2

• 1/9

−5/9
= −1

5

Find all six trigonometric functions for θ .

• The terminal point for θ is (24/25, 7/25)

cos θ = 24

25
sin θ = 7

25

sec θ = 25

24
csc θ = 25

7

tan θ = 7/25

24/25
= 7

24
cot θ = 24

7

• θ = π/3

cos θ = 1

2
sin θ =

√
3

2

sec θ = 2 csc θ = 2√
3

= 2
√

3

3

tan θ =
√

3/2

1/2
=

√
3

1
= √

3 cot θ = 1√
3

=
√

3

3
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• θ = 5π/6

cos θ = −
√

3

2
sin θ = 1

2

sec θ = − 2√
3

= −2
√

3

3
csc θ = 2

tan θ = 1/2

−√
3/2

= − 1√
3

= −
√

3

3
cot θ = −√

3

• The x-coordinate of θ is 2/5, and θ is in Quadrant IV.

cos θ = 2

5
sin θ = −

√

1 −
(

2

5

)2

= −
√

21

5

sec θ = 5

2
csc θ = − 5√

21
= −5

√
21

21

tan θ = −√
21/5

2/5
= −

√
21

2
cot θ = − 2√

21
= −2

√
21

21

The graph of a trigonometric function is a record of each cycle around the unit
circle. For the function f (x) = sin x, x is the angle and f (x) is the y-coordinate of
the terminal point determined by the angle x. In the function g(x) = cos x, g(x) is
the x-coordinate of the terminal point determined by the angle x. For example, the
point determined by the angle π/6 is (

√
3/2, 1/2), so f (π/6) = sin π/6 = 1/2

and g(π/6) = cos π/6 = √
3/2. We will sketch the graph of f (x) = sin x, using

the points in Table 13.2.

Table 13.2

x sin x Plot this point

−2π sin(−2π) = 0 (−2π, 0)

−3π/2 sin(−3π/2) = 1 (−3π/2, 1)

−π sin(−π) = 0 (−π, 0)

−π/2 sin(−π/2) = −1 (−π/2, −1)

0 sin 0 = 0 (0, 0)

π/2 sin π/2 = 1 (π/2, 1)

π sin π = 0 (π, 0)

3π/2 sin 3π/2 = −1 (3π/2, −1)

2π sin 2π = 0 (2π, 0)
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Fig. 13.13.

The graph in Figure 13.13 is two periods from the entire graph. This pattern
repeats itself in both directions. Each period begins and ends at every multiple of
2π : . . . , [−2π, 0], [0, 2π ], [2π, 4π ], . . .. The graph between 0 and 2π represents
sine on the first positive cycle around the unit circle, between 2π and 4π represents
the second positive cycle, and between 0 and −2π represents the first negative
cycle.

The graph for g(x) = cos x behaves in the same way. In fact, the graph of g(x) is
the graph of f (x) shifted horizontally π/2 units. (We will see why this is true when
we work with right triangles.) The graph for g(x) = cos x is shown in Figure 13.14.

Fig. 13.14.

From their graphs, we can tell that f (x) = sin x is an odd function (sin(−x) =
− sin x), and g(x) = cos x is even (cos(−x) = cos x). We can also see that their
domain is all x and their range is all y values between −1 and 1.

The graphs of f (x) = sin x and g(x) = cos x can be shifted up or down, left
or right, and stretched or compressed in the same way as other graphs. The graphs
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of y = c + sin x and y = c + cos x are shifted up or down c units. The graphs of
y = a sin x and y = a cos x are vertically stretched or compressed, and the graphs
of y = sin(x − b) and y = cos(x − b) are shifted horizontally by b units.

EXAMPLES
The dashed graph in Figures 13.15 through 13.18 is one period of the graph of
f (x) = sin x, and the solid graphs are transformations. Match the equations below
with their graphs.

Fig. 13.15. Fig. 13.16.

Fig. 13.17. Fig. 13.18.
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• y = 3 sin(x + π/3)

The graph of this function is vertically stretched by a factor of 3, so we will
look for a graph whose y values lie between −3 and 3. The graph will also
be shifted to the left by π/3 units. The graph for this function is shown in
Figure 13.16.

• y = 3 sin(x − π/6)

The graph of this function is also vertically stretched by a factor of three, but
it is shifted to the right by π/6 units. The graph for this function is shown in
Figure 13.18.

• y = 1
2 sin(x + π/2)

The graph of this function is vertically compressed by a factor of 1/2, so we
will look for a graph whose y values are between −1/2 and 1/2. The graph
will also be shifted to the left by π/2 units. The graph for this function is
shown in Figure 13.17.

• y = 2 sin(x − π/4)

The graph of this function is vertically stretched by a factor of 2, so we will
look for a graph whose y values are between −2 and 2. It will also be shifted
to the right π/4 units. The graph for this function is shown in Figure 13.15.

Transformations of the graphs of sine and cosine have names. The amplitude is
the degree of vertical stretching or compressing. The horizontal shift is called the
phase shift. Horizontal stretching or compressing changes the length of the period.
For functions of the form y = a sin k(x − b) and y = a cos k(x − b), |a| is the
graph’s amplitude, b is its phase shift, and 2π/k is its period.

EXAMPLES
Find the amplitude, period, and phase shift.

• y = −4 sin 2(x − π/3)

The amplitude is |a| = | − 4| = 4, the period is 2π/k = 2π/2 = π , and the
phase shift is b = π/3.

• y = − cos(x + π/2)

The amplitude is |a| = | − 1| = 1, the period is 2π/k = 2π/1 = 2π , and
the phase shift is b = −π/2.
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• y = 1
2 cos(2x + 2π/3)

The amplitude is |1/2| = 1/2. In order for us to find k and b for the period
and phase shift, we need to write the function in the form y = a cos k(x −b).
We need to factor 2 from 2x + 2π/3.

2x + 2π

3
= 2 · x + 2 · π

3
= 2

(
x + π

3

)

The function can be written as y = 1
2 cos 2(x + π/3). The period is 2π/k =

2π/2 = π , and the phase shift is k = −π/3.

Sketching the Graphs of Sine and Cosine
We can sketch one period of the graphs of sine and cosine or any of their transfor-
mations by plotting five key points. These points for y = sin x and y = cos x are
x = 0, π/2, π, 3π/2 and 2π . These points are the x-intercepts and the vertices
(where y = 1 or −1). For the functions y = a sin k(x −b) and y = a cos k(x −b),
these points are shifted to b, b + π

2k
, b + π

k
, b + 3π

2k
, and b + 2π

k
.

EXAMPLES
Sketch one period of the graph for the given function.

• y = −3 cos 1
2x

Table 13.3

x −3 cos 1
2x Plot this point

b = 0 −3 cos 1
2 (0) = −3 cos 0 = −3 (0, −3)

b + π
2k

= 0 + π

2( 1
2 )

= 0 + π = π −3 cos 1
2 (π) = −3 cos π/2 = 0 (π, 0)

b + π
k

= 0 + π
1/2 = 0 + 2π = 2π −3 cos 1

2 (2π) = −3 cos π = 3 (2π, 3)

b + 3π
2k

= 0 + 3π

2( 1
2 )

= 0 + 3π = 3π −3 cos 1
2 (3π) = −3 cos 3π/2 = 0 (3π, 0)

b + 2π
k

= 0 + 2π
1/2 = 0 + 4π = 4π −3 cos 1

2 (4π) = −3 cos 2π = −3 (4π, −3)
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Fig. 13.19.

• y = 5 sin(3x + π/2)

We need to write the function in the form y = a sin k(x − b) so that we can
find k and b.

3x + π

2
= 3x + 3

3
· π

2
= 3 · x + 3 · π

6
= 3

(
x + π

6

)

Table 13.4

x 5 sin 3(x + π/6) Plot this point

b = −π/6 5 sin 3(−π/6 + π/6) = 5 sin 0 = 0 (−π/6, 0)

b + π
2k

= −π
6 + π

2(3)
= 0 5 sin 3(0 + π/6) = 5 sin π/2 = 5 (0, 5)

b + π
k

= −π
6 + π

3 = π/6 5 sin 3(π/6 + π/6) = 5 sin π = 0 (π/6, 0)

b + 3π
2k

= −π
6 + 3π

2(3)
= π/3 5 sin 3(π/3 + π/6) = 5 sin 3π/2 = −5 (π/3, −5)

b + 2π
k

= −π
6 + 2π

3 = π/2 5 sin 3(π/2 + π/6) = 5 sin 2π = 0 (π/2, 0)

The points in Table 13.4 are used to construct the graph in Figure 13.20.

PRACTICE
For Problems 1–3, match the function with its graph shown in Figures 13.21–13.23.
The dashed graph is the graph of one period of y = cos x. The solid graph is the
graph of one period of a transformation.
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Fig. 13.20.
Fig. 13.21.

Fig. 13.22. Fig. 13.23.

1. y = 2 cos(x − π/3)

2. y = 3 cos(x + π/2)

3. y = 1
2 cos(x − π)

4. Find the amplitude, period, and phase shift for y = −3 cos 2
3(x − π/4).

5. Find the amplitude, period, and phase shift for y = 6 sin(2x − π/2).

6. Sketch one period for the graph of y = 3 cos 1
2(x + π/4).

7. Sketch one period for the graph of y = −1 + 2 sin(x − π/3)

SOLUTIONS
1. Figure 13.22

2. Figure 13.21
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3. Figure 13.23

4. The amplitude is | − 3| = 3, the period is 2π
2/3 = 2π · 3/2 = 3π , and the

phase shift is b = π/4.

5. In order to find k and b, we need to write the function in the form y =
a sin k(x − b).

2x − π

2
= 2x − 2

2
· π

2
= 2 · x − 2 · π

4
= 2

(
x − π

4

)

The function can be written as y = 6 sin 2(x − π/4). Now we can see that
the amplitude is |6| = 6, the period is 2π/2 = π , and the phase shift is π/4.

6. Plot points for x = −π/4, 3π/4, 7π/4, 11π/4, and 15π/4.

Fig. 13.24.

7. Plot points for x = π/3, 5π/6, 4π/3, 11π/6, and 7π/3.

Fig. 13.25.
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Graphs for Other Trigonometric Functions
Because csc x = 1/ sin x, the graph of y = csc x has a vertical asymptote every-
where y = sin x has an x-intercept (where sin x = 0). Because sec x = 1/ cos x,
the graph of y = sec x has a vertical asymptote everywhere y = cos x has an
x-intercept. The period for y = csc x and y = sec x is 2π . The graph for y = csc x

is shown in Figure 13.26, and the graph for y = sec x is shown in Figure 13.27.
The domain for y = csc x is all real numbers except for the zeros of

sin x, x �= . . . , −2π, −π, 0, π, 2π, . . .. The range is (−∞, −1] ∪ [1, ∞). The
domain for y = sec x is all real numbers except for the zeros of cos x, x �=
. . . , −3π/2, −π/2, π/2, 3π/2, . . .. The range is (−∞, −1] ∪ [1, ∞). Because

Fig. 13.26.

Fig. 13.27.
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y = sin x is an odd function, y = csc x is also an odd function. Because y = cos x

is an even function, y = sec x is also an even function.
We can sketch the graphs of y = csc x and y = sec x using the graphs of

y = sin x and y = cos x. We will sketch the vertical asymptotes as well as the
graphs of y = sin x or y = cos x using dashed graphs.

The graph of y = sin x is given in Figure 13.28. Vertical asymptotes are
sketched for every x-intercept.

Fig. 13.28.

The vertex for each piece on the graph of y = csc x is also a vertex for y = sin x.

Fig. 13.29.

Then we can plot a point to the left and right of each vertex (staying inside the vertical
asymptotes) to show how fast the graph gets close to the vertical asymptotes.
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Table 13.5

x csc x

−1.8π 1.7
−1.2π 1.7
−0.8π −1.7
−0.2π −1.7

0.2π 1.7
0.8π 1.7
1.2π −1.7
1.8π −1.7

Fig. 13.30.

Now we can draw
⋃

or
⋂

through the points.

Fig. 13.31.

These steps also work for the graph of y = sec x.
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The period for the functions y = tan x and y = cot x is π instead of 2π as it is
with the other trigonometric functions. These graphs also have vertical asymptotes.
The graph of y = tan x (= sin x/ cos x) has a vertical asymptote at each zero of
y = cos x. The graph of y = cot x (= cos x/ sin x) has a vertical asymptote at each
zero of y = sin x. The graph of y = tan x is shown in Figure 13.32, and the graph
of y = cot x is shown in Figure 13.33.

The domain of y = tan x is all real numbers except the zeros of y = cos x,
x �= . . . , −3π/2, −π/2, π/2, 3π/2, . . .. The domain for y = cot x is all real
numbers except for the zeros of y = sin x, x �= . . . , −2π, −π, 0, π, 2π, . . .. The
range for both y = tan x and y = cot x is all real numbers. Both are odd functions.

Fig. 13.32.

Fig. 13.33.
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The transformations of these are similar to those of the other trigonometric
functions. For functions of the form y = a csc k(x −b) and y = a sec k(x −b), the
period is 2π/k, and the phase shift is b. For functions of the form y = a tan k(x−b)

and y = a cot k(x − b), the period is π/k, and the phase shift is b. The term
amplitude only applies to the sine and cosine functions.

Right Triangle Trigonometry
Using trigonometry to solve triangles is one of the oldest forms of mathematics.
One of its most powerful uses is to measure distances—the height of a tree or
building, the distance between earth and the moon, or the dimensions of a plot of
land. The trigonometric ratios below are the same as before with the unit circle,
only the labels are different. We will begin with right triangles.

In a right triangle, one angle measures 90◦ and the sum of the other angles is
also 90◦. The side opposite the 90◦ angle is the hypotenuse. The other sides are the
legs. If we let θ represent one of the acute angles, then one of the legs is the side
opposite θ , and the other side is adjacent to θ . See Figure 13.34.

Fig. 13.34.

sin θ = Opposite

Hypotenuse
cos θ = Adjacent

Hypotenuse
tan θ = Opposite

Adjacent

csc θ = Hypotenuse

Opposite
sec θ = Hypotenuse

Adjacent
cot θ = Adjacent

Opposite

We can get the identity sin2 θ + cos2 θ = 1 from the Pythagorean Theorem.
Opposite2 + Adjacent2 = Hypotenuse2

Divide both sides by Hypotenuse2.
(

Opposite

Hypotenuse

)2

+
(

Adjacent

Hypotenuse

)2

=
(

Hypotenuse

Hypotenuse

)2

sin2 θ + cos2 θ = 1
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From this equation, we get two others, one from dividing both sides of the equation
by sin2 θ , and the other by dividing both sides by cos2 θ .

