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Preface

Leave npzhing to chance, This ciché embod'es the common belef that a0
domness haé no place in carefully planned metaodelegies, evarr step shold
b spellid out. gach i dotted and each t crossed. T discrese mathematis ab
Jense, wuthing could be firther from dbe truth. Inbrodieing retiden chiviees
into algcrithons st ieprove their pedormates, The applicazion of probe-
hiigtiz tools has led to the resslution of scbinesarial problems which bed
registed attack for decades, The chagers i1 this volume expbors and celebeate
this et

Clue jntetition w28 b bring togetber, fot the Geer e, stcesible disos
<3 of the disparate ways in whieh probabilisaie idexe ava entiching Jiscrer=
mathematics. These discumisns ae aimed at mathemericians wich 2 good
combinstcrial bacegraand ut require ooly 6 pacging acqueintanse with the
hesic debricions in probability 'e.g. eupected value, coaditienal prubahlily),
A readar whe alresdy bies 8 fir<n grasp en Lhe aves will be terested it the
origiaal ressarch. move] syribeses, and Gismsiona of ongoing des 5
seatbered cheeughout the hook.

Some of the meet, oonvincing deswonstrations of the porer of Wese ted-
niques. Are randomized algorithms %1 estimaticg qaanticies whch are hard 1o
eoiepute exactly. Ooe evample is che randomiized algoebhin of Dyer, Poesa
wod Emtita for esclimating the wolusee of 3 palvhedean. To illnstoste thess
techniques, w consider a simp. regsed problem. Suppree 5 is some reglon
of the wnit square defined by agystem of polymonial inequalities: pift 1) < 10
Then the area of § is equal to the protabilicy *har & randoe pomt i in S,
where the pain: is chosen eoiformly & random from the undt sqaare Fus
vhermore, we can detemine if o point iy o § sopy by evaluating each
polyruamial st ths peiot. So, wa can estimate the ares of 3 by <he proportion
of o sufireot.y Jage ses crandoe points which F2 in 5. Far thia problen,
chaosing a Tandom saenple poitt wab strodghtoreard, as was wing the sam-
ple bo sstimate the aret Estimacing the vwelume of 8 polybedron Js oot s
sitnple,

The cetees] chapler in this volume wag writeem hy Jemrem. 1t discyussss
mare saphistieated techniques for peceratiog random ssenple palies from 3
probekbility disuitution aud usiog them (o ¢evelop rardomized elgorithon
b approdniate counting, In particaler, he diseusses techninies kot showing
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tiat candoen wwlks of cectain types sllow os ta geoetats random peiets ir. the
samphe space efficiently. This 1% the theory of rpidly mixiog Marken chains,
JeTrum noes B bgy samge |colturings of the emply graph) s ilusirat the
hasic: Lechmiques of che area He then presents sutie 1o veresting applic
ratians uf thege techmzues, jecluding one whick Jes the pae favour a the
result of Dhyer, Friese and Karran, Hesounds oul nia survey by discussiag tag
exciting 1ew devehyprvents in the area, Path Couplicg eod Ceupting Fro
The Faz,

Some of the eariest appbieations of randein sampling and apprormase
counzing were in percolation theory. As its name suggests. this filld = con-
certind with Boov i rendoun medis Ooe standard model Bwr sludylag theae
fiows = & infinbke Tctsee with & supply of Juid at toe origin where each edge
allows flvid to pass with sine probetility ., independently of the ither edges,
A clagslcal queszion is: (or a pacticalér laitioe L, bew big st we unake p in
arder 10 ¢nsute <het the probatulity thet an infnita wimber of points pet wet
eureads 2er0” Tidesrl, determivicg whis critical wlue for the 3-dimenshonal
cibic Jatrioe = mn ixeportart open problem in stetisticel paysics. A evoeial
firgt gte bowards solving this pooblens i¢ 1c determioe bow to vadiets
telad polymomial koown g8 the partition funetion,

Walsh's article. which fallowe oo Jrom Jerrum's, distusses peroation the-
ary. foeussing i patticular om Lhese micdsls: the lsing mocel, the Pobe mode],
and the eandnen cluster moce], kach of the discussign 18 devated to tethods
o evpligning the pectition funstlons in these models. Cne inkriguing art. ia
*hat these polvatmizls were alvady wel-bnown 1 combinatarisists wnder
anather Came. [nteed they are sperific instarees of the well-stinled Thte:
colvovinial of grapha. Tiés pamits us o apply & combinatorial avalyss to
alywr that ewulusring paotivion furetions ‘s berd bt thet Markey chain tech-
wques ran often be 2pplied 1o obtain anpredmate sohitions. This strand in
Welgh's chapter rams 1o sxanteepoiot to the eentral thems of the book.

Welsh's chaplet & oot the aoly o2 19 whish combinnzocial avelye's is ap-
plled 10 obtrim pestbts in probability theary. Ao iateresticg result in the sare
vein cen be fourd i the article of Deveoye He describes now McDiprmid,
building om earkier wark of Deveoys and Reed, uses he simple combinasoral
idea of "lesting sequences’ to sitnplify and strengthen much of the vaiisl
thecry of branching rodoo walks Ti0s is Lewever, only a0 of the hees of
results that Devreve presents, Most of Lis setiele concarns the wpplicatice
o & probebiliszic toal, branching procesess, to the enalysia of & combinete-
Tied serochure, srees. The firs; branching process meds] is due 1o Galoa and
Watson whe develeped it in 1973 to expluin t0e disappeararce of certaln
fariuly wumes . Eogiand. The procees begins with an initizl socestor which
bes a rardom pumber of ehildrsn, according to some fived distobartien oo
the ooa-egetive integera. Eech child then incependently bes & random nim-
het of chiklren aecording 2 khe same disttibution. The process obviously
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carstrarté & family tree and it ia “herefore not surprising that il has many
applisation in tha walysks of raadem tyees.

Dheveaye's arlele pressnts many evtensions of the smple Gallow Watson
aracess and considers their appBeetions U+ & wide rnge of diffenet Lypes
of vandim <rees, tree-like stouctures, and elgotithens ac traes. [t & the most
conpretensive of the crpters 10 the vohame gnd contaivs opeh that wil e
béw even to an expart I the fied,

The probabilistic soalysiz of combinatoral swroctures & not Cimdted to
the sy of medom trees. In t2e chepter of Friees and Resc, we see how
an wdesstanding of te strwcture of & candom 33ject (e.g. graph, linear
programming problem] permits us to develop algoritims which ere wwually
effitient. In particular, we dseus sbgvithms for shree difficalt problas:
Humilton Cycle, Uraph lsomerpbisen, and Edge Cabouring. Thess wpprithans
ruo in el vme o the gvermbelming propoction of inputs. [s eon.
arast, v shall ses that, eveain classical branch sod hagnd algorichims, foy e g,
Knipsack, almast alorys take supetpolvoomisl time, /

These ae Just some af the topics sovered in their broad survey of the
peababélietic anakyais of algarichme. The geal af the chapoer is s carry ot as
mch of the analys:s &4 pestible using only the simplest of tooks. Tndeed mest
of the discussion requires only ¢he First Motment Method and the Chernd
Bound. The frst of these has a one lie sr00f and the seccud is a classical
resille which bounda the cevistion [Toew the mean of the pumber of heads
obaervad e flips of the sams ooin.

OF eor e, these two o0ls are uos emoipenent, T particul, the Chernod
Boud apples by 10 sums of independent idemtivally distesbusted @1 ran-
<lom variables. {1, in undsrtakiog the probubilistic analyeis of alsorit hns,
Re Teqine extensions of ibis cesnlt which baodle (unctivrs that depend, in
a limited iy, on @ cumber of independent randon varisbles, Dme sych wne-
rendicm, the Houftding Azqtny Inequality, wes Btst brought 15 the attention
of L]ue eombingiteisl comengnity i the moé $05 and gainad prominenes after
Bolohds wsed it tor tie dows the asymptotios of the deomesie famber of 2
ranoos graph. Recently. Thisgrand introduced a0 exeiling vew metbed for
brounding devecions [from the madien), which seems 1o be even Tom widely
applicatde,

12 hia chuprar, Concertraiior, MeDiarnld peosic esa thorough overvise of
1bies= related consen:ratixuegualides and 8 wunlbes o athers, He disousses
B ety of applieations, Toluding Boliohis® bear de force mentioned abose,
He also derives these concentrtion inequalitien, sametimes 4242 ning s1aTper
reshts than thoss kmown Frevously. Although these resilts are of 2 racre
techuicsd natire Than et of ehe other results i this volume, the suthor
biaa ensred his treatment i arcesible o Lob-ecperes, & careful sending of
this paper will be well pemarded,
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The: btk presected in MeD:armid's chapter have applications autsids of
the probekilistic snalesis of gorithme, as we shell se2 in the very fios chep-
ter of the book, (loe of the topics dis~useed rhere is sunlres %, L e sels of
positive integers b twa substs of which sum oo the same valie. Onz car ob-
tain bauns on <he mazimum cardinality of & sum-free subsat A {1, 5"
wging the fxet thee the sum of the cletsnes of & random mabess s bighly
cemesfrrated sround its expected value. This is ab example of the peobabilis.
tle methoc, whicl is the schiset of thie chapter. The profuhiistie ethed
consisng of provang ibe existenos oo poieexistence o 2 coinbisalonial e
wilh jartieular proper-ies [ 8 sum-free scheet of & elements of {1, ..} via
& prohabilist s aoalyss.

Mzl tging b chapter by inttaduring seess of the hasie tock neaded in
suth an amabyaia, He then Toouses on. a plethare, of recent results aboul praph
anlovrmg obtanes by A ypint application of wirios conssmotion hoends
and & vary powerhod probabilistic tocl, the Lavdse Local Lemma This ey
parmits (me tn noave the ewistence of stowcsures wich semzin globe] propesties
vie & boeil walysks. For exerinle, ape can prove the existence of ccloutings
af cerlmt kinds by evamining erch veighboarbood separately. To see the
advanlages of th's appeoach, consiar the balkwing result obtaived by this
method: I the maxiutn dsgres of G, &, % suFoently large and & s no A
eligque thew it has & A- b colouring, Clearly the exdstence of 8 & - 1 colouting
4 4 tefghhaurbood | which bes at mast A+ 1 vert oes) is eagy tokemonstrala.
Thne fact thiat anary prcllerns ue epsier to regohee Jocally than globellx is what
grves ibe Lucal Lecnma ts power Further, pe Moloy disensses, not only does
the emriz prove the scstenct of the desired cobourizgs, it may also yield
efficient rancomized elgorithens for cozsioustiog ther:.

Ay we b veen, ragny of the chapters i this volume cistms andomiesd
algaritizns. Bagavan's chapter i devoted ve the tople. Iaformally, a random-
ized algarickm & one whnse hehavione is influenced by 2 oumbet of randam
tisiry Hups The expeeted myeting thwe of the algnmithen on & given joput s the
average over all pasalble sequence of eoln flips. Its expected rmoniog time oo
inputs ol sire n iz the maamam of its axpecied rnning tsme over all nputs
of sizg 3. Theee are mary peoblems fae wisch the expected rueming time of
seme randomized wlgorithm ia setter than the rumaing e of any posible
devarntiniztis algorithm, Raghwes presemia boe sxsirpl. He abo disnuses
a sty psul which links €he numoicy dmes of mudowiesd lgorithiong for
& priblem with the expectad running tines of deterministic: algarishms aver
rendom it theraby Fnking bis chapter to thar of Friese and Reec. The
bialke of Raghaema's chaprsr s desoved 5o a discossion of randomiged algo-
sichinas Cor ehecteonic Bogerprivting, This eres ia of perkivclar imprtance due
1¢- the cureet developments 9 elactrotic comurnnseetion. Tt seems spprd-
prizte g end pur brief introduetion with thie deconatration that Lt feld
diseussed hete 15 svobeing iu szep with the world aroond it [probably!)y.
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Y1 Wayl Sequence Yoyl Sequenne VI

A Wetd sepuence %or £ i given by {@, {260,438}, ... where £ € (1)
I o iresticogl symber ang {} dedoces *mod 1'. Weyl saowed chat for gl
impticnal B the sequence is epui-dstrbuted. A Weyl tras, T0) 9 (e
Yoiipry agarch toee based wpem the frst v nombers i the Wey] sequence for
& Each dalug: is essogiared with w node of 7,18, and eact pode hae the
searzh <ree propecly, that i, all codes in its wht subores hov staler values,
and all nodes in s rght subivee bave larger vabyea. T [x) s presented on
the front. cover with beight 36 where tne besnches ere dresn zcccrding o
Lhe [alkewing prodecermived properties, Firstly, the brapehes sre rasdomly
rolgted with sespect to their parsnt branches. Seconcly they aoe krced 2o
be mefented woemrds the north, facing Coe syn and finslly, the brarches ae
sespned mardach Jemgthis This was done by & postserpt peogras weitten by
Lae Diavrove,

U4 sequencs oo v 2 L epm-distrabuind i for &l DS e 2 hg b,

n
. 1 H
lel : E]I.Elt.i =h-a

l ? {8y vress 872 3 Fundacental toal foc the anshysis of alpot-Lhumy irvnlwing Wey|
safoentes m LFe inpur gream



The Probahilistic Mathod

Michze] Mollay

Thepertnent, of Comiier Soece
rniveszity ¢f Tomonta
Torigky, Canide

Frdas i3 usually coedited a6 being the pitmees of the protabiistic methad,
beginning with his saminal 1T paper [21], although the protabibistic method
bad been wsed in 1 Jesal tws previous cevasions by Turdn In 193466 and
by Szsle in 1943(67 . By row. it & widely recognized as gag of the mest
martaa, techminues i the fiskd of coxbasrorice. Tn this short survey, we
will intreduce & Jew of the basir saals ard describe some o the areas i which
thre tethod bias bad impact

The basy ides bebind she probabilistic methid s that in order ta prove
the existeqive of & conbinaterial ohject aatisfying rerler peoperties og 4
rtiph with either u lange clique nor a Targe stable set, gc u prapes colouring
of e vertices of & graph) we ehoose our chjecs at Tandon and prova that
wich poaltive probability il satisBes the desired properties. The two mia
lupdamecta] tools wed to show thar this probabilicy is pogitive are the Ficst
Mocnent Mathor and the Lowdse Local Lemme, e arier 63 apple these, we
often need a few extra tools, most notably onncentration Jaunds.

A om0 Tisperception regarding sbie probohilistie testid e ke age
reqpuires a dssp knowledge of probabilivy v wse it This is far frean. b truth
. in Fact, & nery elamentary knoledge of probubilty along with o baniliarize
with & bandful of tgzis ard some claver combinalurial Teasoming xi sufbee.
Thus, we do cot asimme chat the readers have 8 strong background in prob-
ahility, but we €3 asume chat tney wre familiar with 1l besics, anth o4
sscpecser: vlues, We sko issuie that £1¢ Teader bas a hasic wnderstaoding
o pesphi thanty. Wa wscally it round-up end reand-down signs when there
is o chance of pedisicn At is comrion with Ube pretabibstic methad, #e
snpely nravala tba best conmtant {ers in our po0s, opling Tatber to precent
a stiple proof. The resder may ofter. fnd it inatruetive ta try to madily the
prodfi Lo chein o stonger resul,
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1. The Flrst Moment Method

The Gre- tool that we will s is the Firgt Moment' Method sk is the most
fundamentel 100 of whe probesilistic pethod. The esence of the Fimt Mo
Toemt Method lies i3 these tw0 smapke and surprsicgly powerful statemenss

The First Monaent Principle FEX) <2 then Pr(X < £} >0

Pronf, Dotaitively, the epected value of X can be vigwed s the werage valie
ef & over all ossibe sateooes of the raadom eperimert. If every anroome
is grenter than ¢, 1hen this average must 2 greater then {,

Mare farmally, since BiXi =% i Pri¥ =i, e dPrX <) =1
whpe EX| =% ixPrid=i>ia}, Prid={=t ]

Markev's Lnequality Frr oty non-negabize rosden noriake X,
E[&

4
"

FPriX »t)=

Proef. Againusing ELX) =} ix PriX =1), we have that since X is alnays
noe-regelive, BIX12 Vo inPriX ={1xtx PrX 2 1), |

Apipdyivg the Fizst Manen, Mathod requires & judickius cheice ¢ the ran:
dirn variabbe X, along with o Jwsually stealghtforward ) expected salve com.
arretion. Moat ofen X i non-negarive inzger-wened and E(X 1 shown
s lese than 1, thus proving that Pr{¥ =€ s pogitive WMarkon's inequabicy
it frequenty tmed when & s mon Legutive ioteger-value: and B{ XY 15 s
than 1, in which case we bave Pr{X =01 = PoX = 1] £ E{X).

Recalling tket E(X] = .8« PNX = ), it may seem ak first glance
Lhat a2 canoot compyoe LX) withgut frst sormputing PriX - if for every
waltze of £, which i o itsell at Jenst 8 difieclt & beek as compatiog Pr(X < 5
tiserthy. The Sllowing fact alkwws us b compute EQX) withoat eoroputing
PrX = i) Jor any value of i, 1o effect by computing a differsct sum whick
biaw b garne wodat!

Linearity of Expectation:
B -+ X=X+ 1 LN

* The kth momert, of & ancom wmcable X 8 B and sa he firel momeny
is simply whe expected Taue. We wll pxeiine Lha second momand in the fege
Bt

The Proaahiliatic Methad 3

Fref. Ko any enlooese w0 of ook rawlas esperimmen. we detote by X () the
eurreapoine ing vt of X For this woof, it is nore eoueencer i epress the
papected valoe of X: oa & Priw s Kill). Linearity of Expectation follms
imaiedintely (ot Lhs Zomolatian a8

o
Y Priwi (X fu] o Xl =y (Err{»x 5 X m} .

il

1.1 Satisfiakility Problems

We Best illusteste the Fiest Momens Method with an sppdication to Satitha-
lality problems.

A boolsan vemzble v o veriable which can taks o value of either Thue
o Filsz Foc any boolesn venighle 2, there are tep romeespondiog liferels 2
and Z, where ¥ means “NOT &' and bas the opposite whis of £, & bosken
Barimula in Cariynckive Normal Forme (CNF) cncssts of & sequence of slovaes
Jolned by -2 {3 ND), whers each clacse consists of & set 4f Literals joined by
™ [QR). The furmuls 2 sebesfibi if there i spme asiguenens of walves b
jis var ahuaa such that che ewtire Soronbs sgquates W Troe, Lo, wi 25sigument
sud W, every elause conteins at lesst oe gtera] witn the value Trus, For
posithe itteger k. an irstance of k-5AT i 8 CNFormle where every tlause
bas gty & lnermls.

Theorem 1.1, Any irstanee of k-SAT with Jewer then 2 lavges & sakisf-
afle.

Hote that tus sheoremn iz et possible bor every £, gieon 1t is Araightfar.
®ard to constriszt an wmselisheni: instante of §-SAT Ly eaking each of the
B potsivie clauges oo o Gxed, ser, of b variables,

Priaf, Consider & random trach assignment peuersed by setting each wor
ahle to be Troe with prabebility  and False arth probabitly 1. {Note kst
each truth assigument i equally lissly to e chosen,) Let X be t2e aumber
of wisatiafed clauses,

W wl. use Lisearty of Expectation ta compute E[X). L do this, we
Tz express 4 & the surm of several vaziasles, each of wivose expected value
ia pasy 1o oompare. Toe standurrd way o da this & g8 follows. For each slawse
O Xy = 050G, is anticfed, god X, = 108 is wnswsisfed. Nute that
X =7 X, Furtaermore, for each 1 the axpected wahue of X, & snply he
profubility ther C; is unsatishied, which ls 2% Sings we nave m < 2% ¢lauses,
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EXj= mel] =mxtEo)
Therefoes, by tie First Moment Principie, with pesisive probability ¥ « 1,
Le. with positive probablity the sonlean formuls is saziofed, sad a0 thee
st be gt least one satisfying sesignment, L

More gemerally, the sagre argument proves the fllowing:

Theorem 1.2, Coasider any CNPoformads F = O a a8 0 0
Yoo 75 e 1 then F 15 satisfizdie.

It is welbkacwn that Jatishebility is an NP-conplete sooblem. Homewer,
a $mple rorcllary 16 che esults of this soctior, shows that sty iestence of
Barishiabilicy where every clense is big snvugh car be sclved it polviime. This
may e heen frar norjeed by Edmonde.

Corollary L4 Ffor ony ¢ > 11 there ¢ ¢ simple palyime alporithes whish
il sploe Subsfobbity far ong CNF-formule on 1 mriabes such that aock
elye fing size af Jenst e,

FPreel IF the number of clouses is Jess then 2™, thew by Theorem 1.2 the
Eaely ewigt be satisable. Cthwrwite, sn exbaustive sepes) of all 2 pogshle
truth sssigtiments ean be carzied ok io 2 tins which s polyzamlal in the
an of the inpar. C

1.2 Graphs with High Girth and High Chromatic Number,

Ome of 1he eacliest triumphs of the probabilistic methnd, was Erdis” Frogk
ba. thee are graphs with both 1o short cycls and acbitzarity bigh chrong e
waees [2):

Theorem 14, Fur ary g, * 1 there zomt grnghs wih an epcles of fength
ot mast g atol itk chromati vuber grester than k.

Exdis proved the exiterce of such graphs wing » random construction.,
(The Eact, that ne ome was ghle to prodice & aon-probabilistie conateoetion
of such gragha for more than 10 years 36, 54 & u testament to the power
of the Firet Moment bethad.; In presenting his procf bece, me smplify the
caloeslons a liktle by consideriog only the cass whee g = § The proof
of the general case 15 Taurly idenical, 53 the calculations ste aoky slightly
more inalied

Theorem 1.5, For any ik > | shere axiat Iriagle-frve prophs with chromatic
THinber greater thae &

The Prohabilletic Wethod §

Remark. Zykov )T was the firsd to prove $hin special cose of Theotem 1.4
famd i foct did 20 sthent relging on the probobbstic mathod) . Homeser,
hir proaf techndmne diss nal geeralize to the more general suse of oriadary
girth.

Proof of Thaprem 1.5, Choase a rendom graph 5 un n werthoes by placing
each of the (71 peaential edges ‘wo EIG] with probabllily p= n™* (where,
of course, these {7 zandom choiéss are made indepeadently,.

lo coder b prove thist ¥{3) » &, it suffices bo prove that G hea ua etable
seta o size §. In fact. for & delightful end elegar ressor that will saou become
apparent, we will sbow thit with high probability. & dees pok ewen have sy
stable sots of sioe 3.

We co this with  situple expectad oumber cetewlation, Let T be the
ruaber of Ashle sets of sk 5 For each subsel 8 of 7 vertius, we defie
the ratidom vazishle f to be 1 i 8 is 2 2ooble sot and O ntller:.@se. Eiis) iz
sianpy the prabilakty shat 5 s & susble set, which is {1 - phl"% . Thesslure
bry Linearity of Expeciution:

K=} Eil)

L)
l'| wrakl
A
¥ xﬂi—n'i;—é]
= 7" « Ej=0jn*3)}

fn
B tnm

p 1
?
fie v suffcion by barge. Therefore, by Markov's Inequalicy, Peff = 0 < 1.

{ur ret step ahould be to show that the expected number of crisnghs
i bz very amzl], Unforinately, this is not toue. Himever, a5 = will se, by
applring aclever trick it will ufive 1 shoer bt wil high enough probeblity
e number of triangles d ot most §.

Ta da tnls, we caunpute the sypested value of T, the nuzber of triza-
pls. Ench of the [ 524s 67 3 vertives Tarus & sriangle wich probability p-
Therefore, 7y spplslog Linsarity of Exnectaion as in Lhe previous exempls,

Em=ﬁp

E S
{ _I:TL 2.:].‘1

= YETT
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Thereions, by Markov's loequalivy, PriT 2 3; < .

Since Peif 2 1)+ FrI' > 31 < 2, the prahubility tbmt £ = Dand § <
it positize. Therefore, ibere existy 2 maph & for =hich [ =0acd T 3.

And qiow for the elegart trick thet we promised Chooss a st of st mgst
p vertices, wilk at Jeost aoe o such trangle of G, and deleta then b baare
the subgrapi G . Clearly G is trisogle-fres, sod .G 2 % Furtherrutre, &
ha# 1o independeut st of sine £ < le and 50 3G ) = & s desled! )

We ‘neite the teader te nom oy Lo generailze thls argument 4 e
Thearsm 1.4, The fesc slep should be to delermine wha p should be {i will
tleacnd m g).

2. The Second Moment Methed

The verience of & randam variabde X 5 doFhed 10 be:
mn X1 =E{¥ -E.X14).

Obserncg thet the joer BIX] tem can be Teated a3 a conscant, smtw
giniple menipulations vield
wr K] = E{&* - LYE{X] + ELY)¥
= E[X% - IBIXEX) + B X}
= E'XY-RiX
ind so the vriaeee of X s ntimessly refated 13 its second mement. The

seond movoenl ioethod refers to applications < the Bllowiog, whirk k& the
Tt Juwdamerta] too] regarding the variangs of a variahle:

Chebyschev's [nequality Ear wy £ > 0,

Prf|X - EiX ]| 2015 %

Poof X =E(X)[ 2 ¢ 1 X =BT 2 4. The result now fallves [om
Markow's Inoguality. |

Chatysehe 3 Inequality i the simplest exumple of & comoeudeation fo-
equalidy, which meers thae it & wually usag ro Tmply ther with high prob-
abiizy, 8 random warishle i “concentrited” chse to its coperted valuz, We
#ill 52 & bew e concenrutior inegualities in & luler section,

Wa lustrase the wsebiluess of Chalrsshev's Tnequelity sk s example
irom corwhioatorial rumber Lhecry which ea be foues ig L]

The rrebeh listic Methed 7

Conuder 2 set A = {ay,...a} of oostive integers. For iy 1 € A4 we
debnc 9i1) to be the sum of ke alamenzs of I, and we define ST} = {s(7)
T2 (AL} 1 be theser of 8l such sums, We sy thet 4 nag distine, sums if all
suen gums are fistmet. i.e if |3(1] =, For exetmple, Ay = {2,346, 10} has
distinet sums, gnee S04,0 = 10,2, 3.5,%.8,9.10. 11, 13, 13.15. 26,1818, 11}
s A =230, 10} does ripl v distinet sums as 24+ W=3+ 3= 1%

I bezns of 1e, bwm Laege can a subsek of {1, 0] with distret sums e
[t % D3t bard to soustruct ore e size & = [loggn! + 1 by setting ¢, = 2"
for i = 1,...% {m the eher hané, & simple sotibting argument shows that
we el have & set of sies b senich higeer than lag, v, sinos evety et has
suze b most b 6o 20 1Y < b which vieds k € lag, n + bog, 0gan + i1}
E=déis eshied whether it iz trae that In feet we cannot have o e of site Lacger
than Iogg m + (1], sod this epgears to be o very cifizult quesiinn. Here, we
will so bowr to apply Chetyschey's [neguality o eut cur raage of poesibl
sizes in Lalf,

Theorem 2.1 & 4 © {L..n° bas dishact sums thon |4 < bog 5 +
 Ingg logg 4 C1).

Proaf. The inair, ides s this. [ ordder to achieve a szt A of sze & e the
uppet band yiekied by 2% < br, we would sequite ez 514] be very cluse
10 4, .., kR } axud in particular <bak she suns are spread very evenly acongst
the first #n mornagazive integers, Tn fact. ws we will see, for any set A wath
Jslatict suciis. Toost of those sitns tead 1o be clumped together cose to the
-nidddle ol the eange [0, 8 A4, which wl impiy that the nueber of sweh sums
=gt be misch aueller than of A] « ks, 20d this will impeoee oor upper boumd
ao k.

Ciyr first step is <0 Toralize whe: we mean by “mast of the sums tend
Lo b clmnpad rapetber sear the midile of <he range”, What xe will show is
Lhat if we were to pick a suen Gniformaly® at random, chen with reasodably
bigh probabilicy it w7l be close 1 15 expected valuz,

§:ooe the sumg are distinet. picking & wniforealy randem sim X from
SiAb is equivaleat, 2 picking & oiformly rendom kst J < A and then
taksiag X = 3. Ta da o, we can simply fhp & fair cein for each a; bo detide
whether to igclude a; io T Tn deder 1o compute the expectsd value and the
variee of X, it onil] be soqvenioct eo express X in terme of some indiceatar
variables, 5o called Besains sach variable X, indicates whether o, € £ Thot
Bomrewchi=1 kwesst X, =1 o el and X, =0 mherwise. Thus
X =T auis By learity of expectation we have

-=l=l

1
EY] =3 oEX}
ul

! \Timifnly™ meass that eack sum is squally Tikely o be chosen.
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1
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L
E(X") = Rif} &7

i=l

!
=By 8X 42 ¥ s Xy

1=] 154342

=Y oEiXY -1 E s B X

LY 112951
- !iﬂi + E E [ f+
gy L
1=l (ISl &L

wiere the lzst Jine uses the easily werifisd foct that BIXT = B{X:} = i
wille B[, X:1= 1. Using our expression B Bi X1, we can caleulate

Iy 1
=1 _ 7 1,02
E{X] '42“‘*'? T
ial LE1esg!
end w0 .
n X = EiX%) - EiX) = E;a;.

Thus we kave wan X < “T“ Applving Chebyschev's mequaiity with t =
3 ] we have

e

PrilX -EiX) 2 3/wdX) < -

e

and s |
Pri|X - E[X]| 2 nvik) < y
(o aher words, at Jeect E of “he members of JIX are sramied inly &

Alerval o length Yesa than 4n'% sround E(X) Therefors, I <k,
which yields £ < logy T + 3 10, by = + {1 ul

The Probabilisti, Mached 9
3. The Lovasz Local Lemma

3.1 The Bk Form

In this seetion, w2 [aneduse one of the nwst poweefnl Sools of the probeb-
st metiood: The Lovds: Luea] Lenwza. We presont (he Locs| Lamoa Ty
seceagidering Satisfabilicy probleers.

Beral’ that In Sactirm 1. we showed that sy instance of E-3AT with Faer
than 2* ¢lauees is sasishable serase the mxperied mamber of false clauses in
& uniforouy random broth aslecment, i Jess than 1.

Now mppase that an isstance of k-SAT has many more then 2* clases,
sar ¥ dliases. Obviously, the Fist Moment Methed will il in this cage
o [ait. 8t Brar, glanos it appears thar any ettercpt to epply the probabilistic
method by Soaphy salecting @ wnitorraly tandom raeh assigument is doomed
sirce 1he chates of 1t beimg o sbafying msigrment aould vpically be very
temate indsed. Forturitely, we dan't =qure o high probabibny of sucees,
just & poaitive probebity of succes.

Tes e mere preckse, wee wil chioss o uniformly condom trach assignment,
gnd for ezch clause C, we deccne b Ap 1be vt il © i falss, Consider
the exvereme case wrere enemy variable appenrs i3 anly v clawse 11 his vase,
Ui events A are independect, and so sattiag m bo b tne tumber of Copes,
the orobehility <hat nore of the clauses are False is exactly (1 - 51 which
is positive b ratter o Turge me is. Therefize, tae formula is sexishsble, [OF
omuTsa, thers is & much eedier why [0 prove tais Gct!)

S for genecel instances of £-SAT, tnese svetity are cetlgioly not inde-
penidet as typlealy there are many varshbes which cacn appear i1 several
c.wnses, The Livedeg Loval Ledons i o reuarkebly powerfic tool shich says
that i soch situaticus, a5 long ks there is 3 suficiently Tinited angunt of
dependeney, we cen still clam & posikive probabiliey of sueess,

Here wo state tne Lovisg Local Lemima in i simplest aod mest commen
foren. Becoen doing sn. me need tha ballowing definttion.

A wvene A s mewkueily mdeperde of a set of evects £ il conditicnirg oo
whather o7 st swwe of the evenes on £ beld does not affect the pebablity
of A Mors formally. for every By, .8, Cran G €8,

PriA|By 4. 0 Be ATy .0yl = PriA),

The Lowdisz Loce] Lemma [24]: Constider o set £ of (lypicatly bod)
eventa pich that for each 4 £ &

al Prid) = p< ], end
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bl A b ey endependent of o sef of ol bl 0 mosd  of Be cter
2ty

ifdpd £ 1 ther with poskire probelty, none of the evenis w0 £ oreer,

iJr firel appLeation of the Lovdes Locsl Lemme i the following, which is
a vewqrking of a well-keawn result of Exdfa and Lerrdsz regardieg hypergragh
calmuring

Theorem X1, £.F 11 o inslance of £-54T such thef sack ramabie liss 1n
ol mest 3770 dlansea, then F ia satisfoble.

“lote that Lbere is no sestoction 63 ke pasler of clauses here - there car
be arbatzacily meny!

Freaf We will seleed b uniformly randers trotn essigomet; § 8, we set ench
varitble to be True with prohabiliy & and False with probatiley k.

Beca'l thal for epeb clbuse &, Ap & toe evet thi & in False, We also
defire - 1o e the ool of clanses whick share & warisble mitk ©, Mote shat
siite aech variable s in at maat 222k Sauses. Ui size of Ny s kag than

k-3
KR

Claim 3.2 Bach event A i mutuodly sdeperadent of the sei of events
{40 :C £,

Qur thaaretn lol.aws aatly from this elim and the Lover Loczl Lemena.
s Pridr) =Fhadix gt -1,

The claim seenss tatuizively <lear. but we should ske care v prove it, g2
locks con often be deceiing i this Beld.

Suppese that the vesiables ang ordered ;. ., 7., wheve O contains
£y enZp. Thate is o stundard ote-to-ohe carpspemdenes betwesn 1he st
of erock, assigrinena. and Uhe set of =-Zigit Hinsr sequences, where digls §
Topremerts the wlpe pssigned to

Colsicer any clanses (7. 0% ¢ N Let T b thaser of Ynaty sequenees
smespanding to solawticgs far which the evard B= A, & .. 4 Ar_ holds,

For ary [n - k)-digil sequence o, define T, to be the set of 2¢ ifferert
wi-digit hinarr sxquences which eot with g, It is streighsfrmasd o verify thal
Zor each o, F coniding eivher sl of T, o noce al T,. In other woeds, T s the
desjeint union T, L. J T, for omne g, o

Witkin each T, , exarthy 1 of the I* sequences coerespond to solouric g
nwhich O is Falee o s Prid, BY = 7% = Prid,) as cleimed, O

The Prakabiliene Methed 1l

The Claim ir: the preceding pronf is s special case of w wery usefid principle
poncezoing eatval ibdependence, [o fact, we sppeal to the fllowing fact
nigarly ety thme we wish o establiny mubual indeperderce,

The Mutual Independence Privelple fumpose ot ¥ = X X, s
a sequensz of mibependou roufom frigis. Suppoac furiker thae A, .ﬂ.n 2
sed af enents. where anch A; i deenined by F; C X FENCF, LB =1
them A; i mentoaily sndependert of {4, .. 4, 1

The procf dollows alang she lines of thal of tbe precediig Claim, and we
Lesare the dedeils 1o the readar,

5.2 Disjoint Cycles

We Luetrate the Locel Loz i -his seccion by priming & simple resclt
repacding vartex-digjoins cecles in graphs, This bype of gpplivation appears
in & few places, such es 7, ¥, Here we wil prove 4 simple weaketing of the
it lemma frem | 14):

Theorer 3.3, Ezery k-requdor directed graph 7 has 2 collection of |k /3 1o k!
verierfisgoinl Jirected cpeles.

Froaf. We will randemly perition, V{5 into ¢ a |k/310k parts ¥, 1
sad show that with positze probabilily, sach o condaios & ryce, Tods s,
we will provs that with pesitive prababiBty, every vertex hes an autnaghsone
in the same gt bo gtber wirds, each ¥, indaees 2 subgrapn with zoit mum
aatdegree at leaet 1, nnd ot 3¢ well koot (aod easy 1o pove) that wny such
subgraph comacs a ke,

Su for earh verte ¢, we place v inte & rendotnby chosan Vi, whers eack
pact 35 orualy likely to b chosey We let A, be the event thal © dues it
hae any iceigh'oie in the sme paet,

Prid,) = [1-13F < ¢mhé a3 = 17 B v Mytig] Independece
Principle, satk: Ay is motuslly independent of the events {4, : iwUN*[u}n
[ A (] =4} which is o]l but ot most 5+ 112 of ube evenls. Therelore,
b thee Dovdge Local Lemin, with posivive probasility none of thest events
hald as ong as 4 3k + 1)% <  which is tue for b > 6, while br k < 6 e
hezein i trivial sinee e = L. O

Using the: Setnicandom Mathod, cescribed i1 6 bater raotin, Theorem 3.3
can be imgzoved to yield w linear cember of werses: disaint evchs, mre pre-
cigely k; 207 of themm iee [10]] To reased work Bemoond qid Themsssen
14] oonjectursd thut Uf & digraph  bas miniawe outdegree &, then G has
£ vertex digjoint syekes. Thomamen |55 showed ths such cigeaph hes r
disioind cyches 20 bong as & 3 ir b 10 Aswnld] improved tits resls, show-
arg AhAL By digfesh wilh mititwin oulCagree b bas k5 umm-dizjc-::
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cveles, Kete that this alse significent|y improves the constant tarm Jrom the
alorementioned resilt from |10,

2.3 More General Forme

The zast genecel Torm of the Local Lenena ia ne fellows. We gt the proof
a5 i is avuilable in muny plaes s an 10, 53],

The General Local Lemma Consider & sef £ = {4y, .0 A} of fymis
oilly b} evemla wisch that pack A; i mutialiy independent of - (DL A;), for
some D DL M e haee reslspy, oz, 20,10 such that for e 15 E4n

Prid)<z [[ n-q,;

L

then e probohiley thict nene of the enents in L ovcar is ob bt [T (1 -
Iixh

Mozt kpown applications of the Getersl Loced Lemma are escentwlly ap-
plications of eitker the simple form of the Lecal Leerma, or one of the fol-
lowing bwt moce geteral Jamns,

The Asymmetric Local Lenina Caiter w 26t £= {4, A4} of
ftypicadly bad) eventd sisch that eack A, s mutunly mdspendeont of £ - [
AL frsome D CE FforeachlCitn

at Prid) < ol
b Ea en PRiA) £ i

then wnlk pesiie probobiiily, none of the events in £ oecur.

The Welghted Local Lemma Consder 4 200 £ = {4, 4] of flap-
il bac ety such that eack A, i muluolly independent of £— D UA,),
Jor aome T © £, If we bt mbagera dy, by 2 1ot a real [ < < § such
Mot ferezzh b g1

&) Prid) < od

- ¢
b Lm0 £

.

Hiaty with posie provoteBity, none of W2 etents .8 eoour,

Tt L+ straightbormned to verily thay thesa both follow Erom the Geaersl
Latal Lemume, For example, to prove the Asymimesrie Locel Lemma, o eet
%; = 2Prid,) for each i Since Pridy] % 3, then g, £ fandeo (-2} 2
E-l.!:l:._
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g [[n-giza [ o™

AET, 4,50,
I sPria,
> WPefd:| ne E"l“’- ;

Pl xe ™
> Prid]

& praot of the Wejshted Local Lemme follons in & similsr mennar. after
seltiag o, = {20)". Clearly. 11 simple form of the Local Lemma follows
from the Asymmetsic Local Lemms jafer oheerving that for the simple case
of the Lacal Lemma we ean assume d > 1 aod: so PriA;; € + for each i),
‘We illustrae each of these Latter two forms with an spplicstion, the Bral to
graph aolouring, and the second ro expander graphe.

A proper veetes-eolouting of & graph is S-fragel if tor each vertex 2 and
coloti ¢, the oumebet of times that 2 appeess in the oeighboorkood of €, s at
mrst 3. This nobian wea lnereduced In [32) and it plaped a0 imporkant role
in the baund ot te we] shromends number provided o (3.

Copsiter any constact § 2 1 Alon igee [31) has showa thar for each A,
taepe exist graphs with mavbeum Cegree A far which the nomber of re.ours
wquired Tor & S-fruge] conuring is st least of arder A'Y¥, We prove bere
tuat this is best passible us gnowen by Hind, Melloy ard Reed [21

Thesrem 34, [f G has manmum degree 2 > & then & has ¢ Jfrugal
proper oo eolauring wsing ot most A mlpurs.

Proef For 3 = | this Is eemy. We yoe simply trying to find & proger vertes
eobouring of the square of & 32 the greph chlaved from 3 by addizg an
eige Jeweem ary two wertioes of distance 2 In & [t i straightborearc to
shew that this graph hos madmurs degree Jesa than A* and 20 Ty Brooks
Thearem i 2an be properly A%-enlored,

Far 3> 2 weneed the Asvometric Locsl Leamma, Se £ = 1ﬁ£|.]+!‘. e
assige 1o each vertex of (7 a unifocmly cancens colowr Fom {:,...,C}. For
each adpe [u, ) we defioe the Type & avent 4, t0 be the sven: that 5, p
“oth repetve the same coloir. For each {uy. . waa 1 6l in the peighbouchaod
of ome vertey, we define the Type B evert B, ... to be the sveot that
g, o gy g Al engive the same eckur. Wote thas i nope of thess events fold,
ther. aur readom procedure has suecezsfully found & Fougal colyariag of 5.

Tie probaaility of sy Type A evaet is ot swist 10, and she protehili-y
af any Tyze B event s af et | /07, By the Mutual Tdspendance Principls,
eath even i mtial’y independei of al! eveity with wiach t does nos e
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B COBUNAN weTtices, whicn 15 all but af mest {4 + 12 Type A events and
[+ ]]ﬂ{g] Trpe B events.

. . »
i,ﬂ-tf-dxéﬂﬁ-l}d[a)xlc':“‘J ha | B+ia

g1 £ L
i
Twad F
!
<G
fr 4> 3.
The 3eaaf now keflowe feom the deyrmeteie Local Bemima. 0l

Hemark. Jt &5 fnseructize 1o nate kere that i we hod tried o wee the Local
Lemma in iy amplest form, we would bawe hod £ toke p = 10 and d =
i3+ U], Thu p scoubd have beee mush bigger than 1 for iotge 3 and
st ghe Lonl Femmen, wanld vot heve appited.

A grapa 15 8 S-ezpanderif o= any subse § € V15 with | 5] < i¥(G)
we have |E[8,5Y > 318) sed so we are discussing ecge-expansion Tacher
than vertex-expansicnp. Expancar geaphs hase many impaetan; appliestioos,
far ecapls they chn (oem the Lasis of posd sarting algosichios, gowl raulicg
Debwivks aed the pgts at which eaty Mackew chaivg cabwerge (e Chegler 41
is initi mectely relaved 3 che expansion properties of uncertyiog graphs, Mecy
of the most importans types of expander geaphs are regolar, Here we will
saow 1Eat the edges of uny regtiar 3-exzander can be partiliooed inta £y, B
cuch that cach E; is the adpeset of 2 nearly $-expander on che same verees
set, oa praved by Frisee and Mollav|30 whe eere angwering & question froc
2,

Theorem 35, For grpe » 0, r 2 3, and 3 sufficiently forge i terms of
¢, 3 O 15 20 + meqular Geeagpander then there w a portition E[G) = 1) Es
sugh dhat each E, indues o 301 — €-exponder on V6.

Progl, We Jote it 1 the vender ro verify the snay fact that if |E(S.5]| 2
5 = 119 halds for every comnersed schest? 8 V6] 18] € LV{G]), then
It halds b every 52 VHED 18] £ ViG]

We will place eact edge inzo Fy or By, each wizh eque’ peovatility and of
course the choices fr different edges being indepeadent, For exch ronnected
#bset & of size 2t most éITe"{G]I, we define Az 1o be 1be even that eisher
EAB <) S, or B85 < 3L a9

L, o guleed £f 4 werlioes which ioluoes & connecied subgraph of 5.
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Sinre £18,57 2 312, the probelbslity of Ag ia at eost the prabability that
the tanomisd randem eenabl: * BIN3 0, %] fiffers Erom its expectad va e
by more than £3| %], By waing cither clasical results regerding BLN(A, 20
or ;ke Chernafl Bud presented i ke nesd sectlon, It Is suralghitborwerd to
shivr that chis deovahilicy & dess than Je~ 19 for ¢ sufeinatly small,

By the Mutual Independence Priociple. epeh A5 is mutuglly ndependan
of ull everts Ay suchtazt SNS' =8 1t is standaré Eact (see for exarnple |6
that sinee (5 is r-reguler, every verte Jies in & meet ) < [er)! conmected
subssts of aize &, Zor any # 2 1 It fallows that Ty containg ar mest [er'|5)

events euerespeading o aubsal of siee 4.
Therefaes, setting p = 217 and ¢z = §| 7o ac 5. we haves
&, Prid;] <%, end
b En‘. ap (2N S s s (20 (e < 5

&s Long &5 drpe B :i wehiich i true ag dong a5 F s sufficiensly large fa
litle bwger bnar ‘%‘;ﬁ— will dol- Thws, the pesubt Tolkrwa Erory the Weightad
Locg] Lemma . O

Remark. [t wtructie fo ariempt o use e simple sergion of the Looa
Leming crd the Agymeneirae Loead Lerong to prove Thesrem. 5.5 using Be
some pwents, fo dee by they do nec apply

4, Conrentration

The wlt'mete goul of reacly every applicatin of the probebilistie method is
to shaw that 2 parlowler “tood event” ooturs =iib posftive probubility, or
exuivaiently o show bar the probedlity of & partienlar "had svent” is leg
than 1. However, frequently an intermadigts step raquires us b prove Lbet
the probsbility of an intermediate bad event & very small, ool merely los
then 1. For eamphe, in applications cf the Local Lemms, In order w show
that the probebilig of the wnion of & st ol Led evants is lss than 1, we most
show thet eacn individual bad event has very small probability.
Canentratin bouods, are amongat the ost Important toels for s
g that the probalility of e evert iz extremely smell. We nawe alrendy
seer) Mavkiv's Rueeueling, which is, in & sense, & onesided romcentration
bonnd 46 it bounds she probetily that X i mueh licger than EfX),
and Chebyssheva Inequality which s the most besle ¢f the zroe rancen-
tration beunds, The stiength ol these tmo Inequalliles |s thee they e

1 B!;".'[r.,;:l}is.ll.h.e rumnter of Tiesds abininad from & Bequencs of n tain lipa whers
rary coin onmes 1p hends with probakibity g
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witlely applicable. vapiting anly thar X ia voo-pegstive, Uobortunately they
prewida relanively weml bounds For evamols, Markew's Inequelity yields
PriX » 2B.X1) < §, and Chebychav's Inequality, while usually a lit-le
arreqizer, ' aften nob nearhy powerfil enough. We Fraquant Ly require the very
strong hoond PeiX > SEXY) < =B for which we nesd more poweful
to.

lo chis seetion. we wll briefy Jist = few of che most wefol concencration
berynds 1o their smpbest fooms.

& mrore detailed diseussinn wpipears in Chepaer 6 of this hoek

Rexall that BIN(w. ¢} & the scm of n independens var'asles, each equal
to 1 witk probebility & and 0 acherwize. Qe st wol, che Cheenof Bauad
beands 1k probablivg that BIX(n, 00 3 Tr oo s its ecpested widue.

Thy: Chernoff Bound® Fer sog 0 < o < np:

FH{[BIN[n gl - np > a) < gu-t i

For axaniile, in the peoof ol Taearem 3.5, we needed 1o bosad the pegn-
ahility thal BiN[®|9), é] diffars fpom its eepaeted vale by naee than <33,
By appipiog the Cherooff Dound with r = 3|30 = é da=ell8, we
5ot that <his probebility 1 at megt e ¥ FYEHE] = 900 g o s
£ %

Mota: Far a > #p, it i woelly 3 good coogh bound v simply tele
Pri BiNin, ) -np > a) £ Pri|BI¥i%. pi—np| > np) and apply the Chernalf
Bound

T e shoecoming of the Chernef Boond is char I enly spplles o Bicenlal
random vaclaklz The text tool g & sliller bound an the concerstation
O & wither vpss of razdom warishlas,

§imple Concertration Bound Ler X be o rerdor samoble deferminsd
By n independent irtads 7., T, aned sbafying

¢hanging the outcome of any one tig can affect X by at moat g, (4.1)
then. f
PrijX - EJX)| » £ € 7o,

Typically, we take ¢ ta be o small constact,

* Th s sarewant of a miscamern, & th beand 38 sebually & comminn eteangih-
enitg o Chernol's origingl bourd For a mere detailed Bineny of taig T:Bu'lt:
aee Chageer 6 of shis book. Qur beund follzws essiby from Theorem 2.5 (L] 404
(i) in that chaglar,
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Cleatly, f & = BINap) then X saciahes tae condit:ona of this theorsm
®ith r = 1. Note forthermoes, that io the cass toat p & & comtant Lbe
baued provided o the Simple Cencentresion. Beund s almodt as tght
that provided by the Chertoff Bund.

Ot nest twe tooke, are the te mest powarfl conceatratlon Sa0eds
widely wsed in the probabilistic yetnod, They can soth e regarded sy vari-
akions of the Simple Comcenimation Bound,

To7 the first af Lbese warlatsons, we replace condivion (4.1] by » wesker
seadition. Tn particular, instead of reqairing the: tie smoaot by which e
gukoome of any on2 168 can effoct ) ig bounded, we a2ty require that i we
carry ol she the (gl i peqience then the amocnt by which the suteon
of sary e tried can affeck the sonditianal expectad wufue af X i3 bouwnded.
Another beatuee af this pect imequality is that we do not require the random
trinls to be indspendear.

T the folowing stacement, we denote 5 B[], T} the conditlooa]
experted value of X catiditloned an the anteemes of 77, .., T5,

The Beeffding Azuma lequality [12, 34] Ld X b o rondom san-
able determined by n triads Ty, .. Ty, ond sobicfying for esch &

mix |[EX | DT T - BIX T B TS0 (4]

Fudere s raninaom £ aken gver ol pssibde oudeomes of T, Thu /) Ben

PrilX - %) » <2 0L

14 is sbraightforwesd s show that conditien .1, impliss epudition (4.2,
and thus to vty thit To Hoefiding Awoms lnequesity mplies dbe Sim-
ple Concentyasion Bowed. Far & more deveiled dizcession of The Hoeffing-
Sume [eguality. pee Chapte: & of this book, or [13, 40]. Seme appplicatisng
of The Hueffding-Amums Tneguelity can ako be faunc ic Chepter T of this
ook We will pit discuss kis ioeyuality Turther bers, as it 2 Ton used 1o the
remainder o this chapter, and we only mption it because it i widely used
. the Literaure and to compare it ta Talagrend’s Megoality.

The Sy Concentestion Bousd and The Hoefiding Azuma Inequal
ity perform tiack mere weskly than the Chernof Bound i the casz X =
BIN(n,pi, whetz p=o{L). More geoerally, when B, X = o{n] and we take
each 2 or o 1o b & cotgrint then, for expmple, we obteir. that for any con-
stant o > 0, PrX =ECY) 5 eBLX < e BN whon we gften requine
that probazity to be as small ss e840 {Suvelicies, by takitg o, te be
sulliciectly stnall, we can oheain this tighter bourd wsing The Hoeffding-
Azuirs Ereeuality, bit it 3 usuadly ciffienlt aod o mary casss oo such praof
i fenawen, s Ohur peat tool 5 the trost recent of oor wools, and by gectralizing
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the Simple Concenaratien Bourd o a diffever dirsction, albwws w to teplase
# by E{X) i the bound, thus evercoming this problen

Talagrand's Insquallty I [84) Let X te o raadom norsable deturmined
ﬁy i :'ndf-pmdﬂl feigh T, T, and !ﬂm.ﬁlfﬁ_ﬂ

{. changing the cubme of piy et tval com affect X by of most o, and

2 forany e f X2 o then there ote s e T T, whose ondeomes
certify that X > 5,

then for oty i € ¢ 5 Med [T,

Priik — bed( X1 > 1] < z{m‘iﬁ.

Mote preckely, enedition 2 szvs the: changiog toe owteomes of ol] 1tas
other than T, ... T,, cannot came & to be Jews than & wd 50 in order te
“prive’ to siooesiie AhRL X > i is eavugh ta shaw L jaet the entoomes:
b T, I, For evample, if enck T, is & blnomie, serlable agual to 1 with
probabibity p sod 0 wita probability 1 - ther i X 2 5 we could take
Tiyoo i, to be o of che trials which came up *1".

Bemark, Agoin, in a tipicel applicetion ¢ i o smoll constant, Alap, ot vith
the Chermafl Bownd, of we yish b opply Toloprond’s Feepuclotty nith £
Med( X7, it wacally swfoes to appiy Pr{ X — Med(X)| > 1) < Pr|¥ -
Med{ X1 = Med(X ]

The fect pha: Thagrans's Insqnality proves coneensration seaund the
median rathe thin the experted wlue 15 oot & serioas problem, as i the
sfbuation where Tulegrand's | nequality applies, theoe two valines are very chae
logecher. £nd 50 poticentralion arownd ooe icplies conseatration pround the
wlet

Fact. [nder the sonditions of Talagrind s Ineguality,
[EiX1- Medi X < Jcy/BIX.

This fect. allowm us 1o reforpulete Talagnand™s Ineqeative in tezms of
E X\
Telagrand's Inequality [L Let ¥ te ¢ rondem apriahds determined by
1 ndependent trigh Ty, T, s aatisfmng
i changmy the culoome of any ohe teind ssn affect X by of most ¢ énd

£ for oy s, Af X 2 o shen there gre s trigly T L T, whiae anteomes
cectify éhot X > s,

The Prohabllatle belbad 14
thett far amy () < £ S E[XY,

U
Pr{ X - ELX)| > 1+ 3e,/EiX]] < 3 WEF,

Hemark. fnoolmos seery aoppdication, ¢ 2 @ amall sopstand ond we dake ¢
lo be osymutodicolly much lamer thar -._"E_ and g e Sc‘.-"E'[_ Lern
ae negligthle, For dhe rosen i aoek o smaller valug of ¢ v reguiend, forther
strengdeenings of Tolagrama's Inequoldly well apply, but Bese g beond the
sape af thig g

The render should new verify chat Talagrard's mequality yilds & bound
0 the cocoentration of BIN (v, p) nearly aa good se that abtalned from the
Cheraf Baned.

Remark. This sralement is probebly the sinpios! sesgfd version of Tala-
qrand's fneguality, b does mot express ds fulf power, In fact, the meader
misht note that thaz versicn does not fmpdy she Stmple Conaentmtion Bound,
We wefer the rendar to CTuapter § pf dhis book, or tp 1337 Jor more poner-
ful wersioma of Tolagrang's fnaqualtly, fonding seme from which e Simple
Coneeniration Bomd, wilh some meskenand of e condtomt mulniple m the
srpened, 12 o oy somflary. We olsa sufer fhe reader o (531 for o deration
af thes form of Tologrand's Inequodity fom e slorement oviginaly presented
1 i,

We illuatrate Taiagrand's Inequality with ooe of it's most important rim-
ale epplicetions Thos applicalion o random perowations was ore of e
ariginal applirations in 44

Let 7= 2).... T be & upiftzmly rancom permutation & 1, .. 7, sod let
X be <he length of the longest incressing subsequence" of ¢ & wel Jiwwn
“hacrere of Errdis end Baeloanee |26] states that any peroution of 1...., 5 a0t
“hins eher & moooteme incressing subsequence of lngth [ or & mone-
wone deereasing subseguence of lnmib [/, I wwrne oun that the axpested
value of X is appreimanely &, ie. lwioe the mikimum qourantesd by Lhe
Erriis-Srekerca Theorem [see 03, 670, & netursl question is whetaer X is
hoghiy concetrated, Prior ta Uhe deselipmend of Talagrand's luequalive, (b
Lear zesnilt i this ditection was due Lo Friese[25] who showed rnat with high
reebalalivy, X is witin a dlavaocs of roughdy B X 1% of Ius mean, aotewist
weaka? tham our umsal target of Bi Y1

s first plance, it s ooe clear whether Talagand's Inequality appiies here,
sinee we are ot dealing with & sequence of independent tarianm eials. Thes,

8 In cther words, & subsequenee 2, < 2, €. < 1, where, of courie, £ < .. ¢
e,
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wa eed b rhiose our sandam permctation o & nno-raightfernard manzer,
We choese & wnifermly randam real pumvers, yi, ... 3. from the intanal
[0 1]. N4 a7cangiTE g1, ., i 0 incresslag oorles indiaces 2 permotation ¢ of
1,.... 5 in the gbvigus menner”.

Tt iz ewsy to verify thet changing the valuc of any oce s oaa affecs X by at
most st Furthermars, if & 2 4, ie. U thera is an incressing aubssquence of
length #, vhen the 8 corresponding eandoe reaks cleerly ceriiy the existence
of that ibcressing subssquence, and an ceetify thal X 2 s Thatefore, Tals-

2
prand’s Inequality inplies hee Pr{|¥ — B < ¢ +34/BX)) < 2278,

5. The Semirandom Method

Buppese that we wished 1o prove that the vertlees of & graph sl be pac
itionag ina 2F et setislying & particulas Property, £ The mot straight-
‘orward peobabilistic approech wmild be ta geaerate s wniformly randam
Furision, 4. to meividusly pace each of the vertices into a rendom part
where sach sart it pqually Jduly, and then prove cher, with positive probs.
ity this pectition satisfies property P, Urfortuzately, this aporosch often
dogs not work, bt im many casss v con swesesd by chocaing 3 partition win
a saquence of meoy rendom chidces,

Onar Brad 2tep 1a to oomsider & uniformly random partitien of the vertice.
olo 2 sets, and ta prove thal wiln prsilive probebdlly shis pactitior, setishe
an intexmedary prapecty £y, This imgplies thet thers bs at Jeast. ciie partition
satighring F. 30 we ez that partition. Kedt, we prove thar we can find
8 hpartition of anch of our parts setisfring peoperty B, by consicering &
unifoemly caadom pectition of esel par aod, wsing the fact thet tae Gest
partition satiskies B, peove that with positive probability the random refine.
gt setishes By Pepeating chis pragess § tmes, we prove the existance of
3 P.partition setisflng £l which of enurse we choos do be property P
Excampies of this technique car be faond in 5, 10, 28

A gy glames, it appears that oueargoment sk Teduces tn & ownplicaed
way 1 tade ¢ unifprmly racdore I-pecticion. It s importsat o aobe et
this is not the case. Tf we kad simply taken s sequenrs of & unifumaly rerdo,
-pattitions, then we would have fared s uoiformly randomn 2¥-partition.
Homwaver, gt each sep we do nat take o volioocly reodom 3-jrition - we
ierely comsider 8 unifortnly cAndom I-parcikion in order to peove the exls-
tenice of 4 particuler pactition which satisfies oo intermediary poperty. Far
axarnde, |f e ppphy Lne Loea| Lemma ak rach svep, ihen the probabilily that
u ninrenly rardosn 2-partitson sarisfes our intermediery propery migh: be

¥ Dlcause thess are cnieemly tandem real numbers, it tacss ous thet with prol
ahility 1, taev ara all divinck
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exponentially small, aod so the partition that we take doesn't resemble o
wrformly randem partiticn at al.

This technicue is 60 example ofwhet is kiosen &5 the s2mltandom methag,
which = 1l tertn wied when we prove e existence of something by geoer-
atiog it dhrough meuy ileratins, applyng k2 probebibstic method at each:
stecutior., The servicandom methad is often zeferred 1o 85 e Bodl Nblle,
Decanse many pplicstins weee iospived by 4 aeries of refinaments of che
argunents in 54).

Cme prew of greph “heory whers the semirandom thechad has had e
gretest, itupart is graph mlouting. ln fact, many of the stigrgest Temults in
graph cokoariog over the past decade are examples of this method, ineliding
‘a6, B 50, 40 41, 36, 37, 44, V2 tuis seetion, we will trledy discuss since
of these spplications, For & wore 1boecugh disewesion, we refer the repder to
5 ar 53]

Iz the most besic typs of sppivatign, we wish to chow thet a graph
has 2 proper verter cedoaring using onby © erdours, We peeve that sech 2
eolouring exists throgh several iterations o oobouring & few sertices eack
time, shawing that eventually we can find 2 peoper coleanizg of the antive
Zraphs, Fur the first Leralwn, we consider st guing b eieh ke & mroom
colour, OF course with high probebility meoy pairs of adjacsnr wertices wili
fawe tne gere colour. We addiess this problem as folbws: T any wertex
Teceives the same color a5 a Teighbor, han we enocier that vertes. Creatly,
the g2l of vertices which eetaln their colonrs frm & proper partlal eolowrng.
Cruring each subsaquent iteratian, we conailer assigning to sach Loocloures
verlia & randhom colocr chosen (rom smongat thess saloucs which wees nat
retained by sty of ity ceighlears durig st sacfer itetation, and when we
wnolaut 2oune vertices ws before, Chr geal is boshow that after esch imaration,
Lhe partied enlonrmy sebicfles & particular property with positive probabilitg,
thuas showing thet we can chacse & partial colyuging satisfring that propenry
Ader sevaral fterations, the Gnal property will imply Wkl she partis. velonring
zen be completed to s foll proper coleacing of the gmaph.

This method w'sn Bpplies well to list colowrng prohiems 3. Ay 2pch ir.
ergtion. we aslgn to sach uncolaured verte 2 obvit cicsen uniforenly 8t

# The bueat Lt co'oring prohlew s to Gind & prooer vertes cobouring of & graph &
wheoe every vertex has a s of perwnisseble colouts, The tigey parl i that the
warices bpically ave diffreet ligts, JE G has the property thal we can alwgys
sueead for amy 5% of |99, & Jong as ihey ench contan e beast © coloors,
togn w3 any thel F it i-thoosshle. The fizf chrematic numberof &, denoted by
ke'F) b the smallest § sact dhat © s k-choossble Mole har 3G 7 316 by
canaidering the case wheoe ull Lhe lists are equel Lat edge alowiag preblems
e defived sinsilarly, and the hat chromatéc sdes of G, v){, s the obvus
emlgsﬁilm of the cheomatic iodex {8l knawn & the edge chromatic nemhet],
o A
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tandoen Do 3tg Let. 17 & vanles: retaing it2 eobour nen = delete that coleur
from the lists of its neghbowrs,

At eazi iteration, our prodl Jscelly consists of: (L) coputing the ex.
persail uluss of 4 fow varinkles, (3] prmdog that Lbese variables ae con-
centrated by epplying the tools io Section 4., end |31 apphying the Local
Lenuca

5.1 Triangle-free Graphs

[t iz welbenowm that che chramatic nomber of ety graph 2iCh mAsdmoon
deges o ia o most A + 1, end iv Bt such s colouring can he oblpited e
u shmple greacy enlourng algocithm. foharsser [ wed the set’modam
methad e prowe that i & ia trigngle-"ree and hes macdemom degree A, Ehan
el = [ ], which = hest posalble np 1o & eonstant cukiple. (Indepen-
detly, Kir1[41] nbtained 1be 3ame bound fe the chremmitic nomber of grapha
with etk 8t legst 5.} Johanssen|37] subsecuencly refined hie argamencs to
show that bor ary constant r, i ( is Kfee and bes maximme degres A
them i = 0 « [nlo ).

tlnd

Bere, we will indieate why the semitsidom aonlant:tg proesdure deseribed
partier shonld work 0 wel oo triarghedres raphe by deoribing how, wing
anly a single itertlon of that procadure, ene can prove that the chromgtie
nmher of uch & graph i o conslant nulliple less than &, We cemeck that
this proof i presented maioly to Jlustrate the teckaique, sod the result Is by
N voercta best poasible, In fact, there ane muach siupler pracs which yeld
slighty stronger requliz (526 For exmmple |35, 44]}, amé ag mentiomed above,
thee are mare comprated praofs which yield mach stronger resybts.

Thearem 5.1 I 3 1 mangle-free ond hos tagimun degree A suffeiendly
barge, bhen [0 < {1- gpid.

In fact, what we maow 5 2t if we camry out & dngle iteredicn of caor
procedee, using daly 2 eelours. shen with positive prohabilivy the resulting
partel polouring will be such than every varter 1 has several colours which
appesr at Teast, -wloe in ila neighbuuetiod, which v cal. repested, colours
tlor 2],

Lemma 5.2, if € i triangle fos and fas mozmem degree A sufficisndly
lavge, then € fag o prertaad coderaay much that for ench verter v, Ny condaing
at least 5 + | repeated solours.,

I is ebraighufnrwand 10 saow thet he pertisl eolouring puarenteed by
Lemma 5.9 rom be completed to 8 [t = gl }d-colowring of the entire graph
using & gimple greedy proeed ire, and =0 Lemme 5.2 Lmplies Thearsm §.1.
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The et it of ube proof is as falloms. We can pssume wbot G is A-regulas
giece it is eusy to show 1het any graph with mexsoum degrea A cen be
embedded. in & dregular grapk,

For ench verize o, we len 2. denote the number &7 zalaors retalned by ex-
acsly two vertices in N, [the oeighbourboad of 4. Becpuse 3 i drinngle-free,
ot vartices n N, are adjscent and so any such peir is ellgible b retain she
g colonr [obviagsty f two sertioes are adjicent chen they canat belsin
the zame soloee). The peobability hat tac weelboes retaln the ssoie coliur
and hat vo other venes in N, rdaing & L11 - (231797 wliich is a0 least
7. and & by Lueesiv of expactation, E[Z,3 > (3] oL = & Vsing either
asuraightformard applicetion of Talagrand's loequaiity ar & chever application
af Azuma's Irequality. we can show that Pr{Z, < JB(Z,) + 1)< eI,

W et A, Ve vhe cvent that 2 £ JE1Z.0+1 Tt Follows fromm the Mutual
Independence Principel shes epch 4. i roubumly independent of ol bat at
et AY odber evamts, Thus by the Locsl Lemma, with positwe probability
A dots 0ot hohd for ary vertex v, and 20 Lemme 5.2 follow.

To obtaits streoper reaultz, such es 1bose in 43, 36, 37, we must apply
several ilematlons of this poeedire, at eich olep keeping carefil (chek of
the mumber of neighbours of v which retain & colaor, the number of salopes
appearing oo the reighbourboad of v, aad cne or twa oiber variables. To
ubtiin the resuls in [36, 37 we st uss e Teore sophisticeted, wwiant of
this sewirandabn rolowring procecine, bt we will mot go lto ach deails
heee.

8.7 Sparse Garaphs

11 ia streight forward Lo show thed the argument used n the proel of Lemma
%2 applies to & wider clags of graphs than trisagh-free graphs. [o pactiouls,
it will apply a0 Jong as for each vertex v, N, does not have too many adges.
Far ¢ 5 I i |BYN| < {1 - +][3) then me say thas v i ~-sporse. I every
vereex of a pragh bs ~-aparse then that graph s said ¢o ba ~-sparse.

Lernwa 5.3, ff fot some constand v > 70, & i psparse and boy mezimu:

eogres A sufficienady lrge, Meen ¥ 00 <01 - 1A

The: was 8 key lemma dor the bewnel en the straog chromatiz imdes: in
[48]. Lemma 5.3 scifl Bolds [or some values of -+ = of ). Wa Jeave it &5 an
exercise for the reader to detarmine bow zmgll 3 un b 1t is not bard to
verify thal Lemima 5.3 alsc bobd: when we seplace x by g7, the list chromatic
rumbsr,

Applving the aforeoentioned theorecn of Jobanasen conesmming rriangle-
frew graplis, Alon, Erivelerich and Sudakov'8) provided an exsension of dha
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tleacem to graphe which ae mevely very spaese, showing tbat for any ¢ 20,
if & Tops mmshonamn degres A suciendy large, and is (1 - 4~ }-sparsz [ie
1f she neighhourbocd of By verter v containg at Mo iﬂz" adges). chen
i1 € Ul 5 - This resalt does 2ot apply to the list chromatic tunbe.

In gererel i€ & graph is sofficiestly sparss then by perbamuing severa it-
erations of Ul semireadom rolouting peocedure, we can often ¢heain even
strungar realts, The most well-hngwe of these results s probele’y the Fellom:-
ing theoret. of Kahn |38, which peawed that ¢be we.l-koosn List Colouring
Congacture (s ¢, [15]) thet the ot chromati: index of s graph i snaal to
it's thromatie inde, s Rsvmptotically correcl,

Theotem 5.4, Jf & hus mosman: dapree A, ther (5= & +oid'

Higglvist and Janssen |31], 1sing a diffecen: technlque {which inmived on
apolicasion of the Local Lemea] tightened this to &+ OCA* polyilog Ap)-
By analyzing the semireodam pecceduee more precisely, Molloy amd Reed| A
innpeved it fucther to 4 +0[A4 poly{log &1 The bounds ¢f Kahn sod of
Molloy wnd Reed also apply to hypergraphs, yl2Ming for example thet for
sty cpmstank &, the list chrimatie index of & Linear &-uniforen hypergraph
with Togvitaom degres & 15 &t o A+ A= 2plyTog A3). For similar
hounds regerding nea-:incar bypergreples, see |35, 500,

8.3 Dense Graphs

Il a graph i pot vepy sparse. Tor example if for same verbex 2, W, i very
close =5 being a Aeliquz, then 1t is easy to 252 that cur basic sertlrardom
pexadiure will pot sock ery well, 45 wit? bigh probeblity N, %)l net contaa
many repeated colours. Suppose for example tiat & is @ [ + Bechque wlth
a perfect matching emeved, Here, 100 = 44, buv oar aegement will oaly
vield 1he far from satisfastery bound @) < 2 - for some d = of ).

Tiead cevenped & variation of aur procedire which works well in such
situations. The main step is o show that & graph can be pert.tioned inta 8
spacs 1egion and severel dense Tegions such thet thera are very few wigis
hetwean mny two regions. This ailmws os to essentially colow each region
sepurately.

The Reed Decompostion|14]: For any ¢ > 0 md oy proph & with
mzinm degres A, & san be decompoged infa 5, 0. ., Dy such thas

o) eteh parter an 5 18 c-oparse;
b gech D, very closgly reserables o oligue
gj Jor eaeh & the number of edges from Dy te G - D) 9 of most e
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It e absd be shown that esch I secisbes a hendfnl of other conditions
whirh often difar <liginly by application, &< does the precise sense in which
eadl L resemabled & clique.

Given thiz dercmpogtion, we medify owr semirandem peovedure ma fol-
Jows. We ansigm o asch vertex of 5 8 random colour B9 weoe!, For each )
we [ake g cpeeific proper polowring of D) acd perowte che colours et randor,

Resd's et spplication w85 the Exlowing

Theorem 5.5. Thers esists aome conetant ¢ > 0 aveh that for every graph
G uath messmuty degree A and mamimun cle aie
w012 Jar 4 (1-ell3 411

Resd cunjoctures hat for A sufficicncly large, thiz theorem holda with
¢ =4 [be shows thal it does when s sufficiently close to 4] Tt canoed hold
for 2y & < 1.

By applying 1ba Reed Deromposition with ¢ = o1}, Reed[S7] proved the
similar Hheorm:

Theorem 5.6, 57 fine masmmum: dagree A aufficiently Gzrge and ro clqee
of size A then ¥(G12 A- 1

Thils wes con'erturad to be vrae e & 2> B by Boredin el Keatochlm|35
and for A suffieienthy large by Beutelspacher and Hering "16]-

Ancther applicsnion. of the Reer, deccapesition 5 vhe folkming bowcd an
ohe totel chromatic number due w0 Mollay ond Reed|481, whish is the best
peagrese hue far w0 the conjectore of Vising|G8 and Bebead|15] that the total
chramari: simter of 2 greph 19 a4 meat its maciroim degree plus tw,

Theorem 5.7. [ 47 hos makragm degres A agfficientiy Jorge then yy ({7 <
A+300.

f. Ramgey Theory

The Probabilistic Method hes arpuably had & greater impact oo Banmsey
Theeay then or. eny other field of combimacorics, with the possible etep
tigns of graph colowrine and eembinatorial number theory, Erdis” proof that
Pik. k1 2 B[k « 297 ig probatly the best knewn classlcal testlt of the First
Meamend Melhod. (W fnvivz the reader to 2oy to prove shis, and -Fen haviog
dane 50, to improve the constart term by csing she Laea] Lemmnal, More
tecetitly, some exeiting new ok has been doene Lomarcs eashshiag the
sevinptotie vahoe of RS, k). We autiing shree of fhe cilatones hege,
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4.1 An Upper Bound

Using what is proba=y the earliest application of the semizandom method,
tjeal, Komks sod Szemershfl, 3| were the first tu shom char Ri3.A] <
Gik* nk) Shearec|39, 60| redocec the comstant term end simplified the
proed significanly. We present here o renement of Shearer's proof dve €
dlan 4. The maio skep is the folowing;

Theotetn 6.1, [ (? 15 migregle-free and hos mactmym dagres &, then &5 has
 stuble set of stoe 4l besst ViG] j2.

Carollary 6.2. A3 K < 447

Progl Je = ‘*EF We wish to thow thal any graph & e # vertices has
eithet a triangle or B atable set of siz: £, W (7 bas 2 vartex of dogree greater
thatt &, then elearly this must bold, Othermise, apply Thetrem £.1 with & 2
k ]

Froaf of Thearem &4, Let { be & stable st chosen yrifyemly ab manéan
Lot amnomgst alk atable seta of . Unlike oot otler mndoai covres dis-
cusad ib this zirvey, there s o obvious efficient way to actaally cnocss I
Kesertheless, we wil be abie 10 show that EilfT) 2 VG| x 152, thus
Proving o1 thecrem

Euor cach weeles: o, deboe 2 us folows, 2, = Aifv e £, and & = |¥,7J]
atherwise Sinee zusl-':m 2,24 %I, it will suffice to show thal E[2,} 2
1l & for every 9.

Ber £ = [VIEE - fu i We will saow that for any poasihle choice
ef I the condillonn] expessed vahus E[Z,i[ ) is 3 lesst & In 2. wuch elearly
esteishes that B{2,) > Lina,

Tpenspesifying [, 524 & ta be th neighbotits o » which ate vot adjucent
to w1y verbex ol I, Any 'ndependent ser af e UM is equally likely v be the
tonmpleziom of [ o I Since & is triangle-es, N containg oo edge, and so
there ace 1 + 11" | such judependerd sots - one which caly combirs o, Bnd
the 21 | aubsets o W Clearly, the vernge size of he latter zronp of sets =
%lj"f ... Therefare,
4+ HW ] <2l

L

shick one can rompate Lo be at kast s A Brany 0 < |82 4 To
do this, if 1 < W] < A ther: we can apply EiZ,) = 3|V, whike 5
I% | < 3 InA then we can apply E[Z,) > 3/(14+3%1) A

BiZ, ih=
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.2 A Weak Lower Bound

Erd3s[23] wes the first = proce thar BY3,E} was &, least 7). Subse
quencly, the peoaf was sizeplified andjor the constant term was improved in
|61, 17, 27, 43]. We proseot heps & shert prool of Krivelevich|43, shewing

Thecrem 6.3 For k sufficiently ferge, R34 2 ls'ﬁﬁ'm]!

Remark, The conatont ferm eon be improved sipnefoartly by vding ¢ sirerger
yergion of the Chevnoff Soved, amangal ather (hinga,

FPraof ':ll.ér gonl is 1o prome 1ngl thers exisly 2 Lelange-lres gragh onn =
[ gpars} vartices with 1o indepecdent sel of size &, We will 66 50 by cor-
structing such a graph sandomly.

We ficst choose & chwdom graph G an st verticss wages each of the [3)
ediges is chosen te be present with probebility p= ﬁﬁ. Nergt, we oo Bnp

mexima] et T of edge-disjoint triamges in G ard we Jet &' be the grzph
formed by remaving the edges of T fam G Cleasly, {7 has na triangle. aod
o0 1t wil’ siffice 5 show char, with pogitive probability & has ro stable set
of sizz l Jeast k. )

Corsider any sa ¥ af & vertices, Let X be the number of Gedges withio
5, and ez ¥ be the oumber of snengles of T which bave at least ome edgz in
3 Sinca deleting T brom & pemones 3 mast 21 edges from S, che probabdlity
thar 5 is 4 el set in £ 5 a2t most the probabilicy thet X < 3Y, which
w2 will show is very senall,

First, me howod che probability that X iz small. E(X) = {:}p =
KA by = 500k — Dlnk. Shersfors, iz fllows i Lbe Cheraoff
Bound that PriX < #0kIok) < 7% = e,

Now we 3o0nd ke probability that ¥ s Jeoge. For soy 0 ¥ 2 € then
there must e some colleceien of £ wiples of vertives o) by el i by
aurk: that (1) oi paie of vertloss liss I to cobples, (21 B apek { we hape
b € 5. and [3) each telpde forms & Leiangle in 3. The expeeted nubber of
auch cellentlons i gt mosl

el o
(Il.f‘]\][n_z]irlm p [mtllﬂ-‘?.' )

Thus. by Matke's Tneuality, P 2 1) < (30K 2l end it folloms
that
Pri¥ > 10khuk} € [E]mm e

Therefere, the probability that § i3 & stable set in G is al mom ¥,
und so the sxpected number of stable sets of zive & 35 gk most
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for k sufcicatly Targe, Thercfiee, b the First Momen: Priceipe, wizh pes-
itive probability, € has no ssable sets of size &, thas prwiog the thearm.
C

8.3 A Tight Lowar Bound

{me of the rost celebrated combinataris, results of he last few years s
Eint's proof that B3 &1 2 8 ﬁ] |42]. thu eatablisking the corvert ssvmp-
{otic valie of A[3,E0 wp b w constast cg’tiple. Ths mas inssed i pact
h1. Soencer's prooff] that RT3 &) 13 reymptatieally of & bigher order than

Kin's yroaf consisted of & vary dedicate applicatien of the seplrandom
m&{hud which @ beiefy aatline here,

Clur godt 1§ to conskuet 8 trianglefree graph (7 an @ = MH vernices
with no steble set of skze k. We actusdly build two graphs, G and H and we
kepp track «f B st £ of pertuisgable edges

Initiglly, G w - w 8, azi & i3 the set of all possinie edges oo the 5
sertees A each itesation, cach edpe @ ¢ F is acded to I with probalility
p. We rall shese added edipe e edpee. We remove from £ every new ailge,
aloig it eny edge ¢ s thiw & frirms o triangde with o edges fram 1,

ote thal s does B0t ensure that B 5 triangebree, as it i possible
thet 3 ar 3 edems of & wiangie could encer F duciog the same jteration, [o
thiz cnse, we call muh & pair or triple of edges Bad, From the set of new adges,
we temome & maodmal edpe-disjoiot colleetion of bnd pars and wriples, aod
we edd the remoining sdges to G, Mote thes G will remain miangle fres.

The readar might beve noriced thes this procsdure s slightly wasefl.
For exstmple, it was not netcessary ta remove bem E ay edge whieh fozmed
o thiangls with two edges from & - it wonld have sufficed oo remove an odge
only if it 4id 5p w.th twe scges from G Homever, by being wmstefu; in this
way, the analysis is Smplified xignifieandy.

The main wezk ‘ies in ousding the stability mumber of . We do this
using the First Meswenk Metbod. Consider auy o2t [ of k vertices. Kino shms

thit the probabiity of I being a stable sel i G I avaller than [;'I
sp wilh pasltive probebility & does not, ave 2 gtable set of size £

T da 50, be shows Uhat after each iteration, with wery high prabability,
saveral parameters Tamin cloes o their expected valus, including & few
which eozest <he wumber of potentisl edges from / shich srein &, 5 and £,
Unllie athet applications of the semirandom rethod that we havs digoused,
u, each step be uses the First Moment Mebod, ot 1be Local Lemma. Foe
detalls. ser [1F w [I].
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7. Algorithms

[ots paest Soten, e peckabiliss rpelbol memly primss the sxstence of
& certinatodal objecy, such a5 2 satisfying sstignment ot & colowring of a
greph. witaout indicating bow ta find the objecs efficently. An applicetion
of the Fiest Moment Mexbed will oiten prave that i€ we chocee the chies,
w. tandem, it will mest our Tequirements with bigh probaldlity, aod this
penezally vields o simpls efficien: randumized alporithm (s ferma) definition
f o randomized elgrithm & given i Chapler 3 of this bock =e will oot
need it bore. Om ke otber hend, when spplying the Locst Lemme, vsually
the ohiecl chesss cur tequiremenits with ssporectilly Jow probabitive snd s0
theze is i obelots algarichm b cemstoger it, ot even B eandomised one.

[n this secticn, we will dspow generd presadures W obesin deterministic
algarithoes frem applicacions of e First Moment Metbod and beth random.
‘zod and Seterministic algorithma feam applieatioe of i Local Lamms,

7.1 The First Moment Maihad

The most commat teeh ke B derpndomlzivg sn 2pplcasion of the Firat
Wioment Methad = the 50 callel bethod of Cordicinoal Prebebilizies due s
Erdis an? Salfridge [28; We bepin by preseoting & deterministic slgprithm
or finéing the sstisfving asvemment puaranieed by Thaorer 1.2,

Recal. <hat we are given & boclean formuls F i conjuncsive norael B
a0 the variables z(,. .2y auch that if ve were to set epch 2, Lo be True with
probebifizy % and False with probabity ::L,, then the expected valu: of X,
U cymber of ursatisfied clanss in Fis besz than 1 W will yze this fact to
determinaieally ssaign teoth vales 1o cach varishle in sequence.

First, wo caosder 2). Suppose that we aesign 2; = Trus. This reduces
Fio a smoaller boolean frrmuobs Fr as folows: i) every clause 'n F which
ool aing the litersl 1), i3 removed iram F since 1he: chuase is pow satefied,
7 [id] every clause which contains e Lteral 37 & shrenk by remevlog thiat
[1lerel since ther rlause con oo longer % ssticfied by aeting 2, = False iif
b elause shoinks to size O then Fr s creatisiuble) Sitnilarly, if we assign
by = Fase, theo ¥ redvoms by Fp.

Yow cotigider 1eking & random truth: essignmest of 2q, ., 2y whete each
varishle i set to Trie wilh probebility 3 snd False with probubility 1. Tuis
aagy to deteroninistieally caloulate he expected ounber of nasarisfied clzives
i Fr oz in Fp. Note that these expectec, vahues mre equal t the eandilionel
expectad values BiX|z; = Troeh end E; X1, = the} tespertively, The
important 1des is thal ane of Hese o v.alm is o “ieger than E[Y', sinee
E(X} = E{X|) = True) + JEiX 1, = Folse]. Tharefiore. lenat e ¢f
these expected walues is lesa than |, pod we set £) accordingly.
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Wi piwe tepeat this process, sektlng each variahle one ot & tlme, a0 that
g eack sbefs the testlting formila has she propecty she i we were 1o teke &
ranla: truth essigument on the emainiog warisbles, tie expecied nomber
=f eoeabised clanses is las tban |, ARer all va-ishles bave been set, this
axpacted viLue 55 enply the auinber of unsatisfied clauses in the truth as
sdpuimert that we have foed. Since it is Jess tban 1, it mst be equal te @
ol s we have found a satisheing assignzien)

Thiz 1echnique gemeralises in an obvieus meoner, [1's peoeral setring iz
as follows: X 5 & rendom wriable determurst by a sequence of random
trials T}, -, T, W0 prsblesm is Lo find & set of cutoomss + | .. 0, sugh that
X £ E[X).

