

Professional Java™, JDK™ 5 Edition

W. Clay Richardson
Donald Avondolio
Joe Vitale
Scot Schrager
Mark W. Mitchell
Jeff Scanlon

Wrox

Programmer to Programmer

Professional Java™, JDK™ 5 Edition

Professional Java™, JDK™ 5 Edition

W. Clay Richardson
Donald Avondolio
Joe Vitale
Scot Schrager
Mark W. Mitchell
Jeff Scanlon

Wrox

Programmer to Programmer

Professional Java™, JDK™ 5 Edition
Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256-5774

www.wiley.com

Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.
Published simultaneously in Canada

ISBN: 0-7645-7486-8

Manufactured in the United States of America

10987654321

IMA/RR/QR/QV/IN

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,

Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355,
e-mail: brandreview@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUB-
LISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT
AN ORGANIZATION OR WEB SITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTEN-
TIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUB-
LISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEB SITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEB
SITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK
WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Depart-
ment within the United States at (800) 762-2974, outside the United States at (317) 572-3993, or fax
(317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Professional Java, JDK 5 Edition / W. Clay Richardson . . . [et al.].—
.cm.
Includes bibliographical references and index.
ISBN 0-7645-7486-8 (paper/web site)
1. Java (Computer program language) 1. Richardson, W. Clay, 1976-
QA76.73.J38P7623 2004
005.13'3—dc22
2004022626

Trademarks: Wiley and the Wiley Publishing logo are trademarks or registered trademarks of John Wiley
& Sons, Inc. and/or its affiliates. Java is a trademark of Sun Microsystems, Inc. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or ven-
dor mentioned in this book.

www.wiley.com

About the Authors

W. Clay Richardson is a software consultant concentrating on agile Java solutions for highly specialized
business processes. He has fielded many Java solutions, serving in roles including senior architect,
development lead, and program manager. He is a coauthor of More Java Pitfalls and Professional Portal
Development with Open Source Tools (Wiley). As an adjunct professor of computer science for Virginia
Tech, Richardson teaches graduate-level coursework in object-oriented development with Java. He holds
degrees from Virginia Tech and the Virginia Military Institute.

Donald Avondolio is a software consultant with over 19 years of experience developing and deploying
enterprise applications. He began his career in the aerospace industry developing programs for flight
simulators and later became an independent contractor, crafting health-care middleware and low-level
device drivers for an assortment of mechanical devices. Most recently, he has built e-commerce applica-
tions for numerous high-profile companies, including The Home Depot, Federal Computer Week, the
U.S. Postal Service, and General Electric. He is currently a technical architect and developer on several
portal deployments. Don serves as an adjunct professor at Virginia Tech, where he teaches progressive
object-oriented design and development methodologies, with an emphasis on patterns.

Joe Vitale has been working as a developer for the last ten years. He has worked significantly with the
latest Java technologies and also the most-popular open source technologies on the market. Besides
being a developer, Vitale is coauthor of Professional Portal Development with Open Source Tools (Wiley),
which had a strong focus on open source development and the Java Portlet API formally known as JSR
168. Joe currently works for McDonald Bradley as a development manager, where he manages more
than 50 developers.

Scot Schrager has consulted extensively in the domains of pharmaceuticals, supply chain management,
and the national security market. He has led and participated in various project teams using Java and
Object Oriented Analysis & Design techniques. Most recently, Schrager has been focused on distributed
application architecture using J2EE technology.

Mark W. Mitchell has extensive experience in enterprise application integration, particularly Web
Services integration between Java and the Microsoft platform. He has developed and deployed several
mission-critical Web applications. Mitchell holds a degree in computer science from the University of
Virginia.

Jeff Scanlon is a senior software engineer at McDonald Bradley in Herndon, Virginia. Scanlon holds
both the Sun Certified Java Developer and Microsoft Certified Solutions Developer certifications and has
been published in Software Development magazine.

Credits

Executive Editor
Robert Elliott

Development Editor
Eileen Bien Calabro

Technical Editor
Dreamtech

Production Editor
William A. Barton

Copy Editor
Luann Rouff

Editorial Manager
Kathryn A. Malm

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Executive Editorial Director
Mary Bednarek

Project Coordinator
Erin Smith

Graphics and Production Specialists

Beth Brooks
Amanda Carter
Sean Decker
Kelly Emkow
Lauren Goddard
Denny Hager
Joyce Haughey
Jennifer Heleine
Barry Offringa

Quality Control Technicians
John Greenough
Susan Moritz

Media Development Specialist
Angie Denny

Text Design and Composition
Wiley Composition Services

Proofreading and Indexing
TECHBOOKS Production Services

This book is dedicated to all those who make the daily sacrifices,
especially those who have made the ultimate sacrifice, to ensure our
freedom and security.

Acknowledgments

First, I could not have had any chance of actually getting this book done without the support of my
wonderful wife, Alicia. She and my daughter Jennifer, who has far less sophisticated expectations from
my literary skills, are the joy in my life, and I look forward to spending more time with them. I love both
of you more than words can describe. Stephanie, we love you and will never forget you. My fellow
authors—Donnie, Mark, Scot, Jeff, and Joe—have been terrific with their hard work on a demanding
project. I appreciate each of your contributions to this book. I would like to thank Bob Elliott and Eileen
Bien Calabro for all of their hard work and perseverance working with us on this project. I would like to
acknowledge my leadership, Joe Duffy, Jim Moorhead, Don Heginbotham, Tom Eger, Mark Cramer, Jon
Grasmeder, and Doug Dillingham, for their dedication to the simple concept of doing the right thing for
the right people. It is very refreshing to work at a company that exercises the inverse of the cynical “zero
sum game.” I would like to thank my parents, Bill and Kay, my in-laws, Stephen and Elaine Mellman,
my sister Kari, my brother Morgan, and my stepfather Dave for always being there. I would like to
acknowledge my grandmothers, Vivian and Sophie, for being what grandmothers should be.

I would also like to acknowledge my team members for the great things they do every day to make the
world a better place: Jon Simasek, Rob Brown, Keith Berman, Mauro Marcellino, Terry Trepel, Marshall
Sayen, Joe Sayen, Hanchol Do, Greg Scheyer, Scot Schrager, Don Avondolio, and Mark (Mojo) Mitchell.
To my duty crew at the Gainesville District VFD: Bob Nowlen, Gary Sprifke, Patrick Vaughn, Seth
Bowie, Matt Tyrrell, and Gerry Clemente—we have been through a lot together! To Kevin Smith, I think
you were smart to pass on writing to spend more time with Isabella—I think I will do the same with
Jennifer. Matt Tyrrell, I thought about giving you a hard time again this time around but decided not to
tempt fate too much, so I will just remark the obvious—you are still like a brother to me.—WCR

First, I'd like to thank all of my BV pals: Wendong Wang, Arun Singh, Shawn Sherman, Henry Zhang,
Bin Li, Feng Peng, Henry Chang., Sanath Shetty, Prabahkar Ramakrishnan, Yuanlin Shi, Andy Zhang,
and John Zhang. Additionally, I'd also like to thank these people for inspiring me in the workplace:
Swati Gupta, Chi Louong, Bill Hickey, and Chiming Huang. Thanks to all of the great professors at the
Virginia Tech Computer Science/Information Technology Departments: Shawn Bohner, Tarun Sen,
Stephen Edwards, and John Viega. I am indebted to all of my students who taught me so much with
their dedication, hard work, and insight, which has allowed me to incorporate their development wis-
dom for instruction in this book. Appreciation goes out to the sponsors and organizers of The Great Cow
Harbor Run (Northport, New York) and The Columbia Triathlon (Columbia, Maryland) for organizing
world-class events I like to participate in, but more importantly for inspiring me to be a more disciplined
and focused person.

Finally, I wish to thank all of the coauthors, who are fun guys to work with and be around: Joe, Jeff,
Mark, Scot, and Clay; and my co-workers: Mauro Marcellino, Joe and Marshall Sayen, Jon Simasek,
Terry Trepel, Hanchol Do, Keith Berman, and Rob Brown. To all of my family: Mom, Dad, Michael, John,
Patricia, Kiel, Jim, Sue, Reenie, Donna, Kelly, Stephen, Emily, Jack, and Gillian, Matt and Danielle, you
guys are great. To my wife Van, who I love more than anything for her continual support during the
writing of this book.—DJA

Acknowledgments

First, I'd like to thank my wife Jennifer Vitale and my son Andrew. They have been so supportive
throughout my book-writing adventures, and without their encouragement I would not have found the
time or energy to complete this task. I'd also like to thank my grandfather and grandmother Carlo and
Annette Vitale, as well as my father Joseph Vitale, my stepmother Linda Vitale, and my father- and
mother-in-law James and Marlaine Moore. Many thanks also go to John Carver, Brandon Vient, and
Aron Lee for their great supporting roles as friends. Finally, I'd like to thank all of my co-workers at
McDonald Bradley, including Kyle Rice, Danny Proko, Joe Broussard, Rebecca Smith, Joe Cook, Ken
Pratt, Adam Dean, Joon Lee, Adam Silver, John Johnson, Keith Bohnenberger, Bill Vitucci, Barry
Edmond, Arnold Voketaitis, Steven Brockman, Peter Len, Ken Bartee, Dave Shuping, John Sutton,
William Babilon, and many others who have been very supportive. And a special thanks goes to my
coauthors for all of their hard work and encouragement. Thank you all!l—JV

I'would like to dedicate my contribution of this book to the memory of my father. My biggest fan—I
know he would have put a copy of this book in the hand of everyone he knew. I appreciate the opportu-
nities I have had as the result of the hard work and sacrifice of both of my parents.

I would like to thank my colleagues for helping me be part of this book. I would especially like to thank
Clay and Donnie for their guidance. You make the very difficult seem easy.

This was my first participation in a technical book. I would like to thank my beautiful wife, Heather, for
helping me stay the course. I could not have done it without you.

I would also like to thank Don Schaefer. It has been a privilege to work with you. You have taught me
several lessons firsthand on leadership, professionalism, and conviction. I learned from you that the
quality of a person’s ideas should be judged independent of their position in a company.

One of my early mentors was my high school computer science teacher, Mr. John Nadig. I remember
specifically having some trouble with an assignment. Instead of just telling me the correct answer,
he handed me a thick reference book and said with confidence, “I'm sure you will find the answer in
here.” Thank you for getting me hooked on solving problems; I have been using that approach ever
since.—SRS

I'would like to thank my parents: my mother for teaching me how to write and showing me by her
example how to work diligently and persistently through any problem and my father for introducing
me to computer science and programming very early in my life. I would sit by his side and watch him
program and through his patience learned quite a bit—sparking my interest for what would later
become my career. I would like to thank the people I work with right now, and whom I have worked
with in the past. I have learned a lot simply through watching and listening. There is no greater work
atmosphere than the one where you are the least senior—there is something to be learned from every-
one, each and every day of the week. I would like to thank my friends for understanding why I was
always busy around book deadlines and for continuing to support me even as I became a hermit. Most
of all I would like to thank God, as writing this book has been an exercise in faith and trust. Last, but cer-
tainly not least, I would like to thank my ever-loving and supporting fiancée, without whose support I
certainly would not have been able to complete my chapters. Thank you for planning our wedding and
for being patient with me during my many hours of writing. I promise I will spend more time with the
wedding planning! —MWM

I'would like to thank the people who made this book possible: Dave Nelson for introducing me to the
world of software development and for being my long-standing friend; Joe Vitale for his friendship and

Acknowledgments

involving me with this book; and Eileen Bien Calabro for working with us as a developmental editor,
helping to ensure that this book succeeds. I would also like to thank those who offer their support and
belief in me—my parents, my family, Phil Bickel, Eric Anderton, John Tarcza, Joseph Kapp, Mark
Orletsky, Gwynne Sayres, Keith Obenschain, Robert Burtt, Myke Weiskopf, Randy Nguyen, Randy
Shine, James Kwon, David Hu, Sung Kwak, Tim Weber, Bobby Suh, Albert Young, Jacob Kim, and a few
others I am sure I am forgetting who stand by me.—JS

Xi

Acknowledgments
Introduction

Chapter 1: Key Java Language Features and Libraries

Contents

XXV

New Language Features
Generics
Generic Types and Defining Generic Classes
Using Generics
Enhanced for Loop
Additions to the Java Class Library
Variable Arguments
Boxing/Unboxing Conversions
Unboxing Conversions
Valid Contexts for Boxing/Unboxing Conversions
Static Imports
Enumerations
Meta data
AnnotationDesc
AnnotationDesc.ElementValuePair
AnnotationTypeDoc
AnnotationTypeElementDoc
AnnotationValue
Important Java Utility Libraries
Java Logging
The Log Manager
The Logger Class
The LogRecord Class
The Level Class
The Handler Class
The Formatter Class
Stock Formatters
The Filter Interface
The ErrorManager
Logging Examples
Regular Expressions
The Pattern Class

©o~NowNR (|

OO DDA OWWWNONNNOLUOYTOMOYMOMRPRRRERPR
00O WO WOOwOouNOWNDEOOMOOONRREL,REL,ONOOWNODNPR

Contents

The Matcher Class 59

The MatchResult Interface 61
Regular Expression Example 61

Java Preferences 63
The Preference Class 63
Exporting to XML 68
Using Preferences 69
Summary 71
Chapter 2: Tools and Techniques for Developing Java Solutions 73
Principles of Quality Software Development 74
Habits of Effective Software Development 75
Communicate 75
Model 75
Be Agile 75
Be Disciplined 76
Trace Your Actions to Need 76
Don’t Be Afraid to Write Code 77
Think of Code as a Design, not a Product 77
Read a LOT! 78
Build Your Process from the Ground Up 78
Manage Your Configuration 78
Unit Test Your Code 79
Continuously Integrate 79
Maintaining Short Iterations 79
Measure What You Accomplished — Indirectly 80
Track Your Issues 81
Development Methodology 82
Waterfall Methodology 82
Unified Process 83
eXtreme Programming 85
Observations on Methodology 86
Practical Development Scenarios 87
Ant 87
Scenario 1 88
Scenario 2 90
Scenario 3 94
Maven 95
JUnit 98
XDoclet 101
JMeter 107
Summary 109

Xiv

Contents

Chapter 3: Exploiting Patterns in Java 111
Why Patterns Are Important 112
Keys to Understanding the Java Programming Language 112
Keys to Understanding Tools Used in Java Development 113
ANT 113

JUnit 113
XDoclet 113

Keys to Developing Effective Java Solutions 113
Develop Common Design Vocabulary 114
Understand the Fundamentals of Design 114
Building Patterns with Design Principles 115
Designing a Single Class 115
Creating an Association between Classes 115
Creating an Interface 117
Creating an Inheritance Loop 117
Important Java Patterns 119
Adapter 119
The Adapter Pattern Is a Collaboration of Four Classes 120
Client 120
Adaptee 121
Adapter 121
Model-View-Controller 122
Scenario 1: Changing to the Model 123
Scenario 2: Refreshing When the Model Changes 123
Scenario 3: Initializing the Application 124
Model 124

View 125
Controller 128
Command 130
Command 130
CommandManager 131
Invoker 131
Strategy 134
Strategy 135
Context 137
Composite 138
Component 139

Leaf 139
Composite 140
Summary 142

XV

Contents

Chapter 4: Developing Effective User Interfaces with JFC 143
Layout Managers 144
BorderLayout 144
BoxLayout 151
FlowLayout 161
GridLayout 167
GridBaglLayout 177
SpringLayout 183
CardLayout 191
JFrame and JDialog Components 197
Managing Navigation Flows in Swing Applications 214
Summary 221
Chapter 5: Persisting Your Application Using Files 223
Application Data 224
Saving Application Data 225

A Configuration Data Model for the Imager Application 225
Java Serialization: Persisting Object Graphs 228
Key Classes 229
Serializing Your Objects 229
Configuration Example: Saving Your App’s Configuration to Disk 230
Giving Your Application a Time-based License Using Serialization 235
Implementing the License 236
Implementing the Timeserver 238
Tying Your Serialization Components into the Application 239
Extending and Customizing Serialization 243
The Transient Keyword 243
Customizing the Serialization Format 243
Versioning 245
When to Use Java Serialization 247
Java Beans Long-Term Serialization: XMLEncoder/Decoder 248
Design Differences 248
XML: The Serialization Format 249

Key Classes 250
Serializing Your Java Beans 251
Robustness Demonstrated: Changing Configuration’s Internal Data 252
Possible Customization 254
Persistence Delegates 255
When to Use XMLEncoder/Decoder 255

XVi

Contents

XML Schema-Based Serialization: Java API for XML Binding (JAXB)
Sample XML Document for Your Configuration Object
Defining Your XML Format with an XML Schema
Defining Your Data: Configuration.xsd

Generating JAXB Java Classes from Your Schema
Generated JAXB Object Graphs

JAXB API Key Classes

Marshalling and Unmarshalling XML Data
Creating New XML Content with JAXB-Generated Classes

Using JAXB-Generated Classes in Your Application
Implementing Your Save Action
Implementing Your Load Action

When to Use JAXB

Future Direction of JAXB 2.0

Summary

Chapter 6: Persisting Your Application Using Databases

256
257
259
260
263
265
269
269
270
271
273
275
278
279
279

281

JDBC API Overview
Setting Up Your Environment
JDBC API Usage in the Real World
Understanding the Two-Tier Model
Understanding the Three-Tier Model
Grasping JDBC API Concepts
Managing Connections
DriverManager Class
DataSource Interface
Understanding Statements
Investigating the Statement Interface
Exploring the PreparedStatement Interface
Exploring the CallableStatement Interface
Utilizing Batch Updates
Utilizing Result Sets
Investigating Types of Result Sets
Setting Concurrency of Result Sets
Setting Holdability of Result Sets
Using Result Sets
Examining JDBC Advanced Concepts
Managing Database Meta Data
Discovering Limitations of a Data Source
Determining Which Features a Data Source Supports
Retrieving General Information about a Data Source

281
283
283
283
284
285
286
286
286
287
288
289
292
294
298
298
298
299
299
302
302
303
303
304

XVii

Contents

Utilizing RowSets 308
Understanding RowSet Events 308
RowSet Standard Implementations 308
Using the New JdbcRowSetimpl 309

Connection Pooling 310

Managing Transactions 310
What Is a Transaction? 310
Standard Transactions 311
Distributed Transactions 311

Object to Relational Mapping with Hibernate 312

Exploring Hibernate’s Architecture 312
Supported Database Platforms 314
Plugging Hibernate In 314

Developing with Hibernate 315
Understanding Mappings 315
Setting Hibernate Properties 317
Using Hibernate’s APIs for Persistence 317
Putting It All Together: The Forum Example 320

Summary 327

Chapter 7: Developing Web Applications Using the Model 1 Architecture 329

What Is Model 1? Why Use It? 329
JSP 2.0 Overview 331
Servlet 2.4 Support 332
Expression Language Support 332

Code Reuse with *.tag and *.tagx Files 335

JSP Page Extensions (*.jspx) 336
Simple Invocation Protocol 337
Integrated Expression Language (EL) 339
JSTL 1.1 Overview 340
Function Tag Library 341

SQL Actions 342
Developing Your Web Application Visualizations with JSTL 344
Developing Your Web Application Visualizations with JSP 2.0 350
Summary 364

Chapter 8: Developing Web Applications Using the Model 2 Architecture 365

The Problem 365
What Is Model 2? 365
Why Use Model 2? 367

xviii

Contents

Developing an Application with WebWork
What Is Inversion of Control and Why Is It Useful?
Architecture

Interceptors
ValueStack
OGNL
Components
Extending the Framework to Support Hibernate
Preventing the Hanging Session
Defining Your Domain Model
Implementing Your Use Cases with Actions
Developing Your Views
Adding Contacts to the System
Browsing Contacts
Configuring Your Application
Adapting to Changes
Summary

Chapter 9: Interacting with C/C++ Using Java Native Interface

A First Look at Java Native Interface
Creating the Java Code
Creating the Native Code and Library
Executing the Code
Java Native Interface
Data Types
Strings in JNI
String Example
Arrays in JNI
Array Functions
Array Examples
Working with Java Objects in C/C++
Accessing Fields in JNI
Invoking Java Methods Using JNI
Handling Java Exceptions in Native Code
Working with Object References in Native Code
Local References
Global and Weak Global References
Comparing References
Advanced Programming Using JNI
Java Threading
Native NIO Support

368
369
371
372
373
373
374
374
375
378
384
387
389
391
394
397

399

401

401
402
403
405
406
406
406
408
410
411
413
416
416
419
423
425
425
427
429
429
429
430

Xix

Contents

Manually Registering Native Methods 430
Reflection 432
Developing an E-Mail Client 434
System Design 434
User Interface 435
Summary 444

Chapter 10: Communicating between Java Components with RMI and EJB 445

Remote Method Invocation 445
Exploring RMI’s Architecture 446
Developing RMI Applications 448

Using Threads in RMI 448
Using Dynamic Class Loading 449
Distributed Garbage Collection 449
Examining Remote Object Activations 449
TestRemotelnterface Interface 450
TestActivationImpl Class 450
TestClient Class 451
Register Class 452
Starting the Activation Tools 453
RMIChat Example 453
RMIChat Interface 454
RMIChatimpl Class 455
ChatUser Class 459
ChatApplet Class 460
Compiling the RMIChat Application 464

Enterprise JavaBeans 465
EJB Basics 465
Types of EJBs 466

Session Beans 466
Entity 466
Message Driven 466
Examining EJB Containers 467
EJB Loan Calculator Example 468
LoanObject Interface 468
LoanHome Interface 468
LoanBean Class 469
LoanClient Class 470
Examining the EJB-JAR.XML File 473
Summary 475

XX

Contents

Chapter 11: Communicating between Java Components and

Components of Other Platforms 477
Component Communication Scenarios 478
News Reader: Automated Web Browsing 478

A Bank Application: An EJB/J2EE Client 478

A Portal: Integrating Heterogeneous Data Sources and Services 478
Overview of Interprocess Communication and Basic Network Architecture 479
Sockets 480
The Java Socket API 481
Key Classes 481
Client Programming 481
Server Programming 482
Putting It All Together: An Echo Server 483
Implementing a Protocol 487
Protocol Specification 488
Proprietary Protocols and Reverse Engineering 498
Utilizing Existing Protocols and Implementations 499
Remote Method Invocation 500
Core RPC/RMI Principles 500
Marshalling and Unmarshalling 501
Protocols 503

RMI Registry 503
Distributed Objects 504
Middleware and J2EE 504
Common Object Request Broker Architecture 505
CORBA Basics 506
IDL: Interface Definition Language 507

ORB: Object Request Broker 509
Common Object Service (COS) Naming 509

IIOP: Internet InterORB Protocol 509
RMI-IIOP: Making RMI Compatible with CORBA 510
How to Turn an RMI Object into an RMI-IIOP Object 510
When to Use CORBA 512
Distributed File System Notifications: An Example CORBA System 513
The Implementation 516
Running the Example 521
Web Services 522
Evolution of the World Wide Web 523
Platform Independent RPC 526
Web Services Description Language (WSDL) 528
Simple Object Access Protocol (SOAP) 529

XXi

Contents

Weather Web Site Example 531

The Future 540
Summary 541
Chapter 12: Distributed Processing with JMS and JMX 543
Basic Concepts 544
JMS Fundamentals 544
Sending and Receiving a JMS Message 545

JMX Fundamentals 548
Using Standard MBeans 549
Deploying MBean for Management 550
Using Adaptors and Connectors 551
Building a Distributed Application 551
Deciding on the Message Type 552
Understanding the Three-Component Architecture 553
Creating a Component to Process JMS Messages 553
MessagelListener 555
MessageProcessorMBean 555
JndiHelper 556
MessageProcessor 558
Processable 562
OrderProcessor 562
JMXAgent 563
Creating a Component that Directs Messages through the Business Process 564
Routeable 565
MessageRouter 565
Creating a Component to Divide Large Tasks for Parallel Processing 566
Splitable 567
MessageSplitter 567
Aggregateable 570
MessageAggregator 570
OrderAggregator 572
Deploying the Application 573
Basic Deployment 573
Advanced Deployment 578
Deploy the M-Let Service 579
Configure the Deployment Descriptor 579

Add the M-Let Configuration File to the M-Let Service 581
Summary 581

xxii

Contents

Chapter 13: Java Security 583
Java Cryptography Architecture and Java Cryptography Extension (JCA/JCE) 583
JCA Design and Architecture 584
Engine Classes 584
Calculating and Verifying Message Digests 586
Digital Signing and Verification of Data 588
Digital Key Creation and Management 592
Storing and Managing Keys 596
Algorithm Management 597
Random Number Generation 599
Certificate Management 600

Java Cryptography Extension 602
The Cipher Engine Class 603
KeyGenerator 608
SecretKeyFactory 608
Protecting Objects through Sealing 609
Computing Message Authentication Codes 611
Program Security Using JAAS 612
User Identification 612
Executing Code with Security Checks 613
Principals 614
Credentials 615
Authenticating a Subject 615
Configuration 615
LoginContext 616
Authorization 617
Summary 618
Chapter 14: Packaging and Deploying Your Java Applications 619
Examining Java CLASSPATHs 619
Investigating the Endorsed Directory 624
Exploring Java Archives 625
Manipulating JAR files 625
Examining the Basic Manifest File 628
Examining Applets and JARs 629
Signing JAR Files 630
Examining the JAR Index Option 634
Creating an Executable JAR 635

XXiii

Contents

Analyzing Applets 636
Basic Anatomy of an Applet 636
Packaging an Applet for Execution 638
Examining Applet Security 639

Exploring Web Applications 639
Examining the WAR Directory Structure 640
Understanding the WAR Deployment Descriptor 640

Packaging Enterprise Java Beans 643

Inspecting Enterprise Archives 644
The EAR Descriptor File 644
Deployment Scenario 645

Jumping into Java Web Start 647
Examining the TicTacToe Example 647

Examing the TicTacToe.JNLP 648
TTTMain.java 650
TTTLogic.java 650
TTTGui.java 653
Summarizing Java Web Start 654

Using ANT with Web Archives 654
Installing ANT 654
Building Projects with ANT 655

Summary 659

References 661

Index 663

End-User License Agreement 701

XXiv

Introduction

Professional Java, JDK 5 Edition provides a bridge from the “how to” language books that dominate the
Java space (Teach Yourself Hello World in Java in 24 Hours) and the more detailed, but technologically
stovepiped books on topics such as EJB, J2EE, JMX, JMS, and so on. Most development solutions involve
using a mix of technologies, and the books for all of these technologies would stand several feet tall.
Furthermore, the reader needs but a fraction of the overall content in these books to solve any specific
problems. Professional Java, [DK 5 Edition provides background information on the technology, practical
examples of using the technology, and an explanation of where the reader could find more-detailed
information. It strives to be a professional reference for the Java developer.

Who This Book Is For

This book serves three types of readers:

Q The newly introduced reader who has graduated from Beginning Java, by covering more-
advanced Java solutions and language features.

Q The Java developer who needs a good all-purpose reference and a first source when tackling
new Java problems that may be outside their technological experience.

Q The developer who has already had experience with certain solutions, but may not, for exam-
ple, think it worthwhile to read 500 pages on JMS alone to see if JMS could fit into their solution
space. This book can provide reduced barriers to technological entry for these developers.

What This Book Covers

Professional Java, JDK 5 Edition builds upon Ivor Horton’s Beginning Java 2, JDK 5 Edition by Ivor Horton to
provide the reader with an understanding of how professionals use Java to develop software solutions.
It starts with a discussion of the tools and techniques of the Java developer, continues with a discussion
of the more sophisticated and nuanced parts of the Java SDK, and concludes with several examples of
building real Java solutions using Java APIs and open source tools. Professional Java, JDK 5 Edition leaves
the reader with a well-rounded survey of the professional Java development landscape, without losing
focus in exhaustive coverage of individual APIs. This book is the bridge between Java language texts,
methodology books, and specialized Java API books. For example, once you have mastered the basics of
the Java language, you will invariably encounter a problem, like building a database-driven Web site,
which requires you to use a collection of technologies like JSP, and tools like Hibernate; this book pro-
vides a concrete solution that integrates both of them. Figure Intro-1 provides a context to this book’s
coverage in relation to other Java books. As you start with the beginning Java books, you would use this
book as a solution primer to introduce you to more in-depth books on a particular subject, such as pat-
terns, Web services, or JDBC.

Introduction

! [
| Methodology, Patterns, ahd APl Books |
I

|
———

_____ |

Professional :
Java |
| Development :

Figure Intro-1

How This Book Is Structured

Working as an effective professional Java developer requires two major skills: thinking like a Java devel-
oper and having a broad understanding of Java APISs, tools, and techniques to solve a wide variety of
Java problems. Reviewing the structure of the book, you can see how the chapters help you realize the
goal of improving these skills.

Thinking Like a Java developer

Experienced Java developers recognize that there is a particular mindset among effective Java develop-
ers. The first three chapters provide you with strong coverage of these topics.

Chapter 1: Key Java Language Features and Libraries

Any introductory Java book will cover the features of the Java programming language. This chapter
picks up where those books leave off by focusing on a number of the key sophisticated Java language
features, such as assertions, regular expression, preferences, and Java logging. Most importantly, this
chapter covers a number of key features introduced in the Java 2 Standard Edition 5.0. These include
generics, meta data, autoboxing, and more.

Chapter 2: Tools and Techniques for Developing Java Solutions

Making the jump from someone who knows the Java language to a Java developer is an interesting tran-
sition. Typically, developers find books that teach the language and books that teach the methodologies.
Furthermore, methodology books are often written defensively, as if they are defending a dissertation or
prescribing a diet. These books often prescribe ritualistic adherence to their methodology, lest you risk

XXVi

Introduction

failure. New developers can find this approach quite exhausting, since rarely do you start in a position
where you can dictate a team’s process. In this book, you will find a developer’s focused view on
methodology and tools with practical insights into how to allow tools to make your work easier and
more productive.

Chapter 3: Exploiting Patterns in Java

Patterns provide an invaluable resource to developers in trying to communicate solutions to common
problems. However, as software problems are generally very abstract, understanding common solutions
to them—or even the value of the approach—can be a very overwhelming experience.

However, as you might imagine, there are some key problems that recur throughout the Java solution
space, and therefore, frameworks and APIs are built upon patterns. As such, having a utilitarian under-
standing of patterns is invaluable, and arguably unavoidable in becoming an effective Java developer.
This chapter will explain the critical importance of patterns, provide a practical understanding of pat-
terns, and demonstrate examples of common patterns found in the Java world.

A Broad Understanding of Java APIs, Tools, and Techniques

The Java platform has extended beyond being a simple applet development language at its inception to
three distinct editions targeted at three different platforms. Not only has the platform evolved into a
huge undertaking, but the open source movement and the Java community have also added features
and tools that provide even more options to the Java developer.

Therefore, you can find yourself easily overwhelmed. This part of the book provides a series of common
problems across the Java development space. In each area, you will be introduced to a problem and a
focused solution to that problem. These solutions do not attempt to provide comprehensive coverage of
all of the involved APIs but rather a primer needed to solve that problem. From there, you could bridge
into a book with more-specialized coverage. The primary intent is to not require a three-foot-tall stack of
books to address a simple end-to-end solution to a common development problem.

Chapter 4: Developing Effective User Interfaces with JFC

Commonly referred to simply as Swing, the Java Foundation Classes provide the functionality to build
user interfaces and desktop applications. As these classes frequently make up most of the logical exam-
ples within introductory Java books, it makes logical sense to start with a Swing example. However, this
chapter will cover the intricacies of Swing in more detail, including some advanced topics like Layout
Managers and Java 2D.

Chapter 5: Persisting Your Application Using Files

One of the more important things for any application to be able to do is persist its state—that is, save. In
this chapter, you will discover techniques to implement save and restore functionality, using two differ-
ent methods, Java object serialization and the Java API for XML Binding (JAXB).

Chapter 6: Persisting Your Application Using Databases

Files are traditionally used to share data in a single-threaded mode—one user at a time. When data must
be shared throughout the enterprise, you use a database. In this chapter, you will learn the more
advanced features of the Java Database Connectivity API (JDBC) 3.0, including the new Rowset inter-
face. Furthermore, this chapter will address one of the more popular object persistence frameworks (and
the foundation for the development of the new EJB 3.0 specification)—Hibernate.

XXvii

Introduction

Chapter 7: Developing Web Applications Using the Model 1 Architecture

Those who have been developing Web applications for a long time recognize that the page-centric
paradigm, also known as the Model 1 Architecture, has been used across many technology platforms
(ASP, Cold Fusion, Perl, and so on) to develop Web applications. Java supports this paradigm through
its Java Server Pages 2.0 and Java Standard Tag Library specifications. In this chapter, you will learn
about these frameworks as well as other best practices in developing Web applications within the Model
1 Architecture.

Chapter 8: Developing Web Applications Using the Model 2 Architecture

As Web applications have evolved, there has been recognition of some weaknesses in the page-centric
approach of the Model 1 Architecture. In this chapter, you will learn about these weaknesses and how
they gave rise to the Model 1 Architecture, which is component-centric. You will see how using a compo-
nent framework like WebWork allows for easy integration of other components like Hibernate.

Chapter 9: Interacting with C/C++ Using Java Native Interface

Frequently, you have application components that are regrettably not written in the Java programming
language. This often does not alleviate the need for those components to be accessible by your applica-
tion. The solution to this problem is the Java Native Interface. This chapter will explain the intricacies of
JNI, as well as a number of the potential pitfalls.

Chapter 10: Communicating between Java Components with RMI and EJB

The heart of distributed development is interprocess communication—that is, you have two applications
that wish to speak with each other. This is frequently also referred to as Client/Server, instilling the con-
cept of one application process initiating a request upon another application process. This chapter will
discuss Java’s mechanism for interprocess communication, Remote Method Invocation, or simply, RMI.
RMI is the foundation of commonly used technologies like JDBC, though the mechanics are hidden from
the developer, by layering a higher-level API (JDBC on top). The chapter builds upon this concept by
introducing the enterprise application component framework known as Enterprise JavaBeans (EJB),
which is Java’s preferred way of building server components.

Chapter 11: Communicating between Java Components and
Components of Other Platforms

While RMI has proven to be a good solution for Java to Java communication, there are still a tremendous
number of needs to access (or provide access) to components of other platforms. This is particularly true
of the Microsoft .NET platform. This chapter will explain the basics of interprocess communication, dis-
cuss several techniques for interprocess communication, and culminate in an example using Web services.

Chapter 12: Distributed Processing with JMS and JMX

When performing enterprise application integration of components distributed across many machines
and platforms, it is often necessary for you to be able to spread the workload out across many different
steps. There are two APIs that are particularly useful in this regard, the Java Message Service (JMS) and
the Java Management Extensions (JMX). In this chapter, you will see the core of these two APIs tied
together to provide a highly useful architecture.

XXViii

Introduction

Chapter 13: Java Security

Information security is tremendously important to Java development. In this chapter, you will see how
your application can be secured using the Java Authorization and Authentication Service (JAAS) and
how your data can be secured using the Java Cryptography Extensions (JCE).

Chapter 14: Packaging and Deploying Your Java Applications

One of the trickiest and most painful things about developing Java applications, whether they are enter-
prise or desktop applications, is packaging and deploying your application. There are a multitude of
deployment descriptors and packaging rules that exist in many of the Java APIs. There are JARs, WARs,
EARs, and more on the way. Often you get cursory understanding of these formats and specifications
within each of the stovepipe books. In this chapter, you will learn about a number of the packaging
mechanisms that exist in Java, as well as descriptions of the deployment descriptors for each of those
mechanisms.

What You Need to Use This Book

This book is based upon Java 2 Standard Edition version 5.0. You might find it helpful to have an
Integrated Development Environment (IDE) of your choice—Eclipse is a very good and popular one
(http://www.eclipse.org). Furthermore, depending on the chapter, you may need to use an applica-
tion server like JBoss (http: //www.jboss.org) or Tomcat (http://jakarta.apache.org/tomcat).
The need to download an application server, as well as any other downloads (of APIs and so on), is
addressed in each chapter.

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text, the following are standard for the book:

Q Important words are highlighted when they are introduced.
Q Keyboard strokes are shown like this: Ctrl+A.

O File names, URLs, and code within the text are like so: persistence.properties.

XXiX

Introduction

Q Code is presented in two different ways:

In code examples, new and important code is highlighted with a gray background.

The gray highlighting is not used for code that's less important in the present
context, or has been shown before.

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at http: //www.wrox.com. Once at the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; for this book the
ISBN is 0-7645-7486-8.

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at http: //www.wrox.com/dynamic/books/download.
aspx to see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http: //www.wrox.comand locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list including

links to each book’s errata is also available at http: / /www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot the error you are experiencing on the Book Errata page, go to http://www.wrox.com/
contact/techsupport.shtml and complete the form there to send us the error you have found. We’ll
check the information and, if appropriate, post a message to the book’s errata page and fix the problem
in subsequent editions of the book.

XXX

Introduction

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Goto p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the registration process.

You can read messages in the forums without joining P2P, but to post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-

tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

XXXi

Key Java Language Features
and Libraries

Java’s initial design opted to leave out many features that programmers knew from C++ and other
languages. This made programming and understanding Java a lot simpler since there are fewer
syntactic details. The less built into the language, the cleaner the code is. However, since some fea-
tures are useful and desired by programmers, the new JDK 5 release of Java introduced several
important features that were left out of the initial design of the language. Other changes make cer-
tain code constructs easier to code, removing the need for repeating common blocks of code.
Please note that this book was written while some of these features are in flex, before they enter
into their final form. Therefore, certain information may not be accurate by the time this book is

published.

The first half of this chapter will explore the new language. The features are new to the language
features built into the language, giving you everything you need to know to make full use of these
additions. The second half of this chapter details certain key utility packages in the java.util
branch of the class library.

New Language Features

Sun has added several new features to the Java language itself. All these features are supported by
an updated compiler, and all translate to already defined Java bytecode. This means that virtual
machines can execute these features with no need for an update.

O Generics— A way to make classes type-safe that are written to work on any arbitrary
object type, such as narrowing an instance of a collection to hold a specific object type and
eliminating the need to cast objects when taking an object out of the collection.

0 Enhanced for loop — A cleaner and less error prone version of the for loop for use with
iterators.

Chapter 1

Q Variable arguments — Support for passing an arbitrary number of parameters to a method.

0O Boxing/Unboxing — Direct language support for automatic conversion between primitive types
and their reference types (such as int and Integer).

Q Type-safe enumerations — Clean syntax for defining and using enumerations, supported at the
language level.

Q Static import— Ability to access static members from a class without need to qualify them with
a class name.

QO Meta data— Coupled with new tools developed by third-party companies, saves developers the
effort of writing boilerplate code by automatically generating the code.

These features update the Java language to include many constructs developers are used to in other lan-
guages. They make writing Java code easier, cleaner, and faster. Even if you choose not to take advan-
tage of these features, familiarity with them is vital to read and maintain code written by other
developers.

Generics

Generics enable compile-time type-safety with classes that work on arbitrary types. Take collections in
Java as an example of a good use of the generics mechanism. Collections hold objects of type Object, so
placing an object into a collection loses that object’s type. This means two things. First, any object can be
placed into the collection, and second, a cast is required when pulling an object out of the collection. This
can be a source of errors since the developer must track what type of object is in each position inside the
collection to ensure the correct cast is performed when accessing the collection.

You can design a generic collection such that at the source code level (and verifiable at compile time) the
collection will only hold a specific type of object. If a collection is told to only hold objects of type
Integer, and a String is placed into the collection, the compiler will display an error. This eliminates
any type ambiguity with the collection and also removes the need to cast the object when retrieving an
object from the collection. The class has to be designed to support genericity, and when an object of the
collection class is declared, the specific type that that instance of the collection will work on must be
specified. There are several syntax changes to the Java language to support generics, but here’s a quick
taste of what they look like before generics are discussed in detail.

To create an ArrayList that holds only Integer objects, the syntax for declaring, instantiating, and
using the ArrayList is the following:

ArraylList<Integer> listOfIntegers; // <TYPE_NAME> is new to the syntax
Integer integerObject;

listOfIntegers = new ArrayList<Integer>(); // <TYPE_NAME> is new to the syntax
listOfIntegers.add(new Integer (10)); // Can only pass in Integer objects
integerObject = listOfIntegers.get(0); // no cast required

If you have a background in C++, the syntax is quite similar. If you don’t, you may have to get used to
the syntax, but it shouldn’t be too difficult. Let’s take a more rigorous look at how generics are sup-
ported in the Java language.

Key Java Language Features and Libraries

Generic Types and Defining Generic Classes

In the terminology of generics, there are parameterized types (the generic classes) and type variables.
The generic classes are the classes that are parameterized when the programmer declares and instanti-
ates the class. Type variables are these parameters that are used in the definition of a generic class, and
are replaced by specific types when an object of the generic class is created.

Parameterized Types (Classes and Interfaces)

A generic class is also known as a parameterized class. The class is defined with space for one or more
parameters, placed between the angle braces, where the type of the parameters is specified during the
declaration of a specific instance of the class. For the rest of this section, the term generic class will be
used to refer to a parameterized class. Also note that a class or an interface in Java can be made generic.
For the rest of this section, unless otherwise stated, the word class includes classes and interfaces. All
instances of a generic class, regardless of what type each instance has been parameterized with, are con-
sidered to be the same class.

A type variable is an unqualified identifier that is used in the definition of a generic class as a place-
holder. Type variables appear between the angle braces. This identifier will be replaced (automatically)
by whatever specific object type the user of the generic class “plugs into” the generic class. In the exam-
ple at the start of this section, Integer is the specific type that takes the place of the type variable for the
parameterized ArrayList.

The direct super-types of a generic class are the classes in the extends clause, if present (or
java.lang.Object if not present), and any interfaces, if any are present. Therefore, in the following
example, the direct super-type is ArrayList:

class CustomArrayList<ItemType> extends ArrayList {
// fields/methods here
}

The super-types of type variables are those listed in the bounds list for that type variable. If none are
specified, java.lang.Object is the super-type.

In hierarchies of generic classes, one important restriction exists. To support translation by type erasure
(see below for more on type erasure), a class or type variable cannot have two different parameteriza-
tions of the same class/interface at the same time. This is an example of an illegal hierarchy:

interface BaseInterface<A> ({
A getInfol();
}

class ParentClass implements BaseInterface<Integer> {
public Integer getInfo()
{
return(null) ;
}
}

class ChildClass extends ParentClass implements BaseInterface<String> { }

Chapter 1

The interface BaseInterface is first parameterized with Integer, and later parameterized with
String. These are in direct conflict, so the compiler will issue the following error:

c:\code\BadParents.java:14: BaseInterface cannot be inherited with different
arguments: <java.lang.String> and <java.lang.Integer>
class ChildClass extends ParentClass implements BaselInterface<String> { }

1 error

Raw Types and Type Erasure

A raw type is a parameterized type stripped of its parameters. The official term given to the stripping of
parameters is type erasure. Raw types are necessary to support legacy code that uses nongeneric versions
of classes such as collections. Because of type erasure, it is possible to assign a generic class reference to a
reference of its nongeneric (legacy) version. Therefore, the following code compiles without error:

Vector oldVector;
Vector<Integer> intVector;

oldVector = intVector; // valid

However, though not an error, assigning a reference to a nongeneric class to a reference to a generic class
will cause an unchecked compiler warning. This happens when an erasure changes the argument types
of a method or a field assignment to a raw type if the erasure changes the method/field type. As an
example, the following program causes the warnings shown after it. You must pass -X1int :unchecked
on the command line to javac to see the specific warnings:

import java.util.*;

public class UncheckedExample {
public void processIntVector (Vector<Integer> v)
{

// perform some processing on the vector

public static void main(String args[])

{
Vector<Integer> intVector = new Vector<Integer>();
Vector oldVector = new Vector();
UncheckedExample ue = new UncheckedExample() ;

// This is permitted

oldVector = intVector;

// This causes an unchecked warning
intVector = oldVector;

// This is permitted
ue.processIntVector (intVector) ;

// This causes an unchecked warning
ue.processIntVector (oldvector) ;

Key Java Language Features and Libraries

Attempting to compile the above code causes the following output:

UncheckedExample.java:16: warning: unchecked assignment: java.util.Vector to
java.util.Vector<java.lang.Integer>
intVector = oldVector; // This causes an unchecked warning

UncheckedExample.java:18: warning: unchecked method invocation:
processIntVector (java.util.Vector<java.lang.Integer>) in UncheckedExample is
applied to (java.util.Vector)

ue.processIntVector (oldVector); // This causes an unchecked warning

2 warnings

Defining Generic Classes

As mentioned earlier, both interfaces and classes can be parameterized. Since type variables have no
inherent type, all that matters is the number of type variables that act as parameters in a class. The list of
type variables appears between the angle braces (the less-than sign and greater-than sign). An example of
changing the existing ArrayList class from a nongeneric class to a generic class changes its signature to:

public class ArrayList<ItemType> { ... }

The type variable here is ItemType, and can be used throughout the class as a not-yet-specified type.
When an object of the class is defined, a specific type is specified and is “plugged into” the generic class
by the compiler. The scope of a type variable extends throughout the class, including the bounds of the
type parameter list, but not including static members/methods.

Each type variable can also have bounds that place a restriction on the type variable. The type variable
can be forced to extend from a class other than java.lang.0Object (which it does when no extends
clause is specified) or implement any number of specific interfaces. For example, if you define an inter-
face GraphicContext as part of a graphics library, you might write a specialization of a collection to
only hold objects that implement the GraphicContext interface. To place only an interface restriction
on the type variable, the extends clause must be specified, even if it is only java.lang.Object, how-
ever it is possible to only list interfaces after the extends clause. If you only list interfaces, it is implicitly
understood that java.lang.Object is the base class of the type variable. Note that interfaces are sepa-
rated by the ampersand (“&”). Any number of interfaces can be specified.

Using Generics

It is straightforward to create objects of a generic type. Any parameters must match the bounds speci-
fied. Although one might expect to create an array of a generic type, the early access release of generics
forbids it. It is also possible to create a method that works on generic types. This section describes these
usage scenarios.

Class Instances

Creating an object of a generic class consists of specifying types for each parameter and supplying any
necessary arguments to the constructor. The conditions for any bounds on type variables must be met.
Note that only reference types are valid as parameters when creating an instance of a generic class.
Trying to use a primitive data type causes the compiler to issue an unexpected type error.

Chapter 1

This is a simple creation of a HashMap that assigns Floats to Strings:

HashMap<String,Float> hm = new HashMap<String,Float>();

Here’s an example from above, involving bounds:
GCArrayList<MemoryDevice> gcal = new GCArrayList<MemoryDevice> () ;

If MonitorDevice was specified instead of MemoryDevice, the compiler issues the error type parame-
ter MonitorDevice is not within its bound.

Arrays

As of the time of this writing, arrays of generic types and arrays of type variables are not allowed.
Attempting to create an array of parameterized Vectors, for example, causes a compiler error:

import java.util.*;

public class GenericArrayExample {
public static void main(String argsl])
{

Vector<Integer> vectorList[] = new Vector<Integer>[10];

If you try to compile that code, the compiler issues the following two errors. This code is the simplest
approach to creating an array of a generic type and the compiler tells you explicitly that creating a
generic type array is forbidden:

GenericArrayExample.java:6: arrays of generic types are not allowed
Vector<Integer> vectorList[] = new Vector<Integer>[10];

~

GenericArrayExample.java:6: arrays of generic types are not allowed
Vector<Integer> vectorList[] = new Vector<Integer>[10];

S

2 errors

Generic Methods

In addition to the generic mechanism for classes, generic methods are introduced. The angle brackets for
the parameters appear after all method modifiers but before the return type of the method. Following is
an example of a declaration of a generic method:

static <Elem> void swap(Elem[] a, int i, int j)

{

Elem temp = al[il;
alil = aljl;
alj] = temp;

The syntax for the parameters in a generic method is the same as that for generic classes. Type variables
can have bounds just like they do in class declarations. Two methods cannot have the same name and

Key Java Language Features and Libraries

argument types. If two methods have the same name and argument types, and have the same number of
type variables with the same bounds, then these methods are the same and the compiler will generate an
error.

Generics and Exceptions

Type variables are not permitted in catch clauses, but can be used in throws lists of methods. An exam-
ple of using a type variable in the throws clause follows. The Executor interface is designed to execute
a section of code that may throw an exception specified as a parameter. In this example, the code that
fills in the execute method might throw an TI0Exception. The specific exception, IOException, is speci-
fied as a parameter when creating a concrete instance of the Executor interface:

import java.io.*;
interface Executor<E extends Exception> {
void execute() throws E;

}

public class GenericExceptionTest {

public static void main(String args[]) {
try {
Executor<IOException> e =
new Executor<IOException>() {

public void execute() throws IOException
{

// code here that may throw an

// IOException or a subtype of

// IOException

Iy

e.execute() ;

} catch(IOException ioe) {
System.out.println("IOException: " + ioe);
ioe.printStackTrace() ;

}

The specific type of exception is specified when an instance of the Executor class is created inside main.
The execute method throws an arbitrary exception that it is unaware of until a concrete instance of the
Executor interface is created.

Enhanced for Loop

The for loop has been modified to provide a cleaner way to process an iterator. Using a for loop with
an iterator is error prone because of the slight mangling of the usual form of the for loop since the
update clause is placed in the body of the loop. Some languages have a foreach keyword that cleans up
the syntax for processing iterators. Java opted not to introduce a new keyword, instead deciding to keep
it simple and introduce a new use of the colon. Traditionally, a developer will write the following code to
use an iterator:

Chapter 1

for (Iterator iter = intArray.iterator(); iter.hasNext();) {
Integer intObject = (Integer)iter.next();
// ... more statements to use intObject ...

}

The problem inherent in this code lies in the missing “update” clause of the for loop. The code that
advances the iterator is moved into the body of the for loop out of necessity, since it also returns the
next object. The new and improved syntax that does the same thing as the previous code snippet is:

for (Integer intObject : intArray) ({
// ... same statements as above go here ...
}

This code is much cleaner and easier to read. It eliminates all the potential from the previous construct to
introduce errors into the program. If this is coupled with a generic collection, the type of the object is
checked versus the type inside the collection at compile time.

Support for this new for loop requires a change only to the compiler. The code generated is no different
from the same code written in the traditional way. The compiler might translate the above code into the
following, for example:

for (Iterator<Integer> $iter = intArray.iterator(); Siter.hasNext();) {
Integer intObject = $iter.next();
// ... statements ...

The use of the dollar sign in the identifier in this example merely means the compiler generates a unique
identifier for the expansion of the new for loop syntax into the more traditional form before compiling.

The same syntax for using an iterator on a collection works for an array. Using the new for loop syntax
on an array is the same as using it on a collection:

for (String strObject : stringArray) {
// ... statements here using strObject ...

}

However, the compiler expands the array version to code slightly longer than the collection version:
String[] $strArray = stringArray;
for(int $i = 0; $i < S$strArray.length; $i++) {

String strObject = $strArrayl[$il;
// ... statements here ...

The compiler this time uses two temporary and unique variables during the expansion. The first is an
alias to the array, and the second is the loop counter.

Additions to the Java Class Library

To fully support the new for loop syntax, the object iterated over must be an array or inherit from a new
interface, java.lang.Iterable, directly or indirectly. The existing collection classes will be retrofitted
for the release of JDK 5. The new Iterable interface looks like:

Key Java Language Features and Libraries

public interface Iterable {

/**

* Returns an iterator over the elements in this collection. There are no
guarantees concerning the order in which the elements are returned
(unless this collection is an instance of some class that provides a

* guarantee) .
*

*
*

* @return an Iterator over the elements in this collection.
*/
SimpleIterator iterator();

Additionally, java.util.Iterator will be retrofitted to implement java.lang.ReadOnlyIterator,
as shown here:

public interface ReadOnlyIterator {
/**
* Returns true if the iteration has more elements. (In other
words, returns true if next would return an element

*
* rather than throwing an exception.)
*

* @return true if the iterator has more elements.
*/
boolean hasNext () ;

/**

* Returns the next element in the iteration.
*

* @return the next element in the iteration.
* @exception NoSuchElementException iteration has no more elements.
*/

Object next () ;

The introduction of this interface prevents dependency on the java.util interfaces. The change in the
for loop syntax is at the language level and it makes sense to ensure that any support needed in the
class library is located in the java. lang branch.

Variable Arguments

C and C++ are the most popular languages that support variable length argument lists for functions.
Java decided to introduce this aspect into the language. Only use variable argument parameter lists in
cases that make sense. If you abuse them, it’s easy to create source code that is confusing. The C lan-
guage uses the ellipsis (three periods) in the function declaration to stand for “an arbitrary number of
parameters, zero or more.” Java also uses the ellipsis but combines it with a type and identifier. The type
can be anything —any class, any primitive type, even array types. When using it in an array, however,
the ellipsis must come last in the type description, after the square brackets. Due to the nature of variable
arguments, each method can only have a single type as a variable argument and it must come last in the
parameter list.

Chapter 1

Following is an example of a method that takes an arbitrary number of primitive integers and returns
their sum:

public int sum(int... intList)
{

int i, sum;

sum=0;
for(i=0; i<intList.length; i++) {
sum += intList[i];

}

return (sum) ;

All arguments passed in from the position of the argument marked as variable and beyond are com-
bined into an array. This makes it simple to test how many arguments were passed in. All that is needed

is to reference the length property on the array, and the array also provides easy access to each argu-
ment.

Here’s a full sample program that adds up all the values in an arbitrary number of arrays:

public class VarArgsExample {
int sumArrays (int[]... intArrays)
{

int sum, i, Jj;

sum=0;
for (i=0; i<intArrays.length; i++) {
for(j=0; j<intArrays([i].length; j++) {
sum += intArrays([i]l[j];
}
}

return (sum) ;

}

public static void main(String argsl[])
{

VarArgsExample va = new VarArgsExample();
int sum=0;

sum = va.sumArrays (new int[]{1,2,3},

new int[]{4,5,6},

new int[]{10,16});
System.out.println("The sum of the numbers is: " + sum);

This code follows the established approach to defining and using a variable argument. The ellipsis
comes after the square brackets, that is, after the variable argument’s type. Inside the method the argu-
ment intArrays is simply an array of arrays.

10

Key Java Language Features and Libraries

Boxing/Unboxing Conversions

One tedious aspect of the Java language in the past is the manual operation of converting primitive
types (such as int and char) to their corresponding reference type (for example, Integer for int and
Character for char). The solution to getting rid of this constant wrapping and unwrapping are boxing
and unboxing conversions. A boxing conversion is an implicit operation that takes a primitive type, such
as int, and automatically places it inside an instance of its corresponding reference type (in this case,
Integer). Unboxing is the reverse operation, taking a reference type, such as Integer, and converting
it to its primitive type, int. Without boxing, you might add an int primitive to a collection (which
holds object types) by doing the following:

Integer intObject;
int intPrimitive;
ArrayList arrayList = new ArrayList();

intPrimitive = 11;
intObject = new Integer (intPrimitive);
arrayList.put (intObject); // cannot add intPrimitive directly

Although this code is straightforward, it is more verbose than necessary. With the introduction of boxing
conversions, the above code can be rewritten as follows:

int intPrimitive;
ArrayList arraylList = new ArrayList();

intPrimitive = 11;
// here intPrimitive is automatically wrapped in an Integer
arrayList.put (intPrimitive) ;

The need to create an Integer object to place an int into the collection is no longer needed. The boxing
conversion happens such that the resulting reference type’s value () method (such as intvalue () for
Integer) equals the original primitive type’s value. Consult the following table for all valid boxing con-
versions. If there is any other type, the boxing conversion becomes an identity conversion (converting
the type to its own type). Note that due to the introduction of boxing conversions, several forbidden con-
versions referring to primitive types are no longer forbidden since they now can be converted to certain
reference types.

Primitive Type Reference Type
boolean Boolean

byte Byte

char Character
short Short

int Integer

long Long

float Float

double Double

11

Chapter 1

Unboxing Conversions

Va

Java also introduces unboxing conversions, which convert a reference type (such as Integer or Float)
to its primitive type (such as int or £loat). Consult the following table for a list of all valid unboxing
conversions. The conversion happens such that the value method of the reference type equals the
resulting primitive value.

Reference Type Primitive Type
Boolean boolean

Byte byte
Character char

Short short
Integer int

Long long

Float float

Double double

lid Contexts for Boxing/Unboxing Conversions

Since the boxing and unboxing operations are conversions, they happen automatically with no specific
instruction by the programmer (unlike casting, which is an explicit operation). There are several contexts
in which boxing and unboxing conversions can happen.

Assignments

An assignment conversion happens when the value of an expression is assigned to a variable. When the
type of the expression does not match the type of the variable, and there is no risk of data loss, the con-
version happens automatically. The precedence of conversions that happen is the identity conversion, a
widening primitive conversion, a widening reference conversion, and then the new boxing (or unbox-
ing) conversion. If none of these conversions are valid, the compiler issues an error.

Method Invocations

12

When a method call is made, and the argument types don’t match precisely with those passed in, several
conversions are possible. Collectively, these conversions are known as method invocation conversions.
Each parameter that does not match precisely in type to the corresponding parameter in the method sig-
nature might be subject to a conversion. The possible conversions are the identity conversion, a widen-
ing primitive conversion, a widening reference conversion, and then the new boxing (or unboxing)
conversion.

The most specific method must be chosen anytime more than one method matches a particular method
call. The rules to match the most specific method change slightly with the addition of boxing conver-
sions. If all the standard checks for resolving method ambiguity fail, the boxing/unboxing conversion
won’t be used to resolve ambiguity. Therefore, by the time checks are performed for boxing conversions,
the method invocation is deemed ambiguous and fails.

Key Java Language Features and Libraries

Combining boxing with generics allows you to write the following code:
import java.util.*;

public class BoxingGenericsExample {
public static void main(String argsl])

{
HashMap<String, Integer> hm = new HashMap<String, Integer> () ;

hm.put ("speed", 20);

The primitive integer 20 is automatically converted to an Integer and then placed into the HashMap
under the specified key.

Static Imports

Importing static data is introduced into the language to simplify using static attributes and methods.
After importing static information, the methods/attributes can then be used without the need to qualify
the method or attribute with its class name. For example, by importing the static members of the Math
class, you can write abs or sqrt instead of Math.abs and Math. sqgrt.

This mechanism also prevents the dangerous coding practice of placing a set of static attributes into an
interface, and then in each class that needs to use the attributes, implementing that interface. The follow-
ing interface should not be implemented in order to use the attributes without qualification:

interface ShapeNumbers {
public static int CIRCLE =
public static int SQUARE =
public static int TRIANGLE

i

’

I = o

2;

Implementing this interface creates an unnecessary dependence on the ShapeNumbers interface. Even
worse, it becomes awkward to maintain as the class evolves, especially if other classes need access to
these constants also and implement this interface. It is easy for compiled classes to get out of synchro-
nization with each other if the interface containing these attributes changes and only some classes are
recompiled.

To make this cleaner, the static members are placed into a class (instead of an interface) and then
imported via a modified syntax of the import directive. ShapeNumbers is revised to the following:

package MyConstants;

class ShapeNumbers {
public static int CIRCLE = 0;
public static int SQUARE = 1;

public static int TRIANGLE 2;

A client class then imports the static information from the ShapeNumbers class and can then use the
attributes CIRCLE, SQUARE, and TRIANGLE without the need to prefix them with ShapeNumbers and the
member operator.

13

Chapter 1

14

To import the static members in your class, specify the following in the import section of your Java
source file (at the top):

import static MyConstants.ShapeNumbers.*; // imports all static data

This syntax is only slightly modified from the standard format of the import statement. The keyword
static is added after the import keyword, and instead of importing packages, you now always add on
the class name since the static information is being imported from a specific class. The chief reason the
keyword static is added to the import statement is to make it clear to those reading the source code
that the import is for the static information.

You can also import constants individually by using the following syntax:

import static MyConstants.ShapeNumbers.CIRCLE;
import static MyConstants.ShapeNumbers.SQUARE;

This syntax is also what you would expect. The keyword static is included since this is a static import,
and the pieces of static information to import are each specified explicitly.

You cannot statically import data from a class that is inside the default package. The class must be
located inside a named package. Also, static attributes and methods can conflict. For example, below are
two classes (located in Colors. java and Fruits. java) containing static constants:

package MyConstants;

public class Colors {
public static int white = 0;
public static int black = 1;
public static int red = 2;
public static int blue = 3;
public static int green = 4
public static int orange =
public static int grey = 6;

package MyConstants;

public class Fruits {
public static int apple = 500;
public static int pear = 501;
public static int orange = 502;
public static int banana = 503;
public static int strawberry = 504;

If you write a class that tries to statically import data on both these classes, everything is fine until you
try to use a static variable that is defined in both of them:

import static MyConstants.Colors.*;
import static MyConstants.Fruits.*;

public class StaticTest {

Key Java Language Features and Libraries

public static void main(String argsl])
{

System.out.println("orange = " + orange);
System.out.println("color orange = " + Colors.orange) ;
System.out.println("Fruity orange = " + Fruits.orange);

The seventh line of the program causes the compiler error listed below. The identifier orange is defined
in both Colors and Fruits, so the compiler cannot resolve this ambiguity:

StaticTest.java:7: reference to orange is ambiguous, both variable orange in
MyConstants.Colors and variable orange in MyConstants.Fruits match
System.out.println("orange = " + orange);

In this case, you should explicitly qualify the conflicting name with the class where it is defined. Instead
of writing orange, write Colors.orange or Fruits.orange.

Enumerations

Java introduces enumeration support at the language level in the JDK 5 release. An enumeration is an
ordered list of items wrapped into a single entity. An instance of an enumeration can take on the value of
any single item in the enumeration’s list of items. The simplest possible enumeration is the Colors enum
shown below:

public enum Colors { red, green, blue }

They present the ability to compare one arbitrary item to another, and to iterate over the list of defined
items. An enumeration (abbreviated enum in Java) is a special type of class. All enumerations implicitly
subclass a new class in Java, java. lang. Enum. This class cannot be subclassed manually.

There are many benefits to built-in support for enumerations in Java. Enumerations are type-safe and
the performance is competitive with constants. The constant names inside the enumeration don’t need to
be qualified with the enumeration’s name. Clients aren’t built with knowledge of the constants inside
the enumeration, so changing the enumeration is easy without having to change the client. If constants
are removed from the enumeration, the clients will fail and you’ll receive an error message. The names
of the constants in the enumeration can be printed, so you get more information than simply the ordinal
number of the item in the list. This also means that the constants can be used as names for collections
such as HashMap.

Since an enumeration is a class in Java, it can also have fields and methods, and implement interfaces.
Enumerations can be used inside switch statements in a straightforward manner, and are relatively
simple for programmers to understand /use.

Here’s a basic enum declaration and its usage inside a switch statement. If you want to track what oper-
ating system a certain user is using, you can use an enumeration of operating systems, which are
defined in the OperatingSystems enum. Note that since an enumeration is effectively a class, it cannot
be public if it is in the same file as another class that is public. Also note that in the switch statement,
the constant names cannot be qualified with the name of the enumeration they are in. The details are
automatically handled by the compiler based on the type of the enum used in the switch clause:

15

Chapter 1

16

import java.util.*;

enum OperatingSystems ({
windows, unix, linux, macintosh

public class EnumExamplel {
public static void main(String argsl[])
{
OperatingSystems os;

os = OperatingSystems.windows;
switch(os) {
case windows:
System.out.println("You chose Windows!") ;
break;
case unix:
System.out.println("You chose Unix!");
break;
case linux:
System.out.println("You chose Linux!");
break;
case macintosh:
System.out.println("You chose Macintosh!");
break;
default:
System.out.println("I don't know your 0S.");
break;

The java.lang.Enum class implements the Comparable and Serializable interfaces. The details of
comparing enumerations and serializing them to a data source are already handled inside the class. You
cannot mark an enum as abstract unless every constant has a class body, and these class bodies over-
ride the abstract methods in the enum. Also note that enumerations cannot be instantiated using new.
The compiler will let you know that enum types may not be instantiated.

Java introduces two new collections, EnumSet and EnumMap, which are only meant to optimize the per-
formance of sets and maps when using enums. Enumerations can be used with the existing collection
classes, or with the new collections when optimization tailored to enumerations is desired.

Methods can be declared inside an enum. There are restrictions placed on defining constructors, how-
ever. Constructors can’t chain to superclass constructors, unless the superclass is another enum. Each
constant inside the enum can have a class body, but since this is effectively an anonymous class, you can-
not define a constructor.

You can also add attributes to the enumeration and to the individual enum constants. An enum constant
can also be followed by arguments, which are passed to the constructor defined in the enum.

Key Java Language Features and Libraries

Here’s an example enumeration with fields and methods:

enum ProgramFlags {
showErrors (0x01) ,
includeFileOutput (0x02),
useAlternateProcessor (0x04) ;

private int bit;

ProgramFlags (int bitNumber)
{

bit = bitNumber;
}

public int getBitNumber ()
{
return(bit) ;
}
}

public class EnumBitmapExample {
public static void main(String argsl[])
{
ProgramFlags flag = ProgramFlags.showErrors;

System.out.println("Flag selected is: " +
flag.ordinal () +
" which is " +
flag.name()) ;

The ordinal () method returns the position of the constant in the list. The value of showErrors is 0
since it comes first in the list, and the ordinal values are 0-based. The name () method can be used to get
the name of the constant, which provides for getting more information about enumerations.

Meta data

Another feature that Sun has decided to include in the JDK 5 release of Java is a meta data facility. This
enables tagging classes with extra information that tools can analyze, and also applying certain blocks of
code to classes automatically. The meta data facility is introduced in the java.lang.annotation pack-
age. An annotation is the association of a tag to a construct in Java such as a class, known as a target in
annotation terminology. The types of constructs that can be annotated are listed in the java.lang.
annotation.ElementType enumeration, and are listed in the following table. Even annotations can be
annotated. TYPE covers classes, interfaces, and enum declarations.

17

Chapter 1

ElementType Constant

ANNOTATION_TYPE
CONSTRUCTOR
FIELD
LOCAL_VARIABLE
METHOD

PACKAGE
PARAMETER

TYPE

Another concept introduced is the life of an annotation, known as the retention. Certain annotations may
only be useful at the Java source code level, such as an annotation for the javadoc tool. Others might be
needed while the program is executing. The RetentionPolicy enumeration lists three type lifetimes
for an annotation. The SOURCE policy indicates the annotations should be discarded by the compiler, that
is, should only available at the source code level. The CLASS policy indicates that the annotation should
appear in the class file, but is possibly discarded at run time. The RUNTIME policy indicates the annota-
tions should make it through to the executing program, and these can then be viewed using reflection.

There are several types of annotations defined in this package. These are listed in the following table.
Each of these annotations inherits from the Annotation interface, which defines an equals method and
a toString method.

Annotation Class Name Description

Target Specifies to which program elements an annotation type is appli-
cable. Each program element can only appear once.

Documented Specifies annotations should be documented by javadoc or other
documentation tools. This can only be applied to annotations.

Inherited Inherits annotations from super-classes, but not interfaces. The
policy on this annotation is RUNTIME, and it can be applied only to
annotations.

Retention Indicates how long annotations on this program element should

be available. See RetentionPolicy discussed earlier. The policy
on this annotation is RUNTIME, and it can be applied only to
annotations.

Deprecated Marks a program element as deprecated, telling developers they
should no longer use it. Retention policy is SOURCE.

Overrides Indicates that a method is meant to override the method in a par-
ent class. If the override does not actually exist, the compiler will
generate an error message. This can only be applied to methods.

18

Key Java Language Features and Libraries

There are two useful source level annotations that come with JDK 5, @deprecated and @overrides.
The @deprecated annotation is used to mark a method as deprecated —that is, it shouldn’t be used by
client programmers. The compiler will issue a warning when encountering this annotation on a class
method that a programmer uses. The other annotation, @overrides, is used to mark a method as over-
riding a method in the parent class. The compiler will ensure that a method marked as @overrides
does indeed override a method in the parent class. If the method in the child class doesn’t override the
one in the parent class, the compiler will issue an error alerting the programmer to the fact that the
method signature does not match the method in the parent class.

Developing a custom annotation isn’t difficult. Let’s create a CodeTag annotation that stores basic author
and modification date information, and also stores any bug fixes applied to that piece of code. The anno-
tation will be limited to classes and methods:

import java.lang.annotation.*;

@QRetention (RetentionPolicy.SOURCE)
@Target ({ElementType.TYPE, ElementType.METHOD})
public @interface CodeTag {

String authorName () ;

String lastModificationDate() ;

String bugFixes() default "";

The Retention is set to SOURCE, which means this annotation is not available during compile time and
run time. The doclet API is used to access source level annotations. The Target is set to TYPE
(classes/interfaces/enums) and METHOD for methods. A compiler error is generated if the CodeTag anno-
tation is applied to any other source code element. The first two annotation elements are authorName
and lastModificationDate, both of which are mandatory. The bugFixes element defaults to the
empty string if not specified. Following is an example class that utilizes the CodeTag annotation:

import java.lang.annotation.*;

@CodeTag (authorName="Dilbert",
lastModificationDate="Mar 23, 2004")
public class ServerCommandProcessor {

@CodeTag (authorName="Dilbert",
lastModificationDate="Mar 24, 2004",
bugFixes="BUG0170")

public void setParams (String serverName)

{

//

}

public void executeCommand (String command, Object... params)
{

//
}

19

Chapter 1

Note how annotation is used to mark who modified the source and when. The method was last modi-
fied a day after the class because of the bug fix. This custom annotation can be used to track this infor-
mation as part of keeping up with source code modifications. To view or process these source code
annotations, the doclet API must be used.

The doclet API (aka Javadoc API) has been extended to support the processing of annotations in the
source code. You use the doclet API by writing a Java class that extends com. sun. javadoc.Doclet. The
start method must be implemented as this is the method that Javadoc invokes on a doclet to perform
custom processing. A simple doclet to print out all classes and methods in a Java source file follows:

import com.sun.javadoc.*;

public class ListClasses extends Doclet ({
public static boolean start (RootDoc root) {
ClassDoc[] classes = root.classes();
for (ClassDoc cd : classes) {

System.out.println("Class [" + cd + "] has the following methods") ;
for (MemberDoc md : cd.methods()) {
System.out.println(" " + md);

}
}

return true;

The start method takes a RootDoc as a parameter, which is automatically passed in by the javadoc
tool. The RootDoc provides the starting point to obtain access to all elements inside the source code, and
also information on the command line such as additional packages and classes.

The interfaces added to the doclet API for annotations are AnnotationDesc, AnnotationDesc.
ElementValuePair, AnnotationTypeDoc, AnnotationTypeElementDoc, and AnnotationvValue.

Any element of Java source that can have annotations has an annotations () method associated with
the doclet API’s counterpart to the source code element. These are AnnotationTypeDoc,
AnnotationTypeElementDoc, ClassDoc, ConstructorDoc, ExecutableMemberDoc, FieldDoc,
MethodDoc, and MemberDoc. The annotations () method returns an array of AnnotationDesc.

AnnotationDesc

This class represents an annotation, which is an annotation type (AnnotationTypeDoc), and an array of
annotation type elements paired with their values. AnnotationDesc defines the following methods.

20

Key Java Language Features and Libraries

Method

Description

AnnotationTypeDoc annotationType ()

AnnotationDesc.ElementValuePair|]
elementValues ()

Returns this annotation’s type.

Returns an array of an annotation’s elements
and their values. Only elements explicitly listed
are returned. The elements that aren’t listed
explicitly, which assume their default value, are
not returned since this method processes just
what is listed. If there are no elements, an empty
array is returned.

AnnotationDesc.ElementValuePair

This represents an association between an annotation type’s element and its value. The following meth-

ods are defined.

Method

Description

AnnotationTypeElementDoc element ()

AnnotationvValue value ()

Returns the annotation type element.

Returns the annotation type element’s value.

AnnotationTypeDoc

This interface represents an annotation in the source code, just like ClassDoc represents a Class. Only

one method is defined.

Method

Description

AnnotationTypeElementDoc[] elements ()

Returns an array of the elements of this
annotation type.

AnnotationTypeElementDoc

This interface represents an element of an annotation type.

Method

Description

AnnotationValue defaultValue()

Returns the default value associated with this
annotation type, or null if there is no default
value.

21

Chapter 1

AnnotationValue

This interface represents the value of an annotation type element.

Method Description
String toString() Returns a string representation of the value.
Object wvalue() Returns the value. The object behind this value

could be any of the following.

* A wrapper class for a primitive type (such as
Integer or Float)

*A String

* A Type (representing a class, a generic class,
a type variable, a wildcard type, or a primitive
data type)

* AFieldDoc (representing an enum constant)

* An AnnotationDesc

* An array of Annotationvalue

Here’s an example using the annotation support provided by the doclet API. This doclet echoes all anno-
tations and their values that it finds in a source file:

import com.sun.javadoc.*;
import java.lang.annotation.*;

public class AnnotationViewer {
public static boolean start (RootDoc root)

{
ClassDoc[] classes = root.classes();
for (ClassDoc cls : classes) {
showAnnotations (cls) ;
}
return(true) ;
}

static void showAnnotations (ClassDoc cls)

{
System.out.println("Annotations for class [" + cls + "]");
process (cls.annotations()) ;

System.out.println() ;
for (MethodDoc m : cls.methods()) {

22

Key Java Language Features and Libraries

System.out.println("Annotations for method [" + m + "]");
process (m.annotations()) ;
System.out.println();

static void process (AnnotationDesc[] anns)
{
for (AnnotationDesc ad : anns) {
AnnotationDesc.ElementValuePair evp[] = ad.elementValues() ;

for (AnnotationDesc.ElementValuePair e : evp) {
System.out.println(" NAME: " + e.element() +
", VALUE=" + e.value())

’

The start method iterates across all classes (and interfaces) found in the source file. Since all annota-
tions on source code elements are associated with the AnnotationDesc interface, a single method can
be written to process annotations regardless of which source code element the annotation is associated.
The showAnnotations method prints out annotations associated with the current class and then pro-
cesses all methods inside that class. The doclet API makes processing these source code elements easy.
To execute the doclet, pass the name of the doclet and name of the class to process on the command line
as follows:

javadoc -source 1.5 -doclet AnnotationViewer ServerCommandProcessor.java
The doclet echoes the following to the screen:

Loading source file ServerCommandProcessor.java.. .
Constructing Javadoc information...
Annotations for class [ServerCommandProcessor]

NAME: CodeTag.authorName (), VALUE="Dilbert"

NAME: CodeTag.lastModificationDate(), VALUE="Mar 23, 2004"

Annotations for method [ServerCommandProcessor.setParams(java.lang.String)]
NAME: CodeTag.authorName (), VALUE="Dilbert"
NAME: CodeTag.lastModificationDate(), VALUE="Mar 24, 2004"

Annotations for method [ServerCommandProcessor.executeCommand(java.lang.String,
java.lang.Object[])]

To access annotations at run time, the reflection API must be used. This support is built in through the
interface AnnotatedElement, which is implemented by the reflection classes AccessibleObject,
Class, Constructor, Field, Method, and Package. All these elements may have annotations. The
AnnotatedElement interface defines the following methods.