(
sin θ

sin θ

)2

+
(

cos θ

sin θ

)2

=
(

1

sin θ

)2

1 + cot2 θ = csc2 θ

(
sin θ

cos θ

)2

+
(

cos θ

cos θ

)2

=
(

1

cos θ

)2

tan2 θ + 1 = sec2 θ

EXAMPLES
• Find all six trigonometric ratios for θ .

Fig. 13.35.

sin θ = Opposite

Hypotenuse
= 3

5
cos θ = Adjacent

Hypotenuse
= 4

5

tan θ = Opposite

Adjacent
= 3

4

csc θ = Hypotenuse

Opposite
= 5

3
sec θ = Hypotenuse

Adjacent
= 5

4

cot θ = Adjacent

Opposite
= 4

3

• Find sin A, cos B, sec A, csc B, tan A, and cot B.

Fig. 13.36.
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The hypotenuse is 13, the side opposite ∠A is 5, so sin A = 5/13. The
side adjacent to ∠B is 5, so cos B = 5/13. The other ratios are sec A =
13/12, csc B = 13/12, tan A = 5/12, and cot B = 5/12.

The side opposite ∠A is the side adjacent to ∠B, and the side adjacent to ∠A

is opposite ∠B. This is why sine and cosine, secant and cosecant, and tangent and
cotangent are co-functions. Because ∠A + ∠B = 90◦, we have ∠B = 90◦ − ∠A.
These facts give us the following important relationships.

sin A = cos B = cos(90◦ − A) cos A = sin B = sin(90◦ − A)

tan A = cot B = cot(90◦ − A)

csc A = sec B = sec(90◦ − A) sec A = csc B = csc(90◦ − A)

cot A = tan B = tan(90◦ − A)

To “solve a triangle” means to find all three angles and the lengths of all three
sides. For now, we will solve right triangles. Later, after covering inverse trigono-
metric functions, we can solve other triangles. When solving right triangles, we
will use the Pythagorean Theorem as well as the fact that the sum of the two acute
angles is 90◦. Except for the angles 30◦, 45◦, and 60◦, we need a calculator. The
calculator should be in degree mode. Also, there are probably no keys for secant,
cosecant, and cotangent. You will need to use the reciprocal key, marked either 1

x
or

x−1. The keys marked sin−1, cos−1, and tan−1 are used to evaluate the functions
covered in the next section.

EXAMPLES
• Solve the triangle.

Fig. 13.37.
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The side opposite the angle 30◦ is 3, so sin 30◦ = 3
c
. We know that

sin 30◦ = 1/2. This gives us an equation to solve.

1

2
= 3

c

c = 6

We could use trigonometry to find the third side, but it is usually easier to
use the Pythagorean Theorem.

a2 + 32 = 62

a2 = 36 − 9 = 27

a = √
27 = 3

√
3

A = 90◦ − B = 90◦ − 30◦ = 60◦.

In some applications of right triangles, we are given the angle of elevation or
depression to an object. The angle of elevation is the measure of upward rotation.
The angle of depression is the measure of the downward rotation. See Figure 13.38.

Fig. 13.38.

• A person is standing 300 feet from the base of a five-story building. He
estimates that the angle of elevation to the top of the building is 63◦.
Approximately how tall is the building?



CHAPTER 13 Trigonometry390

We need to find b in the following triangle.

Fig. 13.39.

We could use either of the ratios that use the opposite and adjacent sides,
tangent (opposite/adjacent) and cotangent (adjacent/opposite). We will use
tangent.

tan 63◦ = Opposite

Adjacent
= b

300

This gives us the equation tan 63◦ = b/300. When we solve for b, we
have b = 300 tan 63◦ ≈ (300)1.9626 ≈ 588.78. The building is about
589 feet tall.

• A guy wire is 60 feet from the base of a tower. The angle of elevation from
the top of the tower along the wire is 73◦. How long is the wire?
We need to find c in the following triangle.

Fig. 13.40.
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We could use either cosine (adjacent/hypotenuse) or secant (hypotenuse/adjacent).
Using cosine, we have cos 73◦ = 60/c. Solving this equation for c gives us
c = 60/ cos 73◦ ≈ 60/0.2924 ≈ 205. The wire is about 205 feet long.

PRACTICE
1. Find all six trigonometric ratios for θ .

Fig. 13.41.

2. Solve the triangle.

Fig. 13.42.

3. A plane is flying at an altitude of 5000 feet. The angle of elevation to the
plane from a car traveling on a highway is about 38.7◦. How far apart are
the plane and car?

SOLUTIONS

1. sin θ = 1

2
cos θ =

√
3

2
tan θ = 1√

3
=

√
3

3

csc θ = 2 sec θ = 2√
3

= 2
√

3

3
cot θ = √

3
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2. We could use any of the ratios involving the hypotenuse. We will use cosine:
cos 60◦ = a/4. Since cos 60◦ = 1/2, we have 1/2 = a/4. Solving for a

gives us a = 2.

22 + b2 = 42

b =
√

42 − 22 = √
12 = 2

√
3

∠A = 90◦ − 60◦ = 30◦

3. We need to find c in the following triangle.

Fig. 13.43.

sin 38.7◦ = 5000

c

c = 5000

sin 38.7◦ ≈ 5000

0.6252
≈ 7997

The plane and car are about 8000 feet apart.

Inverse Trigonometric Functions
Only one-to-one functions can have inverses, and the trigonometric functions are
certainly not one to one. But we can limit their domains and force them to be one
to one. Limiting the sine function to the interval from x = −π/2 to x = π/2
makes f (x) = sin x one to one. The graph in Figure 13.44 passes the Horizontal
Line Test.

The domain of this function is [−π/2, π/2], and the range is [−1, 1]. If we limit
the cosine function to the interval from x = 0 to x = π , we have another one-to-one
function. Its graph is shown in Figure 13.45. The domain of this function is [0, π ]
and the range is [−1, 1].

By limiting the tangent function from x = −π/2 to x = π/2, f (x) = tan x is
one to one. Its domain is (−π/2, π/2), and its range is all real numbers.
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Fig. 13.44. Fig. 13.45.

Fig. 13.46.

There are two notations for inverse trigonometric functions. One uses “−1,”
and the other uses the letters arc. For example, the inverse sine function is noted
as sin−1 or arcsin. Remember that for any function f (x) and its inverse f −1(x),
f (f −1(x)) = x and f −1(f (x)) = x. In other words, a function evaluated at its
inverse “cancels” itself.

cos−1(cos π/3) = π/3 sin(sin−1 1/4) = 1/4

tan(tan−1 1) = 1 tan−1(tan θ) = θ

The x and y values are reversed for inverse functions. For example, if (4, 9) is a
point on the graph of f (x), then (9, 4) is a point on the graph of f −1(x). This
means that the y-values for the inverse trigonometric functions are angles. Though
we will need to use a calculator to evaluate most of these functions, we can find a
few of them without a calculator. For cos−1 1

2 , ask yourself what angle (between 0
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and π ) has a cosine of 1/2? Because cos π/3 = 1/2, cos−1 1
2 = π

3 . When evaluat-
ing inverse trigonometric functions, we need to keep in mind what their range is.
The domain of f (x) = sin(x) is [−π/2, π/2] (Quadrants I and IV), so the range of
y = sin−1 x is [−π/2, π/2]. The domain of f (x) = cos x is [0, π ], so the range of
y = cos−1 x is [0, π ] (Quadrants I and II). And the domain of f (x) = tan x

is (−π/2, π, 2), so the range of y = tan−1 x is (−π/2, π/2) (Quadrants I
and IV).

EXAMPLES
• sin−1

√
2/2

Because sin π/4 = √
2/2, sin−1

√
2/2 = π/4.

• tan−1
√

3

Because tan π/3 = √
3, tan−1

√
3 = π/3.

• cos−1(−1)

cos−1(−1) = π because cos π = −1.

• tan−1(1/3)

None of the important angles between −π/2 and π/2 has a tangent of
1/3, so we need to use a calculator to get an approximation: tan−1(1/3) ≈
0.32175.

• sin−1(cos π/6)

cos π/6 = √
3/2, so we need to replace cos π/6 with

√
3/2. This gives us

sin−1
√

3/2. Because sin π/3 = √
3/2, sin−1

√
3/2 = π/3.

• cos(tan−1(−1))

What angle in the interval (−π/2, π/2) has a tangent of −1? That would be
−π/4, so tan−1(−1) = −π/4.

cos(tan−1(−1)) = cos
(
−π

4

)
=

√
2

2

In the next set of problems, we will use right triangles to find the exact value
of expressions like cos(sin−1 2/3). We will begin by letting sin−1 2/3 = θ . We
can think of sin−1 2/3 = θ as sin θ = 2/3. This allows us to use (Opposite/
Hypotenuse) to represent 2/3. We will create a right triangle with acute angle θ ,
where the side opposite θ is 2, and the hypotenuse is 3.
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Fig. 13.47.

We want cos θ . We have the hypotenuse. We will use the Pythagorean Theorem
to find x: x2 + 22 = 32. This gives us x = √

5 and cos θ = √
5/3. Now we have

cos(sin−1 2/3) = cos θ = √
5/3.

EXAMPLE
• sin(tan−1 4/5)

Let tan−1 4/5 = θ , so tan θ = 4/5. We want a right triangle where the side
opposite θ is 4 and the side adjacent to θ is 5.

Fig. 13.48.

Solving 42 + 52 = x2 gives us x = √
16 + 25 = √

41.

sin θ = 4√
41

= 4
√

41

41
so, sin

(

tan−1 4

5

)

= sin θ = 4
√

41

41

We will use inverse trigonometric functions to solve right triangles when we are
given one acute angle and the length of one side. We can also use them to solve
right triangles when we only have the lengths of two sides.

EXAMPLES
• Solve the triangle.
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Fig. 13.49.

We need to find the side opposite θ or the hypotenuse. If we want to find
the side opposite θ , we can use tan 30◦ = 1/

√
3. If we want to find the

hypotenuse, we can use cos 30◦ = √
3/2.

cos 30◦ = 5

h
√

3

2
= 5

h

h = 5 · 2√
3

= 10
√

3

3

tan 30◦ = y

5

1√
3

= y

5

y = 5√
3

= 5
√

3

3

The third angle is 90◦ − 30◦ = 60◦.
• Solve the triangle. When rounding is necessary, give your solutions accurate

to one decimal place.

Fig. 13.50.
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sin 40◦ = y

10
cos 40◦ = x

10

y = 10 sin 40◦ ≈ 6.4 x = 10 cos 40◦ ≈ 7.7

The third angle is 90◦ − 40◦ = 50◦.
• Solve the triangle. When rounding is necessary, give your solutions accurate

to one decimal place.

Fig. 13.51.

52 + 72 = h2

h = √
25 + 49 = √

74

tan θ = 5

7

θ = tan−1 5

7
≈ 35.5◦

α ≈ 90◦ − 35.5◦ ≈ 54.5◦

• A 30-foot ladder is leaning against a wall. The top of the ladder is 24 feet
above the ground. What angle does the ladder make with the ground?

Fig. 13.52.
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sin θ = 24

30

θ = sin−1 24

30
≈ 53.1◦

• Find x, the height of the triangle.

Fig. 13.53.

By viewing the triangle as two separate right triangles, the height of the
triangle is the length of one of the legs of the separate triangles. We only
need to use one of them.

Fig. 13.54.

sin 45◦ = x√
2

x = √
2 sin 45◦ = √

2

(
1√
2

)

= 1

We can solve other triangles using inverse trigonometric functions and the Law
of Sines and/or the Law of Cosines. Although all triangles can be solved, sometimes
we are given information that is true about more than one triangle or about a triangle
that cannot exist. In the following problems, we will use the labels in the following
triangles.
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Fig. 13.55.

Fig. 13.56.

The angles are A, B, and C. The sides opposite these angles are a, b, and c,
respectively.

We cannot solve a triangle if all we know are all three angles. Two triangles
can be different sizes but have the same angles. Also, we might be given an angle
with the side opposite the angle and another side that makes two triangles true. For
example, suppose we are told to find a triangle where ∠A = 21◦, a = 3, and
b = 8. There are two triangles that satisfy these conditions.

Triangle 1 Triangle 2

∠A = 21◦ ∠A = 21◦

∠B ≈ 72.9◦ ∠B ≈ 107.1◦

∠C ≈ 86.1◦ ∠C ≈ 52◦

a = 3 a = 3

b = 8 b = 8

c ≈ 8.4 c ≈ 6.6

There are two triangles when b sin A < a < b. If we have another number in
addition to A, a, and b, then there will only be one triangle.

As an example of a triangle that cannot exist, let ∠A = 20◦, b = 10, and a = 2.
As you can see in Figure 13.57, a is too short to close the triangle. This happens
when a < b sin A.
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Fig. 13.57.

We can use the Law of Sines to solve a triangle if we know two sides and one
of the angles opposite these sides or two angles and one side (if we know two
angles, then we know all three because their sum is 180◦). If do not have this
information, the Law of Cosines works. We can use the Law of Cosines when we
have two sides and any angle or when we have all three sides.

Here is the Law of Sines.

sin A

a
= sin B

b
= sin C

c

This is really three separate equations.

sin A

a
= sin B

b

sin B

b
= sin C

c

sin A

a
= sin C

c

Here is the Law of Cosines.

a2 = b2 + c2 − 2bc cos A

b2 = a2 + c2 − 2ac cos B

c2 = a2 + b2 − 2ab cos C

EXAMPLES
Solve the triangle. When rounding is necessary, give your solutions accurate to one
decimal place.