COF all the peasthle gutiomes of 7). st beast oee of them, &), must he
weh that the conditions] expected +alee ELX [T} = ¢) i3 2 mest EE X We
3ot this outcome, sod then repest tak step oo each T, o oeder, each time
#hotsing f; stch thal

EiX[T, =£,...T =41 < BiX). (.1

By the wiree s e selertad b, Hiere sre po tore eandom chboss ta be
aede, and 50 BIK[Ty = ()., Ty = &) i just the weloe of X determined
bty oty Thiss we bave foucd & set of outcomes for which X < E[X), s

17 ader Ior <his approach <o suceeed, we simply requica that {a] the
rumter of <res is oot tao large, and {b) at each step we can chiocse en ol
2ome satistring (711 efficiencly. For exmple, it will aaffiee chat the Gllawing
conditions held:

t. The oumber of trials is a poboom:al in the sie of the ‘Tput.

2. The wumber of possible ovtecmes of each wisl = 8 polyoomial in the size
of the irpyl

3 We can compate anr condithonel expeced vaine iz palyeime.

T2 Lnese three comdaraong Robd, then the ruaniog dime of this desermminsaric
apemithen will be &b ticat Lae produes of these thiee pilvonials.

7.2 The Laviaz Toeal Tetnma

Beck'l3] intwodused o comstructive version of Theorer 3% jactually of 2
vorient of Theoeert 4,10 with some weakening of the consiant terms se¢
aleg [A[)- In Tarticules, ke provided a pogmomial expested Lhine randomlzed
slgtrithm b Bod & setislvicg assignment for sty mstence of $-54T in which
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ench varinble ies in at most 254 Causes W atll briefly outline bis algoeithm
fr t2e case where & i3 6 large constant

Suppose that we are gren such & CNF formuls F wilh n vanebees and
m clamed,

Dharing Phise 1 ol the algorithm, we sssizn o randors value bo aly aci-
atle. ooe ot g iime. Naturally, we axpect thet most clauses will be satisfiad.
Howevet. i§ thers ate sb eanrmeis titober of clauses, i is inevilable that &
T might, b allof e Litereke st the wonng way. Tf & chanse evet 25 3 of
its litecas sl Withont first betoming setisfiad, ten we call that cause den-
gerois and we frees? its remainag Jiberals; 1e. we will not assign aoy vahes
+3 them umtil &%er the end of Phase 1, 8t which Sme they can be dealt with
o Caref ]y

At the end of Panze 1, with high probablliy mest of the dlawes will be
suzicfed, The onoly wnsatlsfied clauses are ihe dangerous cleuse sloog with
s clanes which did pet heeome dangerous b, which bad aome of thedt
lizetals froesn berause they intersect dangesous clawses, For example, it &
pazaible that every variable o o clanse apypears it some cther lans wiich
beenrnzg dengeewis. wnd s that dlawse cogat oot e any of ire snriatdes
aet, 58 gl Ju s inportant v nole that, dangeranrs oF Tot, every prsatisied
clase erutains ! Teast § frenen varlables.

T, i we congider the formuls Fr laduead by the unsativied clages and
the fronen varisbles, swery chase will have size ot lenst £, Sinoe 4 27% »
(2 30k « 3%} 1, the Lotad Levinss guarsnress 1hut F. La satisfisble. Nove
thed a satie’ring mesignment for Fy will complete the parkia] assignmant made
duzing F'base 1 nte a satsifying mssignment o F.

The main part of the proof is to show -hat with bigh probabllivy F is <he
wmicn of mazy disjoirs fortmailes, each voncaining at most Oflogn] tlauses
Therefure. we can peocess each nf them sepeeataly. and in faet e e gy
£0 by using exbauative sesech of all the possible 2908 = polviw) wruth
awignmenes tw find the one puaranteed by 1w Toral Lemoma

If we wish to speed this alporlum op, we can repeal Phaes 1 on 5. By
A eimilar araysis, with bigh probabilicy this w1 reduce F) b o s of dis-
|t formuadas ezch of size Ofleg Jog tr] which can be provessed by exdiaustive
gearch i polylogn time each. 1has welding o Oinpoteilognl] time ran-
counized glgorithm Ewvery peoperty which we heve lsbmed to hold with high
probabil:ty can ke sbown o do w0 by the Fizst Mament Metbod, this 1he
Method of Canditional Prohahilities deseribed in the previcus section applles
to produce & poletine determimstic algorizhe

For detaiks of tae proof that the companents of 7, aze all wmadl with bigh
probabil:ly, we refer the reader to L3, (8], |51 or [33% The inunition is us
Balloas. Y5 long s ench clauss inbersects 26 moat 3 = k% 15 pther elpumes,
ne can shaw (hal any coopected aubkermuls of F) on X verigbles mosl
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conten ot keast X/d? disjoint dangerons cleuses, 2l celavively close rogether
w1 define this peacisely fiere). The probability the ary partleular st
of X% dizlnint ¢lzuses all become dangernis is at mast *E"i * For each
variable ©, oae can show thal there are at most (382)Y'C sets of disjoint
clruses which are relabively close together sad such that e lasst ane of ther
contains v. Applying the First Mement Methad with X = & logn #lelds the
deaired esult.

More generally e can epply this approach whenever onr widerlvisg
probebility space s & saquence of independent. cabdorm ireks (now p and d
sre probsbiliny end dependency bounds gs before). 1t worke well provided
tagt  is constant, and 5,4 satisty pd® < § for details see 511, If d is oot
pomstant then we can gften shom that che abgorithm still weeks, We cad als
lgwat the tonstzat "0 wipewhet, However, this peocedure will oo wock
when g 15 of Jeder oear ﬁ

Recsll that the Local Lewsma oaly tequirs chat pd < § Howersr, in
nizy applications, tae stronger covdivion pd® < 1 still applies. Coraicer, for
poatnpls, the case where svery bad evenl is deterrined by exactly § sadom
trials bor avme 1, ao where each $rad helpe v detertnine at st + bad
evenks Li: this cese, it follows om rhe kulual Indepeodence Prindple, that
pach svend s incependent of 81 bt st mast d = £ ather eveiulz. Praquently,
the probub.lity of each bad avent ia ab most p= ™™ for some cotstant. o, for
egample whet we bound this probability by using one of the concentraticn
inequalities of 3ection 4. Thus, a5 long 86 F is not mach bigger chon ¢ for
exenple if = ‘2 a polyoomisl 1o ¢, then pdf << 1 for ey eotslant ¢ w bng
ge & s sufficemily lage,

Mealloy ard Resd|5l| todified Beck's procedure to werk on & wider class
of problems which seems ta cover almoot el applicatians of the Locel Lerma.
includng the General Loesl Lemrmz, &0 dong as & does nct genw very large
with the size al the inpu- and s botg as some of the parameters are suffciently
large. This inchudes aplications Waere 8 i of order J. for which Beck's
technique dans pet apple Apain. io many cases whei o doea grow quickly,
the rechnique ol 5] will =tOl spply For more dewsils, se 5| or (33

s shoakd be noted that wish both of thess techoiquss, the suaning time
e wlgoriths is pobmomia) in the menber of eiodem trials crd the pumber
of bad events, Thus, in applitstions of the Local Lemma whete the number
of bad events is not pohinotnial it b sbee of the ingat, for example Theorein
3.5, this does oot always resall i & zalyvine Slgorithm
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1. Introduetion

Tlther than amalyzing e werst case pecfonmence of slgorithms, one eps
itwestigate their performence on typlesd instances of 3 given size. This is the
approsch we investigate in thie paper, OF course, tne fiest question we pust
answer s whak &4 we esn by & iyploal instance of & given glee?

Bometimes, there is & naturnl aewer to his question. For example, in
developing an wgorithn which is bpically efficient bt en NP-comphonz o
tlmnizarion probles an grapha, we might smume shak an 0 vertex inpat e
equaliy Tikely to be any of the 315] Labeled graphs with n vertices. This ol
lows ua bo axphedt any progecly wdieh holde un alioest all such wraphs when
dimplpping (he glgacithm,

Thesa i3 oo such obwdows chaioe of & typieel ipak Lo ao algocithm which
sonts n noobecs 21, 1.3, for, €. it 3 Tl coakr haw big we wans 1o permit
the T, to become, e of many posible approsckes i o impose the condition
that each mimtber is 2 candom element of [, 1], where each such ebemen s
equally Lkely. Anoter b to oowe that in analyzing owr slgorithm, %z cisy ot
ereeid 10 ks e vl of the varinbles but aimply ther reatine sines. We can
Lhen perfor our aoelysis ssoning tha, cthe ¢, are 8 reodom Dermutation
ol 3y < gy € .. < g With each parmostation equally Thely

More geverally. we will ¢hoose sorme prebehility distribution an the soputs
of a given sz and analyze the pecforeance of our algorizhm when applied
ta @ repdesn input drowe from <his dstobutxs. Now, I genere., prabebility
distribytlons are comaplicated obiects wlich musl be foraally described and
anlyzed ging Tuwch messy measure theary Fortunataly, wewill be concerned
cndy witk raletioedy simple disteitutions which w0 be gueh essior vo dee]
with.

W olien ponsider Rrale dustribiotions in whivh our probabitity spece & 3
Bite wet S, and for each £ 5 there i & p, such thes the Doggf: = 1 and
the probability that the wtostne in o is g 1 all she 2, ere the same then

* Supporled i part ‘v MSF graw CCRISHATL.
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s g2¢ choesing & wagform member of 2. For examply, we discussed above
choosing unfmly a candae. Bbelkd graph on n vrertions.

W may sleo eonsider choovite eeaks wnilormly in o, Thus the probs-
Lality our random ces] is between ¢ and 4 & S oo d 4 bis 5,

Alrernativaly. we way consider anslyzing probsbility disgtribadions by im.
posing eonditions oi the random ahjects chosen withaut apecifying eny Bur-
ther b wnderlylng distrization. Ooe eampe of soch & dismbation s
pendert analysi was mesbioned. carlier when we suggesled studyig sorting
rdler <hve mssumpticn ek all v petinnlating of s nycthers e equaliy kel
to Tob the ieput,

Finally, we mey cousider combining the ebave three possiilities. For ex-
wple, we ey consider & uoiformly chesen geaph on b verties whose adges
beve been assigined, niform Tandom weights from [0, 1], o 5 set § of rndom
wertors in B" where each wetat consists of m independent unlfor elamants
al

Focsing o these siviple distribotions allows us to dispense with the ée
velupment of a rigorcus mvegsire Pegretical foundation of probsbility theary.
1t is abio quite natuee’,

Coe of our zoals In okl papes is to develap exact alzorithins which work
efficizztly oo the overwhielinloeg s jority of randen inpaks. A relala] gosl iz 1o
trv apd fiod algocichms wlise expected running tme is small. We exaing
bwse approgches i Sectidas 2 and 3. & diferent sechnique i to comicer
algorithrs which are puarnteed to run quicdly et 4o not necessarily G the
uptimal soution. and show they ate ypioecly optisal, ety chose to optimal,
«r ak least egsora’yy close to optimal, This is the epproach taken in Sections
dard 5.

Aliernstively, we can sbaw thet ar slgerithen almost elwars behaves
potsly 5o rodein instans, For exarple, we might prove Lhet s tdgatitan
almost always akes exponaitial Lime, Thiz 5 & much mere damaing coo-
datnnzlien of ita pericroence tban whe pathological sxammples ronstrueted to
oravide lower baueds on werst-caee complexity. We diseuse this approsch in
Seccion 4. Fically, we oote that hew an aleorithm pecforens on & readom
wnput depeds hazvily oo the probability disribaton we ste asing Tr. Sec-
tinn T we compare the analyze of weians probebility distrizcions for some
specifiz prosiems.

We strewe that we are intercated dn prowéing the reader with 8 gentle
{ntroduction w2 same of the mis: importans tepes in this ares. Our sorney &
neither comprehensive nor up to date Resders may turn to the survey srticles
[53(,[30. |76] ared the: books [34]. 98, [104 for secee in-depth discussions of

thia area,
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Firally, we remark that from the thind sestion om, the subssetions are
pgertially independeiy, 50 & reader who |acks the mecssary beckgroung for
ot gy safiky skip it

1.1 Some Basic Notions

Tie begin with b simple but powerful probablli:atl: wals.

Tha First Moment Method /Markov Inaquality. If ¥ & 2 rendora
Jom-negasive inleger valaed vorseble then

FriX =0 < BiX)

gl PR 0] = IF Prid =4 € DEAPH(X =0 = B(X]. )
Worecwer, ELX ] i alten easier 23 ¢ompute than Pr(X » 07 If this s the
rse, then we may compate B{X) wnd e 1 a8 2 boand on PX » 0], This
wediniue & bkrown 35 the Fizst Mament Method.

"The Chernoff Bound, Suppose X s the sum of n ndeper.dent randony
warinbiez sk of which is | with probability £ and B with prababality 1 - p
‘hence EVX = pre). Then:

Pei|X - BIX!| 5 o) € %0 1308,

This 15 oae of many Inequelities which howad {he extent to which s i
able deviates fom % expectad vaie. Chaer 6 oF this veaame i dedbeatad
<k stidy of such inequelities and centaing & proal of the thoe st
wbered by cxtning Theorem 2.3 (b and i) of the chapterh,

M meeall cher we use BT B 10 deoote a randon warishle «hil s
the sum of & randomy 0 — 1 sariables each of whick i3 1 with probabllie: p
anc J with prcbabilier 1 - 2.

W cuy that & property defined o verms of 4 belds why if it halds with
probahiling 1 - ai1) a1 — o

By .5 we toeant a random izaph wllh veriax sel ¥, = - 1...., 1} where
sach edgr i= present wizh proba2lity p sndependently of ihe presence of the
ther edpes. Thus, ‘or eadh praph A with vertex set ¥y and moed gas the prob-
abllisy thet O, . = B 35 p™(1 - p}“:"“. In partiollar, (7, s & talfermly
chiogen ratdor: praph with veetme sat b

We nate that the expected nmaber of edges i G, 5 is B3] Furthes, che
Chernoff Bound can be used ta shew that widess 7 e (10", [EiG, )| 6
why i - ol L)Ja[5]. Thus. if we angorse O, ;, ther typical gruphs hiave abour
1;{;1 edgea. & m ia the randoey grephoon @ verties whose adge set By is
3 unifrmy chosets tendom set of m of the [5) wnerdersd paie coneined
within 41,..., v},
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Finally, we note tat iZ we have a0 aigorthm 4 fr an opeimization prob-
Jem and we run it oo & candom i2stance J of size v deswn from same b
Hiliry distribotin, then the runnng time of this slgerizbr on this inesnce.
RByall). 5w epedom varisble which depends gn £ We et its expecces vahue
baryn The expected canaing time of elgocthm A with reapect b0 the spes-
ified dislzibution 5 & fusilon ERy such thal ERqin = va..-

2. Exart Algorithms for Hard Problems

NP-complele problens are natural sandidates o probabilsie analpsis, as
tae treditonal worsl-case apprsach nas mled va provice efcient slgorithoms
[ar sneh peobleme, In this section, we forus on two such problems, Edge
Colouring, and Hamilton sycle. We shell also diseoss Graph Tsomorphism,
another problees which ithough not kmowo e be XP-complete, also is o
feniroem o be sobvabiz o polvoomial tinge. L we shell ase, it neakes tte sinse
to speak of eppraitation algerithms for any of thee problams, as they are
csgentially yos-ie quastions. This, the fallure to Bod efficent slporithms to
solve e meane that from & teaditioal viewpoion we are completaly at
sea, (hur Brst szep i b find eficient algreithme which solve thets problems
why o0 ualDrm rantom instatdes, we then present eigotilbme whish heve
polyoenial experted noomiog e,

Gome way criticse 85 antealislc the ssswption the; a wypical Inpar, i
w umiforraly choser graph. Howear. this i 20 mone uneealistic than the be-
Lief that studving the pethalopicn! example: constoucted in NP-completenes
prooks vields infarmevion abeut typieel instances, Rurtherrore, & standard
peredipn for eonstrycting elgocithme which 2z in peymore. tme why
ithongh by no meens che cnly ane], ia to provide an slgorichm whick works
peowided :ba: the input graph hax o cevtain serocture and ther srewe that
5.,y hes the required strurrure whep. Sock prools ase wehiabie becass ey
add to our Jederstandng of what it is that mabes the probbm diffmlt, Far
example, Arern't Jamome {1 4 ¢ gppriwimatine. srhotng for the Evelidean
TSP([T) eramad droen Karp's analysly of ibe Euclidean TSP for random
aopuits which we present i seclion 4.2,

2.1 Algorishms Which Alwost Always Sucooed

£1.1 Hamilion Cyeles. A Hatnilton cyce in s graph & 35 ane passing
throag: sl iks verlives Deterzining if & praph has 2 Bamilian coche was ona
af the fist. i ¥P-complete peoblems seduced to SAT by Karp in hiz seminal
peper 13]. In this section we show that G, | fes a Hemilhon eycle whp and
Tesenh & polynenial-time algorichr #hich whip conszruesa s 3 cpcle.



4 Adee M ricse and Brove Keed
Definition. We cal. e graph, froctabde, if the Sollowing conditicns bokd:

{i} every vertex has betwesn & - & aud 3 — & neighbours,

fii} for very pair {1t} of vertices, e have: 31— L < |Nu}L N5 <
ria

|isi} o every truple [, 2w} of vertices, we buve:

m ) m n
—_—-— N N N S — - =,
R [8] W)U W] = T

Wi need-
Lemma 2.1 &, , i freriohe whp.

Proof For emch pair of verlicss {u,tir of &, 1, N0 LK) =0 = o] is e
guon f 1 - 2 rabependant mendom variables each of which is L with probebil iy
4 and (1 with prohahility 4. Thus, appdyitg the Chernoll Bouad, we obtain
thay with probahility 8t besst 1 - 2747 "2 5021 i) by'de Thas, 1) bokds
whp. Similar tachoiques epply for (1) and {iL), we Zave the details ta the
Teader. C

We m presert a pebmomiak-Lime algeritho B construeting s Haoilteo
cyte in & craetable graph, which 3 the shove lemms socks whpan G g
The algorithm hes chres phases. Whilst distwsaing it, we simstizes ﬁnd:tt
coaveiient Lo conicnd o path and its reveese.

Phaze 1: Pach Construccion

Construct & path P by iveratively applying the fullywing owo odes, unti]
thiz iz oo Jonger pasible.

ii] If some vertex £ not oo [* sees &1 endpoins v of F, 24d the edge ou i

Fig. 2.1

k) I there are wertives # @ Fup ¢ £ P such that P = o2l and 2y, vz €
Eif7} then replace P I the path sy Plea P

Prohebilstic Aoalyms of Alporilkms 4l

r F
ﬁ. I

TR ¢ —t

1 — 1

! N TEREE L IE: ! v — W1

|I J'r’ |II .J"'
' s M '

Ll A
Fig. 2.2

W lawve it &% an exencse [or the reader to show that io & maclable graph,
the Fire] pedh has st least 2 — <7 verties.

Phase 2: Cycle Comerruction
Cnsiryed & path O by appdying one of the Jolkming taa nues,

ii) If thee ace vertices i,y € P. auch thet & = 1Py and ez €
Fi3) then 't € be ke cpcle wrPupPu.

s N

Fig 24

in} il thebe are vertoe 2,9 & Pouch thet P = 0P2pPu'w and vy.a'e £
E3) <hem et © be the cucle w'sPlogPud

P 1 P’I
T, Fa
I-'r ' [ ".'I
8! s ;,j ¥ W
-
u’, ’ [ - n-f l: L XY
] 1 '| |I
1 1 1 1
III II| I|I
"x__ _,-" .'*q._,-"'
F F

Fig. 24
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W bowwo it 55 A eeenlsa For the vaader b show Shat in & tractable graph,
11 phase is always possitle. We nate that |C] > & — 2 -1
Phasa 3t Cyole Extensisn

Wie dd the wertices of ¥ —C to 7, ore or twe at o time. gotil Vi) = 1,
sretrding b the fallowing theee Tules.

(it If somw vertex & not on P seet b conseoutive vertioes o aod 2 of
then =eplace & by 0 — g2 + 3 + 12,

o f‘_f_x\. ,./"f_ﬁ‘&.

i "\.I !
! ¥ x ,I H \"'“-a-.,_ H
P e —w | ¢
! : I I : t""‘:::‘
I',I II. |I .'.l

~._ ).-'I "\ /_,

\"'“'--_.-/ \“-._.-r'

Fig 13

(! there are adjacent versices =, i ¢ £, and consecytive versices 4, v of
such that 8 i € BN then eplace £y heovebe &' =tz oo+,

/ !
; Wl i ¥ b £
¢ —
! P ', Y p—by
/ 4 !
\\ /,r" i ".Jl
po k‘“""-u_.-r"/
Fig. 24
S b
,* ------- “\ ,f’;.—.\“-.
;e — o Lp
It -4 ¥ | |ﬂ.|:‘:}" L
. \ __‘___f
P:L x__/’/ f’/ P
Tig 27

(] U -here are weithoes o F O and wertiess 4zah € O 2oeh that
C = obF'yzPg ad 2oy be £ EIG) chen replace & by the cyele

ey hz P,
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We Jeve it 4t abl exerciss ke Wbe reader torsbow that in @ trackabls grag.
this #lep is always possible {Hint: If ¥ — € is oot a stable set {ie., ' theee
aTe any edges with both end points in this st} then we can apply (1) of (i3]

It & eusy o see 1hat ench phase of the slgorthe cen be impemented o
(/1% tizee, %o it i indeed & polyoomialtize slgorithe a clamed,

Exerciss: Show chat the above slgoritho cen pesiecly be (mplemented
n O3 time o Leactable graphs dieh is linear in the number af edges).

2.1.2 Edge Colouring, An adze colouring of & graph & is an aselzment
of eolours to it edges s ihat oo two edgec which share an endpoint recelve
“he same calour, I8, eack codour cess s 6 matcking, that 15, a graph all of
whase verives have degree st miat one, Clearly, if & graph hae pimim
degree 3 Wet every edge eolouting wees st lzawt A colours, Yizme proved
ehet every such grapn has o A1 1 sokwrivg. So celermining the chrommetic
e of & graph 5, Le, the minlmwn mumber of colours weed o edpe
coloecing. boils down to delereining if G bas & A colovnng, Vidog [209]
also proved that ¥ che Masdmum degres vettices of & form a atabs ser, then
& hes & & colouriog, Berge end Pourmier [46] developed o polyoemial time
algsrithm foe ronstrueting & A+ 1 rolopring of (. The & gorithm provides a
& eolonricg provided the versices of masimm degres in & foem & stable set,
[ conlzest Helyer|56] b shown thed deterniining tie chromatic mdex of &
graph is NP-comphets.

I ehis seetioe, we prasant eha Bllowing result due oo Erdée aod Wihaon
W
Theorem 2.2. &, | #ns o unigue serter of mazinam degree whp.

Thus, wa obtain;

Corollary 2.3, Berge ond Fournier's adperithm 45 o polymatnind-tite adgo-
Hikan which =dpe colrurs Gy, wh.

Pro[ af Theprew 2.2, To prove the thearem, we nese, 1o ansyee the
probablity distributicn o the degress of the vertices io G,y how, the
degres of 2 ventex in G ) is the s of 4 — 1 vaniables each of whick s 0
with probabillty & od 1 =it probability L. Thes, the expeceed degoes of &
verter of G,y 18 21 and

n-|
Prldiv] =11 = [2“;] 1z

T Tl egsily f2.g, tom she Cetnol Bound) that If we let & = tin) be
the smindlest invager suck tht Priglvi » 1] < 1= :hen providad A % laege
ergugh, § €+ RTgn, mh vaing (217 we obtain:

T
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1 \
Pridui» f! > EPr{d[u} SE—l) o L3

Tz, we xpeecd at Jeast % vertitesof G, 1 10 huse degroe grealee thac .
¢, the follewing result. which we prove io the pext secic 18 ol sUrizing,
Whp thers is 8 werter of G, 3 whree degree exeeeds ¢ {29)
Norw, a simple but tedioas First Moment esloulation, wsing (2.1] will allow

ug Lo gk
Whp thees iv £0 § > ¢ such thet two vertioss of 7, | bave dagree 1. [24)
Combiming 3% with [2.4) vields the theorem, it vemeins only to prove

HE})

o do so, we nate that, by (3,13, for 3 between £ and ¢ + .q;; v, Tl LLAVE:

Pridin] =3} _tfn-1-¢!

Prldin) =8 tfn-1-8 I= a1l
Thgz,
) = T
Pridle) = 1) > |§I Pridju) =1} > lﬁ[Ingn]EP"-d-”] -4

Eq, we ahtain that Pridls] = £ = Qjr~ B ¥ kg nid).
We can now bownd the ecperted yumber of pairt of werlice N in G,y

hoth of which bhave the sarie degree € which exeeds £ Let ] denata the
degree of win €, | ~ 1 Lex afu] denate <l degees of u in Gy ) = v Then

Pridit] = div] = 1 < Prtais) & {2 - 1,1} Peldfu) € {i - Li}}

= Pridfu) & {i—1,4])* < Pridin) g {i - 3,4, i+ 1}y
L 8Prd[x) = - 1.
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Hene,
n-1
£2x) <) T iPri =i
b=
) b Ay/R gL N -l
< 9(?) Z ‘Pridgis = 1)) +9(2) E (Prijy) =3 it

=t =43, kg

. n-|
gau(z)angmjh[d[uj=aa‘f+9 ;J Y (Pridiv) > o
: I"|+_31"'11|IJQ'D_'

Applying. owr Bound en the prabebilivy shet dv] = & o the first Lers
and the Chernoff Botnd ra the semad. me obizin

BN = Oie Mg ) 4 O = {1,

Thues the probabiity thas for sese £ 2 1 F1ere are e vertices of degree
teal ol ie (24 bokd C

A gmiler bot messier Ficst Momest somputatlon vields the fallvicg
=esut which me state withiul: proof 6 we sieed Ut [ales;

Far 3 < /7, the probsbalicy that there qre 5 dinjeint pricg of vertioes
2wl oy | oweh chis Tor seme of, = £,
4 =ifz,) 2 dy) S8 - 4 O, (23

As we discuss in Section 2.1, Friess, Jacksan. MeDiarmid and Heed 152)
stwved that the probability thet &, ; dees pot bave & A edge ealouricy
I Toatwen (170 and {07 for aomee positive constants o and eg {and
n2d.

2.1.3 Greph Isomorphism. The rput to the decsion probler Grapk: Tee
seephist i5 b grephs (O md &y, The problm & to deterseine if 1bers i
gt Isemarphism between them That iz, 2 bijection [ o Vi, w0 V)
eeh that 2 ia an edge of &) i and ooly i flzpfiy) is o edge of £ This
ek km i3 peither koown to he io P oor known to be ¥ Peomplate,

Fo 2 probailistic phelpis of Grapa Iomorphism, we do oot wank 1o
Comsiler an inpms peqaigniog of two reodem graphs, s they will whyp be
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atrexcaasly nan-ismmarphic beeauss, .z, they huw & difecent munbet of dzes
or dierent degreg sequenses. There are [al Jeast) two ways of Gealing with
this prablem. The frst i to asswmz that wbe inpu. sonsists of & graph @
Zrawn frem the unifoem disteizazion oo ibe v verlex g-aphs and & second
graph H shout which we hae no infermatien [the readar mey wish 1¢ think
o B 2 chosen by an adweesary whe bis seen (7). The seeond {mome studied)
approdl is to consider canonicpl Iabelling algoritams. & canenical lebelling
ulgarithie essigns to B grapk & on wertes s {1, ... ), 2 permutation IT;; such
that if bwo gtaphe G and M are isemerphic then 115" ;; is en isomocph i
from & to K. Thee is, & canonical Jabeling gigtrllane relabels graphs so that
il 1he original graphs weee isomorphuc then the re.abelled graphe coincide.

A= su exatnple, b cendnica. [ahe Lbg algseithm might chooss to arder the
vertices of the grapt so that i JF(5 < JT(5] tken € 18 in mese teianges thes
7. W oove that if wo two veztices of G are in she wme number of triavgies
than there 15 & unique Jy; satidying this condition. Farthermere, if H &
issenatpie to F theo thete is & unigie Ty salisfviog this cocdition and
[T wnd Higt W) aze the same graph, OF course aur aananical laselling
agnrilhioy Tins: alsa fove 3wy of dealing with graphs .o which soce pairs
o wertioes are in the same numnber of brimnghes.

Ve inuite 172 resder to show that there ks & canotical labe! g teprithio
that vurs m &n%3") vime. We alse darase canonical stellog algorizhms
whieh relabed some ot not 2l prephs. In toia cese. if the algorit hm velabela
€ it should also relabel ] graphs Isonorphic ta &,

It t1s section, we prove a result of 3abal, Erdds, and Selkow (8, (for
strer mhenings see Karp 721,

Theorem 2.4 There w & cinonice! ladelling alorithr which labeld G5, )
whyr.

Ooe auch cagonicel LabeTing lgorithm e to order the vertices in oo
itcreasing order of degree and to order the vertivsg of the same degres 50
that vertices in more riungles coma Arst. We shel not trest. this zlgeritboy
bere [lowever, she reades i invited v shew tha it suceseds whp by showring
Faat the expected numbsr of pairs of vertioes with the sams degrés and in
e same cumber of trianghes is 5 1), Tostead, we breat an olgocithn which
crdors the vertices in nem-itserezsing order of degree b vbooses the order in
the sat of verzices of Lhe s Gegree in a alighly difirent way,

We need:

Diehnition, We vall 4 degres utigue if there it poatisely ene vera wlth
this degree. We call & vertex sofitory Lt has unique degree.
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Lemma 2.5, Whp, the hagest [3hog ] degreen of G, ) e e und nr
buer mertied ave the seme neighboumnood an Be [Tlogn' verbices of highest
degres.

(o, the cancaical labelling algoritaty, we ponsider coders vartioss of the
same degree so taat if mia) < xi7] then the highest degree vertes: which zees
eeattly one of {1, 7] sees £ bt not . Letnaoa 2.3 emsures, thag, this algontha:
suizeede whp. Thog wbe ki implies the thearem. We prove the |ettma
below,

Proaf of Lemma 2.5 Let ¢ = [Yogn]. The bay to peoving the Jemme ia
to sbow:

Whi the [ + 1 bighes: deprees it &, ) tre unique amd the diffarcnce
Deweem tw conseutlve degrees ie st east five. L]

We prove tois result belom. Cotnbining it with the folkwing result proves
b lecnmg,

The probay Lty thet she | + 1 bighed degross o Gy, 4 e umique snd
aiffer b at lesat five and twn verlioes have the same meighboarhaog
on the ¢ vercices of bighest degres is 501]. 2.7

Tor preme (2.7, we compbe the expectec mumber of sem wy. . w4,

a C'EI! such ket (i1 e, 9 are solitary vertices with she Nighest degress,

the ¢+ 1 highest degrees all difer by at lemst five, and (i) vy até g have

the sune neighbowrbiood oo W = (e, tv). W show What the expected

Eu;her of sueh sets is of 1) benca the probabdity one exists s of 1) and [2.7)
HR=

Now:, there we [TJ{"!I} thoicea for W,t, tu. For exch cholos, we ducar.
mine the edges of &y = & 4 — by — oz That is, we weke s copy of G, g
With wrtex st ¥ -y - u;.iﬂ the [ vertiess of highest degrs in (3, ane oot
distivet then (i) centiot bold, for sdding v aad &y changes eacdi degree by
o st te god the differeace betwesn tum degrees by at mest . If the
i wertwoes of highest degree in thie graph are unique then for (i) to hold the
Vertives with thess degrees mist ba thase in W which by symumeryy oemims
wth peobehliny {7) ", Given thet ¥ is theset of bigh degree verlcea fn this
ETap we sag, by mlnsmmg tbe edges ftom by and 4. t1at the probability
that (ii} holds is 27 £ . Thys, the expected number of W 4y, such thet
(4 v ) bobds i (%) (7307 0% = of1). S0, (2] bebis s9 claimmed,
we turn row ke (L6,

T prove (2.6, we consider the if=tix]} defined n our dissussion of eidge-
eolouring. &y provieed in that dieueon, w will show that whp, &, 5 has
¥ verte of degres greater thon §. [n fact, we will prove that whp it H



EL] Alan M. Friee and Brues Resd

leag; § 4+ 1 svch wertices, which combioed with (2.5) far 3=1, proves (2.6). We
aetnelly prove & tuch stronger resulk which we will sieed Later, to wit

The prabasility that there ars fewar chan ™ ertiees of degree greater
than t i O{F™ (%81

To prow: this result. we use “the method of deforred decision” = e
geribed i Kanth, Matward snd Pittel [81) Imagios thas we have an ssistent
and whes we wazt to know whetier an edge v exiess, he dips a fair coin
and i it comes doen heds e edge exdsts, otherwise it does not. We only
do thie at mest once for eack pessible pair = v, The onder in whict we fip
(e eclges ia 85 described m ibe Ellowing procedure

1] St 1= |, rhigse some vere 0. Deterinine which edges incident o 1
B¢ [Tesent,

I:Q] ¥i=nr-.snp otberwise choose bne wetex e mF =5, which
has the ounst oeighbours o 17 = ey, -.% ) aad determive which edges
bietwean 1,47 &od ¥ — ¥ = w4 arg present.

1 Increment § and returo to Stes 2,

Ey snalyzing this proced:re, we can show:
‘The prcbsbility thet there is some ¢ < 3 such thet vy bas
fewer than § = /% oeighbours in ¥, is 0(271). {0

Frof, By ous chedee of sy, if this aceuss, then there are feves than ‘-'-'-‘5—'1 -
(11— i1 odges betwnan ¥, and ¥ - . Howerer, we expect 17 eigen
betmeen the ban sets, Using the Chernof Bound, L & essy v2 show that
expected acaber of sets 5 of 1 < § vertloss such thed there are fewer the
Sni) _ {— i}y ndges hermeen § and ¥ = 8 is O271P) { e bewse the
details ) the interested reader]. The result fllows, C

The probebdlity thet thess axe fewer than ntt salues of 1 which are less
than 2 sudh that 1,41 has mate than 2 4 {1~ § + /i oedghbours
¥ =F -, m0E"), f2.10]

Progf. Feri< §, let E, be lbeevent that v bas cre than L 4t-%+
o) neighbouss in ¥~ ¥ — gy [0 the first & Stecutlons, we Bip eoins only
for edgee from ;. This, sfter we chocse t,, the colus for the edges from 2,
ta ¥ — 14 - 1;, which deterinine the edges of ., are yet to be ipped, and
in fark ite those fipped in the ueet itecation. It Eollowe that (o distinet :
and j. Ey; and E; are independent, for they are determined by disjoint 324
adpes [the ooin for which are Bapped in different, Sterations of our roredurs
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far geoerating €, 3 ). Furtherzuore, by the Chernoff Bownd, the probubility
af the ewet E, 5 close to n %% ard is centainly amenter shen 3 = 2" %%,
Apslying the Cherooff Bound onos mare, we obtecn thet the number of 1 fr
which E, holds iy loss thict - with & probebi'iy which 1s a[2-4"").
Combining [2.0) and 12.10) yields (28) thereby completing the proof of
the lemma. 7

W cloae this sertion by remarking bt combicing [3.5) and [28) vields
the bedloming rasult, which s shall find 1wsefy:

The probability that there are Bt 1han ? stlicary versives of (7 wnth
Gagras greater than tis O(2-" . 211

2.2 Polynomisl Expected Time

2.2.1 Graph Tsomorphizm. We ngw proscnt & polviseial expected time
g.gorithm B graph isomorphisrs. The topat o she lgorithon 9 s graph &
drawo from ubiform dieszibulbon of -vertex graphs and & graph & about
which & have oo infxmathon.

As a las; resont, put alparithm uses the brute forca Ojrfa!" prosedure of
tesring each of the ' tjactions between ¥ 17 and VIH),

Our algorithm 50 uses rwg sui-alporichms both of which are romiis-
cetit ¢ the canoniral hebeiling procedirs io the Ly secticn In tbe sanogicd
Labellng procesure, e esantiplly knew the bijsction an some :ubset S ol V¥
itbe blgh degree solitaty versices) and this alewed us 40 detertuine the rest
of kb bijeetion. siseply by conshuering b1 S For each v E V- 8.

To ense gur discussion of extending partin] bljscvions In this mattier, we
teed some definirioms. Let & © Vi), we sy o vitber o I ¥ -5 i3 debermmed
by § i there ig oo e € ¥ = 8 witk N[ein 8 = Muhnd, We lec deel 5
b the set of vertices desareined by 5. W neec the Followog determimstic
=g

Lemma 2.6 & § C ViG] end F is o bifertion from § to some subsst of

V[K}, then for eny isomarphism [ extending [ and far ang o € det{5). ve

hang only are condidate for £0t] and in O4n¥)] time, we con either

{1 delermine thot fere it Ao Ssomorphiem: from 3 bg B evbading f, ar

“H) fnd ¢ btjection g from det{S)10 8 te 0 subest of VIH st thet omy
iemorphirt [* aztending [ soerespends with g en deti5) 10 5.

Troaf. We Jeava 1his a8 an exercios for ohe reader. o
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We oo 1o take this iden rme step Amber T this +od, W Y 3 WX
vin ¥ & fized by 5 it v € det{ Sju det{det] 5. i'r‘ellm Fiz{ 5 bee thie 2er
of wertpes fiwed by 3. Applylng Lemma 24 wwicz, we nrtasn:

Lemia 21, [F5 1400 and [ i8 a bjecnar: from 5 to aome sudees of
V(H), then for uny isgmarphism. [* extending [ and for ey v € fix5], e
bt andy ant emdidate for f'[x] ol 31 O] thme, 1o cus. eifer

s detertiae thk there #0 0 isomarphistt: from: G o H =vemiding f, o

i find & beghon g from H§10 5 te o anhsst of V[.i'_!'} gucl) that any
sromerphians [* etending f crrespands uaih g o3 Fir{S]U5.

The peohabulistic vestiles we need are
Lermits 2.8. Wil produbibty 1 - 03", the saidary vertioss fie V.

Lepama 2.0, With probobility 1 - (27"}, every et 5 of [2log 0
verdices fires all bub af moat [Hlog o] werticet of G

We prrve thess resuhts in a moment. First, we show that (key imply the
axismaree of e desired pulynomial expected time alporithm.

W will e an algorithm A, which comapubes the degres sequence af &
and . coswres that these colncide. sets § 1o be the st of sokitary weTtios of
(. sezs & to ke the et of snltacy vertices of H. snd ets f be the hijection
Toom § o & sueh that dafv] = drlHei). Tt then determines 3 § fines
V(G 10 nor it halts. Onherwize, applying the algc-ﬁt_hm of Lemis 2.7, it
elrber deter=nines and cucputs that, &7 iz oot Sxmerphic 1 £ o extendk |
to g bijection g from ¥(G) to F{E] st that the caly posatble isomorphise
foom G 40 B % ¢. 17 it retysns such o bijection g, 1t thea chedss whmher_-:lr
niot g is in ‘et at somorphiam. X so, {7 gulputs thiz isomorphiam, otherwiss
it qutpuls the Fct that & cad 7 ere not ispmatphic. By Lemme E.T,._an
aywer zetutned by the algovithm ia u:uu-eilcl_tl.1 By Lerorna 3. the prabablht;-
that Ap does oot gve g ey is G2 1. It s straightboraec 0 verdy
Lat, the algorithn cau be fnplemensed. in () <hnoe.

W will alsg e an algorizhm Az which first cnocses s achitzary sl I
of [log A] vertices of & The algorivhm then checks i 5 ficea ol Bt gt
ot 'l oy 4" vectices of 55, I cat it halts, The algnrithen niexct deeetinlnes
foe cach set 5 f |§] wertices of A &od bijecdon f from § to & whether
ar et there i Boiorphism extending f. 1 it finds for some 55 a.md { that
there ia an isamorphism extencing f, it returns with the inforoustion trhlar, 4
and 7 awe isomcephie, B W delermines that for each 5 amd [ there is w0
isomerphisi sxtanding f then it suzputs that ¢ and K are not ieamacophic.

For & givem & and £, applving the proredure of Lemina 2.7, Ay #ither
detarmunes and partpcts that no omorpaism from G to B extends [ oo
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extends § to 2 hijection p from fix 51005 w o subset of V(E sach that
the coly praghle issmorphisms from (7 to J extending | alse etend ¢, 12
it Terurns such & Dijervion g i then checks whether or we sty of the at
moss |V = fizt §) - 5! < [Mlng ]! emvensions of g o kijactions froe V(6
ta ¥{H ate booatpldses. I acy of thes ae tmmoepbisma, the elgarithm
rebions that ehere 15 a0 Bormorphlem extending ;. otberwise it returns (st ng
such Boruerphism axiaks, By Lemims 2.7, a0 answer reburped by the algseithm
ig comert. By Lemuma 19, the probabilty thet A doss nat give oo anteesr
is Q208 %), Tt i stesightiorward to show thet the algoritom can be
Imiplemented s that it spends O[n T2 kg !4 vz on eact palr [8', £] and
bienee takes ot st O4n 0% 2 6220 dag w]!) = o™ *] timie in tetl

Wow, aar plotal sigorithm applleg A;, then appties 4; IF A, termimacs
without & respoese, and Goally applie our brice bece lgaithm i 4; ik
to provide an answer. By the above memarks. the expected ronming bime of
this algecihm i Q%) + 2" "0 =4 Qa-teenL3nl) = Oigt),
St & carudom raph bias 000 edems enely shis slgorithm hes eptina] e
peroed Tibring e, We con besually events 8 cononleal lbelling slgosltbm
whose expected runfing dine i O(n?) using sienilat technbyues, see Babal
and Kucera[] for a reault in this vein,

Wirh our desripthon of the algaeithm complens, [ retnaing soly o prove
aur ko probatillst- lemmas

We neer. the Following suxillary resulls, all of which can be proen ging
elmiple Flezt Metrent enlonlations:

The prebabdity shat thete i aset 3 of [MTog o] vertioss which
determineg femer than %7 vertives is (I 57, i2.12)

The probability thet there ia 6 st 5 of & veltices wiich
deteriines fewer than § = 2loga vertices is Gyl n13)

The probabdlity that there is & set 5 of %ﬂ vertices whick does nat
determivie ¥ — 3 i o374, i214)

Kow, Letuma 2.9 folloms from 12,173 and 1213, Lemms 2.5 follows ot
[212] and (214, sud {2 11)

2.2.2 Hamilton Cyeles, We now present 10 algorithn DENSEHAM fe
Hamilton Cycie Lbed has expected running tine which is €Xn®. The alge.
tithen uses bwo syb-lgorithms, One, Ag, stlves Hemilton eyele or any graph
in (2" time and actually fincs the eyc'e if Ut exkos. - s the Dynamic
Programmizg slgsritben of Held and Karp [, The other, 4, runs in Ofnt]
Wme, [t atiemipss 10 covslict & Hamilton cvele in the input graph. The
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probebility that i teils to return & Hamibion cyele adhen eppliad to G ]
iy 0[3""a%). DENSEHAM first apples Ay and then spplies d; if Ay fuils
to find 4 Hamilten gycle. Claatly, DENSEHAN does indeed ac)-e Hlamilian
Cyeke, and in Fact cwlpats 8 Hamilien eyele L{oneemsta Fr:theremors, ila
expeeted Tenaig time 8 Oadl+ 02" i3i2ret) = Oint), a8 damed, Tt
semaing oaly b2 deseribe and ansbyze A; and Ay,

Ay is » simple dynaric progreooing dhgouthm which determines [
aach subzet 5 of ¥ with ]3] 2 2, and for msch pair of wertioes {u,1} ol 5.
whether o oot thare i& 1 Hemilton path trrough § with endpoints 3 and v
Ta dexarmitse il € has & Hapilon coce we ooed, then enly check if for any
atye i of  there s 3 Hamilton path theough £ = ¥ with endpoints v and .
A tansiders the subsets af ¥ in increzsing order of size. To detarmine if there
is 2 Hamilton path of § with endpoints 3 sad v, it slply checks whetdes
there is some neighbaur o' of v i § such that there & & Hamiltan puth of
5 — v with endpesnts u sad o', Since Lbe slgodithm bas already considersd
§ — v, this cen be done via a simple table cakup. We speod O tme on
each triple 5, 60 the the claimed runmig time bound oo 4 holds. With
a litt]e extre hookkesging we £p7 alsa construet the Hamilton evcle, we omit
the Caraik.

A, is reminiscent. of the algerithm for Hemilton Cycla presented bne the
Tast seetior. Ws will sbow:

Lamma 210, fef C e & suffciently bge graph such that

(i) tiere exista & 3eb S of of most B0 vertices anch ot G- 3 i troctible,
18} the manituaw degree of G is el vooed 2, o
5] ot Pt one verter of (7 hes degree lpss thitee SRR

Then € bas 1 Barilton cyele, Flthermore, qen 5 we con fnd fhe Hamiltan
tuele n Gin?) fme.

We wil. slso show eba: the prosabiliy thet 3, | sstisfes oonditlons (03-
iitf) 41 Loawma 2,30 (s ﬂ[g;]. Actuslly we will prove & slightly scronger esaht
whach pits b 1o use & gresdy precedure for frding 5.

Definilion. & bed sepencs of lenghk ie & sequence { Xy, ... &if of s
juint sehseta of (7 sch <hat lettmp CF = G = U, X, we hawe Lhat, for each
| between 0 and | - L either

|u) X,y b5 & verber v such chat |dg (2] - ﬂ?_lm » B,
. o EVE L S
{1 Xypq 5 8 poir w. such that [N {al U NG (0] - ﬁ?-’ll - Lﬂﬁi
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fe) X4 isatriple w v v 2uch lhat|I."-",g.l:uﬁUJ\'.:;.{:.-:",u"-',;.[w_‘,|-7F'Fi =

¥R
s

Lemma &11. With pradabiidy 1 - lﬂh.',.. LG - b wanimer degres 2, hag

al Mot o verter of degree fess I:fmn IR0, nrd f no bad sapuesce of
detegthh B0,

Vow, alporithm 4, procesds as falloe. [t Brs: exsures thar & hig ma-
mum degree ad beast tvo and A Mear ona serex of degree Joss than 40000 T
ths s net (e, che algorithm cerminates with no owtput. Orherwine, it zeo-
erates & Twdral bad sequence {X), .. K} o keogrh el most 4000 fie. the
geend either Fas fenghh 4000 or cansot Te extended]. This cen be dorz in
(") tame beewuse hawing found {X;,..., X,] we can search bor X, simply
by checking whether am of the (7] + 3] + » sts of size 2 mowt $3u 6
satiefy ote of cooditions ‘a!-[ct in the GeFrition of bad sscuenge IF the bad
sequance Ap Gnds has leogth 400U, it terminpres without octpat, Otherwise,
il sats 5 = 1}y X;, and apples the bgarithm of Lammz 2 18 1o comstracd
& Familten cyels in & in £4n"} time [we uots thet - § is teactable by
te mavimaliny of 1he bed sequence). By Lemms 2,11, the probabilitye that
&) Failt to rztarn & Hamitton oycle is EJ{;—:] as clemed. This comipletes our
deseription of Ay and DENSEFAM, it cemains only ta frove the two lem-
.

ijaji-emm 211 The probability thet a vartec o of G, | Les degres
Ooe lis 55 ﬂwsﬂmp;ubablllnvthatthgmnmumdeg:ﬂaiﬂn!laElﬂr
Lig G[F . The prabatilite that there are tw verties of &, .y of degree less
tha $3000 is {3 LTF] =al3~"}.

Finglly, the probabitity that some {X), ..., Xason} id 2 bad ssuence is, via
an appliostion of the Chernat Beund , (]~ F)) Hance the expected
numper of bad sequences of Jengeh 4000 is 6f27™). The rescle folows. T

Proc o Lemma 200 The key sc the proaf is the fllowing sodliery
reslt,
Lt A be & granh which is the tnion of a tractable graph © end 2
matching M C & with Gamer <ban (2000 edgos, Thn pegeided & is
suffiziently lorge it hes = Hamiltn cycke ' such tost M C E{).
Purchermare, we can find sach & Bamilton rycle in Gin%) time. 12 15)

Proof The deer step o the proof of [2.15] = ta find 3 path G io & with
#f  E((F uod sieh that  bes at magt 3|M| edges. This can be done gresdily
because every bwn vertices of G have more than & common neightaurs, We
then apply Pheses 1.3 of the algorithm boc mnmruclmg e Remiltan oy
pregatiied in (he laat gection initialleing with P = £), wnd entucing chat we
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gever calese an edge of ( from che path or cycle we ereate { this ks possible
‘pecatse ) 1aa ooy 2 bounded oamiber of sbges; we tote that in Phase 2 we
wiil Yt w be an endpoiul uf Fwlich is oot in @), 0

W tury oow to ¥he prool of Lemme 210, We enumerale § 58 41, %
iwith & < 12000) s0 that 51 s she Lomest degres vertex of 8. We first consider
the rage T wreh 5 bos conetly coe nelghbour 2 70 ¥ - 5. [0 this case, we
ko that g, st have & neighbonr it 8, whog 3 Soee bori> 1, 5 hes
& lans: 40000 Teighbaurs, we ren £od distinct vertioss g, Tn 2, .t of
¥ -3 vuck thas bor § 2 3, &3, 5,5 € E{G), 7z = 2. and s € Bif7), Weat
M = {zzpm, . in } end apply the algorithm of (215) to H = [f.“. -JuM.
We ket 7 be the outpt Hamilten cyele in B with W C E(H]. We ler, &7
be the Hailltan crele in & wilh edge set Bifl - Mot oz s }hd
{351. alsg,sgy-;}.

The cases in wich s, bas & or mae than 2 oeighbouts in ¥ - & are
sirniler, we omit the detils, g

Ewsgcise: Conbine this « gorthen with our earler algoeiuhm to develop
st olgeritam Be Haunilkon cyele winse expected ruoniog tire o4 €, y 7ime
Io (3n%] tioe (nd hence & Linesr Ln the gipe of the Tput).

2.3.3 Edge Colowring, Perkovic and Reed 1] recently developed a poiy-
bomial xpected titne algarichm For edge colguring. Their alzorithn 1t moch
tan seenplicated b explain in dese] bees, The complediy & due 1 the fare
thist the Festest koowi edee cokring sigorithey which sueceds or. oll graphs
b & worst-ghse runming tHeie bound whith is 012 ) un 2 vertex grapha
s3ne ¢ > 6. We will brietly ounlivg therr algorihin, w0 do so we pead o Gw
aizdlinry tesalty.

We ma AIG) For the madmom degree 'n 6.

Definition. & & an frednction of G §f A[H) = A6 =1 and there exat
matchings M., ... M in G suth el Jf = G — UL, M. I s o reduction of
G of it & gn [-medocfion for sotte |,

Remark, if o weduction B of € hes o K] edge alouring then G i @
(0] edge ooleuring.

Definition, A subgraph H ¢f G 15 over-pull f [VIH]| 15 cdd and E[H)] >

ﬂ[m ViH -1.
Fact. 5 cortaind ar yuer-full sobergh then it hos a0 A edge colguring,
Proaf. 1  has D + 1 edges <han the lorgent mutching in & biss k edges. C

Theorem .12, [Padberg and Rao] [ Thews u o polynomia! time clyo-
fithm: which debrrminga 3f 7 haa o puers full sbgrapn.

Probaliliack: Swalyeis of Algucilhms 55

Theorem 213, [52] The probukiliy that '?u_g Roa & praduetaien, B uhise e
ticas of martmum demres form 9 moble sad s 1 - Qi) for some ) 2 0,
Furthermore, there i3 ¢ polpmotstnd Me alpomathm ahdeh finds such p redoe
biom und correspending matehings My, ... M) with his probabiity

Corollary 214, There 102 podmottin e odperithon tfeleh 3 adpe cadowes
Gn.é with prodabilidy 1 — Qin™ ™) Jor somse ¢ > 0.

Procyf. W attempt to fied o redoction & of 3 whose vertlos Brm & stuble
st using the ulpurithm of the theoreta, If we sucreed, we vpply Beng and
Fournier's algovithm to edge cobeur H and then wee the mateliog M, .., M
to cokyJr the remmair bng edges of &, O

As a0 aside, me mention the fllowing complementzoe rsulk:

Theatem 2.15. [52] There ensts @ o >0 such thet for v 3 3. the prode-
belily that Gn.+ it an oree-fudl subgraph ds of dengg T

Defmition. A grapn iz Mpatite if it caa be patitoned into two atable s2t9.
A emaph & 15 nes biparidte I e seme vertec . 7 - ¢ s bipartile,

Thearem 2.18. |37] 4 rear bigaricte graph & 45 A adpe coivurable f and
prdty 1 eondainee o poer il pubgraph. Fyrthermons, there 19 @ poignominl
tite elporsthe: whicd: givem & mear-bipartite gmph cther finds on swerfull
submph o7 0 A edpe voloaming.

Perkoric acd Reed's algoritho Frst applies che polywsmial time slgorithm
o Cooollary 214 which fails with probability (He1™! for some constent. £y
Toey than spply the alporitam of Thecrem 2.12 to deverraine if the input
graph has wn gvenfull subgrapt. T it doss they use the abgprithm of Berge
und Fouenser eo optain ¢ [optimal] & + 1 colourlng, There 2o twa move
alporthimg wlich might be applied. The first Cleamp mune in JIZ") time
and athempts o fnd & A edge ml::;ring of  geaph with ooover-full aubgraph.
It “maln with profubility (02"} for some = The seeend Clearup,; (8 a
Aymagnit programying slgorithm =hich optinslkr colenrs every graph and
bis runtilng time wbich is smaller then the inverse of the prohanility that
Clestup- Bely, [t Gallows that applylng the Zour algorithms W the ghwen
codet ylelds a polyncdnie] expected ime sleprithm. We omit tie description
ol Cleatipy. Cleanup more o leas Gids & ear-biparsite reduction £ of the
inpul grapa. and applies the egotivhn of Theoram 216 o find & A(H) edpe
eolouring of . Actually, the alporithon Gode & ceduetion of & graph which
Is derived from <he impur, gragh and sy have mokiple edges, We omit any
Inrther descriplion,
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2.3 Further Results

Hamiltrn Cy<les For Sparse Graphs. As we hare seen, Boding 5 Hemll-
tanian ¢¥¢le 0 a dense graph is selatively eagy. The snabysis for spers: graghs
i Tome ititeicate bul st besed ob the tero procedures ueed in Phase | of cur
slporitm for teactable graphe. That is, egbemsion of the path by siding a
pelghbour of 41 sedpoint, and robaion of the path £ = wFyP o obtaio
PlugF" By iteratively applying rotations before extending, Bolobds, Fenmes
and Frwene 17 develon  polyuemial tioe algrevtim HAM with the property
that for all o = mir]

lim PriHAM finds & Hamiton cyels, = nl'me Pr.Gn . i3 Hailtonian).

n—M

Prieze |43 proved & similer resul. for sandam digrephe.

Resoarch Problem: Devclop oy alperithen which ruos i polyoomial
exprebed, time on &, for every M.

Graph Colouring. As we shall 22 in Section 6.1, there is o known
pobpnosiel time ebgorstum whic spimally vertex coloms Gv.'; wiih high
probabllity. There haa beer, some suteess it designing slpeethms that whp
aptimally vereex colour rsndomly genersted k-vokourable grapts, bor amall
E The strompesl cortent zesul® stem from the specersl appreadh of Alon
and Kanale 5] Chen and Friese |28 wed this spprosch Lo colone candem
hypergrazhs. The E-colauting shecrithm of Dver sod Friess [38] optinally
ol I poLymatnin) expected ima.

Min Blsoetion. We are given & graph 7 snd aslked 1o divide the vertics
i two sats of equal site a0 & o oinimise the mumber of eiees belween
them. Magt enalysis hss been coneeried with the case wisere there & o fxed
plented bisectinn wish mawy fewer odges chan expected. Bui, Chaudbur,
Lesight - and Sipser 4] consitered random veguber graphs and shomed how
13 find the planted cut in polytiomial time whp. Tyer aod Friese [38] cld the
swné Ber 0, 1, p eonstant. The strongest restilts an this protem bave besn
obtained by Boppans |L7] using speccral techniues, Jertum end Soran |69]
anslysed & verslon of simwlsted aanealing on G,y

3. Faster Algorithms for Easy Problems

To this secsicn, & &lisd bhe probabilatie soalyeks of elgorithms for which
polyrotiial time alynrithia are koewn to edst. Typiraly, weanslyze s Smpk
g.gorther. for the problem end shom that its expacted runniog time i ek
hetter than its worsh case muma'ng e, {hr whree representadive poamples,
shortest patie, metehings. and loee programeming, see the fmncations o
which the Reld af ~obinaorial pptimization 15 built.
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3.1 Perfect Matchings

Recall tnzt 2 matching is & st of sdges oo two of which are inckdecs. &
wettex t s arered by a matching A i it is o an edge of M, cbhermise il
is urcovered, A atening 8 perfeet i i covers all the vettices, The fastest
wlgocithus for delenminiag If a graph w:th r vertres and m edges has 8 perfect
matching has & worst ca vunbing tice of Oft2m)(%0). In this section me
describe an algarichm which runs in linear expected e o O |, & even.
There: are {54 phises. Phase 1 greedity choose edges and finda a matching of
gize /2 = (flog n) wiip. Phase F uses sugmenting patna of length 3 (thar
i reveatedly replices ot edge wy of Lbe matching by two edees wz and yz
where w snd ¢ were previcusly uneoweted] to produce s pertect. matrhing
whp.

Reaall 1 V6, 4} = 11,2},

Phase 1
(o this procadure § will deoote the verlicsa tot coveted by the matcning A
prodused s Gr.

In iteration 4, we choose the mininns 5 of § and find tae smallest
nuibeted vertex i it can be matched t [T che smallest g which & atll
uogevered 8ad i adjacem to ). If whare i oo swch o £ 5 we terninste
Phase 1, else we wid 1,3, to M and repeat,

Suppose Phase 1 produces M = {3, 2p03,.- Tl | andd that M Jeaves
Z =2 fe g 7= 0 - pUmatehed, Note that for each 4 5, < g
Weset X =[5, 2} Wesst ' = min Z.

Phaee 2
T this phgse we takoe the members of £ 1o pades 25y, 205§ — 2, 1,00 and
=y bo find b such ohat 2313 and sz, are both edges, In which cee we
deate edge 2o, from A and add the edges 2 om, owy For each £ we go
sequentialky throcet salues of 4, starting wbe 1th search sk 1)y, I we il for
gomge + then che whole algoithm fuils.

W now diseuss the prebabiity eher we fait to God & perfeer malching
in Oy thie wap, Juir soalpss fts the noven of *the method of deferred
decizipna” deseribed in Section 113,

Flrst cosider Phuse 1 Wa cladm that In thiz phase we need an’y eeaming
Lhe presence of each edge once, Th 362 <hia note <hat i ikeration &, s oaly
examine edges from 2 o 5—2.. But sy & exemined in 2 previcus ibematian
has a0 smdpalne x; with § < ¢ and 2. i5 0o ooger in 8, the olzim follows.
Furtbermzee, i s fip the oofr. for on edge wv incident to some verex v in
thi iwaratico and Jind it exists than we 8dd wo to M and =20 fip no mare
eoies ‘o edges incident to ¢ in ehis Phase. Thos if we vest far the presence of
t edees incidant b v 206 find none of theo exist then these must be the first
¢ edges inchért 1o v evemived. and so this verurs with probabiliry {31', Far

»
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ceZ X edl = [ we deting the evens
Ee =iy <E<1|']} }Kﬂ]-tggﬂ}.

The we hsm

1 PI':U,EE;uxEEJ <l

Proef. For fot each jwith o, < £ <y, we Eisd toflnd sheedge 28 O
8 Prlzigp: y -1 >3l £ 30

Pracf, oo each sud 7, eilher £, acenrs o7 1he Frst K Jogg o edges examined
in the ith deratioh are mot pragent. J

3 Prz" S n-2Wlegyn) < 201K

Preof 11 thes aepnrs taen either £ ecturs or the fived K Jog, n adaos cyam.
ined ity tne finel ilerarien are oot present, C

Aezime pest chat nans of Lbe ewents deseribed in 12,3 above occur and
consiar Phase 2. We observe shee for any edge 2,3, of M we have ot Bipped
the coin for the edges o b,k for k oy, s0 if < 3 me howe nat flipped
the coin for 3,2 ot gz for any 2 £ 2, Sinee 2; < N, it follews fom 2
8ol that we have not fipped the coins for T,z or gz where 7 € 2 and
t € w5 30 when we seurch for en altaroating path of Jength 3 o the
PEE £, 2z, the probebility thet we need 3K log, v atbempts i3 [%}!m“** =
o™, Sipnbarly, the probabilizy thet waen iching 2z, iz, % need to
eeamite mare than 3K Yog,, poirs [, g} i9 a(n ¥ ). Thns Phass 2 fails with
icordizionsl) probality oln” K loga '

In suramary, this algorichm finds A perfect metching with peobability at
el 3 — (40"~ after fipping 4t most Jfn by n colna.

3.2 Linear Programming

Il wes obasrved eqrly on that the simplex algorizho aud fts variaals worked
tematashly =] in practice A cheoveticel explanation wea sought for thit
through probabitistle snalvsis, especialy as Klee sog Minty [30] hed shosn
thiat & stspeard vigiant did oot run o woret-case pulyomiel te.

The first swecegecaem resules mere due to Borgwardt [18) and Smales
(101, 12} The model chosen in {15] i nek Ene iuogt, obwicns aod (161, 102
retjulres that the number of cotstraints be small. Blar [12] later gave & simpli-
foesi euplaration for the reswlts of [LO1, 192] —ses Seczion 3.2.1. Further vank
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o bis pecblem carue theough another thange of probabilictic model where
randrenness i infraduced tarough & 2andrr cheire of £ or 2 for a partioo-
lar ¢onsiezint. 5o Hrimmack. |21, Adwer snd Megiddo 2], Adler, Karp and
Shamir [1] and Adler, Megiddo end Todd 3] & rerent. book by Borgwaedt
18] eovers this abject In dersil

There are dill ooanswezed questions in this ares For exsmple, can one
find & reasonable model plos & praof that the agerithen which wlways chooces
2 varsahle of Tarpesn raduoed cost bo anser Uhe Tesis rors in polynacnial et
pezed time.

3.2.1 Blair'a Analpsis, In ihis section we preve 2 simple cescit hesed om
wkz ideas of Blair [1% . The result given here i ool &9 scoorg but hes & much
sisnpler atialri.
In Bleir's moded we beve & Livear program
Meximise or
Subject bc Az = h
r >0

Heze A i am [m— 1) % n makrize

We uze the following notetion: for 2 meerls M. fdy dengtes ey b row
and M denots its fth eolim,

It is pesuried Wes & is noo-positiva bt erbimrary =t i 2 fas’hle 50
luice) and. 4,¢ are produced & follows: et A = [§ ] bave rows Indexed by
0,7, e — b W Reve i omocon matrdx B i which no teo dethena it
the same rew are ihe sarme. A is an independent rdom prmutation of
the eertesponding row Buy,

Column 45 dominatescoluan A™ LA 7) > ALK, fors = 0,1, -
1 I s easy to =e that no optimal aolusion w.ll huve 2 > 0 3 A" s
cominated by some edber colymn,

Jgveral versions of Lhe simplex zlgocithm have the ollowing praperty:
Ny waciahle correeponding to & domineted column of A enters the bass 3l
uny ieratlon.

Ar examples:
- Thy to e & surplus variable €o cater, otherwise choose wbe enterng
wariabee with the largest reduoed comt.
= Delete domitiated cotumng b the stars,
= The path following alporith o] [101. 1),

Sq, if we let L be 17 aurmber of ubdeminated columes of 4 then thes
alparithms require st oot (2™ 77} iveratlons. Bedorr, we shetch  proof of
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Lemima 5.1, whp [ £ i loghogth HIE

1I 1his beund on L halda then

(L et PJ SIL™ £ pyinloghgnii

m—k

Sa if m is schall 2. O [log 3 fbog lag m) the algonthms bake & podynatoal
wxiober of stecatioms srhp.

Procd We solually peov:

Bil] ¢ m#n otbes-Te, (2]

2 Ijm
Feea: which the sk Blloms. Let @ = (2521 Coreider s = 3. ot

4 b the ioedex sst, of the [an] latgest elecsents of yy. Let [ = V0 1,
Then
EilN 2 [c"r] 2 Zlogn

Exercise: show thet Pr( ] = 0] £ L (this s ensy if n 5 m 35 2, she gen-
erel a5z pequires dtecherives spplications of the Hoefiding-Azurma Tnequality,
discusimd tn Chapters f and 1),

Any colurm oat [ fpUl| J-- i is dominzted by 6 alumn with index
in 1. So, usog the vestibl of the averciss, the expected number of ndatiioated
g0 mee @eceeds the sum of the awrber of ndomirated soiumos in each i by
ah miost. 1. Letling Fim, =] be the enpatted nurber of undaminated coumng
i 4 natrix with # cohmans and m rows each o whish i wnifsmly randeanly
perrauted, we obtamn:

fimyn) < mfim, fon]i 4 L

Checking inductively thas fim,n) € mé k8 U™+ viokds the desired resall
{ 1he 16 n tke sxpanent allows us 1o assume 1 is at st 2],

3.3 Shortest Paths

Mozt wark 1o this aree hss been restricted to that of foding shertest paths
betereens all pedee of Dodes b & tomplee digraph with independently cha
san randsm noo-megative wge weights. Mere genecolly, cne considers ik
teibvations which are endpernt judependert Locsely, this means that if the
edlges Yaaving 3 varten are sorter aocording Lo their cest, then the asscciabed
endpains oetur 14 tabdom cder. Spire |10 showed that ueing a heep in
& version of Diflabri's shgosithin 37| gave & wlution in Ofn¥{logn;’) ex
perted time. This was impecved by Bleniars |13 and Friese avd Grimmes
[L!. Maffaet end Tekaoks (93] subscquently reduced the axpected ronning
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titne ta (Ain? lagn). Becerzhy, Mehlhorn snd Prisoe 9] show this algorithm
tuns o tize C(n* bogn) whip and not ivst in expetation, Thay also give
an (M logrn) lower bound ko the siogle sourcs problem under o clasy of
digtibubiors.

Luby and Rapde (5] consider the yeotlem of Anding a single shastest
peth botmesn b scuee £ sl & gink ¢ They show thet soarching sZmultene.
wissly from Both & and ¢ can be eficient on average. For exaraple \bey aive &
&4{y/lag ») time bound assuming sortec edge iists aad edge lenyths chosen
inaperdently from *reasonable” digtributions,

$pira's Algorithm
Faor sch v € ¥ we beep e lisk L, of the edges [u.16) w # v sodad i
intrenging oeder of Jength, T+ tekes (in logn) tite 1o praduce theee lisa
Ry the sssatnption of endpoint independence chase ardarings are candom and
jadependent nf eash other. We keep pooalets py. o € ¥ which we initialised
to pent to & oy ceenent preceding the Ge real elemans of L,

The gerithm consists of » gk source shortest path problems, one
for each ¢ ¢ ¥, Congider one such problem b some & < V. As nouwi the
a.porithin Inceeremalky produces 2 sl 5 (inicially § = {4} veotaining those
vertices ¥ for which a shertest puth from 5 to © bes been cadeulated. For each
# € 5 we keep & value div]. Whest v i9 aidded 1o § we bave

du) = dist{a.n] + m!ig Emuw). (3.2]

W do mat, immediately updale div) each bime we update §. This saves tite
0L A¥ECRgE,

Thae slgarithi teeds @ sgbeidiary dats structuce £ colled 5 priswity susne
¥ admits the following eperations: inger: an item, delee sn item acd deter
mwing the ivem of minimig value. Bach such oparation takes Okeg ) bie

Ar iberation of Spire’s elgorithin conaista of
1. & Deteroune the mivimue valye div) = dist(z. ) + fv. @) in §;
MFw# 9§ Lhen
i Akl oS,

il dist (s )= AL
il g 2.

bl Crtherwise: mowe 3, cme posidon bo dbe et vertex e oo L

ol Replace d[v] by diat(s o] ¢ Pt w') and wpdzte & goto 1

1. Cwrrently py, 35 poiot:og io & dumoy ghrient of Lo Lat 2 be the Aot
alement of L.

1 Pu g’ = bt + fis, 7 end ncset this wus into .
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It 5 sarmightfrward to show that this slgorithon selvea the wll-pairs shortest
patl prchlam.

Tine Analysis.
W apgue that if [$] = & then the eepected number of tnes we fiul € S
S1eg 1 's Oim/n= K)). This Che total expected nmning bime or zach ngle
<orTee ahortest path prablem |5 of the eedsr

n-1

T ., e N
E — wgn = Oinlbag =)}
=1

T explain the bonnd O{njis - k1) we nesd & apply the method of debereed
Jeeiions. ln parsiculer, fr each verter o we ompose the # — 1 distances
foam = without expesing the otber eodpoints. By the endpoin: Independent
asumptio, every bilection hetween the other enipoints abd the distances
is equelly likely, Naw, bn Step 2 {resp. b}, we do oo nctually evpose the
setes; T [esp. u'l, me simply evpase the next distence It is anly in Snep 3(a]
that we gxpose | be actual wertex name assaciated with (ke distaace. Supposs
n Suap 1zl po points to the rth nwember of L. We heve already expreed
“he names of the firet £ — 1 vertices on £y, and they are all i 5. By the
eadoolat indepander: ssmuopdon the h vertex i equally likely to be sy
of the reriainng 7 - £ versices. Thas, the probability thet the Hh vertex it in
§ is 2 mow. i, copdicional on tbe bistony of the process =0 far. The nexs
ireration of Slep 10a) may iovolve a different wdue fur 2, but this probability
bl temains tooe. Thus i X i the rendom number of maves needed Lo
fiod & vartex not ‘o §, tker:

& I
Pe[X 215 (m}

. . k I n=1
WJEE(E) Rl

w=1"

The zre omly & Few papens we keow of 1ket deal with arhlieary, es oppossd
-2 non-negtive weighes. Kelbopoukss and Exein [32] modify the Bellmen-Ford
dysiamie prograTuning algorithn and show that o single seurce problesn car
be solved in Ofn*logn) expacted time when che distribuior is endpeint
indepeadent. Their model allowed wegetivs cycles. Gooper, Frieze. Mehlborn
ol Priebe |35, consider @ model in which the are custs oy ars gererated
from

Gy =~ + i +t'tJ|

whete 4, 2 0. Ib ig sssomed that the 4,3 s lodeponddent, wenkicalty
di ributed, boondsd sud ibeit ¢pmmon probability functiol F antishies
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P01 > . The w's e arditrasy end of sioe Oiny(log ). The algoridinu
does nok see the o's snd o5, enly the values ¢, ;. They show t7at a single
wrdeee Eancles: path problem oo be solved m -E'I:nz] expected tima and an
all palrs abortest 2ath problem can be salved in Oin? log =) expectad Eme.

4. Asymptotic Optimality and Approximation

Lo this chepter, we change the Bous of sur probabilistic apalyss. We eaunio
polyoomial time algorithrs which do no; pecessarily rei o optitnal selations
and examioe how well they perferm gn cypical instanses, W diseuss Din
Packing, the Fuclicean ané Asymmatrie TSP, and disjoiat path problems,

4.1 Bin Packing

I itz sionplest Zoren we Bre given Iy, Bz, .., n € [0, 1) and e asked to paot-
ticn {1,2. .., n} ioto 8,5, ... 5; soch that Eue.‘.j Ll j=12 &
wnd such shat & i 85 smel a6 possible. The elaments § € 5, ars thought of
a5 beng phaced n bin 3 which heg eapaclty |, Then & 19 the tumber of bins
e,

The aralysiz of vio packiog algorithins has proved 10 be very challeoging,
There gre any decp regults aid 1ke reader i referred 1o s sursey vy Coflman
el Jedonscn [33] Ger froeker reading.

We now give an accessitz resntt ssentially due to Fredarickson 47]. Sop-
pose chat oy, 3, .., T, axe ‘ndependent wniborm [0.1] resdom variables. Tt is
clear that the expecled number of bin requied & ot lesst E(Y 2, which

ia 7. We describe an algerlthrn FDLD for whiek the expected number of hins

oo is ot most 3 -y log ] [Frederieson peoved the bound § 4287 with
& similar analyss; % mase no attempr to optimice the constants).

Lt o= - 547

Slagn
o
L Place agch glenmd 2, » o nto 8 bio oo its own. S1poase Lhere we B
such.
1 Let ¥ = n - By be the comber of bins cemaining t be pocked,
3 Ocder theitemz o thar v 134 <ot i,
4 Fori = 1,2, 2]
fa] Put . T gy ito ot bin ifx, — 2y 5 1.
(B Put 2, 2y ;. inbe separece bivs if g, — e, g » 1
Put iterm [AVE Tlo a separate bir if 3 iz odd.
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The desired Bownd oz the expected mumber of hing used by FOLD &
smplied by

Thearem 4.1, For 1 sufficentiy large, the ezpectad number of bina pocked by
FGLD 15 of mazt g . Tl.l:lgflll.'l.'I'E.

Prag). Esch tem has size geeatee then o with peobsbility 6% s B(By] =
Blogny. We show taat dor = 1,2 Ny2]:
Co ] .
PHa vin_in 21N ﬁ 4.1
"Thius, tke expecied narmber of bing teed in atep 4 i Jess than % +2 8nd the
{heeem ollows, To prove 741, we shom that:

i- Elﬂgﬂ-.‘u'lﬁ 1 ¢
§ o —] 11
Pr(z; > - 1< 2 ¥
wad ﬂ-i—ﬂh:ugfﬂ.,.a"r_il.,ql
n S
Tor prae [4.2) we poce that &; > 0= ﬂl-?m il até eoly I there are
al mcet ¢ ‘tems of dze Yess than p. B ench jvera has £ise Lass than p with
pickability p 20 so we e apply the Chermoff Beund o obiodo the desired
resalt, We obtaiv (4.3) vis o similar bt sllghthy mesgier compuzabion. O

[43)

Fr‘:ﬂ:,‘\'—.-'.] >

4.2 Fuclidean Travelling Salesman Problem

(e of the eacliest ad Tave, influsntial results in tke probebilistic soeysia
o combinatanal aptiodzssion probles was Kamp's pantiinuiog algoriztm
73] for the travelling selestnan problern Ln the unit synare € = [0, 1. Here
we have  poinks X)X, ..., Xn chesen uniformly at esndamn in  and the
prdena is Lo fad b minimuen langrh wor (e Hemilton cycle) through
the, wsing Eaclicenn diieice to defin the disteee hesmeen poiniz.

We let £T) be the lngtn of u tour 1 and bet £ = 00, Koo Kad
be tne minmc lengei of 8 v, We give e ootline of & smplified wr-
st al Kaop's algotithun. Firgt we menion the equally important results of
Beardwood, Aulton and Hammersley 121, Thaic ceauls ape steonger and mer
gemeral. Wt -n any ¢ they smply what {bere exiats e {unknown] constact
A1) such <hat fo any ¢ 2 0

Litn Pr[:

R

AN
-J__E-J }i)—ﬂ-

g

v other worda we expect that € = /%, Consider the following beriule:

Probibilistic Analyes of Alparithws — 6h

A
=-n

L -

>

Patch by adding broken sdges ind delefing sdges morked with an s
Flg 41

Parsivipaing Algorithin

(a) Divide © mbo M = ¥ suces €., .. Cy of size 2 % 1 wlere
m = &,/ for s tnall € 2 0

(o} Fizd s optima] sour T, cheeogh the pointa & io esch Gy

(! Povch chese tours gsther to make & toor T a8 indicatad in Figirs 4.1,
Lot T be the optiea tour acd Jet £ 1 the Jeogrh of the edgey sod

parly of erlges of T which lie in ©. Ooe can peich chess edges to a tour

o A, see Figure 4.2, at an additional eoee of a0 woat Lhe perimeter of £,
Therelure

r:z-!:m-% Lgigh 44

The dengeh of the tour T o'seined by ths patching satisfies
. L]
LN <Y iTvim i4.3)
vt

Tt fodiewes. Zeaen [4.4) ead £4.5) that
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=

N

——  Edipt o opticnal o
Fig. 4.2

F TS0 + ey

Siiee & = 9% whp we see taat ' is aspoplotioally oatimal.

How latg does i- take 1o compute T Eac tour T can be compued

i time Of 4, "4 ) by éynsme prograraming. Now |4, hes distribution
B = BINn, 1/M) end s the expected numing tine for computing all the
Ti's i5 of onder

M
E (Z L*Ll"z*-') = MEE)

1=l
HE::( Jk‘ﬂr* {1 .5171)

[

it lyi(]““‘ I:I(ME 1)'E'FII

k=2

1 . l'I—E 2 - —F
) e W [N R
i !

A )“'2
TS [1+M—l e

< 3{“9' .

E

—-

|
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Thig constitubes e Medo aoount of work and 50 3n expacted bine
fhie =gt nj we cen flad & soluthoa which iz [ikely to be within 1 - e
of optimal.

Since the appeacance of |T3| end (L0 there has been & rest amaunt of
research effort devoted the snabyais of optinization problems in Eoiciidewn
gpare A reconr ook by Swele ; 14| i an wecellent source For this material

4.3 Asymmetrie Trovelli og Selesman Problem

The Assigrraant Problemn (AP} is the problem of Boding & minmum-weight
perfert matching i an edpe-weighted bipartite prepi An iostance of the 4F
can be specified by on & % » manis M = (i), bere m,; pepesemna the
weight of the sdge botwoen =, ard y:. whees X w {2) 25,2, ) is the set
of “left vertioes" in the Wpartite graph, aod ¥ = {1y, ..., b} 35 the set of
“right vertices."The AP can be stated in teems of the memic M as follows:
find & perssasion. 4 = o7 (0] of {1,%,.., n) that ouivimizes }7_ | 0
Lzt AP(M) be the ophime. veloe of the :ustence of the AP apacifad by M,

The Asytmertic Traneiling-Seleaman Problem [ATSP) ia the problem of
Jnding 8 Bamilonise eiveuit of minimm weight in an edge-weighted direcesd
gragh. An inaence of the ATSP cen be gpacified oy an n « r masriy M =
;] in whick vy denotes the weight of edps < 4,3 >, The ATSF con be
stated io serms of the matrix 3F as falbows; fod & cyellc permutstion: ¥* =
='[M] of {12, ..,n} thel mictmises Y7 oty ; bete vhe cyole steuctare
of & permutation is just the s of creles formedd by the ares < 4,704 > and 2
evelie permutstion b one whige cycle structre consista of & smge cvele. Lot
ATSPUM b che optimal value of the imtancs of the ATSP sperified by M.

[t iz evident. from the paralelizo between v above two definitions that
APIM) < ATSP[M). Tha ATSP is NP-berc, whereas the AP is sploable
sime ).

Buacp [4] stuied che rolatiozship betwasn AP and ATSP when guiries
o tle matrix M are indeperéemt [0,1] vtllorm random varinbles. He proved
b 7ather sucprising resnl: thut

E(ATSPIMI < ELAP(MY) 4 oL}

The proof was quite invobved and later on Karp and Steele [73) simplified the
srgument atd impegwsd the arcoc tern. Subsequencly, Dyer and Friese |40]
teduosd ke errar sanm to Of(logn)! kglogn) We give an otline of the
approch from |74]. The fire, imporia abservetion it that the solution o*
of AP will be a eandom permitation.

Priz' (8] =e1) = Prig (M) = oy | = Peie™ | =ma |
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whare 7 i& the malix obteined by permweing the co.umng of M by #. ote
that A and £ hevs the same dislehotion, Tins whip the eptimal sslution
% will b (Hlog ) eycles. See e.g. Bollobds |14],

Karp e Stase then argue that whp the optimal selutken va APM]
does rox contaln any edges of ength graster ther 4 = K{lognl®/n for otng
syitably largs constant & > 0. This if we remove the edges of lengtl grester
than X From the problec: before selving APIA) then why we will gec she
sprnz soludion. Thos mueacs that we can pessimiatically eanglder the edpes o
ir. the opllal assigmneat scit.thoe 10 inepeodently nave ‘angth wniform 1o
3, 1] e we Jefar specifying their exace length until after sobving the AT

Suppise “bar <he seuthon to AP(M] consiary of eyeles €, Gy, ... Gy
where J0] = 0 2o 2 |G| where |€)| = indbagn). The idea s to iter-
ativey padch Oy iz noycke £ frrmed oo the vertices of £ UCL L,

A patch invobves deletlig an edge Iy of Cupy and an edge wo of € ond
tealacing thern by the edges 5oty to create & singly cyele. The algorithm
chocses the patch which min‘misss the cost Ty | iy 0|05l = @ and
|Gyt = b and 2, deaotes the oot of the beat patch, then bor any § >4

Prif. % - <[i-£™

This is because if & 2 2 + 20 then bor every relsvant 2,4, 3,v it 35 Aot the
eade that T <5+ and myy € 44 [0 our pesslmlatic el shesa events
can be rongilared independs, as tary deal with digicint sets of edges. Nowe
by essumptiot b = (¥, logn) dnd 50

Pridi: 2 > fdogr' ¥ = o[l

Whp there we Oilgn) cyols a0l su whp the total patching coat i
Olllogyia']

4.4 Digjoiok Pathe

Supaase we are given agraph 7 = (F, 5 and waet of paits 8, &ip 1205 4
of wertices. In the Fdge Disjolit Paths Problem (EDPE we wart to fnd
peths P fgmog soutoe 6, w ink by for 1 %7 £ K which are sdge digjomt, oo
prova it 's ot passihle. In *he Venax Digjolsd Paths Froblem {VDEF), the
vertices are all distioet gad we want vertex digjoint paths. Bouh probilerns 2re
solvsble o polynoraal tive i B is Fed, irdepepdent of the joput, Rabertsan
and Sevmour 98], e NP base if K varces The problen is inceresticg fr
theorerical an practicsl Teisons; the Tatter imtereat cormes Fom jts ue s 8
model for socte conmumivations preblens,

For tatidom geaphs G o the VPP wes considered by Shemir ard Uptal
(100] wh: gave & lineat time algorithm which whp sureeads jn finding paths
peovided m > Dnlogn and X = O /5. 1 should be remarked “hat here

Probehilistic Analyeis of Algocikhe  0F

the ma wts of wriom st fixed fefore the vandom graph i consiructed,
The probler wea aloo cxnsidersd by Hochhaum 83| who gave a afm) time
agotithm wben B = Of /4 Jog 5], whers bere 3o ‘nwhat folows £ = 2m/'g
ia the everage degree Both slgorizhms are based oo grow g disjoint rezs
tooted i the saarces and sinka uctil the carrespanding trees are boge anough
so that for encr d the mee rooted i 4, ean be joined L the tree pooned at ;.