23

Chapter 1

Method Description

<T extends Annotation> Returns the annotation associated with the
T getAnnotation(Class<T> annotationType) specified type, or null if none exists.
Annotation[] getAnnotations () Returns an array of all annotations on the

current element, or a zero-length array if no
annotations are present.

Annotation[] getDeclaredAnnotations () Similar to getAnnotations but does not
return inherited annotations — only anno-
tations explicitly declared on this element
are returned. Returns a zero-length array if
no annotations are present.

boolean isAnnotationPresent (Class<? Returns true if the annotationType is
extends Annotation> annotationType) present on the current element, false
otherwise.

Let’s develop an annotation that might be useful in developing a testing framework. The framework
invokes test methods specified in the annotation and expects a boolean return value from these testing
methods. The reflection API is used to both process the annotation and execute the test methods.

The annotation is listed below:

import java.lang.annotation.*;

@Retention (RetentionPolicy.RUNTIME)
@Target ({ElementType.TYPE})
public @interface TestParameters ({
String testStage();
String testMethods() ;
String testOutputType(); // "db" or "file"
String testOutput(); // filename or data source/table name

An example application of this annotation is to a class of utility methods for strings. You might develop
your own utility class and develop testing methods to ensure the utility methods work:

@TestParameters (testStage="Unit",
testMethods="testConcat, testSubstring",
testOutputType="screen",
testOutput="")

public class StringUtility {

public String concat (String sl, String s2)
{

return(sl + s2);

public String substring(String str, int start, int end)
{
return (str.substring(start, end));

24

Key Java Language Features and Libraries

public boolean testConcat ()
{
String sl = "test";
String s2 " 123";

return(concat (sl,s2) .equals("test 123"));
}

public boolean testSubstring()
{

String str = "The cat landed on its feet";

return (substring(str, 4, 3).equals("cat"));

Following is an example implementation of the testing framework. It uses reflection to process the anno-
tation and then invoke the testing methods, writing the results to the screen (though other output desti-
nations can be built into the framework). As of the time of this writing, the reflection routines to retrieve
annotations on classes and methods were not implemented. In the interest of illustration, the source
code is provided here without output:

import java.lang.reflect.*;
import java.lang.annotation.*;
import java.util.*;

public class TestFramework {

static void executeTests (String className) {
try {
Object obj = Class.forName (className) .newInstance() ;

TestParameters tp = obj.getClass().getAnnotation (TestParameters.class);
if(tp !'= null) {
String methodList = tp.testMethods() ;
StringTokenizer st = new StringTokenizer (methodList, ",");
while (st.hasMoreTokens ()) {
String methodName = st.nextToken/() ;

Method m = obj.getClass () .getDeclaredMethod (methodName) ;
System.out.println (methodName) ;

System.out.println("---- - - - ————————- ") g
String result = invoke(m, obj);
System.out.println("Result: " + result);
}
} else {

System.out.println("No annotation found for " + obj.getClass());
}
} catch(Exception ex) {
ex.printStackTrace() ;
}
}

static String invoke (Method m, Object o) {

25

Chapter 1

String result = "PASSED";

try {
m.invoke (o) ;
} catch(Exception ex) {
result = "FAILED";
}

return (result) ;

}

public static void main(String [] args) {
executeTests (args[0]) ;
}
}

The executeTests method obtains a handle to the Test Parameters annotation from the class and
then invokes each method from the testMethods () element of the annotation. This is a simple imple-
mentation of the testing framework, and can be extended to support the other elements of the
TestParameters annotation, such as writing results to a database instead of the screen. This is a practi-
cal example of using meta data—adding declarative information to Java source that can then be utilized
by external programs and/or doclets for generating documentation.

Important Java Utility Libraries

This section describes several key utility libraries in Java. These libraries are as follows:

Q Javalogging — A powerful logging system that is vital for providing meaningful error messages
to end users, developers, and people working in the field.

0O Regular Expressions — A powerful “miniature language” used to process strings in a variety of
ways, such as searching for substrings that match a particular pattern.

Q Java preferences — A way to store and retrieve both system and user defined configuration

options.

Each library is designed for flexibility of usage. Familiarity with these libraries is vital when developing
solutions in Java. The more tools on your belt as a developer, the better equipped you are.

Java Logging

26

Java has a well-designed set of classes to control, format, and publish messages through the logging sys-
tem. It is important for a program to log error and status messages. There are many people who can ben-
efit from logging messages, including developers, testers, end users, and people working in the field that
have to troubleshoot programs without source code. It is vital to include a high number of quality log
messages in a program, from status updates to error conditions (such as when certain exceptions are
caught). By using the logging system, it is possible to see what the program is doing without consulting
the source code, and most importantly, track down error conditions to a specific part of the program.

The value of a logging system is obvious, especially in large systems where a casual error with minimal
or no log messages might take days or longer to track down.

Key Java Language Features and Libraries

The logging system in java.util.logging is sophisticated, including a way to prioritize log messages
such that only messages a particular logger is interested in get logged, and the messages can be output
to any source that a Handler object can handle. Examples of logging destinations are files, databases,
and output streams. Take a close look at Figure 1-1 to see an overview of the entire logging system.

Handler passes message

to next Handler in a chain
passes log message to

current Logger’s pareh of H;r{vlers
. log message . o
I@ i > Logger > Handler ——> |0gg|ng destination
has an associated
log level. Logger

each Handler knows how
to write a log message to a
particular destination

Filter Filter Formatter can

i localize/transform
Filters are used to (log message

determine whether to Formatter

process or skip a log
message only the last Handler in the
chain of Handlers can
apply a Formatter to the
message

skips messages
below a particular
level

Figure 1-1

The specific Logger objects are actually hierarchical, and though not mandatory, can mirror the class
hierarchy. When a Logger receives a log message, the message is also passed automatically to the
Logger’s parent. The root logger is named “ “ (the empty string) and has no parent. Each other Logger
is usually named something such as java.util or java.util.ArrayList to mirror the package/class
hierarchy. The names of the Logger objects, going down the tree, are dot-separated. Therefore,
java.util is the parent Logger of java.util.ArrayList. You can name the loggers any arbitrary
string, but keeping with the dot-separated convention helps to clarity.

The simplest use of the logging system creates a Logger and uses all system defaults (defined in a prop-
erties file) for the logging system. The following example outputs the log message using a formatting
class called the simpleFormatter that adds time/date/source information to the log message:

import java.util.logging.*;
public class BasicLoggingExample {
public static void main(String argsl[])
{
Logger logger = Logger.getLogger ("BasicLoggingExample") ;

logger.log (Level.INFO, "Test of logging system");

27

Chapter 1

The following is output from the BasicLoggingExample:

Feb 22, 2004 4:07:06 PM BasicLoggingExample main
INFO: Test of logging system

The Log Manager

The entire logging system for a particular application is controlled by a single instance of the
LogManager class. This instance is created during the initialization of the LogManager. The LogManager
contains the hierarchical namespace that has all the named Logger objects. The LogManager also con-
tains logging control properties that are used by Handlers and other objects in the logging system for
configuration. These configuration properties are stored in the file 1ib/logging.properties thatis
located in the JRE installation path.

There are two system properties that can be used to initialize the logging system with different proper-
ties. The first way is to override the property java.util.logging.config. file and specify the full
path to your own version of logging.properties. The other property, java.util.logging.config.
class, is used to point to your own LogManager. This custom LogManager is responsible for reading in
its configuration. If neither of these properties is set, Java will default to the logging.properties file
in the JRE directory. Consult the following table for properties that can be set on the LogManager in this
file. You can also specify properties for Loggers and Handlers in this file. These properties are
described later in this section.

Property Key Property Value

Handlers Comma separated list of Handler classes. Each handler must be
located somewhere in the system classpath.

.level Sets the minimum level for a specific Logger.

The level must be prefixed with the full path to a specific Logger.
A period by itself sets the level for the root logger.

The LogManager Class

The LogManager class contains methods to configure the current instance of the logging system through
a number of configuration methods, tracks loggers and provides access to these loggers, and handles
certain logging events. These methods are listed in the following tables.

Configuration

28

The methods listed in the following table relate to storage and retrieval of configuration information in
the LogManager.

Key Java Language Features and Libraries

Method

Description

String getProperty(String name)

void readConfiguration ()

Returns the value corresponding to a speci-
fied logging property.

Reloads the configuration using the same

process as startup. If the system properties
controlling initialization have not changed,
the same file that was read at startup will be
read here.

void readConfiguration(InputStream ins) Reads configuration information from an
InputStream thatis in the java.util.

Properties format.

void reset() Resets the logging system. All Handlers are
closed and removed and all logger levels
except on the root are set to null. The root

logger’s level is set to Level . INFO.

Logger Control

The methods listed in the following table relate to the storage, retrieval, and management of individual
Logger references. These are the most commonly used methods on the LogManager class.

Method Description

Returns the one and only instance of the
LogManager object.

static LogManager getLogManager ()

boolean addLogger (Logger logger) Returns true if the Logger passed in is not
already registered (its name isn’t already in

the list). The logger is registered.

Returns false if the name of the Logger
object already exists in the list of registered
loggers.

Logger getLogger (String name) Returns a reference to the Logger object that
is named “name,” or null if no logger is

found.

Enumeration getLoggerNames () Returns an Enumeration containing a list of

the names of all currently registered loggers.

Events

The methods listed in the following table provide a way to add and remove references to listeners that
should be notified when properties are changed on the LogManager.

29

Chapter 1

Method Description

void addPropertyChangeListener Adds a property change listener to the list of

(PropertyChangeListener 1) listeners that want notification of when a
property has changed. The same listener can
be added multiple times.

void removePropertyChangeListener Removes a single occurrence of a property

(PropertyChangelistener 1) change listener in the list of listeners.

The Logger Class

An instance of the Logger class is used by client code to log a message. Both the log message and each
logger have an associated level. If the level of the log message is equal to or greater than the level of the
logger, the message is then processed. Otherwise, the logger drops the log message. It is an inexpensive
operation to test whether to drop the log message or not, and this operation is done at the entry point to
the logging system —the Logger class. These levels are defined inside the Level class. Consult the fol-
lowing table for a full list of levels.

Logger Level Description

SEVERE Highest logging level. This has top priority.

WARNING One level below severe. Intended for warning messages that need atten-
tion, but aren’t serious.

INFO Two levels below severe. Intended for informational messages.

CONFIG Three levels below severe. Intended for configuration-related output.

FINE Four levels below severe. Intended for program tracing information.

FINER Five levels below severe. Intended for program tracing information.

FINEST Lowest logging level. This has lowest priority.

ALL Special level which makes the system log ALL messages.

OFF Special level which makes the system log NO messages (turns logging off
completely).

Logger Methods

The Logger is the main class that is used in code that utilizes the logging system. Methods are provided
to obtain a named or anonymous logger, configure and get information about the logger, and log mes-

sages.

Obtaining a Logger

The following methods allow you to retrieve a handle to a Logger. These are static methods and provide
an easy way to obtain a Logger without going through a LogManager.

30

Key Java Language Features and Libraries

Method Description

static Logger getAnonymousLogger ()static
Logger‘getAnonymousLogger(String
resourceBundleName)

Creates an anonymous logger that is
exempt from standard security checks, for
use in applets. The anonymous logger is
not registered in the LogManager name-
space, but has the root logger (“”) as a
parent, inheriting level and handlers from
the root logger. A resource bundle can
also be specified for localization of log
messages.

static Logger getLogger (String name)
static Logger getLogger(String name,
String resourceBundleName)

Returns a named logger from the
LogManager namespace, or if one is not
found, creates and returns a new named
logger. A resource bundle can also be
specified for localization of log messages.

Configuring a Logger Object

The following methods allow you to configure a Logger object. You can add and remove handlers, set
the logging level on this Logger object, set its parent, and choose whether log messages should be
passed up the logger hierarchy or not.

Method

Description

void addHandler (Handler handler)

void removeHandler (Handler handler)

void setLevel (Level newLevel)

void setParent (Logger parent)

void setUseParentHandlers (boolean
useParentHandlers)

Adds a Handler to the logger. Multiple
handlers can be added. Also note that the
root logger is configured with a set of
default Handlers.

Removes a specified handler from the list
of handlers on this logger. If the handler is
not found, this method returns silently.

Sets the log level that this logger will use.
Message levels lower than the logger’s
value will be automatically discarded. If
null is passed in, the level will be inher-
ited from this logger’s parent.

Sets the parent for this logger. This should
not be called by application code, as it is
intended for use only by the logging
system.

Specifies true if log messages should be
passed to their parent loggers, or false to
prevent the log messages from passing to
their parent.

Table continued on following page

31

Chapter 1

Method Description

Filter getFilter() Returns the filter for this logger, which
might be null if no filter is associated.

Handler[] getHandlers () Returns an array of all handlers associ-
ated with this logger.

Level getLevel () Returns the log level assigned to this log-

ger. If null is returned, it indicates the log-
ging level of the parent logger that will be
used.

String getName () Returns the name of this logger, or null if
this is an anonymous logger.

Logger getParent () The nearest parent to the current logger is
returned, or null if the current logger is
the root logger.

ResourceBundle getResourceBundle () Returns the ResourceBundle associated
with this logger. Resource bundles are
used for localization of log messages. If
null is returned, the resource bundle from
the logger’s parent will be used.

String getResourceBundleName () Returns the name of the resource bundle
this logger uses for localization, or null if
the resource bundle is inherited from the
logger’s parent.

boolean getUseParentHandlers () Returns true if log messages are passed to
the logger’s parent, or false if log mes-
sages are not passed up the hierarchy.

Logging Messages

The following methods are all used to actually log a message using a Logger. Convenience methods are
provided for logging messages at each logging level, and also for entering and exiting methods and
throwing exceptions. Additional methods are provided to localize log messages using a resource bundle.

32

Key Java Language Features and Libraries

Method

Description

void config(String msg)
void fine(String msg)
void finer (String msg)
void finest (String msg)
void info (String msg)
void severe (String msg)
void warning (String msg)

void entering(String sourceClass,
String sourceMethod)

void entering(String sourceClass,
String sourceMethod, Object paraml)

void entering(String sourceClass,
String sourceMethod, Object params[])

void exiting(String sourceClass,
String sourceMethod)

void exiting(String sourceClass,
String sourceMethod, Object result)

boolean isLoggable(Level level)

void log(Level level, String msg)

void log(Level level, String msg, Object paraml)

void log(Level level, String msg,
Object[] params)

void log(Level level, String msg,
Throwable thrown)

void log(LogRecord record)

The Logger class contains a
number of convenience methods
for logging messages. For
quickly logging a message of a
specified level, one method for
each logging level is defined.

Log a message when a method is
first entered. The variant forms
take a parameter to the method,
or an array of parameters, to
provide for more detailed
tracking of the method
invocation. The message of the
log is ENTRY in addition to the
other information about the
method call. The log level is
Level .FINER.

Log a message when a method is
about to return. The log message
contains RETURN and the log
level is Level . FINER. The
source class and source method
are also logged.

Checks if a certain level will be
logged. Returns true if it will be
logged, or false otherwise.

Standard general logging
convenience methods. Variants
include the ability to specify a
parameter or array of parameters
to log, or Throwable
information. The information is
placed into a LogRecord object
and sent into the logging system.
The last variant takes a
LogRecord object.

Table continued on following page

33

Chapter 1

Method Description

void logp(Level level, String sourceClass, These logging methods take

String sourceMethod, String msg) source class and source method
names in addition to the other

void logp(Level level, String sourceClass, information. All this is put into a

String sourceMethod, String msg, Object paraml) LogRecordobﬁmtandsenthﬂo
the system.

void logp(Level level, String sourceClass,
String sourceMethod, String msg,
Object[] params)

void logp (Level level, String sourceClass,
String sourceMethod, String msg,
Throwable thrown)

void logrb(Level level, String sourceClass, These methods allow you to
String sourceMethod, String bundleName, specify a resource bundle in
String msg) addition to the other

information. The resource
void logrb(Level level, String sourceClass, bundle will be used to localize
String sourceMethod, String bundleName, the log message.

String msg, Object paraml)

void logrb(Level level, String sourceClass,
String sourceMethod, String bundleName,
String msg, Object[] params)

void logrb(Level level, String sourceClass,
String sourceMethod, String bundleName,
String msg, Throwable thrown)

void throwing(String sourceClass, String This logs a throwing message.

sourceMethod, Throwable thrown) The log level is Level . FINER
The log record’s message is set to
THROW and the contents of
thrown are put into the log
record’s thrown property
instead of inside the log record’s
message.

The LogRecord Class

The LogRecord class encapsulates a log message, carrying the message through the logging system.
Handlers and Formatters use LogRecords to have more information about the message (such as the
time it was sent and the logging level) for processing. If a client to the logging system has a reference to a
LogRecord object, the object should no longer be used after it is passed into the logging system.

34

Key Java Language Features and Libraries

LogRecord Methods

The LogRecord contains a number of methods to examine and manipulate properties on a log record,
such as message origination, the log record’s level, when it was sent into the system, and any related

resource bundles.

Method

Description

Level getLevel ()

String getMessage ()

long getMillis()

Object[] getParameters()

long getSequenceNumber ()

Throwable getThrown ()

String getLoggerName ()

String getSourceClassName ()

String getSourceMethodName ()

int getThreadID

Returns the log record’s level.

Returns the unformatted version of the log message,
before formatting /localization.

Returns the time the log record was created in
milliseconds.

Returns an array of parameters of the log record, or null if
no parameters are set.

Returns the sequence number of the log record. The
sequence number is assigned in the log record’s construc-
tor to create a unique number for each log record.

Returns the Throwable associated with this log record,
such as the Exception if an exception is being logged.
Returns null if no Throwable is set.

Returns the name of the logger, which might be null if it is
the anonymous logger.

Gets the name of the class that might have logged the mes-
sage. This information may be specified explicitly, or
inferred from the stack trace and therefore might be inac-
curate.

Gets the name of the method that might have logged the
message. This information may be specified explicitly, or
inferred from the stack trace and therefore might be inac-
curate.

Returns the identifier for the thread that originated the log
message. This is an ID inside the Java VM.

Setting Information about Message Origination

The following methods allow you to set origination information on the log message such as an associ-
ated exception, class and method that logged the message, and the ID of the originating thread.

35

Chapter 1

Method

Description

void setSourceClassName
(String sourceClassName)

void setSourceMethodName
(String sourceMethodName)

void setThreadID (int threadID)

void setThrown (Throwable thrown)

Sets the name of the class where the log
message is originating.

Sets the name of the method where the log
message is originating.

Sets the identifier of the thread where the log
message is originating.

Sets a Throwable to associate with the log mes-
sage. Can be null.

Resource Bundle Methods

The following methods allow you to retrieve and configure a resource bundle for use with the log mes-
sage. Resource bundles are used for localizing log messages.

Method

Description

ResourceBundle getResourceBundle ()

String getResourceBundleName ()

void setResourceBundle
(ResourceBundle bundle)

void setResourceBundleName
(String name)

Returns the ResourceBundle associated with
the logger that is used to localize log messages.
Might be null if there is no associated
ResourceBundle.

Returns the name of the resource bundle used
to localize log messages. Returns null if log

messages are not localizable (no resource bun-
dle defined).

Sets a resource bundle to use to localize log
messages.

Sets the name of a resource bundle to use to
localize log messages.

Setting Information about the Message

The following methods configure the log message itself. Some of the information you can configure
related to the log message are its level, the contents of the message, and the time the message was sent.

Method

Description

void setLevel (Level level)

void setLoggerName (String name)

void setMessage (String message)

Sets the level of the logging message.

Sets the name of the logger issuing this mes-
sage. Can be null.

Sets the contents of the message before for-
matting/localization.

36

Key Java Language Features and Libraries

Method Description

void setMillis(long millis) Sets the time of the log message, in
milliseconds since 1970.

void setParameters (Object[] parameters) Sets parameters for the log message.

void setSequenceNumber (long seq) Sets the sequence number of the log mes-

sage. This method shouldn’t usually be
called, since the constructor assigns a unique
number to each log message.

The Level Class

The Level class defines the entire set of logging levels, and also objects of this class represent a specific
logging level that is then used by loggers, handlers, and so on. If you desire, you can subclass this class
and define your own custom levels, as long as they do not conflict with the existing logging levels.

Logging Levels

The following logging levels are defined in the Level class.

Log Level Description

OFF Special value that is initialized to Integer .MAX_VALUE. This turns logging off.
SEVERE Meant for serious failures. Initialized to 1,000.

WARNING Meant to indicate potential problems. Initialized to 900.

INFO General information. Initialized to 800.

CONFIG Meant for messages useful for debugging. Initialized to 700.

FINE Meant for least verbose tracing information. Initialized to 500.

FINER More detailed tracing information. Initialized to 400.

FINEST Most detailed level of tracing information. Initialized to 300.

ALL Special value. Logs ALL messages. Initialized to Integer .MIN_VALUE.

Level Methods

The Level class defines methods to set and retrieve a specific logging level. Both numeric and textual
versions of levels can be used.

37

Chapter 1

Method Description

static Level parse(String name) Returns a Level object representing the name of
the level that is passed in. The string name can be
one of the logging levels, such as SEVERE or CON-
FIG. An arbitrary number, between
Integer .MIN_VALUE and Integer.MAX_VALUE
can also be passed in (as a string). If the number
represents one of the existing level values, that
level is returned. Otherwise, a new Level is
returned corresponding to the passed in value.
Any invalid name or number causes an I1le-
galArgumentException to get thrown. If the
name is null, a NullPointerException is thrown.

boolean equals (Object ox) Returns true if the object passed in has the same
level as the current class.

String getLocalizedName () Returns the localized version of the current level’s
name, or the nonlocalized version if no localization
is available.

String getName () Returns the nonlocalized version of the current
level’s name.

String getResourceBundleName () Returns the name of the level’s localization
resource bundle, or null if no localization resource
bundle is defined.

int hashCode() Returns a hash code based on the level value.

int intvalue() Returns the integer value for the current level.

String toString() Returns the nonlocalized name of the current level.

The Handler Class

The Handler class is used to receive log messages and then publish them to an external destination. This
might be memory, a file, a database, a TCP/IP stream, or any number of places that can store log mes-
sages. Just like loggers, a handler has an associated level. Log messages that are less than the level on the
handler are discarded. Each specific instance of a Handler has its own properties and is usually config-
ured in the logging.properties file. The next section discusses the various handlers that are found in
the java.util.logging package. Creating a custom handler is straightforward, since implementations
of only close (), £lush(), and publish(LogRecord record) are needed.

Handler Methods

The Handler class defines three abstract methods that need specific behavior in inheriting classes. The
other methods available on the Handler class are for dealing with message encoding, filters, formatters,
and error handlers.

38

Key Java Language Features and Libraries

Key Abstract Methods

When developing a custom handler, there are three abstract methods that must be overridden. These are
listed in the following table.

Method Description

abstract void close() This method should perform a flush()
and then free any resources used by the
handler. After close () is called, the Han-

dler should no longer be used.

abstract void flush() Flushes any buffered output to ensure it is

saved to the associated resource.

abstract void publish(LogRecord record) Takes a log message forwarded by a log-
ger and then writes it to the associated
resource. The message should be format-

ted (using the Formatter) and localized.

Set and Retrieve Information about the Handler

The methods listed in the following table allow you to retrieve information about the handler, such as its
encoding, associated error manager, filter, formatter, and level, and also set this configuration information.

Method

Description

String getEncoding ()

ErrorManager getErrorManager ()

Filter getFilter ()

Formatter getFormatter ()

Level getLevel ()

boolean isLoggable (LogRecord record)

void setEncoding (String encoding)

Returns the name of the character encod-
ing. If the name is null, then the default
encoding should be used.

Returns the ErrorManager associated
with this Handler.

Returns the Filter associated with this
Handler, which might be null.

Returns the Formatter associated with
this Handler, which might be null.

Returns the level of this handler. Log mes-
sages lower than this level are discarded.

Returns true if the LogRecord passed in
will be logged by this handler. The checks
include comparing the record’s level to
the handler’s, testing against the filter (if
one is defined), and any other checks
defined in the handler.

Sets the encoding to a specified character
encoding. If null is passed in, the default
platform encoding is used.

Table continued on following page

39

Chapter 1

Method Description

void setErrorManager (ErrorManager em) Sets an ErrorManager for the handler. If
any errors occur while processing, the
Error Manager's error method is
invoked.

void setFilter (Filter newFilter) Sets a custom filter that decides whether
to discard or keep a log message when the
publish method is invoked.

void setFormatter (Formatter newFormatter) Sets a Formatter that performs custom
formatting on log messages passed to the
handler before the log message is written
to the destination.

void setLevel (Level newLevel) This method sets the level threshold for
the handler. Log messages below this
level are automatically discarded.

Stock Handlers

The java.util.logging package includes a number of predefined handlers to write log messages to
common destinations. These classes include the ConsoleHandler, FileHandler, MemoryHandler,
SocketHandler, and StreamHandler. These classes provide a specific implementation of the abstract
methods in the Handler class. All the property key names in the tables are prefixed with java.util.
logging in the actual properties file.

The streamHandler serves chiefly as a base class for all handlers that write log messages to some
outputStream. The subclasses of StreamHandler are ConsoleHandler, FileHandler, and
SocketHandler. A lot of the stream handling code is built into this class. See the following table for a
list of properties for the StreamHandler.

Property Name Description Default Value
StreamHandler.level Log level for the handler Level.INFO
StreamHandler.filter Filter to use Undefined
StreamHandler. formatter Formatter to use java.util.logging.
SimpleFormatter
StreamHandler.encoding Character set encoding to use Default platform encoding

40

Key Java Language Features and Libraries

The following methods are defined /implemented on the StreamHandler class.

Method

Description

voidclose()

void flush()

boolean isLoggable (LogRecord record)

void publish (LogRecord record)

void setEncoding (String encoding)

protected void setOutputStream
(OutputStream out)

The head string from the Formatter will be
written if it hasn’t been already, and the tail
string is written before the stream is closed.

Writes any buffered output to the stream
(flushes the stream).

Performs standard checks against 1evel
and filter, but also returns false if no out-
put stream is open or the record passed

in is null.

If the record passed in is loggable, the
Formatter is then invoked to format the log
message and then the message is written to
the output stream.

Sets the character encoding to use for log
messages. Pass in null to use the current plat-
form’s default character encoding.

Sets an OutputStream to use. If an
OutputStreamn is already open, it is flushed
and then closed. The new OutputStream is
then opened.

The ConsoleHandler writes log messages to System. err. It subclasses StreamHandler but overrides
close () to only perform a flush, so the System. err stream does not get closed. The default formatter

used is SimpleFormatter. See below for specific information about formatters. See the following table
for properties that can be defined in the 1ogging.properties file for the ConsoleHandler.

Property Name Description

Default Value

ConsoleHandler.level
ConsoleHandler.filter Filter to use

ConsoleHandler.formatter

ConsoleHandler.encoding

Log level for the handler

Formatter to use

Character set encoding to use

Level.INFO
Undefined

java.util.logging.
SimpleFormatter

Default platform encoding

The SocketHandler writes log messages to the network over a specified TCP port. The properties listed
in the following table are used by the SocketHandler. The default constructor uses the properties
defined, and a second constructor allows the specification of the host and port SocketHandler (String
host, int port).The close () method flushes and closes the output stream, and the publish ()

method flushes the stream after each record is written.

41

Chapter 1

Property Name Description Default Value
SocketHandler.level Log level for the handler Level.INFO
SocketHandler.filter Filter to use undefined
SocketHandler. formatter Formatter to use java.util.logging.
XMLFormatter
SocketHandler.encoding Character set encoding to use Default platform encoding
SocketHandler.host Target host name to connect to undefined
SocketHandler.port Target TCP port to use undefined

The FileHandler is able to write to a single file, or write to a rotating set of files as each file reaches a
specified maximum size. The next number in a sequence is added to the end of the name of each rotating
file, unless a generation (sequence) pattern is specified elsewhere. See below for a discussion of patterns
to form filenames. The properties for the FileHandler are listed in the following table.

Property Name

Description

Default Value

FileHandler.level
FileHandler.filter

FileHandler.formatter

FileHandler.encoding

FileHandler.limit

FileHandler.count

FileHandler.pattern

FileHandler.append

Log level for the handler
Filter to use

Formatter to use

Character set encoding to use

Specifies approximate
maximum number of bytes
to write to a file. 0 means
no limit.

Specifies how many output
iles to cycle through.

Pattern used to generate
output filenames. See below
for more information.

Boolean value specifying
whether to append to an
existing file or overwrite it.

Level.INFO
undefined

java.util.logging.
XMLFormatter

Default platform encoding

0

%h/java%u.log

false

42

The FileHandler class supports filename patterns, allowing the substitution of paths such as the user’s
home directory or the system’s temporary directory. The forward slash (/) is used as a directory separa-
tor, and this works for both Unix and Windows machines. Also supported is the ability to specify where
the generation number goes in the filename when log files are rotated. These patterns are each prefixed
with a percent sign (%).To include the percent sign in the filename, specify two percent signs (%%). The
following table contains all the valid percent-sign substitutions.

Key Java Language Features and Libraries

Pattern Description

3t Full path of the system temporary directory

$h Value of the user . home system property

%9 Generation number used to distinguish rotated logs
%u Unique number used to resolve process conflicts

For example, if you're executing this on Windows 95 and specify the filename pattern $t/app_log. txt,
the FileHandler class expands this to C: \TEMP\app_log. txt. Note that the $t and $h commands do
not include the trailing forward slash.

The %u is used to account for when multiple threads/processes will access the same log file. Only one
process can have the file open for writing, so to prevent the loss of logging information, the %u can be
used to output to a log file that has a similar name to the others. For example, the filename pattern
%t/logfile%u. txt can be specified, and if two processes open this same log file for output, the first
will open C:\TEMP\logfile0. txt and the second will open C: \TEMP\logfilel. txt.

The MemoryHandler is a circular buffer in memory. It is intended for use as a quick way to store messages,
so the messages have to be sent to another handler to write them to an external source. Since the buffer is
circular, older log records eventually are overwritten by newer records. Formatting can be delayed to
another Handler, which makes logging to a MemoryHandler quick. There are conditions that will cause
the MemoryHandler to send data (push data) to another Handler. These conditions are as follows:

Q Alog record passed in has a level greater than a specified pushLevel.

O Another class calls the push method on the MemoryHandler.

Q A subclass implements specialized behavior to push data depending on custom criteria.

The properties on the MemoryHandler are listed in the following table.

Property Name Description Default Value
MemoryHandler. level Log level for the handler Level.INFO
MemoryHandler.filter Filter to use undefined
MemoryHandler.size Size of the circular buffer (in bytes) 1,000
MemoryHandler .push Defines the push level —the minimum Level.SEVERE

level that will cause messages to be
sent to the target handler

MemoryHandler.target Specifies the name of the Undefined
target Handler class

43

Chapter 1

The constructors create a MemoryHandler with a default or specific configuration.

Constructor Description

MemoryHandler () Creates a MemoryHandler based on the configu-
ration properties.

MemoryHandler (Handler target, Creates a MemoryHandler with a specified target
int size, Level pushLevel) handler, size of the buffer, and push level.

The methods provided by the MemoryHandler create and configure the behavior of the memory han-
dler.

Method Description

voidpublish (LogRecord record) Stores the record in the internal buffer, if it is log-
gable (see isLoggable). If the level of the log
record is greater than or equal to the pushLevel,
all buffered records, including the current one,
are written to the target Handler.

void close() Closes the handler and frees the associated
resources. Also invokes close on the
target handler.

void flush() Causes a f1ush, which is different from a push.

To actually write the log records to a destination
other than memory, a push must be performed.

Level getPushLevel () Returns the current push level.

boolean isLoggable (LogRecord record) Compares the log level’s versus the handler’s log
level, and then runs the record through the filter
if one is defined. Whether the record will cause a
push or not is ignored by this method.

void push () Sends all records in the current buffer to the tar-
get handler, and clears the buffer.

void setPushLevel (Level newLevel) Sets a new push level.

The Formatter Class

The Formatter class is used to perform some custom processing on a log record. This formatting might
be localization, adding additional program information (such as adding the time and date to log
records), or any other processing needed. The Formatter returns a string that is the processed log
record. The Formatter class also has support for head and tail strings that come before and after all
log records. An example that will be implemented later in this section is a custom Formatter that writes
log records to an HTML table. For this formatter, the head string would be the <table> tag, and the tail
string is the </table> tag. The methods defined in the Formatter class are listed in the following table.

44

Key Java Language Features and Libraries

Method Description

abstract String format (LogRecord record) Performs specific formatting of the log
record and returns the formatted string.

String formatMessage (LogRecord record) The message string in the LogRecord is
localized using the record’s Resource-
Bundle, and formatted according to
java. text style formatting (replacing
strings such as {0}).

String getHead (Handler h) Returns the header string for a specified
handler, which can be null.

String getTail (Handler h) Returns the tail string for a specified han-
dler, which can be null.

Stock Formatters

The logging package comes already equipped with a couple of useful formatters. The
SimpleFormatter provides a basic implementation of a formatter. The XMLFormatter outputs log
records in a predefined XML format. These two stock formatters will cover a variety of basic logging sce-
narios, but if you need behavior not supplied by either of these formatters, you can write your own.

SimpleFormatter

The simpleFormatter does a minimal level of work to format log messages. The format method of the
SimpleFormatter returns a one- or two-line summary of the log record that is passed in. Logging a
simple log message, such as test 1, using the SimpleFormatter will issue the following output:

Apr 18, 2004 12:18:25 PM LoggingTest main
INFO: test 1

The simpleFormatter formats the message with the date, time, originating class name, originating
method name, and on the second line, the level of the log message and the log message itself.

XMLFormatter

The XMLFormatter formats the log records according to an XML DTD. You can use the XMLFormatter
with any character encoding, but it is suggested that it is only used with "UTF-8". The getHead () and
getTail () methods are used to output the start and end of the XML file, the parts that aren’t repeated
for each log record but are necessary to create a valid XML file.

Example output from the XMLFormatter follows:

<?xml version="1.0" encoding="windows-1252" standalone="no"?>
<!DOCTYPE log SYSTEM "logger.dtd">
<log>
<record>
<date>2004-04-18T12:22:36</date>
<millis>1082305356235</millis>
<sequence>0</sequence>
<logger>LoggingTest</logger>

45

Chapter 1

46

<level>INFO</level>
<class>LoggingTest</class>
<method>main</method>
<thread>10</thread>
<message>test l</message>

</record>

<record>
<date>2004-04-18T12:22:36</date>
<millis>1082305356265</millis>
<sequence>1</sequence>
<logger>LoggingTest</logger>
<level>INFO</level>
<class>LoggingTest</class>
<method>main</method>
<thread>10</thread>
<message>test 2</message>

</record>

</log>

The XML DTD that the logging system uses is shown here:

<!-- DTD used by the java.util.logging.XMLFormatter -->
<!-- This provides an XML formatted log message. -->
<!-- The document type is "log" which consists of a sequence

of record elements -->
<!ELEMENT log (record*)>

<!-- Each logging call is described by a record element. -->
<!ELEMENT record (date, millis, sequence, logger?, level,
class?, method?, thread?, message, key?, catalog?, param*, exception?)>

<!-- Date and time when LogRecord was created in ISO 8601 format -->
<!ELEMENT date (#PCDATA)>

<!-- Time when LogRecord was created in milliseconds since
midnight January 1st, 1970, UTC. -->
<!ELEMENT millis (#PCDATA)>

<!-- Unique sequence number within source VM. -->
<!ELEMENT sequence (#PCDATA)>

<!-- Name of source Logger object. -->
<!ELEMENT logger (#PCDATA)>

<!-- Logging level, may be either one of the constant
names from java.util.logging.Constants (such as "SEVERE"
or "WARNING") or an integer value such as "20". -->

<!ELEMENT level (#PCDATA)>
<!-- Fully qualified name of class that issued
logging call, e.g. "javax.marsupial.Wombat". -->

<!ELEMENT class (#PCDATA)>

<!-- Name of method that issued logging call.

Key Java Language Features and Libraries

It may be either an unqualified method name such as
"fred" or it may include argument type information
in parenthesis, for example "fred(int,String)". -->
<!ELEMENT method (#PCDATA)>

<!-- Integer thread ID. -->
<!ELEMENT thread (#PCDATA)>

<!-- The message element contains the text string of a log message. -->
<!ELEMENT message (#PCDATA)>

<!-- If the message string was localized, the key element provides
the original localization message key. -->
<!ELEMENT key (#PCDATA)>

<!-- If the message string was localized, the catalog element provides
the logger's localization resource bundle name. -->
<!ELEMENT catalog (#PCDATA)>

<!-- If the message string was localized, each of the param elements
provides the String value (obtained using Object.toString())
of the corresponding LogRecord parameter. -->

<!ELEMENT param (#PCDATA) >

<!-- An exception consists of an optional message string followed
by a series of StackFrames. Exception elements are used
for Java exceptions and other java Throwables. -->

<!ELEMENT exception (message?, frame+)>

<!-- A frame describes one line in a Throwable backtrace. -->
<!ELEMENT frame (class, method, line?)>

<!-- an integer line number within a class's source file. -->
<!ELEMENT line (#PCDATA)>

Creating Your Own Formatter

It isn’t too difficult to develop a custom Formatter. As an example, here’s an implementation of the
HTMLTableFormatter that was mentioned earlier. The HTML code that is output looks like this:

<table border>
<tr><th>Time</th><th>Log Message</th></tr>
<tr><td>...</td><td>...</td></tr>
<tr><td>...</td><td>...</td></tr>

</table>

Each log record starts with <tr> and ends with </tr> since there is only one log record per table row.
The <table> tag and the first row of the table make up the head string. The </table> tag makes up the
tail of the collection of log records. The custom formatter only needs an implementation of the

getHead (), getTail (), and format (LogRecord record) methods:

47

Chapter 1

import java.util.logging.*;

class HTMLTableFormatter extends java.util.logging.Formatter {
public String format (LogRecord record)
{
return(" <tr><td>" +

record.getMillis () +
"</td><td>" +
record.getMessage() +
"</td></tr>\n");

}

public String getHead (Handler h)
{
return("<table border>\n " +
"<tr><th>Time</th><th>Log Message</th></tr>\n");
}

public String getTail (Handler h)
{

return("</table>\n") ;

}

The Filter Interface

A filter is used to provide additional criteria to decide whether to discard or keep a log record. Each log-
ger and each handler can have a filter defined. The Filter interface defines a single method:

boolean isLoggable (LogRecord record)

The isLoggable method returns true if the log message should be published, and false if it should be
discarded.

Creating Your Own Filter

An example of a custom filter is a filter that discards any log message that does not start with "client".
This is useful if log messages are coming from a number of sources, and each log message from a partic-
ular client (or clients) is prefixed with the string "client":

import java.util.logging.*;

public class ClientFilter implements java.util.logging.Filter {
public boolean isLoggable (LogRecord record)
{
if (record.getMessage () .startsWith("client"))
return(true) ;
else
return (false) ;

48

Key Java Language Features and Libraries

The ErrorManager

The ErrorManager is associated with a handler and is used to handle any errors that occur, such as
exceptions that are thrown. The client of the logger most likely does not care or cannot handle errors, so
using an ErrorManager is a flexible and straightforward way for a Handler to report error conditions.
The error manager defines a single method:

void error (String msg, Exception ex, int code)

This method takes the error message (a string), the Exception thrown, and a code representing what
error occurred. The codes are defined as static integers in the ErrorManager class and are listed in the
following table.

Error Code Description
CLOSE_FAILURE Used when close () fails.
FLUSH_FAILURE Used when flush () fails.
FORMAT_FAILURE Used when formatting fails for any reason.
GENERIC_FAILURE Used for any other error that other error codes don’t match.
OPEN_FAILURE Used when open of an output source fails.
WRITE_FAILURE Used when writing to the output source fails.
Logging Examples

By default, log messages are passed up the hierarchy to each parent. Following is a small program that
uses a named logger to log a message using the XMLFormatter:

import java.util.logging.*;

public class LoggingExamplel {
public static void main(String argsl])
{
try{
LogManager 1lm = LogManager.getLogManager () ;
Logger logger;
FileHandler fh = new FileHandler ("log_test.txt");

logger = Logger.getLogger ("LoggingExamplel") ;

1m.addLogger (logger) ;
logger.setLevel (Level.INFO) ;
fh.setFormatter (new XMLFormatter()) ;

logger.addHandler (fh) ;

// root logger defaults to SimpleFormatter.
// We don't want messages logged twice.
//logger.setUseParentHandlers (false) ;
logger.log(Level.INFO, "test 1");
logger.log(Level.INFO, "test 2");
logger.log(Level.INFO, "test 3");

49

Chapter 1

50

fh.close() ;
} catch(Exception e) {
System.out.println("Exception thrown: " + e);

e.printStackTrace() ;

What happens here is the XML output is sent to 1og_test . txt. This file is listed below:

<?xml version="1.0" encoding="windows-1252" standalone="no"?>

<!DOCTYPE log SYSTEM "logger.dtd"s

<log>

<record>
<date>2004-04-20T2:09:55</date>
<millis>1082472395876</millis>
<sequence>0</sequence>
<logger>LoggingExamplel</logger>
<level>INFO</level>
<class>LoggingExamplel</class>
<method>main</method>
<thread>10</thread>
<message>test l</message>

</record>

<record>
<date>2004-04-20T2:09:56</date>
<millis>1082472396096</millis>
<sequence>1</sequence>
<logger>LoggingExamplel</logger>
<level>INFO</level>
<class>LoggingExamplel</class>
<method>main</method>
<thread>10</thread>
<message>test 2</message>

</record>

</log>

Because the log messages are then sent to the parent logger, the messages are also output to System.err
using the SimpleFormatter. The following is output:

Feb 11, 2004 2:09:55 PM LoggingExamplel main
INFO: test 1
Feb 11, 2004 2:09:56 PM LoggingExamplel main
INFO: test 2

Here’s a more detailed example that uses the already developed HTMLTableFormatter. Two loggers are
defined in a parent-child relationship, ParentLogger and ChildLogger. The parent logger will use the
XMLFormatter to output to a text file, and the child logger will output using the HTMLTableFormatter
to a different file. By default, the root logger will execute and the log messages will go to the console
using the SimpleFormatter. The HIMLTableFormatter is extended to an HTMLFormatter to generate
a full HTML file (instead of just the table tags):

Key Java Language Features and Libraries

import java.util.logging.*;
import java.util.*;

class HTMLFormatter extends java.util.logging.Formatter {
public String format (LogRecord record)

{

return (" <tr><td>" +
(new Date(record.getMillis())) .toString() +
"</td>" +
" <td> n 45
record.getMessage() +
"</td></tr>\n") ;

public String getHead (Handler h)
{
return ("<html>\n <body>\n" +
" <table border>\n "4
"<tr><th>Time</th><th>Log Message</th></tr>\n") ;

public String getTail (Handler h)

{
return (" </table>\n </body>\n</html>");

public class LoggingExample2 {
public static void main(String argsl[])
{
try {

LogManager 1lm = LogManager.getLogManager () ;
Logger parentLogger, childLogger;
FileHandler xml_handler = new FileHandler ("log_output.xml") ;
FileHandler html_handler = new FileHandler ("log_output.html");
parentLogger = Logger.getLogger ("ParentLogger") ;
childLogger = Logger.getLogger ("ParentLogger.ChildLogger") ;

1m.addLogger (parentLogger) ;
1m.addLogger (childLogger) ;

// log all messages, WARNING and above
parentLogger.setLevel (Level .WARNING) ;

// log ALL messages
childLogger.setLevel (Level .ALL) ;
xml_handler.setFormatter (new XMLFormatter()) ;
html_handler.setFormatter (new HTMLFormatter()) ;

parentLogger.addHandler (xml_handler) ;
childLogger.addHandler (html_handler) ;

childLogger.log(Level .FINE, "This is a fine log message");
childLogger.log (Level.SEVERE, "This is a severe log message");
xml_handler.close() ;

html_handler.close() ;

51

Chapter 1

} catch(Exception e) {
System.out.println("Exception thrown: " + e);
e.printStackTrace() ;

Here’s what gets output to the screen:

Apr 20, 2004 12:43:09 PM LoggingExample2 main
SEVERE: This is a severe log message

Here’s what gets output to the 1og_output . xml file:

<?xml version="1.0" encoding="windows-1252" standalone="no"?>
<!DOCTYPE log SYSTEM "logger.dtd">
<log>
<record>
<date>2004-04-20T12:43:09</date>
<millis>1082479389122</millis>
<sequence>0</sequence>
<logger>ParentLogger.ChildLogger</logger>
<level>FINE</level>
<class>LoggingExample2</class>
<method>main</method>
<thread>10</thread>
<message>This is a fine log message</message>
</record>
<record>
<date>2004-04-20T12:43:09</date>
<millis>1082479389242</millis>
<sequence>1</sequence>
<logger>ParentLogger.ChildLogger</logger>
<level>SEVERE</level>
<class>LoggingExample2</class>
<method>main</method>
<thread>10</thread>
<message>This is a severe log message</message>
</record>
</log>

The contents of the 1og_output.html file are as follows:

<html>
<body>
<table border>
<tr><th>Time</th><th>Log Message</th></tr>
<tr><td>Tue Apr 20 12:43:09 EDT 2004</td><td>This is a fine log
message</td></tr>
<tr><td>Tue Apr 20 12:43:09 EDT 2004</td><td>This is a severe log
message</td></tr>
</table>
</body>
</html>

52

Key Java Language Features and Libraries

Note that the root logger, by default, logs messages at level INFO and above. However, because the
ParentLogger is only interested in levels at WARNING and above, log messages with lower levels are
immediately discarded. The HTML file contains all log messages since the ChildLogger is set to process
all log messages. The XML file only contains the one SEVERE log message, since log messages below the
WARNING level are discarded.

Regular Expressions

Regular expressions are a powerful facility available to solve problems relating to the searching, isolat-
ing, and/or replacing of chunks of text inside strings. The subject of regular expressions (sometimes
abbreviated regexp or regexps) is large enough that it deserves its own book —and indeed, books have
been devoted to regular expressions. This section will provide an overview of regular expressions and
discuss the support Sun has built in to the java.util.regex package.

Regular expressions alleviate a lot of the tedium of working with a simple parser, providing complex pat-
tern matching capabilities. Regular expressions can be used to process text of any sort. For more sophisti-
cated examples of regular expressions, consult another book that is dedicated to regular expressions.

If you’ve never seen regular expressions before in a language, you’ve most likely seen a small subset of
regular expressions with file masks on Unix/DOS/Windows. For example, you might see the following
files in a directory:

Test.java

Test.class
StringProcessor.java
StringProcessor.class
Token. java
Token.class

You can type dir *.* at the command line (on DOS/Windows) and every file will be matched and
listed. The asterisks are replaced with any string, and the period is taken literally. If the file mask
T*.class is used, only two files will be matched — Test . class and Token.class. The asterisks are
considered meta-characters, and the period and letters are considered normal characters. The meta-char-
acters are part of the regular expression “language,” and Java has a rich set of these that go well beyond
the simple support in file masks. The normal characters match literally against the string being tested.
There is also a facility to interpret meta-characters literally in the regular expression language.

Several examples of using regular expressions are examined throughout this section. As an initial exam-
ple, assume you want to generate a list of all classes inside Java files that have no modifier before the
keyword class. Assuming you only need to examine a single line of source code, all you have to do is
ignore any white space before the string class, and you can generate the list.

A traditional approach would need to find the first occurrence of class in a string and then ensure
there’s nothing but white space before it. Using regular expressions, this task becomes much easier. The
entire Java regular expression language is examined shortly, but the regular expression needed for this
case is \s*class. The backslash is used to specify a meta-character, and in this case, \ s matches any
white space. The asterisk is another meta-character, standing for “0 or more occurrences of the previous
term.” The word class is then taken literally, so the pattern stands for matching white space (if any
exists) and then matching class. The Java code to use this pattern is shown next:

53

Chapter 1

Pattern pattern = Pattern.compile("\\s*class");
// Need two backslashes to preserve the backslash

Matcher matcher = pattern.matcher ("\t\t class");

if (matcher.matches()) {
System.out.println("The pattern matches the string");

} else {
System.out.println("The pattern does not match the string");

}

This example takes a regular expression (stored in a Pattern object) and uses a matcher to see if the reg-
ular expression matches a specific string. This is the simplest use of the regular expression routines in
Java. Consult Figure 1-2 for an overview of how the regular expression classes work with each other.

Regular
Expression
(string)
The Pattern object
contains the compiled
version of the regular
expression and can be
reused
: Pattern
Input string ——> OBJECT
Used by The Matcher object is
responsible for testing a
compiled Pattern against
a string and possibly
performing other tasks
Matcher
OBJECT ~
,1 \‘\ \\\\‘~‘
' Get matched text !
. VI ,
! Matched text :
Is there a match?
B
 Yes/No |

Figure 1-2

54

Key Java Language Features and Libraries

The designers of the regular expression library decided to use a Pattern-Matcher model, which separates

the regular expression from the matcher itself. The regular expression is compiled into a more optimized
form by the Pattern class. This compiled pattern can then be used with multiple matchers, or reused by
the same matcher matching on different strings.

In a regular expression, any single character matches literally, except for just a few exceptions. One such
exception is the period (.), which matches any single character in the string that is being analyzed. There
are sets of meta-characters predefined to match specific characters. These are listed in the following table.

Meta-Character Matches

\\ A single backslash

\0n An octal value describing a character, where n is a number such that
O<=n<=7

\Onn

\ Omnn An octal value describing a character, where mis 0 <= m <=3 and n is 0
<=n<=7

\ 0xhh The character with hexadecimal value hh (where 0 <=h <= F)

\uhhhh The character with hexadecimal value hhhh (where 0 <= h <=F)

\t A tab (character “\u0009’)

\n A newline (linefeed) (“\u0002")

\r A carriage-return (“\u000D’)

\f A form-feed (“\u000c’)

\a Abell/beep character ("\u0007’)

\e An escape character ("\u0018’)

\cx The control character corresponding to x, such as \cc is control-c

Any single character

The regular expression language also has meta-characters to match against certain string boundaries.

Some of these boundaries are the beginning and end of a line, and the beginning and end of words. The
full list of boundary meta-characters can be seen in the following table.

Meta-Character

Matches

~

$
\b
\B

\A

Beginning of the line
End of the line

A word boundary

A nonword boundary

The beginning of the input

Table continued on following page

55

Chapter 1

56

Meta-Character

Matches

\G

\Z

\z

The end of the previous match

The end of the input before any line terminators (such as
carriage-return or linefeed)

The end of the input

Regular expression languages also have characters classes, which are a way of specifying a list of possi-
ble characters that can match any single character in the string you want to match. If you want to specify
a character class explicitly, the characters go between square brackets. Therefore, the character class
[0123456789] matches any single digit. It is also possible to specify “any character except one of these”
by using the caret after the first square bracket. Using the expression [~012], any single digit except for
0, 1, and 2 is matched. You can specify character ranges using the dash. The character class [a-z]
matches any single lowercase letter, and [~a-z] matches any character except a lowercase letter. Any
character range can be used, such as [0-9] to match a single digit, or [0-3] to match a0, 1, 2, or 3.
Multiple ranges can be specified, such as [a-zA-7] to match any single letter. The regular expression
package contains a set of predefined character classes, and these are listed in the following tables.

Character Class Meta-Character

Matches

\d
\D

\s

\S

\w

\W

Any single character
Adigit [0-9]
Anondigit [~0-9]

A whitespace character

[\t\n\x0B\f\r]

A nonwhitespace character
[~\s]
A word character
[a—-zA-7Z_0-9]

A nonword character
[*\w]

Additionally, there are POSIX character classes and Java character classes. These are listed in the follow-

ing tables, respectively.

Character Class Meta-Character

Matches

\p{Lower}
\p{Upper}
\p{ASCII}

\p{Alpha}

Lowercase letter [a-z]
Uppercase letter [A-Z]

AIl ASCIT [\x00-\x7F]

Any lowercase or uppercase letter

Key Java Language Features and Libraries

Character Class Meta-Character Matches
\p{Digit} A digit [0-9]
\p{Alnum} Any letter or digit
\p{Punct} Punctuation

[1m#8%& () %+, -./:;<=>2@[\]1"_"{]}~]

\p{Graph} A visible character: any letter, digit, or punctuation
\p{Print} A printable character; same as \p{Graph}
\p{Blank} Aspaceortab [\t]

\p{Cntrl} A control character

[\x00-\x1F\x7F]

\p{XDigit} Hexadecimal digit
[0-9a-fA-F]
\p{Space} A whitespace character

[\t\n\x0B\f\r]

Character Class Matches

\p{javaLowerCase} Everything that Character.isLowerCase () matches
\p{javaUpperCase} Everything that Character. isUpperCase () matches
\p{javaWhitespace} Everything that Character. isWhitespace () matches
\p{javaMirrored} Everything that Character.isMirrored() matches

Another feature of the regular expression language is the ability to match a particular character a specified
number of times. In the previous example, the asterisk was used to match zero or more characters of white-
space. There are two general ways the repetition operators work. One class of operators is greedy, that is,
they match as much as they can, until the end. The other class is reluctant (or lazy), and matches only to the
first chance they can terminate. For example, the regular expression . * ; matches any number of characters
up to the last semicolon it finds. To only match up to the first semicolon, the reluctant version . *?; must be
used. All greedy operators and the reluctant versions are listed in the following two tables, respectively.

Greedy Operator Description

X? Matches X zero or one time

X* Matches X zero or more times

X+ Matches X one or more times

X{n} Matches X exactly n times, where n is any number
X{n, } Matches X at least n times

X{n,m} Matches X at least n, but no more than m times

57

Chapter 1

Reluctant (Lazy) Operator Description

X?? Matches X zero or one time

X*? Matches X zero or more times

X+? Matches X one or more times

X{n}? Matches X exactly n times, where n is any number
X{n, }? Matches X at least n times

X{n,m}? Matches X at least n, but no more than m times

The language also supports capturing groups of matching characters by using parentheses inside the
regular expression. A back reference can be used to reference one of these matching subgroups. A back-
reference is denoted by a backslash followed by a number corresponding to the number of a subgroup.
In the string (A (B)), the zero group is the entire expression, then subgroups start numbering after each
left parenthesis. Therefore, A (B) is the first subgroup, and B is the second subgroup. The backreferences
then allow a string to be matched. For example, if you want to match the same word appearing twice in
a row, you might use [([a-zA-Z]) \b\1]. Remember that the \b stands for a word boundary. Because
the character class for letters is inside parentheses, the text that matched can then be referenced using the
backreference meta-character \1.

The Pattern Class

The Pattern class is responsible for compiling and storing a specified regular expression. There are flags
that control how the regular expression is treated. The regex is compiled to provide for efficiency. The
textual representation of a regular expression is meant for ease of use/understanding by programmers.

Method Description

static Pattern The compile method accepts a regular expression

compile(String regex) in a string and compiles it for internal use. The
variant form allows you to specify flags that

static Pattern compile(String modify how the regular expression is treated.

regex, int flags)

static boolean matches(String Compiles a specified regular expression and

regex, CharSequence input) matches it against the input. Returns true if the
regular expression describes the input data, and
false otherwise. Use this only for quick matches. To
match a regular expression repeatedly against dif-
ferent input, the regular expression should only be
compiled once.

static String quote(String s) Returns a literal regular expression that will match
the string passed in. The returned string starts with
\Q followed by the string passed in, and ends with
\E. These are used to quote a string, so what
would be meta-characters in the regular expression
language are treated literally.

58

Key Java Language Features and Libraries

Method

Description

int flags()

Matcher matcher
(CharSequence input)

String pattern()

String[] split(CharSequence input)

String[] split(CharSequence
input, int limit)

Returns an integer containing the flags set when
the regular expression was compiled.

Returns a Matcher to use for matching the pattern
against the specified input.

Returns the regular expression that was used to
create the pattern.

Returns an array of strings after splitting the input
into chunks using the regular expression as a
separator. The 1imit can be used to limit how
many times the regular expression is matched. The
matching text does not get placed into the array. If
limit is positive, the pattern will be applied at
least “limit minus 1” times. If 1imit is 0, the pat-
tern will be applied as many times as it can, and
trailing empty strings are removed. If 1imit is
negative, the pattern will be applied as many times
as it can, and trailing empty strings will be left in
the array.

The Matcher Class

The Matcher class is used to use a pattern to compare to an input string, and perform a wide variety of
useful tasks. The Matcher class provides the ability to get a variety of information such as where in the
string a pattern matched, replace a matching subset of the string with another string, and other useful

operations.

Method

Description

static String
quoteReplacement (String s)

Matcher appendReplacement
(StringBuffer sb, String
replacement)

StringBuffer appendTail
(StringBuffer sb)

MatchResult asResult ()

int end()

Returns a string that is quoted with \Q and \E and
can be used to match literally with other input.

First appends all characters up to a match to the
string buffer, then replaces the matching text with
replacement, then sets the index to one position
after the text matched to prepare for the next call to
this method. Use appendTail to append the rest
of the input after the last match.

Appends the rest of the input sequence to the
string buffer that is passed in.

Returns a reference to a MatchResult describing
the matcher’s state.

Returns the index that is one past the ending posi-
tion of the last match.

Table continued on following page

59

Chapter 1

Method

Description

int end(int group)

boolean

boolean

boolean

boolean

boolean

boolean

Pattern

Matcher

Matcher

find()

find(int start)

hitEnd()

requireEnd ()

lookingAt ()

matches ()

pattern()

reset ()

reset (CharSequence input)

int start()

int start (int group)

Matcher

usePattern (Pattern

newPattern)

String group ()

String group (int group)

int groupCount ()

Returns the index that is one past the ending posi-
tion of a specified capturing group.

Returns true if a match is found starting at one
index immediately after the previous match, or at
the beginning of the line if the matcher has been
reset.

Resets the matcher and attempts to match the pat-
tern against the input text starting at position
start. Returns true if a match is found.

Returns true if the end of input was reached by the
last match.

Returns true if more input could turn a positive
match into a negative match.

Returns true if the pattern matches, but does not
require that the pattern has to match the input text
completely.

Returns true if the pattern matches the string. The
pattern must describe the entire string for this
method to return true. For partial matching, use
find () or lookingAt ().

Returns a reference to the pattern currently being
used on the matcher.

Resets the matcher’s state completely.

Resets the matcher’s state completely and sets new
input to input.

Returns the starting position of the previous
match.

Returns the starting position of a specified captur-
ing group.

Sets a new pattern to use for matching. The current
position in the input is not changed.

Returns a string containing the contents of the
previous match.

Returns a string containing the contents of a spe-
cific matched group. The 0-th group is always the
entire expression.

Returns the number of capturing groups in the
matcher’s pattern.

60

Key Java Language Features and Libraries

Method Description

Matcher region(int start, int end) Returns a Matcher that is confined to a substring
of the string to search. The caret and dollar sign
meta-characters will match at the beginning and
end of the defined region.

int regionEnd() Returns the end index (one past the last position
actually checked) of the currently defined region.

int regionStart () Returns the start index of the currently defined
region.

String replaceAll (String Replaces all occurrences of the string that match

replacement) the pattern with the string replacement. The

Matcher should be reset if it will still be used after
this method is called.

String replaceFirst (String Replaces only the first string that matches the

replacement) pattern with the string replacement. The
Matcher should be reset if it will still be used after
this method is called.

The MatchResult Interface

The MatchResult interface contains the group methods, and start and end methods, to provide a
complete set of methods allowing for describing the current state of the Matcher. The Matcher class
implements this interface and defines all these methods. The toMatchResult method returns a handle
to a MatchResult, which provides for saving and handling the current state of the Matcher class.

Regular Expression Example

Let’s use the Pattern/Matcher classes to process a Java source code file. All classes that aren’t public
will be listed (all classes that have no modifiers, actually), and also all doubled words (such as two iden-
tifiers in a row) are listed utilizing backreferences.

The input source code file (which does not compile) is shown as follows:
import java.util.*;

class EmptyClass {
}

class MyArrayList extends extends ArrayList ({

}

public class RETestSource {
public static void main(String argsl[]) {
System.out.println("Sample RE test test source code code");
}

61

Chapter 1

The program utilizing regular expressions to process this source code follows:

import java.util.*;
import java.util.regex.*;
import java.io.*;

public class RegExpExample {

public static void main(String argsl])
{

String fileName = "RETestSource.java";

String unadornedClassRE = "“\\s*class (\\w+)";
String doubleIdentifierRE = "\\b(\\w+)\\s+\\1\\b";

Pattern classPattern = Pattern.compile (unadornedClassRE) ;
Pattern doublePattern = Pattern.compile(doubleIdentifierRE) ;
Matcher classMatcher, doubleMatcher;

int lineNumber=0;

try {
BufferedReader br = new BufferedReader (new FileReader (fileName)) ;
String line;

while((line=br.readLine()) != null) {
lineNumber++;

classMatcher = classPattern.matcher (line);
doubleMatcher = doublePattern.matcher (line) ;

if (classMatcher.find()) {
System.out.println("The class [" +
classMatcher.group(1l) +
"] is not public");
}

while (doubleMatcher.find()) {
System.out.println("The word \"" + doubleMatcher.group(l) +
"\" occurs twice at position " +
doubleMatcher.start() + " on line " +
lineNumber) ;
}
}
} catch(IOException ioe) {
System.out.println("IOException: " + ioe);
ioe.printStackTrace() ;

The first regular expression, “\\s*class (\\w+), searches for unadorned class keywords starting at
the beginning of the line, followed by zero or more whitespace characters, then the literal class. The
group operator is used with one or more word characters (A-Z, a-z, 0-9, and the underscore), so the
class name gets matched.

62

Key Java Language Features and Libraries

The second regular expression, \\b (\\w+) \\s+\\1\\b, uses the word boundary meta-character (\b) to
ensure that words are isolated. Without this, the string public class would match on the letter c. A
back reference is used to match a string already matched, in this case, one or more word characters. One
or more characters of whitespace must appear between the words. Executing the above program on the
test Java source file listed above gives you the following output:

The class [EmptyClass] is not public

The class [MyArrayList] is not public

The word "extends" occurs twice at position 18 on line 6
The word "test" occurs twice at position 32 on line 11
The word "code" occurs twice at position 49 on line 11

Java Preferences

Programs commonly must store configuration information in some manner that is easy to change and
external to the program itself. Java offers utility classes for storing and retrieving system-defined and
user-defined configuration information. There are separate hierarchies for the user and system informa-
tion. All users share the preference information defined in the system tree; each user has his or her own
tree for configuration data isolated from other users. This allows for custom configuration, including
overriding system values.

The core of the preferences class library is the abstract class java.util.prefs.Preferences. This
class defines a set of methods that provides for all the features of the preferences library.

Each node in a preference hierarchy has a name, which does not have to be unique. The root node of a
preference tree has the empty string (“”) as its name. The forward slash is used as a separator for the
names of preference nodes, much like it is used as a separator for directory names on Unix. The only two
strings that are not valid node names are the empty string (since it is reserved for the root node) and a
forward slash by itself (since it is a node separator). The root node’s path is the forward slash by itself.
Much like with directories, absolute and relative paths are possible. An absolute path always starts with
a forward slash, since the absolute path always starts at the root node and follows the tree down to a
specific node. A relative path never starts with a forward slash. A path is valid as long as there aren’t two
consecutive forward slashes in the pathname, and no path except the path to root ends in the forward
slash.

Since preferences are implemented by a third-party implementer, changes to the preferences aren’t
always immediately written to the backing store.

The maximum length of a single node’s name and any of its keys is 80 characters. The maximum length
of a string value in a node is 8,192 characters.

The Preference Class

The preference class is the main class used for dealing with preferences. It represents a node in the pref-
erence’s tree and contains a large number of methods to manipulate this tree and also nodes in the tree. It
is basically a one-stop shop for using preferences. The Preference class has the following methods.

Operations on the Preferences Tree

The Preferences class defines a number of methods that allow for the creation/deletion of nodes, and
the retrieval of certain nodes in the tree.

63

Chapter 1

Method

Description

Preferences node(String pathName)

boolean nodeExists(String pathName)

void removeNode ()

static Preferences
systemNodeForPackage (Class c¢)

static Preferences systemRoot ()

static Preferences
userNodeForPackage (Class c)

Returns a specified node. If the node does
not exist, it is created (and any ancestors that
do not exist are created) and returned.

Returns true if the path to a node exists in
the current tree. The path can be an absolute
or relative path.

Removes this preference node and all of its
children. The only methods that can be
invoked after a node has been removed are
name (), absolutePath(), isUserNode (),
flush (), and nodeExists (" "), and those
inherited from Object. All other methods
will throw an I1legalStateException.
The removal may not be permanent until
flush() is called to persist the changes to
the tree.

This method returns a preference node for
the package that the specified class is in. All
periods in the package name are replaced
with forward slashes.

For a class that has no package, the name
of the node that is returned is literally
<unnamed>. This node should not be used
long term, as it is shared by all programs
that use it.

If the node does not already exist, the node
and all ancestors that do not exist will
automatically be created.

This method returns the root node for the
system preference tree.

This method returns a preference node for
the package that the specified class is in. All
periods in the package name are replaced
with forward slashes.

For a class that has no package, the name

of the node that is returned is literally
<unnamed>. This node should not be used
long term, as it is shared by all programs that
use it, so configuration settings are

not isolated.

64

Key Java Language Features and Libraries

Method

Description

static Preferences userRoot ()

If the node does not already exist, the node
and all ancestors that do not exist will auto-
matically get created.

This method returns the root node for the
user preference tree.

Retrieving Information about the Node

Each node has information associated with it, such as its path, parent and children nodes, and the node’s
name. The methods to manipulate this information are shown here.

Method

Description

String absolutePath()

String[] childrenNames ()

boolean isUserNode ()

String name ()

Preferences parent ()

This method returns the absolute path to the
current node. The absolute path starts at the
root node, /, and continues to the current
node.

Returns an array of the names of all child
nodes of the current node.

Returns true if this node is part of the user
configuration tree, or false if this node is part
of the system configuration tree.

Returns the name of the current node.

Returns a Preferences reference to the par-
ent of the current node, or null if trying to
get the parent of the root node.

Retrieving Preference Values from the Node

The following methods act much like those from the Hashtable class. The key difference is that there
are versions of the get for most primitive types. Each type is associated with a specific key, a string

standing for the name of the configuration parameter.

Method

Description

Stringl[] keys()

String get(String key, String def)

Returns an array of strings that contains the
names of all keys in the current preferences
node.

Returns the string associated with a specified
key. If the key does not exist, it is created
with the default value def and this default
value is then returned.

Table continued on following page

65

Chapter 1

Method

Description

boolean getBoolean (String key,
boolean def)

byte[] getByteArray (String key,
byte[] def)

double getDouble (String key,

double def)

float getFloat(String key, float def)

int getInt (String key, int def)

long getLong (String key, long def)

Returns the boolean associated with a
specified key. If the key does not exist, it is
created with the default value def and this
default value is then returned.

Returns the byte array associated with a
specified key. If the key does not exist, it is
created with the default value def and this
default value is then returned.

Returns the double associated with a
specified key. If the key does not exist, it is
created with the default value def and this
default value is then returned.

Returns the float associated with a speci-
fied key. If the key does not exist, it is created
with the default value def and this default
value is then returned.

Returns the integer associated with a speci-
fied key. If the key does not exist, it is created
with the default value def and this default
value is then returned.

Returns the long associated with a specified
key. If the key does not exist, it is created
with the default value def and this default
value is then returned.

Setting Preference Values on the Node

Along with each get method is a put version intended for setting the information associated with a
given configuration parameter’s key name.

Method

Description

void put (String key, String value)

void putBoolean (String key, boolean value)

void putByteArray (String key, bytell

void putDouble (String key, double value)

void putFloat (String key, float wvalue)

void putInt (String key, int value)

void putLong(String key, long value)

value)

These methods set a configuration
parameter (the name of which is
passed in as key) to a specific type.
If xey or value is null, an exception
is thrown. The key can be at most 80
characters long (defined in
MAX_KEY_LENGTH) and the value
can be at most 8,192 characters
(defined in MAX_VALUE_LENGTH).

66

Key Java Language Features and Libraries

Events

Two events are defined for the Preference class—one fires when a node is changed in the preference
tree, and the second fires when a preference is changed. The methods for these events are listed in the

next table.
Method Description
void addNodeChangeListener Adds a listener for notification of when a

void

void

(NodeChangeListener ncl)

addPreferenceChangelListener

(PreferenceChangelListener pcl)

removeNodeChangeListener

(NodeChangeListener ncl)

void removePreferenceChangelListener
(PreferenceChangelListener pcl)

child node is added or removed from the
current preference node.

Adds a listener for preference change
events —anytime a preference is added to,
removed from, or the value is changed,
listeners will be notified.

Removes a specified node change listener.

Removes a specified preference change
listener.

Other Operations

The following table lists the other methods in the Preference class, such as writing any pending
changes to the backing store, resetting the preference hierarchy to empty, saving the hierarchy to disk,
and other operations.

void

void

void

Method Description
void clear () Removes all preferences on this node.
void exportNode (OutputStream os) Writes the entire contents of the node (and

exportSubtree (OutputStream os)

flush ()

remove (String key)

only the current node) to the output stream
as an XML file (following the preferences.
dtd listed below).

Writes the entire contents of this node and all
nodes located below this node in the prefer-
ences tree to the output stream as an XML
file (following the preferences.dtd listed
below).

Writes any changes to the preference node to
the backing store, including data on all chil-
dren nodes.

Removes the value associated with the
specified key.

Table continued on following page

67

Chapter 1

Method Description

void sync () Ensures that the current version of the pref-
erence node in memory matches that of the
stored version. If data in the preference node
needs to be written to the backing store, it
will be.

String toString() Returns a string containing User or System,
depending on which hierarchy the node is in,
and the absolute path to the current node.

Exporting to XML

The preferences system defines a standard operation to export the entire tree of keys/values to an
XML file. This XML file’s DTD is available at http: //java.sun.com/dtd/preferences.dtd. This
DTD is also included here:

<?xml version="1.0" encoding="UTF-8"?>

<!-- DTD for a Preferences tree. -->
<!-- The preferences element is at the root of an XML document
representing a Preferences tree. -->

<!ELEMENT preferences (root)>

<!-- The preferences element contains an optional version
attribute, which specifies version of DTD. -->
<!ATTLIST preferences EXTERNAL_XML_VERSION CDATA "0.0" >

<!-- The root element has a map representing the root's preferences
(if any), and one node for each child of the root (if any). -->
<!ELEMENT root (map, node*) >

<!-- Additionally, the root contains a type attribute, which
specifies whether it's the system or user root. -->
<!ATTLIST root
type (system|user) #REQUIRED >

<!-- Each node has a map representing its preferences (if any),
and one node for each child (if any). -->
<!ELEMENT node (map, node*) >

<!-- Additionally, each node has a name attribute -->
<!ATTLIST node
name CDATA #REQUIRED >

<!-- A map represents the preferences stored at a node (if any). -->
<!ELEMENT map (entry*) >

<!-- An entry represents a single preference, which is simply

a key-value pair. -->
<!ELEMENT entry EMPTY >

68

Key Java Language Features and Libraries

<!ATTLIST entry
key CDATA #REQUIRED
value CDATA #REQUIRED >

Using Preferences

The following example sets a few properties in a node in the user tree, prints out information about the
node, and then exports the information to an XML file:

import java.util.*;
import java.util.prefs.*;
import java.io.*;

public class PreferenceExample {
public void printInformation (Preferences p)
throws BackingStoreException

System.out.println("Node's absolute path: " + p.absolutePath());

System.out.print ("Node's children: ");

for(String s : p.childrenNames()) {
System.out.print(s + " ");

}

System.out.println("") ;

System.out.print ("Node's keys: ");
for(String s : p.keys()) {
System.out.print(s + " ");

}

System.out.println("") ;

System.out.println("Node's name: " + p.name());
System.out.println("Node's parent: " + p.parent());
System.out.println("NODE: " + p);
System.out.println ("userNodeForPackage: " +

Preferences.userNodeForPackage (PreferenceExample.class)) ;
System.out.println("All information in node");
for (String s : p.keys()) {
System.out.println(" " + s + " = " + p.get(s, ""));

public void setSomeProperties (Preferences p)
throws BackingStoreException

p.put ("fruit", "apple");

p.put("cost", "1.01");
p.put ("store", "safeway");

public void exportToFile(Preferences p, String fileName)
throws BackingStoreException

try {

69

Chapter 1

FileOutputStream fos = new FileOutputStream(fileName) ;

p.exportSubtree(fos);
fos.close();
} catch(IOException ioe) {
System.out.println("IOException in exportToFile\n" + ioe);
ioe.printStackTrace() ;

public static void main(String argsl[])

{
PreferenceExample pe = new PreferenceExample () ;
Preferences prefsRoot = Preferences.userRoot () ;
Preferences myPrefs = prefsRoot.node("PreferenceExample") ;

try {
pe.setSomeProperties (myPrefs) ;
pe.printInformation (myPrefs) ;
pe.exportToFile (myPrefs, "prefs.xml");
} catch(BackingStoreException bse) ({
System.out.println("Problem with accessing the backing store\n" + bse);
bse.printStackTrace() ;

The output to the screen is shown here:

Node's absolute path: /PreferenceExample
Node's children:
Node's keys: fruit cost store
Node's name: PreferenceExample
Node's parent: User Preference Node: /
NODE: User Preference Node: /PreferenceExample
userNodeForPackage: User Preference Node: /<unnamed>
All information in node

fruit = apple

cost = 1.01

store = safeway

The exported information in the XML file is listed here:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE preferences SYSTEM "http://java.sun.com/dtd/preferences.dtd">
<preferences EXTERNAL_XML_VERSION="1.0">
<root type="user">
<map/>
<node name="PreferenceExample">
<map>
<entry key="fruit" value="apple"/>
<entry key="cost" value="1.01"/>
<entry key="store" value="safeway"/>

70

Key Java Language Features and Libraries

</map>
</node>
</root>
</preferences>

Summary

This chapter introduced the new language features that Sun built into the JDK 5 release of the Java pro-
gramming language. You should have all you need to know to understand and utilize these new fea-
tures. You may find that a number of programming tasks you’ve accomplished in the past are now made
simpler and clearer, and perhaps even some problems that never had a good solution now do.