• ∠A = 30◦, ∠B = 70◦, and a = 5

We will use the Law of Sines because we know an angle, A, and the side
opposite it, a.

sin A

a
= sin B

b
becomes

sin 30◦

5
= sin 70◦

b
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sin 30◦

5
= sin 70◦

b

1/2

5
≈ 0.9397

b
(sin 30◦ = 1/2, sin 70◦ ≈ 0.9397)

b ≈ 10(0.9397) ≈ 9.4

Now we will use (sin A)/a = (sin C)/c to find c. (∠C = 180◦ − 30◦ − 70◦
= 80◦)

sin 30◦

5
= sin 80◦

c

1/2

5
≈ 0.9848

c

c ≈ 10(0.9848) ≈ 9.8

• a = 5, b = 8, and c = 12
There is not enough information to get one equation with one variable using
the Law of Sines, so we will use the Law of Cosines.

a2 = b2 + c2 − 2bc cos A

52 = 82 + 122 − 2(8)(12) cos A

−183 = −192 cos A

61

64
= cos A

A = cos−1 61

64

A ≈ 17.6◦

We can use either the Law of Sines or the Law of Cosines to find ∠B. The
Law of Sines is a little easier.

sin A

a
= sin B

b

sin 17.6◦

5
= sin B

8

sin B = 8 sin 17.6◦

5
≈ 0.484

B ≈ sin−1 0.484 ≈ 28.9◦
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∠C ≈ 180◦ − 17.6◦ − 28.9◦ ≈ 133.5◦
•

Fig. 13.58.

We will call the 120◦ angle A, then b = 10 and c = 6. (It does not matter
which side is b and which side is c, as long as we do not label either one of
them a.) There is not enough information to use the Law of Sines, so we will
use the Law of Cosines.

a2 = b2 + c2 − 2bc cos A

a2 = 102 + 62 − 2(10)(6) cos 120◦

a2 = 136 − 120(−0.5)

a2 = √
196

a = 14

We can use either the Law of Sines or the Law of Cosines to find ∠B or ∠C.
We will use the Law of Sines to find ∠B.

sin 120◦

14
= sin B

10
√

3

2
· 10

14
= sin B

(

sin 120◦ =
√

3

2

)

B = sin−1

(
10

√
3

28

)

≈ sin−1 0.6186 ≈ 38.2◦

∠C ≈ 180◦ − 120◦ − 38.2◦ ≈ 21.8◦
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PRACTICE
When rounding is necessary, please give your solutions accurate to one decimal
place. The angles for Problems 1–6 are in radians.

1. cos−1(cos π/8)

2. tan(tan−1 −1)

3. cos−1 1/2

4. sin−1 1/2

5. tan−1 0

6. sin−1 0.9

7. Solve the triangle.

Fig. 13.59.

8. A 20-foot ladder is leaning against a wall. The base of the ladder is four
feet from the wall. What angle is formed by the ground and the ladder?

9. Solve the triangle: ∠A = 42◦, a = 11, and b = 6.

10. Find all three angles for the triangle whose sides are 6, 8, and 10.

11. A plane is flying over a highway at an altitude of 6000 feet. A blue car
is traveling on a highway in front of the plane and a white car is on the
highway behind the plane. The angle of elevation from the blue car to the
plane is 45◦. If the cars are two miles apart, how far is the plane from each
car? (Hint: Consider the triangle formed by the cars and plane as two right
triangles that share a leg.)

SOLUTIONS
1. π/8 radians

2. −1 radians
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3. π/3 radians

4. π/6 radians

5. 0 radians

6. Approximately 1.1 radians

7. sin α = 12

20
= 3

5
x2 + 122 = 202

α = sin−1 3

5
≈ 36.9◦ x2 = 400 − 144

β ≈ 90◦ − 36.9◦ ≈ 53.1◦ x = √
256 = 16

8.

Fig. 13.60.

cos θ = 4

20
= 1

5

θ = cos−1 1

5
≈ 78.5◦

9. We will use the Law of Sines twice.

sin 42◦

11
= sin B

6

sin B = 6

11
sin 42◦ ≈ 0.365

B ≈ sin−1 0.365 ≈ 21.4◦
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C ≈ 180◦ − 21.4◦ − 42◦ ≈ 116.6◦

sin 42◦

11
= sin 116.6◦

c

c ≈ 11 sin 116.6◦

sin 42◦ ≈ 14.7

10. Let a = 6, b = 8, and c = 10. We will first use the Law of Cosines to
find ∠A. Then we will use the Law of Sines to find ∠B.

a2 = b2 + c2 − 2bc cos A

62 = 82 + 102 − 2(8)(10) cos A

−128 = −160 cos A

4

5
= cos A

A = cos−1 4

5
≈ 36.9◦

sin 36.9◦

6
= sin B

8

8 sin 36.9◦

6
= sin B

B = sin−1 0.8 ≈ 53.1◦
(

8

6
sin 36.9◦ ≈ 0.8

)

C ≈ 180◦ − 36.9◦ − 53.1◦ ≈ 90◦

11.

Fig. 13.61.
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Let b represent the side of the original triangle that is opposite the angle
45◦. Let w represent the side opposite ∠W , which is also the distance from
the plane to the blue car. Two miles is 2(5280) = 10,560 feet.

sin 45◦ = 6000

w

w = 6000

sin 45◦ = 6000

1/
√

2
= √

2(6000) ≈ 8485.3

b2 = 8485.32 + 10,5602 − 2(8485.3)(10,560) cos 45◦

b2 ≈ 56,793,637.9

b ≈ √
56,793,637.9 ≈ 7536.2

The plane is about 8485 feet from the blue car and about 7536 feet from
the white car.

Miscellaneous Formulas
The formulas in this section are used to find the exact value for more trigonometric
ratios than the main angles—0, π/6, π/4, π/3, π/2. We will find angles that are
half, double, or the sum or difference of these angles. These formulas are also used
to rewrite functions in a form that fits a calculus formula.

1. Addition and Subtraction Formulas

(a) sin(s + t) = sin s cos t + cos s sin t

(b) sin(s − t) = sin s cos t − cos s sin t

(c) cos(s + t) = cos s cos t − sin s sin t

(d) cos(s − t) = cos s cos t + sin s sin t

(e) tan(s + t) = tan s + tan t

1 − tan s tan t

(f) tan(s − t) = tan s − tan t

1 + tan s tan t

2. Power Reduction Formulas

(a) sin2 s = 1 − cos 2s

2
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(b) cos2 s = 1 + cos 2s

2

(c) tan2 s = 1 − cos 2s

1 + cos 2s

3. Half-Angle and Double Angle Formulas

(a) sin
( s

2

)
= ±

√
1 − cos s

2

(b) cos
( s

2

)
= ±

√
1 + cos s

2

(c) tan
( s

2

)
= 1 − cos s

sin s
= sin s

1 + cos s

The sign of + or − depends on where the angle s/2 lies.

(d) sin 2s = 2 sin s cos s

(e) cos 2s = cos2 s − sin2 s = 1 − 2 sin2 s = 2 cos2 s − 1

(f) tan 2s = 2 tan s

1 − tan2 s

4. Product-to-Sum and Sum-to-Product Formulas

(a) sin s cos t = 1

2
[sin(s + t) + sin(s − t)]

(b) cos s sin t = 1

2
[sin(s + t) − sin(s − t)]

(c) cos s cos t = 1

2
[cos(s + t) + cos(s − t)]

(d) sin s sin t = 1

2
[cos(s − t) − cos(s + t)]

(e) sin s + sin t = 2 sin

(
s + t

2

)

cos

(
s − t

2

)

(f) sin s − sin t = 2 cos

(
s + t

2

)

sin

(
s − t

2

)
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(g) cos s + cos t = 2 cos

(
s + t

2

)

cos

(
s − t

2

)

(h) cos s − cos t = −2 sin

(
s + t

2

)

sin

(
s − t

2

)

EXAMPLES
• sin 75◦

We can think of 75◦ as 45◦ + 30◦. This lets us use formula 1(a).

sin(s + t) = sin s cos t + cos s sin t

sin 75◦ = sin(45◦ + 30◦) = sin 30◦ cos 45◦ + cos 30◦ sin 45◦

= 1

2
·
√

2

2
+

√
3

2
·
√

2

2
=

√
2

4
+

√
6

4

=
√

2 + √
6

4

• cos 15◦

We will use formula 3(b) because 15◦ = 30◦
2 .

cos
s

2
=
√

1 + cos s

2

cos 15◦ = cos

(
30◦

2

)

=
√

1 + cos 30◦
2

=
√

1 + √
3/2

2
=
√

2
2 +

√
3

2

2
=
√

2+√
3

2

2

=
√

2 + √
3

4
=
√

2 + √
3√

4
=
√

2 + √
3

2
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• tan 7π/12

Because 7π
12 = π

4 + π
3 , we can use formula 1(e).

tan(s + t) = tan s + tan t

1 − tan s tan t

tan
7π

12
= tan

(π

4
+ π

3

)
= tan π/4 + tan π/3

1 − tan π/4 tan π/3
= 1 + √

3

1 − 1(
√

3)

= 1 + √
3

1 − √
3

= (1 + √
3)(1 + √

3)

(1 − √
3)(1 + √

3)

= 1 + 2
√

3 + (
√

3)2

1 − (
√

3)2

= 1 + 2
√

3 + 3

1 − 3
= 4 + 2

√
3

−2
= −2(2 + √

3)

2

= −(2 + √
3)

• If cos θ = 3/5 and θ is in Quadrant I, find sin 2θ .

By formula 3(d), sin 2θ = 2 sin θ cos θ . We need to find sin θ so that we can
use the formula.

sin2 θ + cos2 θ = 1

sin2 θ +
(

3

5

)2

= 1

sin θ =
√

1 −
(

3

5

)2

= 4

5

sin 2θ = 2 sin θ cos θ = 2

(
4

5

)(
3

5

)

= 24

25
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• cos2 π/12 − sin2 π/12

The expression looks like formula 3(e), where s = π/12.

cos2 s − sin2 s = cos 2s

cos2 π

12
− sin2 π

12
= cos

(
2 · π

12

)

= cos
π

6
=

√
3

2

• Suppose cos 2θ = 1/4. Find sin2 θ .

We will use formula 2(a).

sin2 θ = 1 − cos 2θ

2
= 1 − 1

4

2
=

4
4 − 1

4

2
=

3
4

2
= 3

4 · 2
= 3

8

• Write cos4 x without squaring any trigonometric functions.
We will use formula 2(b) twice.

cos4 x = (cos2 x)(cos2 x)

=
(

1 + cos 2x

2

)(
1 + cos 2x

2

)

= 1

2
(1 + cos 2x) · 1

2
(1 + cos 2x)

= 1

4
(1 + cos 2x)(1 + cos 2x)

= 1

4
(1 + 2 cos 2x + cos2 2x) Use the formula for s = 2x.

= 1

4

[

1 + 2 cos 2x +
(

1 + cos 2 · 2x

2

)]

= 1

4

[

1 + 2 cos 2x + 1

2
(1 + cos 4x)

]
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• Rewrite cos 2x cos 5x as a sum or difference.
Formula 4(c) tells us how to write the product of two cosines as a sum.

cos 2x cos 5x = 1

2
[cos(2x + 5x) + cos(2x − 5x)]

= 1

2
[cos(7x) + cos(−3x)]

= 1

2
(cos 7x + cos 3x) (Because cosine is even,

cos 3x = cos(−3x).)

• Rewrite sin 3x − sin 2x as a product.
This fits formula 4(f).

sin 3x − sin 2x = 2 cos
3x + 2x

2
sin

3x − 2x

2
= 2 cos

5x

2
sin

x

2

PRACTICE
1. Find tan 15◦ using the half-angle formula.

2. If sin θ = 2/3 and θ is in Quadrant II, find sin 2θ .

3. Write sin4 x using only the first powers of trigonometric functions.

4. Write cos 4x sin 6x as a sum.

SOLUTIONS
1. Use formula 3(c).

tan 15◦ = tan

(
30◦

2

)

= 1 − cos 30◦

sin 30◦ = 1 − √
3/2

1/2
=
(

1 −
√

3

2

)

÷ 1

2

=
(

1 −
√

3

2

)

· 2 = 2 − √
3

2. Because θ is in Quadrant II, cosine will be negative.

sin2 θ + cos2 θ = 1

(
2

3

)2

+ cos2 θ = 1
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cos θ = −
√

1 −
(

2

3

)2

= −
√

5

9
= −

√
5

3

sin 2θ = 2 sin θ cos θ Formula 3(d)

= 2

(
2

3

)(−√
5

3

)

= −4
√

5

9

3. sin4 x = (sin2 x)(sin2 x)

(sin2 x)(sin2 x) = 1 − cos 2x

2
· 1 − cos 2x

2
Formula 2(a)

= 1

2
(1 − cos 2x) · 1

2
(1 − cos 2x)

= 1

4
(1 − cos 2x)(1 − cos 2x)

= 1

4
(1 − 2 cos 2x + cos2 2x)

= 1

4

[

1 − 2 cos 2x +
(

1 + cos 2 · 2x

2

)]

Formula 2(b)

= 1

4

[

1 − 2 cos 2x + 1

2
(1 + cos 4x)

]

4. We will use formula 4(b).

cos 4x sin 6x = 1

2
[sin(4x + 6x) − sin(4x − 6x)]

= 1

2
[sin(10x) − sin(−2x)]

= 1

2
[sin 10x + sin 2x] Because sine is odd,

sin(−2x) = − sin 2x.

CHAPTER 13 REVIEW
1. Find sin θ if cos θ = −1

4 and θ is in Quadrant II.

(a)

√
15

4
(b) −

√
15

4
(c)

√
3

2
(d) −

√
3

2
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2. What is the phase shift for f (x) = 2 cos(3x + π/2)?

(a) −π

2
(b)

π

2
(c) −π

6
(d)

π

6
3. What is the period for f (x) = 2 cos(3x + π/2)?

(a)
2π

3
(b) 6π (c)

2

3
(d)

π

3

4. From the top of a 200-foot lighthouse, the angle of depression to a ship
on the ocean is 20◦. How far is the ship from the base of the lighthouse?

(a) About 400 feet
(c) About 550 feet

(b) About 490 feet
(d) About 690 feet

5. cos 15◦ cos 10◦ + sin 15◦ sin 10◦ =
(a) cos 5◦ (b) cos 25◦ (c) sin 5◦ (d) sin 25◦

6. Find the reference angle for 7π/9.

(a)
2π

9
(b) −2π

9
(c)

16π

9
(d)

7π

9
7. The terminal point for θ is (−3/5, 4/5). What is tan θ?

(a) −4

3
(b) −3

4
(c) −5

3
(d)

5

4

8. tan(cos−1 3/4) =
(a)

3
√

7

7
(b)

√
7

3
(c)

4
√

7

7
(d)

√
7

4
9. The graph in Figure 13.62 is the graph of one period of which function?

(a) y = 2 cos(x + π/3)

(c) y = cos 2(x + π/3)

(b) y = 2 cos(x − π/3)

(d) y = cos 2(x − π/3)

Fig. 13.62.
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Fig. 13.63.