The nbove appronch s simple aod efflciert, but dees not address the
problem when e randam graph 3% coostructed first and rhen he gources
sod sinks are chosen by 8o odwersary Suppose dmyn - bgn — a0 o that
fi,n B coonected whp Let 1 be the median dietsnee hetowen paors of
verties in Gp e Then D = Hlop nfbog d) whp, Chearly it 15 not pessibls
bo commect moee than Cra D) pedrs of vertloes by edge-dlslolnt patas, for
Bl chieines of palrs, stee siame tholse mold reqnle tioee adpes than all tie
sdges gaailable. Akw, 3ome resiriction an the number of Hmes a vertex can be
& Bowee or sink i1 oecewary, T the following theorsm of Broder, Friese,
Suen and Upfal [22] 8 optime)] up to constact factars,

Theorem 4.2, Suppoee 2min - logn — 0o, Then there exis! poritive eon-
stonts & and § such that whp, for ol 4 = {ay,cp, .. 9k ),
B={b.By,.. b} € |n| eolisfang

)R = amlogdy Jogm],
it for each verfert, {i:@ =vh| +i{i b =v}| £ min{dsiv), 3],

Uhere evst endge-giauing poths o G, joindnp & doky, orenchi = 12, K.
Furthermars there s an ) tise tondotizar elyaritio for consiructing
Uhewe Fﬂ-!llé.'i-

The st-abegy ‘o proving Theorem 42 is wite éiffereat from [100] wed [63).
Fitst, of 8ll the surces und sinks ace joined, by a netwsak flow algarithm, 1o
randomly chosen &, B, 1 <1 < K. This bug o speending ot effect, sinilac
ter that achiewed by wha medbod of Valient and Brebtict |L0RY or rooting
mieszages in the recube. The wew sourom ead sioks are taen joined yp by
utilizing rendom walks.

Prlese and Zhen [57] have extended the thove ldeas (o deal with randam
reragular graphe whare 7 i corsidered to be conacant.

The VDPP 32 discussed o 23], Uising similer idess to theee sbose it 3y
shipwry Lt

Theorem 4.3, Suppsee 2u/n - logn — . Then them wiist praitive con-
stunda v, 0 such thel whp, for off 4 = {09,005
B={i.b, ... b} € |n| satiefhung

fldng=q
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there ere verbes digjoint patha P, foma, ta b, for 1 £ € K. Farthermore,
there ¢ an Ofnm?) time mndemized olgoritm for consirucling these palte.

Hese %y} s the oeighbaor sez of verey ¢ This i again optimel up to the
cotislant Eaetors 4, 3,

5. Greedy Algorithms

T this chapter, we oontinie ko Socug on he svorage perormance JURTRALES
of algneithms whick are sore to tun in palyoomial tioe, In particalar, we
Zncus on b ecpected betuwioar of greedy algorichms, These algorithme are
appeeling beceass they are uially fast and sasy to implement. we coceder
threr ecamples, & greedy algorithm (ar constructing & eable set, 3 greedy
alporithm for eansirycting a matehing, ard & greedy alparithe bor the Kosp-
wack Problem.

5.1 Cliques, Stakle Sete, and Colowrings

W conder b llowing greedy algocithm %ot consteusting b stablz ser, Fick
pwertex 7 devermine which vertices are not edjacent to T, recorsively apply
the algasithim 10 fiad & atable set § 1o the graph oduced by thes: wertioes,
and petuen S4+1

We prea:
Whip the sbeve algorithm finds 8 stable set of size ut least
b1 - et G . )
Prigf The algorithr terminates arth » stable set & aock that every vertex
of @ = 5 mas @ verwes of 5 Bub it ie easy to comnpues dbat che cumber of
such seta (stable or otherwise) with bewer then the given mmber of vertion
Bl C
Fi= & sharper aoalyeis, see |81, Now, a chssie resiil, see [14], stabes that

W the Terpest stable set i &7, 4 hes Zlog; 7 - 2loglogn = 02
elements. {5.2]

Thus the algeriche typically conszrugis s stable sex which ia aboos balf
Lhe size of the Jacgest stulle set.
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W ran analyze our alporithen wsing the methidd of detarred decisions. We
pote thal in constrycting the siahle 2t we peed orly examine sdges which
b an emdpoirt In the stable ses. It flews that &, ; - § 15 & unlfaomly
chosen canvom grap an vertex set ¥, — 5. 3o, we can reapply our lgocthm
o Tip ol 8 stable se; disjpint froo 5. Repeating this procedure allows s to
oobeus O wilh [1- a[l]]¢ colomes, 4 besutiful anekysis dus to Bollobas
|15 which cap be ond do the thicd section of the sicth elugpter of this boak
AT

Why the chrematic pumber of Oy 18 01 +Holi =, (B Y)

Thus qur cobouring alperishr Jes atbos twoe the optlmel dumber of
colonrs. To chose this secthon, T mentu iw ofen problems.

Research Problem Cevelop & polynomial-time algoeithm which Gods a
starle st of size {1 + ¢flagynin €,  whp, for same constant ¢ > )

Rasearch Problem Develop & polynotiak-time algotithm which ods a
calatiring 0F G, ¢ sty (1€l calors whi, B some sonstant € 2 0

5.2 Gready Matrhings

[o this section we cansider fodiog lerge waschings io aparse sandom graphs.
Hacell thet the candom gragh O, ¢, hes vertescser {1,200 end m racdom
edges The graph is eonsdered to be aporse if m = |en o some constent
¢ 2 0, In W6 case o o biBg ne perfect mazchicg whp, We lewe i1 a5 an
exercise to show thet, o fact whp there are & Jarge mamer of isooatad
vertices, This i ar intetest’my case, beranse as we have soem, i 15 eyt Bind o
parfert matching when there 2be mady mere edges. Far such & sp0rse random
eraph the Imaress i do uslng  shepls heurlenic to find o Jargs marching which
i close t= aptimal whp. Beseerchers have concentrated 1o che main gn the
anulrels of greedy heuristics:

GREEDY

hegin
M+
while E[5} 0 do
begin
A Chogee={ui}£ E
GG fwe);
o — M Lde]
s,
Ctgus L
end
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IG5 {ur} % the graph obtained flom 7 by daleting the wertioes u,3
and 2Ll edges itwidans, with thesn, together wich any vertices which becorie
isolgzed.!

The: sverage pecformance of {ZREEDY when the ipul is candom was
first. emalvied by Tichofar [34]. Ha consiteted lis perfirwance an the randam
grupn Gy, in the dense case whare p is fved independent of «. In this case
it Is it by eamy 6o show that the algorichm produces » matching of sise n/2 -
Moy 1) whip, Tn Jact the acadysla i Section 3.1 estentiplly vialds this resylL.

Let &£ = X(n.m) be the random nomber of edges in the matchirg pro-
daced by GREEDY mpyied to (n m when the edge choice in statemernt A
s umifperoly pandems. Dwer, Frisse end Piceel |43 wees sbla to establish the
ssvmplors disteibution of this vaciuble wbeo s = |ouj. Jo paclioular they
sbowed thet ELX) = glen, whete ple] = g5 {sad the: this variable is
aavmpdaically Dormat).

[t is poeshle to modify this algoriibm withowt conslderable complicatioa,
a0 82 Lo fmpeova ita Likely perdorenance. Perhaps the simplest wodifaatlon
20 first chogse & vervax » at tendom and thea to rendomly choose an edge
wcldent. with n. We tafer to his ;s MODIFIED GREEDY. Diyer, Friems
ant Pittel aloo analysec the perfrmance of MODIFIED GREEDY in the
same settitg 85 for GREEDY. Lat X = X(n m) be the random nimber of
adges in the matching produved tv MODIFIED GREETY oo &), o0 Sow
the agymptatic expectation incresses 0 E{K1 ~ A(ch whers dfe) = § -
KBt ) s pfel.

GRERDY and MODTFTED-GREEDY bath fod matthiogs which ars ks
than ihe meximum by & comsant factor, Earp and Sipser 77 consldersd
a sittilar gready type of lgoeithm which we will call ESGREEDY. Their
algerithe 2] rhomes an edge lnddend to a vertex of degree 1 while there
i one a1d otaerwise (b chooses 2 random edge. The algoritkmic change is
timy, bt the murovement 10 performanes is spectseuler. They shaw that thls
slgerithm is esymptozically optime. o the serse that with hgh probability it
finde o matching which is within cin] of the optiswn sizel They alao poowe
thet lf ¢ < £ then KSGREEDTY apends almoat sll of ita tie in case (a]. The
s garithm i eoridared 1o Tuc in e phases Phese | ends when the minimym
cepree of the graph that reouing is at Jeast twm. Mate thel dusing Phase 1
the lgorthin rakes comert choices it the sense thet <he edges chosen 5 2
el of some e itching

Aromsn, Fricge and. Pitve] [§] beve undertaken 8 horther angysls of thie
Rgorithm,

- ¢ < ¢ thert s the end of Phase 1, o]l that Is Al of tae gragh is  few
wertex clsjoint cycles,
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— I e e then in Phase , KSGREEDY wil match all but soout nH¥ of
thse vertices whien remein at the end of Phese 1 More previsely, thete
exist positive conststtd ¢y,4y,9,8 swch thet ¥ £ deoces the wumber of
verthoes which beegme isolated in Phose 2, tlen

' lorn) ™ S EALI < en'Filagalt. (54

- Anplysis of the algocithm gives an asprplatic axpesssion for the size of she
maxin catehing o &,

Snother pessible veesion of GREEDY is MINGREEDY where in Step
& oz chorees & (randam’ vertex of minimum degree and then n random
neighbair of thie verter, Fricee, Radlife soe Suen |38 consldered (e pu-
farvsasice of MIMGREEDY oo modom cobic grephs {a graph e eobis if svery
vertex has degre: thraet. They proved

Theoremn 5.1, Let L, denode the number of vertiees [eft exposed by the
mafching conatrncled by runaing MINGREEDY ar o wandym cubie graph
unih n verdees. Then ere erist comatonds d),do = [ sieh th

% < Bil,) < dinogn 154

W nore hae & candom cobic graph has & pecfect matchiog whp, s for
expariple Ballubds [14]-

Thus MINGREEDY wually does very wall. Nowz the comumon sxponeri
105 i |5 45 and (55 This ran be 2xplained o sune atent by the fact
1hat neer the end o RSCREEDY, when mst croidable vartet lsolatlons are
miede, t1e maxizoum degree |9 bounded whp.

In computztinal experioents BINGREELY bt an zveraps of jusl ovir
10 vertices matehed whew rur on random eobic graphs with 108 versices,

5.3 Kpepsack Problems

I chis seceion we considet 1he [ | Knspeack problem io which we heve n iteme
{1, dn, 6ome subser of which we shall pus io & koapdsck, Bach item [, hes
it assuciated welght w, fud profit p;. Our peszriclion |s thet che knapsack
can. hold total weight a4 mast W' and ar objective i to maximize the profit.
That 18, we saye:

Mesnize 3 pst, [5.5)
1=1

Subject tp ij.r;; ' (57
13l
g, =Ml 12;5n
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Here we antlyze 3 randwrn instanes io i the cocfbelencs gy - oy,
Wy, -2 &1 independently chosen from the vole ioteral |0,1]. For the
comgdraiat (5.7) to be wctive but wx o streng we et W = G where
0« 8 < 1/2 The Gllowing greedy slgorithon b Gkely o bave & good asymp-
ftle. averag et fomosaic:

Groady
begin

{vder the varinbles ir incteasing aeder of velue m /.

Si=ly =0frj=iton,

For;=1tonde
begin
]Iw;iW-Sthw Ej:zliS =S+V-‘j
end
end

The algnrithrn is knowo o proruce o east & 17 E-opiimad solakion, but s
[ikely o do ouch etter, Lat 2* dencte the phimst vale in {5.5), Zpp the
aprimal sobution ta the Linear Programming relasation sod £ the value of
the solution prodweed Ty Greely. [t % @y W == that to ohtain an opitnal
solubyon to the linesr programming reloztion. we simply tabe the sol o
abrained by Greedy and pat ineo the Imapsack a8 wuch 15 we can of e item
ngr in the kmapsack which maeisoizes {_,. . Thi,

P 2dp2dp-12E -1 (5d)

Tt i magy terdevive, 45 the render may wish to do, that 25 is 2(n) sad beoce
by the whxree sgiacion bs & very god eppraimation to 2* by e.g, using the
Chernoff Bound o shew chet there are sbout § items whese profit is greater
then § b whose weight. is les than 3}, We present = more complicated
atitdpsts which allows to calealate 2y more precisely Amwming uy + mg +
- W [and this ie e whp)

)
E.LP=ZI-", = ekl

=l

wimere () < & < § and

L 1+1
E‘”f toatgy =W <Ew,.
iml il

there 35 & geometsic acterpretatin:

The: paitz 1, £ ] ate chosen wmiformly from the unit squacz GABC. We
s#eep the llne OX clockwise starting at O until we have swepl ¢/t points
whias o sum exceeds W Then we saop 2lb G raeoagh & polmt {0 pr
where 2; = .
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A X B
s ¢ .
.
. ' b
»
. 0
L]
LI .
g ]
s
0 C
Fig. b1

o coneidar 4 fved 4 ad Lt 4y denots the arss of the region Ty b the
let of G1X.
B pefgaid
1- 9 r g <pLaf?
wer Jet 2 denote the sxpecied v cooedinate of & poiot chosen yalformly a,
Fancom. within Ty ead L=t py be t7e comresponding eepected p enerdinats.

{'ALF BB n/d

A=

uy = ﬂ_rii_ﬁ_sﬂrqgﬂgﬂﬂ (' = conhf

NERLE R
PR B e ga o

The expected weigh: w{Ty] of poirts falling jo Ty by ndpuy, Define fy by
Agwg = A Applying o simple standerd concentration zesull Jeg. he
Hoeffding Azoma Inequality, ss0 Chapter 6] we ohesin et be any §

Pri uiTy) - #dslr 2 4 & 2800

and .
Pr{ (Ty) - ndogu| > 1) § 2720
Tt fclloms tker whip
Zpp=ndg,pa, + Ojun' LR
for amy w — .
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It Eollows from (5.8} 200 (3.9) thet why Z; i & good appeedmation to
z‘
T = foiry simple Lueker 85] proved s mich deaper reslz,
E(Zp - 21 = Olilogn)® nk.

He di¢ whis basteally by showing thes whp vhere exiete o gond integer sa-
[yzion ehtaioeble by dhanging & fw (Oflozn]) vcws of 75 n Qe optimal
lisear progearn, (soldbece and Marchetti-Spaceamels (18] used this bo dedne
3 simple eumerarive seacch wibh Lbe following prazerty: fiv sory ¢ = D thers
¢ g Q55 time W gerithir, wkich solves this modlel of 4 koapeack problem
aqqetly with prohabilily at Jast 1 -«

Subsequently Dver and Friess |39, 41) extended this approach to makti-
dinensinnal knapande pesblams end generalised essignvers problems with 2
bausded number of constraints,

Noarer ael Schillng 87] anablished preabilistic sppradmation resuts
for mukti-dimensionel anepsack predlens with ke numaer of corstraints
powing with 5.

Raluted problems
Iy dhe Subset-Surn pooam we i Given a1, 0z, .o 0e, b ard asked todecide
il there exists & subeat § C {1,2.....a) such thek o5, = ¥ com = [
Ths has some coypligraphic epplications, Logartes and Oudlyzko B3] gave
a Jattice based algorithm For s:th'mg this problesy when the &, a2 dhosen
relaperdenty Jram {1.2,....2% } s b = 3o o Bt s0me unknown set
&7 Friene 3] gave 2 simpllfied ace.ysis of their resubt

lu -be Parkition problems we are given @, 3. - & a2d asked 15 find the
set 8 which minienises |ai 5" - 23], Azume that &, g, ...,8; are choser
independenthy snd uniforeny fram [0, [t is koown the: whp Ubis minimun
it of erder 527", see Kacmwrkar, Karp, Ligket and Odlyzko |71, On the
caker hun, Karmarkar and Kerp || gave an algorithm which whp finds 2
set 5 with |25 - a/8)| < [ogn)<'®* far smme constant ¢ > &, They yave
aot ver Toore ehagacit and Tatursd slgoritho and conjectured tha 3t had the
same pecfomate. This was recenkly ver:fed in & lovely paper by Yakir 1i0].

6. Negative Results

In tLis ehapter, we focos on results which shaw that algorithms are typicaly
irefficient ot that Problens are usually bard. Actualy, we devote dlmost ll
of ouT discussion te tae Brst of these vas. To begin we pres, o proaf Ehat
& certain branht and bound algorithom for the lmapeack probletn takes soper-
pelynoia. time whi on & randor sxample dresim from b spetibe prababality
distribation. We then present Jess detailed distusstuns of similer resubts for
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the quadratl sssgnment. probleo and the Fmeding problem. Finally, we
servey acihe other resalis 1o ths vein,

Showing thet peoblems are difieult oo average i Tuirl: barrer than sbow
ing that & vertodn elgarithm ia typically ineficient. In particular, if we show
that an NP-complets problem i difficuls ac average then we can deducs that
£+ NP The best we cen bope for 15 to prove op-meerage® comolateness
eesu'te Analogors ta those deweloped for NF. Thia ubeont it sutside tha soape
of this peper, zrd uses » vary diferent aotion of *avetage”. For these rascng,
we cortent. aursebves with giving the scdress of 5 webesie dedicstad to the
theaty, and & stz from some Memadiuctory matesial poated on e web-site,
The webeglta 1s:

atape v noeg ed e g bitn]
The guate i:

Duspite matiy years of intetsive effact. there we tio lmown efcieat al-
gomithens o1 SP-comuplete problemms, where by efficient we mean alge-
rithzies Wbut ate faat in e worst casz, Drue to this suoiking gep 5o oar
kmonledge, the seerch for slgoritho that are “eBcienc® acoord og
I VEXioU3 mare modest criteria s sbiracted ineraasing setention.

(inz perticidarly intenesting critarion 35 that of requining probiems be
solvable quickly "on wvernge.” Taal is, one can silve RP-complete
peobletns via algoridmy char, altbough possbly very slow o s
inpuats, are fast oo averege »'th Tespect to some underbviny probe-
bilicy £istribucions on instances. Algoritoms chat are Eest oo aver
e hoae Yemn [oupe, Bor several NPcompiste problems, such as the
vertex colovriug problem and the Tlemiltonian path probue, umder
ey weed lateibations on grapbs,

However, there aba ate NF-romplete problems har b ay far re.
sisted such “average cas attacks Ave these problems difficolt an
gvarage? What does it meen for a prebiam to be dificull oo aterage,
a0 haw s one ¢ know whether 2 problem is difficult on average? to
s seouinad papet [34] , Levin fitisced the stody of hese questiaes.
Towro Ensdawnemsl end robist notions were defined slocg linss stmilar
to (stanscerd, worst-rase! NP-rompletansss theney. amely, he intoo-
dured the nedion &f Bverage polvucmial time for messuring “rasines”
an avecpge and 1he notion of average-case NF-corpletenes for me-
suring “hardnees’ on average. Levin chen shovaed shot a tiling prob-
lem is wveenge-cane NP-rorplete if each paramneter of an [nstanes ia
rendemiby selecoed, This framgmerk has been studied and enbamesd by
& mutmber of researchets and several more vernge-cise MP-rumplete
peokiems have been found, Soch sverage-case completeness resulis,
a5 indicated by Levin 34, mey not acly save winpeided *positive’
effacts-such a9 trying ta fnd bast-on-average wgorithms for problecs
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that probanly lack ehem-bat might slso be wsed in areas [Kke oryp-
togeaptny) where bardness on everage of soma probems is 4 requent
asaumption,

#.1 Knapaack

The smpless methad for sclv.og (M Koapseck problet is o computs the
weight, ard profit of each subset of the lens apd choose the highest proft
subme, that fits in Lhe knapsack. We can enimerute all these pogsible soluticns
it 2 spsiematic way with the id of a complete binary tre of hefght % a8 shwn
it F:gure 6 | Eack path of the tree from the node to the route corresnonds
L & pertial solution where if we bragek right a% eight 4 then itam £ la i3 tae
aalusicr. aod if e branch, Lot ar hetehr § i i5 nat.

/N

N\
/ N\

AN AN

¥ [%1 {hy Ak {1:I {fl-f.'l]' I ST ),

Fig. 6.1
A compste enlmeLabion tree,

Mer2 generally, we can conetuct an esumecation dree T whizh s a ¢
pete binacy tree of beight = such that

113 every nodle 5 comespoads to a partiel solution corsisting of o subeet J;
of the items sod a partition of 5, inco two sets £, these which we intend
1o pot inkg the snapeat, and &, those which we do not intend to put
in the knapssck.
fii] [F r i <ha roat of che tree 5. is empty, 2td for each oon-eal node £ Wikl
rigit thild 5 and kR child & there in an foem 7, oot in 5, such that
Go=f=ftl Fa=E Nr=Fitl.

See Figure 5.2 for an example: Thus, i our original eaqenesation tea: oe
naiaked that iftwi nodes 5 and ¢ have the ssna level then T, = ]\, rapdition
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we oo S1op withous Losing the bjection. hetwers che Jegves and the subwets
of the inems.

*,
I ut \ lzin Ty eut fzin
* /
e /qu ]'gvﬂl.l.)\ fg_nn,/(\h in o 1‘-uj'a:ln
it [t} Ok} - {-'1. it k) .I'..-’i'. fal
Fig. 82

Wow, io generallng &l 1be candidate salutions, % do oot oeed to congtroct
ke whole tree. Far example, if there is 6 node s such that Tp_p w{f1 > B
~ken bor every leal | in the subtzee T, underneath s, sioce £ P, £} o nok
L i the koapsack. 8 Preve 15 no poins explatiog T, Floee genmeally, theee is
10 pelet in exploring the subtree undsmeath 5 node i we kaow ther: is oo
optimal sution underzeath this rade

In & Teanch and boad algoeichm Jor the (-1 knapsscd, probieic. we gen-
FTE2 Bomme partisl aobtree of 2 complets snumeration tres whilse smeuoog
*het ooe of itz Jeaves eorregponds to an opingl sclotion. We bagin with the
*pat, and reeatedly branch cut feom the tree conseructed so far by adding
"wid children at some leal ¢ Tiroughout the shgorithin, we bewe 5 set of ac.
tive leaves of the cursent cree, which are thos mdemeath which we intend
e seazch, We vt ersurs chat et alf times. there is some optimal solitien
Jiog ic & subtres underresth an aetive eal. Initially, the roor is astive, and
when we branch [Brom a0 ective Jeal}, the tin new Teaves hecome active, We
may Take & ks’ [ nactbee or either af the folowlng be reasons:

if} Am already axplicitly conpuled sclation Las gt laast e good & olutien
wal1e aa the be splorisn 3n T, o

iif} there iz amo-har active beal ' such that S any solutwn corresponding o

B eal of Tj there is & leaf of 0. whick corresponds to 3 slution which iz
2t 2zt ns good,

We continue growing e partlal encmerstion wee, 25 lug s thera are
wny Botive zaves which are i ala Jeaves of the esmplete enumetativn trer,
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making leavas inaclive whensver we caa Obvizusly, the best splution corre-
sponditg to & Jeaf of mur parsial tree i 20 oploal solutior to the knapsack
problegs. Cur hope is ched sbe prooing dus to (i, i), and & clever choice
of the Stems on which we choos: to branch, will reatzict the partisl trs2 to 2
tessamehle size.

e

/
s
A \
" % \}a' L] 'g ot {;iﬂ
, "

YT Yin S gul TR ]

Fig. 6.3
A partiz| equmeradion Lree.

W remark chat this rechnlgue elegrly peoscalizes to other oplitization
prablems. In particular, & is cften applied ta 1 progremming prableeie, in
witich case to eomps & hownd an the best prasible schticn n T: v wuslly
consider the frustiong] sebwestion of the igteger seogram. For aatnple, e
remark chat o our ehapsech problems, for any tiod2 £ of the partial tres, &
selobign mmsp-:mdmg 20 8 leef of T, bat peofit  miat B, =3 p R 4
(B-T, ¢p whirmagn (21, biceuse any frectional solution with 2, = 1
fot eagh L; £ P, il generate ab ancat, this much povdit. Tho, if 5, s less
Wit Lhe profit of the cprimad sohisioe Buné so Ear, than we can make
inactive. The tosalie in Sectiom 5.3 can e oeinteryreted a5 3ating that g
thie procing procedure, and alweys branching s a5 to madmize L for be
item Jy oo which we branch, for sufficiently smell ¢, we poealn the riptimal
solutine io polyocmial bios wizh probabillty 1.

Wiz tutm nem bo 2 specific -1 knapsack presdern ard o refirement of this
branch and bours algosithn, We irsisn shat The weights and 2osts and & are
al. inkegers. We nate that ix thia case, we can improve the Abuve remark sd
obtain:

For any noce ¢ of the partial vres, et £ he The greatast comimon divisor of

the weights of the items oot in ;. Then a salutlon socrespending Lo & e
1B- 1wl

[

e mar(2). 41

A wm

af T, haa peafit at mowts & = T g+
el
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W denoee b OHPT the best solovion found to dste by vhe algorithm, W
will make & pode | anective i

I:.'l:l EJ'.EE-Wl >B o

(B G < OPT o

[i7) ehere & an sttive eaf " such eher & = B, By caue 2 K gy, and
Liemd S ALep T

We rornars char for amy £ )" os io B, if 5 + X iz che set of ftame put in
the knapadk for some Repsthle solution correspording b2 & leaf of T), 1len
F 4 X ig 2t Jeast a5 pood o salution and eormesponds to u leaf of T, This
jstfies our maling | martive,

We spply this algartam to knapasck prablems in which the costs and
weights are aqual sod & is tre surmn of he weizhts divided by o and rounded
doom. Thug, we gre eonsideriog & gemaralesation of the partiton problem.,
a0d so optimal soloticn. cen beve peofit at mest E. New, sines & = | for
ol 4, ww anly appdy {B] at & nada i che eorrsponding o sucesds 1, o7 we
Fnd & selution of velue B. Further e coly spply {01 ot & node | if there i
nagther pode ' Guch that: §: = &), and EI—,'E P = Erﬁ (R Imette thet, h}
eonstrucsion i 5 = & we must have £ & 5},

W choose & random Jmapsack instance of this bye by choodng esch
u; m b0 be o uniform inkege becveen 1 and 10%. and tuen setting B m

L'—'—] We prove & ~heorem of Chvatal, origioally Jemren in 4],

Theorem 6.1 Whp noue of the 2410 nodes i the first & layere of the
g e moade snpetive Mence, wh fhe alporithme tabes exponentia! fitne,

Froct Whp the fallowing properties Fod:

Property |. theze does not exst a set of % iterng the sum of whess weights
acend B,

Property 2, these do- ot exiar twg disting: sets of ibems with the same weight,

Propery 3. 1hese does not exdse o set of iens the sum of whose walghis is
E

Property 4. nc ‘nteger 4 greater than 1 Civides mace than &3 of the itema,

Kom, it Propecty 1 holds thén we never apply (4 1o & sode L tae first
7 levels, Sil:njlarlg,r, it Propertizs 3 and 4 bed than we never spply (B) to s
oeds in the drss 34 levels, Firadly, if Property 2 iolds then we bevar apply
‘) to o nede I tha first 2 lovels. So. his result ampliea the theseem, we
‘ezve its proof as sy e:err:nse in spplying the First Moment Methed, O
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6.2 k-Madian

We nzve 6 st X of # points {X7, X5, Xo} with dissance d, ; ‘setween
¥, and X; The kmadian probtam 5 t fiod & e2 5§ X, [X] = & which
minimises o, 4K, 5 whete 21X, 5 is the rainimon of d; ; ver j € 5.
As an integer progeam vhis can he expressed

Moimise T T\ 4%
Subjeet Lo Tk =1l 1gige
;I.=1l|.'i =k
ﬂi%ﬁy;il JEi\jSﬂ.
eIl 1<:%n

The strang liraer programung relaation is shtained by removing the inte-
ety oonstrsint o the ;% In practise this has besn very seful & Lnear
prograusrning Telavation for briewh and bound slgerithins. Nevertheless 2
probelisic anelysis in A, Cooper, Urrowéjols and Frisze |§ shows that
in sevetsl probilistic models, including poinis chosen aniformly o the udii
squace, the cumber of branches fieeded I puch 2 branch ard biund algs-
fitkm is whp at Jeust &% Jor some constant o, previded & logw — e end
k = #(n/logr)"7). Thus in this case o probubilistic analyss does nat gel
=tk enenpulatinnel sperieree.

6.3 Quedratic Agsignment

Here we have « itema which nave to be placed in n pogitions, ooe item bo
& positicm. There is & c8l g;;p, basoriaced with Placing lem 4 in posicion
p and item 7 3n poaktion ¢. The tocal oot i3 the som of chese cosiz and the
peoblem is to

N n n n
Minimise B2 b S T ®ingTiaTig

Subject 1o E;ﬂ:.p =1 l<i¢n
Yoot =1 lzpgin
Gp =01 1¢ipen

Ttis i 2 rather difficuit problem aud macy branch scd bound elgorithms
cre based o2 (1) replacing thee terms £, . 5; by newe (1 variobles ;o o and
st ing guitable inesr constreinds by nake 3 lirear integer program, and (hen
[if) relaziog 1he inbegrality of the y, ;.o o give & inear program (often this
i5 only dope approcmately ).

Assume (ot the e ;. 4 fce Independens. unifrron [0,1] reodum variables.
The expectad opeimum value Lot heromes £ n* /2 - $s2 Soction 7.2, Dyer,
Frieze snd McDlamid [42) sbow tist the zxpected vulve of tha: Tmear Teler-
wtion deaveibed whove s ab mest S < 0[], i e there is B severa duslity gap
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peablem, ot unexpertedly, they goon to show thac a5 a comeequence, acy
branch and bownd alzorithm besed o0 wsing che LP redaeasion fo- 8 booad

uj] whp require g exponentisl oumber of branches ta solve 1be problem,

6.4 Further Resolts

Tte firal resolt gving bourds on the pverage-rass roicpledzy of wanch and
anne, type wgorithons ave dws to Chvead aod coneern the muodomom geabls
set prozlem [ 291, Furcher sesults on this secblem are given in Jetrum |67 o
iz Pittel [36]. McDiarmid |38] chrained diffenily resuls far verer coloaring,
Perhaps the meer, imprassive resnlt of this bepe comeerns the mellkmows
resalabion ruke for Satisfiabilicy. Chvacad snd Ssetneredi 32| showed b it
wil take expementlal viee whp for o0 sppropobate pronabiliey distribution,

7. Nou-Algorithmic lssues

The performence of some of our elgorithrs mey be nighly sensitive Lo the
probatality disoribution which we we Wa present teo exemples qee, oo
cerniog the asvmuvetric TSF and SAT. W alse presen, resulia i, the apposite
diection, which show that for some problems, sn algerithm’s petfornence
% aenbially indepeadent of which input it i ghen, Le, we may shiw that
uader soma probrbillty disertiaslons, the algorithen will get eloee to Lo sarme
answer ot all but & tov fraction of the inputs. 45 an exemple we comaider
1k quadratic sssignoent pretboo.

T.1 Thresholds

T.1.1 Satisfinbility, Giver. s booltan formals o incoojimetive aoroal form,
the artigfability problem [5a7| = to deterotoe wheler thers i a cruh es-
signinent that eetlsfies w [zee Chapter | for & lomger definition), Since sat
& WP-coruplete. ook i dtterested |n efficlent keuristics thet perform well a0
wrage.’ of with high probabilty. The cheice af ibe probabilisti; space is
ericiel ot the signifeence of such & stody. In particulae, 't is fay Lo decide
SAT ir. prokzbi.itic spaces that gesersr: furmmnlas witk Inge clansss 34 To
vircurnven. thie problem, retent slodies bawe fnewsed om forenalas with e
actly b Etecals por cause (the k 5aT problem). OF particalar interest s the
euse b =3, soce this is the minimal & for which the problem is ¥P-oxmplete.
_ Let V7 be B set of n vaciables. We dafine & uriform probability space
TE¥ n the st ol all m = [ ¢l foemiilza over tbe wasiables which
fave exzetly k lieals per ause,
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hicet praceical edgorithens ber the satsfiabli-y prodbem (suck a: he well
epomn DavisPanam slgurithen [36]} work ibersively. A< ewch teration, the
algorith.ra selects & liters, and aesigne it the valus 1. All elausos coatainng thin
“ineral are arssed from the forenw s, and the complemert of the chosen litersl
5 eraoed Jror the pemadalig <lavsen. Algerithies dffar in the way they select
ihe Titezal fer each iteraticn, The ‘ollowing theee rube are the most comman
i

I. Theunat clowse rude, If & clese combsons aoly ooe Jioeral, that literal must
Fanee: <k vaclee

2, The piere bderal rule, IF & faomula containg o liveral bui does aad <antedn
it compigrent, this litazal ia assignad the ~alue ;

3. The emallest cimuse ol Give wlug 1o & {random) literal in & T2ndem)
smalles, clase,

Broder, Frizze and Uplal [23 analysed an ahgorithm baced eclively c1 the
pure Titeral tuls. They showed thet whea k= the pure litere. nile sdene i
sufficient v Brg, with 2iz3 probability, & sacishnog essigoment for a random
Farmouls o Il.lﬁ_]n_. far ¢ = m/n < LG On tbe otber hand, if £ > 1.7, then
the pire teral vk by itsel! does not suffice, The p2p becween 163 and 17
his been ebased 9y Brightwell, Broder, Frieze, Miteenmacher and Updal (20,
In 33l if ¢ is ibe solutior, 10

-1

14 ; =
t=0 +m(2|:1—t‘.-'ﬂ-1|J =0

Hi| ) ]

- =1 1]

than (koo the pare linstal ruz B suFerist whp when ¢ < o and the purs
litgral Tule ail eliwst suzeky o inmffcient shen ¢ = &

Chee and Franco |36)[77, Chwited aad Reed 31| and PFriese and Suen
[56] analysed based oo the small dlawe ruk:

L

begin
repeat
rheese & hiteral 2
remove &1 cleusss oot w thet contain & and emeve T from any
reraining claose;
if 3 clause beromes empry - HACT. FAILURE:
urtil i chauge Left;
HALT, SUCCESS
end
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In particular. in sbe ense of 3-247 Priese and Suen showed that 5o =
3003 i the selution 12 the equation

Ye—2log e = - Tegi23),

tren 4 soall clzuse euls coinbived witk some Bmited backimcking [s encugh
to find & satifving assignment whp whenever ¢ < 2, From she ther e
ib 35 eagy o ghow that if 2 35 suBckeatly large thet then whp Lhece b oo
satiefying nesignmenl. There bave been semaral atlerpts bo edlimate bow
lange i large. Kemath, Matvani, Palern and Spirakis [69] sbowed thet 4.75%
ls Large eanugh for 3887 aod subsequertly Kirouss, Kranald and Erigans
[*% reduced this to 4 538, Experimeatal evidence 93] strongly supgests 1ha
thene oxigts & Lhrestold =, ench thet formwles are almost soreby sarisfiable for
£ < 7 and almost sueely ursatisfiable b £ > v where 5 is gout 4.2 This
has oot becn preven rigoeoasly, T saeh n ckrashold {narely =1} iz koowr,
1) exlgt Bor 3 CNF forgales |58, 31, O the ctber band, Fredgor 48] has
shown skan there is o sharp threshald ¢, far each . We ~¢fer e raader to
tae peper for en explasacion of whet ibis meena. Basically, the question pow
is 75 to whecher £, teps to 2 fienit a0 — 2,

712 The Asymmetric TSP, 1o chis seetion, we consider the ATSE whers
earh ceat 1 & niform ineger between 0 acd k., For same irtegpr &, [F iy <
Tign et & variank of harp and Steele's algor:thm can be wsed to show
tazt smme pptimal AP sputic cen be patched o sn opblmel ATSP solution
ting only zere ooel, edges. Frieze, Kovp and Faed [45] veing o mave smvolved
Al e, shewed:

0 whp i Lyfn =10
ATSP -AP=¢ 0 withprob 2 exdif Lo=em
a0 whp i Lpfa—ox

Their work wis pertislly witiveted by computstional results of Miller
and Plekaylgl].

Bescorch problem: Determine she relatinship hewwcen the opritnal
golutigns B AP ard ATSP when k. = o

Biesearch Probhem: Show that fat £, sufficieptly .arge, the Branch snd

Bound procedure of Miller and Plekoy which i based on Boep a3d Sleele's
algorivhen, takes exparentiel time whp,

7.2 Cancenteation

Concesitiadion imequalitizs generaliziog 1be Cheroff Bourd are discussed in
Chapter & (partivulacily weful ia the Hoefing-Azuma Toequality). Ther e
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be ceed 1 shoe that for many oprimization problems. the optital stlabon
liez af the instanes of size & are heavily eoncendeated around ske expected
vale of the oatimal solution. In Section § of Chapter 6, swea a result is pre-
gapted for Bin Pracking. Sertion 4 of that chapter resenis simulsr zesults foc
the Ewclidean TSP snd another gesmetric proboern: Mimimm: Cres Steiner
Tree,

Thete are cases whare aueh an aalysiz can [2a8 b sonoter-intuitive zsolts
which make near cptitmization o teivial exercins whis. We close this cuaptec
with one such result.

Uatisider vhe CQuadretlc Assignment Problem [Q0F) deboed ic Zection
B3, ds we have seen any branch aod bound slperithm hesed o 2 naturad
inear prégrarening relaxation will take exponential Line whp. On the other
aand, wesez et that whp ane canegt swoid finding & solutien which is near
aplimal.

Fix an aesignment % = (5 ;] aod L

Ix = Ez z 2Wa.a.531.ﬂjﬂ-

=1 =1 p=lg=1

The velvs 4, 2re lepeadent ik 0.1 Henve. for & fived x, the
rindom werede Z; has mean

Bfd= DY T Y ftie=

= =l
7, is the sum of v independent 1andor variables (2.4, Lp =2, =

1] end 5o 2 etandard anahyels [0 fot & deaightforwasd appbeation of the
Hoelfd:ng- Azima inequadity] vields:

v=| A,

Pr[ Z, - s 20 g

fr gy ¢ 0. In particwlar i ¢ = wn¥ Jogn ahetn v = win) — 2 then
we hiave _ .
Pri|Z, - 1/3 an % flngn] g e~ o
Now tbere ate ouly ! selutions to QAP and s0
Pridx: |2, - 32| > un® Togm: Culem2n0en
{r conelusion therefore is that whyp enerysolution to [AP bas an objpetive

value 1 the imtervsl [nr2 -t Tog o 't 2 um®™ Togm] sad seblng any
w = of [n logw] 4] we see that aqysslutinn: is witkn 14011 of che apeimum,

Tais was first obeerved by Burkurd and Fincke [4]. blore meent sxamples
of thia phenomennn wra given by Barvinek [11] and Separkowski [105).

FProbeblistic Anatysa of Algarizhem: &7
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1, Introduction and Terminology

& rwdorized algorithon mekes random choires during #s mecwioc, The
hehavior of such an algorithm may ths be rndom even on a fxed jopu.
The peocess of desigaing sod anabezing & modomized alporithm locoes oo
eatahbishirg shat I 1 lilely o behave “well* on every jnput, The Wielihood
in fuch & stezement cepends only on the probanilistic choices made b 1he
slgrithen during executinn and nokon soy asumgslons about the input. Tt le
eapecally important to Cintinguich 3 rendomized slporlthen (rom dhe coemige.
cuae arafysls o wlgorithios, where one snalyzes ao algorthm assuting that
ita Joput 3 drawT. b & foved probability distribution, With & taodomized
sbgrrithin, |n cortrast, po Assnmption i mads Abaut the inpul,

Twa benstice of rendomed pigeeithms bheve wade them popalar: sim-
plaity and efficiency. For many applications. & randomized ggorithm iz the
simlest algoei-tm pvsiletie, or the Eastest, ot both, Below we make these
mLions conerete throigh & notaber of iusteative exeroples. We assume chat
the reader bae bad ooderg radvave coursea im Algoritums and Complexicy, and
in Probability Theory. A comprehensive soutce For -endomized slgaclshms i
the ook try the suthors |51). The artickes by Karg |19, MaBiok, Speranze,
and Vererllis [28] and Wekth |45 are good sunveys of rapcomized £ gorithms,
The book by Mulmuley |27 Beuses on randotnized geomectic algorivkms.

Throughout this chapler we ssume the RAM medd of computation, o
whick we bave & meschios 1hot can perbarm the following aperationg imelving
ragiatars and maln Cemarg: Input-gute OpECAtins, cuetry- Pt [rns-
fera. indirert adcressing, branching and arithratie aperations. Each regigter
or memary location mey hold an integes whick ean v accessad 19 3 wnit, buy
an elgonithm bas no aceess to <he tepresenasin of ske pumber. The srith-
ioetic instruclions peooitted are +,-.x./, In additler, an slgorlibm can

" Supparted by an Alired P. Slean Resenzch Felmeship, an 1M Foculty Part-
wecship Asard, en AFQ MUPI Coane DAAHMH--007, and 55F Yaung Ine
weatigetor Award COR-435754, with matehng funds (ror 1BB, Scblumberger
Faundation, Shell Fowndetion, and Xemar Carparatan.
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comigace tvo Tamzers, and evilugte e gnare root of 8 positive tembet. In
this article BiX will dennce 1be evpeciatior of & rasdom varieble X, and
Fr(A1 =il enote the probabilliy of 20 event 4.

1.1 Oreganization of Thia Survey

{hne of b principal ways of clessifyirg randomized algorizhms & te thiok of
taen s either Mante Carls slgrrithng or bs Las Veger slzriihms . 4 Les
Vagas algorithr mi:st eeinate wivh the coftect answer on every jnstunce,
tae random choies it mekes ooly infuetoe Ha ranming time. W consider
Les Vs slgocithm to ba eficknt of ita expected runcing tims ' polyzacial
i, the slze of the jopot. & Monte Carlo algorithem, on the other hand, can err
or & ziven emwsion. Typically, we are intarested in Monte Carlo algorithms
it rur for & ambar of seepe that i pelynomisl io iba size of the ingu,
The key is 1 give o upper hacnd oo the probablity that the Monta Cacke
algceizhm errs; this bownd showld bold for every inpat. Thug, o Monde Cardo
slgorizhr arts ely because of “unhodky”™ rande choioes it makes, Moreoer,
indepeadent repatitions of a Morte Cark igorithm cso e used 2 meke she
probahility of error ar: afl repesitions be very small.

The sarting algoritho o7 Section 2, ey well s the game-tes evaluation e
eorit e of Sechion 3, ate Las Vigas algorithms. The fugerprintrg algorishcs
of Secaion b, om the other bund, are Moote Carlo algoritkme, Section 4 sonsid:
ars the issue of proving kewes beunds for sendonized algaeichme; the general
terinue intrndured trere botroves feam game theory. 4 compnn techigue
fat proving 1be existence of combinaterla) ehjects with desived propertied i
he prohehilistan mothad ; this is deseribed in Seeliop b

2. Randomized Sorting

Cinzider socting a 52t 5 ofn numbers. The main ides babind these zlgariltms
ia the use of rendiae sempling: 4 randamby chosen memar af 5 ia unlikely b
b cme o its Targast, or soallast aleoents. rather, it is [aly 10 be "nsar the
aidels”

Azorithm RandomOS is imsired by the Quidksors algorizhm due
Hoace [14.. We neeuroe that the mndom rbeirr in Step 1 oan be made ir, it
titne. We now analyze the ecperted qunatber of compesizons In o execobion of
Randem(Q8. Comparizons are performed i Steg 2, in which we compare e
rendomby choseh ehernent to the remaining elaeerts, For L <%, let Sy,
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Algorithw RandonvQs:

lopue: & el of pombera 3,
Durput: The elemests af 2 socted . norasing order,

L. Thooos an element  unidoem’y & ramdan (o 3: every eloment in 5 hes

| egual prabebdiy of bamg chosen.

2. By comparng each ebsent of 3 with 3, determine the s 5 of elements
amaller then y i the set 5y of demnats Jarger than y.

‘3. Recursivaly st & atd S Cutpid the soeted vemice of 5., foflowsd by 4

and then the gorted verzion of 5.

denete 1k2 element of renk i {the ith smallest ehement ; in the sl §. Dhefine X,
1o assume the value L if §;; and &, we sompared in & peeeuticn. and the
value 0 ptherwise. Thues the totel womber of comperisens s T, T X
By linearity of supactation the sxgertsd oumber of cotpatiens 5=

E[iz 4= iz B %31 2.l

=0 s inf e

Let ., denote the probability ches 5 and 5 ) aoe compared duting sn
exerition Thep

ElX,) =gy 2 D411 -ph el =y, (2.2

To compute pyy we view the executicn of RandomiQS a5 & labeled binary
trer T. Each node of T3y labeled with & distinct element of 5. The roar of
Lhe tree is labeled with the element i chosen n Step 1, the left subtree of 4
rooteins A alsments e 5 and the mighs subtzes of y containg bhe elements
in & The structures of the wwe zubrress ae datarmined revursnely by the
execntions of RendomidS on 5 s0d 5. The romt 4 i$ compared to the
alemients o the twd suldress, b no compacison (8 pecormed batwesn an
eheraert of 1o Jalt subtree and so edement of the cghr aabires. Thwe, Lhere
ke o exparison between §: and 5 if and ooly if one of chess ekmeats is
an aneestor of the other,

Consider the peceutatisn « obtained by visiting the oodes of T i jo-
ereasityg ooder of the leve] numzers, 2o in & Jeft-to-cight orcet witain each
bevel; recall that the it0 level of the teas s the set of ol podes at diacanee

exaadly 1 from the root. The [ollpwing tan olservations are <be cue o Lhe
analvsis:

1. There & a comparspn between 5 and 5, i aod culy if 5 or &
ociurs aatlier i the pecmutetion 7 tan any elemiaz Sy, suck that i <
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£ < . To see Lbit, leq Sy be the ealisst in 7 from amoag al. elemecty
of rank besween i gnd § I & ¢ {3, 7}, then Sy, will Sehng to the ek
subtres of .y while 3, will beloeg to the right sabtree of 5y, implylng
that. there i no comparison between 5y and 55, Cocversely, wheo
k€ {11} thees 15 80 Baestor-descendant relitiveship between 5),) and
5y implying thak the twe ekments are compared by RandomdS.

i

Amy of the claments S, 5 1. 8. i equally likeby to be the Sus:
of sheae elements t be dusen 25 & pattizioning clement and Bence to
appear first 10, Thus, the prodabilivy that this first elemens, i3 aither
5ot 3y exantly i -1 4 1)

Ths, gy = 20 - 1) By (21} and (2.2, the sxpessed nummber of
SiArparisIns is giver by

n n 2
L% Ll

1t folleaes. thee t7e expertsd oumber of comperise & buwde] sbove b
i, whie By i Le uth Hartonds sumber, defined by 5, = T3 1k,

Theerem 2.1, The expecied tmber of compuriacns 1 ar: ezarytion of Rean-
domQS f af most 2L,

Baw H, = lote+ &41%, sa et the expacted runging Hine of Random(s
is Qfalogn). Noce that this expected runring tme Aoidly for eoery fipet. I
i an expeceaticn that desends only on the rendom cheices mede by ibe
algeithm, aed nol oo wy assunptians shoul the disteibotion of the o,

3. Foiling an Adversary

A sénteimon paradign in the design of randamired algorithms iy ehie of joiling
on miversory. Wheress an podversary na'ght dedeal 2 determiniatic algerithm
with & caselully consirueted “bad" jopat, it is difficult for an adversary La
detext & rendommized algerithon in this feshion. The random chodoes mede
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ber tha Tendomized slpnnthm pravent the sdversary, while conatrarting the
inpk, jom predictiag the precise bebavior of te algeritro. An altermative
winw of this process is W 1bink of the tendomized abgorithm s first pirking
4 series of Tendom nombers which it taen ses T the course af exeqtion
a8 peecad. In this viewr, we iy think of the ranckm. numbars chreen gt che
start g8 “selecting® ore of a family of deterministic algocithiee. | other words
4 eamderalsad algortim can e thought ol e & prolabiliy distribution on
decarministic alporithics. W ilostrate these ideas it the setting of AND-0R
free emalunsion: the Fodlowl g elgorithen s due t Snir (33

An AND-OF. yee Is & rooted compleve boary tose im which inkerhw, nodey
at oven dietatics fromn the ot see Jebeled KD end interhal oodes of dd
distance ase lnheled 9f. Aspriaed with each leaf is o Boaleat role, The
ewaluation of the game tee ¢ the InCqwing process. Barh leal refurms the
va.ix asspeiated with it Each oft nade returnia the Boolean OR of the s
recieeed by its childeen, and each wno node “atums the Boolean aND of the
waloes returned by LUs chiMren. At each step an evaluation Blgarithtn chowses
i el and teads [t value. We do nor charge the algarithm for suy wiber
somiputation. We stadf the nombey of aich sreps taker, by am slgorithm for
evilugting an AnD-OR tres, We wursr cas belng alien gvar all esigmects
of bouls valwes to the Jeaves,

Lot T, dencte am ARM-OR ke o which every bee? s st dktance 2k foom
the root. Thiss, any root-to-leaf path pogses theough b AMD nodes {inchedlag
th2 tapt itself) and £ GR nodes, and there ane2%* leaves. An algacithm hegins
by spec:fing & lead whose vahee is to be read at the first step, Thereatter, it
epecifics such a Leaf st each step, Sased on Abe vahies It has read o pevious
stapa, In & deterministic slgorithm, the choice of the next kaf to be raad 5 2
dsterminsic fooction of the value at the lsaves read so far, For 2 rmodunided
algoritbm, this choice may be candamized. It i3 oot hard tu show <hat for
any desereninistic evaluation slorithm, thete ls kn instance of T), that fxcces
the Blgacithm 1o read the salies on all 22 |aaves.

We o v o simple randonuzed algorithm and stody the expected -
b of leaves it Terds ov any inztence of Tb. The Algerithm is motviteg by
the fallwwing simple obeenvation Consider & single AND node with tes Jeavs,
If the ande were to Teturn O, &t last ope of the Jeaves must comtaim 0, A de-
Lermitiatie algarithm ioepects the leaves in & Sxed order, and an adversary
eall therefore aleays “hide” the B s the second of <be tea leaves imspected
by the algorithn. Reading the Jeaves 1 & rancom ooder foils dhin steateqy.
With probasility 112, the algerichrn rhances (ke hiddzn (1en the firs, step, <o
ita experted wocber of sweps 3¢ 32, which is betler than the woost case foo
any determinieric algorithm. Similerly, i the case of an or node, if it wee
1o el ¢ 1 then & randarmized arder of easthining the Janves will reduce the
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prpecled number of steps to 37 We now extgnd this otuition and specify
Lhe comphete algarithm.

To ewalugze an AND noce v, Lhe algoeithm chaoss one of its clildren
i schitree Tooted al & O node) at vendom and evaluates it by cecursively
irwoking the algorithen. I | is rezurmed by the subazes. the algarichm procesds
2 evalate bhe orher chikd {again by Tacursive spplication). T s returmad,
the alprilbm returns O for &, To evalunte an O mede, the procedere 3s the
anee with the raiss of 0s0d | iwerchanged. We extablisk by induction oa &
thar the eeperted cost of evalusting any instaccs ¥ T, 1 &t ioust 3.

The basiz (% = 0] i brivid, Amuome new that the expecved ot of evala-
atitig &1y imavance of T} 5 at most ¥, Comsider st & tree T wluse rool
13 an Ok node, each of wheee childen is the rook of & copy of Ty IF the
ool of T weze vo evaluats to L, at lesst one of its chiléren tetyros 1. With
pretabiliy 12 1hls child i chosen fiest, inencting by the inductive kypoth-
e4ls] an expected ool of at mowt 3 o evadumsiog 7. With peobalilivy 177
both subsrees ape evaljated, incurcing a oet oot of &t owst 2« ¥, Thus
the experted coat of datermining Lbe value of T is

5%13"'[+%x2:43*']=213*':. 131]
If ow che other hand the o were to evaluste to  holh childre st be
gvalisated, incurring a roat of at mest 2 % 3577,

Consider neve the mat of the tree Ty, a0 KD node. 1 L evaluates b
1, then hwith ity subieees roated a6 of nodes ceburn 1. By the discussion T
the pravwus paragraph and by linearity ef expectation, the expacted ceat of
evalueting Ty to | i ot smogt $a (32 x 3*-! = 3. (n the stber band, if -he
instznee of Ty evelustes 1o §, an least goe of ity subcrear ooked 8t OR nades
returns {). With peobabilicy 1,2 it is chesen fira, and so the expactsd cost of
evaluating T}, is at mst

-1 -1 .
Ind EKEIE 53.

Theoram 3.1, Grwen any instance of Tp, the expectad number of slepe for
the atome rondotmined waceithan: i of mazt 3%,

Siucs n = ¢ the avpected ruving rime of our randérised algorithm
G 410 which we bonrd by ™™, Ths, the expected mmber of sleps is
grraller thun the worsr case for sy deterministic algonthm. Mote that this
is & Las Veges slgorithm and always poodoces the eoereet suswar.
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4. The Minimax Principle and Lower Bounds

The Lus Vogaa rundomized algoritbm of the presedivg section has an expeeted
runaing the of "™ 2 apy uniform hinary AKDROR tree wilh n teaves,
(o we astublich that no rendomizad gigorithm cen hese B lower experted
runming tome? W first iatroduce & standard techniqus for proving such ower
howneds. The techriqwe derws from clsesica| ‘game theary: s applicsticn to
lower bounds For zandomized algatithms i dus ta Yao |46]. This sechniqys
appliza cnly to algoriztms that tarminate L Fincte titne on el inpets end o
all randomn chones.

The key ides ia to relaze the rumring tines of randomiesg, algorithma Eyr
a problem Lo vhe Topb'ng wimes of delerminisic alpafithms For the prob-
lemn whem fored with randomly chosen inputs Consider o problem where sha
nomber of cistined Inpurs of & fived ize is finite, As it the nomber of dis-
tines (determini=ie, termdnating and always correst} alparithme for solving
lhat problem. Let us define the distributiono! eomplesity of Cae problem e
hatid a the experced runcing time of the best deterministic elmyilbm
Lbe worat, distribution an 1be inputs. Thus we anvision an edverssry choosing
& probshilizr distcibution oo the set of pessible nputs, and szudy tne best
deterministic algorithm for ths distrabution. Ler p denete & prosebiiny dia.
tribakicn oo the set T of inputs. Lat the random variable C[Ip, A) denate tie
cuniing time of determingstic algorichm A € A on an irput chesen woeodicg
to p. ¥izwing & randomized algorithm eg » probability Gistrinatlon ¢ on 1oe
set A of deterministie slgzrithms. we et the random variable &F, Ag] denate
the ruoning ilme of this randomized sbgerithm on the worst-case iput.

Propositiog 4.1 {Yau's Minlwax Principle ). For alf distrifufions p
awr T ond g aver A,

TJS'. EiCilp Al TEIxE[C{I.Aq]‘,.

Stuled alternesively, <be wrpected runming time of the eptima] determin,
Baic egoritbe for 2 arhitcartly chosen tnput dissobtion p s 2 aver bound
o the eapected Fanning wime of the aptimal [Las Vegas! randomized alpo.
vishn for [T, Thiee. w0 peowe & lomwer boured co the Tandomized complesdty it
staffices v chocee any dlstribation pon the inpat and prowe & dowsr baund on
Lhe wxpacted zuunig Ooe of deleroinisti; doeithig for that Jisteibation.
The powet of this technigue lis in the Bexibdity ia the chobee of p and, more
inpectant/y, the redacior. to & biwer bound on deterrainistic ggezithn, It ia
impoctank b reirartier than 1he dedenninistic slgorithm ‘knows” the caosen
distritraticn p.
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The above discussion dealt ooy wibh lemer bounds on the performance
i Las Vigas algonithrms. We briefly diwwss Mocte Cado algotithms with zr-
bt probamlity ¢ € 1,1/ Let us define the disteibuvionsl complerity with
et €, denoterd minge 4 EIC, (Jg. A]), w0 be tae roimur expected running
it oF pny determingsdic algorlsbm that ez with probabiliey st mogt ¢ g
der the buput distributior. p. Similarly, we dencte by mayer BIG T, A4])
the epected numicg lime junder the wor inpac) of aoy randoenlzed algo-
ithra that errs with probability at maost ¢ (3galn, the randomized wgocithm
is viewsd a6 & prohebility distribation ¢ ou deterministic algne.thrs), Anal
tgous to Propeaition 4.1, we then have

Propnsition 4.2, For of! daivdntone pover T and g over 4 ond onye 2
12. L),

" o
S BC . A)) S TxEICL. Al

4.1 Lower Bound for Gane Trea Evabuat|on

We cow ayply the Miciner Principle to the AND-0OR tree svalantiom prol-
lexn. & randocized algorithm for aND-0R Tee sviduecior. cam be viewsd Ba
s probability distribution over determinissic sporithos, beonise the ko
o the computarion as well 6z the momber of choiees, at eack, steg: are bakh
Bioite, We sony ae well imagine that all of these ccins are tossed befars the
beponing of the execution

The tree T = aqaivalent Lo & hedsnced binary tree . of whoss beaves are
At diaatice 7k Jrom the ront, aod &1 of whoee jntened nodes rompats the
H0F funetion: & neds recurns the value L i bach inpats aze 0, aod 0 otherwise.
Wa proceed wit’s the enalysis of Lhls wee of 5oks of depth 3

Let = (3 - /0% ench leat of the ttes in mcependently set ta 1 with
probability p. i each inpat to 2 BOR node i independeathy 1 wath probahiliy
P its utpet i | with probability

- 2
-1 3-vE
R J‘ 2 P

Thus che velue of every bode of the NOR res s 1 with probability o, end
ik valoe of @ node i indeperde of the values of all the ather pades o
1be sz level. Conmder 8 deterministic slgorithen that is avaloating & mee
Tarmishad with wics rendam inpis: |22 7 be & node of the teee whose velue tos
algorithm i8 tryir to dstermine. [eroitively, the algarithe shoubd, detersalse

An Drerview of Bendomized Algerthms 1

the vadoe of ooe child of @ hefore inaperving ary lesf of the other aubires.
An alternabive view of this process is that the deterinisistic siporithen shanld
inspect Jenves viaiiad in a deptiefrst search of gha trea, exeept nf conre chat it
censes o vt subtrees of 3 node v when the velie of v hes besn devertnined.
Lt us eqll suck an algorthm o depth-first prunimg algerithe, tefarfing to
the erder of Lraversal and the Tact <bat subtrees that supply a0 additionsl
infortnakion pre “praned” eway witnoct baing inspecied. The fol-swing result
is due to Tani 4]]-

Proposition 4.3, Jet T be a Nk dree ech of ashose leves b andependently
stt b 1 with prodetility ¢ for o fived value g € [0, Lot WUT) demode she
minimun, tier 1l determnislic algorithon, of the egpected rimber of ateps
Lo evatuete T Ther, theve it o depth-fire prioning olperithm niflose expected
rumber of sk do evaluode T s W4T,

Proptsition. 5.3 tedls ua that e <he purporss of our lower boumd, we may
Testrict aur attemtion o depth-Birst proning algsrithme. Let Wik be the
enpectad number of saves Inapected by & Capth-fst prining algorthm in
dateriminiag the valisa of 2 node at diszance & Rrom the leawes, when each Joof
i independently set to - with probability (3 - 5179, Clearly

Wik = Bfh— 13- (1 gl Wik= 1),

whegs the first tetia reprosenzs the work done in evalozting one of the sabirees
of the node, end the second veren represents the work cone in evalustiog the
acher soberee [which will be pecegyary i€ che first subteee returrs the valoe &,
b7 evert noclirzing wikh probebality 1 .- pb Leting & e logy n 2od sobving,
we gt Wik 2 ol o3,

Theorem 4.4. The eqpected rumming thne of anp rangomized aigorithm that
afusyz evelusles on insance of T orrectiy ¢ of fenst 4, whora n = 0%
13 dhe remder of babes,

Why i5 our lower bownd of o Jasa than the upper bomad of 55™ that
follerws From Thearepn 317 The oeasan iz Enat we have not chesen the best
peible probabisity dist=zotion fe the values of che leaves, mdeed, in tae
S0 tree i Bl Inpeete s n tode are 1, a0 repsangble algorichm will read
Yewais of by subtrees of that node. Thus, to prove the bes: lower bound
wa hawve b ehgse 3 distribwtion oo the inputs that prech:dss the svent that
Bath fupors rg 4 oade will Te 1 in ovher words, uhe vahie of the yauts am
enosen &t randemm bt oot independently, This stranger fand oonsiderably
harder] ana-ysin con io fac; be used to sbow that the slporithen of Seclion §
14 optirial: the Teader 18 refer-ed to the paper of Saks and Wigderson [34) for
deteils.
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5. The Prababilistic Method

45 wa saw L0 the Jpst chapter, e srobabliatic mathod is a (echitilque for prov-
g 1be exlstence of enmbinsorial objerts satisfying & set ol desired proger-
Ues. The inlas i be st up & peotabiliey space wud show that sn pbiect dravc
from this space will sesishy &l Lhe specified propertles with pon-2erc probe
pirliby, Wi exemlify this techolque wiing 2 cesclt on comference schedubng
duz to Bl aod Jaghaven (5.

Cousider a conference i whick n talls ace coganized iwto tec: “paralle]
semsgna® of /0 tal's each, A attendee wlsbilng to see o random talks is
like 7y oz encounter & number of amficts times at whisk the wwo coucnerent
talkcs are brith of interes to ber - whose expeciution &5 o'n. Wlen o is 4
tumstent, ths Tepoesents a kg of 1 constant fraction of talks of inteness oo
the attendes Comsider ingtessd Lhe follywiog alternative proposal. Supposs
instead of twp parallel sssshing we have four sesions. with cack falk givse
funge, We show jusiog the peobebilisvic method] thet for any nember of
alrendess 1o wo v, enck wishing to 5o up moen talke (for o > 0 soficiecthy
aiall coastant ), there i & sced:ling of talks iote bur sessions sueh that svery
attzndee will be able ca see olf their deslred talks:

Suppase .o Bact that we bave s many as 77 attendees, exch with 2 list of
an talka they wish to see. Kow consider & “amdom confersnee schedule with
fouir parallel traces, desiemec sa Jolloms. Sesicne 1 and 2 each fuve 0,2 taks
"and thug cumain one repd‘tion of each of the 3 talks} and are desighed 5y
the Program Cemuittes jo aoy mancer gt all {even adwersarially, keowing
whet :he ettendees wans ta see]. Session & ia & random permuration of scssion
|. und sessien 4 5 & random permulnsine of session 2. (8o, the = ralks are adll
being ziven ove & period of /2 tims skts | We angue thet with peabability
1= 0[] for tais schedule, eery one of tbe n? artendees will be able ro see
itl! their dusired talks. Since a random seduls i good Ty this mesnze with
prgitive probaii[:ty, we conclode thar for any set o w7 Tta a® tterdmes, thers
in & scheduls that is goad by 1his meamure. I2deed, sinee this probablity is
clese g |, it fallgees that Almest el scheduks from sy probebUity space are
gand.

A conveniect way to view & conlfecengs schedile is as & Dipartite graph |
Each talk: is represented by w nade on the |eft, ench time-slot is represmted
by 3 #iode on the cighs, 2ng there is an edge betwesn & talk and 4 Hme-slot
if ~bar talk & being pressnred in that thre-de.

We wiil say that & st of walks 5 quffers & compreasion if |N[5]] < [3],
where H18 reanesonts the orighberboad of the nodes in 5. Xoce that by
Hall's Theotem, a set o telks 5 has o corllicts if and oy if ne 57 C 5
sulfers @ eomprewion. Wi slate our main thearem m mire geweral torms
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Chan wacwe; the mumber of attetdees in she slatement i ooly brunded by
wine: palvreizial Finction of #. The spevialmeion o (be case of /° sttendees
b straightkorwerd, and yields & corerers Jumer bownd on the constact o, e
bese itg caloulalion ss an exercise Jor the reader,

Theorem 5.1 Sor any poliomial pin] there evials & constant o > 0 such
that ff pln) atkmaes ench wand to soe ot talis, then with probabilily [ -oil!,
the rondemtoed acnedeliing wethod dererzhed above odlows alf citendess fo xee
o thedr devinen zadky,

The sitahsis proceads i two gteps. W Frst acnslder amadl sl of 1alks.
showing that with “ressaeably” high poohability, all zeve ol g0 mest Linn
talks cen be ssen withoct conflice. Yee them consider lerge sets, and show
that for sy fived sat, of at moat en talks, wita high probehilicy no pon-aall
sobst of it suffers & compression. Thess togecher phve our desired result

Lemma 6.2, Letf B, b the eoent !n':_nl sorme ged of ot megt k folks suflers o
comgreasion, Then PriB, ] € 1 FHY).

Preonf. Consider o Fixad 521 5 of k welks. with &y talis in sssion | and %o =
E—ky tks in seasivn 2. Let &y be the number of sime-g.02 occopied by these
talks in semions 1 and 2 combimed. (50, &) k1 = by > maxiky. 51]). Then,

{0
(1

o [meiik = L~ bl "k - Vel ™ (i - Tiefies]"

= Enlﬂkl]ﬁ;[n:’hﬁ:
L[ & e -1

T kel l(k Y -h]*-"*:l '

Pr3 i mmpressad) £

(5.1}

The wwmber of difterart seta of walke § ocrupying by tineslots in seasicns
1snd 2is at most |}, | 2+2% Thareore (using ts, for & given by 43¢ baoed
i increasing with k)

H:-'-!ﬂl'ﬂ

PriBi< Y *

n
P

(k-1
[k—1 - ky)b=-meay
L R
£), —
Ek *

waeme £ (st 6uep s The nequadity a8 > ((r — 01720t This gives v3
or desired bound. 0

4
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Lemma $3. For o fied get § ofan tadks, the probabubity that some subsed of
§ of size at boast k suffers o compreseuar: is st most L [160e")"" (ﬁ;)

Procf The probabiliy chat 8 Jxed gt & C 5 & talky e1ffers 2 compressicn,
given <bat the tales af & e up kg Uimesslots o seeaons 1 and 2, 8 ot most
the quantity given in Eqeation '5.1% The number of sets 5 £ 5 uging &y
cimesiots {0 sesaions 1 and 215 b weat ()2, Therefcs, the probabibity
chat some set 3 C ¥ uang ky time-slotz o wasicns 1.and 2 (aod baving at
moat 2y talks tatal; auffers 3 compression i5 st wost o a- 15#]"‘. Thus,
the probsbillty thet gy & 5 wich a6 Jeast £ talks suffers & eeve pression i
st nodt

an IZIEDEli]h . |:1Eﬂ€41|k|'2 .

Z T - nJ (]-ll!iu&‘)' U

k1=k11

Praef of Thsorem 71, Lemons 5.2 implies tat with probebility L—o{1;, oo
sat of size € § lnw s compressed. Bow, say pln) = {r”) fur sne rontan.
3. Choose or = ke~ ' so thee [16ee*1 ™12 € w7, Lemme 5 implies
thet with probability 1 — &1}, oo subse: of size 2 3 mn any of the pin] sets
of desired talke suffers  compression either. a

Cme enight hope to impireve on Thearem 5.1 (and Lemna 8133 by pro-
daring 2 achedne such that eseryses of k talks can be seen wishout cotfli
foe & 2 Jog t., Homwmrer, dbe following zimple argument shows that this & oo

poszible.

Theorem 5.4, Fer ey schedulz of n tolks wlo § Seavions seeh thar s
tolk o plven fudce, thert exidts o s2t § of Ok n) talke that complict Suffer

L COMIERHn .

Fmaf. Comgider a graph with & verbex for each time sht. and whera 2 talk
sebeduled in teeslots 2 and § is represented s an odge from i to 5 This
greph has degres 4. Fick some erbitrery verkes o che praph ard gos 3
hreadth.first search tree Erom chet node el a6 lesst two back-edges eee
obaerved, [An edge from & wode to el - P4, & alk given in ooly coe
time-glot - coumes a8 2 buk-edge.] This musl oozt by the Gue the tzee has
okt to dupth lyn because the degres of the graph is at Teast 3 Congider
b the ve cpeles induced by these wwo back edees, If the eycies wuch (o
waerlap) then the union of the o cyces i our desired set 3. [ the cyeles
do nt toch, thes the two cyckes togetber with the path i she tree betweer
them [whleh kag leagts at Tost 215 n) &5 our deslred see. a
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Vb if we allow sach tal to b giver 3 times? [n this cace =Aandard
argueer:ts (alge the linea of the propl of Lemma 5.2) sbow that the bipartite
graph will with high probabilits be an expander, snd therafzse all sz of on
#2ika havre Ly property that chey can be ssey withogt sonfict. Once we bave
ereae] a sechedule g candom, how do we verfy whetber It is goed Bor 4 g6t
of aktenders? And how doss each. st lendes decide which of the two repdition
of each Interesting Lalk to see, Lo crdae bo eosure thal sqe sees all the talus of
irtaveat b0 1er? These guestions. and other sersions, car be found in |5

6. Algebraic Methods and Randomiged Fingerprints

We now turn to & discussin of the rendoncsed fngerprinting vechiqus, dus
to Freivalds |12, for the verifizasion of ideotithes involving inwsries, poby-
nomiaks, end Jotegers, We e50 desive how this ganecalizes Lo 1he se-ralbed
Lchwazte Zippel techiiqe for ideotitiss meclviog multivariats polyoomials
(independen:ly dwe 1o Sckweete [38] and Zippel 7] see alio Debills ard
Lipten |35 Finally, following Levész 22|, we apply the sechniqre ta the
probkeen of detecting the exsbence of perbect matenings in graphs .

The fngerptinting techpique hos <he following peveral fomn, Siapose we
with o chees the egnality ¢F b elomends £ and y drawn from some “args!
uriwerse [ Toder gy reaconshble mwodel of cormputation, zhiv peonder has
adevermindalic complescty og |FTh Erapboying randomisicn, an sherns-
trve approack f9 to chotes B randoth ftetion from O ibto a soaller spacs ¥
such that with bizh prababilicy 7 and g ave ideatical f end caly if their imegea
in V" are kiartical. These images of r aod 3 are said ta be cheir firpergminds,
wid the wqualily of Fgerpriuts can be verfed in time O [lug[V]).

The olbwious probleer. with the £ ngerprinting teehnique ia thek the avetuge
wumber af elements of [T mapped e ao element of Vs £ 2], Giwes this,
it soomg <ifeule, i o ienpossible, o fnd gond SngerpTing Mnetons that
wiirht for ebitrery or worst-case chowes of T and 5, Howewst, a5 we will ghow
beinw, whan 1he identiry-chedking I only tecuirad 1o b= correck for 1 and y
cheset. from 4 singll s thepace § of 0, surticolaely & sulepace witl wme well-
definec algsbraic sirurtire, it ia paesible to choose gaod Hogerpriok funetins
withot sy w Prioc knowladge of the subepace, provided the size of ¥ i
chrgat to be pomparaale (o the e of 5.

Thriaughenel this sevhior we w0 be workling over sotie ucspecited fielt F.
Since the rancemioation wali ivolse unifors saopling fom g Aeite subsst
of 4he Beld. we da oot even need o ypectfy whesber the feld is Bolie or med.
The eeader ay Bed it helpdal in the infinite caze L0 assume thar F s the
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Sald o tationd] oumbers, and in the finive case 10 assume shas F is 2,
-lye figld of inperers modake sume prime cumber g

§.1 Preivalds’ Techmique and Matrix Produst Verification

We Jegin wilh el provlem of serifying 17 correctress of matebe procuct
idesritis. Crmely, the fastest algoritha for atr multiphication {Coppet-
ainith 20 Winegred ‘7)) bes ranging vime O(r4™), improving signifisartly
on theabrious On] time lgorithen; however, the fast mateix mutiplicatien
alyomithm hes the disadvantage of beig extremely complicaled. Suppase we
have an imp-emetitation of the East tatrix mokplicasion algsritho and, giver.
3t complex netues, are wnscre of its comrectiess Since program vetificasion
appests to be&n incrastable jcablem, v comsider the more Tensanable goal of
verilying <be cocrertness of t3e output prdiced by exeonting the algorithm
o0 specibie inpurs. This natisn of verifving peograens oo spaafit inputs i the
hasic Lenet in the theory of grvrim checkmy recemtly Forelated by Blim
and Kanran [4/-

Suppase we ae given three n ¢ n matrices X, ¥ and Z aver o field F,
and would Tike u veri?y that XY w Z. Clearly, it does 127 Tabie sense w0
use & s'mgier hut clower mateie mulbipiction akgorilha for Lbe veridration,
ag that would defest the whola purpose of using the fast algoriskm in the
first place. Tn fact, there is 0o nead to Te-emprte 2 indeed, we are merely
reqrirad to verify hat the prodect of X and ¥ i equal to 2. Freivalds’
torhmigue g:ves sn elegans solvtim that l=ads Lo an O} 1ise randatrized
g.perilhen with bounded ecror probebility.

Wa thooss & ranom weecar € 10, 117, Le., eachi component of ¢ is chizen
indeendenrly sud usiformly at mandora fromo the e 0, L} consistlng of te
additive and ultipbcative idectitis of the febd F. Then, in Ofn") time,
we can rompote ¥ = ¥ & = Xy = XYr and 2 = Zr. 2 woald liks
Ve cheim shat the identity XY = Z car be verified by merely checking that
= z. Quita clearly, f XY = Z theo 2 = z; unforturately, the convesss
15 nat true in seneral, Howsver, given Lhe random caniee of £, we cen shos
that fo- X¥ # Z. the probabality that = # 2 i at lesst 173 N8 that the
fingerprinting eiporitun ercs only of XY # 2 bz 2 sed 2 1600 gut Lo be
equzl, and this hes 3 bounded protmbility.

Thearem 6.1, Lt X, ¥ ond & e nx & meatraces gver some flefd F such
that XY = 2; further, isF 7 b chosen aniformly ot rekdorn from {0,711
and defre = XTr and 1= Zr. Then,

Frio=1% 1/
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Proof Lat W = XY — Z and note they W i not tha ellzeroes makris.
Singz Wr=XYr- Zr=a— 2 the evat 2 = 2 is equivalent 4 the event
ther, W = [ fetioe, withoot bes of geterality, that the Beay e of W
bas & pon-zezo +ndry and that the non-sero edtries io that Tow precece all
the 227 etitzies, Define the sector u as the first row of W and swume tha
thi first & > ) ertries in 40 are now-zera. Sine the st component of We is
s " ¥, £ing an upper hend co the probability that the inner praduct of
and r & 2ero will givs an wpper bound en the probability tat 2= 5.

Clear'y, w'r =0 and aely |1

k o]
n= L i} GRY

W

Assume, wichout Joes of geoecaliiy. ¢be: iu chacsicg she random wector p.
we cebect my, ., Bfore picking ry. Cuos <he valuss for i, 7, have
beer. deterriimed, the right hacd side of (6.1] i fined at some valoe , £ F,
I02 £ {0.1}, then ry will never equgl +: conversely, i o £ {0, 1}, then the
probsblizy that o = v is 172 Clearky, the ponbahility that 'y = 043 at
mat 172, which gives s ohe desired resalt. C

(o essanee, the fingeeprimnting teckniqre meduces the matrix meltiplication
varifiestion problem to that of verifying he equality of tu vattors The e
durgion drelf cen be performed 1o b Q%) rime and vestor equaliy car he
chwseked in (1) time, grving an overall vinning time of O(n%} for this Morte
Carly procedure, The error probability cen be rediced 2 172 vin & irdepan-
eat Jlecations of ¢he Monse Carlo algorithm. There wss nothing secrosenct
a1k choasing the cevaponedts of the candom wetor + from {0, 1}, slnes any
tRn distinet ebrents of F woold beve done equelly well, This suggests an
aternaLive appeoaci bewercs Teducing the erog peobubility, 2s foliows: esch
compenent of 1 s chesen independent 'y and weiformly st raedhoin from soma
sibeat & of the eds 1 thea, it is pasily verified that the seror prababifity ia
o eepe then |5,

In geueral. Frelealds' secbrique can be appled to the verifeation of soy
mateue ideotity 4 = B. Of course, given A ard B, just enmaparing their
emaries takoes only O} time Bor there are many sitwations where, ust as
It the case of matrin produet verification, compting A eaplleitly & eiber
Loa sxpensive or possibuy even impesssble, whereas coniputing Ar is easy
The rardocn Rngerprine, techuique is an elepae sobusior, in such setsings.
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§.2 Extensbon Ly Identitien of Polynomials

Froiwalds' fngenprinting technique & quite gesetsl and can be applied to
trary different versions of the idenkity verification probletn, We show that
it can be appled to identity verifeation fr syimbolic polyoemisls, where
st qolyrnials Pyz) axd Palx) are deemed identlcal if they bave iduothes
cuefficients for serresponding powets of 7. Obsarva that verlfiing inkeger or
srring equality i w apec’s. case, 3o e cAt: Fepresend wny string of length
k& & polvoemial of dagee & oy wsing the ko slement I the string oo
detemiine he coeflicient of the kth prver of & spreleric varisble,

We defice the polyoomial product verification problem a# falkws: ghren
three pulyzonids Pyiz). Paiz), Falz] € Fz), we aoe vequired oo verify that
Byiz) « Duf) = Byjz). We will assume that Fy(z) and Pofz) ore of degree
at wrst 7, Iplying thas Pyl has degres ot most 26 It is welkloumn that
depres % polynomisk can b wadtiplied in Oiztlogs) time via Fasl Fearier
Toanaforme, and that the evaiuacion of 4 pokynomis! mequires orly Ol time.

Wa present = randuenized slgokithm for polyonial product vetification
whien % gimilar i spirit o <he matciz pradict venFeation sgsritbe. Fiest,
fie g set S O F of sige af least 2u 4+ 1 and chooses r € § uniformly at
pereote. Than, after evaluating Pyiv], Faoixd ard Plr] in O] tizse, our
algnrithm declaves the ideat:ty Piiz)Pyix] = Fyf) to ba correct of and oaly
il Pir'Pyfe? = Pyir]. This slgorithm ems cnly in the ease where the poly-
nommisl deality i3 [alse bt the vetue of the three polynemisls ot r mdiates
atnerw'se, We ascahiih that che ermor event has botnded probability

Lot us define a degres 21 polynomial Gz = P (T)Faz} - Pilx). We say
lat & py ynomisl (Hr) is Eeticutly zerm, demoted by Qi) =0, ’.-fea_:.du afits
coefficients aquals 251, The polynomial identity Fyjx) Pzl = Bz} iz il
if and caly if z) = 0. It reeneins o eiablish that 3 Q(z) £ 4, then with
bigh piohabilty (ir] = PérlRufr] - Balr} % & By clementary algabra we
know thel ((z) has a most 3 diebinct oots. Clearly, unlees Q(x) & . oo
mgee that 2 different spaices of ¢ € § will cayse iy to avaluate to . Thus,
he areor eotsbility is 3 et 218 . We raer redace the eror prabebil:ty
either by using independent erstons of this algorithm or v choosing a
lurges zed 5.

I turms out thes the shove werifivation technigne con be easily ex-
teoded 1o a gemetic procedure For sesting sy podnomial identity of te Exmo
Pz| = Pz} by converting it into the Mentiy Giz) = Fi(z) - Aler=0
Certainty, wien Py and By are explicitly provided, the identity can be de-
terministiciLly varified in Ofx) Fe by comparing mesponding poedicients,
(e rendounizas eahmigue will ake ust 18 ong to merely evpluate K[z} and
Folr) st @ ravdoe valos, But, aa In the cese of verifying matrix identthe.
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che: random’aed algegithm i very wsefal o situations where the polmomials
e impligitly specified, 2. when we only havm & “black han” fiar sompaing
the paly neenials with ne information shanr their esfiriencs, or when 1hey
are poovitked io 2 forn where eomputing tha actual cosficients is expensive,
O ecannple of e Jubter situation = poovided by the folkwing seoblem in.
wilvifg che decertuinea of 8 gymbolic matrix. A8 will soon. besaire abvious,
the determinant probem wiil in fact recuiee & aeluigue for the weridratior, of
polynatrial identicies af mudtingriale pulyoontind aod therefore we will need
to previde 5 ganeraization b chat setting,

Let M be an % » 7 matrix The determinant of che manris M 15 defiied
a8 ol

dtMi= Y sgoim) [[ e (6.2]
Ed, 1=1

wheee & i the symmetrin group of periy:rtions of coder v, gad sgnlx’ e
the sigtt tf & permgtakion 7. Wil the detenninags 15 defined a3 & s
miation wich #? vartnd, LU wurns out <ha Lt & esally evahaated in polyrauial
tlmne provided the mataly entries M., are explicitly specified. The sitiation is
1oore complicete when the matcix rotries ase not explicll constants, as we
illustrated sext

Consider the Vandermonds ostrix Miry,... &, which is defied 1o
terms of the indetereingtes 2,,..., &y suck that M) =2 " e

b d n-1
lofy...H

A -
lo; 3. . 28!

M=

PR L

I% s known -het for the Yandermonde wattix. des[ M) = HI{J[L -5
Considder the problem of verifying this idestity without sctaally deviing o
formel proof for A fied valie el - Counputing the determinact of 3 symbulic
sl s infeasible as it equires dealing with & sumbation pver =) terme,
Hivweser. we can forunlode the identity vezification prablam s che probleen
of werilving that the pabenemaial 3y, ...z,) = dec[ M) - Mec i3 - 2,00
identically zero. Based tn owr discussion of Freivalds’ sachnique, |t = aatoral
b consicer tae subsrinution of random welues for caeh 25, Sioce the deter-
mmant. can be eamzuted in polynemial live fur a9y specific assienment. of
wilues ¢o the mvmbedie varabls zy... .2, 8 easy 1 evaliate te polyoe-
thial @ for random values of ta warisblea. The cady kst is that of bonnding
b eecyr probability for this randoled vest,

" The elgn funclion 1 defined 1o be sgofmt = {-1)', whatt ! i6 the numker of

pairwisa exchanges requited tu comverl the idently perewtallen ina «
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Wa now 1or o <be exlendion to the wo'tivaciate case of the snalysiy
of Freiveds” tachmie a5 appdied to univariste polyaomials. Nate that o 4
i veriate polynomdal Gz .. L, the degree of 4 tetm is the sum af'lt:ﬂ
pxpanents af the variabl: powers that define it, and the totel degres of § is
—bp eeienom over all terma of the degress of the terms3

Thegrem 0.2, [et Gz, 20) £ Fl,.- .. ] Be & mulmaraty poigma.
mact o) toted degree . De1 § be o Finite subsed of thae el F, andielry,... Ty
L chosen ynifarmby orf oufependentiy from: 8. Then,

PYQir1.....ra]) =10 Q{:]“'“:"HD]S%I

Proaf The proaf iweclves en miduetion ok the number of vzoetles n1. The
base 2ase of tba inductlon s % = 1, which reducss 5 werifiing the theorem
for A ariveriste polvoomial iry) of degree m. Bt we luwe already seet: fur
Olr| 49, the probability that Qiry) = [15 at moat |8 laking care of
the “wsis.