Also covered in this chapter are several of the most important utility libraries in Java. The preferences
library allows you to store and retrieve configuration information for your application. The logging
library provides a sophisticated package of routines to track what your program is doing and offer out-
put to a variety of people that need it. The regular expression library provides routines for advanced
processing of textual data.

You should now be well-equipped to solve a variety of real-world problems and get the most out of the
JDK 5 release of Java.

Now that you have learned about the advanced language features in Java, the next two chapters will

take you inside a modern Java development shop. In Chapter 2, the habits, tools, and methodologies
that make an effective Java developer will be discussed.

71

|

Tools and Techniques for
Developing Java Solutions

Many beginning Java developers master the concepts of the Java programming language fairly
well and still have a difficult time reaching the next level as a professional Java developer.

This is because most Java books simply focus on teaching just the Java language, a Java tool (like
Ant or JUnit), or a language-neutral software methodology. This leaves you to learn techniques
and practices from other software developers or at the proverbial “school of hard knocks.”

In Chapter 1, I discussed the advanced features of the Java language —a continuation on the
theme of most beginning Java books. But now, you are starting the transition to a new kind of Java
book, one more experience-centric, starting with this chapter. In this chapter, you will get a feel for
the tools and techniques of modern Java development. It will introduce you to “thinking like a
professional Java developer,” which continues in the next chapter —a discussion of Java design
patterns.

By the end of this chapter, you should have acquired the following skills:

Q Familiarity with the principles of quality software development

0 Familiarity with the habits of an effective software developer

0 Awareness of a number of the prominent software development methodologies
Qa

Acquaintance with many of the tools commonly found in Java development
environments

Chapter 2

Principles of Quality Software Development

74

So, you have figured out how to build your Java applications, and they work just like the ones from
which you learned. You are getting paid to write these applications, so you are now a professional Java
developer. But how do you know if you are doing a good job?

There are literally thousands upon thousands of articles debating the measures of quality software with
each of them offering you their own solution for how you should answer this question. Realizing that
this discussion is well beyond the scope of this book (thankfully), this body of work can be boiled down
to a few questions:

U Does the software do what it is supposed to do?

Of course, this is a loaded question. It is entirely possible to say that a piece of software does
what it is supposed to do (as defined by a requirements specification), but this is absolutely
worthless. In essence, you are talking about a failure of your requirements gathering process,
which leads you to build the wrong thing. Your software is being built to serve a particular
need, and if it does not satisfy that need (for whatever reason), the software is a failure.

U Does the software do things it shouldn’t do?

Developers like to refer to this phenomenon as undocumented features, but your users will
refer to them as bugs. Everyone prefers to build bug-free software, but in the real world, this
just doesn’t happen. All men may be created equal, but all bugs are not. Bugs that do not impact
the functioning of the system — or the business process that they support— are obviously far
less important than those that do.

Q Did you deliver the software in a timely manner?

Timing is everything, and this is true nowhere more than in software in which the pace of
change is incredible. If your software takes so long to deliver that it is no longer appropriate to
the business process it supports, then it is worthless. The great untold secret behind the high
percentage of software projects that end in failure is that many of them simply could not keep
up with the pace of technological innovation—and died trying.

U Could you do it again if you had to?

Of course, you will have to! This is the job — writing and delivering software that complies with
the above questions. The key here is that you should not have to learn all of your hard knocks
lessons every time you build software. You will invariably be asked to deliver your software
again with fixes and enhancements, and you hopefully do not have to fix the same bugs over
and over again nor have the same integration challenges repeatedly. “At least we don’t have to
deal with this next time” should be a truth that comforts you in your integration and bug fixing
and not a punch line to a development team joke.

These questions may seem like common sense —because they are! But there is an old saying that “com-
mon sense is neither,” so it is important to not assume that everyone is on the same sheet of music.
Furthermore, the US Army Rangers have a saying, “Never violate any principles, and do not get
wrapped up in technique.” You will find this a helpful maxim in dealing with the maze of processes,
products, and techniques involved in software development. These are the core principles of software
development, and how you get there is technique. Do not lose sight of the distinction between these
two things.

Tools and Techniques for Developing Java Solutions

Habits of Effective Software Development

Motivational sayings and common sense questions do not make a strategy for making you into an effec-
tive Java developer. You need to consider the how in delivering on quality software. Along those lines,
there are a set of habits that are shared among effective software developers. They are as follows:

Communicate

The picture of the egg-headed recluse software engineer sitting in the dark part of some basement while
banging away on a keyboard like an eccentric secretary is an outmoded stereotype (well mostly, the dark
is good). As you learned before, software is built to satisfy a need in some particular business process. In
order to be successful, you need to tap in and really appreciate that need. This is very difficult to do by
reading a specification. You want to talk to the users, and, if you cannot talk to the users, you want to
talk to someone who was a user or speaks with users. You want to learn what it is they do, how they are
successful, and how your software will help them be more successful. If the use of your software is sim-
ply by management fiat, then your software purpose is already on critical life support.

You also want to communicate with your fellow developers —explaining to them what you learned,
learning from their mistakes, and coordinating how your software will work together. Make it a point to
try to establish some social interaction amongst your teammates, even if it is an occasional lunch or brief
chat. Software can be a hard and stressful job; it helps if you have a basic familiarity with your teammates.

Model

Before you go running out to buy the latest in fashion apparel, check the cover of this book. It is pretty
clear that this book will not have you doing any posing! Modeling builds upon communication by
allowing a more tangible way to visualize a given concept or idea.

Don’t assume that everyone on your team needs to attend UML training or buy thousands of dollars of
UML modeling software. UML is a great package for expressing a lot of things in a common format that
should be understandable by a wide variety of people — from users to developers. Of course, you know
this is not the case. The key to any notation is that it must be well understood by those who read it. If
your team is UML-savvy or will commit to being that way, then it is a fantastic notation — planned out
by a large committee of very smart people.

Of course, the old joke is, “A camel is a horse designed by a committee.” This means that you should rec-
ognize that UML contains a toolset that extends well beyond what you may need for your project’s mod-
eling needs. The key is to find a notation that everyone (including users) understands and sticks with it.

Also, if your tools provide more of a hindrance than an aid in your modeling, then don’t use them.
Ambler suggests in his book Agile Modeling that you can draw your models on a whiteboard, take a digi-
tal camera snapshot of the whiteboard, and have exactly what you need — without the burden or cost of
a tool. [AMBLER]

Be Agile

Change is an inevitable part of software development. Not only is technology consistently changing, but
so is your customer’s business process, if for no other reason than the fact that you have actually pro-
vided some automation support.

75

Chapter 2

Teaching a course in Object Oriented Software Development, I often point out to my students that,
despite being a sophisticated software engineering professional who has developed many software solu-
tions to improve the way people do business, I could not easily come up with a set of requirements for a
system that would improve my business process. The fact is —like most people in the working world —
I don’t spend a lot of time thinking about how I do what I do. If asked to do so, I would probably relate
my ideal system as an approximation of what I already experience. This would immediately change
when you, the software team, introduced a new system to me because my entire frame of reference is
now relative to what you have placed before me. Things that I once thought were important would no
longer be so—improvements that I assumed would be better turn out not to be, and so on. Ultimately, it
is a very natural and appropriate thing for my requirements to change!

You frequently hear software engineers bemoan the fact that the requirements keep changing. This is
quite puzzling because software engineers presumably chose their profession based on the desire to
develop software, and changing requirements facilitate that goal. The requirements changing is not
really the problem. The problem is that the software team is not in the habit of accommodating change;
that is, they are not very agile.

Lou Holtz once said, “Life is 10 percent what happens to you and 90 percent how you respond to it.”
This saying goes a long way towards distilling the attitude that a software engineer should possess to be
effective in modern Java development.

Be Disciplined

Before you go running out and hacking and slashing your way to programming heaven, ensure that you
maintain your discipline. Discipline is about maintaining your focus in the presence of a tremendous
amount of distraction. This is not about holding your hand over a hot candle or walking across burning
coals. You do what you should do, not what you can do.

Recall the principles of quality software development and ensure that you are not violating any of them.
Often, rushing to do something will actually cause you to take longer. Be mindful of things slipping, like
little bugs that should have been caught before or lapses in judgment for the sake of expediency.

However, in the same regard, do not slow things down simply for the sake of caution. Simply slowing
down to avoid making a mistake will not definitely allow you to avoid the mistake, but it will certainly
reduce the amount of time you have to correct it.

This is a very typical concern when trying to fix a bug or develop an innovative way to handle some-
thing that was unanticipated. By desiring to do something new and cool, you can lose sight of how
important it really is in accomplishing the goal of the system.

Trace Your Actions to Need

76

Discipline goes hand in hand with tracing your actions to the need that your software is meant to
address. It is very important that you are able to understand why each of you built each of the compo-
nents of your system.

Traceability refers to the ability for you to follow your need all the way through the system. For example,
you may have a need to provide a printed report. You would then see that traced into a set of use cases,
or software requirements, which would then be realized in certain design elements, which would then

Tools and Techniques for Developing Java Solutions

be implemented in certain pieces of code, which would then be compiled into certain
executables/libraries, which would then be deployed to a certain machine, and so forth.

So, you are thinking, “Well, that is really neat, but what does all of that really buy me?” The answer is
simple. Say you received a request to change the code to support another type of printer. By being able
to trace your code through, you would understand where your potential adaptations could be made.

Traceability is not meant to be some huge undertaking requiring mountains of paperwork and a large
database, spreadsheet, or document, nor does it require some dumbed-down version of the code in
order to explain it to those who are not able to read or write code. Traceability only requires that some-
one who can do something about it should be able to find his or her way through the code.

Don’t Be Afraid to Write Code

It seems self-evident, but you would be surprised how often coding is relegated to such a minor part of
software development — particularly on complex systems, where it is most needed. Often, there is a
desire to figure it out on paper first, find the right design pattern, or model it just right.

However, certain logical constructs are simply unable to be elegantly expressed anywhere but in the
code. Also, a compiler verifies a number of assumptions in your design, and your runtime environment
will do the same.

It is also easier to estimate how long it will take to do something if you actually do something very simi-
lar. A scaled-back prototype that covers the bounds of your system can go a long way to understanding
exactly how complex or time-consuming a particular task may actually be.

Furthermore, in Java development, you simply do not have the luxury of assuming that you understand
everything about your system. With the high degree of reuse that exists in Java development, your sys-
tem is invariably dependent on code developed outside of your design space. So, it is foolish to assume
that a given API works like you assume it does. There are too many variables involved in the equation.

Part of the fearlessness towards writing code involves changing code. Refactoring — changing the
design of existing code —is an important part of software development. [FOWLER]

Think of Code as a Design, not a Product

Refactoring demonstrates a key habit in effective software development. Code should not be considered
the product that you deliver. After all, you rarely actually deliver the source code to the user. Instead,
you deliver them a compiled byte code that operates in accordance with your source code.

This is because your source code is part of the design. As mentioned previously, there are some logical
constructs that cannot be expressed anywhere but inside code. Furthermore, source code provides a
human-understandable expression of logic that is then compiled into byte codes (and further gets con-
verted into machine instructions).

You may be saying, “Well, of course, source code is not the product, who said it was?” You may never
run into a problem with an organization that fails to realize this premise, but it is unlikely. Simply pay
careful attention to the disproportionate focus paid to the design phase and the relative number of
designers who cannot write code. This will demonstrate that the focus of the project is misplaced.

77

Chapter 2

Read a LOT!

This may seem like a shameless plug by a self-serving author, but the simple fact is that software is
always changing and improving. There are new technologies, implementations, APIs, standards, and so
forth. Software development is a knowledge occupation, and part of the job (as well as developing any
system) is learning. Learning new technologies, learning better approaches, and even learning more
about the tools and APIs currently used in your solutions are critical to success.

Alarge part of this has to do with the rise of the Internet and open source software. Java has extended
beyond just being a programming language and more towards a software development community.

If you have a software problem, you should first check online to see if someone has already solved that
problem. Furthermore, you could check to see how others in your situation have overcome problems
you have yet to encounter.

Build Your Process from the Ground Up

Your process is the way you, as a team, do business. No matter what your management tries to do in
terms of instituting a process, your team will have to buy into how you will do business. The key to
building an effective process is to start from the ground up. Management will set expectations for the
outcomes they want and how they will measure your performance. If they place a high value on docu-
mentation and paperwork, then you need to ensure those expectations are met.

The key part is that your team will need to work together and that will decide how you meet the expec-
tations of management. If you do not agree as a team to a process, then process can become a political
football. You do not want to get into a situation where process is used to try to differentiate between co-
workers. Once that starts happening, you will find that the techniques become more important than
good software principles, and you start to lose the ability to trace your actions to your software’s need.

An important consideration in building your process from the ground up is recognizing where your pro-
cess really begins and ends. Development team wars have been waged simply on the basis of the ques-
tion of integrated development environment (IDE) standardization, like Eclipse. You should really ask
yourselves whether you really want to standardize on an IDE. Even though you certainly need some-
thing to be able to interoperate among team members with effective configuration management (dis-
cussed subsequently), you still don’t want to make someone have to fight their development tools.
Software is hard enough without having to fight against your tools.

This is the key consideration in building your process. Decide on what your team can agree on to make
everyone the most effective. If you cannot agree, then management may have to get involved, but this
should be avoided.

Manage Your Configuration

78

Configuration management is important because stuff happens. A hard drive goes bad, your latest
improvement goes very badly, and so forth. These are all examples of things that happen in the normal
course of software development.

You should recognize that there is a distinct difference between configuration management and source
code control. Configuration management is a process in which you control how your system is put
together. The key goal in configuration management is that you can replicate your configuration in

Tools and Techniques for Developing Java Solutions

another place. You do not just maintain configuration control of your source code but also your runtime
environment (including dependent libraries, application server configuration, Java Runtime
Environment, or database schema), that is, anything you would need in order to recreate your system.

Source code control using a tool like the Concurrent Versioning System (CVS) is used to allow multiple
developers to work on files and integrate their changes while saving the history of previous revisions.
CVS is the dominant tool in the open source environment and is cleanly integrated into most of the
major IDEs. Of course, source control is useless if you do not commit your changes!

Unit Test Your Code

When you design and write code, you are writing test cases. You are writing test cases to handle the
intended case, that is, how the system should behave as you go through the system. As you do that, you
are making certain assumptions about how your system will react given a certain set of circumstances.
For example, if I check to see that an object is not null here, then I am assuming that it will not be null up
to a certain point.

As you write code, you tend to develop your complex logic to support the intended case, checking for
needed preconditions required for your code to work. However, there is often a set of scenarios for
which your code was designed to work. Unit testing allows you to test those scenarios.

I will discuss how to use an open source tool called JUnit to perform unit testing, but unit testing
becomes an important part of the habit known as continuous integration.

Continuously Integrate

Having a strong set of unit tests that ensure the functionality of the individual components of your sys-
tem, you could now combine these together into one cohesive product and run all of the unit tests on all
the components to see how well the system as a whole functions, as illustrated in Figure 2-1.

You should note that, even if you are not very good about unit testing, continuous integration can still
apply and provide great value to your development team. As you combine the efforts of your entire
development team, you will see how things actually play together and ensure valid assumptions
towards each other’s code.

The more you integrate your system together, the more confident you will become in the success of the
product as a whole. This helps mitigate risk by discovering problems early when they can be fixed.
Continuous integration ties directly into maintaining short development iterations.

Maintaining Short Iterations

As previously noted, the sooner you discover problems, the less likely they are to affect your overall
development success. The trick to doing this is to maintain short development iterations. This means
that you should be able to go through the development life cycle (requirements, code, design, and test)
in a short period of time.

You should try to involve your customer in each iteration if possible because, as mentioned previously,

your software will change their context. This means they will start describing what they want within the
context of what you built, not in some abstract concept.

79

Chapter 2

M

80

Don’s
code

Jon’s Scot’s
code code
! . \
T Nightly, M
! Builds !
AY
\
\
> ~
Jeff’s
code
Figure 2-1

How short depends on your team, but, for the purposes of this discussion, you should measure it in
weeks, not months. You want to put enough in an iteration to be meaningful in the shortest period of
time. Two weeks to a month is a good rough estimate for your first iteration. After that, you can use your
own success or failure to determine your next iteration.

easure What You Accomplished — Indirectly

There is an old joke in software estimation, “What is the difference between a fairy tale and a software
estimate? One doesn’t start with once upon a time.” This joke takes to task the idea that software estima-
tion is really hard, and most techniques are frequently described as black magic.

However, successful software estimates are based on experience. Experience is based on trying to quan-
tify what you have done before (and how long it took) as a predictor of how long the next thing will
take. Because the typical workplace doesn’t punish overestimation as much as underestimation —early
is good, late is bad —you start to have these highly defensive estimates of software effort. These estimates

Tools and Techniques for Developing Java Solutions

start to build on one another and, because you cannot come in too low or your next estimate will not be
as believable, you start to have down time. You start to gold plate (that is, add unnecessary and untrace-
able features) your system and gain a sense of inactivity.

The opposite phenomenon also occurs. Because software developers cannot be trusted to make estimates

(because they are gold plating and sitting around), management steps in and promises software based on
its guesses on how long something should take. Usually, they are setting aggressive schedules simply for

some marketing purpose and frame it as a technical challenge to the developers. Developers are optimists
and fighters, so they accept the ridiculous schedules until they get burned out and leave for a new job.

So, how do you avoid these dysfunctional circumstances? You measure what you have done by using an
indirect measure to keep you honest. eXtreme Programming (XP) has a concept known as velocity. XP
will be discussed subsequently, but the concept can be paraphrased as follows:

1. Youhave a set of tasks that, each of which, you assign a certain number of points related to how
much effort it will take to accomplish it.

2. You then estimate how many points each of the developers on your team will be able to accom-
plish for a given iteration — taking into account leave and so forth. Your iteration is timeboxed
to a specific amount of time (for example, two weeks is common).

3. You perform the work and keep track of how many points you were actually able to accomplish.

4. Yousstart the process over for new tasks, adjusting them based on the actual results. As you get
better or your system becomes better understood, your velocity will increase.

Of course, nothing scares developers more than metrics. As Mark Twain once said, “There are three types
of lies: lies, damned lies, and statistics.” Developers understand that metrics can be oversimplified or dis-
torted beyond their actual meaning. This is why teamwork and communication is so important. You
should only allow these metrics to be visible to those who actually are involved in using these metrics. You
can make it a secret handshake; that is, if you don’t have a velocity, you don’t get to know the velocity.

Of course, on the subject of sensitive but necessary measures of your development performance, you
should also look into tracking your issues.

Track Your Issues

Another volatile subject on a development team is bug reporting and tracking. As previously mentioned,
it is hard for you to understand what your customers want, and it is hard for them to understand what
they want. Furthermore, your users will use your software in ways that you did not anticipate and they
will discover undocumented features of your system.

However, if you get past the concept of blame and simply focus on the inevitability of bugs and changes,
you can make your issue tracking system a good way of keeping track of things that need to be done.

Whether you use a sophisticated online system or a simple spreadsheet, it is important that you keep
track of the loose ends. You will find that it is a great practice to allow your users to directly input feed-
back on your product. How you choose to triage your responses is up to you, but it is very helpful to
always have an open ear to listen to the user. Of course, if you let them constantly enter things in the sys-
tem, you will need to make it appear that you are actually listening on the other end.

81

Chapter 2

Development Methodology

Now that you have reviewed the principles of quality software development and many of the habits that
help to facilitate achieving those principles, it is time to learn some actual full up methodologies used in
many Java development shops.

There is a joke, “What is the difference between a methodologist and a terrorist? You can negotiate with
a terrorist!” This joke pokes fun at a very real problem. Often, methodologies are evaluated as if they
must account for every possible circumstance in the development life cycle and must be ritualistically
adhered to — or the methodology magic will not work. Of course, all methodologies have to be tailored
to your own development scenario, but you need to know the particulars of a methodology before you
can tailor it.

A full examination and comparison of development methodologies is beyond the scope of this book, but
you will learn some of the most popular ones in use today.

Waterfall Methodology

82

The grandfather of all software methodologies is the Waterfall methodology. It is known as the Waterfall
methodology because the sequences flow through each other sequentially, as demonstrated in Figure 2-2.

The Waterfall methodology consists of a series of activities separated by control gates. These control
gates determine whether a given activity has been completed and would move across to the next activ-
ity. The requirements phase handles determining all of the software requirements. The design phase, as
the name implies, determines the design of the entire system. Next, the code is written in the code phase.
The code is then tested. Finally, the product is delivered.

The primary criticism of the Waterfall methodology is that it takes too long to gain feedback on how
things are going. As you read previously, some parts of your software are well understood and others
are not. Therefore, trying to do all of the requirements first (which is to say, quantify the need into tangi-
ble specifications) is very hard when your user may not have a good understanding of the problem at
hand. Furthermore, if you make a mistake in the requirements, then it will propagate to the design, the
code, and so on. Also, there is no real capability to go back in the process. So, if you get into testing and
discover that a part of the design simply doesn’t work, you end up making changes to fix that issue, but
you lose all context of your design activity — you are literally band-aiding the system on purpose!

Recognizing this problem, the Waterfall methodology has been adapted in several other forms, like the
spiral methodology, which entails simply having multiple waterfalls. The idea is to shorten the time of
the life cycle down; that is, create an iterative solution to the problem.

Ultimately, you cannot escape the waterfall because it really is the common-sense approach. First, you
decide what it is you are going to build. Then, you decide how it is that you are going to build it. Next,
you actually build it. Finally, you ensure that you actually built what you wanted (and it works). The
major distinction with the next two methodologies that you will read about has to do with how much of
the overall effort you try to build at a time.

Tools and Techniques for Developing Java Solutions

Requirements

.

Design

-

Code

-

Test

.

Delivered
Product

Figure 2-2

Unified Process

Requirements Review

Design Review \

Control
Gates

Code Review 7
Test Review

In Craig Larman’s Applying UML and Patterns, he discusses an agile version of the Unified Process (UP),
a process originally developed from the merger of several object-oriented development methodologies.
The Unified Process entails short iterations of development based on tackling the most important
aspects of your system first, which is illustrated in Figure 2-3. [LARMAN]

83

Chapter 2

Maturity
]
Requirements
W | Desid Requirements |
= = =
? | Desid Requirements |
Cod: Design -
Requirements
= N
? [Cod Design | Requirements
Deliveres
P
roduct Tes Code [Desif Requirements |
\—I Delivered - == —= pu— | — L~
Product [Tes| Code | [Desi§ Requirements |
Produl Test | Cod{ Desid Requirements |
Delivereg
Product! Cod Design -
< Requirements
Deliveres <’
Product [Tes| Cod{ Design | Requirements
Delivered
Product Tes Code oo
esign
= = =
Delive
Prod Tes| Code |
Deliverée
Product
Delivered
Product ?
Delivéres.
Product l
Delivered
Product
~ N
Inception Elaboration Construction Transition
Figure 2-3

You develop a survey of use cases (that is, brief descriptions of user interactions with the system) and
start working them off in the order of which they pose a risk to the overall success of the system. You can
add or remove use cases from your survey, as appropriate, through your development. The phases illus-
trated in Figure 2-3 define and measure the relative maturity of the system.

84

Tools and Techniques for Developing Java Solutions

The phases of the Unified Process are as follows:

Q Inception: The system is still being felt out to determine the scope of the system —what will
the system do and what are its boundaries. This phase can be very short if the system is well
understood.

Q Elaboration: You are mitigating the architectural risks to the system. This is a fancy way of say-
ing, “Have you solved all of your hard problems?” or “Do you know how to do all the things
you are going to need to do?”

Q Construction: You are finishing all of the relevant use cases to make the system production
ready, that is, to go into beta.

Q Transition: You move the system through its final release stages and beta releases. It could
include the operations and maintenance of the software.

This is an agile process that focuses on maintaining momentum, but it still sticks to a lot of the tradi-
tional practices of use case development, modeling, and so forth. The next methodology is also an agile
process, but it has a different focus in terms of how to accomplish it.

eXtreme Programming

Kent Beck’s eXtreme Programming Explained introduced a radically new methodology into the software
development community. Based on his experiences on a project at Chrysler, he proposed making coding
the central part of your development effort. [BECK]

You have your user come up with stories describing how the system should work, and order them based
on their relative importance. You then take on a set of stories for your team to accomplish in a given iter-
ation, about two weeks in length —working 40-hour work weeks. You split your team into pairs to work
on each of the stories, allowing a certain amount of built-in peer review of the code as it is being written.
You and your partner start by writing unit tests to go along with your source code. After you are done
with your particular piece of code, you take it over to the integration machine where you add to the
code baseline and run all of the unit tests accumulated from everyone’s code. After each iteration, you
should have a working system that your user can review to ensure that you are meeting their needs.
This whole process is shown in Figure 2-4.

Note that XP doesn’t place a high emphasis on designing the software; instead, it holds that most upfront
design is not very helpful to the overall effort and ends up being changed with actual development.

XP is rather good at continuously having a working system. It can be tough when you lack an involved
user or have a project of a large size (50 or more developers), when coordination and design activities
actually could provide more value.

XP’s system of velocity, described previously, provides a good sense of understanding the capability of

your team so that you can effectively plan, which thus avoids burning out your engineers or sandbag-
ging your customer.

85

Chapter 2

Write Unit Test

Integrate

Coding Phase

Figure 2-4

Observations on Methodology

There are several critical points that you can take away from reviewing these three divergent
methodologies:

Q Ultimately, you are doing the same task in each methodology. It is about how much scope you
attempt to address in each activity that defines the real difference.

Q The agile methodologies, like UP and XP, seek to be reactive rather than proscriptive. That is,
they attempt to assess the success and adjust direction of the effort continuously rather than
relying on the pass/fail nature of waterfall control gates.

QO The methodologies vary in how much importance they grant to the design phase and the accou-
trements that surround them (UML modeling tools and so forth). The Waterfall process finds

86

Tools and Techniques for Developing Java Solutions

this phase incredibly important, and UP recognizes that for the part of the system you are
addressing in your iteration. XP believes that coding is design, and all of the additional work is
built around considering scenarios that are not actually addressed in the functionality of the
system. After all, you are coding the actual user stories.

Q All of the methodologies recognize the importance of use cases; though, they address them in
different forms. The Waterfall methodology sees use cases as a tool for generating the explicit
requirements of the system, providing background information. UP finds them important as an
inventory of scope. The survey report contains a simplified explanation of each use case and
then relies upon them to build its design models in each of its iterations. XP is based directly on
developing to satisfy what it calls user stories, which are more informal in format but still essen-
tially the same thing.

There is no one-size-fits-all methodology. As mentioned in Habits of Effective Software Development, it is
important that you and your team determine the process by which you will accomplish addressing the
need for which your software is being built. This section was meant to provide you with a background
on some of the most common methodologies in software today, and the next section will discuss some of
the common tools used in software development in the context of practical development scenarios.

Practical Development Scenarios

Distributing J2EE applications across tiers is a challenging task to tackle because of all of the underlying
implications of mixing and matching components with connectors across a system. The J2EE architecture
consists of four tiers: the client, Web, business, and Enterprise Information System (EIS). The client tier is
comprised of applets, HTML, and Java components. The Web tier is made up of servlets and Java Server
Pages that operate in a Web container. The business tier manages all of the data transactions and persis-
tence mechanisms of a system as well as resource allocations. The EIS tier is accountable for all of the
back-end database systems that application components must integrate with.

With all of these components and connectors, consideration must be given to the construction of pro-
cesses that manage and test these entities to ensure that consistencies are attained during development
and deployment. Many open source tools have been developed to facilitate technological timing issues
so that business challenges can be met. The remaining sections of this chapter will discuss some of
these tools so that you can apply them in your operations to realize those consistencies, which should
facilitate your development activities and help you become more successful with your integrations
and deployments.

This chapter will investigate some scenarios on how to apply scripting tools like Ant, Maven, and
XDoclet to manage your component builds and packaging, along with JUnit and JMeter to test your
applications in an automated fashion to ensure that your development operations can behave in a har-
monious manner.

Ant

All software projects need consistent builds from a common repository to ensure applications are
deployed properly. For many software projects (both commercial and open source), Ant has been used to
compile, test, and package components for distribution (see Figure 2-5).

87

Chapter 2

Scenario 1

SQL script - CREATE

SQL script - INSERT

ANT

I've got three issues | need to address ASAR | have to rebuild some
database tables and populate them for testing, and since | bothered the
DBA last week, I'm a little reluctant to do so again so soon. How can | get
this done in a painless fashion? | also want to automate my TIF file
markup operations on a daily basis to ensure | don’t miss any files or
corrupt them by doing it by hand. How can | get this done? Lastly, | need
to create an executable JAR file for my GUI application and | forgot the
command to do so. How can | generate and package this JAR on a
consistent basis?

—

Scenario 2

TIF file
TIF file + Markup

O Scenario 3
* java || *.jpg || *.xml
- 5
Executable
JAR
Developer

Figure 2-5

With Ant, a series of targets are implemented to construct processes to build your system components.
This section will take you through three different scenarios that you might encounter in your develop-
ment activities that can be tackled with Ant.

Scenario 1
In general, most Ant scripts start with property settings that are used to establish proper directory struc-
tures for file creation and transfer during your build activities. Similarly, parameters that are needed for
processing can be defined like they are for database operations used in all three target entries in the fol-
lowing Ant script. Users can also send these parameters to the Ant script from the command line using
the -D operation:

<project name="Database creation" default="createTables MySQL" basedir=".">
<!-- could use a property file, we opted for property settings in script
<property file="${basedir}/build.properties"/> -->

<property name="sgl.driver" value="org.gjt.mm.mysqgl.Driver"/>
<property name="sqgl.url" value="jdbc:mysqgl://localhost/sample_project"/>

<property name="sqgl.user" value=""/>
<property name="sqgl.pass" value=""/>

The createTables_MySQL target executes three SQL scripts for employees, project, and timetable
table creation. The idea here is to be able to generate your tables on the fly just in case you need to
deploy your database tables on a new platform for testing and/or deployment:

88

Tools and Techniques for Developing Java Solutions

<target name="createTables_MySQL">
<sgl driver="${sqgl.driver}" url="${sgl.url}" userid="${sqgl.user}"
password="${sqgl.pass}" >
<classpath>
<pathelement location="mysgl-connector-java-3.0.9-stable-bin.jar"/>
</classpath>
use sample_project;
<transaction src="employees.sqgl"/>
<transaction src="project.sgl"/>
<transaction src="timetable.sqgl"/>
</sqgl>
</target>

The createDB_MySQL script works in conjunction with the sample_project.sql file to create a
database in MySQL so that tables can be added to it. The following code snippet outlines how this is
done, first by dropping any preexisting tables for employees, project, and timetable. After that has
been performed, then the database will be created for table aggregations:

BEGIN;

DROP TABLE IF EXISTS employees;

DROP TABLE IF EXISTS project;

DROP TABLE IF EXISTS timetable;

DROP DATABASE IF EXISTS sample_project;
COMMIT;

CREATE DATABASE sample_project;
<target name="createDB_MySQL">
<sgl driver="${sqgl.driver}"
url="${sqgl.url}"
userid="${sqgl.user}"
password="S${sgl.pass}"
classpath="mysqgl-connector-java-3.0.9-stable-bin.jar"
src="sample_project.sqgl"/>
</target>

The last target, dropDB_MySQL, is used to drop the database, sample_project, just in case something
has gone wrong and a user wants to start over from scratch. Prior to performing this operation, a user
should probably provide a query asking the user if this operation is really desired, as shown below:

<target name="dropDB_MySQL">
<input message="Do you really want to delete this table (y/n)?"
validargs="y,n" addproperty="do.delete" />
<condition property="do.abort">
<equals argl="n" arg2="${do.delete}"/>
</condition>
<fail if="do.abort">Build aborted by user.</fail>
<sgl driver="${sqgl.driver}" url="${sgl.url}" userid="${sqgl.user}"
password="${sqgl.pass}" >
<classpath>
<pathelement location="mysgl-connector-java-3.0.9-stable-bin.jar"/>
</classpath>
drop database sample_project;

89

Chapter 2

Sc

20

</sqgl>
</target>
</project>
Sequence Target Action
2 createTables_MySQL Creates tables for operations/testing
1 createDB_MySQL Creates database for table adds
3 dropDB_MySQL Drops database
enario 2

Scenario 2 addresses the image file markup that could be part of your workflow processes in your devel-
opment operations. The following Ant script invokes the application necessary to aggregate your TIF
files, depending on the date passed into your process. After all of the files have been collected, they will
be sequentially run through a markup process that will tag the documents with the text provided:

<target name="run" description="Run the application.">
<java classname="book.WorkFlow" fork="true" failonerror="true">
<classpath>
<pathelement location="${run.dir}"/>
</classpath>
</java>
</target>

The WorkFlow application employs the Ant library DirectoryScanner to determine which files will be
marked, and all files collected will be marked up using Sun’s Java Image I/O APlIs:

package book;

import java.awt.Color;

import java.awt.Font;

import java.awt.Graphics;

import java.awt.image.BufferedImage;
import java.io.File;

import java.io.FileInputStream;
import java.io.IOException;

import java.text.SimpleDateFormat;
import java.util.ArrayList;

import java.util.Date;

import java.util.Iterator;

import java.util.List;

import javax.imageio.ImageIO;
import javax.imageio.stream.ImageOutputStream;

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

import org.apache.tools.ant.DirectoryScanner;

import org.apache.tools.ant.types.Parameter;

import org.apache.tools.ant.types.selectors.BaseSelector;

Tools and Techniques for Developing Java Solutions

import org.apache.tools.ant.types.selectors.DateSelector;
import com.sun.media.imageio.plugins.tiff.TIFFImageWriteParam;

public class WorkFlow {

private static Log log = LogFactory.getLog (WorkFlow.class) ;
private String workfilePath = "c://java_1l.5_book/ant";

public synchronized void processDocument (String s) {

// perform timing tests
long start = System.currentTimeMillis();

log.info (" [WorkFlow:processDocument ()] ");

if (s.length() <= 0) {
String date = new Date() .toString() ;
log.info("date = " + date);
SimpleDateFormat sdfLog = new SimpleDateFormat ("MM/dd/yyyy HH:mm aa");

log.info("formatted date = " + sdfLog.format (new Date()));
s = sdfLog.format (new Date()) ;
}
log.info("passing date: " + s);

The string variable that is passed into the processDocument method represents the date that will be
used to collect the image documents. If an empty value is passed, then the current date will be used.
Now pass that date along to the createWorkFiles method, which returns a String array of all of the
files to be processed.

The string array returned from createWorkFiles is propagated to the documentsToProcess
method that might perform checks on the individual files to ensure that bad files are not passed along
for marking:

List list = documentsToProcess (createWorkFiles(s));
Iterator it = list.iterator();

if (!list.isEmpty()) {
while (it.hasNext()) {
log.info (" [WorkFlow:processDocument] processing item:" + it.next());

} else {
log.info (" [WorkFlow:processDocument] list is NULL.");
}

// finalize timing tests

long elapsedTimeMillis = System.currentTimeMillis()-start;
log.info("Time (ms) :" + elapsedTimeMillis + " ms");
log.info("Time (secs):" + (elapsedTimeMillis/1000F) + " secs");

91

Chapter 2

92

The markImage method receives three parameters, which represent an input and output file as well as a
String markup that will be pasted on the top and bottom of the document being processed:

public void markImage (String inFile, String outFile, String marking) ({
try {
BufferedImage image = ImagelO.read(new File(inFile));
Graphics graphics = image.getGraphics();

graphics.setColor (Color.black) ;
graphics.setFont (new Font ("Arial", Font.BOLD | Font.ITALIC, 60));

graphics.drawString (marking, (image.getWidth()*4/10) , (image.getHeight() -
(image.getHeight () /20)));
graphics.drawString (marking, (image.getWidth()*4/10) , image.getHeight()/20);

// save modified image
String format = "tiff";

// Create Image
II0Image iioImage = new javax.imageio.IIOImage (image, null, null);

// Get TIFF Writer
Iterator writers = ImageIO.getImageWritersByFormatName ("tiff");
ImageWriter writer = (ImageWriter)writers.next();

// Set WriteParam's

TIFFImageWriteParam writeParam =
(TIFFImageWriteParam)writer.getDefaultWriteParam() ;

writeParam.setCompressionMode (ImageWriteParam.MODE_EXPLICIT) ;

writeParam.setCompressionType ("CCITT T.6");

// Create File to save the image

File f = new File(outFile) ;

if (!'f.exists()) f.createNewFile();
ImageOutputStream ios = createImageOutputStream(f);
writer.setOutput (ios) ;

// Save the image
writer.write(null, iioImage, writeParam) ;
ios.close();

} catch (IOException e) {
log.error ("FILE FAILED:" + inFile);

The createliorkFiles method receives a date value in string form to be used by the DateSelector
object to collect files with * . TIF extensions that were created after the date specified for markup pro-
cessing. Once the workfilePath directory has been scanned for those files adhering to the data con-
straints established and stored in a String array, that object will be passed back to the calling method in
processDocument:

Tools and Techniques for Developing Java Solutions

public String[] createWorkFiles (String date) {
log.info (" [WorkFlow:createWorkFiles ()] ");
DateSelector selector = new DateSelector();

Parameter param = new Parameter () ;
param.setName (DateSelector .WHEN_KEY) ;
param.setValue ("after");

// test date = "01/01/2004 23:15 PM";
selector.setParameters (new Parameter|[]{param}) ;
selector.setDatetime (date) ;

DirectoryScanner ds = new DirectoryScanner () ;
ds.setBasedir (workfilePath) ;
ds.setIncludes (new String[]{"*.TIF"});
ds.setSelectors (new BaseSelector[]{selector});
ds.scan() ;

return ds.getIncludedFiles() ;

The documentsToProcess method can be omitted if the checks are not going to be performed on the
artifacts collected. The method itself just parses through the String array of filenames collected using
the Ant library DateSelector:

public List documentsToProcess (String[] s) {
List docList = new ArrayList();

for (int i=0; i < s.length; i++) {
log.info("s[" + 1 + "]I= " + s[i]);
// not shown, but could perform checks to ensure
// that improper files are not propagated forward
docList.add(s[i]);

}

return docList;

// test
public static void main(String[] args) {

WorkFlow testWorkFlow = new WorkFlow() ;
String date = "";
String[] s = testWorkFlow.createWorkFiles (date) ;
if (s.length > 0) {
log.info("s.length = " + s.length);
} else {
log.info("Files NOT found.");

testWorkFlow.processDocument (date) ;
String workfilePath = "c://java_1l.5_book/ant";

testWorkFlow.markImage (workfilePath + File.separatorChar + "test.TIF",
workfilePath + File.separatorChar + "tests.TIF",

93

Chapter 2

"Test") ;

Scenario 3

Scenario 3 addresses the creation of executable JAR files for a sample GUI application called
BookAuthorSearch. Notice the following <manifest> tag that specifies the application’s main class
name. This is provided so that the create JAR file can be clicked and the application will be run auto-
matically:

<project name="test" default="all" >

<target name="init" description="initialize the properties.">
<tstamp/>
<property name="build" value="./build" />

</target>

<target name="clean" depends="init" description="clean up the output
directories.">
<delete dir="S${build}" />
</target>

<target name="prepare" depends="init" description="prepare the output
directory.">
<mkdir dir="S${build}" />
</target>

<target name="compile" depends="prepare" description="compile the Java
source. ">
<javac srcdir="./src/book" destdir="${build}">
</javac>
</target>

<target name="package" depends="compile" description="package the Java classes
into a jar.">
<jar destfile="${build}/BookAuthorSearch.jar" basedir="${build}">
<manifest>
<attribute name="Main-Class" value="book.BookAuthorSearch" />
</manifest>
</jar>
</target>

The last target, run, is used to invoke the BookAuthorSearch JAR file for execution. The JAR file is an
important feature that allows Java applications to be easily packaged for deployment:

<target name="run" description="Run the application.">
<classpath>
<pathelement location=" BookAuthorSearch.jar "/>
</classpath>
</java>
</target>

94

Tools and Techniques for Developing Java Solutions

<target name="all" depends="clean,package" description="Compile and package."/>

</project>

With tightened schedules, smaller development teams, and remote development operations, it is

paramount for projects to employ Ant so that important processes can be captured and implemented in

an easy manner by anyone. Consistent process operations ensure that builds are not corrupted and

development and deployment activities can go forward in a less painful way than those programs that

operate in an ad hoc fashion.

Maven

Maven is a build tool that allows users to build a project using its Project Object Model (POM) and Ant
build files to perform uniform build activities. Maven is integrated with Gump to help projects maintain
backward compatibility, and it utilizes a project descriptor, project.xml, to dictate how your project

will be built.

Some of the elements of a project descriptor can include the following.

Element Description

Extend Specifies the location of the parent project if it exists
PomVersion The current version of the project descriptor

1d The short name of the project

Name The full name of the project

GroupId The short name of the project group
CurrentVersion The current version of the project

Organization The organization that owns the project
InceptionYear The year of the project’s start (specified with four digits)
Package The Java package name of the project

Logo The URL to the project’s logo image
GumpRepositoryId (Optional) The Id of the Gump repository
Description (Optional) A detailed description of the project
ShortDescription A brief description of a project

url The homepage’s URL

IssueTrackingUrl (Optional) URL of issue tracking system
SiteAddress (Optional) Web server directory where project resides
SiteDirectory (Optional) The public site directory
DistributionSite (Optional) The site where public distributions reside

Table continued on following page

95

Chapter 2

Element Description

Repository Source configuration management repository information
Versions (Optional) Contains information on previous version releases
Branches (Optional) Contains information on previous project branches
mailingLists Contains mailing lists for project

Developers Describes the committers to a project

Contributors Describes contributors to a project

Licenses Describes licenses for a project

Dependencies Describes the dependencies of a project

Build Describes the environment of a project

Reports Describes the reports that should be included with distribution
Properties Project properties that will be used

For the sake of brevity, this example will not include many of the project elements described above. As
shown in the Ant example previously, consistency across your builds is a important goal for develop-
ment operations. Maven will allow you to satisfy your build and deployment goals, like Ant, but with a
different technique. This scenario will give you a small taste on how to implement Maven to automate
your build activities (see Figure 2-6).

| need to automate my build processes for my web Maven
applications so that | can hand it off to an operations person
and concentrate on my current task that is consuming most
of my time. How can | pull everything together to make my X .
life easier for deployments and ensure that builds are made maven.xml file system:

in a consistent fashion? I - java

- web components

projectcl/ - tests

- WAR / Tests

Developer

Figure 2-6

When you run this example, the target sequence will be war: init, war:web-app, followed by war:war
when a user types in maven at the command line:

96

Tools and Techniques for Developing Java Solutions

<!-- maven.xml #%
<project default="war"
xmlns:j="jelly:core"
xmlns:m="maven"
xmlns:deploy="deploy">
</project>

The project descriptor, project .xml, dictates all of the relevant elements that will be utilized for the
Web application build:

<!-- project.xml %
<?xml version="1.0"?>
<project>

<pomVersion>1l</pomVersion>
<id>maven-war-example</id>

<name>Maven Example</name>
<currentVersion>1.0</currentVersion>
<package>org.apache.maven.examples.war</package>

The <dependencies> tag indicates what libraries are needed for the application build to be successful.
The following example specifies dependencies with the log4j and servlet 2.3 libraries:

<dependencies>
<dependency>
<id>log4dj</id>
<version>1.2.8</version>
<properties><war.bundle>true</war.bundle></properties>
</dependency>
<dependency>
<id>servletapi</id>
<version>2.3</version>
</dependency>
</dependencies>

The <build> tag indicates where the source and test code directories are on the file system for compila-
tion and testing by JUnit test scripts:

<build>
<sourceDirectory>src/java</sourceDirectory>
<unitTestSourceDirectory>src/test/java</unitTestSourceDirectory>
<unitTest>
<resources><resource>
<directory>src/test/java</directory>
<includes><include>**/*</include></includes>
<excludes><exclude>**/* java</exclude></excludes>
</resource></resources>
<includes>
<include>**/*Test.java</include>
</includes>
</unitTest>
</build>
</project>

97

Chapter 2

You can generate a build script with countless operations to manipulate and package your applications
for deployment. The table below specifies a few for consideration in your build coverage.

Target Action

Maven clean Clean up directories

Maven Compile source code and build WAR file
Maven test Compile code and run tests on it

JUnit

98

Countless books have been written about JUnit and its numerous library extensions. Their usefulness in
testing applications does not need to be recounted, but it is important to remember, when developing
these tests with JUnit tools, to consider the objectives behind your testing coverage.

Ideally, your tests will exercise the constraints of your deployment system. This generally means that
valid/invalid inputs of application components (Textfield, RadioButton, and so forth) will be tested
as well as data points on your system. This testing needs to have a complementary problem-tracking
tool to support your iterative development practices and to ensure that problems have been recorded
and addressed in a timely fashion.

JUnit incorporates the XP philosophy of testing continuously so that problems do not manifest them-
selves in the latter stages of your development activities, which will bog down deployment schedules.

The scenario described here is an all too often occurrence that can be handled with the use of JUnit test
scripts that allow developers to better understand the current state of their code and where it needs to be
(see Figure 2-7).

JUnit

| keep getting pestered about some code not working |
wrote several months ago and | have forgotten how it was
written because my current activites have consumed all of
my time and thinking. How can | quickly determine what the
code does and see if other developers who work on the
same CVS repository have not introduced those problems
to that code?

JUnit test
suite

Developer

Figure 2-7

Tools and Techniques for Developing Java Solutions

The build.xml file runs two test scenarios, test1l and test2, after compiling the test code to ensure that
your source code has not been corrupted by modifications to that code. Ideally, you would want to cre-
ate a target in your build file to check out both the test and source code files from a common repository
to ensure that your tests are being performed on working code that is being implemented in your devel-
opment and deployments:

<?xml version="1.0"?>
<project name="junitTest" default="test">
<target name="init">
<property name="test.dir" value="." />
</target>
<target name="compile" depends="init">
<javac srcdir="." destdir="." classpath="junit.jar" />

</target>

<target name="testl" depends="compile">

<echo message="Running JUnit tests (1)." />
<junit printsummary="true">
<!-- <formatter type="plain" usefile="false" /> -->

<formatter type="xml" />
<test name="TestScenariosl" />
<classpath>
<pathelement location="." />
</classpath>
</junit>
<junitreport todir=".">
<fileset dir=".">
<include name="TEST-*.xml" />
</fileset>
<report format="frames" todir="." />
</junitreport>
</target>

<target name="test2" depends="compile">

<echo message="Running JUnit tests (2)." />
<junit printsummary="true">
<!-- <formatter type="plain" usefile="false" /> -->

<formatter type="xml" />
<test name="TestScenarios2" />
<classpath>
<pathelement location="$ (testdir}" />
</classpath>
</junit>
<junitreport todir=".">
<fileset dir=".">
<include name="TEST-*.xml" />
</fileset>
<report format="frames" todir="." />
</junitreport>
</target>

</project>

29

Chapter 2

The TestScenariosl test script reads the meta data affiliated with the employees table in the
sample_project database and checks the attribute names of that table to ensure that someone has not
corrupted the table itself. Alternatively, tests can be performed on database connections and the data
that is stored in that table to ensure that bugs have not been introduced into the table:

import java.sql.*;
import java.util.*;
import junit.framework.TestCase;

public class TestScenariosl extends TestCase {

private static final String DRIVER="org.gjt.mm.mysqgl.Driver";

private static final String URL="jdbc:mysqgl://localhost/project-sample";
private static final String USER="";

private static final String PASSW="";

private static final String QUERY="Select * from employees";

public DbTestCase(String name) {super (name);}
public void noTestCase() {}

public void testCase() {}

public void testCase(int arg) {}

void testCasel() {
try {

Class. forName (DRIVER) ;

// connect to the MySQL db

Connection conn = DriverManager.getConnection (URL, USER, PASS);
Statement stmt = conn.createStatement () ;

ResultSet rslt = stmt.executeQuery (QUERY) ;

// Get the resultset meta-data
ResultSetMetaData rmeta = rslt.getMetaDatal();

// Use meta-data to determine column #'s in each row
int numColumns = rmeta.getColumnCount () ;
String[] s = new String[numColumns];

for (int i=1; 1 < numColumns; i++) {

s[i] = rmeta.getColumnName (i) ;

// check to see if db columns are correct
.equals ("employee-id")) ;

]
assertTrue(s[2].equals("employee-name")) ;
assertTrue(s[3].equals("employee-salary")) ;
assertTrue(s[4] .equals ("position-desc")) ;
assertTrue(s[5].equals("start-date"));
assertTrue(s[6].equals ("end-date")) ;
assertTrue(s[7] .equals("conditions-of-discharge")) ;

100

Tools and Techniques for Developing Java Solutions

assertTrue(s[8].equals("salary"));

// close connection
conn.close() ;
}
catch (Exception e) {}
}

}

When automated JUnit tests discover that code does not do what requirements prescribe, or indicate that
an error has been introduced into your build, developers can use these tests as a point of reference to
discover what is wrong with code and rectify it in a procedural manner. The alternative is to code and
fix on the fly without any process to ensure things have been rectified properly and hope that things
work out in the end, which is not a promising practice.

XDoclet

XDoclet is a wonderful tool that can be downloaded from the SourceForge Web site at http: //
xdoclet.sourceforge.net/ to ensure that consistencies are realized with your development opera-
tions. XDoclet can be especially helpful on projects that involve disparate sets of developers who are
working from a common source code repository. Consider all the times you have halted your develop-
ment activities because someone forgot to add entries in the deployment descriptor and included the
code that refers to that entry or when the entry itself was delivered but the code was not checked in.
That can be particularly frustrating during final deployment migrations. XDoclet can alleviate those
occurrences because developers can embed their mapping in their code and build files can parse through
that code to generate the appropriate mappings needed for deployment. Additionally, extraneous map-
pings can be appended to the deployment descriptor (web.xml) by making entries in servlets.xml
and servlet-mappings.xml. This scenario appends JavaServer Page mappings to the deployment
descriptor through the servlets.xml file for browser visualization (see Figure 2-8).

XDoclet (Hibernate / Middlegen)

| need to make updates to my database and my web

applications that access data from the tables that need Create database mapping files from Middlegen(*.hbm.xml)
modifications, but I'm afraid it may mean so much work

that my schedule will slip. What tools can | use to

facilitate these activities? Step 1 <

Database Step 2

Create domain objects from database mapping files using
Hibernate extensions

Developer

Figure 2-8

101

Chapter 2

You can implement the following script to properly map your servlet and JSP entries in your deploy-
ment descriptor using the XDoclet libraries. Naturally, the first part of your script outlines the proper-
ties needed for file transfer, manipulation, and packaging;:

<?xml version="1.0" encoding="UTF-8"?>

<project name="XDoclet servlet/jsp" default="build-war" basedir=".">

<description>XDoclet script generation for Servlets/JSPs</description>
<property name="app.name" value="resubmit"/>

<property name="src.dir" location="src"/>

<property name="build.dir" location="build"/>

<property name="dist.dir" location="dist"/>

<property name="lib.dir" location="1lib"/>

<property name="merge.dir" location="mergeDir"/>

<property name="generated.dir" location="generated"/>

<property name="web.deployment.dir" location="${generated.dir}/webdeployment"/>
<property name="xdoclet.lib.dir" location="xdocletlib"/>

<path id="compile.path">
<fileset dir="${lib.dir}" includes="*.jar"/>
</path>

<path id="xdoclet.lib.path">
<fileset dir="${lib.dir}" includes="*.jar"/>
<fileset dir="S${xdoclet.lib.dir}" includes="*.jar"/>
</path>

The clean target is typically used to clean up operations prior to operations so that a clean slate can be
worked on without having to worry about residual files corrupting processing activities. The target
block also creates new directories for file transfer and deployment once the previous directories have
been purged from the file system:

<target name="clean">
<delete dir="S${gen.src.dir}/org"/>
<delete dir="${web.deployment.dir}"/>
<delete dir="${build.dir}"/>
<delete dir="${dist.dir}"/>
<delete dir="${generated.dir}"/>
<mkdir dir="${build.dir}" />
<mkdir dir="${build.dir}/WEB-INF" />
<mkdir dir="${build.dir}/WEB-INF/classes" />
<mkdir dir="${build.dir}/WEB-INF/1lib" />
</target>

The generate-web target implements the WebDocletTask libraries to parse the servlet source file to
strip the servlet’s mapping attributes. Once that has been performed, the Ant script copies the deploy-
ment descriptor to the /WEB-INF directory of the Web application and the JavaServer Pages to the Web
directory:

102

Tools and Techniques for Developing Java Solutions

<target name="generate-web">
<taskdef name="webdoclet" classname="xdoclet.modules.web.WebDocletTask"
classpathref="xdoclet.lib.path"/>
<webdoclet destdir="${build.dir}/WEB-INF/classes" mergeDir="${merge.dir}">
<fileset dir="${src.dir}">
<include name="**/*_ java" />
</fileset>
<deploymentdescriptor destdir="${web.deployment.dir}" distributable="false"

/>
</webdoclet>
// copy files to appropriate directories
<copy todir="${build.dir}/WEB-INF">
<fileset dir="S${web.deployment.dir}">
<include name="**/* xml" />
</fileset>
</copy>
<copy todir="${build.dir}">
<fileset dir="${basedir}/web/jsp">
<include name="**/* jsp" />
</fileset>
</copy>
</target>

The compile target is invoked from the build-clean target. This compiles the source code so that it
can be properly packaged for deployment:

<target name="compile" depends="generate-web">

<javac destdir="${build.dir}/WEB-INF/classes" classpathref="xdoclet.lib.path">
<src path="${src.dir}"/>

</javac>
</target>

The package target creates a Web ARchive file (WAR) for distribution. Ideally, you could build a target
to deploy the WAR file to your application server’s Web container for execution:

<target name="package" depends="generate-web">
<jar destfile="${build.dir}/S${app.name}.war" basedir="${build.dir}"/>

</target>

<target name="build-clean" depends="clean,compile"/>
<target name="build-war" depends="build-clean,package"/>

</project>

The next scenario is common for many distributed system applications that use Hibernate as their
Object/Relational (O/R) tool to gain access to back-end data with domain objects (see Figure 2-9).

103

Chapter 2

| know | have to integrate my web applications with
the other team member’s components. How can |
ensure that my modifications to the deployment
descriptor (web.xml) properly migrate for deployment
without stepping on other’s development activities?

Developer

XDoclet

Servlet

@web.servlet name="ControllerServlet:
@web.servlet-init-param name="id" value="id"
@web.servlet-mapping url-pattern="/ControllerServiet"

C

Additional mappings

servlets.xml

<servlet>
<servlet-name>form</serviet-name>
<jsp-file>/ticketForm.jsp</jsp-file>
</servlet>

servlet-mappings.xml

web.xml

<servlet>
<servlet-name>ControllerServlet</servlet-name>
<servlet-class>book.ControllerServlet</servlet-class>

<init-param>
<param-name>id</param-name>
<param-value>id</param-value>
</init-param>

</servlet>

<servlet-mapping>
<servlet-name>ControllerServlet</servlet-name>
<url-pattern>/ControllerServlet</url-pattern>
</servlet-mapping>

Figure 2-9

The DOCTYPE script uses XML entity references to include the test .xml fragment where the script
includes an &database reference. As in all of these scripts, property settings precede the targets’ entries
to ensure proper paths are specified prior to file manipulation and migration:

104

<?xml version="1.0"?>
<!DOCTYPE project [

<!ENTITY database SYSTEM "file:./config/database/test.xml">

1>

<project name="Middlegen Hibernate" default="all" basedir=".">

<property file="${basedir}/test.properties"/>

<property name="name" value="test"/>
<property environment="env"/>
<property name="build.dir"

<property name="lib.dir"

<property name="src.dir"

<property name="build.java.dir"
<property name="build.gen-src.dir"
<property name="build.classes.dir"

value="${basedir}/build" />

value="${basedir}/1lib" />
value="${basedir}/src"/>
value="${build.dir}/java"/>
value="${build.dir}/gen-src"/>
value="${build.dir}/classes" />

Tools and Techniques for Developing Java Solutions

&database;

<property name="datasource.jndi.name" value="${name}/datasource" />

The path id element is created so that similar path-like structures can be used for one or more tasks.
The <path> element is placed at the same level as targets in your script, and they are referenced via their
id attribute:

<path id="lib.class.path">
<pathelement path="${database.driver.classpath}"/>
<fileset dir="${lib.dir}">
<include name="*.jar"/>
</fileset>
<fileset dir="${basedir}/middlegen-1lib">
<include name="*.jar"/>
</fileset>
<fileset dir="${build.gen-src.dir}">
<include name="**/* hbm.xml"/>
</fileset>
</path>

The middlegen target runs the Middlegen application that opens up a user-specified database and cre-
ates mappings of its tables. Table mappings contain * . hbm.xml extensions. Once these are created, then
the hbm2java target can run to generate * . java domain object files to access your database:

<target name="middlegen" description="Run Middlegen">

<mkdir dir="S${build.gen-src.dir}"/>

<taskdef
name="middlegen"
classname="middlegen.MiddlegenTask"
classpathref="1ib.class.path"

/>

<middlegen

appname="${name} "

prefsdir="${src.dir}"

gui="${gui}"

databaseurl="${database.url}"

initialContextFactory="S${java.naming.factory.initial}"

providerURL="${java.naming.provider.url}"

datasourceJNDIName="${datasource.jndi.name}"

driver="${database.driver}"

username="S${database.userid}"

password="${database.password}"
schema="${database.schema}"

catalog="${database.catalog}"

<hibernate
destination="${build.gen-src.dir}"

105

Chapter 2

package="${name}.hibernate"

genXDocletTags="false"

genIntergratedCompositeKeys="false"

javaTypeMapper="middlegen.plugins.hibernate.HibernateJavaTypeMapper"
/>

</middlegen>

<mkdir dir="${build.classes.dir}"/>
</target>

The hbm2java target determines where the database table mappings reside using the path id element
and then creates the hibernate mappings to be used to access the items in the tables of the targeted
database:

<path id="project.class.path">
<pathelement path="${build.gen-src.dir}"/>
<pathelement path="${build.gen-src.dir}/test/hibernate"/>
<fileset dir="${build.gen-src.dir}/test/hibernate">
<include name="**/* hbm.xml"/>
</fileset>
<fileset dir="1ib">
<include name="**/*.jar"/>
</fileset>
</path>

<!-- Hibernate mapping files -->

<fileset id="hibernate.mapping.files" dir="S${build.gen-src.dir}/test/hibernate">
<include name="**/* hbm.xml" />

</fileset>

<target name="hbm2java" description="Generate .java from .hbm files.">

<pathconvert refid="hibernate.mapping.files" property="hibernate.mappings"
pathsep=" "/>
<java classname="net.sf.hibernate.tool.hbm2java.CodeGenerator" fork="true">
<classpath refid="project.class.path" />

<arg line="--config=test.xml"/>
<arg line="${hibernate.mappings}"/>
</java>

</target>

The test.xmnl file passed as a parameter to the CodeGenerator application specifies the renderer oper-
ations that will be performed during code generation. This code snippet tells you what is needed for a
basic rendering procedure:

<codegen>
<generate renderer="net.sf.hibernate.tool.hbm2java.BasicRenderer"/>
<generate suffix="Finder"
renderer="net.sf.hibernate.tool.hbm2java.FinderRenderer" />
</codegen>

106

Tools and Techniques for Developing Java Solutions

The next target, compile-hibernate, performs Java compilation of the domain model objects that were
created by the mapping and conversion procedures:

<target name="compile-hibernate" depends="middlegen" description="Compile
hibernate Business Domain Model">
<javac
srcdir="${build.gen-src.dir}"
destdir="${build.classes.dir}"
classpathref="1ib.class.path"

<include name="**/hibernate/**/*"/>
</javac>
</target>

<target name="all" description="Build everything" depends="compile-hibernate"/>

<target name="clean" description="Clean all generated stuff">
<delete dir="${build.dir}"/>
</target>

</project>

JMeter

Software development typically is performed as a solitary endeavor until it is time to integrate with new
and existing components on your deployment system. Understanding how your applications will per-
form under real-life conditions is a legitimate concern for all software developers.

With the JMeter application available at http://jakarta.apache.org/jmeter/, you can generate
and manage user simulations for your applications using a robust GUI application console to collect per-
formance measurements. This is performed by adding ThreadGroups to your test plans to simulate
users and configuration elements that simulate and stimulate your applications (see Figure 2-10).

With enterprise development efforts, performance discovery cannot be performed early enough in your
development activities to determine what kind of loads your applications can handle alone and when
packaged with other applications targeted for deployment.

Rather than delving into a broad range of scenarios to demonstrate the load testing abilities of JMeter
and the wide range of testing protocols that can be applied, it would probably be more beneficial to
describe from a high-level view all of the different capabilities that the tool possesses that can facilitate
your development operations.

JMeter is comprised of six different components (Listeners, Config Elements, Assertions, Pre- and Post-
Processors, and Timers) to measure your application’s performance in your development space.

107

Chapter 2

JMeter

I've spent all my time developing this component.
I wish | knew how well it will work when it is
integrated with all of the pieces being assembled?

Component 1

Will my component perform well when deployed?

Component 2

Component

Database

Emulate multiple users

Developer

Figure 2-10

Listeners are conduits to data that is collected by the JMeter application during testing operations. Data
collections can either be saved off to files or shown in graphical representations like graphs and tables.

Config Elements are used by the JMeter application to perform disparate protocol requests to back-end
components like Web, database, and Lightweight Directory Access Protocol (LDAP) servers. TCP and
FTP requests can also be performed to test your system’s components.

Assertions can be implemented to discover problems with HTML tags and error strings that can be
introduced by testing activities.

Pre- and Post-Processor tests act a lot like servlet filters that can manipulate code prior to being run as
well as after. These components allow Web requests to be modified prior to being passed along for inter-
pretation. An example of this would be to translate an XML response to HTML during Web application
transactions.

By establishing test plans using ThreadGroups, users can manually craft simulations through the GUI
controls as well as generate capture and replay tests automatically by recording navigation flows using
JMeter’s Recording Controller.

The latest JMeter 2.0 release has introduced many new features, as shown in Figure 2-11, to load test the

functional behavior of your system and gather performance metrics so that your applications can be
deployed with some assurance that they can handle difficult user loads.

108

Tools and Techniques for Developing Java Solutions

HTTP

Request HTTP Cookie
] User Defined Defaults Manager
Vi’ZILJaaIII?;er Variables
Assenlion hegrognte HTTP Header JDB%esfgtlt%uery
esults Monitor Report Login Config Manager
Results Element JDBC Database
View Results Connection Pool
GFreZpsZ:t::") in Table Thread Single Java Request Defalults
Simple Data Group . HTTP Defaults
Writer Config Authorization
Element Manager TCP
Graph View Results
Results Sampler
Spine Tree LDAP Config
Visualizer FTP Request Request
Defaulls pgc patabase Defaults
. Login Defaults .
Listeners Config
Element
JMeter

Duration
Constant Gaussian Assertion Sie
Throughput ~ Random Timer Resporjse Ass(lezrtion
Timer Assertion HTML
Uniform .
Assertion
Constant Random Timer Beanshell XML
imer Assertion Assertion
MD5Hex

Assertion

Assertions

HTTP URL

Counter

Save o

Regular Responses to }’:\?Ae-\é\/.l’fl.tlng

Expression a File User HTML odifiers
Extractor Parameters Parameter

Generate Mask

Result Status ~ Summary HTTP User

Action Handler ~ Results HTML Link Parameter

Modifiers

Parser

Post Processors Pre Processors

Figure 2-11

Summary

This chapter carried you from the abstract concepts of what it means to write quality software to the
concrete details of how software tools are used in Java development environments. Along the way, you
were provided information to give you a feel for what it is like to be a Java developer, including the fol-

lowing points:

Q
Q

The principles of software quality by which developers live

The habits that an effective software developer exhibits

109

Chapter 2

Q A few of the methodologies that software developers use

0O How and why to use many of the tools found in Java development environments
Chapter 3 continues the brief aside into thinking like a professional Java developer by discussing design
patterns, which provide an intellectual repository from which you can learn to avoid common problems

that face many Java developers, as well as how the developers of the Java programming language solved
many of their issues.

110

1

Exploiting Patterns in Java

In Chapter 2, you learned about half of “thinking like a Java developer” when I discussed software
development methodologies. This chapter handles the other half — the use of patterns to make
you an effective Java developer.

This is not a patterns book. This chapter is included because patterns are critical to understanding
and communicating the designs of application programming interfaces, tools, and other applica-
tions. This is because the vast majority of these technologies are built on top of design patterns.

If I had to pick one aspect of software engineering that I absolutely love, hands down, it would be
software design. Designing software well is challenging and it requires a combination of creativity
and problem-solving skills. The experience of creating a solution in software can be very reward-
ing. If you are just becoming familiar with the Java programming language, software design can
be a little overwhelming. It’s like a blank canvas with a lot of colors from which to choose. Design
decisions are difficult to make because — without experience —it is difficult to understand how
the choices you make will affect the application later.

Learning design patterns is the single best way to increase your abilities as a software engineer.
Technology changes very quickly. To give things a little perspective, learning a new technology is
like reading a good book; learning patterns is like learning to read.

The focus of this chapter is to communicate why design patterns are important and highlight com-
monly occurring patterns. Hopefully, if you haven’t been turned on to patterns already, this chap-
ter will give you some reasons to pursue them.

There are plenty of patterns books. I feel these three represent some of the best work written on the
subject: Refactoring: Improving the design of Existing Code by Martin Fowler; Design Patterns:
Elements of Reusable Objected-Oriented Software by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides; and Applying UML and Patterns: An Introduction to Objected-
Oriented Analysis and Design and the Unified Process by Craig Larman.

Chapter 3

This chapter will provide you with a strong definition of a pattern, an understanding of why patterns
are important, tricks to understanding a pattern, and an explanation of important Java patterns. This
chapter is divided into three main sections. The first section will discuss the rationale behind learning
patterns and some examples of where they are used in software design. The second section, building
patterns from design principles, will walk you through a series of exercises that show how to form pat-
terns from basic design principles. Finally, the important patterns section will walk you through code
examples of a subset of well-known design patterns.

Why Patterns Are Important

One of my father’s favorite quotes was, “Experience is a good teacher, but a fool will learn from no
other.” In software, experience is a good teacher, but lessons learned from experienced designers can
help accelerate your design skills. A pattern is a documented lesson learned.

A pattern is a proven solution to a software problem enabling reuse of software at the design level. The
purpose of a pattern is to conceptually pair a problem with its design solution and then apply the solution
to similar problems. Code level reuse of software is desirable, but design level reuse is far more flexible.

With each application you work on, none of them will be the same. There will be similarities. Being able
to recognize these similarities, combined with your knowledge of design patterns, will help bring confi-
dence to the design decisions you make.

Patterns are one of the greatest resources you will have in the design of object-oriented software. They
will definitely help you to master the Java programming language, be more productive, and develop
effective Java solutions.

Keys to Understanding the Java Programming Language

Patterns help you understand the Java programming language. Compared to other programming lan-
guages, Java has a steep learning curve. It’s not that Java is harder to learn than other languages. Just the
opposite, it has a very clean syntax and its structure is similar to other OO languages.

The language becomes difficult once you confront the vast number of APIs available to the Java pro-
grammer. The number of APIs available is a very good thing. Each API should be viewed as a tool in the
toolbox for solving problems.

Leveraging existing software is a core practice in thinking like a professional Java developer. This allows
you to save time and be more productive. The collection of APIs provided in the 1.5 JDK, as well as
countless open source projects, represent what you don’t have to build from scratch.

This book examines several APIs such as Collections, Java2D, JMX, XML, EJB, JMS, JDBC, RMI, and Web
Service. The list is pretty long, but it only scratches the surface on the number of APIs available. The
truth is you cannot sit down and learn them all. Thankfully, there is no reason to learn them all. This is
why design patterns are so important to learning Java.

Design patterns allow you to learn a new API quickly. If you understand the patterns used in an API,
then you will be able to quickly understand, evaluate, and potentially integrate that code into your solu-
tion. It is much easier to learn and build on top of existing API’s than it is to reinvent the wheel and start
from nothing.

112

Exploiting Patterns in Java

This is especially true when working with the J2EE framework. If you are working on a project and hear
that a decision has been made to ignore the distributed transaction processing capabilities of a J2EE
application server in favor of a homegrown solution, run and don’t look back. As a Java developer, you
learn as much as you can and only build what you need.

J2EE is a standards-based solution. One misconception about the J2EE framework is that it is considered
a product. J2EE is not a product. It is a specification that Sun published as a set of documents describing
how a Web and EJB containers must behave. Then software vendors implement the specs and sell their
products as part of a standards-based solution. This is important because the folks at Sun are pattern
savvy. The APIs are all based on patterns. This is very good news for you and an excellent reason to gain
a strong understanding of design patterns. If you do, you will be able to understand and leverage any-
thing Sun throws your way.

Keys to Understanding Tools Used in Java Development

In addition to the wealth of APIs available to Java developers, there is also a large number of develop-
ment tools for improving the software development process. A few tools are ANT, JUnit, and XDoclet.
These tools offer extension points for integration as well as good working examples of the power of
design patterns.

ANT

ANT is an XML-based build tool with several uses. One of the uses is to automate the building of a soft-
ware project. It can also do the work of most scripting languages without being OS dependent. It’s built
using a combination of several design patterns.

JUnit

JUnit is a unit-testing framework. Establishing automated unit tests is an excellent way to prove code
changes so as to prevent introducing new bugs into your software. To use JUnit, you must extend the
framework. By understanding the patterns JUnit is built on, you will be able to take advantage of auto-
mated unit testing.

XDoclet

XDoclet is a code-generating framework. It allows you to imbed meta data in the comments of your
code. The meta data is used to generate supporting code as well as XML descriptor files. XDoclet makes
it easy to sync derived software artifacts common when developing E]Bs, Servlets, and persistent data
objects such as hibernate and JDo.

There are numerous other tools available to the Java developer. Understanding the patterns these tools

are built on takes some of the magic out of how they work. By understanding design patterns you will
be able to use and extend these tools to build better software.

Keys to Developing Effective Java Solutions

Patterns help you build effective solutions using Java. Patterns help you communicate design concepts
as well as gain an appreciative knowledge of underlying design principles.

113

Chapter 3

Develop Common Design Vocabulary

There is a lot of value in the pattern name. The name provides a common vocabulary for software engi-
neers to use to communicate. The patterns in this book are taken from the widely accepted GoF.

For example, say you need two to parts of a system to communicate even though they expect different
interfaces. Use the Adapter pattern. If you have a situation where several algorithms will solve the same
problem, use the Strategy pattern. This chapter goes into those two patterns, as well as several others, in
detail. The point of mentioning them now is to show the value in understanding patterns.

Understand the Fundamentals of Design

This reason for learning patterns is near and dear to me. Initially, after being introduced to the concepts
of object-oriented programming, I failed to see the relevance of the object-oriented concepts. It seems like
more work with limited benefits. It wasn’t until I was exposed to design patterns that I started to gain a
real appreciation for the power of the OO concepts.

Patterns will help you fully understand fundamental design principles. Understanding the fundamen-
tals of software design is critical to becoming a confident software designer. Patterns provide a concrete
example of how to apply various design principles. Essentially, design is about making decisions.
Knowing which decisions lead to good software design, and which lead to problems in the future,
makes all the difference in building effective solutions.

Design decisions center on identifying the pieces of your software system and how they will work
together to accomplish your objective. Good design is the result of the lessons learned often from living
through a bad design nightmare.

Abstraction, polymorphism, and inheritance are the three principal concepts of object-oriented design,
Abstraction is the practice of modeling the relevant aspects of real-world concepts. Polymorphism is
type substitution allowing one class to take the place of another. Inheritance is the practice of creating
specialization and generalization relationships between classes.

Some design criteria to consider when building a Java solution include:

Q Protected Variations. This means that you need to isolate volatility in your application. If you
feel an application component could change, then take steps to segregate that component using
interfaces. Interfaces will allow you to change the implementing class without affecting existing
application dependencies.

QO Low Coupling. The purpose of this design concept is to ensure that changes made in one sec-
tion of code don’t adversely affect another unrelated section. For example, does a user interface
change require a change to the database? If so, the application could be brittle where any small
change propagates throughout the software system.

0 High Cohesion. The practice of tying closely related things together tightly.
This is important to understanding design patterns because each pattern is the application of one or

more design principles. Once you understand abstraction, polymorphism, and inheritance, it is easier to
understand how patterns can reduce the complexity of software design.

Software design goals are important, but there is a large gap between goals and real implementations.
Patterns bridge this gap and realize these goals; nothing teaches like a good example. The next section
discusses some foundation on how to get started with patterns.

114

Exploiting Patterns in Java

Building Patterns with Design Principles

At the core of any pattern is a collection of design principles. This section looks at a simple and uncon-
ventional approach to building patterns from the ground up. The approach is to start with a simple
design and gradually make changes so that the design is more flexible. Each design change becomes a
step in building more complex design patterns. By following the exercises in this section, it will be clear
how applying design principles makes software more flexible. This allows the reader to understand the
mechanics behind patterns a small piece at a time.

This section starts off with the design of a single class. From this single class design an association is
added, followed by an interface. These two steps add flexibility to the single class design. Understanding
this flexibility has important ramifications for understanding design patterns. The final section shows an
example of merging the concepts of association and inheritance, which is common in a number of design
patterns.