10. The graph in Figure 13.63 in the graph of one period of which function?

(a) y = sin 1
2(x − π/4)

(c) y = sin 1
2(x + π/4)

(b) y = 1
2 sin(x + π/4)

(d) y = 1
2 sin(x + π/4)

Fig. 13.64.

11. Find ∠A.
(a) About 68.2◦
(c) About 66.4◦

(b) About 21.8◦
(d) About 23.6◦

SOLUTIONS
1. A 2. C 3. A 4. B 5. A 6. A
7. A 8. B 9. C 10. A 11. D
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CHAPTER

Sequences and Series

A sequence is an ordered list of numbers. Although they list the same numbers, the
sequence 1, 2, 3, 4, 5, 6, . . . is different from the sequence 2, 1, 4, 3, 6, 5, . . ..
Usually a sequence is infinite. This means that there is no last term in the sequence.
A series is the sum (if it exists) of a sequence. Although a sequence can be any list of
numbers, we will work with sequences that can be found from a formula. Formulas
describe how to compute the nth term, an. For example, the formula an = 2n + 1
gives us this sequence.

3, 5, 7, 9, . . .
2(1)+1 2(2)+1 2(3)+1 2(4)+1

EXAMPLES
Find the first four terms and the 50th term of the sequence.

• an = n2 − 10

415
xi

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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The first term is a1 = 12 −10 = −9; the second term is a2 = 22 −10 = −6;
the third term is a3 = 32 − 10 = −1; the fourth term is a4 = 42 − 10 = 6;
and the 50th term is a50 = 502 − 10 = 2490.

• an = n−1
n+1

a1 = 1 − 1

1 + 2
= 0 a2 = 2 − 1

2 + 1
= 1

3
a3 = 3 − 1

3 + 1
= 1

2

a4 = 4 − 1

4 + 1
= 3

5
a50 = 50 − 1

50 + 1
= 49

51

• an = (−1)n

a1 = (−1)1 = −1 a2 = (−1)2 = 1 a3 = (−1)3 = −1

a4 = (−1)4 = 1 a50 = (−1)50 = 1

Finding the terms of a sequence is the same function evaluation we did
earlier. Sequences are special kinds of functions whose domain is the natural
numbers (instead of intervals of real numbers).

We can write the formulas for many sequences using the previous term. For
example, the next term of the sequence 3, 5, 7, 9, . . . can be found by adding 2 to
the previous term. In other words, we could use the formula an = an−1 + 2. This is
a recursive formula. This formula is not of much use unless we know how to start.
For this reason, the value of a1 is usually given with recursively defined sequences.
A complete recursive definition for this sequence is an = an−1 + 2, a1 = 3. Now
we can compute the terms of the sequence.

3, 5, 7, 9, . . .

3+2 5+2 7+2

EXAMPLES
Find the first four terms of the sequence.

• an = 3an−1 + 5, a1 = −4

Think of 3an−1 + 5 as “3 times the previous term plus 5.”

a1 = −4 a2 = 3(−4) + 5 = −7

a3 = 3(−7) + 5 = −16 a4 = 3(−16) + 5 = −43
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• an = an−1
an−2

, a1 = 2, a2 = 4

The terms of this sequence are found by taking the quotient of the previous
two terms.

a1 = 2 a2 = 4 a3 = a3−1

a3−2
= a2

a1
= 4

2
= 2 a4 = a3

a2
= 2

4
= 1

2

A famous recursively defined sequence is the Fibonacci Sequence. Entire books
are written about it! The nth term of the Fibonacci Sequence is an = an−1 + an−2
and a1 = 1 and a2 = 1. From the third term on, each term is the sum of the previous
two terms. The first few terms are 1, 1, 2, 3, 5, 8, 13, . . ..

Instead of using a formula to describe a sequence, we might be given the first
few terms. From these terms we should be able to see enough of a pattern to write
a formula for the nth term.

EXAMPLES
Find the next term in the sequence.

• 2, 6, 18, 54, . . .

The next term is 3(54) = 162.

• 1, 1
2 , 1

3 , 1
4 , . . .

The next term is 1
5

• 1, −2, 4, −8, 16, . . .

The next term is −2(16) = −32.

Find a formula for the nth term for the next four examples. Do not use a
recursive definition.

• 3, 9, 27, 81, . . .

3 = 31, 9 = 32, 27 = 33, 81 = 34

The nth term is an = 3n.

• −2, −4, −6, −8, −10, . . .

−2 = −2(1), −4 = −2(2), −6 = −2(3), −8 = −2(4), −10 = −2(5)

The nth term is an = −2n.

• −1, 4, −9, 16, −25, . . .

−1 = −12, 4 = 22, −9 = −32, 16 = 42, −25 = −52
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If we want the signs to alternate, we can use the factor (−1)n (if we want
the odd-numbered terms to be negative) or (−1)n+1 (if we want the even-
numbered terms to be negative). The nth term of this sequence is an =
(−1)nn2.

• 1
2 , 2

3 , 3
4 , 4

5 , . . .

1

2
= 1

1 + 1
,

2

3
= 2

2 + 1
,

3

4
= 3

3 + 1
,

4

5
= 4

4 + 1

The nth term is an = n
n+1 .

There are times when we want to add the first n terms of a sequence. The sum

a1 + a2 + a3 + · · · + an

is called the nth partial sum of the sequence. Its notation is Sn.

S1 = a1 S2 = a1 + a2

S3 = a1 + a2 + a3 S4 = a1 + a2 + a3 + a4

Another common notation for the nth partial sum uses the capital Greek letter sigma,
“�.” This notation also makes use of an or a formula for an. “

∑5
n=1 an” means

“add the ans beginning with a1 and ending with a5.

5∑

n=1

an = a1 + a2 + a3 + a4 + a5

The subscript n is called the index of summation. Other common indices are i, j,

and k.

EXAMPLES
Write the sum.

•
6∑

n=1

n2

4

1

4
+ 1 + 9

4
+ 4 + 25

4
+ 9

12
4

22
4

32
4

42
4

52
4

62
4
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•
5∑

n=1
(−1)n+1(3n − 4)

−1 − 2 + 5 − 8 + 11
(−1)1+1(3·1−4) (−1)2+1(3·2−4) (−1)3+1(3·3−4) (−1)4+1(3·4−4) (−1)5+1(3·5−4)

Write the sum using summation notation.

• 1 + 1
2 + 1

3 + 1
4 + · · · + 1

20

This is the sum of the first 20 terms in a sequence, so we will begin by
writing “

∑20
n=1.” The nth term of the sequence is an = 1

n
, and the summation

notation for this sum is

20∑

n=1

1

n
.

• 2 + 4 + 6 + 8 + 10 + 12

This is the sum of the first six terms of the sequence whose nth term is
an = 2n. The summation notation is

∑6
n=1 2n.

• 1
2 − 1

4 + 1
6 − 1

8 + 1
10 − · · · + 1

18

This is the sum of the first nine terms of the sequence whose nth term is
an = (−1)n+1 1

2n
. The summation notation is

9∑

n=1

(−1)n+1 1

2n
.

There are formulas for finding the nth partial sum for special sequences.
Using these formulas, we can add many terms of a sequence with little
work. We will learn the formulas for the sums of two important sequences,
arithmetic sequences and geometric sequences, later.

PRACTICE
1. Find the first four terms and the 100th term of the sequence whose nth term

is an = 2n−1
n+1 .

2. Find the first four terms and the 100th term of the sequence whose nth term
is an = (−1)n+1 n2

2 .
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3. Find the first four terms of the sequence whose nth term is an = √
an−1

and a1 = 256.

4. Without using a recursive definition, find the nth term for the sequence

10, 5,
5

2
,

5

4
,

5

8
,

5

16
, . . . .

5. Without using a recursive definition, find the nth term for the sequence

0

3
,

1

4
,

2

5
,

3

6
,

4

7
, . . . .

6. Write the sum for
∑6

n=1
5

2n
.

7. Write the sum using summation notation.

1

3
− 1

9
+ 1

27
− 1

81
+ 1

243

SOLUTIONS

1. a1 = 2(1) − 1

1 + 1
= 1

2
a2 = 2(2) − 1

2 + 1
= 1 a3 = 2(3) − 1

3 + 1
= 5

4

a4 = 2(4) − 1

4 + 1
= 7

5
a100 = 2(100) − 1

100 + 1
= 199

101

2. a1 = (−1)1+1 12

2
= 1

2
a2 = (−1)2+1 22

2
= −2

a3 = (−1)3+1 32

2
= 9

2
a4 = (−1)4+1 42

2
= −8

a100 = (−1)100+1 1002

2
= −5000

3. a1 = 256 a2 = √
256 = 16

a3 = √
16 = 4 a4 = √

4 = 2

4. an = 20(1
2)n or an = 10(1

2)n−1

5. an = n − 1

n + 2
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6.
5

2
+ 5

4
+ 5

6
+ 5

8
+ 5

10
+ 5

12

7.
5∑

n=1

(−1)n+1
(

1

3

)n

or
5∑

n=1

(−1)n+1 1

3n

Arithmetic Sequences
A term in an arithmetic sequence is computed by adding a fixed number to the
previous term. For example, 3, 7, 11, 15, 19, . . . is an arithmetic sequence because
we can add 4 to any term to find the following term. We can define the nth term
recursively as an = an−1 + d or, in more general terms, an = a1 + (n − 1)d. In
the sequence above, a1 = 3 and d = 4.

EXAMPLES
Find the first four terms and the 100th term.

• an = 28 + (n − 1)1.5

a1 = 28 a2 = 28 + (2 − 1)1.5 = 29.5

a3 = 28 + (3 − 1)1.5 = 31 a4 = 28 + (4 − 1)1.5 = 32.5

a100 = 28 + (100 − 1)1.5 = 176.5

• an = −2 + (n − 1)(−6)

a1 = −2 a2 = −2 + (2 − 1)(−6) = −8

a3 = −2 + (3 − 1)(−6) = −14 a4 = −2 + (4 − 1)(−6) = −20

a100 = −2 + (100 − 1)(−6) = −596

When asked whether or not a sequence is arithmetic, we will find the difference
between consecutive terms. If the difference is the same, the sequence is arithmetic.

EXAMPLES
Determine if the sequence is arithmetic. If it is, find the common difference.

• −8, −1, 6, 13, 20, . . .

20 − 13 = 7, 13 − 6 = 7, 6 − (−1) = 7, −1 − (−8) = 7



CHAPTER 14 Sequences and Series422

The sequence is arithmetic. The common difference is 7.

• 29, 17, 5, −7, −19, . . .

−19 − (−7) = −12, −7 − 5 = −12, 5 − 17 = −12, 17 − 29 = −12

The sequence is arithmetic, and the common difference is −12.

• 5
3 , 5

6 , 5
12 , 5

24 , . . .

5

24
− 5

12
= − 5

24
,

5

12
− 5

6
= − 5

12
Because the differences are not the same, the sequence is not arithmetic.

We can find any term in an arithmetic sequence if we know either one term and
the common difference or two terms. We need to use the formula an = a1+(n−1)d

and, if necessary, a little algebra. For example, if we are told the common difference
is 6 and the tenth term is 141, then we can put an = 141, n = 10, and d = 6 in the
formula to find a1.

141 = a1 + (10 − 1)6

87 = a1

The nth term is an = 87 + (n − 1)6.

EXAMPLES
Find the nth term for the arithmetic sequence.

• The common difference is 2/3 and the seventh term is −10.
Using d = 2

3 , n = 7, and an = −10, the formula an = a1 + (n − 1)d

becomes −10 = a1 + (7 − 1)2
3 .

−10 = a1 + (7 − 1)
2

3

−10 = a1 + 4

−14 = a1

The nth term is an = −14 + (n − 1)2
3 .

• The twelfth term is 8, and the twentieth term is 32.
The information gives us a system of two equations with two variables.
In this example and the rest of the problems in this section, we will add −1



CHAPTER 14 Sequences and Series 423

times the first equation to the second. Substitution and matrices would work,
too. The equations are 8 = a1 + (12 − 1)d and 32 = a1 + (20 − 1)d.

−a1 − 11d = −8

a1 + 19d = 32

8d = 24

d = 3

a1 + 11(3) = 8 Let d = 3 in a1 + 11d = 8

a1 = −25

The nth term is an = −25 + (n − 1)3.

• The eighth term is 4, and the twentieth term is −38.
The information in these two terms gives us the system of equations 4 =
a1 + (8 − 1)d and −38 = a1 + (20 − 1)d.

−a1 − 7d = −4

a1 + 19d = −38

12d = −42

d = −7

2

a1 + 7

(

−7

2

)

= 4 Let d = −7

2
in a1 + 7d = 4

a1 = 57

2

The nth term is a1 = 57
2 + (n − 1)(−7

2).

We can add the first n terms of an arithmetic sequence using one of the following
two formulas.

Sn = n

2
(a1 + an) or Sn = n

2
[2a1 + (n − 1)d]

We will use the first formula if we know all of a1, an, and n, and the second if we
do not know an.
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EXAMPLES
• Find the sum.

2 + 13

5
+ 16

5
+ 19

5
+ 22

5
+ 5

a1 = 2, a6 = 5, and n = 6 (because there are six terms)

2 + 13

5
+ 16

5
+ 19

5
+ 22

5
+ 5 = 6

2
(2 + 5) = 21

• Find the sum of the first 20 terms of the sequence −5, −1, 3, 7, 11, . . ..
a1 = −5, d = 4, and n = 20.

S20 = 20

2
[2(−5) + (20 − 1)4] = 660

• 6 + (−2) + (−10) + (−18) + · · · + (−58)

We know a1 = 6, d = −8 and an = −58 but not n. We can find n by
solving −58 = 6 + (n − 1)(−8).

−58 = 6 + (n − 1)(−8)

−64 = −8(n − 1)

8 = n − 1

9 = n

6 + (−2) + (−10) + (−18) + · · · + (−58) = 9

2
[6 + (−58)] = −234

• Find the sum of the first thirty terms of the arithmetic sequence whose fifth
term is 19 and whose tenth term is 31.5.
In order to use the second sum formula, we need to find a1 and d. If we were
to use the first formula, we would have to find a30, which is a little more
work. Because a5 = 19 and a10 = 31.5, we have the system of equations
19 = a1 + (5 − 1)d and 31.5 = a1 + (10 − 1)d.