Suppose oow that the induckion 2ypretesis baks for mulliveriate pn]_f-
podnials with st st n = 1 varisbles, whers £ > 1 In she polynomiat
G0z, ..., Tn} e can fastor cut the vasiable 2, ang thereby express X

k
Fyostal = Y BBt 2,
=0
where & < 7y it the largest exponent o x, in €. Given aur choice of £. the
coedficient B itg,.. 2y} 0f 25 eamnct be identically 2aro. Nute ibas the tatal
copteeof Py it oot -k, Thus, by tbe incuction hﬂ:mm vt coarludz
that the probebillty chat Prirg, .-.7=] =0 i &t cost (m — k|5

Tt W mow b to the case whees Pilre, .. 7. s o egual to Il].. Cn.:rn-
sidar the fallowng ueivesiate polynomisl over 2y obteined by substituting
the randam values Gt the other variables in £

k
'-]'1131] =|:;|:I'|,Fg, rS:"':rn] = Z-ﬂﬂ{r?l'“lfn]
L]

The resuting polyoonzal (ry) bas degres k and is wot idetically e isince
toe confistert of 2 B asrmad to be nomeass), A9 i 17 base case, we
ramc.kde that the piubahi]it:,' ther girs] = Qry, 72, mn) evallates o D
boundad by /15

W have eetablished the falkwing twe negialities:
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- m-k
Prifire, . el =20 ——;
(™ 5

end :
Pr{l:l':rl.l“h .,J'T,:|=C|| Fl.':“h---lrﬂ_:' Fr{ln < ﬁ

Obserms chat fur any tum events £ and £, Prif;) < Peify | B+ Prif;).
Comsequac:ly, we b6 what the probebiliy thar. ey, ra,. . 0l = 03500
mpre than dbe sum af the two probahilities on the cighs kand s5de of the two
imequalities displayed shove, sod, this Gurws oud to be w9 |

There is ene major disadvaniage iz sbe randomized verification proce-
dure [ust discussed: in lacge (or possibly infinive) Gelds. che svaluation of the
volymnmials caald iolve Jargs imvermediate vilves, leadite |0 ineficiect im-
slamentatin. To deal with this problem in he case of ‘ntegers, we periorn
al. computations medlalo & random prime womher cheser, from a syieshle
raoge. It & eaay to verify that thiz does oot save arr adverss elfect o the
prrer probabily.

6.3 Dietecting Perfect Matchings in Graphs

Wk ocor present, an interssting applicetion, of Lhe Lechoiques fram che pre-
ceding seruinn. Consider 8 bipartite graph GU ¥, E) with twy independent
et of vertkes U = iy, 0 2 fand V= (v, 1), such that the edpes
in £ have one anr-point each in &' and ¥, A matebing ir. & is & zollsction
of edgs M F zuch thad ench vertex & an end-point of o post ane edge
in M. A pearfect. neching is o matching of size b, Le., where each vertex
gecars &5 an end-paing of sxaclly oo adge in M. Perfect matchings are im
a L-ta-| carrespandence witd the perowtaticns in §., where the matehing
eorapanding te 3 permabaior 7 € & i Gvea by the colkestlon of edees
fluryd | L€ 8 & np. It torms eue that there & an futioale relationship
betwest matcnings ic a graph and the decerminans of a matey ohésined Jrom
the praph.

Theorem B3, For ony bpotite grph GILVE), define o comresponding
AR el A es ol

A = Ij) |:1f|.'|.i_1:|EE
LR R (-

Let the multioarite polymamial Q) 213, Zna) dénote the deterreinnn
tet{A] Then, 3 has 2 perfert maiching if and omly f Q2 4
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Proof The devenminans of A may be represented s (ollows:

d'a'-r"q] = Z ggnh]‘dd.:ljjl-’i!.xu]----‘in.rl:nj-
TEE,

There caonct be ary cancellation of the terms i the ummArion sinee each
1), GoyTs Bt st ence in A Tt folls that the determ:nent i e iden-
Eeably 200 i sad unly L L2ere edsts some peniutasion 7 for which the
gotrespond og term it the Eummation is nog-zera. The term corresponding
o & permtatior = % nomezero i gnd ondy i 4, g # 0 for echi4, 150 2
this i epuivalent ta the presemds io 3 of the periect matching eoregponding
RS

The masrix of indeterminates is she Sdmands mairr of b bipurtite geaph,
The abve Teull ¢in be etended ot case of nor-bipartite graphs, and the
corretpanding meuris of indetermnitates it called the Tutta mikriz. Ttle |82
wes he first to point ous ik relationship betwsen matchings and Jere-mi-
nenits, whike vhe simpler relition heteeen bipatike vaatchings and detertni-
natits was et by Edmonds 9]

The restit Jzsrribed abowe lesds 1o & simgle randomized procedare for
teslicg the existenne of perfect mekthings in u bipactite graph [due to
Lovasz (22 ung the algoeithm from Section 6.2, determice whether the
deterrninant i identically zero or ant. The ruboing time of this precedure
is dominated by the togs of computing & determirant, which is essensially
the same 48 the time caquited to coaltiply two irioes. Of course, taere sre
algwitkima Jar somsruciing & taxifuwn matchiog 10 & graph with m edges
end 7 vertices in tinoe Qenym) (see Hoperch and Kagp L3, Miesli and
Varirani [, 44], and. Ferer end Motwwd |10[). Given that the tine requived
to compuze the determinant exceeds my/™ fae srasll m, the benefit n us-
Iy this tandomized decision [rovedire sppears mergingl at best. Buk thly
techriqus wae extnded by fabin and Vasitani [33, 33| to obaic simple al-
goritame Gt the antual consfruction of mEximum makucgs; altoogh their
ssodunized algorizhme for matchings wre simple and eleghat, they are 52l
slower thecy the dsteriministic $fmy/7) tinse algerichms kmown earlisr, Per-
haps mare sigrificancly, the rendomised dersion eoced e proved to be an
essentia] ingredsent in evising bast povoliel algorictms far computing saxi-
mmum matchings ‘20, 29]-

7. Further Reading

We canclids by giving some poinbess w the (large] mimber of randomized
dgorilhms wot covered here. U shocld be nobed that the exemples xe dis-
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cusaed wre bt & mars sampling of the many randomized algorithma for esth
of :he pretloms corgidered. The slgprithms cyvered were dhosen to illgstegte
the e Tather than to represent the sate of che am for these problams.
The iterwsked ceader i reforsed to the bouk [51) fxr & discussion of ather
algocichons Tor vhese probles

Rendowenizad algoeithms hews found application io a large numbear of ar-
eas: Liu Joad-balancing (43.. apprasimation algorithme and eounbinesorial op-
thmization |13, 18, 25), graph slgocichnas [1, 17], dete structures 7). eounsing
&nd eoumesarion [$3], parallel algorihms |38 21 dist-ilueed alporithm J33].
geornetric algorithms [27). eobine algorichma 3, 6] and number-theoeetic &
garithms 30, £, The interested veade: should aonsult these a-ticles or the
boalk 51
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Mathematical Foundations
of the Markov Chain Monte Carlo Method

Wark Jertum®
Tepartment of Computet Scoence, University of Edinhurgh, The King's Piildings,
Feinturgh EHY 12, United Kingdom.

Gymmary. The Markss chein S Caro {MEMCT ioethod m&_:liu the ides
taal informadion sbeut & sl of corbinaarial ablects muy be obtained by per
forming 6 Eppropriatsy dedned Tecdem walk afl thogs ohjens. I the rea of
stgtistirl abpaics. MOMO slgomitams kve been in st bor mary pears or the
purpase of eatimating serous Juanties nf phiysheal irdecesl, ot expgmtl_ws of
tecdctn varinbles o ‘tenfigurstions” of & petistical modsl The ricning time of
MCMC algucithms depeeds om the tace ot which the andcen wa.i'lc_mm-mrgu. Lt
eqqualipriurn: only when a conditian of oear-eruilibriue has beew ackieved car _I.I'I.e
alporikar dlstrver wael ‘typican’ objects B Tike. In the piser, dacade of %0, it 788
beezene posslote todetive & peiri Eonunds on the rala of cometgeae {a equiabeinn
ol anéen wilks underhing MUMC lgorithas of practicel inerest. fo qum where
& prioti brands cannct be derived, i oay still he posible 1o condiet, Agarmsly
grounced experiments, Many of the mam idean and techmniques are set aul bers,
with 1h recent devalopments bemg discimed 4 greater length.

1. Introduction

The classical Monte Carlo method i3 n approach (o estineating quantifles
that are hard v compate exactly. The quartity = of ntersst is expresoed a9 the
expectalion 5 - B{Z) of e Tundom verisble (rv.) & Jor which some afficiant
sampling procedure i avalable. By taking the mesr of some s (ciently largs
sut ol independant samles of Z, one may abtain an approecCiation £ 2 Far
EXAM[re, SUPEHE

$={lx.yl €D 1 pizg) <0, forall i)

is some reglons of hz unit suicare defined by & system of polyremial inecual-
ities 7,51 € 0. Lat 2 be the r-v, defined by the Cllowing EXETIMEN: or
briak; o0 2 paink {7, ) wnifarmly a4 “sndom [uar ) frem [ﬂxlF;qlp.lt 2=l
if py'r ) < 0 b all 1, aod 2 = D otherwise. Toen Lbe areaof 508 equal
to E{Z", and an sstiate of ¢ may be obtained from the stwniple mean of
& wifficienthy lorz sequence af triels. I this exaenple. the we of the Monte
Cack method ia periaps svoidable. at the expense of 4 mome t-:unqle:c al-
gl fog moee essentiel nee, ses, for eemrple, Keith's propesal ‘| for

" Sapported i pert by Fpri, Wariicg Gremp No. 11735, “RANTL"
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patimating the sire of a ttee by taking 5 modom nath frovo the rowl to 2 Jead,
or Resmuossen's [55) for estimativg the permenert of o o, 1-tatrix,

The Market chaie Memte Carle 'MCMC! method is & developmen, of
bt foregrang approsch, whieh 15 somatitnas applieabls whan 2 cannot he
sanpled “directly” Compuer scientishs spproachicg this sobject wich cnly
sbe moat basic prokabilistis tocks can, for the momeot. <hine of & Markos
chrin M 85 being & kmd of Anite sntometen, in whizh the teansitions fraem
any state sre labelled, nod by Jatters fram some slphaber, Bt by oon-negetive
rer] numbers {probabilitiss] surwaing o 1. The Markey chen M stsols ic
a distinguished state oy at time 0, &d makes & seqoeces of transitiens st
sixoessing tlre-sreps, resnlling fo O sessing theoogh & sequence of states
Yo =12 X X ... The trensitlots are peided by wbe specified seohabil.
hes; N Xy = £, {2, T ia in stake r, after toe 2th transitios, ther, the
srobatility thet X,y = £y i= usl che number assigoed oo the transvion
rom state I, 1o gtate Tiyy.

Suppose [¥ deootes the (findve) state space of Ot The Markev chain W
wil be eomplesely specified if we give the matrix o ransitior. probubilities
(Pfz.5): 1.3 6 [2), where. for al puirs of states 1,y € 72,

Plz,g) =PriXy,. = | K=
‘sz 1be probehility chat the Marko chain win atate &b ticwe 141, conditioned
on it heing in state 1 at e § Beoe the eryedal “Borpsiting prapeny™ of
Markiw cheing: the state af cisre t 4 1 depatids probebilistesily on the stats
at titne ¢, but not, oo the stabe at ey earlier time:

Frivided a certain technical conditin—ets call is empociioity s med, 10
il converge to o well-defined stationary dislibition . hare precise v, Abere
% w probabllity disicibution 7 ou 2 such chat PeiX, = | Xo = 2) — 2l
as { — o5, Ior lk pairs of states 1,y € £ Note that the iniri] staee 1 2
Hergotten” oy M over & suffieien-ly large rumber of saces.

Sy suppose we have 8 oy, 3 foc which 00 obviows divect sampling pro-
cedirs exints, The Idee bebind MCMC 1s to construct an ergodic Merkov
chein T whose state space is the range of 2 [or o Jeest inchides che moge
of 21 el whatse stathasary distzihution masches the probability distribution
of Z- Then the r2quived samzbs e olnpived by sinalatior 9% for sufb-
tiently many steps 1 fom syme feed Init:al state, 82 returog the Bnal
Ante. OF oourse, what we obiain is not a perfeet sanpde feoou the vobability
distribartior, of Z, bt 36 T 9 large the evor will 5 negligible. Haturally, 17
daterming;ion of & suitable r s s ayifiessy, concemn in dgaroes applications
of MOMC.

As an exsmple of the appranch. we cotsider the problam of estimatiog the
number of [verlex} g-coloarings of & graph & _ In Section 2 we consider how
£
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sample g-colourings of G. generaled izdependently and wat., ¢ be wsed
1o obicsin &n estimate Jor <he number of gocktings of C. This step of the
V(MO programune—beos samples sre used s often (thoagh nat alwgy|
iz lher routine. We therafore leave mraoh coliring s our 6@ TRprasentative
axeenple, el frur the nse of samples to their generadron. In Sactian 3.
we show how to design & simgle Markew chain on colourings thal, given 2
ertwn ondition on the 2raph (7 and che mimber of cobws g, s evgdic
and has uiforms stutinoary distribuben. Again, thia step -the design of the
“lackor chain  |* nfien rather Toutlng.

W then turn to what 3 the trux. ofiar. e slicking peén, 3 the met1od,
namely determizing good oppet bounds on tbe “niving Lene” T, i, she
tumber of s5epa sefore the Markor chain 5 “elose” to the statiomaty discch
huticn, Secion 4 poesents times metlods o bound rg the mizing tize in
the context of & toy exemple. nanely & Marksw chisin on g-colmirings of the
arnpty Eraph. Obwizaaly, The roy sxcample 3s of 10 pracdical veduoe, Ttk ity wory
sitrplicity Lringe the wecous lechuiqes into sharp relief Sectacn 5 applles
e game thies melbids. 62 some moge sealiatic sod chellenging applicaticns,
Mast of the enaterlal af Sections & to § can be flewed & mranter detail
thowgh soicetines with different examples] i the survey artic.e of Jerrom
and Sincleic 37,

The ceunainde: of the article deals i greater deplh with a tople. nawely
tie ecupling method, which ‘s gowt in petceived impactance sines the sur-
vey arhicks [37] was writtet. Conpling ia & classal {22 elemencary! teclinique
fcir hunding the demvergenee rete of & Markov chain. but suns of us wotkng
in: the analysis of MOMC algorithires had been guilty of ihinking it o weik
ir, partice to be applied 1 intesesting exunples. Two cemnt developments
“epuplig from ihe paed™ aind “path coupling' -~ are Jegianing 1eTect thit
PEMEDLIDT.

3. Approximate Counting, Uniform Szmpling and Their
Relationahip

What. da we zveen precksely by [eficiert] approximate coouting and wniform
semmplicg”

Suppase & 1 £ — N is g fanetion mapping problem ins:ances (encoded
B wiTds over some convenient slphabiet ) o natural mmbers. Fer exam-
ple. ¥ might map fencedings ofl @ graph & to the bumber MG of perfect
mustchings b 63, 1 shoakd ke elear that eny combinatorinl enome: allan poot-
bem can be cast in chis amewnrk, A rondomiget eoprozimaion stheme ior
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& & randcmised algorithoo that cakes e ioput & word (instanes) w £ 24 and
sl anoermoe bennd £ > 0, and peoluces as cutpul 4 opmber V(s rardam
varinble] guch <heat

Prii] - eiiful ¥ €1b+ el 1)

Lo ]

A rendomized approvimalion scheme is ssid 1o be fully polememeal 42 iF it
rues i v polynomniel o [the inpuc Length! and ¢ ! We shall shbrevie
ate wbe tatter anwieldy phrase “Tally plymomis! rendgmissd approximpdion
gebeme” to FPHAS,

Suppeee now: (et § C 57« 5* is o ralatinn betweer: fencad:ngs of | prob-
lem icstances and. (ereodings of) feasible solutinns to that instance. Thue,
5 might assign to each graph F the set 5G] of perfert macchings in
We insist. thas the set S{w) s dnte for ll 4. [The ralationship we envisage
betwesn 5 and the courding funstean N discussed eardivr is, of tocse, that
Niw) = |Siw): for all meantaghul encotings © £ &' of problem inslinces,)
For ay probability distribution » on & finiva sat 77, we defins the total waci-
plion distance betweer, x anal Lhe oniluren a5

N R TP

il o = L Y gl= =
Dyixhs '?5"3,‘ 4] If-’ll -;E riz) |J’“.*|‘
I i

An olmast eiforn ganalee for 5 is o randoroised algoeithm 1bat akes
a inpul & word dostance) @ € I* and a toleronee § > 0, and prodoes
a feasible solution. Z € o) |a Tandaec varishle) such that the probebiliae
distibuzion of 2 is within veciation distance & of the wnibes distribution s
Siw). An almost woikorm sermipler is said 1o be fuily poiytemdel i 10 runs in
“jsna pelynomis, o 1 (the input kngth) and jagd=!.

There iz & close coonection betwesn slmust oniform =oipling wid appro:-
‘mate cgunting, which bas been dscussed o some eczk by Jerrum, Valiact,
and Vazicani [38). In biief, provided a certain techniral cordition knawn a2
self-reafecahilion is mel, loued quifpron sampling = posible in polmomiad
time i abd unly E appresinate counting i Here is @ poasible way to snake
the sonnertion comcrete in the case of graph eelourings.

Prapogicien 2.1, Fiimoge vw by ge: obmest imafprm. anmipiet fof g-oolme-
fngs of & geaph, which works Jor praphs O with mommim deoree Sounded

! There i ne sigmifizance in the corslant i 2 pearing in the definiten, beyomd
25 Ti g sLoicily balmaan .; end L. Any soccess probabilivy gresie toan 5 may
bz bposled 1o 1 - 4 5ar any desired § > 0 by porforming a snall wumber of
tri.alsﬁm?dlla}:ins the median of the Teauks; (' nucnbes of Lol reqeired s
Cellrd™") |38,

E
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by A < ¢ tnd suppoce thad the sampler has B complendy Tin. 8), where £
15 the number of wertiess an €7, ond § the allowed deviohion fom undformity
1 the surspiing distrbiction. Then we may consbrpet 4 rondomisel aiper-
maduon soheme for Hte tunber of 3colounatge of o gropd, whick works joi
graphs G with mozim: degree bovnded by A, and artich s e complendy

o3

where m 1z e tgmber of edges i 3, gad £ the specifted error bound

At <his pEirt we merely indicats the sy algorithoris techuique Inderlylng
Propteiting 21, & iull proal, juchuding » detalled stacisticel soakynis, can be
foomd i the Lesk seeklon,

Drenette by 4365} the set of all g-colourtngs of G. Let G = G > Gy -y »

-2 G- 33 = ¥, ) be oy sequenca of grapha in whick esch gragh G|

i cheained From the previoos greph G, by semoving & #inga edge o, We may
exnress the quantity we wizh to astitate as a product of ratins:

T I e

v

WG] BilCn] 170G
wliere, it will be sbaeried, [T G5)| = 7. Cur srstegy ia to estimate the ratio
|05}

(LY
fot pach { 10 the retige 1< £ < m, and by substiveting thess quan:ities me
ety £2.2), obtain an estimate for the wamber ol g-colcings of G-

IRG)] = "1 g

To estimate the ratio g, we uee ibe almeot criforo sampler 1o obeiin 2
sufficiently Jarge sample of g-colovtings fram S0, Aod comphte the per-
portiga of sauples vher Jie ' (G} [La., far which the end points of & bave
diffetent colonrs). The soalysis presented in the Tast setion placss » baund
i1 e sampde sise reguired,

x|R(Gyd. 22

|25 =

Far barkeronnd matetial pn agproximate counilng, raber coWelsh's suriey
articl [58].

1. Sampling by Markov Chain Simulation

Let 3 be on undivected. graph oh wries set V= [n] = [0.1,... 5- 1] whese
wacdtno degree i boundsd by A = A6, and ket @ = [g ba asevaf
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iveolowrs, Let Yoo ¥ — & be a proper colouring of she verices of 5. i, atw
in whch every edge bas endpolots of different colpurs. Sueh & calouring always
exises if > A + 1, a5 can be appoecianed by considerlng & dmple ssquentisl
alouing slgerithen. Indesd Brogks’ (heatem asserts Lbial & colvuring exiaty
when g 2 A, provided 2 2 3 and G does oot contain K ap 25 8 counseted
somponent [T, %

Fur & diseission af streogtbenings of Brock's Theorem via the probahil’s.
ti: methad, ses Chapeer 1 of this sook, in particuler Ssction 1.5,

Coosider the Markew chain (X whese state space 7 = 005G 4] i the
se of all greolowrings o &) wnd wiose srangiton probabilities rom atate
(colouring) X; are given by the folbmarg procedure:

(1) Sshect 2 versex 2 € V uairmly at random [6.e1.). and then 2 calow
e war fram the ser of legal mlours Gor o, (4 codour ia logal i i i
differert frarm che coloor of any ceighbour of v

(2] Renloor vertew o with ealyae #, 6nd let the reching enbnene he X,y

Thiz procedurs describes whet would be termed, by the staristicel shysies
eommupity, the “heat-bath" dymamics of an antifbmomagaesic gatte Pots
medel at zere teroperaturs, Resdars unfaroiliar #ith the terminology, nesd
pod, worry, we Jo ot use il i the ssquel.

Fap e B, Jet P': % — [0, 1] dencte the bstep transiion probabibties®
arlsing ‘rom this peocedure, s ther PHr ) = PriX, = ¢ | Xy = 2} foc el
syl

Assoma now that g 2 A+ 2 As we now werify, the Markov chain (X, —
whick we tefer to in the sequel a9 Wy (G, qb or simply Ty—is (a) e
ducibic, ie., b7 &l 7,y € 13, there i5 & ¢ ouch thar Pz g0 > 0), and (b} ape-
riodie, e, ped{d: AT ) > 0w Vb el o, p 6 2 rmeducibilicy of Doy
Follows frooi tae chaervacion that, anv colsordng = mey be trapsformed o any
other ¢alvutiag 5 by cequectlally assigning new eolours te the vertices ¥ in
uscending seqnegre: befors sesigring & oew colows o to vertex ¥ It % ooo
egsary to reeolour gll meipabouriog varticss v > v et huwe colour & bor
Lhere iz always ot leazt ome “Tree” cnlowr to allow thia to be dooe, previded
¢ > 841 Aperiodicity folloms from the fst sk the Joop probabilities
Pir. 2] are non-zero for &l 2 £ 42, thas i PY3,0 > 0w is bzl

& finite Markes chain chat is irveducible and eperindic is eradac, ia.
whers & & unique stokionary datriusan w0 2 — [0, 1] such that or all

¥ Sy drop Lha supers:cipt & o Lhe oo £= 1.
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7.3 € [} I Piz, 3, = wig). The use of the ward “stabionary” is justi-
fieed by the bact thet 7o wIZIFE, b = oy). Bar all g £ 1) loosely spea-
ing, 4 Markov ehain that e starbed in the atationery cistriction -eaing in
ke stationery distribuaticn bor ll time T the czee of Ty, this stabionary
disribution i acbeally the wniform dstripusion an 1, wich cam be detived
fram the fact thie Pz ) = Pipa) for &) 1.y wsing the Jellowing simple
bt sl fact.

Lerama 31 Lel T fe on ergodre Harken eboi wéth fndte fote spiee 7
and trensdion prodabubrtiea i -, et s £ — [0,1) s nny functian setisfng
Fletaiied befance”

i Py =7 Pz, fralneell A1)

pd the normodsetion condition 3. 00r) = 1, Hher x' 45 tndead fhe ata-
tiongry digirabution of T

Proaf, For all y € 12,
¥ wiglPizg) = #BPing; = 53

£} o

e, is e stasionaey distribusion of . Bud M is engodse, o0 7" Is b wigue
statioonry dischition of 0T, 1

A Murkew chuin whase stattounry distiizution satishes 1he detalled bal-
atiee condllon 15 said ta be fme-munsdle

In Section 5.3 we demonerate that M,y 3 “rapidly miving” L., the
e digorimuzion. closely approaches = the statinary distribition i Kme
potmomial ‘o a, provided ¢ 2 24 + 1 To maks this statetnen: precise we
reed to explaln what s meant by “chwely” hare,

To do 30, we must peueralize our defimtion of total weinion distance
To wiv, for ary pechabitiy dhsributions = and 1 on & countable set {2, we
define t7e okal veription distanee betwesn = aod 7 to be

1 N N 1 . 1
Bt = o Al - T{Al = ; E [=izh—'{z].

o

- IE}
jthis defimition excteuds to ueomskde probabity spaces with the medmutn
replased by B supTemun wvar oessyrable ses A, or bie Tum By en inbegtal).

Tt carms naturel 16 noncurs +loseness o stationarity io terms of the varl-
stion distance Fr { € W define
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Ft = Dl Ple. ) ri = Tﬁuﬁw‘[x, A1 =r{d],

wherz z % the mitie] state gnd Pz 4] = Eu“ P!z} The rete of eon-
wargence b Aptiogarlty from initlel state © may be mesmcred by the meizing
fime, e, tbe funcéion

reff) = mindt: 1"t €8 foc I 2 1),

When rnaking statements aboyt =ple of convergence char are “rdepandent of
the indtial state, thy 2ppropriste wersion of miving time is +8] = s, 1 [4),
whepe the meximim I over 8l ¢ € 5 By ruped txizig, we e that «(4) <
polyiw, log § )

The rapid mitiog resulk of 3ectlen 5.3 seovdes us with a simple aleget
uniforem sampler for geesrings in G- simmlake vhe Markov chaio T, s:8rt
ing ut an arbiteacy state, for & seficiently laze (but pelrooitial] nusrher of
steps, aad Teturn the curent alete as mesolt, As 8 corollacy we obtain, via
Propositian 2.1, an FPRAS far tie number of g-colourings of 8 graph io the
s § 2241

Ag p waeny up we congider firat Wbk Tather trivial caze of an empty maph
fie. &= 0,

4. & Tov Example: Coleurings of the Empty Graph

T chiz section we urvey those techneques for proviog rapid o'sdog than beve
shown themaelves to hanre some dagres of general applicabilivy. The thres tech
il desieribed here  whick nwight b sikled “cononicad patts,® ‘gesmelric
ard “ooupling”  ewer e majority of applications. Xeverthebes, some Lo
geniows special bechalquea ko been inkiodued to Jandle specific probleins
mest. ootably Feder sod Mibail's industive arpumert to demenstrate Tapid
mixing of the hasis-exchangs candom walk on a “alanced” matroid |37

The theee rechoiques will be illusrrated by 2pplying sach in 1o ro ke
sraphcoloutinge Mackov chan 9.0 q) of Section 3. epecinlised 1o the
empty graph O = V0], where, as v, ¥ = |n). Since the atyte spuee it
thi eaze is sitnply 7 = G, it would be & vovied waster o2 swnpls fran 2
divectly. Ot the ather band, the very towviality of the situation will sllow s
to ooncentrate or. the methods without zetting begged down in ealeulatior,
ar teeknical crrall. Seetion § will eong-der satne mors reslistic appleetione.

Sectioms 41 4.3 oee largely indepandent of e annther, as are Sectims
31 A3, Readers whose mein goal is o follow the wewer developmeats .
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coupling need enly read Sections 4.3 and §.3 before progresting to Sections 6
and 7. In partieilar. an anderstarding of the peamertic Losiong introdaced io
Serriom 4.3 ia w regnived in dbe later secrions. Howevar, gedtnatic e
are of wider importance, parcicaarly v the ll-impareat spplicsion of the
MCME to volume estimation (see the dzoussion ot the end of Sectien 3.2).

4.1 Canonical Patos

Let % he an etgedic Macko chain with Fuite state space 12, trasition
poobabilives £}, and swecionacy dissribution =, Any descripelen af the
canpawee] path agurent s congderably simplied 3t we azsume IK <3 Do
luge-Teversivle. In the light of the detedled balance conditiza (3.1), we may
yeow A 32 en urdirected praph (3, T with vertex get 7 and edoe set

T={{z,g}e ¥ - Fiz g = 1), 418

whese . _
Plry) = ain)Piz,yl = miyPly 1) (4.2)

Fer each {ordered] paiz {z.3] £ [, we specify a vanntical path izy from
1ty in the graph (12,7, the conaariea] peth 4y, cenreepands t0 2 Sequence
of legal “Temsitions in Tt vhat Leads from inindel state 7 to fined state y. Denace
by I = iy 0 2y € 2} the ser of all cononical paths. For the merhod to
sield gooll beands, it is Tmportant v chooss & set of pulhs T then avoids the
crwation of "Ly spots™ edges nf the graph that cacry & paclicalerly neavy
burden of cangnical paths. The degree to which b ewen bnading bas been
achiawed is messured by the quantizy

. 1 _—
g=#l= TR == E alz)e iy .
Ty H

where the maxioum & aér oriented edges trzacilions) £ of (82, T}, 8ad |y
denates the Jewgth of the path 4.

T & Mackon chido is tu be rapadly mixing then csaely there ® pe small
Fulgar, 5 of the stake space euch that the probabilice thet, we lege 5 sfter s
Tansitinn, giver we begin & randomly chisen element of & is very small. In
order 4 prove Wba: a reversible ergodie chain is Tapicly miing we sepentially
have to prove that ie 9nch obscruction sxists |8 Jeecios starement of this
temi)l, i given im the el sectior). I this bection. we dissus doing s2 using
rancroel pathe, Tntitively iF & Markoy cialo bes an obstiglisn 3 then ke
cancmical perhs betwsen 5 and 2% § wil overlosd the wges of T lowing 3.
Tizs, we expest & Markov diain o be vepidly misirg if it cocteing ot ol
thetiecks” i.e., iFil sdosits & choice of paths £ Eir whick G177 i pel tos lage
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This inryiticn i Fyrmalised in<hw Sllowing vesult darised from Sinelale [54),
wiigh i & Cewelopment of & theorem of Dizcenis and Steaodk 19,

Theorem 4.0 [et T be o fnate, time-reveraible, ergodic Morkow chein with
faaa vrofafdities P x) 2 EE Jorcllaintesr Let I fe @ et of conarbocl paths
vith mesimn. edge bading § = @I Then the miring time of T8 sahafos
el € alle e z] ™" = s, whese T is e fritind state d

Progf. Cumbing 36, P2op. 1| and [56, Thm 5. J

We cemenstrate the cenonicel Jath wetbod by applving it to che tov
mample, For covendsnece, we ahall work with a slight .y modified vamine of
the Markow chain TR, of Section 3. The transmticns will be defined as befas,
peegepd for the pddition 4 prelivnivary sep:

(0} with. probhility & let %o\ equal X, and halt this transition; ol barwise,
pogresd 1e atep (1),

Thiy modification bes 1he efect of adding ar additicnal locp probablity ; w0
gvedy 2kuta (AT redisring all other transitien probabilivies by s simias fsetar),
Lol us refer to the modifed Murkov chein with Sneressed 'sop probahilivis
e MU, None that WU, 000y, 40 aatisBies the conditions of Theoret 4.1,

Let = (g, 7). ... 4 -] d0d 3 = (3,00, Y] e arbitrecry calonr:
ings in 1 =" Yo obraln the cowrica] parh v fram 2oy, drer eonsider
ke padh obedned by compesiag the v edges (rawitions” £ loc k=i < n-],
whre

t = |:[yﬂ1' A .:II:;IH:"'IH-JL I:y':':"wyl--l: '9'1:114-[:---11-[:']5

i, 8 I ibe eransition thet changes the ik aglnue froes o to y;. Now ecase
any hwap. To compate §, B attention on a partieulyr focerted] sdge

t=(uui= {l:u'ﬂ:"'lwi:"'uﬂ—l}l[u"}l--ww::--'“‘n—l:l:'u

sod vonuider the aumber of canonical paths ey that inghde £ The wombes
of pussible: Soives for 1 @5 ¢', as (e Grel A - § posltlons ane determined by
b=y, for § > 1 and by 8 siendlar argument the eumbes of passitle chuices
for ris =" Toaus the rorel nom3er of canonisal pals wging u prliculus
edge £ is 4" forthermiore, PiY) = elw)Piwa’) > g% 0], and ke
ength of every canemieal path is a6 st &, Flogeing 2l these wourd: into
the definitien of 5 yiebds § £ tn?. Ths, by Theeram 4.1, the mixing time

T Pty Theocar slo bias & suitasly steted converse, s |55, Thm &),
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o T 0n,g) i ) £ W(nlng +Ime”") Nute that the mixing time of
Iq’w[ﬂ,,,q] grows enly polymomiially with the input size 7, even chough the
e ol L state space s nxponansial in A, de, K, 0000, ) is “-apidly mixing”
in che sense of Section 3. The boune on mixing time we bave decved iz s0me
way of the exatt arswer |-, whith 5 7<) = Oin{logt + lags ™1}, and the
slackness e see here i typen. o the method,

(o reviswing tne canonical path engument, we perceive whet appeans Lo
ke 5 major wenkness In ceder 12 compute the key guantity 3, we ceeded
in L 10 SEmpibe giensities such es ) that cepend crucially oo the
siae of Lae mtate spaee 2 I the current example this dee not prezent a
peblem, but in more interesting esaciphes wadg ant sntw the size uf bhe state
space; indesd, our ul-imace gobl will oftew be t estioate <his very quansisy.
Fa-tunateby, it ‘s possibbe bo Gnesse thls abstacle by implicit cocnting using =
caralully comstrueted inpective map The ides will he ustrated by spplivation
Lo tne Markey chain 30 (0. q).

Let edpp ¢ = (v, w') be as before. and denote by ¢pit] = {15.41 : eg 32}
Ui get eof all (endpainis of) canomical paths <hes wse edpe £ Defive the map
ety — 17 as fallows if (5,40 = [0, Encsh (3 3 )6 opdt)
khen

HE AT ST T | MR S TS N Y
The eruciad enrure of t7e ap ry i thal it Is injective. To see this, obaerve
1t 2 e 3 o b oambguonsly vecowared frain (5. . b ] = ST, 1)
throgh tbe avdicit evpressions

=, e B Wy W)

st
= I:wl:l:'":1.1-l|w:rui+'|:""i“"'--|-:|'

Using the njecalve map m it 3 possible Lo evaluste § Wikt fecoirse o
sxplicit, coumt'ng, Rotiog® has mxiriy] = wlal(g iz, vl wa heve

l , . 1 , o
= ! | T TR RN Y R LR TR N T
Fit TEQ TRV e Tz Plw,ay fﬁ%’ RsTESTH]
n .
=—— % alt,'Ty)l
Plu.w} 2 {80
¥

o < &m®,
= Pruw) =4

* This i 3 tovial ohsermaben whew the glalionary dialrabuticn s unborm, as i s
het. bt In Ly somerimes posgite, by jucichass chaice ol n, 40 contive such es
igemtity even whae Lbe slorianary Cisributior i soe-onibano, See Seetim §.1
[ am &xam2le.
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where the penilvicnats inequality felows Eroom the facs that n, & lajective,
and thgt 1 i 3 probabilizy distyibusion, Since the abave argument is valid
uriformly ever the cholee of J, we deduce § < Zgn®. The fcter of § o8
comphred with toe dirget aeguenent was lost to redowdaney in b eniodive;
Lhe mep  was =0- 8 hijention.

4.3 Glenppetry

Aa beface, suppose T ks 2 bmile, vime-reversible, ergedic Marzos chain with
stationary Zisfibacion v, and recall deBuitians (4.2) and (41) of Pand T
(o the previons section. ‘T'ha condactanee |35) of T 15 defined by

Pi5 3]

x

i
1

F=em= wh

ﬂff[ﬁ'l‘ﬁ 12

| (d;

where Pi§, 5 denates the 2y of Pix, ) over wgss x5} € Twithz 2 8
aod y £ 5 =110 5. The vonductance may he viewsd a2 8 weighted versinr
of ecge expansion of the grap {0 I nssacisbed with A7, Alwernativey, the
quotlani appearing ir. (131 ran be ioterpraed sz the couditiona] probabilitg
Lhat the chain io equibibriom eseepes from the subeer § of the state spece in
e Btep, given shae it i ioitially o 5 dbus & monswres the rasdingss of T 10
eiripe (Tom any small enpegh ceelon of Lhe state s3a0e, and here to make
tapid pregeess weirds equilibrinm. This intitive connection can e given
& shoecide qanlitative Siren 85 follows (Helated resultz ey be found io ke
work af & doug |2 ard Alon 1)

Theorens 4.2, [Sinclale| Der T de ¢ fite, neversibie, ergode Markaw chasn
with loop mrabengfities Pr, o) % far ai! stades 7. fof & be ihe comduerance
of Moy defined 1 (4.3 Then the mizzng bime of M sanafes 7 (2] < B2
inxfg]™ + ety whem T 22 the inl stale

Froaf. Cousbiee |36, Prop. 1! sad |36, Th . n

Chur approach in this esetion to beundicg the conductence of o Markoy
chigin T is to give I a gecmet=le Iterpretation, in which slaes of T are
wdentifind wilh reclwin paly-apes. 244 wansitions with their eoenmen Fecets.
A lovwer bouad oo conductence then fotlows from an “isoperimetti \tequal
ity This was the upproack, pioceered Ty Dyer, Frirge and Kanoen in the 10sl-
yuis of 2 random wals in & coovex badv | 22], ard Faranw acd Khachiyan in
he context o: « Markov chain an Jinesr extensicrs af a partial crder |4¢] e
&lso Settion .13, The followrog sopecimetriv inequelity of Dver and Frieze,
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s partirulady well surted to the purpase. To state the ineqnality, we peed
stye coroept of the dugl of a nacsa. || -| is & noem, then the norm ||| duai
1e | - | is defined by

llz]" =supla-« : izl = 1}
The sytohal & denstas “heandary of

Theorem 4.3. [Dyer and Friere| Suppase K © B" 2 o coneer bady 10
f o log-concine | Eenatian on it K. For o #6t § € K sch thas o = 35
B ie o pietevise sngeth aurfuve, defia p(5] = [, flz)dr und {51 =
I, fig hg[:]| ir. where o[z} & the Buckdeon i nomad o a3 €, [f
p(81 < Lal R then ufS)5w'(51 < ddismn X, ahere the ditnater digm K &
mmmtd with respest to the [arimad] aorn: |||

Proof. Fee 20, Thue 3 and preliminary kmmas. 0

e allustrate the wilicy of Theotem 4.3 by applving it to the toy earple.
We agar. wock with the eadified Mackov chain 810, g}, with inflated
lowp prchabilities, applied <o the empty graph O, We view states [exlouzlngs
of &) 2 hnetions ¥ — §, whare ¥ = ol and § = fg). For each colouring
¢ 12, define a carmezspanding polvtope (2 clossd, beunded regico fezmed by
the mterseetion ol hallzpaces) in R™™F by

Fiel={r = %) e R0 8 3 £ 1 ud 2, 7 3y B it

Furan].- 5C I3 ke RIS = U op Fle), end obseree that & = AN} =

1B, where 3B, deniles the [-ball of radiee L. ar unit cube. Cleatly,
l:ha.mff = 1, whers dikmerer & mesaured with resped to leemorin. Note
thit, ¥ svonmetry, velo, Ric) = |£2)! for any € £ 82, e hence

all

vil, R[S0 = mR

14.4]

Recall the defcitions of £ 2.3t ard af eonduwctence 14.3) A tesnsicion
is avallabie betwesn culowrngs ¢ aod ¢ e shy the eplourings are adfacert]
i they Jiffer o exmelly one vertes, equivalestly, if Ric) snd Rl share o
common facee [te., fry - Lginsensiooe] fee). By salewlis <be aree [is.
"ng - 1] reeosimad veluome? o such a feost is

W2
= g-11
[ the lagt section [ot & proof of this cledm. ) Ths the numbey of trensitiones
fr, " € (5 R from & state n § to onein T i

by 1R[] T R = (451
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ol s [BR(SY, B K) % -1l )
W

and, gioce tne P, o) = Mng |17~ be any pair of adjesent stres ¢, ¢,
£ 1= 1) by [ RIS, 2D

Fis3)a ‘4
i wWinglfl !
Furthermore < ugit sector o narmal v any et bas |j-momm [Ju); = 5.

Taking [ ¥éeclically 1in Thestern 4.3, we have, Jor | 5] € %lﬂl.

mhoRiS)  demk
e GRS 6K} - 2

which. an the Light of (4.4], i3 equivelent to

V28

Voleg (ORI BE) > 7

Combining this mequalivy with 4.6} yelds
ig — 18]
T
wheace, by deflwtion of condactanee (4.3],
b2
Thizs, by Theorens 4.1, the mixing tioe of O, (0. ¢ s

BTz

et < dnlghip - 1 Felng +1ae

Aigudr., we have damorstrated that 28 (Ch, g; = rapidly miing, thamgh the
bound i worse by 3 Factor of order g Uhen the one we bid already obtainal
ustp the cioomies. pache argument

4.3 Coupling

Suppose T ie 4 countsble, ergodic (theugh 2ot vecessaeily tme-reversible!
Markoy chain with tracgition probabilitiea P[-.-) and ataticnary detebu.
boo £, &z wsual, e sssymprion of couatabibity i3 far exoositional conves
nience only, anc. the ideas oacily axtend to wnconctably inBact state spaces,
I ics Basic fortn, 1he coupliog techuique was introduced by Doeblin in the
19k, The word “rawpling” bn probatility theory is applisd to 2 vanety of
related notions, and it wonkd be diffenls o provide 2 general definivien. In
Ehe eurrenk eofibeat. we maen by cocpling a Markoy process (X, ¥ o0 7217

i
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sich that ensh of the praceses - X} aod [¥2), conecdered in isclesion, is &
Zuit ol copy of M, More precisely, we require ;b

PT[X1+;=Tr|X|_=x A H:y]:P[ﬂ.Ilj ['\i?]

and
PriYi =4 | Ki=x 8 ¥ =91 = Py [L5]

i all 2y, 7y € 2 This eondition & congistent with [X,] wnd ¥ being
‘ndependant evolutinns of 19, bt dyes ws nply it [e Fact, we soall nse the
sasaltility taal

FriXo =2 a¥o =y X =28 Y= ) £ P20 Py

rg emvrrags | X, ]l ¥, to eoclesee rapidly. o that Xy = ¥ for 20 mf-
cently large £ (Noke that it s easy to design the couplog so chat. if 1 is the
Bear Lme step such thet, X, =Y then Xp =¥, for el ¥ » £

TEit can be arzanged ther coslescance aceis capidly - jodeprodecthy of
the initial stares Xp and ¥y we may deducs thae T i eapidly miging: The
ke pesuilt wm use bere i the “Coepling Lemma,” which apparenthy icabes
il g Brer explicit, appecancs i the wnek of Akous 11, laoms 3.8] (s b
Tlavsnie 17, Chap. 4. Leenme 3[).

Lemma 4.4, Sumpess thai TV &5 0 conndabls, erqadie Markow chein mith tron-
stzom provafilitees PU- ), and Tel (XY 0 £ € R Be o conplony, ie, 6
Mazboy provess satighng (4.7 and (L8], Suppose further thai {1 (0.1 — M
i 8 function sxeh thaf PriXy, # Yool e foralle €001, eniformiy
st the showe of imitiel slate (X, ¥ol Then the wizing time viz) of M is
bownded above by £e).

Preaf. Let Xy = ¢ 13 be arbitrary. gnd chosse Yy secording to che statin-
ary distribnton x. Fls £ € (0.1 and far consenience abbeevinte {2} 4 . Let
A 2 [T he an arbittary event. Then

PriXied =Pri¥ied o X =¥)
=1 -Prl:‘r‘] f .-q:' - Prfﬁ: E.“I-'P:,
T PrifEdl-c
=r[dl-¢
with & sitnilat inequalily Lodding fur the eempleicenlary e 2% 4 St A
was chosen arbivearily, D CPYe, 1,51 < e, e, the onal vasiation diacange

berwaen the tatep distribution and -he stwdonary dasribution is beanded
by e |
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Fior the =y example, the pouing may he very siople indeed. The cran-
aition (X1 1} = {&eh0, Fia) i che opapling is deBoed, by 1be Folluwing
il

(1) Sedect & wotex v € V), nad,

(20 Sebect codour 2 € G uar, sod receleur vertex v in X, {respeetively 1)
with coloz ¢ aned Jet the eesalting colmming be X, (respectively Yool

Nole that {X;} and [¥;) are both feithfs. copies of 9 specifically, (4.7)
and (48] e satisfied. Keverthelew it is alse cheas thas (300 and (1) are
“hiighly eoupled” e we con expect rapid coalescancs,

A befote, regard states frolourings) 4 functions ¥ — Q. Dewote by Iy
the redomy viTiahle
D= {ue Vo X # Yl
Le., the set of wticrs on which the twe colouring X, and ¥ dissgree.
step (1) of the colouring selects & vertex ¢ o By, then Ihy, = 00 )
otherwise [h_y = By, Sinee v b selerted e,
I 1 . I ’ 1
BBl Bj=(:- ) B
end hence "
BiDJ D= (1--] Bl
Sinez || 5 p nom-wegative inkzger Tv., we obtain
Pr(|Del > 0| D) < B Dl | B
I
Ll-—
- .1[ :r|,)
<ng ¥R
which % baunded by & provided & = alnae ™", krokiog the Soupiing Lemmz

%2 03BN Tpis] < rilak — a=™)), independent of Lhe stacling stale I, <he
correct asvenpbotic result.

5. Some More Challenging Applications

We tiow repriee (e thioe cacludyess (o proving rapid mixing io the cortedt
of three more realistic proplems. In eack, case, the chosen soluting techiitue
will 3= *nat-ure” For tbe applioatior. Jodeed, for qur Geat example, we are
furczd to wee the cenonical paths mothod, a5 3t provides dbe coly knogwn
soluzion technigue.
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5.1 Monomer-Dimer Coverings Vi Canenical Paths
The peesentation ef thiz topic b= condensed fom Jormim and Simelair [37,

which in turn is an improved vession of P arigine] sooree |34, See als
Sineledr [57].

We snall be consermed with the clamizel monomec-dimer mode] Eom As-
tistica physicy, A veomdmier-diper gyatent i defined b 8 zraph & = [V E)
zod a positive real parameter A & configurction of the spalam s i &
mathang Ju (7, thet ia to zay, o aubset 3 C E such that no two cdges in A
share ax epdpedot. bn physical werme, the pairs of matched versices sre dingry
snd the uboavered vertices moremers. Thus & matehing of cordinality &, 3
E-matching. coTespds presi#ly to & mocomar-dimer conbfiguration with
B dimers end 2n - &) monooers, where 3n = [V 5 the ournber of vertices
in (7. {The assumption that the putthar of verticss in (f is even is inesseatinl
s0d & made for novatiomal cenvenderos,. Typizally, & is a pegolar latsice in
sorze Bved nwmber of dimecsions. but we shall noske o such ssmmption whe:
Eallews For & datalled aocooot of ibe Iistory and sigrifiesnce of cwname -
dimer systems, the cesder is reletred <2 the semingl papar of Heflmann sed
Liek [3F and the referances gvem thare.

To each matebing M, a neighd wiAL = A is asigned; thas the parant-
etar b referts be conaibuticn of & dizer se the energy of the system. Toe
gartition fereetion of the svatern is defioed a5

=26,k = E 2] = Z m 5.1

H =3

whete iz, = m, (7] & e moober of Fnatchuogs b G Foc s phivsical intsr-
Fratatian i [5.1), % °32). The parition function may be efflciently approxi-
aked (o the FPRAS sense] using the method of Section 2, ponided e o
effiviencly sample methings froth b Cistribulion that assigns probatabity

52
1o sching M Tee "3 dor ducails), We therefore pencerraze on e smpling
problem.

Folkmcg am ides of Broder 8], we sonstret 5 badksw chain Moy =
T Xy, paraioeter|sed by the underlyiog mepa G sud 1w sdge weight
3. The state mpece, [T, e the st of el matebings in &, ead the {rancitisns
wre consttucted so that tha chain is ergodic with secionary distrizullon 7
grven b (5.0 [o ather mords, she stationary szobability of esch matching
(mpaocer-Cimer configurakin; is proportional G its weight in the pactitlon
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fureion (510 The Mare chain Mgy, i silated for silfickenly many
stepa, trovides & smethed of sampling tatchings fron the dlseribulion £,

It 35 wot berd 1o constract 2 Markew chain TRy, with the dghe agpiap-
betic praperties. Ler dba state of Mo, at time ¢ be X, The prebebility
distedhition of the pext state X,y is defined by the folkming experioen:

(L) Witk probability § let X,y: 2= X, end halt.

|23 Utherwise (with the amaining eodahilicy 41, selec: an edge & = {z,9} £
E, waur,, and ser

M—e deé M;
M- if both v end 7 are wrnasched io M;
Mg Mg if exacely ome of 1 wod 3 i3 mAtebed? n 3
und ¥ is the mopbehing edge;

(31 With proballity tin{1, A(M] (B} ot Xeoy o= M olbeerwlee it
the romplementary probalily] el Xy = M.

It ia hedpful o view thiy chait s Gles There i a0 underlying grapk de
Bred om the $ot of ratckings 7 in which the nelghbenrs of matching A
are all metchings " that differ Bom A7 vie ote of the follewing local per-
tyrhubioms: an edgp s removed fram M (& |-rensilien): an edge & added
to M {o T-lrmaition’; or a oew edge i exhanged with an edze i 4 ja
ws—jronatio |. Terginions frao M are mads by first sedecting a peighboar A
047, 5o then sctually mading, vr eeecpiing b bransision wcith protabilizy
e 2, mi M1 e M ). Kote chan the ratio appearing in this repeession is sasy
ta ooy it i Just 471, b er 1 respeceively, steording to the tpe of the
LTansition.

Ag the reader may vaally verify, dhis aceeplauoe [robability ws constged
52 chat the ransition probabilizies MM, M) of Mg sty e deteiled
baloncs condition |3 1) for the disibution « of (8.2). Furthermore i,
i iteeducible (i, sl states comompicats via te soupty matching! aod spe:
ricedic (b stess [, the selfloop pechabiices P/, MY e all nen-zero), end
hence ergodic. Thus. by Lemma 3.5, the distcibutien ¢ dafined o (32) &
indesd the stationery distribution of Mp,.q.5

* The lewice ri perfooming mndeem welk on & coneeclad praph with acespance
peobahitities of this e i wl| kbawn m sampotaticral physics under tha neme
af the “Metropalis proczss™ [58]. Clancly, il con be -ased to pchicre any disiced
slavianary Gistriburen = far whodh the rasic ofa)feiw) Er neighbaues u, 5 con
Tre pomtpalied askly,
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Praposition B.1. The migiag ame of the Metkow choth Wem s satisfies
*(e) € 4iE|rd{nlnn +.ak) +nz 7).

where & = mae{l, A}

Praaf fikeren). Char stravegy will be w ensefully choie & ealletysn of czcon-
ical paths £ = [y &Y €12} in the Markoy chain T, g for which the
“bottleneck” measre 70 of Section 41 iz smell. We can then appeal <o
Theprem 4.1 2o tound the misogg tima, Specifically, we shall show that our
prths salishe

BT <4 |E k. 53]

Sirce the rurcher of marcuings in G 15 cesaialy bounded ahose by (3r])
“he sazionacy protability =) of any meding X is bounded below by
w4 2 A" [En) " Using (5.3) and the fact that [ne! < nln s, te bowd on
-he miing &me i Propsilion 5.1 tan cow be r2ad off Theorem 4.1

[t temians Jor 15 &0 find 2 set of canondcal paths T secisfring 15.3). For
ath pait of matebings XY in G, we corstruct a esnonical path vy B
X oY bs indicated i Flgure 5.1, (A rigroous desiption of the canowes]
paths wgether with ol other detzls missing Cum s sketch proaf may be
foung in [37;)

The irterprovation of Figure 5.0 iz o5 follyas. Consider the syrwetric
diferenca X Y. & mement's sefection should cotatee the reader thit this
romgists of & dinjant collestion of paths in @ jsome of wheth may be cloeed
cyehes], each of which et edpes that belong alestoately ta X and 1o ¥, Now
susag sl we bive fved some arbitrary ordericg oo the s of &2l simple
patlss in (7, and designated s 2nch of taesn o socaller atart venan” which is
arbilcary o Uhe pata iz & cosed eycle but muar be e endpuint otherwise, This
erdering iduces n ubique ordering £, ..., P on the parks sapeasing i
X Y. The cenonical pesly fraen X to ¥ invo.ves "unwindicg” each of the P
in turn, T Figera 3.0 the path P, cwhich bappens to be & exels] & the ona
riurrent]y being uswound. thepatks B P _; o the ek bave elready been
précessed. witle thaooes Py .. B, are jwt to he dealt with

Unwinding o cvele 3 don by removing the edre adiacenl ta the starl
verlex using & |-transiting; then moving roued the syok 1sng —~-1rausikions
1o 5wup ¥edges foc X-edges: and Boally completing the eycle with a singls
[-trangilion. & puth is processed similarly, wocking fratn o end 5o the other
veng & segaence of «-Loansivions to swap Y-adges Jor X b4 ges, starling cr
frlshig with the b itk single §- o1 |-Lmnsitooy as requisd,

We now proczed to hound the “mttlencek” mess~ §[7| for these pathe,
g Fae Dnjective mapping -ednology introduwrsd in Section 4.1, Tet ¢ he

b stherness) Foundesions of MCMC 133

el - % (o] o] - nl

Starl warlex of (closed] path P, N ;
".. 'l\ L @ .‘_‘ W— L]

\. - : .
\ l'rj. . — — .
AN LN LT :

SO

M

I ¢
\ r'f. ' "\\l

Fig. 5.1, A transition § o the cananiedd pak fom X w Y

SN AN
) /

a0 armitrany edge in the Mackiv dnain, e, o trensition for M 1o W' & M,
and lat opf) = (X, ¥ gy 31 dennte the set of &l canpnical pecbe that
wse ¢, Jug 3 3o Section 4.1, we shall abtwin & bevind on the oral wreight of all
peatng that pass through ¢ by definite ae injective mapping v - gty — 42, By
anaogy wlbk the sy exampls in Jection 3.1, what s would ke w doig te
set X, ¥ = X YOO [; <he intnition for this is eha m X, ¥ ghokt
sgree with X or pachs that have already been urwoind. and with ¥ o0 patha
that bave nat. yet keen ynwound (st as 5y(2 b) 2gmesd with £ m pasitiong
1,...,i — 1 and with g 4n witions § — b,..., % — 1) This well o, quile de,
sinca Thee set of edges mi X, 1) defined i chis wey may Gl to be 2 makching;
Pomever the problem is a small one. and oan ba ractided by semoving a single
giffemddityg adge. Fioure § 1 illustrates the ancoding n[ X, ¥ that wouid resht
frown the transition ¢ on tae cenonical parh skesehed -0 Figure §.1,

We niow heves 7o oherk 1het 1, & injective, which amone w demansleeliog
thae X and ¥ oean be wnambigacusly 1econatzpcted bom @ knowledge of
L= [M M) end 5 XY, Roughly, the way tois is done & to note Lol
ek bhe alngle affending edps,

XeV=miYIs MU,
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- LA AN
SRR RN

Fig. 5.2. Ths sortespeading wrcoding X ¥

so that, given £ = (A, M) zod (X, ¥, %0 may compuite the path decon-
position P, ., P, The path F, sing temeound coring the teansioon ¢ s
immediaely apparsnt fran en eemcetion of M & M. Fom there, it is 2
streightiorward matter 4 appartion edees in Py U-- LP X or ¥ e
appropriate. Finally, edges o qetdl, ¥ 3 wre the ones which are comtndn
wXad¥,

We oz elmast dome. Bowever, the [set thet o, 15 injective is oot sufficient
it Enis cese because, in contrast Lo the tuy example, che stabanery distri-
butinn 7 i highty oen-uniform, Whal e reqiTe in addrtson is thut t be
“wpgnt-Tesating,” 1 the sanse thes PIUAitn{ X, Y] is reasonably close 1o
i X )¢ (). Roughly spaaking, this aorurs becatse wach odge ¢ € £ [#ith
& couple of expeptions) contribiutes &z equel factar 1, 3 ar X—to the two
torms 3 A" 700X, YY) and (X Y. Specifeally it can be shomT that

nXIn(Y) & 2 E B fmimiX. ¥ f4)
I ig 1t too diffiewlt b ackisse & oassr vt of (5.4] with 32 replacing &
on the right bard side, bt the inequality 28 given caquires a Lrede cars, The
full eabenlution can be found in [37)

8 e on § Ballons eaaily from (5.4], We lowe

o T rEnY i 551
-!:'I gy E
MEL Y XY by
s
<4 ElRL Y. e Y]

ey 3

< 4 Bl )

where the ®tond inequality Eollows Bom the fact hat the Jeogth of any
canonical path Is hotnded by 2n, and che Jagt snequality Bor the (ot that
a8 njective snd 7 is 3 probability denbution. The clamed boond on
mixizg b follows criskly from (5.6) acd Theoreen 4.7, as destribed ar tI:.De
pulsel.

LARE

1%
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Anide from the mooomer-<fimer exrnple presentod in ahis section. sp-
plicetiors of s capgoice] peth mechod inglude: paming dimer covecing
iperfect mewhings) of attice graphs (Kenyon, Randall and Sloelalr 47[!.
exzlualing Uhe partilion funezion of the Ferromagneti: ling model [Jermam
and Sincluir [36]) and sarting configurations in the “six-point ice model”
{Mihai and Winkler [53]]. All these epplications snare similarizies with the
manomer-dimer one. The resder will Jsarn more about bonte Carlo metbiods
for enmpating pardtion fucetions for eaistical physics models io rthe oext
chapter.

AN applicaticn which s fuztier Temerved from the mooomer-dimer aam
e i5 10 the “sesieenrhange’ Tandom walk for graphic matraids. The ghate
spece here i the set of spanning trees of & graph, end & teamsilion from
tree T to T by pocgible i the syenetric difference of T aod T' oonsighs of
just e efpes, The canonical peths argument for spanning trees hes ool.
az Jar a: [ am swase, sppeared explicily ir the Iseratuse, bar Cordowil and
hateits bave pressted & construction (see |W, Thi 1.6 ] for paths betresn
paits of spanmny teees that i iaadly swived to this poeposs. However, there
a0 medy other approaches b proving Tapdd mbdng io this Jnstance fsse Al-
dous |3, Dyer end Frizss 126] and Feder and Mikeil |27]:. Refer to Saction §
fir & Telatesd open problem,

5.2 Linear Extengions of a Partial Order Vis Geometry

[w this example, we essentially folowr Karsarie and Knachiyen (44, Lhoigh
we achieve & sharper bauod by ivoking ab eihatoed soperitiesric neualicg
die to Diver aod, Foezs 20

We are given o partially ordersd ser (1, =, where ¥ = 2. Denos by
Sym¥ the sarmetric gronp oo ¥, Ve wre intecssted in sanpling, nar, &
mesmber of the e

f={oeSmV giij<aifb= i<y nalliye¥p

of linzar extensions of . In farming & mentdl picture of the stete space [,
the follawing chepeversation may be belpful: g & 2 i 1be Linesr orcer

wWhCcgljc. - “gin-1) [5.7]
eekends, ur i3 comeistent with, the partial cidar <

A6 zual, we zoopose Lo sample From £2 by congericting an ergodic Markow
chiedn ot state spece 83, whose staticnary distribucicn is wcifortn. Transitions
“raen 2 linenr setension g € £ are generated by composing g with & rendom
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brewsition 7,5+ 11 equivalent Iy, by swapping adjacent elements ir. fa Yinear
goder §3.7y. Formadly, tretsition probabilities from stale X, & 17 are defined
by the lalewing experinant:

(1) Select £ € [v =1 and rg 1] war,

i2) Wr=land Xiolpp+:1 5 F then Xppp = Xy 2 g+ 1) ocherwise
Kepy:= & ’

Here, ibe operatar ¢ denotes fonctien compesition [resd right to Jeft], Ten w
sefer <o this Warkey chaib as B, As in Section 4.2, the Lop probabilivies
are artificially aled o perenit convenient spalication of Theorem 4.2

Proposition 5.2 The maring #ime of the Mackay oboin 9, solifiey

rie < Bt — 1% 4 ey = O falum + Inz ).
We shall see in Section § ¢har this boged can he tightenes considershly,

Proaf. We adopt the notat'en iotradused fo Section &2 Tocarh permitat:an
g E Sym V. assoiate the sinplex

Rlgi={r=in i ER": Diyy S8 & SIgnon & 1}.

For gy §C Sym Vet RIS] = |, R, &0d observe that RISmY) =
1By, where § B, deuoies the Le-zall of eadiue 5. or nuit cebe, Cefine £ =
RI12), 2od observe thet & ia a conveeget. [Tase ang iwo points in £ and join
them by 5 strangy: Lne segment. 1t s rontine to cheek that every intermediate
point i conkained in & simplex K|g). where ¢ is & dnear sxtengdon af =)
Cizarly, diem F < diamdR3yraV): < 1, where diamtes = ceazured with
pespect b {op-Torn, Bere thas, by symielty, voly Bih = | 3rm ¥ = Lind
fzr aner g £ 3 and hepce

5 .
val, {5, = |—| 43.4]
e

A -ransiticn is aveilable between |'nea: extensiont ¢ snd g (we say that g
anul 7' ace pdiocent) if they differ in an adjacent trepesition; equivalanly,
U fig) ard #ig") share a common (- 1]-dimensianal fage. By an atgumen;
verr similar to that vaed in Section 4.2 (5o alse the lust secticn), if 5 and o
are adjacent,

2
mh_ﬁﬁmlﬂﬂuﬂi=i5%;?

"I wranspositicn 3¢ L be performed Frse, Glowed by Lhe permulaten g

Wathematicnl Fronlaions ef HOMC B

50 Lbe mumber of transitions (9.5" £ (55 ) fom A sratein § toonein § i

(=1

1'ﬂ|n-1l:3ﬂ5'3"._3.‘f;lx =
2

1= 11 vl _.ARIS] 8K}
T2 =14 '
Furtherooee the unit webar 1 herreal to any Garet bas e 1], = 3
Takicg f identically 1 in Theorem 43, we hese, foe |§ < 42,
vl A5} ‘ diem
Vil [ARISEE}T 2
whick. i the gkt of (5.0°, bs equivsient Lo

ﬁ[S.F i= 591

el B RIS) K 2 "i'ﬁ .
Conbiging ths .odcuadty with {§.4) yields
. 5|
1 —
I:lli'l‘:'lg.l :-> .gn[ﬂ_ ]Jlﬂ H
whene |
#= .
T Ie-1)

The elzitesd bound on mbng Une oow folliws om Theoreiz 4.2 |

Ey far the most impartan applisaton of the wechnigeet des.ayed hers and
in Section d.215 te the anslysis of taador) walks ir. vonses: bodies. The grownd-
kreaking work aw this topie was done fw Dyer, Frisze and Karmen [22], who
showed that 2 cersudn nesural cendom walk in 3 convex hady B © B" is
repicly mixing. As a consequence, 1hey ware sble oo axbitt the Grsr FPRAS
fuor approximating the volowe of 5 convex body. [The sismificant peint bere
iz (kg1 the renning Lime of the algacithm & polyioriel in the diension &,
whereas al, previous spproaches were pyponential jn 51.] To this spplication,
Ll atatr. spana comes ready equipped with g geomenrie Irtecpretation, so the
cocductance argument i3 & netarsl candidzte.

The random walk etphiyed in 22| was skin to a treditinal wiblased
randory walk o o jufBuiently Sne) n-dimenslonad latlics, bos sessricted to
the incerioe of the aody The t.me complaxicy of the resuliing sampling proce-
thare was 3 bigh- demvee polynatnisl fo the dimengion & The perceived impor-
tance of the volume estimaticn prekem spurced varons suthors b2 improve
on Lver el al’s prapeaal ir. vazious divectiens: widening tbe caoge of ap-
plicability refining the Algatithmic techoiques and skapening the 2nalytical
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ocls. Applegate and Kannar, 5] extended the metiod o cower inlegration
o iag-caneave funceioes; Lavéss and Simonavits 3] replanes, the grid walk
witn & ard of discrecised Brownian motion known 85 the “Tal. walk"; and
Dyec aed Frieze [30] inczovtueed 2t buproved isoperlmettic ipezualicy. R
&r to Kanman [4] for an overview of the topic, and Haosti. [ainodae wd
Simnngwits |42 to learo the atate of wbe art.

5.3 Colourings of a Low-Degree Graph Vie Coupling

We eturn to the Marken chsin Wy (0, 51 of Section 3, and nee the eocpling
rehod 1 anslvse iks mixing time foz graghs G of low dagree.

Lemme 5.3 Let G be ¢ grapk of mativrur degmee 4 o n gerfices. Asewm.

g ¢ > 34— 1, the miving time v(e) of the Murbon chata Wil %
bautederd nbone by

e < -3 [f" < dnlnf=)

L S 2= £

LY

In neder to define &n appropriae eoupliog jo this ipstinss, the doliowing
ensy lecknical lemms i3 wedul,

Lemurnz 5.4, Lot & fe o fivve 5ol A, B B subsebs of I, end Xy Xp e
vandorn narizdies, toking toluas 10 B, such that

1__!' Jrﬁ?' ISI-I TE 4‘!. PrI'L, = I.:l = T]q-[

afforallze B PriXy=1l= []rr'

Then thewe ir g joiad semple spact for Xy oned Xp such thel

. Ang
PrlXaly) = Xulul] = m

The prool of Lemma 3.4 s Lefr, a5 an ey exepitse.

Procf of Lemmn 5.0 The Troof is adapted From [33], (note howsver that
(¢ prond thare applizs o 3 Matzopalisatyle Markor chain cather shen the
hegs-banh dywaiica vezsapn cnngdered hee).

W wonslruct & oopling, g9 o setise 4.5, bk now taking account of the
constraints imposed by Lbe sdges of G, For all v ¢ 7 denvte by £} C F

Meshenzalicel Foundalions of MCMT 141

the set of all neighbiurs of v in G, aod by Xofv) (respectivly, Y0} the
tokoue of vertex v in colnaricg X, {pespectively, o Further, for al il ¥,
les KAL) == X 2w 2 7). The transttion (X, 1] = (X;, 0. X)) & e
couduing i defined by the bllowing experiment.

(1) Select 2 vertes v e ¥ oar

(2 Chease a codots ex € @ FeiP(o)b and a colowr e & Q4 VT (el 0 at.,
using the jpint sampl spaee of Lammes 54

(3 In the colouring X, (respectively 1) zecclour venter ¢ with ooboys oy
[raspnctj'.ﬂ-jy oy | to chérim 8 new eabouring Y, 4 Crespectively 1,0,

Let 4 = 4, € ¥ be the set of vertlees no whith 1he eolauricgs X, and ¥,
agree, anel O = It ©V be the eet oo which tiey disagres, Let 475 dencee
the number of edges nzident el vertex @ thet Jave oor endpains in 4 nd
vee it £, Ohseres that

T =¥ d) = (514)

vEA AN

where m' is sha namoher of edges of (3 {het span 4 sed D

Tt 18 clear that |Duyq| - |04 & {=1.4,1}. Consider Erst the probshilidy
that |Dhyy| = |£el+ 1. For this event s oeur, the vertex vsslerted in step (1)
mast lie in A, o the pew colours ey abd ¢v ssected o step [%) muss be
nregual. Fix a vertex 5 £ A, aod demate by £ = |G, X, [T(6]), respectively,
fr= | Yeil[w)H} the oumber of 2omible valuss o ¢x {respeclively, o ',
end by € = Q% (X)) ViF 4l the nuaber of poesble commen
values By Lemma 5.4, conditione on vertax o belng selected 1oatep (1), the
Elmhahi]h:.r that, the same colows is slecbed for vectex v ia both :-.’._i atd
\p i

Pricy =ev]= 11

maff. e
A momeot’s relaetion reseals that the quentities £ ¢ ped ¢ aptisly the fol-
lowiiny; linear Jmecjualicies

£=¢ <4, {312
h={ < dh) f3..3
£
(rg= A=) (3.4}
T, starting fren (3,11,
Priey =iyt 2 -5y _ S8 (5.15)
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whege o Bret negualivy i from (3 12 and [5.13), and thaseeond feacn (5.14].
Henex:,

C L L=

Prlifhal= 18I +1) < -3 —5

]
Wt

L
"ig-din

where the squality is by equetion (5.10].

(3.1

Sow vemgirler the prulebilily s [Dogy] = |3 = 1. Tor Lhla even; 10
oeout, the vertes & seleesed n linz {1} muat lie in £, and the new mhufs ey
and oy selected an step ©7) must be equal. Equaticn (3.11) mut'ujues e anld,
with £, % and ¢ defined s before. The knalogaes of smequalicies ;5.12)-(5 14]
fr the tase v € L) are

and
{2g-28440)

By teasuning sinilar 1o thet lesding to (5.13],

; 24 d'ul
oy =y} 2 e 2 e 28
Priev =2 g 2 ma f s

eoaditiona. o o heing selected w sbep (1) Henee

1 -2
wa=m“”%éﬂzi )
194 m .
= A s + \ .
o B
Define .
l;'-'ﬂd . no_ i
= ———am L'Id D=b =
=h-dm =t dn

s thnt Pr{|Byal = |4 —1) € band BriDyal = Dy =1 2|0 +4
Provicled  » [, ie, g > 24, the siae of the st D. teacs to decrease with,
snd herce, ittoitively 8t leass, We event D = B should oregr wits 2ga
pirobability G some ¢ = T with T ool tuo lerge, Sinee It = 0a prea_:lsek_,u_thg
vl Uil eoplescence bes necurzes, it only remains o confiom Lkis intuitia,
wad quansify Lhe tate at which D) ronverges 4 the empty sb. From equations
{516} and (3.17),

B(|Deysl | D) € BB =10 = (al D + 8] By -1}
= i1 = &|Di] = 2Dy
= {1 - gj[2]
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Thus Eill = (1 - a)'|Dyf} < o1 - off, ant, bcewe iB%| i an nane
thegative integer rndotn vaniuble, Pri|5| # 0) < njl—a* < et Note
that Pr{D; £ 0 < £, prowsdec ¢ > & Injne~7), estgbishing the resch. 71

Obgerve that <his resubt, comined with Propoditicn 5.1, unplies the axls-
temoe of an FRPAS far g-celourings in geaphs of casimui: dagrae 4, provided
g 223+1 With s listle vare, the arpument can be pushed ta g > 34, keugh
the bound o, misdg vime worsers vy 8 fetor of abour vk,

Tae |dizect) coupling technique deseabed heve has haen uses in & mumber
of acher appllcauions, such ¢s approimately evunticg independeat sets in
low-dagree proph (Luby and Vigoda 5103 and estimating the winme of 3
cetives Sody (Bubley. Thver aod Jerrum [14]).7 In praerie, the versatility of
the sppeoach i fimited by uwr sbility to design eoupbings shat work well in
atuatizes of algorithmie interest. Thi: next vecton zeports oy iew Lathnique
that peorises b extend che effective rauge of the coupling arpument by
providing ue with a powertul design toc,

6. A New Technigne: Path Coupling

The roupling techmique desetibed and ilugtrated in Section 4.3 and 5.3 5
comeepéualy very simple sod apperding. Uofortunately, it nuay be very diffi-
cult af indesd virtually impeasible to Jespn coaplings appropriste to spesific
sivustions o practical Jurerest, The problee, which began to surfeoe wp
in Sertlon 3.3, & ane of engineering bow do we eocousage (X, and (X)) m
toalesve, while satisfring the demading conmraine (47) and [48)7 Path
coupling is a0 eogineeriag selution to this proalam, stvented by Bubey sod
Over 10, 17]. Their iden i to defins tbe cowpling only on pais of *adperent”
austie, for which the task of satisfying (4.7) and (48] is Tekatively eagy, ani
then to extend the coupling te arbitray pairs. of stetes by compasielon of
adjacent conplings alorg a path. The approach is nat entice.y distinet from
classienl eoupling, a1d 1he Couphing Lerma (Lemma 4.4) stil, playa o vital
ke,

We dllusteate path couplivg bn the comtext of 1he Markov chain W, of
Seetion 5.2, on Ynear sctersiong of a partial stder. Our treatmens =i elosaly
follow that of Bubley and Dyer |12, Por convenlence, e wark with 4 8lightly
todfied version of Ty,. The transitiona Fom one finear @dencion Lo another
¢ 3kl abtalned by prs-composing with & random teansition (5. p+ L; haw-
ever, instezd of selecting p 2 |x - 1| unifgemiy, e sebect p foom & proha bifity

¥ The Latter applicatlon drews iispiracian from Lincvall ang Fiodgera's 40| i
of coupling diTaiuns by reflaction,
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digtribation fon [n= 1 that glves prescer weight, ti viloes néar the centre
o 1be anpe. It & posstble 1hat this refinement ectvally reduees (g mixing
Hioe Gt oty cage. it benda b & simplileation of the preaf, Formedly, oecsitim
probebilities froe stete Xy are defined by the fllowing experimsnl:

{1] Seleet p € [ - || according to the deelcibirion [, and ¢ € 0,1} war

."E} r=1ad Yeippd I] £ ﬂ, then .'.l-|_+| = .'T| ot 1_:|, ntharwise,
K=&

et us cefer Lo this Markow hain 38 M Provided the probabiliey disibu.
Yo f s supported on the whole fteraal [ — U, the Markye chain M
irredurible and aperiodie. 1 i ey to werify, for example wing Lemme 3.1
that the stationary distrbution of B s unifoem. As in Section 5.2, the ee-
plicit lowp probatility of § is introduced maln’y for converisnce in the proof.
Hemever, some sk mechanizm for destoaying periodicity is nacesary in any
cawe it we wish 10 trenl the annty partial order consistent]y.

To appoy pudy coupling. we need first b6 decide on a0 adjacency stracture
far he state cpace 2. In wbis dnstance we decres that 1w states g aud f
(bmear extengiong of <) aoe adjucent 3 3" = g« (i, j} Bor orae tranapoaition
(1) with & £ 2 < § £ n— L in this case, the distanee ding') from g
tn §f e defioed to be j - 1. Mobe that the potions of adjacency snd disanee
e sytimiemic with Tespect to interchanging ¢ and 4, 50 we o regard this
imposed ad|acarcy struccure as a weghred, undivected graph on vate set 1),
let s reler Lo this structure a5 the adiaretey graph. It s eaally verlfied that
the shertest path n the sdjasency graph between two adacent states iy the
direct ooe wsing & single edpe. Thus f by be eended to 2 metric an 42 by
definiig dig. h], Tor arbitrary states g end b, 10 be the Jength of & shortaat
path from gt i in the adjacency gragh,

Mext we define the coupiing, We need to de this just v adjacent stakes,
25 the ectersion of the couplicg wia shorves paths v arbitrary pairs of states
will be agtomatic. Suppese (he current pair of guates is |X; Yoy and chat
V= Xoo [5.5) dor st transposition {f. 5} with 0 €1 < £ I then the
Lranalion e (X, 40 3i4y) 19 deBoed by the follswing experimene:

(1) 3elect p e [0 — 1) according t3 the distcibution [, and vy £ {0,1) nas
Ej=i=landp=1, st ry =1 —ry: otherwise serry =7y

(3 Ury = Laad Xooipp+ 1) € 02 then set X = Kiafpp-13
ﬂl}ﬂm, 85 x“j_ = JE]

(31 e = Land Fofp p+1] € 3 thenset ¥y o= Yo {pp~ 1) stherwioe,
w Yo =k
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We mecd it abow:

Lemma §.1. For cfjscens slotes X\ and 1,
E[d( X4 Vet | %o ¥o) € pdl Y, {81}

where o < 1 ds o eonatant depending on f. For o stlabls choice for [ e
hesg= - where o =60 - u).

Before proceeding with the prood of Lemma £ 1, lat og pauss to considar why
it i suffislens, ¢y cstablish (6.1} |ust for adjarent states,

Lemina 6.2 Sugpose & sovpling (X, o) oo deen defined for Ill:lfE or od-
Jucent pars of Modes, and suppese that the coupling sahisfes the oo frnetian
pordedon S50 om adzoent podrs. TThen Hhe songling can be eqlendad Jo all
pars of atates in swch o way that (5.7) holda mncorcitaonaly.

FProof {stetet). For notstional comvenience sat X = X, and ¥ = ¥, wher
X, ¥, £ 07 are wow arsitrary, Depota by P -] the wansition probabitites
u:-fﬂ]i’lfl. Let X =g, %,... & = ¥ be a shottes: path om X ta ¥ 3o the
adjacener araph, [Assume & deterministic cholce rade for sespbring ties.| Ficat
select X' = 2} £ 77 wecordiog to the prohshiliey distribition PIX, - ). Now
seleee 2] acoording o the Sistritution indueed by the peirwise conpling of
the adjacent seras £y end 2y, conditiened oo wbe chobee of 2); <hen salapt
£ using the pairvis: coupling of Z; and 2y, and soon. ending wlh 27 = 7,
Let Xy .= X" end iy = ¥ I s routine to verify, By induction on parh
angth i, chae Yo hae baen selectad ccoréing ta the (correct] distrization
BY. b Mareswer, by linsarity of expactation and 46 1),

-1
Bid i, Vo) 1 %% € VBI85, | 2 B}
1=

1=1

SoY dh.Fl
1=}

= odiX. ¥},

]

Proof af Lemmea 6.1 T {8 — L6 5= 1,1} then the vesz made in seps

i2] and [3) cither Jath eceed ae both [ai. Thue ¥t = Xp_g 0 f, 5] s
01X, ) =2 -1 = ai X0 V). Summensng

EXYac mdiXL XY dpefi-lig-lgp (82
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loat sunpise p =i - 1 or 1 = . These cases ate svmmnetrieal, so we
consider ctly the former, Wik probability at lesst 4, the tesls Im.ade it
sweps i3] and (3) bot fail since Prlry =1y = 0] = L. If this happens,
cleardy, 31Xy ¥apd = 3 -8 = L&), Otherwise, with probabilicy at
mozt %, gne or uther best succeeds If they both suooeed, then
Y;J..] = }; il':_t' - 1!:

=Xeelijla{i-14

—Xeofi-Lale(ip)elt Li

= xl!-rl':'l:i_ ]-:j}:
and £, X1 Y] = J - (=1 = d{Xp ) - 1 3 voly oo (55 e cne in
15 EJ'I seceeds, {heera F[._[ = F: =00 'ITI|:|”:| = XH'- i {t - 1,1l:| l?-{!,_il':ll ard
d[x:-ﬂ_. :r.H-]] E} =itl= ﬂ]-l't: T'.] +1 Summa.rising:

PR |
Bl P | X Hp=i- L vp=4) 3 dl.-’f..lf.}+§. [6.3)

Finally suppese p = i of = f— L. Again, by symmetey, = need _n:ﬂlj_i
ronsider the Bormer. There sre two subcass, dependiog on the wabog of j -
The sagier subtage 3§ =i= 1. Urg =1 then ry = (and

Y= Xetiiel=Feiatljalit+ll=f="un.

with a similar sonc wska when ry =0, Thie 41X, Kl = 0=8X. ¥ ].-
1. The slightly harder subease i the eomplemeetary 7 —1 2 1. The el
obasrtation ia hat % 07, {41, Yoo (i 4 {1 € T and bence the tests in sleps
(1 and 3] sithse bt sucesed or ath fail, dependiog snly on the valo of
ri = ry. Tio ee this, cbeetve that
Xild Xiis + U =Fli+ 1 ¢ Ky = Xish,
froun which we may sesd of 1be faet that X,i7) and X, fi+1} are meuahle
it~ The same srgument applies equally o Yo f] end Kis+ ). Hry =10
thare & no change io ssste; otberwine. i7vy =1,
Eo =X it 1}

=Fuligjelii+1]

=Ygolnis e 570l i41)

= YH-] a I:II: + 1*.:':'
and X,y Tiag] = - b= 1 = ALK, Foi— | Swammarisiog both the j=1=1
snd 3 -1 = T subeoscic

B{d Ko Vi LA Ve —ivp=p- 1 Seikebil (64]
whete
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E{arh?l.'] = {g;:xh h} _ %I lﬁi‘:&:i] = I.;

Ntz thes, in the case § — i = 1, inequality (54 covess Jusl cae valie of
pomamely p =1 = J -1, instewd of twp; bomemse, thls offsce is exnitly
wounberbalanced by an expected reduction in iststre of | instead of just 1.
Combinog (6.2]-(6.4) we abtaln

E[d{ X1y Y1) | Xe T
E d[xhl,-l] - _j[l = ]]+![I];I[J ~ ].I_J[.il}l
Spevialising the poubsbility distribovion f{-3 ta be {1 = aff+1 [n—- 11—
whire 1= 6/(n? - ) is the appropriare normalising constant- we heve, by
direct eedelation, i+ - 10+ J3) + fli— 10 - 7)) = Jodf - 1. Sioge
#Xp. ¥ib = § - 4, we nbtain 56 1) with g = 1 - & J

Proes Lemmas 6.1 and £.2 it iy now & short seep to:

Proposition 8.3 The mizing tire of the Mortor chaan I 53 brundsd by

i) n® —al2lnn + e THE

Procy. By iteration. Bid[X, Y1) | Xp.Ya) € ofd(Xy Yol Fur sty pair of
linear extecsons 9 and b thers is & path in the adjecency graph usiog anly
edjacent traqspositions {L.e., length one edges) thed ewaps each incomparable
pair at magt ance. This d Xz, Fy; < (7] < 0%, and

Pr{X # Y1 CEidlX, ¥ € (1 - affe’,

The Iacte: quaatity i less tag £, provided & 2 (2% — a2l — nel) 08
The crscl filiows divectly from Lemma 4.4, a

Dravid Wison hes recenthy derived e similar O(n’kga) boucd oo miviyg
iz when § iz woifonm, Le, when the traosposition /7. 4 1) ls selected war.