Designing a Single Class

A single class doesn’t constitute a design pattern, but it is a design. And there is nothing wrong with
simplicity. Part of the design process is assigning responsibility to an object, as in Figure 3-1.

Teacher

-name

+getName()
+getSSN()
+teachClass()
+takeAttendance()
+proctorTest()
+gradePaper()
+reportGrades()

Figure 3-1

It is very common for a class to become bloated with several methods not related to the abstraction the
class represents. This can cause dependency problems down the line and does not fit with the high cohe-
sion design principle. In this example, the Teacher class contains several methods related to teacher
responsibilities. The solution is to push to the right or delegate the methods that do not belong with the
abstraction. The phrase “do not belong” is subjective. Any design decision could be wrong. As long as
you justify it with sound OO principles, don’t worry — you can always change it later when the problem
is clearer.

Creating an Association between Classes

All the teacher responsibilities have been delegated to a class called TeacherResponsibilities. Again
visualize the methods being pushed to the right. Figure 3-2 shows how responsibility has been delegated
through an association.

115

Chapter 3

TeacherResponsibilites
Teacher
“name +teachClass()
+takeAttendance()
+getName() +proctorTest()
+getSSN() +gradePaper()
+reportGrades()

Figure 3-2

For the TeacherResponsibilities class to do work on behalf of the Teacher class, an association has
to be created. The Teacher object holds a reference to the TeacherResponsibilities.

There are basically three ways this can happens:

1. The TeacherResponsibilities object is passed to the Teacher object as a parameter.

Teacher teacher = new Teacher ("Heather");
TeacherResponsibilities responsibilities= new TeacherResponsibilities () ;
teacher.setResponsibilities (responsibilities);

2. The Teacher object creates the TeacherResponsibilities object.

public class Teacher ({
private TeacherResponsibilities responsibilities = new TeacherResponsibilites();

}

3. The TeacherResponsibilites object is passed back from a method call.

public class Teacher ({
public Teacher() {
Administration admin = new Administration() ;
responsibilities = admin.getResponsibilites();

}

These three methods determine the visibility an object shares with another in making up an association.
The design might be done, but there is another design principle to address: loose-coupling. In specifying
an association, a tight dependency between the Teacher and the TeacherResponsibilites classes
has been created. The relationship is restricted to the Teacher and the TeacherResponsibilites
types. That would be fine, except that it may be felt that the responsibilities will change over time. How
do you loosen the relationship and address this volatility? The answer is to push up an interface.

116

Exploiting Patterns in Java

Creating an Interface

An interface is a software contract between classes. By using the interface, the current class is allowed to
provide the implementation. If in the future the implementation changes, you can replace the current
class with a new class. Since the Teacher class only depends on the Responsibilities interface, the
Teacher class will not need to be modified. The UML for this design is shown in Figure 3-3.

dnterface»
Teacher Responsibilites

------------- > +teachClass()
+takeTest()
+gradePaper()

N

Current

Figure 3-3

Just a word of warning, each artifact you add to the design is one more thing to man-
age. Interfaces are great when establishing dependencies across components to iso-
late volatility, but they are not needed everywhere.

In the next section, we will combine delegation and inheritance, the concepts of the previous two sec-
tions, to create powerful object structures. An inheritance loop combines the pluggable functionality of
inheritance with the separation of concerns gained with an association.

Creating an Inheritance Loop

By relating two classes with both an association and an inheritance, it is possible to create trees and
graphs. Think of this as reaching up the class hierarchy. The inheritance relationship causes the nodes in
the object structure to be polymorphic. In the example shown in Figure 3-4, a WorkFriends group can
be manipulated using the same interface declared by the Person class. Another common example
would be how files and folders on a file system have similar behavior. They both use common function-
ality such as copy, delete, and more.

Figure 3-4 shows the resulting class and object view of an inheritance loop. This is a common structure
used in many design patterns including composition.

117

Chapter 3

Person 0.. Friends:Group

[r |:|,> Chad Kathy WorkFriends:Group

Group

people : Person

Clay Donnie

Figure 3-4

I refer to an inheritance loop as reaching up the hierarchy, as depicted in Figure 3-4. By reaching up the
hierarchy, you create a relationship known as reverse containment. By holding a collection of a superclass
from one of its subclasses it is possible to manipulate different subtypes as well as collections with the
same interface.

Figure 3-5 shows one subtle change to the example in Figure 3-4. By changing the cardinality of the
association between the super- and subtypes to many-to-many, it is possible to represent graphs as
well as trees.

,— Claire : Person

people : Person

Person
people : Person Gary : Person
* Fem : Person people : Person
people : Person]
Isabel : Person
people : Person
Figure 3-5

Finally, Figure 3-6 adds subtype relationships to the inheritance loop, allowing the representation of a
complex data structure with methods that can be invoked with a polymorphic interface.

We have also created a common interface for each responsibility allowing us to add new responsibilities
with limited impact to the application.

The purpose of this section was to learn tricks to understanding patterns. By creating associations and
using inheritance, you have been able to build some complex designs from these principles. You learned
to apply these principles by remembering simple actions: push to the right, push up, and reach up.
Learning these tricks will help you understand the well-known patterns in the next section.

118

Exploiting Patterns in Java

Teacher
- - ; 1..%
-name dnterface»
-responsibilities Responsibility
+getName() 1 % +perform() i
+getSSN() Zr Zr

TakeAttendance GradePaper DailyResponsibilities -

Figure 3-6

Important Java Patterns

The next section will show examples of very important and well-known patterns. By learning each of
these patterns, you will develop your pattern vocabulary and add to your software design toolbox. Each
pattern discussed below includes a description of the problem the pattern solves, the underlying princi-
ples of design at work in the pattern, and the classes that make up the pattern and how they work
together.

This section will highlight a few well-known patterns. The focus of this section is not to describe pat-
terns in a traditional sense, but instead to provide code and concrete examples to demonstrate the types
of problems that each pattern can solve. All the patterns discussed in this section are well known and
oft-adapted GoF patterns.

The patterns in this section include Adapter, Model-View-Controller, Command, Strategy, and
Composite.

What is important to take away from the discussion of each pattern is how the classes that make up

the pattern work together to solve a specific problem. Each pattern will be discussed with a text descrip-
tion and a diagram showing the pattern as well as the example classes fulfilling their corresponding
pattern role.

Adapter

An Adapter allows components with incompatible interfaces to communicate. The Adapter pattern is a
great example of how to use object-oriented design concepts. For one reason, it’s very straightforward.
At the same time, it’s an excellent example of three important design principles: delegation, inheritance,
and abstraction. Figure 3-7 shows the class structure of the Adapter pattern as well as the example
classes used in this example.

119

Chapter 3

. dnterface»
Client interfacen DogShow Tricks
F- - Target I - - -> +fetch()
- - - +run()
+operation() +compete(in Parameter1 : Tricks) +walk()
T Class1 OldDog
Adapter Adaptee dog : OldDog |—
attributel : Adaptee —

Figure 3-7

The Adapter Pattern Is a Collaboration of Four Classes

The four classes that make up the Adapter pattern are the Target, Client, Adaptee, and Adapter. Again, the
problem the Adapter pattern is good at solving is incompatible interfaces. In this example, the adaptee
class does not implement the target interface. The solution will be to implement an intermediary class,
an Adapter, that will implement the target interface on behalf of the Adaptee. Using polymorphism, the
client can use either the Target interface or the Adapter class with little concern over which is which.

Target

Start off with the Target interface. The Target interface describes the behavior that your object needs to
exhibit. It is possible in some cases to just implement the Target interface on the object. In some cases it is
not. For example, the interface could have several methods, but you need custom behavior for only one.
The java.awt package provides a Window adapter for just this purpose. Another example might be
that the object you want to adapt, called the Adaptee, is vendor or legacy code that you cannot modify:

package wrox.pattern.adapter;
public interface Tricks {

public void walk();

public void run() ;

public void fetch();
}

Client

Next, look at the Client code using this interface. This is a simple exercise of the methods in the interface.
The compete () method is dependent on the Tricks interface. You could modify it to support the
Adaptee interface, but that would increase the complexity of the Client code. You would rather leave the
Client code unmodified and make the Adaptee class work with the Tricks interface:

public class DogShow {

public void compete(Tricks target) {
target.run();
target.walk();
target.fetch();

}

120

Exploiting Patterns in Java

Adaptee

Now the Adaptee is the code that you need to use, but it must exhibit the Tricks interface without

implementing it directly:
package wrox.pattern.adapter;

public class OldDog {
String name;

public OldDog (String name) {
this.name= name;

}
public void walk() {
System.out.println("walking..");

}
public void sleep() {
System.out.println("sleeping..");

}

Adapter
As you can see from the 01dDog class, it does not implement any of the methods in the Tricks interface.
The next code passes the 01dDog class to the Adapter, which does implement the Tricks interface:

package wrox.pattern.adapter;

public class 0ldDogTricksAdapter implements Tricks {
private 0ldDog adaptee;

public 0ldDogTricksAdapter (01dDog adaptee) ({
this.adaptee= adaptee;

}
public void walk() {
System.out.println("this dog can walk.");

adaptee.walk() ;

}
public void run() {
System.out.println("this dog doesn't run.");

adaptee.sleep() ;

}
public void fetch() {
System.out.println("this dog doesn't fetch.");

adaptee.sleep() ;
}

The Adapter can be used anywhere that the Tricks interface can be used. By passing the
0ldDogTricksAdapter to the DogShow class, you are able to take advantage of all the code written for

the Tricks interface as well as use the 01dDog class unmodified.

121

Chapter 3

The next section looks at how to establish the associations and run the example:
package wrox.pattern.adapter;

public class DogShow {
//methods omitted.

public static void main(String[] args) {

0ldDog adaptee = new 0OldDog("cogswell");

0ldDogTricksAdapter adapter = new 0ldDogTricksAdapter (adaptee);
DogShow client = new DogShow();

client.compete(adapter);

Model-View-Controller

The purpose of the Model-View-Controller pattern is to separate your User Interface Logic from your
business logic. By doing this it is possible to reuse the business logic and prevent changes in the interface
from affecting the business logic. MVC, also known as Model-2, is used extensively in Web develop-
ment. For that reason, Chapter 8, “Developing Web Applications Using the Model 2 Architecture,” is
focused completely on this subject. You can also learn more about developing Swing clients in Chapter 4,
“Effective User Interfaces with JEC.” Figure 3-8 shows the class structure of the Model-View-Controller
pattern along with the classes implementing the pattern in this example.

Controller Model LoginAction Model
""" > L - - - > -propertyChangeSupport
+businessMethod() +performAction() +login()
T A : +addListener()
v , :
View ; :
______________ ' V .
JWorkPanel |—O PropertyChangeListener
-CommandButton
? JCenterPanel
-loginField
-passwordField
Figure 3-8

This pattern example will be a simple swing application. The application functionality will implement
the basic login functionality. More important than the functionality is the separation of design principles

that allow the model (data), controller (action), and the view (swing form) to be loosely coupled
together.

122

Exploiting Patterns in Java

Model-View-Controller is actually more than a simple pattern. It is a separation of responsibilities com-
mon in application design. An application that supports the Model-View-Controller design principle
needs to be able to answer three questions. How does the application change the model? How are
changes to the model reflected in the view? How are the associations between the model, view, and con-
troller classes established? The next sections show how these scenarios are implemented in this example
using a swing application.

Scenario 1: Changing to the Model

Changes to the model are pushed from the outside in. The example uses Java swing to represent the
interface. The user presses a button. The button fires an event, which is received by the controlling
action. The action then changes the model (see Figure 3-9).

User Button Action Model

press

action performed

Update Model

--_._‘ PR ——

Figure 3-9

Scenario 2: Refreshing When the Model Changes

The second scenario assumes that the model has been updated by an action. The views might need to
know this information, but having the model call the view direction would break the MVC separation
principle requiring the model to have knowledge of the view. To overcome this, Java provides the
Observer Design pattern, allowing changes from the model to “bubble out” to the view components. All
views that depend on the model must register as a ChangeListener. Once registered, the views are
notified of changes to the model. The notification tells the view to pull the information it needs directly
from the model (see Figure 3-10).

T PropertyChangeListener

Model View

D Register Change

Notify Listeners

Y]

get relevant changes

Figure 3-10

123

Chapter 3

Scenario 3: Initializing the Application

The third scenario shows how to initialize the action, model, and view objects and then establish depen-
dencies between the components (see Figure 3-11).

T NotificationListener

Application Model Action View

create

>

create

create

register NotificationListeners

Régister Actions

Figure 3-11

The views are registered with the model and the actions are registered with the views. The application
class coordinates this.

Having discussed the collaboration scenarios between the model, view, and controller components, the
next sections will delve into the internals of each component, starting with the model.

Model

The Model can be any Java object or objects that represent the underlying data of the application, often
referred to as the domain model. For this example, we will use a single Java object called Model.

The functionality of the Model in this example is to support a login function. In a real application, the
Model would encapsulate data resources such as a relational database or directory service:

package wrox.pattern.mvc;
import java.beans.PropertyChangeListener;
import java.beans.PropertyChangeSupport;

public class Model ({

The first thing of interest in the Model is the PropertyChangeSupport member variable. This is part of
the Event Delegation Model (EDM) available since JDK 1.1. The EDM is an event publisher-subscriber
mechanism. It allows views to register with the Model and receive notification of changes to the
Model’s state:

124

Exploiting Patterns in Java

private PropertyChangeSupport changeSupport= new PropertyChangeSupport (this) ;

private boolean loginStatus;

private String login;

private String password;

public Model () {
loginStatus= false;

}

public void setLogin(String login) {
this.login= login;

}

public void getPassword(String password) {
this.password= password;

}

public boolean getLoginStatus() {
return loginStatus;

}
Notice that the setLoginStatus () method fires a property change:

public void setLoginStatus (boolean status) ({

boolean old= this.loginStatus;

this.loginStatus= status;

changeSupport . firePropertyChange ("model.loginStatus", old, status);
}

public void login(String login, String password) {
if (getLoginStatus()) {
setLoginStatus (false) ;
} else {
setLoginStatus (true) ;

}

This addPropertyChangeListener () is the method that allows each of the views interested in the
model to register and receive events:

public void addPropertyChangelistener (PropertyChangelListener listener) {
changeSupport .addPropertyChangelistener (listener) ;

}

Notice that there are no references to any user interface components from within the Model. This ensures
that the views can be changed without affecting the operations of the model. It’s also possible to build a
second interface. For example, you could create an API using Web services to allow automated remote
login capability.

View

The view component of the application will consist of a swing interface. Figure 3-12 shows what the user
will see when the application is run.

There are two Jpanel components that make up the user interface. The first is the Centerpanel class
that contains the login and password text boxes. The second is the WorkPanel that contains the login
and exit command buttons as well as the CenterPanel.

125

Chapter 3

= W Pansm Applicatked =t

Figure 3-12

The centerPanel is a typical user data entry form. It's important to notice that there is no code to pro-
cess the login in this class. Its responsibility is strictly user interface:

package wrox.pattern.mvc;
import java.awt.GridLayout;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JTextField;

public class CenterPanel extends JPanel ({

private JTextField login= new JTextField(1l5) ;
private JTextField password= new JTextField(15) ;

public CenterPanel () {
setLayout (new GridLayout (2, 2));
add (new JLabel ("Login:")) ;
add(login) ;
add (new JLabel ("Password:")) ;
add (password) ;

}

public String getLogin() {
return login.getText () ;

}

public String getPassword() {
return password.getText () ;

The next user interface component, WorkPanel, contains CenterPanel. Notice that there are no refer-
ences to the WorkPanel from the CenterPanel. This is an example of composition, allowing the
CenterPanel to be switched out for another form, or viewed in a different frame:

package wrox.pattern.mvc;

import java.awt.BorderLayout;

import java.beans.PropertyChangeEvent;
import java.beans.PropertyChangelListener;
import javax.swing.Action;

import javax.swing.JButton;

import javax.swing.JLabel;

import javax.swing.JPanel;

126

Exploiting Patterns in Java

As you can see from the class declaration, the WorkPanel is a swing component. In addition, it also
implements the PropertyChangeListener interface. This allows the WorkPanel to register with the
application Model and have change Notifications published to it when the Model changes. The
WorkPanel is registered with the Model as a PropertyChangeListener. This provides low coupling
between the interface and domain logic, allowing the view to be changed with changes to the Model:

public class WorkPanel extends JPanel implements PropertyChangeListener ({
private Model model;

private JPanel center;
private JPanel buttonPanel= new JPanel();
private JLabel loginStatusLabel= new JLabel (" ");

public WorkPanel (JPanel center, Model model) {
this.center= center;
this.model= model;
init();
}
private void init () {
setLayout (new BorderLayout()) ;
add (center, BorderLayout.CENTER) ;
add (buttonPanel, BorderLayout.SOUTH) ;
add (loginStatusLabel, BorderLayout.NORTH) ;

When the Model changes. The propertyChange () method is called for all classes that registered with
the Model:

public void propertyChange (PropertyChangeEvent evt) ({
if (evt.getPropertyName () .equals("model.loginStatus")) {
Boolean status= (Boolean)evt.getNewValue() ;
if (status.booleanvalue()) {
loginStatusLabel.setText ("Login was successful");
} else {
loginStatusLabel.setText ("Login Failed") ;

The addButton () method allows you to do two things. First, you can configure any number of buttons.
Second, it provides the action classes. They specify the work each performs when the button is pressed.
The action represents the final part of the MVC pattern: the controller. The controller will be discussed in
the next section.

public void addButton (String name, Action action) {
JButton button= new JButton (name) ;
button.addActionListener (action) ;
buttonPanel.add (button) ;

127

Chapter 3

Controller

The purpose of the controller is to serve as the gateway for making changes to the model. In this exam-
ple, the controller consists of two java.swing.Action classes. These Action classes are registered with
one or more graphical components via the components’ addActionListener () method. There are two
Action classes in this application. The first attempts to login with the Model. The second exits the
application:

package wrox.pattern.mvc;

import java.awt.event.ActionEvent;
import javax.swing.AbstractAction;

The LoginAction extends the AbstractionAction and overrides the actionPerformed () method
The actionPerformed () method is called by the component, in this case the command button, when it
is pressed. The action is not limited to registration with a single user interface component. The benefit of
separating out the controller logic to a separate class is so that the action can be registered with menus,
hotkeys, and toolbars. This prevents the action logic from being duplicated for each UI component:

public class LoginAction extends AbstractAction {

private Model model;
private CenterPanel panel;

It is common for the controller to have visibility of both the Model and the relevant views; however, the
model cannot invoke the actions directly. Ensuring the separation of business and interface logic remains
intact:

public LoginAction (Model model, CenterPanel panel) {
this.model= model;
this.panel = panel;
}
public void actionPerformed(ActionEvent e) {
System.out.println("Login Action: "+ panel.getLogin() +" "+ panel.getPassword()
N
model.login(panel.getLogin(), panel.getPassword());
}

The ExitAction strictly controls the behavior of the user interface. It displays a message when the Exit
button is pressed confirming that the application should close:

package wrox.pattern.mvc;

import java.awt.event.ActionEvent;

import javax.swing.AbstractAction;

import javax.swing.JFrame;

import javax.swing.JOptionPane;

public class ExitAction extends AbstractAction ({

public void actionPerformed(ActionEvent e) {
JFrame frame= new JFrame() ;

int response= JOptionPane.showConfirmDialog (frame,
"Exit Application?",

128

Exploiting Patterns in Java

"Exit",JOptionPane.OK_CANCEL_OPTION) ;
if (JOptionPane.YES_OPTION == response) {
System.exit (0) ;

Finally, you can view the Application class. The Application class is responsible for initialization,
and it creates the associations that establish the MVC separation of logic design principles:

package wrox.pattern.mvc;

import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import javax.swing.JFrame;

public class Application extends JFrame {
private Model model;

The Swing Application creates an association to the Model class, shown in the following code in the
application constructor:

public Application(Model model) {
this.model= model;

Then, create the Views to display the swing interface:

CenterPanel center= new CenterPanel () ;
WorkPanel work= new WorkPanel (center, model) ;

Create the Action classes that represent the controller and register them with the command buttons:

work.addButton ("login", new LoginAction(model, center));
work.addButton ("exit", new ExitAction());

model .addPropertyChangeListener (work) ;

setTitle("MVC Pattern Application");

Use Swing housekeeping to display the application:

getContentPane () .add (work) ;
pack() ;
show () ;
addwWwindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent e) {
System.exit (0) ;

}) i
}
public static void main(String[] args) {
Model model= new Model () ;
Application application= new Application (model) ;

}

129

Chapter 3

The Model-View-Controller pattern is a combination of best practices in software design. It prompts a
separation of concern between the user interface and business layers of an application. This example
covered a number of design patterns: composition, action, and event publish-subscribe. The next pattern
is the Command pattern. The Command pattern provides a consistent means of handling user requests.

Command

The Command pattern provides a standard interface for handling user requests. Each request is encap-
sulated in an object called a Command. Figure 3-13 shows the classes involved in the Command pattern.

Pattern example

Pattern Extended Command to

support more robust

() request lifecycle
CommandManager interfaces l/'
dnterface» i | 7
<>—— command CommandManager - yele | .
o »
+add(in command) c d K +start()
+get(in name) +execute() +destroy()
Zr +add() +execute() +validate()
+get(in name) +getErrors()
ConcreteCommand ?
DefaultCommand
ManagedCommand

Figure 3-13

The three classes of the command pattern are the Command, CommandManager, and Invoker. The
Command class represents an encapsulation of a single behavior. Each behavior in an application, such as
save or delete, would be modeled as a command. In that way the behavior of an application is a collec-
tion of command objects. To add behavior to an application, all a developer needs to do is implement
additional command objects. The next component in the Command pattern is the CommandManager.
This class is responsible for providing access to the commands available to the application. The final
component is the Invoker. The Invoker is responsible for executing the command classes in a consis-
tent manner. The next section will look at the anatomy of the Command class.

Command
The first part of the Command pattern is the Command interface identified by a single method:
package wrox.pattern.command;

public interface Command {

public void execute();

}

The life cycle is different from calling a typical method. For example, if you need to pass in an object
parameter like the following method:

public void getTotal (Sale) {
//calculate the sale.

}
130

Exploiting Patterns in Java

As a command you would write the following;:

public CalculateSale implements Command {
private Sale sale;

public void setSale(Sale sale) {
this.sale = sale;
}
public void execute() {
// calculate the sale.

}

For the purpose of the example, we will use an empty command to demonstrate the interaction between
the classes in this pattern:

package wrox.pattern.command;

public class DefaultCommand implements Command {

public void execute() {
System.out.println("executing the default command");

}

The next section will look at the class that manages the command for an application.

CommandManager

The CommandManager class will process all requests. Using a HashMap, all of the commands will be ini-

tialized before requests are processed, then retrieved by name. They are stored using the add () method,
and retrieved through the getCommand () method:

package wrox.pattern.command;
import java.util.HashMap;
import java.util.Map;
public class CommandManager {
private Map commands= new HashMap () ;

public void add(String name, Command command) {
commands .put (name, command) ;

}

public Command getCommand (String name) {
return (Command)commands.get (name) ;

}

Invoker

A standalone client will demonstrate the execution of the Command pattern. When the client con-
structor is called it adds the DefaultCommand to the manager:

package wrox.pattern.command;
import java.util.Collection;
import java.util.HashMap;
import java.util.Map;

131

Chapter 3

public class Client {
private CommandManager manager= new CommandManager () ;

public Client () {
manager.add("default", new DefaultCommand()) ;

}

Here, the command mapping has been hard coded. A more robust implementation would initialize the
command map from a resource file:

<commands>
<command name="default" class="wrox.Pattern.command.DefaultCommand" />
</commands>

Then, as requests are received by the invoke (String name) method, the command name is looked up
in the CommandManager and the Command object is returned:

public void invoke (String name) {
Command command= manager.getCommand (name) ;
command . execute () ;

}

public static void main(String[] args) {
Client client= new Client();
client.invoke ("default") ;

This is an important part of most Web frameworks like Struts or WebWork. In WebWork there is a spe-
cific Command pattern component called xWork. It is described in detail in Chapter 8, “Developing Web
Applications Using the Model 2 Architecture.”

By handling each request as a Command object, it is possible to apply common services to each command.
Some common services could be things such as security, validation, and auditing. The next section will
extend the current Command pattern and implement a ManagedLifecycle interface. This interface will
define a set of methods that are called during each request:

package wrox.Pattern.command;

import java.util.Collection;
import java.util.Map;

public interface ManagedLifecycle extends Command {

public void initialize();

public void setApplicationContext (Map context) ;
public boolean isValidate();

public Collection getErrors();

public void destroy () ;

132

Exploiting Patterns in Java

The ManagedLifecycle interface is a contract between the Command object and the client code.

The following is an example command that implements the ManagedLifecycle interface:

package wrox.pattern.command;
import java.util.Collection;
import java.util.Map;

import java.util.HashMap;

public class ManagedCommand implements ManagedLifecycle ({

private Map context;

private Map errors= new HashMap();

public void initialize() {
System.out.println("initializing..");

}

public void destroy () {
System.out.println("destroying") ;

}

public void execute() {
System.out.println("executing managed command") ;

}

public boolean isValidate() {
System.out.println("validating") ;
return true;

}

public void setApplicationContext (Map context) {
System.out.println("setting context");
this.context= context;

}

public Collection getErrors() {
return errors.getValues();

The following code shows initialization and invocation of two types of commands, the standard and
managed:

package wrox.pattern.command;
import java.util.Collection;
import java.util.HashMap;
import java.util.Map;

public class Client ({
private Map context= new HashMap() ;
private CommandManager manager= new CommandManager () ;

public Client () {
manager.add("default", new DefaultCommand()) ;

Anew ManagedCommand has been added to the CommandManager

manager .add ("managed", new ManagedCommand()) ;
}
public void invoke(String name) {

Command command= manager.getCommand (name) ;

133

Chapter 3

Next, a check is put in place to determine whether the command being executed implements the
ManagedLifecycle interface:

if (command instanceof ManagedLifecycle) {
ManagedLifecycle managed= (ManagedLifecycle)command;
managed.setApplicationContext (context) ;
managed.initialize();
if (managed.isValidate()) {
managed.execute () ;
} else {
Collection errors = managed.getErrors();
}
managed.destroy () ;
} else {
command . execute () ;

The calling sequence of the ManagedLifecycle is richer with functionality compared with its single
method version. First it passes required application data, calls the initialize method, performs validation,
and then calls the execute method.

Allowing the client invoker to pass resources to the command is a very powerful
concept referred to as IOC inversion of control. This eliminates the need for the
Command class to look up services and resources that are available to the invoker.

Strategy

The Strategy pattern allows you to replace algorithms on the fly. To implement the solution, you repre-
sent each algorithm as a strategy class. The application then delegates to the current strategy class to exe-
cute the strategy specific algorithm. Figure 3-14 shows the UML for the strategy pattern alongside the
example for this section.

Context Strategy Person Role
-strategies : Strategy K>—— -roles : Role Ko —
+setStrategy() 1 * |+operation() +setRole() 1 * |+isSatisfied()
+getStrategy() f +getRole() ?

ConcreteStrategy | | ConcreteStrategy Buyer Seller

Figure 3-14

134

Exploiting Patterns in Java

A common mistake in domain modeling is the overuse of subtyping. A subtype should be created only
when a specific “is-a” type relationship can be described between a subtype and its super-type. For
example, when modeling a person within a domain model, it is tempting to create a subtype for each
role for which a person is a participating. There is no wrong way of modeling a problem, but in this case
each person can take on several roles. This doesn’t pass the “is-a” relationship test for subtyping. It is fit-
ting that a person’s behavior varies by his role; this concept can be expressed using the Strategy pattern.

The example application in this section looks at the roles of buyers and sellers, showing how their differ-
ing behavior can be abstracted out into a strategy.

This is a mistake locking each person into one role or the other. The need to be able to switch between
the behaviors of classes in a class hierarchy is the motivation for using the Strategy pattern. Figure 3-15
shows the wrong way to model the “play’s a role” relationship.

Person

T T

BuyerPerson SellerPerson

Figure 3-15

The Strategy pattern is made up of an interface that defines the pluggable behavior, implementing sub-
classes to define the behavior, and then an object to make use of the strategy.

Strategy

The solution is to model each role as a class and delegate role-specific behavior from the Person class to
the Role current State. First, look at the behavior that will differ by the current state object. The example
uses the interface Role to declare the strategy behavior, and the two concrete classes, Buyer and
Seller, to implement the differing behavior.

To provide a little context to the example, the Buyer and Seller are trying to agree on a product price.
The issatisified () method is passed a Product and a Price and both parties must determine if the
deal is acceptable:

package wrox.pattern.strategy;
public interface Role {

public boolean isSatisfied(Product product, double price);
}

135

Chapter 3

Of course, the seller and Buyer have differing objectives. The Seller is looking to make a profit, set-
ting a 20 percent profit margin on any products sold. The following code makes that assumption:

package wrox.pattern.strategy;
public class Seller implements Role {

/*
* Seller will be happy if they make 20% profit on whatever they sell.
* (non-Javadoc)
* @see wrox.Pattern.strategy.Role#isSatisfied(wrox.Pattern.strategy.Product,
double)
*/
public boolean isSatisfied(Product product, double price)
if (price - product.getCost() > product.getCost() * .2)
return true;
} else {
return false;

{
{

The seller, on the other hand, is looking for a product that is within a spending limit. It is important to
note that the Buyer class is not limited to the methods described by the Role interface, making it possi-
ble to establish the 1imit member variable in the Buyer class that is not present in the Seller class.

The algorithm for what is acceptable is an arbitrary part of this example, but it is set so that the Buyer
cannot spend above the chosen limit and will not pay more that 200 percent of the initial product cost.
The role of Buyer is expressed in the isSatisfied () method:

package wrox.Pattern.strategy;
public class Buyer implements Role ({

private double limit;

public Buyer (double limit) ({
this.limit= limit;
}
/*
* The buyer is happy if he can afford the product,
* and the price is less then 200% over cost.
* @see wrox.Pattern.strategy.Role#isSatisfied(wrox.Pattern.strategy.Product,
double)
*/
public boolean isSatisfied(Product product, double price) {
if (price < limit && price < product.getCost() * 2) {
return true;
} else {
return false;

136

Exploiting Patterns in Java

The code example that follows uses a class for the abstraction of a product. It’s a data object that is part
of the scenario. The code is as follows:

package wrox.pattern.strategy;
public class Product {
private String name;
private String description;
private double cost;

public Product (String name, String description, double cost) {
this.name = name;
this.description = description;
this.cost = cost;
}
// Setters and Getter Omitted.

The next section looks at the class that uses the pluggable strategy.

Context

Next, let’s look at the Person class that manages the Role objects. First, the Person class has an associa-
tion with the Role interface. In addition, it is important to note that there is a setter and getter for the
Role. This allows the person’s roles to change as the program executes. It's also much cleaner code. This
example uses two roles: Buyer and Seller. In the future, other Role implementing objects such as
Wholesaler, Broker, and others can be added because there is no dependency to the specific subclasses:

package wrox.pattern.strategy;

public class Person {

private String name;

private Role role;

public Person(String name) {
this.name= name;

}

public Role getRole() {
return role;

}

public void setRole(Role role) {
this.role= role;

}

Another key point is that the satisfied method of the Person class delegates the Role specific behavior
to its Role interface. Polymorphism allows the correct underlying object to be chosen:

public boolean satisfied(Product product, double offer) {
return role.isSatisfied (product, offer);

}

Now, the code of the pattern has been implemented. Next, lets view what behavior an application can
exhibit by implementing this pattern. To start, you can establish Products, People, and Roles:

137

Chapter 3

package wrox.pattern.strategy;

public class Person {
// previous methods omitted.

public static void main(String[] args) {
Product house= new Product ("house", "4 Bedroom North Arlington", 200000) ;
Product condo= new Product ("condo", "2 Bedroom McLean", 100000) ;
Person tim= new Person("Tim");
Person allison= new Person("Allison");

You are buying and selling houses. The next step is to establish initial roles and assign the roles to the
people. The people will then exhibit the behavior of the role they have been assigned:

tim.setRole (new Buyer (500000)) ;
allison.setRole (new Seller());

if ('allison.satisfied(house, 200000)) {
System.out.println("offer of 200,000 is no good for the seller");

}

if (!'tim.satisfied(house, 600000)) {
System.out.println("offer of 600,000 is no good for the buyer");

}

if (tim.satisfied(house, 390000) && allison.satisfied(house, 390000)) {
System.out.println("They Both agree with 390,000 ");

To further demonstrate the capabilities of the Strategy pattern, switch the initial Seller to the Buyer by

calling setRole () on the Person object. It is possible to switch to a Buyer without modifying the
Person object:

allison.setRole (new Buyer (190000)) ;
if (allison.satisfied(condo, 110000)) {
System.out.println("As a buyer she can afford the condo ");

}

By implementing the Strategy pattern, it is possible to change an object’s behavior on the fly with no
affect on its implementation. This is a very powerful tool in software design. In the next section, the
composite patterns will build on the same principle of abstracting behavior to treat a class hierarchy
with a single common interface.

Composite

The Composite design pattern allows you to treat a collection of objects as if they were one thing. In this
way you can reduce the complexity of the code required if you were going to handle collections as spe-
cial cases. Figure 3-16 shows the structure of the composite pattern in conjunction with the classes imple-
menting the pattern in this example.

138

Exploiting Patterns in Java

Component Asset
+operation() E> +fairMarketValue()
Leaf Composite Stock CompositeAsset
N == N ==
+add() 1 +add() 1
Portfolio MutualFund

Figure 3-16

The example used here to demonstrate this behavior is a portfolio management system that consists of
stocks and mutual funds. A mutual fund is a collection of stocks, but you would like to apply a common
interface to both stocks and mutual funds to simplify the handling of both. This allows you to perform
operations such as calculate Fair Market Value, buy, sell, and assess percent contribution with a common
interface. The Composition pattern would clearly reduce the complexity of building these operations.
The pattern consists of the classes, a leaf, and composite. Figure 3-16 should look similar to the example
built in the earlier section of this chapter.

Component

First is the component interface; it declares the common interface that both the single and composite
nodes will implement. The example is using fairMarketValue, an operation that can be calculated
over stocks, mutual funds, and portfolios:

package wrox.pattern.composite;
public interface Asset ({

public double fairMarketValue() ;
}

Leaf

The leaf class represents the singular atomic data type implementing the component interface. In this
example, a Stock class will represent the leaf node of the pattern. The stock class is a leaf node in that it
does not hold a reference to any other Asset objects:

139

Chapter 3

package wrox.pattern.composite;
public class Stock implements Asset

private String name;
private double price;
private double quantity;

public Stock(String name, double price, double quantity) {
this.name= name;
this.price= price;
this.quantity= quantity;

Stock price is calculated by multiplying share price times quantity:
public double fairMarketValue() {

return price * quantity;

Composite

The following section declares the Composite object called CompositeAsset. Notice that
CompositeAsset is declared abstract. A valid composite asset, such as a mutual fund or portfolio,
extends this abstract class:

package wrox.pattern.composite;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

public abstract class CompositeAsset implements Asset {
private List assets= new ArrayList();

public void add(Asset asset) {
assets.add(asset) ;

Iterate through the child investments. If one of the child investments happens to also be a composite
asset, it will be handled recursively without requiring a special case. So, for example, it would be possi-
ble to have a mutual fund comprising mutual funds:

public double fairMarketValue() {
double total = 0;
for (Iterator i= assets.iterator(); 1i.hasNext();) {
Asset asset= (Asset)i.next();
total = total + asset.fairMarketValue() ;
}
return total;

140

Exploiting Patterns in Java

Once that is complete, what follows is to build the concrete composite objects: MutualFund and
pPortfolio. Nothing significant is required for the Mutual Fund class; its behavior is inherited from the

CompositeAsset:
package wrox.pattern.composite;

public class MutualFund extends CompositeAsset{

private String name;

public MutualFund(String name) {
this.name = name;

}

The Portfolio class extends CompositeAsset as well; the difference is that it calls the super class
directly and modifies the resulting calculation for fair market. It subtracts a 2 percent management fee

package wrox.pattern.composite;

public class Portfolio extends CompositeAsset {
private String name;
public Portfolio(String name) {
this.name= name;

}
/* Market value - Management Fee
* @see wrox.Pattern.composite.CompositeAsset#fairMarketValue ()
*/
public double fairMarketValue() {
return super.fairMarketValue() - super.fairMarketValue() * .02;

}

The only thing left to do is exercise the code. The next class is of an Investor. The Investor is the
client code taking advantage of the Composite design pattern:

package wrox.pattern.composite;

public class Investor {
private String name;
private Portfolio porfolio;
public Investor (String name,
this.name= name;
this.porfolio= portfolio;

}

By calling the fair market value on the investor’s portfolio, the Composite pattern will be able to traverse
the collection of stocks and mutual funds to determine the value of the whole thing without worrying

Portfolio portfolio) {

about the object structure:

141

Chapter 3

public double calcNetworth() {

return porfolio.fairMarketValue() ;

}

public static void main(String[] args) {
Portfolio portfolio= new Portfolio("Frequently Used Money") ;
Investor investor= new Investor ("IAS", portfolio);

portfolio.add (new Stock("wrox", 450, 100));

MutualFund fund= new MutualFund("Don Scheafer's Intellectual Capital");
fund.add (new Stock("ME", 35, 100));

fund.add (new Stock("Cv", 22, 100));

fund.add (new Stock("BA", 10, 100));

portfolio.add(fund)

’

double total =investor.calcNetworth() ;

System.out.println("total =" + total);

With the composite pattern, it is very easy to simplify operations over complex data structures.

Summary

This chapter gave you a strong appreciation of the value of patterns in developing Java solutions. They
are critical in learning from the experience of others, but also in understanding APIs used by the Java
platform.

In this chapter, you learned about patterns, why they’re important, tricks to understanding them, and
several important patterns in Java programming.

Now that you have learned how to think like a Java developer, the rest of the book will focus on practi-
cal examples of developing Java solutions. These chapters will not be comprehensive examinations of
the technologies in each chapter, but rather a real-life example of a development problem, which is
solved using various technologies.

The first chapter in this new phase of the book is Chapter 4, “Developing Effective User Interfaces with
JEC.” In this chapter, you will learn how to use Swing to build Java desktop applications.

142

Developing Effective User
Interfaces with JFC

Java Foundation Classes (JFC) is a package of libraries for developing robust graphical user dis-
plays for client-side applications that can be implemented on enterprise systems. The JFC API
libraries comprise five different components:

0O AWT. The Abstract Windowing Toolkit (AWT) classes are comprised of legacy graphics
code from Java 1.x that were developed to create simple user interfaces for applications
and applets.

O Accessibility. The Accessibility classes accommodate assistive technologies that provide
access to information in user interface components.

0 Java 2D. The Java 2D classes contain a broad set of advanced graphics APIs that allow
users to create and manipulate image, shape, and text components.

0 Drag and Drop. The Drag and Drop classes allow users to initiate drag operations so that
components can be dropped on designated target areas. This is accomplished by setting
up a drop target listener to handle drop events and a management object to handle drag
and drop operations.

0O Swing. The Swing classes are built atop of the AWT classes to provide high-quality GUI
components for enterprise applications.

Large tomes have been written about JFC, specifically Swing libraries and their advanced presen-
tation features, with numerous pages of APIs affiliated with those libraries that could easily be
acquired by your Integrated Development Environment (IDE) or the Internet during your devel-
opment activities. Along with those library presentations were some simple applications that pro-
vided little instructional value other than to demonstrate how things work in a basic fashion.
Rather than getting bogged down with a recital of those voluminous API’s, this chapter will con-
centrate the discussion on many of the Swing features that you will need to incorporate into your
professional development activities to be successful. You'll learn advanced GUI applications that

Chapter 4

combine multiple layout managers to achieve relevant presentation applications that manage data and
navigation flow in an efficient manner. All of the sample applications incorporate listeners and their
interfaces to manage events generated by users in their navigation activities along with Gang of Four
(GOF) design patterns to promote best practices in your modeling and implementation operations.

This chapter starts by demonstrating some foundation knowledge about layout managers so that you
can conceptualize Swing layout designs from a high-level perspective and then implement them using
JEC libraries in an efficient manner. With a solid handle on what these libraries can do for you, you will
be able to approach your development tasks with greater confidence, which will result in more germane
product development. The next two sections of this chapter will cover some practical applications, the
first being an Annotation Editor that links meta data to passages in a text file followed by an illustration
of how an Installation Wizard can easily be crafted with JFC libraries and GoF design patterns to man-
age navigation flows and data persistence.

Layout Managers

Layout managers are used in Java Swing applications to arrange objects when they are added to a
Container object. The setLayout () method is used to override default layout managers appropriated
to JPanel (FlowLayout) and JFrame (BorderLayout) containers.

This section of the chapter will discuss seven important layout managers:

a BorderLayout
BoxLayout
CardLayout
FlowLayout
GridbagLayout

GridLayout

U 000 U0 O

SpringLayout

All of these layout managers will be covered at length within interesting Swing applications that imple-
ment listeners to react to user selections on various visualization components. Most importantly, these
applications will demonstrate how the different layout managers can be amalgamated to craft relevant
GUI presentations.

BorderLayout

The BorderLayout manager is the default layout for a frame. A BorderLayout uses five regions in its
display space. Those regions are generally referred to as: NORTH, SOUTH, WEST, EAST, and CENTER.
Those regions generally refer to the same attributes that a map would use. The NORTH and SOUTH
regions extend to the top and bottom areas of the Container, while the EAST and WEST regions extend
from the bottom of the NORTH and top of the SOUTH regions and to the left and right sides of the
Container, respectively. The CENTER region occupies all of the residual space the remains in the center
of the Container.

144

Developing Effective User Interfaces with JFC

The BorderLayout manager is typically generated by instantiating a new BorderLayout class with a
constructor that has no parameters, or with a constructor that specifies two integer values that specify
the horizontal and vertical pixels between components in this fashion: new BorderLayout (int hGap,
int vGap).

The constructor methods for the BorderLayout manager are shown in the method summary table that
follows.

Method Description
public BorderLayout () No parameters
public BorderLayout (int hGap, int vGap) The hGap and vGap integer parameters

specify the horizontal and vertical pix-
els between components

The following BorderLayout example emulates a test application that quizzes the user with five fairly
simple arithmetic queries. As a user sequentially steps through the test questions, a progress bar will
track where the test taker is with respect to the end of the test and what the running score is. Figure 4-1
provides a model of the application and shows how the different GUI components will occupy the
BorderLayout panel.

BorderLayout
BorderLayout.NORTH
BorderLayout.EAST
BorderLayout.CENTER
JProgressBar
Command pattern: execute() /
ButtonGroup
V JFrame
InfoButton

Figure 4-1

The BorderLayoutPanel application will incorporate the Command pattern to handle button requests
for quiz questions and the answers to those questions by the user. Some of the benefits and drawbacks of
the Command pattern are outlined in the table that follows.

145

Chapter 4

Pattern Benefits Consequences
Command Acts as a delivery mechanism that Creation of a lot of little classes
carries behavior rather than data to accommodate component actions

in an application

Delivers encapsulated actions to a
method or object for easier program
control.

The following code segment outlines the BorderLayoutPanel application how the model in Figure 4-1
is realized:

[BorderLayoutPanel . javal
// package name and import statements omitted

public class BorderLayoutPanel extends JPanel implements ActionListener ({

The following section performs object declaration and initialization activities necessary for the
Arithmetic Test application. Many of these actions are omitted from this example, as well as many of the
layout manager programs, to provide better reading clarity. Note that the But tonText variable uses
HTML scripting text to allow for the spanning of text in the JButton Swing component to which it will
be applied. The Command pattern interface is implemented so that the application can polymorphically
derive proper event actions during run time based on the user’s navigation operations:

private static Logger logger = Logger.getLogger ("FlowLayout") ;

// some declarations omitted for the sake of brevity [Please check download code]
private final static String[] ButtonText =
{ "<html><center>Basic Arithmetic

(click for
question)</center></html>" };
private static String[] questions =

{ "1, 2, What is 1 + 1 2, 0, 1, 2, 3",
"2, 0, What is 1 -1 2, 0, 1, 2, 3",
"3, 2, What is 5 - 3 ?, 0, 1, 2, 3",
"4, 3, What is 4 - 1 2, 0, 1, 2, 3" };

private Hashtable hashtableQuestions = new Hashtable();

public interface Command {
public void execute();

}

public BorderLayoutPanel (String FrameTitle) {
initComponents() ;

}
The initComponents () method is created to separate relevant initialization tasks so that it can be

invoked by the constructor during inception and when the user has finished the test and wants to reset
the application. Here, all of the panels are derived that will be deployed by the BorderLayout manager:

146

Developing Effective User Interfaces with JFC

public void initComponents () {

try {

removeAll () ;

northPanel = new JPanel () ;
answerPanel = new JPanel () ;
centerPanel = new JPanel ()
eastPanel = new JPanel () ;
msgText = new JLabel ("Click button to start!");
InfoScreenButton = new RulesButton("Rules");
optGroup = new ButtonGroup() ;

progressBar = new JProgressBar () ;

7

questionCount = 1;
correctAnswerCount = 0;
numberQuestionsAnswered = 0;

String[] strLine;

for (int x = 0; x < questions.length; x++) {
strLine = questions([x].split(",");
hashtableQuestions.put (strLine[0], strLine);

buttons = new JQuestionButton[numberButtons];

for (int i = 0; i < numberButtons; i++) {
buttons([i] = new JQuestionButton ("Question");
buttons[i].setText (ButtonText[i]);
centerPanel.add (buttons[i]) ;
buttons[i].addActionListener (this) ;

InfoScreenButton.addActionListener (this);

At this point in the application, the layout of the Swing components are established and the answers for
the quiz are saved to the But tonGroup component for visual rendering. It is important to note how lay-
out managers are intermingled to get the desired visual effect. The answerPanel uses the GridLayout
class to enforce 0 rows and 1 column so that the answers available to the user are lined up in a single col-
umn prior to being added to the eastPanel component below the progress bar and above the rules

button:

centerPanel . setLayout (new GridLayout (0, 1));
answerPanel .setLayout (new GridLayout (0, 1));

Answer = new JRadioButtonAnswer [numberAnswers] ;
for (int 1 = 0; 1 < numberAnswers; i++) {
Answer[1] = new JRadioButtonAnswer (A[1]);
answerPanel .add (Answer[i]) ;
Answer [1] .addActionListener (this);
optGroup.add (Answer[i]) ;

BlankRadioButton = new JRadioButton();
optGroup.add (BlankRadioButton) ;

147

Chapter 4

northPanel . setBackground (new Color (255, 255, 220));
northPanel.add (msgText) ;

eastPanel .setLayout (new GridLayout (0, 1));
eastPanel .add (progressBar) ;
eastPanel .add (answerPanel) ;
eastPanel .add (InfoScreenButton) ;

setLayout (new BorderLayout()) ;
add (eastPanel, "East");

add (northPanel, "North");

add (centerPanel, "Center");

setSize (600, 600);
questionAnswered = true;
answerPanel .setVisible(false);

progressBar.setMaximum (numberQuestions) ;
progressBar.setValue(0) ;
progressBar.setIndeterminate (false) ;

resetButton = new JResetButton("Reset Game") ;
resetButton.addActionListener (this) ;

} catch (Exception e) {
logger.info ("Exception: " + e.toString());

The JQuestionButton class implements the Command interface so that user invocations on that button
will dynamically determine — through the ActionListener implementation —that the execute ()
method associated with this button should be invoked. Once invoked, the application will use a key
based on the question count to search the hashtableQuestions collection class for the proper question
to render on the display:

private class JQuestionButton extends JButton implements Command {

public JQuestionButton (String caption) { super(caption); }
public void execute() {
try {
if (numberQuestionsAnswered < numberQuestions) {
answerPanel .setVisible(true);
northPanel.setBackground (new Color (255, 255, 220));
if (questionAnswered) {

optGroup.setSelected (BlankRadioButton.getModel (), true);
questionAnswered = false;
try {

String key = Integer.toString(questionCount) ;

if (hashtableQuestions.containsKey (key)) {
Question = (String[]) hashtableQuestions.get (key) ;
questionCount++;

} else {
logger.info("key NOT found" + key);

148

Developing Effective User Interfaces with JFC

}

}

} catch (Exception e) { throw e; }

msgText.setText (Question[2]) ;
for (int 1 = 0, x = 3; 1 < numberAnswers; i++) {
Answer[1] .setText (Question[x + 1]);

} catch (Exception e) {
logger.info ("Exception: " + e.toString());

The JRadioButtonAnswer class also implements the Command interface to polymorphically determine
behavior needed when a user clicks on the radio button answer to the question posed by the test appli-
cation. If the user response is correct, the background color of the northpanel will be turned green,
indicating a positive response to the question, and if another question is available, the JButton
setText () method will be used to display the user’s score and the progressBar component will
exhibit the percentage of the test that the user has covered:

private class JRadioButtonAnswer extends JRadioButton implements Command {

n%u);

try {
if

public JRadioButtonAnswer (String caption) {}
public void execute() {

(!'questionAnswered) {

if (Question[1l].trim() .equals (getText ().trim())) {
msgText.setText ("Correct!!!");
northPanel . setBackground (Color.green) ;
correctAnswerCount++;

} else {
msgText .setText (
"Wrong!!! The correct answer is: " + Question[1l]);

northPanel.setBackground (Color.red) ;

questionAnswered = true;
numberQuestionsAnswered++;

buttons[0] .setText (
("<html><center>(click for question)"
"

"
" Score= "
correctAnswerCount
||/ll
numberQuestionsAnswered) .toString ()
"</center></html>");

+ + + + + o+

progressBar .setValue (numberQuestionsAnswered) ;
progressBar.setStringPainted (true) ;

progressBar.setString (
Double.toString (Math.round (progressBar.getPercentComplete() * 100))+

if (numberQuestionsAnswered >= numberQuestions) {

149

Chapter 4

buttons[0].setBackground(new Color (255, 255, 220));
buttons[0] .setText ("Finished. Score= " + String.valueOf (
(float) correctAnswerCount / (float) numberQuestionsAnswered * 100) + "$");
// setup reset button
answerPanel .removeAll () ;
answerPanel .add (resetButton) ;
}
} else {
msgText .setText (
"You have answered this question, please select a new Question");
}

} catch (Exception e) {
logger.info ("Exception occured: " + e.toString());

}

The actionPerformed method is an implementation of the ActionListener interface, which is
invoked when an event is created by user operations. The Command pattern implementation determines
which button was selected by the user and the proper execute () method to invoke based on that event:

public void actionPerformed(ActionEvent e) {
Command obj = (Command) e.getSource();
obj.execute() ;

The RulesButton class also implements the Command interface so that a new frame will be kicked off
when a user selects the Rules button in the test application. The JResetButton button is used to sup-
plant the answers in the answerpPanel when all five questions have been answered by the test taker.
This allows the user to retake the test by resetting the answers in the test. Ideally, you would want to
randomize those answers to make the test more difficult, but this application was developed to demon-
strate, in a simple fashion, how the BorderLayout class can be used with other layout managers to
develop relevant GUI applications:

class RulesButton extends JButton implements Command {

public RulesButton(String Title) { super(Title); }
public void execute() {
JLabel InfolLabel = new JLabel (

"<html> How To Play:
 Click on button to generate questions "

+ "on the right side of the user display. A progress bar will "

+ "indicate where the tester is with respect to the entire test.");
JFrame InfoFrame = new JFrame("How To Play");
InfoFrame.getContentPane () .add (InfolLabel) ;

InfoFrame.setSize (400, 150);
InfoFrame.show() ;

}
private class JResetButton extends JButton implements Command {

public JResetButton(String caption) {

150

Developing Effective User Interfaces with JFC

super (caption) ;
}
public void execute() {
initComponents() ;
}
}
// main method omitted for the sake of brevity

}

Figure 4-2 represents the finished product of the BorderLayoutPanel application. Test questions are
rendered in the NORTH section of the BorderLayout, while test progress statistics, answers, and a
Rules component reside on the EAST. Users navigate through the test by clicking on the questionPanel
in the BoderLayout . CENTER, which will retrieve and display the questions for the user to answer.

Figure 4-2

BoxLayout

The BoxLayout manager arranges components horizontally from left to right, or vertically from top to
bottom, without the wraparound capability in the FlowLayout manager. The implementation of the
BoxLayout manager warrants the instantiation of the BoxLayout class with two parameters, the first
being the Container panel that will be displayed, followed by an integer axis value that indicates the
placement of the components on the panel. An axis value of Boxlayout .X_AXIS indicates left to right
layout management, while a value of BoxLayout .Y_AXIS signifies a top to bottom layout.

151

Chapter 4

The constructor methods for the BoxLayout manager are shown in the following method summary table.

Method Description

public BoxLayout (Container panel, int axis) The panel parameter signifies the con-
tainer that will be mapped out, while
the axis parameter indicates where the
components will be placed. An axis
value of BoxLayout .Y_AXIS indicates
left to right placement and an axis
value of BoxLayout.Y_AXIS indicates
a top to bottom placement.

The following BoxLayout example will apply the Decorator pattern in its implementation so that users
can add behavior dynamically through drag and drop operations. Figure 4-3 provides a model of the
application and how the different image components occupy the BoxLayout panel real estate.

BoxLayout

CondimentPanel ||
Decorator pattern: Adds behavior

dynamically to the Foodltems
Cheese Image Y\l

Drag and Drop

Hamburger Image /

Hotdog Image

AN

Pizza Image

Figure 4-3

152

Developing Effective User Interfaces with JFC

Dynamic behavior transfer occurs when a user drags the Cheese condiment image onto one of the three
food item images on the left panel. Some of the benefits of the Decorator pattern are defined in the
table below.

Pattern Benefits Consequences

Decorator Can add or remove responsibilities of Generates a lot of similar objects
individual objects dynamically without
affecting other objects during run time

A class can be wrapped in another
object to provide added functionalities

The FoodCourt interface allows the BoxLayout application to dynamically add behaviors to the three
different food items (Hamburger, Hotdog, and Pizza) during run time when the Cheese object is
dragged and dropped on the food items. Additionally, get methods are modeled so that relevant data
can be retrieved from objects. The FoodCourt interface class allows behaviors to be defined across the
class hierarchy of the BorderLayout sample application with private implementations to address indi-
vidual needs:

[FoodCourt.javal
// package name omitted
public interface FoodCourt {
public String getName() ;
public float getCost();
public FoodGraphic getGraphic();
public void addBehavior (String b);
public String getDescription();
public void setGraphicHandler (FoodCourt h);

public void handleClick() ;

The FoodGraphic class controls the user events associated with the three different food images. The
FoodImage class is implemented to handle image files affiliated with the different food items in the
BoxLayout demonstration. The paintComponent (Graphics g) method ensures that image files are
drawn properly throughout the lifetime of the JPanel component FoodImage:

[FoodGraphic.javal
// package name and import statements omitted

public class FoodGraphic extends JPanel implements DropTargetListener,
MouseListener {

// declarations omitted for the sake of brevity [Please check download code]
private class FoodImage extends JPanel ({
private Image image = null;
public FoodImage (String imageFile) {
super () ;
URL url = FoodImage.class.getResource (imageFile) ;
image = Toolkit.getDefaultToolkit () .getImage (url) ;

153

Chapter 4

public void paintComponent (Graphics g) {
super .paintComponent (g) ;
g.drawImage (image, 0, 0, this);

public FoodGraphic (FoodCourt hand, String imageFile, int w, int h, boolean
tipsFlag) {
this (hand, imageFile, w, h);
updateTips = tipsFlag;

The FoodGraphic method receives a handler object from the Food class, which is instantiated in the
FoodItems class when the three different food items are created. A new dropTarget object reference is
created with the DropTarget class to tell the application that the Food object is willing to accept drops
during drag and drop operations.

The DropTargetListener interface performs callback notifications on registered subjects to signal
event changes on the target being dropped on:

public FoodGraphic (FoodCourt hand, String imageFile, int w, int h) {
super () ;
handler = hand;
imageFileName = imageFile;

imagew = w;
imageh = h;

dropTarget = new DropTarget (this, DnDConstants.ACTION_COPY OR_MOVE, this);
setBackground (Color.white) ;
name = handler.getName() ;

image = new FoodImage (imageFile) ;
image.setPreferredSize (new Dimension (imagew, imageh)) ;
image.setMaximumSize (new Dimension (imagew, imageh)) ;
image.setMinimumSize (new Dimension (imagew, imageh)) ;
image.setAlignmentX (CENTER_ALIGNMENT) ;

label = new JLabel (name, SwingConstants.CENTER) ;
label.setPreferredSize (new Dimension (imagew, 25)) ;
label .setMaximumSize (new Dimension (imagew, 25)) ;
label.setMinimumSize (new Dimension (imagew, 25)) ;
label.setAlignmentX (CENTER_ALIGNMENT) ;

setLayout (new BoxLayout (this, BoxLayout.Y_AXIS));
setBorder (BorderFactory.createlLineBorder (Color.blue, 2));

add (image) ;
add(label) ;

setToolTipText (name) ;

addMouselistener (this) ;

154

Developing Effective User Interfaces with JFC

A method summary of the DropTargetListener interface class and its methods is illustrated in the fol-
lowing table.

Method Description

void dragEnter (DropTargetDragEvent d) Method called when the mouse
pointer enters the operable part of
the drop site for the target regis-
tered with a listener

void dragExit (DropTargetEvent d) Method called when the mouse
pointer has exited the operable part
of the drop site for the target regis-
tered with a listener

void dragOver (DropTargetDragEvent d) Method called when the mouse
pointer is still over the operable
part of the drop site for the target
registered with a listener

void drop (DropTargetDropEvent d) Method called when the drag oper-
ation has terminated with a drop on
the operable part of the drop site for
the target registered with a listener

void dropActionChanged (DropTargetDragEvent d) Method called if the user has modi-
fied the current drop gesture

The drop (DropTargetDropEvent e) method in the following code implements the DataFlavor class,
which represents a format style that can be conveyed across an application. If the flavor being dragged
and dropped across the GUI display is supported and verified by the isbataFlavorSupported
method, then the drag and drop operation of the cheese condiment onto one of the three food items will
be allowed to occur and the behavior affiliated with that operation will be added to the object handler so
that a description of that action can be obtained through the getDescription () method.

The dragEnter and dragExit methods are used to visually color the borders of the items being
dragged and dropped in the GUI presentation:

public void drop (DropTargetDropEvent e) {
try {

DataFlavor stringFlavor = DataFlavor.stringFlavor;

Transferable tr = e.getTransferable();

if (e.isDataFlavorSupported (stringFlavor)) {
String behavior = (String)tr.getTransferData (stringFlavor) ;
e.acceptDrop (DnDConstants .ACTION_COPY_OR_MOVE) ;
e.dropComplete (true) ;

handler.addBehavior (behavior) ;
if (handler != null && updateTips) {

setToolTipText (handler.getDescription()) ;

}
} else {

155

Chapter 4

Click-handling routines are implemented through the FoodCourt interface with the assistance of the
mouse event listeners. The Food class handleClick () method is invoked when a user clicks on the

e.rejectDrop () ;
}
} catch (Exception ex) {}
setBorder (BorderFactory.createLineBorder (Color.blue, 2));

}

public void dragEnter (DropTargetDragEvent e) {

setBorder (BorderFactory.createLineBorder (Color.red, 3));
}
public void dragExit (DropTargetEvent e) {

setBorder (BorderFactory.createLineBorder (Color.blue, 2));
}
public void dragOver (DropTargetDragEvent e) {}
public void dropActionChanged (DropTargetDragEvent e) { }

public void setHandler (FoodCourt h) ({
handler = h;
}

public void setBorderColor (Color col) {
setBorder (BorderFactory.createLineBorder (col, 2));

}

hamburger, hotdog, and pizza food items:

The condimentPanel class generates a decorator object for the cheese item and associates a coin value
with that object so that it can be passed along to the food item it is decorated with. A hamburger costs
$1.35 alone, but will add to, or decorate, that cost by 35 cents if cheese is appended to it. The panel lay-
out consists of a combination GridLayout manager called pictures, with the cheese image and label,
added to a BoxLayout manager that combines this panel with a label component for presentation in the

public void addClickHandler (FoodCourt h) {
clickHandler = h;
}

public void mouseClicked (MouseEvent e) {
if (clickHandler != null) {
clickHandler.handleClick() ;

}

public void mouseEntered(MouseEvent e) {}
public void mouseExited (MouseEvent e) {}

public void mousePressed(MouseEvent e) {}
public void mouseReleased(MouseEvent e) {}

GUI display above the three different food items:

156

[CondimentPanel .javal]
// package name and import statements omitted

Developing Effective User Interfaces with JFC

public class CondimentPanel extends JPanel {
private static Logger logger = Logger.getLogger ("CondimentPanel") ;

JPanel pictures = null;
GridLayout pictureLayout = null;
Hashtable condimentPrices = new Hashtable();

public CondimentPanel (String title) {
super () ;
setBackground (Color.white) ;

pictures = new JPanel () ;

picturelLayout = new GridLayout (1, 1);

pictures.setLayout (pictureLayout) ;

pictures.setAlignmentX (CENTER_ALIGNMENT) ;

pictures.setBorder (BorderFactory.createlLineBorder (Color.red)) ;

pictures.add(new FoodDecoratorGraphic ("Cheese", "resources/Cheese.gif",
0.35f));
condimentPrices.put ("Cheese", new Float (0.35f));

JLabel label = new JLabel (title, SwingConstants.CENTER) ;
label.setPreferredSize (new Dimension (200, 25));
label.setMinimumSize (new Dimension (200, 25));
label.setMaximumSize (new Dimension (200, 25));
label.setAlignmentX (CENTER_ALIGNMENT) ;

setLayout (new BoxLayout (this, BoxLayout.Y_AXIS)) ;

add(label) ;
add (pictures) ;

The Food class implements the FoodCourt interface so that the application can polymorphically dis-
cover the methods needed for processing during run time. The FoodItems class invokes this method
three times for the three different food items displayed in the application (hamburger, hotdog, pizza):

[Food.java]
// package name and import statements omitted
public class Food implements FoodCourt {

private static Logger logger = Logger.getLogger ("Food") ;
private FoodItems item = null;

private FoodGraphic graphic = null;

private String name = null;

private float cost = 0.0f;

public Food(FoodItems fooditem, String name, String imageFile, float cost) {
super () ;

item = fooditem;

name = name;
cost = cost;

157

Chapter 4

graphic = new FoodGraphic(this, imageFile, 100, 35);
graphic.addClickHandler (this) ;
}

public String getName() { return name; }
public FoodGraphic getGraphic() { return graphic; }

public float getCost() { return cost; }

The addBehavior (String b) method takes the food item object reference and invokes the
addMemberBehavior (String name, String b) method to aggregate the behavior of your only
condiment item, cheese, with the food item it is being added to. If the food item alone is clicked by the
user, the handle event method named handleClick () will add the food item description to the test area
display using the static class DisplayPanel:

public void addBehavior (String b) { item.addMemberBehavior (name, b); }
public String getDescription() { return name; }

public void setGraphicHandler (FoodCourt h) { graphic.setHandler (h); }

public void handleClick() {

DisplayPanel.write(getDescription() + " ");
DisplayPanel.write("selected. That'll cost you " + getCost());
DisplayPanel.writeLine("");

The final class that will be discussed for the BoxLayoutPanel application is the FoodItems class.
FoodItems implements its layout in a similar fashion to the CondimentPanel class. A GridLayout
manager is crafted to accommodate the food item images, which is then added to a BoxLayout manager
for the final presentation. The static helper component named Box.createvVerticalGlue lets the appli-
cation adjust when the parent container is resized by the user so that the box layout maintains its
spacing:

[FoodItems.javal
// package name and import statements omitted
public class FoodItems extends JPanel ({

private static Logger logger = Logger.getLogger ("FoodItems") ;
// declarations omitted for the sake of brevity [Please check download code]
public FoodItems (BoxLayoutPanel p, Hashtable condimentPrices) {

super () ;

this.name = "Condiments";

this.panel = p;
this.condimentPrices = condimentPrices;

158

Developing Effective User Interfaces with JFC

members = new HashMap () ;
setBackground (new Color(204,204,102));

pictures = new JPanel () ;

pictureLayout = new GridLayout (3, 2);
pictureLayout.setHgap(5) ;
pictureLayout.setVgap(5) ;
pictures.setLayout (pictureLayout) ;
pictures.setAlignmentX (CENTER_ALIGNMENT) ;

imagePanel = new JPanel () ;
imagePanel . setBackground (Color.white) ;
imagePanel .setLayout (new BoxLayout (imagePanel, BoxLayout.X_AXIS));

JLabel label = new JLabel ("", SwingConstants.CENTER) ;
label.setAlignmentX (CENTER_ALIGNMENT) ;
label.setPreferredSize (new Dimension (200,20));
label.setMinimumSize (new Dimension(200,20));
label.setMaximumSize (new Dimension(200,20));

setLayout (new BoxLayout (this, BoxLayout.Y_AXIS));

Component padding = Box.createRigidArea(new Dimension (100, 1));

This code segment illustrates how the Food objects are instantiated and manipulated by the
addMember (FoodCourt fc) method that adds a new food item to the members collection class struc-
ture for future reference and to the pictures panel for visual rendering:

}

food = new Food(this, "Hamburger", "resources/Hamburgerl.gif", 1.35f);
addMember (food) ;

food = new Food(this, "Hotdog", "resources/Hotdogl.gif", 1.15f);
addMember (food) ;

food = new Food(this, "Pizza", "resources/Pizzal.gif", 1.05f);

addMember (food) ;

add
add
add
add

label) ;

padding) ;

pictures) ;
Box.createVerticalGlue()) ;

public void addMember (FoodCourt fc) {

if (!members.containsKey (fc.getName())) {
members.put (fc.getName (), fc);
pictures.add(fc.getGraphic()) ;

The addMemberBehavior (String n, String b) method outputs the food item description and cost
to the static DisplayPanel text area component. The condimentPrices collection class is used to
derive the cost of the cheese condiment, the only condiment in the BoxLayoutPanel application, so that
its cost can be added to the cost of the food item:

159

Chapter 4

public void addMemberBehavior (String n, String b) {
Float condimentCost = (Float)condimentPrices.get (b.trim());

FoodCourt m = (FoodCourt) members.get (n);
DisplayPanel .writeLine ("Adding " +
b +
"o
condimentCost +
") to " +
m.getDescription() +
" which costs $" +
m.getCost () +
" for a total cost of $" +

(m.getCost () + condimentCost.floatValue()));
}

// getName (), getGraphic() and getDescription() methods omitted for better
clarity

public String getDescription(String n) {
FoodCourt m = (FoodCourt) members.get (n);
if (m !'= null) {
return m.getDescription() ;
} else {
return "";
}
}

public void setGraphicHandler (FoodCourt h) {
graphic.setHandler (h) ;
}

The BoxLayoutPanel display is demonstrated in Figure 4-4. Users can drag and drop the cheese condi-
ment on the three different food items to determine the total cost of the two products combined.
Additionally, users can click on the individual food items to determine the cost of that single item. All
events that are generated by mouse clicks or drag and drop operations are tracked by listener classes
and logged to the text area display to track the users’ navigation activities. The Decorator pattern

implementation in the BoxLayoutPanel application allows behaviors to be dynamically aggregated
during run time.

160

Developing Effective User Interfaces with JFC

Figure 4-4

FlowLayout

The FlowLayout manager arranges components from left to right in the Container space; if the space on
a line is exhausted, then the components that are part of this manager will flow to the next line. By
default, all components of the FlowLayout manager are centered in a horizontal fashion on each line.
Three different constructors can be invoked to instantiate a FlowLayout manager object. The first con-
structor requires no parameters while the second constructor requires an integer alignment value that
indicates how components will be justified during construction. The last constructor method uses an
integer alignment value like the aforementioned method, but also requires two integer values that
specify horizontal and vertical gap values for pixel spacing.

The constructor methods for the FlowLayout manager are shown in the method summary table
that follows.

Method Description
public FlowLayout () No parameters
public FlowLayout (int align) Align parameter may be one of three class con-

stants: LEFT, RIGHT, or CENTER to indicate how
components will be justified

public FlowLayout Where align indicates how the components will

(int align, int hGap, int vGap) be justified and the hGap and vGap parameters
specify the horizontal and vertical pixels between
components

161

Chapter 4

The following FlowLayout example accepts a dollar value from the user and calculates the coin
distribution using the Chain of Responsibility pattern. Figure 4-5 provides a high-level view of the
FlowLayoutPanel application and how the Swing components are positioned on the FlowLayout panel.

FlowLayout
| JButton | | JTextField | | JButton |
t Command pattern: execute() 7
\ /
Chain of Responsibility Pattern: Determines
coin distribution of user input /
JLabel If user expands panel to
the right, the JLabe
component will be
positioned to the right of
the Currency panel

Figure 4-5

Request processing in the FlowLayputPanel application is handled with the Chain of Responsibility
pattern that accepts the dollar amount from the user and cascades downward from the four different
coin handlers (QuarterHandler, DimeHandler, NickelHandler, PennyHandler) until all the coins
have been accounted for in the dollar amount specified by the user.

Pattern Benefits Consequences

Requests can go unhandled

Chain of Responsibility

Reduces coupling by
allowing several objects
the opportunity to handle

with improper chain
configuration

a request

Distributes responsibilities
among objects

The FlowLayoutPanel class below illustrates how the FlowLayout manager can be implemented. This
sample application implements the JFormattedTextField class to dictate how the data must be input
by the user and the NumberFormat class to establish what that format will be. Two buttons are created
as extensions to the JButton class, one for kicking off the Chain of Responsibility pattern named
"Determine Coins" and the other for clearing the text in the coin display panel:

[FlowLayoutPanel.java]
// package name and import statements omitted

public class FlowLayoutPanel extends JPanel implements ActionListener,
PropertyChangelListener ({

162

Developing Effective User Interfaces with JFC

private JFormattedTextField amountField;

private NumberFormat amountDisplayFormat;

private NumberFormat amountEditFormat;

// some GUI component initializations/declarations omitted for the sake of brevity
private JButtonCoins coinButton = new JButtonCoins ("Determine Coins");

private JButtonClear clearButton = new JButtonClear("Clear");

private QuarterHandler quarterHandler;
private DimeHandler dimeHandler;
private NickelHandler nickelHandler;
private PennyHandler pennyHandler;

public FlowLayoutPanel () {
setSize (700, 150);

// Coin Button
coinButton.setActionCommand ("Coins") ;
coinButton.addActionListener (this) ;

// Clear button
clearButton.setActionCommand ("clear") ;
clearButton.addActionListener (this) ;

The FlowLayoutPanel constructor establishes the currency display format using the NumberFormat
class, which is the abstract base class for all number formats. The setMinimumFractionDigits (int
newValue) method sets the minimum number of digits permitted in the fraction portion of a number.
Once the format styles have been created, they can then be applied to the JFormattedTextField class
used for rendering the dollar amount specified by the user. The PropertyChangeListener interface
forces the application to deploy the propertyChange method (PropertyChangeEvent evt) to handle
events when the dollar amount has been modified. The BorderLayout manager is applied to the
topPanel component that organizes the coinButton, amountField, and clearButton components,
which is added to the FlowLayout manager of the overall application by default:

amountDisplayFormat = NumberFormat.getCurrencyInstance() ;
amountDisplayFormat.setMinimumFractionDigits (0) ;
amountEditFormat = NumberFormat.getNumberInstance() ;

amountField = new JFormattedTextField(new DefaultFormatterFactory

(new NumberFormatter (amountDisplayFormat),

new NumberFormatter (amountDisplayFormat),

new NumberFormatter (amountEditFormat))) ;
amountField.setValue (new Double (amount)) ;
amountField.setColumns (10) ;
amountField.addPropertyChangeListener ("value", this);

topPanel .add (coinButton) ;
topPanel .add (amountField) ;
topPanel.add(clearButton)

7

messageText = new JLabel ("Coin Amounts");
results.add (messageText) ;
results.setPreferredSize (new Dimension (400, 100));

163

Chapter 4

results.setBorder (BorderFactory.createLineBorder
results.setBackground (DIGIT COLOR) ;

JPanel borderPanel = new JPanel (new BorderLayout());
borderPanel .setBorder (new TitledBorder ("Formatted Currency"));
borderPanel .add (topPanel, BorderLayout.CENTER) ;
borderPanel .setSize(200,200) ;

add (borderPanel) ;
add (results) ;

(Color.blue,

2));

The following code section implements the coin handlers that implement the Chain of Responsibility
pattern to process all of the coins that are derived from the amount specified by the user in the GUI
panel. The setSuccessor (TestHandler successor) method is used to specify the successor object
along the chain of objects:

// setup chain of responsibility pattern implementation
try {

quarterHandler = new QuarterHandler () ;
dimeHandler = new DimeHandler () ;
nickelHandler = new NickelHandler () ;
pennyHandler = new PennyHandler () ;

quarterHandler.setSuccessor (dimeHandler);
dimeHandler.setSuccessor (nickelHandler);
nickelHandler.setSuccessor (pennyHandler);

} catch(Exception e) {

e.printStackTrace () ;

public void propertyChange (PropertyChangeEvent e) {

Object source = e.getSource();

amount = ((Number)amountField.getValue()) .doubleValue() ;

public void actionPerformed(ActionEvent e) {
Command obj = (Command)e.getSource();
obj.execute() ;

The JButtonCoins method implements the Command interface to invoke the execute () method of the
class when the user clicks on the Determine Coins button. The dollar amount is read from the
amountField component and passes that value to the quarterHandler object for coin processing.
When all of the coins have been accounted for, the coin distribution will be displayed in the
messageText component:

164

class JButtonCoins extends JButton implements Command {

public JButtonCoins (String caption) { super (caption); }

public void execute() {

amountField.setValue (new Double (amount)) ;

Developing Effective User Interfaces with JFC

int coinAmount = (int) (amount * 100);

quarterHandler.handleRequest (coinAmount) ;

messageText.setText (" QUARTERS= " + quarterHandler.getCount() +
" DIMES= " + dimeHandler.getCount () +

" NICKELS= " + nickelHandler.getCount () +
" PENNIES= " + pennyHandler.getCount());

}

class JButtonClear extends JButton implements Command {
public JButtonClear (String caption) { super (caption); }
public void execute() {

amountField.setValue (new Double(0));
messageText.setText ("User cleared text: ");

}

public interface Command {
public void execute();

}

// main method omitted for the sake of brevity

The TestHandler class is inherited by the individual coin handlers so that get/set successor methods
can be used to determine the successor objects that are implemented along the chain of coin handlers:

[TestHandler.javal
// package name and import statements omitted
public class TestHandler {

private TestHandler successor;

public void setSuccessor(TestHandler successor) { this.successor = successor; }
public TestHandler getSuccessor() { return successor; }

public void handleRequest (int coinAmount) { successor.handleRequest (coinAmount) ;
}
}

The QuarterHandler class inherits the successor classes from its superclass TestHandler and takes the
coin amount to determine how many quarters can be found in the dollar total. The modulus % operator
divides the coin amount by 25 to determine the number of quarters in the sum, and takes the remainder
and passes it along the chain of coin handlers for dimes, nickels, and pennies. For all of the handlers, if a
remainder of zero is discovered, then the chain processing is halted:

165

Chapter 4

[QuarterHandler. java]

// package name and import statements omitted

public class QuarterHandler extends TestHandler {
private static Logger logger = Logger.getLogger ("QuarterHandler") ;
private int count;
public void handleRequest (int coinAmount) {

int numberQuarters = coinAmount / 25;

coinAmount %= 25;

this.count = numberQuarters;

if (coinAmount > 0) getSuccessor ().handleRequest (coinAmount) ;
}
public int getCount () {

return this.count;

}

Figure 4-6 represents the finished product of the FlowLayoutPanel application. When users add a dol-
lar amount in the text field of the GUI application and click the Determine Coins button, the coin distri-
bution will be displayed in the panel below the Currency panel. With the Chain of Responsibility pattern
implementation, the coins are handled sequentially from quarters to dimes to nickels to pennies until all
coins have been accounted for. An important point to take away from the Chain of Responsibility pat-
tern is that rather than calling a single method to satisfy a request, multiple methods in a chain have a
chance to fulfill that request.