−a1 − 4d = −19

a1 + 9d = 31.5

5d = 12.5

d = 2.5

a1 + 4(2.5) = 19 Let d = 2.5 in a1 + 4d = 19
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a1 = 9

S30 = 30

2
[2(9) + (30 − 1)(2.5)] = 1357.5

PRACTICE
1. Find the first four terms and the 40th term of the arithmetic sequence whose

nth term is an = 14 + (n − 1)4.

2. Determine if the sequence 0.03, 0.33, 0.63, 0.93, . . . is arithmetic.

3. Determine if the sequence 0.4, 0.04, 0.004, 0.0004, . . . is arithmetic.

4. Find the nth term of the arithmetic sequence whose first term is 16 and
whose ninth term is 54.

5. Find the nth term of the arithmetic sequence whose sixth term is 12 and
whose tenth term is 36.

6. Compute the sum.

−8 +
(

−35

4

)

+
(

−38

4

)

+
(

−41

4

)

+ (−11) +
(

−47

4

)

7. Compute the sum. 10 + 17 + 24 + 31 + · · · + 108

8. Find the sum of the first twelve terms of the arithmetic sequence whose
fourth term is 8 and whose tenth term is 56.

SOLUTIONS
1. a1 = 14, a2 = 14 + (2 − 1)4 = 18, a3 = 14 + (3 − 1)4 = 22, a4 =

14 + (4 − 1)4 = 26 and a40 = 14 + (40 − 1)4 = 170.

2. 0.93 − 0.63 = 0.3, 0.63 − 0.33 = 0.3, 0.33 − 0.03 = 0.3
The differences are the same, so the sequence is arithmetic.

3. 0.0004 − 0.004 = −0.0036, 0.004 − 0.04 = −0.036
The differences are not the same, so the sequence is not arithmetic.

4. Because a1 = 16, we have an = 16 + (n − 1)d. Using a9 = 54 in this
formula, we have 54 = 16 + (9 − 1)d . Solving this equation for d gives us
d = 19

4 . The nth term is an = 16 + (n − 1)19
4 .
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5. From the information in the problem, we have the system 12 = a1+(6−1)d

and 36 = a1 + (10 − 1)d .

−a1 − 5d = −12

a1 + 9d = 36

4d = 24

d = 6

a1 + 5(6) = 12 Let d = 6 in a1 + 5d = 12

a1 = −18

The nth term is an = −18 + (n − 1)6.

6. a1 = −8, a6 = −47
4 , and n = 6. Sn = n

2 (a1 + an) becomes S6 =
6
2(−8 + (−47

4 )) = −237
4 .

7. a1 = 10, d = 7, and an = 108. We can find n by solving 108 = 10 +
(n − 1)7. This gives us n = 15. S15 = 15

2 (10 + 108) = 885.

8. We will find a1 and d so that we can use the formula Sn = n
2 [2a1+(n−1)d].

The information in the problem gives the system 8 = a1 + (4 − 1)d and
56 = a1 + (10 − 1)d .

−a1 − 3d = −8

a1 + 9d = 56

6d = 48

d = 8

a1 + 3(8) = 8 Let d = 8 in a1 + 3d = 8

a1 = −16

S12 = 12
2 [2(−16) + (12 − 1)8] = 336

Geometric Sequences
In an arithmetic sequence, the difference of any two consecutive terms is the
same, and in a geometric sequence, the quotient of any two consecutive terms
is the same. A term in a geometric sequence can be found by multiplying the
previous term by a fixed number. For example, the next term in the sequence
1, 2, 4, 8, 16, . . . is 2(16)=32, and the term after that is 2(32)=64. This fixed number
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is called the common ratio. We can define the nth term of a geometric sequence
recursively by an = ran−1. The general formula is an = a1r

n−1.

EXAMPLES
• Determine if the sequence 5, 15, 45, 135, 405, . . . is geometric.

We need to see if the ratio of each consecutive pair of numbers is the same.

405

135
= 3,

135

45
= 3,

45

15
= 3, and

15

5
= 3

The ratio is the same number, so the sequence is geometric.

• Determine if the sequence −8, 4, −2, 1, −1
2 , . . . is geometric.

−1/2

1
= −1

2
,

1

−2
= −1

2
,

−2

4
= −1

2
, and

4

−8
= −1

2
The ratio is the same number, so the sequence is geometric.

• Determine if the sequence 2430, 729, 240.57, 80.10981, . . . is geometric.

80.10981

240.57
= 0.333 and

240.57

729
= 0.33

The ratios are different, so this is not a geometric sequence.

• Find the first four terms and the tenth term of the sequence an = 1
100(−5)n−1.

a1 = 1

100
a2 = 1

100
(−5)2−1 = − 1

20

a3 = 1

100
(−5)3−1 = 1

4
a4 = 1

100
(−5)4−1 = −5

4

a10 = 1

100
(−5)10−1 = −78125

4

We can find the nth term of a geometric sequence by either knowing one term
and the common ratio or by knowing two terms. This is similar to what we did to
find the nth term of an arithmetic sequence.

EXAMPLES
Find the nth term of the geometric sequence.

• The common ratio is 3 and the fourth term is 54.
a4 = 54 and r = 3, so an = a1r

n−1 becomes 54 = a134−1. This gives us
a1 = 2. The nth term is an = 2(3)n−1.
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• The third term is 320, and the fifth term is 204.8.
a3 = 320 and a5 = 204.8 give us the system of equations 320 = a1r

3−1 and
204.8 = a1r

5−1. Elimination by addition will not work for the systems in
this section, so we will use substitution. Solving for a1 in a1r

2 = 320 gives
us a1 = 320/r2. Substituting this in a1r

4 = 204.8 gives us the following.

a1r
4 = 204.8

320

r2
· r4 = 204.8

320r2 = 204.8

r2 = 0.64

r = ±0.8

There are two geometric sequences whose third term is 320 and whose fifth
term is 204.8, one has a common ratio of 0.8 and the other, −0.8. a1 for both
the sequences is the same.

a1 = 320

0.82
= 500 and a1 = 320

(−0.8)2
= 500

The nth term for one sequence is an = 500(0.8)n−1, and the other is an =
500(−0.8)n−1.

• The third term is 20, and the sixth term is 81.92.
From a3 = 20 and a6 = 81.92 we have the system of equations
20 = a1r

3−1 and 81.92 = a1r
6−1. We will solve for a1 in 20 = a1r

2.
Now we will substitute a1 = 20/r2 for a1 in 81.92 = a1r

5.

81.92 = a1r
5

81.92 = 20

r2
· r5

81.92 = 20r3

4.096 = r3

3
√

4.096 = r

1.6 = r

a1 = 20

1.62
= 7.8125

The nth term is an = 7.8125(1.6)n−1.
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We can add the first n terms of a geometric sequence using the following
formula (except for r = 1).

Sn = a1
1 − rn

1 − r

EXAMPLES
• Find the sum of the first five terms of the geometric sequence whose nth term

is an = 3(2)n−1, a1 = 3 and r = 2.

S5 = 3 · 1 − 25

1 − 2
= 3 · −31

−1
= 93

• Compute 16 + 8 + 4 + 2 + 1 + 1
2 + 1

4 + 1
8 + 1

16

a1 = 16, r = 1

2
and n = 9.

S9 = 16
1 − (1

2)9

1 − 1
2

= 16
512
512 − 1

512
1
2

= 16
511
512

1
2

= 16

[
511

512
÷ 1

2

]

= 16

[
511

512
· 2

]

= 511

16

• Find the sum of the first five terms of the geometric sequence whose fourth
term is 1.3824 and whose seventh term is 2.3887872.
We need to find a1 and r . The terms a4 = 1.3824 and a7 = 2.3887872
give us the system of equations 1.3824 = a1r

3 and 2.3887872 = a1r
6. We

will solve for a1 in the first equation and substitute this for a1 in the second
equation.

a1 = 1.3824

r3

2.3887872 = a1r
6

2.3887872 = 1.3824

r3
r6

2.3887872 = 1.3824r3

1.728 = r3

3
√

1.728 = r
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1.2 = r

a1 = 1.3824

1.23
= 0.8

We have enough information to compute S5.

S5 = 0.8
1 − 1.25

1 − 1.2
= 5.95328

•
6∑

i=1
6.4(1.5)i−1

We are adding the first six terms of the geometric sequence whose nth term
is an = 6.4(1.5)n−1.

6∑

i=1

6.4(1.5)i−1 = S6 = 6.4
1 − 1.56

1 − 1.5
= 133

•
7∑

k=0
2(3)k−1

This problem is tricky because the sum begins with k = 0 instead of
k = 1. These terms are the first eight terms of the geometric sequence
2
3 , 2, 6, 18, 54, 162, 486, 1458, . . . . Now we can see that n = 8, a1 =
2
3 and r = 3.

7∑

k=0

2(3)k−1 = S8 = 2

3
· 1 − 38

1 − 3
= 6560

3

• 54 + 18 + 6 + 2 + 2
3 + · · · + 2

81

We have a1 = 54 and r = 1
3 . We need n for an = 2

81 .

2

81
= 54

(
1

3

)n−1

1

2187
=
(

1

3

)n−1
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Because 37 = 2187, n − 1 = 7, so n = 8.

54 + 18 + 6 + 2 + 2

3
+ · · · + 2

81
= 54

(
1 − (1

3)8

1 − 1
3

)

= 54




38

38 − 1
38

2
3





= 54




38−1

38

2
3



 = 54

(
6560

6561
÷ 2

3

)

= 54

(
6560

6561
· 3

2

)

= 6560

81

When the common ratio is small enough (−1 < r < 1 and r �= 0), the sum of
all terms in a geometric sequence is a number. In the finite sum Sn = a1

1−rn

1−r
, rn

is very small when the ratio is a fraction, so 1 − rn is very close to 1. Using this
fact and calculus techniques (usually learned in a later calculus course), it can be
shown that the sum of all terms of this kind of geometric sequence is

S = a1
1

1 − r
.

The only difference between the infinite sum formula and the partial sum formula
is that 1 − rn is replaced by 1. If n is large enough, there is very little difference
between the partial sum and the entire sum. We will compare the sum of the first
20 terms of the sequence whose nth term is an = (1

2)n−1 with the sum of all
terms.

S20 =
20∑

n=1

1 ·
(

1

2

)n−1

= 1 · 1 − (1
2)20

1 − 1
2

≈ 1.999998093 and S = 1 · 1

1 − 1
2

= 2

EXAMPLES
•

∞∑
i=1

6
(

2
3

)i−1

a1 = 6, r = 2
3

∞∑

i=1

6

(
2

3

)i−1

= S = 6 · 1

1 − 2
3

= 6 · 1
1
3

= 6

[

1 ÷ 1

3

]

= 6

[

1 · 3

1

]

= 18
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•
∞∑

k=0
15
(

3
4

)k−1

We need to be careful with this sum because the sum begins with k = 0 instead
of k = 1. This means that a1 is not 15 but

a1 = 15

(
3

4

)0−1

= 15

(
3

4

)−1

= 15

(
4

3

)

= 20.

The common ratio is 3
4 .

∞∑

k=0

15

(
3

4

)k−1

= S = 20 · 1

1 − 3
4

= 20 · 1
1
4

= 20 · 4 = 80

PRACTICE
1. What term comes after 18 in the sequence 2

9 , 2
3 , 2, 6, 18, . . .?

2. Find the first four terms and the tenth term of the geometric sequence
whose nth term is an = −2(4)n−1.

3. Determine if the sequence 900, 90, 9, 0.9, 0.09, . . . is geometric.

4. Determine if the sequence 9, 99, 999, 9999, . . . is geometric.

5. Find the nth term of the geometric sequence(s) whose first term is 9 and
whose fifth term is 729

16 .

6. Find the nth term of the geometric sequence whose common ratio is −3
and whose sixth term is −1701.

7. Find the nth term of the geometric sequence whose third term is 1 and
whose sixth term is 27

8 .

8. Compute the sum.

3

4
+ 3

8
+ 3

16
+ · · · + 3

256

9.
∞∑

i=1

3

4

(
1

2

)i−1

10.
∞∑

n=0

−4

(
3

5

)n−1
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SOLUTIONS
1. 3(18) = 54

2. a1 = −2, a2 = −8, a3 = −32, a4 = −128 and a10 = −524, 288

3. The sequence is geometric because the following ratios are the same.

0.09

0.9
= 0.1,

0.9

9
= 0.1,

9

90
= 0.1,

90

900
= 0.1

4. The sequence is not geometric because the ratios are not the same.

9999

999
= 1111

111
and

999

99
= 111

11

5. Because the fifth term of the sequence is 729
16 , we have the equation 729

16 =
9r5−1. Once we have solved this equation for r , we will be done.

729

16
= 9r4

1

9
· 729

16
= r4

81

16
= r4

±3

2
= r

4

√
81

16
= 3

2

There are two sequences. The nth term for one of them is an = 9(3
2)n−1

and the other is an = 9(−3
2)n−1.

6. The sixth term is −1701 and r = −3, which gives us the equation −1701 =
a1(−3)6−1.

−1701 = a1(−3)5

−1701 = −243a1

7 = a1

The nth term is an = 7(−3)n−1.

7. The third term is 1 and the sixth term is 27
8 , which gives us the system of

equations 1 = a1r
3−1 and 27

8 = a1r
6−1. Solving 1 = a1r

2 for a1, we get
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a1 = 1/r2. We will substitute this in 27
8 = a1r

5.

27

8
=
(

1

r2

)

r5

27

8
= r3

3

√
27

8
= r

3

2
= r

a1 = 1

(3
2)2

=
(

2

3

)2

= 4

9

The nth term is an = 4
9(3

2)n−1.

8. a1 = 3
4 and r = 1

2 . We know an = 3
256 but we need n. We will solve

3
256 = 3

4(1
2)n−1 for n.

3

256
= 3

4

(
1

2

)n−1

4

3
· 3

256
=
(

1

2

)n−1

1

64
=
(

1

2

)n−1

Because 26 = 64, n − 1 = 6, so n = 7. Now we can find the sum.

S7 = 3

4
· 1 − (1

2)7

1 − 1
2

= 3

4
·

128−1
128

1
2

= 3

4

(
127

128
÷ 1

2

)

= 3

4

(
127

128
· 2

1

)

= 381

256

9. a1 = 3
4 and r = 1

2 . This is all we need for the infinite sum formula.