New: applications of path couplag 8% regulatly beung discovered. Bubley,
Dyer wnd Greenhill |13] huwe presoued an FPRAS far g-oodouarings of u Jow
degree prash shat extends the range of applicability of the ome deriled
earlier. They were able, for example. to appeoramate in pokynomisl time the
oumber & S-eolouringe of b geaph of mavicum degres 3, bus “besting the 24
bound" thes appeared to exist fnllowing the regult deacribed in Seetlon 5.3, Tt
is Faic to aey that this improvement would aot havs been posgible without the
g of peak coupling. Diver and Greenhi;] have sisn enneidered independert
tetdin 2 gor degree preph 23], and obtained s rasukt similar te, but appacently
ineempesedie with, that of Luby aré ¥ goce 21 . One further evample mist

|
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anice: Cooper and Filie [15] beve spplied path couplng to anelyse the
RopedoenWang provess,” which i commonly wwed so sarapla configuretions
of the “tardom ¢huster” or berromegretic Parts wodel i statistical physics,

7. Exact Samgling by Coupling From the Pest {CFTP)

The previons ssetiin pertags suuck au weely spkiniste wite. i thel mejor-
ity of casea. we do not ke good & priori brunds, using ey af he reciniques
im the previcls Shetions, ta Ly ENixing e of the Markew chaiis used fo ac
tual MCMC applicarions. When anabytizsl baunds are weak or od-exieten’,
w2 caf Soretimes Use cneplrg as a algorithmic (se vpposed b proof} tech-
ique. Priopp saud Wilsow's remarkable cantribucion ' to damonstrate that in
cerlain eirstmstanses, *algori-hmk: cupling may be wed 40 obesin samples
rcar, te exact stationary distribution. Tather than just & f-step spproxima-
tan. This sectlen is besed ot Propp sod Wilen's seminel arsicle on exact
sampling [, ac4 & peper of Kendslis that deseribes an exsension bo their
tachmique [45]

Suppase T is an angadiz |irreducible, aperiedic] barkiv chaln an finite
state e (7 and wilh wransitivn peobabilivies 2 : fF e 22 — 8.1 IThe
finitenese pesumption i for sese of presemiation oaly, and Plays na crucial
role i waat filloms.) Sugnose F in & probability distrbutien ea functions
£ :5 — 1 that 15 consstent with P is the sorse thet

Pre(fiz] =y} = Piz.y), forallzye (7.0)

A speriel example of this silwation arises when ¥ isconstructed as 2 peod-
uet distributioh from P, Tus, 1o sampie f & F (i) sample, indopeadenti
for pach £ € 17, o stute g, Jromn the disteibutica Plz, o], od then Qi Tet
{: [ = {! be the juncticn mepping 7 ta y; hrallz € 13, But ust as with
the vapilla coupling in Section 4.3, we are in practies interssted i distribu-
tens F chat strovgly couple evaluntioes of f a: Cffirect states [olements o
the dorain),

e <4 e fu. frm - 1 — 7 5 & dndered sequence of finctioos
fusually the /, will be sampled indepencently from 7], we denate by £
£1 = [} the fteypted furctivn compesition

Fi=figajiatsfe ) i

Wi may pecform & rather perverse tsbep situlaticn of TR froth seme initial
state 7 € f3 by the followsng proceducs: (i) seect fo...., feot indeperdently
From distribution &, [i] compute - compositiot F = fi_yof-ze---oficfy
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8% in (7.2), and (iii} retura Fizs) us the eaquived serple froe che bavep
distribution. OF course, this woubd be a very inefficiens way of situlating T,
requiring about [72] sivoes ehe wrels of o dipsit simulation of asingls trajeetiy.
Haaresver, whis view of peocesdings will be couvenienr to beer in mind in what
fiflopes,

e binted eb earder, boc fived transition probabilities P, . there is cow-
sxcarable Bewibality lo the choice of the distibation F, slwing & to en
vade uniform ecuplings over tha estire state space. The Coupling Lemma—qt
letst an mportant special case of it - 21 be staced in vhis settig Supposs
fiveo fioy s sampled indsperdently fom F, and lex P be s befoze. If
taere exists & function ¢ : [0,1) —+ M such that

Pr{F,;'}:':l:-] i 1ot & constant funetica) < &,

b the mizing tithe ik of 0T is bounded by tfs). In principle. ths obser.
vaLiN permiits us o tiwate Lhe mixing lime of M empirically, by observing
<he toslesrencs time of the compling éefined by F. We could chen sbtein sum-
pes fram an apprazimation t the statiaary dedribulion of B by simoaladng
M fer & oumbes of Siepa comparable with the empieally ohesrved mitlng
dms. In procelce, s we bave elrendy chaerved, the expleit evalontion of B
wauld be compuraslonally infsasible

The Best of tha two idess that underlie Propp aad Wilso's propasel 3
completely criginal sod suwprising: by wocking wich F¥, 1o place of F, ie.,
by *coupling feon the peat,” (CFTP) it is posibde 4o obtx's samples from
the eroet stationary distribation,

Theorem T.L. Suppese thar F_ ). o, .. 15 0 sequence of indeperdent some
ples from F. Lel the stepping eme T B fefined oo the smolfest number ¢
Jor which FELY s n emstant functis, and cstume that BiT) < op. Dende
by FY., the ueique vadee of FOp fuhieh o5 defined with protabatity 1), Then
Fo s dhstributed acotding b0 tie siationary distsbutan of .

Note that sbe constant Function FY, 1s the sme constant funrtion for all
sulficiertly Large ¢, specifically for al) ¢ 2 T. Thas, cougling Bo tme —T i
equivakne (0 “cocpling from tine —cc,” whidh is the rationale beklnd bk
i choes of satation F7_ and the CFTP methed irgell

. Pranf of Theorem 1.1 Let wg be the distribution of tbe randem varishle
F1 . Teba ons further independens, semple f, foom F, sod lot T° € T be the
ampllest amber such that FLy. is & enrstant foncticn. Lat £ deome e
unique valoe of £, and ‘et | denote the digtribitaca of <be random varis
ahle FL, . By cracslazional aymmetry, £y = 1. But Fim = fu{ﬁx:l.. whld

]
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imples thet #; = 7, b & sationary disbution for H1. [?{n is ohtainer
from £, by effeeting o single voansition of ) Buw £t 3¢ engodic. C

Meite 1bar we did o= realy nesd to assume chat TR iz ergodic, sinte the
conitivion B{T" < = implies the existence of a statlorary distributien my--
we comsirnrted it! and o ls esslly verfied that this slulicoary ditribuion
TITISE b wwiigue.

The weord idea -mdeclving Propp and Wilsor's proposal—idependanily
ciscoverad by others, e, Johnson 40|—is thet in certain circamatances,
gperifically when che coupling F 9 *monotone,” it 5 essible v evaluste
F3y withtut ecplicidy somputing the fanckion compasition [ o fz 2.0
£.7+10 7. Suppose shar the state space & is partially ordersd by =, with
@ crigue maximal elzment T and & wnigue miniowm slement 1. We sy
that 1he coupling F s monclove if, for every £y € Qand 2 P 0
im the suppert of F, the condition ¥ < y entails 7(r) = fly]. Wheo F is
sakotoniz, the 1est for F©, being & ooostant function 15 sqsivalent to the cest
FO,[L} = F?,T). Moreover, iffqualit}' holds betmeen F€ /1] and £4,(T}
then their osrmen vahue is juss F2.. Roughly speakang. rather than tracking
| erajectozies af 0, 1m the manesag case we just aeed ts gk b, Damely
tae ones stecting al —and T,

T+
ot
waer — L,
ot =T,
for i+ -7 ta -1t
fpuer = [ifler;
ahpet — foinper ]
T—ir
witil fowr = upper;
weturn boper

Fig. T.1. Coupling from the past: Lhe menotooe case

Xote the: 4o rompute f"_’w it 35 e Mecessary to koo T exactly, oaly an
upper bound. Rather than iterativaly compatiog F2, Jr 8= 0,1 23.4, ..
wetil comvecgenoe, it i mnch move efficistt to itirate aceceding to the dou
bliog scheme ¢ =1, 4,3, 16, . . A general procedure for {rongtong] CETP,
ivcorporatiog, this algorithmic refinement, is prosentad 36 Figae T.1
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T.1 A Monatons Example: the Random Cluscer BModal

The randan elister wade] arises in statisticnl physics 28 & dual o sme
perse) of 1be ferromagnetic Ports model, |this jncds] 5 dalved ot in grea
ditril im the st chapter] An instance of the sandom chisver moded is defined
by 6 endirected grapd & = (V.E), ard real mombem 0 S p S bend g 2
& rocfignestion {stete] of the mode) is & aubgst X < E; denove by & =
1% the se- of all eonfigocations. Each condguration X is assigned & weight
iK1 = a0 — gt whers = B and o X} is the oumber of
pennacted camponents of e gaph B = (VX0 Lat = 3oy g wlX)
Then the rantom cluster uwdel specifien & probability distribution (Gibbs
diseribuslor] T2 12— 0,1 uh b set of configurations, where

nl Xy = wiXyZ, 14

L

for all X C E. io :he special case g = | wnd @ = K, {the complete graph
on 1 veetives], the random cluster model raduses b the standand rancen
graph misial G p 7. Waen g is & positive integer. she randacs cluster roodel
is aqaivment [ii a sttong sence] 10 the fetromaguetic g5 Potts model, es
was firal obsurved by Foucin and Kasteleyn |2, For mote on this, see, &g,
Ecwardz anc Sokal |2

Supposs e wish wo A Tadem samples roen the Gibbs distribu-
tion with the alm, far exampl, of sstimating the average sz of & “iatar”
{wamected componac of *he graph (¥, X1, We construct & Markow chein
M, = Mot ol the set of configurezione &2 by defining traasieion
proebillvies ancording to Lae kllowing trisl

] Suppose the ¢wrnent etate s & C £ Selert £€ £, nar., and kt

wiX+e

=
AT W el X -6

4 Selert o £ 0 0), var o < By, mt X' o= Kby othetwise, st
X=X ~ ¢ Therext stats 5 X"

[t is easity bo verlfy (et O 2 engodic and, using Lemmd 54, thet its
stationary digtribytion is the Gibbs distriation (7.3)-

Tte thresheid £y esn be Imerpreted g5 the prabability. in the Gibbe
disteibwution, thet adgs ¢ i presert o g randym contiguration X, conditioned
onthe evenl X' - o= ¥ e ie, thet X7 and X agree except perhaps an 2.
"o tymnsizion probakilitws defined abaes are another example spplicatian of
the heat-bath dynamics, Note that 9z, is eas to eompnite [rom t3e axplizit
RYphe e
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fy. = lp, FolX+e) =l -¢; (7.4

nip+{l—nlg). ctherwise,

Taue teiad st deesetiber] is easily wtended 10 o (unifum) coupiing, sinply
by ruling thet the same chaice of Tandom egge ¢ and mumber o are used
independeatly of & Specideally, the probability distribation F is defined by
the following 1eiel

i1y et e Eand w2, 1) var,
i) Diefize the fonction f . & — fF by

X+e focdy,
X - othereigs.

=4

Tha fumetion / is o random sample from F

This coupling is manstons with respect bo bhe Inclugion ardering on condigora-
tos stnbes), provided ¢ = L Lo, for any teestabes XV € Dwith X C T,
and any funetlon [ i the support of F, it is the case thet FLX3C [1Y).To
wee this. sirphy obsarve that for any such pair of stanes, By, <8y, for ol
te K,

Fur zny inbeger ¢ 2 &, Gore and Jerrurm {30] have showno that the mixing
bime of fo(5, 5, 4 ey be exponeibio] in 2, the mumber of vertices in the
gEsh G The important speciel cese ¢ = 2 equivalent. to the celehrated
i lecromagnetic) lsing model in statistical pysies, 8 completefy open: it may
he he ¢us¢ thet the mixing time of I,.[C,p.5] is bounded by palyin. ¢ ™)
obiformly ower &5, but there i itte evidence staer vy, Neverthelss, the
paiiit about coupling from the pest 5 exaetly thet ne doo't need & prini
2ialyrical bewnds on vhe misbig time: we can jus; implement the coupliog
sugpested abovg sad peocesd empieically.

Figure 7 2 :lhuarates the result of one such axperiment Here we ze Propp-
Wilsen CFTP appliad to the random eluster model oo a 10 10 square grid, at
g=3a0dp = v +v'T). [The chosa values bor pand g corespond to the
Teing enedec ot the exitical Leriperstore for 1be infinite I-dimensiemal dqusrs
wiie,! To sere space, et all the dobling stams demanded by 1he prooe
duure of Flgure 7.1 are Uystreted, Salient featores 1o onte are hat £7 1)
‘tespectively, F2,0T10 is monotonically ireasicg (respectively decreasing)
with £, mnd hat FO4L) € PR < B0 (Thfor all ¢ 2 (0 Ag f increnses,
won basrn Mo about the identity of FU_ . Convergence in this case is sur-
prisingly rapld when ooe coniders thes the sxpected number of staps before
all 140 edpes in the grid have ceen selected is about 1039 (2. the “soupan
cullectar” problem) . Note that wier 1024 sleps the Iower and opper bunds
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Pl

AT o

Fggr,irl,': T

Ffs-_:-[l:':

Fliand ¥

ol Li:

Fig. T.2. A sumgke con of coupling Eom the ast

differ io juar, five edges, and chet oomvergence proper ocours in &7 most tarice
thet many stera.

7.2 A Non-Monotone Example: Random Fareste

When g < L, the couplme just devised for the random cluster model senses
to be monolone; worse still wo menotone conpliog exists. | Tha evistencs of
morobone cougling when g2 2 is connaceed o ibe *FEG iequallyy, which
Balls whan g < L: Foctwaateiy, Keodnll [43) hes shown b te eend the
Propp-Wilson framework Lo eocompass meny bob-wmenitone stuatlons. I
the oeigital Py Wilson proprgal, the tan extreme trejectorics of & Merkor
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chain T—szprling froen the axirene slates L and T- are knosm w boand el]
the otiees, %0 we com be cortain chet onee thoas twm setratne L ectories hawe
conwerpad theo s have al] the others. Kendalls idea s that the two banding
trujeciories do not hae b be Ronwst simalaicns of BT, it is encugh that the
npper éne remena shove all of the acuusl crajectories (in the specified pantial
tridar), whike the lower one retnalns bediw,

[n gemeral, he drustion is w8 Jollees. Recall that 7 i endowed with &
partial crder < An fndervol § of [ s defined by two endpante v € [
with | = v, and conaists of all poiots lyiog batween ! ead v, Lhig: [ =
lzeft:] 4z <o} Deovte by T = 1%} the st of ol intemvals of 1.
The prabability ditrhution F 15 sxended to & distthition F' oo peina
Spwhere F o8l — Fand g: T — I As hoface, w2 2ipolats that the
componer, F sasishes (7.1, which voughly savs that the epupling defined by
F' b (ke correct margas The eoudition thet teplaces monotonicity &

2 Jendels fiz) 2 gif), bepdl e Tand (f) € ppF. TS
By mnlogy with (7.2), defne
ST T ARE R Ty T (7.5)

where (gl (fiop oo ] 2 rindom samples from F'. It fpllows from
eadition (73] that &%,(L,T) = {zn.pe) ioiplies thal FY,0-) is the cen-
s functien g, which in tarn ingliss F* . = g S0 we have e Tolkmeng
petanmion 1 Theorem 7.1

Theorem T2 Suspose %ot (Fo) 900, (Foagog), - % & stpuance of inde
pendent semples from 5, Lot ihe aamping Hme T be defined cs the smalizat
romber ¢ jor which 62 0L T = (go,5n], for some 3 € 4 gnd sasteme
thai BETY < a0, Then yy jukich i defined with probabiiiy 1), & dutribaied
aceerding o the stafiorary duiriution of TN

Hote by, thw sarples o F s ., 678 & conoeptuel orvenienee only, baving
1 alparithmic sighifieinee, The alperithm for <be Keodall saraot of CFTE
i5 1 2 mple modifieation of the moatore one presenced n Figura 7.1: simply
Teplace the tines

ks — i v
upper — flupper;

[ Totwer, wptr] +— gl lotver, upmer);
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As an ilustrative exemple, Jet ws eonsider bow CFTP might be spplieé
o the raodan cluster made] with 90 < ¢ < 1. The probahilivy distribulion 7
|3 specified by the fallowing trial:

{1] Selecs ez Eandac [l 1) nar

(2] Define the et f; 1Y — 03 by

X +e e <y
fiX) = ‘.’I.' -& olaerwise:

whoe 8, is deBioed as i1 {74,
i3] Define the furetion =7 — T by

iL+el+e) ifadd,
gl =g {L-el vel i, o<y
{L=ell=e) ifozd,,.

(4] The pair [, ) 18 5 cndate gample feom F7,

Inforisally, the lunetion ¢ updates iy lrst o “bowes” erguient using
the threshol & . epproosiate for its second or “upper” erguoerd. wad viee
wersa, This artifioe eosures that g presercss intervals—that is 1o say, L C I
and (4,0 = gLy O enieil L7 2 ' —sven though f it [ i oot monatone.
‘ndeed it = Toutiee to werily that condition (7.5) bolds with ' defioec as
shipe

The pictore L3 have in mind iz chae the ltecares F) of f define esupled
semple pithis of M. stacting ot all possible jvitizl stetes. When ¢ = 1 [the
Mmotenmg case) theee vl Dendve 1o wi orderdy fshoen, and their joint
swolutior, is summacised bor the Jower and Cppenmcat saripe patls FICL and
F3(Th. When g « 1 the sample paths are unruly, crossing and rectiesing each
other, neverbelzss, the terstes ol T) continge 10 provide eowsenative
lemer and upper bonnds oo their joion evalytimn

The se: o Jutests {acyelic, spanning, aot necessarily conmected auberes bs)
of & graph (¢ eadiwed wil the oaiform distribution, cen be cagarded a8 the
e of senfigurationa of the Lot of be sandun elasler maded as p.g = 0F
wiln /g = L Explicitly, the theeshold 8y , ir. thie limie 2

o O el +e) =X -
YT 1A obherwise,

Plugging this threabeld inte the non-menstons coupling br (¢ 7, 9] with
q < L, we obaon (in prineiphe) ar. excact sumpler o Erests 10 & graph . As
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Fig. 7.3, Fsnst sgmpling: & randam focess [ g 20 20 squara grid

il ecperiment, wen rera of this sunpier were conducked, with 3 being the
a0 ) aquare grid. Figure 7.3 Jlustrates the end resoli of o rypical ron.
Al ten runs termingmed within 2% steps jebout K2 minutes on a Sin Ults-
SPARC EL3), with an sverage run time of about, 7 minates, This stms 19
b the limit of 4 methed; the tin tive degrades rapidly begord vhe 20« 3
grid, snd the 3= 3 grid appears 1o be inancesyible, Nevertheless, i- is par-
his surprizing that the apparettly very conservative lower and Gpper boueds
picvited w G¥,( L, T] should sewwete In any reslistic tme hoand. It cer-
Ladnly 58 wiTth experimenting further with this approach, See Hamestrim
and Nelander [31] for goroa more expensive expericents ith oon-monttone
CETP

7.3 Further Applicasians

Exact sampling v OFTF and other methods ia 6 trlving research wpic, and
oaly o amall sample of the burgecoing Hlsraturs will be reatloned bete, Refsy
to Wikan's anlive bitliogrephy [39 for & much wider seection, Sempling
frea Morkov sendom Gelds was peveted (i the mooetone rase] o Propp
atd Wilioo's orgibed article |54, and (e geneesdly] by Higestrim and
Nezpnder [31]. A further twist wa integduced by Eendall ‘33| in applying
CFTE (2 a sitoation  ares Interactien poit Frocssse  where there is o
tatural “top state” T.

Tin sasistioal physics, one is concerned with infinite Markev randotn fizlds,
the lslng mmisdel om the infinlte 2-dimensicnal squars Jattice being 2 prime
exsmpz, In e mmirkble development. van den Berg and Sul |5) poiot
oL thel is prasible in same cases to sample exactly from imfinite -endom
Belds, gven though the eopfigurazions ore uoboonded ‘o extene. The sense
in which infirute configuretions oy be 'sempled” s the kellowing: given
pugitive integer IV, the sampler produces, with probability 1, 4 configratyn
on the (=N » |- 8, M| grid which is a {28 = 1] % [2¥ + 1) “wizdo®
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mita  parferthy Armpled infloive configuration. The zingh ides 15 that, sith
probedlity 1, she spin {= state = colour) ab & given lattioe gite (= vattax)
gk tlme & can be computad by conpling fom & polnt In t'me anly Gnltelr
many steps before and withio & reglon. of the Lattice seretching ooly Gnitebr
far Jom the site in question. To get & picture of this, think of “light cones” of
relativianic physies, which if byunced temprrally mst be bounded sparialky
too. See alan Kerdall [4).

CFTT & la Propp and Wikon requires & gmutanecas cwupliog ao gll
states (F—encapsaiated in the probabillty distnbution F—rathe: then the
moby frwilipr and Jaw Jemandiog pairwize eoupling. Fil's version of edact
satuplling |18] requires only pairwlse oaphing, and cesls with the {2 least
philcsophizaly signibesar] problem of Bies induced by “user mpatiencs.”
Simee the munning tme of the ProppWikor, sampler 3 unbonridad, there k
& danger “hab an jmpabect wser will abort & run, leading to 2 blased sample.
Fill's ropasal hes the property that. i the user decides to absat & ru after
soutee number of steps have e apeed, che sarples ohésinzd are ok wesed,

8. Key Open Problems

Thete are many aoresolved questions i tae eren of repid mixing and ap-
Froimara counzing, 4 few of the moet pressing ars eolleceed ropether in this
LR

&1 Bateoid Paces

Perbups the major cpen preblem in this sees, and one thet wenld be very
tich in terms of consequences i to determioe weful bousds ob the mivieg
lime of the besiz-erekange Markoy chain by 6 peneral matrodd. (A matroid is
an rlgebwaiz strocture thar provides an ahetract cromsment of the concrge of
Tmear independencs. ] The skates of this Macko chain are the Tases [mae-
riwn Independent, sxts) of & given ountroid, and s transition is avilable from
Base B v bass B' I uhe syenmost e dlference of B and BT sonslsla of precisely
twi chenents of e groond st Al ickneition prodabilities ae squal, so the
chaln i ergotic and reversible with unifores statiweacy distribacion,

A roberere example is provided by the grephic atend wsnclated with
an undireeied graph . o $hls tase, the bases a7 spatning trees of G, and
8 wransiticn bom 6 given tree T & efbected by aicing & single edge (asbuted
nat, te T, thon ergaring o rycle, ard when breaking the pele by deleting
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cne of 'ty edges [lertad war] The bassexchange Marken chain is kngwn
t be capidly mixing for graphic matpaids, and, somemha mors generally, for
matrosda satisfring & certuin “balines ecnditon” see Feder and Mhall (23],
A proof of 1apid muting Jo wbe genere] case wauld Smply the existence af en
FPRAS for & ownber of imparian: problerms in combiracarial encmerazion.
all of which are #P-eomplete, inclyding cowsting eanected spanaing sub-
grezhs of & grapk (etwerk Lelizhiliny, forests of given size o & graph. and
independent. subsets of vertors o a set of mvectors ower GE{2.

B2 Permanent of o 0,1 Mateix

1a thete an FPRAS for the permanent of & generel 0,1 mateic® Bruisalaovly,
is there an FRRAS for the uamer of periert catehings in 4 bipertite grapo
“ote that this probdern is ool phrased o & question sbeud the mixing time
of g gpecific Mackov chein, and certainly the chain Mg d=seribed in S
tron 5.1 ia Tt directly applicabie. T heve 3 peod chaore of obeenvog perfect
matchirgs e “dinesy covers” : the paremener & most be of arder my_q/my:
hewever. it is poesibie Lo coastzust graphs where this ratic & expooential
i n Mevertheless, the Mathor chein Motte Coclo method seeme w0 offer
the best hope for & g0gitive vesnbution of this question. Fssentially, che is-
s is whether the Markew chain Mhayen van bt suitably sdapted to provide
a geoeral swution, of perhaps used 86 & “Rlack box" folkering swme inge-
nials preprixessing of the inpot makrks [Tros [stler idea bas been vsed in
& weaker way by Jersum and Vasieeni |3t obtaia a eandomised approvi
maticn scheme for the geersl 0,1 pernanent whose ruching time, whle shl,
st pobvnatial, & siympkaceally sierifioanty fasser than thed of pote nslbve
methods. |

4.3 Contingency Tables

Consides the follwwing tazk: given m ~ n positive integers 7y, .../ a0d
£)a--- Oy S0Pl 1B, [ 1 30t of 2 1t non-Degative iiteger matrices
+ "eontingeney tables™) with row-surz ey, L vy and eolimE-sImR 2y, L 2

This problecn acises in (ke intespretssion of the resalts of certaty Rinds o
statidiczl experiment; see, Jor example, Disconis and Efen 13

An alegant direet Bpprosch to sampling coctingsacy taskes has been poo-
pozed by Dinconis, Comsider the Markov chain 18, whase state space is the
seb of all matrices with specibec row and columo sums, and wrhow tran-
sltloy protablinies aee defioed s follows. Led the guorenc state [medrrc)
e A = u,;, Select & naic of eows (7,5 with § & &, aud 2 peir of columna
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(.2 with  # §, both nau, Fore a new mairix A" ftom A by increment!ng
b toe the ey elariems gz, 9, sod decreewanting by one 1be elepencs
.y Note thet A' bes the same row- and columesoms o5 4. 0 4 is
oom-Tlegative “hen we accepd it as the nexk state: othermise 1he chalt reynaing
il slate A I s ensy b vy tliat Wy B ergodic and reersible with -
fanm stésionaey distrlbutlon. Mareover, it appesrs to wok well in peactice
gs & niform sunpling Jrocecere for contingeoey tables Homever, 19 mix.
ng; tite 13 ot known to be bounded by any pohmomial in the sise of toe
inpuz, (We assome chat ibe row. and colymn-surs v expressed i unary
ootezimn when defl ping the inpac size, saberurian aven tha dicect path batween
I states may be expoasntially ‘ang.] Dyer, Kannen and Manct [35] heve &
prtial requls.

Tor Feal with tahleg wich Large entries, & natural ides 35 10 use o kind of
beat-barh Cynamics. A before, seiect o pdr of roms (4 Y with i £ 7, amd 2
pedt ol eolumns [, 3') with 5 # 77 Now ehaose the hew tnatres 4' vt fom
thete which agrez with 4 except 2t the four enteies 6y, 0y y, ggy, 20d 4
ta00 have the correer pow end eolomn sums). Again, dttle i known sbaut
the mixing time in general. b sea Dver and Greenbill 24] for o spevial case.

9, Details

Proaf of Propediteen 80 The lechiiques we emphe ane saiderd i the
area [47]. Recall from Section . {refer v squation i2.2)) thet we hawve e
pressad the number of goolourings of (7 &a 8 preduet

IRGE =08 f8.1]
whete
o = LGN
|G g

Supposs that chs qephs O end .y didler in ke edge du, 2], whih
5 presamocn O bt sl ot Gy Clearly, @050 € NG, Aoy
crlowring .o N0 b (5, wasiies Abe same colour to o and v, ard mey
3 partiurhed 6o a calaudog in Y] by wecolouting vertex o with one of at
czast g - A= Leaogues. {To resooe povbiguty, Lot w e due smaller of the 1wo
veriees.) O the cibet henr, cach coauring in [0, ] can be obisdned in at
wost one way bs 1he reeull o sueh 4 perturbasion; henee |2(6 0 RIGL) €
{1G, ] arl

| xS

SRl (9.2

= —
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Tip avend srivialicies, sssme 0 € £ = Land i 2 1. Let Z; € {0, 1} dencte the
random wriable which rescley fiam runming the prstylated almost wmiform
sampler on the graph Goo. end seturait one if the resalting g-colouring
is alia & cedouring of §, end zero otherwise, Donses by y, = E(Z) the
axpectation of Z,. By setting § = ¢ 6m, we may enswre

£ g )
et ET 93
i ALY R 93]
oz, Toling inequality {3 ),
£ £
- — LT o — | @: LY
(1 Smjm_p._(1+ )p., i

g the mean of o suficiently large {hot still polyromial] momber of indepen-
dent eopdes of £y wll peovlde & good estinets Boe g Note that, by inequalk
ties [0 &l (93], 2 4.

S let 3,:[:],...,3;:':' be & sequence of 5 = [7d~*m] ¢ Tem jnce
pendetit copies of the tandom varisble Z;. obtained from independens trials
‘ing ~be postalated alkiost wrifoern sarapler, and let ;= 7 T, e
dheit ez, Since Z i & rapdou: var:abi taidng veluss from. (4 U, it ollows
catily that 7 *bar( 20 = 7" -1 €2, and ener 0 € I dsour
eatimaley B [13(0r], we wee the random vareble ¥ = ¢ £ 2 25 Note
that B} = g"pjpa .. o,

The petbxmence of this eiwessr is carsclerised br v vafance. which
may be boundad s folkws:

wtT12y . Bm)  trf. w2
gl
t =1 L
2 m
*(“‘;J -1
L
cR[=] -
E(aﬂ !
¥
s
M

sinte €7 £ 14 £)9 peewided € € 1 £ 1. Thug, by Chebyehew's inequality,

I:'~ - %}#mz---ﬂméq"'}’i (1 +§)ﬂ]l“ﬂ---.um

with prebabilizy at least 3. Rut from Lnequality [9.4], we have

[
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which, combined =ith the mreviays nequalley and 317, impiicg thea the
edimator ¥ et rfizg the requiresmerts of @ camdoonised appeoimation schewe
fior the ramber of ealonciegs [2(G]).

To eatimate each 1ati g, % beed T3¢ 1 caophes from the almost uni-
foem sarnpber, and there ax¢ m sich catios In el to estimage. The clalmed
timwe compleity for approimste coumging flhes. 'J

Prewf of equation (£-5). Consider & fawet Ric) 1 Re’), where & and of
are adjacens seats fobooriogs). Up to symietcy, uch o bacet B a (g - 1k
dimensional polyeps defined w inequalivies

Lz ope = 2 wps 800 -  Trg-1 20 G5
12ha2 e, T1g-L 21 [9.6)
12 fnein 2 Tamo Tt Brol g3 2 11 8.7

This particular favet correaponds v the bouodary between thy al-0 stabe and
the and adjecent state o which verte: b wyaices cokour L <he Baeer dlearly
lies in the plane defined be gy =2y

We wish to compute voly,_ (i Ricl N R(eD), the ores e, (ng - 1I-
Citensions] volome) of the facet e N B, Each lie of the aboes display
relates & Glfevent ser of g variahles, sp the required wolune is the product
of 1he volures of the pelylopes defined by ench Tine, The polyteps deflred
by [9.5% is of dimension g - 1. snd all the others, namely (1 6-(97,, at2 of
dimensbont 7. The qediciengionsl wejumz of the pelrtepe defined by wny of

98] (9.7) ia sieaply
. 1 .
[J:“"dx = _—] =-. LYY
0 Lile
T ealelats the volure of the polytape defined by (9.5}, prajert it octo the
pne zog = e obitadt the pobrlope
12 2y > o2 toga- o 2ng-1 21,

which. by comparisen with (98], bea {5 — )j-dimens:onal wooume (- 1]+,
Projecting From the plane £y = 1o, to the plane 2 = & cemtracts vewume
by & factor 42 {the sealar producs of the tormals to the two planes] so the
actual volunue hefore projeccion 15 w2g - 1177,

Multiplying the n factors just compared togetber, we obtain

. 1
(RN R = ——,
voloo 1 ()11 RidT; T

e rladwd. M



1689 Mark Jemum

Acknowiengemanl. Twa colleapoes mert special achrow edgemant for their oo
tribution 10 ¥hls sarvay, Some of the regilts presented here were products of sn
extended perod o collaboreton with Alistale Sancladr, end in desceibing Lhemn I
have freely plundeced and adapled melerin’ fram gar joint axlicles. The sxpeimant
deserihe i Section 7.2 was joittly wideraken with Vivek Grore, and is pu3lished
hae fo¢ the firsl time.

1 alsc Lhank Brucs Reed end 2n snoiymons tefres for earehally seadiog and
providing helplal rommerds an 2 drafl of this chaptr

References

1. Ablous D {1986 Fauden wilks e Ruile gioups and mapidly imsing 2 adeow
chaing, Sémineire de Probabilicds XV 094152 (A Deld and B, Eckonann,
eds]. Springer Laciure Kole In Marseinatles G980, 343 297,

2. Alous N [1987]): O the Markov ehain simulation methed for unilorm goanbi-
matrrin distribmciens and simnuleted anrealing, Prohahilsty in the Fagineering
and I ormitionad 3cienced 1, 3HE

3 Abcaus O, (10803 The randon »alk conetncciad of wifarm spationg Loses and
uniborm lebelled trees, S[AM Jonrme: of Disorate Mabheinates 3. 450485,

4. Aloa K. [1985% Eigenvalues and expancen, Combinatosica § 33 U,

5 Applegese Bl wnd Farman B (09017 Sanpling snd intagration of near by
concave funclions. Proceedicgs of vhe 2ed Anoua, ACM 3ymuosium on Theary
of Computing (3TOC:, ACM Press. 134163,

6, van den Beeg J. and Steif JE. (1988) On the xiseezos and pon-exslence of
ficitary codings ‘ar & clusy of random Falds, Trearmt.

7. Bollobis B, [1978): Evtramal Graph Theory, Arsdetile Pess.

& Peoder 8.2 [19657: How hard -5 i1 t¢ marry at randam® (On the approximation
of the permanent;, Praceedings of the 18t5 Annmel ACK Sempoaiim en Thesry
of Computing STOCI, ACM Press 19%, 31-58 Erraam b Proceedings of
the Hit> Anoyad ACM 3vmpaaium on Theery of Compuving, p. 551

9. Brocks B.L. (1041} On colcaring vhe nodes of 3 setwoek, Procssdings of che
ambridge Philesaphical Sociely 37, 104-157,

10+ Bubley A and Tryper M. (19950, Path equpling. Dobrosain uniquenas, and ag-
promingte counting. Fepart 370 Schoal af Cownputer Soudivs, Universicy of
Leags.

Ul Bubbey B end Dyer M. (15975 Path courdicg: a 1ecinsgue lbr proving rapid
m.itg in Weckov chains, Frovcedings of the 3tk IEEE Sympesiom on Faur-
darsns of Cormpyter Sewace, 1RER Compytar Society Mo, 237 251

12 Rubzy A. and Cover M. (L98): Fasser pamcom generatior of [near sitemione,
Procsedings of the b Ansuel ACM-S1AM Smpssien of Tsrebe Alper Ly
[S0ORA), ACMISIAM . 350-354

(3 Bubley B, Trver b F. ang Gresshal . (10983 Reting 1he 23 e ar ap-
provimalely ooanting cokinTing: & comoules-eistabal prool of repid minmg,
Procesdlngs of the Nioth Anoual ACM-STAM Synposiom on Disrzte 4z
rithre [SO0A, ACMSIAM, 355 303,

14 Bubley B Dyor W, and Berrom M (1ERE) A slemaary snalyes of 4 pro-
endar [or pwnplmg points [n 6 coness body, Randoes Sbruclooe and Aogo-
itk 132, M3 285

Mnthematizal Foundatioes of MOMG 163

15 Cooper © aed Friess AR (1998): Miving Peogercies of Lbw Smimdseo-Tang
Frocess o Coaees of Giragha, Pregriml

1§ Cordovil R, wnd Mereirs bLL. [1963); Basescobrm graphe and polyicom of
malroica, Sombingenico 18, 15r-165,

17, Dinconin T (1966): e repestentatianain prebebility end statision, Institute
of Mawhernaticnl Stasistics, Heyward CA.

15 Discomis P. and Efrom B [1585): Testing lor indeperdence in a twoewey tadle:
ew irckerpretations of the chi-squnkec: atatsiie, Anoels of Stetstics 13, 845 913,

L LEacomis . and Stecod v [1991); Geometric boands for ekgenvaloes | Markoy
chaing, Aneele of Appbed Prabalilivy 1, 35-£1.

H) Dver M. and Priee A, (193 Computing the valime of cotnsen Sadles: 5 cass
where randomnzse provably helps, Probabitistic Combiratodes and ite Applie
caigny, Proceedings of AMS Sympocs in Applied Matkematios 42 125170

M. Dver M, and Froeos A, 114341 Kandon welks, totally umimodalar matrioss and
& zandoemized dusd simplex method, Malhemaries) Programming 84, 1 14,

¥} Treer M., Frieoe A, aod Kaonan R {1993 A randin ol vwwind tine alpecithm
foe apprenimetng the wolume of coove bodics, Jouriel of the ACKL 38, 1 17,

25 Mot M. and Greechill C. (t997]: On Markov chaits b icdependent el
Prraguint. [Visie heep: £ Bes loeds. an upfrand facy. hral}

24, Dyer M. and Greehill ¢ {1935] A genyinelr polynomuek-time algocihn for
1empling wo-romed costinganey toales. 2ith EATCS Inlernalionel Colloquium
an Aurconats, Languses and Mrogremming, Aalborz, Denmark. Sprisger
Verbag TR CE Semies,

25 Dyer M., Hatnan R and Bowsl 3, {1997]: Ssmmpling sontingency (ables, Rax-
dom Slevetures ad Algorithms 10, 487 308,

o, Edwards A5 and Sakal A.D. [106E): Generalizatices o the Forltcin-Kastoloy-
swender-Wang reprasenlation ecd Koote Catlo alporithm, Phygioal Review
[ 38, X9 12

27 Feder T, and Mikeil M. (1992} Belanced matraics, Proceedinge of the 2415
Aoyl ACM Sympasioe an Theory of Computice. ACK Pres. 3-8,

20, Fill 1.4 19077 An ineeeruptible elgonthm Zmr pefert camplmg va Markoy
chains. Propeedings af the 2h Annual 40M Spnposun oo Theery of Cou-
puting (ST, ACM Prees, G58-805,

0, Forbain C.M. and PW. Kastsban B.W 2 1872): On O randsm clugter model [:
intecdipctian ant relalicn Lo othet models, Phnzica BT, 538 564,

Wb Gore V. and Jorrum B, (1097 The Swendson-Watg process coes nol alwas
mix Tepidly, Procesdings of the 20tk ACK Symposium o Theary of Cempu-
Latict, ACH Press, $70-581,

N, Biggateien O, and Melander K. (J%97): Exact sampling from ant- mamgtyne
syslems, Prepoint To appeer in Sratiztan Nesrlandica,

3%, Beibroano 0.2, and Liek B H, (1972 Taeory of winoine -Emar systeus, Com-
mumications 0 Malbemasical Physics 26, 10-152.

$. Jermum M. (1935% & vary cmple slgorithm for earimaticg the number of &
eelomringa of & Jaw-degres praph, Random St=octyres and Algesthma T, 157
165.

4 Jernm M A, and Smelar A.J. (1988a): Appreximating the parmenent, SLAM
Jatns. om Computing 18, 11481178,

3. Jecrum bR, and Binclaic A.J. {19930} Apprexicsale cootking, nlore gei-
aration wid rapidly mixng Markav chains, Information and Conrputaticn 83,
23133,

3. Jorrum M. aué Sinclair 4. [1963%: Palmotnial-time apgricmalion algorithms
foe the lxing model, SIAM Jaurnal gn Computing 32, LET-1116.



16, Bierk Jaroum

4% Jormum M ard Slnelair &, (19965 The barkoy cham Mante Carlo melbag; en
approach to Bpproximely conting wed inlegradon o Approdimaskm Al
tithmes fed WF-hard Provleme [Dhoric Hochhaam, o, ), FW3 452-520

25 Jecren MR, Valiot LG and Vazieni V.. {1986) fendom generation of
combrinatorial atrectuses frem o unilirn dberibution, Thecestal Compuler
Seienwe 45, 164134,

29, Jerren M, and Yaaareai UV, {1996 A mikdly moonentie] appeoismecion &l-
gocithm for the pheritnein, Algnrithmics 16, 350-HiL.

40, Jokneon V.E. (1996} Stodying comvergence of Marken chain Momte Carls £pe-
rizhens wsing coapled sampie pathy, Joarnal of Lie Americer, Staskticy Aeanci-
wtiom B1, 154 A6,

3L, Keonan T [1894]: Markor chains and polynomiel e algee: thms, Procesdlng
of L 35tk Anonat [EEE Spmposium on Fromdaioe of Compater Scears
(FOCS!, Contputer Sociy Tees, 558 671,

42, Kancan K., Lovisz [ ang Simonavics M, (1056 Random Welks snd an ((n)
Valure Algoricho For Cenver Eadies, Preprine, Januery:

43 Harp RW. and Luby B, ¢1983): Monte-Carlo algorithns e enomerslion aod
zeLintality peoblems, Proceedings of the 24th Anzmal TERE Symposiuen vn Foue
dntiomg of Camputer Scieoce, Computer Seciety Fress, 664,

44 Karzenow A, and Khechivan L. (193] Oo the comdurtane of seder Morkes
chvsing, Techmies] Fiegioin, DCS 265, Rukpers Uiversity

45, Headall W 3. (19965 Perbect dmalation for the mron-interschon point proces.
Univesaity of Wurwitk, Depectment af Stalistics Raesasech Repers 2 Te ap.
senr i1 Probuhility Perectivn (T, C, Hepde sod L. docgndi, edivore], Warle
Zeientific Press, Singagcte.

a6, Hendall W5, (1957} Perfeet gmustion bor spatial poict processes, University
af Warwick, Beparlment of Stalistles Resecroh Repert 308, 1907, To appear in
Praeedings of (5] 513t essan, Totechul, Augusl, 1937,

Henyem 1, Rancall T, and Sleclair A, (1950 Melchings in Laltice grepha,
Proccedingg of the 2Blb Annuw ACM Symposiom oo Theory of Compiling
(STOC), ACM Press, 735-746,

48, Enuth [RE. (1575 Esbmeting (e oy of backerack progrems. Mathe

metics of Campulation 38, 121 136.

44, Linssal T mnd Rogors LC.C {1936 ): Coupling of Mullidimansionsl Diffusives
by Refisction, Annels of Prababiity 14, HEG- 872,

S0k Lovedine, L. wnd Simenavits M. (1053 Random walke 0 a comex bofy wad an
impreved selume algorithm, Aandem Strotures ane Algocthins 4. 359-413

81 Lihy . and Yigoda E [1997): Anprosinately coenting op ta baur, Frocesdings
o b 2Lk A umual ACK Symposiim an Theory of Computalion (STOC], ACM
Preas, 852 487,

5} Mewnpalls M., Roseabinth 4.0, Fosenbloch M., Tellar 4.0 and Teller E
(1951), Bquaricn of stars celculitian by Jast coonpaliv wechires. Joymnal of
Chernseal Pysies 21, L067-1H2,

03 bfiksil B eod Winihr PO O whe tuiter of Eulengn crientationg of
a graph, Procesdmys of the Ind Annudl ACH-STAM Sympesicm oo Diucrate
Algorilboms [300A), ATM Prem, 1 3.

. Propp .G and Wikson 0.5, [1996)- Easet uripling ik aoopled Marker chains
and sppleativea b sptisticsl mechanies, Rapdoin Steoctures and Algorilbrs 4,
A3 B2

35 Rasmuwesen TR {1904): Apprsimating the persianst: & smiple spproach,
Blandeen Brurouees and Algarihms 5, 349-551,

56, Slncledr 4 J. (1093} Ioproved bouds fyr mixing raves. of Markor chmicu and
meultionmedity fow. Combinatonics, Probablly and Compyting 1. 351 373,

4

o}

Mathematical Frndations of WCMC 155

57 Sigclait A 1. (1995} Randamised algpothma for cpunting and geperaling can-
Winntoriel stoatlures, Advaoos in Theoretical Computer Scnce. Bikhiuser.
Hustan,

55 Walsh v (1907): Approzimate Counting. [n Survers in Cmobicalocws, Langon
Matbomatical Seciety Lechure b ote 241, Cambridge Unisversity Press, 287-223.

B9 Wilson . [1982): Annctaled BibHography of Perbectly Randem Sempling with
Miackow Chaine, tbp: /fdionce . caspecs., sduy " dbvi leoe fezact  htal?



Percolation and the Random Cluster Madel:
Combinatorial and Algorithmic Problems

Deomizic Welsa™
1 piverslty gf Qafond

1. Introduction

In 191 Hirry Brisch, Jobn Haounersley and 1 |2 carried out what were
it those deys massive Moote Cotlo Bxperiments alsmpting to desermize
thie critical pocalatiog srobabilivies of the verious standard lattics. The
sonslrnies o, that time were, bs tadyy, machine indncad. The programmes
were wiitten in machine cod o & computer Which wes the size of 8 lage
nuom it Less power than 5 modern day caleulator. Todey the sitedion bas
varicalls chingec, Sevegal of these critical poobabilieies which we were vyl
o egtiméts ace now knawe exactly. However the problen posed then have
hean vepleced by problems of just ss mruh charm and eeemning in:ractabillty
and it is sorne of “bess thae T shall address in these wctures.

The plu of chis srtick i3 as follows. In the first sertion I shall redow
classical peroolatien theory ané then disees fron & cotnhitatoris] poin: of
view the lsing, [tis and randatn chuster models . In b 1 shekl survey propes-
-ies of the Tire polynannal sad  particwlar highlight ta celesionship with
he previgus -hree madeke. In B [ shall returo to the random chuster todel
The remainig sectiors sre concerned with the diffiewcties involved iu obtain-
ing zoed appraximatien schemes Ear t2e partivioc faneilan ¢f the Polty end
random eliser medels.

The graph -erminology used iastondard, The complexity theery and nota-
tion follows Gazer and Jobrson |14]. Frther details of ity of she ownveqts
trested heve can be found i [33].

2. Clessical Parcolation Theory

A5 15 name suggedts, Tercoision theoty is ooncerned with flow in randoa
s, Tts otigin, i 1967 in tae work of Broadbens & Hammerakey |5, v

* Supported 4 part by Esprit. Wrking Sroup N 21726 THARDE.
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a5 & model e mleulon pansieatiog @ parous salid. elactronc migrating s
ar sbomic aktice, 5 sdute difusing through a salver: nr diwase infurting a
commitiity, Hege we shall aieempt to Introdace the mein rorcepts of clnssic
geren.ation heery and alo to eelate b with othet topies such as <he Ling
atode. of ferromagnetiar, the relability proldem it ewackoth netwotls. the
Putes mede] of statiscical physics and the ramedaen cluster icade] of Fortuin
and Kastelewn 11].

For lusrative porposes we siall be principelly coocemed with the =
dimengional equare labiice L. However the basie idess apply to any regulsr
littstes in arbitrary dimenaions.

Sippose char there 12 & supply of fluid at the orgin and hel e edge
of I allows Juid to pass aloag it witk probeility p, independsrzly for each
adae. Tet Fylp) be the probebility <bes ot Joast n vervices of L get wet by
te Boid, Thus

Aip) =1

Biy) = 1-(1-p*
and io thenty Pyt een be calouuted for any inteper N Howener, the rasder
wil Tapidiy Bod [t probibitively time consumiog Obwioosly

Pyigl 2 Prpalp)
gitd hesee we krcw that Pip) axecs shere
Plp) = lo Pylp) AN
-0

and it rapresetits the probabiliy that, fluid spreads an iofoite distanes Mter.
Lhe JHpo.

Broadben: and Hevenersey |5] showed that {fo1 8 wide cless of lateives
there exista & erifical prabuitity 2y, sock that

pap = Fip =0 i
pr oy — Fpl =0

and Moete Caelo simolationa saggest that for all she well-mown Latyicss the
behaviour of Pip) is roughly the same in the qualitat:ve snse

Histeriealyy, the subjecy of percotacien bd stesistical merhanies owr-
10nes, and io chis ares ond’ ie uanwlly osed e deote i edge’ of & graph,
similesly site' or 'mbom’ denctes & veclee. W shall wse these Lecms inter-
changeably.

In atom zerco.ation o £ nstesd of each efige of L being candoraly blocked
with protabitisy 1= por open with probabillr pthe wetlos of £ see locked
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with probability § - p or opec with probubility . Again we are ineerested In
1he prahakility 3f thid spreading locally or wn infinike distance,

Exesily anslogous results hodd Er stom percalation as for bord pecaols-
txact, though of conrse she numerical veloes of the criticel probabilizies acd
percolasion arobabilivies Pp) diffar.

[t can be argued thet atom perenlation is the tore impartamd, on the
grownds that sy band percelation problem oo a latslog L can be tucied
“ntt i alom pecealation probletn ot 8 rolated Jateite L. ook by leltlng sach
edge of L be & vetlex i L and jaining twa vertices af L if end on.y if the
correspanding ecges of L are incident.

For any regtler Lettice, i P4 (n), P¥ig] represent cespectisely the sbom
and bond percalation probebilrtses then it s been kuowts [rom Hememarsley
|19 that \

Pl < PP Dep<d 23

Very recemly, stronger verslors of this inenaalily hive beer. ancounced
by Grimmett 204 Stacey [18]-

Andther way of looking =t percoiation theory ia 10 tegard it s the study
ol the distribution of white snd bluck clasters when -he edges [or vartices)
of a graph are painced white with probabiity p and black with probability
g - L-p. & white dlosteris o madme’ onnacted subss: of white «dges where
igc-anad vortices ave ragarded s closters. Twg quamtities of ehwinng physical
integeet arer () the sverage number of white Jisters; [b) the verags fuembes
of vertites in & whise cluster.

Tipe Critical Pratability ar Probabilitie

Az stutet =arlien, . b axiticel probability, is defived 1o be the criglcal
vl hboew wicich there is gere probability ther fluid from a souzee at the
origin spreads to infinitely many poiats. AL les: tws ocber ‘cridical probasil-
itdes” oreur in the Gtersdcoe snd thees iz still confusion shaut the relarionsbip
batwwenr themn. The fires, pr, in defined w0 be the eritical valoe of p above
which the expected number of aoinke wet. by Awid o the orlgin beeomes
inzinite. Kow if thete is & pasltive probability char infinisely many poinky rg
et -hen o frfiors b sverage nuerser of poiots wat s inbnite, Thua for any
Lantice,

Pr < (24}

Easecn A9d Sykss| M in 2 very ingenious paper, abtained some precie
recalts ahout s quankity p; which they call the eritiial pravability but which
it defioed u tecma of singularities of Machiore giving the vep camber of
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pluseers o the lastioe, For exaenple, for bond perenlstion oo the square bz
L, they proved thes

1 -
pall) = 3 23)
and tor the triangaler latrice T and hevagonal attice J they showed that
polT]| =2an(r/18) =1 - pellf]) g

le soeme s b exererely difficalt. b relace pe wick eithee of the ctber two
criticel probabilizies par and pr, and physieelly it doss £ot appeac [from Ra
definition at keast) to be o niecol e object ea py or pr. Exest rigoesus
bounds For pr #hd pr oo general betticss seem difficult to oatein, However,
far the bood peretlation sroblem ¢a the square Yortice, Kesten |27] showed
that pr = pyy and that (his sommon waloe was 12, Wierman |41 &xtended
Eesoen's arpument ard proved & giniles eesult for the heiaganal ard trian-
gl Tattizes dlos werifing the: srlier vezult of Bssan and Sukes

For rigorsue e'sgant goesnts of the very ctmsiderable progress mede ao
percalation Te.ama see he manographs nf Kesten [28] ard Grimmets, [15].
We c.ose this seetish by Statiog tord autstarding apen Srobams.

Problem. Find good baurds o betbee still, exacd vafuss for the evitizad prod-
chilities of g, site percodeaon. om the sqore lattice and by bond ar sils percs.
sation on the J dimensiansd cubic filice

3. The [sing and Q-State Potts Madels

W Srst congider i clasaical models of statiseical phyaics, parely the fing
mode] and bhe if-skale Folls madel

In the {racars Potts mode] 4 55 & posicive cteger and the sites of the
undeclying lateice or grapo ave sssied 2, Fom vhe ses {14 G0
Thess sping (har, chasge aamrding t0 the prababilistic rilss =5 be mpetified
Jeer apd the full spln somdguration eea b+ regarded a8 & Markoy chain en
& very Jarps state space, of sise " where n = the munker of vertices of the
widelying lattice or gragh-

The Tiniving bebaviour as time inereases may very guits considerabiy
depending of the parameters of the model. Cloar qualiutive differecess in
sehevioar eomslitane what b callsd 8 phase transition apd daciding whether
such phentmena oteur, end if 5o when, is & major en of study in statistical
Physies. Tha lelng randel, which wes intraducad in 195 ie & machematical
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mirde] used 1o study sueh gystame, Tt has o buge literacure and s ealutively
well undarstoed The Potes medel. introduced in 1952, cootains the ing
moodel 25 B speriel case apd 16 Jeas well wnderstond. This in Lirn Js entatned
in e randnm einstar meded mhich we dessrbe 3o 1he news, section and which
is alen A reasomably neture! extension of the peroclatlon mocel deseribed
earller, However, in ovder bo metivate the rancom cluster tnodel we need first
tn describe the laing end Potts madels

In the genetal lsing model oo a graph or lattice G each werew 7 of & s
assigmed & 9N s which is sithor +1 (ealad *up's or —1 {gacled 'down’). ha
asmpnenent of sping to gll the verrices of 5 i= called & configuration or skate
and iz deonted by o

In addivion egci edpe & = [¢.j, of 7 hes sn pssociated mismaciion enempy
Jyo wiich s coustant. but mag vary fiom edge to edge. Tl mengures t7e
strengthoof tbe interastion hetween seighbowring pars of vertioes

For each state a = [9)...., 7] defire the Hamaltorion & = Ho) by
Bal=-Y Law - Y Me, i)
il |

wheze 1 & the external fiekl,
The Hamilzonien e raeasares the eneey of whe seate o,

In & femonagnet the J,, ara aicve; this meass, 1he: & configurarion of
spius in which neacest 1eighbour peirs have parellel spiow o = o) has e
Iowver enecg than & state in which spins hre atbitrary.

The external 7eld 3 Das ao afhc of alignig spins witl tbe direction of
the fieid, thus again fawuring states of low eoergy.

The porvition: fanchion Z = {5, 3.J MY ia defired by

I=Y gt (32

whers the aum is avar all presibie spin combigurations & with &, € {11},
and 3 = 17kT 5= & paremeter determinad by the temperatuve T [l ahan-
.te degpeees) aod where & §s Boltzmann's constant, The wopertates of Z is
“bar it i assuned thet the probaliy of finding <he system lo o tate o
configuration o, ts givet by

Pe(g) = ¢ 2. (13

Bercolotiont and Lhe Random Cluster Madd 17
Thus 2 see that

i7) High tetopecature = low aloe of § = prebatdiby disibution of sages
betomes more Hat,

i) Lo tenperatuze = high if @ greasar probubility to low energy state,

The quartity
.
= —ﬁ]c\gﬁ

is called the internol emeryp, and the froe energy £ is deioed to be log 2.

A major problem wich the Jsing model oo & glweo Tption is e find & clmad
axpressan foe
rﬂﬂé“* log Z(C ) (341
wlere Oy, s & aviguence of graphs approaching (in sne iasooable senss) the
indinite: a-tice graph Thece is wo guarartes thal the limit is well deboed or
even when well defned wlll exist though there are sopoitant Cusse when
taie has Bear Bgeroughr proved. On the ossumption that it does, it is eelled
the froe encrgy per loblice s,

The putrar lewo-peint correlation function is

i'trl: F_I:I = |:Z o) ﬁ_imﬂ

a

JZ.

“Thir i & nebocal toepsuce of disceder io the lattice and w v shell see later
i% closely szlated ta peroodanny bebavionr ie the random eluster model

Ther i a straightborward genecalismting of the Tsing mede. in which each
atom can be in & different states {3 > 1. In thie madel inteodaced by Peats
|42| 1he energy betomen teo ineracting spins s seken bo be 26t i the apins
are: the samsz and equal to e constant [ ey fee differzot. [Fwe oo depcte
Uk eoneteat: essaciated with Bn gdge (4] by K, then in state o, provided
W GsEumme 4 2erc galerna, ugnellc Geld, dbe Homiltorian H{=) i defired
by

Hiz) =3 KylL- i)

fid

where & i Lbe vsual Kronecier de'ta fuaction defined by

fin.g}= {1 T:lll
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The partition function Z s again defined by
Iy i i3.5)
r

wheve the sum is over all possible sing o.

Suppose 00w that we partition the edge st £ into £Y U E™ whare ¥
‘] zespectively denotes the set of edges whow: endpainss ate the seme
"Nifferent’ under 8 given sthLe 2.

Then the enntribution of & to the Hamiltanian wll be 2K{E"] whets
KiEh= ¥ K,
15 9, %0

E we oow assung J, = J s corseant, so that we can writs & m 23/, then
Epan =3 ¢

1 1=
=EE_KE -:.r,|_
r

{36]
4 excellent, arcessible ceview of the Potts model cas be i in [42.

4. The Random Cluster Model

The general rancom elaster medel am 2 fnite greph: & was introduced by
Fortuin snd Kastelepe i11) acd 1 a correlated bood pernolation model cn
the edge set E of G defived by the probabdlity distribotica,

pidl =27 [H») (H[l —pp]) Qut [ACEl, AL

FEMA red

where £[A] 35 the ftder of eonnected compoments Ciceluding isolated ver-
thees, of 1he ubgraph © ; A = (WAL g B € 5 < 1] ore parametere
sssnciaced with eack edea o 7, (] %2 0 is a parsmeter of che medal, ant Z &
the novmalising constent intredused a0 sbel

¥oudi=L

ACE

We will sometimes usaw (7] to deoone the rndom coof gursbion produced
by o, and P, 10 denote ke associated probabilicy distribuslon.
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Thes, in particular, widy = B {1 = 4} When § = 1, p ié what
Furtnin ard Easteleyn call & percolztion mods! and when each of 1he p, are
tade equal, sey €0 p, then pf 4) is dearly sean to be the probability that the
52l of tpen edpes i6 A io bond percolation.

For wn peeouns of the rowy £ifferent jnres pretawicing of the rendoe luster
treadel we refer to -he origing] papec of Fartuin apd Kasteleyn.

Hers we chall be concentrating oc the pezeclation problem when each f
the 1, ere 2q1al, to say p, and hancelorth this will be assemed.

Thie we will be oonceroed with & two paremeter mly of probaslity
MCRYLTES
p=ppdl when 0<pEl ad G50

defived o the edge st of e finite graph & = (1 F) by
ul .'i:- = FJ.‘.||q|}.'l|.-'l||.|:2|:I..‘|:|.ll'z
whet: Z 14 the approptiste narmelisiag sosten, ard g=1-p.

The reasen for stucying percolasion in the rsodom cosler mode: & s
relation with phase transitiane via e wwg-poiot coreslazion fooecion This
w5 pointed gt fiss by Forbuin pod Kasteleyn and given Faber protminencs
recently by Edwerds acé Sokal [3] i enooecding with the Swendsen- Wang
algorihm M| for aimubsting the Pokta made., We deaccibe briefly the con-
neciom.

Eet { be & zosicive soteger and coosider e (fstate Potas mode on &

Tae probezlity of finding Wh2 s7sen in whe dtat o is givan by the prob
abilizy
Prig) = e Rirtiz,

Tue bowy ezuft i the followiog.

Theorem 4.1 For any poir of sites (vertives] §, f, ondf pootiive ntener G,
the prododiity thei o, equols o; n the J-sate Faits mocel e giver: by

-1

g+ Rt 1)

¢
where P, iv e random cluster messure an §F given, by foking g, = 1 -

™™ for eoch edpe e = (i1, and {3 1} 1 the evens that wnder P, chere &5
an open path frem | o f
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The attractive interpretation of this is that the probeblivr in (4.2) zan
be yegarded a2 besng made up of Ra-Cimpotents.

The first term, /), is just the probebiity that under @ parely pndom
€ caloaring of the vertlos of 5, § and § ace the save colour. The second
taren measwses te probabilitg of loog range interscilon, Thas we imerpret
the ahmi 88 expeessing an equivalence between long range spin correlationg
and Jong reage pevoolargrs baharisur.

TPhase tramsition {in &n indaite gystem]) ocoors sl the acser of an infinite
eluste in the rendom chieat soadel abd coreesponds ko the spins on the
eyl g of the Potta vacdel having o lubg range teo-peint cazelating. Thus
tne Tendum chster medel can be regarded as the extension of 1he Poue mode,
to L0 mbeger .

5. The Tutte Polynomial

The Tubtz pelynaminl & & polynomial in two warisbles 2.3 whick e ke
defined for  graph, matrix o¢ even more peoeeally a merreid. For exampes
each ol the bodlowlug is & special case af the general prohlem of evalusting
the Tuete paynotiel of & graph (or matzic} along Jarticwe: ourves of the
(.1 plane: [iy the cheomatic aad flow pelynosniols of o eraph: [0 the all
ter:cizal relishiLty probabdity af & cetwors; (i) the peettlon foction of &
thstate Pocts modd: (%) the Jores polyromial of so abermating kmot; (v
sk weight ememeranac of s finear eode over GFIg),

{hur stady of the Tutte polynomiel in what follows is motivared pringipalbe
by its intimate relstivnshly ik the laing, Potts and random elester modd.

First conider the Ellowiig recurs:ve def nition of the fengtion TG, 2,5)
ol & grazh (7, snd tan Indepandens, veriables 7, 3.

IFE7 has no edges then T 2.y) = L, otherwise bor pay =< E(G),
(5.)) THG 5y = NG540 + TiGY 2.p), where &, denctes Lhe deletlan
of the edgs ¢ from (' and &Y deogres the coatractlon ol e i

@28 TeG o,y = TG 2.4] if € an ehmuos or squivelenty & coloop o a
Jritraid,

(.33 Ti0: 0l = y TG .90 i ¢ 2 0op.
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Fram this, it is easy Lo shees b ieduction thies T ia o 2-varisble polyromial
it .4, whick we call the Tutie polyromicl of (7.

In cther words, T mey be caboulated recurgively by chocelng the edges
in ety order and repeatedby umng {3.1-3.3) to eveluste T The reoarkable

fact i that T is well defined in the ssnse that the resslig polyoowial is
indepeticent of 1be ordet In which the edpes are chosen,

Example. TF & is the complete graph A, then
TiGiz gl =0 + 3¢+ 2 - dry + T+ 7 1y
Alsrnatively, 2 tlia ia oflen the easiest wey to prove properties of T
we van ahwy Wbt T has the following expansion.
A C B, e ronk of A, 1A Is dedined by

riAb= VIGH - (4], (24]

whiere §[A] is the wunbar o7 vornecle] componenta of the praph G- 4 having
wrler e ¥ = Vi) aod adge set A,

T4 is nivor stredghttarward (o peove:

(.5) The Tutte pobynomial TF; £.3] can be expresied in the foem

TiGieg) = 3 (a- 18ty s

ACE

v i3 #nsy &nd useful 1o exoend these idess o patroids,

& mairoid M ia just & generalisation of & metziz and can be gin:ply defined
85 0 pair (E,r) where E is o finite sat and r is & submodular rewk fumction
mepping 3% — & snd saisfing the conditions

nerfdy<ld ACE, (.6
ACB=rid) s, (5.7
HAUE) ++{A Bl <r(d] +1(B) A4,BCE. (5.8)

The edge ser. of any zeaph (7 with its assoelabed renk fucctsn e debiped
by (5.4} 16 & matrodd, but <hla ks Juse 3 very small subelacs of matpoids:- ko
&3 graphic maszoids,
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A much larger ¢las 19 oblsdoed by reking ary matcie B with entries in
a feld F e letting B be s st of colunses and for X F defring the
tank ri.X 1 o3 be the mazimurn size of 8 liowady indspendat set o X. Any
uhatract ncamaoid which can be represented 'n this way & called represenfoble
ier F.

A basie fret which we shall nead it the fllewlng

(5.5 A matroid A is regresentable cver every Beld ff in han & mepresan-
<eing owee <he Teals by & matx B which i botally anenseduloy, that is the
valus of wery pubdeterminent e 3 a0 -1, Such a metooid is called vemuler.
Ewety graphic mateaid i regdee.

Given M = [E.r; the duol matroid is M™ = (F %] waers 1 i defined
by
(4] = E| - rE] - |4] -4l

Ve o juat excterd the deBnitien of the Tutte pelynomial from grashs
10 TaAtroida by,

Mif 1y} = E - 1}.1:E'I—r:ﬂ.:|:y_ I:||"“'":'“. |:5.1|:':I
ACETM|

Much of the theory developd for raphs goes theangh in this more general
siting.

We <lose this 3oction with whet T eal the "Tecipe baorem” frorm [31] lis
ctiude intenpretetion is 1hes whepever & furnelion § v some clas of maltids
il b sbiooen 19 @tsly an equation of the foom f(M) = efi M) +B(M,") for
wome ¢ £ E[M), when f is essentially a0 evaluation of the Tubie poymomial

e M) is the restricion of M = [E,7) to the s Efe} with 7 un-
vhangel, The contraction MY can be delued by M = ("), aod is the
exuir anakaoe of contracticn io praphs. Far matrives it correspands to pre.
ectaon foom the colums vewr ¢ A sunarof A is aoy matroid & obeainable
fom M by a sequerce of conmactions zod deletions.

The recipe thenrem can At be seted s bllows:
Theorsin 5.1 Let{ be o cinsa of mateaids which i ciowed order Tirect s2ma
and the baking of minars and sppoa that | 10 el defined oz C and setisfie
[ = afiMy) 407 =€ B[R 511}
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FiM\ & Me} = fiM)f(My] 812
where My ¢ M denoter the direct s dhek f ia meen by
J’l'H] = aIEI'TI:EIEl":ﬂﬂH' 3 Iy
v 1 ﬁ 1 a 4
hert T, end g ere e valuds f faben on colaape and fupe repeckimely,
Ary invariest | which sabisfies (5.101-(5.12) is calked & Tutte-Crotkendiec
[ TG -mparinnl.

Thus, wiiat we are saying 3 that any TV7-Tvarian has an interpretation
& a0 evliasion of tae Tatke pelynamial,

Example. The lsing model

Tt i st diffionh 1o how ke in the shaeocs of an external magmetic field,
atd with J, = J for el edpes e, then wheneser ¢ ia pot 4 lngp or coloap of
.

Z(6) = M TG + Mahi ANZ(0T)

Aleer comslder the gzapha © tetskiting of & single edge snd L consisting of
a single Joop. Then
0] = 18 <27 = deashigh)
IS
Ths, applying The recpe thearem we get the resubt
ity = {2~ =" g ginb 371 EVF I eoth TF 62

Exampla. The Polts mode)

Let B, (X be the riuscher of -colourings of the vertex s ¥ of a graph &,
i whikely thers are § manachramatic o8 bad edges, that is they bave sndpoines
of the same ccbaar,

Consider the gunceating fonction

"
BiGids =} sk
1=1
Clearly ty[ 4] is the shromatie polypomial of G aed ke Paih] we ses that
1he Elliwcing releticnskipa bokd,
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6 13) If & 15 connected then provicsd ¢ is wot o s or coloop.
Blikh )= BG4 5]+ - 118G 5)

(3.14) BIG; .2} = sBIGL il s 8 loop.

(5.13) BIG: %o = [a+ 2 - IIBICY) if e is & coloep.
Crombinng thess, we get by ualng the Tetlpe tbecrem

5160 Bl b g = Ma- 1Frlnig; el o

Comider pow the relatien with she Pottz mode., From (34) we can write
zf':ﬂu{G] = EE- HlE [D:I.
_ -k BB K|E |
=¥ g
2

cost T o

§-colpuring
= WA Q..
Then nsing Eae relalioehip (5.16) we get,
- : L S B ,
TG = Qe - 11 o (G

Tt is Tk ehiEie 2t {ith hinedesgie) v verify that 65, 2,47 oo be rocovered
from the monochreme polyvomia] and therefore from the Pobls partition
funeliom b gng thy foemula

_ 1
T if] = —
TGz, ! = 1Fiz - 1]

BiGi{r-Tig-1hy (A

The relaton of the random tlutter mode] with T s 1hat it 35 oot hard Ea
cheek Lhat r |

= {5.18)
nq

G =0 M TG +

whete 1™ 15 the dunl rapk, wid g =1-p.

It folews that for may glen @ > 0, determining the partition
function 2 reduces 1o dewermizing T slong the hyperbola Hy gven by
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= Ljly - 1) = § Morawer, gince in ata physical interacetations, p 3 2
probiability, ibe reparsmetrization meens that £ bs evalustad ooly ling the
positive beanch of this hvperbole. In sther woeds, 2 is the specialpation of
Ttothe quadrak o> 1, p > L

The aztiferromegmetic Ising aed Potz models are contained in T slang
the negative branches of the byperbalse g, but dc nor have representatlons
in toe randae elmter model. For mace on this model and its relation 16 T
we 37, Chapter ¢°

Wa now collart hogether some of the other natorally sesurring interpre
tetsoas of the Thites pelynarnial.
(5,200 The chromatic polynomiel MG A i given by
PG 3 = [~ RO a)
where kiG] i the puzber of connected compomants,
(8.21] The few polynomiel FiG;4) = given by
Fit M= (=18 TG [ = 0

(522) Tha (all terminalj rellebllity R{= 7] is given by
RiGip) = ¢ ¥ "R Ny
where ¢ =1 - 7.
To each of the ahire e, the literesti ng quantizy (on the laf hand side}
& piven [vp o) AN eaddly determined term) by wn evalustioo af the Tutts

polvoonial Wa shall wee the pheasy *spectafices 4" o indicese 1his, Thus
foe exaniple, Along p =0, T spacialies to the chromatic pobvtiomial,

Tt turos aut b, the hyperaolae H, defized by
Hy=1leg) (g - llly- 1l = e}
M 10 have g spetisl rale io the thaocy, We nite sevmral imporant speclsl.
inatlong Smlow.
(5.29) Alorg Hy, Ti6 2. = 2l8l[; — &R

(5.24) Along Hy; when G is & graph T sperialives 16 the pactition fuoelion
o the lsing model.
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{5.35] Along i, for general poslzlve iiteger g, T specialises to the partitlon
fanctiog of the Potts made.

i5.38) Along Hy, wben g 3t & privee pover, for a meacid M of witors over
GF (). T specialises % by weight enumerstor of the lnear eoce over
GF), determined by M,

'5.37) Abeng H, for any posttive, mod necessarily intsger, g, T specialives to
the paciition funstion of the random chuster mocs] discosed in 4,

is 99 Alng the byperhols 7y = | when &' & planar, T gpecialsed 10 the

Jomes polymotial o the alteroating link or kit assceiated with G, This
enanetion was Aesl disoovered by Thistlothwaite [35).

Some more recedtt applicasions are obtainad ir, Welsh |40] whick give new
intarpretation 25 the eqected value of cleasieal coundog fancions.

Given s¢ achitrery graph & sod p € |01 we demcte by G the moa-
dom gatyrapt of G obtained by delesiing each edge of G indegendent y with
prehekidty 1-p.

(3 For any eouneered grapn 3 anc < p < 1, the racdom subgraph
€, has snromatic polyooimial whose expectation is given by

{PiG: A1) = () TG - AT - g

Far the fow pamamiel there is a s'miler, but mobe complieated evalus-
bom, mhsmely

{5301 For sy graph & <he fomr polveomisl F{G 5 A1 has expectation
given by

[aj if peid.gruik i then
iFiGy; 2 = Flg - i TiGhp™ 14 ﬁr}
whereg— L=

|b) i p=4. then
iFiG A =4 El- [ 1=#Fi =]
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A very rerant new epecialisstion of T connsens & varsion of chip Bring as
i 4] and gives 5 spexific relationship hetween evalualions of T along the Jipe
=1 a1 the generating funstlsa of entien, ooofigurations 1o the chiz Bring
gose, we velir to |3 bor detadls,

Other tors specinlised interprecations can be Bund it b survey by
Bralawski sud Ouley [6] aod Welsh [37]

6. The Random Cluster Model Again

In creer bo be able to caliulate or even simudate ihe state probabilitles Lo
the rendom cluster model <t ssms ko be neceasary to knew [or be sble to
npprocirase) the periltlon function . (o che casa af arditesy peresstion,
& =1,and &= 1, bu: in general, colermining Z % squivalent to detenmiving
the Tutte pelrnial, es it folkews o (5,151 that the fllewing bekls,

.1, Fur oy finite graph G and subset A of E[G), the rardom closter
mEszaine i {9 miven by

pidl =

(E)HI g ri
(&) o

where T is <be Tunte polvtvmmial of G, where g = 1- p, and where ¢ s given
by A4} = [V ~ o),

4 frst pomsequanae of thia s that, as we see later, devertnining the measure
1 15 s irtraetable prohlem far moes () and sl grapls,

An obyicus quantity of intecest is the probbility that a perticclar set
apen. Ehak 5, that seery edge o the set s open. We call this tbe distributign
funchion, cerata it by b, 52 tote that it is given by

Sdl= ¥ ux)
K:ipa
The sact f questizns me peed 1o be able to wmwer are. how does & vary with
pand ¢ and hew difficuld is if ta colenlate 37

Towm very ue_t‘ulinrmmljniesin workiug with ehe rardo cluster prde] o re
the FEG inequa.ivy of Fortuin, Bestebeyn ard Ginibee |19] 22d an extension
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of this due to Holkyl2l|, both of wbich we present below in Theorems 6.1
and .2,

The FKG irequality can be ataned as followe,

Let & be a finite set, and (3 = {0, 11€, Wiite Fp for these of el subsets
af {1 aoc call & probability messues ¢ {1y, Fo) pesitive if wld] >0 e
all A= fd;.
Theorem 6.1, [# b @ poitior probodality maasure an T, Fio] such thud
e AUEI[ANE] 2 nlAja{B}
Jor aif A, B & . Then for ol increasing rundom functions f.g: Fg — R,
UF::U Z ':ﬂ'p':ﬁ':'»

whare ne wae {f) bo dencte empecintion wnk raspect B the meastre u. That

H
= Y fpld

ACF
Hulke's ivequality ia the fllowing
Thearem 6.2, ‘Rolky's imequality] Lef o and peg be posehine probebility
mesdurez on 1fic, T il thel
1AL S Ar B > w{di B
forall 4,8 ¢ Fe. Than Jor 9l incrogemng functions f: flp = 3,

I:.lr.:pn 2 'r-r:lﬂa'
Using this we admost immecintely get

Proposition 6.8, Provded | G € o, for any floedp, 05521 ond
any noadscreseing fumetior. f o 25— 1,

i 2 Ry

where p, ond py one the rondomt eluster mensures nduced by p ond {), i
e 3pesiisely

A special case of i gives
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Corodlory 6.4, For Reed p, the dizimibution fimchion & 35 0 monatone non-
mereasing funedion of QL or @ 2 L

A lurdernante] question which seeme difficult iz the folkamg,

(6.2 Probless. How does » peey with O uhen 0<.J <17

We pow look st Mo combinetorial questing: and consider 3 randon
thuezer model i = w'p 03 oo E the edge sat £ of & planar grsph . W
fillow the trestment. given o |34], sce also 16, Let G* be the duel plane
graph with sgpe set sl & identiied in the natural and sbviou wey

Mow define the dund messusg  of o = ol @) te be the random aluster
Tensure ilf, () wheze "

o ¥V

#
Thus

(80 (g )

Froposition 6.5 For any plene grapn & and random cluster medsire y
P Ll = df = Bifwl5* = B\A}

Corollory 0.0, If G G* are deal planer grophs, ©oon G produces whiee
configurations wifh evasly the sare probabdlity distriwrion as i prodages
diack tomfipumntions on .

We nomr ten to the aneehBe raze of the syuete lactice, We adopt -he
lerminalogy of endinscy (£ = 11 perenlatiou 6y mach ss possible

Lat A, denote the bore on bhe squave lattice baving cochers (40, 4x),
Les o be Fread end Bt iy = gy (p 590 e the secusmcs of randem cluster
rieasnees indared by A, 4 m rins thevagh the psitive cegers,

The event in which we have & sartioular inbarest se of type {0 - ]
terating the event that <here i an open path foom 0 to &, the baundary of
the bes; A,
i8] FaxQ>ledmzn,

.lim+1{[' =, :' # .Um{':' 8.t
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Thig is 3uee & gpenial case of the fllowing:

Proposition 8.7, Lef & be & finite groph and It H e ¢ yuberoph of O
cn Bhe perd merter w8, 0 pr and pa denole the mndam chhater medaues
tnduead by G, 7 respectively for miy foed poand @ 2 1, the for ang mensiore
rprdecrendeg | on the edpe sk of &, o the ralve of [ s defornuined by dhe
state of the wdnes of H, then

':.rl.l'urr ! ':ﬂ'ur;'
Smee the quantities in (6.8) are probabalities and thus boanded, we can

thetefore define
Er.'tﬂ"ﬂ'} = mh:ﬂn}nﬂrﬁ[“ A ISIrl.]'

Nomr ToT > 1, b B dcivisl thet
prefl = o} € g {0 By

i i
uosequently Sute Q1 € 8,10 Q)

tod w2 define _
#n @) = lim .0}

1 be the perealotion probadifily of the model

Mote that when § = 1, #(p, ] 15 exntially the same quantly & Pig)
defined in {2 11, Accorditigly, fer §f 2 1, the con defoe the critisel probebility

ol by _
prld) =infs: 8.0 > 0.
It w paky 1o mee that:

i6.4; For @ 2 1, beuh eritical prebabilicies p () snd jdF) o mong-
tone nondecreasing ib £, In this gl Q) is defined analogously to pr in §2.

In [39] 1t is shown that the falkwing % srus.

651 For Q= L, the erivical peohabilities py (0 and pr(Q) sutlsfy

priQ) € 7= <old)

[o zbe tame paper 1 also empectuce thay the fllowing S-excenstan of
Kesten’s Theoeem s rrae.
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Conjecture B.8. For § > 1, the criheal probatality p. /() equnds T iL+
xfﬁ]-

I arigimally snade this conjestore folwang or fre 2 seminar on the tan:
domr & mter medel by GE- Grimmete In Cheford im the summer of 1992, Tts
moivation waa tne dualiy formae abowe snd since this duality was widely
antwn to phesivises working oo the Potts medal T suspect that many physi-
cists believe Conjacture B.5 to e & proved shenren, it loast ke intems 3. As
T g ] am amare ehe B2st explini epnzideration of the problecs in eoimection
with the random cluster radel 5 In [33], see for example 17). At the sgrme
time | zead'ly acknowlecge that, lor reassas given beliw, this may have been
a fodklace comjectare [7 theerem) in the workd of Potts modelbers whes ) i
intepral.

Thee is #lst 3 note of waming, Provided oot wocka wish Boice graphs this
curnhiharoee] approach deseribed above is foe, Hewever moving ta the inb-
Tite: does pose sericns problem ol dgear. Srimmets [17] gives wery decadls)
an, e agceant, of the “atest terhnoogy’ and it particalar distussss the
exibence of, perhaps o countebly inBulte, set of dlatinel ceitieal probebilities
Fcl':lj

Diespite this wotrying aspect of the advanded sheory, 2 dgerous definition
of pi8¥ can be given for @ > 1 and d > Fand bs aceonding to [17], pp2a5,
Uwridely believed” woequel o TH(1 + Q) for @ 21 andd =1

When § = 1 the eonjeiture i certainly ttue by Kesten's theorem that
the cricical prebacility of the squers latcies &= il' It i5 also troe =hen = 2
bernuse nsing tae relation p =1 - ¢, when & = 2, this corresponds to s
erltizal velue of sith ™ 1 = (hBELET Lar Wb critizal exponent [, agreeing with
the Dusepar solullan bo the Ting codd.

For meeger @ = 3 the crivical vdae of g[Sl given by dhe comjecturs
agrees with Lhe crilical pointe of te Potts nodel Located by siagularity based
arganens s fur exampde 3], However il dows niat appear easy to make these
Angimants cigorgus n this context. eoc tie sicuation seems oo dissioiler
from sht ir. otdinacy percolasion when i took 16 vears before Kesten [27]
s Wieewnan (1] wrere able bo prue sfigorenes justifications of the exact valuz
cheained by Essom and Svbes[10]

A remarkable paper by Lannit e ol [2] shows that Conjectre 6.3 is
true Bor sulficiently Jarge 2, ceetainly § = 30 scffices, see [17] pp. 276, This
survey o'an ghves an excellent sceoant of the probabalatic Saskeound,
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7. Approximation Schemes
Thre main reaul: af [22 s Lne follwlug;

Thearem 7.1 The prodem of eoalunting the Tuble pedymomiod of @ greph
af o poited [0,b) 2 P Rord evcepd when (4,8 is on the apeoial hyperbola

Hi={r-Liy-1=1
or when (3,51 ir ome of the apetiad poinds (1,1 (128 2), 00K, 10,

(=i.3p (5,54 nad {57, 71, where § = &3753 T sack of these erceptionad caey
the ewslugBon can e dome i pelyromial fime.

Sirce for any graph G, Z0p, ) in the cadomn closter gl & esssetilly
T.6;1+ S84t ollows that we hire

Carollary 7.2, When Q # 1, determuning Z(p, Q) for o genera! graph is
#F-and for alf e (0 1)

A3 for 39 planse graphs are soteerned, there iz a significant difference.
The techiigue fzveloped wing the PRfiac ba solw the Jsing peoblei Joe the
plaae square laetis e Kasteleyn || can be extended 10 give & polyrianlal
tize algocitam b the evaluation of Zlp,2) for eoy placer graph Moug the
epecial hyperbole. Homewe, this seems <o be the limiting pot fur we Fae
the following extension of Thegrer 7.1 due ta Vertigen and Welsh |26,

Theorem T.2. The eveivation of He Tuile polymomiod of bipartiee plonar
grapha ot o patnt (o, b 15 #F-herd ercepr mhan

I:.ﬂ‘1t"| £ 'Hl U HEU Hll]']I[_ll_l]-{jlj.z:lr':jzlj]}l
1 uhich casen it [ compudable &1 polynomial Hime

Concllary T4, Even for the cluas of bipartite plonar graphs. evalsching
2{p, &) Jor gereral p 5 25 #Phord wless =1 ¢r £

We sre thus led to sppeoeimate of Monte Carle oetlods. For poaltive
bumbets e and « 2 1, we 2y thes o thind quantity ¢ gyprermater o within
o T ur b Ba FappriaTRLicn L o, if

:'_Iuédﬂm.

In other woeds vhe Tatlo /o lies ic 71,5

Percolaemt, and the Rendom Cluster Model 187

We mow congider u rindunised epproach 6o counting problems end meks
ths fnllaring dednition

A efegppearmation seheoie fa1 & couming probles f is & Moote Carly
algoeithm which on every ingut (2,6, 81, @ > 0, 4 > O, outpass & nueber ¥
aueh the )

Pril-g)fix S ¥ < +aftzly 218

Mo bel f ke o funetion [nom Joput strings do the natwrs! oumbers. A
mndomased appromtaali scheme bor [ 5 & probetilihic algorithi that vakes
&% & inplt £ steitg 2 ard & ratienal voober ¢ < ¢ < L and peoduces as
gutput & tandom vanebl ¥, such that ¥ approsimakes flzh withic ratie
1+ e with probability 2 374,

In other werds,

A iy polynamial rendemised approrimetion scherme FPRAS for 2 fune-
tion f 2 B' — ¥ iy o randomised approximetion scheme which runs in tIme
whodh 35 & pelyrosnial funstion of v and el

Suznoe: pow W bave auch an approimition acheme und suppose forther
that it works . plynomdal thne Then we can boost the sueess probability
up to 1 - § for any desived 6 » 0, by using the Tollwwing trick of Jerruse,
Yaliant and Vezirani 24]. Thls consls:s of rutming the algorizhm Oflag§-7)
titneg and teking the mecisg of the resulta.