Figure 4-6

166

Developing Effective User Interfaces with JFC

GridLayout

The GridLayout manager arranges its components in a rectangular, gridlike fashion. When components
are added to the GridLayout manager, rows are populated first.

The constructor methods for the GridLayout manager are shown in the method summary table that

follows.

Method Description

public GridLayout () No parameters — creates a grid layout
with a default of one column per com-
ponent, in a single row

public GridLayout (int rows, int columns) Row and column parameters specify
the size of the grid

Public GridLayout (int rows, Row and column parameters specify

int columns, int hGap, int vGap) the size of the grid and the hGap and
vGap parameters specify the horizontal
and vertical pixels between components

The following GridLayout example processes mouse events on buttons generated with Java 2D classes.
Figure 4-7 shows how the buttons are organized on the GridLayoutPanel display.

GridLayout
buttonPanel dataPanel
Rectangle2D
—
dbPanel
| —>
mouseButtonPanel
MouselListener
Mouselistener
Figure 4-7

167

Chapter 4

The following GridLayoutPanel code segment aggregates the different Java 2D components along
with the Swing JTree and JTable components on the grid display. The Java2DPanel and
Java2DPanelMouseover classes generate Java 2D button images that set the Cola row value of the
JTable component, and store the proper Cola data value to the JTree component when the user clicks
on them:

[GridLayoutPanel.javal]
// package name and import statements omitted

public class GridLayoutPanel extends JPanel {

// declarations omitted for the sake of brevity [Please check download code]
public GridLayoutPanel () {

JPanel panelAll = new JPanel (new GridLayout(0,2,5,5));

DBPanel dbPanel = new DBPanel () ;

Java2DPanel buttonPanel = new Java2DPanel (dbPanel) ;

Java2DPanelMouseover mouseButtonPanel = new Java2DPanelMouseover (dbPanel) ;
JPanel dataPanel = new JPanel (new GridLayout(0,1,5,5));

dbPanel .add (mouseButtonPanel) ;

panelAll.add (dbPanel) ;

panelAll.add (buttonPanel) ;
panelAll.add(dataPanel) ;

add (panelAll) ;
setVisible (true) ;

}

// main method omitted for the sake of brevity

The Java2DPanel class implements the Rectangle2D class to create buttons to obtain information con-
cerning six different Cola selections. These buttons are attached to a mouseListener handler to deter-
mine if a user has clicked the mouse inside one of those buttons. The setPreferredsize method
allows the constructor class for Java2DPanel to set the panel display to a desired dimension using
height and width values:

[Java2Dpanel.java]
// package name and import statements omitted

public class Java2DPanel extends JPanel implements MouseListener {

Rectangle2D rectl, rect2, rect3, rectd, rectb, recté6;
DBPanel dbRef;

public Java2DPanel (DBPanel db) {

dbRef = db;

168

Developing Effective User Interfaces with JFC

25, 25, 100, 100);
150, 25, 100, 100);
25, 150, 100, 100);

rectl = new Rectangle2D.Double(
rect2 = new Rectangle2D.Double (
rect3 = new Rectangle2D.Double (
rect4d = new Rectangle2D.Double (150, 150, 100, 100);
rect5 = new Rectangle2D.Double (25, 275, 100, 100);
rect6 = new Rectangle2D.Double (150, 275, 100, 100);

this.addMouseListener (this) ;

setBackground (Color.white) ;
setPreferredSize (new Dimension (300, 200));

The paintComponent (Graphics g) method is called when a window becomes visible or is resized,
and when a mouse listener detects a new user-generated event to draw the background graphics compo-
nents on the panel display. Six rectangle class components are constructed by instantiating Rectangle
class objects and filling them by implementing the Graphics2D £ill(Shape s) method:

public void paintComponent (Graphics g) {
clear(qg);

Graphics2D g2 = (Graphics2D) g;
g2 .setRenderingHint (RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON) ;

35, 40, 100, 100);
160, 40, 100, 100);
35, 165, 100, 100);
160, 165, 100, 100);
35, 290, 100, 100);
160, 290, 100, 100);

Rectangle rectanglel = new Rectangle
Rectangle rectangle2 = new Rectangle
Rectangle rectangle3 = new Rectangle
Rectangle rectangle4 = new Rectangle
Rectangle rectangle5 = new Rectangle
Rectangle rectangle6 = new Rectangle

g2.setPaint (new Color (204, 255, 153));
g2.fill (rectanglel) ;
g2.fill (rectangle2)
g2.fill (rectangle3l) ;
g2.fill (rectangled) ;
()
)

7

7

g2.fill (rectangle5
g2.fill (rectangleb) ;
g2.setColor (new Color(123,123,45));
g2.fill (rectl) ;

g2.fill (rect2) ;

Now that the six different background buttons have been created and filled, the foreground buttons are
created by using the Graphics2D drawstring(String str, int x, int y) method to place string
text on the button display and the £i11 (Shape s) method to draw the button shape:

g2.setColor (Color.black) ;

g2.setFont (new Font ("Serif", Font.BOLD, 18));

g2.drawString("Cola 1", (float) (rectl.getX())+25,
(float) (rectl.getY()+rectl.getHeight()/2));

g2.drawString("Cola 2", (float) (rect2.getX())+25,
(float) (rect2.getY()+rect2.getHeight()/2));

169

Chapter 4

g2.setColor (new Color(123,123,45));
g2.fill (rect3);
g2.fill (rectd);

g2.setColor (Color.black) ;

g2.setFont (new Font ("Serif", Font.BOLD, 18));

g2.drawString ("Cola 3", (float) (rect3.getX())+25,
(float) (rect3.getY()+rect3.getHeight()/2));

g2.drawString ("Cola 4", (float) (rectd.getX())+25,
(float) (rectd.getY () +rectd.getHeight () /2));

g2.setColor (new Color(123,123,45));
g2.fill (rectb);
g2.fill (rectb) ;

g2.setColor (Color.black);
g2.setFont (new Font ("Serif", Font.BOLD, 18));
g2.drawString ("Cola 5", (float) (rect5.getX())+25,
(float) (rect5.getY () +rect5.getHeight () /2));
g2.drawString ("Cola 6", (float) (rect6.getX())+25,
(float) (rect6.getY()+rectb6.getHeight () /2));
}

The mousePressed (MouseEvent e) method checks the user’s mouse event to see if it was clicked
inside one of the Rectangle2D button shapes. If the application detects a click inside the button display
area, then the data values associated with that button will be set in the JTree and JTable components:

public void mousePressed(MouseEvent e) {
if (insideRectangle(e.getX(), e.getY(), rectl.getX(), rectl.getY(),
rectl.getWidth(), rectl.getHeight())) {
dbRef.setRow (0) ;
dbRef .addTreeData (0) ;
}
if (insideRectangle(e.getX(), e.getY(), rect2.getX(), rect2.getY(),
rect2.getWidth (), rect2.getHeight())) {
dbRef.setRow (1) ;
dbRef .addTreeData(l) ;
}
if (insideRectangle(e.getX(), e.getY(), rect3.getX(), rect3.getY(),
rect3.getWidth (), rect3.getHeight())) {
dbRef.setRow(2) ;
dbRef.addTreeData(2) ;
}
if (insideRectangle(e.getX (), e.getY(), rectd.getX(), rectd.getY(),
rectd.getWidth (), rectd.getHeight())) {
dbRef.setRow(3) ;
dbRef .addTreeData (3) ;
}
if (insideRectangle(e.getX(), e.getY(), rectb5.getX(), rect5.getY(),
rect5.getWidth (), rect5.getHeight())) {
dbRef.setRow(4) ;
dbRef .addTreeData(4) ;

170

Developing Effective User Interfaces with JFC

if (insideRectangle(e.getX(), e.getY(), rect6.getX(), rect6.get¥Y(),
rect6.getWidth (), rect6.getHeight())) {
dbRef.setRow(5) ;
dbRef .addTreeData (5) ;

The insideRectangle method returns a boolean true or false value depending on whether or not the
user has clicked the mouse inside the button shape on the panel display based on the coordinates passed
to the routine:

public boolean insideRectangle(int xMouse, int yMouse, double x, double y, double
width, double height) {
if ((xMouse >= x && xMouse <= x+width) && (yMouse >= y && yMouse <= y+height)

) |

return true;

}

return false;

}

protected void clear (Graphics g) {
super .paintComponent (g) ;

}

public void mouseDragged (MouseEvent e) {}
public void mouseReleased (MouseEvent e) {}
public void mouseMoved (MouseEvent e) {}
public void mouseEntered (MouseEvent e) {}
public void mouseExited (MouseEvent e) {}
public void mouseClicked (MouseEvent e) {}

// main method omitted for the sake of brevity

The Java2DPanelMouseover class only generates a single Java 2D button that acts differently than the
Java2DPanel buttons in that when a user passes the mouse over the button, the Cola value will automat-
ically be set in the JTree and JTable data stores. The Java2DPanel application requires that a user
click inside the button display area to emulate the same behavior:

[Java2DPanelMouseover . javal
// package name and import statements omitted

public class Java2DPanelMouseover extends JPanel {

// declarations omitted for the sake of brevity [Please check download code]
public Java2DPanelMouseover (DBPanel dbRef) ({

this.dbRef = dbRef;

setPreferredSize (new Dimension (100, 100));
setSize(100,100);

171

Chapter 4

this.mouseOverColor = new Color(123,123,45);
this.normalColor = new Color (204, 255, 153);
this.paintColor = normalColor;

The addMouseListener method is used to track the individual mouse movements of the user across
the panel component. When the user crosses enters the button space with the Cola 1 label, the
mouseOverColor will displace the normalColor value and the JTable and JTree components will
point to the data associated with the colal item using the displayTableRowl () method:

this.addMouseListener (new MouseListener ()

{
public void mouseEntered (MouseEvent e) {

displayTableRowl () ;
paintColor = mouseOverColor;
repaint () ;

}
public void mouseExited(MouseEvent e) {
paintColor = normalColor;
repaint () ;

}

public void mouseDragged (MouseEvent e) {}
public void mouseClicked (MouseEvent e) {}
public void mousePressed (MouseEvent e) {}
public void mouseReleased (MouseEvent e) {}

})
}

public void displayTableRowl () {

dbRef .setRow (0) ;
dbRef.addTreeData (0) ;

The paintComponent (Graphics g) method applies the proper paint color inside the Java 2D button
using the value stored in the paintColor variable. The MouseEntered method sets the paintColor to
the mouseOverColor value and when the user exits the button space, it is reset to the normalColor
value:

public void paintComponent (Graphics g) {
Graphics2D g2d = (Graphics2D) g;
g2d.setRenderingHint (RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON) ;
Dimension d = this.getSize();

g2d.clearRect (0, 0, d.width, d.height);

int centerX = d.width / 2;
int centerY = d.height / 2;

int xOffset = d.width / 2 - 3;
int yOffset = d.height / 2 - 3;

g2d.setColor (this.paintColor) ;

172

Developing Effective User Interfaces with JFC

g2d.fillRect (0, 0, 100, 100);

g2d.setColor (Color.black) ;
g2d.setFont (new Font ("Serif", Font.BOLD, 18));
g2d.drawString ("Cola 1", 25, 50);

The DBPanel class below stores the six different Cola values in the JTable component and dynami-
cally sets the row value inside the populated table associated with the button value as the user clicks

on the different Java 2D button components. The DBPanel constructor method is called when the

class is first invoked, where an object reference of the MyTableModel class, named mtm, invokes the
populateTable (String[] s) method to initialize the table values to empty strings prior to establish-
ing the layout managers needed to place the visual components on. Three different GridLayout man-
agers are instantiated, and two of those —panelData and panelTree —are placed upon the panelall
layout panel:

[DBPanel . javal
// package name and import statements omitted

public class DBPanel extends JPanel implements PropertyChangelListener,
TableModellListener {
// declarations omitted for the sake of brevity [Please check download code]
public DBPanel () {
JPanel panelAll = new JPanel (new GridLayout(0,1,5,5));
JPanel panelData = new JPanel (new GridLayout(0,1,5,5));
panelData.add (panelTable()) ;

setPreferredSize (new Dimension (300, 450));
String[] g = { wn, mwe wwowno3.
mtm.populateTable(s) ;

addTableDatal() ;

panelAll.add(panelData) ;

JPanel panelTree = new JPanel (new GridLayout(0,1,5,5));
panelTree.add (treePanel ()) ;

panelAll.add (panelTree) ;
addTreeData (0) ;

add (panelall) ;
setBackground (Color.white) ;

The addTableData () method populates the array of string values called s with the four different Cola
attributes (Brand, Cost, Calories, and Size) and passes that array to the populateTable method for dis-
play. The addTree (int row) method allows users to add the Cola data to the row value passed into the
method:

173

Chapter 4

public void addTableData() {
String[] s = { "", ", "", "" };
for (int i=0; i < tableData.length; i++) {
s[0]=tableDatal[i] [0]; s[l]=tableDatali]
s[3]=tableDatali][3];
mtm.populateTable(s) ;

[1]; s[2]=tableDatali][2];

}

public void addTreeData (int row) ({
root = new DefaultMutableTreeNode("Cola Attributes");
tree = new JTree(root);
DefaultMutableTreeNode items;

items = new DefaultMutableTreeNode("Cola " + (row+l));
root.add (items) ;

items.add (new DefaultMutableTreeNode ("Brand= " + tableData[row] [0]));
items.add (new DefaultMutableTreeNode ("Cost= " + tableDatal[row][1]));
items.add (new DefaultMutableTreeNode ("Calories= " + tableDatalrow] [2]));
items.add (new DefaultMutableTreeNode ("Size= " + tableDatal[row][3]));

scrollPane.getViewport () .add(tree);
tree.expandRow (0) ;

The panelTable () method creates a new MyTableModel object reference and adds it to a JTable object
called tree, which in turn is placed inside a scroll pane component so that users can navigate up and
down in the table when cola data attributes are added to the table component. The ListSelectionModel
interface is implemented to maintain the tables’” row selection state. The addListSelectionListener
method monitors the list so that changes to that list are reflected in the GUI representation:

public JPanel panelTable() {
JPanel tablePanel = new JPanel (new GridLayout(0,1,5,5));

mtm = new MyTableModel () ;

table = new JTable (mtm) ;
table.setPreferredScrollableViewportSize (new Dimension (250, 70));
JScrollPane scrollPane = new JScrollPane(table);

tablePanel .add (scrollPane) ;

table.setSelectionMode (ListSelectionModel . SINGLE_SELECTION) ;
ListSelectionModel rowSM = table.getSelectionModel () ;
rowSM.addListSelectionListener (new ListSelectionListener () ({
public void valueChanged(ListSelectionEvent e) {
//Ignore extra messages.

if (e.getValueIsAdjusting()) return;
lsm = (ListSelectionModel)e.getSource();
if (lsm.isSelectionEmpty()) {
//no rows are selected
} else {

selectedRow = lsm.getMinSelectionIndex() ;

174

Developing Effective User Interfaces with JFC

}
1)
// titledBorder logic omitted for the sake of brevity

return tablePanel;

The treePanel () method establishes a new GridLayout manager so that a JTree structure can be
embedded within a scroll pane, which will allow the user to vertically scroll up and down the tree struc-
ture. The BorderFactory class is implemented so that a compound border titled Tree Information
frames the tree component:

public JPanel treePanel () {

}

JPanel tablePanel = new JPanel (new GridLayout(0,1,5,5));

scrollPane = new JScrollPane();

scrollPane.setVerticalScrollBarPolicy (
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS) ;
scrollPane.setPreferredSize (new Dimension (250, 150));
scrollPane.setBorder (
BorderFactory.createCompoundBorder (BorderFactory.createCompoundBorder (
BorderFactory.createTitledBorder ("Tree Information"),
BorderFactory.createEmptyBorder(5,5,5,5)),
scrollPane.getBorder()));

root = new DefaultMutableTreeNode ("Annotations") ;
tree = new JTree(root) ;
scrollPane.getViewport () .add(tree);

tablePanel .add (scrollPane) ;
return tablePanel;

public void propertyChange(PropertyChangeEvent e) {}
public void tableChanged (TableModelEvent e) {}

The MyTableModel class handles all of the table data for the six different Cola types through its method
implementations. The setvalueAt method stores an individual object value at a designated row and
column value. The populateTable method reads in a string array and populates the table with those
values. The fireTableDataChanged () method tells the application’s listeners that changes have been
made to the table and need to be shown in the GUI representation:

class MyTableModel extends AbstractTableModel {

String[] columnNames= { "Brand", "Cost", "Calories", "Size" };
private Object[][] data;
public int getColumnCount () { return columnNames.length; }
public int getRowCount () { return (data == null) ? 0 : data.length; }
public String getColumnName (int col) { return columnNames[col]; }
public Object getValueAt (int row, int col) { return data[row] [col]; }
// addRow() and deleteRow(int row) methods were omitted for sake of brevity

175

Chapter 4

public void setValueAt (Object value, int row, int col) {
data[row] [col] = value;

}

The populateTable method receives a string array of table data that relates to the Cola button selection
so that it can be added to the JTable component for observation. Once the table has been populated,
then the fireTableDataChanged () method is invoked so that these table changes are updated in the
GUI view:

public void populateTable(String[] s) {
// if data exists in table, rewrite table for new entry
int rowCount = getRowCount () ;

if (rowCount != 0) {
// add another row
Object[][] temp = data;

data = new Object[rowCount+1] [getColumnCount()];
// copy old items into new structure
for (int i=0; i < temp.length; i++) {

data[i] [0] = temp[i][0];
datal[i] [1] = temp[i] [1];
datali] [2] = temp[i][2];
data[i] [3] = temp([i][3];

}

for (int i1=0; 1 < getColumnCount (); i++)
setValueAt (s[i], rowCount-1, 1);

} else {
data = cData;
for (int i=0; i < getColumnCount (); i++)

setValueAt (s([i], 0, 1);
}
fireTableDataChanged () ;

}
public void setRow(int row) {
table.setRowSelectionInterval (row, row);

}

// main method omitted for the sake of brevity

Figure 4-8 represents the GridLayoutPanel application defined in the source code above. When users
click on the Java 2D button images, proper Cola values will be highlighted in the Swing components on
the right side of the GUI display.

176

Developing Effective User Interfaces with JFC

Figure 4-8

GridBaglLayout

The GridBagLayout manager manages its components both vertically and horizontally by maintaining
a rectangular grid of cells in its display area. Components are manipulated through constraint param-
eters using the GridBagConstraints class. These constraints specify where a component’s display area
should be positioned on the grid and its size using minimum and preferred size attributes. The construc-
tor methods for the GridBagLayout manager are shown in the method summary table that follows.

Method Description

public GridBagLayout () No parameters

The table below outlines the different instance variables that can be implemented with the
GridBagLayout manager. These variables can be implemented interchangeably to satisfy an applica-
tion’s visual requirements.

Instance Variables Description

gridx, gridy The gridx and gridy instance variables specify the cells con-
taining the leading corner of the component’s display area,
where the cell at the origin of the grid has address x =0
degrees and y = 0 degrees. For applications that have horizon-
tal left-to-right layouts, the leading corner is on the upper left.
For applications that have horizontal right-to-left layouts, the
leading corner is on the upper right.

Table continued on following page

177

Chapter 4

Instance Variables

Description

weightx, weighty

insets

fill

The weightx and weighty instance variables are used to
determine how to distribute space for resizing. All components
are placed together in the middle of a container unless a
weightx or weighty value is specified. The GridBagLayout
manager appends additional space between its cells and the
container edges when the default weight is initialized to zero.

The insets instance variable specifies the component’s
padding, which amounts to the minimum space available
between the component and the display area edges.

The £i11 instance variable is implemented when the compo-
nent’s display area is larger than the component’s requested
size to determine whether (and how) to resize the component.

GridBagConstraints.NONE (the default)

GridBagConstraints.HORIZONTAL —enables the component
to fill its display area horizontally, not vertically

GridBagConstraints.VERTICAL —allows the component to
fill its display area vertically, not horizontally

GridBagConstraints.BOTH—allows the component to fill its
display area both vertically and horizontally

The following GridBagLayout example applies both the Command and Visitor patterns to handle user
events and message generation from Swing component activities. Figure 4-9 provides a model of the
application and the component distribution on the GridBagLayout and their listeners.

The GridBagLayoutPanel application will incorporate the Command and Visitor patterns to handle
button requests for answers to the questions selected by the user in the different question components.
Some of the benefits and shortcomings of these patterns are shown in the following table.

Pattern

Benefits

Consequences

Visitor

Separates operations from the
objects that perform operations
on it. Objects of the primary type
accept the visitor and then call the
visitor’s dynamically bound
method in a process referred to
as double dispatch.

Adding new operations is
facilitated, no need for
recompilation.

Difficult to maintain

Forces you to provide public
operations that access internal state
data, which may break
encapsulation

178

Developing Effective User Interfaces with JFC

GridBaglLayout

FlowLayout: topPanel > GridLayout: radioPanel

JLabel JComboBox o
O ButtonGroup
Command pattern: execute() o

RadiolListener

JScrollPane Mouselistener

I

Visitor pattern:
Generate random message in displayMessage()

JLabel

Figure 4-9

The GridBagLayoutPanel class incorporates the GridBagLayout manager, which allows for the place-
ment of GUI components in a grid formation of rows and columns. The width and height of the rows
and columns do not necessarily have to be the same size throughout a panel display, but this sample
application maintains consistency across rows and columns for its GUI components:

[GridBagLayoutPanel .java]
// package name and import statements omitted

public class GridBagLayoutPanel extends JPanel implements ActionListener ({
// declarations omitted for the sake of brevity [Please check download code]

The GridBagLayoutPanel constructor method declares and initializes the Swing components used for
the fortune teller application. First a JcomboBox component is created with a list of questions that can be
selected from the drop-down box. Next, a group of radio buttons is created, grouped together, and regis-
tered to the application using the RadioListener class. Those radio buttons are grouped vertically and
appended to the radioPanel. Both the drop-down list and the radio buttons are appended to the
topPanel display. Lastly, a list of questions is generated and added to a JScrollPane component and
registered with a MouseListener to generate fortunes when a user double-clicks a question in the list:

public GridBagLayoutPanel () {
setSize (200, 150);
cbQuestion = new JComboQuestion() ;

cbQuestion.addActionListener (this) ;

label = new JLabel ("Question: ");
label.setFont (messageFont) ;

RadioListener radiolListener = new RadioListener();

179

Chapter 4

questionlButton.setMnemonic ('1l') ;
question2Button.setMnemonic ('2"') ;
question3Button.setMnemonic ('3"');
questionlButton.addActionListener (radioListener) ;
question2Button.addActionListener (radioListener) ;
question3Button.addActionListener (radioListener) ;
ButtonGroup group = new ButtonGroup() ;
group.add(questionlButton) ;

group.add (question2Button) ;
group.add(question3Button) ;

JPanel radioPanel = new JPanel () ;
radioPanel.setLayout (new GridLayout (0, 1));
radioPanel .add (questionlButton) ;
radioPanel .add (question2Button) ;
radioPanel .add (question3Button) ;

String[] data = {"Will the Yankees win the pennant?",
"Will the Giants win the Super Bowl?",
"Will the Rangers win the Stanley Cup?"};

In the code snippet below, a JList component is instantiated and attached to a mouse listener so that
user clicks are detected upon that list. If a user double-clicks a list item, then the displayMessage ()
method will be invoked with a randomly generated fortune related to the question selected by the user
in the list:

final JList list = new JList (data);
MouseListener mouseListener = new MouseAdapter () {
public void mouseClicked (MouseEvent e) {

if (e.getClickCount() == 2) {
logger.info("Double clicked: " + list.locationToIndex(e.getPoint()));
displayMessage () ;

iy

list.setFont (listFont) ;

list.addMouselListener (mouselListener) ;

JScrollPane listScroller = new JScrollPane(list);
listScroller.setPreferredSize (new Dimension (100, 125));
listScroller.setBorder (new TitledBorder ("Double-click query for fortune"));
topPanel.add (label) ;

topPanel .add (cbQuestion) ;

topPanel .add (radioPanel) ;

topPanel .setBorder (new TitledBorder ("Question components"));

messageText = new JLabel ("Please pick a question...");
messageText.setFont (messageFont) ;

results.add (messageText) ;

results.setPreferredSize (new Dimension (400, 50));
results.setBorder (BorderFactory.createLineBorder (Color.blue, 2));
results.setBackground (Color.yellow) ;

The following code segment demonstrates how the components are rendered using the GridBagLayout
manager. The GridBagConstraints class is instantiated so that constraints can be specified for the GUI
components in the application using the GridBagLayout manager:

180

Developing Effective User Interfaces with JFC

setLayout (new GridBagLayout()) ;

GridBagConstraints ¢ = new GridBagConstraints();

.gridx = 0;
.gridy = 0;
.weightx = 0.5;

.insets = new Insets(2, 2, 2, 2);
.fill = GridBagConstraints.BOTH;
add (topPanel, c);

Qoo

.gridy = 1;
.weightx = 0.5;

.gridwidth = 1;

.fill = GridBagConstraints.HORIZONTAL;
add(listScroller, c);

Qo

.gridx = 0;
.gridy = 2;
.weightx = 0.0;

.insets = new Insets(50, 50, 0, 0);
.fill = GridBagConstraints.NONE;

add (results, c);

(oo e NN INe!

}

public void actionPerformed(ActionEvent e) ({
JComboQuestion cb = (JComboQuestion)e.getSource() ;
Command obj = (Command)e.getSource();
String question = (String)cb.getSelectedItem() ;

if (!question.equals("Pick a question?")) {
obj.execute () ;

The JComboQuestion class implements the Command pattern interface so that the GridBagLayoutPanel
class can invoke its execute () method when a user clicks the combo box affiliated with a question list
reference gbQuestion. The Command pattern increases reuse by decoupling the interface from the imple-
mentation, which means that all GUI components in the GridBagLayoutPanel class can use the public
execute () method interface to serve as a gateway to private implementations associated with them:

class JComboQuestion extends JComboBox implements Command {

public JComboQuestion() {
this.addItem("Pick a question?");
this.addItem("Will I pass my class?");
this.addItem("Will my candidate win the election?");
this.addItem("Will I grow up to be a doctor?");
setFont (messageFont) ;

}

public void execute() {
displayMessage () ;

}

181

Chapter 4

The displayMessage () method selects a random number between 1 and 3 and uses that number to
generate a fortune using the Visitor pattern. The Visitor pattern implementation polymorphically
determines the proper accept method to call during operations:

public void displayMessage() {
MessageText mt = new MessageText () ;

int number = (int) (Math.random () * 3 + 1);

switch (number) {
case 1: ((FortuneTeller)new Messagel()) .accept(mt); break;
case 2: ((FortuneTeller)new Message2()) .accept(mt); break;
case 3: ((FortuneTeller)new Message3()) .accept(mt); break;

}

messageText.setFont (messageFont) ;
messageText.setText (mt.toString()) ;
results.add (messageText) ;

}

public interface Command {
public void execute() ;
}

class RadioListener implements ActionListener {
public void actionPerformed (ActionEvent e) {

displayMessage () ;
}
}
static public void main(String argv[]) {
JFrame frame = new JFrame ("GridBagLayout") ;
frame.addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent e) {System.exit(0);}
1)
frame.getContentPane () .add (new GridBagLayoutPanel (), BorderLayout.CENTER) ;
frame.pack() ;
frame.setVisible(true);
}

Figure 4-10 shows the visual representation of the GridLayoutPanel application. Random fortunes will
be generated by the Visitor pattern implementation when the user selects a question from the different
Swing components.

182

Developing Effective User Interfaces with JFC

Figure 4-10

SpringLayout

The SpringLayout manager lays out its Container components according to user-specified constraint
parameters. Each constraint, represented by a Spring object, controls the vertical or horizontal distance
between two component edges. The edges can belong to any child of the container, or to the container
itself.

The SpringLayout manager does not set the location of its components automatically like some of the
other layout managers. Component locations need to be initialized through constraint parameters so
that minimum, maximum, and preferred lengths can be contained and bound. The constructor methods
for the SpringLayout manager are shown in the method summary table below.

Method Description

SpringLayout() Constructor (no parameters)

The following are some of the fields used to describe the constraints for component placement.

Field Description

static String EAST Right edge of component
static String NORTH Top edge of component
static String SOUTH Bottom edge of component
static String WEST Left edge of component

183

Chapter 4

The following SpringLayout example allows users to generate log entries for their triathlon events using
a simple form display. Simple checks will be performed on the data prior to submission to ensure that all
of the relevant data has been entered by the user. When the user saves that event, it will be stored in a
JTable component for review. Figure 4-11 demonstrates what the SpringLayout application will look like.
Only one tabbed panel will be on display at a time, which will be dictated by the user navigations from

the button components at the bottom of the application.

SpringLayout

JTabbedPane

JTabbedPane

eventPanel

JTable

Command pattern: execute()

JButton
(add event)

SpringLayout: panellnput

| JLabel | | JTextfield |

| JLabel || JCombobox || JLabel || JCombobox|

| JLabel || JSpinner || JLabel || JCombobox|

mx’mrea |

~ | |

JButton JButton
(save) (cancel)

Command pattern: execute()

Figure 4-11

The following code segment outlines in code how the model in Figure 4-11 will be realized:

[SpringLayoutPanel . javal]

// package name and import statements omitted

public class SpringLayoutPanel extends JPanel implements ActionListener {

// declarations omitted for the sake of brevity [Please check download code]

public SpringLayoutPanel (String name)
initComponents() ;

}

private void initComponents () {
tabPanel = new JTabbedPane() ;

eventPanel = new JPanel () ;

eventPanel.setLayout (new BorderLayout ()) ;
eventPanel .setPreferredSize (new Dimension (350, 400));

eventPanel .setToolTipText ("Event") ;

184

Developing Effective User Interfaces with JFC

eventPanel .add("Center", EventPanel());

tabPanel.addTab ("Triathlon Record Log", eventPanel) ;
add (tabPanel, BorderLayout.CENTER) ;

The EventPanel () method initializes many of the Swing components in the SwingLayoutPanel appli-
cation and combines BorderLayout and GridLayout manager panels to obtain its visualization needs:

public JPanel EventPanel () {
JPanel ePanel = new JPanel (new GridLayout (0,
ePanel .setMaximumSize (new Dimension (350, 400
ePanel.setMinimumSize (new Dimension (350, 400
ePanel .setPreferredSize (new Dimension (350, 4

;5. 5));

1
));
))
00));
eventPanel = new JPanel () ;

eventButtonPanel = new JPanel () ;

addEventButton = new JAddEventButton() ;

eventPanel .setLayout (new BorderLayout());
eventPanel .setMinimumSize (new Dimension (350, 400));

eventPanel .setPreferredSize (new Dimension (350, 400));

gridPanel = new JPanel (new GridLayout (0, 1, 5, 5));
gridPanel .add (panelTable()) ;

eventButtonPanel.setLayout (new GridLayout (1, 2));
addEventButton.setText ("Add New Event") ;
addEventButton.setToolTipText ("Add New Event") ;
addEventButton.addActionListener (this) ;
eventButtonPanel .add (addEventButton) ;
eventButtonPanel.setPreferredSize (new Dimension (350, 30));
eventPanel .add (eventButtonPanel, BorderLayout.SOUTH) ;
eventPanel .add (gridPanel, BorderLayout.NORTH) ;

String[] § = { o9, OO 0T 0O Jo
mtm.populateTable(s) ;

ePanel.add (eventPanel) ;

return ePanel;

The panelTable method implements a GridLayout manager to accommodate the inclusion of a JTable
component that will store the different triathlon log entries. A ListSelectionListener is instantiated to
handle user events that affect the table:

public JPanel panelTable() {
JPanel tablePanel = new JPanel (new GridLayout (0, 1, 5, 5));

mtm = new MyTableModel () ;

185

Chapter 4

table = new JTable (mtm) ;
table.setPreferredScrollableViewportSize (new Dimension (250, 70));
JScrollPane scrollPane = new JScrollPane(table);

tablePanel.add (scrollPane) ;

table.setSelectionMode (ListSelectionModel .SINGLE_SELECTION) ;

ListSelectionModel rowSM = table.getSelectionModel () ;

rowSM.addListSelectionListener (new ListSelectionListener() {
public void valueChanged(ListSelectionEvent e) {

if (e.getValueIsAdjusting()) return;

lsm = (ListSelectionModel) e.getSource();

if (lsm.isSelectionEmpty()) {
//no rows are selected

} else {
selectedRow = lsm.getMinSelectionIndex() ;
logger.info("selectedRow= " + selectedRow) ;

}
1)

return tablePanel;

The formPanel () method implements a SpringLayout manager where all of the log entry components
are placed so that user training activities can be tracked. Two Swing library layout managers,
BorderLayout and GridLayout, are combined so that a SpringLayout manager that holds the triathlon
training attributes can be placed above the Save and Cancel buttons:

public JPanel formPanel () {
springLayout = new SpringLayout();
panelInput = new JPanel (springLayout) ;
panelInput.setMinimumSize (new Dimension (350, 370));
panelInput.setPreferredSize (new Dimension (350, 370));
eventPanel = new JPanel () ;
eventPanel.setLayout (new BorderLayout ());

eventPanel .setPreferredSize (new Dimension (350, 400));

panelButton = new JPanel () ;
panelButton.setLayout (new GridLayout (1, 4));

panelButton.setMinimumSize (new Dimension (350, 30));
panelButton.setPreferredSize (new Dimension (350, 30));

textareaDescription = new JTextAreal() ;

buttonSave = new JButtonSave() ;
buttonCancel = new JButtonCancel () ;

comboboxTime = new JComboBox () ;
trainingLength = new String[] { "15 min", "30 min", "45 min", "1 hr", "2 hrs"

comboboxLength = new JComboBox (trainingLength) ;

186

Developing Effective User Interfaces with JFC

textfieldTitle = new JTextField();
category = new String[] { "Swim", "Bike", "Run", "Other" };
comboboxCategory = new JComboBox (category) ;

model = new SpinnerDateModel () ;
model .setCalendarField (Calendar.WEEK_OF_MONTH) ;
spinner = new JSpinner (model) ;
JSpinner.DateEditor editor =
new JSpinner.DateEditor (spinner, "MMMMM dd, yyyy");
spinner.setEditor (editor) ;
Changelistener listener = new ChangeListener () {
public void stateChanged(ChangeEvent e) {
SpinnerModel source = (SpinnerModel) e.getSource() ;
System.out.println("The value is: " + source.getValue());

b g

model .addChangeListener (listener) ;

// label declarations and initializations for Title, Date, Category, Time,
Duration, and Description omitted for better clarity

The code segment below establishes two button components and a text area display for the triathlon
entry form. The text area named textareaDescription is enabled and has an etched border frame to sur-
round it. Minimum and maximum size constraints are defined as well as column values and line wrap-
ping so that text entered by a user remains in sight of that user. Buttons for both the save and cancel
operations have text labels attached to them with new font declarations and tool tip text for mouse over
pop-ups that indicate what purpose those buttons serve:

textareaDescription.setEnabled (true) ;
textareaDescription.setBorder (BorderFactory.createEtchedBorder()) ;
textareaDescription.setMinimumSize (new Dimension (85, 51));
textareaDescription.setPreferredSize (new Dimension (85, 51));
textareaDescription.setText ("") ;
textareaDescription.setColumns (25) ;
textareaDescription.setLineWrap (true) ;

buttonSave.setText ("Save event") ;
buttonSave.setFont (new java.awt.Font ("Dialog", 1, 12));
buttonSave.addActionListener (this) ;
buttonSave.setToolTipText ("Save event.");
buttonSave.setPreferredSize (new Dimension (58, 25));

buttonCancel.setText ("Return to event list.");
buttonCancel.setFont (new java.awt.Font("Dialog", 1, 12));
buttonCancel .addActionListener (this) ;
buttonCancel.setToolTipText ("Return to event list.");
buttonCancel.setPreferredSize (new Dimension (58, 25));

The following code segment dictates how to implement SpringLayout constraints to achieve the look and

feel of the disparate Swing components for tracking. The Constraints object of the SpringLayout manager
positions the edges of the children in the container object through vertical and horizontal values:

187

Chapter 4

//Add the components to the panel using SpringLayout.
panelInput.add(labelTitle, new
SpringLayout.Constraints (Spring.constant (15), Spring.constant (21))) ;
panelInput.add(textfieldTitle, new
SpringLayout.Constraints (Spring.constant (45), Spring.constant (17))) ;
panelInput.add(labelTime, new
SpringLayout.Constraints (Spring.constant (13),Spring.constant (69))) ;
panelInput.add (comboboxTime, new
SpringLayout.Constraints (Spring.constant (45) , Spring.constant (63))) ;
panelInput.add(labelLength, new
SpringLayout.Constraints (Spring.constant (190),Spring.constant (69)));
panelInput.add (comboboxLength, new
SpringLayout.Constraints (Spring.constant (250), Spring.constant (63)));
panelInput.add(labelCategory, new
SpringLayout.Constraints (Spring.constant (190) ,Spring.constant (115))) ;
panelInput.add(comboboxCategory, new
SpringLayout.Constraints (Spring.constant (250) ,Spring.constant (109)));
panelInput.add(labelDate, new
SpringLayout.Constraints (Spring.constant (15), Spring.constant (115))) ;
panelInput.add(spinner, new
SpringLayout.Constraints (Spring.constant (45) , Spring.constant (111)));
panelInput.add(textareaDescription, new
SpringLayout.Constraints (Spring.constant (10),Spring.constant (217)));
panelInput.add(labelDescription, new
SpringLayout.Constraints (Spring.constant (11), Spring.constant (201))) ;

for (int 1 = 0; 1 < 24; i++) {
timeString = Integer.toString(i);
if (timeString.length() == 1)
timeString = "0" + timeString;
if (1 !'= 0) {

comboboxTime.addItem(timeString + "00");
comboboxTime.addItem(timeString + "15");
comboboxTime.addItem(timeString + "30");
comboboxTime.addItem(timeString + "45");
} else {
comboboxTime.addItem(timeString + "00");
comboboxTime.addItem(timeString + "15");
comboboxTime.addItem(timeString + "30");
comboboxTime.addItem(timeString + "45");

}
comboboxTime.addItem("2400") ;
comboboxTime.setSelectedItem("0930") ;

eventPanel.add (BorderLayout .CENTER, panelInput) ;
eventPanel .add (BorderLayout.SOUTH, panelButton);

JPanel ePanel = new JPanel (new BorderLayout());
ePanel .add (eventPanel, BorderLayout.CENTER) ;

panelButton.add (buttonSave) ;
panelButton.add (buttonCancel) ;

188

Developing Effective User Interfaces with JFC

return ePanel;

The JAddEventButton class handles mouse events on the first tabbed pane display that occur when the
user clicks the Add Event button on the bottom of the display. The application polymorphically invokes
the execute() method, which removes all of the current panel components with the removeAll() method,
and then creates a new layout so that the SpringLayout manager can be applied from the formPanel()
method:

class JAddEventButton extends JButton implements Command {

public JAddEventButton() {
super () ;

}

public void execute() {
logger.info (" [JAddEventButton:execute]") ;
eventPanel.removeAll () ;
eventPanel .setLayout (new BorderLayout ());
eventPanel .add (formPanel ()) ;
eventPanel .requestFocusInWindow () ;
eventPanel .validate();

The JButtonSave component handles user events that occur when the user clicks the Save Event button.
A cursory data check is performed on the title field to ensure that a proper title has been entered by the
user prior to moving back to the initial tabbed panel screen with the user entry displayed in a JTable
component:

class JButtonSave extends JButton implements Command {
public JButtonSave () {
super () ;
}
public void execute() {
if (textfieldTitle.getText ().length() == || textfieldTitle.getText () ==
null) {
Toolkit.getDefaultToolkit () .beep() ;
JOptionPane.showMessageDialog (null, "Please Enter Event Title",
"Error", JOptionPane.ERROR_MESSAGE) ;
textfieldTitle.requestFocusInWindow () ;
textfieldTitle.selectAll();
return;

}

JOptionPane.showMessageDialog (null, "Event saved.",
"Operation Completed",
JOptionPane.INFORMATION_MESSAGE) ;

restoreLogPanel () ;

String[] s = { ", ", "', "" };

s[0] = (String) comboboxCategory.getSelectedItem() ;
s[1] textareaDescription.getText () ;

s[2] (String) comboboxTime.getSelectedItem() ;

189

Chapter 4

mtm.populateTable (s) ;
}

class JButtonCancel extends JButton implements Command {
public JButtonCancel () {
super () ;
}
public void execute() {
logger.info (" [JButtonCancel:execute] date = " + getDate());
restoreLogPanel () ;

}

The getDate() method returns a string value from the JSpinner component that represents the date affili-
ated with the triathlon event. The restoreLogPanel() method invokes the removeAll() method to clear the
panel display, establishes a new BorderLayout presentation panel, and initializes that new panel with
the triathlon event components for logging operations. The requestFocusInWindow() method is called to
request that the panel component gets the input focus. Lastly, the validate() method is implemented to
cause the container to lay out its subcomponents again:

public String getDate() {
return ((JSpinner.DateEditor) spinner.getEditor()).getTextField().getText();
}

public void restoreLogPanel () {
removeAll () ;
setLayout (new BorderLayout()) ;
initComponents () ;
requestFocusInWindow () ;
validate() ;

}

public void actionPerformed(ActionEvent e) {
Command obj = (Command) e.getSource();
obj.execute() ;

}

// main method omitted for better clarity

Figure 4-12 represents the SpringLayoutPanel tabbed panel application that appears on the user display
when a user invokes the Add Event button. The form display performs a cursory check on the data to
ensure proper data is entered by the user when the Save Event button is clicked. The SpringLayout man-
ager distributes JTextfield, JComboBox, JSpinner, and JTextArea components using constraint values
positioning.

190

Developing Effective User Interfaces with JFC

Figure 4-12

CardLayout

The CardLayout manager organizes its components as a stack of cards, where components are displayed
one at a time. This allows components to be easily swapped in and out like a slide show presentation.
The constructor methods for the CardLayout manager are shown in the method summary table below.

Method Description

public CardLayout () No parameters

public CardLayout (int hGap, Constructor where the hGap and vGap parameters

int vGap) specify the horizontal and vertical pixels between
components

The following CardLayout example employs the Command and Strategy patterns to encapsulate behav-
ior that will be applied to the user text. Figure 4-13 shows the CardLayout model and the different
Swing components applied to that layout manager panel.

191

Chapter 4

CardLayout - cards
JPanel > cardl Command pattern: execute()
| JLabel1 || JTextField1 || JButton || JButton || JButton |
swap
JPanel > card2 / Command pattern: execute() 1
| JLabel2 || JTextField2 / || JButton || JButton || JButton |
| /
| /
Strategy #1 Strategy #2
Strategy pattern : StartsWithAEIOU Strategy pattern : AlphabeticChars
JLabel
JPanel > results

Figure 4-13

The CardLayoutPanel application utilizes the Strategy pattern to apply different algorithms to user spec-
ified text. The Command pattern is used to polymorphically determine what strategy to apply during
run time. Some of the benefits and drawbacks of these two patterns are shown in the following table.

Pattern Benefits Consequences

Strategy Decouples algorithms so that programs Increases number of objects
can be more flexible in their execution of
logic and behavior

Reduces multiple conditional statements

The CardLayoutPanel source code follows to demonstrate how the model in Figure 4-13 can be
developed:

[CardLayoutPanel . javal
// package name and import statements omitted

public class CardLayoutPanel extends JPanel implements ActionListener, ItemListener

{

// declarations omitted for the sake of brevity [Please check download code]

The CardLayoutPanel constructor lays out the manager for the two card panels, card1 and card2. The
cardl panel contains two independent buttons that implement the Strategy pattern on user specified

192

Developing Effective User Interfaces with JFC

text. The card2 panel reveals the text that results from the State pattern algorithm application. The
JButtonStrategyl class applies the Pig-Latin algorithm to the use text when solicited by the user. The
JButtonStrategy?2 button converts the user text to uppercase text by applying the AlphabeticChars algo-
rithm in its operations:

public CardLayoutPanel () {

setSize (700, 150);
cards = new JPanel
cardl = new JPanel
card2 = new JPanel
card3 = new JPanel

new CardLayout());
) 5
) 7
)

(
(
(
(.

’

// swap buttons
swapButtonl.addActionListener (this) ;
swapButtonl.setActionCommand ("Swap to Strategy 2");
swapButton2.addActionListener (this) ;
swapButton2.setActionCommand ("Swap to Strategy 1");

// Strategy Buttons
strategyButtonl.setActionCommand ("Strategy #1");
strategyButtonl.addActionListener (this) ;
strategyButton2.setActionCommand ("Strategy #2");
strategyButton2.addActionListener (this) ;

// Clear button
clearButtonl.setActionCommand("clear") ;
clearButtonl.addActionListener (this) ;
clearButton2.setActionCommand ("clear") ;
clearButton2.addActionListener (this);

topPanell.add(labelTextl) ;
topPanell.add(textfieldl) ;
topPanell.add(strategyButtonl) ;
topPanell.add(clearButtonl) ;
topPanell.add (swapButtonl) ;

topPanel?2.add(labelText2) ;
topPanel2.add (textfield2) ;
topPanel2.add(strategyButton2) ;
topPanel?2.add(clearButton2) ;
topPanel?2.add (swapButton2) ;

messageText = new JLabel ("Enter messages");

results.add (messageText) ;

results.setPreferredSize (new Dimension (700, 100));
results.setBorder (BorderFactory.createLineBorder (Color.blue, 2));
results.setBackground (DIGIT _COLOR) ;

cardl.add(topPanell) ;
card2.add (topPanel2) ;

cards.add(cardText[0], cardl);

193

Chapter 4

cards.add(cardText[1], card2);
card3.add(results, "Results Panel");

add (cards) ;
add (card3) ;
}

The CardLayoutPanel class implements the ActionListener interface so that component objects created
with that class can be registered using the add ActionListener(ActionListener 1) method shown in the
previous code segment. The actionPerformed(ActionEvent e) method then processes those requests that
are registered through the action listener. All of the JButton components in CardLayoutPanel implement
the Command pattern interface method named execute() so that the appropriate button control method
logic is executed when the user clicks that component. This is feasible because the application uses the
object reference to that execute() method for execution. If one of the swap buttons is selected, then the
sample application will alternate between strategy operations. The CardLayout next method is imple-
mented to swap operations, but alternative code that performs that same operation using the
swapNumber token and the CardLayout show method also demonstrate how to swap layouts:

public void actionPerformed(ActionEvent e) {

if (e.getActionCommand.startsWith("Swap")) {
CardLayout cardLayout = (CardLayout) (cards.getLayout());
// ++swapNumber ;
// cardlayout.show(cards, cardText [swapNumber%2]) ;
cardLayout.next (cards) ;

} else {
Command obj = (Command)e.getSource();
obj.execute() ;

}

The testStrategy(TestStrategy strategy, String m) method allows the application to send in the appropri-
ate Strategy algorithm class along with a String variable that will be applied to that algorithm. The object
reference, called strategy, invokes the test() method in the TestStrategy interface:

public boolean testStrategy(TestStrategy strategyApproach, String s) {
return strategyApproach.test(s);

}

The JButtonStrategy1 class invokes the execute() method when the user clicks the Strategy #1 button on
the GUI panel. The text specified in the text field is stripped into individual tokens that are passed into
the StartsWithAEIOU strategy class to return a boolean value, true or false, if the token starts with either
an a, e, i, o, or u. Strings that satisfy this test are converted to Pig-Latin by appending the word way to
the end of the string. Tokens that don’t match that test have their initial consonant value stripped from
the start of the word and appended to the end along with the letters ay:

class JButtonStrategyl extends JButton implements Command {

public JButtonStrategyl (String caption) { super (caption); }
public void execute() {

String s = textfieldl.getText();

String[] sArray = s.split("[,]1+");

StringBuffer sb = new StringBuffer();

194

Developing Effective User Interfaces with JFC

sb.append ("PIG-LATIN: ");

for (int i=0; i < sArray.length; i++) {

if (testStrategy(new StartsWithAEIOU(), sArray[il)) {
sb.append (sArray[i] + "way ");
} else {
sb.append (sArray[i] .replaceAll ("~ (["aeiouAEIOU]) (.+)", "s2S%$lay "));

}
}
messageText.setText (sb.toString()) ;

The JButtonStrategy?2 class invokes the execute() method when the user clicks the Strategy #2 button on
the GUI panel. The text specified in the text field is stripped into individual tokens that are passed into
the AlphabeticChars strategy class to determine if they can be properly converted to uppercase lettering:

class JButtonStrategy2 extends JButton implements Command {

public JButtonStrategy2 (String caption) { super(caption); }
public void execute() {

String s = textfield2.getText();

String[] sArray = s.split("[,1+");

StringBuffer sb = new StringBuffer();

sb.append ("UPPERCASE: ") ;

for (int i=0; i < sArray.length; i++) {

if (testStrategy(new convertUppercase(), sArray[i])) {
sb.append (sArray[i].toUpperCase()) ;
sb.append (" ");

}
}

messageText.setText (sb.toString()) ;
}
class JButtonClear extends JButton implements Command {

public JButtonClear (String caption) { super (caption); }
public void execute() {

textfieldl.setText ("");

textfield2.setText("");

messageText.setText ("User cleared text: ");

}

public void itemStateChanged(ItemEvent evt) {
CardLayout cl = (CardLayout) (cards.getLayout());
cl.show(cards, (String)evt.getItem());

}

public interface Command {
public void execute();
}

195

Chapter 4

The TestStrategy interface is implemented by the StartsWithAEIOU and AlphabeticChars classes so that
the CardLayoutPanel application can apply different string algorithms to the user-specified text. Regular
expression constructs are used to determine the patterns of the strings passed into the test method:

public interface TestStrategy {
public boolean test(String s);
}

public class StartsWithAEIOU implements TestStrategy ({
public boolean test(String s) {
if(s == null || s.length() == 0) return false;

(
return (s.toUpperCase().charAt(0) == 'A' ||
S.toUpperCase () .charAt (0) == 'E' ||
S.toUpperCase () .charAt (0) == 'I' ||
s.toUpperCase () .charAt (0) == '0' ||
s.toUpperCase() .charAt (0) == 'U'

) 7
}

public class convertUppercase implements TestStrategy {
public boolean test(String s) {
if(s == null || s.length() == 0) return false;
Pattern pattern = Pattern.compile("[a-zA-Z]");
Matcher match = pattern.matcher(s);

if (!match.find()) {
return false;
} else {

return (true);

}
}

// main routine omitted for brevity

Figure 4-14 represents the CardLayoutPanel application modeled in the source code above. Users can
enter text in the card layout show in the top panel and hit either strategy pattern button to apply the
appropriate Strategy algorithm to that text. Results of those actions will be rendered in the card layout
below. All of the button components employ the Command pattern to allow the application to determine
at run time the proper execute() method to invoke based on the user’s navigations.

196

Developing Effective User Interfaces with JFC

Figure 4-14

JFrame and JDialog Components

The JFrame class is used in Java applications to construct a top-level window for GUI components with
a border and title, as well as buttons for minimization, maximization, and closure. The JDialog class is
used to build pop-up windows for user decision making and aggregating unified data entries. Both
classes are important features of the Swing libraries to build cohesive GUI components.

This portion of the chapter will disclose how the JFrame and JDialog classes can be used in tandem to
build an effective Annotation Editor application. The sample application will allow users to mark up text
files so that meta data, in the form of comments and associated attributes, can be linked to a document
passage from a user-specified file. Annotations typically mean comments, notes, or explanations that can
be attached to the text without actually needing to touch the document. When a user opens a document
in the editor, all meta data text that is persisted in a MySQL database will be attached to the text marked
up by users who have commented on passages in that file (see Figure 4-15).

197

Chapter 4

Figure 4-15

The code here demonstrates how the Annotation Editor was developed. A MySQL database is used to
persist meta data associated with marked text in the document. Additionally, logic was added to save
the annotation to Microsoft Excel spreadsheet artifacts using Jakarta POI libraries, as well as XML docu-
ments using dom4; libraries:

// package name and import statements omitted
public class AnnotationEditor extends JFrame {
// declaration omitted for sake of brevity [please check out source download]

public AnnotationEditor () {
super ("Annotation Editor");

initPopupMenu () ;

popupListener = new PopupListener();

componentListener = new ComponentListener () ;

textComp = createTextComponent () ;

textComp .addMouselistener (popupListener) ;

textComp.addCaretListener (componentListener) ;

textComp.setBorder (BorderFactory.createCompoundBorder (
BorderFactory.createCompoundBorder (
BorderFactory.createTitledBorder ("Text"),
BorderFactory.createEmptyBorder(5,5,5,5)),
textComp.getBorder()));
textComp.setEditable (false) ;

scrollPane = new JScrollPane();

scrollPane.setVerticalScrollBarPolicy (JScrollPane.VERTICAL_SCROLLBAR_ALWAYS) ;
scrollPane.setPreferredSize (new Dimension (350, 150));

198

Developing Effective User Interfaces with JFC

scrollPane.setBorder (BorderFactory.createCompoundBorder (
BorderFactory.createCompoundBorder (
BorderFactory.createTitledBorder ("Annotations"),
BorderFactory.createEmptyBorder(5,5,5,5)),
scrollPane.getBorder()));

root = new DefaultMutableTreeNode ("Annotations") ;
tree = new JTree(root) ;
scrollPane.getViewport () .add(tree);

content = getContentPane() ;

content.add (textComp, BorderLayout.CENTER) ;
content.add(createToolBar (), BorderLayout.NORTH) ;
content.add(scrollPane, BorderLayout.SOUTH) ;
setJMenuBar (createMenuBar ()) ;

setSize (700, 500);

The AnnotationEditor (String filename) constructor method invokes the createTextComponent ()
method to instantiate a JTextArea component used to display the file used for annotating text. The
FileReader class is used to read the file for annotation and posit in the text area display textComp. The
center and north quadrants of a BorderLayout manager are used to display the annotation file and tool-
bar components:

public AnnotationEditor (String filename) {
super ("Annotation Editor");

textComp = createTextComponent () ;
File file = new File(filename) ;
if (file == null) return;

FileReader reader = null;
try {
reader = new FileReader (file);
textComp.read(reader, null);
} catch (IOException ex) {
JOptionPane.showMessageDialog (AnnotationEditor.this,
"File Not Found", "ERROR", JOptionPane.ERROR_MESSAGE) ;

}
finally {
if (reader !'= null) {
try {
reader.close() ;
} catch (IOException x) {}
}
}

Container content = getContentPane();

content.add (textComp, BorderLayout.CENTER) ;
content.add (createToolBar (), BorderLayout.NORTH) ;
setJMenuBar (createMenuBar ()) ;

setSize (320, 240);

protected JTextComponent createTextComponent () {

199

Chapter 4

JTextArea ta = new JTextArea() ;
ta.setLineWrap (true) ;
return ta;

}

The initPopupMenu() method kicks off a dialog panel that allows users to input meta data associated
with the person highlighted in the editor display. The actionPeformed(ActionEvent evt) method is imple-
mented to handle mouse events when the user right-clicks text within the GUI display. If the user selects
the Person link inside the pop-up panel, then the application will pop up the AnnotationPeopleDialog
component so that users can attach meta data to the text highlighted by the user:

protected void initPopupMenu () {
popup = new JPopupMenu () ;
ActionListener menulListener = new ActionListener (
public void actionPerformed (ActionEvent event)
if ("Person".equals(event.getActionCommand())) {
String[] markedText = textComp.getSelectedText ().trim().split("[

) |
{
)

for (int i=0; i < markedText.length; i++)
AnnotationPeopleDialog dlg =
new AnnotationPeopleDialog (textComp.getSelectedText () .trim(),
filename.toString(),
getAnnotationStart (),
getAnnotationEnd()) ;
dlg.show() ;
highlight (textComp, textComp.getSelectedText ().trim());
} else if ("Annotations".equals (event.getActionCommand())) {
AnnotationSearchResultsDialog d = new AnnotationSearchResultsDialog() ;
d.show () ;

I

Users can kick off the dialog panel for annotation entry by right-clicking their mouse inside the GUI pre-
sentation, which will pop up a panel with two user selections, Person or Export Excel. If the user selects
Person, then the dialog will present the data input form. Alternatively, if the user clicks Export Excel,
then all of the annotations that reside in the database will be exported to an Excel spreadsheet. Figure
4-16 illustrates how the AnnotationPeopleDialog display is rendered so that users can attach meta data
to the highlighted Gillian Stern text.

200

Developing Effective User Interfaces with JFC

/7

Figure 4-16

add images and listeners

itemPerson = new JMenultem("Person", createImagelcon ("images/people.gif"));
itemPerson.setActionCommand ("Person") ;
itemPerson.addActionListener (menuListener) ;
popup.add (itemPerson) ;
itemExportExcel = new JMenultem("Export Excel",
createImagelIcon ("images/excel.gif"));
itemExportExcel.setActionCommand ("Export Excel");
itemExportExcel.addActionListener (menuListener) ;
popup.add (itemExportExcel) ;

/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7

The code here is commented out, but is a new feature of J2SDK1.5 that
allows users to easily implement context-sensitive menus that appear when
a user right-clicks over a specified area in a GUI display. Rather than
checking the trigger within the MouseEvent class, control is passed to

to the JpopupMenu class itself. If the code below is commented out, then
the PopupListener class below should be omitted, as well as the
instantiation of that class above and its ties to the JTextArea mouse
listener in the textComp.addMouselListener (popuplListener) operation

JButton button = new JButton("Test");
button.setComponentPopupMenu (popup) ;
getContentPane () .add (button, BorderLayout.CENTER) ;

class PopupListener extends MouseAdapter {

public void mousePressed (MouseEvent e) { showPopup(e); }
public void mouseClicked(MouseEvent e) { showPopup(e); }
public void mouseReleased (MouseEvent e) { showPopup(e); }

201

Chapter 4

private void showPopup (MouseEvent e) {
if (e.isPopupTrigger()) {
popup.show (e.getComponent (), e.getX(), e.get¥());

The ComponentListener class implements the CaretListener interface to process the user marking activi-
ties inside the editor application. The Select operation in the PreparedStatement below takes the start and
end positions of the annotation text to determine what annotations have been affiliated with that text:

public class ComponentListener implements CaretListener {

public void caretUpdate (CaretEvent e) ({
displaySelectionInfo(e.getDot (), e.getMark());

protected void displaySelectionInfo(final int dot, final int mark) {
SwingUtilities.invokeLater (new Runnable () {
public void run() {

setAnnotationInfo (mark, dot);
// retrieve annotation text
try {
Class.forName ("org.gjt.mm.mysqgl.Driver") ;
Connection conn =
DriverManager.getConnection ("jdbc:mysgl://localhost/annotationtest", "", "");
PreparedStatement preparedStmt =
conn.prepareStatement ("SELECT F_FILENAME, ANNOTATION_TYPE,
ANNOTATION_TEXT FROM ANNOTATION_TABLE WHERE ? >= ANNOTATION_START AND ? <=
ANNOTATION_END") ;
preparedStmt.setInt(1, mark);
preparedStmt.setInt(2, dot);
ResultSet result = preparedStmt.executeQuery();
if (result !'= null) {
String annotationFilename="";
String annotationType="";
while (result.next()) {
annotationFilename = result.getString(l);
annotationType = result.getString(2);

If the annotation filename is not empty, then all of the attributes of the annotation file are retrieved (so
that they can be added to the JTree component for visualization) and the database connection is closed:

if (!annotationFilename.equals("")) {
preparedStmt =
conn.prepareStatement ("SELECT * FROM " + annotationType +
" WHERE FILENAME = ?" +
" AND ? >= ANNOTATION_START AND ? <= ANNOTATION_END") ;
preparedStmt.setString(1, annotationFilename) ;
preparedStmt.setInt(2, mark);
preparedStmt.setInt(3, dot);

202

Developing Effective User Interfaces with JFC

result = preparedStmt.executeQuery();

int itemsCount = 0;

root = new DefaultMutableTreeNode ("Annotations");
tree = new JTree(root);

DefaultMutableTreeNode items;

if (annotationType.equals ("PERSON")) {
while (result.next()) {

items = new DefaultMutableTreeNode ("Item" +
(++itemsCount)) ;

root.add (items) ;

items.add (new DefaultMutableTreeNode ("First Name= " +
result.getString(2)));

items.add (new DefaultMutableTreeNode ("Middle Name= " +
result.getString(3)));

items.add (new DefaultMutableTreeNode ("Last Name= " +
result.getString(4)));

items.add (new DefaultMutableTreeNode ("DOB= " +
result.getString(5)));

items.add (new DefaultMutableTreeNode ("Comments= " +

result.getString(6)));
}
}
scrollPane.getViewport () .add(tree);
tree.expandRow (0) ;

}
conn.close() ;
} catch (Exception e) {
logger.info ("Exception: " + e.toString());

// setAnnotationInfo(), getAnnotationStart() and getAnnotationEnd() omitted for
the sake of brevity

The createToolBar() method instantiates a new toolbar component to add the actions that a user can per-
form in the editor application. Those actions include the opening and printing of files and the exporting
of annotations to XML and Excel spreadsheet artifacts:

protected JToolBar createToolBar() {
JToolBar bar = new JToolBar();

bar.add (getOpenAction()) .setText ("");
bar.add (getPrintAction()) .setText ("");
bar.add (getXmlAction()) .setText ("");
bar.add (getExcelAction()) .setText("");

return bar;

203

Chapter 4

The highlight and removeHighlights methods are invoked by the user when text inside the editor is
marked and unmarked by mouse activities by the user. The text marked inside the text area component
textComp is collected by the invocation of the getHighlighter() method, and the text is highlighted in the
view by the addHighlight method. Alternatively, text highlights are removed by invoking the
removeHighlights method:

public void highlight (JTextComponent textComp, String pattern) {

try {
hilite = textComp.getHighlighter();
doc = textComp.getDocument () ;
String text = doc.getText (0, doc.getLength());
int pos = 0;

// save annotation position and length for future reference
int X = text.indexOf (pattern, pos);
if (x > 0) {
hilite.addHighlight (x, x+pattern.length(), myHighlightPainter) ;

}

} catch (BadLocationException e) {
logger.severe ("BadLocationException e" + e.toString());

}

}

public void removeHighlights (JTextComponent textComp) {
Highlighter hilite = textComp.getHighlighter () ;
Highlighter.Highlight[] hilites = hilite.getHighlights();

for (int i=0; i<hilites.length; i++) {
if (hilites[i].getPainter() instanceof MyHighlightPainter) {
hilite.removeHighlight (hilites[i]);

The HighlightPainter class is instantiated with color attributes sent to the Color constructor so that all
highlights in the text document persist the same color throughout the text. The createMenuBar ()
method returns a JMenuBar object with actions for opening and printing files, as well as for persisting
the annotations in XML and Microsoft Excel files and finally for exiting the application altogether:

204

Highlighter.HighlightPainter myHighlightPainter = new MyHighlightPainter (new

Color(255,204,51));

class MyHighlightPainter extends DefaultHighlighter.DefaultHighlightPainter ({
public MyHighlightPainter (Color color) {
super (color) ;
}
}

protected JMenuBar createMenuBar () {
JMenuBar menubar = new JMenuBar () ;
JMenu file = new JMenu("File");
menubar.add(file) ;

file.add (getOpenAction()) ;

Developing Effective User Interfaces with JFC

file.add(getPrintAction()) ;
file.add (getXmlAction())
file.add (getExcelAction (
file.add (new ExitAction(
return menubar;

))
))

The Action interface provides an extension to the ActionListener interface whereby an application needs
to implement an actionPerformed() method to obtain desirable system behavior. That behavior could be
for a fly-over text display or to modify component event generation. The AnnotationEditor establishes
four user actions for File Open, Print, XML, and Excel spreadsheet generation operations.

The peopleAction method kicks off a dialog that allows users to add people information that has been
marked in the editor display. When invoked, the application creates a new instance of the
AnnotationPeopleDialog class, the class reference invoked the show () method to display the panel to
the user for data input:

protected Action getOpenAction() { return openAction; }
protected Action getPrintAction() { return printAction; }
protected Action getXmlAction() { return xmlAction; }
protected Action getExcelAction() { return excelAction; }

protected JTextComponent getTextComponent () { return textComp; }

protected Action getPeopleAction() { return peopleAction; }

public class peopleAction extends AbstractAction {
public peopleAction() {
super ("People", new Imagelcon ("images/people.gif"));
}
public void actionPerformed(ActionEvent ev) {
AnnotationPeopleDialog dlg = new AnnotationPeopleDialog () ;
dlg.show() ;

}

public class ExitAction extends AbstractAction ({
public ExitAction() { super("Exit"); }
public void actionPerformed (ActionEvent ev) { System.exit (0); }

The PrintAction class collects all information from the Person database table and kicks off a print GUI to
allow users to dictate where the aggregated people information will be printed. All of the annotation text
that will be submitted for printout will be aggregated through the Select construct placed in the
PreparedStatement that follows. Each individual row of the Person table will be stuffed into an instance
of a AnnotationPersonRecord object and added to a list collection before it is passed to the printArrays
method of the AnnotationPrint class:

public class PrintAction extends AbstractAction {
public PrintAction() {
super ("Print", new ImageIcon("icons/print.gif"));
}

public void actionPerformed(ActionEvent ev) {

205

Chapter 4

try {
Class.forName ("org.gjt.mm.mysqgl.Driver") ;
Connection conn =
DriverManager.getConnection ("jdbc:mysqgl://localhost/annotationtest",
no,)
PreparedStatement preparedStmt =
conn.prepareStatement ("SELECT * FROM PERSON WHERE FILENAME = ?");
preparedStmt.setString(1, filename.toString());

ResultSet result = preparedStmt.executeQuery();

ArrayList list = new ArrayList();

while (result.next()) {
AnnotationPersonRecord person = new AnnotationPersonRecord() ;
person.setFirstName (result.getString(2)) ;
person.setMiddleName (result.getString(3)) ;
person.setLastName (result.getString(4)) ;
person.setDob (result.getString(5)) ;
person.setComments (result.getString(6)) ;
person.setFilename (result.getString (7)) ;
person.setAnnotationStart (result.getString(8)) ;
person.setAnnotationEnd (result.getString(9))
list.add (person) ;

7

}
if (list != null) {
for (int 1=0; 1 < list.size(); 1i++) {
AnnotationPersonRecord element =
(AnnotationPersonRecord) list.get (i) ;
}
AnnotationPrint.printArrayS(list);
}
} catch (Exception e) {
logger.info ("Exception: " + e.toString());

The createDocument(ResultSet rs) method works in conjunction with the XMLAction class to export
annotation data to an XML file upon user request. Libraries are used from the dom4j package to craft an
XML file artifact with the annotation text. The addElement method adds a new Element node to the
topic branches of the document data structure:

static public org.doméj.Document createDocument (ResultSet rs) {

org.dom4j.Document document = org.dom4j.DocumentHelper.createDocument () ;

org.dom4j.Element root = document.addElement("Annotation")
.addAttribute("text", "Default annotation")
.addAttribute("value", "default");

try {
org.dom4j.Element topic = null;
int item=0;

while (rs.next()) {
++item;
topic = root.addElement("person").addAttribute("value", "item"

) .addAttribute("text", String.valueOf (item)) ;

206

Developing Effective User Interfaces with JFC

topic.addElement ("attribute").addAttribute("value", "First Name"
) .addAttribute("text", rs.getString(2));

topic.addElement ("attribute").addAttribute("value", "Middle Name"
) .addAttribute("text", rs.getString(3));

topic.addElement ("attribute").addAttribute("value", "Last Name"
) .addAttribute("text", rs.getString(4));

topic.addElement ("attribute").addAttribute("value", "DOB"
) .addAttribute("text", rs.getString(5));

topic.addElement ("attribute").addAttribute("value", "Comments"
) .addAttribute("text", rs.getString(6));

topic.addElement ("attribute").addAttribute("value", "Filename"
) .addAttribute("text", rs.getString(7));

}
} catch (Exception sgle) {

logger.info ("SQLException: " + sgle.toString());
}

return document;

The XMLAction class establishes a database connection to the annotationtest database and performs a
select operation so that the attributes of the annotation table will be output to an XML file. The data col-
lected from the SQL operation is passed to the createDocument method described earlier:

public class XmlAction extends AbstractAction {
public XmlAction() {
super ("XML", new Imagelcon("icons/xml.gif"));
}
public void actionPerformed(ActionEvent ev) {
logger.info("Generating XML.") ;
try {
Class.forName ("org.gjt.mm.mysqgl.Driver") ;
Connection conn =
DriverManager.getConnection ("jdbc:mysqgl://localhost/annotationtest",
i, w8
PreparedStatement preparedStmt =
conn.prepareStatement ("SELECT * FROM PERSON WHERE FILENAME = ?");
preparedStmt.setString(1, filename.toString());

ResultSet result = preparedStmt.executeQuery();
XMLWriter writer = new XMLWriter (new FileWriter("Annotation.xml"),
OutputFormat.createPrettyPrint()) ;
writer.write(createDocument(result));
writer.close();
} catch(Exception e) {
logger.info ("Exception: " + e.toString());

}

The ExcelAction class implements the Open-source Jakarta POI libraries to convert the Person table data
to an Excel spreadsheet document. New workbook and sheet objects are created with the POI libraries
and the annotation attributes that make up the annotation table are saved to those objects. For demon-
stration purposes, only the first, middle, and last name values are placed in the worksheet template:

207

Chapter 4

public class ExcelAction extends AbstractAction {
public ExcelAction() {

}

super ("Excel", new Imagelcon("icons/excel.gif"));

public void actionPerformed(ActionEvent ev) {

20)));

logger.info ("Generating Excel Spreadsheet.");
int rownum;

try {

FileOutputStream out = new FileOutputStream("annotations.xls");
HSSFWorkbook wb = new HSSFWorkbook () ;

HSSFSheet s = wb.createSheet () ;
HSSFRow r = null;

HSSFCell ¢ = null;

HSSFCellStyle cs = wb.createCellStyle();
HSSFDataFormat df = wb.createDataFormat () ;
HSSFFont f = wb.createFont();

f.setFontHeightInPoints ((short) 12);
cs.setFont (f);
cs.setDataFormat (HSSFDataFormat.getBuiltinFormat ("text")) ;

wb.setSheetName (0, "Test", HSSFWorkbook.ENCODING_COMPRESSED_UNICODE) ;
// set title row
String[] titles = {"First Name", "Middle Name", "Last Name" };
r = s.createRow(0) ;
for (int i=0; i < titles.length; i++) {
s.setColumnWidth((short) (i + 1), (short) ((50 * 8) / ((double) 1 /

= r.createCell ((short) (i + 1));

.setCellStyle(cs);

.setEncoding(HSSFCell.ENCODING_COMPRESSED_UNICODE) ;
.setCellValue(titles[i]);

Qo

The following code segment demonstrates how the SQL construct is built and executed so that the data
collected can be saved to the Excel template file:

208

"o
’

uu);

try {
Class.forName ("org.gjt.mm.mysgl.Driver") ;
Connection conn =
DriverManager.getConnection ("jdbc:mysqgl://localhost/annotationtest",

PreparedStatement preparedStmt =
conn.prepareStatement ("SELECT * FROM PERSON") ;

ResultSet result = preparedStmt.executeQuery() ;

int row = 1;

while (result.next()) {

Developing Effective User Interfaces with JFC

r = s.createRow(row) ;

c = r.createCell ((short) (1));

c.setCellStyle(cs);

c.setEncoding (HSSFCell.ENCODING_COMPRESSED_UNICODE) ;
c.setCellvalue(result.getString(2));

c = r.createCell ((short) (2));

c.setCellStyle(cs);

c.setEncoding (HSSFCell.ENCODING_COMPRESSED_UNICODE) ;
c.setCellvalue(result.getString(3));

c = r.createCell ((short) (3));

c.setCellStyle(cs);

c.setEncoding (HSSFCell.ENCODING_COMPRESSED_UNICODE) ;
c.setCellvalue(result.getString(4));

row++;

}

} catch (Exception e) {
logger.info ("Exception: " + e.toString());
}
wb.write (out) ;
out.close() ;
} catch(IOException ioe) { logger.info("IOException= " + ioe.toString()); }
}

The OpenAction class uses the JFileChooser class to enable users to dynamically determine the files that
will read into the AnnotationEditor for annotation operations. When a user selects the Open link in the
menu bar, the showOpenDialog method will pop up a dialog box that allows users to drill across the
system’s file structures for retrieval and manipulation:

// An action that opens an existing file
class OpenAction extends AbstractAction {
public OpenAction() {
super ("Open", new ImagelIcon("icons/open.gif"));

}

// Query user for a filename and attempt to open and read the file into the
// text component.
public void actionPerformed(ActionEvent ev) {
JFileChooser chooser = new JFileChooser();
if (chooser.showOpenDialog (AnnotationEditor.this) !=
JFileChooser .APPROVE_OPTION)

return;
filename = chooser.getSelectedFile() ;
if (filename == null)

return;

FileReader reader = null;
try {
reader = new FileReader (filename) ;
textComp.read (reader, null);
// read annotations and markup text here
try {
Class.forName ("org.gjt.mm.mysqgl.Driver") ;

209

Chapter 4

The code snippet below establishes a database connection with the annotationtest database to retrieve
the annotations associated with the document opened in the code above. Once all of the annotations
have been retrieved, then the text associated with those annotations is highlighted in the
AnnotationEditor application:

Connection conn =
DriverManager .getConnection ("jdbc:mysqgl://localhost/annotationtest",
nn n u) .
PreparedStatement preparedStmt =
conn.prepareStatement ("SELECT ANNOTATION_START, ANNOTATION_END,
ANNOTATION_TEXT FROM ANNOTATION_TABLE") ;
ResultSet result = preparedStmt.executeQuery();
while (result.next()) {
highlight (textComp, result.getString(3));
}

} catch (Exception e) {
logger.info ("Exception: " + e.toString());

}

} catch (IOException ex) {
JOptionPane.showMessageDialog (AnnotationEditor.this,
"File Not Found", "ERROR", JOptionPane.ERROR_MESSAGE) ;

} finally {
if (reader != null) {

try {
reader.close();
} catch (IOException x) {}

}

}
// main method omitted for the sake of brevity

The importance of dialog components cannot be understated because they allow applications to orga-
nize and prioritize data for your user interface so that information can be properly propagated to your
data persistence mechanism, which might be a database or collection class implementation. When an
application invokes a dialog box, it forces the user to aggregate information in a controlled fashion from
a user so that information can be added or modified for your application’s operations.