S = 3

4
· 1

1 − 1
2

= 3

4
· 1

1
2

= 3

4

(

1 ÷ 1

2

)

= 3

4
· (1 · 2) = 3

2
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10. a1 is not −4 because the sum begins at n = 0 instead of n = 1.

a1 = −4

(
3

5

)0−1

= −4

(
3

5

)−1

= −4

(
5

3

)

= −20

3

Now we can add all of the terms of the geometric sequence whose nth
term is an = −20

3 (3
5)n−1.

S = −20

3
· 1

1 − 3
5

= −20

3
· 1

2
5

= −20

3

(

1 ÷ 2

5

)

= −20

3

(

1 · 5

2

)

= −50

3

When regular payments are made to a savings account or to a lottery winner,
the monthly balances act like terms in a geometric sequence. The common ratio is
either 1 + i (for savings payments) or (1 + i)−1 (for lottery payments), where i is
the interest rate per payment period. We learned in Chapter 9 that if we leave P

dollars in an account, earning annual interest r , compounded n times per year, for
t years, then this will grow to A dollars where A = P(1 + r/n)nt . (This is why
i replaces r/n.)

We will see what happens to the balance of an account if $2000 is deposited
on January 1 every year for 5 years, earning 10% per year, compounded annually.
The first $2000 will earn interest for the entire 5 years, so it will grow to 2000
(1 + 0.10/1)5 = 2000(1.10)5. The second $2000 will earn interest for 4 years,
so it will grow to 2000(1.10)4. The third $2000 will earn interest for 3 years,
so it will grow to 2000(1.10)3. The fourth $2000 will earn interest for 2 years, so
it will grow to 2000(1.10)2. And the fifth $2000 will earn interest for 1 year, so it
will grow to 2000(1.10)1. The balance after five years is

2000(1.10)5 + 2000(1.10)4 + 2000(1.10)3 + 2000(1.10)2 + 2000(1.10)1.

This is the sum of the first five terms of the geometric sequence whose nth term is
an = 2000(1.10)n. If we want to use the partial sum formula, we need to rewrite
the nth term in the form an = a1r

n−1. We will use exponent properties to change
2000(1.10)n to a1(1.10)n−1. We will also use the fact that n = 1 + n − 1.

2000(1.10)n = 2000(1.10)1+n−1 = 2000(1.10)1(1.10)n−1

= [2000(1.10)](1.10)n−1 = 2200(1.10)n−1

Now we can use the partial sum formula.

S5 = 2200 · 1 − 1.105

1 − 1.10
= 13, 431.22

The balance in the account will be $13,431.22.
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When a lottery winner wins a $1,000,000 jackpot, the money is likely to be paid
out in $50,000 annual payments for 20 years. Some states allow the winner to take
the cash value as a lump sum payment instead. The cash value is the present value
of $1,000,000 to be paid in annual payments over 20 years. The formula for the
present value of A dollars, due in t years, earning annual interest r , compounded
n times per year is A(1 + r/n)−nt . Assume that the money is expected to earn
5% per year. Then the cash value of the jackpot will need to be enough money so
that at the beginning of the year (for a payment at the end of the year), they have
50,000(1.05)−1. For a payment at the end of two years, they need 50,000(1.05)−2;
at the end of three years, they need 50,000(1.05)−3, and so on until they reach the
last payment after 20 years, 50,000(1.05)−20. In other words, the cash value of a
$1,000,000 jackpot with a 20-year payout (assuming 5% interest) is

50,000(1.05)−1 + 50,000(1.05)−2 + 50,000(1.05)−3 + · · · + 50,000(1.05)−20.

This is the sum of the first 20 terms of the geometric sequence whose nth term is
an = 50,000(1.05)−n. We need to use exponent properties to rewrite the nth term
in the form an = a1r

n−1. We will use the fact that −n = −n − 1 + 1 and the
exponent facts that xm+n = xmxn and xmn = (xm)n.

1.05−n = 1.05−n+1−1 = 1.05−1 · 1.05−n+1 = 1.05−1 · 1.05−1(n−1)

= 1.05−1 · (1.05−1)n−1

Now the nth term can be written as an = [50,000(1.05)−1](1.05−1)n−1, where
a1 = 50,000(1.05−1). Now we can use the partial sum formula.

S20 = [50,000(1.05−1)] · 1 − (1.05−1)20

1 − 1.05−1
≈ 623,110.51

The cash value is $623,110.51.

CHAPTER 14 REVIEW
1. What term comes next in the sequence?

2

5
,

3

6
,

4

7
,

5

8
,

6

9
, · · ·

(a)
7

10
(b)

7

11
(c)

8

11
(d)

8

10
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2. What is the fourth term of the sequence whose nth term is an =
(−1)n+1(2

3)n?

(a)
16

81
(b) −16

81
(c)

8

3
(d) −8

3

3. The terms in the sequence 6, 2, −4, −6, −2, 4, . . . can be found using
which formula?
(a) an = an−2 − an−1, a1 = 6 and a2 = 2

(b) an = 6 + (n − 1)4

(c) an = an−1 − an−2, a1 = 6 and a2 = 2

(d) There is no formula that works.

4. Is the sequence in Problem 3 arithmetic, geometric, or neither?
(a) Arithmetic

(b) Geometric

(c) Neither

(d) There are not enough terms to tell.

5. Is the sequence 3
4 , 1

4 , 1
12 , 1

36 , . . . arithmetic, geometric, or neither?
(a) Arithmetic

(b) Geometric

(c) Neither

(d) There are not enough terms to tell.

6. What is the third term of the arithmetic sequence whose 17th terms is 9
and whose 21st term is 12?

(a) −3

2
(b) −4

5
(c)

5

2
(d) −2

5

7. What is the eighth term of the geometric sequence whose third term is 5
4

and whose sixth term is 10?
(a) 36 (b) 40 (c) 45 (d) 49

8. Find the sum.

−2

3
+ 5

6
+ 7

3
+ 23

6
+ · · · + 59

6

(a)
116

3
(b)

110

3
(c)

58

3
(d) Too many terms are missing to find the sum.
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9. Find the sum.

4

9
+ 2

9
+ 1

9
+ 1

18
+ · · · + 1

144

(a)
127

36
(b)

127

81
(c)

127

144

(d) Too many terms are missing to find the sum.

10. Find the sum.
∞∑

i=1

5

(
3

5

)i−1

(a)
25

2
(b)

75

2
(c)

5

2

(d) There are too many numbers to add.

SOLUTIONS
1. A 2. B 3. C 4. C 5. B
6. A 7. B 8. B 9. C 10. A
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Solving Equations and Inequalities
Using algebra to solve equations and inequalities is important in precalculus and
calculus. Usually the solution to an equation is a number or numbers. Sometimes,
the solution to an equation is simply the equation written another way. To solve for
x means to have x, and x only, on one side of the equation. The equation x = y−5

y2+1

is solved for x but x = y−5
x2+1

is not solved for x because x is on both sides of
the equation. Solving for x when the equation contains more than one variable is
very much like solving for x when the equation has only one variable. We move
quantities from one side of the equation by adding, subtracting, multiplying, and
dividing.

• Solve for x in the equation a(x + 4) − 2a(x − 1) = 5(a + x).

a(x + 4) − 2a(x − 1) = 5(a + x) Simplify both sides of the equation.

ax + 4a − 2ax + 2a = 5a + 5x

ax − 2ax + 6a = 5a + 5x Move x terms to one side of the equation.

439
xi

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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ax − 2ax − 5x + 6a = 5a Move terms without x to the other side.

ax − 2ax − 5x = −6a + 5a Simplify both sides.

−ax − 5x = −a Factor x.

x(−a − 5) = −a Divide both sides by −a − 5

x = −a

−a − 5
or

a

a + 5

Quadratic Equations
Equations of the form ax2 + bx + c = 0 (where a �= 0) are quadratic equations.
There are several techniques we can use to solve them, factoring, completing the
square, and the quadratic formula. The simplest quadratic equations are in the form
x2 = number. This equation has solutions x = √

number and x = −√
number, or

simply, x = ±√
number. For example, the solutions for x2 = 36 are x = 6 and

x = −6, or x = ±6.
Many quadratic equations can be solved by factoring. When there is a zero on

one side of the equation, we factor the other side, set each factor equal to zero and
solve both equations. This method comes from the fact that ab = 0 implies a = 0
or b = 0.

• x2 + x − 6 = 0

x2 + x − 6 factors as (x + 3)(x − 2). Set each of x + 3 and x − 2 equal to 0
and solve for x.

x + 3 = 0 x − 2 = 0

x = −3 x = 2

• 3x2 + 24 = −18x

We need a zero on one side of the equation, so we will move 18x to the
other side.

3x2 + 18x + 24 = 0

3(x2 + 6x + 8) = 0

3(x + 2)(x + 4) = 0

x + 2 = 0 x + 4 = 0

x = −2 x = −4
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Some quadratic equations are difficult to factor. The quadratic formula can
solve every quadratic equation. If a �= 0 and ax2 + bx + c = 0, then

x = −b ± √
b2 − 4ac

2a
.

• 3x2 − x − 4 = 0

a = 3, b = −1, and c = −4

x = −(−1) ±√
(−1)2 − 4(3)(−4)

2(3)
= 1 ± √

49

6
= 1 ± 7

6

= 8

6
,

−6

6
= 4

3
, −1

• x2 − 1 = 0

a = 1, b = 0, and c = −1

x = −0 ±√
02 − 4(1)(−1)

2(1)
= ±√

4

2
= ±2

2
= ±1

• 4x2 + x = 1

We need 0 on one side of the equation. Once we move 1 to the other side, we
have 4x2 + x − 1 = 0.

x = −1 ±√
12 − 4(4)(−1)

2(4)
= −1 ± √

17

8

A quadratic equation can have square roots of numbers as solutions that need to
be simplified. The square root of a number is simplified when it does not have any
perfect squares as factors. For example,

√
24 is not simplified because 24 = 22 ×6.

We can use the exponent properties
√

ab = √
a ·√b and n

√
an = a to simplify

√
24.

√
24 = √

4 · 6 = √
4 · √

6 = 2
√

6

Square roots of fractions and square roots in denominators are also not considered
simplified. These numbers often come up in trigonometry. Sometimes we can
multiply the fraction by the denominator over itself.

•
√

1
3 =

√
1√
3

= 1√
3

= 1√
3

·
√

3√
3

=
√

3
(
√

3)2 =
√

3
3
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• 10√
5

= 10√
5

·
√

5√
5

= 10
√

5
(
√

5)2 = 10
√

5
5 = 2

√
5

This trick will not work for expressions such as 2√
3+1

. To simplify these

fractions, we will use the fact that (a − b)(a + b) = a2 − b2. This allows us
to square each term in the denominator individually. The denominator is in
the form a + b (where a = √

3 and b = 1). We will multiply the fraction by
a − b over itself.

2√
3 + 1

= 2√
3 + 1

·
√

3 − 1√
3 − 1

= 2(
√

3 − 1)

(
√

3)2 − 12
= 2(

√
3 − 1)

3 − 1

= 2(
√

3 − 1)

2
= √

3 − 1

• −8
2−√

5

The denominator is in the form a − b (with a = 2 and b = √
5). We will

multiply the fraction by a + b over itself.

−8

2 − √
5

= −8

2 − √
5

· 2 + √
5

2 + √
5

= −8(2 + √
5)

22 − (
√

5)2
= −8(2 + √

5)

4 − 5

= −8(2 + √
5)

−1
= 8(2 + √

5) = 16 + 8
√

5

Factoring by Grouping
Some expressions of the form ax3 +bx2 +cx+d can be factored using a technique
called factoring by grouping. This technique takes two steps. The first step is to
factor the first two terms and the second two terms so that each pair of terms has
a common factor. The second step is to factor this common factor. For example,
if we factor x2 from the first two terms of x3 + 2x2 + 3x + 6, we are left with
x2(x + 2) + 3x + 6. Now we look at the second two terms, 3x + 6, and factor
it so that x + 2 is a factor. If we factor 3 from 3x + 6, we are left with x + 2 as
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a factor: 3x + 6 = 3(x + 2). This leaves us with x2(x + 2) + 3(x + 2). In the last
step, we factor x + 2 from each term, leaving x2 and 3.

x3 + 2x2 + 3x + 6 = x2(x + 2) + 3(x + 2)

= (x + 2)(x2 + 3)

We can use this technique to solve equations.

• 4x3 − 5x2 − 36x + 45 = 0
Once we have factored 4x3 − 5x2 − 36x + 45, we will set each factor equal
to 0 and solve for x. If we factor x2 from the first two terms, we have
4x3 − 5x2 = x2(4x − 5). If we factor −9 from the second two terms, we
have −36x + 45 = −9(4x − 5).

4x3 − 5x2 − 36x + 45 = 0

x2(4x − 5) − 9(4x − 5) = 0

(4x − 5)(x2 − 9) = 0

4x − 5 = 0 x2 − 9 = 0

4x = 5 x2 = 9

x = 5

4
x = ±3

Solving axn = b and a n
√

x = b
Solve equations of the form axn = b by first dividing both sides of the equation
by a, then by taking the nth root of both sides. If n is even, use a ± symbol on one
side of the equation to get both solutions.

• 4x2 = 9

x2 = 9

4

x = ±
√

9

4
= ±3

2
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• 8x3 = −1

x3 = −1

8

x = 3

√

−1

8
= −1

2

Solve equations of the form a n
√

x = b by first dividing both sides of the
equation by a, then by raising both sides to the nth power.

• 4
√

x = 5

4
√

x = 5

√
x = 5

4

(
√

x)2 =
(

5

4

)2

x = 25

16

• 4
√

x − 3 = 0

This equation needs to be in the form a
√

x = b before we square both sides
of the equation.

4
√

x − 3 = 0

4
√

x = 3

√
x = 3

4

(
√

x)2 =
(

3

4

)2

x = 9

16

Inequalities
Solving linear inequalities is much like solving linear equations except when mul-
tiplying or dividing both sides of the inequality by a negative number, when we
must reverse the inequality symbol. Solutions to inequalities are usually given
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in interval notation. The last page of the appendix has a review of interval
notation.

• 5x − 8 > 3x + 10

5x − 8 > 3x + 10

2x > 18

x > 9

The solution is (9, ∞).

• 3x + 7 ≤ 5x − 9

3x + 7 ≤ 5x − 9

−2x ≤ −16

−2x

−2
≥ −16

−2
Reverse the sign at this step.

x ≥ 8

The solution is [8, ∞).