‘The exiatence of an FPPAS for u connling probleti is o very stoig resact,
it i the analogme of an J2® elgorithm for & decision problem and corespands
b the notiee ol teastability, Hewever we should alen note

Propasitian 75 Jf f - " — % i sueh that dectding &f § 5 aonzero
NPiad feer fhere creret et aa FPRAS for [ andess NP 15 enal 10
et parmanial gme AP

Sloee Laks i theughl to be unlikely. it makes secse only 10 s gt am
FPRAE when comming abjects for which the decision problem i not N2
herd.

lo an impartant papes Jereum aed Sinclair [20] have proved:
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(711 There gxists ar: FPRAS fir the partition fancticon of the ferromagmesic
Leing el

Himever ik seems 1o be difficalt to extend the argumenc ko prews & similar
regult for Lhe Qhstate Patts model with § = 2 end this eensing apwe of the
rukstanditg open problars (n thiz area

A seoond result of Jerrum wnd Bimclair s the Ellowing;

(7.2) There is o FPRAS br estimating the antiferromagnesiv sing partition
Futyerion unk=s NP = RF.

Tuw wloe context of ftz Tutte plane repreaertatlon thls wan be restated o
fuiloms.
(731 Unless NF = AP, ther is no FPRAS boc emimeting T along the corve
gl lz=Tp=1=3 0yl

The kllosing srendon af tiis resn't is proved in 3], It fpliss weniler
redalts shovt the aptilermomagretic versions of the {uacate Potes model.

(741 On Lbe astumption that NP # A7, the fllowing statemerts are toe,

(&) Faen in the planar case, there ia no fully polyoomial rendomisad e
pooeimation scheme for T along the negative bransh of the hyperbola A,

{bh For  =2,4,5, .., e is oo Rully pobymomiel randomised spprovi:
maciom sckenge for T along the cusves

Hon [z

The resder will alao note that all the 'mesative relts’ sre sbout evelua.
tione. of T in the zemon outaide the quadrans 2 2 %y 2 1. In [30° ] couject e
chat the Rllowlng is trus:

Conpecture T.H. There enaty on FPRAS for eonluating T of off points of
the quadrant £ = 1y = 1. Thix implies and 4 afmoat swioebind b 4o
statemeny dat thee i ot FPRAS for 203, Q) 0 the reridorn almider tapdel
for ol 9, 0.

Percolation and the Random Cusler Modd 134
Eome evidonce ln support of this = the follewiog,

[Fwe len & be the collection of graphs G =V, E) such that each vertex
bias b Jeaan o V| mebghibinns dhor we eal) & class © of graphe dense il L C G,
for some Bxsd o 2= 00,

fnear |2 showed that:
§7.51 Thers exias an FPRAS bor couniing forests in aov ¢lass of deoss graphe.

Bierw 120 nufiber of foeska |s jast Che evalinativn of £ s s point on @ =10
sl 8 uore groeral vecsion of Hus & (b Rilewing result, sk by Sonan -

{75) For any clae of demee grapas, there & ar FPRAS for evaloating
T, o, 1} for positive integer 1.

Thenatwral questios suggested is abour the menrqidal dua] - camaly, does
there exist an FPRAS for ewulanting T at (1,21 This i the rediskiliey ques-
tion, snd in particolar, the podet (1.2 eoumerstea the niber of conmected
subgrophe. It is impoesibie to cotupioe fuity with densetiess %1 Annen's
methads don't seem to work,

What can be proved is tbe Inlowing, The mado resuly of Ales, Friers and
Wielsh 1] can be stazed 4

"Theorem T.T. Thers erisfs a fulty priynamial mndomised scheme for sva.
pering Tip Q) far alfp > 0, & 210 for any denae eluss ef grophs.

Even mare recencly Karger [¥| bas proved tle exdstence of & similac
schtie For the cliss of graphs with no geall edge onl s, This can T slated
a5 fiallgws.

Foe ¢ - {r define ube class §° by G & §° it edge connectivity is ar Jesst

g VG| A class of praphs is well eonneded if it % eoncainet i §° for
sotne fed o,

Thecrem T.8, For eny fizad (1,1), y » |, there sxiste o, depending s (2,4,
such; thirt far vy cioss CC 37, there 2 on FPRAS for evadunting T(5,0,y

Noties bt thangh the properties of being well conneeied and depss are
very similar oeither property implies the orher

(1]
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This Conjectirs 7.5 bas beer proved for classes of dense and well con-
aected graphe. There 1= alss oo “Decueal topediment” to it being rrae for
all graphs. Hoeper For the d-dimensional hypercubicsl lastice it & ke
«har, there exiata () sweh that <he random cluster model has & firsl-ceder
dscgrtinmity for g - Qo). Indeed 1t i believed that

. 4 d=1?
-3 o

11t oot wnzessanable  wsdelste n feab order disconvinty with 2o mablity
o appooitiate, There = ng preal of ek & penersl statetnent, but there
are peTsuaghve argume *s g suzges that suweh disgntinnities would proven
an appreadmation schetee based on sampling by the Markov chals methad.
Herce a mejs open question mist be whether ur oot theee exists an FPAAS
17 ehe fereamagnetic random closter model for hypercunieal Lattices. These
are neither dense por well connerted so the ahove results do net apply.

8. A Geometric Approach

Twosimple but ey questions i oich of the woek chat bas beoen done i thia
area are the folowing,

(510 Problem. Dogs sheme evig an FPRAS For estimating citfer the
romber of forevts a7 dhe mamder of aomelic orienbativnr of o genetal groph?

A wew approgeh €0 appredmetion nt these poinks is propossd oy Bartek,
Mount ez Wels's [3- This 3a based o the interpretation of T us Lhe Ebrhat
Polynomiel of a unimodular 2onwage 204" Counting the number of forests
is the problem of coonting batice peints cootained in the sonotope Z(A).
Countiog the number of acyclic arientations 3 the problem of courting the
verzices of this zengtope. The Jatter is & uck cwore d'fbeolt problen and
gies some wey to explaining the coud lack of sucoes with it

We now sketeh this Jpprogch.

Lot 27 denote the n-dimengictal invagst Jaxice in 1" and Jet P be an n-
dmensiongl litice polytnpe I B”, that % o conses polytope whise wtives
Taeso Sntoger coordinakes. Consider the Eanetion {[F;0) which when t s 2
Fesitive jnbeger counks the namber of ledtie: points shick Je inside tbe diluted
palytope tF Ehrburt [9] ivivigted the svstemate suly of this function by
Froving Laal Il was always o polyiuonial i, and Lhal i facl

PP =xPi4ot 4. bog " - wlfFi

Purtalation and the Aandeen Clister Moded 10

Hepe
tg = x{F) is i Bules charssteristic

of P atid wol{F') i Uhe volucse of P

Und repacily the otoer cosflicients of #F, 1" remained o mystery, oven
for simplioes, see bor exampke |7).

Hawever, ‘m the special case that P 32 5 wnimeduler sonntope theee is
a Tice interprecesitn of hese coefBeients, First recall that iF A sanrxa
Teth, Writeen i the form A = ay, .., than ir defines & zontape 4|
which conskity o] Whose poinls g of BT which can be eqpressad b the form

p= b G5hEL
=1

T ttbt woids, Z(A4) i the Mickowsk sum of sbe ine sepments |00, 1 5

PET

T it a epnvex polytope which, when A is & tetally unimedular matrix, bas
ol “nneger twrtioe and in thic cace it s desveibed s & unimedular zonatege
Far these polytopes a result from Stanley |33 shows hut

HEALG =Y i
k=1l

where £, 15 the mumber of subsets of columns of e matrix 4 =hich sre
[roenely indegendent and heve cardinality &,

It cther words, che Ehrhert. palynamial £ 2] A1:¢) is e prusestiog fate-
rion ¢f the numbar of indezendens seta io the matrald M(A). But #e wea
keiwe that for any matroid M, (&= evahedion of T{M:2.y) aloog the line
y = 1 pso glwa thie penarating Fainedion. Hence, eombiniap these obeerve.
tissns e b the cesalt

Theorem B, ff M & o repuler modid ard A £ ony fofedly unirssdaler
sepresertativn 6f M b the Ehrbar! podytiomial of the zometop 2[4 i
e By
1
A = T84+ 1,
whene ¢ a9 the renk of M,

Thie apgrosimstion scheme propoeed by Bartsls, Mourr and Welsh 3,
wars o5 Enllmme For any graph & the wm pelytope Wy 15 the coovex pelytape
defned by
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EE‘ gell] LCV 220D
wwhi
whiere €] i xbe uater of edgee -neldent wisk [,

1t has the paoprerty chot ts beaunding base facs 1 combinatorialiy equivs.
Lot ta & Al where 4 is any iatally unimodular Tepresentation of Lbe graphic
s determined by (3. Now carry oot simpl eandom walk X, in o slightly
dilated version of W, eall it W, Amtelite with each lanthoe pobne & box of
squal volume, ensuring thet. the boxes ere diskint but etherwice as lorge 2
possible. Mo Lot + be Targe enough. say £ =T a0 that the stepping point Ar
it alogs: uoifortn ln W, and map Xy Lo the lattics peatit associzted with
the baoe combaiming i, Accept 1he cutpk i an almest unlfore polnt of W 3f
it lies insicle it. Repeat A times, where M 14 Lunge cngugh to engwre =4 have &
poned wotimate of the mumber of lastice points inside W, Ideally this process
would wark suceessfully enough to snabie us alxa to get  Eood estimate of
the nutber of battine points in the bounding face sud beare io Z(A].

Cigritnsly, aed sonewhat depressingly, in arder far the methed o ot in
polvnomisl sime we nesd exactly the same density condition on the anderly-
ing sraph us £id Annen [2]. Put alongside tbe remarks of the e2d of 7 this
siaggests that it mighs be more profitable ta Lok for @ mathematieal reason
wiy gons, approvizetion sehecies should now edist for Zip, (3] fur peneral ¢
mod .

Actnowtadpernend, | anw gratelil for very helpfal coeiments Brom Gecllrey Grin
el o oe: of 1he refreen.
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Caoncentration

Colir, MeDinrmid
Dlaparlient of Sratwutics, Univeraity of Ooord

Burnmary. Upper bands on prubbilties of Juge deviaiors G sums of beueded
indesendent ratdom warisbdta may be selendsd 1o handle fenstions which depend
in & lonited wey on 4 pumaer of indeperdent recdoan warlables. Thia 'metbed of
buinded difforsmces’ hap over the lass dozen oc % yeass had B grest impact it
prebubilistic methods in diseress roalbamatics and in she mathematics of npere-
Gonal resensch and, thextellcel computer sdemce Recemly Talsgrand inrod.eed
4m sxcTting 9w method for bounding probabilives of lange devislinns. which alea
proves sepeckr o she bousded differences aprasch. In thes chipter we intreduce
anc murvey thess thio approaches and scine of et applclices.

1. Introduction

Whes < we mean by ‘cotrenteation’ heve and wby shouid we be concerned
with it?

Suppose that a ravdom variable ¥ has eepected valae B{X) = p and
varisnte E[[X « 1)*) = 9% Then Chebytbev's mequality sares shet

Pri|X —p|2 ) <a¥)f

bz amv > 0, Thus Gt £ »> 7 the probebllity of deviating by more than
{ from g is aooal], However, we shall effen want o¢ need the probabilty of
Yotge denvizwions to be verpsmall, chat ‘s, we wact o know that X is stroagly
concenmoted around . The archerypicsl capesetearion zesull i Charnoff's
hard on the <gils of the nomisl dst-bution [14), in other words om ohe
teils of the auma of independent ideotically distibuted binasy (thet i, {01}
vauedl) rapdar veriables,

Thesram L1 Lel X, X1, ., Xy be independent binory rondomt vorinles,
ot PHX) = 1) = p0nd PHX, =) = L-pfoenrh i, ordlet S, = T Xo.
Then foramy b2 0,

Pr{]S, —np| Zat) £ B0

Typically we shall be iaterested in & sendom wnekiz Tike 5, ard ot in the
orreapendicg 'bounded diferenices’ Xy that make il op. The warisoee of 8;

il
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heme & p[L-pi = nfd whenp = 172, aré then Chebyshev's inequality yields
anly that Pri|3. = np| > at) € 1{4et*, which will oftén not b & small

enough bourd for 1. In someé cases we shadl want gooe bound for theit owm
irtarest, ard somerine 68 tools within soioe Lager endegvour,

As an exarnple of the former case, consider quicksort, Quuicksort 5 one
of the meey inportant sorting abeorithma, and its value rests eotivly = its
good typice] bebeviour. i 5 weli kmow that, it Tas good aversge time come-
plerity. Purther, the warienes of the time taken i oot ton large, and g large
thviations from the wwerags are uot very lely - see for example [35, 59|
Howwwer, oo would hope thar large positive deviatisns are wery unlikaly,
snd the bounds that can be obtained from the vanence and Chebycher's
inequality sr weak. I tums oot 49 that the methes of bounded differances
shows tha: Indeed large deviations sve exeeedinghy unilesly Jmd she methed
yiek essentislly best possble sounds). We shall meer smcal urther exam-
ples bebow, inclyding the study of isoperimelric inequelities.

There ere alas many ceses wien we Jeed to know conesmTation resulis
25 & tep tomards somathing else, {me example concerns toe bebaviowr of the
chropatic namber of & rundom graph - sse Section L1 belew, Coucentre
vion Instyoalities bave become essentie’ 13ola in the pecbabibetic analyse of
algocithras |16, 25, 63| and the stwdy of randomised sleorithms 51|, znd in
probabilistic methods in discreds nathemation [in parcionlar when we wich
~ouse the Lovdas Loce] Lemma) 7. Some have reached statderd underprad-
yate bat bogas in peobatility - see far ecatple (28] settion 122, ar 3]
sectaen B3

We shall intcodice the twa main approsches for proviug cootentration
reaults, pamely the beonded differeares o martingale metbod aod the re
cent, method of Talwgrand, and give several applications of esch, W shall
als mensicn bricly how st sueh resulls can be proved waing ideas from
infremalian ey,

The natusal swartlng paint, &= to cansider auma of independent mntom
variables, slartiog wlth the classical Chernoff bound, inceoduced above, We
o bhis in Section 2, whers we give fall proofs in & Boom which i ntended Lo
te widely accesschle, and bo peneralize for the next section.

Sertion 3 is devoted kg tha maringale methad. We shall not e any régults
shout wertingales beyond understanding the defivition, and indeed the first
two subgeeticns do oot even mention &b word martingsle, We first postent the
independant bounded diffarsnoes inequelity’. Thiz ia 2 speclal ease of various
more powerful inequelities wkich we develop Laber, Lak it ia easy 40 grasp and
bieg prowed Lo be very useful. Wa give applications t2 bin packiog, colowrlng
randem graphs, and iseparimerric ‘nequalities involving Hammicg distatives.

Cowowlratian T

After that we present closely reinted exsensions of the indapendent bounded
differcnees Snequalivy, naenely Theeretns 3.7, 38 a0 39, pod ilusteste these
extamzions by describing an early applivation eoncertlng pertusetions and
& seosns upplicetion W finding matchings in bypermrephs. These extenaions
woelude soma resuls that b been presented vety catently, though they can
e tesced back to earlier work,

Io sheze first tmo pubsections of Section 3 which we have just dlasosed,
ibe epplications are peaved bt not <be copcenteasion inequalities, as it is
moat, natazal to prove Bne conpacteation zesults in the Fameneork of martin-
gides. The thind subsection intreduces martingales onte b scene. Following
Lhint, the et sybseetion starts by peralleling tne sarlier tranement of cums
of indepeodens candom variables bk oo considering mettingale difitence
atquender we B0d that we can madoly re-uee whe errlbier proafs Then we
g & pair of more genera] maule. Thegeems 304 and 315, which inchds
(egrly] all the previous reeuls, and prove tem jo the following subsection
Thiee Thenrews 3.14 ard 3.15 could be regarded s the moat important of ot
the ze=ulte disonssed s0 faur, Tt oflen s moes Bocumsed apecinl rase, sieh o
Theorem &1 ¢ 34, is suffieient for wn applicstion, and iz then the bast 1oo
to use, We end the section o0 the martingde method with & ef discussicr,
o1 'CEILATINE BeqUEree:

The final part, Section 4, introduces Taagrand's inequality for sather,
wioat seema 1 be the most oseful of his meny inequalities!) We give appls
oaeiond 1 increasing subsequences end comnoon subsequences, o éravelling
saleseian ot aid Slziser trees, and to minimun spanning tres, Wi pre
senting thess applications we deduee from Thlagrand's ineqralicy t usefil
“pchaged' results, Theorens 4.3 and 4.5, which in fey haeidle all the appli-
tazions in this chapter. Thess ‘peclarea” resubts, which are taiiared w our
applications, are it far: rather essy deduetions from Talagrand's insquadity,
which itsel” ia provee sterwards, Finally, o= distus briefly bow results from
inforzwation ibecry mev be wed 10 derive eonrentration resulis,

Ve uhall stick theowgheat to bagnded diserets “witne', typlcally 1,- . 0.
Thus tlere are too majee telated Lopacs that we shell ped disewss: for anel-
bpous martingale results in continuus time pes for wxsmple [39), and for
Bn icsroducrion to the asymptotic theory of ande devintione see for oxanm-
g |20, 19, 18], Both these tapios Sie harder witk tiag Eae discrste case
we pengider, &nd seem to be of much less use in disoree matberatics end
theareticsl compunet seienre,



1% Coln MrDisrmid

2. Inequalities for Sums of Bomded Independent
Random Varlables .

We zestaze from shove the 1952 Cheraof |34 bpund oo the taiis of the
Tiromial distrilir.

Theerem 2.1, el 0« p < 1, ot X0, Xoo X, de independent binary
rando variabes, with Pr{Xy =1) =g end PriXy =] = 1- p for pack £,
and lef 5, = ¥ Xy Ther Jor angt 20,

Pr(|5. —np| 2ti € 20

The sum show: s aver & smning Bom 1 62 . Taroaghaot the chaptes,
when we write a0 wnadormed sum ¥ oc produer [] the index & Tuns from
| to . The abeve vesult will be proved bebow by banmdlog the moment
gemerading function 3 (i} = B{e"5+) and wsing Markoy's mequality. lolkowing
the melbiod iottoduced by Bernstsin. Tndeed, all the results 4 thls seedion
and the next section use this method. [3ee (58] for 4 variart of this methed
which yllds smilar resulis, but assuning only fited ndependence, ard see
alse 84].)

Recall that “arkow's inequality states that & & non-negative racdom
vaciable X, PriXx 2 f; < BLX)¢ for eech ¢ 3= (. To peove this. we use the
indicatar fonction 1, for s event A, and note that, ghee X 2 0Ly we
hawe

BiX) > Bl i =tPrX 2 1)

Proaf of Theerem £.2.
Let m=nip+ £ Let b2 0. The
Pr{5, 2 ) = Pe"™ 2 &™) < e EeM), 211

by Markens [or Bernatein's) ivequalicy, Sy the independence of the fandom
vanabes Xy,

B =B ([0 = [ B - - po e
Hence. o7 any & = 0,
Pri%, 2 m) oM - p ppetT

I <t <1-pthes we pnay et et = PJI"L’_”F’_'!”-‘ b rilm.mize whe ahowe

kil and we obiteio

Concencigliom 199
PriS, —npz e, 23
This implies by & sonlinuity srsuoene that the iosquelicy balds also for ¢ =
1 = p. But the inequality ‘= trivial bt 2= flor { > 1—p, and thus it holds
faralit 20
Sow et Yy = 1= X, forench k. Ther by the abova reault, [2.1),

Pr|f—np < —at)=PelY K -nil-ph2ni] ¢ g~

for sy £ 2 & C
Heefiding [23] pessents sxtensions of the sbore Eheorsm wkich tan e based
on the fallowing Jetnine.

Lemma 2.2 Lei the mondem vimighles Xy, B ., X, be mdependent, with
DS Xeel foreach i Let & =2 X, it u = E{X,), led p= i ond It
g=1=p. Then farary 0E < g,

R R

Pesaf. W follow tne Jnes of tbe proof of Theoeeo 2., Lot g = E{Xe)
foreach k. Let o= o + 0, and bt b » 0 Note chee, by the conveily
of the Funcrion ™ Br D€ 1 € 1, we lwwe ™ < 1 -2+ 1¢®, and w0
Ee" Y € 1— g 4 e, Thue, sinee 5, % the sim of the inéependent
random vesighles 3,y and X,
Rig"™ | = Bie™ B[ )

< Ble™ 11— + poe™

& [Tt -pe—pue®h
ol Sterpeing, Hemes,

Bt 1< (1-pepel,
by ‘b arithiietls pwean - peometrie iean inequality, Hut by Marlows in-
BQUELITY,
Prid, 2 m) £ e Rt o™ 1- p bt

Thus, far any & 2 9,
Prif.—p>nl < {E'*F*’]" 1- #-w"])“ : {2.3)

The desived secuslity now bllows cn sating ¢" = EEEE s i vhe proct

pll-p-iy !
of Theerern 2.1, ’ 0

il
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Cr interest, i8 1n Jarge deviations end the aboe bount is ged in this fase.
[haugh inequadities clossr v the norrwal aproximation of DeMoives Laplace
are naturally bedter lor small deviathon - see for example [3]). Froe the ahove
resule we 0wy deduee weaker bus tuote usefol bourds, which geaecaise the
Chemaf bounds in Theorem 2.1 or improve sn them when p is mmall.

Theorem 2.3, [et the mandom ooraables X. &g, X, be idenendent,
vt (S Ky €1 for mchk. Let 5o =T Xy, It p=E8), lel o= prin imd
ktg=1-p

{u) Farany £ = 3, .
Pri 8, —u| 2 a) € 2273
(b Foranye 57
P> L ) g 110-tb ¢,
fo) For ange > . )
PriS, S (1-ehlg e %

Patt (] is due = Hoefiding [29], whe wlsa £ineisses relutlonships betwesn
taat reauls, and ather sivallas inequalicies. Resnles simils: to parts (B} and Jc)
eppeac 1n ] (in the biromial case]. For similer results jn che Woomial case
based oo Stirkog's approomaticn to af see T Chapter 1. Jo order to prove
Theorem 2 3 we veed one techmesd lEmma.

Letrmnn 4. For olf 2 >0,

T4 48] =2 3 3216+ 2]

Procf, Lec
Rl =16+ 82 - 20001 + 2] - iz - 5

We want to show that fiiz) >0 for all 2 > 0. Now £1i0) = 0, and [ljz} =
Qfa(z] whete ozt =102 | fiaf1 | £)- 2. Tt sulfices 1o how that friz) 2 0
for gll = » i Now f2)00 = (1 andl fyix] m (112077 ;20(1 v 2) - 1 Now
f7 100 = 0, o it suffives 1o shaw that Fire) > 0 for all 2 = . Bue fiiz) =
I +2178 20, sod 5o we e dore. c

Peogf of Thearsn 2.1

[a) Comsider p Gxed, let =1 =2 and b 0= ¢ < g let

w5 5))

Concantemtion 0L

Then i)
T Ay = )1
e ({P g
&nd
Pib=—ilp L=t & 4

Sew F10) = 0] =0 and z0it fallows by Taylor's shesrem shat a0 2t < g,
fitl = (#3721 s) for sume # with § < ¢ < . Henee f[) < -2 Henee by
Tomme 2.3, :

Pe(S, pomige™. (2.4)

By applying this result to n = 5, we obtain
PrS, - -k £ [25)
+b) To poowes: part (b} it is Smplee to use che equelity (23] in the procl of
Liruma 2.2 ratber than the lemee tsell, W we 2t £ = epand €® = (1+¢)
sbere, and uzs the inequality 1+ 2 % %, we dblain
. . n np
Pr(S. 2 {1+l < ([I i t]_"1"-'P':1 & EP]) g ({1 + r]—lHeJE:) |

and this glves the fest ivequadlty in (b [bee elso Appendly A of [3). The
secend inequality (b fellows o Lemma 14,

(ch Let the foorior. | be a8 in (8} ghowe, a0 Lo h'y) = f{=sp for
¢ 21 Then A7) = =pf"{ —zp) end

H=p i) T-aigta
Thiss we ey we Thorlor's theorerm &5 shove to see that hz] < -pr¥)2, and
taen Lemma 1.2 cumphiles the prool, d

The firgt ioequality i part (b yisds wseful results for very large devia-
Ciang. In partiear,
Pr{f, > I e {24,

Alsa,
Fl'l:Sh y ﬁ#:l Eﬂ—ﬁl:lnﬂ—ﬁ#llnlu < e—“b{n‘i.l'e]ul

i 5o 1 6 2 2, ther
Pris, = fu <47 k¢

The secend inequality in pate (B] welds fmmedianely that
Prid, 2 (1) g o1’ 24

g 04 r < 1, which is aften » sufbciencly precise irequeity i applicaticns,
sae ber emwnple [4]. Hoeffiing alsa gives the kolowig extension of pert [a)
above to the 2660 when the ranges of the summsnds mey differ.

1l
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Theorem 2.5. Lot W rondem varinkies Xy, .. X5 be idependent, with
. % KXo 4B, for cack k. for suiteble comstania gete. Bt 50 = T X, ond
et = E(%]. Ther for sny ¢ > 0,

Fl3n -y 20 < zg—!:j,leﬁt—m:?l

To prove this rasult we need e Jenme, from [2),

Lemma 2.8, Lst the rondom variabde X sotiafy ELY) =0 snda < X by
where o and & gz eonstants, Then fercay A 10

Figt¥) ¢ gt k-l

Pronf. Since % gives & coraen function of 2. for e £ £ £ b
PSRl L
b= b=y
and %

R T bea
=l =ple ™+ PEﬂl—sfw
=el-ptp’ = ULy

E[e"‘x’-"{ E'ﬁrm_ Lo

whete p = —a/lh—a), y = h—a)h sod f[z) = -pz - In{l - p + p#*). Bux

ard o - :
pl-me 1

fp—il-pe? =4

siree the geametrlc Mean s 8t most the arithmetic mesn,, Al fil =
T =10, and benee by Tavlors thectem

1

g S

fir s g

which gives the desired inequaliny. C

Jigi=
= S[h o,
gl

Proof of Theorem 85, By Letma 26, Jor h > 10
E(e*) = E I:HEML_M':'I}
= [ (e-eo)

< o Lt

Concencralion M3
Hencs by Markou's inequality,
PrS, - 2 1] € e ME[ETm)
PR L
Bierw get b = df} E{ﬁk - Ilk,'i o
Pr(S, - pztige @i La
Finalty, ceplace X by -X 1o obtain
Prid,-pg-1) g2 Eibeadl”
and thus ¢xmplese the peoaf, .

Wuch work has 's0 been dore on tai. bounda oz the s 5, when, 54 wel]
2z kg bounes on the renges of the summands Xy, we knew baurds on
thecr variances werX;) - eee far example |7, 26]. The fllowlog et builds
o werk of Betnstein (see |T|ant 78 equation (1131}, We shall devebop mote
geneta, results wong chese Tines Later. The reader may notice the similarity
to pert (k) of Thaorem 2.2,

Themretn 2.7, Lt the mmdirn variables Xy, Xy be independent, with
X -BiX) S b for ensh b Lot 8 =T Ky, and 5t 5, hove expected walue
o ound weriance ¥ the sum of de verignees of fhe X ) Then for ynp d 24,

PrS.—p> 1)
< E:_[.r-.i'!.“:|[|L-ujl:.:.lﬂj—:;l where = = BV [29:'
< m (2.1

[ typical applications of ube inequalicy (2,10, the 'ervst’ term BE/3V will
be negligible, Suppase for exemple thet the dom, sarsbdes Xy hawe the
same byunded distribution, with poitive variauo: o, ond 50 ¥ = ne?, Then
[or ¢ w 2], the houed in [210] 1z &=0+0lL00 (vhia s the nabur] 'arget|
singz b the Cerrral Limis Theoeen S, - p is asymoptoticaly narmal wlth
mean (] and varianee ¥,

In the preod of Thegeere 2.5 ubree we used Lemma 2.6 16 give 3 bound
aa the mumenl generebing luoeticn o for & bounded random vaelable = with
expected valus 0, Ir order to preve Theowemm 2.7, we 0ow need & velated renlt,
sea (3]
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Letmma 2.8, [

3

_2 H Tl
sl -1-af

i #0 Then the furction y 1 increanag; and, of Fhe rondom variohle X
saiisfes BAX) = 0 and X % 8, then

E{e"‘] < ity

e d —
2| ex

glzl =

Procf Toshow hes o & ircrensing, noke 2bat for r £10,

il = e -2 + 242,

and 51t subfices w ahow hat Rz, = [2- ¢* -1+ rsatides b{z) 2 0 for el
o Now A0 =D and h'I[I:l = (1= +1 Then h'l':'}:l =[] ant .ﬁ"'llij] =,
s (2 < Qber 2 < 0 and W) > Ofor 2 > 0, and thus indeed Az) >0 for
ald T ao requined.

For Ve ssoond part of the lamma, oote that
#=14z- g7 (147 +2glH
frr 2 € b Heooe, (FE-X] =0acd X £ 6, then
Bie] € 1 +giiuar(X) < Z9NEN
&5 mgquired. a

Proof of Theorem 7. The proof falows the lines of the prood of Thep-
e 2.5 Boove, By Lemme 2.8, oo woy &

Efet it = [E (Ehex.—ﬂxn::] < Y
Hence by Markov's inequelivy, for amy & =
Pris, —u2 1) § B} IR, gy

Tos nivismise wbia bourd e se; b = 3ln(14 1, and chen we obeain (291,
and Enelly Lamma 2.4 visds (2100

Tnedualities for maxima

AN the thenreens el on sims of independant tandam varinbles can be
stremgthened to nefr Lo merlmn Jince we hanee 0o natural spplications in the
Dresent cotbext. fo bhese strengtnenings, =% restiict owrselves b p CoDIwen
R anel shen aap o Tikede mee ot vhe end of subsecilon 3.5

Comeentetion 306
Eschi of the thegrema i= based oa the elementary Herostein Deguality
PriZ i) e Bie?) Treacah 2.
Conslder foc exemple the Chernoff Theeren, Thaoeem 2.2 whete$, = T X,
and g = B8] o provee =his resadt s moy apply the abow ingoaicy with
I = 8 —n, where g, =B8] = ap, thet is we use the inequdity
PrSs =t 2 £ 5 e B[y for cach >4,

L
=]

Howewir, & strenger inuslivy bolds, Let 5, = T
Lhan

X; acd gy = ES,"

Prjmar(S, - ] 2 8) < e" VB3 ") for each & > 0,

Here the masmom is over k = 1,... % Thos the same proof as efoes shiws
thet, for amy ¢ 2 10,

Pritax(]5; - k1 2 iy € 2677

Howavar, in typical applications of conoensaation inequalities in diserete
tnatherankios ob thegretica] computer sdence, 7 4o oo stant with the X
anil -hen wish to investigate bhe sums 5.5y, we srtart with & candom
fuantity T of imtereat and then cefine further random varinbles £} such thit
Z=Y X, inorder to lnvestigate Z, 5o that we are nes inzezested kor example
in Sy,

Mot only may the sheorsms sbove o swrs of independeny, modom vard
abkes be strengthensd to zefor v maiens, bub also thig bolds o oy of
the: oore gensred resits in the next setion, es they are abso bages oo ke
Bernasein imequality - 322 ske comuert 6t the end of subsection 3.3,

3. Martingale Methods

We skall make gorse [nuroductory comments sbout mertingale io subesc-
tiga 3.1 below. P kncwledge of martingales will be paquired in ke firss twny
zabsectiong below! Indeed, they will not be menticned, though we shall see
later that the inequalities presented in these subsections are mest naturally
uwnderstod I the eontect of mardogals. and indeed they coukt be callad
cloagl, martingale rasults,

1]
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3.1 The [ndependent Bounded Differences Inequality

In this eubsaction, = readuce and give wrral applirations £ the 'ede
sondent. ‘ounced differences nequality’, Theocem 3. helow, from |45, This
2epolt 32 2 gperaal case of Theorem 3.7 below {and thus elso-of Theorem 3.14),
"t ot bas proved very el and i immediately socessibk: and 5o we dis-
c1e it first [We showid nsse below that <he faneton § be approprissely
-ntegrabde: we ignore such dessils here and thegoghom the chaptar,)

Theorein 3.1 LetX = [X1.Xy . Ko b n fihily o indzperdent rerdom
norénkles uadk Xv taking molues i3 o 0e! Ax Jor &sch b Suppase Yot the rech
st funchiom | defimed on ] Ay salisies

|fix) - fix')| S e B

thenever dhe naptors x and 1" differ onip i the bih oo-omdnate. Lef 1 de the
erpecied vafuz of the rondom veradde FIX). Then for anyt > 0,

PrfiX) -2 () ¢ g ¥R, (32

The inequalicy (1.2) = “oe-sided’, I = apply i ta - § we clitado
PrifiX)-—p < - s FVEE, 33)
and o we have deduced the “two-sided’ inecusity
PEFXI - ul 2 27 ¥ KA (3.4
A cimilar eomement bebds f7 oot of the ane-sided results we present.

if e led ech sgt Ay = (0,1} apd Jet ;x| =¥ 1. we obiasn Thegrem 2.1
abive; and il each 531 Ay 8 & buunded st of nomobers we obesin Thearem 2.5,
We comsider a varisty of applicarions below. We do not prove Thegeem 3.1
al this point. &5 the prool is gy Raenrally sot o the fearncenel of Tarip-
geles and we thall shartly fevelop mote general tedults - see oo pacticular
Theotem 3.7 belta.

4.1.1 Bin Packing. Ovr first applicetion is qulek and easy. Given an f-
veelor X = {T:,...,Tn ) where 0 5 oy £ 1 for each £, Jet Bix) be be lenst
aumzer of it size bins needed to slote itams with these sizes, W2 assumme
-he: the items have mdependent Tandom sizes, Lew X = (Xy,... Xpl be a
“amily of independent zandom varizbles cack: 2aking vmhea ic |0, 1]. Then the
nounded differances sonditicn 3.1] holds widh each ¢ = 1, and so a3 noted
i [48, §4]) it follows from Theoram 3.1 vha

Comceniration 21
PrBIX) - 4 26 < 2, (3.4]

where ;1 1a the expected walae of BIX ). Thus Fafn) — oo aan — o0, then the
probability shat B{X) devieces from its mean by mere then win) % tecds
(28 1 — . e mray say thae B{X) is concentrased withio width 06, /).
Fer posmilay result, on eandrm knapeacks sor 48[ (For Sper mgsntension
resuifs oo bl pasking that 1z alse he wariame of the pdsn wrisbles X;
g |53, 42].)

3.1.2 Baodom Graphs. In Theotan 31 we may take A a5 6 521 of odzes
in & grapi, a jn e resubts below - see for exampls 10, 1%, Recll thet
the rendom graph &, has vertaces 1,5 and the josslble edges appesr
indepecdently with probabiity p.

Lomma 3.2 Lot [A1...., An) Be o pertitien of the edge et of the com.
oete gruph K, indo ot Backe ond suppess that te groph futction [ oaniiy-
fies [FI6] - FIC7H < L wheneter the symemeirsc difference FIGIAEG of
the alge-acts i comfoined in a single bock Ap. Then the romdnm norichle
Y= j[Gﬂ.P] suﬁsﬁﬂs

Priy -EF) 246 e & jortpn

Thig weul follows directly from Theorsm 3.1 with each o, = 1. The nea
two res-lts are immediate consequenees of Lenwma 3.2 for the former Lot 4,
be the set of edpes {5k} where § < . and Boe the lutter et the blocks 4,
b singlevans, We may Lok of ‘exposing” the readom graph step-Dr-step; at
step & we expose which effgea i the w1 Ay o prosent.

Lemma 3.3 Sappose that fhe praph fnction f setisfian | 1G] - JI) <1
mhenever (' can be obdeined from F By choolging efjes meident with o sngle
verter. Then dhe corvespaniéng rangam vaviadle ¥ = fiG ) sntisfiey

Pri¥ -E{Y| 2 4] ¥ for i 20,
Wher: e ronslder tbe chrometic number (G0 and et ¥ = y[G, ] (s0d 1se
tie tworshded version of the last lemma), we bod that
PrY —Ef¥)| 2 1< 20, (35)

which l1 {a slight eharpening of) the early resuld of Shamir and Spencer &)
which S importent i nkroducing Martineels metbods ino uhls aves,
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Lemina 4. Supposc that the qraph function [ sofasfies |3 - fIG"]| 21
whenever & ond " dffer i0 only ome edge, Then tee comesponing rondot:
weruehle ¥V = Jf{l?.-,_F:I Avetinfies

Pri¥ - B¥ 3 e for 120,

Perhaps the most exciting epplication of the bounded £ifferences method
tes thls lerne- (b is the proof by Bollobds (15| of what saa & loog-stancing
soktject-ase aboud the chvonenic muabet 116, p) of raocem graphs. Cansider
& nomatant edge probability p with & « p < 1 and lel 7=1—p. Ther: for sy
e,

Fr([l-:}LEx[Gﬁp]ﬁlﬂ] LV lsaom

Hogn Teg,n,

(For » more preciss resubt. s2e [46] )

The lower boucd pest of the proof is casy: Lhe mbsrest 3= 0 sstablishing
the upprr ‘nannd Ber G ;1 The bey step in the prool & to show tael the
probubility ini that Gy ; faib to cootain & stable (independent) st with
sim) = [[2— € log, =] verties .= very smell, sqp

an =g, 37

T see hiow this will yoeld the upper Bound on xich, ], et & = [a/Tog e
and coll & get W of at leasl i vert'os 9 Gy, Bad i I8 conttins oo stable
set Of sla ot et alf]. The protabllicy that theze ks & bed =2t is ot 2ot
23] = o1’ Buk if there 15 ne had set I, then we can repeatedhy colour &
stable st of size at Jemst MFi} saud delete it wml these reenin fowe: than £
vertives, wiich enay each get o cew atlour. The tobal nutner of oolout umed
by this procedure & then s most

1 .
niad] 44 = [E +ofLin! log e

Toues we wigh to 822 that (3.7) & true. The clever idea I8 to consider not
{ast big atable sets bak perkinga of such sets, Given o grapl: (3 on a vertles,
define fit7] to b the wavimum pumber of debie sts of sie Hn) which
pairvEe conrain w; meat one comece veokex. If graphs & and £ differ in
ooly oo edge then Fi) and f05°] differ by at meat L Led Xy = f 5 h Tt
is 0ot hard to check that = B[, i large, s at least 1 for  sufciont y
larpe, Hencs by (the other anesided version of | Lemme 3.4, tha probabélity
fin) shas 7, has oo stable sat of size 5(n) squels

Pri&. =0 =Pri¥, = tn € =) Se—iuifn“ < e““},

foc » sufficiently arge,

Concentration 1M

3.1.3 Hamming Distances and [soperimaivic [negualitha, Med 1ot
18 coteider an ppplication of the inceperdent bounded differencen inequel
ity Theorem 3.1 imesving Hammitg discennes in prodoct space, aod -
responding soperimetel: inequalities. Ths appliation will link in with our
discussion larer oo Talagrand's inequality and oo the wse of ideas Fom jnfar-
mektion thecry to prove concenbrbior results,

Lt £, 53 be prchabilicy spases, aned et £ demote the prodiet spsce
[T Lat X =X, Xe] be o fomily of independenl rundom varlsblay
with X} talog valees jo % Fecal thet foe peints % = (7,2, aod
¥ = [o.ode) io 52, the Homming dulance dylx,¥] is the mumber of
indses § cued that z; # 4, We can nze the independant boumded diffarences
ineguality 1o show thwt for arge subset A of 7 such thal Pr(X € 4) s et
bty gmalk, the probability that o radon poing, X i cdose’ to 4 i5 near 1.
Recall the: e Hammcg distancs fom & pednl % 1c 6 %2l A s defined by
setting dylx, A) tobe lal{dy (e 7] v € A}

Theorem 3.5, Lot X = (X, %) & 5 fomily of atdepenidend mimdoen
voriabes and Tei A be g absed of the proguct apene Then for iy £ 20,

PriX € AIPrdgX, 4 2 et (18)

Lt ws cephrase tnis cesult before we prove it Diefine the (-fattentig of &
subset A of 17 to be sha zen of points x & 1F such thae doix, A ¢ ¢, and et
Lbe messure 1[4 be Pr(X £ AL Then (3.3) srys eha

VAN - v A € e,

Thus if v[4) 2 § then #{4,1 2 12674, T pariider, when each caadum
vacieble Xy i onifrmly distribated oa the set 2 = 1} we obtain an
iuperimetein inequeliey bor t1E nocube - s for exaple (37, 45, 63

Froof of Theoremn 33 Les p= P X € b aod |2t g = Eidn (X, Al We
Ty s that > 0. By the independent Tunded differences inecuality.
fordzn

Pridy(X 41 - a3 4 € e™F0, kLS

sad y
Prdi(X, 4)- 4 € ~fhce®m, 3.1

Mow dyy(x, &) = 0 f and enly if x £ 4 503 we tabe £ = in the Ineqrak
iigw + 3,10 ebave, we dtain

p=PrXe Al =Pridg(X, Ai- p € -y 75,

1]
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afel 50 .
p < (frloilieha, =t sy,
Tow use this bound it the megualivy (3.9] abyve, to find
Pridy (X, i > t4+8) 7
Thas fr &2 & we bave
PritafX, A} 2 1] e H-ui'im, [3.11]

Now [{ -l 2804 for t 2 B, 50 1 we take £ > 2ty in the inequelity (3.1)
we abtain _ )
Prids{X, A} 2 1] et IN.
Biat for [ <1 < T, the tight Land side abaee s he laast 674" = o= Prl4),
Thus o
win (PriX € 4, Bridn(X, 4] 2 1) 7/
for aay £ = b C

Wi rwy peneralics the above dicussion. Lt o = (o1 20 br an
acwetof of bon-negative real puinbers, Revell bhat the (L;] norm is green by

AL

and we tal. @ & grit vecor if it bis norm )= 1. For poita X = 1, . T
and ¥ = [§,... o) 0 11, bt o-Fotommg desanes £.4x. ) is che sm of
the xalies &, over those indies § such that 1, & . Thus wier & ia the
all s vector. it heg anom /7 and o-Hamming distance s just the sume as
Hamming distance. &lso, for r sebees 4 of 2. we cefire

dtx A) = imf{d,fx.y): v € A}

Fxurily the same pooaf a5 for Theoreru 3.5 melds the fallwrng exbenslen of
it.

Theorem 2.8. Let X = (X1,..., X, fe o fmily of inchpendent randam
samablaz, fet o be o non-napative wnit n-teler, ond Jed A be @ aubeet of the

product soace, Ther for anyd 20,
PriXe A Prid (X 4] 241 g e

Conctntralicm 244

Similar results appear io [sih, 68, 64]. The central result of Seclion 4, namely
Talagreod's -nequality Thecrem 4.7, looks ratber sivdlar to Thearem 3.5 ba
s in Fact. far more pomerful, siee iz refers not jual b one woit weetar o bat
gimltanecasly o & steh weokirs,

The sbave resaht will give w beck & result like Theorer 3.1, cetesad
around 3 evedien eathes then the mean. Lat us see how o Jo this Consider &
functicn [ debinet on [] 4 as thare, nd bt & e the vertar ., e ) Then
1he bounded diferences condivion (3.1, Lbat [ %] - Jix]] 2 e whenever
the vetars x sod ' dIfer only in tbe kb comatditate, is pquivelent to che
condition that f{x]—fix'}| < deix, x'). Now asmume that cba cond:tion {1.1)

holds, Lat
A ={re[[4: fin<a
Couside: an x £ [] A, For epch ¥ € 4,,
Fix) & fiyh+ dof,y) S 2 v defxy),
ané s0, winimising over such ¥,
fix <o duix 4.,
Lat ¢ =, and Lot 4 be the et veetor /' abong e IF fix) 2 o 4 1 Wi
doiw Ag) = defxe, 4, e 2 (Fx} - apie 2t
Hence by Theoram 3.5, for ooy 2 > 0,

PrifiX] < 3} PrifiXb 2 + ) € PriX € A1 Prid (X, &) 2t/

e g—lgl-'l:il
Now let w he a metian of fX, thet is PrfIX) € m) 2 1 and

Pr{f(X) 2 m 2 L. Takmg e = m abave gives
PrifiX) 2 m—t) <2 (3.2,

ané taking @ = m = we b

Prif1X) € m= f) < 27 (3.4
The ahove e inequalities 1 Jike she sonclwian of Theorem 5.1 &t
Jenst if we are ol Loo bothered about constarts, They reder <0 concsnteation

abtt the redise m eather than themean g = B{F{X)!, b that wmokes ditke
d.Feremce since Lhe corgenitation inequl bes themselees imply Lhel g - m

[
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.+ ml. bodeed. e equalities 3.12) and [3.13) bogerbes with Lewma 46
i siibmecsion 4.2 below show that

|- m| £ +2re. (334}

%10 6 ooe, impartant % belher we sefer o medion o mean, end Theorem 18
and Theorem 3.1 are qulte imilar.

4.2 Extensions

Tr. this subseetinn we refie the independent bownded difrences inequallty.
Thetrern 3.1, end the Betnerein inegeakity, Theorem 7. to obiein moes
widely applicable zesulte, nemely Thoovens 3.7, 3.5 and 3.9, but ol -he coan of
some aiddied complication. We shall deduce thess trearers later o6 immvadiale
prmsequences of Inartingals -heorems (though they do no themselves metion
mertingales’). Thenrems suck: a3 these bive reatitly proved vaefl wben the
vecidona varlables X cosrespand to answeritg questiots such 58 whetfer turs
given verhices 57¢ adjacent io @ rabdon, greph, and e questlon ighed pd vime
x by depend o the answers to prerous questooms - see for exacnple [22,
2. 26|, We shall zive pest of an ogument From 2 coocerning Dypetgraph
Tatchings at he end of thig subsertion,

Tet X = (X, .., X.] he a Gatwily of tandom variables with X, caking
valies in & st Ay, and ol § be a resl-wahied function defied en [ As.
Typically the repdom vadables ¥y will be independent bot e shall not
asgume {his heze. We define quantilies which measurs the variabilin: of the
Tundom vacaze fUN% when the Tendom varigbles X;...., Xe-: are fixed
These custitics correspond 1o <averion, rangs avd varigace. |t ia corvenient
o et firsl 3o easy bound on varignce. I Lhe tandem variable X satiafies
EX}=0adaz X % hen

s X = BiX = B{X(X - ob] < E{bX —aif = o] < (B~ a2 4. (2.16)
etz & A forenche = ... &~ 1, ané Jet 3 dencte the event that

X =1 foceachi=1, .. .k - L Lex the resdom vanable ¥ e Qsltibatad
Tike X; condizioned on the evert B (s i & = 1 then ¥ s distribuned like X,

with ng cond:ticing, &l if the random wrisbles Xy are indeperient rheo
[ar esch i the candoon molabls ¥ e distcibaieed like £x) For 1€ A, lad

sz} =EJiXs 8K =2~ B(f(X)| Bl
I the randam variables X, are indepeperit then we may #rite 9.1)
EU[T]. U TR 3 P O K=K fl21.- .. JranAe X Tn],:'

Concentratiom 113

The jueetion plx] reasues how moch the expeched salue of f{X) changes
ifit is reverled that Xy takey the value . Observe thes Big(¥) =1,

I.-et etz o ok ) b sy glsh o £ Ayl the positive deiiation of
_gﬁj,auﬂ similarly b devzy. . xe_y) e suploiz)|: e A, the des.
fiom of gi¥). (16 v denote By f(X0)) by s, then by esch X = 1, .,1,0 €
[T Ax we heve

el -l € ¥ devdfzy.... . tao) (3.4
':Il'his wequality may be combined (o ‘interpolated s #ith other inequalivies
likg Theocern 31 - see 55, 34 Let ranizy,.... 21} denate supflgfr) -
] = 2,9 € Ae) the ronge of 4{Y). Alse, denate the vasiawes of 'Y by
(L TP T

Fer x £ ] Av. et the avm of aguaned mnge: be

Rix)= E#fumli-_, RS T ot

k=l

an¢ lex the matitrem sen of spaed rges 72 ba the supeemum of the e’ wes
R20x) aver sl x £ [T Av. Simllarly let the sum of varuaces e

Ll

Fia= E Larz g, eaZp g,

k=1

and g% the marmam shr: of warianoes £ be the supreaun of the walums V[x)
over all x € ] A Oboerve thar Vix) € K3{xt 4 B anch x by (3,15}, aod
s # € /4. 1t iz aso of inberest b mote tha '

oart fiX) = EIVII3 <

a8 35 shomo just befors Thearer 3.14 below. Fioally here, Lot mexdn® be
the muirim of all the positive deviation values dew(s) .24, teer all
rhedees of k and the ;. anc similerly L mase bz be the maximem of all che
teviation vales deu(zy, ... Tr_1}

Example DeCoe the functinn f : {0.1}° — {0,1} by lecting f{x) be 0
on (00,070, 103.71.5, 1) and be 1 otherwie. Let X = Xy, X, Kol ben
family of indepenrent zandrm varlables wish P, =) = Pr(X, = 1)=1
for each k- Thus E{FXY = 5/8, and van f(X)) = 578 = {598 = 1654,

Atibe'root!, 00 = B{10, X, X371~ BIFEX ) = 1/2-5/4 = ~1r3. and

similerty giL) = 3/d - 53 = L/E Thus maaf] = 14, dati) = denl] = 13
oo et m 164, S
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Wit iappecs it Xp = 17 We hwve BOA | Xy = I =E{fiL Xp, X3lh =
54, wd 8 gl0) = B{FILO, g = 34 = ~14 and 91 m E(f(1, 1, Xa)1 -
300= 14, Thes ran(l] =272, gt (1] = dewi1] = L4, aod wmatid] =118
Ggilarly, ran1, 0] = L and warl.0) = 4.

Yow Jer x = (1,0,1] for {1,0,00. The comesponding scr of squred
rarges B2x) 1 ranl® = rorl1)? + ronil,0F = 1/16—1/4 +1 = 21115,
whica b fact equels 2. The comespancing Sam of var'ances 1[x) ic 2er] +
vefLl + sl 0 = 1564 F 184 +1/4 = 1/2, which in Cact equals £.

We ste now rescy o slale the fist of out more getersl results, witch
extends the independane bounded differences iequeliy, Thearem 3.1

Theorem 3.7, Le! X = "X, ., Xn) be o famaly of mrdom vaviodes with
X, tokg wabnes 15 5 06t Ay, and iet [ b o bornded seel-golued funchiz
defired on [| v et o denote the megn of FIX1, ond bt  demale the
megimam sum of squered ronges. Then far oz 2 0

PRI - s T

Mare generally, t2E B de aty ‘bd” sishsel of [[ Ay, sach that BEx) S 17 for
sehx @ B Than

PrifiX —p2 < 4 Br(K 2 B)

Th first icequality Rhove of couee yilds

il
-

PrifiX]-p<-tj<e
by considering - (as iu the comment efter Thearem 3.1), and 1hus
Pri| (X} - 21 € 272, 3.17)

Tior each k =1, we let . be the snprermum, trar all chiices of the 1, of
b2 values ra(zy. ..., Zx_1b then of sowrse # is at rwoat 377}, This bownd
for 7% yields Corollary .00 of |45]. Purther, it vlelds alss the independsne
Teanded diffevences inequelity, Theorem 3.1, Por suppase thet f satisfied the
beunded differcoces eondition {3 1) in hal theoretn, Lot 1€ & < n kil
bt e 4 fari=1,... k=1 Weshal see that rantl®), .. 2e-0) S0
a7 < T € Ve, ond then Thecrem 5.1 Eoilows, T sew this, far each
s A,.,!etﬁ,belherandmm'mnh'.ef[xj,...,xg_..x,xm,.. Xl Thrn
|2z = Z,] < . Hence, in the oatatlm Inteadueed before the statement of
the Jast thepeer. for any 2,92 Ay

lg(z1 = gl = [EiZs) - Bid | S B2 - Z) 3 o

Coneltatipn 215
Thus ras(Ty,....24-1] € &, B4 requmed

Obaxzrve that the abowe argument will in fect, yield & light]y stronger Sorm
of Theorern 3.1, Demte 3 ¢ by . The thecrem will still bold if we wesken
the sssumption on f to the concivion that b esch x there existe 8 & (posgibly
depending a1 x) sued that T8 < ¢, aod |fix) - x| £ & whenever
the veotors x and x' Siffer oy in the Eth eo-ordinate. The inequelive of
Talegrend thet we shal' meet Inter heg 2 similar fiavous.

Lt s g ome applicatian af the abeve resule, Theorem 3.7, before we po
0 to give extengione of the Bermstein thagpeio, Theorern 2.7, This 2pplastion
i from Magry 44|, and was, togethier with 1) ane of the st wes of 2
eeqentrotian Inequallty outside arobabibty theory

Permutation graphs

Let 8, denote theset of ol n! percvtetions o liveer ordes on {1, .- .2}
The permulction groph G, bes werles sed S, ard twi vertiots & and 7 ara
adjacent wheo o7 7 1 & trasapesition, that 15 when 7 can be shialnad from
o by sweppimg the order of o elements. W are jttepsshed in isoperimestic
inequalities for Lhis graph. Given a set A C 5, sod ¢ > 0, the rIateaning A,
of A cetsisls of the verllows in Go at prapd distance [ then © freon some
vetle it 4. Thus, we want Iower bognds on |4,] In terens of 4|, oc upper
hourds om ] — | A il We shall show thar

(Al 1 - dlfly 2, (3.18)

Thitk of & livear otder io 57 %6 a0 ntuple x = {1y,..., Tn) where ehe =,
are distined, Lot ag,.. . be disticel sod Jet B be Une s of linear orcars
< 5 euch that 3y =ap... .7 = i For £ distinet from the o, bt B, Te
the zet of x £ B wish 240 = 2. Lat | be any feeelion on 3. sesislying khe
Lipaehite or omit changs sncadition | F{x) - f3)] €130 x and ¥ are adjasent
oy

Mow st X be unifpemiy cistribuzed over 5. Io the ootesion Dieroduced
ey Lhe Ll i alove, congide

ofr] = EifIXb| X & 2] - BIfIX)’ X & )

For any relevant distinet 1 and p, there js & Bijectlor ¢ between B. and B,
seh that ¥ snd dix) aze ad-seent in G (We Somply swap the positions of
st ) Thus E(fX) | X ¢ B,) = BiF[o{X)] | X & B.). Tc fol.cws that

|9ix) —ulyll = ELf{X] - fig(X], XeB,)
SEAX - faX)) [ XeB) €1

Heoee by Thesrem 3.7,

Fx
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PrfiX)-E[f[X21)< .g‘?lT.""=_

M I s wpecialise b the case whien f{x) is the grapk distance between x
ane the aet . We tnky poocesd exactly 48 it 1be procf of Theoremn 3.5 abowe
tafver Lhe first vu inequalities] to shw (3.13] 4 required. For related results
pnd extensions see for exemple |54, 30, 45, 37, 64]

The nieact Teawls esctencs she Berngtain theorem, Thecrem 2.7,

Theotetr 3.8 Let X = X7, Xob be o famidy of raodmm verinbies with
Xy Lobing wiues i g 52t Ay, ond Tt F be o reabialved funclion defined on
Ay, Lat p dencis the mean of FIX}. Let b = masdec® and leb 0 be the
murim 5w of tariances, bot of ahick e e o be e, Then for
amy i, .

PrifiX) - 2 1) € T

Mive gererslly, el B be any Yed’ andast of [T4, muck shat Vix} < v for
gk g B Then

Rr[f{X) - a2 81 € WP + PriX € B}

48 with Theorem 2.7 above, in typical applicatlons ¢f this relt the eror
terb” it/ 3v s neglyzhle. Abo, the 'bad see’ B if present a1 all is such that
PriX € B iz cagligible. If we uss the boneds 1) £ A%(x)4 for eack: x end
# < 7414, g ran pearly obtais <he bound in Theorem 3.7 for sioall ¢, IF for
guch & = 1,...,n % lot £ be the maxzum of the valss vonz),... 5]
ower al. chrices of the 2., ther & s s mose ¥ . 11 we use this bound for ¢
ragether witk the Cisishnn bebow, we oblsin & ret't relesed to Jnequetities
wsel by Kinw "85 10 his marvellous R43.¢) paper. However, the present more
geflera] pesult s swesded %or vertain applleinns - see for example [32, 3, 36
ard the expmple bk,

[ibeare thpk if a rand o varlable X bes meen [ and tals Sy ten valoes,
with probabies p and 1—p, the he e values are —pr and [} - plr where
rig the rarge of X, and sar ) = a1 = pir® < prl - see also (315 above.
Thoss if p 35 amall o i 2gr X ) and we cao g2t tight heunds oo deviations. Lt
115 stabe one coralbary of Thecremn 3.8, which is 2 tightening af the imartingsle
inequalizy io 3]

Theoretn 38, fet X = 'X)..., Xol be o jamify of rondem sariables with
Xy dching oafues m g sef Ay, and Lt [ be o bounded tesbnahead finction
dufimed om [] Ax- Def u dente the mean af f(X1, ief b deagre the mozsmur
dewgrion Tierder, wid fet 77 denote the marioe sk of sguamed Tingss

Concenttation 317

Suppase that, for ony ginen waives toben by X ... X |, the rendem ars
abde X; tobes of moal bun vabysa, ond OF 1 opn toke fuw yalues then the
smeodler f e protabibities is of most p, where p < 5. Then for en ¢ 210,

PrilfiX}—p 21) £ 2 T,

A5 with Theorems 2.7 pnd 16 nluns, we bope to be able t? igors the
“error term’ W f3nF® The fmportant term in the bavod is e_#-_", wigh i

|
significantly becter (aualler] than the erreepording tern ¢ E froen The
efem 3.7 whem p = o{1). In the next subsaction we Cescribe an application
whese this diffecetice s criwial.

3.2.1 An Application to Hypergraph Matchinge. 4 mateing in H &
a st of pairwise Giginin: eiges. Low k > 3 he o fived ioteger, and consider
& kuniberm J-zepular simaple bypergraph B ob 5 verbices, [Thus eech edge
containg pxaczly k vertices, each verte: i cootalned in exactly d edpes, acd
etch pa'r of distine: edges mest o o, mast coe vertex.) It s sbown in [2 ches
such o bypergraph [ comtaine & matching covening all e o vandshiog po-
preblem o] the verticns as b — ot Earlier regulo showed thad the peopomion
of vertives that eowld mob be covered tendod to sero, bur perhaps slowdy )

The idea o4 the proof 5 to bod such a matcking by repeatedly taking
raeqdoio “bites' Tike barze ‘T nisbles' - see for examaple 31 We sake such
& bt i folkows. Form boset X o7 siiges by choceing the sdpes independenily
with probehility 1/2. Cell an edge "solated il it ziests 1o othec edge in X
Let M condst of the isolatsd iges in X - these will form part of she Goal
mhing. Mo delete from #F all the vertices in the edges in A and ]l the
edpes meedlng these vertices, forming a bypergraph A% on the vertax ser, 1,
o teke the st Bibe from . We st show that 7" & apprcximetely
ezt of sppropristely smuller degree. [Many Cetaike have been omitted. in
zerticnlar & meat depree stabilisation techoique bot cbey do ot affect the
uten that we wish to lbustrate,) A ey part of the praof = b4 check that each
verpec degree in B s close o its experted valug with high probability. snd
that iz what wa now procesd to do. (We need the probability of & significant
devigtion to De very aonall sinee Lhe hexh sbep i L prood 6 Lo we Lbe
Lovégr Local Lamma: when wsing o Ridk nibbiz' often o second moment
wonnd sulfioes 52 for example 3.

Frr each vertex v € ¥ let £, 36 the number of edges &' € 4 molainieg
1 5ech thet £ (15 € ¥ Obsttve the: 70 ¢ ¥ then 2, equals the degres
of v in H*. (By defining Z. jo Lhis way w0 pscd oot wocTy shout wistker
ak nat the vertes v is i ¥.) It rurns aue Lbad it ewices o comsider & fxed

L
wilex v & ¥, and sheer that i § = ofd?) we have
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Pr{ 2, B2, >y ¢ Y
{S&!‘E Claim 2 in [2] ] Let 15 see how e can abtan thle THUJL__I!‘PDI:I'I. The

rorn 3.9, Recall that Theqrem 1.9 gives & bound of roughly F i loog pa
the deviation ¢ i b2t too Targe.

Far each edge E £ H. let the rendom varlable Xy = 1 i € appesrs i
the random set X acd lew X = 0 if oot Thus PriXe = 1) = p= 14,
and we shall be i husiess 15 Jong as tbe maximu, sum of squared 1anges
# = ey AEx) 15 (0%, (In cirder o use Theoretn 1.7 we could tolerate
only 2 = O], which s 10 use here

Call an edge in H srémary if b contains che verter v, scondary if it
not primary Yut meets a primery edge, and tertiary i it & noz primasy of
sacamdary b, Deets & seoandaey edge. Let £, &5 and & denate the sats of
primary, secondary and tertinry edges respactively, and note thal 5] =,
(o] < € - 1) and |83] 5 (k- 1%4%, Lec £ be the union of the sets £;

The tandne veriable Z, is devermined by the wluss of the random vazi-
ahles X For 2 £ Lot £? be the set of binary vectors 2 indexed by £, For
sachx 7 11 1ot f1x) be the cacresponding vaue of <he degree 2, Letx,y & &
7 Ber only in crordinste F, where F & £. 00 F € & then | fixl - flyi < 1.
1 F £ £y then [Fixc; - § [y € K. Sa bar the coutribation 2 the 12mm B¥[x)
iz 81 Tat
B ] - (Bl <" = Ol
whicn as we siw bove is small enough, Similardy, if F € £y when fixj—
SI¥1]€ £, Bomever, we cannat selerate s oontribution to B¥(x) of orier o,
w we myst do betier,

Let x = 1. Call an sdge P ¢ & prportent if 27 = | gnd F meets oo
other edges F* £ & with 2+ = 1. There are o most, 1 - 1o ‘mpartans
e, and g3 61 st k% tertiary edges et mest an imporact edge. Fu-
et if y € 17 differa from ¥ only in co-ordinate F for ssas tertiary edge F
xhich meats na impartant, edge then fix) = fiy;. Thus #e can basod AY[x
b £ = B < 2842, and s the meximum sem of squared ranges
7% ¢ 3638 Since eadh PriXp = 1) = 1/ we may now use Theeram 3.9 1o
st Ll

o
Pui| 2, - Bl > #i%) < Pong . )
B 4 (B 6

=2 | -———— |
AH8 ¢ )

) ok
acd LHi hound i4 o rovet &1 g ¢ = Q).
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3.3 Martingales

We give kere p brled intreduction w the theory of martingales, fousvieg
o the tase when the underying probebility space i fnita For much Rl
introduclions see for eample |28 ¢r [F2

The starting point ia & probsbility space {37, F. Pri. Thue £7 iz vhe noa-
empry set of all ‘elementary satonrs’, F i the st of evams’, and Pris
the peobabiizy messure The eollection F of events tust be suitably chased
Urder waione. intersactions and complemects, and i assumad o be g o-field,
A o-fiid on £ i5 5 colleption @ of subsets of 1Y which consaing the empty
ges, and 35 chosed ander eomplementation 1 A € § then 23 4 € ] and
vrder cyuntable uniows (I A, ... & § then their wnion i5 im ). I dellows
that such & collection § & also clmed uoder souutabue tetseebiong, 1n ey
apalications Lbe ynderlving set 17 s Anite, and the o-Beld F of avenzs s <he
reflactlon of Al subeets of 1. Tat ug assuree in the mweansime that 2 is dnte,
thowgh whet we say is dicher troe in general or AL deast. tells the cight story,

Conrespurding to any a-feld § on 17 there is & partitiom af 7 o 2on-
empty sete, tha Mocks of the pattition, such thet Wk o-Beld & is the collection
of all sets wabh ave wnloos of blocks. Cormsponding o the o-field of sll
silgets of 17 is the partition of /7 ineo singleton blocks. Suppese shas we
have & p-fied & comteined in F. Any funcrion oo [3 whith is constanr on the
blacks of & is called G-megsurable, A mondom vomobdt iz an F-nawsurable
reakvaloed furection X defined oo 0%, w0 that in the case when F coosists of
all subaete of 1) sy cealvulued funetian defited oo 17 19 & *andem variahla,

The sxpectation of X conditioned an €, E(X | §), & the G-ressurable
junccion where the eanstart valus on ssch bhck of & it the serage value of X
oo sha block This iy & very inpeclam notkon. We may swethat B(Y | F) = X
[chat ig, BIX | Friwd = Fiw) for ench w ¢ ) ; and i § 5 \be towial o-
field (@17} oerssponding to the trivial pactition of I} inte ooe “eck, tien
E'X | is the eonseant function with constart veloe E{X ). Kev propartis
of eonditicna) expectations that we shal' oesd are that if &, C Gy then

BIEY |Gl = BX |G [3.19)
g 53 in partieylar
EBX |0y =KX, i34

g
E(XY |5) = XB(Y |G} £ X is G-measurashe. [3.31)

Toe supremum of X io G, sy X | 6], is ke C-megaorable rardom variable
sl tickes the waliie gt o ecnal o the Mot valoe of X over the black
coneaining w Cleacly

24
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BX | &) € supr | ), (128

anid if ( C & Lhen
aplX | G} < sup{X L G). (5.28)

Mate tyat each of the shove rasubts bolds Eoe each w € 17 10 2 time for an
wample!

Example Lat [F = {0,1}", Tet. F be tha rollection of &l subsets of 7, let
< p< 1, and for cach @ = (wy, ... wnb 8 Pr{a}) = 91 - o7 where
3= L% Tob cafoes cur probabilicy spece For each i = 1, & define
Xolw) = wp for each w & £ Then X0, Be 3t Independenl randoe
virintdes wich Pr{ Xy = 1) = 1 - Pr(X; = 0] = pfor each #. Also, ot 3, =
Xo+-+ X L Fi be the o-fiedd sormesponding to the partizion of 12 3nto
the 2% acks {w £ (P =3, e = 1) for asch {1z ) € {0, 136
Thsors the candzen vaziable ECS, | Fy] catishes [for enchw € &)

B RS +n—kp=u + -~ =in-kp,

snd E[Sn | }-1] = Sn_, E{n’in | .Fn] = E{Sn: =fp mfl E:E[S“ |_F*“ —
B8] - n = Kip = np. Also for examphe

Ei3:5, | Fo) = SEiSs | Fi) = 5, + 0 - KipSh.
Fuarther

Fup(fﬂﬂ]=5¢+[n—.'r]53-l+{ﬂ-k+l]:mp{5'n|.ﬁ_|:l.

Another impoctent 1des % thee of o Bar 4 nested sequeoce (9, 7} =
FoC RS of o-fields comeined in F o geiled & flter, This correspoinds
| the fimite case] to a sequence of increasitgly e partiticos of 2, stant.
irg with the trivial partiticn inee coe block. We moy think of the filter s
cotreapanding ta Acguiring information 2s time goes an: 2k ik B, we koow
whizh block of the partition comespondivg io Fi couteid éur fendo &
eetilary outconne o Given & Blter, & sequence X, X)X, of cauder
witiables i colled & martingads ¥ B Xy | Foy = X boemch k=01,
This implies that Xy i Fyoeasurable (a2 time & we zoow the vehee of X3
[t alow implie that Ef X b= EX] Jor cach k. X sequence ¥y, ¥, o raer
Sremvariables iscalled & martingade diffarence sopuence 1Y & Fromeaszrable
end E(Y), | Fi- ) =10 for each positive intager k.

From & mertingale X, 1, Xs,... we ubtain & maclingads diffareace se
guence by selting ¥ = Xy - Xp.o; end conversely jrom Ay &nd 3 mar-
rinpale diffecence sequence we obtaio o mortingale Xg, X, X, by setting
Xp=Xo+ 10 ¥ Thus we may foons on elther forn.

Compentration 101

We abll he inberegted berz nely 1o fnle fittees . A= FpC R C. L
Foowhere Fo. © F. Lot X be 6 random variabe pnd defioe Xy, = E[Y | 7
Wk =10,L...,7 Ther Ko X1...., X5 8 5 martingae, with X = E{X)
and Xy = X if X is Fo-messocabe. This 52 called Dook's wartingale process,
and o Bile Gleers all cocrespoudivg mardogales may be obtaived In this
way. I 1,0 1y 2 e comesponding woertingale diference walence then
we have X -E{¥) =11,

Example (contineed] There & a ratgrl G'ter hers. namely
[ =RCAHC  LhR=F

which correspands to Jearning the valoes of tae oo-dinass of w one by oo,
The afield F s the o-Bedd, generated by the rendin wrntles X, Xp
that s, the emallest s-feld & sieh thit enchiof X, K¢ & G-messuzably,
Foreach k= 1,...,7 let T} be the random variable S, —kp = { Xy =914 - +
(Xy - ) Then BiTy | Fioy) = Tp_y, end 5o the random variokles Ty Farn
& martinpale, with soTesponding ertivgale differerce sequence X, - p

When the underlying sel £ i infinise we need 12 be o birte more careful.
I portianlar, ke 2¢suita diseuased abeve hold with probability 1 (als ealled
'slmast surely’y ratber than for every o £ 1% aod we ned to sasnme thayt
varians expectebions are finte. However, the shetch integduction above shauld
ive the Tight idens.

The most basic mequalily for & bounded marlingals Gifference sequence
i@ toe following lerma of Hoedding {1963] [29], Azuma (1967 |6], which we
shal® cefer tr ae "The Hoffoing-Aawnn Inequality',

Theoreza 3.10, Lefey,.. . o b constaniy, aad [ Y. ¥, be @ martine
gule differeeae sapuence with |V <ev for e k. Then ramy 0 20,

Pri| ¥ Wiz g L,

Sppose thae Ky, ] o 8¢ Incependect, with PriX; = 1) = p wd
PriXe=0)=1-28F =X, - pard &y = thaclp, 1 = . We may then
WPl the aher: lennie to ot the Chernoff bourd in Theotem 2.1, except
thet the hovnd ls weakened if p# 3. AL cir applications will be besed oo loes
syoumctrical fzrma of the aboe Tesuls, and will (s geeid gravuitoos fetoes
less than 1 i the mepavenr io <he bounds, lo particuiar, Theorem 300 i3 &
sperdal cose of Therremn 112 belgw.

il
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3.4 Martingale Rasults

The regtalzs in chis subgeetion exctend el the eprlier rey'ts, In pertacular, the
nerk restl extends Leowoe 2.7 n Sodeperdent rendom varishas

Lemmma 3.11. Lot 3y, ¥, ¥, be o mariingals dyjferencs sequence unit
ak5}"kfl-m,fmmhk,,ﬁ]rsm!aﬂem!aﬂunh.ldﬂ—*Eakami
wtd=1-a Thetforcep0<E <4,

g W P v A-
" e — I
Pe(Y Ye2ali< (GHJ \a—f) LA

Proaf. Since §; = 5,1 +¥, s0d 5, 1 F_j-measuvable (and heace so ks
g™ 11w ey e 9-20] and [3.21) to show that for any B,

B =E (g 1ot = B[R | £
‘Thus 22 in the peaof of Lemrma &%, fer wny &2 0,
B[t} = B[t Biet™ | F111)
£ Bleti) (I:l - g e +QREML_E‘:I)
< H ([1 -l Etﬁl"'l_h]:] |

o berading, and we may compdete the proo] expetly s for Lemmz 22 (O

W may deduce moe sl [neualilles tom i oouck, juet e we ohtainad
Theorem 2.3 rom Lemmue 2.7,

Theoram 112, Let ¥, Yo, . K, be o marhngale diffetence sequenss with
—ag £ ¥ % 1=y for eack k, for swirable consionts gy ond fto =15 gy

ie) For eyt ),
TNRARLIES ki

i) Formgs s,
Fr{z ¥ 3 can) € gL m ¢ S_ﬁ%‘-
fe) For imy s 10,

L
Pr(Y ¥ & —aanl £ ¢T3
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Ta deduee Theoremn 2.3 from Theorem 310, lat 4 = BLX) and ¥ = Xo—m,
wihat -, £ S l-gethenp=F o =ng,p=aand TV = §.— 4.
The nex, result extends dath the independent bounded differenves ivequaiicy,
Thegrem 3.1, aod the Hoeffding Asums Tnequality, Thecrem 3,10,

Theorem .13, L&t ¥y,...\ Y, b o mortingodr difference sequence with
ay =W € by forench k. for sieble conslants ap, by Them for ang 13210,

Pr| 1l 2 4y € 28 ieml (25)

The oext pair of tesults. Thestems 3. 14 and 315, are thet most 2owechal of the
martingale reaults we present, ang inclide A1 the previtus thecrees exzept
fen the first inequality in part (b of Thestem 2.3 &nd of Thecrem 3121
In particular, Theotsm 303 will kdlow: fmmediateiy from Thearsm 3.14. L
order a atate the thi results we need some more definitions and notation,
We poatpate heir peoofs w0 the et subserton.

Let X be o bounded random varishle and Tat & be p o-field contained
M the o-beld F of all everts, The sonditienal range of X in f, ranX | §1.
3 the G-measurable funcsion sup(X | 1+ sup(—X | §). The conditional
warignee of X in G, ool | 0 15 ESGX - VP | O where Y = ELX |0
In he exmmpos in the Ll subsection, the eoatitional cange of &, in X,
vt Ty | Fi). i rhe omstart fmelhon - k. and the cenditional variance
o] B | Fi) ls the constant function (2 — Fipll - g].

Kewlet (0, = F CF S CFybeshiterin F. Lat the bowaded
tandor varighle X be Fo-messurable. and et Xo. X, . -, X be the marin-
pleabtained by sattiog Xg = B{X . Fi) Further, Jet ¥y, ., ¥y be thecoere
sponding martingale differsuce sequence cbtained by setting ¥, = X=Xt
Foe L g k< m we dedng four F, -measurable functions rorg, deay, deng
and very as follows. We ler rany, denate ranf¥; |_Tk_]} (= ran( Xy | oo 0;
let deu” denote sup(¥s | Faql, Lot dezy denate supi|Fy| | Fi.:). 2od fe
aly we lel wr, denowe sen ¥y | Bl | o= (X | Feoih). ote that
den < ey < rumg € 2en,, and vy < (1AArond by (3130,

Finaly we define two random variables A° and V' and owr ronstarts
£, 1, maxder* and macdey, Lot the sum of squaret sanditions) Tonge
R be the random sarieble T rond, snd lat the mammum sum. of spuered
sendizioni tnges £ e the (essertlal) supretran of the random weatk
B Let the sum of conditional norionaga Y be the racdom varisbls T o,
acd Jet the uagmum sem of conditional mrictiees i be the supresnun of the
tandom variable V. Finaly Jet the suammum conditional positive demation
e dev™ be the supresurn gver gll & of the random veriables devy, and let
ke mazinaem codisnal demation meeae be the supamuey over ll k of
ibe andom varlzhles deny .

T
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The rendom verizble ¥ is also called the ‘predwtshle quadratic variation’
of the martingale [Xx], see far exarnple [61], o the ‘incrsaging sequence
agsocianed with 1 Xy}, se= Jor example [20]. Wote that

fn
Ej¥) = E (EE (i - Xea .ﬂ--.])

e
=E (E:E{II Y —Ai;:n)
k=1

n

= Y IBX- XL
k=l

=EBix-E(X} = wenX),

Thearem 314, Let X b o bounded mndom variabie with BLX1 = . ond
il =FRCRC LR beafiterin ¥ Then foramyt 20,

PHX - prtj<e ™ (1.5}

whete 4 1 the maritem s of smared conditional merges, Mare generalty,
Jor ang 4 2 0 and any wole 17,

Pr{X -4z 06 (RS ¢ 7)) g ¥, 3.29]

whers the rendem variahle B* 1 the st of squored condiffonal mnges,

The eeclier rezr't Theoremn 1.7 is essentially this sesult when the o.Bald
irs the filter i the rfisld generated b X\, ... X, Suppose thol for zach
k=L, .. m, wolo#, be e supremun of the veloes renfr;, ... Ty} over
&l choweza of the z.. (Thls coreespands to eur easlier use of the notathn #,
immediately after Thecrers 5.7} Then 7 is &t most. ¥ 15, IF we use this
beund for ™ in Theoeem 3.14 twve we ghtain Theotem (6.7) oF [45], which
extenda Theoram 305 above. Thw next. residt extens the earlier resabts that
use bayres on the warianee, namely Theotems 2.7 and Theorem 2.8 (and thus
Thencem §.3). and is close ba Theucem 4.1 in [21' - see abo 33, 2, 20

Theorem 3.13. Tel X ¢ o rerdom wriahle with E(X} = p. and =t
WA =R CRC L Fybesflterin FoLet b = maeder!, the
magitry conditipnal positive desmation Tand gesume that & @ finide). Then
Jerangt 20, 2

PriX - p 2 1] < ¢ BraiaE, 3.28)

uhere 6 §5 the fenmum, apm of coaditional wriances (which i sasumed lo
de finate). More genemaliy, for any t 2 0 and ey vaie 0 210,

Comieulrwign 215

PrX - g2 AV 53 <o PR, 19.29)
where the randars tarindle Vi the som of condittenal vartonces.

A4 with the earbier results of this form, we Uhink of the serm [Bt/3) as »
tegligible evor tezm. To catnplete the proofs of all the sudts given ebove it
sufioe ty prove the Jast {wo eesults, W da this o the nere aubsection,

5.5 Remazining Proofs for Martingale Kegulis

n

The folkwwicg lamea is partly besed on Lemens 3.4 of Kaha [32)- The lemma
ibself i & spebeial case} is psed, cather chen cae of the theorems derived
o it, i sbe prook ‘o [4%) concerning the encentration of the momber of
wotriperisans nsed by quicksort. We shall alweys take Fy as the trivial o-Beld
(B, £2) when we use the Jemme, but we allow any Fy to give o easy inducsion.

Lernme D16 [t FoCF T 20F, o flerinF, eedlef ¥y, .. X,
be ¢ correapanading martmgade difference sequemee, where atch ¥ a9 houndsd
ahace, Lat the rondom varighle 2 be tie marotor of some wvend. Ther for
el i,

B2 L | A sop (3TFEM | 7| ).

Proaf We sz indoction on 1. The cpse n =11 35 drivial, gince it pssery that
EiE | Rl < ouplZ | Fabasin {3020 Now et n > 1 and suppose that the
resichh bobds for n— L. Lt

4=zt NAC

rd .
B=2[[Ee™
L=t
Then by the Induction hypothesiz, B{4 | F.) £ sp(B | A ) and aup{B |
FoswpB F)asin (5.2 Horce

Fea).

Eizet Lo | 1) = B{eMEiA | 7] | A
< EfdMap(B F)|F)
= up(B| FiBle™ | F) esin (32
=gp (ZH E[E.I'I-'-f'l. |}-i:-l:' |.I'-) )
k=1
which completes the mrduction step. O
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Paoof of Theorem 300, L&t ¥y, Yo be the corespomding martingste
diferenoe sequence, Let the random vaniatle Z 5 1be indicator of the evenr
tuat B < a0 thit 0§ ZR% <+ For any k. by Lemma 2 6.

Bl | F. ) e et

Hene o Lemotiva 314,
E[zﬁl’ll:.x-ul] S up {EHE*EJI:]
= supl 24P
Z E*n.: wp[ 2R
< fih:r:'_

Thua for cap b > 0, by blarkow's inequalicy,

PriX - > 4B <) = PHESMH 5 M
£ o HE[ZeMY v
¢ pohimpt'e

_ =ae

wher i = §29°. a

Proof of Theavem G05 Let ¥, ... Y5 be bhe comtesponding martingale
difference secerne Note hal ¥, < bfor each & Lot the resdos weiuble £
b the indicazor of she ever thet ¥ < v, s that 9 2 FV < ¢ Now asin
the proof of Theorem 2.7 we use Lemme 2.8, end tae Faockion gix] defmed
there, We dnd thar, for any ks,

E{ah}} Fo € A aindus] 14T, < LY
Hence by Lamma 3. LE,
EZ 15 ¢ ap [\ z l'[ :h’yfﬂéliru:.)
 sp (229)

< E.Fgm:-mp £r]

< galbtin.
But nrw as o the peopf of the last theorem,
PrX - e 2 60 [V S 33 € MELZEM ]

< E_—l'lt—.'l."g[hb:lu.

snd we mey cmpless the proof as for Theoen 2.7, d
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Inequelities for maxima

We naw emplify the somuvent ar tbe end of Section 2. o0 masioa, Let
Yi,....¥, be o martingek: differeace sequence and bet 5 =1 + 4 Hows
usal, Let & > 0 and let Ty = &%, Thea T}, T, Forun a submartings)e na
long a1 the T, are moegrable], s wa may apply Dipob's masiral jnequality
e subnartingaes s ot exouple [24) section 126 of |7F section 144, We
find that For anw £ =10,

Prmas 8 > 1) = Primae ]y 2 e < o™ BT = 2" ME S,

Thius all the martingele rean'ts hused directhy ot che Beenates ineqoality may
be strengtNened ionedistety o reber o enaxling. s bike those in Secton 2.,
as noted on [B)] fmee also 4, 65, 68]1.

‘This comnserd Bpliss b Lammng 511 and Theorems 3.12 and 3.13 {end
thus alse ko Theorem 3,107, aod te the inequalities 73.26) and (3,23} To partic.
ler far escaimple, | Theorer 3.13 the insqusbty [2.25) may be strengthened
to end that for any £ 2 0,

]
Pri mm[Z}:-M TRt e a30)
=1

where the maxpmis ot b= 1L..., 5

3.6 Centerlng Sequenced

Given 5 soquence Xy, Ao, - of reodom weisbles the corresponding difference
sequecces |5 17 ¥y, where ¥y = Xy - Xp| (end wheee we sal X5 =
Lo pgiz) = B{¥: | Xooq = o) We coll the distribucior of the ssquence
centering if For sach & = 2,3.... raix) ia & pon-icreasing function of 2 - zee
|47]. Obwerve that, 5 martingals s triviadly centerng since p[z] = 0.

The b inexunlitics discussed abore for & martingale diffarence sequence
oay b vt do caotering sequences with boumded diferences. The st
fundamenta] exemple for the mactingale nequalivies ivvohwes. the binelal
dstribution. s io Theorens 2.1 Now we can include the Typergeometric
distribition natuesly in the same imeqalities - gae alsg |29, 13

Let (... o) € {01} wlb T a =7, Let {2y, &) b2 & vandon
linest ortler ot the set {1, . .n}, where all #! such orders are equally bksly,
Let 5 =2z, md £ = 5., ¥ Then X bas the bypergeaetric distribu-
tion, corresponding to coneting the red elemeris o 8 cavdom sample picked
wilboud veplacement frum the se; [1.... n} with r elerments painced red. We
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pre inberested in the coocentraciom of Xy . Mo that EiXe) = riefn. Bur the
sequence X, Xy..... &, = centering, sinee

wle) = Blfy Ko =21= =0,
which is u decreasing finetion of 2. From the centering version io [47] of
Theacem 2.3(r) sl it [ollgws for mesople tnat, 17 jr denotes B X)), then
for wny £ 2210, .