Some dialog applications are modal, which means that they block all user input to windows in a pro-
gram when they are visible, but the AnnotationDialog application is nonmodal because it uses the
JDialog class directly.

The AnnotationDialog application below enables users to dynamically add information about people
that a user has marked for insertion by the user in the editor application (see Figure 4-17).

Person

Export Excel
Figure 4-17

210

Developing Effective User Interfaces with JFC

// [AnnotationPeopleDialog.javal]
// package name and import statements omitted
public class AnnotationPeopleDialog extends JDialog implements ActionListener {
// declarations omitted for the sake of brevity [please look at source downloads]
public interface Command {
public void execute();

}

public AnnotationPeopleDialog(String annotation, String filename,
int annotationStart, int annotationEnd) {
// parameter save omitted for the sake of brevity
createGUIDisplay () ;
}

public AnnotationPeopleDialog() {
createGUIDisplay () ;
}

public void createGUIDisplay () {
JPanel panelAll = new JPanel (new GridLayout(0,1,5,5));
JPanel panelTestl = new JPanel (new GridLayout(0,1,5,5));
panelTestl.add (panelGUI()) ;

JPanel panelTest2 = new JPanel (new GridLayout(0,1,5,5));
panelTest?2.add (panelComments ()) ;

panelAll.add (panelTestl) ;
panelAll.add(panelTest2) ;

String[] name = annotation.trim().split("[1+");
if (name.length == 3) {
firstName.setText (name[0]) ;
middleName.setText (name[1l]) ;
lastName. setText (name[2])
} else {
firstName.setText (name[0]) ;
lastName.setText (name[l]) ;

’

}
getContentPane () .add (panelAll) ;
getContentPane () .setVisible (true) ;

pack () ;

The panelGUI () method establishes a GridLayout display so that users can enter user data that will be
affiliated with highlighted text inside the AnnotationEditor. Figure 4-16 represents the GUI presentation
that will be rendered when the panelGUI () method is invoked:

public JPanel panelGUI () {
JPanel peoplePanel = new JPanel (new GridLayout(0,2,5,5));

firstName = new JTextField(20) ;

middleName = new JTextField(20);
lastName = new JTextField(20);

211

Chapter 4

modell = new SpinnerDateModel () ;
modell.setCalendarField(Calendar.WEEK_OF_MONTH) ;

spinnerl = new JSpinner (modell) ;

JSpinner.DateEditor editorl = new JSpinner.DateEditor (spinnerl, "MM/dd/yyyy");:
spinnerl.setEditor (editorl) ;

// add items to panel

peoplePanel .add (new JLabel ("First Name:"));

peoplePanel .add (firstName) ;

peoplePanel .add (new JLabel ("Middle Name:")) ;

peoplePanel .add (middleName) ;

peoplePanel.add (new JLabel ("Last Name:"));

peoplePanel.add(lastName) ;

peoplePanel .add (new JLabel ("Date of Birth:"));

peoplePanel .add (spinnerl) ;

titledBorder = BorderFactory.createTitledBorder (new EtchedBorder
(EtchedBorder .LOWERED), "Person Information");

titledBorder.setTitleJustification(TitledBorder.LEFT) ;

peoplePanel .setBorder (titledBorder) ;

return peoplePanel;

The panelComments() method generates the text area component that collects user comments that will
be associated with the name and date of birth text in the AnnotationPeopleDialog class:

public JPanel panelComments () {
JPanel peoplePanel = new JPanel (new GridLayout(0,1,5,5));

peopleComments = new JTextArea("");
peopleComments.setFont (new Font ("Serif", Font.ITALIC, 16));
peopleComments.setLineWrap (true) ;
peopleComments.setWrapStyleWord (true) ;
areaScrollPanel = new JScrollPane (peopleComments) ;
areaScrollPanel.setVerticalScrollBarPolicy (
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS) ;
areaScrollPanel.setPreferredSize (new Dimension (50, 50));
areaScrollPanel.setBorder (BorderFactory.createCompoundBorder (
BorderFactory.createCompoundBorder (
BorderFactory.createTitledBorder (" People Comments"),
BorderFactory.createEmptyBorder(5,5,5,5)),
areaScrollPanel.getBorder()));

addPersonRecord = new JAddPersonButton (" Add Person Record ");
addPersonRecord.addActionListener (this) ;
addPersonRecord.setFont (navigationFont) ;

addPersonRecord.setBorder (raisedBevelBorder) ;

peoplePanel .add (areaScrollPanel) ;
peoplePanel .add (addPersonRecord) ;

return peoplePanel;

212

Developing Effective User Interfaces with JFC

The ComboListener class listens for user actions on the combobox component on the GUI display. The
actionPerformed(ActionEvent e) method implements the Command pattern so that user activities are
handled appropriately by the AnnotationEditor application:

class ComboListener implements ActionListener {
public void actionPerformed (ActionEvent e) {
JComboBox cb = (JComboBox)e.getSource() ;
logger.info("Combo selection= " + (String)cb.getSelectedItem());

}

public void actionPerformed (ActionEvent e) {
Command obj = (Command)e.getSource();
try {
obj.execute() ;
} catch (Exception ex) ({
logger.info ("Exception: " + ex);

}

The JAddPersonButton method polymorphically invokes the execute () method, which uses the
JOptionPane class to pop up a standard dialog box to collect relevant annotation data that relates to the
person highlighted in the Annotation Editor. The showConfirmDialog method asks the user whether or
not the information entered should be persisted by the application or neglected when the dialog box
exits. If the user selects Yes when queried, “Are You Sure?”, then an SQL prepared statement is con-
structed to aggregate the user information for insertion to the person and annotation_table tables,
respectively:

class JAddPersonButton extends JButton implements Command {

public JAddPersonButton (String caption) { super (caption); }
public void execute() {
int selection = JOptionPane.showConfirmDialog(null, "Are you sure?",
"People database insert.",
JOptionPane.YES_NO_CANCEL_OPTION) ;
if (selection == 0) {

try {
Class.forName ("org.gjt.mm.mysqgl.Driver") ;
Connection conn =

DriverManager.getConnection ("jdbc:mysqgl://localhost/annotationtest", "", "");
PreparedStatement preparedStmt =
conn.prepareStatement ("INSERT INTO PERSON (FIRST_NAME, MIDDLE_NAME,
LAST_NAME, DOB, COMMENTS, FILENAME, ANNOTATION_START, ANNOTATION_END) VALUES
(2,2,2,9,8,2,%,2) ") 5

preparedStmt.setString(1, firstName.getText().toString());
preparedStmt.setString(2, middleName.getText ().toString());
preparedStmt.setString(3, lastName.getText().toString());
preparedStmt.setString(4,

((JSpinner.DateEditor) spinnerl.getEditor()) .getTextField() .getText ());
preparedStmt.setString(5, peopleComments.getText ().toString());
preparedStmt.setString(6, filename);

213

Chapter 4

preparedStmt.setInt(7, annotationStart);
preparedStmt.setInt(8, annotationEnd);
preparedStmt . executeUpdate () ;

preparedStmt =
conn.prepareStatement ("INSERT INTO ANNOTATION_TABLE (F_FILENAME,

ANNOTATION_TYPE, ANNOTATION_START, ANNOTATION_END, ANNOTATION_TEXT) VALUES
(?,?2,2,2,2)");

preparedStmt.setString(1, filename);

preparedStmt.setString(2, "PERSON");

preparedStmt.setInt(3, annotationStart);

preparedStmt.setInt(4, annotationEnd) ;

preparedStmt.setString(5, annotation);

preparedStmt . executeUpdate () ;

conn.close() ;

} catch(Exception e) { logger.info("Exception = " + e.toString());}
} else {
logger.info("User selected: NO");

}
hidePanel () ;

}

public void hidePanel () {
setVisible(false) ;
}

// main method omitted for brevity

Managing Navigation Flows in Swing
Applications

Installation wizards are common Swing applications to consign software applications and their libraries
to their file systems during their development or deployment tasks. Wizards typically perform initializa-
tion activities, gather user directory designations, and perform post-installation tasks for clean-up
actions by leading users through a series of requests to ensure that applications and their libraries are
configured properly for operations. This last segment of the chapter will demonstrate how an
InstallationWizard application can be developed using the State Pattern, a GoF behavioral pattern, to
delegate behaviors across objects during user navigations at run time. Each state, or step, of the wizard
is encapsulated as an object, which is affiliated to a subclass of an abstract class for proper state manage-
ment This same application could have easily been developed with the CardLayout manager using its
first(), last(), previous(), and next() methods, but the intent was to show how you could manage those
flows in a different fashion. Additionally, the Singleton pattern is implemented in the sample application
to demonstrate how a single object can be created and referenced from a program without incurring the
overhead of creating superfluous objects.

214

Developing Effective User Interfaces with JFC

The following table outlines some of benefits and drawbacks of implementing both patterns in your
applications.

Pattern Benefits Consequences
Singleton Direct control over how many instances Inability to subclass an
can be created application that implements it,

which prevents extendibility
Ensures that a class has only one instance
and enforces controlled access to the
sole instance

State Allows an object to modify its behavior Preponderance of classes to
when its state changes internally support the different states of an
application

Localizes all behavior of a particular
state in a single object

Polymorphically defines behaviors and
states of an object

The individual panel display components represent state-specific behaviors that are derived from the
abstract State class. The application maintains a pointer to the current state position in the installation
process and reacts to changes by the user as navigation is performed in a forward and backward direc-
tion using the Previous and Next buttons on the GUI display (see Figure 4-18).

Figure 4-18

The InstallationWizard application implements two JPanel components, componentPanel and
buttonPanel, to display the individual Swing visualizations for user input and the buttons used for pre-
vious/next operations, respectively:

// [InstallationWizard.javal
// package name and import statements omitted

public class InstallationWizard extends JFrame implements ActionListener ({

private static Logger logger = Logger.getlLogger ("InstallationWizard");

215

Chapter 4

private
private
private
private
private
private

JPreviousButton previousButton = new JPreviousButton("<< Previous") ;

JNextButton nextButton = new JNextButton ("Next >>");
JFinishButton finishButton = new JFinishButton("Finish");
JPanel componentPanel;

JPanel buttonPanel;

Context context = new Context () ;

InstallationWizard() {
super ("State Pattern");
setDefaultCloseOperation (EXIT ON_CLOSE) ;

The application establishes a context reference that the application uses to determine proper panel visu-
alization flows. The FlowLayout manager is used with the buttonPanel to position the buttons used for
directing the wizard flow. The context reference invokes the getColor () method to set the background
color of the panel component (the default color is Yellow) with the setBackground (Color bg)
method. Additionally, the previousButton and finishButton components are disabled by the

setEnabled (Boolean b) method:

context = new Context();

componentPanel = new JPanel () ;

previousButton.addActionListener (this) ;
nextButton.addActionListener (this);
finishButton.addActionListener (this) ;

buttonPanel = new JPanel () ;
buttonPanel.setLayout (new FlowLayout ());
buttonPanel .add (previousButton) ;
buttonPanel .add (nextButton) ;
buttonPanel.add (finishButton) ;

getContentPane () .add (componentPanel, BorderLayout.CENTER) ;
getContentPane () .add (buttonPanel, BorderLayout.SOUTH) ;

// default is yellow
componentPanel . setBackground (context.getColor()) ;
previousButton.setEnabled(false) ;
finishButton.setEnabled(false);
componentPanel .add (context.getPanel (), BorderLayout.CENTER) ;
componentPanel . setBackground (context.getColor()) ;
componentPanel .validate() ;

setSize(700,300) ;

public void actionPerformed(ActionEvent e) {
Command obj = (Command)e.getSource() ;
obj.execute() ;

public interface Command {
public void execute() ;

216

Developing Effective User Interfaces with JFC

The JPreviousButton component manages all user requests when the Previous button is clicked by the
user. The execute () method uses the application’s context reference to invoke the previous () and
getState () methods to set the application to its previous state. The removeall () method of the
Container class is then used to remove all of the components from the container so that the appropriate
panel display will be positioned in the user visualization:

class JPreviousButton extends JButton implements Command {

public JPreviousButton (String caption) { super (caption); }
public void execute() {

context.previous() ;

context.getState() ;

componentPanel.removeAll () ;
componentPanel .add (context.getPanel (), BorderLayout.CENTER) ;
componentPanel . setBackground (context.getColor()) ;
componentPanel .validate() ;

nextButton.setEnabled(true) ;
finishButton.setEnabled (false) ;

if (context.getColor() == Color.yellow) {
previousButton.setEnabled (false) ;
} else {

previousButton.setEnabled (true) ;

The JNextButton component implements the same methods as the JPreviousButton component to render
the appropriate user display when the installation invokes the Next button on the GUI presentation.
When the Next button is invoked by the user, all of the components on the panel display will be
removed using the removeAll() method. Once the remove operation has been executed, the next color
panel will be discovered by using the reference state of the application using the context reference:

class JNextButton extends JButton implements Command {

public JNextButton (String caption) { super (caption); }
public void execute() {

context.next () ;

context.getState() ;

componentPanel.removeAll () ;

componentPanel.add (context.getPanel (), BorderLayout.CENTER) ;
componentPanel . setBackground (context.getColor()) ;
componentPanel .validate() ;

previousButton.setEnabled (true) ;

if (context.getColor() == Color.blue) {
nextButton.setEnabled(false) ;
finishButton.setEnabled(true) ;

} else {
nextButton.setEnabled (true) ;
finishButton.setEnabled(false);

217

Chapter 4

The FinishButton class is enabled when the user has reached the final panel display in the series of four
panel components:

class JFinishButton extends JButton implements Command {

public JFinishButton (String caption) { super(caption); }
public void execute() {
System.exit (1) ;
}
}

public static void main(String s[]) {
InstallationWizard st = new InstallationWizard();
st.setVisible(true) ;

The abstract State class is a generalized class used by the Context class to establish a blueprint needed to
describe the methods needed to handle the state flows in the wizard across the different panel displays.
Two get methods, getColor() and getPanel(), are used to retrieve color and panel values of the individual
JPanel components implemented for display:

[State.javal

public abstract class State {
public abstract void handlePrevious (Context c);
public abstract void handleNext (Context c);
public abstract Color getColor();
public abstract JPanel getPanel () ;

The Context class below sets the initial state to yellow, so the YellowState application will start the instal-
lation program and create objects for the four color applications: Blue, Green, Orange, and Yellow:

// [Context.javal
// package name and import statements omitted

public class Context {

private State state = null;
public BlueState blueState;
public GreenState greenState;
public OrangeState orangeState;
public YellowState yellowState;

public Context (State state) { this.state = state; }
public Context() {

// get instances for all panels

blueState = new BlueState();

greenState = new GreenState();

218

Developing Effective User Interfaces with JFC

orangeState = new OrangeState();
yvellowState = new YellowState();

state = getYellowInstance() ;
}
public State getState() { return state; }
public void setState(State state) { this.state = state; }
public void previous() { state.handlePrevious (this); }
public void next() { state.handleNext (this); }
public Color getColor() {
return state.getColor();
}
public JPanel getPanel () {
return state.getPanel();

}

The following methods are used to return references to the object instances of the four different panel
displays:

public BlueState getBluelInstance() {
return blueState.getInstance() ;

}

public GreenState getGreenInstance() {
return greenState.getInstance();
}

public OrangeState getOrangeInstance() {
return orangeState.getInstance() ;

}
public YellowState getYellowInstance() {

return yellowState.getInstance() ;

}

The YellowState class is the first panel display invoked by the Installation Wizard to start the install pro-
cess. The YellowState constructor method initializes all of the different textfield components that are
used for data collection. The getInstance() method creates a new YellowState instance for reference by
other objects if the reference has not been created. If a reference value has already been established, then
the reference will be returned to the object that references it:

// [YellowState.javal]
// package name and import statements omitted

public class YellowState extends State {
// component declarations and initialization omitted for better clarity
static private YellowState _instance = null;

public YellowState() {
firstName = "";

219

Chapter 4

lastName = "";
city = "";

state = "";
zipcode = "";
generatePanel () ;

}

static public YellowState getInstance() {
if(null == instance) {
instance = new YellowState();
}

return instance;

The handlePrevious (Context c¢) and handleNext (Context c) methods invoke the setvalues ()
method to persist the values entered into the form display by the user. Once the data has been saved off
the local instance variables, the context reference is implemented to obtain the reference to the next panel
display. The get<color>Instance () method acquires the Singleton instance generated in the individ-
ual panel components:

public void handlePrevious (Context c) {
setValues () ;
c.setState(c.getBlueInstance()) ;

}

public void handleNext (Context c) {
setValues () ;
c.setState(c.getOrangeInstance()) ;

}
public Color getColor() { return (Color.yellow); }

public JPanel getPanel() {
return panelYellow;

}

public void generatePanel () {
log.info("[YellowState:generatePanell]") ;
panelYellow = new JPanel (new GridLayout(0,1));
panelYellow.setSize (200,200) ;

fnameLabel) ;
fnameTextfield) ;
lnameLabel) ;
InameTextfield) ;
cityLabel) ;
cityTextfield) ;
stateLabel) ;
stateTextfield) ;
zipcodeLabel) ;
zipcodeTextfield) ;

formPanel.add
formPanel .add
formPanel .add
formPanel.add
formPanel .add
formPanel .add
formPanel.add
formPanel .add
formPanel .add
formPanel.add

Border etchedBdr = BorderFactory.createEtchedBorder () ;
Border titledBdr = BorderFactory.createTitledBorder (etchedBdr, "Registration
Form") ;

220

Developing Effective User Interfaces with JFC

Border emptyBdr = BorderFactory.createEmptyBorder (15,15,15,15);
Border compoundBdr=BorderFactory.createCompoundBorder (titledBdr, emptyBdr) ;
formPanel .setBorder (compoundBdr) ;

getValues () ;

panelYellow.add (formPanel) ;
}

The getvalues () method sets the text in the various textfield components using the setText methods
that are part of the JTextField class. The setValues () method retrieves the text from the textfield com-
ponents and saves them to the various instance variables associated with the panel display:

public void getValues() {
fnameTextfield.setText (firstName) ;
lnameTextfield.setText (lastName) ;
cityTextfield.setText (city) ;
stateTextfield.setText (state);
zipcodeTextfield.setText (zipcode) ;
}

public void setValues() {
firstName = fnameTextfield.getText () ;
lastName = lnameTextfield.getText();
city = cityTextfield.getText();
state = stateTextfield.getText () ;
zipcode = zipcodeTextfield.getText () ;

}

An important object-oriented (OO) concept to remember is that the InstallationWizard uses object com-
position to alter the behavior of the objects during run time. The wizard application delegates behavior
to a known interface and varies the implementation details for the different installation panels.

Summary

This chapter covered a tremendous amount of ground regarding all of the JFC components. All of

the Swing top-level containers were discussed (JFrame, JDialog, and JPanel), as well as many of the
other Swing visualization components (JButton, JLabel, JSpinner, JTextField, JTextArea, and others).
Lastly, Swing listener and layout managers were implemented along with GoF design patterns to craft
effective user interface displays. All of the sample applications should help developers address complex
GUI development activities and influence designers with their modeling conceptualizations.

The difficulty in explaining the Java Foundation Class (JFC) libraries is that they’re broad and varied.
The complexities of their implementation can be overcome, as with many things in software develop-
ment, by actually doing it. With a better understanding of what is possible with JFC packages, a devel-
oper can approach a task with confidence that it will get done.

221

Persisting Your Application
Using Files

Saving an application’s state is one of the most important qualities necessary to reuse an applica-
tion. Imagine what life would be like if word processors could not save documents, or image
manipulation programs could not save images! If a user had to retype a document every time he
or she wanted to print it, many tasks now common to computers would probably still be done by
hand. An end user calls the ability of a word processing application to save its state saving a docu-
ment. To the software developer, saving a document means saving the internal memory state of the
word processing application in such a way as to be able to recreate it exactly as it was left at a
future point in time. In this chapter, there will be more references to persisting an application’s
state than to saving a document, but in reality, they are similar phrases — the former is simply
more precise (since an application’s state can be saved in other ways than to a file).

Different applications need to save different pieces of information to disk to properly recreate their
state. Some applications only need to save their configuration settings to disk, as they may save
their other data to a database (see the subsequent chapter to see how to persist your application’s
data to a database). A typical single-user application such as a word processor or image manipula-
tion program will need to save its state to files (for example, Word documents or JPEG images).
Java provides a couple built-in mechanisms for saving or serializing data to files. The two major
APIs in the JDK for persisting application data to disk are: the Java Serialization API for generic
serialization and the XMLEncoder/Decoder API for serializing Java Bean components. These two
APIs will be discussed in depth in this chapter along with the Java API for XML Binding (JAXB).
JAXB provides the ability to read and write data to user-defined XML formats. Each of these three
APIs has a different approach to serialization and as such should be used in different circum-
stances. In this chapter, you will first look at how application data is structured in memory, and
then apply the Java Serialization API, the XMLEncoder/Decoder API, and the JAXB API to actu-
ally serialize the data to disk. These three APIs are a great foundation for persisting your applica-
tion’s data to disk.

Chapter 5

The Imager Application— Since saving an application’s state can be a rather abstract
topic, the various persistence strategies that are appropriate to use with the three dif-
ferent APIs with concrete examples will be discussed. A hypothetical image manip-
ulation program will be created and the focus will be on using the Java Serialization
API, the XMLEncoder/Decoder API, and JAXB to persist its state to disk. The image
manipulation program will be referred to as The Imager Application throughout the
chapter, and is hypothetical because it will not actually implement image manipula-
tion, since the focus of this chapter is persistence, not GUI development (see the pre-
vious chapter for more information on building graphical user interfaces with
Swing and the Java Foundation Classes).

Application Data

Every application has some sort of in-memory data structure from which to retrieve its data. Besides
data structures like maps, lists, sets, and trees, custom data structures are often built. For an application
to save its state, the data in these structures must be saved to disk, and then at a later time, loaded back
into the same data structure. Web browsers, for example, create what'’s called a Document Object Model
(DOM) in memory for every Web page that is loaded. It is their internal data structure for displaying
HTML pages. Word processors also keep some sort of document object model as well —some way to
represent the fact that certain pieces of text are aligned to the right, or possibly that other paragraphs of
text are highlighted in a particular color. These custom data structures are necessary for the application
to display the data properly to the user.

Viewer applications like Web browsers essentially read files and display them to the user. Web browsers
first read HTML files over a network or from a disk, and then parse the data into its internal in-memory
data structure, the DOM. Once the data is in the Web browser’s data structure, its rendering functions
can now properly display the page to the user. Image viewing programs are similar, in that they read an
image into their internal data structure representing images, and then display that image to the user.
Other types of applications, though, also allow the user to manipulate the data. Word processors, in
addition to reading files into their internal data structures and displaying them, also must allow the user
to manipulate the data, and therefore the internal data structure, and then write the data back to disk.

Many of these other applications that allow the user to manipulate data follow the Model-View-
Controller (MVC) design pattern (see Chapter 3 more for information on design patterns). In this pat-
tern, the internal data structures of the application are called its data model. This data model is contained
in structures that are separate from UI components and Ul-related data structures. In Java-based applica-
tions, the data model usually consists of Java Bean components, along with other data storage and col-
lection classes. These data classes are manipulated and modified by UI controller classes (such as events
generated by buttons, menus, et cetera), and viewed and presented by other UI components. A simple
MVC diagram is shown in Figure 5-1, illustrating how only the data model of an MVC-based application
needs to be saved to restore the state of the application. Swing or other UI toolkit/ utility classes would
be in both the view and controller areas while the internal data model specific to the domain of the
application would be contained in the data model. This step of separating domain data from UI compo-
nents allows for a much easier process of saving and loading the data from disk since the data is all in
one place: the model.

224

Persisting Your Application Using Files

g

. Reads/Writes
Disk |« / —> Data Model \ View
Updates/Changes
K
Modifies T
Modifies
Controller
Figure 5-1

Once all the domain data is contained in its own model, separate from the UI components, the parts of
the data model that need to be persisted can be identified. Some pieces of an internal data structure need
not necessarily be saved. Some parts of the data structure in an application will not change from time to
time or they can be recreated given that certain other aspects of the data structure exist. Developers
wishing to save the state of their application must look carefully at the data they hold in memory in their
model, identify the pieces of it that must be saved, and then write routines for saving and loading the
data from the data structure to and from disk.

Saving Application Data

Now that application data structures have been discussed in a general sense, it is time to move to some-
thing a little more tangible and realistic. How exactly do Java applications store their data model in
memory? Since Java is an object-oriented language, most applications have a set of data classes (which is
the application’s data model). Instances of these data classes reside in memory. The viewer and controller
components (the UI) of the application interact with them to produce the functionality of the application.

Any Java class that has attributes (or properties in Java Bean terms) can be thought of as a data structure.
A simplistic data structure could be simply a Person class with two String attributes, representing a
first name and last name. More complex classes, which in addition to storing primitive data types con-
tain references to other classes, effectively form an object graph. An object graph is a graph in which
objects are the nodes in the graph and the connections are references from one instance of an object to
another. The notion of object graphs is important because when you want to serialize the information
contained in a class, you must also consider what data the class relies on that is stored in other classes,
the dependencies these other classes have, and so on. In the next section, a tangible data model for The
Imager will be outlined and its object graph will be viewed.

A Configuration Data Model for the Imager Application

Throughout this chapter, you will be developing a sample application to demonstrate different strategies
for persisting application data using the three APIs discussed (Java Serialization, the XMLEncoder/
Decoder APIs, and JAXB). The application is called The Imager, and is some sort of image editing and

225

Chapter 5

drawing program. You will not be implementing any actual image manipulation functionality in the
application, but merely persistence and serialization code to show how to save the application’s data
model to disk—how to persist the state of the application.

Since your application is merely a placeholder for learning serialization, you will delve into designing a
data model for the Imager’s configuration settings. Many applications have various preferences, set-
tings, and options available for users to change and modify. Web browser’s can store a user’s HTTP
proxy settings; mail client programs store the server names and passwords for a user’s e-mail account.
These preferences are generally stored on disk, sometimes in the user’s home directory, sometimes in the
application’s root directory. The first step to building any sort of data model that can eventually be per-
sisted to disk is identifying attributes you want to save. Your Imager program probably should have set-
tings for, at the least, the following properties:

O Location of the user’s home directory or default directory to load and save files
Q Alist of recent files loaded or saved by the user

Q Whether or not the application should use a tabbed windowed interface or a multiple document
interface (MDI) with child windows

Q Foreground and background colors last used (for drawing or painting operations)

Q The last positions of the tool and palette windows within the application when the application
was last closed

In a full-fledged paint or photo editing application, there would probably be many more configuration
options that users could potentially persist to a file. However, the process is the same, and can also be
applied to saving application data such as a custom image format, or reading and writing other image
formats into your application’s structure. Persisting information in Java objects to the file system is the
same whether it is application configuration data or simply application domain data itself. Figure 5-2
shows the actual model of the data in UML and Figure 5-3 shows an example object graph of an actual
instance of the data model.

Configuration

-userHomeDirectory : string

-showTabs : bool Ko
-recentFiles : string[] 1 2 -paletteWindowPosition, toolsWindowPosition

java.awt.Point

-backgroundColor, foregroundColor

java.awt.Color

Figure 5-2

226

Persisting Your Application Using Files

Configuration is the root object. It uses classes from java.awt to represent colors and points. In the
object graph below, you can see that an instance of configuration also contains references to instances of
java.awt.Color and java.awt.Point. When you persist the information in a Configuration
instance to disk, you must also save the information contained in the Color and Point instances (and
any other class instances they may also reference), if you want to be able to recreate your
Configuration object at a later point in time.

foreground
(instance of
Color)

background
(instance of
Color)

palettePos
Configuration (instance of

Point)

toolsPos
(instance of
Point)

recentFiles e .
(instance of > file2.txt
String [1)

Figure 5-3

You will design Configuration using the Java Beans architecture (getxxx and setxxx for all proper-
ties in your class). Your application itself will read the configuration settings from this class and appro-
priately apply them throughout the application. It is typical to use Java Beans conventions to store data
in Java-based data models. The standard mechanism by which to set and get data properties allows the
designer to use many tools that are based on those standards (XMLEncoder/Decoder as you will later
see for one). Object-relational-mapping tools allow the developer to map Java objects to a database.
Almost all of these tools require the data to be accessible by using Java Beans conventions. It is just good
practice and design.

227

Chapter 5

Java Serialization: Persisting Object Graphs

One approach to saving a data model to disk is to write all of the object instances in the data model’s
object graph to disk, and then simply reload them at a later time. This is the approach taken by the Java
Serialization API. It saves actual object in-memory instances to disk. Serializing an object is the process of
writing its data members to disk. Deserializing an object is the process of reconstructing the object
instance from the data members written to disk. Suppose you have a simple class MyPoint:

package book;

public class MyPoint {
public int x;
public int y;

public void doSomething() { ... }
}

To save an instance of MyPoint to disk, its two data members must be written to disk. Saving x and y
allow you to create a new instance of MyPoint at a later point in time and set its x and y values to the
ones saved to disk — effectively recreating the original instance. The method doSomething () is already
specified in the compiled class file, and there is no need to store any method information in the serializa-
tion process. All a class instance is in memory is the values for all of its attributes. To serialize an instance
to disk, all of its data members must be saved. What if a data member is a reference to another object
instance? The reference itself is just a memory address and would obviously be meaningless to save. The
object instance the reference points to also would need to be saved as well. Suppose you add a color
attribute to MyPoint:

package book;
import java.awt.Color;

public class MyPoint {
public int x;
public int y;

private Color pointColor;

public void doSomething() { ... }
}

The data members of the instance of java.awt.Color must now also be saved. As you can see, the
entire object graph of an object instance must be saved when it is serialized to disk. If only x and y were
saved from MyPoint and then subsequently recreated in MyPoint later, its color information would be
lost. So how is an external API able to access all of the fields of a particular class? Java’s reflection mech-
anism allows the dynamic ability to find out the fields and field values of any class, whether those fields
are marked public or private. Thankfully, the Java Serialization API takes care of all these details for
us, and it is easy to serialize object instances to disk.

Note: It is important to note that the file format used by the Java Serialization API is a special binary

file format developed specifically for Java Serialization and therefore not human-readable. 1t is an effi-
cient format, but also specific to Java.

228

Persisting Your Application Using Files

Key Classes

The Java Serialization API hides most of the complexity required to save off object graphs to disk

(such as circular references and multiple references to the same object). There are really only two
interfaces and two classes that need to be learned in order to use the API. ObjectInputStream and
ObjectOutputStream are two stream classes that can be wrapped around any type of java.io.
InputStreamor java.io.OutputStream, respectively, making it possible to send serialized objects
over a network or simply save them to disk. The two interfaces, Serializable and Externalizable,
allow for implementing classes to be serialized. If a class does not implement one of these two interfaces,
it cannot be serialized using the API. This means that if a class that does implement either Serializable
or Externalizable contains a reference to a class that does not implement that interface somewhere in
its object graph, it cannot be serialized successfully without some modification (discussed later on in this
chapter).

Class or Interface (From java.io) Function

Serializable Interface for marking the fact that a class supports
serialization

ObjectInputStream Input stream used to read object instances that were writ-

ten by an ObjectOutputStream

ObjectOutputStream Output stream used to write object instance data that can
later be read by an ObjectInputStream

Externalizable Interface that extends Serializable to give a class com-
plete control over how it is read and written to streams

Serializing Your Objects

Performing the actual serialization of objects is straightforward. There are four main steps.

1. Make sure the class to be serialized has a default constructor (one that takes no arguments).

2. Implement the Serializable or Externalizable interface to mark the class as supporting
serialization.

3. UseObjectoutputStream to serialize a class instance.

4. UseobjectInputStream to read a serialized instance back into memory.

Classes you wish to serialize must have default constructors. This is because the serialization API needs
to create blank instances of the class when it recreates object instances saved to disk —it does so by call-
ing the default constructor. After it creates the new class, it simply populates the data members of the
class via reflection (so accessor and mutator methods are not required for private data members). The
class must also be marked as serializable by implementing the Serializable interface. The
Serializable interface contains no method definitions; it is simply a marker to the serialization API to
indicate that the class is indeed serializable. Not all classes store their data— the classic example is
java.sqgl.ResultSet, which is used in the Java DataBase Connectivity API (JDBC) to access data from
a database. The ResultSet object is querying the database for data when its methods are called and
hence it does not store the information it returns. Since it is a mediator between the client and the

229

Chapter 5

database, it has no information to serialize! The Serializable interface exists to give developers the
ability to mark certain classes as potentially serializable —essentially meaning the author of a particular
class planned for the fact that the class may be saved to disk. The Externalizable interface gives
developers more control over the actual serialization process, and it will be discussed in more detail later
on in this chapter.

Configuration Example: Saving Your App’s Configuration to Disk

Earlier, you developed the high-level data model for a sample configuration for your generic image
manipulation application. Suppose that now you want to develop that data model and the UI compo-
nents to save and load it from disk. The first step is translating your data model into code. You will have
one class, Configuration, represent the application’s configuration. You will model it using the Java
Bean conventions, implicitly provide it a default constructor (by having no constructors), and implement
the Serializable interface. The two classes referenced in Configuration, java.awt.Point, and
java.awt.Color also both implement Serializable, so the entire graph is guaranteed to serialize.
The code for Configuration is as follows:

package book;

import java.awt.Color;

import java.awt.Point;

import java.io.Serializable;

public class Configuration implements Serializable {

private String userHomeDirectory;

private Color backgroundColor;
private Color foregroundColor;

private boolean showTabs;

private Point paletteWindowPosition;
private Point toolsWindowPosition;

private String[] recentFiles;

public Color getBackgroundColor() {
return backgroundColor;

}

public void setBackgroundColor (Color backgroundColor) {
this.backgroundColor = backgroundColor;
}

public Color getForegroundColor () {
return foregroundColor;

}

public void setForegroundColor (Color foregroundColor) {
this.foregroundColor = foregroundColor;

}

230

Persisting Your Application Using Files

public Point getPaletteWindowPosition() {
return paletteWindowPosition;

public void setPaletteWindowPosition (Point paletteWindowPosition) {
this.paletteWindowPosition = paletteWindowPosition;

public String[] getRecentFiles() {
return recentFiles;

public void setRecentFiles(String[] recentFiles) {
this.recentFiles = recentFiles;

public boolean isShowTabs () {
return showTabs;

public void setShowTabs (boolean showTabs) {
this.showTabs = showTabs;

public Point getToolsWindowPosition() {
return toolsWindowPosition;

public void setToolsWindowPosition (Point toolsWindowPosition) {
this.toolsWindowPosition = toolsWindowPosition;

public String getUserHomeDirectory () {
return userHomeDirectory;

public void setUserHomeDirectory (String userHomeDirectory) {
this.userHomeDirectory = userHomeDirectory;

Writing the Configuration to Disk

With your configuration data model in hand, you can write the code to serialize and deserialize
instances of Configuration. Saving an instance of Configuration is almost too easy. First, you create
an ObjectOutputStream object, and since you want to save your instance of Configuration to a file,
you wrap it around a FileOutputStream:

ObjectOutputStream out = new ObjectOutputStream (
new FileOutputStream("appconfig.config"));

231

Chapter 5

Now you can create an instance of Configuration and save it to the file appconfig.config:

Configuration conf = new Configuration() ;
// ... set its properties

out.writeObject (conf) ;
Now all you have to do is close the stream:
out.close();

Note: Multiple object instances (of potentially differing types) can be written to the same
ObjectoutputStream. Simply call writeobject () more than once, and the next object is appended
to the stream. Also note that the file extension config, appended to the file, was arbitrarily chosen.

Reading the Configuration from Disk

Deserializing objects back into memory is as easy as serializing them. To read your configuration data
model from disk, you create an ObjectInputStream wrapped around a FileInputStream (since in
this case you saved your Configuration instance to a file):

ObjectInputStream in = new ObjectInputStream(
new FileInputStream("appconfig.config"));

The counterpart to ObjectOutputStream’s writeObject () is readObject () in ObjectInputStream.
If more than one object was explicitly written with multiple calls to writeObject (), readObject () can
be called more than once. The method readobject () returns an Object that needs to be cast the
proper type —so the developer must know some of the details about the order in which object instances
were saved to the stream. In addition to potentially throwing a java.io.IOException if the stream
was corrupted or other I/O error, readobject () can throw a java.lang.ClassNotFoundException.
The classNotFoundException occurs if the VM cannot find the class for the type of the object instance
being deserialized on the classpath. The following line of code reads your Configuration object back
into memory:

Configuration conf = (Configuration) in.readObject();

After reading the object back in, you can use it like you use any normal Java object. After you are done
with your objectInputStream, you close it as you do any other subclass of InputStream:

in.close();

As you can see, reading and writing objects using ObjectInputStream and ObjectOutputStreamisa
simple process with powerful functionality. Later on in this Java Serialization section there will be talk
about customizing and extending the serialization process, as well as some of the pitfalls that can occur
along the way.

Wrapping Serialization and Deserialization Code into Swing Actions

Now that you have seen how to create and store data models, it is time to see your configuration data
model serialization and deserialization code in the context of a real application. Since your application is

232

Persisting Your Application Using Files

a JFC-based Swing application, you will integrate your code to serialize and deserialize Configuration
into the UI framework via Swing’s javax.swing.Action interface. Actions are a useful way to general-
ize UI commands —such as a save or open command. These commands usually appear in multiple places
in a Ul In the case of save and open, usually in the File menu and on the application’s toolbar. Swing
components such as menus and toolbars allow actions to be added and they create the necessary events
and properties to control them. Actions abstract away some of the Ul code, and allow the developer to
concentrate on the logic of an action, like saving a file to disk. Your actions will need a reference to your
application, to get and set its configuration before it serializes or deserializes the Configuration
instance. Your actions will inherit from the class javax.swing.AbstractAction as that class takes care
of all of the methods in the Action interface except for the event method actionPerformed (). The
class diagram that follows in Figure 5-4 illustrates where your actions, LoadConfigurationAction and
SaveConfigurationAction, fit with respect to Action and AbstractaAction.

dnterface»
ActionListener

+actionPerformed(in event : ActionEvent) : void

i

dnterface»
javax.swing.Action

+addPropertyChangeListener(in listener : PropertyChangeListener) : void
+getValue(in key : String) : Object
+isEnabled() : bool
+putValue(in key : String, in value : Object) : void
+removePropertychangelListener(in listener : PropertyChangeListener) : void
+setEnable(in enabled : bool) : void

N\

javax.swing.AbstractAction

+actionPerformed(in event : ActionEvent) : void

i

LoadConfigurationAction SaveConfigurationAction
-myApp : Application -myApp : Application
Figure 5-4

All of the code for both of these actions will reside in the event-driven method, actionPerformed ().
When the user of the application clicks the save configuration menu item or button, this code will be
invoked. The same goes for the action to load the application’s configuration.

233

Chapter 5

The main area of interest in any Action implementation is the actionPerformed () method. This
method is called when a user clicks the menu item or button containing the Action. For your save
action, you want the user first to be prompted to choose a file location, and then save the application’s
Configuration object instance to that file location. The implementation is fairly straightforward. First,
a file chooser is displayed, and if the user selects a file, the application’s Configuration instance is
retrieved:

public void actionPerformed(ActionEvent evt) {
JFileChooser fc = new JFileChooser () ;
if (JFileChooser.APPROVE_OPTION == fc.showSaveDialog (myApp)) {
try {
Configuration conf = this.myApp.getConfiguration() ;

Now that you know the file location to save to, you simply serialize the Configuration object to disk to
eventually be loaded at a later point in time:

ObjectOutputStream out = new ObjectOutputStream (
new FileOutputStream(fc.getSelectedFile()));

out.writeObject (conf) ;
out.close() ;

} catch (IOException ioe) {
JOptionPane.showMessageDialog (this.myApp, ioe.getMessage(), "Error",
JOptionPane.ERROR_MESSAGE) ;

ioe.printStackTrace() ;

The load action is similar to the save action. Again, the user is first prompted for a file. If the user selects
a file, you will try to open it. To read your Configuration object instance back into memory so it can
then be loaded into the application, you must create an ObjectInputStream. The ObjectInputStream
is creating a FileInputStream, which reads the data from the file the user selected:

public void actionPerformed (ActionEvent evt) {
JFileChooser fc = new JFileChooser () ;
if (JFileChooser.APPROVE_OPTION == fc.showOpenDialog (myApp)) {
try {
ObjectInputStream in = new ObjectInputStream (
new FileInputStream(fc.getSelectedFile()));

If the user selects a file that is not a serialized instance of Configuration, an I0Exception will be
thrown when readobject () is called. If the instance of Configuration is successfully read, load it
into the application via the application’s setConfiguration () method. It's that simple —the applica-
tion has now loaded a previously saved instance of Configuration:

234

Persisting Your Application Using Files

Configuration conf = (Configuration) in.readObject();
in.close();

myApp.setConfiguration (conf) ;
} catch (IOException ioe) {
JOptionPane.showMessageDialog (this.myApp,
"File is not a configuration file!", "Error",
JOptionPane.ERROR_MESSAGE) ;

ioe.printStackTrace() ;

} catch (ClassNotFoundException clEx) {
JOptionPane.showMessageDialog (this.myApp,
"Classpath incorrectly set for application!",
"Error", JOptionPane.ERROR_MESSAGE) ;

clEx.printStackTrace() ;

Giving Your Application a Time-based License Using
Serialization

Serialization can be used in a variety of helpful ways. It is easy to save Java Beans and the data models
for various kinds of application data as seen in the last example. Serialization, though, is not limited to
simply saving objects to disk. Since ObjectInputStreamand ObjectOutputStream are subclasses of
InputStream and OutputStream, respectively, they can be used in any situation that a normal stream
could be. Objects can be serialized over the network or read from a JAR file. Serialization is a fundamen-
tal aspect of Java’s Remote Method Invocation (RMI) —it is the technology behind passing objects by
value in RMI method calls.

To continue with the Imager Application example, suppose you want to give it a time-based license. For
the demo version of the application, it should only be fully active for 30 days. After 30 days, users will
be required to purchase a full license to use the product. There are many ways to do this, but using the
serialization API could be an effective way to produce a time-based license file. The biggest challenge to
creating time-based licenses is making it difficult for the user to overcome the license, which they usu-
ally can do by setting their computer’s clock to an incorrect time, or by modifying whatever license file
gets distributed (or registry key for some Windows’ based applications, et cetera). Since Java’s serializa-
tion produces a binary format that is unfamiliar to anyone except Java developers, it will make a good
format for the application’s license file. The application will also need some mechanism to guard against
users setting the incorrect date on their computer clock to give them a longer license. To do so, the appli-
cation will authenticate the license file against a timeserver on your network. The high-level design is
shown in Figure 5-5.

235

Chapter 5

license.file

(1T T

N

Timeserver

1. Read license.file

2. Query Time Server for Date

3. If server date is after the date in license.file, start the application
Figure 5-5

The next step in the design is to model the license file. Since you are using Java Serialization, all that
needs to be done is to produce a class that implements Serializable and contains the necessary fields
to do license validation against the timeserver. The License class will look like Figure 5-6.

License

-expirationDate : Calendar
-timeServerHost : URL

+isValid() : boolean

Figure 5-6

Implementing the License

The license file for the application will consist of a serialized instance of the License class. The two data
attributes it contains are: expirationDate, which is the date when the license expires (stored in a
java.util.Calendar instance), and timeServerHost, which is the java.net.URL representing the
Internet address of your timeserver. This address, as well as the expiration date, has been saved to pre-
vent tampering with the URL. The isvalid () method gets the current date from the timeserver and
checks to see if the expiration date is before the date returned from the timeserver. If it is, the license is
valid. Actually implementing the License yields the following code listing:

package book;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.Serializable;

236

Persisting Your Application Using Files

import java.net.URL;
import java.util.Calendar;

public class License implements Serializable {
private Calendar expirationDate;

private URL timeServerHost;

public boolean isValid() throws IOException, ClassNotFoundException {
ObjectInputStream in = new ObjectInputStream(timeServerHost.openStream()) ;

Calendar serverDate = (Calendar) in.readObject();
in.close();
return serverDate.before (expirationDate) ;

public Calendar getExpirationDate() {
return expirationDate;

public void setExpirationDate(Calendar expirationDate) ({
this.expirationDate = expirationDate;

public URL getTimeserverHost () ({
return timeServerHost;

public void setTimeServerHost (URL timeServerHost) {
this.timeServerHost = timeServerHost;

Look into the implementation for isvalid (). One detail of the design that has not yet been discussed is
the protocol you need to define between the timeserver and the License. How does the isvalid ()
method get the current date from the timeserver? A normal HTTP GET request is sent to the URL in
timeServerHost, which resides on the timeserver, and instead of it returning an HTML page, it will
return an instance of java.util.Calendar. Using this timeServerHost URL object, the connection to
the timeserver via an HTTP request over the network is established and an ObjectInputStreamis con-
structed to read a serialized Calendar instance:

ObjectInputStream in = new ObjectInputStream(timeServerHost.openStream()) ;
Now a Calendar object is read just like any other object in Java serialization. After the object is read in,
the expirationDate can be compared with the date returned from the timeserver to see whether the
license is valid:

Calendar serverDate = (Calendar) in.readObject();

in.close() ;

return serverDate.before (expirationDate) ;

237

Chapter 5

Serialization can make complex tasks very straightforward. Java programmers can serialize and deserial-
ize information without ever really leaving the Java environment in the sense that actual class instances
can be serialized. Rather than creating your own date format on the server, an instance of Calendar

was returned. All the low-level details of marshalling information over the network and finding a for-
mat you can use for date information were all taken care of by Java Serialization and the URL class.

Implementing the Timeserver

So now that you know what the timeserver is supposed to do, you must actually implement it. The time-
server will run as a Java Web Application (see Chapters 7 and 8 for much more detailed information on
Web applications). A simple servlet is all that is necessary to implement the timeserver. The servlet will
take care of the HTTP request and response, and allow you to write a Calendar object out to the client.
Here is the servlet code that runs on the timeserver:

package book;
import java.io.IOException;
import java.io.ObjectOutputStream;
import java.util.Calendar;
import java.util.GregorianCalendar;
import java.util.logging.Logger;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
public class ServerDate extends HttpServlet ({
private Logger logger;
public void init(ServletConfig config) throws ServletException {
logger = Logger.getLogger (ServerDate.class.getName()) ;
public void doGet (HttpServletRequest req, HttpServletResponse resp)
throws IOException, ServletException {

logger.info("Received date request");

ObjectOutputStream out = new ObjectOutputStream(resp.getOutputStream()) ;
Calendar calendar = new GregorianCalendar () ;

out.writeObject (calendar) ;
out.close() ;

logger.info ("Wrote the date: " + calendar.getTime());

238

Persisting Your Application Using Files

By implementing the doGet () method, your servlet handles HTTP GET requests (which is expected
from your License clients). The method is straightforward. All you do is wrap an
ObjectOutputStream around the normal ServletOutputStream:

ObjectOutputStream out = new ObjectOutputStream(resp.getOutputStream()) ;

Now that the output stream back to the client has been wrapped in an ObjectOutputStream, a new
Calendar instance (which corresponds to the current date and time on the server) can be written back to
the client:

Calendar calendar = new GregorianCalendar() ;
out.writeObject (calendar) ;

out.close();

The License class and ServerDate servlet take care of the actual license file and the means to validate
the date it stores, respectively. In the next section, you will see how to integrate the components in this
example, with your configuration data model and Swing actions, into the actual Swing implementation
of the Imager Application.

Tying Your Serialization Components into the Application

You have developed Swing actions that load and save your configuration data model. You wrote a
licensing system that uses serialization to specify both the license file format, as well as specifying the
date and time format of your simple timeserver. Actually tying these pieces into the Imager Application
is not very difficult, but helps to paint the larger picture of how serialization can fit into a real applica-
tion design.

The first task your application does at startup is to load the license file and verify that the date contained
therein is before the date returned on the timeserver. The license. file is read in from the applica-
tion’s Java Archive file (JAR) and then the validity of the license is verified against the timeserver found
at the URL in the serialized license:

try {
ObjectInputStream in = new ObjectInputStream(
Application.class.getResourceAsStream("license.file"));

License license = (License) in.readObject();
in.close();
if (!'license.isValid()) {

JOptionPane.showMessageDialog (this, "Your license has expired",
"License", JOptionPane.ERROR_MESSAGE) ;
System.exit (1) ;
}

} catch (Exception ex) {
JOptionPane.showMessageDialog(this, ex.getMessage(), "License",
JOptionPane.ERROR_MESSAGE) ;
System.exit (1) ;

239

Chapter 5

Notice how the license file, 1icense. file, is loaded as a resource. Your application assumes that the
license was packaged into the same JAR file as the application. This means that there must be some sort of
license managing utility to create and put a valid 1icense. file into the same JAR file as the application —
it will not be discussed though, as it is irrelevant to this example. Getting the 1icense. file from the
JAR file reduces the risk of a user attempting to tamper with its contents to gain a longer license. The
Java Serialization API is a binary format that is not human-readable, but could potentially be recognized
by another Java developer. If you really cared an awful lot about anyone tampering with your
license.file, it could always be encrypted using the Java Cryptography Extension (JCE) (included in
the JDK). JCE allows one to encrypt any OutputStream and hence you could encrypt (and later decrypt)
an ObjectOutputStream.

Adding your Swing actions to the File menu looks like the following:

fileMenu.add (new JMenultem(new LoadConfigurationAction (this)));
fileMenu.add (new JMenultem(new SaveConfigurationAction(this)));

Now you have tied in all of your components based on serialization. Below is a stripped-down code list-
ing for the basic application, showing your serialization code in the context of the application. Look at
the setConfiguration(), loadConfiguration (), and getConfiguration () methods as these are
what your Swing actions manipulate:

package book;

import java.awt.Color;

import java.awt.GridLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.io.IOException;

import java.io.ObjectInputStream;

import javax.swing.*;

public class Application extends JFrame {
private Configuration configuration = new Configuration();
private JButton hdButton;
private JButton bcButton;
private JButton fgButton;

private Color defaultColor;

private JCheckBox showTabsCheckBox;

public Application() {
this.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;
this.setTitle("The Imager");

try {

ObjectInputStream in = new ObjectInputStream(
Application.class.getResourceAsStream("license.file"));

240

Persisting Your Application Using Files

License license = (License) in.readObject();
in.close();
if (!license.isvalid()) {

JOptionPane.showMessageDialog(this, "Your license has expired",
"License", JOptionPane.ERROR_MESSAGE) ;
System.exit (1) ;

} catch (Exception ex) {
JOptionPane.showMessageDialog(this, ex.getMessage(), "License",
JOptionPane.ERROR_MESSAGE) ;
System.exit (1) ;

JMenuBar menu = new JMenuBar () ;

JMenu fileMenu = new JMenu("File");

fileMenu.add(new JMenultem(new LoadConfigurationAction(this)));
fileMenu.add (new JMenultem(new SaveConfigurationAction(this)));
fileMenu.addSeparator () ;

this.pack();
this.setVisible(true);

private JPanel createConfigDisplayPanel() {

return panel;

private void loadConfiguration() {
hdButton.setText (this.configuration.getUserHomeDirectory());

Color bcColor = this.configuration.getBackgroundColor () ;
if (bcColor != null) {
bcButton. setBackground (bcColor) ;
bcButton.setText (null) ;
} else {
bcButton.setText ("<No color set>");
bcButton.setBackground (this.defaultColor) ;

Color fgColor = this.configuration.getForegroundColor () ;
if (fgColor != null) {
fgButton.setBackground (fgColor) ;
fgButton.setText (null) ;
} else {
fgButton.setText ("<No color set>");
fgButton.setBackground (this.defaultColor) ;

showTabsCheckBox.setSelected(this.configuration.isShowTabs ()) ;

241

Chapter 5

public Configuration getConfiguration() {
return configuration;

}

public void setConfiguration(Configuration configuration) ({
this.configuration = configuration;

this.loadConfiguration();

}

public static void main(String[] args) {
Application app = new Application();
}

In Figure 5-7 that follows, your application is editing part of your configuration data model. To get to
this screen means that the application was able to verify the license (since the license is verified before
the main application window is even fully loaded). Notice in the loadConfiguration () method in the
preceding code listing how the color buttons are set, the checkbox is checked, and the user’s home direc-
tory is placed on the first button when a configuration is loaded. The user can then change these options,
which modifies the application’s Configuration object.

Figure 5-7

Once the data in the Configuration object is changed, it can be saved back to disk. Since the whole
configuration data model is rooted in the Configuration object, all you need to do is export it to disk
using your action, as shown in the screen shot in Figure 5-8.

Figure 5-8

242

Persisting Your Application Using Files

Extending and Customizing Serialization

Though most of the time, the Java Serialization API provides plenty enough functionality out of the box,
there are some times when a greater level of control is necessary for the developer. Sometimes a devel-
oper will not want every field of a class serialized to disk. Other times, the developer may want to
append additional information not included in class fields into the stream — or maybe modify the class’s
data structure before serialization occurs. When a class definition is modified (in other words, the code is
changed and the class recompiled — that is, fields are renamed, or other fields are added and still others
removed), classes serialized previously to these changes will have errors upon deserialization. In this
section, some of the commonly used mechanisms for customizing and extending Java Serialization will
be discussed.

The Transient Keyword

The transient keyword in the Java language is used for Java Serialization. Any field marked tran-
sient will not be saved to disk. This is useful when a class contains a reference to another object that
does not implement Serializable, but you still would like to persist a class instance to disk.
Sometimes certain fields are runtime-dependent and should not be persisted. Suppose in your
Configuration object you wanted to additionally store a reference to your Application (for callbacks
perhaps). When you saved your application to disk, you would certainly not want to persist the
Application and every object associated with it on its object graph (even if all its objects implemented
Serializable anyhow). To mark a field transient, simply put the keyword before the definition of
the object or primitive:

private transient Application application;

The transient keyword is an easy way to quickly mark which fields of your class you would like the
Serialization API to skip over and not save.

Note, though, that when a class is reconstructed after being serialized, these fields marked transient will
be null (or if they are primitives, their default value), unless they are given a default value or set in the
default constructor of the class.

Customizing the Serialization Format

Sometimes there is a need to perform additional operations either right before an object is serialized or
right after it is deserialized. This need could arise if a class must retrieve data that is externally stored,
such as on a server or in a cache, right before it is serialized. Objects may wish to verify some of their
fields right after deserialization and fill in or create some of the fields marked transient. There are two
methods you can add to a class to add additional behavior to the serialization and deserialization pro-
cess. These methods are not part of any interface, and for them to be called, they must have the exact sig-
nature as shown. These are writeObject () and readobject (), as defined by the following:

private void writeObject (ObjectOutputStream out) throws IOException {
// can do things like validate values, get data from an external source, etc

out.defaultWriteObject(); // invokes normal serialization process on this object

}

private void readObject (ObjectInputStream in) throws IOException,
ClassNotFoundException {

243

Chapter 5

in.defaultReadObject(); // invokes normal deserialization process on this object

// can do things like validate values, produce new values based on data, etc

}

The method writeObject () is called right before a class is serialized. The user can control when the
class is actually serialized by calling defaultWriteObject () on the ObjectOutputStream as shown
above. Doing so invokes the normal Java Serialization process on the current object. Before or after the
object is written to the stream though, values to current data members could be changed or updated.
Additional information can also be written to the ObjectOutputStream at this time. The
ObjectOutputStream also implements the java.io.DataOutput interface, which includes methods
for writing primitives (and Strings).

The readobject () method is called right before an object is deserialized. It is the natural counterpart
to writeObject (). Similarly, the user can control when the object is deserialized by calling
defaultReadObject () on the ObjectInputStream. After an object is deserialized, fields that did not
have values could be assigned default values, or the values that were assigned could be checked. If any
extra data was written to the ObjectOutputStreamin writeObject () it must be read back in the
readObject () method. For example, if the user wrote the java.util.Date object to the stream before
writing the current object (to signify when the object was serialized), the Date object would have to be
read in before defaultReadObject () was called.

Verification and Validation for Configuration

One example of how implementing writeObject () and readobject () could be useful to your
Configuration object is data verification and validation. Your Configuration object stores the user’s
home directory and a list of recently accessed files. Between the time when a Configuration instance is
serialized and later deserialized, the files and directory may not exist (they could have been moved or
deleted). When your Configuration instance is deserialized, you want to remove the references to the
directory or files that no longer exist to where they originally were. To do this, the readobject ()
method is implemented as shown below. After defaultReadObject () is called to populate the current
instance of your object, the userHomeDirectory field and the recentFiles field can be verified to
check if the files (and directory) exist. Any file or directory that does not exist will simply be set to nul1:

private void writeObject (ObjectOutputStream out) throws IOException {
out.defaultWriteObject () ;
}

private void readObject (ObjectInputStream in) throws IOException,
ClassNotFoundException {
in.defaultReadObject () ;

if (this.userHomeDirectory != null) {
File f = new File(this.userHomeDirectory) ;
if (!f.exists())
this.userHomeDirectory = null;
}

if (this.recentFiles != null) {

List list = new LinkedList();
Collections.addAll (list, this.recentFiles);

244

Persisting Your Application Using Files

ListIterator it = list.listIterator();
while (it.hasNext()) {
String curr = (String) it.next();
File f = new File(curr);
if (!'f.exists()) {
it.remove() ;

}

this.recentFiles = new String[list.size()];
list.toArray (this.recentFiles) ;

The Externalizable Interface

Besides implementing readobject () and writeObject (), there is also an interface that extends
Serializable that allows for greater customization of serialization and deserialization. This interface,
java.io.Externalizable, allows more control of the serialization format than readobject () and
writeObject (). It exists to allow developers to write their own custom formats for a class. With
Externalizable, only the class identity is written to the stream by the Java Serialization API, the rest is
left for the developer. The Externalizable interface looks like the following;:

public interface java.io.Externalizable extends java.io.Serializable {
public void readExternal (java.io.ObjectInput in) throws java.io.IOException,
java.lang.ClassNotFoundException { }

public void writeExternal (java.io.ObjectOutput out) throws java.io.IOException

{3}

The methods writeExternal () and readExternal () are public, instead of private like readoObject ()
and writeoObject (). Other classes can call these methods to read and write a class to disk without
specifically invoking Java Serialization. Externalizable is not generally used very often, because
when you normally want to save a class to disk, there is no need to completely customize the format.
However, there may be times when Externalizable could come in handy. If you wanted to serialize a
class that represented an image, and the in-memory representation was huge because it represented
every pixel (like a bitmap), the Externalizable interface could be used to write the image in a
different and compressed format (such as JPEG). The same could be done with readobject () and
writeObject (), but these methods are not public, and in the case of your image-saving class, you may
also want to save your image to disk outside of a serialization stream.

Versioning

The biggest stumbling block most developers run into with serialization is versioning. Many times classes
will be serialized to disk, and then the definition of the class will change as source code is modified and
the class recompiled. Maybe a field is added, or one is taken away. Design decisions could force the
change of some internal data structures, say, from lists to maps or trees. Any change to a class, by
default, results in the inability to restore any previously serialized instance —a version error results.
Serialization versioning works by default by hashing a class based on its fields and class definition.

Even if one of the field names is changed (but not its data type), previously serialized instances will not
deserialize — the hash for the class has changed, and when the definition of a class is changed, there is

245

Chapter 5

no way to retain backward compatibility with previously saved instances. For smaller changes, espe-
cially things like name changes or the addition or removal of one field, you will probably want to retain
backward compatibility with previously saved instances.

The Java Serialization API provides a way to manually set the hash of a class. The following field must
be specified exactly as shown to provide the hash of the class:

private static final long serialVersionUID = 1L; // version 1 of our class

If the serialversionUID is specified (and is static and f£inal), the value given will be used as the
hash for the class. This means that if you define a serialversionuID for your class and keep it the
same value between different class versions, then you will not get versioning errors when deserializing
instances of previous class definitions. The Serialization API provides a best-effort matching algorithm
to try to best deserialize classes saved with an older class definition against a newer definition. If a field
was added since a class was serialized, upon deserialization, that field will be nul1l. Fields in which
names have changed or types have changed will be nul1l. Fields removed will not be set. The developer
will still need to account for these older versions, but by setting the serialversionUID, the developer
is given the chance to do so, rather than just have an exception thrown right when the deserialization
process is attempted. It is recommended to always set a serialVersionUID for a class that implements
Serializable, and change it only when you want previously serialized instances to be incompatible.

So, say you have previously serialized class instances and want to change a field or add another. You did
not originally set a serialVersionUID, so any change you make will render it impossible to deserialize
the old instances. The JDK provides a tool to identify a class’s hash that has not been manually set. The
serialver tool identifies the JVM’s current hash of a compiled class file. Before you modify your class,
you can find the hash previously being used. For your Configuration object, for example, you did not
previously define a serialversionUID field. If you add a field, you will not be able to deserialize old
instances. Before modifying the class, you need to find the hash. By running the serialver tool, you
find the hash by the following:

serialver book.Configuration

Configuration must be on the classpath for the serialver tool to work. The output of the tool is
shown in Figure 5-9.

Figure 59

Note: Serialver is located in the \bin directory of your [DK.
Now this serialVersionUID value can be added to your Configuration class:

private static final long serialVersionUID = 6563629108912000233L;

246

Persisting Your Application Using Files

New fields can now be added without breaking backward compatibility with your older instances.
Versioning is such an issue with serialization that it is recommended to always set a serialversionUID
for any class that implements Serializable right off the bat. This is especially important since differ-
ent JVMs can utilize different hashing algorithms — manually setting the serialversionuiD from the
get-go mitigates this issue.

When to Use Java Serialization

Java Serialization is a simple but very powerful API. It is easy to use and can serialize most any type of
data your application could have. Its main strengths follow:

Q Simplicity
Q Efficient binary file format

The file format defined by the Serialization API is usually what determines its suitability for an applica-
tion. It is a fairly efficient file format, since it is binary as opposed to XML or other textual file formats.
However, the file format also produces the following weaknesses (though possibly not weaknesses
depending on your requirements or design decisions):

@ Not human-readable

0 Only Java-based applications can access the serialized data

Since the data is in a binary format, it cannot be edited with simple text editors. Your application’s con-
figuration from the example could only be modified from the application. The data was not in an XML
format (or other textual format) where you could edit it in both the application or in an external editor.
Sometimes this is important, but certainly not always. The key downside to Java Serialization is that
only Java-based applications can access the serialized data. Since the serialization format is storing
actual Java class instances in a file specification particular to Java, no parsers have been written in other
languages for parsing data serialized with the Java serialization API.

The Java Serialization API is most useful when developing data models for Java applications and per-
sisting them to disk. If your application needs a common file format with other applications not written
in Java, serialization is the wrong design choice. If the files do not need to be human-readable, and the
only applications written for reading them will be in Java, serialization is a great design choice.

Serialization can usually be a good temporary solution. Every Java application will have some sort of in-
memory data model. Certain classes will store data in memory for the application to use. These classes
could be persisted to disk, or populated from reading some other file format. Serialization could be ini-
tially used to save and restore these class instances, especially because of the little effort it takes to write
serialization and deserialization code. Later on though, as the need for a common file format between
non-Java based applications arises, routines could be written to take the data in those classes and persist
it to another format. In other words, the same classes would still be used for the application’s internal
memory model, but the load and save routines would have to change. You will see in the next sections
how you can serialize the application’s configuration data in other formats and still retain the use of
Configuration as your in-memory way of representing that data. Only the load and save code will
need to change — not the actual data model.

247

Chapter 5

Java Beans Long-Term Serialization:
XMLEncoder/Decoder

The XMLEncoder/Decoder API is the new recommended persistence mechanism for Java Beans compo-
nents starting from the 1.4 version of the JDK. It is the natural progression from serialization in many
respects, though it is not meant to replace it. Like Java Serialization, it too serializes object graphs.
XMLEncoder/Decoder came around in response to the need for long-term persistence for Swing toolkit
components. The Java Serialization API was only good for persisting Swing components in the short
term because it was only guaranteed to work for the same platform and virtual machine version. The
reason for this is that some of the core Ul classes that Swing depends on must be written in a plat-
form/VM dependent manner, and thus their private data members may not always match up —leading
to incompatibility problems in using the normal Serialization API. The Swing API has also had a lot of
fluctuation in its implementation. Classes like JTable used to take up 30 megabytes of memory alone in
memory. As the implementations have improved, especially in the new 5.0 release of the JDK, the inter-
nal implementations of many of these Swing classes have drastically changed. A new serialization API
was developed in response to the challenge of true portability between different implementations and
versions of the JDK for Swing/JFC classes. XMLEncoder/Decoder thus has a different set of design cri-
teria than the original Java Serialization API. It was designed for a different usage pattern. Both APIs are
necessary, with XMLEncoder/Decoder filling in some of the gaps of the Java Serialization API.
XMLEncoder is a more robust and resilient API for long-term serialization of object instances, but is lim-
ited to serializing only Java Beans components, and not any Java class instances.

Design Differences

Since the XMLEncoder/Decoder API was designed to serialize only Java Beans components, the design-
ers had the freedom to make XMLEncoder/Decoder more robust. Some of the key issues many devel-
opers had with the original Java Serialization API were version and portability problems. The
XMLEncoder/Decoder API was written in response to these issues. Unlike the Java Serialization API,
the XMLEncoder/Decoder API serializes object instances without any knowledge of their private data
members. It serializes based upon the object’s methods, its Java Bean properties, exposed through the
Java Beans convention of getters and setters (getXxX and setXxX). By storing an object based upon its
interface rather than its underlying implementation, the underlying implementation is free to change
without affecting previously serialized instances (as long as the interface remains the same). This allows
for long-term persistence. The class’s internal structure could be completely rewritten, or differ across
platforms, and the serialized instance would still be valid (and truly portable). A simple example of a
Java Bean follows:

public class MyBean ({
private String myName;

public String getMyName () { return this.myName; }

public void setMyName (String myName) { this.myName = myName; }
}

Internal data members could be added, the field myName could be changed to a character array or

StringBuffer, or some other mechanism of storing a string. As long as the methods getMyName () and
setMyName () did not change, the serialized instance could be reconstructed at a later time regardless of

248

Persisting Your Application Using Files

other changes. You will notice that MyBean does not implement Serializable. XMLEncoder/Decoder
does not require classes it serializes to implement Serializable (or any other interface for that matter).
Only two requirements are levied upon classes for XMLEncoder/Decoder to serialize:

Q The class must follow Java Bean conventions.

Q The class must have a default constructor (a constructor with no arguments).

In the upcoming “Possible Customization” section, you will see how both of these requirements can pos-
sibly be sidestepped, but at the expense of writing and maintaining additional code to help the
XMLEncoder/Decoder API.

XML: The Serialization Format

The XMLEncoder/Decoder API naturally lives true to its name and has its serialization format based in
XML text (in contrast to the binary format used by Java Serialization). The format is essentially a series of
processing instructions telling the API how to recreate a given object. The processing instructions instanti-
ate classes, and set Java Bean properties. This idea of serializing how to recreate an object, rather than
every private data member of an object, leads to a robust file format capable of withstanding any internal
class change (obviously not changes to the interface of the properties stored, though). You will not get into
the nitty-gritty details of the file format. It is helpful, though, to see the result of serializing a Java Bean
using the XMLEncoder/Decoder API. Below is the output of an instance of the Configuration object,
serialized using the XMLEncoder/Decoder API. Since Configuration already follows Java Bean conven-
tions (as most all Java data models should), no special code additions were necessary to serialize an
instance using XMLEncoder/Decoder. Notice how the whole object graph is again saved like the Java
Serialization API, and since java.awt.Color and java.awt.Point follow Java Bean conventions, they
are persisted as part of the graph. XMLEncoder/Decoder also optimizes what information is saved —if
the value of a bean property is its default value, it does not save the information:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.5.0-beta3" class="java.beans.XMLDecoder">
<object class="book.Configuration">
<void property="recentFiles">
<array class="java.lang.String" length="3">
<void index="0">
<string>c:\mark\filel.proj</string>
</void>
<void index="1">
<string>c:\mark\testproj.proj</string>
</void>
<void index="2">
<string>c:\mark\final.proj</string>
</void>
</array>
</void>
<void property="userHomeDirectory">
<string>C:\Documents and Settings\Mark\My Documents</string>
</void>
<void property="showTabs">
<boolean>true</boolean>
</void>
<void property="foregroundColor">
<object class="java.awt.Color">
<int>255</int>

249

Chapter 5

<int>255</int>
<int>51</int>
<int>255</int>
</object>
</void>
<void property="backgroundColor">
<object class="java.awt.Color">
<int>51</int>
<int>51</int>
<int>255</int>
<int>255</int>
</object>
</void>
</object>
</java>

One key point about the XML file format used by XMLEncoder/Decoder is that even though an XML
parser in any language could read the file, the file format is still specific to Java. The file format encodes
processing instructions used to recreate serialized Java Bean class instances, and is therefore not directly
useful to applications written in other languages. It would be possible of course to implement a reader in
another language that read some data from this file format, but it would be a large and fairly difficult
task (at least to write a generalized one). The other language would also need to have some sort of
notion of Java Bean. In other words, think of this as a Java-only file format and do not rely on it for trans-
mitting data outside of the Java environment. The Java API for XML Binding (JAXB) will be discussed,
which is far more suited to exporting data to non-Java consumers.

Since XML is text and therefore human-readable, it is possible to save class instances to disk and then
edit the information with a text file. However, editing the preceding XML document would not be for
the casual user; it would be more useful to a developer, since some knowledge of how the
XMLEncoder/Decoder API stores information is necessary to understand where to modify the file. If you
wanted users to be able to save your Configuration object to disk and then edit it outside of your
application, you probably would not choose the XMLEncoder/Decoder XML file format. In the file
above, for example, java.awt.Color was persisted using four integer values, described only by int
for each one. What casual user would know that they correspond to the red, blue, green, and alpha
channels of a color, and that they can range from 0 to 255? A descriptive configuration file format in XML
would probably be a task for JAXB, as discussed in the next section. The file format used by
XMLEncoder/Decoder is Java-specific and is also not well suited for general hand editing like many
XML formats are. XML was simply the storage mechanism chosen — why define a new file format when
you can use XML?

Key Classes

Using the XMLEncoder/Decoder API is very similar to using the Java Serialization API. It was devel-
oped to have the same core methods, and as such, java.beans.XMLEncoder and java.beans
.XMLDeocoder could literally be substituted for ObjectOutputStream and ObjectInputStream,
respectively. XMLEncoder and XMLDecoder are the only classes needed to serialize Java Beans. In the
“Possible Customization” section, some other classes that are needed to serialize Java Beans that do not
completely follow Java Bean conventions will be briefly discussed. Below is a table of the classes needed
to use XMLEncoder/Decoder.

250

Persisting Your Application Using Files

Class (From java.beans) Function

XMLEncoder Class that takes an instance of a Java Bean and writes the corre-
sponding XML representation of it to the java.io.OutputStream it
wraps

XMLDecoder Class that reads a java.io.InputStream and decodes XML format-
ted by XMLEncoder back into instances of Java Beans

Serializing Your Java Beans

The process of serializing Java Beans using XMLEncoder/Decoder is almost exactly like the process of
serializing a Java class using normal Java Serialization. There are also four steps to serialization:

1. Make sure the class to be serialized follows Java Bean conventions.
2. Make sure the class to be serialized has a default (no argument) constructor.
3. Serialize your Java Bean with XMLEncoder.

4. Deserialize your Java Bean with XMLDecoder.

To save an instance of your Configuration object to disk, you simply begin by creating an XMLEncoder
with a FileOutputStream object:

XMLEncoder encoder = new XMLEncoder (
new FileOutputStream("c:\\mark\\config.bean.xml")) ;

Then you simply write your instance of Configuration, conf, to disk and close the stream:
encoder .writeObject (conf) ;
encoder.close() ;

Reading the serialized instance of Configuration back into memory is just as simple. First the
XMLDecoder object is created with a FileInputStream:

XMLDecoder decoder = new XMLDecoder (
new FileInputStream("c:\\mark\\config.bean.xml")) ;

Next you read in your object, much like you did with ObjectInputStream, and then close your stream:
Configuration config = (Configuration) decoder.readObject();
decoder.close() ;

On the surface, XMLEncoder/Decoder works much like Java Serialization. The underlying implementa-
tion though, is much different, and allows for the internal structure of classes you serialize to change
drastically, yet still work and be compatible with previously saved instances. XMLEncoder/Decoder
offers many ways to customize how it maps Java Beans to its XML format; some of these will be dis-
cussed in the “Possible Customization” section.