A double inequality is notation for two separate inequalities. They are solved the
same way as single inequalities.

• −3 ≤ 4x+7
2 ≤ 5

This inequality means −3 ≤ 4x+7
2 and 4x+7

2 ≤ 5.

−3 ≤ 4x + 7

2
≤ 5 Clear the fraction by multiplying all three

quantities by 2.

−6 ≤ 4x + 7 ≤ 10 Subtract 7 from all three quantities.

−13 ≤ 4x ≤ 3 Divide all three quantities by 4.

−13

4
≤ x ≤ 3

4

The solution is [−13/4, 3/4].
Nonlinear inequalities are solved in a different way. Below is a list of steps we

will take to solve polynomial inequalities.

1. Rewrite the expression with 0 on one side.
2. Factor the nonzero side.
3. Set each factor equal to 0 and solve for x.
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4. Put these solutions from Step 3 on a number line.
5. Pick a number to the left of the smallest solution (from Step 3), a number

between consecutive solutions, and a number to the right of the largest
solution.

6. Put these numbers in for x in the original inequality.
7. If a number makes the inequality true, mark “True” over the interval. If a

number makes the inequality false, mark “False” over the interval.
8. Write the interval notation for the “True” intervals.

• 2x2 − x ≥ 3

2x2 − x − 3 ≥ 0 Step 1

(2x − 3)(x + 1) ≥ 0 Step 2

2x − 3 = 0 x + 1 = 0 Step 3

x = 3

2
x = −1

Step 4 Put −1 and 3/2 on a number line.

Fig. A.1.

Step 5 We will use x = −2 for the number to the left of −1, x = 0 for the
number between −1 and 3/2, and x = 2 for the number to the right
of 3/2.

Step 6 We will test these numbers in 2x2 − x ≥ 3.

Let x = −2 2(−2)2 − (−2) ≥ 3? True

Let x = 0 2(0)2 − 0 ≥ 3? False

Let x = 2 2(2)2 − 2 ≥ 3? True

Step 7 We will mark the interval to the left of −1 “True,” the interval
between −1 and 3/2 “False,” and the interval to the right of 3/2,
“False.”

Fig. A.2.

Step 8 The intervals that make the inequality true are x ≤ −1 and x ≥ 3/2.
The interval notation is (−∞, −1] ∪ [3/2, ∞).
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If there is an x in a denominator, the steps change slightly.

1. Get 0 on one side of the inequality.
2. Write the nonzero side as one fraction.
3. Factor the numerator and the denominator.
4. Set each factor equal to 0 and solve for x.
5. Put these solutions from Step 4 on a number line.
6. Pick a number to the left of the smallest solution (from Step 4), a number

between consecutive solutions, and a number to the right of the largest
solution.

7. Put these numbers in for x in the original inequality.
8. If a number makes the inequality true, mark “True” over the interval. If a

number makes the inequality false, mark “False” over the interval.
9. Write the interval notation for the “True” intervals—make sure that the

solution does not include any x-value that makes a denominator 0.

• x−4
x+5 > 2

x − 4

x + 5
> 2

x − 4

x + 5
− 2 > 0 Step 1

x − 4

x + 5
− 2

(
x + 5

x + 5

)

> 0 Step 2

x − 4 − 2(x + 5)

x + 5
> 0

−x − 14

x + 5
> 0

−x − 14 = 0 x + 5 = 0 Step 4

x = −14 x = −5

Step 5

Fig. A.3.

Step 6 We will use x = −15 for the number to the left of −14, x = −10
for the number between −14 and −5, and x = 0 for the number to
the right of −5.
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Step 7

−15 − 4

−15 + 5
> 2? False

−10 − 4

−10 + 5
> 2? True

0 − 4

0 + 5
> 2? False

We will write “False” over the interval to the left of −14, “True”
over the interval between −14 and −5, and “False” over the interval
to the right of −5.

Step 8

Fig. A.4.

The solution is the interval (−14, −5).

• x2−3x
x+1 ≤ −1

x2 − 3x

x + 1
≤ −1

x2 − 3x

x + 1
+ 1 ≤ 0

x2 − 3x

x + 1
+ 1 · x + 1

x + 1
≤ 0

x2 − 3x + x + 1

x + 1
≤ 0

x2 − 2x + 1

x + 1
≤ 0

(x − 1)(x − 1)

x + 1
≤ 0

x − 1 = 0 x + 1 = 0

x = 1 x = −1
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(−2)2 − 3(−2)

−2 + 1
≤ −1? True

02 − 3(0)

0 + 1
≤ −1? False

22 − 3(2)

2 + 1
≤ −1? False

Fig. A.5.

The solution is (−∞, −1). The solution is not (−∞, −1] because a bracket next
to −1 indicates that −1 is part of the solution. We cannot allow x = −1 because
we would have a zero in a denominator.

Table. A.1

Inequality Number Line Interval

x < a (−∞, a)

Fig. A.6

x ≤ a (−∞, a]
Fig. A.7

x > a (a, ∞)

Fig. A.8

x ≥ a [a, ∞)

Fig. A.9

a < x < b (a, b)

Fig. A.10

a ≤ x ≤ b [a, b]
Fig. A.11

x < a or x > b (−∞, a) ∪ (b, ∞)

Fig. A.12

x ≤ a or x ≥ b (−∞, a] ∪ [b, ∞)

Fig. A.13

All x All real numbers (−∞, ∞)
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1. What is the maximum or minimum functional value for f (x) =
−(x − 5)2 + 12?
(a) The maximum functional value is 12.
(b) The maximum functional value is 5.
(c) The minimum functional value is 12.
(d) The maximum functional value is 5.

2. Find an equation of the line containing the points (1, 9/2) and (−2, 6).

(a) y = 1
2x + 8

(c) y = −1
2x + 5

(b) y = 7
16x + 9

2

(d) y = 7
16x + 6

3. What is (are) the vertical asymptote(s) for the graph of

f (x) = x + 5

x − 3
?

(a) x = 3
(b) x = −5
(c) x = 3 and x = −5
(d) There are no vertical asymptotes.

450
xi
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4. Find the product.
[

1 −1
0 2

]

·
[−5 1 3

2 2 1

]

(a)

[−3 3 4
−4 −4 −2

]

(c)

[−5 −1
0 4

]

(b)

[−7 −1 2
4 4 2

]

(d) The product does not exist.

5. cos 7π/6 =
(a) 1/2 (b) −1/2 (c)

√
3/2 (d) −√

3/2

6. What are the foci for the hyperbola

(y − 1)2

16
− (x + 1)2

9
= 1?

(a) (−1, −4) and (−1, 6)

(c) (−4, −1) and (6, −1)

(b) (−6, 1) and (4, 1)

(d) (1, −6) and (1, 4)

7. Find x + y for the system.
{

x − 2y = 1

2x + y = 7

(a) 4 (b) 5 (c) 6 (d) 7

8. Find the fourth term of the arithmetic sequence whose 30th term is −180
and whose 45th term is −300.
(a) 20 (b) 28 (c) 35 (d) 46

9. If $2000 is deposited into an account earning 9% annual interest,
compounded monthly, what is it worth after 10 years?

(a) $4902.71 (b) $4734.73 (c) $2155.17 (d) $4870.38

10. For f (x) = 1 − x2 and g(x) = 2x + 5, what is f ◦ g(x)?
(a) −2x2 + 3

(c) −4x2 − 20x − 24

(b) 1−x2

2x+5

(d) −2x3 − 5x2 + 2x + 5

11. Evaluate f (2) for f (x) = 7.
(a) 2 (b) 7 (c) 14 (d) 2, 7

12. Find cos θ if sin θ = −4/5 and θ is in Quadrant IV.
(a) 3/5 (b) −3/5 (c) 9/25 (d) −9/25
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13. What is the directrix for the parabola y2 = 12(x − 3)?

(a) y = −3 (b) y = 3 (c) x = 0 (d) x = 3

14. Are the lines 2x − y = 5 and 4x − 8y = 9 parallel, perpendicular, or
neither?
(a) Parallel
(c) Neither

(b) Perpendicular
(d) Cannot be determined

15. Find the second term of the arithmetic sequence whose fifth term is 122
3

and whose tenth term is 272
3 .

(a) 5
6 (b) 14

3 (c) 25
16 (d) 32

3

16. What is the domain for f (x) = 3
√

x + 1?
(a) (−∞, −1) ∪ (−1, ∞)

(c) [−1, ∞)

(b) (−1, ∞)

(d) (−∞, ∞)

17. Find f ◦ g(−2) for f (x) = x2 + x and g(x) = 3x + 9.
(a) 12 (b) 15 (c) 3 (d) 2

18. What is the vertex for y = 4x2 − 6x + 5?
(a) (3

2 , 5) (b) (3
4 , 11

4 ) (c) (3, −4) (d) (3, 14)

19. What is the inverse of

[−10 1
5 2

]

?

(a)

[− 2
25

1
25

1
5

2
5

]

(c)

[− 1
25

2
25

−2
5 −1

5

]

(b)

[
1

25 − 2
25

2
5

1
5

]

(d)

[
1

25
2

25
2
5 −1

5

]

20. What is the fifth term of the sequence where an = n2?

(a) 10 (b) 15 (c) 20 (d) 25

21. What is an asymptote for the hyperbola

(x + 1)2

9
− (y − 1)2

16
= 1?

(a) y = 3
4x + 7

4

(c) y = 4
3x + 7

3

(b) y = 4
3x + 1

3

(d) y = 3
4x − 1

4

22. What is the phase shift for y = 3 sin(2x − π/3)?

(a) −π/3 (b) π/3 (c) −π/6 (d) π/6
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23. What is the period for y = 3 sin(2x − π/3)?

(a) π (b) π/4 (c) 4π (d) π/2

24. Find 2x + y for the system.

{
y = x2 − x − 8

y = 2x + 10

(a) 3 and 16 (b) 5 and 21 (c) 1 and 28 (d) 3 and 9

25. log5 52t =
(a) t (b) 2t (c) 2 (d) 10t

26. What is the horizontal asymptote for the graph of

f (x) = 3x2 + 2x + 1

6x2 + 3x + 4
?

(a) y = 0 (b) y = 1
2 (c) There is no horizontal asymptote.

27. Is the sequence −8
3 , −13

6 , −5
3 , −7

6 , −2
3 , . . . arithmetic, geometric, or

neither?
(a) Arithmetic
(c) Neither

(b) Geometric
(d) Cannot be determined

28. What is the inverse of




1 1 1
2 −1 1

−1 1 −3



?

(a)






5
8 −1

4
1
8

1
4

1
2

1
4

1
8 −1

4 −3
8






(c)






1
4

1
2

1
4

1
8 −1

4 −3
8

5
8 −1

4
1
8






(b)






−5
8

1
4 −1

8
1
4

1
2

1
4

−1
8

1
4

3
8






(d)






1
4

1
2

1
4

5
8 −1

4
1
8

1
8 −1

4 −3
8






29. Write the product as a sum: sin 4x sin x.

(a) 1
2(cos 5x + cos 3x)

(c) 1
2(sin 5x + sin 3x)

(b) 1
2(cos 3x − cos 5x)

(d) 1
2(sin 5x − sin 3x)

Problems 30–35 refer to the graph in Figure A.14.



Final Exam454

Fig. A.14.

30. Is the graph in Figure A.14 symmetric?

(a) Yes, with respect to the x-axis
(c) Yes, with respect to the origin

(b) Yes, with respect to the y-axis
(d) No

31. What is f (−4)?
(a) −2 (b) 0 (c) 2 (d) 4

32. What is the y-intercept?

(a) −2 (b) 0 (c) 2 (d) 4

33. Does the function have an inverse?
(a) Yes
(c) Cannot be determined

(b) No

34. What is the range?

(a) [−4, 4] (b) [−2, 2] (c) [−2, −4] (d) [2, 4]
35. What is the increasing interval(s)?

(a) (−4, −2) ∪ (2, 4)

(c) (2, 2)

(b) (−4, 4)

(d) (−2, 2)

36. Is the function f (x) = x2 − x + 2 even, odd, or neither?
(a) Even (b) Odd (c) Neither

(d) Cannot be determined without the graph

37. Are the points (−4, 2), (1, 3), (−1, 0), and (−2, 5) the vertices of
a parallelogram?

(a) Yes
(c) Cannot be determined

(b) No
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Fig. A.15.

38. The solid graph in Figure A.15 is the graph of f (x), and the dashed graph
is the graph of a transformation. What is the transformation?
(a) f (x + 1) + 3 (b) f (x − 1) + 3 (c) 2f (x + 1) (d) 2f (x − 1)

39. Find the sum.

−6 + (−2) + 2 + 6 + 10 + · · · + 50

(a) 660 (b) 260 (c) 330
(d) Too many terms are missing to find the sum.

40. What is x + y for the system? Use a matrix method.
{

−x + 4y = 11

2x + 3y = 22

(a) 7 (b) 8 (c) 9 (d) 10

41. Are the angles 65◦ and −295◦ coterminal?

(a) Yes (b) No (c) Cannot be determined

42. Find f −1(x) for f (x) = x−3
x+4 .

(a)
x + 4

x − 3
(b)

1

x + 4

(c)
−4x − 3

x − 1
(d)

4x + 3

x − 1
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Fig. A.16.

43. The graph in Figure A.16 is the graph of what function?

(a) f (x) = x2 − 2x − 1
(c) f (x) = x2 − 3x − 1

(b) f (x) = x2 + 2x − 1
(d) f (x) = x2 + 3x − 1

44. A biscuit recipe calls for 2/3 of a cup of milk for each cup of mix.
Find an equation that gives the amount of milk in terms of the amount
of mix.
(a) y = 3

2x

(c) y = 5
3x

(b) y = 2
3x

(d) Cannot be determined

45. Rewrite mr = n as a logarithmic equation.

(a) logn r = m

(c) logn m = r

(b) logm r = n

(d) logm n = r

46. A museum offers group discounts for groups of 25 or more. For a group
of 25, the ticket price is $13.50. For each additional person attend-
ing, the price drops $0.50. What group size maximizes the museum’s
revenue?
(a) 26 (b) 27 (c) 28 (d) 29

47. The graph in Figure A.17 is the graph of which function?

(a) P(x) = (x + 3)(x − 1)2(x + 1) = x4 + 2x3 − 4x2 − 2x + 3

(b) P(x) = −(x + 3)(x − 1)2(x + 1) = −x4 − 2x3 + 4x2 + 2x − 3

(c) P(x) = (x + 3)(x − 1)(x + 1) = x3 + 3x2 − x − 3

(d) P(x) = −(x + 3)(x − 1)(x + 1) = −x3 − 3x2 + x + 3
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Fig. A.17.