Pr(X, € [1-cju] <o

[f we try to epply heve the wequalities for mastingabes with boundee diffar-
enced m the natced way (that 5, with Fy ag the o-field ganstated by revenling
the firar & lesnenis picked,, we obtain an urwanted (ot < Lin the expo-
neat 4 the bound. Centering sequences s.30 erise pederally I sccupanty o
el i besces” problerss - ses [33, 47].

4. Talagrand's Inequality

4.1 The Inequality

Let £y, ... 0 be probability spaces, and Lo () dencte the preduct space.
Lot X = [X,...,.Xn] bea famlly of independent random varisbles with Xy
teking veles in [, We saw earlier ¢har for any subset A of 17 such that
Pr{X € A} g aot too small, with bigh probebility & radem soint X is close
t¢ A, wher we conslder Bammning distance or generelised Hammig distzae,
It boees gat b b vety froitfol v consider a 1elaled podion of distence.

Let o= [m,....00) 2 0 be an a-vestar of non-negative real numbers,
Fecall thar, lor points € = iz, 2o) and ¥ = (... Fo) in ¥, the =
Hamming distanee dotx. %) is the sum of the values o over those indicsd «
Sih 6hot 2y # ) end for & subser A of 82, o, [x, A = inf{d, (w53 ¥ € A}
Tlugraad's conver datuns dolx. 4) in defined to be supld iz, A7} whaea
1he supremiatn & over sl shoices of oon-Degakive unit a-vectar o ithet i,
with o= 14

By cousidering the nevector o with each co-oedinate 1/, we soe that
defa A 2 dafe, A = (1M 8(x, A], 50 upper bounds on d(X, A} give ug
uppar bounds oo dp (%, A7, bt we shall see that they will tell us much more.
The reasn for the name 'convex distance” will emecge Jaser. Talagrand [54]
in fact ccnsidera also other nothos of discance [zee abm [T0]), bot we shall
forus snky oo the semvee distance. We eall che Following fundamenrel regult

"Thlegrane '3 inequnkity”,
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Theorem 4.1, fet Xo= (X1 Xob b0 o famsdy of mcependent rendar
wariadles and Jet A be o shoed of dhe prodoct mace. Thes fer ang £ 2 0,

PriX ¢ 41 Pridr(X 4} 2 1) <& 1y

1w cosider & single neo-oegative wnib vactor ¢, then dr = 45 and the
whsnviz pesLlt 4alds & oo of Thenrem 36, Dt it bs i act Bae snove pimethul
sinme it recerm simu.taoeously to all possible generalised Hemming distanices,
&5 will e eviden From the spplications below, We shell see that chis powe
i meoat evident when we concider the concentrasion of & inetion X! wheye
AT inequaecicy f{x) * b typleally can e vecified oy etamoinirg arly @ few of
the co-oeclinale valas £, and for diffatent vectars x we may examios difer-
gt io-ndlaates. Do some applicathong we proft greatly [om 1be Reibilicy
of choosing a0 appropriabe unit, vechor o for each =, tatner <hao heviog o
ensldet sy Harming ditance. Nore chas we snust sesune that the tagdom
var'sblzs X, sre independent, io cooteast o the situation ith the martic-
gale cemuim [but 222 the recert paper of Marton |42], which gives an extension
of Talagrand’s inequulity in #hich 5 limited dependenss is sllowed 1. Thee-
rems 4.3 and 4.5 below are vselul speclakisations of Talageand’s nequalliy,
o which we base all the applicatimme: [ere. We shall prove Theerem 4.1 [ater,
but. befare thas 1e 1 coamider some applivatios

1.2 Some Applications

4.2.1 Subsaquences and Configuration Foanctions. Given b sequence
x=1rp ... oul o real munbera. we b2 dnelx) danots the langth of & logest
merensing sohseqience. Thie ine(xh is the mevimgm valoe of [£] owsr il
siebaers K of {1, .., n}zuch thet the corresponding subsequence [z, 11 & &)

‘s inerensing, that is z, < , whenever i) & K with § < §.

Lt X ={X).....Xq) be a emily of indepencent caodum mamiabks each
~king rest values. We are ioterested n 1he concentration of the random
varinble ineX). Ler p be the mean of mefX). Tt follows direet’y fram the
‘ndepencent boanded diferences inequality, Thearem 3.1, (hat foe oy ¢ = 1,

PrilineiX) - | 24) < 67, (1)

This ahows that far largs +. with bigh probebility 4ne/X) & corlined wilbin
an inverval of ket €0, /nh Uaing Talogrand's icequakity e can deduce o
much ‘mproved result Let m be & median for mefX).

Theavem 4.2, For angd =1,

PriineX) > m+# £ B~ idim=t) {43)
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g .
Priine{X) € m— 1] < 2e7F 1 tm, [4.4]

Witk izgeowity and endewar, the bounded diferences method will gve
rearly i goed results - see (13 It o kaown (see For axample [61]) tha,
when the rendom variables Xy sl have the same ooutiowors distributioa, the
riediat M ~ /% 28 0 — o Thes the ahove result shows thet wich bigh
probability X} is eonfined =ithin an intersal of Jeneth Oini ), which is
the begt. bound known, (In perticular, the mear. o sod e medien t oest
b withins &¥(nd) of each ouher - see Lemma 46 below)

it torns out thet ibe appecach based cn Talagrand's inequality to the
longest incresing enbsequence problen will hewd’e o ganeral cles of prob-
lerms, Otserve that the funetion fxb = ineld s the Silowing property.
For eath X € 7 theze |5 8 aubsed = K%) of tbe lndex sat {1, .0} snch
that fx) = |K], and o each ¥ £ 12 we Rave

iz ek w—o) - fix) =116 Ky # 2.

Thua far each € 17 there is 2 non-megative upit n-weclor & (naunely the
inidence vestar of the set K x) sealed by dividing by vm} surh that. for
gch y € 17 we have

leh 2 fimi= s el

This i& the key property. W gall @ Znoction f defioed on & set 52 of nevestars
a o pofiratinn fnation A0 it hag she Tollowing peoperty: bor cach x 2 12
elere b o nop-ragative Ualk fevesiot ¢ osuck tbas, or esch y £ 7 we bave

fiyl 2 761 o/t fixidpl . ).

Thus inefx! gives = L-configuresion. funczion, 2o 69 the pext result sxtends
the lase one [We shall give o related example below concerning common
subseqiences, Also we shall decuss concentratesn around the mepy rather
Lhan the madlzn i the fest subsection - se¢ Lamms L)

Theorem 4.3. Lef f b o coonfiquration furckion, ond o m be ¢ medan
Jor FiX]. Then for ergt 2 0.
PrfX 2 m 1) g 2 viimes (41}

aad
Prif(X] < m - § Bg= 1o a0

Concentratlon XU

Progf, Let v £ 11, anc let o b & non-regetive wiit f-yeitar suen that, for
any y £ £, —
Foy & fiy] +efim)d (. yh

Let Au = {y £ [F: fly] < ap. Then Ly the abows

H <o+ el [y
b each ¥ £ A;. and s by mimmieing over spch y we have

Hx) a4y efladai, 4 S 0+ y/efixier(x, Ac)
Tonz if f{x] 2 o+ ¢ dhen
flz]—a i

»

derf3, A ] > .
T2 TR VTt

since the fuzetlne, i) = (£ = )¢yt Ie increasiog for ¢ > o Thue b suy
tz4,

yela -t

Pr{ﬂlhzﬂt]fl’r(drix,m : )

lence by Talagrand's inequality, for any £ 2 0
Prif{X] < aiPrf{Xi 2 o+t

, t
yig i

]

{_‘: -E‘-" TAFT }

Now we may compitte the prool by appropeiate choices of o o this lest
inequality If we Jet a = m, theo sioce Pr{f{X) < m) 2 &, we obtain {435

' -

ard |f we let & = m - £ the sinee Pe{fX) Zm) 2 %: waottain (446). [0

Dloww ‘et ns consider & relared problem conceroing rommon subsecuences of
tog sequences, Given two ssquences ¥ = (27,2 T End ¥ = (9,00 Yook
let eormx, ¥} deocte the mavimwe Jength of w epmenan gubsequence of ¥ and
¥ Lo X =[X, ... &0 and ¥ ={F,....¥,] ba indeperdent fumilies of
indepandant rancim variahles. We are interested in the concentyation of the
raundorn variph-e asm(X. Y. Let p be the mean of somi X, Y.

A i the lomgest incressing sybeseuence probhtn, bt folloss dirsctly From
the ndepeodent boonded differences irequelity, Thoorsm 3.1, that, for any
tz0,

Prf comiX. Y - o] 2 4] € g0 il bt 47
Thiy shows thal, when say 1) = r; = nand 1 & wege. with hgh peobabliity
cond X, Y Is confined withiz aa iroervsl of lengb ﬂ(ﬂ!]. sty the shove
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reselt gm c-oobfguration fimetions we may obiain o siailar eesict, For, if we
regend com ', ¥) s & funceion of (v +n) vuiables ib the natural wey. then
it is 2 Meonfigueation Function, $a, if w let # be 2 median for com{X, ¥,
we phtain

Thearam 4.4, For eyt 2 0,
Prloom{X, Y} 2 m+£] & 2~ Al 45)

Pricom(X, Y} <m—g) g 2270 [4.8)

Ceugidder she rase when #) = 1y = noaad o is Jasge, aud when the random
viciables X, all nave the surce |Ruced) discrere distrlbanior. £. W5 ensy &
sse [usitig superadditivity} tha: shem is 2 constent. 6 > O (depending on the
distribation F) sch that,

Eicomi| 1. , ¥ (B, Fallin = .

and the corvesporciog regult bodds Bor the medizs. But if sy F ia the uriorm
distribution on theset §1, .. N} where M ia lange, then the constans b will
be very sme.). pod then che theorer ghwa imperves oo [4.7).

4.2 Two Geometrle Applications. We now consider applivations to
the Tetyrhs of travelling saleaman tours and Steioer trees in the anlt square
W snall wse the felowing genere) tesult, which 1 derived from Talagrard's
inwequality. Theosern 4.1, end which iz sirdler to Theorem 4.3,

Theorem 4.5, Let X = [X:,..., Xh) be o fomeiy of mdependent sendam
verables wih Xy fukemg releer @ g set 0y, and et 17 = []4k- Lel the real.
veduued function, f one [¥ aatinfy the condition that, for each = € £3, thers exiaty
& BEn-egatioe nil nevectar o suol Bl

fix] & fly) +edalnyy for sachy < £, £

Then )
Prilf(Xt- | 2ip4e™
vhere m 5 & medion of §'%). The some conchusion holdy if Hhe condi
b ({.20) 45 teploced by
i€ fix) +edylny) foreahy s il 4.1

Part of the piweet of this resy bt artses from the psyrinetey, that we Co ook re
quire ttat both conditions “4.107 and (4.11) hold  either ene wili de Cogerve
that ' both hald then s have & bound on |fix] - [yl and vhug on the
g of squeesd ranges 8° when the rancon: varisbles &y are ncependeet.

Conceniratin 133

Penf, For each tenl number i Tt A, = {y € 0 fiy) < g} Consider nay
poiut & €S2 There i 4 non-negative Loit nevector o such that for each

yei
Jix) € flv) + ady (%, 5],
pnd %
Jix) & o+ od, 1x, 7]

for 2ech ¥ € A, By minimising ver such ¥ we see Cho
fi <o+ oflx 4] <a+oirie Ay
Thus if fix; > a—1{ theo dpix, A, > tic. Henee

PrifiX1 <ufPr{fiXI 2 a4 < PiX ¢ A)PridnX 4. 2 £
< E-r*,-'lr."l

by Talogrand's inequality. Theorem 4,1. I we ot 2 = m wi obsain
PrifiXi 2 m+ g 2,

aod similathy if we let 0 = m = { we abtain
PrlfiX S m-1i€ b,

which eomplebes the proof for the case wher, condition (4,10} hekds,

Qupprst oow lbal condition [4.01) holds (bul ool oecsmerily condi-
Lom (4103 Let glxi = — fix). Then g satisfies curdiziom (410, snd [—m)
is & median of g{X), std 2o by the sbove

Pri|fIX] - ml 26 = Pri X1~ {=ml| 2 i< 2™
3 1gquired. a

Before we consider the gaemetric spplications, bet e caeck that. indeed.
g5 we mentioned enzlier, it does nat mwch metter that Theorema 4.3 and 4.5
concers conesnoration around the median m esther chan the Tean . sinee
the eomoeniraticn inequalites Lhempslves imply that, |p = m| is small

Lemmy 4.8, Lef the mndom variadle ¥ hove mezn o ong medion m, and
pat=1

I PRY-mzire et Joranyt = 0 ther p-m < {.ﬁ,l'i:lw'ﬁ:
and 5o il alve PrlY -m € =81 € a2 ™ Jor it 2 0, then |u—m| <

Ty,
b Ff Pri¥ = m 2 4) € ue M for g b u 0 ter g - €

-.I,.'!w_.l'IwE + 2ahe i Fukioh i O] %) o0 1 — oc, asuming that ¢
ard b qre cimstans ),

a4
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Prigf. W haw
g~ = BY ~m) SE(Y - mj¥)= f;PrcY —m (41
In case {8
J[um Pr¥ -m=tldt <o ]:e":""dt = [T/ 2iev'h,

and #c the Gmt part. of (] follows from (4,12]. For the second part, note that
|-t & a median for =¥} d Prij-1)-{-m}2 ) =Pr¥ -m < -1,
S PrY —m < —f) € o™ for any £ > b ther Ty what we have jus,
proved

m— = Bi-¥] - {-m] € (y7/Zavh,

[ case (b, we aguin use [4.12]. Now we hare

o * .
,( Prif —midt € j ﬂE—Fz."!'I_mH'Id!
I A

f " iy
g afn g bty af !
i m

< 20y + Jebe .
0

We shall consider a Bmily X = (X1, ... X0) of idependent raedom
varighbes where each X tabes values in the wnit gomare [, 1%, Thie here
=1

Travelling snbesman tours

(riven a point x € £, Lot tspiah be the minimum lergth of & travelling
sadescnan doar through these poiota. Mixh effort has been Savated to inves-
“igatitg the rrdom saneble tapi X)), 6nd to invessigating s concentration
‘o partleular  soe for example [55) Talagrend's inequality efortimely vields
vestifrs which peeviously tock grest impenuity,

We need to koow one ceterministic vesylt, namely that there & 2 con-
stznt ¢ gisch chat che followiry bobds. For every n joc every x € £, there
s tinr Tix) theaogh the points in & such thet (ke sum of the squaces of
the lengibs of the edges in this our 35 e mwet . This ey be peovsd fut
example by tonsidering spece-Blling curves” - see 53, 62, We shall ose I'x)
1 define an sppeoptigte verlor a, where Lhe coondinas o srresponde Lo
b "awbowardress’ of the point X

Coomoeration 235

Civen x € 2. e et B be the sum of sbe kngehs of the two edpes
awidett to the point 2 0 the tear Tx), Thas T3 < e {using the faet
ther (& +5¥ < 30% + 3", We shall see that for any y £ /7.

bipia] £ tspyd + ot ¥) £ spyh + e lx pl a1y

where @ i5 the umit veotor 8¢ |3 Thus the Runction Espix) aatisfies the
condition [4.10] i theorem 4.8 [with the valos '’ hese being 2,77). Hence,
forwnyt =0,

PrigsplX; - m| 2 1] e, 14)

where m is median kor #apXh A resule of his form was et oroved by
R sd Tagrind 5], by & rmsch more inolued srgument Based on, the
marticgale approsch,

It recaing then to prove (4,30 Let 5, i denote the sets of points porre
spondiag to x. ¥ respectively. If z 1y =3 then d.(x, ¥} is twice the length
of the tonr Tix], and 20 tertainly the inequality [4.12] bolds, Supposa then
that 11y £ & We pick & mwhtises F of edpes between the points of +
Tollomes. For ench segeen; in the woor T{xD of the fm 2,2, .,n, b wher
a.dErtpand v, 0 € 1% (aote that g = AN [rnge= 1), we put it
F ench o the edgges oty doobled bor 1= 1,..., 7= 1, and the shorter of the
edges au; and tu,. alse doubied. Thos coresponding ta each such sogmeot
wg abtaia & cytle, containing exsctly me peint in g, snd with the sum of
the lengths of the edges in it 2t moac the sum of the co-godinetes of A coree
spunelityg 1 the pofnts v, These cvelss bstwesn sheai cover all the pointa in
o' g, and the sum of the gt of Wl the edaes in F is o1 mest daix ).

Mow lat T=[v) be sn optipal sue for v, Coesader the [mubtileraph €
with vertex set 100y and with edge st conslsting of the edzes in T*y)
tometner with the sdpes in £ The graph 7 i connected spd each vertex
degree ks even aod =0 G as an Eulerian tour. This 1our can be shartout 1o
aive a travelliog ssbeiman tour, which by the triengle insquadity has kngth
N miwe than the swen of the leogths of the edges i G, And this qum i ot
megt £piv )+ o0 ¥ This comphetes the proof of [4.013), eg requlred,

Steiner troes

A Steiner treefior n st 5 of points in 1he untt square is 2 toee with verte:
set. some bel of points in A alane cucluining . Given x € 12, we Jet stix)
denme che mirimel langth of & Steiner tree for the comespoading #t 1. We
toay e tbe tour Tx) exactly as nhow o dedite & comesponding veetor 2.

Bior Lot 3 & 50, anel Lt S=0y) be an optamal Steimer rex for the enree

aponding se of points y. Cansider the et E of edpe oongisticg of the edges
in 5*[y) together with thise wlges in T'[x} with at lsast ooe ond in £y The

a
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batal Tength o these edges 36 42 el stly) + dajx. ¥], and we bave alreacy
seer: that T ¥ < 4. The key observasion is thet the graph G on gLy with
e gt E |a cnnnaited. fer, since T{x; 35 ronnocted eak point it 2 % In Ehe
ST CODLBCKEnE 48 30Te ot i 4, 33 seee £ v i connected esch poli
in 4 is in he seroe compoment. It follows thet st{x) is ot most the sum of
the Jemgths of the efiges in E, and ths at{x} < of(y) — dpix, 3, Henee by
Theoram 45, ke £ 2

PeflaX! - tn 3 f] <41, {4151

where tn is & mecian for 41{X).

4.9.3 Random Minimum Spanning Treee, Consider the complete graph
&, with caodean indeperdent edge lengths X, eact uciformly ditelued on
T, 1)- Let L, be sbe corresponding epsdom Jengih of & minimom spenning
tree. Tt & known (23] that sbe expected value of Lo beads w {id} a3 n — oc,
where "
()= Ej-ﬁ N (13
1=l
I isshew, i [24] that £, bs qubte concenurated arownd {[3), using the methad
of boranded difecences: and ths el i impeoved in [3] usicg Talagrand's
methed, (30, U is shown in [30] that #(L, - (3] & asymptetically not-
r-ally Cistributed. ]
Beith the bounded ciffecerces methnd and T2agrand’s mebhod cab in
fact be used to provwe char L, b very highly consentrated amund the veloe
£i3] - see 48] bt the larter meched in far easier anid will be desclbed

halow. Io fact the bouaded differzoces approach seeme to yield o sbghtly
stroeger cesu't | Both spprosches depend or: L fiwt Ubat long edzes sre et

icportact. For 01 <€ b € 1, Jet 12 be the minimum length o & speniag
tre waen the edge benglhs X, sce reploced by wini X, ). For simpliicy
we eonster here the rase of o Foed deviation @ > § We need the followiog
lemma

Lemma 4.7, 44 For aryt » 0 there ensl consintsoy » 0 end i § such
thet of we et b= o /m dhett

[ '.Ii a =1
Prib. - 215

Ve shall prve the following coocentrsdin tesult for the minimim spatping
tras: leoglh L.

Theorsm 4.3, For any t2 0 there eosts § > 0 such et
PlLo-cdl|» g™ foralln,

Comeentzatlen 37

It i easy kp see tet che annd abiwe i of the rght gider. For exampls, far
each m > 5 t1e probabiliey thas L, > 2 s at Jenst the probai:lity taat each
edte incident with the firat four vert:oes bas length at lanst 172, wod this
probebality (e 2 legst {1/16]%

Peoof. Let N = (). snd bt Y = 1Y), _.,¥n] be o family of independent
randigen varigbles with each ¥, wriforuly dissributed on (0, 1), soreesponding
ta the edie lengths in the graph K. We tas write the rarden variable 1,
es mst Y,

Lt 0 < b Lopudlet = [0 Foreachi = 1. N kt
Xi = mun(¥, 8. Then X = (X......Xn] & & family of indepetdett can-
doen variables s taking values in 10,81, and 2 = mat{X).

Wow eoncider the candom varisble st X Let 1= (0,0 and et x ¢
£2, Denote the set of edges 1t 8 eoetesponding iniilmum spanning tese by
T =T} Let 1= 5(x) b the Moveetds with = b for € T aad 4 =
othetwise. and let & = fx) be the unil wetor 3/ityR - 11, Then for sy
yeifl,

mat{y; < Zy,

T

< ZI| + z[yg -

®T ey
< mat x} 4 dul, y)
< mal xh+1 da X, ¥

Thus the lunction: mial(x) setishes condition 411 in Thecrer 4.5 with ¢ =
by, el s Bor iy £ 20

PrjmstiX) - m| 2 £) € ",

where m iz & madian for s X). We mey use Lemme 4.7, together with this
laat, ineipuality with b = . fn, 10 obteio

Prims(Y, - m 2 3] < Primsl(¥) - ma(X) > ) - Pri|mat:X) - m| > ¢

< ¢ gt

11 flloans chat for any ¢ 3 0 thete exists & = 8§02 > 0 soch that
Pri-L,—m| 2 gm0,

I remaics to tidy up, by replacing the m bere by ({3) fin the spirit of
Lamma 4.5} By ue abme
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f ,
E{l.)-m| € Bl -ml} < i | nPl|L, - m| > tidp <112

for  sulfckently large. Als we saw earfler that for r sofficiently Large,
[EiL, 1 - 31 <443, and som — 0| = 200 for o sulficient| Targe, Henee
fot 1 sufficiently lbrge

Bri|L, - 03 2 th S Pe{|Ly—m| 2 4/3) < 2
where f; = & (473", and the thearem Fdlms, |

4.3 Proof of Talagrand's Inequallty
T this subsecthon s shall prove ao edended fem of theoemn 4.1,

Theorem 4.8. et X = (... Xo] be o fomily of Mazpendent mndom
varishles where Xp tokes vatued i o get [, and led A Be o swbest of the
produc! space {7 = [[ . Then

PeiX e HB (1% A7) <1, L1
and o, for ooy b

PriX € Al Pridy (X, 41 26 g e, 4.17]

The latter ioequatity [¢.17] [which & Thecrem 41} follows immediscely
from the foomer [4.16) by Merkm's icequality The seheme of the prock
of {4 16] ia 2 Follows, W frat develap ao equivabent definitwa of Tdngrand's
distance d7. Then after two techitlesl kmess we start the main proof by ir-
dustden or; n. Wa prove & claim relerig the distence de(x, A] in dimension
2+ 1 to secain digtaros invobving atly she Erst n soordnates. This claim
invinves 5 pacameter A The indurtion hypotaesis yickis bouods for che dis-
tabces Lo dimenglor, W ther optime cver b and average ooy 1he Last
eoenrdinate. The wnale pooof is neither loog nar bacd, but it = ot of thes
peoafs by induction feom sduch it i 1ot easy toget & pood beed abeuwl why the
resurt teally e rue, For & brief discussion. of oz alverntive approarh besed
om 1deas fror (afermesion theooy see the moct (Baal) sobsection,

le order o prove [417) we Grat develop the alsernative carpcrersation
of Tabsgrard's convess distance ds (3, A} Fix & poitil x sud ¢ st A in B7.
Let 1F = {ifx, 4] be the set of all Tnary veetors u cuch bt starcing from
% we way reck o cwor ¥ € A by changing ooly ee-nrdingtes #, awh that
v = 1 (and bt neemssarily changing all of thene] Thos @ & I if and only
x € A Further lst ¥ = ¥ix, 41 b the convex ol of theaa IF. The following
lamme explainy the sere ‘eonver distance”

Cowcarkiathon 24

Lemma 4.10.
dylx, A} = ming || v & ¥). {415

Frocf. 1% £ A then bach sides abave squal . 5o we ey assune that x £ 4,
and then hath sides are posicive. Denwe the right hand side sbove by a. Lat
o5y, 0] 2 0be g oumib vector W wmite 64 to dencte the ‘nnar
product ¥ eety, Then

dyix, A) = g iy Al = il 2.4 = Wita.v, (4.15
qitwte the minimum of & linear functional over the canvex bilk ¥ of the Snite
set 1" must be achiered ot 2 poiot of I, But by the Cavchy-Sebuars inequelity,

o <l el=]
Thie d. (%, A1 <€ ¢, and sinte ts bolds for every choice of o we deduce hat
drix. d) £ g

For Lbe comverse resuly, oole that ihe minimam ‘n (4.18) is acberved, that
is there is 1 point ¥ & V¥ with norm egual o g, siece ¥ i compart, Lot o be
Lhe unit veetor o Corgider any point % € V. Sioce V' i conver, the poine
Y-My-tiein ¥ freahi <) S adm

4 Ay - 0L+ M - 2 9
Thiy yiukls

Wiy — ¥ -2 v -7 v -7 29,
aod by conmdeniog smal] & we see that fov = #] 20 Ths v > gf=p
for ull v & ¥, Hence by (4.18),

driz. 4) 2 dolx, 4) = ME-'I.“"Q-T =

and we aTe Cone |

W eed e further lemenas bafire we stare the wain proal of T egrand's
wevquality, The £rst 35 roem 31, 65]

Lemina 4.11. For gt <r <1,

i mgatl=i gh-r
Dk
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L
Proofl Far thecags 0 <1< ¢ we iy aooslde A =0 end check that

1 L , .
e £ 2-¢72 Sppupposetiate T €7 <1 Leth= 14 2lrisd A <)
We want 6o show that fir) 2 0, whare J(r) is che lagarichm o ke ratie of
tae right side of tae inesuality to the left side. Mewr

flzi=Inf2=7 +2hr - [1.—}\]2{-’.=I.1u[2-r:|1-|.111'+[]:|r]2

Simoe (1) = O it suffiees o shaw chat gir) = 7' [7h € 0 Hote that

Lot 1 2lery b "

gllrlu_rL-E —;+ - ) = ?_T+l +2ar
figoe ¢f1) = 0, it sulices paw to show that ¢} = 0 But gt} =
-z'ri-ﬁr]'raﬂﬂ 121 b this indeed y'is) 2 0, waich completes

L
Lae praal. d

Ting lnst prebrminacy result we need i a farm of Holder's inequalivy (see for
moamzle |2 page 465 which we state and prove her fot complespoess, T &
foern usful far 20,

Lemmiz 4.12. For any appropriciely tteprable] funenans f and g, ond any
Nl

-2

E [0X1gi1-00) ¢ [E[Hf’”]): (E{ef:’“])

Froaf, Let a,b > 0. awd for 0 < 1 < 1 let hit) = o'~ Then ¥(2) =
B i 2 0, 9 k5 convex, sod thus 2t~ < e+ (L - {15, Now let
F = ElefX" and ¢ = B(e#™]. Then

{1 R e T € i Eef 4 (L= )T
Thkring experted walues,
E{e:.l'l:l'.]!l'.—tlgl_l:} .'I[FIGJ_!} =K I:[E_l"::llJIF}I[E_QI,JL:III.G:I]H:}

< (1 PB(E™) - i1 - (/61BN
=tH[l-1] = L

which yieks che required ineguality O
We may how start the man proof of the inequality (418, Lec us write

vyl Ap for PoiX € A). We se inductin on n. Congider frsl e casem = 1.
Waw dr[x.A) equals 0 if x £ A and atherwise equals 1. dn

Concanlestion 241
BeMr Y =] b el ().
Butfrd €p<l,
plp+esil- gl Spp+ Al -glh=p2-p) <1,
which cempleies “he proof of the cusn =1

Mow Jet & 22 1 Auppose that Lbe inequality (4,14} boks for 5, 2rd congider
the case 4 1 Derate [T1_, 3% by 0%, White [Tio R s (1] = [0

13,1, with typical elsment written 25 7 = (%,&), where x € " and 2 &
Dogr Lot A G0 Forw s 2, the wosection 4, of A & defined Ty

A=lxe ™ (x) e 4).
Tite prajection of 4 i 1be sat B defined by
A=A, = (06 I fxu) € Afr s € Doy}

We rext prove ar mequality tedacing dr's, 4] to correspreding distances
betueen  and Lhe w-sactien and projection of A, The mequality involves &
parppreter 4 whirn we shall Laset choass sppeopristely.

Claim, Ltz =) e 2™ s B and it 0S A< ] Then

drfs. A1 % Ml A 1 1= Mdria B e (1- 47 i4.20)
Proy of (leme By Lemme 410 abowe, e is @ vectar v £ Vix, 4, ]
with verm squal to drix, A, end a vecear vy & T, B) with norm equal w
drin, B Now ifue I L) then (w0 2 L5, A sod g0 i v e Vix AL
then v, 0] & I iz, &Y Siredatly, if w & Ifix, B) chen u 1] € D2, A], and so

if v & Vix.8) then {v,1] £ Viz, 4). Herica bach [vy, 0 and ve,1) a0e I
whe convex s iz, A). and so if we st

vy = vy Bk (L= &) 1) = (g = (1- dJwe, 1 -4

shen vy € 12, A]. By Lamma 4.10 egein, driz, 4 i st most the norm of
vy Now the function #t) = & 35 coovex, and so

TR DV T Vo ')

Heorx
I = {4 1 - Klf? 41 X°
< A lIF 0= 3] flvall® 4+ = 1F
— i, 0 41 = N, B + {1 - W,
This completes the proef of the claim
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We are oo ready ta tackle the ndurtian seep. Fer ench fived o 1t Efu)
fenoke

- L]
E (gl""-":':x"-’.'u“_li) =E {ﬁuﬂl_’.[,hnl-ﬂl ”fnﬂ = “-'J !

T whail first give an uppet for Elu), and then average svey w. Pl w, and
rote het the claim gives

MU Xu A ¢ it MR 1= A dar L EY]

Heice by Demuma §.12 (Holder's ingqualizy), =% gbizin
L1=h

S .
-t b Y Lir(X.B
Ew) SE{II. iy Eff}'d, M) } E’lf"dﬂ: ¥ ‘,l

By the wduction nypothess sppied & the s expeclasine above, we fod
that
Biw) < 46 A )™ i B
Bl -
%l ] '

=ﬁwmmmwf

Thas fr Al 1< A< L.
B € [ (BT el
wheee T = bt d, )i B) and ¢ < r < 1 By Lotema 411, we find
i) € (i BIY {2 — w1 wod B

Now gl ) = PriR Xey1] 8 4 Xnep = u). We can wetage over the
valed o taken by Xopq to chopin

1% (e A1 vl B2 — [ Ao B
]

= I[E'J'.-] <1,

v L vat
i'r:l.l{-‘i,lElll-El'h[':x'x""""

wheee T = i1 ) /i B We hitve oo completed the proaf of the me et
s-ap, and this of Lae thegren, O

Cameemization 3

4.4 Ideas from [oformation Theory

There = & thivd mwin approach 1o peving gener] concericatizn esulia.
which uses itess froon inforoatien: thegry. Indeed, vhe Gt genaral consentrn-
lign: eesult seeens to bave been proved and wsed im this contest, 2y Ablawere,
Gacs and H3rmer (1] in 1976, Thar cateetittsbion tesult, the "blowing-up
binma’, wes sharpened. by Ciszar and Koemer [17, snd then in 1986 Mar-
108 [4F gave & dinple s eegant pooof. This result resemniled Theoretn 5.5
abere, though with 8 worse consteit i Lhe espobent. The optimal constant
wa: cbeained io 1996 by Marton {1], uing the same elegant kiforation-
theorstie epproach. Dernbo [13] showed that Uhe method i3 strong ercugh
1o rever al of the inequalities of Talagrand in B8] dnchuding Thecrer 4.5
ihawa), where it &5 sssumed that the rrdem varishles involved ame inde
pendent. The method & extended io [92] wo nandle cortein cones of weak
dependence, For other tecent wark see |43, 71].

[t # nok clear if these ideas will l:ac o fortber new spplickilima io dis
erete mathermatios and theretiza coenputer stienve. However, Lher are very
elegart and powerdul, and 50 we try deve to give & Pawor af the method.
W shal. shiw howr Lhey give o wery different proof of Theorem 35, folkw.
ing |40, 41].

Let 43y,..., 3 he finire wts, ondl 12t £2 dennvz their product [] /3. Let
P=FuwE [fand g =1y :wE I speily probabiiy dimritntions sn
R Let X = [X1,.... %) be a family of random vartables, with X; takbg
values in Oy and bt Y = 17,00, ¥,] be aomher sch family We shall ke
intzrested in joink figtributiong for X and Y which have marginals p and ¢
tagt is, gck that

PriX=wi= 3 PriX.Y!=(u)=p
«J.”EF;'
bor each w € /2, and stmlary for ¥ and q. We shall define & notion of dis-
tance tetween the distributions p and o besed an the sxpected Hemming
distamee Detweeti randam paints X and Y. Obeerve taat the expectad Hem.
ming tistaoce betweza Xoand Y -8 glven by

Eldy(X. Y=Y Priiy 4 ¥o).
;

We define dyy [, ) b 2 17 minimum value of Bjds (X, ¥7Y, ower el chaices
ol jalu distributicn for X gnd ¥ with marginals p eud g Tt owrns oot thet
we 12y obtain concentretion reslts by piving an upper hownd a1 by (p,q)
when te distibutivn q i & produoct disteibuticn {that i, coctesprods to
independent random varisbles).
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For the key lemma, we need cne aat debhtlon. The fortational diver-
aeie of p with respal 1 Q1

B[Pllq} = E b lﬂ'l?-«.lf'lu]-
wEll

Lemmna 413 [ q 15 0 preduct sismibution, dhen
dnimal € n/HDiphal.

Using this infortmation-Useoretic lemma we shall prave th flwing ele
gant syoumetival Loequabity, cloeely related to ‘Ihecsem 3.5, Roealt tho r.]1e
Hamming distancs dyy(4, B, between two subses A and B of J¥ is the ot
imum vdoe of dyr[z.3) over &ll choices of TE A and we B

Theorern 4.14. Lef g be o product disdributian, Then

. fn 1‘i s, 141
d”M'E'IE(Eln@J +(E|uaﬁ)

Proaf. Les p mate the diseributico with p, = 4,/g{A] for s € Amnd g, =0
uheriae; and define the dlstribation T 2imilacy comesponding ta 8. Tnen

Diplai = 3 nuloima.]
LE'rll

= Y mn{LylA))
well

5 L'I'I.:].J'IQI: -‘1}]

Sienilacly, D{r g1 < IJofLg(8). Next we use the abw"t_mim that, n‘lnne
auipr) iz the gypected Himwing dlstancs betweeen n:erta_m TETedHt points
i A and in B, it mist be At e the minimu salee dgid, B). Heoce. by
& wriengls secuality s the shrme lemma
Ii|"i'{"1'| BJ E dH{Plr]
S Iillll[pl q] + dﬂ ir.q}
L]

< m-ﬁ}%—(ahﬁ) -

1
us required, O

ST i |
R

Cotcmtrgtion M5

Flnally let us see that Theorer 1% falicws directly from the last requlr.
Let ¢ w Dand b B = 1 Ay, the complement of the tattening of 4 -
$¢¢ the con:ments immediately after Thenrem 3.5, We chall take i) to be
Pr{X < A), i the nocacion thers. Sinee dpi A B) > ¢, by Thectem 414
HBIVE W J6VE

g 1 4%
(o) 2o
whera
B, N
. *4?&@
ard 50

Pridyl X, 4) =ty = gB] 2 | - g il

But chis iz exaetly the insquelity (301} io che proof of Theotem 3.5, end s
b thacren fofms,

Actrauledyenient, T am pleased to peknowledpe very bepn) romments fbom the
refemeey.
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Branching Processes and Their Applications
in the Analysis of Tree Structures and Tree
Algorithms

Lvz Theveaye
Scboo. of Canopater Schente. Mol2ill Uwiverstty, Monireal, Canade

Summary, We give a pateisl sierdes of some resilts Iom the tich theary of
hrasching procsisss ane Ulsteabe <heic we i the probabiliets amalygis of slge
rithma &l data grouct-stes, Tha branehlig prosesess we diccnes e yce the Galum-
Veaiscn process. L Eranching random welk, the Crump-Flods-Jagars process, aod
eomiitional branching processes. The applizatsons includs -he apalysis af the height
of Tandom hinary search trest. candom m-ary sereh tres, quadinece, undotSod
trees, Uniforth tandom Tecarsive dress anc. pune-orienled recucsive Leees, Al thest
s have haigats that groo bogardhmecally m the size of Lhe e A different be-
heonr b5 chaeresd for (ha combimatorial modela of teoes, where ooe consders [be
ubifieetn distritation cver all trees i 8 cerun famlly of wess. 1o mamy cesss, such
traes ar¢ distributad ik teee in & Golon-YWarson peoceas conditioned an the tree
size, This bact. alkrwe 0z Lo pévine Carkey cees [random [abeked Gee 1rem), taodomn
biugry Lees, pundom cnery-hinary trees, rantom arlsoled plates tress, and indzed
tany oihi species of unidonin trest We Bls revisw a coeabimalorial eptimizering
prabilem firsl guggasted By Barp snd Beprl. The aoplydia tiere ig pariloulary bead-
tificl amd shewa the Nexibility of even the emplst branching processs

1. Branching Processes

1.1 Branching Provesses

Around L3732, Gehono awd Watson came up with & mode] Jor explainiog Lhe
disappearants of certain fanily names in England isée the historical sures
e Keadall, 1966 ). Their model, now known a3 the Galen-Wasm proces. s
extremaly simple: in & populetion, we begin witk ooe pater familias, 4 1o%,
The roat has T, <luldren, where £, bed & fised disribution (vhe eproduction
cisteibution: it is cxeenient ta let 2 devcte & prototypleal candorm viriable
with this dishoibutii, and w st

p=PrZ=4],1210.

Each child im toen reprodures independently scosrding to the same diskribu-
tholl, and 2 forth, This kends to & rendam tree, the Galton-'\Watsan tree, and
g Tandom process, the Galton-Watson process. Let Z; denote the nomber of
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particles i the -th gecenstion, with g = 1. Only oue of tee possible sivt-
aions cay octoe eltbar the population simvives forevet [Z; » 0 for alk €], or
i~ Wacomes extince after & finite cime. Te analyze the Gattor-Watson bibess
it is eorveaknl to 1se the RGF (ihe reproduction genetating Sunrthon), or
dmly geoetsting Toctin

[y
fish=Y st =EisM1, ag ol
k=i
This is & foncton of & thet cotens exasly the same iTsmation 55 Ul
Yetbar [P, - Tt i stelerly corvee (i oy # 1) and iocresses oo py at
= Hio L at == 1. Diffeoect nors defire differsat Galton-Wetson beanching
proeesses. lotudtivaly, it should 32 clear Wt & population explndes 3f the
wepected Tomber of cluldsen per pardicke is greater than one, 20d that i s
pound 40 sheiok i 1t is bess than cne, An imepoitent parameder this is the
expected nuiber of chikdren (ot Malthusion perameter]

-]
n=BE=EZ]= =),
b=
We wilk poove that Ahis intuitins is pertly correct, In fuct, whetker o populy
tivm explotks ar beoses extinet depends sobely o the value of m, anc e
e the individual probabiities of the RGF! Consider the RGF far 2., the size
of the n-th generstiom:

s BB B st

With this notation, we cearly heve f-[ah = fi5), and fyis) = 5. Conditipnal
expectations help v it relating £, to f. To tis end, e 2. be the number
of partcles ‘o genesevion 1 - 1. These huve ofspring of sizes Yo\l .o
¥,iZaoy), and these boem an independenly ifentically distcibuted {1.id.}
sequerce disuzibuted a3 Z) fLe., all the ¥, 17) hove the seme diatibction eg
7, send the chwsires of the ¥,() are made independently). Therefore,
Jofs) =E[E(s™ |21}y

u B[E {aflliFalda |z, )

=B{[I B2, ) (b independence

=B{[I5 B} (demie] diribatios,

= E{ifis} )

= fa-i(f 140

11 Lioes
= fF--I0

Wheo m < 1, the zraph ef fis] lies abeed 2000 fis) = souly s =1 Tt s
g, difieulr, to see that £,08] — 1 for any 5. lo paticulsr, fu[0) = Prid, =
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Fig. .. The fun presible behavivars

ff — 1. When v > 1, there is a unique sobuion, g of f13] = 5 that is Jess
than ste. Sez he Bgnre sbave.

It 9 emmy tosee that for any 5 & 0, 1), fuls) — o In pactleuler, Pr{Z, =
b -

We pow show that ¢ is the probabilicy that the proves; becomes extincl,
The poirt I am making bete is subtle, bat importane, 4 the evert “extine
LioTl* eWleres to the erzive histery of the process, ot & parcicolar 7, Note the
Folliwing:

Priextinction’ = Pe(Z; =0 for some
=PrlLE, 2 = 1)
= lity o PR, Z: =)
=lmn o Pl =1
= q .
Thereloee, i3 the extnetion probability. We hae thos shown the fondamen-
ta] propecty of Gabtor-Watson peossses:

Theorem 1.1. fr e Golton- Watsen process, 4f ne > 1, then
g=FriZ, =0 =mer] = Jim PrZ: =01<1.
T

When = < |, the process hecpmes metinet with probakility one, urles
w# e the degensrate case py = 1. in which chs: every generation concaans
G Particle.

Procesaes are called supercritioal, eritwel snd susmitizel wheo m > 1,
m =L andi% < 1 respectively. We also imrodure the hypercritlen proceses,
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which have m = o, and 1be explading processes (which may be of soy of
the Jour types shove) mhich have BiZ, log Z)) = 2. The Tast twe terms sce
noneatsodard, bt w1 be coprenisnt to work with. It i worth noting that in
all cases, _
E{Z.) = (E{&])" - m"

[ty ‘Deduetion; azd ronditionirg. 25 B2 2,1) = md,_a) Tn Eae eritical
ease, the expocted size of the popalation remaing consiant, while the pp0-
|utine becomes extitet =ith probabiliy ooe.

1.2 Some Limit Besults

Thearam 1.2 dsswree thet py ¢ 1. fre ¢ Gadlor Wiehaon Franchang process.
Pribme—s & & {00} =1

Frogf. Cleatly,

o
i i Z, £ {01 < 3 Pr(z, =k infrisely ofeen;
al
gnd this is zero iF eneey 2rm is zeco, Thus, it suFices to show tat bor every

finilte &.
PriZ, = & ishnitely ofven =1 .

Wee saj that the popalstion i inatats & if Z, = & Let vy De the probability
thal the popuwation retacms to szaee & givan thas we are Ln stade & now,
1t 1 -7 if the protahility that we wandsr off forerer (£, # & o ll > 1],
TEpg =0, then

<Pz =kE == <.

If py > O, them
n <P »0FB=ti=l-g <l
Theratoee, 7, < 1.
[f X is the oember of vigtz t0-5iaté &, then
Prif 2 <o}
beacuse we toad to have at lesst n — | bransitiona foom state & ro steza £ in
the pracess driven by Che soansition zeobability vy, Nabe the:

b ] I [ . 1
E(X)= Y PriX anlsznn e
n=| ==
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Take M aebivrury. Fanally,
PriZ, = k inbinitely ofter] < PriX = M}
EX]
]
LN

which iz gz small as desired by aor choive of M. We conclude chat
Pr{Z. =k irfinitely ohen} =0,

L sk

|

Thacem L2, which is vl ot amy w1 & [ o, shows the: it is ipoasitls
ta hve cacillatiog, populations, that is, populevions it which the s drops
bk some finite lived indnitely often when m = 1: in fact, with probaslity
tMe, the lizit of Z; iz zerp or infinity. The remainder of tins sectizn i more
advemeed sed rather wechuicel. T cin be shipped without bar (except for
the definitin of corrergsnee in digtribntion anc the statement of Fatoy's
Lemma, whick can be returoed to swhan scd if requized].

"W ap improve oo Theerem 1.3 by usng that £, behaves rovghly speak-
ing &a 1™ (recall that E{Z2,) = m™), and its hehawor In heat captuesd in
Dsaty's Kirnit e

Theorsm 1.3. |Dock's limit law| et m be fvite. The random vwarindles
W, = Zom® fori i maringade sequerce with B{W,.] = 1, and W, - W
wrcst surely o5 B — oo, where W B g Aonkegabive randmn nonazble,

For resdecs not femiline with mattmeades, we refer to ke chuper on
eoeeriration ivequelices by MeDismmid i the present sohums.

We 132 the symbe] L for convergence in disiributico. For sandom vl
shles (X, ) and X, st a cistribution Finction F, we sey that X, = X et

Xy S Fowher ot el z € B whish Fir] = PHY < 5 is contimous,
PriX, < rh—= Fla).

Whils we don't b the Limit distriburion of Wy, it peneral, we know 8
lot plrout iv: o cass m £ 1.1, < 1, e bave Pril = (] = 1, 8o wninteregting
case, ot > 1 pad 2% = weriZ) < oc, chen Pr(W = 0 = g, BW) = ],
uar (W) = o fim® = e and B - WP — 00, In Fact, the second moment
cond:tion on 7 is too siiet, s the fellowing resuls shows:

Theorem 1.4, |Hesten-Srigum theores. 1966 For g supercritioal Gailon-
Watson process , the fellowing propertis are equibaleni:

il
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A, Nty E{ W5, - W)=,
B Ei8logil~ 20} £ 2

o EW =1

D P =li=g

Wrewm > 1, then the aoee ssulta liaply

L -
n
plence: surely on Toneeetinet'ce. Nowe that in genecal by Fatan's Jetame
iwkich in & specisi forle stanes that for positive sequenres of functioss f,
A M 0 g, o = J, IR0 [ fo 2 [ 7). % g {8 expacted valuas
are |2 integralal
E|W) < %@E{wn] =]

Ut we catnct egnolude that BIT) = |, hodeed, whenm € Land g € L
W = § almost surely, end when m > |, theve exlst dlserbutlons B 2 for
which W' = (almoar sively a5 wallt In the critical case, 2, — 0 almeat surely,
33 Brier results are pesded.

We can Byt the sxtinclion proben by studying the hranching provess
condisionad on survical at Hiee [ 7, 2 0] Seme resulta for t2e criticel case
ate peevided in the Blowing theorem:

Theorem 1.5, [Hesten, Ney aod Spiteer, 196 dsstoee thid e = | atd
o = wrfZ) € 0. Let B b an exponenticlly digbeibicted randern agriabi:
{ihat 5.  mondom cariable onth density e™F on 0,00, Then

2
liem APr(Z; > 0= = .
i 7
Purtkermore, ifo® < 2. 20 /0 5 B, where 22 is dhatribtted a3 2, givem
Zo o0 IF e = oo, then 21/ — 20 in probabudity, and
lim,,_ o APE[ 2 > 0] = 0,

Under the songer condition BIZT) < oo, the theomt bbave i Teferra
to e the Kolmogoren- Yoglom thenrem wher Kolmogorow (1938] and Yaghom
£1847) The eoedicional ~andom variable Z) iz alse cseful t understaud sub-
evitital wanvhing processes . The main regults o this repect are agein pro-
vided by Yaglam (19473 and Heutheote, Serzte and Vere Jones {1967) [see
&lsp Asmusaen and Henbg, 1983 end Lyans, 1997)
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Theorers 14,  Yaglom-Beanboote-Seneta-Vere-Jooes thenram] [ < 1,
then 2, 5 1/, uhere Pr{V < ] = 1. Porthermore, PriZ, > O)/m" 1
nonincrensng Ser any ) Fenatly, e follouing propertiss o equtlend:

A, i, g Pri 2, 2 O}m™ 0,
&, sup B2 = aup, ElZ:[ 2, = 0} <
C E[Zhg(Z +1)) < o0,

Proaf, We wilknar give a complete proof bere Fommsar, it i wontwhike o
note Lwens' peof of the equivabeoce of 4 sod B, We koow thet for soy 1,

BZ _ =
:IEI:E,: 2,-, }ﬂ] - E’[z:t] I

Thus, PriZ, > $him® [iFE(E] 1 |- Thus, A is equivalent to B 1f we can prove
that B{ZL} 1. Lot 1, T the sie of the n-th pensratitm in the sme rooted
&4 vhe kebtenugt culd of Lhe romd with a desiendant o che adth generarion,
end let £ be the index of this chid {oconted o Jeft tw vight]. Then, e
Lz ¥ dwemykzl,

PII;Z“ s klzn}“:' 2 Pr[?ln E-I'- zu * “:
~ X, Pr(k, 2 kE= 12> 0)
= EJ Pri¥, > kL, =32, > 0Pl =12, = [}
=2, Pr(Zy_y 2 kZo 20 Pelly =7 2y =1
=Pl 2k >

Pril,»0]=

1.5 Biblingraphic Remarke

Foz an scocunt of the (heary of beanching processas, see Athreva and Key
i1972), Grimmete and Stirasker [1992), Haerie (1963), Jagers [1975), o
Barissen aned Heriog [L963). Heodell [1968) gives an enjoyeble histockes!
overvigw. Seven [L9B6) provdes & rigesous Jadkground for studying tan
dorn dreen it getieral acd Galton-Witson trees in particalat. 4 moder proaf
of Lhe Festen-Etigum, Kolmogooow- Vagiom rnd Heatheote Seneta- Vere-Jones
tkecremg onsed or. Galton-Watssn processes with mmigretion and o tzees
with distinguished paths may be found in Lyona, Pementle end Peees {1980,
1095). [o thees papers, sice-biased trees sre introducsd that scele probalil:-
ties of exents in -be n-th gersration by Z./m™, which turma ot be squivalent
tp boaking et oo Pl 2. > (1), The idea of siae-bissicg is slsp due to
Hawbes (1981} and Joffe and Waigh :1092),

il
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Fat critieal processes, Weinet (1984} showed thes theze st positive con-
stants ¢ € b such that Bl iee £ € [alogn, dJign| aod
torimany sugn Z: 5 € 20, 1)

Fer v apercritivel provess, Hevde {1970 sbowa that if 2 has 2 finite vati-
ance 3%, ard Z,fm" — T ook aorely, then (W - Z.‘_.frn.“]ﬂ:“-"2 RIS
in digtribusior & ceodom varisble ¥, Thus, 2o,'m7 is cacher concentrated
araand W Conditionsd on 2 = 0,

o - Wyl -
Ve

wfiars A deores the oormel disttibucion [Hepda, L971). A Basey.Esseen ype
iequality - quast:Fy this comvergenes is given b Meyde aad Brown (1671).
Agsii. oo the ten-setinction st W' 0, e biave almost sunely

; W - 2y
. 2L =
-'.—-:l:p 1.|,|'2|.‘.|"“|:FI'!2 =m| 18, kg

and @ similar statement, for the limit ipfmom with 1 zeplaced by =1 on the
tight-hand side.

-
=N

The -s2] behavier of B was Investigared by Binghor [1963), wha showsd
fnser thao expanectlal drap-offs. For finite 1, super-esponential tail ineqnal-
ities for Pr(Zy » ¢F(2n)) and PriZ, < B{Z.)/e) for Jarge ¢ were detived
by Barps ang Zbang {1995). Zee alse Biggine and Bingham [1443] abeud the
desiription of B

Drucling {1970} deserhes the behavior when 2 has very barge deEls, 50 that,
in Jac log [, -2 )04" tends o a Gt Tew forsome b > 1. Here, Z, joeceases
a5 g Goubly weponentially ouickly. This ser of trenslotmetion is necessary,
Becnss. us <hown by Senzta [1964], 1f m = oc, {hen no constans ¢, ean
st such thet 2, /'e,, catvarges in distribution to & not-dezetserate random
wariable

2. Search Trees

2.1 Height of the Random Binary Search Tres

A inamy seareh taee for distinet ceal mumbers ... .2, B & binary cree
in which 77 is tha mot, whose Ll subsres & a hinary sesrsh de for
{20 $af Di=oz,0y)) a0 whese right subtres iz 2 hinsry sarch tree
far {23.....2a} 1 (21,2} (Thus the caracture of che march tree deperds
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beaxlly oo the order i winch the resl are presented] IF the Jeft gubtres has
k points [pedes], then the rank of the roat io ehe totpl geresing of the 5's
5 &+ 1. We can ow the toes incremencally: if x,-) 35 40 be 2dded (i
serped), we stere gr the took and recursively find the subtees to which 2,44
st ek by oQPATING 2o 41 bo the carvett voot avd chonslig Lhe Jeft or
riglts subbres a5 appruptase. Evertuglhe, we bicate aa empty subtiee, which
5 then foemally replaoad o & oo node subtree Waviog 1o+ 83 s oot The
frssertion Ko is squal to the distance in the tree (path longt by betwesn the
1oat [19) and the inserted node (T, this distance is referred to as the
depth af z,. . The height of & binary search tree ia e masomal depth of 2
noda, and 3t measumes the worst-cace Insercien time, an jmpartart quecity
if we gbe to medntaio & Tinwry seareh tree waen new data arrive.

By & catdtou %nary search tres, we mean g binaey seavch ree oo 0wt
of random vacialbes {51,. .. 20 which s Aueined by Laking = permutatian
of {1, 1) with edeh pectutation aqually probeble. Tt & easy tn see that
the struceure of the tree we abtain will be tbe same if we pick che x, iv-
depenvdently, wl from the same distribution § prowided che probsbility that
we chaose the game norber fwice in o trinks uoder [ ks zoro, eg, iF (e 2
are woifirmziby choser: elemenss of [0, 1. The degth B of the Last vode oo
ba inserted satlsfizs E{IL ) - 2logn (Lyach, 1065 Kauth, 1073, [farther
(B = 2logn} T logn 5 A [Mahmoud and Fivel, 1964, Deviove,
168E)1. Far vhe hetght H., the masamal path dissance berween sy node end
the root, Robson [1978) shomed ttas for all € > 0

lim Priff, 2 {1+egn) =0,
=

where 1 = 431107, .. &5 the wndqle wolition presver than 2 of the eque-
non clog(le/c) = 1. To ackoslly show ibet 8o/ logn = 4 in probabil-
iy [we recall sher X ~ cim probebility means that br ey positive «
lim, . Pr{|X,. - ¢ » €] = 0.), branchiog peocesses were (he first sucressful
methpdolopy (Devroye. 1986, 1957), Drmota (1837, was the frst 1o prove
thic. resylt by geoecativg function anelysis, The theorem below will be oon-
siderably peneralised Surbber on in che chapter.

Thearem 2.1, [Devroye 1984, 1967| Jr o rerdom binary senrch trez or
nades, B Toge — ¢ = {107, 0 prodability.

Proaf. We briefly show nese thar the beight ear be soadind with the aid of
(alnan-Watsn branching processes, To make (ke comreection, we introdies o
new representation of & binery seerch tree, Call the jrandomn) binary seareh
ree T. Aagment the tee T by asoclating with each nxde ibe size of che
subtoes seoted ab thet node, and ce'l ohe angmented tre2 T The reat of
T hos walue & Sinee the rad of the wob elemen: of T i equelly likely 1o

r
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be 1.....m, the number ¥ of eodes in she Jeft subteee of the rom of T is
oni‘ormely distribited on (1., % =1}. & ogments thoughd showrs we caa
chocse [F by setting ¥ = |lf] , where U is uniformly disteibatad aa 0, 1].
Alas, the size of che right subtess of she roo of T a5 — 1 — ¥, which la
Fatributed g3 ni1 - 17)]- A1l subsequent splils can be represanted similarly
by tutraducicg Inrependent unifoem [0, 1] ratdem varlables. This & & lypical
ambedding srgumsnt: we beve identified a new Boslclous callection of riadorn
varizhles T4, U, ... and we can derive £l the values of oodes in 77 from it
This i turo deternites [the shape of] T. Morz preciely, the tole is Smply
thds: s &1 Inmite biziary Lyee, mve the coot the vale a. Also, sssieiate with
sach oode st independent ropw of I7, IF & node has velue ¥, and its assizned
copy of U5 0 [say), then the valuz of the ra children of the node are
|5 aad |41 - 8], respecsively. Thus, the value of any node ot dissance
& feom the oot of T¥ is diributed as

|- Ll -+ B

wheze 1. ., Uy ore i, vniform [0, 1] We huve just déscrlaed & second way
of generating A andon Wres with exactly the same Cistribion 45 & random
hirary seach tree. This secend metbod of geteratlng the trees is truck mare
amegiable 1o anslysls.

The shove representation has o myrisd of appbeaons. Oue of them in-
volies the study of the height Let K, be she height. of T when 7% = . Then
K. > & If exd only if one ¢f the 2° walues ¥, of podes o distancs & from cle
mot of T i at Least equel Lo ooe; which we write as

Hexk= |]‘_E1£;=_:-§,|1"1' 2]

Thia 35 & bezuliful duskity indeed. Some nave must be eeercieed wien msaip-
ulading it though, a: the 13 ave very cependant—iust corsget the values 1)
and V] for nodes het sre ngar ora anctbet in the tree. To gtept arowod this.
we will Gecive separaie upper and Jower bowrds for H,

In eitig 50, w2 ceed t be sble to neayse the disinbution of the ¥
whict Ealls den 1o soalyzing the distributisn of the peaduct of | wiiform
01| randon vacables for various £, T de 0, we pass ta <be logurithm. I
{atzs oot the logaritncs we re intereated 'n studylng are drawn frem 4 very
wall etidied olass of disteibotions, the Gamma distributions. To be previse,
2 ueilron candom vaviable 5 distelbuted 55 e~ where E s exponentislly
distribwoed (1. bus density e o1 RY; and b gaonoa & random varinhe (5,
ia distributed 22 the sum af & indeperceant exponendials (see Grimment and
Seirzaker, 1992). Thas the peoduet o k ustforma ia e=©.
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The apper bound, By the dual relatiorship shown abave, we see that

Pty 2 1= Pr (L5, 2 1)
C*PHE 2 1
(b the Jniow bours [Batiberconi's inequality]
und symmetry]
3Pr[[I5, B 21]
(Do e L wniform |0, 1)
(ot the |, ix the defrition of 15
= %P (e 2 1)
i0sy is  gomme (%] rendom variebe)
= Prify < logn) -

-

The soint. hare ig to find the smadlest £ such that the uppsr bound vends
1t zeco, Recall sket a Gy 7andom vaniekle bas mean & Thas, i & = Jaga, toe
upper bound i3 B[ which 5 obviousy useless. In faet, k will have to be
mouch laxger then log n in order that the effect of the 2 tarm be canpeled. Let
us try the next best ching: &~ c.ogn for some ¢ > 1. The whode eoterprise
s Epcusees o the probabilice In che bl tail of tbe pamma distibeation. We
provide the details a5 they eeplain the cheive of ¢ Let Gy be b gamma &)
1enilom vznable, We have '

BriCy <y . 1

1¢ —
e e
£ L

where the [owet bound is valid for all y = 0, and the upper bound is applicatle
whew < g« &4 L [n partizuler,

logn* |

Priffy % logm) <
Tl J:_l':'g“.l— nkt ]_tﬁ;—i

vlid for bga < k41, Thus, %e hase, aking k = ‘c.ogn], and using & 2
(ke i Rollows From Stizing's Frmmula),
Prif, 2 ) 5 ol 2ot
£ ﬁ'l[i'ehgn.u'k]:" ¥ lli"}
ST L
(- i
1|

iffilln'e]{*!:,."c}‘ <1, Let 3 = 431107, ., be the only seh:ton greater than one
1
()
=[1=] =1,
[ C
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We conelude that Ty o Priffy » clogn] =0, foralle >+ A more
capeful e of Stirllng's inequallty shoms that. ity —nc Pr(fo = ~logri =1

The tower bound. We kmow cow that B is very lly las then g
Tuck ¢ 0. To ¢how thak it Is more then & = (1 —e)loge] mthhjgi} prob
ability, | we have to do 26 exhibit & pach ot 1he augmented tree with the
propecty that & dise k oo the raat, b mgn:_neutr_‘d 'm_lue Is ot lesst
cie Now. you wil. sip, this i o piece of cake Why oot =2 just fn]l.m:u the
pth dictated by the Targest split, tiat is, when we are 2t & wodewith umﬁ:unn
spli value , we go bft 17 = 12 gnd right otherwise? It buzbs qut thet
we do 50, the zngmenzed velie dropa bl 1 for | aear elog n, with ¢ 385
auly. 3o this & oot & good ey to prove She existenc: of & node B rm:.u
the raot. [rstead, we will use brewhing processes to show that the height is
peiter than chogs with peobetulity tanding 0o ote, when ¢ < 1. Thus, =e
nopd o tBek down noces ¥ith large waltas o the augmented tree For oow,
ap define T = sl 0. .. L% Tor a pode ot distance & from the teot. ohers the
12" are the uniform |0, 1] tendom AL desczibing the aplits ¢n ¥he Tath
o -he rout. The purpees i 12 eongtruct 3 surviving Gaiton-Walsdl proses.
The rout of T becomes the pever Fenilias of the beenching process. Coasidet
ol descendants 1o T L Jewels sway, ang deelare thess oodes Geltor-Watain
childran if the produrt, of wnifem splitting random variahles epountersd at
the pich feom she faat th the Feascble child is > ¥ for o gven coustant o,
The mumber of Gelton-Watsatr chilkdeen et noce is bounded between 0 snd
3 Cleacky, all podes in the Calton- Watson prooéss reprodoee indepeadentiy
aecording W iéectiesl regeoduction diaubutions, T wereil:rﬁ,_r.il.e. the uoee-
sponding Geotun-Watsza process would survive with probatility 1 - q 0
the axpeeted nurber of Galton-Watson children per nde were prester than
rre, Bug tris expected nozher iy

PPl Uy db) = PG < Llegil/d)) .

{6, s a guens i L) ramdoir, vasiable)

5 (ki dlngl L]~

" by an tnequality for (e tail of the
gerume dstrbutingp

. '!mgﬁim"‘-
{b:: éﬂﬂjﬂfs apptemination, g L — 52|

»1

fex [ Targe enough, when Jed iog(1d] > 1 We cheose d = &1, repnll that
g2 > 1 and obtain 26 e» L

S0, with probubiity 1—g > 0, there gxste & ooda 6 distance kL fom
Uhe ot sdch walug W 2 nd®h — met0 [ we take tzuncakions into aceoumt
to get the beal pugmented value of that node, i- txoes cnly & minute b vetify
by inducticn thst it is ut (east aqual to 17— kL 8 we can bse Joe wmil ot
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Wit T gery bruneation noconclision,
FrlHﬂEkL.llzl-q

fre™**fe — & > 1. Take Zor exampls £ = ¢ bogrn - 8L for & < ¢ where
B 1) is presibly dependent opar. . Then the Just cordition is verified as

n!_—l.f.lr: _tL 2 i'I.I'_cl'llr _ Crhﬂﬂ 3l

foe mll w2 Large etwrugh. A5 ' 15 pebitrarly close to ¢, which in tarr ig rebdirarily
tlage to v, we have Lim infy_o, Brif, > [v—c)ogn) 2 1-gfral ¢ 50
end some § < |, But we arz ot finished yet! indeed, what il 1— ¢ = 00000LY
Clearly, we want 17 Latter probmbilite to e & = af1). 50, we take £ such thet
b iz intager-valuad. The T nades at digtance tE from the raat of T sre roots
tf subsress each of beight kL (ic T heght & io the Galtao-Watscn tree): each
of 1hie subtzees leads to an Independent run of & Galton Watsn process. 1f 1L
i# lace eoough, 1he peabability thar st leass one of these processes survives
is chose to ane, Lat o £ i0.1/7 be ancther coratant, and ler A Te the svent
that the 2 — 1 uniform [0, 1) random variables mssociared with ihe Leg oL
lovale of miwles tabe vehws o (2,1 - ). Ve 300 chat
Pr(df) = fax 2 -1} c a2t

el this s &z amall as degived by aur cheboe of g. [C A I trae, then 1be
w1griented values ¥ asociated with the nodes o distacs £5 fom tha oot
g-e 4]l at besst na®". Lat B be the event thal ane of the 2L Calon-Watsor
processes. Cefinal with the aid of the parameters ¢ ard L. and mwoted o
one cf -he given I podes survives, From the previow discusgion, nsing

independence, N
PriBY=¢,

whith i3 a8 chose 1o s bs desimed 5 choice of +, IF A and & happen simu’-
taneusly, then thess #sts & oode al distence tL + BL Fom the reat whose
pugroented value at faast equal bo

.I_IﬂiI.ﬂ—.'iL.-'c - [! + k|:~ )

Take for exemiple kL = ' logti — 8L 48 alwee, Then the aupmented whew is
B least ejal Ly )
sinlF _ ggn el
This ‘s greater than aoe bae t large soough. Therefurs
ELP'{H" 2e'logn =L +1L) 2 PHANB) 2 | - Pr(A )~ PHE",

The lawer baond is as closs 10 ot a5 desived by the choice of v 49d 2. Alwo,
# 15 wbiteanily close to v, Hepos, for all & = 0,

.-,Ili:.ggPrl'Hﬂ irrilgnj=].

This coneludes the proof of she tesult that &, log = — 1 in probabily, 2
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2.3 Quadtress

We rottid off this sedion by s20wing e vaivezsebity of the gbove methodol
ap with the i of guudtrees, The peirt quadtres in 7 (Finisd and Bectley,
1974; see Semet [ 190 For & survey) gemaradises te binary search (ree, Each
dsta print is & node 70 4 tees havig 2 sabtrees cormespanding to the Q-
rants Jormed by considering bhis data pein as she new origin, Insertion il
puint quadhrees 13 a8 for binary search srees.

Wi assyme thal 4 random quedtres is constructed on e besls of en iid.
segence with & given aistribution in ike plane. I this distibutio 35 uaiforsy
itk the woit square. wexlit @ unifrm rendom quadtres. [ ce Juster case, vhe
~cab is easily geen o induce apita inko 4 ections of sizes appraimately equs.
tc n times the prodiets of two independent ndform [, 2] randex: vuriahles,

The beight By of & zaodom quadtres bes o diarbuloe which deends
upen the durrburion of the dats pomts For this reasn, w2 Jook only at

pritfoen ~andom queduess. L i eaay 1o show bt

L
Pril, k) <T*PnJ[tL 2 10,
L=]
whete <be §.s ace idd. wnbaem f,1] random varishles, We dedues thar
FriH. » fejd)lg ) —+ 0 whenever ¢ 7. Furshermare,

Prill, = k=Pl max vl 2144
: L2z

whege ¥, is & produet of independent products of teu ueiform [ 1] randam
7ariahli sk the s-ih pash of bength k comm the quadtees (Devecys, 1967
We dedue that Peil, < [0}, nga) — 0 wbenever ¢ < ¢ by mimicking the
araofl of Theorem 2.1 We canclode whar A Jogw — /e o probadility. This
sezlt still requires appropriste generalizarion. to nan-unifosm distributions,

2.3 Bibliographic Remarks

The use of hranching processes in the study of binaty warch toees wus adve
razed i Deveope {1966, 1957), A nice pconnt ¢ this approach can be found
in Mehrood {1992, One can alao prove thet BiEZ) log™n < 1" + o1} lor
il p > D ang find & positve number & such tlsal

lirr'::n1."*'1‘[}.1',1 Blog - flogaogni=0.

By mimicking the procf of the lztter faet, show that Fu/ lugn — 13711,
o probebility, wherz F, ie the Bl levl, ie., the maximal depth at whith the
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binary search tree truneated te that depth is cotplete—thus, level F, bag 2%
nodes. The copstant 03711 is the only solution < L of {2e/c)%(1/e) = 1
See Devrove (1983, 158T).

3. Heuristic Search

3.1 Introd nctiom

-

In this eection = present te otber besutifol applicasions of Ve theory of
beanching processes, Both wvolve beusisties for finding the optimal path o
& tree witk rendam costs. The tree model stodied tere was et proposed
ai apalyzed by Karp and Peerl (1063), whe derided oo look a4 the sitnplest
peesil e matrlvil moodel 50 25 o made the greacest didactical Jrpact

Coinsider sm Enfizite complere binary tee in which we sssoriste with evary
edpe & an 0 - 1 ranidom variable X, which is 1 with probability p end 0 with
probability | —$. The waloe of = wode is te swm of the walies of she sdees
o Ene pat Trom the ot to 1hat node. The o3jset i oo S sbe best node
gt £istacoe n Fom the rat, that is, the oodz of minimal value, Incerestingly,
for p< 177, we can dibeower cme of the optima in On) expected time. This
is Turgely due oo o Fact that there are many more etoes Qo ooes in The
tree, allomine 1 b wee impls vet Fast sparch slporithma e stion 37).
In section 1.4, we deal onth che much tore difficalt case ¢ > 102, Rataer
than oying to reath the optitue, Karp and Pear] propose boldog [t 2
near-optingwm that would be ceachabue ic (§n} expagled time. The heurjstiz
preposed by them anploys bounded Joakehesd and backtrack seasch.

3.2 Dapth First Search

The infiive subtree rooted o4 3 oode v is called T, AD the oodes in this
stzbteoe tac can be resached vl O-mlued scges fprom b subtese called Z,, The
hiuristl we constdes ete sitnply petforms a serles of depth Srst sssrches of
trees J.. W can abso think of 2-vilied edges 2 blocked pipes, aod (-mlost
edges a2 opett plpes, When we pour water io whe mot. it efckbe down and
enabees all the -valaed odes wet. 1T we reach Level nin this manmer, we slop.
Qrcherwise, we open one blocked pipe and stert & mesr From thae, During
the depth first seareh of & given Z,. the nodes w with e praperty thas edge
fwn,1) d5 Lovmlued and w6 2, wre collected in g set B, Simes the methps
comsmigza of alwave going or the easlast b, we will call i depth et seecch.
Kote that the abwwe procadume st viits all oedes orith value 0, then all



B Lo Deasve

noddes with vaee -, sod so forth. This gaarankees that an gptimum will be
zeturtied. The question we hase b answer 38 how loag the algorithm cuns on
the aearage.

I, crder o aavelye this slgorivhm, we offer the following cnacial result of
Karp snd Pesrl {1833}

Theorem 3.1, [The Esenily tres traversel thearem Corgader o Gaitan- Watgon
brinchirg process ik reproduction prodabilies tn, . o furtere B f g de
kerptiunigti; Bound on the aumber of children of ¢ nedel. Consider the omsthly
nfimate) joady tree T thun geverated. Let D, ke the number of nades ezcour-
eved 0. the depth first sentch of T, sowped as seon es fevel n 29 negeiied, Thes
EiD, 1= Oin].

Proof We consider thoes cates. In case 1, we mssume thét m, the mean
nurmber of déldrer. per node, is = 1. Lat 2y, 2),... denoke the generation
gizes i1 T Ve bound D, by Eae catal slze of T, We recall that

EBiZ)=m'zl,
Therefome.
n R
ED <Y B(Z) -} m<n-l,
=0 =0

Ir case 2, we seitne that w1 yet T is finite. This toovespionds bo o pe-
o5 thas becomes extinrt. We it rodise the notation E* fae the conditionzl
expectabion given that T is frite, We also iottoduce o, the probabiting of
ewnlug] extintion, and fis, the RGF [reproduction genecaring function’.
e again, we bound

fral
Disy B
50
Mure fizs taal for k2 10,
, e PrB =KPOT feite |2 =K pg
Pr2| = kT Ffinite] = PelT i) = Mg

Mate tha: o
E'GI=) i =fi).
11
Thos, the decivative of Jf ab g tells us the expected oumber of childeen of

the Too &5 an extined tree; pobe that thig is Jess tham sne, But this formile
shatld be unberealby vebd for 8l pereration szes, Thersefes,
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& inea

E'Zp) = | fifT 4l

L=1%imes k=7 b

4 VITRRCTIN) v NI MR KR

=1f'{ght .

- Em|<E Wit =
Ekmll

This coneludes bae prect of case 2, [Xote that for supetiritical GalionWatsor
proreses, the branthing proces given T Boite i4 an wncdnditionel heanching
process with RGP flsql/s.) Fizally, in case 3, we assume that m > 1 and
Ul T I Infinite. Nodea in the ssarcn aee desigrated 3= marted of impgnle’
aecording to whecher their subtroes wre finits or pot. Note that the wearch ok
a iwen node at werst visits all the odes in the subtress wisk mottal nodes
roots, The expeeted size of each such aubtrse 5 not. more than 111 - Fia)i
by case 2. When the searck visitz the Sra; immorsal caild, it will pever rerurn
ta vieik anocher chili, ac 5o snbnite wree 8 bound o have kb Joast ate ywode
ot kel ot As earh rode hes e more than M moroal cbiidren, we b the
el lowing recamence:

'F"|q|.|

K, |T infeite] <1 + B2, [T imEnire] + | _j..f
This recurrecre [z2ds drmaally to
E{D|T infin'te) £ 5 -|:1'i+1‘,| J”, R
Cases 2 and 3 méy be combited ensily, g8
Eilq) = PriT Folte] B{D|T finltz)

+ PriT fnite) E{2[T iafinite}
£ wae{ B[, |T finite), E/D. T iofinite]}

Thilg cone udes the prood of che farély tres traversal thagrep. L

Mestr, we cluitn that the expected runting time of iterated depth fost
gearch is Olnd when o < 1/2. A depth fret s2atch brial is ove ftecarion of ths
process: at & aode, all the wods o s subtres maduble via (Halued lps
are vigived, We call this colleczion of podes the sxpangion tres of the node,
A pofde whh an infivite spansio e 5 celled bmmoréed, The other anes
are menkal, Consider the branching procees defined oy a0 adges only. The

al
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repradugtica distribution hiss g = (L= g itwn zero edies), ¢ = 21— p),
st py = 2", The expectec. mumber of childzen per 2ode is

m=dl-pf -t -p=2l=-p>1,

Tiuas, the extiocban probability for this branehing pracess i g < 1. g 3 alss
the peobubility that a £ven vode is mortal,

“Thie running kims i5 eomenicntly decamposed e folows: any tisl stariad
£t wiy Hode tekes expacted time bpunded by en [Theorem 3.1). T, che
toty expielad time aalore halling is not more shan the experted number of
trinks stz ot The total oumbet of teials in tur 12 nit mare the the total
muwher of rlals started ah moctal nodes phis one, Therafiore,

=1
1-¢

sine (e probebillty of having an immortal node i 1 -4, end 4 search startad
gl En jrroetal node surely reaches lesel n, This eonrludes che proot of the
limear expected time clsim.

Bemark § 1. Thecasep = 1/2 Whenp= 112, the givan iterated deprh-fost-
sease]: pronedure takes ]l expected ime.

Ve cuaclade this sctinn with ancther soalyss: whot is she wlue Oy of tae
mimimal nade at distanee n feom the toct? Clearly, Cr, & & random variable
sandwiched betwesn b and o When @ grows, C itetemes 2 well {on 6 gieen
tree). As z[l momatone sequences bave & posdibly indnite] liil, we may call
our ikt €. Interostingly, when p < /%, £ is finite with probebility onel
This means that we ¢an find an infinite path in sleest every trer with orly
a firite number of nomsero edges. We haw the illoming:

A Foz avery &, Prl, 3 &) € Pritr » k). (Obvious, sices Oy 18]

Bl oo (G > K] = PriC’ > ). [Ths, O mally macters, as it de-
secibes the situation for all & lsrge enough.|

C Forp< 12

PHC >R <’ k=008,
Provf. Consicket a banching process in wiich we keep only the (-vahued edges
ift the complete himary tese. g Lhe auraber of children per nods is binomielly

deetritisted %ith parameters 2 gnd L p, the expected momber & eildren i
A1 =1 > 1 Let g be the exvinerion peckabilicy. Then
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Prie > k1< g

singe | » k| implies char. eseht of Lne 2 subtress rocted at (ke nodes at
degsth & snust feil to hawe an infinits path of zero-cost branches (that =, each
of the 2* beanehing processes spanmied at these nodes mist becm extine).
Ziuie 1be RCF of this brancking peocess & {5l = [p+ 01 - pla}?, it Is eacy to
set €t g < (3%, T poove this, we need ooly show that Fii 2% < (2)F
ar thet
p+iL-phiel < 2p,

ar thet 4901 = 7, < L But the Jast lequadicy s obviously tooe. 0

-~

1.3 Bounded Lookmhead snd Backtrack

In the case of & Taa ety of L-value] sdges (5 > 1,/8), dapth firet search yhelds
sxponential sxpecled time. [ fact, it ssems loposaibbe to concost auy kicd of
oy nomisl axpecied time elporthm v weanicg 1be optimal valus, We ean
do +he pext best 1bing, that ie, we can oy to fod an wesst cptinel selution,
To ee: the sage, we first defiee (7, the optimt value of & solution found
=y st slgnrith, and €, the value of be true aptitna in the random brec,
Cleary, o « Oy, Tor & given a'garithio, wo kswes have to be ceadt mith:

A, What is the expected time E{T) tabun by the slgorithm®

B. Hom close is © 1o €7 (in some prohabilistls sense)?

The bomoded-lonkahead-and-hackirack (or BLAE] elporithm propossd by
Karp and Pearl [1983) iriroduces three deslgn perameters, ) ¢ and L, where
@7 15 a inceger, o £ 00,13 is 2 real nomber, and L > T is o ivteger. 1
i & e 1 our bree and u is & descesdant o v such chat the path distence
oo 4t w la L, ten we sav <hat u s an o, L) son of v if the swm of the
edige vedues or. Lhe linking path & < al. To maks things more readable, we
will simpoy sy that v ¥ & good <hild of &

We now donsiruce o ‘she branching process ag folows: start with @ gven
node od meke it the raot of the branching process, Declare all tae pood
satss ta b its offspring, So, this process jumps £ Tevels at & time, [This is
ilhateated in the fest Bgurs of thas sestion.) Repem Liis defiitian for sl
the tdes thue cmained. T Malttwsian parameer fr this procsss is the
expected wumber of poot sota per node, or

m " PP BN ) € ol

The ke brenching proees is supposed ta belp s aeste naar-optiss) pedes
& leval . 1 it i6 va wack for s, we sursly would ik the process 19 survive
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farecer, ths Yeading to the enaditon #1 > 1. From the propeclies of the
incanial distributlon. we retsin thet if ¢ < 5 is Bved, ten, Bs L — 22,

v 1-n .
B e 8 E‘“(ﬂ) ]
1?1—2 ﬁ{'ﬂlﬁ'ﬂ'} -2 'Ip"’I {ﬂ'-:l l-a Il ~

wiere the fapction i, pb imersases onootonially from 1 - pata =110
78t e =g Thus. it tabes the value )% somewhere 3 the inberval (il 1),
ot & plare we wil call a*. We beve the Freedom to ciorss ¢ and L. 5o, we
first pick o & jo*, ). Then we choose L so largs that m > 1. This fiiea
1be brencking process. Wa let the probability of extincuion ke g. The BLag
algorikm proceeds b folkws: we select 7 in se way (ko be specified lecer,
=ycly that i — o is & mullip of L. Hepeat for sach of the 2 tiodes at level
4 vl sucossfu, the Bllowing process: briverss Lhe “good soma® breaching
process it & dept h-first-search wanner until g wode ia found a1 Jevel n of wntil
the subilres is exhansted withqut ey reaching level . I & bode at level n s
yizched, tben itg vahw ia guacantssd to be oo more than d - ofn - d). Bt
the probeility of & given depth-first-search sucresding it st least 1 = 4. Thng,
ke ovsall provecure returns o fxTure with probabiliy less then ¢ . In that
eae, i & e has 10 be resuroed. we might 85 well reture the loftmost node
it the dree. with vale < %, Pusting this togecher, we see that

Rifn,) < nPrissarch fails] + 4 +arjn - )
gl +d-aln-d .
ur fed ¢ 2 0. 1bis is Yoos thawr a®( L4 eln by choboe of e fe.g 0 S 0" [14€/3]
wil dol, L (s abore) and o [lecge, b fied’, We also see that
lim Pl »a*l—cnj=10
Brall e 2 0 we cocee @ and L as abwe and  — oo while d'n — 0
ersmphe: d -~ log ).

The s €king we nead to prove iz shat E(CY) 2 o7n ot samething
zhoge ta that. Kot the fallcwing:
PriCs < o'n) < Pr(= at kest ue o', n} go0d 500 of the mot]
LIPrLBIN(n g, < a'ni
=52 {fle* )}
_ et
= —ﬁr ,
Thus, Pr[C% 2 a"nb— 1. Ao,
E{CI} 2 Eilq e zamn
=a Pl 2 atn)
2anil - B{LAR
o — BiyE
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PFor grves £ 2> 1, we con-design an algorithm that guarantess the following:

R
1
el 7TeT

<1l4e.

{x. if oie wents it,
[
li=a Pr(—bHeJ =1,
R+ |:';
(The loat evene implies eitker O 3 4%l + 0 of C2 < a*x, and the probe-
bilitdes of bath of these events Lo to oo with .|

We conrlode this section with a proof of the linear expecled rime com-
ety E(T} = O(n). When Boding & poc< son of a node in tas branching
precess, an effort nat, evreeding % i speot Then_ by the farnily troa traver-
sl Jemm, anch depib-firat-search takes bime oot exceeding on. where ¢ is
2 opostan; depending upon the branching provess paratizsers, The experted
nutnbet of depthefirst-scarches until 4 node i6 encoutersd that is the mo
ol & surviving branching pagcess is nar mete than 1/(1 - g]. Thus, the kel
expected Ime doeg oo excead

o
].T’!_-_ﬂ{ﬂjl.