251

Chapter 5

Note: Just like the Java Serialization API, multiple objects can be written to the same stream.
XMLEncoder’s writeobject () method can be called in succession to serialize more than one object
instance. When instances are deserialized though, they must be deserialized in the same order in which
they were written.

Robustness Demonstrated: Changing Configuration’s Internal Data

Suppose you want to change the way your Configuration object stores the references to the user’s
recently accessed files of your application. They were stored previously using a string array. There were
two methods that gave access to the bean property, recentFiles: getRecentFiles () and
setRecentFiles (). Your Configuration object looked like:

package book;

import
import
import
import
import
import
import

public

java.
java.
java.
java.
java.

java
java

awt.Color;

awt .Point;
beans.XMLDecoder;
io.File;
io.FileInputStream;

.util.ArrayList;
.util.List;

class Configuration ({

private String[] recentFiles;

public Stringl[] getRecentFiles() {
return recentFiles;

}

public void setRecentFiles(String[] recentFiles) {
this.recentFiles = recentFiles;

}

Now you would like to store the recentFiles property internally as a java.util.List full of
java.io.File objects. If you do not change the signature of the getRecentFiles () and
setRecentFiles (), you can do whatever you like with the underlying data structure. The modified
Configuration class below illustrates how the storage of recent files could be changed to a List with-
out changing your method signatures for the recentFiles bean property:

package book;

import
import
import
import
import
import

252

java.
java.
java.
java.
java.
java.

awt.Color;

awt .Point;
beans.XMLDecoder;
io.File;
io.FileInputStream;
util.ArrayList;

Persisting Your Application Using Files

import java.util.List;

public class Configuration ({

private List recentFiles;

public String[] getRecentFiles() {
if (this.recentFiles == null || this.recentFiles.isEmpty())
return null;

String[] files = new String[this.recentFiles.size()];

0; 1 < this.recentFiles.size(i++)

for (int i ;)5
((File) this.recentFiles.get(i)) .getPath();

files[i]

return files;

}

public void setRecentFiles(String[] files) {
if (this.recentFiles == null)
this.recentFiles = new ArrayList();

for (int i = 0; i < files.length; i++) {
this.recentFiles.add (new File(files[1i]

))
}

Notice how in the setRecentFiles () method, an array of String objects is converted to a List of
File objects. In the getRecentFiles () method, the intenal List of File objects is converted back into
an array of String objects. This conversion is the key to the information hiding principle that
XMLEncoder/Decoder uses to serialize and deserialize object instances. Since XMLEncoder/Decoder
only works with the operations and interface to a class, the private data members can be changed. By
keeping the interface the same, your Configuration class can undergo all kinds of incremental changes
and improvements under the hood without affecting previously saved instances. This is the key benefit
of XMLEncoder/Decoder that provides its ability to serialize instances not just in the short-term, but
also in the long-term, by weathering many types of changes to a class definition.

The main () method below demonstrates XMLDecoder deserializing an instance of Configuration pre-
viously saved with your older version of Configuration that stored the recentFiles property as a
String array. The file this method is loading is the one shown previously in this section as sample out-
put for XMLEncoder/Decoder (see the previous section “XML: The Serialization Format”):

public static void main(String[] args) throws Exception {
XMLDecoder decoder = new XMLDecoder (

new FileInputStream("c:\\mark\\config.bean.xml")) ;

Configuration conf = (Configuration) decoder.readObject();

253

Chapter 5

decoder.close() ;

String[] recentFiles = conf.getRecentFiles();
for (int i = 0; i < recentFiles.length; i++)
System.out.println(recentFiles[i]);

As you can see, the output from your main () method confirms that not only was your old
Configuration instance successfully read by the XMLEncoder/Decoder API, but your new List of
File objects is working properly and is populated with the correct objects:

c:\mark\filel.proj
c:\mark\testproj.proj
c:\mark\final.proj

Possible Customization

XMLEncoder/Decoder supports serialization of Java Beans out of the box, but it can also be customized
to serialize any class —regardless of whether or not it uses Java Beans conventions. In fact, throughout
the Swing/JFC class library you will find classes that do not fully conform to Java Bean conventions.
Many types of collection classes do not; some Swing classes have other ways of storing data besides get-
ters and setters. The following XML file is a serialized instance of a java.util.HashMap, and a
javax.swing.JPanel. Both of these classes have their data added to them by methods that do not fol-
low the Java Beans convention:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.5.0-beta3" class="java.beans.XMLDecoder">
<object class="java.util.HashMap">
<void method="put">
<string>Another</string>
<string>AnotherTest</string>
</void>
<void method="put">
<string>Mark</string>
<string>Test</string>
</void>
</object>
<object class="javax.swing.JPanel">
<void method="add">
<object class="javax.swing.JLabel">
<void property="text">
<string>Mark Label</string>
</void>
</object>
</void>
</object>
</java>

Note how data is added to a HashMap by the put () method, and components are added to Jpanels by
the add () method. How does the XMLEncoder/Decoder API know how to look for this— or even find

254

Persisting Your Application Using Files

the data that should be inserted via those methods? Since its file format is a series of processing instruc-
tions, XMLEncoder/Decoder can serialize the information necessary to make method calls to disk. This
generic ability lets XMLEncoder/Decoder do any kind of custom initialization or setting of data that a
class may require —and all through its methods, its interface. Just because the file format supports this
type of generic processing instruction, though, does not mean that the XMLEncoder automatically
knows how to use them. The solution is the API’s java.beans.PersistenceDelegate class.

Persistence Delegates

Every class serialized and deserialized has an instance of java.beans.PersistenceDelegate associ-
ated with it. It may be the default one, included for classes following the Java Beans conventions, or it
could be a custom subclass of PersistenceDelegate that writes the processing instructions needed to
recreate a given instance of a class. Persistence delegates are responsible only for writing an object to
disk —not reading them. This is because all objects are written in terms of known processing instruc-
tions. These instructions can be used to recreate the object without the need of any custom information
contained in the persistence delegate. How to write a custom persistence delegate is a fairly complex
topic that is out of the scope of this section. It is what allows classes like HashMap and Jpanel to be suc-
cessfully serialized. The XMLEncoder/Decoder includes a number of PersistenceDelegates used for
classes found in the JDK that do not fully conform to Java Beans conventions.

For detailed information on how to use and create custom persistence delegates, see the following arti-
cle, written by Philip Mine, the designer and author of XMLEncoder/Decoder API:

http://java.sun.com/products/jfc/tsc/articles/persistenced/

When to Use XMLEncoder/Decoder

Use of the XMLEncoder/Decoder API over the Java Serialization API is generally preferred when you
are serializing object graphs consisting of Java Beans and Swing components. It was designed precisely
for that purpose and fixes the more generic Java Serialization API's shortcomings with respect to both
Java Beans, but especially Swing components. Prior to the XMLEncoder/Decoder API, there was no
built-in mechanism for the long-term serialization of Swing components. XMLEncoder/Decoder has
only been around since JDK 1.4; if you must support any JDK released before 1.4, you cannot use
XMLEncoder/Decoder.

Thinking in more general terms, and assuming your application has a data model you wish to persist to
disk, XMLEncoder/Decoder has the following advantages:

Q It's simple to implement.

O You can add properties and remove properties from your Java Beans class definitions without
breaking previously serialized instances.

Q The internal private data structure of your beans can change without breaking previously serial-
ized instances.

Q Instances are saved in XML, making the resulting files human-readable.

255

Chapter 5

Some of the potential downsides to choosing the XMLEncoder/Decoder for serializing your object
graph of Java Beans follow:

Q Even though the file format is human-readable, it is editable in the real world only by develop-
€rs Or power users.

Q Even though the file format is XML, it is still Java-specific—it would take great effort to allow a
non-Java-based application to read the data.

Q Every piece of data you want persisted in the class must be a Java Bean property (or customized
with a special persistence delegate).

The XMLEncoder/Decoder API is perfect for what it is designed for — the long-term serialization of Java
Beans components for use later on by Java-based applications. Because it is so customizable, it can often
be used for a variety of other purposes, and serialize a lot of data beyond ordinary Java Beans. Generally,
though, its main advantage over normal Java Serialization is its robustness, even through class definition
changes. Apart from that, however, it still has the same limitations of the Java Serialization API. When
you have an internal data model based with Java Beans, XMLEncoder/Decoder makes sense. If you
would like your application’s file formats to be read by other non-Java applications, eventually you will
have to specify some other custom file format or write to an existing standard.

XML Schema-Based Serialization:
Java API for XML Binding (JAXB)

The last method to be discussed in this chapter for persisting an application’s data is the Java API for
XML Binding (JAXB). This method is fundamentally different from the other two serialization methods
that have already been discussed (the Java Serialization API and the XMLEncoder/Decoder API). Both
of these models involve taking a data model consisting of classes already defined and persisting
instances of these classes. Later on, the information on disk could then be used to reconstruct the object
graph back into the in-memory model used by an application. Both of these models map Java classes to
a file format. JAXB takes the opposite approach. It maps a file format to Java classes. The diagram shown
in Figure 5-10 illustrates this difference.

: JAXB Generated Class
Serialization
Binary Format
Java Serialization API writes
JAXB writes
User Defined Java Class
JAXB generates
) XMLEncoder User Defined Generic XML
XMLEncoder/Decoder API wnt&4 Bean XML XML Schema Format
Format Schema defines

Figure 5-10

256

Persisting Your Application Using Files

Instead of defining Java classes, which in turn are written to predefined file formats, the developer
defines the file format in the XML schema language. Once the file format is defined, JAXB generates a set
of Java classes that read and write the XML instance documents that correspond to the defined XML
schema.

The XML schema language is the World Wide Web Consortium’s standard for defin-
ing XML instance documents of a particular type. It is a widely accepted standard
and already defines many different types of XML documents. XML schemas also let
XML parsers validate an XML instance document to verify that they conform to the
schema’s requirements. This can greatly reduce the time it takes to write code that
must read XML, as it does a lot of the validation for you. View the XML schema
specification at the following URL: http: //www.w3.org/TR/xmlschema-0/.

JAXB generally requires more work on the part of the developer. The benefit is that other applications
can easily read and write the data model defined by the XML schema. Because XML schema is a well-
accepted standard, other languages and development languages also have tools to generate data storage
classes based on an XML schema. This makes JAXB ideal for applications that must share a common
data format. When other applications specify their file formats in XML schema, JAXB makes life simple
for the developer, since the developer already has a file format specification defined and simply has to
generate the Java classes that bind to XML documents that follow the schema.

Since JAXB generates Java classes based on a particular XML schema, the developer does not have as
much room to customize the data structure. In most cases, developers will find themselves going back to
the XML schema, modifying it, and regenerating the classes’s additional information or changes to cur-
rent information that must be stored. Generated code provides a set of different issues for the developer.
Names for data members, while following the schema, can be tedious to work with, and code using gen-
erated classes can easily become difficult to read. Many times developers will be forced with the addi-
tional burden of mapping data in JAXB-generated classes to classes in the JDK —like mapping color
information to a java.awt.Color instance, or constructing a java.net . URL or file path from a String.
This additional overhead is one of the downsides of JAXB —it is usually worth the effort though, if
interoperability and a readable file format are requirements of your application. The quick and easy days
of the Java Serialization API and the XMLEncoder/Decoder API give way to the slightly more tedious
JAXB methodology of programming. Anytime you need to interface with non-Java applications, the
complexity increases.

Sample XML Document for Your Configuration Object

Suppose you want to take your Configuration data model and define an XML schema to represent

it. You will not be able to write an XML schema that maps directly to your already-existing
Configuration class, but you can write an XML schema that saves all the necessary data attributes to
recreate your Configuration instance. This is where the extra effort comes in on the part of the developer.
After the in-memory data model is defined, in your case the Configuration object, an XML schema
must additionally be defined to represent all the necessary data attributes to recreate it. If you did not
already have a class for your Configuration data model, you would still have to write some sort of
conversion between types like java.awt.Color and the JAXB class that you generate with that same
information — after all, other Swing classes were developed to interact with java.awt.Color, not
whatever custom class JAXB decides to generate for you! To refresh your memory on what data
attributes are stored in Configuration, Figure 5-11 is the original data model diagram displayed earlier
in the chapter.

257

Chapter 5

Configuration

-userHomeDirectory : string

-showTabs : bool Ko—
-recentFiles : string|] 1 2 -paletteWindowPosition, toolsWindowPosition
1 java.awt.Point

-backgroundColor, foregroundColor

java.awt.Color

Figure 5-11

Essentially, data representing a color, a point, directory and file locations, and a boolean variable needs to
be stored. XML schema is more than equipped to handle this — you just have to actually define it. Below
is an XML instance document that contains all of the information you would need to recreate your
Configuration object. Notice how it is not only human-readable in the sense that it is text, but it is also
conceivably modifiable by a user. Colors are obviously defined, and the user’s home directory is easily
modified. The XML below is far more readable than the output from the XMLEncoder/Decoder API:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<configuration xmlns="http://book.org/Configuration">
<user-settings>
<user-home-directory>C:\Documents and Settings\Mark\My Documents</user-home-
directory>

<recent-files>
<recent-file>c:\mark\filel.proj</recent-file>

<recent-file>c:\mark\testproj.proj</recent-file>
<recent-file>c:\mark\final.proj</recent-file>
</recent-files>
</user-settings>
<ui-settings>
<palette-window-position>

<x-coord>5</x-coord>

<y-coord>5</y-coord>
</palette-window-position>

<tools-window-position>

258

Persisting Your Application Using Files

<x-coord>10</x-coord>

<y-coord>10</y-coord>
</tools-window-position>

<background-color>
<red>51</red>

<green>51</green>
<blue>255</blue>

<alpha>255</alpha>
</background-color>

<foreground-color>
<red>255</red>

<green>255</green>
<blue>51</blue>

<alpha>255</alpha>
</foreground-color>

<show-tabs>true</show-tabs>

</ui-settings>

</configuration>

Note though, that this XML file is not the XML schema; it is a document that conforms to the XML
schema defined in the next section of this chapter. JAXB will generate Java classes that read and write
files like the preceding XML conforming to your schema. It will give you Java Bean-like access to all of
the data contained in the document.

Defining Your XML Format with an XML Schema

Now that you have looked at a sample XML instance document containing a sample set of
Configuration data for your data model, you can look under the hood and see how to specify the file
format. In this section, the various data types for your configuration will be analyzed and then defined
in a schema. To reiterate the following data is necessary to store in your configuration data model:

Q
W]
Q
a
Q

The user’s home directory, a string value

A flag whether or not to use a tabbed interface, a boolean value

A list of recently accessed files by the user, an array of string values

Two colors, foreground and background, for drawing operations, color values

Two points, for the last position of the tool and palette windows, point values

While this section will not be a thorough guide in any sense to XML schema, you will go through how to
define the data bullets listed earlier. First, though, XML schema must be briefly discussed. XML schema
is a simple but powerful language for defining and specifying what types various XML elements can be,

259

Chapter 5

and where they can appear in a document. Essentially, there are two types of XML elements you can
define with XML schema: simple elements and complex elements. Simple elements have no attributes
and contain only text data—they also have no child elements. An example of a simple element follows:

<hello>world</hello>

Complex elements can have attributes, child elements, and potentially mix their child elements with
text. The following is an example of a complex element:

<complex c="12">
<hello>world</hello>
</complex>

XML schema is fairly intuitive, but a full and thorough coverage of it is beyond the scope of this book. A
great online tutorial can be found at the following URL:

http://www.w3schools.com/schema/default.asp

Defining Your Data: Configuration.xsd

To define your data, you will be using both simple and complex elements. Looking back at the bullet list
of data points necessary, both the user’s home directory and your tabbed interface flag (the first two bul-
lets) can probably be modeled with simple elements. Here is how you will model them in XML schema:

<xs:element name="user-home-directory" type="xs:string" />
<xs:element name="show-tabs" type="xs:boolean" />

You are defining elements and requiring that the text within those elements be of the type specified. An
instance example of both of these elements follows:

<user-home-directory>c:\mark</user-home-directory>
<show-tabs>true</show-tabs>

The string array of recent files is slightly more complex to model. It will be modeled as a complex ele-
ment, with a child element for each individual recent file. First, you define your complex type:

<xs:complexType name="recentFilesType">
<XS:sequence>
<xs:element name="recent-file" type="xs:string" maxOccurs="unbounded" />
</Xs:sequence>
</xs:complexType>

After defining your complex type, which is a sequence of recent-file elements, you can define your
element that uses your custom XML type. Note how the type attribute in the element definition that fol-

lows corresponds to the name attribute in your preceding complex type definition:

<xs:element name="recent-files" type="recentFilesType" minOccurs="0" />

260

Persisting Your Application Using Files

An example instance of your recent-files element looks like the following;:

<recent-files>
<recent-file>c:\mark\filel.proj</recent-file>

<recent-file>c:\mark\testproj.proj</recent-file>

<recent-file>c:\mark\final.proj</recent-file>
</recent-files>

Defining colors presents an interesting challenge. You must make sure you have enough information
specified in the XML file to construct a java.awt.Color object. If you specify in the XML file the red,
green, blue, and alpha components of a color, you will have enough information to construct a
java.awt.Color instance. The color type can then be modeled as follows:

<xs:complexType name="colorType">
<XS:sequence>
<xs:element name="red" type="xs:int" />

<xs:element name="green" type="xs:int" />
<xs:element name="blue" type="xs:int" />
<xs:element name="alpha" type="xs:int" default="255" />

</Xs:sequence>
</xs:complexType>

As you can see, your complex type (colorType) contains child elements for the RGBA components.
These components are integer values and if the alpha component is not specified, it defaults to 255 (a
totally opaque color). After defining two elements that take your newly defined type (colorType), the
foreground and background colors for your application’s configuration data model can be declared:

<xs:element name="background-color" type="colorType" minOccurs="0" />
<xs:element name="foreground-color" type="colorType" minOccurs="0" />

An example instance of a foreground-color element is shown as follows:

<foreground-color>
<red>255</red>

<green>255</green>
<blue>51</blue>

<alpha>255</alpha>
</foreground-color>

The last major custom type you must define is your type for point objects. This type must have enough
information encoded in the XML to construct a java.awt.Point instance. All you essentially need are
integer values representing the x and y coordinates of a point. The last two element definitions that use
your new XML type for points, pointType, are also listed below. These elements represent the positions
of the palette window and the tool window of your application:

261

Chapter 5

<xs:complexType name="pointType">
<xS:sequence>
<xs:element name="x-coord" type="xXs:int" />

<xs:element name="y-coord" type="xs:int" />
</Xs:sequence>
</xs:complexType>

<xs:element name="palette-window-position" type="pointType" minOccurs="0" />
<xs:element name="tools-window-position" type="pointType" minOccurs="0" />

Now that you have defined all of your basic types in your schema, they can be organized around other
elements for better readability of your XML instance documents. The actual schema listed at the end of
this section will have more element and complex type definitions to account for document readability.
The next step will be to generate JAXB classes from your schema in order to start reading and writing

XML documents that conform to your schema.

The full XML Schema Definition (XSD) file for your configuration data model, configuration.xsd, is

listed as follows:

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema targetNamespace="http://book.org/Configuration"
elementFormDefault="qualified" xmlns="http://book.org/Configuration"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >
<xs:complexType name="configurationType">
<xs:sequence>
<xs:element name="user-settings" type="user-settingsType" />

<xs:element name="ui-settings" type="ui-settingsType" />
</Xs:sequence>
</xs:complexType>

<xs:complexType name="recentFilesType">
<XSs:sequence>
<xs:element name="recent-file" type="xs:string" maxOccurs="unbounded"
</Xs:sequence>
</xs:complexType>

<xs:complexType name="pointType">
<Xs:sequence>
<xs:element name="x-coord" type="xs:int" />
<xs:element name="y-coord" type="xs:int" />
</Xs:sequence>
</xs:complexType>
<xs:complexType name="colorType">
<XSs:sequence>
<xs:element name="red" type="xs:int" />

<xXs:element name="green" type="xs:int" />

<xs:element name="blue" type="xs:int" />

262

/>

Persisting Your Application Using Files

<xs:element name="alpha" type="xs:int" default="255" />
</Xs:sequence>
</xs:complexType>

<xs:complexType name="ui-settingsType">
<xs:sequence>
<xs:element name="palette-window-position" type="pointType" minOccurs="0"
/>

<xs:element name="tools-window-position" type="pointType" minOccurs="0" />
<xs:element name="background-color" type="colorType" minOccurs="0" />
<xs:element name="foreground-color" type="colorType" minOccurs="0" />

<xs:element name="show-tabs" type="xs:boolean" />
</Xs:sequence>
</xs:complexType>

<xs:complexType name="user-settingsType">
<XS:sequence>
<xs:element name="user-home-directory" type="xs:string" />

<xs:element name="recent-files" type="recentFilesType" minOccurs="0" />
</Xs:sequence>
</xs:complexType>

<xs:element name="configuration" type="configurationType" />

</Xs:schema>

Generating JAXB Java Classes from Your Schema

Generating JAXB classes from an XML schema requires the Java Web Services Development Pack from
Sun. The latest version of JWSDP from Sun is version 1.4 and version 1.0 of the JAXB specification
(implemented by version 1.03 of Sun’s reference implementation). Sun’s reference distribution of JAXB
includes an XML schema compiler. This compiler outputs Java classes that read and write the particular
XML schema from which they were generated. The JWSDP installer can be downloaded from Sun’s Web
site from the following URL:

http://java.sun.com/webservices/jwsdp/index.jsp

Installing it is straightforward, as it installs much like any Windows application. JWSDP includes many
tools besides JAXB, but JAXB is all that will be discussed in this chapter. To use the XML schema com-
piler, you must make sure your PATH environment variable includes the /jaxb/bin directory under the
folder where you installed JWSDP. Sun’s compiler is called by the xjc batch file located in the
/jaxb/bin directory. Once it is on your PATH, running it is straightforward. You saved your schema to
the file configuration.xsd. To compile your schema, you simply type the following at the command
prompt:

xjc -d gen configuration.xsd

263

Chapter 5

The -d option simply tells the compiler in which directory to put the generated Java source files. In your
case, you have a directory under your main project specifically for generated source files, gen, so that if
you modify your schema, you can easily regenerate the files to this same location. Figure 5-12 shows the
output of the xjc compiler.

Figure 5-12

After the xjc compiler is run to compile your schema, the following Java source files and resources are
generated:

org\book\configuration\bgm.ser
org\book\configuration\ColorType.java
org\book\configuration\Configuration.java
org\book\configuration\ConfigurationType.java
org\book\configuration\jaxb.properties
org\book\configuration\ObjectFactory.java
org\book\configuration\PointType.java
org\book\configuration\RecentFilesType.java
org\book\configuration\UiSettingsType.java
org\book\configuration\UserSettingsType.java
org\book\configuration\impl\ColorTypeImpl.java
org\book\configuration\impl\ConfigurationImpl.java
org\book\configuration\impl\ConfigurationTypeImpl.java
org\book\configuration\impl\JAXBVersion. java
org\book\configuration\impl\PointTypeImpl.java
org\book\configuration\impl\UiSettingsTypeImpl.java
org\book\configuration\impl\UserSettingsTypelImpl.java

Note: There are also many Java sources generated in the org\book\configuration\impl\runtime folder.
These sources are required in addition to the JAXB library JAR files at run time. You will not be analyz-
ing them or their content, however; just be aware that they are necessary at run time. There is a com-
mand-line option to disable the runtime package generation — if you generate classes for more than one
schema, you only need to reference one runtime package. In those scenarios, the runtime classes are not
needed (though you will need to pass along where a current runtime package exists for the xjc compiler
to disable the generation of the runtime package).

264

Persisting Your Application Using Files

Generated JAXB Object Graphs

JAXB generates its classes to follow certain conventions that correspond to how an XML schema is writ-
ten. Package names for generated classes follow whatever XML namespace the elements have in the
schema (though the package names can be changed with a certain command-line argument to the xjc
compiler). Every top-level XML element or complex type defined in a schema gets its own interface in
the root package generated by JAXB. A top-level element or complex type in an XML schema is one that
is not nested in other elements — its definition is a direct child element to the root element of the schema
definition. For example, in your schema, the complex type pointType is a top-level definition because
its location in the schema is right under the parent schema definition element. The only interface that
represents an element definition in your list of generated files is the org.book.configuration
.Configuration interface. This interface corresponds to the following element definition from the
schema:

<xs:element name="configuration" type="configurationType" />

Note: The type org.book.configuration.Configuration is different from the type
book.Configuration that has been referred to in the earlier sections of this book (though it repre-
sents the same logical data points). The type org.book.configuration.Configurationis the
JAXB-generated class that represents the data defined in your XML schema.

As you can see, the name of the interface comes from the name of the element. Every top-level element
in a schema definition gets its own interface that extends the interface javax.xml.bind.Element. This
is JAXB’s way of marking that a particular interface is a top-level element in an XML schema. It is similar
in concept to java.io.Serializable, in the sense that it contains no methods. It is also similar
because in JAXB, you cannot serialize or deserialize any structure that is not a javax.xml.bind
.Element (much like you cannot use the Java Serialization API to serialize any class not marked
Serializable). This is important to know, because when you define your schema, you must have at
least one top-level element definition. These top-level element definitions are potential root elements in
an XML instance document.

You may have guessed by now that the rest of the root package org.book.configuration consists
mainly of all interfaces. That is the case, and the org.book.configuration.impl package contains the
implementations of these interfaces. The rest of the interfaces in your package all correspond to top-level
complex type definitions in your schema. A couple of them will be looked at in detail, namely
ColorType and PointType. Any interface that represents a complex type definition will have the Type
suffix appended to the complex type name, hence your interfaces PointType and ColorType represent
the complex schema types pointType and colorType, respectively (the generator is smart enough not
to make the name PointTypeType, since you already appended type to the name of your complex type
definitions in the schema; see Figure 5-13).

As you can see from the diagram in Figure 5-13, JAXB maps XML elements and attributes of complex
types to Java Bean properties. The complex type colorType in the schema had four subelements: red,
blue, green, and alpha. These were all mapped to Java Bean int properties. They were mapped to int
because that was the type specified in their element definitions. Their type could also potentially be
another complex type, which would map to another generated JAXB interface, rather than a Java primi-
tive type like int.

265

Chapter 5

dnterface»
ColorType

+getRed() : int

- +getBlue() : int
dnterface» .
PointType +getGreen() : int
+getAlpha() : int
+getYCoord() : int +setRed(in value : int) : void
+getXCoord() : int +setBlue(in value : int) : void
+setYCoord(in value : int) : void +setGreen(in value : int) : void
+setXCoord(in value : int) : int +setAlpha(in value : int) : void
<xs:complexType name="pointType"> <xs:complexType name="colorType">
<xs:sequence> <xs:sequence>
<xs:element name="x-coord" type="xs:int: /> <xs:element name="red" type="xs:int: />
<xs:element name="y-coord" type="xs:int: /> <xs:element name="green" type="xs:int: />
</xs:sequence>
</xs:complexType> <xs:element name="blue" type="xs:int: />
<xs:element name="alpha" type="xs:int" default="255" />
</xs:sequence>
</xs:complexType>
Figure 5-13

Since XML documents are hierarchical in nature, the structure the generated JAXB classes naturally take
on is hierarchical. JAXB serializes and deserializes root elements in an XML document. It is the begin-
ning of an object graph. The XML complex type pointType, for instance, has subelements x-coord and
y-coord; they are therefore properties of pointType. In the generated JAXB class, these coordinates
become properties of the PointType interface. Figure 5-14 shows the generated JAXB object graph from
the root element of your configuration data model, configuration. The Configuration interface not
only extends javax.xml.bind.Element because it is a root element, but since it is an instance of XML
complex type configurationType, it also extends the org.book.configuration.ConfigurationType
interface. This interface has the properties as shown in the diagram. The object graph then extends out
from there.

The complete class diagram of all of the JAXB generated interfaces from your XML schema are pictured
in Figure 5-15. Notice how only the Configuration interface extends javax.xml.bind.Element. This
means that it is the only element that can be serialized or deserialized by JAXB. The rest are all subtypes
and elements branching off from Configuration. By looking at the object graph above and the class
diagram below, you can match up the XML element and its place in the object graph with the JAXB
interface that implements it.

266

Persisting Your Application Using Files

<recent-files>

<user-settings>

<user-home-directory> <foreground-color>

) . <background-color>
<configuration>

<ui-settings>

<palette-window-position>

<tools-window-position>

Figure 5-14

267

Ul (qul : BnjeA ul)plooHxIes+
PIOA : (3Ul : BNjEA UI)PIOODAIOS+
Ui : ()p100) X198+

0] 2 (JPI00DAIOS+

adApjuiod
«@oBpIBUP

PIOA : (Ul : BnjeA ur)eyd|yios+
PIOA : (Ul : @njeA Ul)usainlas+
PIOA : (Ul : dn|eA u1)an|g1es+
PIOA : (2Ul : BnjeA ul)pay1as+
Wi (JeydjyraS+

Wy : (Jusainieg+

wy : (Jenigios+

I 2 ()pay198+

PIOA ! (UBBJOOQ : BN[BA UI)SqR|MOYSIoS+

PIOA : (3dA11UI0d : @NJeA UI)UOIIIISOdMOPUIMSI00]18S+
PIOA : (3dAJ3Ul0d : @njeA ul)IuOI}ISOdMOPUIMSNIB|EL19S+
PIOA : (8dA1J0]0) : BNjeA U1)I0jo)PUNOIF810419S+

PIOA : (8dA140]0) : BNjeA U1)I0]0)PUNOIHORGISS+
uea|00q : ()sqeIMoySSsI+

adA11ul0d : ()UOIIISOMOPUIMSIO00L 195+

8dA13uI0d : ()UOIISOdMOPUIMBNIBIEdIoF+

adA[40]0) : ()10]0QPUN0ISaI04198+

2dA110]0) : ()10]09puUN0ISYOLGIOS+

GT-G 213l

uoneingyuod
«@0BLBUP

adAj10109
«@0BpBUP

sgumasin
«@oepaup

1817 2 (Joli1us09Y185+

adALsa|141ua09y
«@oepIBUP

PIOA : (S3U18S49S : dNnjeA ul)S3uiIeSIasnNIas+
pIOA : (SBUMIBSIN © 8NjeA UI)STUNIaSINIeS+
sgumasiasn : ()sgumesiosnies+ <"

SSumasIN : ()sfuinesinies+

PIOA : (8ULIIS : BNjeA UJ)A101084]JOWOHISSNIBS+
PIOA ! (8dA] S8141UBI3Y : dNJeA UI)Sd|I{1UB29Y19S+
8uis : ()A1030041goWOHI9SN198+
9dA|Sa]141UB28Y : ()S8|I{1UBIYIT+

adfuoneingyuo)
«@oepIUPp

sSuesiasn
«@0BLBIUP

JuBW|F pulq JwX-XeAe|
«@oBUBUP

268

Persisting Your Application Using Files

JAXB API Key Classes

The classes that the xjc compiler generates are not the classes that are used by the developer to serialize
or unserialize any data, or in JAXB terms, marshall or unmarshall any data. The classes and resources
generated by JAXB from an XML schema merely provide the rules and data structure necessary for the
JAXB runtime libraries to marshall and unmarshall XML data conforming to that schema. Because the
JAXB run time must be made aware of the particular constraints and rules for each individual schema, a
JAXBContext object must first be created with the particular context of the particular schema and data
structure classes to be used. From there, Marhsallers and Unmarshallers can be created to actually
serialize and deserialize XML data.

Class or Interface (From javax.xml.bind) Function

JAXBContext The JAXBContext is the initial class; one creates
Marshaller and Unmarshaller classes for various
JAXB-generated types

Marshaller Interface that allows for the marshalling of
JAXB-generated objects to XML in various formats
(stream, DOM nodes, SAX events, and so on)

Unmarshaller Interface that allows for the unmarshalling of vari-
ous XML representations (from a stream, a DOM
tree, or SAX events) to populate instances of JAXB-
generated classes

Validator Interface through which JAXB-generated class
instances can be verified that the data they contain
conforms to the XML schema they were generated
against

Marshalling and Unmarshalling XML Data

The process of marshalling and unmarshalling data into and from JAXB classes occurs through three
classes: JAXBContext, Marshaller, and Unmarshaller. Both Marshaller and Unmarshaller are cre-
ated from an instance of JAXBContext, and they do the actual work of marshalling and unmarshalling
the data, respectively. A different JAXBContext is required for every different XML namespace from
XML schemas, or more specifically, the Java package that contains the generated JAXB classes. This
allows the JAXBContext to set up the Marshaller and Unmarshaller objects with that particular
schema’s rules and constraints. There are three steps to unmarshalling XML instance data conforming to
a schema into a JAXB-generated object graph:

1. Retrieve an instance of JAXBContext specific to the root package of the generated JAXB classes.
2. Create an Unmarshaller object from the JAXBContext instance.

3. Use the Unmarshaller to unmarshall XML data into instances of the generated JAXB classes.

You will now unmarshall XML data conforming to your configuration.xsd schema into your gener-
ated JAXB classes. First, the JAXBContext is retrieved:

JAXBContext ctx = JAXBContext.newInstance ("org.book.configuration");

269

Chapter 5

Then Unmarshaller can then be created from the context:
Unmarshaller u = ctx.createUnmarshaller () ;

Now that you have an Unmarshaller, various representations of XML data can be passed to it to trans-
form the XML into instances of the JAXB-generated object graph. In this example, you will pass it a
FileInputStream corresponding to an XML file saved on disk that conforms to your schema:

org.book.configuration.Configuration conf = (org.book.configuration.Configuration)
u.unmarshal (new
FileInputStream("c:\\mark\\configuration.xml")) ;

The Unmarshaller returns a populated instance of Configuration, which represents the root node of
the XML file, and is the root of your object graph. The XML data can now be used as necessary in your
application. Marshalling data back into XML is just as straightforward as unmarshalling. The three steps
to marshall data mirror the three steps to unmarshall it:
1. Retrieve an instance of JAXBContext specific to the root package of the generated JAXB classes.
2. Create a Marshaller object from the JAXBContext instance.
3. Use the Marshaller to marshall XML data into instances of the generated JAXB classes.
Now instances of org.book.configuration.Configuration can be marshalled back to disk (or to

DOM or SAX representations). Just like before, the JAXBContext particular for your package of JAXB-
generated classes must be obtained:

JAXBContext ctx = JAXBContext.newInstance("org.book.configuration") ;
The Marshaller can then be created from the context:

Marshaller m = ctx.createMarshaller() ;
The Marshaller instance can now be used to serialize the information in your conf instance of
org.book.configuration.Configuration toa FileOutputStream (and hence a file on the file sys-
tem):

m.marshal (conf, new FileOutputStream("c:\\mark\\configuration.xml") ;

That’s all there is to marshalling and unmarshalling data. As you can see, the difficult part of using JAXB
is writing the schema.

Note: If the org.book.configuration.Configuration type is not populated with all the data
the schema requires, the instance will not be able to be marshalled into XML. By the same token, XML
documents containing errors — in other words not exactly conforming to the schema— will not be able
to be unmarshalled. Exceptions will be thrown and the instance document will have to be fixed.

Creating New XML Content with JAXB-Generated Classes

You have looked at how to load XML data into a JAXB object graph. You have looked into saving an
existing JAXB object graph back into XML. How would you create a new JAXB graph and populate it

270

Persisting Your Application Using Files

programmatically (to later save to XML)? Unfortunately, this is one area where JAXB becomes a little
unwieldy. In JAXB, every set of generated classes comes with an ObjectFactory class at the

root package of the generated classes. You may have noticed the class org.book.configuration
.ObjectFactory back when you generated your set of classes for your configuration.xsd schema.
This is the class necessary to create blank new instances of every JAXB object. Since every JAXB
representation of either an element or complex type definition corresponds to a Java interface, the
ObjectFactory finds the right implementation class (from the generated package’s subpackage, imp1)
and creates it. In any given JAXB object graph, there are potentially many element and complex type
definitions turned into interfaces, and each of these must be created with the 0ObjectFactory. Once
these types are created, though, it is easy to populate them with data, since they all follow Java Bean
conventions. The example below shows the creation and population of an org.book.configuration
.Configuration instance:

ObjectFactory factory = new ObjectFactory () ;

ConfigurationType configType = factory.createConfiguration();
UiSettingsType uiSettingsType = factory.createUiSettingsType() ;
UserSettingsType userSettingsType = factory.createUserSettingsType();

configType.setUiSettings (uiSettingsType) ;
configType.setUserSettings (userSettingsType) ;
ColorType fgColorType = factory.createColorType();
fgColorType.setRed (255) ;

fgColorType.setBlue (255) ;

fgColorType.setGreen(0) ;

uiSettingsType.setForegroundColor (fgColorType) ;
uiSettingsType.setShowTabs (true) ;
userSettingsType.setUserHomeDirectory ("c:\\mark") ;

// continue on as such, populating the entire object graph

One thing to take into consideration when manually populating JAXB object graphs is completeness and
conformance to the schema. While it is easy to populate your JAXB objects and use the data in a Java
application, if you want to save the data you are populating out to disk (or somewhere else) as XML,
every schema-required piece of data must exist in your newly created object graph. In the example
above, if you did not create a UsersettingsType instance and set it on your Configuration instance,
JAXB exceptions would be thrown when the instance was later marshalled to disk.

Using JAXB-Generated Classes in Your Application

One of the potential issues that arise whenever information is saved and loaded from a file is that the infor-
mation must be turned into objects used by the application. The nice thing about the Java Serialization API
and XMLEncoder/Decoder is that they save the actual Java class instances used by an application,

so there is no need to transform the data loaded into a format used internally by the application —it

is already in the format used by the application. The classes that JAXB generates can be used as the
in-memory data model for your application, but generally, there is a need to perform at least some trans-
formations. The Java classes in the JDK are rich and full of functionality —and it would be wasteful to
ignore them. Why store URLs as Strings? Why store File objects as Strings? Why not represent a

271

Chapter 5

color with a java.awt.Color object? Because it makes sense to use the classes in the JDK, a lot of the
time you will find yourself taking data from the Java Beans generated by JAXB, and putting them into
your own data structures. You will find yourself adding JAXB classes to your own lists, maps, trees,
and other data structures, especially since java.util.List is the only collection class ever used by
JAXB-generated classes. This is the added burden of using JAXB over using Java Serialization or
XMLEncoder/Decoder. Not only do you have to create a schema, but also it is often a necessity to trans-
form some of the data from the JAXB classes into classes more usable by your application. In the exam-
ple configuration data model used throughout this chapter for the Imager Application, you use an
instance of book.Configuration to represent the model. It contains Java representations of points and
colors that could be used by the AWT and Swing UI frameworks. To use your JAXB-generated configu-
ration data model in your application, you will as such have to transform it to and from your book
.Configuration data model. It is not a difficult task, but must be done for things like your color and
point representations to have any meaning to your application. The diagram in Figure 5-16 that follows
shows where your transformations fit into the bigger picture of your application.

My Apa Rcation

1

JAXB-Generated Data Model

XML Document
conforming to

Our Transformer) .
configuration.xsd

®

1

book.Configuration Data Model

Figure 5-16

In your original Configuration data model example, you wrapped your serialization code into Swing
actions to use in the Ul for the Imager Application. This let you easily add your code to save and load
configuration data to your menus and buttons in your application. You will do the same for your code to
save and load your configuration data, this time with your XML format based on your configuration
.xsd schema file. The key difference, though, will be that you need to integrate transformation function-
ality into these actions, since a conversion needs to be done between your JAXB-generated data model
and your original Configuration data model (as shown in Figure 5-16). Other than this transformation,
your new XML save and load Swing actions will be very similar in structure and nature to your older
actions.

272

Persisting Your Application Using Files

Implementing Your Save Action

As shown in the code that follows, your save action’s actionPerformed () method will start out the
same way as your original save action —by prompting the user for a file in which to save the configura-
tion information:

package book;

import
import
import
import
import
import
import

public

org.book.configuration.ColorType;
org.book.configuration.ConfigurationType;
org.book.configuration.ObjectFactory;
org.book.configuration.PointType;
org.book.configuration.RecentFilesType;
org.book.configuration.UiSettingsType;
org.book.configuration.UserSettingsType;

class SaveXMLConfigurationAction extends AbstractAction {

private Application myApp;

public SaveXMLConfigurationAction (Application app) {
super ("Export XML Configuration");

this.myApp = app;

public void actionPerformed (ActionEvent arg0) {
JFileChooser fc = new JFileChooser () ;

if

(JFileChooser .APPROVE_OPTION == fc.showSaveDialog (myApp)) {

try {

If the user chooses a file to save the configuration to, the application’s book.Configuration

object is retrieved, and the process of mapping its data to a new JAXB org.book.configuration
.Configuration object is begun. The first step to completing this mapping is to create the
ObjectFactory. After the factory is created, all of the types necessary, starting with ConfigurationType,
can be created. Notice in the code that follows how values are then retrieved from the application’s
book.Configuration data model, and then mapped into their appropriate place in the JAXB-generated
CconfigurationType data model:

Configuration conf = this.myApp.getConfiguration();
JAXBContext ctx = JAXBContext.newInstance ("org.book.configuration");

Marshaller m = ctx.createMarshaller () ;
ObjectFactory factory = new ObjectFactory () ;

ConfigurationType configType = factory.createConfiguration();
UiSettingsType uiSettingsType = factory.createUiSettingsType() ;
UserSettingsType userSettingsType = factory.createUserSettingsType() ;

configType.setUiSettings (uiSettingsType) ;
configType.setUserSettings (userSettingsType) ;

273

Chapter 5

Color fgColor = conf.getForegroundColor();

if (fgColor != null) {
ColorType fgColorType = factory.createColorType() ;
fgColorType.setRed (fgColor.getRed()) ;
fgColorType.setBlue (fgColor.getBlue()) ;
fgColorType.setGreen (fgColor.getGreen()) ;
fgColorType.setAlpha (fgColor.getAlpha());

uiSettingsType.setForegroundColor (fgColorType) ;

Color bgColor = conf.getBackgroundColor();

if (bgColor != null) {
ColorType bgColorType = factory.createColorType() ;
bgColorType.setRed (bgColor.getRed()) ;
bgColorType.setBlue (bgColor.getBlue()) ;
bgColorType.setGreen (bgColor.getGreen()) ;
bgColorType.setAlpha (bgColor.getAlpha()) ;

uiSettingsType.setBackgroundColor (bgColorType) ;

Point ppPoint = conf.getPaletteWindowPosition() ;

if (ppPoint != null) {
PointType ppPointType = factory.createPointType () ;
ppPointType.setXCoord (ppPoint.x) ;
ppPointType.setYCoord (ppPoint.y) ;

uiSettingsType.setPaletteWindowPosition (ppPointType) ;
}

Point tpPoint = conf.getToolsWindowPosition /() ;

if (ppPoint != null) {
PointType tpPointType = factory.createPointType () ;
tpPointType.setXCoord (tpPoint.x) ;
tpPointType.setYCoord (tpPoint.y) ;

uiSettingsType.setToolsWindowPosition (tpPointType) ;
}

uiSettingsType.setShowTabs (conf.isShowTabs ()) ;
userSettingsType.setUserHomeDirectory (conf.getUserHomeDirectory()) ;
String[] recentFiles = conf.getRecentFiles();
if (recentFiles != null) {

RecentFilesType rFilesType = factory.createRecentFilesType () ;

Collections.addAll (rFilesType.getRecentFile (), recentFiles);

userSettingsType.setRecentFiles (rFilesType) ;
}

274

Persisting Your Application Using Files

Finally, after you finish mapping the data, the JAXB data model is marshalled to XML in the file speci-
fied by the user:

m.marshal (configType, new FileOutputStream(fc.getSelectedFile()));

} catch (IOException ioe) {
JOptionPane.showMessageDialog (this.myApp, ioe.getMessage(), "Error",
JOptionPane.ERROR_MESSAGE) ;

ioe.printStackTrace() ;

} catch (JAXBException jaxbEx) {
JOptionPane.showMessageDialog(this.myApp, jaxbEx.getMessage(), "Error",
JOptionPane.ERROR_MESSAGE) ;

jaxbEx.printStackTrace();

Note how you must catch JAXBException in the above code. Most JAXB operations can throw a
JAXBException—when saving it can mean that you did not populate all the information that was
required in your generated object structure as specified in the originating XML schema.

Implementing Your Load Action

The load action is of course similar to your original load action —and probably most actions that load
files, actually. As shown in the code that follows, the user is prompted for a file from which to load the
configuration at the beginning of the actionPerformed () method:

package book;

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Unmarshaller;

import org.book.configuration.ColorType;

import org.book.configuration.ConfigurationType;

import org.book.configuration.PointType;

import org.book.configuration.RecentFilesType;

public class LoadXMLConfigurationAction extends AbstractAction {
private Application myApp;
public LoadXMLConfigurationAction (Application app) {

super ("Import XML Configuration");
this.myApp = app;

275

Chapter 5

}

public void actionPerformed (ActionEvent evt) {
JFileChooser fc = new JFileChooser () ;
if (JFileChooser.APPROVE_OPTION == fc.showOpenDialog (myApp)) {
try {

Once the user has picked the file, you begin the process of unmarshalling the XML data contained in the
file to your JAXB-generated data model. The code below shows the XML file the user specified being
unmarshalled into a new instance of org.book.configuration.Configuration, the JAXB object rep-
resenting the root node of the XML document specified in your configuration.xsd schema file:

JAXBContext ctx = JAXBContext.newInstance (ConfigurationType.class
.getPackage () .getName ()) ;

Unmarshaller u = ctx.createUnmarshaller () ;
org.book.configuration.Configuration configType =
(org.book.configuration.Configuration)
u.unmarshal (fc.getSelectedFile());

Now that the data has been unmarshalled, the data from the JAXB model must be mapped back from
the JAXB model to your original book.Configuration model. This is essentially the reverse-process of
what occurred in your save action. You are converting things like your JAXB ColorType back into a
form that can be displayed in your Swing user interface, the java.awt .Color object. After the data has
been mapped into your book. Configuration class, it can then be loaded into the application via the
myApp .setConfiguration () method:

Configuration conf = new Configuration();

ColorType bgColorType = configType.getUiSettings () .getBackgroundColor () ;
if (bgColorType != null) {
Color bgColor = new Color (bgColorType.getRed(),
bgColorType.getGreen(), bgColorType.getBlue(),
bgColorType.getAlpha());

conf.setBackgroundColor (bgColor) ;
}

ColorType fgColorType = configType.getUiSettings () .getForegroundColor () ;
if (fgColorType != null) {
Color fgColor = new Color(fgColorType.getRed(),
fgColorType.getGreen(), fgColorType.getBlue(),
fgColorType.getAlpha());

conf.setForegroundColor (fgColor) ;

}

PointType ppPointType = configType.getUiSettings ()
.getPaletteWindowPosition() ;

if (ppPointType != null) {

276

Persisting Your Application Using Files

Point ppPoint = new Point (ppPointType.getXCoord (),
ppPointType.getYCoord()) ;

conf.setPaletteWindowPosition (ppPoint) ;
PointType tpPointType = configType.getUiSettings()
.getToolsWindowPosition() ;
if (tpPointType != null) {
Point tpPoint = new Point (tpPointType.getXCoord(),

tpPointType.getYCoord()) ;

conf.setToolsWindowPosition (tpPoint) ;

conf.setShowTabs (configType.getUiSettings () .isShowTabs ()) ;

conf.setUserHomeDirectory (
configType.getUserSettings () .getUserHomeDirectory()) ;

RecentFilesType rFilesType =
configType.getUserSettings () .getRecentFiles () ;

if (rFilesType != null) {
List recentFileList = rFilesType.getRecentFile();
if (recentFileList != null) {
String[] recentFiles = new String[recentFileList.size()];

recentFileList.toArray (recentFiles) ;

conf.setRecentFiles (recentFiles) ;

myApp.setConfiguration (conf) ;
} catch (JAXBException jaxb) {
JOptionPane.showMessageDialog (this.myApp, jaxb.getMessage(), "Error",
JOptionPane.ERROR_MESSAGE) ;

jaxb.printStackTrace () ;

Similar to your save action, you must also catch JAXBException. If an error occurs while loading the
file, that is, if it does not conform to your configuration.xsd schema or the file could not be found,
etc., the exception will be thrown.

277

Chapter 5

The Swing actions you just developed get integrated into your application the same way the previous
ones did. Your application now has two mechanisms for persisting its configuration data model. One is
user-friendly to edit, the other one cannot be edited outside of the application. JAXB takes more effort on
the part of the developer, but can provide added value over normal Java Serialization. Figure 5-17 shows
a screen shot of your updated application.

Figure 5-17

When to Use JAXB

JAXB is fundamentally different from either the Java Serialization API or the XMLEncoder/Decoder APIL
It takes a completely different approach. Instead of first specifying a data structure using Java classes, one
first specifies the serialization format itself. The two are drastically different design approaches. In the
Java Serialization and XMLEncoder/Decoder API, you design Java classes and do not worry about the
serialization file format— that is taken care of by the APIs. However, it has the unfortunate disadvantage
of limiting the use of the serialized objects to only Java-based applications. JAXB generates your Java data
classes for you (at the expense of a very loose integration of your data with the JDK libraries) from the
specification of a file format in a W3C standard XML Schema Definition. JAXB adds more complexity to
an application and requires more development effort. Its advantages are as follows:

O Reads and writes standard file formats that applications written in any language can read, and
in many languages generates classes to use the data similarly to how JAXB generates classes
based on the file

O Resulting serialized documents are human-readable and as friendly to edit as they are defined

Q Fast way to read XML data based on an XML schema — uses far less memory to represent an
XML document in memory than a DOM tree

Its disadvantages are namely the following:

Q Requires more development effort— sometimes it is necessary to manage two data models: one
your application can more efficiently use and the JAXB-generated data model

Q Working with JAXB objects can be unwieldy since they are generated — things like naming and
object creation are more tedious to develop with than custom Java classes

278

Persisting Your Application Using Files

JAXB should be used when you want a human-readable file format that can be edited by users. It should
be used when you are developing a file format you want non-Java-based applications to be able to read.
It can be used in conjunction with other XML technologies, and to read third-party XML documents
based on third-party XML schemas. It is a valuable tool that requires more development effort and more
design, but its benefits far outweigh its costs — if you need a universal file format or just simply human-
readable XML.

Future Direction of JAXB 2.0

JAXB 2.0 will fix the one main problem with JAXB 1.0. It will allow developers to map existing Java
classes to an XML schema. Essentially this solves the problem you had to deal with when you had to
transform your JAXB-generated configuration data model to the Swing/UI-friendly one you custom
developed. If JAXB had given you the ability to map your original book.Configuration data model to
XML directly, there would have been no need to generate an additional data model and convert between
the two. JAXB 2.0 will build on some of the new JDK 5.0 language features, such as annotations.
Developers will have the ability to annotate their classes to define how they will be serialized to XML.
This really is the best of both Java Serialization or XMLEncoder/Decoder and JAXB. Developers can
design their data model in a way friendly to the Java environment, building their in-memory representa-
tions of the data, and then simply map it straight to human-readable and XML schema conforming XML.
Once JAXB 2.0 is released, it will become probably the best way to serialize your classes out of the three
technologies discussed in this chapter for most all design cases (though certainly not all). You can view
the JAXB 2.0 specification online at the following URL:

http://www.Jjcp.org/aboutJava/communityprocess/edr/jsr222/

Summary

Saving the state of an application to a file is saving all of the pieces of its in-memory data model neces-
sary to reconstruct it exactly as it was at a later point of time. Most object-oriented applications store
their data model as a set of data storage classes. In Java, it is standard practice to have the data model
represented as a series of classes following the Java Beans conventions and utilizing collection classes
where necessary (such as lists, maps, trees, sets, etc.). In applications that have graphical user interfaces,
it is best to separate the in-memory data structure from the GUI toolkit classes as much as possible. The
standard Java GUI toolkit, Swing, follows the Model-View-Controller design pattern to accomplish this
separation. This way, to persist the state of an application, only the data model needs to be written to
disk — the GUI is simply a transient aspect of the state of the application. Normally, when you say you
want to be able to save an application’s state, you are referring to saving some sort of file that an applica-
tion produces, whether an image file, a word processing document, or a spreadsheet. These types of files
are simply a data model persisted to disk. By keeping your data model separate from your GUI classes,
it is easier to save it off to a file. The Java Serialization API and the XMLEncoder/Decoder API have been
looked at in this chapter. These APIs literally take a set of Java classes, and persist enough information to
disk to reconstruct the actual object instances as they used to look in memory. This methodology makes
adding serialization capabilities to an application very easy, but at the cost of limiting the use of the seri-
alized information to Java-based applications.

279

Chapter 5

The JAXB API takes a fundamentally different approach, and first defines a common file format that
can be read from any application using the W3C standard XML schema technology. From this schema,
JAXB generates the in-memory data model for an application. It is essentially the reverse design

process of the Java Serialization API and the XMLEncoder/Decoder API. Both the JAXB API and

the XMLEncoder/Decoder API persist their information in XML —but the XML produced by the
XMLEncoder/Decoder API can only be used by Java-based applications. The Java Serialization API seri-
alizes its information in a Java-specific binary format that is much more efficient than XML, but again, is
only useful by Java applications and is not human readable. Persisting your applications using files can
require as little design and development time as you give it. If you use JAXB, it takes a little more time.
Your application’s in-memory data model is probably the most important aspect of your data design.
Once that exists, the various serialization and persistence strategies found in this chapter can all be
applied. The next chapter talks about how to serialize your application’s data model using a database,
which is usually necessary for multi-user systems.

280

Persisting Your Application
Using Databases

In the last chapter, you learned about how to persist the state of your application using file-based
mechanisms. This is a useful way to handle things in a single-user model, but when multiple users
need to share the same data, databases are the solution. Now, you will learn about how to persist
your application to a database.

Persisting your data to a database has always required true effort, regardless of your development
language. Java has been making substantial leaps in this area and has come a long way in making
the task much easier with their addition of the JDBC 3.0 API. Java also has an ever-growing open
source community that is releasing new and improved technologies every year.

This chapter will discuss how to persist your application’s data to a database using features of the
JDBC 3.0 API, such as RowSets and Distributed Transactions. It will also allow you to take an in-
depth look at Hibernate, a powerful object/relational mapping tool that is used to store and retrieve
Java objects to and from relational databases.

Java and its open source community are becoming extremely aware of the importance of data per-
sistence, especially for a developer in a J2EE architecture. Therefore they continue to enhance the
JDBC API to support the ever-growing needs of its developers.

JDBC API Overview

The JDBC API provides a simple way for Java applications to access data from one or more rela-
tional data sources. A Java developer can use the JDBC API to do the following things:

a Connect to a data source

QO Execute complex SQL statements

Chapter 6

Q Persist changes to a data source
QO Retrieve information from a data source

Q Interact with legacy filesystems

The JDBC API is based on the specification X/Open SQL Call Level Interface (CLI), which provides an
application with an alternative method for accessing databases with embedded SQL calls. This specifica-
tion has been accepted by the International Organization for Standards (ISO) as an international standard.
ODBC is also based on this standard, and the JDBC API can interface with ODBC through JDBC-ODBC
bridge drivers.

The JDBC API makes it relatively simple to send SQL statements to databases, and it doesn’t matter what
platform, what database vendor, or what combination of platform and vendor you choose to use. It’s all
done through one common API layer for all platforms. This is what makes Java the front-runner of pro-
gramming languages in today’s market. Although there are different vendors who are creating their own
drivers, they all must follow the JDBC 3.0 specification. With that said, all drivers fit into four categories.

Driver Type Description

JDBC-ODBC Bridge Driver This is a JDBC driver that is used to bridge the gap between
JDBC and ODBC. It allows them to communicate and is
mostly used in three-tier architectures. This is not a pure
Java solution.

Native API/Part Java Driver This type of driver is specific to a DBMS (Database
Management System) and converts JDBC calls to specific
client calls for the DBMS being used. This type of driver is
usually operating-system specific and is also not a pure
Java solution.

JDBC-Net Pure Java Driver This type of driver uses net server middleware for connect-
ing Java clients to DBMS. It converts the JDBC calls into an
independent protocol that can then be used to interface with
the DBMS. This is a pure Java solution with the main draw-
back being security.

Native-Protocol Pure Java Driver This type of driver is provided by the database vendor, and
its main purpose is to convert JDBC calls into the network
protocol understood by the DBMS. This is the best solution
to use and is pure Java.

The first two driver-type options are usually temporary solutions to solve the problem, where the JDBC
driver for the particular DBMS (Database Management System) in use does not exist. The third and
fourth driver-type options represent the normal, preferred usage of JDBC because they keep the platform-
independent fundamentals in place. If you would like to find out if your DBMS vendor supports a par-
ticular version of the JDBC AP]I, please check out the following Web site for details: http://servlet.
java.sun.com/products/jdbc/drivers.

282

Persisting Your Application Using Databases

The JDBC APl is contained in two Java packages —java.sql and javax.sql. The first package, java.sql, con-
tains the original core APIs for JDBC. The second package, javax.sql, contains optional, more advanced
features such as row sets, connection pooling, and distributed transaction management. It is important to
determine your application’s data access needs and architecture ahead of time to properly assess which
packages you need to import.

Setting Up Your Environment

To use the JDBC API and its advanced features, it is recommended that you install the latest Java 2 SDK
Standard Edition. The JDBC API is currently shipping with both Java 2 SDK SE and Java 2 SDK Enterprise
Edition (the latter is a must if you are doing server-side development).

You will also need to install a JDBC driver that implements the JDBC 3.0 features. Your driver vendor
may not support all the features that are in the javax.sql package, so you should check with them first.

Finally you will need access to a Database Management System that is supported by your driver. Further
information on JDBC support can be found at http://java.sun.com/products/jdbc/.

JDBC API Usage in the Real World

The JDBC API is most commonly used by applications to access data in two main models: the two-tier
model and three-tier model, both of which will be covered in the following paragraphs.

Understanding the Two-Tier Model

The two-tier model is the simplest of the models. It comprises a client layer and a server layer. The client
layer interacts directly with the server layer, and no middleware is used. The business logic, application/
presentation layer, transaction management, and connection management are all handled by the client
layer. The server layer contains only the data source and doesn’t manage anything that the client is doing,
except for user access and rights. Figure 6-1 illustrates the two-tier model.

This is a good design for small applications but would present a scalability dilemma for larger applica-
tions requiring more robust connection and transaction management.

283

Chapter 6

CLIENT LAYER
Client |
JDBC Driver

S

v

2

N
-) Data
Server
SERVER LAYER

Figure 6-1

Understanding the Three-Tier Model

The three-tier model is the most complex and the most scalable of the models. It removes the business
logic and adds a layer of abstraction to the data sources. This model is shown in Figure 6-2.

The client layer in this model is a thin client layer that contains only very lightweight presentation layers
that will run on Web browsers, Java Programs, PDAs, Tablet PCs, and so forth. It does not handle busi-
ness logic, methods of accessing the data sources, the drivers used to provide access, or the methods in
which data is saved.

The middle layer is where the core of the functionality exists in the three-tier model. The thin clients inter-
act with applications that support the business logic and interactions with data sources. Connection pools,
transaction management, and JDBC drivers can all be found here. This is the layer that adds increased
performance and scalability compared to the two-tier model.

The data layer is where the data sources such as database management systems and files exist. The only
interaction that occurs here is from the middle layer to the data layer through a JDBC driver.

The main benefit of the three-tier model is the fact that it adds layers of abstraction that can be scaled,
removed, added, and improved upon. It also adds extra performance benefits when simultaneously
accessing multiple data sources. The main drawback is that it can be expensive, depending on the choices
made for the application server software and the hardware to run the system.

284

Persisting Your Application Using Databases

Client Layer

Thin Clients

Applications

App. Servers

110]

Drivers

Middle Layer

Connection
Pools

Server

Transaction
Management

Data Data Data Server Layer

Figure 6-2

Grasping JDBC APl Concepts

For this part of the chapter, you will explore the main usage of the JDBC API before moving on to more
advanced topics, such as managing database meta data, utilizing RowSets, connection pooling, and
managing transactions to insure that you have a solid foundation with which to start your JDBC API
journey. This section will also act as a good review for those of you who need it, and it will cover the

following topics:

QO Managing JDBC API connections using the DriverManager class and the new DataSource
interface

Q Creating, defining, and understanding statements

Q Utilizing result sets to retrieve and manage database information

285

Chapter 6

Managing Connections

AJava application can establish a connection to a data source via a JDBC API-enabled driver. Connections
are maintained in code by the Connection object. A Java application can have multiple connections to
multiple data sources at the same time using multiple Connection objects. A Connection object can be
obtained by a Java application in two ways: through a DriverManager class or through an implementa-
tion of the DataSource interface.

DriverManager Class

The traditional method to establish a connection is to use the DriverManager class, load the driver, and
then make the connection:

String sDriver = "com.sybase.jdbc2.jdbc.SybDataSource";

String sURL = "jdbc:sybase:Tds:127.0.0.1:3000?ServiceName=sybase";
String sUsername = "Andrew";

String sPassword = "Vitale";

try {

// Load the driver
Class.forName (sDriver) ;

// Obtain a connection
Connection cConn = DriverManager.getConnection (sURL, sUsername, sPassword) ;

} catch (...) {
} finally {
if (cConn != null) {
cConn.close(); // Close the connection

}

The driver is loaded into memory for use by the Class. forName (driver) call, and then a Connection
object is obtained by a static DriverManager API call, getConnection (JDBCURL, Username,
Password). A connection is now established. The driver itself views the Connection object as the user’s
session.

DataSource Interface

The preferred method to establishing a connection is to use the DataSource interface. The DataSource
interface is preferred because it makes the code more portable, it allows for easier program maintenance,
and it permits the Connection object to participate in distributed transaction management as well as
transparent connection pooling. Connection pooling is a great idea when performance is the primary
goal for your application. The ability to reuse Connection objects eliminates the need to constantly create
a new physical connection every time a connection request is made. Distributed transactions allow you
to create applications that work well in robust enterprise architectures where an enormous amount of
concurrent database tasks are likely to occur.

The DataSource interface utilizes the Java Naming and Directory Interface (JNDI) to store a logical name
for the data source instead of using the fully qualified driver name to connect to the data source. This
type of usage aids in code portability and reusability. One of the very neat features of a DataSource object
is that it basically represents a physical data source; if the data source changes, the changes will be auto-
matically reflected in the DataSource object without invoking any code.

286

Persisting Your Application Using Databases

Using JNDI, a Java application can find a remote database service by its logical name. For the application
to use the logical name, it must first be registered with the JNDI naming service. The following code
shows an example of how to register a data source with the JNDI naming service:

VendorDataSource vdsDataSource = new VendorDataSource();
vdsDataSource.setServerName ("Our_Database_Server_Name") ;
vdsDataSource.setDatabaseName ("Our_Database_Name") ;

vdsDataSource.setDescription ("Our database description");

// Get the initial context
Context ctx = new InitialContext();

// Create the logical name for the data source
ctx.bind("jdbc/OurDB", vdsDataSource) ;

If JNDI is new to you, it can best be thought of as a directory structure like that of your file system that
provides network-wide naming and directory services. However, it is independent of any naming or
directory service. For more information on JNDI, please visit http: //java.sun.com/products/jndi/.

Once you have registered the data source with the JNDI naming service, establishing a connection to the
data source is very straightforward:

Context ctx = InitialContext();

// Look up the registered data source from JNDI
DataSource dsDataSource = (DataSource) ctx.lookup ("jdbc/OurDB") ;

// Obtain a Connection object from the data source
Connection cConn = dsDataSource.getConnection ("username", "password");

// Close the connection
cConn.close() ;

Now that you have established a connection, there are a couple of things that can occur that are trans-
parent to the developer. The first thing is that the data source’s properties that you are connected to can
change dynamically. These changes will be automatically reflected in the DataSource object. The second
thing that could occur, which is very nice, is that the middle tier managing the connections could seam-
lessly switch the data source to which you are connected, without your knowledge. This is definitely a
benefit for fail-over, clustered, and load-balanced enterprise architectures.

Understanding Statements

Statements are essential for communicating with a data source using embedded SQL. There are three main
types of statements. The first one is the Statement interface. When objects are created from Statement
interface implementations, they are generally used for executing generic SQL statements that do not take
any parameters. The second type of statement is the PreparedStatement, which inherits from the Statement
interface. PreparedStatement objects are useful when you need to create and compile SQL statements
ahead of time. PreparedStatement objects also accept IN parameters, which will be discussed further in
this section under the title “Setting IN Parameters.” The final type of statement is the CallableStatement.
The CallableStatement inherits from the PreparedStatement and accepts both IN and OUT parameters.
Its main purpose is to execute stored database procedures.

287

Chapter 6

Investigating the Statement Interface

The basic Statement object can be used to execute general SQL calls once a connection has been estab-
lished and a Connection object exists:

Connection cConn = dsDataSource.getConnection ("username", "password");
Statement sStatement = cConn.createStatement () ;

// Execute the following SQL query
ResultSet rsResults = sStatement.executeQuery ("SELECT * FROM PLAYERS WHERE" +
"AGE=25") ;

while (rsResults.next()) {
// Perform operations

}

You can see from the previous code that once you establish a connection, creating a Statement object is
trivial. The main area of importance is the Statement execution method, called executeQuery, which exe-
cutes the given SQL command with the data source. The following list describes the different execution
methods that can be used with a Statement object.

Method Description

boolean execute(String sql) Use this method to execute a generic SQL
request. It may return multiple results. Use
getResultSet to retrieve the ResultSet.

boolean execute(String sql, int autoGenKeys) This method executes the SQL request and
also notifies the driver that auto-generated
keys should be made accessible.

boolean execute(String sql, int [] columnIndexes) This method allows you to specify, via the
array, which auto-generated keys should
be made accessible.

boolean execute(String sql, String [] columnNames) This method also allows you to specify,
via the array, which auto-generated keys
should be made accessible.

int [] executeBatch() This method executes a batch of database
commands and returns an array of update
counts.

ResultSet executeQuery(String sql) This method executes the SQL string and

returns a single ResultSet object.

int executeUpdate(String sql) This method executes an SQL string,
which must be an INSERT, UPDATE,
DELETE, or a statement that doesn’t
return anything.

288

Persisting Your Application Using Databases

Method Description
int executeUpdate(String sql, This method executes an SQL string,
int autoGeneratedKeys) which must be an INSERT, UPDATE,

DELETE, or a statement that doesn’t
return anything. It will also allow you to
notify the driver that auto-generated keys
should be made accessible.

int executeUpdate(String sql, int[] columnIndexes) This method executes an SQL string, which
must be an INSERT, UPDATE, DELETE, or
a statement that doesn’t return anything. It
will also allow you to specify, via the array,
which auto-generated keys should be
made accessible.

int executeUpdate(String sql, This method executes an SQL string,

String[] columnNames) which must be an INSERT, UPDATE,
DELETE, or a statement that doesn’t return
anything. It will also allow you to specify,
via the array, which auto-generated keys
should be made accessible.

Exploring the PreparedStatement Interface

If you need to execute an SQL statement many times, the PreparedStatement is the perfect choice for
the task because it increases program efficiency and performance. The PreparedStatement is the logical
name choice for the interface because it contains an SQL statement that has been previously compiled
and sent to the DBMS of choice, hence the term prepared. The PreparedStatement is a subclass of the
Statement interface; therefore, it inherits all of the functionality listed in the previous “Investigating
the Statement Interface” section, with a few exceptions. When using the execute methods with a
PreparedStatement object, you should never attempt to pass parameters to the methods execute (),
executeQuery (), or executeUpdate (). These methods have been modified to be parameterless for
the PreparedStatement interface and should be called without parameters.

Setting IN Parameters

The PreparedStatement also gives the developer the ability to embed IN parameters in the SQL state-
ment contained in the PreparedStatement object. These IN parameters are denoted in the SQL statement
by the question mark symbol. Anywhere in the SQL statement where an IN parameter occurs, you must
have your application fill in a value for the IN parameter using the appropriate setter method before
executing the PreparedStatement. The most common setter methods are listed in the following table.

Note: There are many more setter methods from which to choose than those listed in this table. These
are just the ones that are most commonly used.

289

Chapter 6

Method Description

void setBoolean(int paramIndex, boolean x) Sets the IN parameter to a boolean value

void setDate(int paramIndex, Date x) Sets the IN parameter to a java.sql.Date value

void setDouble(int paramIndex, double x) Sets the IN parameter to a double value

void setFloat(int paramIndex, float x) Sets the IN parameter to a float value

void setInt(int paramIndex, int x) Sets the IN parameter to an int value

void setLong(int paramIndex, long x) Sets the IN parameter to a long value

void setString(int paramIndex, String x) Sets the IN parameter to a String value

void clearParameters() Clears the parameter values set by the setter
methods

The following is a code example of how to effectively use a PreparedStatement with IN parameters:

// Remember, the "?" symbol denotes an IN parameter
PreparedStatement psStatement = cConn.prepareStatement ("SELECT * FROM PLAYERS" +
" WHERE AGE=? AND TEAM=?");

// Set the first IN parameter to 25
psStatement.setInt (1, 25);

// Set the second IN parameter to Titans
psStatement.setString (2, "Titans");

// Execute the statement
ResultSet rsResults = psStatement.executeQuery () ;

// Clear parameters
psStatement.clearParameters () ;

You'll notice at the end of the code example, you call psStatement.clearParameters. This call clears any
parameters that are currently set for the PreparedStatement object. Therefore, if you wanted to execute
the PreparedStatement again, you would have to reset all the IN parameters with the appropriate values
you would want to send to the DBMS.

IN Parameter Pitfalls

There are certain pitfalls that can occur when setting parameters with the setter methods that may not be
obvious to you. Anytime you set a parameter and then execute the PreparedStatement object, the JDBC
driver will convert the Java type into a JDBC type that the DBMS understands. For instance, if you were
to set a parameter to a Java float type and pass it to a DBMS that is expecting an INTEGER JDBC type,
you could run into serious problems: potential data loss or exceptions, depending on how the DBMS
handles the situation. Trying to write code that is portable to different vendors is possible, but it definitely
requires knowledge of the mappings that occur between Java types and JDBC types. The following table
lists the most commonly used Java types and their mappings to JDBC types.

290

Persisting Your Application Using Databases

Java Object/Type JDBC Type

Int INTEGER

Short SMALLINT

Byte TINYINT

Long BIGINT

Float REAL

Double DOUBLE
java.math.BigDecimal NUMERIC
Boolean BOOLEAN or BIT
String CHAR, VARCHAR, or LONGVARCHAR
Clob CLOB

Blob BLOB

Struct STRUCT

Ref REF

java.sql.Date DATE
java.sql.Time TIME
java.sql.Timestamp TIMESTAMP
java.net.URL DATALINK
Array ARRAY

byte[] BINARY, VARBINARY, or LONGVARBINARY
Java class JAVA_OBJECT

Specifying JDBC Types with setObject

A way around the potential mapping pitfalls of using IN parameters is by using the PreparedsStatement.
setObject () method for setting IN parameters:

void setObject (int paramIndex, Object x, int targetSglType)
The setObject method allows you to pass a Java object and specify the targeted JDBC type. This
method will ensure that the conversion from the Java type to the JDBC type occurs as you intend. Here

is an example using setObject to specify a JDBC type:

PreparedStatement psStatement = cConn.prepareStatement ("SELECT * FROM PLAYERS WHERE
TEAM=?") ;

// Set the IN parameter to Titans using setObject

291

Chapter 6

psStatement.setObject (1, "Titans", java.sql.Types.VARCHAR) ;

// Execute the statement
ResultSet rsResults = psStatement.executeQuery() ;

// Clear parameters
psStatement.clearParameters () ;

User Defined Types (UDT), which are classes that implement the SQLData interface, can also be used as
a parameter for the setObject method. All of the conversion details are kept from the programmer, so
it is important to use the following form of the setObject method rather than the previous form, which
explicitly maps the Java types to JDBC Types:

void setObject (int paramIndex, Object x)

The difference between the two setObject methods is that this form intentionally omits the parameter
for specifying the target JDBC type. Another valuable method that requires mentioning is the setNull
method, which allows you to send a NULL for a specific JDBC type to the DBMS:

void setNull (int paramIndex, int sglType)

Even though you are sending a NULL value to the DBMS, you still must specify the JDBC type
(java.sql.Types) for which the NULL will be used.

Retrieving Meta data about Parameters

Using the getParameterMetaData method of a PreparedStatement object, an application can retrieve
information about the properties and types of parameters contained in a PreparedStatement object. The
results are returned in a ParameterMetaData object, which can then be manipulated to find the specific
information in question. For example, if you wanted to know the name type, the mode, whether it is
nullable, or the JDBC type of a specific parameter, you could issue the following method calls:

ParameterMetadata pmdMetaData = psStatement.getParameterMetaData() ;

String sTypeName = pmdMetaData.getParameterTypeName (1) ;
int nMode = pmdMetaData.getParameterMode (1) ;

int nJDBCType = pmdMetaData.getParameterType (1) ;

int nNullable = pmdMetaData.isNullable (1) ;

// Print out values...

You can also retrieve the parameter count, the fully-qualified Java class name, the decimal digits, the
scale of the decimal digits, and information about whether a parameter can be a signed number all from
the ParameterMetadata object.

Exploring the CallableStatement Interface

Occasionally you may run into to a situation where you will need to execute stored procedures on a
Remote Database Management System (RDBMS). The CallableStatement provides a standard way to
call stored procedures using the JDBC API stored procedure SQL escape syntax. The SQL escape syntax
supports two forms of stored procedures. The first form includes a result parameter known as the OUT

292

Persisting Your Application Using Databases

parameter, and the second form doesn’t use OUT parameters. Each form may have IN parameters. The
IN parameters are discussed in depth earlier in the “Exploring the PreparedStatement Interface” section
of this chapter. The syntax of the two forms is listed as follows:

This form does not return a result.
{call <procedure name>[(?,?, ...)1}
This form does return a result.