48. What is the determinant for




1 1 0
1 0 1
3 −2 1



?

(a) 3 (b) 4 (c) 5 (d) 6

49. Find the domain for f (x) = 6
x−8 .

(a) (8, ∞)

(c) (−∞, 8] ∪ [8, ∞)

(b) (−∞, 8) ∪ (8, ∞)

(d) [8, ∞)

50. Are f (x) = 4x3 + 1 and g(x) = 3
√

x−1
4 inverses?

(a) Yes
(c) Cannot be determined

(b) No

51. Solve for x: log5(2x − 7) = 1.

(a) x = 4 (b) x = 5 (c) x = 6 (d) x = 7

52. The graph in Figure A.18 is the graph of which function?

(a) f (x) = x
x+1

(c) f (x) = x
x−1

(b) f (x) = x2

x+1

(d) f (x) = x2

x−1
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Fig. A.18.

53. According to the Rational Zero Theorem, which of the following is NOT
a possible rational zero for f (x) = 6x4 − x3 − 3x2 + x − 10?

(a) −1
3 (b) −10 (c) 3 (d) 5

6

Fig. A.19.

54. The graph in Figure A.19 is the graph of which inequality?

(a) x + y ≥ 2 (b) x + y > 2 (c) x + y ≤ 2 (d) x + y < 2

55. Find the quadratic function with vertex (−1, 3) with the point (2, −15) on
its graph.
(a) f (x) = −18(x − 1)2 + 3 (b) f (x) = 18(x − 1)2 + 3

(c) f (x) = −2(x + 1)2 + 3 (d) f (x) = 2(x + 1)2 + 3



Final Exam 459

56. Rewrite as a single logarithm: ln x − 3 ln y − ln z.

(a) ln x
3yz

(c) ln xz

y3

(b) ln x

y3z

(d) ln x
3 ln yz

Fig. A.20.

57. The graph in Figure A.20 is the graph of which system?

(a)






y ≤ x

y ≤ −5
2x + 5

y ≤ −1
2x − 3

(c)






y ≥ x

y ≤ −5
2x + 5

y ≤ −1
2x − 3

(b)






y ≤ x

y ≥ −5
2x + 5

y ≤ −1
2x − 3

(d)






y ≤ x

y ≥ −5
2x + 5

y ≥ −1
2x − 3

58. The graph in Figure A.21 is the graph of which equation?

(a) x2 − y2

4 = 1

(c) x2 + y2

4 = 1

(b) x2

4 − y2 = 1

(d) x2

4 + y2 = 1
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Fig. A.21.

59. What is x + y + z for the system? Use a matrix method.





x + y = 11

x + z = −1

3x − 2y + z = −11

(a) 6 (b) 7 (c) 8 (d) 9

Fig. A.22.

60. The graph in Figure A.22 is the graph of one period of which function?

(a) y = 3 sin(x − π/4)

(c) y = sin 3(x − π/4)

(b) y = 3 sin(x + π/4)

(d) y = sin 3(x + π/4)

61. Evaluate f (a+h)−f (a)
h

for f (x) = 2x2 − 1.
(a) 4a + 2h2 − 2 (b) 4a + 2h2 − 1 (c) 4a + 2h (d) 4a + 2h2
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62. According to Descartes’ Rule of Signs, how many possible positive zeros
are there for f (x) = 6x4 − x3 − 3x2 + x − 10?
(a) 3 or 1 (b) 3 (c) 2 or 0 (d) 2

Fig. A.23.

63. The graph in Figure A.23 is the graph of one period of which function?

(a) y = 2 sin(x − π/3)

(c) y = sin 2(x − π/3)

(b) y = 2 sin(x + π/3)

(d) y = sin 2(x + π/3)

64. The graph of 3f (x − 4) is the graph of f (x)

(a) shifted to the right four units and vertically stretched.

(b) shifted to the left four units and vertically stretched.

(c) shifted to the right four units and vertically compressed.

(d) shifted to the left four units and vertically compressed.

Fig. A.24.

65. Find the height of the triangle in Figure A.24.

(a) About 11.5 (b) About 0.04 (c) About 9.6 (d) About 0.05

66. Find all zeros for f (x) = 3x3 − 7x2 + 8x − 2.

(a) −1
3 , 1 ± i (b) 1

3 , 1 ± i (c) −1
3 , −1 ± i (d) −1

3 , −1 ± i
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67. What are the intercepts for f (x) = −x2 + x + 2?

(a) The x-intercepts are 1 and 2, and the y-intercept is 2.

(b) The x-intercepts are −1 and 2, and the y-intercept is 2.

(c) The x-intercepts are 1 and −2, and the y-intercept is −2.

(d) The x-intercepts are −1 and 2, and the y-intercept is −2.

68. cos(tan−1 1/5) =
(a) 5

√
26

26 (b)
√

26
5 (c)

√
26

26 (d)
√

26

69. What is the slant asymptote for the graph of

f (x) = x2 − 9

x + 2
?

(a) y = x − 11 (b) y = x + 2 (c) y = x − 7 (d) y = x − 2

70. The population of a town grew from 2000 in the year 1980 to 10,000 in
the year 2000. Assuming exponential growth, what is the town’s annual
growth rate?

(a) About 6% (b) About 7% (c) About 8% (d) About 9%

71. What is the quotient for 4+5i
2−i

?

(a) 13
3 + 2i (b) 3

5 + 14
5 i (c) 13

5 − 6
5 i (d) 13

5 + 6
5 i

72. What is the quotient for (2x3 − x2 + 2) ÷ (x + 3)?

(a) 2x2 − 7x − 21
(c) 2x2 − 7x + 23

(b) 2x2 + 5x + 15
(d) 2x2 − 7x + 21

73. What are the vertices for the ellipse

x2

25
+ y2

16
= 1?

(a) (−4, 0) and (4, 0)

(c) (−5, 0) and (5, 0)

(b) (0, −4) and (0, 4)

(d) (0, 5) and (0, −5)

74. A triangle has sides of length 8, 15, and 20. Which of the following is an
approximate angle in this triangle?

(a) 48.3◦ (b) 41.7◦ (c) 50.6◦ (d) 23.6◦
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75. Which one of the following statements is NOT true about the polynomial
function f (x) = x3(x − 4)2(x + 1)?

(a) x = 0 is a zero of multiplicity 3.
(b) x = 4 is a zero of multiplicity 2.
(c) x = 1 is a zero of multiplicity 1.
(d) x = −1 is a zero of multiplicity 1.

SOLUTIONS
1. A 2. C 3. A 4. B 5. D 6. A 7. A 8. B
9. A 10. C 11. B 12. A 13. C 14. C 15. D 16. D

17. A 18. B 19. A 20. D 21. C 22. D 23. A 24. C
25. B 26. B 27. A 28. D 29. B 30. C 31. A 32. B
33. B 34. B 35. A 36. C 37. A 38. C 39. C 40. C
41. A 42. C 43. A 44. B 45. D 46. A 47. B 48. B
49. B 50. A 51. C 52. A 53. C 54. A 55. C 56. B
57. D 58. D 59. B 60. B 61. C 62. A 63. C 64. A
65. C 66. B 67. B 68. A 69. D 70. C 71. B 72. D
73. C 74. B 75. C
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as zeros of a polynomial, 165, 175–177, 178

Compound growth/decay, 205, 246–247, 249–250,
251–253, 254–255, 257–258

Compound interest, 201–204
Conics (see Ellipse, Hyperbola, Parabola)
Constant

function, 25
term, 134

Cosecant, 372–374
graph of, 382–384

Cosine
graph of, 375, 377–379
inverse of, 392–394
and right triangles, 386–388, 395–397
and the unit circle, 369–374

Cotangent, 372–374
graph of, 385

Cubic function
graph of, 89, 91, 92

Descartes’ Rule of Signs, 160–161
Determinant, 324–327
Difference quotient (see Newton’s Quotient)
Directrix

of a parabola, 330, 331, 332
Discriminant, 173
Division of polynomials

long, 144–148
synthetic, 148–150
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Domain
of a function, 34–37, 39–40
in function composition, 69–70
from a graph, 43–45
of logarithm functions, 228
of trigonometric functions, 375, 382, 385, 392,

393, 394

Elimination by addition, 265–268, 279–280
Ellipse, 338–345
End behavior of polynomials, 135–137
Equations

of conic sections, 331, 332, 338, 339, 343–344,
348, 349, 352–354, 357–360,

exponential, 223, 241, 243–244
of lines, 4–11
of logarithms, 220–221, 229–230, 237–238
of polynomials, 134
of quadratic functions, 104–111
of rational functions, 185
solving, 439–444
systems of, 262–281, 315–320
of trigonometric functions, 374–375, 382–383

Even functions, 58–59
Exponent

functions, 209
properties, 210, 231, 232

Factoring by grouping, 442–443
Focus

in an ellipse, 338, 339
in a hyperbola, 347, 348, 349
in a parabola, 330, 331, 332

Functions
composition of, 65–71
definition of, 24
domain, 34–37, 39–40, 43–45
evaluating, 25–27, 28–29
even and odd, 55–59
exponential, 209
increasing and decreasing intervals, 45–47
logarithmic, 225, 228
quadratic, 104–133
range, 34, 43–45
rational, 185–200
trigonometric, 374–375, 382–383

Fundamental Theorem of Algebra, 175

Geometric sequences, 426–432
partial sums of, 429–431
sums of, 431–432

Graphs
and domain and range, 43–45
of ellipses, 338–340, 342–343
of exponential functions, 209–211, 214
of functions, 42–61
and function composition, 68–69
of hyperbolas, 348–352
of inequalities, 284–289
intercepts of, 43, 105–108, 185, 187
of inverse functions, 77–79
of lines, 2–5, 7–10
of logarithmic functions, 225–226
of one-to-one functions, 79–80
of parabolas, 104–108, 330–333
of polynomial functions, 134–140
of quadratic functions, 104–108
of rational functions, 190–195
symmetry of, 55–58
of systems of equations, 263, 265, 266, 278, 279
of systems of inequalities, 289–296
transformations of, 89–97
of trigonometric functions, 374–379,

382–385, 393

Half-life (see Radioactive decay)
Horizontal

asymptotes, 186–189
lines, 4
line test, 79–80
transformations, 89–97

Hyperbola 347–354

Imaginary numbers (see Complex numbers)
Identity function, 75
Inequalities

graphs of, 284–289
nonlinear, 445–449
solving, 444–449
systems of, 289–296

Intercepts, 43, 105–108, 185, 187
as zeros of a polynomial, 137–139
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Interval
increasing/decreasing, 45–47
notation of, 449

Inverse
functions, 75–82
of a matrix, 307–313, 318–320
of trigonometric functions, 392–397, 401,

402

Law of Cosines, 398, 400–402
Law of Sines, 398, 400–402
Lines

equations of, 4–11
graphs of, 2–5, 7–10
horizontal, 4
parallel, 9, 10–11
perpendicular, 9–11
slope of, 1–4
vertical, 4–5

Logarithms, 214–258
applications of, 246–247, 249–250,

251–253
base of, 214
equations, 220–221, 229–230, 237–238
functions, 225, 228
properties, 231–232, 234–235

Matrix
arithmetic, 304–306
determinant of, 324–327
identity, 305
inverse of, 307–313, 318–320
row operations, 307–313, 316–320
and solving systems of equations, 315–320

Multiplicity of zeros, 177, 178

Natural logarithm, 217
Newton’s Quotient, 30–32
Nonlinear inequalities

graphs of, 288–289, 290–291, 294–296
solving, 445–449

Odd functions, 58–59
One-to-one functions, 79–80

Parabola, 104–108, 330–336
Partial sums, 418–419, 423–425, 429–431
Polynomials, 134–184

degree, 134
dividing, 144–150
factoring, 151–153, 157–160
graphs of, 134–140
zeros of, 137, 152–153, 157–159, 172–179

Present value, 205–206, 436

Quadrant, 367–369, 372
Quadratic equation

complex solutions to, 172–173
solving, 440–442

Quadratic formula, 441
Quadratic functions, 104–133

Radioactive decay, 254–255, 257–258
Range, 34, 44–45
Rational functions,

asymptotes of, 185–195
graphs of, 190–195

Rational Zero Theorem, 156–157
Remainder Theorem, 151
Right triangles, 14–15

and trigonometric ratios, 386–391, 394–398

Secant, 372–374
graph of, 382

Sequence
arithmetic, 421–425
geometric, 426–432
partial sum of, 418–419, 423–425, 429–431
recursively defined, 416
terms of, 415–416, 421, 427

Series, 415, 431–432
Sine

graph of, 374–377, 379
inverse of, 392–394
and right triangles, 386–388, 395–398
and the unit circle, 369–374

Slant asymptotes
and hyperbolas, 347, 348, 349
and rational functions, 193–195
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Slope
and the average rate of change, 51, 52
formula, 1–4
of horizontal lines, 3
interpreting, 1–3, 17–18
and Newton’s Quotient, 32
of parallel and perpendicular lines, 9–11
of vertical lines, 4

Square root function, graph of, 89, 90, 92, 93
Substitution method, 263–265, 280–281
Symmetry

axis of, 331
of graphs, 55–58

Synthetic division, 148–150
Systems of equations, 262–281, 315–320
Systems of inequalities, 289–296

Tangent, 372–374
graph of, 385
inverse of, 392–394
and right triangles, 386–388, 395–397

Transformations and translations, 89–97
Triangles, 386–391, 394–398, 399–402

and the Law of Cosines, 398, 400, 402
and the Law of Sines, 398, 400–402

Trigonometric functions (see also Cosine, Sine,
and Tangent)

co-functions of, 387–388
even, odd properties, 375, 383

Unit circle, 364–374
angles on, 364–369
terminal points on, 369, 371–374
trigonometric functions and, 369–374

Upper and lower Bounds Theorem, 160, 161–162

Vertical asymptotes
and rational functions, 185, 186–187, 190–192
and trigonometric functions, 382, 383, 385

Vertical line test, 43–44
Vertical lines, 4, 5
Vertical transformations, 89–97
Vertices

of ellipses, 338, 339
of hyperbolas, 347, 348, 349
of parabolas, 104, 108–112, 331, 332

Zeros of a polynomial, 137, 152–153, 157–159,
172–179
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