Reriann, MeDiarmid and Provan (191} pointed out that boaded leaks.
heed wirkan backtesck iz abp feazible. Asume chey we God the optital
pth fram the 20t to & nod at deptb £ Meke this node the new starting
point 4l Tepaat. L lo & JaTge itfeger constant. For p > 12, and € » 0,
e o shaw that shete exista an L swch that this algorlthm rums i Yinear
expacted time, aod that the best value louad y e abgraithem (€] sudishes
the inequality
Cag{l 440,
with probabiliy leoding to ooe

14 Bibliographic Remarks

The problem dealc vith bty was propessd end analyzed by Karp ang Pearl
{1033). An elernate shert, pesal of Theorsm 31 is 2iwen by McDharmid
(10907, where additionsl infsmation aboud the prablem mep be foecd as
well The anzlysis of the optimal value £ in the case p o« 177 i8 dus to Ma
Liarmid and Provan [1391). Conider now depth first seazth in 2 complese
frary tree in which the probability of & "se” edge ia . and §1-9) > L
The fotlowIng inequality i due bo MeDlarid and Proran (1991} i€ €, 35 he
optimel valoe of 5 20de et distance n fram the 700, then
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Kacp sod Thang [1995) asalvee 1andotn AND,OR traes, whire Intetnal nodes
4t zvet (o] diatances fsam Lhe root are AMD (01 Dodes and esch node
bes & boolesn value 0 or 1. The walue of & node i the outesme of the Jgical
ppetaticn of the nade an :ts chikdren’s valwes, The evalustion probleet i oo
dewermine the ropt’s valoe b exanrining the leaf valies (which are candomly
s Indkpendently assigned), whist keeping computation to & miniwum, Thie
is Pearl's minimax trse thodel [1964). Kacp and Zhang propese end anelyee
warinis algorithems using il bounds oo geperation sizes in. Galkon-Yratson
progesas, For minimax tress, Devroye and Kamoun [13%6] analyzt the va.be
of the tog2 I & random riinitus tree, ‘o which the leaf values in the n-
th generation are those of & branehing rsndom walk, 1o inboced iate Jeve,
values are ohtained by a-ternating the operations miniovan and s,

4. Branching Random Walk

4.1 Denition

0 » beanching random welk, v superiipose 3 ncon; walk on each pech
fram rhe root down in 3 Galvon-Watson toee. More specifically, we assocate
with each iedividual u In & Ga'ton-Watson ¢ree 2 value ¥, Lhe value of
he toot being 2are. 1« hes & offmoing fehere N followy the todel of
the Geltor- Watson process), then the values of the ofipring relative 1o the
walne T/, of the perent 3 ‘airkly bese 3 given cistrilution. [n the simplast
madel. for every hlld v ol <, we huse ¥, = ¥, + X, and o displavements
X, ape indenendent, {1his will be called the independent branchieg random
walk, Howaser, in gener), if e ciuldren have displacernents £, Koo
then the joint distribution of ¢, Xy, Ko, ) i quive aibitrary. What is
inxporlast is that each parsnl praduces children (oo their ve'vest in tbe
SAME Manher.

The enalysis of branching rardom walkes is grestly Gacilitated by the fol-

lowing Ruretion: .
mif) =E (z :—ﬁ.t,l)

ml
whits ty,... v 7 the chikiven of the oot We assure throtghoct chat
m| < 20 for some ¢ This function ey be comidered 89 the Laplace:
Stleltjes -ransborm of Fith= E{Z i8]}, b expected gumber of mdivldyal o
the first, geaeration, with value loes Lhan o equal t . In general, e introdune
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the notation Z-(f), the mumber of irdividuals io the n-th gensration, wick
walue £ £ Note thee &, = 2(20). 50 that this defmition goneralizes that of
the previowe section. Les 2* be the point process with etoms ¥, e allain
the mty gereration. Then, folbwang Kuogman ¢ 18750, intoduce

v 1 —ﬂlrlh
Wilbh= oo )
uin pEnerabhon &

This ip & martingale fee Fy, the =field geoerated by of] #venes o the Brat
# generations, Taece ia ao alzvst sure lmot, WiRD (s W, (80 2 0], and by
Fatc's lemma, E{W{)) < 1. The studv of W, and I peveale char, (hare
may be severabmades of bahaviar, and tis was studied oy Bigges (1997) n
e detail. T gkis section. we 4o ran wish any distractions due to sxtinction
of the underlying Galtboo-Watstn process, end assume therqbie that i, the
ouraber <f children pep parent. i & fixed poaithe Mivger; ¥ = & For wore
general thecters, we Tefer 6 <be cied napars.

In subsection 4.2, for N = b, we anevey the main resuls on the first
bieth in the %-th generation, ot B, = minf¥, : % in n-th generation}, and
oo Zq[t:, the distribution of vahies in the a-th geseration A sraightforward
spplicesion in the study of the height of Lrees then contlodes thie section,

4,2 Main Properties
Let X be atardom vatinble equal to the valoe ¥, of & randomly picked child
of tae taot. Sitee N = 0. the earber definition of myd} specindines to
mis) & bE [y
Then, if X > 0 is zondegenerate. we defioe the wfunetice by
Ve inf T — s Pla-R]
wla! 5]:-"3{1 {zﬁ mef ) %{JE ¥ J ;
Thearem 4.1, [Biggios, 1977] If pin, < 1, thn with probabelddy one,
Zn[ra) = 0 for sl dut fondely mang . [fa S iotfa: ple) >3}, thes
nlinlolfz.-,l:-"l-ﬂ:]”“ = pls]

aimaat surely.

Thin theorem shows thet ()™ 2 shenet equal to the mumber of indlvd ek
in the n-th generation with vahs £ na. les simple proof iz not given bave,
brut it bollowm the lves f the proal of Thestem 2.0, In fact, Theorem 4.1 is

rr
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podhing bt a refined lerge deviatiom thanrem, 33 skng any path from the
root. the values form & standard rendom walk.

As o corollary of the hgwe relt, we have:
Thearem 4.2, [Kitgman, 1973; Hamewergley, 1004; Biggins, 1377 Assume

il < oe Jor some 83 0, Let B, = min{VL, :u w in the n-th gemeration §.
Ther,

whragst surely, and 1 42 fnile,

lntevestingly, B, gows Lrearly with 5, whils the n-th geeeralion si (b°)
graws expomenblally with n. As the p-function Ley an impsct un koth peaules,
[t i3 usehal %) have ita properties ot band,

Levuma 4.3, [et X 2 0 b o nondopencrnte mandom veriable Then 8 p-
furebion saticfiea the foiloming poapetics:

fif 4 45 a0 fncreaving fincisan on. o0,

fifl 12 43 condinmous on inafa : pial = 0,

(i) bog i concave an e - ple) > 0.

110) S, 2] b

fuy SPE{X) < oc, then pio) 2§ for o0 > BIX

i) it po ) = b.

Al X2 ool thenple) =0fre<e,

‘o) Letz=suplt - PriX < 2) =D}, end defimep=Pr(X = ¢). Then p i
rndinganz o #,00), uf5) = bp, and piz) =0 fere <o

k) IFEp < 1, and 4 = of{a: pfe) > 1], then iyl =1.

I all displacements wikh respect b 2 parent sre demtical, (a0 we speak
+ & Bellmen-Herds branching rendom walk, Me[iormisd [1465] calls thiz &
rormar. biancking zandom walk, Of course, all theorsms sbove also apply
o Cie sibuacion. [t 35 of interest v pin down wbe asyeptors bebavior of B,
heyood Theorem 4.2 Constder for evanple an infinite b-ary tree 90 whict
we supesimpese & branching mandorn walk, with gl displacerents Bernoli
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(18], that is, ey are 1 with probabibiy 1fh end 0 otherwise. The case
b =12 is easiesl = picture, a5 all displacements are Independent. equiprsbable
bie. Joffe. LeCava and Nevens (1573) showed thatl By /n — 01 alost sirely,
rnd this alsa followes froe Thearem 4.2, which was publishe] later Pramaon
(178] wenit tinely further ard sbomed that there exisrs & ragdom variable W

such that

i .. Ioghogn it~ f1h]

e log ?
lmeat gurely, whete the of 1] terr. is sochastic. To the binary case, ench in-
dividual in the n-ch generation hes o boomisl (s 1/2) distribovion. T (hess
2 vinordels had been indepeodent, me woold heve Jad lmind ., B, =1
abmogt surely and Umawp, ., B = 1 almoat. swely. Thia follews from the
[owt that PH{B, =0] = 1-ljeasn + 20 and PriB, 2 ! 5 g~ 0H
s, Bramson's result, exposed & crueial peoperty of hranchiog randim walks,
Debkeing and Hose (19908 comalder she ganerel branching randor walk with
Tenoegative nteger-valued displacements. This. &, 1. Bet 50 be the mim.
ber of children of the rou with desplacement £ Lev N = 32, () be the
numper of offspring of the vear, Agale, we amume i = b with probabibity
ane, altbough the tesile of Delding and Hoet treat the genaral case, Some
af thedr results can be summsrized a5 Fllows:

=1

Theorem 4.4, |Dekking snd Hoat. 100] [f v denster the constant af The-
grom 4.8 theww v =0 £f and ondy if BN = 1.

Azsumse now Pe(NT0] = 1) < 1. Then Pr(B, — oo] £ 0,1}, and 1be
2ot case: happena if and goby TR0 =1 Ak,

A. IE[N{0}) > 1, then thete exiaw a proper rewdom wrishke W such thit
B, — W almost surehy.

B UBN® =1, BN < o, and g = inf{7 5 0 BN » 0}, theo
Bnlkg?) lvg logm — ¢ slmrst surely,

If = B[N = Bagd 1 = (1/2her| ¥{0)), then bar integer & > 0,

FriB, <k~ —X— gn-so.

)

MeTHarmiid ; 1995) enemdds the resulta of Dekling snd Heat in syme caws.
Consicer ouly nconegative displacements, sd recall that the branch Faoar
i & Then, if b, & (e medizg ol B, MeDiarinig exduslishes e exkcence of
postive conatants & ¢f suck that for all &,

Pri| B, -b| > 2 oa™*
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i all £ € [bn| This implies shat elmost surely, foe ah o laege encugh.
B, - i, = Qiwgn). Caarly by Theoren 4.2, & should be nesr 1m. The
fulawire taalt describes the closeness of By, ta-vn. W give anly the verslon
ot the case 1At the underlying Galton-Watsat tres 18 the complete infinlte
boary LTEE.

Theorerm 4.5 [Meliacnid 1395 Consider & commen dranching randem
waik in which every ingindun: b b children, and il digraceraents are on
i, 0 where a i Uhe feftmast poink of the support of the digpigceaent e
yorolle X, and BPr[E = o) < 1. Lot 1 > 0 de the fmadeasarily onigue)
colvtiom o €'mIr] = 1, and bt m be finite in & naghbartiocs of 7. Then
thete ere pasitite mnsfands o, &, such that

PrB, <-ti—tign- Il <o 2z,
aind \
PriB, rm+ckgntr) e 0gzan

MeDarmi®s proef does 20l imply ¢ = ¢, but it strengthens earlier re
sults, wuch a5 & pesl by Bigains (1077, who showed that wnder the stated
canditins, B, —+h — 2 slmost suely. Lulersstingly, bis arguoent is besed
an ke second medcert Method, and 1be idsn of lesding ssguences. A sequence
i2).... 2] S leadivg i for all = 0, m =1,

h
Zr,—.
1ut

TiX,..... Xoh are exchangeatle rondor varishles, then indeed,

J
EII 2
-y

o=

PriiX;..... ko i leading ) > 1fn.

be Uhe displacemects ausxuntézed on the peth from the oot b v, We call v
leading if this displecament sequence s leading. that is, § Wy 2 {fi]W,
wheee W), .., W, 0w the valuzs of <he ancestors of v in geoeral’ons 1 through
a, Clesrly, 2,7t) 2 2215, whete Z3(t) is the number of leadiog ind:vidues
in the nth peasestior. with value < £ It stould be clear that ZT10) is ROt
2.'f)fn when 2,0t i large, sad not wch s lost by considering Z3{t5, o
by cotsidering the puinimim salue B eoeng leading indivéduals, wstesd of
jast B, A carefidl appliastion. of the second moment method (Pe(X > ) 2
(ELX2/E X for any raralom veriabie X waith findte mean ELX 2 0) theo
islls Theorem 4.3,
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4.3 Application to Anslysis of Height of Trees

One mey yse Theoren 4.2 the study of <be belght of 1 lerge class of random
trees, These Lrees con be modeled imdivactly by the 2z teeg, 4 vree in which
w2 asiciate with esch node o the dze of s sublees & For the roce, we
have 5. = n, and dor eech lead, 5, = |. Qfter. these siz2 trems. ae close toa
split tzee T in 6 maneer oy be made precise. & split tee T szarts with & oo
uwf walie ¥ = 1. I i3 an infinite b-arv wree, and the values of the children
w,. wwe X VX Fundermaes, T X, = 1and X,, 2 0dur
all & Jo othwt werds, considecing the velue as mass of @ subtres. tie e 1
at rhe mok i parbithoned inte smaller mazses (har again add u5 1 o, This
proeess corkinues Torewr, exch particle splisting (n +le same canner The
dwimbustian of values in 1be split. tree is prverned by the joink distribution of
the b child velues of the toot. [F we consider V) = —Jog ¥, then the abow
modsd deseribes 3 braaching raodom vall Let mi) end p!) be defied 3 fex
bt radom wadk, Uhat Is, [ X ia the vahee of a randorddy picked shild of <be
raat {50, 0 X < 1], then

i = BB (") < b 1)

Diefiee .
et = ESE{E rmlﬂ]} = 355113 [xﬂgﬂa} _

Finaly. e, Noffl be the number of n-th genefasion individuals with vadie
exeeding & in the split tree. The following is 4 corallary of Thecrem 4.1:

Thecrem 4.6, [ pla] < 1, Hen uaih prodabdity one, N, (07 =4 for aff
bt firilely meny A, Jo & aouia; o) 2 1), then bim,, o (I, fe““‘};.""" =
w0} almast zurely. Furthermore, f B, is the mazimel malhe of ery fdimidual
19 the v th pemierchon of the xplit iree, fhen
- lﬂg EII

1

Jm—— =’rd§1 inf{n;: f.l-[lﬂ - I].

n—+x

aimast sumely,

The abave resuts may be pplied In the study of Kelmogoroy's nock [zee
Arbreya snd Ny, 1977], =hich is subjected v many rounds of breaking, and
eack break resulis in rwo rocks with wniform size. 1 Lhe nitial sock bas mass
ate. then Thearem 4.6 Zzserlbes the mesimal rock size amotg 27 shattered
foeks in the neth geveration. The random variables hat greesn the splittng
wre (1L — 177, where If 38 uniformly distribaced on [B,1]. In Lis cose, we

have

mi(f = 3T = % .

[
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Alsa, o

i) = Ag!] [;%} =t
From this, we desermine v 25 the soluthon of Zeel™® = 7, and siten
= 028316, 43 a comequence. the gie B, of e Jargest, rock I almoaet
sygely e~=r=1V, For comparlson, if we weee v break the rocks evesly, the
B =2 =B gl the thind power of the maximal cock i the
patriom modell

However, the way Troe splits are used is differeut. A scarch Lree hebiing
£ modes hos masa & o) Ve ook, 0 we define pur split Lree io such & way that
each rode et v tioe the value of the sorresponding tode in the ongine. split
tree, Those (typreally noc-integer) roughly reprasent he sizes of the SIHTER,
%odes wich walue [alter multipication with 1) Jess then | corvespead to
nothirg ard will be cut. In this manner, the te tree is finite, Far examile,
1o & random binary sarch wee, the sizes of the left and right subtrees of
the ot are distoibted as [nU] and 1 - 7] respectively, where U ié
unifornn J0,1]- These staes are joiothy smaller than (alls{1 = Ulh ard thus,
by embedding, e can sy that, the values M Ehe size Lo dce Jolutly [over
the infinite trest) smaller than the vahws i 2 gplil tree wit misltiplizative
fucter 1 and with reot cnild values (17,1 — £'p, Furrhermore, the sives of the
Jeft and right subtrees ars joinsly Jerger than {ndf - 1af1 -0} - 1) K'we
rupeat this sort of bousding Ex: & penerations, then it it eady ba see that ull
valwes I the size Aree & geoeralivn k are jeintly Targer than the values i the
spilh tree ‘et defibed, minns . The coonection herwesn sEe troes and split
trees 1o thws etablished. T paricobar, what joterests us most s thet S0
iz the height of the biacy search tree with n nodes, thea

Pr(H, > kb = Pripacimr value i generatior, & of siee lree > 1]
< PrinB, 2 1]

where By is lhe maxiewon value of s k-th generatlon node in the arigingl
syl tzee [ i Lhe roitipleative factor), Simlarly,

PriH, < k} = Prleiaeimum value in generation k of sive tree < L]
<PrinB -k <1h

A3 By = et HT ot snrely as  — oo, where 7 is precisely ss i she
wxsanple of Kolmogotue's Tock, I is easy to courlude from thaee inequallties
the follomiLg (essendlally Theorern 2.1): far ¢ > 0,

lim ]"I‘(-I-f—"L }EH) =0
noa - Llogh

and
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H, 1
lim Pr| —-¢=ay]=0.
Jm '(lug'r:‘:‘r I) 0
Thus, By flogn — 1f% = 430007 io probabdlity. whare 4 ia defivec in
Theorem 46. For the rendom binary sewrch bres, e slug hawe 2 second
proof of Theeprsm 2.1

Ths technique above consits in describing the sizes of the eubcress of
randam tre: by an embedding argrment, and to relate chese siess to those of
& gphit tree by guitable ineqoalities, This has been Cone o the litecanme oo
& sumber of candom e, sed rether (ban dwedling oo {be details, we will
revigw tae krogrn vesults. The remainder of this section ie rather epecialized
aind ey be sklpped upos Frs resding,

EXAMPLE 1: THE RANDOM 3-4RY SE4RCH TREE. Lt viiid. random varishles
with & ootucton dengity be wsed W costiuct & random bary search cres,
where each physical wade holds up to & — | eletnémis, As saon &5 & nade i
[ull, new nodes reaching i, o the path dosm froom ahe raok are senr down
to one of 1he & child tress by a comparisnn of valueg of the § — 1 [sorted)
alaments in the node. Here the tres size i3 pemsnred 0 nuceber of element,
. ke of proadee. The firet & — 1 edamieets oocupr the toot, Witkaat, loss
of gerwrality, they e iial. wmiforon 0,1 Thus, as the other dsments ane
independeat, we sz that the scbirse sizee [Ny..... ;) are distribubed o5 2
nihinominl modom vestor with count — b+ 1 and prolailities gives by
10004 By, the spacings determined o0 |0, 1] by & undform samuphs of siza b- 1.
Nirw:, the zelationak iz hetween the zine tres and the split tree 15 only slighthr
Toors intricare, bun the splic tres chearly ehonld baws multiplicatlue feccor B
and sofil random veetors (3, ..., 5] (see Devoope, 1990, Far the detaiks), In
pactiouler, the 5,'s are bets (1,5 - 1} diswibuted (Pyke, 1965, snd we con
fhna easily oorapute

mig) = tB(XH =[S = b j; ] b= 1) 1=~ = W .

Unfortanately, the expressicn for y 4 in genersl oot gicaple e have 5 'n —
¢ in prowebility, whete

i 8-1
f=ind {c:- l,fz{lla'ji] ' +¢1c.gb1—-:zh:g|:.! + < D}

=1 =1
and 1 > 0 i the unigue aolation of

-l
|

]I-+I

L I

{Devroye, 1990). Particolar velues of £ include £ = 4307 (h=2} { m
2462, (=3, £ =0T (b= 9 end £ =NWIS (b= 100). The
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depth of Lhe last veds, D, is in probebility asvmptatie Lo Jog v/ E;;f[l,- il
i abienod acd Pitsel, 1082}, Devraye {1997, sbomed that 3. = 173,
and o = £h.o L%, then

Dy - hlogt ¢

. w011,
Vil ega

where A debdes o normal random varisble. A3 un example, T8=1,

D, - (6/51kgn ¢y .

T8/ 125 g

EXAMPLE 3 THE RAKDOM QUADTREE. The peim quaderes in ¥ (Finkel
acd Bentlev. 1974, see Swnet {1990k} for & survey) penecalizes the binary
seareds Lree, Defined o the previoue chapter, wu goly consicer uniform data
in i0, J¢. Mote thet if the root d X = X700, K. then tlf& ]::Iobnhﬂiﬂﬂ
(volumes) of the 3 quadeants ate given by 1he idertically diatributed (but
depencent] tandon warighles

[
[lxbi- X

(1]

whiere b,y s 8 vester of d bits ideulitying one of the 24 quadram
Dhevraye [ 1967} sstablishes protbility inecuslities belween the values in the
stz tres and the vilaes in the split trez, which imply fae first ceder reslts
that :t suffices o study the split vee. Then we cote that

d [ d
nif) = PE (H#f‘} = H E{Xf} = (ﬁ-ljl ,
i=l

thus genesizicg the bioary search tree [nbéained when d = 1, Thus,

i d
.. EE“LFII _ ?n 1. q,l'd\ll
#{E'II:[%I[J{_E-—I} —-(EE J .

Therglare, by simple izspection, wig~) = 1, where v is the parareter for
the binary search bee . A3 8 result. the eight My of 2 random qun..dtree
i in probahility asymptatic to (1/d] logn, where UT.: L3007, s the
ecmstant ix the height of the tandcn bivary seasch tre? (Destoye, 1987). Lat
[, be the depth of the last oode, It 15 ks known Lhal

2’— - g ln preoebilizr

lbgn a
& renult first moted by Thewrove ant, Laforest, 1990. See alsq Foajoles, Gonnet,
Poech spd Rabsan (19910 Pulaermone.
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DN - {EI.'E}-J:EH i |.,".‘1]. L:I

7l foz aow d 7 | This resubt wae ohtained via compler aalysis by Flajo-
let end Laforgue (1954) snd by standard cencre] Lot theotems by Deveye
{1847, EXaMPLE X THE RaNDOM MEDUAN-OP-{2K+1] BONARY IEARCH
THEE, Bell (2985! and Walker and Weod {197) itrodued the fol owing
mezhad for soastroctiog a bingre search tree. Teke 25 + | poiots at random,
from the set of 1 pointa pa which & total crdar is defined, wiers § i integer,
The median of thess poists serves a3 <he raot of & binary tee. The remain-
ing poitits are thrown back into the wllection of points and are segt to toe
wipnees. Following Poblete and Mooea 1995), we way ook st this teee by
somalderitig lnberoal nodes ard external nades, whers inberbiz] nades bald aue
deta point and external nodes are begs of caparity 2k Insertion procesds
a5 usuel, As stan 28 a0 external made poerflimes e, when i would grow
tp gize B+ 1), ivs beg ie split sbowt the median, leaving twe Tew mvettal
nades (bags) of gize k each, aod an itternal rode halding the median, After
thie Insetion process is eompleted, we may wish to expand the bags inlc bal-
anced teees, Using, the branching process method of praof [Devrove, 15855,
1687, 1990; cee also Mahiooud, 1982} the almost suce bimit of H, { log e for
ell & may be obtained [Devove, 19930 For another posaible proof ey,
see Pictal [1992). The depth D', of the lag node when the finge hewristic is
wsed hias been stodied by the theory of Macke processes or om models i
2 erieg of papers, aotably by Poblete and Maneg [1985). Aldves, Flannery
and P.acion [ 1988), See w'an Gonnat arc Bawns-Yates (1991, p. 1080, Poblese
ani Munro [1963) sbowed tha

I 1 bl

= o - ME

logn T

= proabilizy. | shoold be clekr by fow the the beight of -his tres may be
stucied vig & splib tiee wish eplit vector distoibuted as [B.1 - B), where £
is- barh {0+ 1,0+ 1) That 1w, B is distributed 59 the edian of 3% 4+ 1.4,
uilforn 0, 1| zendom variebies Thisepresenaation is chesined by assacksting
with eoef: peint in 1be data an independent woiforn . || randem vasigble,
Equivalently, if -be &, are inéapendert uniforen [0, 1] candom veriablss, then

Bis disrsibuted as
k-1

II "

[ETETE
Mate <Lat. in this case
M-8k 41
T T ST

The comparatieh of o is & dtlle bit pore tedicus, but the resnlt cen he
phrased ind: neetly;

mig} = 158"}

l
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Theorsmn 4.7, [Crveoye, 1983] A random binary sesro tree constricted with
the ad of the fringe heuridtic with porumeter & hat the follovang property:
. — fk} 4n produsility where c{K] 8 the unique sofulion greater tha AK]
af the egation
e+l
MY L oz
Hlei-c Y lug(1+ : )ﬂ:hgz_u,

i=h+l
and gle) 4 defined by the aguation

It particalar, 1) = 431107, fshe erdinary dingry seareh free), A[L] =
§192570. ..., M3 = 2555399 ., M10) = 249269 ond
3100] = LEIHES ...

Witk &+l
ot = E =
=kt
Dievreve [1997) cheadoed & cenkrel it thacrer for 2, forall k.
Oy =Akgn L.’H’
0,1
T

As an example, bot k= 1, we obtain

M LNl
V1300, 30 kg

ExsMPLE 4; RANDON SDAPLEX TREES. Trlangulaling polygone acd ohjscts
in the plans isan Lupartent problm in computational gerraetey: Arkn, Held,
Matehall and Sidetia {1990) chtained & simple fael Oinlogn) expected time
algorivhon for triangulating uy esllection of v planar points in genersl posi-
tiom. W Tock mare sper'fieally at their triangulanion and its d-dimenglonal
extension ko diplices, and 55k whed the ttes geveratad by this pattitiuing
Tooks Tike if the points are uniformby distriboed iu the wnit simplac. Given
are n wectors Xo. . K’,tnkmgwluasmnﬁxedﬂmphx.?ufﬂd It wos
snmerd thev. this is an .14, seqaence with 8 uniform distribucion oo § for e
puiposa of aoelysic. X is sssolated with the vodl of & o — L-ary Tres. k
splies § Ingz —1 new eimplives Ly counecting X) with the 4+ 1 ertices ol 5.
Ausaciate with esch of thess simphices the subset of Xa,.. ., X stnglating of
those palnrs tost Fell in the gimplex. Each ponempty subset is sent b 5 child
of Lhe raol, amd the splitting s applisd recurslely Lo asch ik, As every
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gplit takes lingsr 4ime in whe pmbar of pointy procesed, it 1= clear that, the
expected lime is proportione] to B[}, where By, ia the expected depth of
a random node io the wee. The partition consists of dr — L simpllecs, each
assovinted with an exrernal node of the tree, There ere precisely n nodes in
ibe tree and each node contains one point. If |§ denotes she size o7 & simplex
5, then whe nlowing masiel property i wlid

Lemma 4.8 |Deveove, 1987) Jf simaples 3 0 split tnto d + 1 simplices

St Rapn by e point X diveributad nifrndy in 3, then {15, Sa]

tmwlirniw!f'-hwdmlﬂ'f: ----- 3V}, where ¥, Wy ane dhe aposs
bt of [0, 1) imdioed by d 22d. wrdform |(0,1 rondom yariobles.

Ik s immediate thet the randorn simplex tree is 5 apdit bree sith split
veetar disurituted ag the spacings defioed by 4 idd wniform |0, 1] 1andom
wrisbles gy 0,1 and brageh ockor ¢ + 1 Thesefore, H, (ane also Dy
bel'm re:ase]z.- as for ibe random d+1-ary tres disenssed enrlior, Thuw, if

I.I

Dn '
—h= & xzﬂ—-l— m PTU]:ﬁhi]lth
and
= Mgn ¢ £ M,1).
¥ ﬂ’iﬁlﬂs

hs on example, If d = 2, thet and
Dy —{iiSken ¢ )
SIS ge

We aken b chat | lag i — o] i probabllity for & fubction £ of 4 that
may ke ooumputed via the recipe described in the eample oo bary search
1,

44 Refinements for Binary Saarch Traoas

The resulte of 1he previnus section permit fndwmentally cnly firss ocder
asymptoti: enalysis of Hy, Por the stody of the depth of the last oode I,
ar the depch of o kypical codé, branching processas are raally ma secessary,
slthough they enuld be used. Trevrave [1907) cerives & geersl sentzal Linit
theceem for Dy, ilavieated i the previous examples, basw oo o mdit e
mieckel as ! the orevious ssctien, By sllowing n balls 14 drop aceording ta a
ceTtbin prosess dowi se Safiite §-ary tres in which nodes my beld zers, ooe,
or wort balls, the meds] is rich enogh Lo encigmes Doth ssarch trees and
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tries o doital search tres. Recall that = 431107 .. Abe unique solution
grepser than 2 of clogiZefc) = 1. Theorern 2.1 mplies dbet the beight H-
of the tendum binary s9acch tree sunishies H, ! log# — v in probatality. In
fucz, comvengence 3s in he almast suie sense a5 well, 6 fact st oted by
Firtel (1354}, Using elementars inequzhties in essentially the boumis found
in 1his purvey, Devreye (1967) showed thay i, —+loge = 0i+/Tog 1 TogTog 1}
in probability. Hebecn 1470 repottad that By was mack mone conceritreted
trar, that, ang conjectued even wr(H,) = Q1) There huve been chree
witempts 10 crack this conjerzure.

Mickas: Drenota [137) uses generating funisione to prove that B{AL Y~
vlogn, and bis prosf is the Grst. oa2 based an this appeasch. This medhed
sy heve o benefits: first of all it may provide dewailed benavir on the
eact bebalor of E[H,) {the kmer cider terma niay he nsaful elsewaese),
gad the method mey pecbaps ooe dav be extended to tregh wor{fly) i 3
similar maomer.

Dievriye and Reed {1935) provided the firsc anakysia of the heght that did
=t requirs any resilts from ele theory of branching processes. Trwtead, they
merk certain paths Lo Joewes in the splll tree that cortespinds to the binary
sen-ch 2ree, sot apply Vie second momsnt method to cumpute bousds. on
prokabiities. [nterestinigly. the marked lves are aufficiently apread out to
make 1kis nethed work This medhod was Tater gensralleed. vin the modlon
of leacing sequenies, to common beenching rardem wilks, by MeDiamsd
{1995] (st Thesvem 4.5). They were able ta shaw the:

15+
,LH_.DLPr(lﬁ* = = logh| r@hglcgn) =1.

[Mate tazt 13 Tng? = W22023,. ) Using a surpringly eleoiatary seout-
sive prgunwenc, Rebaoa (1597 showed the: for any ¢ > (+, ‘mimitey oftan. e
herre

, B
Ei|H. -Eif)) < oS -i+e,
In Eaet, i
F'J-NE"LHH] = E[Hu:'] X,
n

then his method ellows oo to cenclude tha:
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ME‘[ Hlt —E[Hn]” L s
%

[F we linew B, down to 0F1) terma, we mould be done. ol bepst bor first
moment deviatioos.,

Final 7, we jis’ Jearnedd from Jean Jabbews [1958) at the Uriversity of
Yerasilles thet b hes & proof of Thecredy 2.1 based sulsly on martingales,
This may be et saother path slaag which te proceed.

4.5 Bibliographic Remarks

Eit peneral background jnkermatica see, ot example, Asusesn and Henng
{ 1969, Athreys and ey (7972, and Harria {186%). Lemma 4.3 takes elemects
from Fingman [1973), Biggine {1577). and Devroye and Zumora [1997), The
minime] displacement, By, was compared by Durvect [1979) wlth <han of the
independei trse codel, i wbileh all a-h generation individials have inde
pendent values of their commen distoibutisn. Bramsou (1973} 250 worked oo
the St Behavicr of B, when the displacsments ar¢ gaussion, of m peeral
when particles ¢escyibe Bromnizn metion and spliv at random times. Biggins
o JEKHIY dleyiven w cesbrad Ciedt theorem for 2,0 ) when ELN) log I < 20, wiene
i ia the numter of ofspring. Looune 4.5 is ivplicit in many dlder raferecce,
such a3 Ruhingtein (1982), Smish (1984} or Deveoye [10860)

5. Crump-Mode-Jagets Process

51 Introduttion

‘The Cran:p-Mode-Jagers {or cME] branching { Crumpand Mode, 1968) starts
with & gingle ancestor born af time ¢ = [, Z{t), the cumber of dilldren
Besty £ e ancestor before tie s an arhlteary counting process, The
child=en of (e anczetor, from Uhedr tirths, bebiave néependently of one ao-
ather st of their pecent. producing childret at randem. sccordiog o rendom
prucesses with the same joint distribation es Z3(.). Their children pradice
children n Che spme vy, 204 50 o, We gpeak of & Poissoo o7 branehing
proeess if the betwaor-birlh interute are exponentie’ly distributed wich po-
TRIETS A, Ay, .. cespectively, Thus, bivths pocie st dutermls distribieted
a9 Fafhy, Bafay, ... whewe the B.'s are independent and expogentially dis-
tritmited tandom veriables. Note thar if 4 = 0. for poros <. theg the number
of offspcing of an individusl can ewer eoteed 4

»r
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If we Jiuk ench individual sith itg parent, they e obtain 4 teee, sod the
qotion of & generation beames meeningfil again. Several rawdom variables
e of incerest here:

A L, the ticte at which toe tree bes sxscrly b opfes
E. B, the time of the drst birth i ibe n-oh generation.
£ H., the height of the tree 8% lime k..

D ;. the oumber of individunk it generation k.

E 21, the nwmber of iodividuals at time &,

F. H{t], the hetght of the tree at time .

The reasia (WP Processes ate (mportant to ua is becuse of the following
counstivn with catdoen tees thet can be gron in o incremental aonar,
The random trees nre grown oo sdgt o & tme, sarting from she toot. I
the degrees of the currens uodes are desated by 0. then node ¥ is salected
with probability proportione] to py,. Thia node hecounes the patent of e
nioce, Obserye that the ardey of the births jo the Poisson CUP process lollows
axactly that of the meremental random krees just destlbed. Aban, bach are
probatr isticelly equivalent if we are suty interested in sdying depchs anc
wighrs of podes, The last remark |5 tooted in the abservation that It we
Eawe a Taber of blrth processes with rates A, then pincesz i gives (e oext
birth with s-obatibity proporilone] s 3, The mide] desribed above and the
comiiouga time embedding des are due to itk [1934).

EXAMPLES.

4 Thewniform randotn recurgive tree (URRT) has 4 = 1 B ell £ Tt is grown
by chocsing 8 perent with equal probability from amung sll possible
Parents,

B. The random mwpmmidwi‘lhméﬂhnsl.;:lfwf-cmand A=0
for i » . Here we chooss a parent woilomly b random from among
those parents with ess than m childeen. See Mahmoud (1504

T, In the random hinary search tree, we havs do =2 3y = land X =
0. To see quickly why this netemencal tree model comesponds o the
standard Tandom Sinary search (e, consider o reodom. binary ssarch
tbee coimirucied ol the basis of an i .4, sequenc of wn:forta [0, 1] random
wariables £y, D, ... Giver: that vha tree bhas = — 1 nodes, che n-th node
his & rsok thar i wmiforby dieribinted on [1,2, . o}, That is. &t falk
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it ome of klve 1 intesvads ot |1, 1| defined by the Brat v - 1 uiform tasdom
variables. Byt esch sich Wterval corresponds unbyuely t a potennial uew
node (these am called exiernal nodes), and there are 1w externgl sodes
for 4 noda with no children, and one fr o uede with one child.

L. The linear recursive aee bas b; = 1+ 4 for some peaithwe eonsteud b,
To wizwalize phis, consider b= T, Tir groer & 4ee, we Dhck 3 pareit. with
probabifivy proportions] w6 ooe plus the number of dhildven, Far b= 1,
this e called & plane-crisoeed Tecurave tree by Mahmoud [1992) and
Mahewnsd, Smvibe aod Jryomidi (1993} (see also Szymanski, 1947, and
Bergerot, Flajolet and Salvy, 1992). Tha last name 14 salected bocsuse of
the followity planar visualization: draw: dbe ires v the plane, and place 3
new edge uniformly at random a5 any posaible child of any poasible rank.
In this mannet, & pene-rienmed troo is definad

These are vhree recent papera thar provide an analye of the beight of
these rendom tress wing Cromp-Mode processe, Pitvel (1004} for the rRET
and linwar recursive tres, Mahmoud {1984) for random pyvarids, ang Bigping
and Grey [199] in the more gepesal setting folkwed in this ehasser. The
height &, can be analyzed vang the Byzgine Hammersley- Kingmonn thentem
(Theorem 48" We conclude by working out the details far the vaoous tree
models menthoned b,

32 The Main Besull

The relationship between 1ba WP roces end che beanching random walk
i chear, il we Tet (b displacements in che tranching randoet walk be the
Iter-birth 4itnes Ao the btanch facttr mby be dobounded (a8 for the URAT
vase), we nieed v olkew 2 general setup. Far simpliciey, oo enaure sarvival, we

asme Chronghout that Z)(ec) > 1. For a geoees] beanching walk provcey,
we define the Laplace transinem of dhe mean reprodisetioe. maasurs,

m{#) = E (E r"-)

where the '3 ate the reslizativos of 24(.), and the s ranges over all
childzen of the roat.

Exanple. For & Poisson OMP process, we have
¥i= EBofdo, Yo = ¥4 Ef Yy, and so facth. 5o tbe
() = Doy E e f et f0L))
= E::u ":.DE{E_“‘“’J

= m 1
_Ei=ﬂ"j=[l |.|.,_I_a :
1

FE
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Assuming that mil? < oo for some & 3 0, we o0t hal aa B = o0,
it = 0 Qoserve that 2 suficent eonditior. for tkie iz thet A, = O[j) e
3+ 5 0 the Pokson GMp case). Define

) = b Pl 93 0}

ani oheerve that kg ple) is cooceve (ibe infrmum of o family of lnes 3
cypceve) and pie] = contiouows oo the interior of {4 g =4}

Diefice 2.t} the nuraber of individusks io generation k with valos st meet
t. Bizgins (1977} uses clussival large deviation resiks by Babadur and Rao
[1960] and Chernlf {1952] b prove the foflowlng:

Theorem 5.1, [Biggms, 1977, Hemmersley, 1974; Kirgan, 1975

F iy < ot for some 8 > 0, then (B{Z,[nal]}F — pfa) wn -
Furdtermiore, Fofu) < 1, then mith prodabilély ame, Z-{ai(noi = € ‘Iﬁ::ur ofl ug
fittely many n. e € iz o) > 1}, tem Ebnng (2re)) " = i)
amast sureiy. Prolly

i 2wy gte el <1}
—x T

nimcst aarey, ol v 1 faite,

Wi owst relate B, e B, Observe that &t 128 momers by, the Jamily
ttee is of size 0 and of helgh B, and thee B(H.) acd B(H. + 1) are the
first mormends when dbe hesgat becomes equal to B, and I &1 sespectively.
Therefore.

BiH,| €ins B[Hq+7).
Singe *, = oo almet surely, we have ;) — oo aliwest surey pa well. Thos,
BiH, )/ By = 1 almcat sursly, aod 2q/H, — 7 edmost sorely. Therebore it
sulfwss 1o slndy b, Thia can be dane o & case by ¢ase Dasis, 56 is tontinely
Gome 10 the Lileratore, However, thete &5 5 universa] theorem:

Theorem 5.2, Nertiat, 1981, Biggins, 1995] Jf m{f) < e for spmed = 0,
and 2{f] denates the mumber of briks wp do dime €, and
o inf {8 mid] < 1}
Fwkich 45 positine et fréfe, as miD 1) 2 1 and mif) =0 gz 8 — ), then
bg it

alrnas! aurely o5 — oo, Equiuadently,
:!I.
g

1
- -
o

glrget gy 63 = .
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From this, we bave:

Thegrem 53, [Bigena snd Grey, 1996] Dnder the conditios of Theorern
85

Bl
kgn oy

aimost surely 28 @~ X,

5.2 Application b3 Various Tree Models

I & [ew sperial cases, we have very refoed it bormatlon abow ¢o. This octur
priovipally when we ced describe the speciogs betmssm satesslilve blich
fules avcutately, Comstder first o branching peocess wich one child per node,
end the tneer-birth Giews e eqponential of wnit parsiewr, thex b, Is tha s
ol 1z iodependent stacdard exponential randoe varishles, ao et & =]
almast surely. Also, B, =r—1, mid] = i1 +#) end

a5

u{a]=mf{:ﬂ:azu] .
The miniratm aeoee gk B = w1~ 10 50 that

o e Weasl);
“I‘ﬂ"'{l 62 1],

Since k(1] = 1, we have 7 = 1. This was 'wet. a [stopid) coundabowt way
of checking what we already koew, that Hy'rm — 1 slmost surely (as i, =
a-1]

bo Lie second meample let ¥, ¥y, the children of the raok, be bomn at
indeperdent ndatd exaonertial tmes. Tn ehis case,

mit) :
| = ——
' L+é&

2
#[G]=ﬂ{?v—:ﬂzﬂ} .

Clearly,
1-#
The minimus cocurs at § = mex(1fa - 10, 30 that

Cfetd ilcasl);
”M'Iz {21

Thurs. * is b anliLion Tess Lnan o of Jee'=" = 1 To sty €., oie hat we
hawe Intar-birth dimes that are disteibuted as £5/2 E5fd. .. £, n, whers

[
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<be £,y wre independent exponential random vacishles, From this, i\ s sasy

=4 shrw that ;

logn
almiat surely. Therefore, Hijlegn — 1)~ almest aurely, This may be cast
i 178 Potason CHP mcdel, &5 1be first hirth i the accesowr oocrs 6t 8 Lo
Jretribieted a8 Fn /2, and the second et & tioe dictributed as £y f24 By, wheee
lhe £, e expooentisl randam variahles, Thes, by =2, 8 =1,80d 3 =0
for i = B This, of eourse, yirlds the same results

=1

In & third example, let the mit lave children wlose iimes of birth ame
distributed like 2 Foisson point procesa of uait rate. Ths,

on-E{ 4

= :
Therefure,
o] = 1nf{% :HEIJ} .
The minimum ootk o6 & = Lis, s that
bl =t

Thus, 7 = 1je. The sty o & s equally simple, &8 & 15 distoibotad a5
Fyil4 Eyf3+ -+ Bgoyfft— 1) T zee this, note that if & elemenss aee
alive, tw dime uotil the wt bth isdistributed a5 Bk, as the mindmm of
k independent. expensunins] randan varigbles. Thus, a8 befire, ¢,/ logn —
almoost surehy. Tt i esally seen that Hy/logt — 17y = ¢ almeat purehy. Thin
tesult bor vhe wniform randam recursive aree wea flrst obtained in Devroye
%

Our fourth example ivwolves the plane-orewed recursive toee. ko this
caze, if & node © bae degres dit), then its probability of meking & child is
proportional b 1+ dfa). This is ke 2aving that the childeen of the ot are
born with inter-bérth imes distribused like By, £2/2, By /3, and 5o forth. A
sirupda compultetion sbowe Lhat

[ I | i
-1 (3)

dml pm]
The compubacion tf - i & bit eore compbeatod (3ee Fited (1004] or Biab-
runizd {1984}), Elamrier, the iser-birth Limes ara eagy 1o deel »ith. [ndeed,
the sum of bz imtereities of the birth process is 30 (1 4 dla}) = 2 - L.
whete in| denorss the oumber of naodes, Therefire, tie inter-birth times foe
the tree e Gistribored Bhe Byl Eyf8, ... Hence, Ut s vot hard to show
that & flogn — 1,2 altest surely. s thar B, { kg n — L/[2Y) altoost aurely,
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T the randaen meary peramid, we beve a(f) = [1- {14+ 8)7™)/4 Coe
can easily see thet fur m = 1, & = (45 — 1} {Thearem 5.3], but. + requires
nunerical compitacion. See Mahmoud {1%8).

Fizally, for the linesr recocsive tree, Pitte] [1994) and Biggine and Grey
(2065 show that m{f) = i bor 8> bgv =1+ plo] = ae'™, and
- i the unique oot of e~ = 3. Thys, B fdegn — 1/0yib + 1)) slmeal

Zurely a8 b= oo

Tt & Bollman-Harris st-up. the whobke licter i born simu Haiessy ot -ime
T If theere e7e b chikdren per parect, then we heve m(f) = 4B(e—"). When
T is exponensial and b = %, this |5 the celebeated Yule peocess. Chearly,
m{f} = 21 + 4], exactly 28 for the binary search tree dlicussed earlier.
Thuz, the height behaves in s manner similer ¢o that of the hinary s=arh
tree, evan Whatigh the (WP proceses are very diffarent indeed. When T iz
¥, cessarily spolential, and the litter size Eollyws o genaral distritusion,
we obtain Uhe Ballmen-Hermis banching procsss, which i the subjoet of the
pesct seclion.

5.4 The Belman-Harris Branching Process

Tn 1952, Bellman and Harcis deseribed a penesatizatlsn of the Galtor-Watsan
hranching process by embedding #t in condnsoud time. The [se-caled age-
depeodent hranching) procsss is descriled by two paremeters,  diserece dis-
tribusion {ps,i 2 O} for the number of children, s in e standerd Gallon-
Winton process, and 3 distribition of a strietly positive raodom varishle T,
the tine berween Hirth aod Teprodnction, With eah edge o the Galton-
Wason troe, we associate an independent copy of 7. The proces is started
with a single root at time §. The elements ara atill greuped in generations.
The roat element produce a Jitter of siza debermined by [ } after a time T)
diztribusted 4% T'. ek inctividual in the littar reprodices In the same menner

ang indepandent]y.

This wodél can alo be wsad for deserbing the grawth of the rodom
hinary ssarch Lree. We take the poink of view chal, we Jet the mado binary
senrch Mo grow by at eech dterstion picking an eternsl node wnliormby
and at randoin. This wde becones an riecnal uode. gats removed from the
pan] of extarnel nodes, and produces 1w bew evternal nodes, its potential
chlldeen. At any moment, there are n intemeal sodea if and only if thers aze
r: + L erternal nvdes. T T ds standand weponentiel, chen given that there are
E evternal oodes ot time & Ty the memaryless praperty of the exponsatiol
distribugtam, we in fact plek as o poat tode any externel pede with equal
prebakilliy, Thus, the otdir in whieh the pedes are cheen s identical
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that Fse growing the caodom binacy seerch tree, In mtation of the previous
gection, the Lese obtained at the time § when there wre exartdy 1 4 1 poemal
rodes 5 2 vandom binary seacch tree oo n interoel nades. Recsl] that the
panezst in which T is exponential ard the nomber of offsgrlig 13 sheass Lo
15 the Yube process, o binary fission {Athreys and Ney, 1972, p. 109). Fac
different distritutions of T, wn obksin ol Betent, kinda of random bizary tress,
We will o explare t1 Yule process congeiaeticn of readom bigary search
troes any further, eeepl G the meotion of che following theorem below,
villd when T ia standard exporentisl.

Theorem 5.4, Assume that {p] hos Tute second momert and that T f
standard sporumiiel. Let 21 be He number of perticles alibe ol te £ i
¢ Bellman-Harms process. TR Zide™ tends admost suredy fo e rendom
varvate W, o
if=eW s,
e SN
am
mhese of = i), Finally. condstionad on W, U002 Silegi) + VWD
o unit rle Peasson provess e d, Thot is, Jor a0 <) < - < <00, nd
misgeran, = 02545 &, and Borsl sabeei B C |0, 20,

Priliitg) - Uity = ma o Lty ] - D) = . WE B,

= Po(W € B[], BriPit, - 1} = ]

where Pa] 15 Possson 3] tonde: variode. Furthermers, 0] = 200) = 1.
For the Yule process, the rondome carabic W has the abindund exponential
distriubim,

The Foistot represeatation ic the theorem shove < dus te Kerdell [E365].
I T is stazdard eapancatial, then io the Yule pracess, £30) = and Z[H)
incremses by aoe each time & paclick zers replaced (as ore des bt teo
wre barn). Two interesting progertins of the exponentiel ¢istribation sre the
foblowlyg; i By Ea.. .. a7e il exproetillal randsm variables, then

ez

A For g m, minfE:, .. B )=
B. {The memorvkss properts.) For any ¢ = 0 B — ¢ given By > £ 8
discribueed as E).

Thiss, the intervels butwean <imes of bizth in & Yo process are distributed
liee By, Ea/%, Eq/'3, .. . lsing thesa two properties repestedly. we Eae
P2t > ki =PrE + B2 + Bajb+ -+ EfR S
= F'II[I]'IE:(:EL,EL.. .. E't:l i)
={1-¢'F
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5o thar everywbing i kmown about the dwiributon of 2041 Far example,

E{Z[t)) =) PriZit)> k=2
£

Io faet, at any £ 2it] has the peometr's distrbution with parsmeter £~

8. Conditional Branching Processes

E.1 Totroduction

OF prsticalar interest i the conditiona Calton-Waksan process, or conds-
woal besodhing process. o smuply CBP, io which we condition on & = n,
where & = T2 & 1o the total size of the popebation. Z; & the size of
the populstion th geterathon §, aod 2y = 1. These procisses wee studied
by Keanedy 11975 wnd Kelekio (2972, 1985}, who made key soozeecions be.
twaer. Llien v s-valled siciphy generebed rancom trees, intraduead by Meir
and Moo (1978]. These trees are uiformly pleved io given collectius suzh
B4, for example, ll binary srees ov n nodes.

Sl sxamples will be given in the next sectian 1o the ather ssetians,
wit review Same pesulbs for Lhe disteibation, size and beight of the toes in
this el

Carzider & maultiss of trees, that is, & zat in which repetitions ars ellowed,
Lt the weight 12t] of g tree r be the nomber of seeurmerces ol 1. Let [5] denote
tts size of £, 8., the wumbes of codes ponedeed v ¢ Then

tn= Y. i)

1% the number o tress in this multise: with n wodes, The genernting functuon
for By} is denates] Tne
= Eu.n;“ .
nzd

We defive & rangdom g T, of sz n by

-|r|t|=1:
Gn

BT, =) = -3!'1'[1,;'I.f|:|.,E =

where ¢ i5 & ol aonstunt. This, each of the g, ctourerces of
elemenis in the multsst of tress of size n has the same probahilicy, Thecefore,
it is Bopraprate to speak of & wniform tnadel if we cen somehow disiaguish
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between wll St copies of ¢ throw dntg the multiset, This is illwsicated in
she mext scrion.

A particularly intresting tultises of trees i the wmply genernzed fumily
of trees (Mair and Moon, 1578), which requires & descriptor

» o
pai=Y 6y
0

where & > T, and the £s are tonosgetive inbegers (usually, but nob neces-
serily, uniformiy bounded in ¢). The nitathon 4, y and ¢; is by oow standard,
st we will adept i1 66 well. Consider ordesed tress, thet s, \res in which
the order of the chikdren matres. For each crderad tree £, Jau D;(th be the
nambey 2 vodes in t wnth i chlldeen [sicoesocs], Then dedne

o | P
Ml

T Family of toees i aperodic .f 2edff > 015y > 0] =1, and pevindie
ofbarwise. We define a madom stmply generabed tree Ty af size 1 by

PHT. = 1] = el j=e
whete ¢ i 8 normelization consteny, We note here that beranse we have

ordared tree, _
yiz) = spied) .
& prof 15 given i Thearem G.4.

St we define a Calton-Watson branching process with parameter # >

with offepring distribation
Y.
=2 il
;‘I ﬁ:&] ¥ _']
Here we mume thit §if) < oo, b i easy to venify taat gy, ) 8 L
deed a probebity vecter, Furthermore, W expected oumber of ffspring, an
wwreasing fuoction of ¥, i
id )

P = E -
; TN
Lat 7 be the smallest positive mot of p{r) = 747(7]. Then for 8 = 7, the
kranchity prodess s eritical, while for 0 < F < T, it %5 sobritical We now
define CEP wiih paraieter nas the above Galton-Watsot pravess conditinped
o iba total popilation size n, and Jet T; denote o realieation of CBP.

The crucial properties of e e ramdoin trees defined shoee are captured
o Theorem 6.1, which states khat the coodicionsd Galion- Wtson teee T, has
the same diskributlon es the rendom simply grnerated tredl
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Theorsm 8.1, [Renmedy, 1979 The Jignbution of T, i incependent of
B¢ (0,7]. Porthermone, Ty £ T, where £ denokes epuality in distribudion,

Proof, The first statesment follows frim the ssernd nne. Lt & be an ariktrary
fixed rrdessel v wich i = #. Let T* be & [amily tree prodwesd by the
{umeenditioped} Galtnn-Watsan process Then

PrT" =t} = I-[ut_rﬂ [Pr{zl = .I']:IDIH]

v Dl
= r[eﬂ {5'%.3]
= I-[I.:J'ﬂciﬂ‘l:l:l t WW]}_E' DAy gL 10
= () i)yl w it
= HE) kgl AT

Pri[T*| =» _: e PRE™ = 1)
= Fejpi=a EHRHEE ™ x g1
=g [a(f) " <
whett as is the nimher of tress in the ultiset of size n. Therefure, Rith
i =,

, Pr(l"=§) &)

I'=t;T'= J = i = —5

P === b= ™ o
But this is propertional wo (W[t} so ther T, i indeed dutribited as T coo-
dilives] on [T*| = n. that s, 88 T7, C

Trees sr: wwsed i synobulic epmputstions to represent frmules, with in-
ternal nodes represating operstors £1 funetlons, and leaves operands. Thess
are s palled axpmession trees in the Lterature on pareing and the svalus-
tion of expressiand i higher level languages. To the anadyals of such objests,
it, & natural to scaume ches sl rhiects are equally Leely, For example, i
ardinary trigonnmeti expressions o hrse operands, =, g sad 2, thers we
internal ondea with twa children (+ and -, iemna]l aodes with aoe child
[4il, &%, tan, tok), and leaves with saro childeen {2, y and ). The nodes
gre thus Lahebed, with a diflerent mmber of Tabels socordiog ta the tape of
trge. T be formabiem of (e previows section, we have gg = 3, ¢ = 4 and
e = 2 K plz) = oedyf2)). we may got et or aqrmptatically sonprate
pupreasians by analytic methoda: see Yitter and Flajaled (1990} for & swrvey
af sueh methods, based on Lagrange inversions wnd singlarity analysis. Fir
pxpected values of varkus additive parameters, thiz is indeed & natural route
b follow:,



&3 Examples of Trees in the Usniform Random Tree: Model

(1,1}, Several chuives of descripters lead to various types of tress. Cotsider
Eest the ehaiee (1,1). The weight of & tree t T o foz every tree comaisting of
juat lesves and one-child oodes. Ths, the mubtiser will conuaie one of each
o these trees, whict m Fars sz juge Licked chains. The 3P has probability

wecior I ;

(i)
Dt chearly, conditioed on he size of the (tes being n, we ses that it doas
fiot matesr which & we pickad. Tie tree hae beighy exactly 5 - 1. Ooe ¢an
exsily verily that the same result would heve beea obtained if we bad selocted
1te descriptor (a8 Bor any b O Therelore, (nberesting trees cdy £4ur
when ¢, > { foe some s L

{1,0,1)- The rexc siplest choice ia {1, 0.1). Heve we place in gur moltiset
tess wlsh oty lomves and twt-chibl podes. Such trees must have an 2dd
cordinality, I 1] = 2 + 1, there are necesarily &+ 1 leaves and & two-child
wisles. The weight of ech tree of size v = 2% + 118 Pus ddentical and equal
to ] [ ol nonzers =,'s wre éaie. Hemoe, esch sxee in the multiser w different.
and sl pessibde toees of the Typa deactibed above gre presenl. The famiy ia
sh Fareiby of full binary teees. Agaln, all sueh trees oo egually often in <be
Tutised,

{10,m). Il we teke (1, 0, m)], then the weigh- of each tree of size 1= 26+1
is mt ard within this class, 8l trees oceue equaliy aflen in the matiset.
Therefare, there is ro difference betwesn random simply generesed thees Tor
(1,0 m) kv any m = 0.

{1,2.1). The oext metnser or the ladder of complexity 35 (1,2, 2. Here
we hgwe rees witk nadss hawing up ta ten children, and the meight of a tese
with 2 iodea of which there are {Taaves is given by 271, 29 the cumber
+ odes with =wo chuldeam i { = 1. fbersabivigly, not &ll koees with i noades
yave eqzal Tepresetation. We can bowever force o distinction on them Ty
additional ways of distinguishing beween trees For exiample, fit 2ach ande
with aze child, we may make e child o kit child or o Iightl dll]l: of 13
aarent, For  tree with 2 — (2! - 11 puch podss, there ave "% posible
combinstions of beflsight dstincrions., Lot us attech exaelly ons of these
curhiratyons to ekch of the 71U crees with a1 nodes and ¢ lesves in our
multizet, Thar, each tree in the oilizet is distinet, and is i farc an todinary
Tioar tree. And all Tinsry trees un r oides are indesd i the Tahtieet. An
eqvakat puitiset [for onr puspoees) woold bave been abisined with the
snotes (1, v m?) Jor amy ot = [ W will also refer to these troes as Catalan
Lrors
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(Lm, 1) I we pek 1., 10, thety it is aecessary to create a designation
for esch giagle child, and we could mssoviate a label between 1 and m wita
ench sich Iome chiid, This assores & wjectior between alt quch “labefed *
ttess with qp to two childret pet onde and the trees o the mltiset. With
m = 1, labeilng b superfloous, and ace abtains the so-called wnary-bloary
trees, which are the orderad trees with op to oo children per oode.

{1,m.m3). [f we pick (1,m, m®), thec we color each child ‘1 ooe of m
calats, and note thad with all peesibie eclovings, all traes in the mylticet poour
il ance, and Gl thete k5 a bijection. The fumily ig that of tress with us
1t children per node, and 21l nodes sxeept the oot sre colored in 9
of m eolora, In the cBP. w2 may s § = Ljtn to obtain the reproductien
disteibutien ;1,3, 1/3, 1/3], Thus, the shape properties of all these trees are
identical, regardless of the thelot of m.

Binomial Positxm trees of brench factor b ace trees in which esch nade
bz up 2o b children, and esch child s given & pozition, and onty eme child cen
occupy each poaition, With b = 2, this yiekds the bivary sess. For generel
b, it ig mot bard o see that he descriptor st be binemial of the foem
1L [:ﬁ} Ternaty shest arg abteined Ly uaing the deseriptor
(1,3.3.1), bor example.

(1.1.1....) or peomateie. Al grdered trees withint resttictins on the
muuter of eildren are obtained by -he Infinite deaeszioe 1,11, ). These
are also celled unlabeled sooted dodered tress or undabeled placted plane
tress, or onlabeled reoted plene trees, or just plantec plane trees. For the
CoP, we gt bk =2 1 so that 408 = 1/(1-81, and the basic repmductcn
distribatien is gven b (L1 - 8,001 - .. F -4, ), thas s e
mrometsleally decransing prabability vectar, From Theorem 6.1, we note that
mry & £ 010 yislds Lhe arow random tres it the conditionsd brapch pg
process model, We cuight. thus as well seke & = 1,2 1t takes just o moment
to vazify that all unlabeled rocted plane trees with non-ngot nodes eolared
i ane of # eolors e ohteined om 11w m?,m,...) For the caP, %o
Tuquirs therslore & . 1/m_ But then the CBP 8 exartly 55 i the case m = 1
(pemnatric], and thz vhis choice of descripbor is equiveleat v 1,1, 1. 3 if
W WARL L prudy Elenie propwerties of the wrees, unrdated to oolor chaices.

{1,0,0... ;1) If choe only poozero coefficien: are thed-rh and the §-th, with
1 1, e oblein the sowcalled +sry crees of Flajolet and Odlysko (1962},

(11,2045, )- A node with & child-en gets & Jabel between 1 and K,

which may indicate whieh of s children [ the omdeted tree) & "hest” We
will call thess trees awirlee 3o 1ree.
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1 e bocrgve sbruchiare in (b Grder, by removing the arder of the childran
altogether, tr by teplacing the 1otal order by & ciccular order or & pastial
grdering, w in bt allowr ¢,'s b take values lass than one. This will not be
pursuexl heve. See. homever, the veetinn on Cuyley trees, whete B conpection
1% maade with Poissan-distrituted CRP's.

8.5 Catalan Trees end Dyck Pathy

Theze are specinlly prety dervmiings of tb equivalence between 5 GBP and a
wpiform andom Catalan tese, Ve first cotaidoe & nonnegative tandom walk
i whish &l steps are +1or -1, we start ab Xp =0, s bave Xy, =0, I w2
replace +1 and -2 Ty & ang b respectively, then tha zequecee of In 2yimbola
thrus ohtained 15 5 Dk woed, The walk E alse colled o Dyck path, Ifay i
the namber of diferent Dveks paths of Jeopth 3n, by conditicning ar che placn
n of the frst reburn to the origin, we have

n-1
6 = Eﬁpﬁn-]-p
o]

H.IIJ:II:I]=11'B|}=1. Tt 19 well-kvovsn thes

I o
w5,

che n-th Cetalan pumber. Theta is a bijection hetwean a Duck path of keogth
%t and = biary tras o0 7 nodes. Deaw the binary tree in the standard manner.
Write an & to the left of every 2ode, and 6 b underneech eash rade. Theo
start at the poat ad walk sroand the tres by folkoering edges just like & bost
would follow the shrrehine. and wote the sequense of 28 and b's. The order
of vt is called prevnder. The sequesce forts & Dyek word 2 the immber of
& 8t a0y peint st exceed. the number of ks This bljaction iz nseful for
midy purposes bug for the sty of pacpieters as the height of the random
Bitiary tres, some extra wark 7 weeded We jusk note shad the rooted hinary
tzees were: porsectly counted as far back as Oayley {1E5E).

Another Wijectios may he cansidered, but o with rosted nrdered e
with 11+ 1 nodes (aod t7us ned gos), by placiog nest v pch dpe an 4 to the
left and & b to the right, and femng & Dyek word by the walk of Uhe fcmer
bijection. This malk will be referred to s & Harvig walk. The curcespundence
with 2 CBF can be ssen 25 follows. Let X3, X, . he bid. random warisbles
tnkting b valies ~| aad —1 with equal probabdlicy. Lew 8, = T X be
the purtial sues. Consider only X = 1. Define p as the time of the fire
retorn to zeto; p = infn 2 5, =0} Let gy, pi be the timas less (han g
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with £, = 1. We et gg = 1, and oote thet py = p- | Defite | = g = g,
ty =y — i, aind 50 forth. Note thit

T

PriN=ki = o ¢
where Pri.} denotes elweys conditiooal probubelity gives &) = 1 This ig
bieat seen by neting thet et esch passage al one, Vhe randam walk bag exacily
5%, probability of returming to the orign, Thus, & = indsed geonsiticdly
disributed of parametar 1% Fortheemors, given V= & 2 1, the excurslons
abowe one of leugthy ¢, i are indapendent and bave the same distribu.
tion a5 the original poeitive excursion 5),..., 5, This is just 2 menifetaricn
ol the strong Markos property applied £ the ordinary random wall, We now
corstnat the corresponding ordered tree explicitly: teke o root, and giw it
N chikdren, and masocinte wich the children he positive meursions of keagths
by, ... by Tespectively. Conewrocead in ths manner, we rote thet the sorre-
aponding tree is pothing but a eritical Gelton-Watsnn tree with mprodociu
dietribiticn Pe(Z = &) = 1/2%L k> 0 The bijaction is forridebhe 8 it not
oty vields the desired mnoection, bk it also is rabher diteet; for exsmple,
the maod-nun ef an exrslen corresponds o b beight of the Galbon- Watsom
Lree, and the length of so excumion & twice be size of the Galton-Watson
P,

Ooe may use the wellkmow bijection between maoted codered troes om
& + ¥ nodes ard binary trees o B modes: Brst copy all A+ 1 oodes fromm
ik aedered wge b the binery wree; then aseociate each parent-gldest child
edge i the ordered tree with a parend-left +hibd adge in whe binary tree,
and atoocipte with each node-next sibding relationehip i the orderad tres &
pacent-right child edge in the binary tree. Finally. remove the toot and its Lok
edge from the Binary tres. Thas vields et soother [bot slightly mose iodirect}
Tijestion betwesn Dvck pathe ang binary trees. The Oae reacdpnship follows
engily: © A 19 the oumber of children of cho root i che ordered wree, then
the Linary tee's root (before removal] bes o lefl chibl iT N > 0 A pode in
the arderad tree regared a8  child in 8 family s & nomer ¥ of younger
siblings that is egain geometrie {13 by the memorvless property of dbe
grometic distobition. Ths, i has o right child in fhe binary tree iE ¥ 0
T make 8 Galtom. Watson process, place in the crdered dres s pair (1 ) =
i I, fy sy, Bnd oheervs that ell these pairs in che tree ane indepondent,
and thet 1" and ¥ are alw independean. Thog. the binary troe with & racdom
mumber of oodes and afser removmd of che rook 3 indead & Gabten Watsan
tree with teproduction distribution (gy, g, i) = 173,104, 149).

Wit sbeuld mko mentlon thad for spmmetric Tendom walks with 2ee; mesn
heving ctntioucns distribubens, Le Gall (1999 han proposed & beautiful
trae epnsiruedion that lescs oooe agein Lo & Bioary Galton-Wetson tres with
i?ﬂlpl-pi] = {lirﬂsl.lll'il ln'lz]'
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fi.4 Corley Trees

The uniform raodom labeld 7ree £, % the lres picioed Jnilorcly fram dhe
w2 trees oo vertioss {1,2,. .- 2t} The wnifoem random rocted lnbeled tes
(or Totsed nanplzags tree) R 18 the tree picked oiformly fram wbe ="
troes om verlivgs 1,2+ in which ome vertex I8 declazed to be the root.
Caybey [1859] sludied £y 223 Riorden (1960 counted varivus related apecies
of trees , including .. Rénrl and Seckeres [1967) showed thet the expeceed
height B of Ry i ~ +/Irn. Taey also showed thet the limit distribiacion
of F-4\% Is tae theta distribution. ses forther on). Réoyi (1959) showed
the: the Tumber of basves ie sayrpbocic to e, while Meir and Muen (1970}
snowed <hat, the expected distance betwsen ten Nodes zakew Al fandom s
BEFmpLOts to H.-'?T,.'E

Kolcin {1996}, just lse Mer and Mooa [1978] end Moon (1970}, stucles
L., and Ry vis gecersting fonrtions, estatdishiog a tight refaticnsbip with
CAP's. Wate prababilistic appeoaches mey be found in Grimoets (1960] ard
Alcous (1963, 19911 The patpeseof ehis wectlon i e ot a3t £ by rasults
i the Jalte papers.

Consider » Prisson (17 Geltoo-Watson tree P_ Make P o libeled vree by
~andommly abeling the verticea 1,. ., T 14 1s g specific rxbed Inheled Lree
Taawving |{| wertices, then

E-_Il‘l

Pr{?:l]ZH—!.

Ta see this, order =1 the sets of siblings ib ¢ Ty increaslng lahels, and Tet
&, .y be the oumaber of childzen of all nades. listed in precedec. Then,

I r
[Ty !

1 ——

. ]
e Nle |t

Ir

Pip=ti=

whete tae Frst, facter atounts for matching the geometrical layout of the
tree (it us e ‘ndepandance of the numher +f of9pricg, as we]l_a.-a the
Fotssom proparty], ard the second factor & the prububility of geuting th:e
remdum lshe's sk right Therelore, conditionsd ap [B1 = n. we see that P ia
wniborm o Tabelad trues of size n, end is throe distzibuted us Ko, This property
adlos s to studs the C3p witk Poissor, (1) offsprng. The caleulatlon shave
stabighes the cobpecton and may be made ine a construction of Kn. The
theorems abe CBZ's then provide infarmation o rendom Cayley teees.

There is 8 setond constructior. cue to Aldous (1988). It requlm_n iid.
random verace £, 0%, wilimely discbuted on {1, w} FIP.E-' w
make ? tha toot, Then with § varying from 2 v =, w sid edge (1, Tminii -
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L1 ]1. Ther we renuve the Jabels to obirin & rendam rooted (pommiform)
unlebelad gree If ran be mede in a ciee dizoibated as B by =podomly
wsigning labals.

Goumumet: | 1530) propose vet another m2lated process, and Aldous [1341)
builde go it to detive & tool for studying local propertes of soch trees. Far
ek b=0.1,2 . weoreste ndependert Poisson (1) Galvon-Werson trees,
regatded ns tres with tood 1, anc gther vertiees unlubeled. Then we poptect
TouT1 0. 88 8 ath, make ra the root. pod debete she lebeks For fxed k.
the weetor of i L0, copies of P is tipse in total variation dlstanoe to & random
toted unlaheted tree with & distinguished path of length & — 1 ettached to
[, This eoaectin will nat be exphorsd hers.

Finally, we metion the Prafer codes that are 56 usedl in the generation
and ¢ounting of Al Jabeled trees (reoted oo unzoated’, The propenies shat
may be dednoad based on these endes are pot dicestly linked to beaneking
processes, and will shss not be studied here.

§.5 Fringe Sobtrees

Folwaditg Aldous [19%0), oz & finide rogtad ordered tree T, we call T the
subtres rectad 6t a randomly and wmitocmly picked vertex rom 1 A dous
observed thal ic maty (randoo 47 ooc-fuwdem ) tree models, T tends o dis-
asibwtion toa eertain tandodt o= 89 |T| — o0, This bas of cotes inmediate
comsequenies for the parameters of T*. For example, e have <be ballowing,
ez Aldons, 1090):

Thearem 6.2, L4 £ b ot ofpring datribudion of 0 Joltes- Watsan pro-
pers, with BIf) = 1, Pr(f = 11 < 1, %) < oo ond £ rwn-lottice. [t T
fe the Caiten: Wotzen tree (nofe T < o0 abviesd curelph, ond e Ty e T
ponditionad an [T = m Lai T} be o tree rooded o o sendom varpsy of T,
Then for all drca t,

Im Pelfy =)= PrT =t}

Discassion. [o tais remarkable esult nate thag the Gmit distribation of &
lriage Lrae of the L3P is the unconditione] Galton-Watsen Tee! 43 a reaulr,
we may cmnadiately dedure prapertas of local perameters from whis, For
exame, the degree of a randon: veetec io o OB teods in distribatisn o
the degree of the oot of T, thet s, £. Also, T2 5 |T| Sote alsn chat the
nigmbee 48 vertiecs b a car within decaoee & of & ooiforon cendom verkes:
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temis in digtriboion to the oumber of vertices within distance k of the ot
ot Whatis, B+ Zy+ oo+ 2y, where Z, 2y, - are be popubain sizes in
the ree T

6.8 Sze of & Galton-Watson Tree

Let T be 1 (aleon-Wataon tres that i either erlrical or saberitical We know
that if § is toe offepring distribusion and Pr(f = 1) < 1, then [T] <
ahmost surely, Yo facd. it is remarloble that che disribution of {T] can be
soleby dedure from bt disiribuution of & by a simple device disoovered by
Dwass {1065] and redivenvorad by Folobin (Kalchin, 1977, 1958, 1081, se2
1986, p. 104].

Thearem 8.3, Frn=1,

CPrlfy 4 +ba=ac]]
- - .

T =n)
whers €. 5, are 50 and dstrbuted o3 £ T T T be ndependend
and disribated @ T, Them, frmzm20ng

PﬂlTll‘F"'-l-lel:ﬂ}:ﬂtPrl:'El_"'-l-{_..:ﬂ_m}.

n

Proaf. Tt suffices to mmove L awore genetal shatement. Cleatly, if 2, is e
number ¢f offipring of the oot of T, ssauming m > 1, we have

Pr{[T| + -+ [Tl = 5] = TopiPelBl -+l =nl1 =3}
=L P+ 4 Mgl =2=1],

wiere g, = Pr(f = jiand 2y = € is the pumber of ahildren of the oz,
We easiby werify the Lemma fir v =0 ard m=1ln= 1w Pr{iT] = 1| =
Prit, = {]. The remaindee s by indurkion on  {for ol < m £ w), and we
bave

PriITi|+ -+l =l = Ee byPriITa] T3l o4 gyl = 0=
"E:;ﬂ““:'"—:ﬂ'l"lﬁlﬁl+&+-'-+in-1-n-W-:‘]
s Le 2t hypodbnis]
= BIPHE Fhy kb ia = n )
raly T Pl Hp b A bamy = a -
- (B eI PG - ta - =0
o4 beloa) )

= WPHS) L b —fnmm o

We atm doce if we can explain the last step. But tleadky,
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BBt amn-m)
Toreg PRl A PR 4+ =n-m-1]
= Bt = Lomn-mi -

Thi emnclodes dhe prool of Thewem 5.3. C

Theozew £.3 makos » crucial conneccion with sume of independont random
wariabbes, nnd Bor thin, ol is koown, For example, Folowing Kolehin [1945.
p 105, we note that if £ ban mean ane (a8 in & eritical branchig process),
vamance o and mexinoad span d, when w - 1 tends @ mfiniy sver multiples
of d,

- . \ d
Pl =n, ~ =

1t is ensiby seen that E[|T|) = o0, a result that also felloms by nocing chat
7] =Ei.:,}'£i aod B{Z) =1 e alli

Fioelly, the 5iz¢ of & Gulton-Watson tree may pba be determingd by
acalytic meethods. Les ify] be the peoerating funediog of |T). Then we have

Theorem €4, The penerating fumction y(s) = BT of |7 satuafies
#lst = afiy{s))
mhere [ i the peneralitg fetctins af & & e Calton- Fatsm troceas

yis) = Eis
=iF {glrll-l- |Tq|:|

~E([B [slfﬂ]}‘}

= sE {{yis)}¥)
= #f1yis]).

The asympbotic form of pu, the wth coefficieat of s}, and ches 3, =
Eri[f] = r]. mey be abtained by singularity analysis [Meir and Moon, 1679
Pébra, 1587, For ewnct formulas, cne may apply Leagrangian memion and
nate that

= onefcient of w1
n

See Vieter and Flajobel [1990) for rore o4 this method, and for additioosl
references,
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6.7 Height of a Galton-Watson Tree

Let M, be the height o Ga'ton-Watson teee T conditians’ on [T = n. E-f
equivalence, we il pofer Lo these breas Ty the cames wsed iu the gmhmawm]
fierature, hased oL tbe equiprobable equizalent srees bus obtaited.

T i hoewr that B(f) ~ 7R for the planted plane treee (Dezruijn,
Kk and Riee, 1073), EiH,] ~ 2o for the moted labelled trees [Cay-
ley trseg] (Réryl end Szsheces, 1967), B Ha) ~ v for the @mﬁbh
anary-binery trees {Flajolet and Odlyzka, 1962], and E(H. ~ vra b tbe
squipeabable bnary trees {Flejckl awd Clyebo. 1932). For t.h..e laar madel,
-be expecned depth of a r2oéom node [s asymptoti: 104770 {Viter and FI'E-
jolet, 19805, Réuyi and Seekeres (1967] s comaated o ot e e A, fe

[ Pr (-H—:. 5:) » Hiz],
LR T

whera . )
Hizj= ER Tt

T el - Hlhe !
W ] pall M the theta diatrtbutan fuaction. The thete distribution hee Best
roment /7. variance 7i7 = 333 and general s-+h moment 241 + 3_."1I:Il:3 -
L {3]. Interestingly, the thela distrifmion describes the Limi, foe all sienply
menerpiad randoin trees. This reault, dae to Flajolet and Cidhmtn [19€32],
wha used analysis of singulzrities of genaratirg functlons in tale ]:?D:.-Js..mn:-
b formaber 2 Tollows. Let op. cy. .. dene the simply ganeraved family of
ardersd trees. 1ad et _

yiz) = 22l

wheve #(1] = E‘m 5™ 60 g, B the tole, wmber of trees of sf2 f, and
fiy) = Ergu":rf-

Theorem 6.5, Flajokt and Oclyzsn, 1982, For simple familiea of trees
comespning fo the et v = fgn o for 4 = 1 mod & with
d=gedir o #0} 4 we st
_
-~ r el
ik 7 the smabest posiee toal of e equatot: flrh - i |r] =0, we have
H =...
— —+Hi.
WL
Furthermare, off the micments of Hyfy/n tend to dhoae of M. I particdar,

A

E[H,:
m_ﬁFﬁE.

Timmpt l"rf_l
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The ahigwe result alse applies o Cayler trees, even thaogh their gog
erating fynetione do 1ot salisfy dbe required equelity, However, if y(z) =
En}] a2l chen (2] = 2z w(2]) with My, = €3, which coresponds Lo
the choiges ¢ = 1/7" Combluatorists xoow that ye™¥ = » bas & farmel

solation - \
W
E’=E[n-1]1"“‘
LLH

when |3| < 1/e (Riopdan, 1960). Froou this, se sbso obtain the mumber of
urlabalial trees or t oodis

By the commertion of the previows section, we note thes indeed, che limit
law greem gherve 35 appbeebs to rndom Copley trees. In this case, e heve

foe sy valuecf 7 Hente, B[H,! ~ /3n, s result due to Rényi and Sacheres
{1967).

£.8 Components in Random Graphs

We ronchide with Earp's [1950) corstructien 4f 8 branching process for
Sludying 1Y compotents of randem graphs, We piece chin matecial hepe,
a8 it relabes to sines of extinet beanching processes. Randem graphs were in-
troduced by Erdds and Réoy? in X60: w; heve an edre probahility g, pessibly
depending upcn #, scd call Gy 5 the graph on o Jebelad vertless obtabed
by independently adding each of the {7} possible edges with probebility p.
Palruer (1983 givas o great, sccount of the growth of Gy 25 1 ineressse.
At least o the study of the behavior of Gy p for p < /e, thus fe sparse
graphs, branchitiz proceses dumz in bandy. Bo we sak p=ef%, 0 £ 1. dronnd
7= 1'n, (3, undecgoss & dramztie etamorphils, as ane glant conponent
emerpes which hes size B{n] when ¢ > 1. Katp's aethed 4 reconsidered
it Aloi. Spencar and Erdos [1952), where it is wed o cogyze the g
enppareit in s datadl {the case o =10 We will fix e < 1 for simplicity.

Comauder o Aved vertex . We declars &1 other vertices alve, dead, ar
newTal. Originglly, at diseeete bime ¢ =0, aoly © s 2live. arv 2l nter nodes
areneuzeal Let T e the mumber of live aoges ak time £, We 3ot ¥y = 1. Each
time unit, we teke 8 live vereey i, and cheek all pairs (w, i) wich af reutral
Tor meribarship n G I [w, 1) 2 indeed an edge, then we make w' live. after
al siech v are gvrkenad, 1 dies, end we declare ¥ the new murber of lse
vertices, When Lhera are oo live vertloss (¥, = 0, the process ter'rans,
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gl wa wyuate Cn), tbe crmpanent of t, ae the collaction of dead vertices.
Clearly, we bave

V=¥ +&-1.
Each nerral o hns independent probebility p of beraming live, and ra pair
{iw') B ever exadned twics, 50 thet the penditions] probebility of the
ex'stensa of edge (1, 0" 35 alwdys A b =1 vertices are dead ard ¥ live,
it is eagy Ly see chat

ZEBn-(t=1]-F..p

where A, | denoces the binomial distribution. Let T be the smallest £ for
which ¥, = {. the time of exxiockion. Also, T = |Cluj]. We continne this
definition recussively, and note that for all £,

v LBm-LI-{-p=-1 -1

Froo?, Tiefine Ny = m — 4 ~ ¥i. the number of neylral vercices of time 2. We
will shaw that ¥, & Bin = 1L = gl Clearly, N> = = - 1. We argue W
iaduecion, and note chat

!'Ir!_ =t -'.H{
=n-t=Bla-it—0-Y.p-Yag-1
=Ny - Bide- L3
=BiN_1.i-ph.

0

The propecty sbave is valid foc lk p. For p = ¢, when £ and K.y ame
see’] the bioomial Jew is clese b 2 Pelson “mw wich mean ¢ So, 2, 3s close
to Bl ¢n). which iuchese to Pie). = Faissan rancan variable with mean ¢.
Ths, roughly speaking, the componeat grows st i ke a branching proces
with offspcing distributed as Pie,. For fived ¢, lot ¥y Y7 TR 20 2L
eoley ta the Fi¢] branching process, and let the wigtarred reador variehles
belir 1y the randcen graph provess. More pracissly. the bronching process
glacls, with one ive indivichaa), 50 thet ¥y = 1, and st each time unit. coe
Tive indivicun) is sedected 4t rancem, b produces a Pie] number of chiliren,
ard thex dees, 50 that

Fre¥r 4=l
wheee 27 Z5,... ave iid. Pie) radom variables. Let T be the east £ or
which Y7 = 0. 1§ 00 such £ exass, we g2y that T+ = oc. From Theoresn L1, i
EjPieli = &< 1, with peckabitiy mme, the process dies ek, 5o that T < on
almaet surely.

Lo M, H" dencte the listorks af the processes vp ta Lhme &, chat is,
W=(Zy, - Almd W= E 2 The
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Pe(i' =is,..,n)b =[] PAPIc =)

L=]
and
4
Prii=(s,.. .all= HPrf.Ei =1].
i=k
whery Z; is bioomial Bin-1-2 - —2 | ,cfu}h Fm~pard e and i
ars s, we bave
. amtg
Pe(Bim,inj = i] + —
il

5 5 = 5. Thiz may be wsed o show that
bm Pr{f = (7. &) =Pr(H" =3, 4]0
R=0

Thus, [or sy Beed §, Ly PriT' = £ = PriT™ = I} This mey be usad
biaively in b ways, Fiess nfadl, T is the total size of & Plc) GaltoWatsm
proess Therelors, B5 7 — ¢,

Cia) ST

From Thereen 5.4, the penerating fawekion ke Ple) 35 fis) = &9+ wkike
the generat.ng functivn y] far T is the sodutien of y = Hapl.ie. of

y - El"':ﬂ]"” ,
This describes the gsympeetic diaebution of the size of Ciu) in 1ta entirety.

Secondly, if we congider £ = men, |[Clul| over the nodes w of &, ..
then e ren easily mrowe (he knows result (zee Palmer, 1985, that Pr(C, >
Akgn) = oi1) bor some 3 > 0. To s this, obeerve that for soy 1, and for
A0ty Cherrofl's boonding melbod,

PriT > ) Pr(¥e> 0 = PriB(n- 1,1 - {1 -pi 21l
< Pr(Bfn, tajn; 2 1] & E{sAEm =)
= &7 [} et = Ltege)" € g0
L ML EHER ieke = log(L{=1)
L -
=g,
Thus,
Pritty > Hlogn] < ne= M7 = o= g

if we pick & > Lie = 1/{egi L - {1 -k
We mve it 63 an intéreting exercise to show thee the Plch branching

process of this secclon, with £ > 1, condilion] oo extioct:on, bas the same
distribaticn as the [anconditional, e’y branching proowms, wiere o = o,
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and g is the extinction probability of the Pie) branching procesy, Uhal 5,
g = ¢l (Hate thar 2™ = ¢ ) Taks facs is ed 1o Alon. Spencer
aod Erdos [1357) 1o sbow for example that e stroctuze o Go .z wisk the
g, ampogent remaved i fundamental’y that of Gy epry [Withovl acy
rotitnals], where m, the nuwher of wertices not in the giaol comporvt.
savishes m ~ ny.

6.3 Biblographic Remarks

Melr ard [nen {1878 sbudied the expected depth ELD, ) from roo te oodes
in sinply ganerated teudom toes, end showed that E: Dyl — o, whe
¢ & Bgain & oeistart only dependicg mpen the specles of uee. The work of
Flajole: sad Oillyzea {1992] 35 continued tr Gutjahr {15931, who derives
aspmplotios for expected values ol variqus other tres: paratmeters such as the
wunimer of bodza at lovel £ sod the touel patit length. Evea tree mncls with
trees, of grven Size and height are consideeed shere- The brapehing process
approach was teed by Keovedy [1473] fsee also Kolchin, 1986] 1o obtain
< Lot Taw B 2|5y Tl senditional an & = o & — o0, where 2y
i the sige of the kb generation. Thas, the buik of the potus it indeedl a2
fistance B/} fram the roos. Finally, ome might sturly the beight of random
binary trees. where each edge has a0 indepesdent length dresen frac a fixed
Jistz| hiticm om the posktive halfine. Height is then defined as the tadimal
sum of edge kensgths of any pach to the ot Fae the expenentia] distbution,
Gupta, blesa nd Wayire (1300 shevwed thak this helght smisfes the same
Tmit baw & the standard height moduls & constant muliplicacive faceoe,
Tagn poat uses raovergence of all Tooimeate,
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