{? = call <procedure name>[(?,?, ...)]}

The CallableStatement interface extends PreparedStatement and therefore can use all of the methods
contained in the PreparedStatement interface. As a result, IN parameters are handled the same way as in
the PreparedStatement; however, OUT parameters must be handled differently. They must be registered
before the CallableStatement object can be executed. Registration of the OUT parameters is done through
a method contained in the CallableStatement object called registerOutParameter. The intent is to register
the OUT parameters with the appropriate JDBC type (java.sql.Types), not the Java type. Here is the
registerOutParameter method in its simplest form:

void registerOutParameter (int paramIndex, int sglType) throws SQLException

There is one more type of parameter that hasn’t yet been discussed, and it is called the INOUT parameter.
This simply means that an IN parameter that you are passing in will also have a new value associated
with it on the way out. These must also be registered as OUT parameters with the registerOutParameter
method. Listed below are code examples that show how to prepare a callable statement, and they also
illustrate all three parameter types (IN, OUT, and INOUT).

Q CallableStatement using an IN parameter:

CallableStatement cStatement = cConn.prepareCall (
"{CALL setPlayerName(?)}";

cStatement.setString ("John Doe") ;

cStatement.execute() ;

Q CallableStatement using an OUT parameter:

CallableStatement cStatement = cConn.prepareCall (
"{CALL getPlayerName(?)}";

cStatement.registerOutParameter (1, java.sql.Types.STRING) ;
cStatement.execute() ;

// Retrieve Player's name
String sName = cStatement.getString(1l);

Q CallableStatement using an INOUT parameter:

CallableStatement cStatement = cConn.prepareCall (
"{CALL getandsetPlayersName(?)}";

cStatement.setString("John Doe") ;
cStatement.registerOutParameter (1, java.sql.Types.STRING) ;

293

Chapter 6

cStatement.execute() ;

// Retrieve Player's name
String sName = cStatement.getString(l);

There is another escape syntax that has not been discussed because it may be supported differently by
different vendors. It is the escape syntax for scalar functions and its form is as follows:

{ fn <function name> (?, ...)}
To figure out which scalar functions your DBMS uses, the JDBC API provides several methods in the

DatabaseMetaData class for retrieving a comma-separated list of the available functions. These methods
are shown in the following table.

Method Description

String getNumericFunctions() Returns a comma-separated list of math functions
available for the given database. Example:
POWER(number, power)

String getStringFunctions() Returns a comma-separated list of string functions
available for the given database. Example:
REPLACE(string)

String getSystemFunctions() Returns a comma-separated list of system functions

available for the given database. Example:
IFNULL(expression, value)

String getTimeDateFunctions() Returns a comma-separated list of time and date
functions available for the given database. Example:
CURTIME()

The DatabaseMetaData class contains an enormous amount of useful functions for retrieving meta data
about a database. This will be discussed more in the “Managing Database Meta Data” section of this
chapter. However, there are two other methods of the DatabaseMetaData class that are worth mention-
ing here because they relate to stored procedures. They are the supportsStoredProcedures method
and the getProcedures method. The supportsStoredProcedures method returns true if the DBMS
supports stored procedures. The get Procedures method returns a description of the stored procedures
available in a given DBMS.

Utilizing Batch Updates

To improve performance, the JDBC API provides a batch update facility that allows multiple updates to
be submitted for processing at one time. Statement, PreparedStatement, and CallableStatement all sup-
port batch updates. Imagine a case where you have to input 100 new changes to a database using single
calls to it. Wouldn't it be easier if you could just send the request at one time instead of making 100 calls
to the database? Well, that is exactly the type of functionality that batch updates provide. This portion of
the chapter will explain how to create batch updates for the Statement, PreparedStatement, and
CallableStatement objects.

294

Persisting Your Application Using Databases

Creating Batch Updates Using a Statement Object

The Statement object can submit a set of updates to a DBMS in one single execution; however, statement
objects are initially created with empty batch command lists. Therefore you must invoke the Statement.
addBatch method to add SQL commands to the Statement object. The SQL commands must return an
update count and are not allowed to return anything else, like Resultsets. If a return value other than that
of an update count is returned, a BatchUpdateException is thrown and must be processed. An applica-
tion can determine why the exception occurred by calling the BatchUpdateException.getUpdateCounts
method to retrieve an integer array of update counts, which allows you to determine the cause of the
failure.

To properly process batch commands, you should always set auto-commit to false so that the DBMS’s
driver will not commit the changes until you tell it to do so. This will give you a chance to catch exceptions
and clear the batch list, if necessary. To clear a batch list that has not been processed, use the Statement.
clearBatch method. This will clear the Statement object’s batch list of all commands. If a batch is success-
fully processed, it is automatically cleared.

When a Statement.executeBatch is successful, it will return an array of update counts that are in the same
order as the commands were when added to the batch of the Statement. Each entry in the array will con-
tain one of the following;:

Q Avalue that is 0 or greater, which means the command was processed successfully. If the value
is greater than 0, the number signifies the number of rows that were affected when the com-
mand was executed.

Q A Statement. SUCCESS_NO_INFO, which signifies that the particular command was processed
successfully; however, it did not contain any information about the number of rows that were
affected by the command.

In the event of a failure during the execution of the batch command, a BatchUpdateException will be
thrown. Certain drivers may continue with the execution of the batch commands, and others will stop
execution all together. If the batch command fails and the driver stops processing after the first failure,
it will return the number of update counts via the BatchUpdateException.getUpdateCounts. If the batch
command fails and the driver continues to process other commands in the batch list, it will return in its
update counts array a value of Statement. EXECUTE_FAILED for the command or commands that failed
during the batch execution. You can determine which type of driver you have by checking to see whether
an error occurs and whether the size of the returned array from BatchUpdateException.getUpdateCounts
is equal to the same number of commands submitted.

JDBC drivers do not have to support batch updates. Typically you will know if your driver supports
batch updates via its documentation. If you don’t know, you can always detect it in code using the
DatabaseMetaData.supportsBatchUpdates method.

The following is an example of creating a batch update to enter five new team members into a TEAMS
table and checking to make sure that the database driver supports batch updates:

try {
// Make sure that autocommit is off

cConn.setAutoCommit (false) ;

// Retrieve metadata info about the data source

295

Chapter 6

DatabaseMetaData dbmData = cConn.getMetaDatal() ;

// Make sure our driver supports batch updates
if (dbmData.supportsBatchUpdates()) {

Statement sStatement = cConn.createStatement () ;

// Add batch commands

sStatement.addBatch ("INSERT INTO TEAMS VALUES ("'Joon Lee')");
sStatement.addBatch ("INSERT INTO TEAMS VALUES ('Jennie Vitale')");
sStatement.addBatch ("INSERT INTO TEAMS VALUES ('Kyle Rice')");
sStatement.addBatch ("INSERT INTO TEAMS VALUES ('Steve Brockman')");
sStatement.addBatch ("INSERT INTO TEAMS VALUES ('Arnie Voketaitis')");

int [JuCounts = sStatement.executeBatch() ;

// Commit the changes

cConn.commit () ;
} else {

System.err.print ("Your driver does not support batch updates!");
}

} catch(BatchUpdateException batchEx) {

int [JuCounts = batchEx.getUpdateCounts () ;
for (int 1 = 0; 1 < uCounts.length; 1 ++) {

System.err.print ("Count #" + i + "=" + uCounts[i] + "\n");

}

// Handle errors further here if necessary

Creating Batch Updates Using a PreparedStatement Object

The PreparedStatement object batch updates follow mostly the same method of operations as the
Statement object batch updates, with the exception that you now have to deal with parameterized SQL
statements and setting each parameter before adding a batch command. So for each command you will
need to set the necessary IN parameter before issuing a PreparedStatement.addBatch call. The following
code example shows how to correctly add batch commands to a PreparedStatement object:

try {
// Make sure that autocommit is off
cConn.setAutoCommit (false) ;

// Retrieve metadata info about the data source
DatabaseMetaData dbmData = cConn.getMetaDatal() ;

// Make sure our driver supports batch updates
if (dbmData.supportsBatchUpdates()) {
PreparedStatement psStatement = cConn.prepareStatement (
"INSERT INTO TEAMS VALUES (?)");

// Set the IN parameter
psStatement.setString(l, "Jennie Vitale");

// Add batch command
psStatement.addBatch() ;

296

Persisting Your Application Using Databases

// Set the IN parameter for the next command
psStatement.setString(l, "Andrew Vitale");

// Add batch command
psStatement.addBatch() ;

int [JuCounts = psStatement.executeBatch() ;

// Commit the changes
cConn.commit () ;
} else {
System.err.print ("Your driver does not support batch updates!");

}
} catch(BatchUpdateException batchEx) {

}

The key point to note from the code above is where the PreparedStatement.addBatch methods occur. They
occur after the IN parameters are set, so you simply change the IN parameters for each batch command
you wish to execute.

Creating Batch Updates Using a CallableStatement Object

The CallableStatement object handles batch commands in the exact same way as the PreparedStatement
object. Now I know what you are thinking, “What about all the stored procedures that require OUT or
INOUT parameters?” Well the answer is that OUT and INOUT parameters are not allowed to be used to
call stored procedures in a batched fashion. If you did call a stored procedure that required either an
OUT or an INOUT parameter, a BatchUpdateException would be thrown because SQL commands must
return an update count and are not allowed to return anything else, such as result sets. So the code syntax
looks remarkably the same as the PreparedStatement object, with the exception that you are calling stored
procedures. The following code illustrates using a CallableStatement object to perform batch updates:

// Make sure that autocommit is off

cConn.setAutoCommit (false) ;

CallableStatement csStatement = cConn.prepareCall (
"{call updatePlayers(?)}");

// Set the IN parameter
csStatement.setString(l, "Jennie Vitale");

// Add batch command
csStatement.addBatch() ;

// Set the IN parameter for the next command
csStatement.setString(l, "Andrew Vitale");

// Add batch command
csStatement.addBatch() ;

int [JuCounts = csStatement.executeBatch();

// Commit the changes
cConn.commit () ;

297

Chapter 6

Utilizing Result Sets

In simple terms, a ResultSet object is a Java object that is created to contain the results of an SQL query that
has been executed. The results are in table row fashion, meaning they contain column headers, types, and
values. All this information can be obtained through either the ResultSet object or the ResultSetMetaData
object.

ResultSet objects are very common, and you will interface with them on a continuous basis when doing
JDBC programming, so it is important to understand the different types of ResultSet objects that are
available for you to exploit. Understanding how ResultSet objects are created and manipulated is crucial
when you are designing different algorithms, especially with regard to performance. So find the best
possible option for executing a query, and manipulate its results for your particular situation.

Investigating Types of Result Sets

There are two main areas of interest when dealing with result sets of which you must be aware. The first
area of interest is the concentration on how the cursor in a result set can be exploited. Cursors can be
limited to only moving forward, or they can be allowed to move in both forward and backward direc-
tions. The second area of interest is how changes in the data source affect the result set. You can instruct
a result set to be aware of changes that occur in an underlying data source and have a ResultSet object
reflect those changes.

There are three types of result sets that warrant explanation. Each of these types will be scrollable or non-
scrollable, sensitive or insensitive. Scrollable means that the cursor in the result set can move both for-
ward and backward. Non-scrollable signifies that the cursor can only move in one direction: forward.

If the result set is sensitive to change, it will reflect changes that occur while the result set is open. If the
result set is insensitive to change, it will usually remain fixed with no change to its structure, even if

the underlying data source changes. The following is a list of constants that are in the ResultSet interface
that you can use to specify a result set type:

Q TYPE_FORWARD_ONLY — The result set cursor can only be moved forward from the begin-
ning to the end. It cannot move backwards. Also, the result set is not sensitive to change from
the data source.

Q TYPE_SCROLL_INSENSITIVE — The result set cursor can move forward and backward and
jump to rows specified by the application. Also, the result set is not sensitive to change from
the data source.

Q TYPE_SCROLL_SENSITIVE — The result set cursor can move forward and backward and jump
to rows specified by the application. This time the result is sensitive to changes to the data source
while the result set is open. This provides a dynamic view to the data.

Setting Concurrency of Result Sets

Result sets have only two levels of concurrency: read-only and updatable. To find out if your driver sup-
ports a specific concurrency type, use the DatabaseMetaData.supportResultSetConcurrency method to
find out. The following is a list of constants that are in the ResultSet interface that you can use to specify
a result set concurrency type:

0 CONCUR_READ_ONLY —Specify this constant when you want your result set to be read-only,
meaning it cannot be updated programmatically.

0 CONCUR_UPDATABLE — Specify this constant when you want your result set to be updatable,
meaning it can be updated programmatically.

298

Persisting Your Application Using Databases

Setting Holdability of Result Sets

Result sets are generally closed when a transaction has been completed. This means that a Connection.
commit has been called, which in turn closes any related result sets. In special cases, this may not be the
desired behavior that you were hoping for. It is possible to hold a result set open and keep its cursor
position in the result set after a Connection.commit has been called by creating your statements with the
following ResultSet interface constants present:

Q HOLD_CURSORS_OVER_COMMIT — Specifies that a ResultSet object will not be closed when
a Connection.commit is called. Instead, it will remain open until the program calls the method
ResultSet.close. If you are interested in better performance, this is usually not the best option.

QO CLOSE_CURSORS_AT_COMMIT — Specifies that a ResultSet object will be closed when a
Connection.commit occurs. This is the best performance option.

Another interesting point to note is that the default holdability is determined by the DBMS that you are inter-
facing with. In order to determine the default holdability, use the DatabaseMetaData.getResultSetHoldability
method to retrieve the default holdability for the DBMS.

Using Result Sets

Now that you know the different types of result sets that exist and the concurrency and holdability levels,
it is time to see what a result set looks like in action. The following code shows how to create a statement
that is scrollable, updatable, insensitive to data source changes, and closes the cursor when a commit
occurs:

// Look up the registered data source from JNDI
DataSource dsDataSource = (DataSource) ctx.lookup ("jdbc/OurDB") ;

// Obtain a Connection object from the data source
Connection cConn = dsDataSource.getConnection ("username", "password");

Statement sStatement = cConn.createStatement (
ResultSet.CONCUR_UPDATABLE,
ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CLOSE_CURSORS_AT COMMIT

) g
ResultSet rsResults = sStatement.executeQuery ("SELECT NAME, TEAM FROM PLAYERS") ;

// Though we have not done anything to warrant a commit we put this here to show
where the ResultSet would be closed
cConn.commit () ;

// Close the connection
cConn.close() ;

Navigating Result Sets

The ResultSet interface of the JDBC API provides a rich set of methods for navigating through ResultSet
objects. If your ResultSet object is scrollable, you can easily jump to different rows in the ResultSet object
with little effort. Here is a list of the main methods provided in the ResultSet interface for navigation with
a ResultSet object.

299

Chapter 6

Method

Description

First

Last

Next

Previous

absolute(int)

BeforeFirst

AfterLast

relative(int)

This method moves the cursor to the first row in the ResultSet object.
Returns true if successful. Returns false if there are no rows in the
ResultSet object.

This method moves the cursor to the last row in the ResultSet object.
Returns true on success. Returns false if there are no rows in the
ResultSet object.

This method moves the cursor one row forward in the Result object.
It will return true if successful and false if the cursor has been moved
past the last row.

This method moves the cursor one row backwards in the Result
object. It will return true if successful and false if the cursor has been
moved past the first row.

This method will move the cursor to the row specified by the int
parameter. The first row is represented by the number 1. If you send
a 0 as a parameter, the cursor is moved just before the first row. If the
integer specified is a negative number, it will move the number of
rows specified backwards from the end of the ResultSet object.

This method will move the cursor to the beginning of the
ResultObject just before the first row.

This method will move the cursor to the end of the ResultObject just
after the last row.

Depending on whether the integer specified is negative or positive,
this method will move the cursor the number of rows specified from
its current position. A positive value signifies a forward movement.

A negative value signifies a backward movement. A zero signifies that
the cursor remains in the same position.

Manipulating Result Sets

The ResultSet interface has an enormous number of methods that can be used for updating a ResultSet
object. The majority of the methods are prefixed with the word update. In order to be able to update a
ResultSet object, it must have a concurrency of type CONCUR_UPDATABLE. If a ResultSet object is
updatable, its columns can be altered, its rows can be deleted, new rows can be added, and its data can
be changed. The following code example shows several ways to manipulate a ResultSet object:

Statement sStatement
ResultSet .CONCUR_UPDATABLE,
ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CLOSE_CURSORS_AT COMMIT

) 8

ResultSet rsResults

300

cConn.createStatement (

sStatement.executeQuery ("SELECT NAME, TEAM, AGE, " +

Persisting Your Application Using Databases

"RANK FROM PLAYERS") ;

// Move to the last row
rsResults.last () ;

// Update specific data in the row
rsResults.updateString (2, "Hornets");
rsResults.updateInt (3, 27);
rsResults.updateLong (4, 5021);

// Commit the changes to the row
rsResults.updateRow () ;
cConn.commit () ;

// Close the connection
cConn.close() ;

The following example will show you how to insert and delete rows. Inserting rows is not a difficult
process but it does require a bit of know-how since it is not initially intuitive. In order to insert a row into
a ResultSet object, you must first make a call to ResultSet. moveTolnsertRow. This may seem confusing,
but the JDBC API defines a concept of an insert row in the ResultSet object. When you call ResultSet.
moveTolnsertRow, this essentially allows you to remember your current cursor position, move to a tem-
porary area in memory, perform the creation of your new row, and call the ResultSet.insertRow to insert
the newly created row into the ResultSet object at the cursor position you were at before calling ResultSet.
moveTolnsertRow.

Deleting a row is much more trivial than inserting a row. To delete a row, you simply move to the row
you want to delete and call ResultSet.deleteRow. The following code will demonstrate how to delete and
insert a row using the methods that were just described:

Statement sStatement = cConn.createStatement (ResultSet.CONCUR_UPDATABLE) ;

ResultSet rsResults = sStatement.executeQuery ("SELECT NAME, TEAM, AGE," +
"RANK FROM PLAYERS") ;

// Move to the fourth row
rsResults.absolute(4) ;

// Delete the fourth row
rsResults.deleteRow() ;

// Now let's insert a new row
rsResults.moveToInsertRow() ;

// Build data for new row
rsResults.updateString (1, "Ken Pratt");
rsResults.updateString (2, "Tigers");
rsResults.updateInt (3, 32);
rsResults.updateLong (4, 7521);

// Add the new row to the ResultsSet

301

Chapter 6

rsResults.insertRow() ;

// Move the cursor back the original position
rsResults.moveToCurrentRow () ;

// Commit changes
cConn.commit () ;

// Close the connection
cConn.close() ;

Closing Result Sets

If the Statement object that created the ResultSet object is not yet closed, you can use the ResultSet.close
method to close a ResultSet object and free its resources. If you specified the
HOLD_CURSORS_OVER_COMMIT flag when you created the Statement object, then you will also need
to call the ResultSet.close method when you are done with the ResultSet object. Otherwise it would
remain open even if a Connect.commit is called. However, if the Statement object that created the
ResultSet object is closed, the ResultSet object would be closed as well even if the
HOLD_CURSORS_OVER_COMMIT was specified during creation.

Examining JDBC Advanced Concepts

This portion of the chapter will discuss concepts that are generally used in advanced Java applications
that definitely fall in the three-tier model that was described in the section “JDBC API Usage in the Real
World,” earlier in this chapter. This section will cover the following:

Meta data—Explore retrieving meta data about your data source and understanding how to use it.
RowSets — Explain RowSets in depth.

Connection Pooling — Discuss all the ins and outs of connection pooling.

I T R T

Transactions — Both standard and distributed transactions.

Managing Database Meta Data

Sometimes the JDBC-supported applications that you write may need to acquire more information
about a data source. Specifically, information that is not readily available through Statement objects with
embedded SQL calls or through the results that they return. Suppose you want to obtain information
about whether or not your DBMS supports transactions, batch updates, or save points. The only way

to determine this type of information is through the DBMS’s meta data. The JDBC API has an interface
called DatabaseMetaData that allows an application to retrieve meta data about a DBMS through an enor-
mous array of methods. These methods can be used to retrieve meta data information that is classified
into the following categories:

Q Discovering limitations of the data source
QO Determining what capabilities and features a data source supports

Q Retrieving general information about a data source such as a database version or what SQL key-
words it supports

302

Persisting Your Application Using Databases

With the DatabaseMetaData interface, you can even retrieve the tables, columns, user-defined types, and
the schema of a particular data source. This can be a very useful tool when you know very little about the

data source with which you are interfacing.

Discovering Limitations of a Data Source

Discovering the limitations of a data source is easily done using a DatabaseMetaData object. Most of the lim-
itations methods are prefixed with the words getMax. For example, DatabaseMetaData.getMaxConnections
retrieves the maximum number of connections that can occur at the same time within a data source.
Listed below are some of the more common limitation methods that are used for a given data source. To
see a list of all the limitation methods, please see the DatabaseMetaData Java doc.

Method

Description

int getMaxColumnsInTable()

int getMaxRowSize()
int getMaxStatements()

int getMaxStatementLength()
int getMaxUserNameLength()

Returns the maximum number of columns that a table is
allowed to have.

Returns the maximum size a row can be in bytes.

Returns the maximum number of statements a data source
can have open at the same time.

Returns the maximum length an SQL statement can be.

Returns the allowed maximum length a user name can be.

Determining Which Features a Data Source Supports

The DatabaseMetaData object provides numerous methods for determining whether or not your DBMS
driver supports a feature that you are interested in using. Most of the methods begin with the prefix
supports. The most commonly used features are listed in the following table:

Method

Description

boolean supportsBatchUpdates()

boolean supportsSavepoints()

boolean supportsStoredProcedures()

boolean supportsTransactions()

boolean supportsGroupBy/()

Returns true if the data source supports batch updates
or false if it does not.

Returns true if the data source supports savepoints or
false if it does not.

Returns true if the data source supports stored proce-
dures or false if it does not.

Returns true if the data source supports transactions
or false if it does not.

Returns true if the data source supports the GROUP
BY clause or false if it does not.

303

Chapter 6

Retrieving General Information about a Data Source

There is an enormous amount of general information that can be retrieved about a data source using

the DatabaseMetaData methods. There are over 100 methods, so I decided to focus on a few of the core
methods that you are most likely to use, such as: retrieving the database schema; obtaining the names of
the tables in the database; and retrieving the columns for a specific table. The rest of the methods can be
found in the DatabaseMetaData Java docs that come with the Java SDK 1.5 documentation.

I decided to show you a practical example of how to use these methods, rather than bore you with the
details of how each method operates. This example will show you how to create a keyword search that can
explore an entire database without knowing anything about it except how to connect to it and retrieve
specific rows that contain the keywords for which you are searching. The keyword search example has
three main classes that make up its architecture: DBDatabase, DBTable, and DBColumn. DBDatabase han-
dles the connection to the data source, reading meta data information such as tables and columns, and
searching for specific keywords.

The DBTable class stores information about a table’s makeup as well as its individual columns that are
associated with the table. The column objects are stored in an ArrayList and can be accessed via the
DBTable.getColumns method:

public class DBTable {
private String m_sTblName;
private ArrayList m_alColumns;

public DBTable(String sName) {
m_sTblName = sName;
m_alColumns = new ArrayList();

}

public String getTableName () {
return m_sTblName;

}

public void addColumn (DBColumn Column) {
m_alColumns.add((DBColumn) Column) ;

}

public ArrayList getColumns () {
return m_alColumns;

}

}

The DBColumn class contains information about a specific column that belongs to a table. This informa-
tion consists of the table name it belongs to, the column’s name, the SQL data type of the column, the size
of the data contained in the column, and whether or not the column is nullable:

public class DBColumn {
private String m_sTblName;
private String m_columnName;

private String m_datatype;

private int m_datasize;
private int m_digits;

304

Persisting Your Application Using Databases

private boolean m_nullable;

public DBColumn (String sTableName, String sCol, String sDType, int idsize,
int idigits, boolean bnullable) ({
// Initialize variables here

}

// getter methods

public String getTableName ()
public String getColumnName ()
public String getDataType ()
public int getDataSize ()
public int getDecimalDigits/()
public boolean isNullable ()

return m_sTblName; }

return m_columnName; }
return m_datatype; }

return m_datasize; }

return m_digits; }

return m_nullable; }

The final class in this example is the DBDatabase class, which is too large to display in its entirety so I
will only illustrate its basic structure. Its main purpose is to create a connection with a database and start
the process to load the DBTable and DBColumn objects with data through the load, readTables, and
readTableColumns methods. The searchAllIByKeyword method allows the application to search an entire
database for a specific keyword:

public class DBDatabase {
private Connection m_cConnection;

private ArrayList m_alTables;
private ArrayList m_alResults;

public DBDatabase(String sDriver, String sURL, String sUser, String sPass)
{1}

public boolean load()
{1}

public void readTables (Connection currentConnection) throws Exception
{1}

public void readTableColumns (DatabaseMetaData meta, DBTable table) throws
Exception

{1}

public ArrayList searchAllByKeyword (String saKeyword)
{1}

I demonstrate the classes that are contained in this example and show the steps in action to execute a
keyword search of the database. Here are the steps:

1. The first thing you need to do is call the DBDatabase.load method to create a connection to the
data source and read the meta data from the data source that contains the tables and columns.
The DBDatabase.readTables creates a DBTable object for each table in the database and also
calls the DBDatabase.readTableColumns method to associate DBColumn objects with the appro-
priate DBTable objects.

305

Chapter 6

306

Once a connection is established through the DBDatabase.load method, it will call the
DBDatabase.readTable method to get the table and column meta data:

// Setup and retrieve the metadata info
DatabaseMetaData metadata = null;
metadata = currentConnection.getMetaDatal() ;

String[] names = {"TABLE"};
ResultSet tableNames = metadata.getTables(null,"%",

"o

%", names) ;

while (tableNames.next()) {
String sTName = tableNames.getString ("TABLE_NAME") ;
if (sTName !'= null) {

DBTable dTable = new DBTable (sTName) ;
readTableColumns (metadata, dTable);
m_alTables.add((DBTable) dTable) ;

Each DBTable object that is created will call the DBDatabase.readTableColumns automatically to
create DBColumns objects for the given DBTable:

ResultSet columns = meta.getColumns(null, "%", table.getTableName(), "%");

while (columns.next()) {
String columnName = columns.getString ("COLUMN_NAME") ;
String datatype = columns.getString ("TYPE_NAME") ;

int datasize = columns.getInt ("COLUMN_SIZE") ;
int digits = columns.getInt ("DECIMAL_DIGITS") ;
int nullable = columns.getInt ("NULLABLE") ;
boolean bNull = (nullable == 1);

DBColumn dCol = new DBColumn ((String)table.getTableName (),
columnName, datatype, datasize, digits, bNull);

table.addColumn ((DBColumn)dCol) ;
}

2. Once you have created a connection and obtained the table and column meta data you need,

then execute the DBDatabase.searchAllIByKeyword method to search the entire data source for
the given keyword in all tables and all columns:

public ArraylList searchAllByKeyword(String saKeyword)

{
try {

// Clear result list
m_alResults.clear() ;

// Get size of Tables ArraylList
int nSize = m_alTables.size();

// Create our basic SQL statement

Persisting Your Application Using Databases

String sStartSQL = "Select * from ";

DBTable dbTable;

for (int 1 = 0; 1 < nSize; i++) {
String sSQL = sStartSQL;

// Get table

dbTable = (DBTable) m_alTables.get (i) ;

if (dbTable == null)
break;

// Add the table name

{

SSQL = sSQL + "[" + dbTable.getTableName() + "] WHERE ";

// Get column objects
ArrayList alCols = dbTable.getColumns () ;

if (alCols == null)
continue;

}

int nColSize = alCols.size();

if (nColSize <= 0) {

continue;

}

String sSQLColumns = "";

// Get individual columns for table and add to SQL
for (int k = 0; k < nColSize; k++) {

DBColumn dbCol

(DBColumn) alCols.get (k) ;

if (dbCol != null) ({

if (k == 0)

{

sSQLColumns = dbCol.getColumnName () ;

} else {

sSQLColumns = sSQLColumns + " & " + dbCol.getColumnName () ;

}

// Add keyword to SQL string
sSQL = sSQL + sSQLColumns + " LIKE '$" + saKeyword + "%'";

// Search Table and Save result set

Statement statement

= m_cConnection.createStatement () ;

// Execute SQL statement

ResultSet resultSet

statement .executeQuery (sSQL) ;

// Add to resultset array list
m_alResults.add(resultSet) ;

307

Chapter 6

} catch(Exception e) {
System.out.println(e);
e.printStackTrace (System.out) ;

}
return m_alResults;

}

This code is an excellent example of how you can utilize the DatabaseMetaData object to create code that
does not fit under normal database operations. Using the DatabaseMetaData object, you were able to
design code that has the ability to grab all the meta data information, create a list of all tables and all
columns, and search the entire database for a specific keyword.

Utilizing RowSets

A RowsSet represents a set of rows obtained from a tabular form of data such as a result set. RowSet inter-
faces are a JavaBeans component; therefore they support event notifications and property manipulations.
RowSets can be used in Integrated Development Environments (IDE) that support visual JavaBeans
development. This allows you to create a RowSet at design time and then execute its methods at run time.

RowSets are usually implemented as either connected or disconnected implementations. Connected RowSet
implementations establish a connection with a data source and keep the connection until the RowSet is
discarded. Disconnected RowSet implementations are very interesting because they don’t require a JDBC
driver or the full use of the JDBC API until they need to establish a connection to retrieve or update data.
Once the operations are finished, the RowSet disconnects. The disconnected RowSet implementation
stores all the data and meta data about a data source in memory; so most manipulations of the data can
occur offline until there is a need to commit the data. RowSets provide the perfect mechanism for send-
ing formatted data over a low bandwidth network to clients that do not possess an extreme amount of
capabilities for data processing.

Understanding RowSet Events

RowSets support JavaBeans events that notify other JavaBeans components that implement the
RowsSetListener interface and are registered with the appropriate RowSet object. In order to register with
a RowSet object, the method RowSet .addRowSetListener () is provided for applications to use. There
are three types of events that can occur which will cause an event to fire:

Q cursorMoved —Notifies listeners that the cursor has moved within the RowSet object.

QO rowChanged — Notifies listeners that the RowSet object has changed one of its rows.

QO rowSetChanged — Notifies listeners that the entire content of the RowSet object has changed.

RowSet Standard Implementations

Up until this point in time there have not been any finalized standard implementations on RowSets.
Now there are five available for use in the J2SE 1.5 platform that are maintained by the Java Community
Process (JCP) under the alias JSR 114.

308

Persisting Your Application Using Databases

Implementation Description

CachedRowSetImpl Used for RowSets that want to cache rows in memory. It is a
disconnected RowSet.

FilteredRowSetImpl Provides filtering capabilities on RowSets without using a
heavyweight query language.

JdbcRowSetImpl This is basically a wrapper for ResultSet objects. This essen-
tially turns a ResultSet into a JavaBeans component. This
RowSet implementation is classified as a connected RowSet.

JoinRowSetImpl This implementation allows disconnected RowSet objects to
perform SQL JOIN operations between RowSet objects with-
out having to reconnect to the data source.

WebRowSetImpl This implementation is provided to allow a standard way of
describing a JDBC RowSet in XML.

Using the New JdbcRowSetimpl

The JdbcRowSetImpl is a new implementation of the JdbcRowSet interface that is provided with J2SE 1.5.
This implementation essentially encapsulates a ResultSet and in turn makes the ResultSet and its driver
usable as a JavaBeans component. The JdbcRowSetImpl supports all the ResultSet methods and it even
has the added benefit of making nonscrollable ResultSets scrollable. So you could take a nonscrollable
ResultSet, plug it into a JdbcRowSetImpl and make it scrollable as well as updatable:

JdbcRowSetImpl jrsRowSet = new JdbcRowSetImpl () ;

jrsRowSet.setURL (jdbc:sybase:Tds:127.0.0.1:3000?ServiceName=Sybase") ;
jrsRowSet.setUsername ("jconnelly") ;
jrsRowSet.setPassword("secret") ;

jrsRowSet .setCommand ("SELECT * FROM EMPLOYEES WHERE TITLE = ? AND AGE = ?");
jrsRowSet.setString (1, "SOFTWARE ENGINEER") ;
jrsRowSet.setInt (2, 27);

// This establishes the connection, creates the prepared statement, and creates the
// ResultSet if successful
jrsRowSet .execute () ;

The code in the sample above creates a JdbcRowSetImpl called jrsRowSet and then sets its properties,
which include a JDBC URL to the data source, a username and password for the data source, and an
SQL command to be executed. Once all the properties are set, the JdbcRowSetImpl.execute method is
called, which internally establishes a connection to the data source, creates any necessary prepared state-
ments, and executes the statements, which in turn generate a ResultSet. The jrsRowSet can now be tra-
versed just like any other scrollable, updatable ResultSet object.

The beauty of it all is that now the jrsRowSet that contains a ResultSet object can be a component in a
Swing application, if so desired.

309

Chapter 6

Connection Pooling

The trouble with the normal way of connecting to a data source is that, if your application requires
numerous connections to occur with a data source, every time you close the Connection object, the phys-
ical connection is closed. Therefore, every time you open a connection, the connection has to be reestab-
lished with the data source, initialized, and eventually closed again before repeating the same process
over and over again. This is a performance and scalability nightmare.

Connection pooling is the answer to this problem. It provides a way to maintain a certain amount of
physical database connections that can be reused by applications as necessary. Connection pooling is
typically used in a three-tier environment, but it can be used in a two-tier environment as well if the

JDBC driver provides an implementation of the ConnectionPoolDataSource interface.

From an applications standpoint, connection pooling is virtually transparent. There are only two things
you need to know in order to utilize connection pooling correctly, and they are listed here:

0 Never use the DriverManager class to get a Connection object; always use the DataSource object
to create a Connection object.
Q Always use finally statements to close a Connection object.

Administrators of application servers are responsible for managing the connection pools, so talk to your
application server administrator to find out specifics for your particular server.

Managing Transactions

Transaction management is extremely important when dealing with data sources. Transaction manage-
ment ensures data integrity and data consistency; without it, it would be very easy for applications to
corrupt data sources or cause problems with the synchronization of the data. Therefore, all JDBC drivers
are required to provide transaction support.

What Is a Transaction?

To explain transactions best, take using an ATM machine as an example. The steps to retrieve money are
as follows:
1. Swipe your ATM card.
Enter your PIN number.
Select the withdrawal option.
Enter the amount of money to withdraw.

Agree to pay the extremely high fee.

2L

Collect your money.

If anything was to go wrong along the way and you didn’t receive your money, you would definitely not
want that to reflect on your balance. So a transaction encompasses all the steps above and has only two
possible outcomes: commit or rollback. When a transaction commits, all the steps had to be successful.
When a transaction fails, there should not be any damage done to the underlying data source. In this
case, the data that stores your account balance!

310

Persisting Your Application Using Databases

Standard Transactions

JDBC transactions are extremely simple to manage. Transaction support is implemented by the DBMS,
which eliminates your having to write anything — code-wise — that would be cumbersome. All the
methods you need are contained in the Connection object. There are two main methods you need to
be concerned about: Connection.commit and Connection.rollback. There isn’t a begin transaction method
because the beginning of a transaction is implied when the first SQL statement is executed.

In JDBC 3.0, there is a new concept called a savepoint. Savepoints allow you to save moments in time inside
a transaction. For example, you could have an application that sends an SQL statement, then invokes a
savepoint, tries to send another SQL statement, but a problem arises and you have to rollback. Now
instead of rolling back completely, you can choose to rollback to a given savepoint. The following code
example demonstrates JDBC transactions and the new savepoint method, Connection.setSavepoint:

Statement stmt = cConn.createStatement() ;

int nRows = stmt.executeUpdate ("INSERT INTO PLAYERS (NAME) " +
VALUES ('Roger Thomas')");

// Create our save point
Savepoint spOne = cConn.setSavepoint ("SAVE_POINT_ONE") ;

nRows = stmt.executeUpdate ("INSERT INTO PLAYERS (NAME) " +
VALUES ('Jennifer White')");

// Rollback to the original save point
cConn.rollback (spOne) ;

// Commit the transaction.
cConn.commit () ;

From this example, the second SQL statement never gets committed because it was rolled back to
SAVE_POINT_ONE before the transaction was committed.

Distributed Transactions

Participation in distributed transaction management is the same as participating in connection pooling.
You must create connections from the DataSource interface. Transactions are no longer maintained by
applications; rather, they are now maintained by transaction managers outside your control. Therefore,
your program must not call any of the following methods:

0 commit
Q rollback
Q setSavePoint
Q setAutoCommit(true) — false is acceptable
If your application calls any of these methods while participating in a distributed transaction architecture,

an SQLException will be thrown. The following are the two things you doneed to do to participate fully
in a distributed transaction management architecture:

311

Chapter 6

Q Never use the DriverManager class to get a connection; always use the DataSource interface to
create a new Connection object.

Q Always use finally statements to close Connection objects.

Object to Relational Mapping
with Hibernate

Object to Relational Mapping (ORM) technologies are becoming very popular in today’s fast-paced,
develop-it-yesterday environment. ORM is an approach to developing applications that persist objects
to relational databases. Another term that is frequently used when discussing ORM technologies is trans-
parent persistence. Simply stated, it is the ability to store objects in a database using an object-oriented
programming language while hiding the details from the application. Hibernate does exactly that.

Hibernate (http://www.hibernate.org) is one of the most popular and versatile ORM tools on the
market. It acts as a persistent service for your applications to store and retrieve Java objects to and from
relational databases. Hibernate is designed to be as transparent to the developer as possible and one of
the main architectural features it possesses to accomplish this is the use of runtime reflection instead of
build-time code generation. This type of architecture allows you to write and compile your code without
Hibernate intruding on the build process. Hibernate doesn’t enter the picture until the application is
actually executed.

Hibernate, like most ORM tools, has its own query language called Hibernate Query Language (HQL).
HQL is an object-oriented query language that looks very similar to SQL. It supports the use of sub-
queries; group by, having, and order by; retrieval of arbitrary data objects using its select new construct;
table joins; native SQL Queries; SQL functions and operators; aggregate functions; and query by criteria.

Hibernate handles the object to relational bridge through plain-text XML files that map classes and
variables of those classes to tables and columns in a relational database. It also has mapping support for
one-to-one, many-to-one, one-to-many, and many-to-many relationships. If your particular application
will require complex mapping of an already existing database, I recommend a third-party tool called
MiddleGen (http://middlegen. codehaus.org/) to perform all of your mapping needs. MiddleGen
provides a Hibernate plug-in that supports the creation of Hibernate’s mapping configuration files and
eliminates the need for you to generate the mappings by hand. For more information on how
MiddleGen interacts with Hibernate, please visit http://www.hibernate.org/98.html.

Exploring Hibernate’s Architecture

Hibernate’s architecture is very flexible, and trying to narrow it down to one specific, overall architecture
is rather difficult. The reason is that Hibernate can basically plug in to any J2EE architecture without
hampering it. So the majority of its use will be based upon your architectural needs. This is not a draw-
back but a major winning point for Hibernate. You can base your needs on your requirements and not
worry about how they will affect the tool. Figure 6-3 shows a very basic architecture that shows where
Hibernate could reside.

312

Persisting Your Application Using Databases

o Application Layer

~
Clients
Laptops
BT [T v
pps.
=N
- - J
o 8
S L 23
— Server Layer gg ~
o
- y \/
HIBERNATE
Ser-ver
N .
Configurations XML Mappings
N 4} Y

A

Transpare
Persistence

Figure 6-3

313

Chapter 6

Supported Database Platforms

Hibernate supports a large array of database platforms to which objects may be persisted. Each database
will require its own JDBC driver in order to communicate with it. The currently supported database
platforms are as follows:

(]

MySQL

Oracle

Sybase
Microsoft SQL Server
Informix

DB2
PostgreSQL
SAP DB
HypersonicSQL
Interbase
Pointbase
Mckoi SQL

Progress

0O 000U 000D 00 0O

FrontBase

You can always add more database platforms when their drivers become available.

Plugging Hibernate In

To use Hibernate in your application, you need to understand what is required in order to set up
Hibernate successfully. The JARs that Hibernate uses are listed in the following table.

JAR File Description

hibernate2 jar This is the main jar that contains the portable hibernate
functionality

cglib-2.0-rc2 jar Code generation library used at run time

commons-collections-2.1 jar Random utilities provided by the Apache Jakarta Commons

project that Hibernate uses

commons-logging-1.0.3 jar Used in conjunction with log4j-1.2.8 jar for log support
dom4j-1.4 jar Used for XML parsing and mappings
Ehcache-0.6.jar Support for caching needs

314

Persisting Your Application Using Databases

JAR File Description

log4j-1.2.8 jar The commons-logging-1.0.3 jar uses this file for specific log-
ging needs — Hibernate uses the commons-logging-1.0.3.jar
for its logging needs

odmg-3.0.jar ODMG compliant persistence manager interface

Depending on your particular needs, some of these JARs can be optionally included.

Developing with Hibernate

This section will explore how to develop applications using Hibernate. The section will end with a com-
plete working example of a forum that allows users to collaborate via a Web browser on various topics.
This example will also show how to use Hibernate with Tomcat.

Understanding Mappings

The XML mapping files are a great place to start when learning Hibernate. This is the area where you will
build your object mappings to the relational database of choice. No code has to be written at this point
because Hibernate can actually generate the stub classes for you using the CodeGenerator that ships
with the Hibernate Extensions package. If you have downloaded and installed the Hibernate Extension
package, you can issue the following command on your mapping files to generate the source stubs:

java -cp classpath net.sf.hibernate.tool.hbm2java.CodeGenerator options
mapping_files

Mapping documents are usually created in the same directory as your generated class files where your
source files are. If you had a class named Employee, then the mapping file for that class should be called
Employee.hbm.xml. Below is a sample mapping file showing the basics of how to map a generic class, in
this case Employee, to a relational data source:

<hibernate-mapping package="org.hibernate">
<class name="Employee" table="tblEmployees">

<id name="id" column="employee_id" type="long" unsaved-value="null">
<generator class="native"/>
</id>

<property name="name" column="employee_name" type="string"
length="25" not-null="true"/>

<set name="Payroll" cascade="all" inverse="true" lazy="true">
<key column="employee_id"/>
<one-to-many class="Employee"/>

</set>

</class>
</hibernate-mapping>

315

Chapter 6

The mapping file is fairly straightforward once you understand the basic principles in mapping a class
to a table in a relational data source. The first element is the beginning <hibernate-mapping/> ele-
ment. It contains one attribute called package that simply states the package name that the class elements
belong to. This is an optional attribute. The <class/> element in the above example maps the class
named Employee to a table in a relational database named tblIEmployees.

Mapping classes are also required to define an <id/> element, which defines the mapping of a class prop-
erty to a primary key column in the data source. Primary keys must be available in all the tables you
plan to use from a data source. A required child element of the <id/> element, <generator> is used to
generate unique identifiers for the instance of the persistent class. The following are the ten built-in gen-
erator shortcut names that can ultimately be used.

Generator

Description

Assigned

Foreign

Hilo

Identity

Increment

Native

Seqhilo

Sequence

uuid.hex

uuid.string

Allows the application to specifically assign an identifier to the object
prior to calling the save () method.

Primarily used in <one-to-one> key associations, this uses an identi-
fier of another object.

Uses a hi/lo algorithm to generate identifiers of type int, long, or
short. Please be aware that this generator uses a table and a column,
which can be supplied to generate the identifiers. See the Hibernate
documentation for more details.

This generator returns an identifier of type int, long, or short and is
designed for use with identity columns in DB2, HypersonicSQL, MS
SQL Server, and MySQL.

Not to be used with clusters, this generates identifiers of type int,
long, and short that are only unique when a table is currently not
being used by a process to insert data.

This generator decides which generator to use based on the data
source. It will pick one of the following to use: hilo, identity, or
sequence.

Generates identifiers of type int, long, or short based upon a hi/lo
algorithm and the given named database sequence.

This generator returns an identifier of type int, long, or short based on
a sequence in either DB2, PostgreSQL, Oracle, SAP DB, McKoi, or a
generator in Interbase.

Returns a UUID encoded string of hexadecimal digits of length 32.

Returns a UUID encoded string of 16 ASCII characters. Not recom-
mended for PostgreSQL.

The <property/> element is used to map a Java attribute to a column in a table. You can specify the
SQL type, column length, and whether to allow NULL values or not.

316

Persisting Your Application Using Databases

The <set name="Payroll"> element is an example of how to use Hibernate’s one-to-many mapping
features. The <key/> element depicts a foreign key and the <one-to-many> element specifies the rela-
tionship between the Employee class and the Payroll class. The <set name="Payroll"> element also
has an attribute <lazy> and it is set to true. This means that the collection of objects will not automati-
cally be populated when first acquired from the data source. It will be populated when the application
decides to use it.

Setting Hibernate Properties

Hibernate uses a hibernate.properties file for its main configurations. This file should be stored in your
class path and will be used to set configurations such as the following:

Q Query language constants

Database platform and connection properties
Connection pool settings

Query cache properties

JNDI settings

Transaction API properties

U000 oo

Miscellaneous settings such as showing SQL statements

The ability to store all these settings in a properties file eliminates the need to hard code them into your
source code. This is a huge plus when you need to quickly configure your application for a particular
architecture.

Using Hibernate’s APIs for Persistence

The basic Hibernate APIs needed to persist objects to a data source are described in this section. In order
to persist an object using Hibernate, one of the first requirements is to create a SessionFactory object. A
SessionFactory can be created once the net.sf.hibernate.cfg.Configuration object has loaded all the necessary
mappings into memory. The following code shows an example of the appropriate way to load the map-
pings into a Configuration object and how to create a SessionFactory object once the new Configuration
object has been populated:

SessionFactory factory;

// Load configurations

Configuration cfg = new Configuration ()
.addClass (Category.class)
.addClass (Post.class)
.addClass (Topic.class) ;

// Create a new SessionFactory
factory = cfg.buildSessionFactory() ;

The Configuration object, cfg, is populated with mappings for the three classes listed in the example:

Category.class, Post.class, and Topic.class. Hibernate knows to search for the XML files containing the
mappings for the classes in the directory in which they are stored. The XML files should be named with

317

Chapter 6

the prefix of the class name and the suffix hbm.xml. So, for the Category.class file, the name of its XML
mapping file should be Category.hbm.xml.

The next steps on your way to persisting your objects are the following:

1. Open a session with the data source.

2. Starta transaction.

3. Create the objects that you want to persist and populate them with data.
4. Save the objects to the session.

5. Commit the changes to the data source and close your connection.
The following code illustrates these steps in detail:

// Step 1, open a session with the data source
Session snSession = factory.openSession();

// Step 2, start a transaction
Transaction tTransaction = snSession.beginTransaction() ;

// Step 3, create the objects we want to persist.
Category cat = new Category () ;

cat.setCategoryMsg ("Astronomy") ;
cat.setDescription("Discuss all your Astronomy topics here!");

// step 4, save the objects to the session
snSession.save(cat);

// Step 5, commit the changes and close our session
tTransaction.commit () ;
snSession.close() ;

Your object Category is now persisted to the data source with little effort. You did not have to know any-
thing about the columns, tables, JDBC types, and so on to accomplish your goal because all the work had
been done up front with the XML mapping files. The underlying mapping files and data sources could
change without affecting your code.

You can also search for specific data in a data source using Hibernate’s Criteria query APL This API
allows you to avoid embedding long SQL strings in queries and provides you with an object-oriented
approach to queries. The following is an example of how to query specific information by criteria:

Session snSession = factory.openSession();
Transaction tTransaction = null;

try {
tTransaction = snSession.beginTransaction() ;

// Retrieve a list of Category objects that have an "id"
// greater than 0.

318

Persisting Your Application Using Databases

}

List list = snSession.createCriteria(Category.class)
.add(Expression.gt("id", new Long (0L)))
Llist();

if (list.size() == 0) return;
Iterator it = list.iterator();

while (it.hasNext()) {
Category cat = (Category) it.next();

System.out.println("Category Description = " + cat.getDescription();

}
tTransaction.commit () ;

catch (Exception e) {
// Handle Exceptions

}finally {

}

snSession.close() ;

The code is designed to return all the Category objects that have an id that is greater than 0 into a net.sf.
hibernate.collection.List object. Once the List object is populated, you then iterate through the list pulling
out the Category objects and printing information from each one to the console. Session.createCriteria is
a very versatile API and it should contain enough functionality to satisfy your most complicated search-
ing needs.

The Session operations that can be performed are extensive. The following table describes some of the

core functionality. For an extensive list, please see Hibernate’s Java docs.

Method

Description

Transaction beginTransaction()

Connection close()

Criteria createCriteria(Class persistentClass)

void delete(Object object)
List find(String query)

void saveOrUpdate(Object object)

void update(Object object)

Creates a Transaction object and returns it for use.

This method completely ends the session and dis-
connects it from the JDBC connections.

This method allows you to create a Criteria
instance and allows you to query the
persistentClass using the specific Criteria
instance for information.

Deletes the specific object from the data source.

This method allows you to find specific informa-
tion using an HQL string.

Depending on the value of its identifier property,
this method will either save or update the given
instance. Its default behavior is to issue a save()
call.

This method updates the given instance.

319

Chapter 6

Putting It All Together: The Forum Example

The forum example will demonstrate the creation of a fully functional forum where users can create
categories, create topics for a specific category, and generate posts that reside inside topics. You will use
Hibernate to perform all of the necessary database transactions utilizing its object to relational mapping
capabilities. To develop this type of example in JDBC would have been very time-consuming, but by
using Hibernate it can be developed relatively quickly.

Understanding the Forum Architecture

The forum is housed in a Web application that resides on an Apache Tomcat server and is accessed via
a Web browser by the user. The Web application uses Java Server Pages (JSPs) for the presentation layer,
which will process user requests. Figure 6-4 illustrates the architecture of the forum example and where
each component resides.

Web
Browser

User

Client

Server

|

D

3| <———> JSP Java

Pages Classes -
T
Server

XML Hibernate
Mappings Properties
TOMCAT Server

Figure 6-4

The Java classes, Hibernate libraries and settings, and JSP pages are all encapsulated in a Web applica-
tion called forum. The database used is a MySQL database that stands alone as a self-contained DBMS.

320

Persisting Your Application Using Databases

The Forum’s Database

The forum’s database comprises three tables, which are used to store user posts, user topics, and user
categories. The table schemas are illustrated in Figure 6-5.

There can be many
topics associated with
a single Category

tblCategories
PK | CategorylD

There can also be
many posts associated

Category with a single Topic
Description tbITopics
PK TopiclD
Topic
TopicAuthor
FK1,11| CategorylD tbIPosts
PK PostID
Post
PostAuthor
DatePosted
FK4,11| TopiclD
Figure 6-5

The tblCategories table is used to store category information. An example of a category would be music.
Each category could then have subcategories called topics. The tblTopics table stores information on a
specific topic such as what category it belongs to, who created the topic, and the description of the topic
itself. An example of a topic that could fall under the category astronomy could be telescopes. Users
would post information to the different topic areas such as questions or technical information. The tblPosts
table stores topic posts that users have submitted. This table stores information on posts such as who

posted the information, what topic the post belongs to, the date the post occurred, and of course the post
itself.

The Forum’s File Structure

The forum example utilizes the Apache Tomcat server to host your Web application. Because of this,
Hibernate must be configured in such a way that it will play nicely with Tomcat. You must put your
JDBC driver that you wish to use in the TOMCAT/COMMON/LIB directory; all the other files will be
contained in your forum Web application directory. The required libraries, properties, classes, and JSP
files that make the forum example are illustrated in Figure 6-6. Please take note that all the properties files
(including the hibernate.properties file) should be contained in the WEB-INF/ classes directory.

321

Chapter 6

org/hibernate /forum |

B mysql.jar hibernate.properties Category.class

log4j.properties Driver.class
Post.class
Topic.class

[web.xml Category.hbm.xml

Post.hbm.xml
Topic.hbm.xml

[index.jsp cglib-2.0-rc2.jar

[newcategory.jsp commons-collections-2.1.jar

[newpost.jsp commons-logging-1.0.3.jar

[newtopic.jsp dom4j-1.4.jar

[post.jsp ehcache-0.6.jar

[topic.jsp hibernate2.jar

log4j-1.2.8.jar
odmg-3.0.jar
Figure 6-6

The Forum'’s User Interface

The forum’s user interface comprises six JSP pages. Three are used for displaying categories, topics, and
posts; the other three are used for submitting categories, topics, and posts. The first user interface shown
in Figure 6-7 is the interface for viewing categories. Its filename is index.jsp and it is the first page that
the user will see upon accessing the forum webapp. This page retrieves the categories using Hibernate,
which are in turn contained in the table tblCategories of the forum database.

Figure 6-7

322

Persisting Your Application Using Databases

The second user interface (UI) shown in Figure 6-8 is the interface used for displaying topics that are
stored in the table tblTopics of the forum database. The user would first need to select a category from
the category user interface, which would then trigger the topic UI to display the topics related to that
specific category. The topic Ul knows which category it belongs to because a parameter (cid) is passed
to the underlying JSP (topic.jsp) that represents the category ID.

Figure 6-8

The third user interface shown in Figure 6-9 is the interface used to display posts that are associated with
a particular topic. These posts are stored in the table tblPosts of the forum database. The user would first
need to select a topic from the topic user interface which would display the post UI and display the
appropriate posts. The post UI obtains the topic ID through a parameter (TID) that is passed to its JSP
(post.jsp).

Figure 6-9

The other three interfaces are used for submitting new posts (newpost.jsp), topics (newtopic.jsp), and cate-
gories (newcategory;jsp). These interfaces and all the source code can be found at http: //www.wrox . com.

323

Chapter 6

The Forum’s Code

The forum is made up of Java Server Pages (JSPs), which interact with the Hibernate API. The mapping
files that Hibernate uses are mapped to Java classes, which you created by hand. As stated earlier, it is
possible to have Hibernate generate the classes for you if you downloaded the Hibernate Extensions
package. Simply use the utility net.sf.hibernate.tool.hbm?2java.CodeGenerator to generate the code after
you have created the mapping files.

The first code example I will show you is the Category class and its mapping file, Category.hbl.xml. Here
is the Category mapping file:

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 2.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping package="org.hibernate.forum">

<class name="Category" table="tblcategories">
<id name="id" column="CategoryID">
<generator class="native"/>
</id>

<property name="CategoryMsg" column=""Category "/>

<property name="Description" column="'Description'"/>
</class>

</hibernate-mapping>

The element <hibernate-mapping> contains a package attribute that specifies the package name in
which the Category class is contained. In this case, it is org.hibernate.forum. The <class> element has
an attribute called name, which is the name of the Java class to use, and a table element called tblcate-
gories that specifies the name of the table to which the class maps. The <id> element has a attribute
called name, which has a value of id. This id value is the name of an attribute in the Category Java class.
The column attribute of <id> has a value of CategoryID, which is the column name of the primary key
in the table tblcategories. Simply stated, the Java attribute id contained in the class Category now maps
to the primary key CategorylD in the table tblcategories of the forum database. The <id> element is
required and any tables that you intend to map with must have a primary key. There is a child element
called <generator> that is used to automatically generate a unique ID.

The <property> element is used to map Java class attributes to columns in the specified table. Here we
are mapping CategoryMsg to column Category and Description to column Description. The code exam-
ple that follows shows the code for the Category class:

package org.hibernate.forum;
import java.util.*;

public class Category

{

private Long id;

private String CategoryMsg;

324

Persisting Your Application Using Databases

private String Description;

public Long getId() {
return id;

}

public String getCategoryMsg() ({
return CategoryMsg;

}

public String getDescription() ({
return Description;

}

public void setId(Long nID) {
id = nID;

public void setCategoryMsg (String string) {
CategoryMsg = string;

public void setDescription(String string) {
Description = string;

}

}

The preceding code shows all the Java class attributes that were referred to in the mapping example. The
Java class is also required to provide getter and setter methods for each attribute that is mapped.
Hibernate will use these methods to communicate with the class.

Note: The getter and setter method names must be prefixed with get or set and be completed
with exact spelling of the attribute name.

The other two classes that are mapped are the Topic and Post classes. They are mapped in the exact same
fashion as the preceding examples; therefore, they will not be displayed here. If you are interested in
looking at them, the code for the example is available at http: / /www.wrox. com.

At this point, you haven’t had to use any Hibernate APIs in your code, mainly because Hibernate uses
runtime reflection instead of compile-time code. Where you will need to utilize the Hibernate APIs is

in the code for the JSPs that access the information from the data source. There are six JSPs in this exam-
ple: three for viewing data, three for submitting data. I will now demonstrate and explain the post.jsp
and the newpost.jsp. All the other JSPs use similar coding techniques and are less complicated than these
two particular JSPs.

The newpost.jsp purpose is to insert a new posting to the database for a specific topic. The code that fol-
lows shows the core code that does all the work:

public void createPost (Long 1TopicID, String sAuthor, String sPost) throws
Exception {

SessionFactory factory;
// Load configurations

Configuration cfg = new Configuration/()
.addClass (Category.class)

325

Chapter 6

.addClass (Post.class)
.addClass (Topic.class) ;

// Create a new SessionFactory
factory = cfg.buildSessionFactory() ;

// Open Session
Session sn = factory.openSession();
Transaction transaction = null;

try {
tx = sn.beginTransaction();

// Create a new Post object with a specified Topic ID
Post post = new Post (1TopicID);

// Populate the post object before saving it
post.setPostDate (new java.sqgl.Date(System.currentTimeMillis()));
post.setPostMsg (sPost) ;

post.setPostAuthor (sAuthor) ;

// Save the Post object
sn.save (post) ;

// Commit the transaction and close the session

transaction.commit () ;

sn.close() ;

} catch (Exception e) {

if (transaction!= null) {
transaction.rollback() ;
throw e;

}finally {
sn.close() ;

The post.jsp allows the user to view posts for a specific topic. It utilizes the following code, which queries
the data source for posts that have the same topic id associated with them as the topic id that is being
passed to the viewPosts method:

public void viewPosts (JspWriter out, Long catID, Long topID) throws Exception {

// final Driver test = new Driver();
SessionFactory factory;

Configuration cfg = new Configuration ()
.addClass (Category.class)
.addClass (Post.class)

.addClass (Topic.class) ;
factory = cfg.buildSessionFactory () ;

Session s = factory.openSession();

326

Persisting Your Application Using Databases

Transaction tx=null;

try {
tx = s.beginTransaction() ;
List list = s.createCriteria(Post.class)
.add (Expression.eq("TopicID", topID))
list();

if (list.size()==0) return;
Iterator it = list.iterator();

while (it.hasNext()) {
Post post = (Post) it.next();

out.write("<tr>");
// Insert information from Post object here to display
// to the user.

out.write("</tr>");

tx.commit () ;
} catch (Exception e) {
if (tx!=null) tx.rollback();
throw e;
} finally {
s.close();
}
}

The forum example that was just demonstrated is a lightweight use of Hibernate’s capabilities. Its main
intent was to help you get your feet wet with Hibernate and provide you with an end-to-end example
that doesn’t cover the query language or mapping collections in great depth. These particular topics will
be covered in greater detail later on in the book.

Summary

Developing applications that are required to persist data to relational database management systems is a
need that continues to grow throughout the IT industry. This chapter provided you with a strong sense
of how Java technologies and open source products are being used to solve data persistence issues. Java
2 SDK 1.5 edition provides extensive data persistence support through its new and improved JDBC APL
The different features that the JDBC API provides were discussed in-depth and intuitive examples were
created that should help you choose the best features to fit your particular application’s architecture.

Through the use of Hibernate, this chapter was able to show you just how easy it is to utilize an object
with the relational mapping technology in your application. It also explored why Hibernate is one of the
most popular tools on the market based on its ability to provide scalability and performance benefits
with little effect on your existing applications code.

Simple Web applications were also used to demonstrate Hibernate’s persistence. In the next couple

chapters, your focus will turn more toward Web applications themselves. Chapter 7 starts with building
Web applications using the Model 1 Architecture.

327

Developing Web
Applications Using the
Model 1 Architecture

Software development activities generally involve domain-driven speculations that attempt to
tackle complexity by aggregating knowledge of a subject matter so that it can be handled for your
own purposes. This reflection generally involves experimentation by software and domain experts
to organize knowledge for use by development teams. Ultimately, these modeling tasks involve
the abstraction and filtering of nonessential data and the attainment of purposeful knowledge so
that developer needs are served and proper deployments are made to customers.

This chapter will demonstrate how you can overcome speculation over how to construct a Web
application using the Model 1 Architecture by constructing a hands-on Contact Management Tool.
Two different types of Java syntax, JSTL 1.1 and JSP 2.0, will be utilized to craft the sample GUI
component that will allow users to manage contact information through upload and query activi-
ties. The sample application’s use of Model 1 was chosen to suit design and implementation needs
for a quick prototype that can be implemented by novice Java Web developers in an easy fashion,
and to demonstrate some of the new Java language enhancements that were delivered with the
JSTL 1.1 and JSP 2.0 specifications.

What Is Model 1? Why Use It?

The Model 1 Architecture is a page-centric approach where page flows are handled by individual
Web components. This means that request and response processing are hard-coded into pages to
accommodate user navigations in a Web application. With Model 2 Architecture, navigation flows
are generally handled by a servlet controller that works in conjunction with configuration files to
dictate page renderings during application operations.

Chapter 7

Naturally, this presents maintenance problems when logic modifications are needed to accommodate
changes in requirements and end-user needs. Those changes would oblige developers to comb through
code to ensure that all logic flows are properly handled as users navigate through a Web application.
Along with the responsibilities of maintaining navigation flow in Model 1 deployments is the need to
manage concerns regarding security and application state.

Model 1 Architecture concerns are certainly difficult design decisions to tackle at the inception of a project,
but limitations in your team’s development expertise, the scope of your application, and time to delivery
might persuade you to adopt this development philosophy to get your project going. Adoption of the
Model 1 philosophy is not necessarily a bad decision depending on your predicament and your estima-
tion of what and how your team will deliver in an allotted delivery schedule. Model 2 implementations
would most likely help you overcome maintenance issues in the long run, so it is paramount that your
team overcomes its deficiencies by practicing with Model 2 frameworks and their configurations to bet-
ter understand their intricacies so that your earlier Model 1 applications can be migrated fairly easily.

Figure 7-1 provides a high-level overview of a Model 1 template used for the sample Contact Management
application that will be built to demonstrate Web application assembly combining JSP and JSTL tech-
nologies. Notice the individual JSP components (header, leftNav, content, and footer) that are all
aggregated in the home page. As a user navigates the taxonomy in the application, indexes are established
and passed along all of the individual pages so that operations can be performed inside those pages based
on those indexes.

home.jsp (aggregates all *.jsp pages)

JSP / Servlet
Container

header.jsp

—B/—\
JavaBean
<'> Content placed here. \
\

* XML

leftNav.jsp content.jsp -

Database

footer.jsp

Figure 7-1

330

Developing Web Applications Using the Model 1 Architecture

On many Web application components, content is typically retrieved from Java Bean components that
persist data on the back-end tier of an enterprise system for visualization on the client tier. The sample
application modeled in Figure 7-1 aggregates content from a MySQL database by using indexes from the
left panel drill-down to determine proper page inclusion demonstrated in the content.jsp code shown
below. When a user clicks on the initial Tasks link in the left panel, three navigation links will be pre-
sented (Add Profile, Add Contact, and View Contacts) so that contact names can be saved and queried:

<!--content.jsp -%
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<link href="CMS.css" rel="stylesheet" type="text/css">

<c:1if test="${param.taxonomyIndex == '101'}">
<jsp:include page="addProfile.jsp"/>

</c:if>

<c:if test="S${param.taxonomyIndex == '102'}">
<jsp:include page="addContact.jsp"/>

</c:if>

<c:1if test="${param.taxonomyIndex == '103'}">
<jsp:include page="viewContacts.jsp"/>

</c:if>

The Expression Language (EL) construct <c:if> is used in content. jsp to evaluate the three different
test conditions so that the appropriate JSP script will be included, which will in turn collect the proper
content for visualization.

Java Server Page (JSP) 2.0 and Java Standard Template Library (JSTL) 1.1 are both important Web applica-
tion components for constructing dynamic content on J2EE platforms. JSP 2.0 scripts can easily construct
HTML content and access JavaBean properties through Expression Language libraries. JSTL components
encapsulate functionalities that allow developers to iterate through data, perform XSLT transform opera-
tions, and access both database and object data. Both technologies can be combined to craft presentation-
tier components to display and interact with back-end data models.

This section will discuss JSP 2.0 and JSTL 1.1 technologies by presenting overviews of their capabilities
followed by some individual components of their libraries and demonstrate their usage in figures and
source code listings.

JSP 2.0 Overview

The viability of the Model 1 Architecture depends heavily on a number of the new features in the JSP 2.0
specification. In this section you will learn about the following:

Q Servlet 2.4 specification support
Q Expression Language (EL) support
O Code reuse with *.tag and *.tagx files
Q JSP page extensions (*.jspx)

a

Simple Invocation Protocol

331

Chapter 7

The introduction of these new script language constructs with the JSP 2.0 and JSTL 1.1 specifications was
meant to eliminate the need to include Java expressions in script code, which would result in scriptless
page development. These enhancements will certainly provide more controlled interactions and flexibil-
ity with other components as well as reusability among common actions.

Serviet 2.4 Support

The JSP 2.0 specification uses the Servlet 2.4 specification for its syntax, which allows applications to
handle Expression Language (EL) expressions as native syntax.

The following table describes some of the ServletRequest methods that were introduced with the Servlet
2.4 specification to determine client connection attributes.

Method Description

getRemotePort() Method that returns the IP address of the port that sent a request

getLocalName() Method that returns the hostname of the IP address from which the
request was received

getLocalAddr() Method that returns the IP Address from which the request was received

getLocalPort() Method that returns the IP port number from which the request was
received

This code segment illustrates how these methods can be implemented to realize these client connection
values:

<html>

<head>

<title>Servlet 2.4 Features</title>

</head>

<body>

<h2>Servlet 2.4 Features</h2>

<%

out.println("Remote Port : " + request.getRemotePort() + "
");
out.println("Local Name : " + request.getLocalName() + "
");
out.println("Local Address : " + request.getLocalAddr () + "
");
out.println("Local Port : " + request.getLocalPort() + "
");
%>

</body>

</html>

Additionally, Servlet 2.4 support includes the introduction of new features for the RequestDispatcher
and ServletRequest listener classes, as well as login capabilities related to the HttpSession class.

Expression Language Support

The Expression Language implementation in JSP 2.0 allows easy access to data from JSP scripts. This
enhancement has allowed developers to avoid writing scriptlets inside their pages, which should result
in cleaner and more readable JSP pages.

332

Developing Web Applications Using the Model 1 Architecture

Expression Language syntax is purported to be more user-friendly than Java and was introduced to
encourage its use for accessing data over Java language implementations. The power of Expression
Language constructs is that they allow users to embed Java code in a Java Server Page through scripting
elements. Three types of scripting elements are shown in the following table.

Scripting Element Example

expressions <jsp:expression> objectRef.loadValues() </:;jsp:expression>
scriptlets <% for (int increment = 0; increment < 25; increment++) { }
declarations <%! boolean firstPass = true; %>

The following code examples use Expression Language features to perform pig Latin word translations
and string replacement operations. The tag library prefix test is used to access the pigLatin and
dwReplacement methods to perform string operations on user specified text that is saved in the
sampleText parameter:

<%-- index.jsp --%>
<%@ taglib prefix="test" uri="/WEB-INF/el-taglib.tld"%>

<html>
<head>
<title>Expression Language Examples</title>
</head>
<body>
<hl>Expression Language Examples</hl>

<form action="functions.jsp" method="GET">
sampleText = <input type="text" name="sampleText"
value="${param|['sampleText']}">
<input type="submit">
</form>

<table border="0">
<tr>

<td bgcolor="#ffff99">Pig-Latin = </td>

<td bgcolor="#ffff99">S{test:piglatin (param["sampleText"]) } </td>
</tr>
<tr>

<td bgcolor="#ffff99">Dirty Word Replacement = </td>

<td bgcolor="#ffff99">S{test:dwReplacement (param["sampleText"]) } </td>
</tr>
</table>

</body>
</html>

The Java method below performs regular expression string manipulation operations on the text expres-

sions specified by the user in the text field components of index. jsp. For the pigLatin method, a check
is performed on the first character of the string passed in to see if that character is a vowel; if so, then the

333

Chapter 7

string will be returned with the word “way” appended to the end of it. Strings that start with consonants
will have their first character moved to the end of the string and then have “ay” added to the end of
string:

// [StringMethods.java]
package examples.el;

import java.util.*;
import java.util.regex.*;

public class StringMethods {

public static String pigLatin(String text) {
// works for one word ONLY
Pattern pattern = Pattern.compile("”([aeiouAEIOQU])");
Matcher matcher = pattern.matcher (text);
if (matcher.find())
return text+"way";
else
return text.replaceAll ("”([”aelouAEIOU]) (.+)", "s$2Slay");

public static String dwReplacement (String text) {
Pattern pattern = Pattern.compile("(darn|damn|stupid|dummy)");
Matcher matcher = pattern.matcher (text);
text = matcher.replaceAll ("#%&@");
return text;

The tag library definition file below defines the two different text functions, pigLatin and dwReplacement,
that are invoked in the index.jsp file and defined in StringMethods.java:

<!-- el-taglib.tld -->
<?xml version="1.0" encoding="UTF-8" 2>

<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee web-jsptaglibrary 2_0.xsd"
version="2.0">

<description>Function Examples</description>
<tlib-version>1.0</tlib-version>
<short-name>Function Examples</short-name>
<uri>/el</uri>

<function>
<description>PIG-Latin</description>
<name>pigLatin</name>
<function-class>examples.el.StringMethods</function-class>
<function-signature>
java.lang.String pigLatin(java.lang.String)
</function-signature>

334

Developing Web Applications Using the Model 1 Architecture

</function>
<function>
<description>Dirty Word Replacement</description>
<name>dwReplacement</name>

<function-class>examples.el.StringMethods</function-class>
<function-signature>

java.lang.String dwReplacement (java.lang.String)
</function-signature>
</function>

</taglib>

As this example demonstrates, Expression Language library extensions are powerful features that
strengthen developer’s capabilities for Web development. The function methods described here are
mapped to public static methods in Java classes that can be accessed through Expression Language
constructs throughout your Web application.

Code Reuse with *.tag and *.tagx Files

The implementation of *.tag and *.tagx files allows for better code reuse among developers. With these
tags, developers can encapsulate common behavior that will support reuse activities.

The following code snippet demonstrates how tag files can be implemented for reuse by other Web
applications. In this example, a portlet-like visualization component is crafted using a tagged file named
portlet.tag. Two parameters, title and color, are passed into the portlet tag file to dynamically
alter those properties in the component display:

<%@ taglib prefix="tags" tagdir="/WEB-INF/tags" %>

<html>

<head><title>tagx test</title>

</head>

<body>

<table width="100%"><tr><td>
<tags:portlet title="Portlet" color="#0000ff"> Test 1
</tags:portlet>

</td></tr></table>

</body>

</html>

The portlet. tag file encapsulates the portlet component and renders the title and color features passed
into the file by the preceding script:

<!--portlet.tag -->
<%@ attribute name="title" required="true" %>
<%@ attribute name="color" required="true" %>

<table width="250" border="1" cellpadding="2" cellspacing="0">
<tr bgcolor="${color}" color="#ffffff">
<td nowrap>
S{title}
</td>
</tr>

335

Chapter 7

<tr>
<td valign="top">
• Testl

• Test2

</td>
</tr>
</table>

These tag files can be important components for header and footer implementations that contain common
information that can be easily propagated to the Web pages in your project.

JSP Page Extensions (*.jspx)

Java Server Pages that have *jspx extensions are meant to advocate the use of XML syntax to generate
XML documents in JSP 2.0 compliant Web containers.

The code specified below describes how jspx files can be implemented when you develop Web applica-
tions to generate user displays:

<!--forms.jspx %
<?xml version="1.0"?>
<tags:test xmlns:tags="urn:jsptagdir:/WEB-INF/tags"
xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns="http://www.w3.0rg/1999/xhtml">
<jsp:directive.page contentType='text/html'/>
<head><title>Form Test</title></head>
<body>
<c:choose>
<c:when test='${param.name == null} and ${param.address == null}'>
<form action="form.jspx">
Please enter your name and address:

<input name="name" size="40"/>

<input name="address" size="40"/>

<input type="submit"/>
</form>
</c:when>
<c:otherwise>
User entered name=${param.name}, address=${param.address}

</c:otherwise>
</c:choose>
</body>
</tags:test>

The test.tag file below is used to invoke the JSP fragments using the <jsp: doBody> standard action:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
"http://www.w3.0rg/TR/xhtml-basic/xhtml-basicl0.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<jsp:doBody/>

</html>

336

Developing Web Applications Using the Model 1 Architecture

As the JSP 2.0 specification indicates, Web applications that contain files with an extension of .jspx will
have those files interpreted as JSP documents by default.

Simple Invocation Protocol

This API enhancement was developed to exploit the use of scriptless pages among Web developers using
JSP libraries in their development activities for implementing tag files.

In the code example below, the <lottery:picks/> tag file invocation demonstrates how simple it is to
incorporate logic into a Web page using tag libraries:

<%@ taglib uri="/WEB-INF/tlds/lottery.tld" prefix="lottery" %>
<html>

<head>

<title>Lottery Picks</title>

</head>

<body>

<h2>Lottery Picks</h2>

Lottery number generated is...<lottery:picks/>

</body>

</html>

The lottery tag library descriptor file, lottery.tld, outlines the lottery tag file application invoked from the
preceding Web application:

<!--lottery.tld %

<?xml version="1.0" encoding="UTF-8" ?>

<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary 2_0.xsd"
version="2.0">

<description>

Lottery picks

</description>
<jsp-version>2.0</jsp-version>
<tlib-version>1.0</tlib-version>
<short-name>picks</short-name>
<uri></uri>

<tag>
<name>picks</name>
<tag-class>lottery.Lottery